
Low Latency for Cloud Data Management

Dissertation with the aim of achieving a doctoral degree at the
Faculty of Mathematics, Informatics, and Natural Sciences

Submitted at the University of Hamburg
by Felix Gessert, 2018

Day of oral defense: December 18th, 2018

The following evaluators recommend the admission of the dissertation:

Prof. Dr. Norbert Ritter

Prof. Dr. Stefan Deßloch

Prof. Dr. Mathias Fischer

There are only two hard things in Computer Science: cache invalidation, naming things,

and off-by-one errors.

– Anonymous

ii

iii

Acknowledgments

This dissertation would not have been possible without the support and hard work of

numerous other people. First and foremost, I would like to thank my advisor Prof. Norbert

Ritter for his help and mentoring that enabled this research. Not only has he always

given me the freedom and patience to execute my ideas in different directions, but he has

formed my perception that academic research should eventually be practically applicable.

Therefore, he is one of the key persons that enabled building a startup from this research.

I also deeply enjoyed our joint workshops, talks, tutorials, and conference presentations

with the personal development these opportunities gave rise to. I am convinced that

without his mentoring and pragmatic attitude neither my research nor entrepreneurial

efforts would have worked out this well.

I would also like to express my gratitude to my co-advisor Prof. Stefan Deßloch. His

insightful questions and feedback on different encounters helped me improve the overall

quality of this work.

My sincerest thanks also go to my co-founders Florian Bücklers, Hannes Kuhlmann, and

Malte Lauenroth. The extensive discussions with Florian and our relentless efforts to

build useful software are the cornerstone this work is built upon. Without this set of

technically skilled and personally generous co-founders, this research would never have

led to Baqend. I am excitedly looking forward to what more we will be able to achieve

together.

I was fortunate to work with exceptional colleagues and co-researchers that made this

work not only fruitful, but enjoyable. Wolfram Wingerath provided not only the most

critical feedback, but also the most valuable one. At many occasions, our brainstorming

sessions sparked pivotal new approaches. Michael Schaarschmidt offered an enthusiastic

stream of helpful ideas and new perspectives. Erik Witt contributed numerous improve-

ments to this work as well as inspirations for clarity of thought and writing. Fabian Panse

was always available for stimulating conversations and advice. Steffen Friedrich could be

counted on to keep the teaching and organizational matters on course. The same is true

for Anne Awizen, who never got tired of reminding me about deadlines, forms, and other

things that I would surely have missed otherwise.

Many others provided helpful feedback or essential work on Orestes during the course of

writing this dissertation, including Konstantin Möllers, Kevin Twesten, Sven Decken, Jörn

iv

Domnik, Julian Tiemann, Julian Schenkemeyer, Nils Gessert, Dirk Bade, Uta Störl, Meike

Klettke, and Stefanie Scherzinger.

Most of all, I would like to thank my wife for her encouragement throughout these chal-

lenging and thrilling times. Finally, I am also deeply grateful for the support from my

family and friends.

Felix Gessert Hamburg, September 24th, 2018

v

Abstract

English

With the rise of scalable, distributed web applications, latency has become a fundamental

challenge for cloud data management. The delays caused by accessing data from cloud

services often dominate the performance of web and mobile applications. While modern

data management systems address the need for higher scalability and fault tolerance,

low latency remains an open issue. How can low-latency queries and reads be enabled

without sacrificing central data management abstractions such as consistency levels and

transactional isolation?

In this thesis, we investigate caching in cloud data management for dynamic data ranging

from database objects to complex query results. In the context of distributed systems,

achieving reads that are both fast and consistent is tied to the challenge of maintaining

fresh replicated data in proximity to clients. Therefore, we propose the data manage-

ment platform Orestes that enhances existing NoSQL database systems with low latency.

Orestes introduces several new techniques to substantially improve latency in cloud data

management. First, it leverages the expiration-based model of web caches available all

over the world through a novel cache coherence scheme – Cache Sketches. Our approach

thus makes caching applicable to highly volatile cloud data while maintaining rigorous

consistency levels. Second, transactions are a key concept often sacrificed in state-of-the-

art systems for performance reasons. Therefore, we propose an approach for horizontally

scalable, low-latency ACID transactions that can be added on top of existing database

systems. Third, to enable polyglot persistence, we survey the field of scalable data man-

agement and derive a novel classification scheme that relates database implementation

techniques to functional and non-functional guarantees. By combining these findings in

a unified data management interface, Orestes can provide existing systems as a scalable,

low-latency Database-as-a-Service. Fourth, with the design of a polyglot persistence me-

diator, we argue that the selection of suitable database systems for a given set of require-

ments can be automated based on service level agreements. Finally, we provide evidence

that for typical web applications and database workloads, our approach can improve la-

tency by more than an order of magnitude compared to traditional cloud-hosted backends

and database systems.

vi Abstract

German

Mit der Verbreitung skalierbarer und verteilter Webanwendungen sind Zugriffslatenzen

zu einer grundlegenden Herausforderung für das Cloud Data Management geworden. Die

Verzögerungen bei der Abfrage von Daten aus Cloud-Diensten dominieren oft die Perfor-

mance von Web- und mobilen Anwendungen. Während moderne Datenmanagementsys-

teme den Bedarf nach höherer Skalierbarkeit und Fehlertoleranz adressieren, bleibt die

Latenz eine offene Herausforderung. Wie können Lesezugriffe und Queries mit geringer

Latenz beantwortet werden, ohne dabei zentrale Abstraktionen des Datenmanagements

wie Konsistenzstufen und transaktionale Isolation aufzugeben?

In dieser Arbeit untersuchen wir Caching im Cloud Data Management für dynamische

Daten von Datenbankobjekten bis hin zu komplexen Query-Ergebnissen. Im Kontext

verteilter Systeme sind schnelle und korrekte Lesezugriffe mit der Herausforderung ver-

bunden, replizierte Daten konsistent in physischer Nähe zu Usern vorzuhalten. Aus diesem

Grund führen wir die Data Management-Plattform Orestes ein, um die Latenzen beste-

hender NoSQL-Datenbanksysteme zu verringern. Orestes verwendet mehrere neue Tech-

niken, mit denen die Latenzen lesender Operationen im Cloud Data Management erhe-

blich verbessert werden. Erstens nutzt es das expirationsbasierte Modell von Web-Caches,

die über ein neues Cachekohärenz-Verfahren namens Cache Sketches aktuell gehalten wer-

den. Unser Ansatz macht Caching somit auch für sehr volatile Cloud-Daten anwendbar

und stellt dabei konfigurierbare Konsistenzgarantien sicher. Zweitens sind Transaktionen

ein Kernkonzept des Datenmanagements, auf das in modernen Systemen oft aus Perfor-

mancegründen verzichtet wird. Daher schlagen wir einen Ansatz für horizontal skalier-

bare ACID-Transaktionen mit geringen Latenzen vor, der auf bestehende Datenbanksys-

teme anwendbar ist. Drittens leiten wir für polyglotte Persistenz durch eine genaue Anal-

yse verfügbarer Ansätze ein Klassifikationsschema ab, das die Implementierungstechniken

der Datenbanksysteme mit funktionalen und nicht-funktionalen Garantien in Beziehung

setzt. Durch die Anwendung der Systematik auf eine vereinheitlichte Datenmanagement-

Schnittstelle kann Orestes bestehende Systeme als skalierbares Database-as-a-Service mit

geringer Latenz anbieten. Viertens zeigen wir mit dem Design eines Polyglot Persistence

Mediators, dass die Auswahl geeigneter Datenbanksysteme auf Basis von Service Level

Agreements automatisiert werden kann. Abschließend belegen wir quantitativ, dass unser

Ansatz für typische Webanwendungen und Datenbank-Workloads die Latenz um mehr

als eine Größenordnung gegenüber herkömmlichen Backends und Datenbanksystemen

verbessert.

vii

Contents

Abstract v

1 Introduction 1

1.1 Problem Statement . 4

1.2 Challenges . 6

1.3 Primary Contributions . 7

1.3.1 Web Caching of Records and Query Results with Rich Consistency

Guarantees . 9

1.3.2 A Database-as-a-Service Middleware for Scalable Web Applications . 9

1.3.3 Polyglot Persistence Mediation with Database-Independent Caching

and ACID Transactions . 10

1.4 Outline and Previously Published Work . 11

1.5 List of Own Publications . 12

2 Background 15

2.1 End-to-End Latency in Cloud-based Architectures 15

2.1.1 Three-Tier Architectures: Server-Side Rendering 16

2.1.2 Two-Tier Architectures: Client-Side Rendering 20

2.1.3 Latency and Round-Trip Time . 24

2.1.4 Cloud Computing as a Source of Latency 25

2.2 Backend Performance: Scalable Data Management 29

2.2.1 NoSQL Database Systems . 30

2.2.2 Different Data Models . 31

2.2.3 Latency, Consistency, and Availability: Trade-Offs 33

2.2.4 Relaxed Consistency Models . 35

2.2.5 Polyglot Persistence . 41

2.2.6 Cloud Data Management: Database- and Backend-as-a-Service 47

2.2.7 Latency Problems in Distributed Transaction Processing 51

2.2.8 Low-Latency Backends through Replication, Caching, and Edge

Computing . 57

2.3 Network Performance: HTTP and Web Caching 60

2.3.1 HTTP and the REST Architectural Style 60

viii Contents

2.3.2 Latency on the Web . 62

2.3.3 Web Caching . 65

2.3.4 Challenges of Web Caching for Data Management 71

2.4 Frontend Performance . 72

2.4.1 Client-Side Rendering and Processing 73

2.4.2 Client-Side Caching and Storage . 75

2.5 Summary . 76

3 Providing Low Latency for Cloud Data Management 79

3.1 A Classification Scheme for NoSQL Database Systems 80

3.1.1 Sharding . 80

3.1.2 Replication . 82

3.1.3 Storage Management . 84

3.1.4 Query Processing . 86

3.2 System Case Studies . 88

3.3 System Decision Tree . 89

3.4 Requirements for Low Latency Cloud Data Management 92

3.5 Orestes: A Data Management Middleware for Low Latency 92

3.5.1 Architecture . 93

3.5.2 Unified REST API . 100

3.5.3 Polyglot Data Modeling and Schema Management 103

3.5.4 Authentication and Access Control 106

3.5.5 Function-as-a-Service . 108

3.5.6 Query Processing . 110

3.5.7 Concurrency Control . 111

3.5.8 Scalability and Multi-Tenancy . 113

3.5.9 Server Implementation . 115

3.6 Discussion . 117

3.7 Summary . 120

4 Web Caching for Cloud Data Management 123

4.1 Cache Sketches: Bounding Staleness through Expiring Bloom Filters 124

4.1.1 The Cache Sketch Scheme . 125

4.1.2 The Client Cache Sketch . 127

4.1.3 Proof of ∆-Atomicity . 128

4.1.4 Controlling Consistency . 130

4.1.5 The Server Cache Sketch . 132

4.1.6 Optimizing Cache Sketch Size . 132

4.1.7 Quantifying (∆,p)-Atomicity for the Web Caching Model 133

4.2 Cacheability Estimation: Whether and How Long to Cache 135

4.2.1 Stochastic Model . 136

4.2.2 Constrained Adaptive TTL Estimation 137

Contents ix

4.2.3 TTL Estimation for Fluctuating Workloads 140

4.3 Evaluation of the Cache Sketch for Object Caching 143

4.3.1 YMCA: An Extensible Simulation Framework for Staleness Analysis . 143

4.3.2 Parameter Optimization for the CATE TTL Estimator 144

4.3.3 YCSB Results for CDN-Cached Database Workloads 145

4.3.4 Industry Backend-as-a-Service Evaluation 146

4.3.5 Efficient Bloom Filter Maintenance 148

4.4 Query Caching: Motivation and Problem Statement 150

4.5 Cache Coherence for Query Results . 152

4.5.1 Cache Sketches for Query Caching 152

4.5.2 Consistency . 154

4.5.3 Cache Sketch Maintenance for Queries 157

4.6 Invalidations and Expirations . 157

4.6.1 Invalidation Detection . 157

4.6.2 Statistical TTL Estimation . 162

4.6.3 Representing Query Results . 163

4.6.4 Capacity Management . 164

4.6.5 End-to-end Example . 166

4.7 Evaluation of Query Caching . 167

4.7.1 Experimental setup . 168

4.7.2 Cloud-Based Evaluation of Query Caching 169

4.7.3 Simulation-Based Evaluation of Query Caching 174

4.7.4 InvaliDB . 177

4.7.5 Evaluation Summary . 179

4.8 Cache-Aware Transaction Processing . 179

4.8.1 The Abort Rate Problem of Optimistic Transactions 180

4.8.2 DCAT: Distributed Cache-Aware Transactions 183

4.8.3 Server-Side Commit Procedure . 185

4.8.4 Cache-Aware RAMP Transactions . 189

4.8.5 Evaluation . 191

4.9 Summary . 193

5 Towards Automated Polyglot Persistence 195

5.1 Motivation . 195

5.2 Concept: Choosing Database Systems by Requirements 196

5.2.1 Defining Requirements Through SLAs 197

5.2.2 Scoring Databases against SLA-Annotated Schemas 199

5.2.3 Mediation . 202

5.2.4 Architecture of the Polyglot Persistence Mediator 203

5.3 Experimental Case Study . 204

5.4 Outlook . 206

5.4.1 Scoring and Database Selection . 207

x Contents

5.4.2 Workload Management and Multi-Tenancy 207

5.4.3 Polyglot Setups . 207

5.4.4 Adaptive Repartitioning . 208

5.5 Summary . 208

6 Related Work 209

6.1 Caching . 209

6.1.1 Server-Side, Client-Side, and Web Caching 211

6.1.2 Cache Coherence: Expiration-Based and Invalidation-Based Caching 215

6.1.3 Query-Level Caching . 222

6.1.4 Summary Data Structures for Caching 224

6.2 Geo-Replication . 226

6.2.1 Replication and Caching . 226

6.2.2 Eager Geo-Replication . 227

6.2.3 Lazy Geo-Replication . 229

6.3 Transaction Processing . 235

6.3.1 Entity Group Transactions . 236

6.3.2 Multi-Shard Transactions . 237

6.3.3 Client-Coordinated Transactions . 238

6.3.4 Middleware-Coordinated Transactions 239

6.3.5 Deterministic Transactions . 240

6.3.6 Comparison with DCAT . 241

6.4 Database-as-a-Service and Polyglot Persistence 242

6.4.1 Multi-Tenancy and Virtualization . 242

6.4.2 Database Privacy and Encryption . 243

6.4.3 Service Level Agreements (SLAs) . 245

6.4.4 Resource Management and Scalability 245

6.4.5 Benchmarking . 246

6.4.6 Database Interfaces and Polyglot Persistence 248

7 Conclusions 253

7.1 Main Contributions . 253

7.1.1 Object, File, and Query Caching . 254

7.1.2 Backend-as-a-Service . 254

7.1.3 Polyglot Persistence Mediation . 255

7.2 Future Work . 255

7.2.1 Caching for Arbitrary Websites, APIs, and Database Systems 256

7.2.2 Reinforcement Learning of Caching Decisions 257

7.2.3 Fully Automatic Polyglot Persistence 259

7.2.4 Polyglot, Cache-Aware Transactions 260

7.3 Closing Thoughts . 262

Bibliography 263

List of Figures 317

List of Tables 321

Listings 323

Statutory Declaration / Eidesstattliche Erklärung 325

xii Contents

1

1 Introduction

This thesis examines low latency for web applications and database systems in cloud en-

vironments.

Today, web performance is governed by round-trip latencies between end devices and

cloud services. Depending on their location, users therefore often experience latency as

loading delays when browsing through websites and interacting with content from apps.

Latency is responsible for page load times and therefore strongly affects user satisfaction

and central business metrics such as customer retention rates or the time spent on a site. In

the web, users expect websites to load quickly and respond immediately. However, client

devices are always separated from cloud backends by a physical network. The latency for

data to travel between devices and cloud servers dominates the perceived performance of

an application.

The significance of fast page load times has been studied extensively by large web, pub-

lishing, and e-commerce companies. Amazon, for example, has found that 100 ms of addi-

tional loading time decrease sales revenue by 1% [Lin06]. With Amazon’s current revenue,

the impact of an additional 10th of a second is over 1 billion USD per year. When users

were asked whether they prefer 30 or 10 search results on Google, a majority favored more

search results. However, when comparing both variants, Google measured a drop in traffic

of 20% [Far06]. The decrease in engagement was caused by 500 ms of additional latency

for the search query. This shows that browsing patterns heavily depend on performance,

even if users are unaware of their own behavior [Mil68,Nie94,Mye85]. User expectations

for performance are increasingly high. According to a survey of 116 companies conducted

by the Aberdeen group, the average user satisfaction drops by 16% for every second of

load time [Sim08]. 49% of users expect websites to load in 2 seconds or less, according

to a survey by Akamai [Tec14]. These expectations are not matched in practice: a median

top 500 e-commerce website has a page load time of 9.3 seconds [Eve14].

The wealth of studies [Eve16] shows that many business metrics as well as basic user

behavior heavily depend on web performance. At the same time, websites and workloads

continuously become more complex while the amount of processed and stored data in-

creases. Additionally, more and more users access websites and services from unreliable

mobile networks and different geographical locations. Performance therefore constitutes

one of the central challenges of web technology.

2 1 Introduction

To tackle the performance of application backends, cloud computing has emerged. The

rise of cloud computing enables applications to leverage storage and compute resources

from a large shared pool of infrastructure. The volume and velocity at which data is gen-

erated and delivered have led to the creation of NoSQL databases that provide scalability,

availability, and performance for data-driven workloads. Combining these two technol-

ogy trends as cloud data management, scalable database systems are now frequently

deployed and managed through cloud infrastructures. While cloud data management

supports various scalability requirements that have been impossible with deployments on-

premises [LS13, ZSLB14], it introduces a performance problem. High latency between

application users and cloud services is an inherent characteristic of the distributed nature

of cloud computing and the web.

Frontend Rendering:
- Parsing and rendering
- Script execution

Network Delay:
- Round-trip latency
- Propagation time

Backend Processing:
- Database queries
- Server-side code

End User HTTP Cloud Backend

Figure 1.1: The three primary sources of latency and performance problems of web appli-
cations: frontend rendering, network delay, and backend processing.

Across the application stack, slow page load times have three sources, as illustrated in Fig-

ure 1.1. When a web page is requested, the first source of loading time is the backend. It

consists of application servers and database systems and assembles the page. The latency

of individual OLTP queries and the processing time for rendering HTML slow down the

delivery of the site [TvS07].

The frontend, i.e., the page displayed and executed in the browser, is the second source

of delay. Parsing of HTML, CSS, and JavaScript as well as the execution of JavaScript that

can block other parts of the rendering pipeline contribute to the overall waiting time.

As of 2018, loading an average website requires more than 100 HTTP requests [Arc18]

that need to be transferred over the network. This requires numerous round-trip times

that are bounded by physical network latency. This third source of delay typically has the

most significant impact on page load time in practice [Gri13].

3

Any performance problem in web applications can be allocated to these three drivers of

latency. When a website is requested by a client, it is generated by the backend, thus caus-

ing processing time. The website’s HTML is transferred to the browser and all included

resources (e.g., scripts, images, stylesheets, data, queries) are requested individually caus-

ing additional network latency. Rendering and script execution in the client also contribute

to overall latency.

Network bandwidth, client resources, computing power, and database technology have

improved significantly in recent years [McK16]. Nonetheless, latency is still restricted

by physical network round-trip times as shown in Figure 1.2. When network bandwidth

increases, page load time does not improve significantly above 5 MBit/s for typical web-

sites. However, if latency can be reduced, there is a proportional decrease in overall

page load time. These results illustrate that cloud-based applications can only be acceler-

ated through latency reduction. As requests cause latency at the network, backend, and

database levels, an end-to-end approach for minimizing latency is required.

0

1000

2000

3000

4000

5000

240 220 200 180 160 140 120 100 80 60 40 20 0

P
ag

e
Lo

ad
 T

im
e

 (m
s)

Latency in ms (at 5MBit/s bandwidth)

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10

P
ag

e
Lo

ad
 T

im
e

(m
s)

Bandwidth in MBit/s (at 60ms latency)

Figure 1.2: The dependency of page load time on bandwidth (data rate) and latency.
For typical websites, increased bandwidth has a diminishing return above 5
MBit/s, whereas any decrease in latency leads to a proportional decrease in
page load time. The data points were collected by Belshe [Bel10] who used
the 25 most accessed websites.

4 1 Introduction

The central goal of this thesis is to provide latency reduction for modern cloud data man-

agement to improve performance of applications. We therefore explore how latency can

be reduced through caching and replication and study the related trade-offs between per-

formance, scalability, and data freshness.

1.1 Problem Statement

The increasing adoption of cloud computing has led to a growing significance of latency for

overall performance. Both users and different application components are now frequently

separated by wide-area networks. Database-as-a-Service (DBaaS) and Backend-as-a-

Service (BaaS) models allow storing data in the cloud to substantially simplify application

development [CJP+11]. However, their distributed nature makes network latency critical

[Coo13]. When clients (e.g., browsers or mobile devices) and application servers request

data from a remote DBaaS or BaaS, the application is blocked until results are received

from the cloud data center. As web applications usually rely on numerous queries for data,

latency can quickly become the central performance bottleneck.

Fueled by the availability of DBaaS and BaaS systems with powerful REST/HTTP APIs for

developing websites and mobile apps, the single-page application architecture gained

popularity. In this two-tier architecture, clients directly consume data from cloud services

without intermediate web and application servers as in three-tier architectures. Single-

page applications allow more flexible frontends and facilitate the development process.

In single-page applications, data is not aggregated and pre-rendered in the application

server, but assembled in the client through many individual requests. Consequently, the

number of latency-critical data requests is even higher in this architecture [Wag17].

The latency problem has previously been tackled mainly by replication [DHJ+07,

CDG+08, Hba17, QSD+13, CRS+08, SPAL11, LFKA13, LFKA11] and caching techniques

[LLXX09,PB03,DFJ+96,ABK+03,LGZ04,LKM+02,BAK+03] to distribute the database sys-

tem and its data. The central limitation of prior work on replication and caching is a lack

of generality: all solutions so far are tied to specific types of data or applications (e.g.,

static web content), trade read latency against higher write latency, or do not bound data

staleness. Furthermore, latency and performance improvements for database systems do

not solve the end-to-end performance problem. The core problem is that state-of-the-art

database systems are not designed to be directly accessed by browsers and mobile devices

as they lack the necessary abstractions for access control and business logic. Therefore,

servers still need to aggregate data for clients and thus increase latency [FLR+14].

Our goal is to broaden the spectrum of techniques for low latency with an approach that is

compatible with any cloud service serving dynamic data. To this end, the major problem

to be solved is to efficiently replicate and cache data for low latency while exposing the

appropriate tuning knobs to let applications configure consistency and freshness guaran-

tees.

1.1 Problem Statement 5

Improving the performance of mostly static data has a long history [GHa+96]. However,

latency and consistency are particularly challenging for dynamic data that in contrast to

static data can be modified arbitrarily and at any point in time. A typical website consists

of some mostly static files, for example, scripts, stylesheets, images, and fonts. Web APIs,

JSON data, and HTML files, on the other hand, are dynamic and therefore commonly

considered uncacheable [LLXX09]. Dynamic data can have various forms depending on

the type of the application and the underlying storage [Kle17]. The latency problem

hence has to be addressed for both standard file- and record-based access based on a

primary key or an identifier (e.g., a URL) as well as query results that offer a dynamic

view of the data based on query predicates. As an example, consider an e-commerce

website. For the website to load fast, files that make up the application frontend have

to be delivered with low latency, e.g., the HTML page for displaying the shop’s landing

page. Next, data from the database systems also needs to be delivered fast, e.g., the state

of the shopping cart or product detail information. And lastly, the performance of queries

like retrieving recommended products, filtering the product catalog or displaying search

results also heavily depends on latency.

Latency is not only problematic for end users, but it also has a detrimental effect on trans-

action processing [BBC+11,SVS+13,DAEA10,PD10,KPF+13,DFR15a,KKN+08,ZSS+15,

DNN+15]. Many applications require the strong guarantees of transactions to preserve

application invariants and correct semantics. However, both lock-based and optimistic

concurrency control protocols have an abort probability that depends on the overall trans-

action duration [BN09, Tho98]. If individual operations are subject to high latency, the

overall transaction duration is prolonged and consequently, the probability of a deadlock

or conflict exhibits a superlinear increase [WV02]. Thus, in environments with high la-

tency, the performance of transaction processing is determined by latency. This is for

example the case if an end user is involved in the transaction (e.g., during the checkout in

reservation system) or if the server runs the transaction against a remote DBaaS. Thus, to

increase the effectiveness of transactions, low latency is required, too.

The complete ecosystem of data management is currently undergoing heavy changes. The

unprecedented scale at which data is consumed and generated today has shown a large

demand for scalable data management and given rise to non-relational, distributed NoSQL

database systems [DHJ+07,CDG+08,Hba17,LM10,CD13,SF12,ZS17]. Two central prob-

lems triggered this process:

• vast amounts of user-generated content in modern applications and the resulting

request loads and data volumes

• the desire of the developer community to employ problem-specific data models for

storage and querying

To address these needs, various data stores have been developed by both industry and re-

search, arguing that the era of one-size-fits-all database systems is over [SMA+07]. There-

fore, these systems are frequently combined to leverage each system in its respective sweet

6 1 Introduction

spot. Polyglot persistence is the concept of using different database systems within a sin-

gle application domain, addressing different functional and non-functional needs with

each system [SF12].

Complex applications need polyglot persistence to deal with a wide range of data man-

agement requirements. Until now, the overhead and the necessary know-how to manage

multiple database systems prevent many applications from employing efficient polyglot

persistence architectures. Instead, developers are often forced to implement one-size-fits-

all solutions that do not scale well and cannot be operated efficiently. Even with state-

of-the-art DBaaS systems, applications still have to choose one specific database technol-

ogy [HIM02,CJP+11].

The rise of polyglot persistence [SF12] introduces two specific problems. First, it imposes

the constraint that any performance and latency optimization must not be limited to only

a single database system. Second, the heterogeneity and sheer amount of these systems

make it increasingly difficult to select the most appropriate system for a given application.

Previous research and industry initiatives have focused on solving specific problems by

introducing new database systems or new approaches within the scope of specific, existing

data stores. However, the problem of automatically selecting the most suitable systems

and orchestrating their interaction is yet unsolved as is the problem of offering low latency

for a polyglot application architecture.

Besides the problem of high network latencies, the applicability of database systems in

cloud environments is considerably restricted by the lack of elastic horizontal scalability

mechanisms and missing abstraction of storage and data models [DAEA13, SHKS15]. In

today’s cloud data management, most DBaaS systems offer their functionalities through

REST APIs. Yet today, there has been no systematic effort on deriving a unified REST

interface that takes into account the different data models, schemas, consistency concepts,

transactions, access-control mechanisms, and query languages to expose cloud data stores

through a common interface without restricting their functionality or scalability. A unified

REST interface is a foundation for consolidating multiple storage systems in a scalable

polyglot persistence architecture, as it abstracts implementation details of different data

stores by working at the level of desired functional and non-functional requirements.

1.2 Challenges

Even with the combination of state-of-the-art work on NoSQL databases, geo-replication,

and web technologies, four central challenges remain:

C1 Latency of Dynamic Data: Web performance is governed by high round-trip latencies

from browsers and mobile devices to remote cloud services for fetching dynamic

data. Web caching in its prevailing form is incapable of dealing with dynamically

changing files, objects, and query results.

1.3 Primary Contributions 7

C2 Direct Client Access: Current replication and caching approaches for database sys-

tems only marginally improve end-to-end performance, because the abstractions for

direct access by clients are missing. This prevents exposing full-fledged Database-

as-a-Service systems to browsers and mobile devices and appropriate interfaces for

data management, business logic, transactions, authentication, and authorization

mechanisms are not available.

C3 Transaction Abort Rates: As abort rates of transaction processing deteriorate steeply

when reads and queries experience high latency, transactions are infeasible for many

distributed scenarios. In state-of-the-art approaches, improved transaction perfor-

mance is often achieved by relaxing transaction guarantees instead of providing bet-

ter performance for strong isolation levels.

C4 Polyglot Persistence: Polyglot persistence makes performance optimization and elas-

tic scalability very difficult. Manual polyglot persistence introduces prohibitive man-

agement overhead for applications. Furthermore, choosing the most suitable data

stores based on functional and non-functional requirements is a cumbersome and

error-prone process.

The problem addressed in this thesis is latency reduction for cloud-based applications.

In order to achieve low latency in a generic fashion, an end-to-end approach is required

to speed up transactions and the delivery of files, database records, and query results

from cloud databases and services, while maintaining high scalability and consistency. We

therefore pose the following research question:

Research Question: How can the latency of retrieving dynamic data from cloud

services be minimized in an application- and database-independent way while main-

taining strict consistency guarantees?

To address the above research question, we propose a caching methodology for low

latency that caches dynamic data with well-defined consistency levels and is applica-

ble to distributed, polyglot transactions (cf. C1 and C3). We devise and implement a

Database/Backend-as-a-Service middleware that scales elastically and is capable of expos-

ing database systems for direct, low-latency client access (cf. C2). To satisfy complex data

management requirements, we explore the concept of a Polyglot Persistence Mediator that

is capable of orchestrating heterogeneous data stores (cf. C4).

In the remainder of this chapter, we outline the key contributions of this work and present

the structure of this thesis.

1.3 Primary Contributions

We believe that the challenges outlined above can be best solved using a comprehensive

caching approach that exploits both existing database systems and wide-spread caching

infrastructures. Today, to the best of our knowledge, no other approach is capable of

8 1 Introduction

leveraging the web’s expiration-based HTTP caching model and its globally distributed

content delivery infrastructure for cloud data management.

This thesis completely relies on standard web caching to provide low-latency data access

with rich consistency guarantees to solve the latency problem. Though discussed mainly

in the context of Database- and Backend-as-a-Service applications, the method applies to

any system serving dynamic data over a REST/HTTP-based interface.

Client (Browser)

Expiration-
based Caches

Invalidation-based
Caches

Cloud Backend
(DBaaS/BaaS)

Dynamic Data &
Backend APIs

Cache Hits

6

2

Polyglot Persis-
tence Mediation

Cache
Coherence

Expiration (TTL)

Best Cacheable
Structure

1Cacheability

Database
Systems

3
Unified REST Interface
for Data Management

5

Cache-aware
Transactions

4

Database-independent
DBaaS/BaaS Capabilities

Cached Data

Files

Records, Documents

Query Results

{}

Figure 1.3: High-level contributions of this thesis: (1) and (2) are concerned with Chal-
lenge C1, (3) and (4) with C2, (5) with C3, and (6) with C4.

The primary contributions of this work are summarized in Figure 1.3 and described in

more detail in the next three subsections. To cache dynamic content, a runtime decision

on cacheability is required for each resource, to select data that lends itself to effec-

tive caching (1). To utilize the entire web caching infrastructure, a cache coherence

mechanism for all types of web caches needs to prevent clients from retrieving stale data

by accident (2). To make cacheable data directly available to clients for end-to-end la-

tency reduction, a unified REST interface exposes abstractions for data management,

e.g., queries containing protected data (3). These DBaaS and BaaS abstractions are pro-

vided in database-independent fashion so that existing database systems are enhanced to

work in a multi-tenant environment and with caching (4). Furthermore, database systems

that have no support for ACID transactions are provided with optimistic, cache-aware

transactions (5). To directly map requirements of applications to a set of databases, we

1.3 Primary Contributions 9

propose the Polyglot Persistence Mediator that routes operations and data to the most

suitable system candidates (6).

1.3.1 Web Caching of Records and Query Results with Rich Consistency
Guarantees

To improve performance, cloud services need to minimize the delay of accessing data. In

this thesis, we propose ORESTES, a comprehensive methodology and service architecture

for automatic query, file, and record caching. The expiration-based web caching model

gained little attention for data management in the past, as its static expirations (time-

to-live) were considered irreconcilable with dynamic data that changes unpredictably. We

propose a solution to this apparent contradiction by showing that clients can transparently

maintain cache coherence. The main idea is to enable application-independent caching

of query results and records with tunable consistency guarantees, in particular, bounded

staleness.

We employ two key concepts to incorporate both expiration-based and invalidation-based

web caches:

• A Cache Sketch data structure to indicate potentially stale data

• Statistically derived cache expiration times to maximize cache hit rates (TTL esti-

mation)

The Cache Sketch captures stale data. By piggybacking the data structure at load time,

clients can determine which requests can safely be directed to caches or trigger a revalida-

tion if needed. At the same time, stale data is proactively purged from invalidation-based

caches (e.g., content delivery networks and reverse proxy caches). To even cache query

results, a distributed query invalidation pipeline detects changes to cached query results in

realtime. Through an online decision model, the latency-optimal structure for each query

result is determined.

The proposed caching algorithms offer a new means for data-centric cloud services to

trade latency against staleness bounds, e.g., in a Database-as-a-Service. Besides bounded

staleness, several other consistency guarantees like causal consistency or monotonic reads

can be chosen at the granularity of operations, while leaving the option for strict consis-

tency at the expense of cache hits. We provide empirical evidence for the scalability and

performance of our approach through both simulation and experiments. The results indi-

cate that for read-heavy workloads speed-ups by an order of magnitude can be achieved

through our caching approach.

1.3.2 A Database-as-a-Service Middleware for Scalable Web Applications

This work motivates the design of a unified REST API and tackles the challenges of pro-

viding it in an extensible, scalable, and highly available fashion through a middleware

10 1 Introduction

approach. To this end, we propose an architecture that consists of an independently scal-

able tier of HTTP servers that map the unified REST API to aggregate-oriented (NoSQL)

data stores. The middleware extracts a wide range of DBaaS concerns (e.g., schema man-

agement, transactions, and access control) and provides them in a modular, database-

independent fashion at the middleware level to support a broad range of application re-

quirements.

Backend-as-a-Service is an extension of the DBaaS model that addresses the need for

clients like browsers and mobile devices to query and update cloud databases directly.

To allow this, fine-grained access control and integration of protected business logic are

required. ORESTES enables any data store and DBaaS to be exposed as a Backend-as-a-

Service by supporting these abstractions as a middleware.

We will provide evidence for two major advantages of solving DBaaS and BaaS through a

middleware approach:

• Elastic scalability and performance can be addressed in a database-independent

fashion through our proposed caching approach and workload-based auto-scaling.

• Many central, functional application requirements for BaaS and DBaaS can be

easily added to existing data stores, including schema management, authentication,

access control, real-time queries, ACID transactions, and business logic.

1.3.3 Polyglot Persistence Mediation with Database-Independent Caching
and ACID Transactions

In this thesis, we present a novel solution for providing automated polyglot persistence

based on service level agreements (SLAs). These SLAs are defined over functional and

non-functional requirements of database systems. Therefore, we introduce the concept

of the Polyglot Persistence Mediator (PPM) that employs runtime decisions on routing

data to different backends according to schema-based annotations. The PPM enables ap-

plications to either use polyglot persistence right from the beginning or add new systems

at any point with minimal overhead. For a typical polyglot persistence scenario, the PPM

can improve write throughput by 50-100% while reducing both read and query latency

drastically.

The mediation is orthogonal to the other concepts introduced in this thesis and can be

combined with the Cache Sketch method. In particular, our cache-ware optimistic transac-

tions support polyglot backends and provide ACID transactions across any set of included

data stores that support linearizable updates. We believe that our proposed Polyglot Per-

sistence Mediator is a major step towards controlling and leveraging the heterogeneity in

the database landscape.

To determine a meaningful set of functional and non-functional data management require-

ments, we conduct an in-depth survey of existing data stores. We collect the key findings

in the NoSQL Toolbox reasoning framework: most data stores are defined through a col-

1.4 Outline and Previously Published Work 11

lection of sharding, replication, storage, and query techniques that define the provided

guarantees and functions. This NoSQL toolbox serves as the basis for SLAs in the PPM,

where SLAs are attached to hierarchical schemas to allow a ranking of available systems.

Furthermore, the toolbox also allows a fine-grained classification of NoSQL databases and

serves as a decision guidance for the selection of appropriate system candidates.

1.4 Outline and Previously Published Work

The remainder of this dissertation proceeds as follows. In Chapter 2, we discuss important

concepts of cloud data management and the role of caching for web applications. To this

end, we examine the backend, network, and frontend with their respective architectures

and technologies. For each of the three tiers, we specifically highlight the impact and

sources of latency that contribute to end-to-end performance.

In Chapter 3, we outline how low latency can be provided through a cloud data man-

agement approach. First, we present a novel database classification scheme that relates

functional and non-functional application requirements to database system techniques.

We then motivate the ORESTES Database-as-a-Service architecture to solve fundamental

data management requirements in a database-independent fashion, while accounting for

direct client access.

In Chapter 4, we present the key contribution of this thesis: a generic approach for web

caching of records and queries with rich consistency guarantees. We start by introducing a

caching scheme for database records and files and show how various levels of consistency

can be reached at very low latency. We then extend the approach to caching arbitrary

query results. Last, we apply caching to address abort rates of distributed transactions.

We provide experimental evidence for the effectiveness of the Cache Sketch approach for

each of the scenarios.

In Chapter 5, we introduce the vision of a Polyglot Persistence Mediator that combines the

ideas of this work with ongoing research. We begin with an approach for annotating data

models with requirements. Next, we explore how the requirements can automatically be

mapped to different systems through routing queries and updates to systems at runtime.

We illustrate the potential effect of such a Polyglot Persistence Mediator by evaluating a

typical application example.

In Chapter 6, we discuss related work. We give a detailed comparison of this thesis to

caching and geo-replication approaches from the literature and discuss similarities, dif-

ferences, and trade-offs. Also, we elucidate how transaction processing, Database-as-a-

Service, and polyglot persistence approaches relate to the challenges addressed in this

work.

In Chapter 7, we summarize this thesis and its main contributions, discuss opportunities

for future work, and conclude.

12 1 Introduction

This dissertation revises material from previous publications in Chapter 2 (cf. [GWFR16,

GSW+17, GSW+15]), Chapter 3 (cf. [GWFR16, GBR14, GR15a, GSW+17, GFW+14]),

Chapter 4 (cf. [GSW+17, GSW+15]), Chapter 5 (cf. [SGR15]), and Chapter 6 (cf.

[GSW+15,GFW+14,GSW+17]).

1.5 List of Own Publications
The work presented in this thesis has produced the following publications:

[SKE+18] Michael Schaarschmidt, Alexander Kuhnle, Ben Ellis, Kai Fricke, Felix Gessert,

and Eiko Yoneki. LIFT: Reinforcement Learning in Computer Systems by

Learning From Demonstrations. arXiv preprint arXiv:1808.07903 (under sub-

mission), 2018.

[WRG18] Wolfram Wingerath, Norbert Ritter, and Felix Gessert. Real-Time & Stream

Data Management: Push-Based Data in Research & Practice. Springer, book

to be published in late 2018.

[WGW+18] Wolfram Wingerath, Felix Gessert, Erik Witt, Steffen Friedrich, and Norbert

Ritter. Real-time Data Management for Big Data. In Proceedings of the 21th In-
ternational Conference on Extending Database Technology, EDBT 2018, Vienna,
Austria, March 26-29, 2018. OpenProceedings.org, 2018.

[GSW+17] Felix Gessert, Michael Schaarschmidt, Wolfram Wingerath, Erik Witt, Eiko

Yoneki, and Norbert Ritter. Quaestor: Query Web Caching for Database-

as-a-Service Providers. Proceedings of the VLDB Endowment, 2017.

[GWR17] Felix Gessert, Wolfram Wingerath, and Norbert Ritter. Scalable Data Man-

agement: An In-Depth Tutorial on Nosql Data Stores. In BTW (Workshops),

volume P-266 of LNI, pages 399–402. GI, 2017.

[WGF+17] Wolfram Wingerath, Felix Gessert, Steffen Friedrich, Erik Witt, and Norbert

Ritter. The Case for Change Notifications in Pull-Based Databases. In Daten-
banksysteme für Business, Technologie und Web (BTW 2017) - Workshopband,
2.-3. März 2017, Stuttgart, Germany, 2017.

[GR17] Felix Gessert and Norbert Ritter. SCDM 2017 - Vorwort. In BTW (Workshops),

volume P-266 of LNI, pages 211–213. GI, 2017.

[Ges17] Felix Gessert. Lessons Learned Building a Backend-as-a-Service. Baqend Tech
Blog, May 2017. (Accessed on 08/11/2017).

[GWFR16] Felix Gessert, Wolfram Wingerath, Steffen Friedrich, and Norbert Ritter.

NoSQL Database Systems: A Survey and Decision Guidance. Computer Science
- Research and Development, November 2016.

[GR16] Felix Gessert and Norbert Ritter. Scalable Data Management: NoSQL Data

Stores in Research and Practice. In 32nd IEEE International Conference on
Data Engineering, ICDE, 2016.

1.5 List of Own Publications 13

[SG16] Michael Schaarschmidt and Felix Gessert. Learning Runtime Parameters in

Computer Systems with Delayed Experience Injection. In Deep Reinforcement
Learning Workshop, NIPS, 2016.

[WGFR16] Wolfram Wingerath, Felix Gessert, Steffen Friedrich, and Norbert Ritter. Real-

Time Stream Processing for Big Data. it - Information Technology, 58(4),

January 2016.

[GSW+15] Felix Gessert, Michael Schaarschmidt, Wolfram Wingerath, Steffen Friedrich,

and Norbert Ritter. The Cache Sketch: Revisiting Expiration-based Caching

in the Age of Cloud Data Management. In Datenbanksysteme für Business,
Technologie und Web (BTW), 16. Fachtagung des GI-Fachbereichs "Datenbanken
und Informationssysteme". GI, 2015.

[GR15a] Felix Gessert and Norbert Ritter. Polyglot Persistence. Datenbank-Spektrum,

15(3):229–233, November 2015.

[GR15b] Felix Gessert and Norbert Ritter. Skalierbare NoSQL- und Cloud-Datenbanken

in Forschung und Praxis. In Datenbanksysteme für Business, Technologie und
Web (BTW 2015) - Workshopband, 2.-3. März 2015, Hamburg, Germany, pages

271–274, 2015.

[Ges15] Felix Gessert. Low Latency Cloud Data Management through Consistent

Caching and Polyglot Persistence. In Proceedings of the 9th Advanced Sum-
mer School on Service Oriented Computing, 2015.

[SGR15] Michael Schaarschmidt, Felix Gessert, and Norbert Ritter. Towards Automated

Polyglot Persistence. In Datenbanksysteme für Business, Technologie und Web
(BTW), 16. Fachtagung des GI-Fachbereichs "Datenbanken und Informationssys-
teme", 2015.

[WFGR15] Wolfram Wingerath, Steffen Friedrich, Felix Gessert, and Norbert Ritter. Who

Watches the Watchmen? On the Lack of Validation in NoSQL Benchmarking.

In Datenbanksysteme für Business, Technologie und Web (BTW), 16. Fachtagung
des GI-Fachbereichs "Datenbanken und Informationssysteme", 2015.

[GBR14] Felix Gessert, Florian Bücklers, and Norbert Ritter. ORESTES: a Scalable

Database-as-a-Service Architecture for Low Latency. In CloudDB, Data Engi-
neering Workshops (ICDEW), pages 215–222. IEEE, 2014.

[GFW+14] Felix Gessert, Steffen Friedrich, Wolfram Wingerath, Michael Schaarschmidt,

and Norbert Ritter. Towards a Scalable and Unified REST API for Cloud Data

Stores. In Erhard Plödereder, Lars Grunske, Eric Schneider, and Dominik Ull,

editors, 44. Jahrestagung der Gesellschaft für Informatik, Informatik 2014, Big
Data - Komplexität meistern, 22.-26. September 2014 in Stuttgart, Deutschland,

volume 232 of LNI, pages 723–734. GI, 2014.

[FWGR14] Steffen Friedrich, Wolfram Wingerath, Felix Gessert, and Norbert Ritter.

NoSQL OLTP Benchmarking: A Survey. In Erhard Plödereder, Lars Grunske,

14 1 Introduction

Eric Schneider, and Dominik Ull, editors, 44. Jahrestagung der Gesellschaft für
Informatik, Informatik 2014, Big Data - Komplexität meistern, 22.-26. Septem-
ber 2014 in Stuttgart, Deutschland, volume 232 of LNI, pages 693–704. GI,

2014.

[GB13] Felix Gessert and Florian Bücklers. ORESTES: ein System für horizontal

skalierbaren Zugriff auf Cloud-Datenbanken. In Informatiktage. GI, March

2013.

15

2 Background

In this chapter, we describe the technical foundations of scalable, cloud-based web appli-

cations and discuss core challenges and requirements for cloud data management. We

focus on the performance-relevant areas addressed in this thesis. These can be grouped

into the three categories backend, network, and frontend.

Backend performance subsumes data management and scalable server architectures. We

give an overview of NoSQL database systems and their use for Database- and Backend-

as-a-Service cloud service models. Backend performance is directly related to polyglot

persistence and the availability-consistency trade-offs that are associated with the use of

sharding and replication techniques.

Network performance of web applications is determined by the design of the HTTP proto-

col and the constraints of the predominant REST architectural style. As the basic building

block of this work, we will review the mechanisms that HTTP provides for web caching

and how they relate to the infrastructure of the Internet.

Last, we also give an introduction to frontend performance, to show that it is an orthog-

onal problem to the scope of the performance optimizations introduced by this thesis. We

cover sufficient background to follow and motivate the approach of this thesis. For a de-

tailed treatment and differentiation from the state-of-the-art in related work, please refer

to Chapter 6.

2.1 End-to-End Latency in Cloud-based Architectures

The continuous shift towards cloud computing has established two primary architec-

tures: two-tier and three-tier applications. Both architectures are susceptible to latency

at different levels. The concrete realization can build upon different cloud models, in

particular, Database/Backend-as-a-Service, Platform-as-a-Service, and Infrastructure-as-a-

Service [YBDS08].

Modern web applications need to fulfill several non-functional requirements:

• High availability guarantees that applications remain operational despite failure

conditions such as network partitions, server failures, connectivity issues and human

error.

16 2 Background

• Elastic scalability enables applications to handle any growth and decrease in load

(e.g., user requests and data volume), by automatically allocating or freeing storage

and computing resources in a distributed cluster.

• Fast page loads and response times are essential to maximize user satisfaction,

traffic, and revenue.

• An engaging user experience significantly helps to make users productive and effi-

cient.

• A fast time-to-market is the result of the appropriate development, testing and

deployment abstractions to quickly release an application to production1.

The Orestes caching methodology spans several layers of the architecture. Therefore,

we discuss the three- and two-tier architecture in the context of the above requirements,

before examining the technical foundations of the backend, network, and frontend.

2.1.1 Three-Tier Architectures: Server-Side Rendering

The three-tier architecture is a well-known pattern for structuring client-server applica-

tions [TvS07, FLR+14, HW03]. The idea is, to segregate application concerns into three

different functional tiers (components). This has the advantage that tiers are loosely cou-

pled, thus facilitating easier development. Furthermore, each tier can be scaled indepen-

dently based on required resources. The canonical tiers are the presentation tier, the

business logic tier and the data tier. In the literature, different definitions of three-tier

architectures are used. Tanenbaum and van Steen [TvS07] differentiate between web

servers, application servers and database servers as three different tiers of a web applica-

tion. Fehling et al. [FLR+14] argue that web and application servers are typically just one

tier, whereas in a real three-tier application, the presentation tier is completely decoupled

from the business logic tier, e.g., by message queues.

We will distinguish between the two-tier and three-tier architecture based on the location

of the presentation tier. As shown in Figure 2.1, the classic three-tier architecture includes

the presentation layer as part of the backend application. This means that an applica-

tion or web server executes the presentation and business logic while the data tier serves

and stores data using one or more database systems. The client’s browser is served the

rendered representation, typically in the form of an HTML file and supporting stylesheets

(CSS) and JavaScript files (JS). As the client does not execute any significant portion of

the presentation and business logic, this architecture is also referred to as a thin client ar-

chitecture. Any user interactions that require business logic (e.g., posting a comment on a

social network) are forwarded to the server tiers, which are responsible for performing the

desired task. This usually implies the server-rendering of a new HTML view representing

1Despite all recent advances in programming languages, tooling, cloud platforms, and frameworks, studies
indicate that over 30% of all web projects are delivered late or over-budget, while 21% fail to meet their
defined requirements [Kri15].

2.1 End-to-End Latency in Cloud-based Architectures 17

Database

HTML, CSS, JS, ... Data

Render

User Actions Updates

Client

Cloud Platform (IaaS, PaaS)

Application
Server

W
eb

 S
er

ve
r

Presentation and
Business Logic Tier

Data Tier

Figure 2.1: The three-tier web application architecture.

a response to the invoked action. An advantage of separating the data tier and business

logic tier is that business logic can be stateless and scales efficiently.

Flow

The high-level request flow in a server-rendered three-tier architecture is the following

(cf. [FLR+14]):

1. The client requests the website over the HTTP protocol.

2. The web server accepts the request and calls the components for handling the corre-

sponding URL. Usually, the web server is not requested directly, but a load balancer

distributes requests over available web servers. The request can be directly executed

in the web server (e.g., in PHP) or invoked over the network (e.g., through AJP) or

using a queuing system (e.g., RabbitMQ) [Cha15].

3. In the application server, the business logic is executed.

4. Any data required to render the current view is queried from the database and up-

dates are applied to reflect the application state.

5. The response is sent to the client as an HTML document. The web server directly

answers subsequent requests for static resources like images and scripts.

Implementation

As a large part of the web uses three-tier architectures, a considerable amount of environ-

ments and frameworks for developing and hosting three-tier applications exist. In the con-

text of cloud computing, three-tier architectures can be implemented on Infrastructure-

as-a-Service (IaaS) and Platform-as-a-Service (PaaS) clouds [HDF13,MB16].

PaaS cloud providers such as Windows Azure [Azu17], Google App Engine [App17], and

Heroku [Clo17b] offer managed operating systems, application servers, and middleware

for running web applications in a scalable fashion. While the provider prescribes the

18 2 Background

runtime environment (e.g., supporting Python applications), the application logic can be

freely defined. The PaaS abstracts from maintenance and provisioning of operating sys-

tems and servers to unburden the application from operational aspects such as scaling,

system upgrades, and network configuration. It therefore provides a useful paradigm for

the development of three-tier applications. For example, Windows Azure [Azu17] has a

built-in notion of the three tiers, as it distinguishes between web roles (the presentation

tier), storage services (the data tier) and worker roles (the business logic tier). Web roles

and worker roles are scaled independently and decoupled by storage abstractions such as

queues, wide-column models, and file systems [CWO+11].

In the IaaS model, full control over virtual machines is left to the tenant. This implies that

three-tier architectures can use the same technology stacks as applications in non-cloud

environments (on-premises). For example, Amazon Web Services (AWS) and [Ama17b]

Google Cloud Platform (GCP) [Goo17a] provide the management infrastructure to provi-

sion individual virtual machines or containers that can run arbitrary software for each tier

in the architectures. Typically a web server (e.g., Apache, IIS, or Nginx [Ree08]), appli-

cation server (e.g., Tomcat or Wildfly [Wil17]) or reverse proxy (e.g., Varnish [Kam17])

is combined with a web application framework in a particular programming language

running the business logic and parts of the presentation tier (e.g., Python with Django,

Java with Spring MVC, or Ruby with Sinatra [The17, Wal14]). The business logic tier in

turn either employs a database system also hosted on the IaaS provider or connects to

Database-as-a-Service offerings to persist and retrieve data.

The microservice architecture is a refinement of the three-tier architecture that decom-

poses the three tiers of the backend [New15,NMMA16]. The central idea of microservices

is to decompose the application into functional units that are loosely coupled and interact

with each other through REST APIs. Microservices thus offer a light-weight alternative to

service-oriented architectures (SOA) and the WebService standards [ACKM04]. In con-

trast to three-tier applications, microservices do not share state through a data tier. In-

stead, each microservice is responsible for separately maintaining the data it requires to

fulfill its specified functionality. One of the major reasons for the adoption of microser-

vices is that they allow scaling the development of large distributed applications: each

team can individually develop, deploy and test microservices as long as the API contracts

are kept intact. When combined with server-rendering, i.e., the generation of HTML views

for each interaction in a web application, microservices still exhibit the same performance

properties as three-tier architectures. Some aspects even increase in complexity, as each

microservice is a point of failure and response times for answering a request through ag-

gregation from multiple microservice responses are subject to latency stragglers.

Problems of Server-Rendered Architectures

Three-tier and service architectures with a server-side presentation tier pose different

problems with respect to the introduced non-functional requirements (see Section 2.1).

2.1 End-to-End Latency in Cloud-based Architectures 19

High Availability. As all tiers depend upon the data tier for shared state, the underlying

database systems have to be highly available. Any unavailability in the data tier will

propagate to the other tiers, thus amplifying potential partial failures into applica-

tion unavailability.

Elastic Scalability. All tiers need to be independently and elastically scalable, which can

induce severe architectural complexity. For instance, if requests passed from the

presentation tier to the business logic tier exceed the capacities of the business logic

tier, scaling rules have to be triggered without dropping requests. Alternatively, non-

trivial backpressure (flow control) mechanisms [Kle17] have to be applied to throt-

tle upstream throughput. In practice, tiers are often decoupled through message

queues, which – similar to database systems – have inherent availability-consistency-

performance trade-offs.

Fast Page Loads. Server-rendering implies that the delivery of a response is blocked until

the slowest service or query returns which hinders fast page loads. Even if each

query and service produces a low average or median response time, the aggregate

response times are governed by extreme value distributions that have a significantly

higher expected value [WJW15, VM14]. While the request is blocked, the client

cannot perform any work as the initial HTML document is the starting point for any

further processing in the browser and for subsequent requests. Of the potentially

hundreds of requests [Arc18], each is furthermore bounded by network latency that

increases with the distance to the server-side application logic.

Engaging User Experience. As each user interaction (e.g., navigation or submitting a

form) produces a new HTML document, the indirection between the user’s inter-

actions and observed effects become noticeable. A well-studied result from psy-

chology and usability engineering is that for the user to gain the impression of di-

rectly modifying objects in the user interface, response times have to be below 100

ms [Mil68, Nie94, Mye85]. Even if the delivery of static assets is fast, rendering an

HTML document, applying updates to the database and performing relevant queries

is usually infeasible if any significant network latency is involved. For users, this

conveys the feeling of an unnatural, indirect interaction pattern [Nie94].

Fast Time-to-Market. Besides the above performance problems, server-side rendering

also induces problems for the software development process. All user interactions

need to be executed on the server. In modern web applications, the user interface

has to be engaging and responsive. Therefore, parts of the presentation logic are

replicated between the server-side presentation tier and the JavaScript logic of the

frontend. This duplicates functionality, increasing development complexity and hin-

dering maintainability. Furthermore, by splitting the frontend from the server-side

processing, unintended interdependencies arise: frontend developers or teams have

to rely on the backend development to proceed, in order to work on the design

and structure of the frontend. This hinders agile, iterative development methodolo-

20 2 Background

gies such as Scrum [SB02] and Extreme Programming (XP) [Bec00] from being ap-

plied to frontend and backend teams separately. As applications shift towards more

complex frontends, the coupling of frontend and backend development inevitably

increases time-to-market.

2.1.2 Two-Tier Architectures: Client-Side Rendering

To tackle the problems of rigid three-tier architectures, the two-tier architecture evolved

[FLR+14]. By two-tier architectures, we will refer to applications that shift the majority of

presentation logic into the client. Business logic can be shared or divided between client

and server, whereas the data tier resides on the server, to reflect application state across

users. The two-tier model is popular for native mobile applications, that are fundamentally

based on the user interfaces components offered by the respective mobile operating system

(iOS, Windows, Android) and packaged into an installable app bundle [Hil16]. Many web

applications also follow this model and are referred to as single-page applications, due to

their ability to perform user interactions without loading a new HTML page [MP14]. We

will discuss the two-tier architecture in the context of web applications, but most aspects

also apply to native mobile apps.

HTML, CSS, JS, ...

Database

Render

Updates

Client

Database-as-a-Service or
Backend-as-a-Service

Data

Se
rv

ic
e

A
P

I

Presentation Tier Data Tier

Figure 2.2: The two-tier web application architecture.

The two-tier architecture is illustrated in Figure 2.2. Rendering in the client is performed

through the browser’s JavaScript runtime engine that consumes structured data directly

from the server (e.g., product detail information), usually in the form of JSON2 [Cro06].

The data tier is therefore responsible for directly serving database objects and queries to

clients. The business logic tier is optional and split into unprotected parts directly exe-

2The JavaScript Object Notation (JSON) is a self-contained document format, consisting of objects (key-
value pairs) and arrays (ordered lists), that can be arbitrarily nested. JSON has gained popularity due to
its simpler structure compared to XML. It can be easily processed in JavaScript and thus became the widely-
used format for document databases such as MongoDB [CD13], CouchDB [ALS10], Couchbase [LMLM16],
and Espresso [QSD+13] to reduce the impedance mismatch [Mai90].

2.1 End-to-End Latency in Cloud-based Architectures 21

cuted in the client and parts that require confidentiality, security and stricter control and

are therefore executed co-located with the data tier. Server-side business logic includes

enforcing access control, validating inputs, and performing any protected business logic

(e.g., placing an order in an e-commerce shop). Actions carried out by the client can be

directly modeled as update operations on the database, with a potential validation and

rewriting step enforced by the server.

Request Flow

The request flow in two-tier web application architectures is slightly different from three-

tier architectures:

1. With the initial request, the client retrieves the HTML document containing the

single-page application logic.

2. The server or cloud service returns the HTML document and the accompanying

JavaScript files. In contrast to server-rendered architectures, the frontend’s struc-

ture is data-independent and therefore does not require any database queries or

business logic.

3. The client evaluates the HTML and fetches any referenced files, in particular, the

JavaScript containing the presentation logic.

4. Via JavaScript, the data required to display the current application view are fetched

from the server via a REST/HTTP3 API either in individual read operations or using

a query language (e.g., MongoDB [CD13] or GraphQL [Gra17]).

5. The frontend renders the data using the presentation logic of the JavaScript front-

end, typically expressed through a template language.

6. User interactions are sent as individual requests and encode the exact operation per-

formed. The response returns the data necessary to update the frontend accordingly.

Implementation

For the realization of two-tier architectures, the technology choices for three-tier archi-

tectures also apply. IaaS and Paas offer low-level abstractions for building REST APIs

consumed by single-page applications. Most web application frameworks have support

for developing not only server-rendered HTML views, but also for structuring REST APIs.

In the Java ecosystem, REST interfaces have been standardized [HS07]. In most other

web languages such as (server-side) JavaScript (Node.js), Ruby, Python, and PHP, frame-

works employ domain-specific languages or method annotations for minimizing the over-

head of defining REST endpoints (e.g., in Ruby on Rails, Django, .NET WCF, Grails, Ex-

press, and the Play framework [WP11, The17]). Static files of single-page applications

are delivered from a web server, the web application framework, or a content deliv-

ery network. The REST APIs are consumed by the frontend that is technologically in-

3Besides HTTP, real time-capable protocols like Web Sockets, Server-Sent Events (SSE), or WebRTC can be
employed [Gri13].

22 2 Background

dependent of the backend and only requires knowledge about the REST resources to

implement client-server interactions. One notable exception is the idea of isomorphic
(also called universal) JavaScript that applies the concept of sharing code (e.g., vali-

dation of user inputs) between a frontend and backend that are both implemented in

JavaScript [HS16,Dep17,Hoo17,Par17].

Database-as-a-Service (DBaaS) and Backend-as-a-Service (BaaS) models provide high-

level abstractions for building and hosting two-tier applications. In the case of a DBaaS,

the data tier is directly exposed to clients. As this is insufficient if protected business logic

or access control are required, BaaS systems extend the data APIs with common building

blocks for business logic in single-page applications. Typical BaaS APIs and functionalities

consumed in two-tier applications are:

• Delivery of static files, in particular, the single-page application assets

• DBaaS APIs for access to structured data

• Login and registration of users

• Authorization on protected data

• Execution of server-side business logic and invocation of third-party services

• Sending of push notifications

• Logging and tracking of user data

In Section 2.2.6 we will discuss the characteristics of the DBaaS and BaaS models in

detail.

As the frontend becomes more complex and handles the presentation logic and signifi-

cant parts of the business logic, appropriate tooling and architectures gained relevance.

Therefore, numerous JavaScript frameworks for developing and structuring single-page

applications have been developed. A large part of these frameworks is based on the

Model-View-Controller (MVC) pattern [KP+88] or variants thereof (e.g., Model-View-

ViewModel [Gos05]). In client-side MVC architectures, the views generate the document

visible to the end user, usually by defining a template language. The model contains the

data displayed in the views, so that it embodies both application state and user interface

state. A model is filled with data retrieved from the server’s data APIs. Controllers handle

the interaction between views and models (e.g., events from user inputs) and are respon-

sible for client-server communication. The MVC pattern has been adopted by most widely-

used JavaScript frameworks such as Angular [Ang17], Ember [Emb17], Vue [Vue17], and

Backbone [Bac17]. Recently, component-based architectures have been proposed as an

alternative to MVC frameworks through projects such as Facebook’s React [Rea17]. Com-

ponents represent views, but also encompass event handling and user interface state.

In contrast to two-tier applications, any technological decisions made in the frontend are

largely independent of the backend, as a REST API is the only point of coupling. Some

frontend frameworks additionally offer server-side tooling to pre-render client views. This

can improve the performance of the initial page load and is necessary for crawlers of

2.1 End-to-End Latency in Cloud-based Architectures 23

search engines that do not evaluate JavaScript for indexing. In native mobile applications,

the same principles as for single-page applications apply. A major architectural difference

is that the frontend is compiled ahead-of-time so that its business and presentation logic

can only be changed with an explicit update of the app. Furthermore, static files are

usually not provided by the backend, but packaged into an installable app bundle, which

shifts the problem of initial load times to both client-side performance and latency of the

consumed server APIs.

Problems of Client-Rendered Architectures

Two-tier architectures can improve on several of the difficulties imposed by three-tier

architectures, while other non-functional requirements remain challenging:

High Availability and Elastic Scalability. The task of providing high availability with

elastic scaling is shifted to the BaaS or DBaaS backend. As these systems employ

a standard architecture shared between all applications built on them, availability

and scalability can be tackled in a generic, application-independent fashion. As

a DBaaS/BaaS is a managed service, it can furthermore eliminate availability and

scalability problems introduced by operational errors such as flawed deployments,

inappropriate autoscaling rules, or incompatible versions.

Fast Page Loads. Navigation inside a single-page application is fast, as only the missing

data required for the next view is fetched, instead of reloading the complete page.

On the other hand, data requests become very latency-critical, as the initial page load

depends on data being available for client-side rendering. In two-tier applications,

the client can start its processing earlier as there is no initial HTML request blocked

in the server by database queries and business logic.

Engaging User Experience. Single-page applications are able to achieve a high degree

of interactivity, as much of the business logic can be directly executed on the client.

This allows applying updates immediately to remain under the critical threshold of

100 ms for interaction delays.

Fast Time-to-Market. As the frontend and backend are loosely coupled through a REST

API and based on different technology stacks, the development process is acceler-

ated. The implementation of the frontend and backend can proceed independently,

enabling individual development, testing and deployment cycles for a faster time-to-

market.

In summary, many applications are moving towards client-rendered, two-tier architec-

tures, to improve the user experience and development process. This shift reinforces the

requirement for low latency, as data transferred from the server to the client is critical for

fast navigation and initial page loads.

24 2 Background

2.1.3 Latency and Round-Trip Time

Two primary factors influence network performance: latency and bandwidth [Gri13]. La-

tency refers to the time that passes from the moment a packet or signal is sent from a

source to the moment it is received by the destination. Bandwidth refers to the through-

put of data transfer for a network link. We will use the wide-spread term bandwidth

(measured in Megabit per second; MBit/s) throughout this thesis, though the formal term

data rate (or transmission rate) is more precise, as bandwidth in signal theory defines the

difference between an upper and lower frequency [Cha15].

Network packets sent from one host to another host travel through several routers and

are nested in different network protocols (e.g., Ethernet, IP, TCP, TLS, HTTP). There are

different delays at each hop that add up to the end-to-end latency [KR10]:

Processing Delay (dproc). The time for parsing the protocol header information, deter-

mining the destination of a packet and calculating checksums determines the pro-

cessing delay. In modern networks, the processing delay is in the order of microsec-

onds [Cha15].

Queuing Delay (dqueue). Before a packet is sent over a physical network link, it is added

to a queue. Thus, the number of packets that arrived earlier defines for how long a

packet will be queued before transmission over the link. If queues overflow, packets

are dropped. This packet loss leads to increased latency as the network protocols

have to detect the loss and resend the packet4.

Transmission Delay (dtrans). The transmission delay denotes the time for completely sub-

mitting a packet to the network link. Given the size of a packet S and the link’s

bandwidth, resp. transmission rate R, the transmission delay is S/R. For example,

to transfer a packet with S = 1500B over a Gigabit Ethernet with R = 1Gb/s a trans-

mission delay of dtrans = 12 µs is incurred.

Propagation Delay (dprop). The physical medium of the network link, e.g., fiber optics or

copper wires, defines how long it takes to transfer the signal encoding the packet to

the next hop. Given the propagation speed of the medium in m/s and the distance

between two hops, the propagation delay can be calculated.

If a packet has to pass through N− 1 routers between the sender and receiver, the end-

to-end latency L is defined through the average processing, queuing, transmission and

propagation delays [KR10]:

L = N · (dproc +dqueue +dtrans +dprop) (2.1)

4The large buffer sizes can also lead to a problem called buffer bloat in which queues are always operating
at their maximum capacity. This is often caused by TCP congestion algorithms that increase throughput
until package loss occurs. With large queues, many packets can be buffered and delayed before a packet
loss occurs, which negatively impacts latency [APB09,Gri13]

2.1 End-to-End Latency in Cloud-based Architectures 25

Latency (also called one-way latency) is unidirectional, as it does not include the time for a

packet to travel back. Round-trip time (RTT) on the other hand, measures the time from

the source sending a request until receiving a response. RTT therefore includes the latency

in each direction and the processing time dserver required for generating a response:

RT T = 2 ·L+dserver (2.2)

In most cases, the propagation delay will play the key role in latency, as networking in-

frastructure has improved many aspects of queuing, transmission and processing delay

significantly. However, propagation delay depends on the constant speed of light and the

geographic distance between two hosts. For example, the linear distance between Ham-

burg and San Francisco is 8 879 km. Given an ideal network without any delays except the

propagation at the speed of light (299 792 458 m/s), the minimum achievable latency is

L≈ 29.62ms and round-trip time RT T ≈ 59.23ms. Therefore, to reduce end-to-end latency,

distances have to be shortened.

We will discuss the effects of network protocols such as HTTP and TLS on end-to-end

latency in Section 2.3. Grigorik [Gri13] gives an in-depth overview of latency and net-

work protocols specifically relevant for the web. Kurose and Ross [KR10], as well as

Forouzan [For12] discuss the foundations of computer networking. Van Mieghem [VM14]

provides a formal treatment of how networks can be modeled, analyzed and simulated

stochastically.

2.1.4 Cloud Computing as a Source of Latency

Besides the two-tier and three-tier architecture, there are numerous other ways to struc-

ture applications [FLR+14]. Cloud computing is quickly becoming the major backbone of

novel technologies across application fields such as web and mobile applications, Internet

of Things (IoT), smart cities, virtual and augmented reality, gaming, streaming, data sci-

ence, and Big Data analytics. Cloud computing delivers on the idea of utility computing

introduced by John McCarthy in 1961 that suggests that computing should be a ubiquitous

utility similar to electricity and telecommunications [AG17]. In the context of cloud com-

puting, there are several sources of latency across all types of application architectures.

In this section, we will summarize the architecture-independent latency bottlenecks that

contribute to the overall performance of cloud-based applications.

In the literature, cloud computing has been defined in various different ways [LS13,

YBDS08, MB16, FLR+14, BYV+09, MG09, TCB14]. Throughout this thesis, we will use the

widely accepted NIST definition [MG09]. It distinguishes between five characteristics of

cloud offerings and groups them into three service models and four deployment models.

The nature of the service and deployment models motivates, why latency is of utmost

relevance in cloud computing.

26 2 Background

Characteristics

The characteristics of cloud offerings explain how cloud computing is desirable for both

customers and providers. Providers offer on-demand self-service, which means that con-

sumers can provision services and resources in a fully automated process. Broad network
access enables the cloud services to be consumed by any client technology that has Internet

access. Cloud providers apply resource pooling (multi-tenancy) to share storage, network-

ing, and processing resources across tenants to leverage economies of scale for reduced

costs. Rapid elasticity demands that resources can be freed and allocated with minimal

delay, building the foundation for scalability. The provider exposes a measured service that

is used for pay-per-use pricing models with fine-grained control, monitoring and reporting

of resource usage to the consumer. In practice, the major reasons for companies to adopt

cloud computing is the ability to replace capital expenditures (CAPEX) that would have

been necessary to acquire hardware and software into operational expenditures (OPEX)

incurred by the usage of pay-per-use cloud services. The major incentive for providers is

the ability to exploit economies of scale and accommodate new business models.

Service Models

Based on increasing degree of abstraction, three high-level service models can be distin-

guished:

Infrastructure-as-a-Service (IaaS). In an IaaS cloud, low-level resources such as com-

puting (e.g., containers [Mer14] and virtual machines [BDF+03]), networking (e.g.,

subnets, load balancers, and firewalls [GJP11]) and storage (e.g., network-attached

storage) can be provisioned. This allows deploying arbitrary applications in the

cloud while leaving control of the infrastructure to the IaaS provider. In IaaS

clouds, latency is particularly relevant for cross-node communication, potentially

across different data centers (e.g., between an application server and a replicated

database). Example offerings are Amazon Elastic Compute Cloud (EC2) [Ama17b],

Softlayer [Sof17], Joyent [Joy17], and Google Compute Engine (GCE) [Goo17a].

Platform-as-a-Service (PaaS). Consumers of PaaS clouds run applications on a technol-

ogy stack of services, programming languages, and application platforms defined by

the provider including explicit support for developing, testing, deploying and host-

ing the application. In addition to the infrastructure, a PaaS provider also manages

operating systems and networks. The role of latency in a PaaS is critical: as there

is no control over native computing and storage resources, data management has to

be consumed as a service either from the same provider or an external DBaaS. Ex-

amples of PaaS vendors are Microsoft Azure [Azu17], Amazon Beanstalk [AWS17],

IBM Bluemix [IBM17], Google App Engine [App17], and Heroku [Clo17b].

Software-as-a-Service (SaaS). A SaaS provides a specific cloud-hosted application to

users (e.g., email, word processors, spreadsheets, customer relationship manage-

ment, games, virtual desktops). The provider completely abstracts from the cloud

2.1 End-to-End Latency in Cloud-based Architectures 27

infrastructure and only allows customization and configuration of the application.

Almost all SaaS offerings are consumed as web applications via HTTP, so that client-

server latency is crucial for both initial loads and performance of interactions. Ex-

amples include Microsoft Office 365 [Off17], Salesforce [Onl17], and Slack [Sla17].

Besides the above three models, other “XaaS” (Everything-as-a-Service) models have been

proposed, for example, Storage-as-a-Service, Humans-as-a-Service and Function-as-a-Ser-

vice amongst many others [KLAR10, DLNW13, TCB14, MB16, HYA+15]. Database-as-a-

Service and Backend-as-a-Service as discussed in Section 2.2.6 cut across the three canon-

ical levels of IaaS, PaaS, and SaaS and can be employed in each of the models.

Deployment Models

Deployment models describe different options for delivering and hosting cloud plat-

forms.

Public Cloud. A public cloud is operated by a business, academic, or government orga-

nization on its infrastructure and can be used by the general public. Commercial

cloud offerings such as Amazon EC2, Google App Engine, and Salesforce fall in this

category. In public clouds, latency to users and third-party services is critical for

performance.

Private Cloud. A private cloud provides exclusive use for one organization and is hosted

on-premises of the consumer. This implies that the hardware resources are mostly

static and in order to gain elasticity, public cloud resources may be added on de-

mand, e.g., during load spikes (cloud bursting [GSW+12]). Besides commercial so-

lutions such as VMWare vCloud [Clo17c], various open-source platforms for private

PaaS and IaaS clouds have been developed, including OpenStack [BWA13], Euca-

lyptus [NWG+09], and Cloud Foundry [Clo17a]. As private clouds usually cannot

exploit a globally distributed set of data centers, tackling wide-area latency to end

users is a key challenge.

Hybrid Cloud. In a hybrid cloud (also called multi-cloud deployment), two or more

clouds are composed to combine their benefits. There are frameworks for ad-

dressing multiple clouds through a common API, e.g., jclouds [Apa17a] and lib-

Cloud [Apa17b] as well as commercial providers for multi-cloud deployments, scal-

ing and bursting such as RightScale [Rig17], Scalr [Sca17], and Skytap [Sky17].

Any communication between different cloud platforms is highly latency-sensitive.

When offloading critical components like data storage to a different cloud, incurred

latency can be prohibitive and outweigh the advantages. On the other hand, if

data management makes use of the broader geographic reach of multiple providers

through caching or replication [WM13], latency can be reduced substantially as we

will show in the next chapters.

The NIST definition [MG09] also defines a community cloud, as a cloud shared between

organizations with common concerns. Though the model is not in common use, the same

28 2 Background

latency challenges apply: composed backends and remote users are subject to latency

bottlenecks.

Latency in Cloud Architectures

In cloud-based applications, latency stems from various sources introduced by the com-

position of different service and deployment models. We group the latency into three

categories:

1. Round-trip times within a data center network or LAN are usually in the order of

single-digit milliseconds.

2. Latencies between two co-located data centers are in the order of 10 ms.

3. For hosts from two different geographical locations, latency often reaches 100 ms and

more.

Figure 2.3 illustrates the typical latency contributions of several communication links

within a distributed web application. In the example, the client is separated from the

backend by a high-latency wide area network (WAN) link. The application’s business logic

is hosted on an IaaS platform and distributed across multiple servers interconnected via

local networks. The data tier consists of a database service replicated across different

availability zones. For a synchronously replicated database system, the latency between

two data centers therefore defines the response time for database updates (for example in

the Amazon RDS database service [VGS+17]).

Most complex applications integrate heterogeneous services for different functions of the

application. For example, an external DBaaS might be consumed from the main applica-

tion over a high-latency network, since it is shared between two different applications or

provides a level of scalability that a database hosted on an IaaS could not provide. Parts

of the application might also be developed with a service model that fits the requirements

better, for example by offloading user authentication to microservices running on a PaaS.

A BaaS could be integrated to handle standard functions such as push notifications. High

latency also occurs if third-party services are integrated, for example, a social network

in the frontend or a SaaS for payments in the backend. Overall, the more providers and

services are involved in the application architecture, the higher the dependency on low

latency for performance. As almost all interactions between services evolve around ex-

changing and loading data, the techniques proposed in this thesis apply to the latency

problems in the example.

For further details on cloud models, please refer to Murugesan and Bojanova [MB16],

who provide a detailed overview of cloud computing and its foundational concepts and

technologies. Bahga and Madisetti [BM13] review the programming models and APIs of

different cloud platforms.

In the following, we will provide detailed background on backend and network perfor-

mance to highlight the different opportunities for tackling latency across the application

stack.

2.2 Backend Performance: Scalable Data Management 29

External
Database-as-a-Service

ApplicationLogic

Client

IaaS Data Center DC1

Data Center DC2 Data Center DC3

Replicated
Database Service

Third-Party
Services

(e.g., Social Networks)

External
Cloud Services

(e.g., Payment Provider)

PaaS

Files (HTML, CSS, JS, ...)
Data (JSON, XML, …)

Microservice
(e.g., Authentication)

BaaS

Real-Time Data
Synchronization

Static File
Hosting

Push
Notifications

~1 ms latency ~10 ms latency ~100 ms latency

Figure 2.3: Potential sources of latency in distributed, cloud-based applications.

2.2 Backend Performance: Scalable Data Management

Irrespective of the server-side architecture, scalable data management is the primary chal-

lenge for high performance. Business and presentation logic can be designed to scale by

virtue of stateless processing or by offloading the problem of state to a shared data store.

Therefore, the requirements of high availability and elastic scalability depend on database

systems.

Today, data is produced and consumed at a rapid pace. This has led to novel approaches

for scalable data management subsumed under the term “NoSQL” database systems to

handle the ever-increasing data volume and request loads. However, the heterogeneity

and diversity of the numerous existing systems impede the well-informed selection of a

30 2 Background

data store appropriate for a given application context. In this section, we will provide a

high-level overview of the current NoSQL landscape. In Chapter 3 we will furthermore

survey commonly used techniques for sharding, replication, storage management, and

query processing in these systems, to propose a classification scheme for NoSQL databases.

A straightforward and abstract decision model for restricting the choice of appropriate

NoSQL systems based on application requirements concludes the survey.

2.2.1 NoSQL Database Systems

Traditional relational database management systems (RDBMSs) provide robust mecha-

nisms to store and query structured data under strong consistency and transaction guar-

antees and have reached an unmatched level of reliability, stability, and support through

decades of development. In recent years, however, the amount of useful data in some

application areas has become so vast that it cannot be stored or processed by traditional

database solutions. User-generated content in social networks and data retrieved from

large sensor networks are only two examples of this phenomenon commonly referred to

as Big Data [Lan01]. A class of novel data storage systems able to cope with the man-

agement of Big Data are subsumed under the term NoSQL databases, many of which

offer horizontal scalability and higher availability than relational databases by sacrificing

querying capabilities and consistency guarantees. These trade-offs are pivotal for service-

oriented computing and “as-a-service” models since any stateful service can only be as

scalable and fault-tolerant as its underlying data store.

Please note, that throughout this thesis, we address Big Data management, i.e., database

and application techniques for dealing with data at high velocity, volume, and variety

(coined as the “three Vs” [ZS17]). We only cover Big Data analytics, where it directly

concerns the design of our low-latency methodology for data management and refer to

our tutorials for further background on systems and approaches for analytics [GR15b,

GR16,GWR17].

There are dozens5 of NoSQL database systems and it is hard for practitioners and re-

searchers to keep track of where they excel, where they fail or even where they differ, as

implementation details change quickly and feature sets evolve over time. In this section,

we therefore aim to provide an overview of the NoSQL landscape by discussing employed

concepts rather than system specificities and explore the requirements typically posed to

NoSQL database systems, the techniques used to fulfill these requirements and the trade-

offs that have to be made in the process. Our focus lies on key-value, document, and

wide-column stores since these NoSQL categories cover the most relevant techniques and

design decisions in the space of scalable data management and are well suitable for the

context of scalable cloud data management.

In order to abstract from implementation details of individual NoSQL systems, high-level

classification criteria can be used to group similar data stores into categories. As shown in

5An extensive list of NoSQL database systems can be found at http://nosql-database.org/.

http://nosql-database.org/

2.2 Backend Performance: Scalable Data Management 31

Data
Model

Consistency/Availability
Trade-Off

AP: Available &
Partition Tolerant

CP: Consistent &
Partition Tolerant

Graph

CA: Not Partition
Tolerant

Document

Wide-Column

Key-Value

Figure 2.4: The two high-level approaches of categorizing NoSQL systems according to
data models and consistency-availability trade-offs.

Figure 2.4, we will describe how NoSQL systems can be categorized by their data model

(key-value stores, document stores, and wide-column stores) and the safety-liveness trade-

offs in their design (CAP and PACELC).

2.2.2 Different Data Models

The most commonly employed distinction between NoSQL databases is the way they store

and allow access to data. Each system covered in this overview can be categorized as

either a key-value store, document store, or wide-column store.

User:2:friends {23, 76, 233, 11}

[234, 3466, 86, 55]

User:2:settings

User:3:friends

Theme: dark, cookies: false

Value (Opaque) Key

Figure 2.5: Key-value stores offer efficient storage and retrieval of arbitrary values.

Key-Value Stores

A key-value store consists of a set of key-value pairs with unique keys. Due to this simple

structure, it only supports get and put operations. As the nature of the stored value is

transparent to the database, pure key-value stores do not support operations beyond sim-

ple CRUD (Create, Read, Update, Delete). Key-value stores are therefore often referred

to as schemaless [SF12]: any assumptions about the structure of stored data are implic-

itly encoded in the application logic (schema-on-read [Kle17]) and not explicitly defined

through a data definition language (schema-on-write).

The obvious advantages of this data model lie in its simplicity. The very simple abstrac-

tion makes it easy to partition and query data so that the database system can achieve

low latency as well as high throughput. However, if an application demands more com-

32 2 Background

plex operations, e.g., range queries, this data model is not powerful enough. Figure 2.5

illustrates how user account data and settings might be stored in a key-value store. Since

queries more complex than simple lookups are not supported, data has to be analyzed

inefficiently in application code to extract information like whether cookies are supported

or not (cookies: false).

Document Stores

A document store is a key-value store that restricts values to semi-structured formats such

as JSON documents like the one illustrated in 2.6. This restriction in comparison to key-

value stores brings great flexibility in accessing the data. It is not only possible to fetch an

entire document by its ID, but also to retrieve only parts of a document, e.g., the age of

a customer, and to execute queries like aggregations, query-by-example or even full-text

search.

12338

 {
 _id: 12338,
 customer: { name: Doe ', age: 32, ... } ,
 items: [{ product: 'PC x', qty: 4, ... } , ...]
 }

JSON Document

Key

12339 { ... }

Figure 2.6: Document stores are aware of the internal structure of the stored entity and
thus can support queries.

Wide-Column Stores

Wide-column stores inherit their name from the image that is often used to explain the

underlying data model: a relational table with many sparse columns. Technically, however,

a wide-column store is closer to a distributed multi-level6 sorted map: the first-level keys

identify rows which themselves consist of key-value pairs. The first-level keys are called

row keys, the second-level keys are called column keys. This storage scheme makes

tables with arbitrarily many columns feasible because there is no column key without a

corresponding value. Hence, null values can be stored without any space overhead. The

set of all columns is partitioned into so-called column families to co-locate columns on

disk that are usually accessed together.

On disk, wide-column stores do not co-locate all data from each row, but instead, values

of the same column family and from the same row. Hence, an entity (a row) cannot be re-

trieved by one single lookup as in a document store but has to be joined from the columns

of all column families. However, this storage layout usually enables highly efficient data

compression and makes retrieving only a portion of an entity fast. All data is stored in

6In some systems (e.g., BigTable and HBase), multi-versioning is implemented by adding a timestamp as a
third-level key.

2.2 Backend Performance: Scalable Data Management 33

lexicographic order of the keys, so that rows that are accessed together are physically

co-located, given a careful key design. As all rows are distributed into contiguous ranges

(so-called tablets) among different tablet servers, row scans only involve few servers and

thus are very efficient.

com.google.www

"CNN"

 "Google"

"anchor:cnnsi.com"

"<html>…"

"contents:"

"Anchor"
Column Family

"anchor:heise.de"

"Contents"
Column Family

"anchor:my.look.ca"

 "CNN.com"

"<html>…"

Row Keys
com.cnn.www

Versions

Column
Keys

t6 t5 t3

t9 t8

t4 t7 t10

t14

Figure 2.7: Data in a wide-column store.

Bigtable [CDG+08], which pioneered the wide-column model, was specifically developed

to store a large collection of web pages as illustrated in Figure 2.7. Every row in the table

corresponds to a single web page. The row key is a concatenation of the URL components

in reversed order, and every column key is composed of the column family name and

a column qualifier, separated by a colon. There are two column families: the “contents”

column family with only one column holding the actual web page and the “anchor” column

family holding links to each web page, each in a separate column. Every cell in the table

(i.e., every value accessible by the combination of row and column key) can be versioned

by timestamps or version numbers. It is important to note that much of the information

of an entity lies in the keys and not only in the values [CDG+08].

2.2.3 Latency, Consistency, and Availability: Trade-Offs

Another defining property of a database apart from how data is stored and how it can be

accessed is the level of consistency that is provided. Some databases are built to guaran-

tee strong consistency and serializability (ACID7), while others favor availability (BASE8).

This trade-off is inherent to every distributed database system and the huge number of dif-

ferent NoSQL systems shows that there is a wide spectrum between the two paradigms. In

the following, we explain the two theorems CAP and PACELC according to which database

systems can be categorized by their respective positions in this spectrum.

7ACID [HR83]: Atomicity, Consistency, Isolation, Durability
8BASE [Pri08]: Basically Available, Soft-state, Eventually consistent

34 2 Background

CAP

Like the famous FLP Theorem9 [FLP85], the CAP Theorem, presented by Eric Brewer at

PODC 2000 [Bre00] and later proven by Gilbert and Lynch [GL02], is one of the most

influential impossibility results in the field of distributed computing. It places an upper

bound on what can be accomplished by a distributed system. Specifically, it states that

a sequentially consistent read/write register10 that eventually responds to every request,

cannot be realized in an asynchronous system that is prone to network partitions. In other

words, the register can guarantee at most two of the following three properties at the

same time:

• Consistency (C). Reads and writes are always executed atomically and are strictly

consistent (linearizable [HW90]). Put differently, all clients have the same view on

the data at all times.

• Availability (A). Every non-failing node in the system can always accept read and

write requests from clients and will eventually return with a meaningful response,

i.e., not with an error message.

• Partition-tolerance (P). The system upholds the previously displayed consistency

guarantees and availability in the presence of message loss between the nodes or

partial system failure.

Brewer argues that a system can be both available and consistent in normal operation,

but in the presence of a network partition, this is not possible: if the system continues

to work in spite of the partition, there is some non-failing node that has lost contact to

the other nodes and thus has to decide to either continue processing client requests to

preserve availability (AP, eventually consistent systems) or to reject client requests in

order to uphold consistency guarantees (CP). The first option violates consistency because

it might lead to stale reads and conflicting writes, while the second option obviously sac-

rifices availability. There are also systems that usually are available and consistent but fail

completely when there is a partition (CA), for example, single-node systems. It has been

shown that the CAP-theorem holds for any consistency property that is at least as strong as

causal consistency, which also includes any recency bounds on the permissible staleness of

data (∆-atomicity) [MAD+11]. Serializability as the correctness criterion of transactional

isolation does not require strong consistency. However, similar to consistency, serializabil-

ity cannot be achieved under network partitions either [DGMS85].

The classification of NoSQL systems as either AP, CP or CA vaguely reflects the individual

systems’ capabilities and hence is widely accepted as a means for high-level comparisons.

However, it is important to note that the CAP Theorem actually does not state anything on

normal operation; it merely expresses whether a system favors availability or consistency

in the face of a network partition. In contrast to the FLP-Theorem, the CAP theorem as-

9The FLP theorem states, that in a distributed system with asynchronous message delivery, no algorithm can
guarantee to reach a consensus between participating nodes if one or more of them can fail by stopping.

10A read/write register is a data structure with only two operations: setting a specific value (set) and
returning the latest value that was set (get).

2.2 Backend Performance: Scalable Data Management 35

sumes a failure model that allows arbitrary messages to be dropped, reordered or delayed

indefinitely. Under the weaker assumption of reliable communication channels (i.e., mes-

sages always arrive but asynchronously and possibly reordered) a CAP-system is in fact

possible using the Attiya, Bar-Noy, Dolev algorithm [ABN+95], as long as a majority of

nodes are up11.

PACELC

The shortcomings of the CAP Theorem were addressed by Abadi [Aba12] who points out

that the CAP Theorem fails to capture the trade-off between latency and consistency dur-

ing normal operation, even though it has proven to be much more influential on the design

of distributed systems than the availability-consistency trade-off in failure scenarios. He

formulates PACELC which unifies both trade-offs and thus portrays the design space of

distributed systems more accurately. From PACELC, we learn that in case of a Partition,

there is an Availability-Consistency trade-off; Else, i.e., in normal operation, there is a

Latency-Consistency trade-off.

This classification offers two possible choices for the partition scenario (A/C) and also

two for normal operation (L/C) and thus appears more fine-grained than the CAP clas-

sification. However, many systems cannot be assigned exclusively to one single PACELC

class and one of the four PACELC classes, namely PC/EL, can hardly be assigned to any

system.

Summary

NoSQL database systems support applications in achieving horizontal scalability, high

availability and backend performance through differentiated trade-offs in functionality

and consistency. For this reason, this thesis fundamentally builds on previous work on

these systems and their guarantees, in order to address the requirement for low latency.

2.2.4 Relaxed Consistency Models

CAP and PACELC motivate that there is a broad spectrum of choices regarding consistency

guarantees and that the strongest guarantees are irreconcilable with high availability. The

goal of our approach is to provide different levels of consistency depending on the re-

quirements of the application. Therefore, we examine the suitable consistency models

that fulfill two requirements. First, the models must exhibit sufficient power to precisely

express latency-consistency trade-offs introduced by caching and replication. Second, the

consistency models must have the simplicity to allow easy reasoning about application

behavior for developers and system architects.

As summarized in Figure 2.8, NoSQL systems exhibit various relaxed consistency guaran-

tees that are usually a consequence of replication and caching. Eventual consistency is
11Therefore, consensus as used for coordination in many NoSQL systems either natively [BBC+11] or through

coordination services like Chubby and Zookeeper [HKJR10] is considered a “harder” problem than strong
consistency, as it cannot even be guaranteed in a system with reliable channels [FLP85].

36 2 Background

a commonly used term to distinguish between strongly consistent (linearizable) systems

and systems with relaxed guarantees. Eventual consistency is slightly stronger than weak

consistency, as it demands that in the absence of failures, the system converges to a con-

sistent state. The problem with eventual consistency is that it purely represents a liveness
guarantee, i.e., it asserts that some property is eventually reached [Lyn96]. However, it

lacks a safety guarantee: eventual consistency does not prescribe which state the database

converges to [Bai15, p. 20]. For example, the database could eventually converge to a

null value for every data item and would still be eventually consistent. For this reason,

more specific relaxed consistency models provide a framework for reasoning about safety

guarantees that are weaker than strong, immediate consistency.

The idea of relaxing correctness guarantees is wide-spread in the database world. Even

in single-node systems, providing ACID and in particular serializability incurs performance

penalties through limited concurrency and contention, especially on multi-core hard-

ware [GLPT76]. As a consequence, weak isolation models relax the permissible trans-

action schedules by allowing certain concurrency anomalies that are not present under

serializability. Bailis et al. [BFG+13] surveyed 18 representative systems claiming to pro-

vide ACID or “NewSQL”12 guarantees. Of these systems, only three provided serializability

by default, and eight did not offer serializable isolation at all.

Writes Follow

Reads

Read Your

Writes

Monotonic

Reads

Monotonic

Writes

Δ-Atomicity

Linearizability

PRAM

Causal

Consistency

k-Atomicity
Sequential

Consistency

(Δ,p)-

Atomicity

(k,p)-

Atomicity

Figure 2.8: An overview of selected consistency models. Arrows indicate which models
are subsumed by a stronger model.

Strong Consistency Models

The strongest consistency guarantee in a concurrent system is linearizability (see Defini-

tion 2.1) introduced by Herlihy and Wing [HW90]. A linearizable system behaves analo-

12The term NewSQL was coined by relational database vendors seeking to provide similar scalability and
performance as NoSQL databases while maintaining well-known abstractions such as SQL as a query
language and ACID guarantees [GHTC13]. This is achieved by introducing trade-offs that are mostly
similar to that of NoSQL databases. Examples are H-Store [KKN+08], VoltDB [SW13], Clustrix [Clu17],
NuoDB [Nuo17], and Calvin [TDW+12] that are discussed in Chapter 6.

2.2 Backend Performance: Scalable Data Management 37

gously to a single-node system, i.e., each read and write appears to be applied at one de-

fined point in time between invocation and response. While linearizability is the gold stan-

dard for correctness, it is not only subject to the CAP theorem, but also hard to implement

at scale [LPK+15,ABK+15,BDF+15,DGMS85,KPF+13,TPK+13,BK13,BT11,WFZ+11].

Definition 2.1. An execution satisfies linearizability, if all operations are totally ordered
by their arrival time. Any read with an invocation time larger than the response time of a
preceding write is able to observe its effects. Concurrent operations must guarantee sequential
consistency, i.e., overlapping write operations become visible to all reads in a defined global
order.

Sequential consistency (see Definition 2.2) is a frequently used model in operating system

and hardware design that is slightly weaker than linearizability. It does not guarantee any

recency constraints, but it ensures that writes become visible for each client in the same

order. So in contrast to linearizability, the global ordering of operations is not required to

respect real-time ordering, only the local real-time ordering for each client is preserved.

Definition 2.2. An execution satisfies sequential consistency, if there is a global order of
read and write operations that is consistent with the local order in which they were submitted
by each client.

Consistency in replicated systems is sometimes confused with consistency in ACID trans-

actions. With respect to ACID, consistency implies that no integrity constraints are vio-

lated, e.g., foreign key constraints. In distributed, replicated systems, consistency is an

ordering guarantee for reads and writes that are potentially executed concurrently and on

different copies of the data. The main correctness criterion for transactional isolation is

serializability, which does not require strong consistency. If conflict serializability is com-

bined with strong consistency, it is referred to as strict (or strong) serializability (e.g., in

Spanner [Coo13]) or commit order-preserving conflict serializability (COCSR) [WV02].

Just as linearizability, serializability is also provably irreconcilable with high availabil-

ity [BDF+13].

Staleness-Based Consistency Models

To increase efficiency, staleness-based models allow stale reads, i.e., returning outdated

data. The two common measures for quantifying staleness are (wall-clock) time and object

versions. In contrast, k-atomicity (see Definition 2.3) [AAB05] bounds staleness by only

allowing reads to return a value written by one of the k preceding updates. Thus k-

atomicity with k = 1 is equivalent to linearizability.

Definition 2.3. An execution satisfies k-atomicity, if any read returns one of the versions
written by the k preceding, completed writes that must have a global order that is consistent
with real-time order.

∆-atomicity (see Definition 2.4) introduced by Golab et al. [GLS11] expresses a time-based

recency guarantee. Intuitively, ∆ is the upper bound on staleness observed for any read in

38 2 Background

the system, i.e., it never happens that the application reads data that has been stale for

longer than ∆ time units.

Definition 2.4. An execution satisfies ∆-atomicity, if any read returns either the latest pre-
ceding write or the value of a write that returned at most ∆ time units ago.

∆-atomicity is a variant of the influential atomic semantics definition introduced by Lam-

port in the context of inter-process communication [Lam86b, Lam86a]. Atomicity and

linearizability are equivalent [VV16], i.e., they demand that there is a logical point of lin-

earization between invocation and response for each operation at which it appears to be

applied instantaneously [HW90]. An execution is ∆-atomic, if by decreasing the start time

of each read operation by ∆ produces an atomic execution. Lamport also introduced two

relaxed properties of regular and safe semantics that are still often used in the literature. In

the absence of a concurrent write, regular and safe reads behave exactly like atomic reads.

However, during concurrent writes, safe reads are allowed to return arbitrary values13. A

read under regular semantics returns either the latest completed write or the result of any

concurrent write.

The extension of safety and regularity to ∆-safety, ∆-regularity, k-safety, and k-regularity

is straightforward [AAB05, GLS11, BVF+14]. ∆-atomicity will be used throughout this

thesis as it is a fundamental guarantee provided by our Cache Sketch approach. Other

time-based staleness models from the literature are very similar to ∆-atomicity. Delta

consistency by Singla et al. [SRH97], timed consistency by Torres-Rojas et al. [TAR99],

and bounded staleness by Mahajan et al. [MSL+11] all express that a write should become

visible before a defined maximum delay. ∆-atomicity is hard to measure experimentally

due to its dependency on a global time. Golab et al. [GRA+14] proposed Γ-atomicity as a

closely related alternative that is easier to capture in benchmarks. The central difference

is that the Γ parameter also allows writes to be reordered with a tolerance of Γ time units,

whereas ∆-atomicity only considers earlier starting points for reads, while maintaining the

order of writes. With NoSQLMark, we proposed an experimental methodology to measure

lower and upper staleness bounds [WFGR15].

For illustration of these models, please consider the example execution in Figure 2.9. The

result x of the read operation performed by client C3 depends on the consistency model:

• With atomicity (including k = 1 and ∆ = 0) or linearizability, x can be either 2 or 3. x

cannot be 4 since the later read of 3 by client C2 would then violate linearizability.

• Under sequential consistency semantics, x can be 0 (the initial value), 1, 2, 3, or 4.

As C3 only performs a read, no local order has to be maintained. It can be serialized

to the other clients’ operations in any order.

• Given regular semantics, x can be either 2, 3, or 4.

• Under safe semantics, x can be any value.

13The usefulness of this property has been criticized for database systems, as no typical database would return
values that have never been written, even under concurrent writes [Ber14].

2.2 Backend Performance: Scalable Data Management 39

C1

write(1)

C2

C3

read() x

write(3)

write(4)

Time

write(2)

0 1 2 3 4

read() 3

Figure 2.9: An example execution of interleaved reads and writes from three clients that
yields different read results depending on the consistency model. Brackets
indicate the time between invocation and response of an operation.

• For ∆-atomicity with ∆ = 1, x can be 2 or 3. With ∆ = 2, x can be 1, 2, or 3: if the

begin of the read was stretched by ∆ = 2 time units to begin at time 1, then 1, 2, and

3 would be reads satisfying atomicity.

• For k-atomicity with k = 2, x can be 1, 2, or 3: compared to atomicity, a lag of one

older object version is allowed.

∆-atomicity and k-atomicity can be extended to the probabilistic guarantees (∆,p)-

atomicity and (k,p)-atomicity (see Definition 2.5) [BVF+14]. This allows expressing

the average time or version-based lag as a distribution. For consistency benchmarks

and simulations, these values are preferable, as they express more details than ∆-

atomicity and k-atomicity which are just bounded by the maximum encountered val-

ues [BWT17,Ber14,BVF+14].

Definition 2.5. An execution satisfies (∆,p)-atomicity, if reads are ∆-atomic with probability
p. Similarly, an execution satisfies (k,p)-atomicity, if reads are k-atomic with probability p.

Session-Based Consistency Models

Data-centric consistency models like linearizability and ∆-atomicity describe consistency

from the provider’s perspective, i.e., in terms of synchronization schemes to provide cer-

tain guarantees. Client-centric or session-based models take the perspective of clients

interacting with the database and describe guarantees an application expects within a

session.

Monotonic writes consistency (see Definition 2.6) guarantees that updates from a client

do not get overwritten or reordered. Systems that lack this guarantee make it hard to

reason about how updates behave, as they can be seen by other clients in a different

order [Vog09]. For example, in a social network without monotonic write consistency,

posts by a user could be observed in a different, potentially nonsensical order by other

users.

40 2 Background

Definition 2.6. A session satisfies monotonic writes consistency, if the order of all writes
from that session is maintained for reads.

Monotonic reads consistency (see Definition 2.7) guarantees that if a client has read ver-

sion n of an object, it will later only see versions ≥ n [TvS07]. For example on a content

website, this would prevent a user from first seeing a revised edition of an article and then

upon a later return to the page reading the unrevised article.

Definition 2.7. A session satisfies monotonic reads consistency, if reads return versions in
a monotonically increasing order.

With read your writes consistency (see Definition 2.8) clients are able to observe their own

interactions. For example, in a web application with user-generated content, a user could

reload the page and still see the update he applied.

Definition 2.8. A session satisfies read your writes consistency, if reads return a version
that is equal to or higher than the latest version written in that session.

Combining the above three session guarantees yields the PRAM consistency level (see Def-

inition 2.9) [LS88a]. It prescribes that all clients observe writes from different processes in

their local order, i.e., as if the writes were in a pipeline. However, in contrast to sequential

consistency, there is no global order for writes.

Definition 2.9. If monotonic writes consistency, monotonic reads consistency, and read your
writes consistency are guaranteed, pipelined random access memory (PRAM) consistency
is satisfied.

With writes follow reads consistency (see Definition 2.10), applications get the guarantee

that their writes will always be accompanied by the relevant information that might have

influenced the write. For example, writes follow reads (also called session causality) pre-

vents the anomaly of a user responding to a previous post or comment on a website where

other users would observe the response without seeing the original post it is based on.

Definition 2.10. A session satisfies writes follow reads consistency, if its writes are ordered
after any other writes that were observed by previous reads in the session.

Causal consistency (see Definition 2.11) [Ady99, BDF+13] combines the previous session

guarantees. It is based on the concept of potential causality introduced through Lam-

port’s happened-before relation in the context of message passing [Lam78]. An operation

a causally depends on an operation b, if [HA90]:

1. a and b were issued by the same client and the database received b before a,

2. a is a read that observed the write b, or

3. a and b are connected transitively through condition 1. and/or 2.

2.2 Backend Performance: Scalable Data Management 41

In distributed systems, causality is often tracked using vector clocks [Fid87]. Causal con-

sistency can be implemented through a middleware or directly in the client by tracking

causal dependencies and only revealing updates when their causal dependencies are vis-

ible, too [BGHS13, BKD+13]. Causal consistency is the strongest guarantee that can be

achieved with high availability in the CAP theorem’s system model of unreliable channels

and asynchronous messaging [MAD+11]. The reason for causal consistency being com-

patible with high availability is that causal consistency does not require convergence of

replicas and does not imply staleness bounds [GH02]. Replicas can be in completely dif-

ferent states, as long as they only return writes where causal dependencies are met. For

this reason, our caching approach in Orestes combines causal consistency with recency

guarantees to strengthen the causal consistency model for practical data management use

cases that require bounded staleness.

Bailis et al. [BGHS13] argued that potential causality leads to a high fan-out of poten-

tially relevant data. Instead, application-defined causality can help to minimize the actual

dependencies. In practice however, potential causality can be determined automatically

through dependency tracking (e.g., in COPS [LFKA11]), while explicit causality forces

application developers to declare dependencies.

Causal consistency can be combined with a timing constraint demanding that the global

ordering respects causal consistency with tolerance ∆ for each read, yielding a model

called timed causal consistency [TM05]. This model is weaker than ∆-atomicity: timed

causal consistency with ∆ = 0 yields causal consistency, while ∆-atomicity with ∆ = 0 yields

linearizability.

Definition 2.11. If both PRAM and writes follow reads are guaranteed, causal consistency
is satisfied.

Besides the discussed consistency models, many different deviations have been proposed

and implemented in the literature. Viotti and Vukolic [VV16] give a comprehensive survey

and formal definitions of consistency models. In particular, they review the overlapping

definitions used in different lines of work across the distributed systems, operating sys-

tems, and database research community.

We are convinced that consistency trade-offs should be made explicit in data management.

While strong guarantees are a sensible default for application developers, there should

be an option to relax consistency in order to shift the trade-off towards non-functional

availability and performance requirements. The consistency models linearizability, causal

consistency, ∆-atomicity, and session guarantees will be used frequently throughout this

thesis, as they allow a fine-grained trade-off between latency and consistency.

2.2.5 Polyglot Persistence

As applications become more data-driven and highly distributed, providing low response

times to increasingly many users becomes more challenging within the scope of a single

42 2 Background

database system. Not only the variety of use cases is increasing, but also the require-

ments are becoming more heterogeneous: horizontal scalability, schema flexibility, and

high availability are primary concerns for modern applications. While RDBMSs cover

many of the functional requirements (e.g., ACID transactions and expressive queries),

they cannot cover scalability, performance, and fault tolerance in the same way that spe-

cialized data stores can. The explosive growth of available systems through the Big Data

and NoSQL movement sparked the idea of employing particularly well-suited database

systems for subproblems of the overall application.

The architectural style polyglot persistence describes the usage of specialized data stores

for different requirements. The term was popularized by Fowler in 2011 and builds on

the idea of polyglot programming [SF12]. The core idea is that abandoning a “one size

fits all” architecture can increase development productivity, resp. time-to-market, as well

as performance. Polyglot persistence applies to single applications as well as complete

organizations.

Wide-Column Store
Clickstream Data

Scalability, Batch-
Analytics

Search Engine
Full-Text Index

Text Search,
Facetting

Graph Store
Social Graph

Graph Queries

RDBMS
Financial Data

Consistency, ACID
Transactions

Key-Value Store
Session Data

Write-Availability,
Fast Reads

Document Store
Product Catalog

Scalability, Query
Response Time

 Application

Figure 2.10: Example of a polyglot persistence architecture with database systems for dif-
ferent requirements and types of data in an e-commerce scenario.

Figure 2.10 shows an example of a polyglot persistence architecture for an e-commerce

application, as often found in real-world applications [Kle17]. Data is distributed to differ-

ent database systems according to their associated requirements. For example, financial

transactions are processed through a relational database, to guarantee correctness. As

product descriptions form a semi-structured aggregate, they are well-suited for storage

in a distributed document store that can guarantee scalability of data volume and reads.

The log-structured storage management in wide-column stores is optimal for maintaining

high write throughput for application-generated event streams. Additionally, they pro-

vide interfaces to apply complex data analysis through Big Data platforms such as Hadoop

2.2 Backend Performance: Scalable Data Management 43

and Spark [Whi15, ZCF+10]. The example illustrates that in polyglot persistence archi-

tectures, there is an inherent trade-off between increased complexity of maintenance and

development against improved, problem-tailored storage of application data.

In summary, polyglot persistence adopts the idea of applying the best persistence tech-

nology for a given problem. In the following, we will present an overview of different

strategies for implementing polyglot persistence and the challenges they entail.

Polyglot Data Management

The requirement for a fast time-to-market is supported by avoiding the impedance mis-

match [Mai90, Amb12] between the application’s data structures and the persistent data

model. For example, if a web application using a JSON-based REST API can store native

JSON documents in a document store, the development process is considerably simplified

compared to systems where the application’s data model has to be mapped to a database

system’s data model.

Performance can be maximized, if the persistence requirements allow for an efficient parti-

tioning and replication of data combined with suitable index structures and storage man-

agement. If the application can tolerate relaxed guarantees for consistency or transac-

tional isolation, database systems can leverage this to optimize throughput and latency.

Typical functional persistence requirements are:

• ACID transactions with different isolation levels

• Atomic, conditional, or set-oriented updates

• Query types: point lookups, scans, aggregations, selections, projections, joins, sub-

queries, Map-Reduce, graph queries, batch analyses, searches, real-time queries,

dataflow graphs

• Partial or commutative update operations

• Data structures: graphs, lists, sets, maps, trees, documents, etc.

• Structured, semi-structured, or implicit schemas

• Semantic integrity constraints

Among the non-functional requirements are:

• Throughput for reads, writes, and queries

• Read and write latency

• High availability

• Scalability of data volume, reads, writes, and queries

• Consistency guarantees

• Durability

• Elastic scale-out and scale-in

44 2 Background

The central challenge in polyglot persistence is determining whether a given database sys-

tem satisfies a set of application-provided requirements and access patterns. While some

performance metrics can be quantified with benchmarks such as YCSB, TPC, and oth-

ers [DFNR14,CST+10,CST+10,PPR+11,BZS13,BKD+14,PF00,WFZ+11,FMdA+13,BT14,

Ber15, Ber14], many non-functional requirements such as consistency and scalability are

currently not covered through benchmarks or even diverge from the documented behav-

ior [WFGR15].

In a polyglot persistence architecture, the boundary of the database form the boundary

of transactions, queries, and update operations. Thus, if data is persisted and modified

in different databases, this entails consistency challenges. The application therefore has

to explicitly control the synchronization of data across systems, e.g., through ETL batch

jobs, or has to maintain consistency at the application level, e.g., through commutative

data structures. Alternatively, data can be distributed in disjoint partitions which shifts

the problem to cross-database queries, a well-studied topic in data integration [Len02].

In contrast to data integration problems, however, there is no autonomy of data sources.

Instead, the application explicitly combines and modifies the databases for polyglot per-

sistence [SF12].

Product XYZ

Product Information.

- Filter Queries
- Scalable Data Volume

1.300.212 Views

- High Write Throughput
- Top-k-Queries (k Highest Counters)

2

1

Figure 2.11: Polyglot persistence requirements for a product catalog in an e-commerce
application.

Implementation of Polyglot Persistence

To manage the increased complexity introduced by polyglot persistence, different archi-

tectures can be applied. We group them into the three architectural patterns application-
coordinated polyglot persistence, microservices, and polyglot database services. As an ex-

ample, consider the product catalog of the introductory e-commerce example (see Figure

2.11). The product catalog should be able to answer simple filter queries (e.g., searching

by keyword) as well as returning the top-k products according to access statistics. The

functional requirement therefore is that the access statistics have to support a high write

throughput (incrementing on each view) and top-k queries (1). The product catalog has

to offer filter queries and scalability of data volume (2). These requirements can, for ex-

2.2 Backend Performance: Scalable Data Management 45

ample, be fulfilled with the key-value store Redis and the document store MongoDB. With

its sorted set data structure, Redis supports a mapping from counters to primary keys of

products. Incrementing and performing top-k queries are efficiently supported with log-

arithmic time complexity in memory. MongoDB supports storing product information in

nested documents and allows queries on the attributes of these documents. Using hash

partitioning, the documents can efficiently be distributed over many nodes in a cluster to

achieve scalability.

Application-coordinated
Polyglot Persistence

Application
Module

Module

Microservices

Micro-
Service

Micro-
Service

Micro-
Service

API API

Polyglot Database Service

Applications

Database
Service

Figure 2.12: Architectural patterns for the implementation of polyglot persistence:
application-coordinated polyglot persistence, microservices, and polyglot
database services.

With application-coordinated polyglot persistence (see Figure 2.12), the application

server’s data tier programmatically coordinates polyglot persistence. Typically, the map-

ping of data to databases follows the application’s modularization. This pattern simplifies

development, as each module is specialized for the use of one particular data store. Also,

design decisions in data modeling as well as access patterns are encapsulated in a single

module (loose coupling). The separation can also be relaxed: for the product catalog,

it would not only be possible to model a counter and separate product data. Instead,

a product could also be modeled as an entity containing a counter. The dependency be-

tween databases has to be considered both at development time and during operation. For

example, if the format of the primary key changes, the new key structure has to be imple-

mented for both systems in the code and in the database. Object-NoSQL mappers simplify

the implementation of application-coordinated polyglot persistence. However, currently,

the functional scope of these mappers is very limited [TGPM17,SHKS15,WBGsS13].

46 2 Background

A practical example of application-coordinated polyglot persistence is Twitter’s storage of

user feeds [Kri13]. For fast read access, the newest tweets for each user are materialized

in a Redis cluster. Upon publishing of a new tweet, the social graph is queried from a

graph store and distributed among the Redis-based feeds for each relevant user (Write
Fanout). As a persistent fallback for Redis, MySQL servers are managed and partitioned

by the application tier.

To increase encapsulation of persistence decisions, microservice architectures are use-

ful [New15] (see Section 2.1.1). Microservices allow narrowing the choice of a database

system to one particular service and thus decouple the development and operations of

services [DB13]. Technologically, IaaS/PaaS, containers, and cluster management frame-

works provide sophisticated tooling for scaling and operating microservice architectures.

In the example, the product catalog could be split into two microservices using MongoDB

and Redis separately. The Redis-based service would provide an API for querying popu-

lar products and incrementing counters, whereas the MongoDB-based microservice would

have a similar interface for retrieving product information. The user-facing business logic

(e.g., the frontend in a two-tier architecture) simply has to invoke both microservices and

combine the result.

In order to make polyglot persistence fully transparent for the application, polyglot data-

base services can abstract from implementation details of underlying systems. The key

idea is to hide the allocation of data and queries to databases through a generic cloud ser-

vice API. Some NoSQL databases and services use this approach, for example, to integrate

full-text search with structured storage (e.g., in Riak [Ria17] and Cassandra [LM10]),

to store metadata consistently (e.g., in HBase [Hba17] and BigTable [CDG+08]), or to

cache objects (e.g., Facebook’s TAO [BAC+13]). However, these approaches use a defined

scheme for the allocation and cannot adapt to varying application requirements. Polyglot

database services can also apply static rules for polyglot persistence: if the type of the data

is known (for example a user object or a file), a rule-based selection of a storage system

can be performed [SGR15].

The currently unsolved challenge is to adapt the choice of a database system to the actual

requirements and workloads of the application. A declarative way to achieve this is to

have the application express requirements as SLAs to let a polyglot database service deter-

mine the optimal mapping. In this thesis, we will explore a first approach for automating

polyglot persistence.

In the example, the application could declare the throughput requirements of the counter

and the scalability requirement for the product catalog. The database service would then

autonomously derive a suitable mapping for queries and data. The core challenge is to

base the selection of systems on quantifiable metrics of available databases and applying

transparent rewriting of operations. A weaker form than fully-automated polyglot per-

sistence are database services with semi-automatic polyglot persistence. In this model,

the application can explicitly define which underlying system should be targeted, while

2.2 Backend Performance: Scalable Data Management 47

reusing high-level features such as schema modeling, transactions, and business logic

across systems through a unified API. Orestes supports this strategy and provides stan-

dard interfaces for different database systems to integrate them into a polyglot database

middleware exposed through a unified set of APIs.

2.2.6 Cloud Data Management: Database- and Backend-as-a-Service

Cloud data management is the research field tackling the design, implementation, eval-

uation and application implications of database systems in cloud environments [GR15b,

GR16,GWR17,WGW+18]. We group cloud data management systems into two categories:

Database-as-a-Service (DBaaS) and Backend-as-a-Service (BaaS). In the DBaaS model,

only data management is covered. Therefore, application logic in a two- and three-tier

architecture has to employ an additional IaaS or PaaS cloud. BaaS combines a DBaaS

with custom application logic and standard APIs for web and app development. BaaS

is a form of serverless computing, an architectural approach that describes applications

which mostly rely on cloud services for both application logic and storage [Rob16]. Be-

sides the BaaS mode, serverless architectures can also make use of Function-as-a-Service

(FaaS) providers, that provide scalable and stateless execution of business logic functions

in a highly elastic environment (e.g., AWS Lambda, and Google Cloud Functions). BaaS

combines the concepts of DBaaS with a FaaS execution layer for business logic.

Database-as-a-Service

Hacigumus et al. [HIM02] introduced DBaaS as an approach to run databases without

acquiring hardware or software. As the landscape of DBaaS systems has become similarly

heterogeneous as the NoSQL ecosystem, we propose a two-dimensional classification as

shown in Figure 2.13. The first dimension is the data model ranging from structured

relational systems, over semi-structured or schema-free data to completely unstructured

data. The second dimension describes the deployment model.

Cloud-deployed databases use an IaaS or PaaS cloud to provision an operating system

and the database software as an opaque application. Cloud providers usually maintain

a repository of pre-built machine images containing RDBMSs, NoSQL databases, or ana-

lytics platforms that can be deployed as a virtual machine (VM) [BDF+03]. While cloud-

deployed systems allow for a high degree of customization, maintenance (e.g., operating

system and database updates), as well as operational duties (e.g., scaling in and out) have

to be implemented or performed manually.

In managed cloud databases, the service provider is responsible for configuration, scaling,

provisioning, monitoring, backup, privacy, and access control [CJP+11]. Many commer-

cial DBaaS providers offer standard database systems (e.g., MongoDB, Redis, and MySQL)

as a managed service. For example MongoDB Atlas provides a managed NoSQL database

[Mon17], Amazon Elastic Map-Reduce [Ama17b] is an Analytics-as-a-Service based on

managed Hadoop clusters, and Azure SQL Server offers a managed RDBMS [MTK+11].

48 2 Background

Deployment
Model

Data
Model

Structured

Unstructured

RDBMS
Machine

Image
Relational

Schema-
free

Unstructured

NoSQL
Machine

Image

Analytics
Machine

Image

Managed
RDBMS/

DWH

Managed
NoSQL

Analytics-
as-a-

Service

RDBMS/
DWH

Service

NoSQL
Service

Analytics/
ML

APIs

Database-as-
a-Service

Figure 2.13: Classes of cloud databases and DBaaS systems according to their data model
and deployment model.

DBaaS providers can also specifically develop a proprietary database or cloud infras-

tructure to achieve scalability and efficiency goals that are harder to implement with

standard database systems. A proprietary architecture enables co-design of the database

or analytics system with the underlying cloud infrastructure. For example, Amazon Dy-

namoDB provides a large-scale, multi-tenant NoSQL database loosely based on the Dy-

namo architecture [Dyn17], and Google provides machine learning (ML) APIs for a variety

of classification and clustering tasks [Goo17b].

This thesis will be primarily concerned with the managed deployment model, as we are

convinced that existing database technology offers a suitable basis for data management

functionality but currently lacks the non-functional ability to be provided as a low-latency

DBaaS/BaaS. We refer to Lehner and Sattler [LS13] and Zhao et al. [ZSLB14] for a com-

prehensive overview on DBaaS research.

Backend-as-a-Service

Many data access and application patterns are very similar across different web and mobile

applications and can therefore be standardized. This was recognized by the industry and

lead to BaaS systems that integrate DBaaS with application logic and predefined building

blocks, e.g., for push notifications, user login, static file delivery, etc. BaaS is a rather

recent trend and similar to early cloud computing and Big Data processing, progress is

currently driven by industry projects, while structured research has yet to be established

[Use17,Par17,Dep17].

2.2 Backend Performance: Scalable Data Management 49

Web Applications
and Mobile Apps

With SDKs

Data
Storage

Custom
Code

Query,
Search

Backend
Code

User
APIs

File
Storage

Access
Control

REST/HTTP
and Hosting Internet

Backend-as-a-
Service APIs

Backend-as-a-
Service Cloud
Infrastructure

Business Logic (FaaS) Standard APIsDBaaS

Orchestration Layer
(Multi-Tenancy, Scaling, Metering, Failover, …)

Figure 2.14: Architecture and usage of a Backend-as-a-Service.

Figure 2.14 gives an overview of a generic BaaS architecture as similarly found in com-

mercial services (e.g., Azure Mobile Services, Firebase, and Kinvey [Baq18]) as well as

open-source projects (e.g., Meteor [HS16], Deployd [Dep17], Hoodie [Hoo17], Parse

Server [Par17], BaasBox [Bas17], and Apache UserGrid [Use17]).

The BaaS cloud infrastructure consists of three central components. The DBaaS compo-

nent is responsible for data storage and retrieval. Its abstraction level can range from

structured relational, over semi-structured JSON to opaque files. The FaaS component is

concerned with the execution of server-side business logic, for example, to integrate third-

party services and perform data validation. It can either be invoked as an explicit API or be

triggered by DBaas operations. The standard API component offers common application

functionality in a convention-over-configuration style, i.e., it provides defaults for tasks

such as user login, push notifications, and messaging that are exposed for each tenant in-

dividually. The cloud infrastructure is orchestrated by the BaaS provider to ensure isolated

multi-tenancy, scalability, availability, and monitoring.

The BaaS is accessed through a REST API [Dep17,Hoo17,Par17,Bas17,Use17] (and some-

times WebSockets [HS16]) for use with different client technologies. To handle not only

native mobile applications but also websites, BaaS systems usually provide file hosting to

deliver website assets like HTML and script files to browsers. The communication with the

BaaS is performed through SDKs employed in the frontend. The SDKs provide high-level

50 2 Background

abstractions to application developers, for example, to integrate persistence with applica-

tion data models [TGPM17].

BaaS systems are thus confronted with even stronger latency challenges than a DBaaS:

all clients access the system via high-latency WAN network so that latency for retrieving

objects, files, and query results determines application performance. Similar to DBaaS

systems, BaaS APIs usually provide persistence on top of one single database technology,

making it infeasible to achieve all potential functional and non-functional application re-

quirements. The problem is even more severe when all tenants are co-located on a shared

database cluster. In that case, one database system configuration (e.g., the replication

protocol) prescribes the guarantees for each tenant [ADE12].

Private OS/
VM

VM

Hardware Resources

Database Process

Database

Schema

Private Process/
Container

Private Schema

VM

Hardware Resources

Database Process

Database

Schema

VM

Hardware Resources

Database Process

Database

Schema

Shared Schema

VM

Hardware Resources

Database Process

Database

Schema

Virtual Schema

Figure 2.15: Different approaches to multi-tenancy in DBaaS/BaaS systems. The dashed
line indicates the boundary between shared and tenant-specific resources.

Multi-Tenancy

The goal of multi-tenancy in DBaaS/BaaS systems is to allow efficient resource pooling

across tenants so that only the capacity for the global average resource consumption has

to be provisioned and resources can be shared. There is an inherent trade-off between

higher isolation of tenants and efficiency of resource sharing [ADE12]. As shown in Figure

2.15, the boundary between tenant-specific resources and shared provider resources can

be drawn at different levels of the software stack [MB16, p. 562]:

• With private operating system (OS) virtualization, each tenant is assigned to one

or multiple VMs that execute the database process. This model achieves a high

degree of isolation, similar to IaaS clouds. However, resource reuse is limited as

each tenant has the overhead of a full OS and database process.

• By allocating a private process to each tenant, the overhead of a private OS can

be mitigated. To this end, the provider orchestrates the OS to run multiple isolated

database processes. This is usually achieved using container technology such as

Docker [Mer14] that isolates processes within a shared OS.

2.2 Backend Performance: Scalable Data Management 51

• Efficiency can be further increased if tenants only possess a private schema within

a shared database process. The database system can thus share various system re-

sources (e.g., the buffer pool) between tenants to increase I/O efficiency.

• The shared schema model requires all tenants to use the same application that

dictates the common schema. The schema can be adapted to specific tenant require-

ments by extending it with additional fields or tables [KL11]. A shared schema is

frequently used in SaaS applications such as Salesforce [Onl17].

The major open challenge for multi-tenancy of NoSQL systems in cloud environments

is database independence and the combination with multi-tenant FaaS code execution.

If a generic middleware can expose unmodified data stores as a scalable, multi-tenant

DBaaS/BaaS, the problems of database and service architectures are decoupled, and poly-

glot persistence is enabled. In Chapter 3 we will outline the requirements for a generic,

multi-tenant DBaaS/BaaS architecture and present our approach.

Most research efforts in the DBaaS community have been concerned with multi-tenancy

and virtualization [ASJK11,AGJ+08,AJKS09,KL11,SKM08,WB09,JA07], database privacy

and encryption [KJH15, Gen09, PRZB11, Pop14, KFPC16, PZ13, PSV+14], workload man-

agement [CAAS07,ZSLB14,ABC14,Bas12,XCZ+11,TPK+13,LBMAL14,PSZ+07,Sak14], re-

source allocation [MRSJ15,SLG+09], automatic scaling [KWQH16,LBMAL14], and bench-

marking [DFNR14, CST+10, CST+10, PPR+11, BZS13, BKD+14, BT11, BK13, BT14, Ber15,

Ber14] (see Section 6.4.4). However, several DBaaS and BaaS challenges have remained

unsolved. This thesis is focused on providing the following improvements to DBaaS and

BaaS systems:

• Low latency access to DBaaS systems, to improve application performance and al-

low distribution of application logic and data storage

• Unified REST/HTTP access to polyglot data stores with service level agreements

for functional and non-functional guarantees

• Elastic scalability of read and query workloads for arbitrary database systems

• Generic, database-independent APIs and capabilities for fundamental data man-

agement abstractions such as schema management, FaaS business logic, real-time

queries, multi-tenancy, search, transactions, authentication, authorization, user

management, and file storage for single databases and across databases.

2.2.7 Latency Problems in Distributed Transaction Processing

Transactions are one of the central concepts in data management, as they solve the prob-

lem of keeping data correct and consistent under highly concurrent access. While the

adoption of distributed NoSQL databases first lead to a decline in the support of transac-

tions, recently numerous systems have started to support transactions again, often with

relaxed guarantees (e.g., Megastore [BBC+11], G-Store [DAEA10], ElasTras [DAEA13],

Cloud SQL Server [BCD+11], Spanner [CDE+12], F1 [SVS+13], Percolator [PD10], MDCC

52 2 Background

[KPF+13], TAPIR [ZSS+15], CloudTPS [WPC12], Cherry Garcia [DFR15a], FaRMville

[DNN+15], Omid [GJK+14], RAMP [BFG+14], Walter [SPAL11], Calvin [TDW+12], H-

Store/VoltDB [KKN+08]). The core challenge is that serializability – like strong con-

sistency – enforces a difficult trade-off between high availability and correctness in dis-

tributed systems [BDF+13].

The gold standard for transactions is ACID [WV02,HR83]:

Atomicity. A transaction must either commit or abort as a complete unit. Atomicity is

implemented through recovery, rollbacks, and atomic commitment protocols.

Consistency. A transaction takes the database from one consistent state to another. Con-

sistency is implemented through constraint checking and requires transactions to be

logically consistent in themselves.

Isolation. The concurrent and interleaved execution of operations leaves transactions iso-

lated, so that they do not affect each other. Isolation is implemented through con-

currency control algorithms.

Durability. The effects of committed transactions are persistent even in the face of fail-

ures. Durability is implemented through logging, recovery, and replication.

A comprehensive overview of centralized and distributed transactions is given by Agrawal

et al. [ADE12], Weikum and Vossen [WV02], Öszu and Valduriez [ÖV11], Bernstein and

Newcomer [BN09], and Sippu and Soisalon-Soininen [SSS15].

Distributed Transaction Architectures

A transaction is a finite sequence of read and write operations. The interleaved operations

of a set of transactions is called a history and any prefix of it is a schedule [WV02]. To

provide isolation, concurrency control algorithms only allow schedules that do not violate

isolation. The strongest level of isolation is serializability. However, many concurrency

control protocols allow certain update anomalies14 for performance reasons, forming dif-

ferent isolation levels of relaxed transaction isolation.

The strongest isolation level of serializability can also be refined into different classes of

histories, depending on defined correctness criteria [WV02, p. 109]. In practice and in

the context of this thesis, the most relevant class is conflict-serializability (CSR), and its

subclass commit order-preserving conflict serializability (COCSR). CSR and COCSR are

efficiently decidable and easy to reason about from a developer’s perspective.

Figure 2.16 gives an overview of typical distributed transaction architectures as origi-

nally described by Gray [GL06] and Liskov [LCSA99] and still used in most systems

14 Update anomalies describe undesired behavior caused by transaction interleaving [ALO00,Ady99]. A dirty
write overwrites data from an uncommitted transaction. With a dirty read, stale data is exposed. A lost
update describes a write that does not become visible, due to two transactions reading the same object
version for a subsequent write. A non-repeatable read occurs if data read by an in-flight transaction was
concurrently overwritten. A phantom read describes a predicate-based read that becomes invalid due to
concurrent transactions writing data that matches the query predicate. Read and Write Skew are two
anomalies caused by transactions operating on different, isolated database snapshots.

2.2 Backend Performance: Scalable Data Management 53

Atomic Commitment

(e.g., 2PC, 3PC, Paxos Commit)

Partition 1

Concurrency Control

(e.g., optimistic and
pessimistic schedulers)

Concurrency Control Concurrency Control

Replication Protocol Replication Protocol

Replication Protocol

(e.g., Paxos, Viewstamped
Replication)

Partition 2 Partition 3

Figure 2.16: Distributed transaction architecture consisting of an atomic commitment pro-
tocol, concurrency control and a replication protocol.

[BBC+11, CDE+13, EWS13]. Distributed databases are partitioned into shards, with each

shard being replicated for fault tolerance. Therefore, an atomic commitment protocol is

required to enforce an all-or-nothing decision across all shards. Common protocols such

as two-phase commit (2PC) [Lec09], three-phase commit (3PC) [SS83], and Paxos Com-

mit [GL06] have to make a trade-off between availability and correctness: any correct

atomic commitment protocol blocks under some network partitions. The replication pro-

tocol is required to keep replicas in sync, so that staleness does not interfere with the con-

currency control algorithm. Traditionally, the replication protocol has to ensure lineariz-

ability (e.g., through Paxos [Lam98], Virtual Synchrony [BJ87], and Viewstamped Repli-

cation [OL88]) but it has been shown that an appropriate concurrency control scheme

can potentially tolerate weaker consistency of the underlying replication protocol without

compromising isolation [ZSS+15].

There are alternatives to the described transaction processing architecture (e.g., Repli-

cated Commit [MNP+13]). In particular, the atomic commitment protocol is a bottleneck

that can be prevented, as we will discuss for our DCAT transaction design in Section 4.8.

Furthermore, current transaction architectures assume that the client executing a transac-

tion is a server co-located with the database system. However, in a BaaS scenario, a client

can be an (untrusted) end user’s mobile device or browser that exhibits very high read,

query, and write latency.

54 2 Background

Concurrency Control

Concurrency control schemes can be grouped into pessimistic and optimistic approaches.

Pessimistic schemes proactively prevent isolation violations during transaction execution.

Optimistic schemes do not interfere with the transaction execution and validate the ab-

sence of violations at commit time. The major concurrency control algorithms are:

Lock-based protocols. For operations that would create cyclic conflicts, mutual exclu-

sion can be achieved through locking. According to the two-phase locking (2PL)

theorem, any execution of transactions that use 2PL is serializable [EGLT76]. The

granularity and types of locks vary in different protocols, as well as the specifics

of 2PL [WV02, ÖV11, BN09]. All 2PL-based protocols without preclaiming (acquir-

ing locks at transaction begin) suffer from potential deadlocks or external aborts15

[GHKO81, GLPT76]. Preclaiming on the other hand is not applicable if accessed

objects are unknown in advance but determined through queries, reads, or user

interactions.

Non-Locking Pessimistic Protocols. Timestamp Ordering (TO) [Ber99] enforces serial-

izability by ordering conflicting operations by the begin timestamp of transactions.

The main downside of TO schedulers is that they produce only a small subset of

CSR schedules and therefore cause unnecessary aborts. Serialization Graph Testing

(SGT) [Cas81] is another non-locking pessimistic scheme that constructs the conflict

graph and prevents it from becoming cyclic. The internal state of SGT can become

very large as it is non-trivial to discard old transactions’ information.

Multi-version Concurrency Control (MVCC). A straightforward improvement of pessi-

mistic protocols is to decouple concurrent reads by executing them on an immutable

snapshot. TO, SGT, and 2PL can easily be extended to incorporate multi-versioning

[WV02]. Due to reduced conflict rates, MVCC schedulers such as Serializable Snap-

shot Isolation [CRF08,FLO+05,PG12] are popular among RDBMSs.

Optimistic Concurrency Control (OCC). Optimistic schedulers operate across three

transaction phases. The principle idea is to allow all transactional operations and to

apply rollbacks at commit time when serializability would be violated [KR81].

1. Read Phase. In the read phase, the transaction performs its operations, in-

cluding reads, writes, and queries. Writes are not applied to the database but

buffered until commit, typically in the client.

2. Validation Phase. The validation phase is executed as a critical section and en-

sures that the transaction can safely commit. The type of validation depends on

the optimistic protocol. In Forward-Oriented Optimistic Concurrency Control

(FOCC) the committing transaction’s write set is validated against the read set

of all parallel transactions that are still in the read phase [Här84]. In Backward-

15Follwing the terminology of Bailis et al. [BDF+13] we refer to external aborts as transaction rollbacks caused
by a system’s implementation (e.g., for deadlock prevention) whereas internal aborts are triggered by the
transaction itself (e.g., as a rollback operation).

2.2 Backend Performance: Scalable Data Management 55

Oriented Optimistic Concurrency (BOCC), the committing transaction’s read

set is validated against the write set of all transactions that completed while

the committing transaction was in the read phase. To resolve a conflict, two

strategies are possible:

• Kill/Broadcast-OCC: transactions that are running and preventing the

committing transaction from completing are aborted.

• Die: the committing transaction aborts.

In BOCC, only the Die strategy is applicable, as conflicting transactions are

already committed. FOCC permits both resolution strategies. However, FOCC

has two important drawbacks. First, it needs to consider reads of active transac-

tions, which prevents serving them from caches or replicas. Second, the FOCC

validation has to block concurrent reads and thus strongly limits concurrency

and performance.

3. Write Phase. If validation was successful, the transaction’s changes are per-

sisted to the database and made visible. Usually, this also includes writing

recovery information into logs to ensure durability.

The problem of pessimistic concurrency control is that preventing violations of serializ-

ability requires transactional reads and writes to be forwarded to the scheduler. In repli-

cated or cached systems, this defeats the purpose of data distribution. This also applies

to MVCC as it requires local tracking of transaction-specific versions which cannot be

offloaded to replicas or caches without including them in the concurrency control algo-

rithm. Therefore, in highly distributed systems, optimistic transactions are advantageous,

as they allow to combine client-local processing of reads and writes with a global commit

decision [BBC+11, DAEA10, DAEA13, CDE+12, SVS+13, DFR15a, DNN+15]. Stonebraker

et al. [SMA+07] identify “locking-based concurrency control mechanisms” as a substan-

tial performance bottleneck and one of the relics of System R that hinder the progress of

database systems.

Impact of Latency On Transaction Success

Compared to pessimistic mechanisms, optimistic concurrency control offers the advantage

of never blocking running transactions due to lock conflicts. The downside of optimistic

transactions is that they can lead to transaction aborts since this is the only way of handling

cyclic read/write conflicts [KR81].

Locking strategies suffer from deadlocks. Let A be a random variable that describes the

outcome of a transaction. Gray et al. [GHKO81] showed that the probability of aborts

P(A = 1) increases with the second power of the number T of parallel transactions and

with the fourth power of transaction duration D [BN09]:

A(w) =

0 if w = commit

1 if w = abort
(2.3)

56 2 Background

P(A = 1)∼ D4 and P(A = 1)∼ T 2 (2.4)

Deadlocks are resolved by rollbacks. Thus, the more high-latency reads are involved in

a pessimistic transaction, the higher the abort probability. In general, optimistic trans-

actions are superior for read-intensive workloads while pessimistic transactions are more

appropriate for write-intensive workloads [WV02].

In a simplified model, Franaszek et al. [FRT92] showed the quadratic effect of optimistic

transactions that states that the abort probability is k2/N, where k is the number of objects

accessed in transactions and N the size of the database [Tho98]. This model assumes

preclaiming, an even access probability across all objects, and that every read object is

also written. In that case, if the first transaction accesses n objects and the second m, the

probability of accessing at least one object in both transactions is:

P(n,m) = 1−
(N−n

m

)(N
m

) ≈ 1− (1− n
N
)m ≈ nm

N
(2.5)

Thus, if all transactions read and write k objects, the abort probability for two concurrent

transactions is P(k,k) = k2

N , the quadratic effect. However, this model has many limitations,

most importantly the assumption of preclaiming, the missing distinction between reads

and writes, and the discarded influence of latency. We will therefore derive a more realistic

model in Section 4.8 to signify the impact of latency.

Example of High-Latency Transactions

To illustrate the role of latency in transaction processing, we briefly discuss an example

application use case. In the web, high latency is ubiquitous, especially for applications

employing the DBaaS and BaaS model. Transactions requiring client-server round-trips are

therefore usually avoided through heuristics, compensations, and other non-transactional

workarounds.

As an example consider a checkout process in a booking system, e.g., for an airline or a

theatre. A transaction would proceed in two steps:

1. The available seats are read from the database and shipped over a high-latency

network to the end user.

2. The end user performs a selection of seats in the frontend and sends a booking or

reservation request (i.e., a write) to the system, back over the high-latency network.

This use case is difficult to implement with lock-based concurrency control, as applying

read locks in step 1 would cause very high deadlock probabilities and block resources in

the database system. In practice, this use case is solved by decoupling step 1 and step

2 into two unrelated transactions [SF12]. If step 2 cannot be applied due to a violation

of isolation (i.e., seats were concurrently booked) the transaction is rolled back, and the

user is presented with an error. This solution is effectively an optimistic transaction im-

plemented in the application layer. Even a database system with native optimistic concur-

2.2 Backend Performance: Scalable Data Management 57

rency control could not prevent these errors. Furthermore, for security reasons, a database

transaction API cannot be exposed to end users, but only to the server-side business logic

tier. For modern web applications, it would therefore be preferable to provide the trans-

action logic in an application-independent, client-accessible way while minimizing aborts

through shorter transaction durations.

Challenges

In summary, the major challenges of distributed transaction processing tackled in this

thesis are:

• High-latency environments have a detrimental effect on transaction aborts in both

pessimistic and optimistic concurrency control algorithms.

• Current concurrency control schemes prevent leveraging geo-distributed caching,

as they cannot prevent or bound staleness.

• Polyglot persistence transactions are usually impossible or require explicit sup-

port from each system. Enhancing non-transactional database systems with cross-

database ACID transactions is an open research challenge.

• Transaction APIs are traditionally designed for three-tier applications and do not

support end users directly executing transactions. This type of access is required for

BaaS architectures and simplifies the development of data-driven web applications.

2.2.8 Low-Latency Backends through Replication, Caching, and Edge Com-
puting

There are three primary backend-focused technologies that are concerned with lowering

latency. Replication, caching, and edge computing follow the idea of distributing data

storage and processing for better scalability and reduced latency towards dispersed clients.

However, in their current form they do not solve the end-to-end latency problem for reads,

queries, and transactions, cannot be combined in polyglot persistence architectures, and

do not allow dynamic trade-offs between consistency and performance requirements.

Eager and Lazy Geo-Replication

To improve scalability and latency of reads, geo-replication distributes copies of the pri-

mary database over different geographical sites. Eager geo-replication (e.g., in Google’s

Megastore [BBC+11], Spanner [CDE+13, CDE+12], F1 [SVS+13], MDCC [KPF+13], and

Mencius [MJM08]) has the goal of achieving strong consistency combined with geo-

redundancy for failover. However, it comes at the cost of higher write latencies that

are usually between 100 ms [CDE+12] and 600 ms [BBC+11]. The second problem of

eager geo-replication is that it requires extensive, database-specific infrastructure which

introduces system-specific trade-offs that cannot be adapted at runtime. For example, it

is not possible to relax consistency on a per-operation basis, as the guarantee is tied to

58 2 Background

the system-wide replication protocol (typically variants of Paxos [Lam01]). Also, while

some eagerly geo-replicated systems support transactions, these suffer from high abort

rates, as cross-site latency in commit protocols increases the probability of deadlocks and

conflicts [SVS+13].

Lazy geo-replication (e.g., in Dynamo [DHJ+07], BigTable/HBase [CDG+08,Hba17], Cas-

sandra [LM10], MongoDB [CD13], CouchDB [ALS10], Couchbase [LMLM16], Espresso

[QSD+13], PNUTS [CRS+08], Walter [SPAL11], Eiger [LFKA13], and COPS [LFKA11])

on the other hand aims for high availability and low latency at the expense of consistency.

Typically, replicas are only allowed to serve reads, in order to simplify the processing of

concurrent updates. The problem of lazy geo-replication is that consistency guarantees

are lowered to a minimum (eventual consistency) or cause a prohibitive overhead (e.g.,

causal consistency [LFKA11, LFKA13]). Similar to eager geo-replication, system-specific

infrastructure is required to scale the database and lower latency. Therefore, providing

low end-to-end latency for web applications through a network of different replica sites

is often both financially and technically infeasible. Furthermore, geo-replication requires

the application tier to be co-located with each replica to make use of the distribution for

latency reduction. Geo-replication is nonetheless an indispensable technique for providing

resilience against disaster scenarios.

Caching

Caching has been studied in various fields for many years (see Section 6.1). It can

be applied at different locations (e.g., clients, proxies, servers, databases), granulari-
ties (e.g., files, records, pages, query results) and with different update strategies (e.g.,

expirations, leases, invalidations). Client-side caching approaches are usually designed

for application servers and therefore not compatible with REST/HTTP, browsers and

mobile devices [ÖV11, FCL97, WN90, KK94, ÖV11, CALM97, Ora17, TGPM17]. Mid-tier

(proxy) caches provide weak guarantees in order not to create synchronous depen-

dencies on server-side queries and updates or only cache very specific types of data

[KW97,TWJN01,KW98,PB08,FFM04,Fre10,Vak06,YADL99,YADL98,BDK+02]. The var-

ious approaches for server-side caching have the primary goal of minimizing query la-

tency by offloading the database for repeated queries [AAO+12,CLL+01b,KLM97,Kam17,

GMA+08,BAC+13,APTP03a,BAM+04,LGZ04,LR01a,BBJ+10,LLXX09].

Combining expiration-based and invalidation-based cache maintenance is an open prob-

lem, as both mechanisms provide different consistency guarantees and therefore would

degrade to the weaker model when combined. In practice, most caching approaches rely

on the application to maintain cache coherence instead of using declarative models that

map consistency requirements to cache coherence protocols [Rus03a, ABMM07, CSH+16,

SHKS15,Ama16,Fit04,NFG+13,XFJP14]. Very few caching approaches tackle end-to-end

latency for the web at all or consider the distributed nature of cloud services. Caching and

replication approaches bear many similarities, as caching is a form of lazy, on-demand

2.2 Backend Performance: Scalable Data Management 59

replication [RS03]. In this work, we will consolidate previous work in both fields into a

combined mechanism.

Edge Computing

A cloudlet is a “data center in a box” [AG17, p. 7] that can be deployed in proximity to mo-

bile devices for reduced latency. The idea is to enhance the computing capacities of mobile

devices by offloading computationally expensive operations to cloudlets [SBCD09]. Typi-

cal applications for the concept of cloudlets are virtual and augmented reality that require

powerful resources for rendering and low latency for interactivity. For data management,

cloudlets are less useful as they would have to replicate or cache data from the main data

center and would therefore have to act as a geo-replica.

Fog computing takes the idea of highly distributed cloud resources further and suggests

provisioning storage, compute, and network resources for Internet of Things (IoT) appli-

cations in a large amount of interconnected “fog nodes” [BMZA12]. By deploying fog

nodes close to end users and IoT devices, better quality of service for latency and band-

width can potentially be achieved. Fog computing targets applications such as smart grids,

sensor networks, and autonomous driving and is therefore orthogonal to web and mobile

applications [SW14].

Edge computing refers to services and computations provided at the network edge. Edge

computing in CDNs has already been practiced for years through reverse proxy caches that

support restricted processing of incoming and outgoing requests [Kam17, PB08]. Mobile
edge computing enhances 3G, 4G, and 5G base stations to provide services close to mobile

devices (e.g., video transcoding) [AR17].

The problem of cloudlets, fog computing, and edge computing regarding low latency for

web applications is that they do not provide integration into data management and shared

application data but instead expose independent resources. Therefore, data shipping is

required to execute business logic on the edge which shifts the latency problem to the

communication path between edge nodes and cloud data storage. We will, however, show

that edge computing can support end-to-end latency reduction by performing data man-

agement operations on cached data, in particular, authentication and authorization.

Challenges

For a detailed treatment comparing replication and caching approaches from the litera-

ture, please refer to Chapter 6. In summary, the open challenges of replication, caching,

and edge computing for low latency cloud data management are:

• Eager geo-replication introduces high write and commit latency, while lazy geo-

replication does not allow fine-grained consistency choices.

• Replication requires extensive, database-specific infrastructure and cannot be em-

ployed for polyglot persistence.

60 2 Background

• Geo-replicated database systems assume the co-distribution of application logic and

do not have the abstractions and interfaces for direct DBaaS/BaaS access by clients.

• Common caching approaches only improve backend performance instead of end-

to-end latency or suffer from the same limitations as geo-replication.

• Expiration-based caching is considered irreconcilable with non-trivial consistency

requirements.

• Edge computing does not solve the distribution of data and hence does not improve

latency for stateful computations and business logic.

2.3 Network Performance: HTTP and Web Caching

For any distributed application, the network plays a significant role for performance. In

the web, the central protocol is HTTP (Hypertext Transfer Protocol) [FGM+99] that deter-

mines how browsers communicate with web servers and that is used as the basis for REST

APIs (Representational State Transfer). For cloud services across different deployment and

service models, REST APIs are the default interface for providing access to storage and

compute resources, as well as high-level services. Most DBaaS, BaaS, and NoSQL systems

provide native REST APIs to achieve a high degree of interoperability and to allow access

from heterogeneous environments. This section reviews relevant foundations of HTTP

and networking with respect to performance and latency, as well as their role in cloud

data management. In particular, we will highlight which challenges the standardized be-

havior of the web caching infrastructure imposes for data-centric services.

2.3.1 HTTP and the REST Architectural Style

The REST architectural style was proposed by Fielding as an a-posteriori explanation for

the success of the web [Fie00]. REST is a set of constraints that – when imposed on a

protocol design – yield the beneficial system properties of scalability and simplicity the

designers of the HTTP standard developed for the web [FGM+99]. Most services in cloud

computing environments are exposed as REST/HTTP16 services, as they are simple to

understand and consume in any programming language and environment [DFR15b]. An-

other advantage of HTTP is its support by mature and well-researched web infrastructure.

REST and HTTP are not only the default for web and mobile applications but also an alter-

native to backend-side RPC-based (Remote Procedure Call) approaches (e.g., XML RPC or

Java RMI [Dow98]), binary wire protocols (e.g., PostgreSQL protocol [Pos17]) and web

services (the SOAP and WS-* standards family [ACKM04]).

HTTP is an application-layer protocol on top of the Transmission Control Protocol (TCP)

[Pos81] and lies the foundation of the web. With REST, the key abstractions of interactions

16In principle, the REST architectural style is independent of its underlying protocol. However, as HTTP
dominates in practical implementations, we will refer to REST as its combination with HTTP [WP11].

2.3 Network Performance: HTTP and Web Caching 61

are represented by HTTP resources identified by URLs. In a DBaaS API, these resources

could for example be queries, transactions, objects, schemas, and settings. Clients interact

with these resources through the uniform interface of the HTTP methods GET, PUT, POST

and DELETE. Any interface is thus represented as a set of resources that can be accessed

through HTTP methods. Methods have different semantics: GET requests are called safe,

as they are free of side-effects (nullipotent). PUT and DELETE requests are idempotent,

while POST requests may have side-effects that are non-idempotent. The actual data (e.g.,

database objects) can take the form of any standard content type which can dynamically be

negotiated between the client and server through HTTP (content negotiation). Many REST

APIs have default representations in JSON, but other formats (e.g., XML, text, images)

are possible, too. This extensibility of REST APIs allows services to present responses in a

format that is appropriate for the respective use case [RAR13].

The integration and connection of resources is achieved through hypermedia, i.e., the

mutual referencing of resources [Amu17]. These references are similar to links on web

pages. A resource for a query result could for instance have references to the objects

matching the query predicate. Hypermedia can render a REST interface self-descriptive.

In that case, an initial URL to a root resource is sufficient to explore the complete interface

by following references and interpreting self-describing standard media types. HTTP is a

request-response protocol, which means that the client has to pose a request to receive a

response. For the server to proactively push data, other protocols are required.

The constraints of REST describe common patterns to achieve scalability [Fie00]. In the

context of cloud services, these constraints are:

Client-Server. There is a clear distinction between a client (e.g., a browser or mobile

device) and the server (e.g., a cloud service or web server) that communicate with

each other using a client-initiated request-response pattern [FGM+99].

Statelessness. If servers are stateless, requests can be load-balanced, and servers may be

replicated for horizontal scalability.

Caching. Using caching, responses can be reused for future requests by serving them from

intermediate web caches.

Uniform Interface. All interactions are performed using four basic HTTP methods to cre-

ate, read, update, and delete (CRUD) resources.

Layered System. Involving intermediaries (e.g., web caches, load balancers, firewalls,

and proxies) in the communication path results in a layered system.

In practice, many REST APIs do not adhere to all constraints and are often referred

to as web APIs, i.e., custom programming interfaces using HTTP as a transport proto-

col [RAR13]. For example, the Parse BaaS uses POST methods to perform idempotent

operations and GET requests for operations with side-effects [Par17]. As a consequence,

such web APIs are potentially unscalable and may be treated incorrectly by intermediaries.

Unlike web services, REST does not require interface descriptions and service discovery.

62 2 Background

However, the OpenAPI initiative is an attempt to standardize the description of REST

APIs and allowing code generation for programming languages [Ope17]. Richardson et

al. [RAR13], Allamaraju [All10], Amundsen [Amu17], and Webber et al. [WPR10] pro-

vide a comprehensive treatment of REST and HTTP.

The challenge for data management is to devise a REST API that leverages HTTP for

scalability through statelessness and caching and that is generic enough to be appli-

cable to a broad spectrum of database systems. To this end, a resource structure for

different functional capabilities is required (e.g., queries and transactions) as well as

system-independent mechanisms for stateless request processing and caching of reads and

queries.

2.3.2 Latency on the Web

For interoperability reasons, REST APIs are the predominant type of interface in cloud data

management. HTTP on the other hand has to be used by any website. The performance

and latency of HTTP communication are determined by the protocols that are involved

during each HTTP request.

DNS Lookup Initial Connection

TLS Handshake

Time to First Byte Content Download

20 ms0 60 ms 80 ms 100 ms40 ms

TCP Handshake

Figure 2.17: Latency components across network protocols of an HTTP request against a
TLS-secured URL.

Figure 2.17 shows the latency components of a single HTTP request illustrated with ex-

emplary delays:

1. First, the URL’s domain (e.g., example.com) is resolved to an IP address using a UDP-

based DNS lookup. To this end, the client contacts a configured DNS resolver. If

the DNS entry is uncached, the resolver will contact a root DNS server that redirects

to a DNS server responsible for the top-level domain (e.g., for .com). That name

server will in turn redirect to the authoritative name server registered by the owner

of the domain. This name server then returns one or multiple IP addresses for the

requested host name. Depending on the location of the (potentially geo-redundant)

DNS servers and the state of their caches, a typical DNS query will return in 10-

100 ms. Like in HTTP, DNS caching is based on TTLs with its associated staleness

problems [TW11].

2. Next, a TCP connection between the client and the server is established using a

three-way handshake. In the first round-trip, connection parameters are negotiated

(SYN, SYN-ACK packets). In the second round-trip, the client can send the first portion

2.3 Network Performance: HTTP and Web Caching 63

of the payload. There is ongoing research on TCP fast open [CCRJ14], a mechanism

to avoid one round-trip by sending data in the first SYN packet.

3. If the server supports and requires end-to-end encryption through HTTPS, respec-

tively TLS (Transport Layer Security), a TLS handshake needs to be performed

[Gri13]. This requires two additional round-trips during which the server’s cer-

tificate is checked, session keys are exchanged, and a cipher suite for encryption

and signatures is negotiated. TLS protocol extensions have been specified to al-

low data transmission during half-open TLS connections to reduce TLS overhead to

one round-trip (TLS false start). Alternatively, clients can reuse previous session pa-

rameters negotiated with the same server, to abbreviate the handshake (TLS session
resumption)17.

4. When the connection is established, the client sends an HTTP request that consists

of an HTTP method, a URL, the protocol version as well as HTTP headers encoding

additional information like the desired content type and supported compression al-

gorithms. The server processes the requests and either fully assembles the response

or starts transmitting it, as soon as data is available (chunked encoding). The delay

to the moment where the client receives the first response bytes is referred to as

time-to-first-byte (TTFB).

5. Even though the connection is fully established, the response cannot necessarily

be transmitted in a single round-trip, but requires multiple iterations for the con-

tent download. TCP employs a slow-start algorithm that continuously increases the

transmission rate until the full aggregate capacity of all involved hops is saturated

without packet loss and congestion [MSMO97]. Numerous congestion control al-

gorithms have been proposed, most of which rely on packet loss as an indicator of

network congestion [KHR02, WDM01]. For large responses, multiple round-trips

are therefore required to transfer data over a newly opened connection, until TCP’s

congestion window is sufficiently sized18. Increasing the initial TCP congestion win-

dow from 4 to 10 segments is ongoing work [CCDM13] and allows for typically

10 ·1500B = 15KB of data transmitted with a single round-trip, given the maximum

transmission unit of 1500B of an Ethernet network.

In the best case and with all optimizations applied, an HTTP request over a new connec-

tion can hence be performed with one DNS round-trip and two server round-trips. DNS

requests are aggressively cached, as IPs for DNS names are considered stable. The DNS

overhead is therefore often minimal and can additionally be tackled by geo-replicated DNS

servers that serve requests to nearby users (DNS anycast). To minimize the impact of TCP

17Furthermore, the QUIC (Quick UDP Internet Connections) protocol has been proposed as UDP-based alter-
native to HTTP that has no connection handshake overhead [Gri13]. A new TLS protocol version with no
additional handshakes has also been proposed [Res17].

18The relationship between latency and potential data rate is called the bandwidth-delay product [Gri13].
For a given round-trip latency (delay), the effective data rate (bandwidth) is computed as the maximum
amount of data that can be transferred (product) divided by the delay. For example, if the current TCP
congestion window is 16 KB and the latency 100 ms, the maximum data rate is 1.31 MBit/s.

64 2 Background

and TLS handshakes, clients keep connections open for reuse in future requests, which is

an indispensable optimization, in particular for request-heavy websites.

The current protocol version 2 of HTTP [IET15] maintains the semantics of the original

HTTP standard [KR01] but improves many networking inefficiencies. Some optimizations

are inherent, while others require active support by clouds services:

• Multiplexing all requests over one TCP connection avoids the overhead of multiple

connection handshakes and circumvents head-of-line blocking19.

• Header Compression applies compression to HTTP metadata to minimize the im-

pact of repetitive patterns (e.g., always requesting JSON as a format).

• If a server implements Server Push, resources can be sent to the client proactively

whenever the server assumes that they will be requested. This requires explicit sup-

port by cloud services, as the semantics and usage patterns define, which content

should be pushed to reduce round-trips. However, inadequate use of pushed re-

sources hurts performance, as the browser cache is rendered useless.

• By defining dependencies between resources, the server can actively prioritize im-

portant requests.

As of 2017, still less than 20% of websites and APIs employ HTTP/2 [Usa17]. The tech-

niques developed in this thesis apply to both HTTP/1.1 and HTTP/2, but profit from the

improvements of HTTP/2. When all above protocols are in optimal use, the remaining la-

tency bottleneck is the round-trip latency between API and browser clients and the server

answering HTTP requests.

In mobile networks, the impact of HTTP request latency is even more severe. Additional

latency is caused by the mobile network infrastructure. With the older 2G and 3G mobile

network standards, latencies between 100 ms (HSPA) and 750 ms (GPRS) are common

[Gri13, Ch. 7]. With modern 4G LTE-Advanced (Long Term Evolution) networks, the

standards prescribe strict latency bounds for better user experience. As mobile devices

share radio frequencies for data transmission, access has to be mediated and multiplexed.

This process is performed by a radio resource controller (RRC) located in the radio towers

of the LTE cells that together comprise the radio access network (RAN). At the physical

level, several latency-critical steps are involved in a request by a mobile device connected

via a 4G network:

1. When a mobile device sends or receives data and was previously idle, it negotiates

physical transmission parameters with the RRC. The standard prescribes that this

control-plane latency must not exceed 100 ms [DPS13].

2. Any packet transferred from the mobile device to the radio tower must have a user-

plane latency of below 5 ms.

19Head-of-line blocking occurs when a request is scheduled, but no open connection can be used, as responses
have not yet been received.

2.3 Network Performance: HTTP and Web Caching 65

3. Next, the carrier transfers the packet from the radio tower to a packet gateway

connected to the public Internet. This core network latency is not bounded.

4. Starting from the packet gateway, normal Internet routing with variable latency is

performed.

Thus, in modern mobile networks, one-way latency will be at least 5-105 ms higher than in

conventional networks. The additional latency is incurred for each HTTP request and each

TCP/TLS connection handshake, making latency particularly critical for mobile websites

and apps.

In summary, to achieve low latency for REST/ and HTTP, many network parameters have

to be explicitly optimized at the level of protocol parameters, operating systems, network

stacks, and servers [Gri13]. In-depth engineering details of TCP/IP, DNS, HTTP, TLS, and

mobile networking are provided by Grigorik [Gri13], Kurose and Ross [KR10], and Tanen-

baum [TW11]. However, with all techniques and best practices applied, physical latency

from the client to the server remains the main bottleneck, as well as the time-to-first-byte

caused by processing in the backend. Both latency contributions can be addressed through

caching.

2.3.3 Web Caching

HTTP allows resources to be declared cacheable. They are considered fresh for a stat-

ically assigned lifetime called time-to-live (TTL). Any cache in the request/response

chain between client and server will serve a cached object without contacting the ori-

gin server. The HTTP caching model’s update strategy is purely expiration-based: once

a TTL has been delivered, the respective resource cannot be invalidated before the

TTL has expired. In the literature, expiration-based caching is also known as the lease
model [HKM+88,Mog94,Vak06] and has been proposed by Gray et al. [GC89] long before

HTTP. In contrast, invalidation-based caches use out-of-band protocols to receive notifi-

cations about URLs that should be purged from the cache (e.g., non-standardized HTTP

methods or separate purging protocols). This model is in wide use for many non-HTTP

caches, too [Car13, ERR11, Lwe10, BBJ+10, LLXX09]. As the literature is lacking a sur-

vey of web caching in the light of data management, we give a concise overview of

web cache types, scalability mechanisms, and consistency aspects of expiration-based and

invalidation-based HTTP caching.

Types of Web Caches

The closer a web cache is to the network edge, the more the network latency decreases.

We distinguish between six types of web caches, based on their network location as shown

in Figure 2.18 [LLXX09,Nag04]:

66 2 Background

Client Server

Forward Proxy
Cache

Client Cache

Reverse Proxy
Cache

Server Cache1 6

52

Peering

Web Proxy
Cache

ISP CDN

3 Content Delivery
Network Cache

4

Figure 2.18: Different types of web caches distinguished by their location. Caches 1-3 are
expiration-based, while caches 4-6 are invalidation-based.

Client Cache. A cache can be directly embedded in the application as part of the browser,

mobile app, or an HTTP library [FGM+99]. Client caches have the lowest latency,

but are not shared between clients and rather limited in size.

Forward Proxy Cache. Forward proxy caches are placed in networks as shared web

caches for all clients in that network. Being very close to the application, they

achieve a substantial decrease in network latency. Forward proxy caches can either

be configured as explicit proxies by providing configuration information to clients

through protocols such as PAC and WPAD [GTS+02] or by transparently intercept-

ing outgoing, unencrypted TCP connections.

Web Proxy Cache. Internet Service Providers (ISPs) deploy web proxy caches in their

networks. Besides accelerating HTTP traffic for end users, this also reduces transit

fees at Internet exchange points. Like client and forward proxy caches, web proxy

caches are purely expiration-based.

Content Delivery Network (CDN) Cache. CDNs provide a distributed network of web

caches that can be controlled by the backend [PB07]. CDN caches are designed to

be scalable and multi-tenant and can store massive amounts of cached data. Like

reverse proxy caches and server caches, CDN caches are usually invalidation-based.

Reverse Proxy Cache. Reverse proxy caches are placed in the server’s network and accept

incoming connections as a surrogate for the server [Kam17]. They can be extended

to perform application-specific logic, for example, to check authentication informa-

tion and to perform load balancing over backend servers.

2.3 Network Performance: HTTP and Web Caching 67

Server Cache. Server caches offload the server and its database system by caching in-

termediate data, query results, and shared data structures [Fit04, NFG+13, XFJP14,

CLL+01b, GMA+08, BAC+13]. Server caches are not based on HTTP, but explicitly

orchestrated by the database system (e.g., DBCache [BAM+04]) or the application

tier (e.g., Memcache [Fit04]).

The defining characteristic of all web caches is that they transparently interpret HTTP

caching metadata as read-through caches. This means that when a request causes a cache

miss, the request is forwarded to the next cache or the origin server and then the response

is cached according to the provided TTL. Web caches always forward write requests, as

these come in the form of opaque POST, PUT, and DELETE requests whose semantics are

implicit properties of a REST/HTTP API. The effectiveness of web caching is measured by

a cache hit ratio that captures the percentage of all requests that were served from a cache

and the byte hit ratio that expresses the corresponding data volume.

Scalability of Web Caching

Cache Cache Cache

Policy-based
balancing (e.g.,

round robin)

Cache

Cache

Cache Cache

Cache

Cache

Caching
Proxy

Load-
Balancer

Hash-based
partitioning

Cache Cache

Cache Cache Cache

Querying
neighbor upon

cache miss
Cache

CacheCache

Inter-cluster
caching

Replication Hash Sharding

Query-based Hierarchies Geo-Replication

Cache

Figure 2.19: Scalability mechanisms of web caches: replication, sharding, query-based
hierarchies, and geo-replication.

To employ web caches for cloud data management, they have to support scalability. It

is widely unknown in the database community that web caches scale through the same

primary mechanisms as most NoSQL databases: replication and hash sharding. Figure

2.19 gives an overview of these techniques in the context of web caches. Load balancers

that can work on different levels of the protocol stack forward HTTP requests to web

caches using a policy like round-robin or a uniform distribution [GJP11]. In contrast to

database systems, no replication protocols are required, as each replica fetches missing

68 2 Background

resources on demand. Partitioning the space of cached objects for a cluster of caches is

achieved by hash sharding the space of URLs. Requests can then be forwarded to URL

partitions through the Cache Array Routing Protocol (CARP) [Wan99]. Hierarchies of

communicating web caches (cache peering [KR01]) build on query-based protocols like

the Inter Cache Protocol (ICP) [Wes97], the Hypertext Caching Protocol (HTCP) [VW99],

or Cache Digests [FCAB00]. The underlying idea of query-based protocols is that checking

another cache replica’s entries is more efficient than forwarding a request to the origin

server. Finally, global meshes of web caches in CDNs can rely on inter-cluster exchanges for

geo-replication [PB08]. In practice, CDN providers exploit the fact that a cache lookup of

a URL maps well to a key-value interface. This allows scaling cache clusters by deploying

web caches as a proxy on top of a distributed key-value store [Spa17].

Web caching increases read scalability and fault tolerance, as objects can still be retrieved

from web caches if the backend is temporarily unavailable [RS03]. As web caches only

fetch content lazily, elasticity is easy to achieve: web cache replicas can be added at any

time to scale reads.

Expiration-Based Web Caching

HTTP defines a Cache-Control header that both clients and servers leverage to control

caching behavior. The server uses it to specify expiration, whereas the client employs it for

validation.

Expirations are provided as TTLs at the granularity of seconds in order to be inde-

pendent from clock synchronization. Additionally an Age header indicates how much

time has passed since the original request, to preserve correct expirations when caches

communicate with each other. The actual expiration time texp is then computed us-

ing the local clock’s timestamp at the moment the response was received nowres(), giv-

ing texp = nowres()+ T T L−Age. The server can set separate expirations for shared web

caches (s-max-age) and client caches (max-age). Furthermore, it can restrict that re-

sponses should not be cached at all (no-cache and must-revalidate), should only be

cached in client caches (private), or should not be persisted (no-store). By default,

the cache key that uniquely identifies a cached response consists of the URL and the host.

The Vary header allows to extend the cache key through specified request headers, e.g.,

Accept-Language, in order to cache the same resource in various representations.

Clients and web caches can revalidate objects by asking the origin server for poten-

tial modifications of a resource based on a version number (called ETag in HTTP) or

a Last-Modified date (cache validators). The client thus has a means to explicitly re-

quest a fresh object and to save transfer time, if resources have not changed. Reval-

idations are performed through conditional requests based on If-Modified-Since and

If-None-Match headers. If the timestamp or version does not match for the latest re-

source (e.g., a database object), the server returns a full response. Otherwise, an empty

response with a 304 Not Modified status code is returned.

2.3 Network Performance: HTTP and Web Caching 69

Loads a resource

GET /db/42 Cache
Hit?H

T
TP

Frontend Web Caches

yesObject, TTL=x

yes

no

revalidate

no

GET /db/42

Backend

Confirms freshness
or returns resource

H
T

TPObject
fresh?

Figure 2.20: Validation of resource freshness in expiration-based HTTP caching.

Figure 2.20 illustrates the steps a web cache performs when handling a request: if the

object of the requested URL was not previously cached, the web cache forwards the re-

quest to the backend. If a cache hit occurs, the cache determines whether the local copy

of the resource is still fresh by checking now() > texp. If the object is still fresh, it is re-

turned to the client without any communication to the backend. If now() > texp and the

cached resource has a cache validator, the web cache revalidates the resource, otherwise,

the request is forwarded. This logic is performed for any cache in the chain from the client

cache to reverse proxy caches. In a revalidation, clients can furthermore bound the age

of a response (max-age and min-fresh), allow expired responses (max-stale) or explic-

itly load cached versions (only-if-cached). CDNs and reverse proxies typically ignore

revalidation requests and simply serve the latest cached copy, in order to secure the origin

against revalidation attacks [PB08].

The consistency model of expiration-based caching is ∆-atomicity. The problem is that ∆

is a high, fixed TTL in the order of hours to weeks [RS03], as accurate TTLs for dynamic

data are impossible to determine. This makes the native caching model of HTTP unsuit-

able for data management and is the reason why REST APIs of DBaaS, BaaS, and NoSQL

systems explicitly circumvent HTTP caching [Dep17,Hoo17,Par17,ALS10,Ama17a,Dyn17,

CWO+11,BGH+15,Dat17].

Invalidation-Based Web Caching

CDNs and reverse proxy caches are invalidation-based HTTP caches. They extend the

expiration-based caching model and additionally expose (non-standardized) interfaces for

asynchronous cache invalidation. The backend has to explicitly send an invalidation to

every relevant invalidation-based cache. While CDN APIs forward invalidations internally

with efficient broadcasting protocols (e.g., bimodal multicast [Spa17]), employing many

reverse proxies can lead to a scalability problem, if many invalidations occur. In general,

an invalidation is required if a resource was updated or deleted and invalidation-based

caches have observed an expiration time greater than the current time: ∃texp : now()< texp.

For DBaaS/BaaS systems this condition is non-trivial to detect, since updates may affect

otherwise unrelated query results and objects.

70 2 Background

Besides their invalidation interfaces, CDNs (e.g., Akamai and Fastly [BPV08, Spa17]) and

reverse proxies (e.g., Varnish, Squid, Nginx, Apache Traffic Server [Kam17,Ree08,Wes04])

often also provide further extensions to HTTP caching:

• Limited application logic can be executed in the cache. For example, the Var-

nish Control Language (VCL) allows to manipulate requests and responses, perform

health checks and validate headers [Kam17].

• Prefetching mechanisms proactively populate the cache with resources that are

likely to be requested in the near future.

• Edge-side templating languages like ESI [TWJN01] allow to assemble responses

from cached data and backend requests.

• By assigning tags to cacheable responses, efficient bulk invalidations of related re-

sources can be performed (tag-based invalidation).

• Distributed Denial of Service (DDoS) attacks can automatically be mitigated and

detected before the backend is compromised [PB08].

• Updated resources can be proactively pushed (prewarming).

• Real-time access logs may be used by the application for analytics and accounting.

• Stale resources can be served while the backend is offline (stale-on-error) or

during revalidations (stale-while-revalidate) [IET15].

For latency, an important characteristic of invalidation-based caches is their ability to

maintain long-lived backend connections that incoming requests can be multiplexed over.

This significantly reduces the overhead of connection handshakes as they only have to be

performed over low-latency links between clients and CDN edge nodes. In many cases,

cloud services have end-to-end encryption as a requirement for authenticity, privacy, data

integrity, and confidentiality. To this end, TLS certificates are deployed to CDNs and re-

verse proxies to terminate TLS connections on the network edge and to establish different

connections to the backend. Thus, for encrypted REST APIs and websites, only client,

CDN, and reverse proxy caches apply for HTTP caching, whereas forward and web proxy

caches only observe encrypted traffic.

Previous research on web caching as discussed in Chapter 6 has focused on cache re-

placement strategies [PB03, BCF+99, LLXX09], CDN architectures [PB08, FFM04, Fre10],

cache cooperation [KR01, Wes97, VW99, FCAB00], proxy and client extensions [RXDK03,

TWJN01,BR02], and changes to the caching model itself [KW97,Wor94,KW98,BDK+02].

Further treatments of expiration-based and invalidation-based web caching are provided

by Rabinovich and Spatscheck [RS03], Labrindis et al. [LLXX09], Nagaraj [Nag04], Buyya

et al. [BPV08], and Grigorik [Gri13].

2.3 Network Performance: HTTP and Web Caching 71

2.3.4 Challenges of Web Caching for Data Management

Both expiration-based and invalidation-based caching are challenging for data manage-

ment, as they interfere with the consistency mechanisms of database systems. Figure 2.21

gives an example of how web caching affects consistency.

GET obj

2. A second client updates obj before its TTL has expired

1. A client loads the resource obj from the server.

Client1 Client2
Expiration

Cache
Invalidation

Cache
Server Database

obj and TTL obj, TTL
obj, TTL

Query

PUT obj Update

Success

3. Any subsequent read request may return stale data.

Invalidate

GET obj

Stale obj

GET obj

Stale obj

TTL expired

Figure 2.21: Cache coherence problems of web caches for data management caused by
access of two different clients.

1. On the first request, the server has to set a TTL for the response. If the TTL is too

low, caching has no effect. If it is too high, clients will experience many stale reads.

Due to the dynamic nature of query results and objects in data management, TTLs

are not known in advance.

2. When a second client updates the previously read object before its TTL expired,

caches are in an inconsistent state. Even if the server could issue an invalidation

(which is usually impossible for query results), the invalidation is asynchronous and

only takes effect at some later point in time.

72 2 Background

3. Reads that happen between the completed update and the initially provided expira-

tion time will cause stale reads at expiration-based caches.

In conclusion, web caching for data management is considerably restricted because of

several challenges:

• Expiration-based caching either degrades consistency (high TTLs) or causes very

high cache miss rates (low TTLs).

• Cache coherence for DBaaS and BaaS REST APIs is currently achieved by marking

all types of dynamic data as uncacheable.

• Currently, TTL estimation is a manual and error-prone process leading to low

caching efficiency as TTLs do not adapt to changing workloads and differences be-

tween individual query responses.

• Cache invalidation requires detecting changes to files, objects, and query results in

real-time based on the updates performed against the data management API.

• Fetching dynamic data (e.g., query results) via REST/HTTP requires contacting a re-

mote server, which involves the full end-to-end latency from the client to the server.

• With standard HTTP caching, clients cannot control consistency requirements on a

per-user, per-session, or per-operation basis, as the server provides the HTTP caching

metadata used by intermediate caches.

2.4 Frontend Performance

Frontend performance is concerned with how fast data can be rendered and computations

be performed at the client side. In principle, the frontend is out of the scope of a data

management solution as proposed in this thesis. However, as the SDK and API layer of

a DBaaS/BaaS reach into the environment of the mobile device and utilize its network-

ing and caching capabilities, some aspects of browsers are highly relevant for end-to-end

performance. We will specifically examine frontend performance for browsers. In native

mobile apps, most principles apply too, but applications can choose from different storage

options like the files system and embedded relational databases. However, due to the ab-

sence of a browser cache, the task of maintaining cache consistency with remote storage

has to be handled by the application.

As of 2018, an average website downloads 107 different HTTP resources with a total

size of over 3 MB of data to be transferred [Arc18]. The web has evolved through three

major forms of websites. Hypertext documents are simple text-based documents inter-

connected through links and formatted through basic markup for the content’s structure.

Web pages enrich hypertext documents through support for rich media types such as

images, audio, and video, as well as complex layout and styling of the document’s ap-

pearance. Finally, web applications add behavior to websites through JavaScript logic

and the ability to programmatically request REST/HTTP APIs (Ajax). Web applications

2.4 Frontend Performance 73

are usually implemented with single-page application frameworks that help to structure

the application through architectural patterns and templating for rendering data into UI

elements [Ang17,Emb17,Vue17,Rea17]. With the growing prevalence and complexity of

web applications, the impact of latency increases.

2.4.1 Client-Side Rendering and Processing

The critical rendering path (CRP) describes the process that a browser performs in or-

der to render a website from HTML, JavaScript, and CSS resources [Fir16, Gri13]. The

dependency graph between these critical resources, i.e., files required for the initial paint,

determines the length, size, and weight of the CRP. The length of the CRP is the minimum

number of network round-trips required to render the web page. The size of the CRP is

the number of critical resources that are loaded. The weight (also called “critical bytes”)

of the CRP is the combined size of all critical resources measured in bytes.

CSS

Render Tree

Layout

Paint

JavaScript

CSSOM

DOM

<!doctype html>
<link href=all.css rel=stylesheet />
<script src=app.js ></script>
<body>
<h1>Web Performance</h1>

</body>

body { background-color: green; }
H1 { padding: 10px; }

elem.style.width = "50px";
document.write("test");

HTML

Execution

DOM

Dependency Delayed By Other Resource Blocks

Figure 2.22: The critical rendering path as a model for frontend performance.

The execution of the CRP is illustrated in Figure 2.22. After receiving the HTML from

the network, the browser starts parsing it into a Document Object Model (DOM). If the

HTML references CSS and JavaScript resources, the parser (respectively its look-ahead

heuristics) will trigger their background download as soon as they are discovered. The

CSS stylesheet is parsed into a CSS object model (CSSOM). CSS is render-blocking, as

rendering can only proceed when the CSSOM is fully constructed and thus all styling

information available. JavaScript can modify and read from both the DOM and CSSOM. It

is parser-blocking as the HTML parser blocks until the discovered JavaScript is executed.

74 2 Background

Furthermore, JavaScript execution blocks until the CSSOM is available causing a chain of

interdependencies. Only when the DOM and the CSSOM are constructed, and JavaScript

is executed, the browser starts to combine styling and layout information into a render

tree, computes a layout, and paints the page on the screen.

The process of frontend performance optimization involves reducing the size, length, and

weight of the CRP. Typical steps are loading JavaScript asynchronously, deferring its pars-

ing, preconnecting and preloading critical resources, inlining critical CSS, applying com-

pression, minification, and concatenation, optimizing JavaScript execution and CSS selec-

tor efficiency, loading “responsive” images based on screen size [Wag17]. HTTP/2 elim-

inates the necessity for many common performance workarounds that negatively impact

cacheability, for example, concatenation of resources [IET15].

End-user performance can be measured using different web performance metrics:

• Browsers implement events that indicate the completeness of the rendering process.

The DomContentLoaded event is fired once the DOM has been constructed and no

stylesheets block JavaScript execution.

• The first paint occurs when the browser renders the page for the first time. De-

pending on the structure of the CRP this can, for example, be a blank page with a

background color or a visually complete page. The first paint metric can be refined to

the first meaningful paint [Sak17] which is defined through the paint that produces

the largest change in the visual layout.

• Once all resources of the website (in particular images, JavaScript and stylesheets)

have been downloaded and processed, the load event is fired. The event indi-

cates the completion of loading from an end user’s perspective. However, any asyn-

chronous requests triggered through JavaScript are not captured in the load event.

Therefore, the DomContentLoaded and load event can be decreased by loading re-

sources through code without actually improving user-perceived performance.

• As all above metrics do not capture the rendering process itself, the speed index met-

ric was proposed as a means of quantifying visual completeness over time [Mee12].

It is defined as
∫

∞

0 1−VC(t)dt, where VC(t) ∈ [0,1] is the visual completeness as

a function of time. Experimentally, the speed index is usually calculated through

video analysis of a browser’s loading process. In contrast to other metrics, the speed

index also accounts for API requests performed by web applications.

Latency remains the major factor for frontend performance, once all common frontend op-

timizations (e.g., inlined critical CSS) and network optimizations (e.g., gzip compression)

have been applied. The length of the CRP determines how many round-trips occur before

the user is presented with the first rendered result. In the ideal case, the length of the

CRP can be reduced to one single round-trip by only including asynchronous JavaScript

and inlining CSS. In practice, however, the length and size of the critical rendering path

is usually much longer [Wag17,Fir16]. The increasing predominance of web applications

based on rich client-side JavaScript frameworks that consume data via API requests ex-

2.4 Frontend Performance 75

tends the impact of latency beyond the CRP. During navigation and rendering, the latency

of asynchronously fetched resources is crucial to display data quickly and to apply user

interactions without perceptible delay.

2.4.2 Client-Side Caching and Storage

In recent years, it became evident that moving more application logic into the client also

requires persistence options to maintain application state within and across user sessions.

Several client-side storage and caching APIs have been standardized and implemented

in browsers. A comprehensive overview of client-side storage mechanisms is provided

by Camden [Cam16]. In the following, we provide an overview of storage technologies

relevant for this thesis:

HTTP Browser Cache. The browser cache [IET15,FGM+99] works similar to other HTTP

caches, except that it is exclusive to one user. Its main advantage is that it trans-

parently operates on any HTTP resource. On the other hand, however, it cannot

be programmatically controlled by the JavaScript application and operates purely

expiration-based. Also, cached data can be evicted at any time making it impossible

to build application logic on the presence of cached client-side data.

Cookies. Through the HTTP Cookie header, the server can store strings in the client.

Cookie values are automatically attached to each client request [IET15]. Cookies

are very limited in control, size, and flexibility and therefore mainly used for session

state management and user tracking. Cookies frequently cause performance prob-

lems as they can only be accessed synchronously and have to be transferred with

each request.

Web SQL. The goal of the WebSQL specification is to provide SQL-based access to an

embedded relational database (e.g., SQLite) [Cam16]. However, as browser support

is lacking, the development of WebSQL has mostly ceased in favor of the IndexedDB

API.

IndexedDB. The IndexedDB specification [AA17] describes a low-level database API that

offers key-value storage, cursors over indices, and transactions. Despite its lack of

a declarative query language, it can be used to implement an embedded database

system in the client. In contrast to the browser cache, storage is persistent and con-

trolled via an API. However, this implies that custom cache coherence or replication

is required if IndexedDB is used to store a subset of the backend database.

Service Worker Cache. Service Workers are background processes that can intercept,

modify, and process HTTP requests and responses of a website [Ama16]. This al-

lows implementing advanced network behavior such as an offline mode that con-

tinues serving responses even though the user lacks a mobile network connection.

The Service Worker cache is a persistent, asynchronous map storing pairs of HTTP

requests and responses. The default cache coherence mechanism is to store data

76 2 Background

indefinitely. However, the JavaScript code of the Service Worker can modify this

behavior and implement custom cache maintenance strategies.

Local and Session Storage. The DOM storage APIs [Cam16] allow persisting key-

value pairs locally for a single session (SessionStorage) or across sessions

(LocalStorage). The API only allows blocking get and set operations on keys

and values. Due to its synchronous nature, the API is not accessible in background

JavaScript processes (e.g., Service Workers).

The central problem of client-side storage and caching abstractions is that they have to be

manually controlled by the application. Besides first attempts, there is furthermore no

coupling between query languages and persistence APIs employed in the client and the

DBaaS/BaaS [ALS10, GAAU15, LMLM16]. This forces application developers to duplicate

data-centric business logic and maintain cache consistency manually. The error-prone and

complex task of manual cache maintenance prevents many applications from incorporat-

ing client-side storage into the application’s data management. Thus, a solution is required

that transparently consolidates client-side storage into data management while preserv-

ing invariants such as consistency guarantees and correctness of query results. Client-side

caching and storage standards potentially enable serving web applications in the absence

of network connectivity (offline mode). However, this also requires new mechanisms for

cache coherence of reads and query results as well as synchronization and concurrency

control for updates made while being offline.

2.5 Summary

In this chapter, we highlighted core performance challenges across the web application

stack. Performance depends on data storage and business logic in the backend, network-

ing and caching infrastructures, as well as frontend rendering. First, we discussed the

requirements of web applications that include high availability, elastic scalability, quick

page loads, engaging user experience, and a fast time-to-market. We showed that these

requirements are difficult to achieve in cloud-based two- and three-tier architectures. In

particular, latency poses a central challenge in heterogeneous cloud environments. The

conflict between latency and correctness becomes evident in NoSQL database systems and

their various levels of relaxed consistency guarantees. Furthermore, the combination of

data storage systems in polyglot persistence architectures complicates data management.

When transactions are involved in distributed data management, latency furthermore be-

comes a problem for transaction abort rates. Often, database systems cannot be efficiently

employed in web applications as they lack Database- and Backend-as-a-Service interfaces

for access from other cloud services and client devices.

The network and the protocols involved in communication with cloud services are the

fundamental cause of high latency. We discussed how most aspects of networking can be

optimized, leaving end-to-end latency resulting from physical distance as the major re-

2.5 Summary 77

maining performance challenge. Even though REST and HTTP are widely used for DBaaS,

BaaS, and NoSQL systems, their caching model does not fit the requirements of data man-

agement. Expiration-based caches interfere with the consistency guarantees of database

systems, whereas invalidation-based caching requires non-trivial change detection for dy-

namic data. Therefore, latency reduction through HTTP caching is an open problem for

cloud data management.

Frontend performance is defined by the highly latency-dependent critical rendering path.

Modern browsers potentially allow latency reduction for data-centric API requests through

storage abstractions. However, cache coherence needs to be solved in order to avoid

sacrificing consistency for reduced latency.

In the remainder of this dissertation, we will address the latency, scalability, and consis-

tency challenges across the data management stack to achieve better performance for a

wide spectrum of web and mobile applications.

78 2 Background

79

3 Providing Low Latency for Cloud
Data Management

In this chapter, we analyze the data management requirements that complement the per-

formance requirements outlined in the previous chapter. Our goal is to derive a cloud

data management platform that solves the end-to-end latency problem in a database-

independent, scalable fashion and which is applicable to many web applications and

database systems. Thus, we introduce Orestes as a middleware to solve direct client ac-

cess (Challenge C2, see p. 6), to provide unified access to polyglot persistence (Challenge

C4), and to lay the foundation for tackling latency of dynamic data (Challenge C1). To this

end, a comprehensive collection of data management capabilities and requirements needs

to be supported without restricting the applicability of latency reduction techniques.

To derive a set of requirements for the platform we introduce, this chapter proposes a

top-down view of scalable data management: instead of contrasting the implementation

specifics of individual representatives, we introduce a comparative classification model

that relates functional and non-functional requirements to techniques and algorithms em-

ployed in NoSQL databases. This framework for grouping and comparing implementation

techniques encompasses the current state in scalable data management and allows us

to contrast trade-offs and derive an appropriate architecture for polyglot data manage-

ment.

Based on the survey of data management requirements, we propose Orestes as a scalable

Database- and Backend-as-a-Service middleware for low latency. Its unified REST API

is designed to cater to heterogeneous data management requirements, while universally

applying web caching for latency reduction. Orestes forms the basis for low-latency poly-

glot persistence by unifying access to different database systems and providing them with

generic abstractions for schema management, access control, multi-tenancy, and server-

less functions. The goal is to cache and maintain data and enable secure access in two-tier

cloud application architectures. We will analyze which functional requirements can be

provided in a database-independent fashion and discuss their scalable implementation.

80 3 Providing Low Latency for Cloud Data Management

3.1 A Classification Scheme for NoSQL Database Systems

In this section, we highlight the design space of distributed database systems, concentrat-

ing on sharding, replication, storage management, and query processing. The goal is to

provide a comprehensive set of data management requirements that have to be considered

for designing a flexible DBaaS/BaaS middleware. Therefore, we survey the implementa-

tion techniques of systems and discuss how they are related to different functional and

non-functional properties (goals) of data management systems.

Every significantly successful database is designed for a particular class of applications,

or to achieve a specific combination of desirable system properties. The simple reason

why there are so many different database systems is that it is not possible for any sys-

tem to achieve all desirable properties at once. Traditional relational databases such as

PostgreSQL have been built to provide the full functional package: a very flexible data

model, sophisticated querying capabilities including joins, global integrity constraints,

and transactional guarantees. On the other end of the design spectrum, there are key-

value stores like Dynamo that scale with data and request volume and offer high read and

write throughput as well as low latency, but barely any functionality apart from simple

lookups.

In order to illustrate which techniques are suitable to achieve specific system properties,

we provide the NoSQL Toolbox (Figure 3.1) that connects each technique to the func-

tional and non-functional properties it enables (positive edges only). In the following, we

will review each of the four major categories of techniques in scalable data management:

sharding, replication, storage management, and query processing.

3.1.1 Sharding

Several distributed relational database systems such as Oracle RAC or IBM DB2 pureScale

rely on a shared-disk architecture where all database nodes access the same central data

repository (e.g., a NAS or SAN). Thus, these systems provide consistent data at all times,

but are also inherently difficult to scale. In contrast, the (NoSQL) database systems in

the focus of this dissertation are built upon a shared-nothing architecture, meaning each

system consists of many servers with private memory and private disks that are connected

through a network. Thus, high scalability in throughput and data volume is achieved by

sharding (partitioning) data across different nodes (shards) in the system.

There are three basic distribution techniques: range partitioning, hash partitioning, and

entity-group sharding.

Range Partitioning

To make efficient scans possible, data can be partitioned into ordered and contiguous value

ranges by range-sharding. However, this approach requires some coordination through a

3.1 A Classification Scheme for NoSQL Database Systems 81

Functional Techniques Non-Functional

Scan Queries

ACID Transactions

Conditional or Atomic Writes

Joins

Sorting

Filter Queries

Full-text Search

Aggregation and Analytics

Logging
Update-in-Place

Caching
In-Memory Storage

Append-Only Storage

Elasticity

Consistency

Read Latency

Write Throughput

Read Availability

Write Availability

Durability

Write Latency

Write Scalability

Read Scalability

Data Scalability

Global Secondary Indexing
Local Secondary Indexing

Query Planning
Analytics Framework
Materialized Views

Commit/Consensus Protocol
Synchronous

Asynchronous
Primary Copy

Update Anywhere

Range-Sharding
Hash-Sharding

Entity-Group Sharding
Consistent Hashing

Shared-Disk

Query Processing

Sharding

Replication

Storage Management

Figure 3.1: The NoSQL Toolbox: It connects the techniques of NoSQL databases with the
desired functional and non-functional system properties they support.

master that manages assignments. To ensure elasticity, the system has to be able to detect

and resolve hotspots automatically by further splitting an overburdened shard.

Range sharding is supported by wide-column stores like BigTable, HBase or Hypertable

[Wie15] and document stores, e.g., MongoDB, RethinkDB, Espresso [QSD+13] and Docu-

mentDB [STR+15].

Hash Partitioning

Another way to partition data over several machines is hash-sharding where every data

item is assigned to a shard server according to some hash value built from the primary

key. This approach does not require a coordinator and also guarantees data to be evenly

distributed across the shards, as long as the used hash function produces an even dis-

tribution. The obvious disadvantage, though, is that it only allows lookups and makes

scans impossible. Hash sharding is used in key-value stores and is also available in some

wide-column stores like Cassandra [LM10] or Azure Tables [CWO+11].

The shard server that is responsible for a record can be determined as serverid = hash(id)

mod servers, for example. However, this hashing scheme requires all records to be re-

assigned every time a new server joins or leaves, because it changes with the number of

shard servers (servers). Consequently, it is infeasible to use in elastic systems like Dynamo,

Riak, or Cassandra, which allow additional resources to be added on-demand and again

82 3 Providing Low Latency for Cloud Data Management

be removed when dispensable. For increased flexibility, elastic systems typically use con-

sistent hashing [KLL+97] where records are not directly assigned to servers, but instead

to logical partitions which are then distributed across all shard servers. Thus, only a frac-

tion of data has to be reassigned upon changes in the system topology. For example, an

elastic system can be downsized by offloading all logical partitions residing on a particular

server to other servers and then shutting down the now idle machine. For details on how

consistent hashing is used in NoSQL systems, please refer to DeCandia et al. [DHJ+07].

Entity-Group Sharding

A data partitioning scheme with the goal of enabling single-partition transactions on co-

located data is entity-group sharding. Partitions are called entity-groups and either ex-

plicitly declared by the application (e.g., in G-Store [DAEA10] and MegaStore [BBC+11])

or derived from transactions’ access patterns (e.g., in Relational Cloud [CJP+11] and

Cloud SQL Server [BCD+11]). If a transaction accesses data that spans more than one

group, data ownership can be transferred between entity-groups or the transaction man-

ager has to fall back to more expensive multi-node transaction protocols.

3.1.2 Replication

In terms of CAP (cf. Section 2.2.3), conventional RDBMSs are often CA systems run in

single-server mode: the entire system becomes unavailable on machine failure. System

operators therefore secure data integrity and availability through expensive, but reliable

high-end hardware. In contrast, NoSQL systems like Dynamo, BigTable, or Cassandra are

designed for data and request volumes that cannot possibly be handled by one single ma-

chine, and therefore run on clusters consisting of potentially thousands of servers1. Since

failures are inevitable and will occur frequently in any large-scale, distributed system, the

software has to cope with them on a daily basis [Ham07]. In 2009, Dean [Dea09] stated

that a typical new cluster at Google encounters thousands of hard drive failures, 1 000

single-machine failures, 20 rack failures and several network partitions due to expected

and unexpected circumstances in its first year alone. Many more recent cases of network

partitions and outages in large cloud data centers have been reported [BK14]. Replication

allows the system to maintain availability and durability in the face of such errors. But

storing the same records on different machines (replica servers) in the cluster introduces

the problem of synchronization between them and thus a trade-off between consistency

on the one hand and latency and availability on the other.

Gray et al. [GHa+96] propose a two-tier classification of different replication strategies

according to when updates are propagated to replicas and where updates are accepted.

There are two possible choices on tier one (“when”): eager (synchronous) replication

propagates incoming changes synchronously to all replicas before a commit can be re-

turned to the client, whereas lazy (asynchronous) replication applies changes only at the
1Low-end hardware is used, because it is substantially more cost-efficient than high-end hardware [HB09,

Section 3.1].

3.1 A Classification Scheme for NoSQL Database Systems 83

receiving replica and passes them on asynchronously. The great advantage of eager repli-

cation is consistency among replicas, but it comes at the cost of higher write latency and

impaired availability due to the need to wait for other replicas [GHa+96]. Lazy replication

is faster, because it allows replicas to diverge. As a consequence, though, stale data might

be served. On the second tier (“where”), again, two different approaches are possible:

either a master-slave (primary copy) scheme is pursued where changes can only be ac-

cepted by one replica (the master) or, in a update anywhere (multi-master) approach,

every replica can accept writes. In master-slave protocols, concurrency control is not more

complex than in a distributed system without replicas, but the entire replica set becomes

unavailable, as soon as the master fails. Multi-master protocols require complex mech-

anisms for prevention or detection and reconciliation of conflicting changes. Techniques

typically used for these purposes are versioning, vector clocks, gossiping, and read repair

(e.g., in Dynamo [DHJ+07]), and convergent or commutative data types [SPBZ11] (e.g.,

in Riak).

All four combinations of the two-tier classification are possible. Distributed relational sys-

tems usually perform eager master-slave replication to maintain strong consistency. Eager
update anywhere replication as for example featured in Google’s Megastore [BBC+11] suf-

fers from a heavy communication overhead generated by synchronization and can cause

distributed deadlocks which are expensive to detect. NoSQL database systems typically

rely on lazy replication, either in combination with the master-slave approach (CP sys-

tems, e.g., HBase and MongoDB) or the update anywhere approach (AP systems, e.g.,

Dynamo and Cassandra). Many NoSQL systems leave the choice between latency and

consistency to the client, i.e., for every request, the client decides whether to wait for

a response from any replica to achieve minimal latency or for a certainly consistent re-

sponse (by a majority of the replicas or the master) to prevent stale data. In this work,

an alternative technique for latency reduction is proposed, where data is cached close to

applications using web caching and cache coherence protocols.

An aspect of replication that is not covered by the two-tier scheme is the distance between

replicas. The obvious advantage of placing replicas near one another is low latency, but

close proximity of replicas might also reduce the positive effects on availability; for exam-

ple, if two replicas of the same data item are placed in the same rack, the data item is

not available on rack failure in spite of replication. But more than the possibility of mere

temporary unavailability, placing replicas nearby also bears the peril of losing all copies at

once in a disaster scenario.

Geo-replication can protect the system against unavailability and data loss and poten-

tially improves read latency for distributed access from clients. Eager geo-replication, as

implemented in Google’s Megastore [BBC+11], Spanner [CDE+13], MDCC [KPF+13], and

Mencius [MJM08] allows for higher write latency to achieve linearizability or other strong

consistency models. In contrast, lazy geo-replication as in Dynamo [DHJ+07], PNUTS

[CRS+08], Walter [SPAL11], COPS [LFKA11], Cassandra [LM10], and BigTable [CDG+08]

relaxes consistency in favor of availability and latency. Charron-Bost et al. [CBPS10, Chap-

84 3 Providing Low Latency for Cloud Data Management

ter 12] and Öszu and Valduriez [ÖV11, Chapter 13] provide a comprehensive discussion

of database replication.

3.1.3 Storage Management

For best performance, database systems need to be optimized for the storage media they

employ to serve and persist data. These are typically main memory (RAM), solid-state

drives (SSDs), and spinning disk drives (HDDs) that can be used in any combination. Un-

like RDBMSs in enterprise setups, distributed NoSQL databases avoid specialized shared-

disk architectures in favor of shared-nothing clusters that are based on commodity servers

(employing commodity storage media).

S
iz

e

H
D
D

SS
D

R
A
M

SRRR

SWRW

SRRR

SWRW

SRRR

SWRW

• Caching
• Primary Storage
• Data Structures

D
u

ra
b

le
V

o
la

ti
le

• Caching
• Logging
• Primary Storage

• Logging
• Primary Storage

High Performance

Functions:

Low Performance RR: Random Reads
RW: Random Writes

SR: Sequential Reads
SW: Sequential Writes

S
p

ee
d

, C
o

st

RAM

Persistent Storage

Logging

Append-Only
I/O

Update-In-
Place

Data
In-Memory/
Caching

LogLog

DataData

Figure 3.2: The storage pyramid and its role in NoSQL systems.

Storage devices are typically visualized as a “storage pyramid” (see Figure 3.2) [Hel07].

The huge variety of cost and performance characteristics of RAM, SSD, and HDD storage

and the different strategies to leverage their strengths (storage management) is one rea-

son for the diversity of NoSQL databases. Storage management has a spatial dimension

(where to store data) and a temporal dimension (when to store data). Update-in-place

and append-only I/O are two complementary spatial techniques of organizing data; in-

memory prescribes RAM as the location of data, whereas logging is a temporal technique

that decouples main memory and persistent storage and thus provides control over when

data is actually persisted. Besides the major storage media, there is also a set of trans-

parent caches (e.g., L1-L3 CPU caches and disk buffers, not shown in the figure), that are

only implicitly leveraged through well-engineered database algorithms that promote data

locality.

Stonebraker et al. [SMA+07] have found that in typical RDBMSs, only 6.8% of the execu-

tion time is spent on “useful work”, while the rest is spent on:

• buffer management (34.6%), i.e., caching to mitigate slower disk access

3.1 A Classification Scheme for NoSQL Database Systems 85

• latching (14.2%), to protect shared data structures from race conditions caused by

multi-threading

• locking (16.3%), to guarantee logical isolation of transactions

• logging (11.9%), to ensure durability in the face of failures

• hand-coded optimizations (16.2%)

This motivates that large performance improvements can be expected if RAM is used as

primary storage (cf. in-memory databases [ZCO+15]). The downside are high storage

costs and lack of durability – a small power outage can destroy the database state. This

can be solved in two ways: the state can be replicated over n in-memory server nodes

protecting against n−1 single-node failures (e.g., HStore, VoltDB [KKN+08,SW13]) or by

logging to durable storage (e.g., Redis or SAP Hana [Car13, Pla13]). Through logging,

a random write access pattern can be transformed to a sequential one comprised of re-

ceived operations and their associated properties (e.g., redo information). In most NoSQL

systems, the commit rule for logging is respected, which demands every write operation

that is confirmed as successful to be logged and the log to be flushed to persistent storage.

In order to avoid the rotational latency of HDDs incurred by logging each operation indi-

vidually, log flushes can be batched together (group commit) which slightly increases the

latency of individual writes, but drastically improves overall throughput.

SSDs and more generally all storage devices based on NAND flash memory differ substan-

tially from HDDs in various aspects: “(1) asymmetric speed of read and write operations,

(2) no in-place overwrite – the whole block must be erased before overwriting any page in

that block, and (3) limited program/erase cycles” [MKC+12]. Thus, a database system’s

storage management must not treat SSDs and HDDs as slightly slower, persistent RAM,

since random writes to an SSD are roughly an order of magnitude slower than sequential

writes. Random reads, on the other hand, can be performed without any performance

penalties. There are some database systems (e.g., Oracle Exadata, Aerospike) that are

explicitly engineered for these performance characteristics of SSDs. In HDDs, both ran-

dom reads and writes are 10-100 times slower than sequential access. Logging hence suits

the strengths of SSDs and HDDs which both offer a significantly higher throughput for

sequential writes.

For in-memory databases, an update-in-place access pattern is ideal: it simplifies the im-

plementation and random writes to RAM are essentially equally fast as sequential ones,

with small differences being hidden by pipelining and the CPU-cache hierarchy. However,

RDBMSs and many NoSQL systems (e.g., MongoDB) employ an update-in-place update

pattern for persistent storage, too. To mitigate the slow random access to persistent stor-

age, main memory is usually used as a cache and complemented by logging to guarantee

durability. In RDBMSs, this is achieved through a complex buffer pool which not only em-

ploys cache-replace algorithms appropriate for typical SQL-based access patterns, but also

ensures ACID semantics. NoSQL databases have simpler buffer pools that profit from sim-

pler queries and the lack of ACID transactions. The alternative to the buffer pool model is

86 3 Providing Low Latency for Cloud Data Management

to leave caching to the OS through virtual memory (e.g., employed in MongoDB’s MMAP

storage engine). This simplifies the database architecture, but has the downside of giving

less control over which data items or pages reside in memory and when they get evicted.

Also read-ahead (speculative reads) and write-behind (write buffering) transparently per-

formed by the operating system lack sophistication as they are based on file system logics

instead of database queries.

Append-only storage (also referred to as log-structuring) tries to maximize throughput

by writing sequentially. Although log-structured file systems have a long research history,

append-only I/O has only recently been popularized for databases by BigTable’s use of

Log-Structured Merge (LSM) trees [CDG+08] consisting of an in-memory cache, a per-

sistent log, and immutable, periodically written storage files. LSM trees and variants

like Sorted Array Merge Trees (SAMT) and Cache-Oblivious Look-ahead Arrays (COLA)

have been applied in many NoSQL systems (e.g., Cassandra, CouchDB, LevelDB, Bitcask,

RethinkDB, WiredTiger, RocksDB, InfluxDB, TokuDB) [Kle17]. Designing a database to

achieve maximum write performance by always writing to a log is rather simple, the dif-

ficulty lies in providing fast random and sequential reads. This requires an appropriate

index structure that is either actively maintained as a copy-on-write (COW) data structure

(e.g., CouchDB’s COW B-trees) or only periodically persisted as an immutable data struc-

ture (e.g., in BigTable-style systems). An issue of all log-structured storage approaches is

costly garbage collection (compaction) to reclaim space of updated or deleted items.

In virtualized environments like Infrastructure-as-a-Service clouds, many of the discussed

characteristics of the underlying storage layer are hidden. In the future, the availability of

storage class memory combining speed of main memory with persistence will also require

novel approaches for storage management [NSWW16].

3.1.4 Query Processing

The querying capabilities of a NoSQL database mainly follow from its distribution model,

consistency guarantees, and data model. Primary key lookup, i.e., retrieving data items

by a unique ID, is supported by every NoSQL system, since it is compatible to range- as well

as hash-partitioning. Filter queries return all items (or projections) that meet a predicate

specified over the properties of data items from a single table. In their simplest form, they

can be performed as filtered full-table scans. For hash-partitioned databases, this implies

a scatter-gather pattern where each partition performs the predicated scan and results

are merged. For range-partitioned systems, any conditions on the range attribute can be

exploited to select partitions.

To circumvent the inefficiencies of O(n) scans, secondary indexes can be employed. These

can either be local secondary indexes that are managed in each partition or global sec-

ondary indexes that index data over all partitions [BBC+11]. As the global index itself

has to be distributed over partitions, consistent secondary index maintenance would ne-

cessitate slow and potentially unavailable commit protocols. Therefore, in practice, most

3.1 A Classification Scheme for NoSQL Database Systems 87

systems only offer eventual consistency for these indexes (e.g., Megastore, Google App-

Engine Datastore, DynamoDB) or do not support them at all (e.g., HBase, Azure Tables).

When executing global queries over local secondary indexes, the query can only be tar-

geted to a subset of partitions, if the query predicate and the partitioning rules intersect.

Otherwise, results have to be assembled through scatter-gather. For example, a user table

with range-partitioning over an age field can service queries that have an equality condi-

tion on age from one partition, whereas queries over names need to be evaluated at each

partition. A special case of global secondary indexing is full-text search, where selected

fields or complete data items are fed into either a database-internal inverted index (e.g.,

MongoDB) or to an external search platform such as ElasticSearch or Solr (Riak Search,

DataStax Cassandra).

Query planning is the task of optimizing a query plan to minimize execution costs

[Hel07]. For aggregations and joins, query planning is essential as these queries are very

inefficient and hard to implement in application code. The wealth of literature and re-

sults on relational query processing is largely disregarded in current NoSQL systems for

two reasons. First, the key-value and wide-column model are centered around CRUD and

scan operations on primary keys which leave little room for query optimization. Second,

most work on distributed query processing focuses on OLAP (online analytical processing)

workloads that favor throughput over latency whereas single-node query optimization

is not easily applicable for partitioned and replicated databases [Kos00, ESW78, ÖV11].

However, it remains an open research challenge to generalize the large body of applicable

query optimization techniques, especially in the context of document databases2.

In-database analytics can be performed either natively (e.g., in MongoDB, Riak,

CouchDB) or through external analytics platforms such as Hadoop, Spark and Flink (e.g.,

in Cassandra and HBase). The prevalent native batch analytics abstraction exposed by

NoSQL systems is MapReduce3 [DG04]. Due to I/O, communication overhead, and lim-

ited execution plan optimization, these batch- and micro-batch-oriented approaches have

high response times. Materialized views are an alternative with lower query response

times. They are declared at design time and continuously updated on change operations

(e.g., in CouchDB and Cassandra). However, similar to global secondary indexing, view

consistency is usually relaxed in favor of fast, highly-available writes, when the system

is distributed [LLXX09]. As only few database systems come with built-in support for

ingesting and querying unbounded streams of data, near-real-time analytics pipelines

commonly implement either the Lambda Architecture [MW15] or the Kappa Architec-

ture [Kre14]: the former complements a batch processing framework like Hadoop MapRe-

2Currently only RethinkDB can perform general θ -joins. MongoDB’s aggregation framework has support for
left-outer equi-joins in its aggregation framework and CouchDB allows joins for pre-declared MapReduce
views.

3An alternative to MapReduce are generalized data processing pipelines, where the database tries to op-
timize the flow of data and locality of computation based on a more declarative query language (e.g.,
MongoDB’s aggregation framework [Mon17]).

88 3 Providing Low Latency for Cloud Data Management

Funct. Req. Non-Funct. Req.

Sc
an

Q
ue

ri
es

A
C

ID
Tr

an
sa

ct
io

ns
C

on
di

ti
on

al
W

ri
te

s
Jo

in
s

So
rt

in
g

Fi
lt

er
Q

ue
ri

es
Fu

ll-
Te

xt
Se

ar
ch

A
na

ly
ti

cs
D

at
a

Sc
al

ab
ili

ty
W

ri
te

Sc
al

ab
ili

ty
R

ea
d

Sc
al

ab
ili

ty
El

as
ti

ci
ty

C
on

si
st

en
cy

W
ri

te
La

te
nc

y
R

ea
d

La
te

nc
y

W
ri

te
Th

ro
ug

hp
ut

R
ea

d
A

va
ila

bi
lit

y
W

ri
te

A
va

ila
bi

lit
y

D
ur

ab
ili

ty

MongoDB x x x x x x x x x x x x x x x
Redis x x x x x x x x x
HBase x x x x x x x x x x x
Riak x x x x x x x x x x x
Cassandra x x x x x x x x x x x x x
MySQL x x x x x x x x x x

Techniques

R
an

ge
-S

ha
rd

in
g

H
as

h-
Sh

ar
di

ng
En

ti
ty

-G
ro

up
Sh

ar
di

ng
C

on
si

st
en

t
H

as
hi

ng
Sh

ar
ed

-D
is

k
Tr

an
sa

ct
io

n
Pr

ot
oc

ol
Sy

nc
.R

ep
lic

at
io

n
A

sy
nc

.R
ep

lic
at

io
n

Pr
im

ar
y

C
op

y
U

pd
at

e
A

ny
w

he
re

Lo
gg

in
g

U
pd

at
e-

in
-P

la
ce

C
ac

hi
ng

In
-M

em
or

y
St

or
ag

e
A

pp
en

d-
O

nl
y

St
or

ag
e

G
lo

ba
lI

nd
ex

in
g

Lo
ca

lI
nd

ex
in

g
Q

ue
ry

Pl
an

ni
ng

A
na

ly
ti

cs
Fr

am
ew

or
k

M
at

er
ia

liz
ed

Vi
ew

s

MongoDB x x x x x x x x x x
Redis x x x x
HBase x x x x x x
Riak x x x x x x x x x x
Cassandra x x x x x x x x x x
MySQL x x x x x x x x x

Figure 3.3: A direct comparison of functional requirements, non-functional requirements
and techniques among MongoDB, Redis, HBase, Riak, Cassandra, and MySQL
according to the proposed NoSQL Toolbox.

duce with a stream processor such as Storm [BROL14] and the latter exclusively relies on

stream processing and forgoes batch processing altogether.

3.2 System Case Studies

In this section, we provide a qualitative comparison of some of the most prominent key-

value, document, and wide-column stores. We present the results in strongly condensed

comparisons and refer to the documentation of the individual systems and our tutori-

als [GR15b, GR16, GWR17, WGW+18] for in-detail information. The proposed NoSQL

Toolbox (see Figure 3.1, p. 81) is a means of abstraction that can be used to classify

database systems along three dimensions: functional requirements, non-functional re-

quirements, and the techniques used to implement them. We argue that this classification

characterizes many database systems well and thus can be used to meaningfully con-

trast different database systems: Table 3.3 shows a direct comparison of MongoDB, Redis,

3.3 System Decision Tree 89

HBase, Riak, Cassandra, and MySQL in their respective default configurations. A more

verbose comparison of central system properties is presented in Table 3.1 (see p. 91).

The methodology used to identify the specific system properties consists of an in-depth

analysis of publicly available documentation and literature on the systems [Mon17,CD13,

Car13, San17, Hba17, Ria17, CH16, LM10, MyS17]. Furthermore, some properties had to

be evaluated by researching the open-source code bases, personal communication with

the developers, as well as a meta-analysis of reports and benchmarks by practitioners.

The comparison elucidates how SQL and NoSQL databases are designed to fulfill very dif-

ferent needs: RDBMSs provide a broad set of functionalities whereas NoSQL databases

excel on the non-functional side through scalability, availability, low latency, and high

throughput. However, there are also large differences among the NoSQL databases. Riak

and Cassandra, for example, can be configured to fulfill many non-functional require-

ments, but are only eventually consistent and do not feature many functional capabilities

apart from data analytics and, in case of Cassandra, conditional updates. MongoDB and

HBase, on the other hand, offer stronger consistency and more sophisticated functional ca-

pabilities such as scan queries and – only in MongoDB – filter queries, but do not maintain

read and write availability during partitions and tend to display higher read latencies. As

the only non-partitioned system in this comparison apart from MySQL, Redis shows a spe-

cial set of trade-offs centered around the ability to maintain extremely high throughput at

low latency using in-memory data structures and asynchronous master-slave replication.

This diversity illustrates that for enabling low latency cloud data management, no single

database technology can cover all use cases. Therefore, latency reductions have to operate

across different database systems and requirements.

3.3 System Decision Tree

Choosing a database system always means to choose one set of desirable properties over

another. To break down the complexity of this choice, we present a binary decision tree in

Figure 3.4 that maps trade-off decisions to example applications and potentially suitable

database systems. The leaf nodes cover applications ranging from simple caching (left) to

Big Data analytics (right). Naturally, this view on the problem space is not complete, but

it vaguely points towards a solution for a particular data management problem.

The first split in the tree is along the access pattern of applications: they either rely on fast

lookups only (left half) or require more complex querying capabilities (right half). The fast

lookup applications can be distinguished further by the data volume they process: if the

main memory of one single machine can hold all the data, a single-node system like Redis

or Memcache probably is the best choice, depending on whether functionality (Redis)

or simplicity (Memcache) is favored. If the data volume is or might grow beyond RAM

capacity or is even unbounded, a multi-node system that scales horizontally might be more

appropriate. The most important decision in this case is whether to favor availability (AP)

90 3 Providing Low Latency for Cloud Data Management

Access

Fast Lookups

RAM

Redis
Memcache

Unbounded

AP CP

Cassandra
Riak

Voldemort
Aerospike

HBase
MongoDB
CouchBase
DynamoDB

Complex Queries

HDD-Size Unbounded

Analytics

MongoDB
RethinkDB

HBase,Accumulo
ElasticSearch, Solr

Hadoop, Spark
Parallel DWH

Cassandra, HBase
Riak, MongoDB

ACID Availability

RDBMS
Neo4j

RavenDB
MarkLogic

CouchDB
MongoDB
SimpleDB

Ad-hoc

Cache
Shopping-

basket
Order

History
OLTP Website

Social
Network

Big Data

VolumeVolume

CAP Query PatternConsistency

Example Applications

Figure 3.4: A decision tree for mapping requirements to (NoSQL) database system candi-
dates.

or consistency (CP) as described by the CAP theorem. Systems like Cassandra and Riak

can deliver an always-on experience, while systems like HBase, MongoDB, and DynamoDB

deliver strong consistency.

The right half of the tree covers applications requiring more complex queries than sim-

ple lookups. Here, too, we first distinguish the systems by the data volume they have

to handle according to whether single-node systems are feasible (HDD-size) or distribu-

tion is required (unbounded volume). For common OLTP (online transaction processing)

workloads on moderately large data volumes, traditional RDBMSs or graph databases like

Neo4J are optimal, because they offer ACID semantics. If, however, availability is essen-

tial, distributed systems like MongoDB, CouchDB or DocumentDB, are preferable.

If data volume exceeds the limits of a single machine, the choice depends on the prevalent

query pattern: when complex queries have to be optimized for latency, as for example in

social networking applications, MongoDB is very attractive, because it facilitates expres-

sive ad-hoc queries. HBase and Cassandra are also useful in such a scenario, but excel at

throughput-optimized Big Data analytics, when combined with Hadoop.

In summary, we are convinced that the proposed top-down model is an effective decision

support to filter the vast amount of NoSQL database systems based on central require-

ments. The NoSQL Toolbox furthermore provides a mapping from functional and non-

functional requirements to common implementation techniques in order to categorize the

constantly evolving NoSQL space. In the following, we will conceive a DBaaS/BaaS mid-

dleware architecture that is designed to cover an as large subset of the decision tree as

possible within a coherent REST/HTTP API.

3.3 System Decision Tree 91

D
im

en
si

on
M

on
go

D
B

H
B

as
e

C
as

sa
nd

ra
R

ia
k

R
ed

is
M

od
el

D
oc

um
en

t
W

id
e-

C
ol

um
n

W
id

e-
C

ol
um

n
Ke

y-
Va

lu
e

Ke
y-

Va
lu

e
C

A
P

C
P

C
P

A
P

A
P

C
P

Sc
an

Pe
rf

or
m

an
ce

H
ig

h
(w

it
h

ap
pr

op
ri

at
e

sh
ar

d
ke

y)
H

ig
h

(o
nl

y
on

ro
w

ke
y)

H
ig

h
(u

si
ng

co
m

po
un

d
in

de
x)

N
/A

H
ig

h
(d

ep
en

ds
on

da
ta

st
ru

ct
ur

e)
D

is
k

La
te

nc
y

pe
r

G
et

by
R

ow
Ke

y
∼

Se
ve

ra
ld

is
k

se
ek

s
∼

Se
ve

ra
ld

is
k

se
ek

s
∼

Se
ve

ra
ld

is
k

se
ek

s
∼

O
ne

di
sk

se
ek

In
-M

em
or

y

W
ri

te
Pe

rf
or

m
an

ce
H

ig
h

(a
pp

en
d-

on
ly

I/
O

)
H

ig
h

(a
pp

en
d-

on
ly

I/
O

)
H

ig
h

(a
pp

en
d-

on
ly

I/
O

)
H

ig
h

(a
pp

en
d-

on
ly

I/
O

)
Ve

ry
hi

gh
,i

n-
m

em
or

y
N

et
w

or
k

La
te

nc
y

C
on

fig
ur

ab
le

:n
ea

re
st

sl
av

e,
m

as
te

r
(r

ea
d

pr
ef

er
en

ce
)

D
es

ig
na

te
d

re
gi

on
se

rv
er

C
on

fig
ur

ab
le

:R
re

pl
ic

as
co

nt
ac

te
d

C
on

fig
ur

ab
le

:R
re

pl
ic

as
co

nt
ac

te
d

D
es

ig
na

te
d

m
as

te
r

D
ur

ab
ili

ty
C

on
fig

ur
ab

le
:n

on
e,

W
A

L,
re

pl
ic

at
ed

(w
ri

te
co

nc
er

n)
W

A
L,

ro
w

-l
ev

el
ve

rs
io

ni
ng

W
A

L,
W

re
pl

ic
as

w
ri

tt
en

C
on

fig
ur

ab
le

:w
ri

te
s,

du
ra

bl
e

w
ri

te
s,

W
re

pl
ic

as
w

ri
tt

en
C

on
fig

ur
ab

le
:n

on
e,

pe
ri

od
ic

lo
gg

in
g,

W
A

L
R

ep
lic

at
io

n
M

as
te

r-
sl

av
e,

sy
nc

hr
on

ic
it

y
co

nfi
gu

ra
bl

e
Fi

le
-s

ys
te

m
-l

ev
el

(H
D

FS
)

C
on

si
st

en
t

ha
sh

in
g

C
on

si
st

en
t

ha
sh

in
g

A
sy

nc
hr

on
ou

s
m

as
te

r-
sl

av
e

Sh
ar

di
ng

H
as

h-
or

ra
ng

e-
ba

se
d

on
at

tr
ib

ut
e(

s)
R

an
ge

-b
as

ed
(r

ow
ke

y)
C

on
si

st
en

t
ha

sh
in

g
C

on
si

st
en

t
ha

sh
in

g
O

nl
y

in
R

ed
is

C
lu

st
er

:
ha

sh
in

g
C

on
si

st
en

cy
lin

ea
ri

za
bl

e
(m

as
te

r
w

ri
te

s
w

it
h

qu
or

um
re

ad
s)

or
ev

en
tu

al
(e

ls
e)

Li
ne

ar
iz

ab
le

Ev
en

tu
al

,o
pt

io
na

l
lin

ea
ri

za
bl

e
up

da
te

s
(l

ig
ht

w
ei

gh
t

tr
an

sa
ct

io
ns

)

Ev
en

tu
al

,c
lie

nt
-s

id
e

co
nfl

ic
t

re
so

lu
ti

on
M

as
te

r
re

ad
s:

lin
ea

ri
za

bl
e,

sl
av

e
re

ad
s:

ev
en

tu
al

A
to

m
ic

it
y

Si
ng

le
do

cu
m

en
t

Si
ng

le
ro

w
,o

r
ex

pl
ic

it
lo

ck
in

g
Si

ng
le

co
lu

m
n

(m
ul

ti
-c

ol
um

n
up

da
te

s
m

ay
ca

us
e

di
rt

y
w

ri
te

s)

Si
ng

le
ke

y/
va

lu
e

pa
ir

O
pt

im
is

ti
c

m
ul

ti
-k

ey
tr

an
sa

ct
io

ns
,a

to
m

ic
Lu

a
sc

ri
pt

s
C

on
di

ti
on

al
U

pd
at

es
Ye

s
(m

as
te

re
d)

Ye
s

(m
as

te
re

d)
Ye

s
(P

ax
os

-c
oo

rd
in

at
ed

)
N

o
Ye

s
(m

as
te

re
d)

In
te

rf
ac

e
B

in
ar

y
TC

P
Th

ri
ft

Th
ri

ft
or

TC
P/

C
Q

L
R

ES
T

or
TC

P/
Pr

ot
ob

uf
TC

P/
Pl

ai
n-

Te
xt

Sp
ec

ia
lD

at
a

Ty
pe

s
O

bj
ec

ts
,a

rr
ay

s,
se

ts
,

co
un

te
rs

,fi
le

s
C

ou
nt

er
s

C
ou

nt
er

s
C

R
D

Ts
fo

r
co

un
te

rs
,fl

ag
s,

re
gi

st
er

s,
m

ap
s

Se
ts

,h
as

he
s,

co
un

te
rs

,
so

rt
ed

Se
ts

,l
is

ts
,

H
yp

er
Lo

gL
og

s,
bi

t
ve

ct
or

s
Q

ue
ri

es
Q

ue
ry

by
ex

am
pl

e
(fi

lt
er

,
so

rt
,p

ro
je

ct
),

ra
ng

e
qu

er
ie

s,
M

ap
R

ed
uc

e,
ag

gr
eg

at
io

n,
lim

it
ed

jo
in

s

G
et

by
ro

w
ke

y,
sc

an
s

ov
er

ro
w

ke
y

ra
ng

es
,

pr
oj

ec
t

C
Fs

/c
ol

um
ns

G
et

by
Pa

rt
it

io
n

Ke
y

an
d

fil
te

r/
so

rt
ov

er
cl

us
te

r
ke

y,
FT

-s
ea

rc
h

G
et

by
ID

or
lo

ca
ls

ec
on

da
ry

in
de

x,
m

at
er

ia
liz

ed
vi

ew
s,

M
ap

R
ed

uc
e,

FT
-s

ea
rc

h

D
at

a
St

ru
ct

ur
e

O
pe

ra
ti

on
s

Se
co

nd
ar

y
In

de
xi

ng
H

as
h,

B
-T

re
e,

ge
os

pa
ti

al
in

de
xe

s
N

on
e

Lo
ca

ls
or

te
d

in
de

x,
gl

ob
al

se
co

nd
ar

y
ha

sh
in

de
x,

se
ar

ch
in

de
x

(S
ol

r)

Lo
ca

ls
ec

on
da

ry
in

de
xe

s,
se

ar
ch

in
de

x
(S

ol
r)

N
ot

ex
pl

ic
it

Li
ce

ns
e

G
PL

3.
0

A
pa

ch
e

2
A

pa
ch

e
2

A
pa

ch
e

2
B

SD

Ta
bl

e
3.

1:
A

qu
al

it
at

iv
e

co
m

pa
ri

so
n

of
M

on
go

D
B

,H
B

as
e,

C
as

sa
nd

ra
,R

ia
k,

an
d

R
ed

is
.

92 3 Providing Low Latency for Cloud Data Management

3.4 Requirements for Low Latency Cloud Data Management

The NoSQL Toolbox motivates that cloud data management has to consolidate heteroge-

neous functional and non-functional requirements. The focus of this work is to comple-

ment any given data management requirements with low latency for better application

performance. To this end, our low-latency architecture has to meet four high-level re-

quirements.

Database Independence. To maximize performance for many use cases, the underlying

mechanism has to be applicable to arbitrary legacy database systems, without re-

quiring changes to the data store itself.

Database- and Backend-as-a-Service Functionality. In order to improve end-to-end la-

tency, DBaaS and BaaS abstractions have to be combined in an architecture with

direct access by web and mobile clients.

Scalability, Availability, and Multi-Tenancy. The primary non-functional requirements

are (a) scalability to a large number of users and concurrent operations, (b) avail-

ability in the face of machine failures, and (c) the ability to consolidate multiple,

isolated tenants in the cloud data management environment.

Low Latency with Tunable Consistency. Due to the inherent trade-off between consis-

tency and latency, application developers should be able to flexibly choose between

stronger guarantees and better performance.

3.5 Orestes: A Data Management Middleware for Low Latency

To address the above requirements, we introduce Orestes (Objects RESTfully

Encapsulated in Standard Formats)4. Its high-level architecture is depicted in Figure 3.5.

The Orestes architecture directly maps the desired properties to architectural structures:

• By defining a REST API as a superset of NoSQL database system capabilities, Orestes

can expose various backend databases. To this end, Orestes defines a set of data

management interfaces that can be implemented by specific database bindings. By

allowing bindings to implement any combination of the data management inter-

faces, database independence is achieved.

• Instead of relying on the backend databases to fulfill every functional requirement,

Orestes enhances the systems with Database- and Backend-as-a-Service function-

ality. These generic capabilities include schema management, authentication, access

control, real-time query processing, push notifications, file hosting, data validation,

and FaaS code execution.

• The Orestes servers are designed to be stateless containers in order to achieve hor-

izontal scalability, availability, and multi-tenancy. When additional resources are

4Orestes is used as the technical basis for the commercial Backend-as-a-Service offering Baqend (see www.
baqend.com).

www.baqend.com
www.baqend.com

3.5 Orestes: A Data Management Middleware for Low Latency 93

required for a workload, new Orestes servers can be provisioned and de-provisioned

at any time enabling elasticity. The server is designed to be run in container clus-

ters, so multi-tenancy is achieved in a private container model. Load balancers can

dismiss unavailable Orestes servers, so that availability is not degraded.

• By applying caching in the generic parts of the system, Orestes achieves latency re-

duction across database systems. The Cache Sketch approach (cf. Section 4.1) for

low latency with tunable consistency levels only requires a CRUD or a query in-

terface to be implemented by a specific database system and can handle the caching

mechanisms in a database-agnostic fashion.

Authentication
Authorization
Data Validation
Backend Code

Backend-as-a-Service

Database-as-a-Service

Store Data
Query Data
Transactions R

E
ST

/H
T

T
P

 A
P

I

Schema Management
SLA Management
Continuous Queries

Stateless
REST Server

Stateless
REST Server

Stateless
REST Server

Standard Schemas
Push Updates
File Hosting
User Management

Low Latency DBaaS and BaaS APIs ORESTES DB Backends

Figure 3.5: The High-Level Architecture of the Orestes middleware.

In the following, we will discuss how Orestes achieves a foundation for low latency cloud

data management by covering the REST API, a polyglot persistence architecture, scaling

and multi-tenancy mechanisms as well as the database-independent data management

functions applied on top of the supporting data stores.

3.5.1 Architecture

To expose existing data stores as a BaaS without prior modification, the Orestes middle-

ware and its unified REST API have to be powerful enough to expose the possible capabil-

ities of the underlying database system (e.g., conditional updates) without compromising

its non-functional properties (e.g., scalability of data volume or linearizable consistency).

To this end, the Orestes architecture is comprised of a superset of database system capa-

bilities spanning from client-side persistence APIs to the server’s REST interface.

Figure 3.6 shows the Orestes middleware architecture designed to meet the requirements

for database independence, Database- and Backend-as-a-Service functions, scalability,

availability, and multi-tenancy as well as low latency with tunable consistency. The ar-

chitecture encompasses the complete path from the client to the server and can therefore

be split into the three parts: server, network, and client.

94 3 Providing Low Latency for Cloud Data Management

Java Persistence API JavaScript Persistence API

REST/HTTP

GET /db/{bucket}/{id}

Forward-Proxy Caches

Reverse-Proxy Caches and
Load Balancers

HTTP Server

Replicated State
Service
Schema, Config-

uration, Backend Code

Trans-
actions

Que-
ries

Object
Persist.

Schema
Object
ACLs

Index-
ing

 DBaaS & BaaS

200 OK
Cache-Control: max-age=60
ETag: "3"
JSON Object

Transactions

HTTP Server

Config-
uration

Partial
Updates

Application
Server

Browser or
Mobile Device

Access Control

Multi-Tenancy Schema Management

Data Validation

Cache Coherence

Autoscaling

Function-as-a-
Service Engine
Code Runtime Local to
Each Server

Application

Persistence
API

Content
Delivery

Networks

Database-
independent

Concerns

Database
APIs

Data
Store

SLAs

HTTP Server

Purge &
Scale

MongoDB Redis
Elastic-
Search

Dynamo-
DB

Service
Orchestration

Cluster Orchestra-
tion
Starting/Stopping
Servers, Health Checks

Amazon
S3

load()

save()

find()

login()

Real-Time and Messaging Layer
Continuous Queries, Materialized Views, Query Result Invalidations

Figure 3.6: The Orestes middleware architecture with an exemplary request for loading a
database object.

3.5 Orestes: A Data Management Middleware for Low Latency 95

Server

The DBaaS/BaaS layer consists of a variable number of Orestes servers. The Orestes

servers expose the REST/HTTP API and map it to the underlying database systems. The

server tier and the database tier can be scaled and deployed independently. Through the

stateless design of the Orestes servers, latency and throughput are only bounded by the

saturated database system as the middleware can scale horizontally.

We distinguish between three types of modules in the server middleware. Data Modules
express the mapping of data operations in the REST API to the underlying database (e.g.,

CRUD operations, queries, indexing, system configuration). Data Modules have to be im-

plemented for each database that is to be exposed through the unified REST API. Default
Modules on the other hand implement database-independent concerns that can be pro-

vided by default on top of a database system through a combination of data modules and

middleware services (e.g., authentication, authorization, data validation, backend code,

push notifications, transactions, schema management, SLA management, elastic scaling).

Default modules can be overwritten to leverage existing native capabilities (e.g., table-

level ACLs for authorization). Core Modules contribute the technical foundations of the

system and are orthogonal to the underlying database (e.g., web caching, load balancing,

HTTP networking, logging, TLS encryption).

One of the central default modules in Orestes is the real-time and messaging layer In-

valiDB. It provides continuous query processing on top of any underlying database system

by operating purely at the level of generic Orestes objects. A scalable messaging layer

connects Orestes servers to the InvaliDB stream processing cluster for the exchange of

after-images (the state of objects after an update) as well as query registrations and match

notifications. The ability to match updates against queries is necessary to enable caching

of query results. The details of the real-time query matching as well as cache coherence

for query results are described in depth in Chapter 4.

Service orchestration involves all processes concerned with tying together the Orestes

servers as one coherent unit, exchanging shared state, managing tenants and providing the

FaaS environment for backend code execution. The replicated state service holds the appli-

cation schema, configuration parameters and the uninterpreted backend code functions.

It is partitioned in order to scale with increasing numbers of tenants and stored metadata.

The FaaS engine is co-located with each Orestes server and executes application-defined

procedures (implemented in JavaScript/Node.js [TV10] in the Orestes prototype). Back-

end code can have the form of handlers that are executed in event-based fashion upon

CRUD operations. Alternatively, they can be established as explicit microservices that can

be invoked by applications directly. This approach towards server-side code execution is

employed in our BaaS architecture, because business logic and validation rules should

oftentimes not be disclosed to clients.

The cluster orchestration is handled by a service that starts and stops new servers auto-

matically based on workloads and machine or network failures. At the physical level, the

96 3 Providing Low Latency for Cloud Data Management

cluster is based on containerization (Docker Swarm [Swa17] in the Orestes prototype).

This architecture allows assigning many logical Orestes servers to physical servers in the

form of individual containers [Mer14]. Pairs of Orestes server containers and FaaS con-

tainers form an isolated network that does not interact with internal services or other

tenants, but allows free communication to the Internet and between paired containers.

Multi-tenancy is therefore straightforward, as each tenant runs in a different pair of con-

tainers that can be deployed on the cluster with little overhead and scaled across physical

machines.

Module interfaces with different data management and BaaS capabilities decouple the

access to underlying database systems. The major interfaces are:

CRUD. The CRUD interface contains the abstractions to create, read, update, and delete

objects. Depending on the database, these objects can be key-value pairs, docu-

ments, records, rows, or nodes in a graph. Orestes assumes version numbers in

order to allow caching and concurrency control. The CRUD interface has to be im-

plemented for each database system.

Schema. The schema API allows to create and evolve the application’s data model. Typ-

ically, this interface is provided as a default module by Orestes and mapped to the

replicated state service. However, schemaful database systems like RDBMSs can

implement this interface.

Orestes. The Orestes interface bundles all service-related information and actions. This

includes configuration, service discovery, system health, caching metadata, and in-

formation about rate-limited users. The Orestes interfaces are not implemented for

specific systems, but provided in a generic fashion.

Query. The query interface allows executing database-specific queries. Orestes makes

no assumptions on the structures of the query, but requires a list of objects to be

returned as a result and that pagination, respectively cursor operations are sup-

ported. The implementation of this interface is beneficial for performance. Without

it, Orestes cannot exploit database-internal optimizations and therefore has to fall

back to full-table scans to filter data.

Prepared Query. Through the prepared query interface, queries can be registered in the

database. On the one hand, this allows the database to pre-optimize and parse the

query. On the other hand, it allows to only expose certain parameterizations of

queries to users.

Index. The index API is closely tied to queries and enables the definition of explicit sec-

ondary indexes for various data types, ranging from primitive types such as strings

to full-text and geospatial data.

File. The file interface allows storing and retrieving blobs, as well as serving them over

the web as assets for websites. Some database systems explicitly support file storage

3.5 Orestes: A Data Management Middleware for Low Latency 97

(e.g., GridFS in MongoDB [CD13]) and can provide this capability. For systems that

do not, Orestes falls back to the object store (S3 [Ama17a] in the prototype).

User. The user interface is concerned with the registration, management, and login of

users via different protocols (e.g., OAuth [Har14]). As this interface can map to

CRUD operations, its implementation is optional.

Code. The code API allows updating and retrieving server-side handlers and methods.

The implementation in the prototype realizes a scalable Node.js tier as an FaaS.

Device. Installations of mobile apps are tracked through the device interfaces. This allows

sending push notifications to specific groups of devices or individual users. The

implementation in the prototype supports the two wide-spread push protocols by

Google and Apple [YAD14].

Partial Update. The partial update API permits modifying database objects in place, to

circumvent read-modify-write cycles that are prone to contention. Without explicit

partial update support, Orestes will use optimistic concurrency control based on

version numbers of objects.

Transaction. The transaction API supports ACID transactions over arbitrary objects. The

default implementation provides scalable cache-aware transactions as described in

Chapter 4. For transactional database systems, the interface can be overridden.

Asset. Using the asset API, clients can use Orestes as a CDN: Orestes will fetch provided

URLs from a given origin and apply the same caching techniques as for any data

directly stored in the service. The interface thus allows easy integration and accel-

eration of legacy systems.

Event Sockets. As the only non-HTTP interface, the event sockets API exposes real-time

queries and event notifications. Clients can pose queries via WebSocket connections

and receive updates to the respective query results in real time. The default imple-

mentation using InvaliDB provides horizontal scalability and abstracts entirely from

the underlying data store.

Integration of new database systems into the polyglot architecture of Orestes is easy, be-

cause many features are available out-of-the-box through default modules. The Orestes

server prototype is implemented in Java 8 and uses the Jetty framework [Jet] as a cen-

tral HTTP networking component. The REST API uses a declarative framework that we

implemented and made available as open-source5. An overview of the internal server

architecture is given in Section 3.5.9.

Network

Orestes relies on HTTP as the core protocol and uses web caches through their standard-

ized expiration-based caching model. The Orestes servers can be exposed through load

balancers or reverse proxy caches, as their statelessness allows handling arbitrary client

5https://github.com/Baqend/restful-jetty

https://github.com/Baqend/restful-jetty

98 3 Providing Low Latency for Cloud Data Management

requests without sticky sessions. Orestes has an extensible purging interface to support a

broad set of invalidation-based caches with non-standard invalidation APIs. Optimizing

network performance (see Section 2.3) is handled by Orestes and does not require spe-

cific support from the database systems. Optimizations include using fast TCP and TLS

handshakes for lower connection establishment latency, as well as HTTP/2 and its new

performance mechanisms.

Orestes can be combined with any type of Content Delivery Network (CDN) for invalida-

tion-based caching. In the general case, it will be treated by Orestes similar to any other

cache. However, if the CDN supports the Varnish Configuration Language (VCL) [Kam17],

the Orestes prototype enhances the cache with the ability to validate access tokens used

for authentication, perform authorization on cached resources, and apply preventive mea-

sures against distributed denial of service (DDoS) attacks, in particular by handling rate-

limited requesters from the cache only. This form of edge computing allows minimizing

latency for protected cached data without compromising latency.

Client

Clients can either be pure DBaaS clients (application servers) in three-tier architectures

or BaaS clients (browsers and mobile devices) in two-tier architectures. While Orestes

can be adopted in any programming language and platform that supports HTTP com-

munication, persistence APIs provide additional benefits. In particular, they can obtain a

seamless integration in the application data model by exposing objects as native classes

in the respective language. Additionally, developers get easy-to-use APIs for working with

the objects and executing queries, while the persistence API takes care of managing the

object lifecycles and ensuring that identical objects share an identity in the scope of a per-

sistence session [TGPM17]. In the following we describe the concrete persistence APIs for

the Orestes prototype – similar APIs could be developed for other programming languages

as well.

The primary language used for clients in the Orestes prototype is JavaScript. JavaScript

allows the persistence API to be applied for any type of websites and web app as well as

mobile application frameworks based on web views (e.g., Ionic [Hil16]) or JavaScript

engines (e.g., React Native, Titanium, NativeScript [Rea17]). The Orestes JavaScript

SDK is based on concepts of the Java Persistence API [DeM09] from which it inherits the

model of entity managers, dirty checking, persistence by reachability, and object lifecycles.

However, it extends it in many data management aspects like explicit support for semi-

structured schemas and continuous queries. The BaaS functions are also deeply integrated

into the persistence API. For example, the client and server can share data validation code

and high-level APIs support login and registration of users.

Listing 3.1 shows an example of the JavaScript API. It makes use of language features

introduced with the ECMAScript 2015 standard [Int17]. All asynchronous operations in

the SDK are based on the Promise (also known as futures) concept, to avoid unstructured

callback code. In the example, first, a new Message object is created and inserted (lines

3.5 Orestes: A Data Management Middleware for Low Latency 99

1 // Create and insert a new message object
2 const msg = new DB .Message ();
3 msg.name = ’Felix’;
4 msg.message = ’Hello World.’;
5 msg.insert ().then (() => console .log(’insert completed.’));
6 // Perform a query
7 DB.Message.find()
8 .matches(’name’, /^Fel/)
9 .descending(’createdAt ’)

10 .limit (30)
11 .resultList ()
12 .then((result) => console .log(’result received.’));
13 // Register a user
14 DB.User.register(new DB.User({’username ’:

’test@example.com’}), ’password ’);
15 //Load a user and perform a partial , commutative update
16 DB.User.load(userId).then((user) => {
17 const update = user.partialUpdate ()
18 .set(’nickname ’, ’Alice’) //sets ’nickname ’ to ’Alice’
19 .inc(’age’, 1); // increments ’age’ property
20 return update.execute ();
21 });

Listing 3.1: Example of using the Orestes JavaScript SDK.

1 to 5). The Message class is generated by the SDK based on the schema defined at the

server and inherits methods for CRUD operations, as well as automatic dirty checking, to

detect when changes need to be persisted to the server. All object instances are managed

by an entity manager that guarantees referential integrity and is also responsible for cache

coherence. Next, a query is executed using a builder pattern (lines 5 to 12). After that,

a registration for a user is performed as a typical BaaS operation (lines 13 to 14). After-

wards, a user is fetched by its ID, and a commutative partial update is performed as an

example of a more advanced data management operation (lines 15 to 21).

Besides JavaScript, the Orestes prototype also supports TypeScript [Mic16], a statically

typed language that is a superset of the JavaScript standard [Int17] which it is transpiled

to. The advantage of TypeScript is that Orestes can generate so-called typings from the

schema. Typings make the data model available for compile-time type checking and code

completion, thus preventing potential bugs. The SDK is complemented by a Command

Line Interface (CLI) to facilitate the development and deployment process. The CLI allows

to start and stop tenants as well as deploying local folders, schemas and backend code to

staging and production environments. Additionally, the CLI supports cloning boilerplate

projects for different frontend environments and frameworks (e.g., React, React Native,

Angular, Bootstrap, Ionic, and Vue).

The Java API of the Orestes prototype is a low-level API with the primary purpose of

providing a foundation for integration and performance tests. It replaces a previous im-

100 3 Providing Low Latency for Cloud Data Management

plementation of the Java Data Objects (JDO) standard [Rus03b] that does not match

the requirements of BaaS systems well. A different Java API is used for Android, that

offers SDK abstractions geared particularly towards the requirements of mobile devices

with limited computing and power capacities [Dom18]. A similar iOS SDK for Orestes is

based on Swift [Sch17]. As the Orestes interface is additionally specified in the OpenAPI

standard [Ope17], client SDKs for roughly 30 programming languages can be generated

automatically. These do not provide advanced persistence features, but offer easy access

to the REST interface through a typed API.

3.5.2 Unified REST API

To make Orestes a universal data management platform for different types of applications,

a unified REST API is pivotal. To expose operations under flexible requirements, it needs

to be clearly structured by database capabilities (cf. Section 3.1), similar to the Orestes in-

terfaces. Therefore, the unified REST API is also composed of different modules, as shown

in Figure 3.7. They are defined through a declarative REST specification language that

we introduce in order to describe the effects of HTTP methods on resources identified by

URI patterns. The specification documents are similar to routers in MVC web frameworks

(e.g., Play), but enhanced to capture descriptions, types of parameters, and return values.

The REST specification is loaded by the Orestes HTTP servers for validation, conversion

(e.g., from JSON to a schema object), and to generate an interactive REST API documenta-

tion on the server’s dashboard. From the REST specification, the Orestes servers generate

OpenAPI documents [Ope17] to make the REST API discoverable and interoperable for

different programming languages.

Dashboard and Unified REST
API

Get object
Returns the object...

@bucket : String The bucket
name
@oid : String The unique
object identifier

GET /db/:bucket/:oid
info.orestes.server.resource.d
b.DbBucketOid :
OrestesObject

...

CRUD.rest Orestes-Server

asset
code
crud
device
file
index
Orestes
query
schema
partial-update
prepared-query
transaction
user

Unified REST API
Specification

public OrestesObject
load(ObjectInfo objInfo)

Data, Default, and Core
Modules

Data Module for
specific DB

db/bucket/oid Resource

HTTP

Figure 3.7: Composition of the unified REST API through resource specifications.

3.5 Orestes: A Data Management Middleware for Low Latency 101

Operation Request Response

Create object POST /db/:bucket

201 New object is stored and returned
202 Request accepted for transaction
404 Permission denied
409 Conflict, the object already exists
461 Bucket not found
462 Invalid object ACLs
466 Permission denied

Get object GET /db/:bucket/:id

200 Object exists and is returned
304 If-None-Match header version matches
404 Object not found or permission denied
412 The If-Match header did not match
461 Bucket not found

Replace object PUT /db/:bucket/:id

200 Updated object is stored and returned
202 Request accepted for transaction
409 Unique constraint violated
412 Object out of date
462 Invalid object ACLs
466 Permission denied

Delete object DELETE
/db/:bucket/:id

202 Request accepted for transaction
204 Object successfully deleted
412 Object out of date
462 Invalid object ACLs
466 Permission denied

List all bucket names GET /db 200 List of all buckets

List objects in bucket GET /db/:bucket/ids?
start=0&count=-1

200 List of all objects
466 Permission denied
461 Bucket not found

Export objects of bucket GET /db/:bucket 200, 466, 461 (see above)

Import objects to bucket PUT /db/:bucket 200, 466, 461 (see above)

Delete objects in bucket DELETE /db/:bucket 200, 466, 461 (see above)

Table 3.2: REST resources for CRUD with parameterized requests and potential responses.

The operations declared in each REST specification correspond to one or more methods in

the data and default modules in the Orestes server. These communicate with the under-

lying database via its specific drivers and protocols. For an end-to-end example, consider

a web application in which a user loads her profile. The call is performed through the

JavaScript persistence API: DB.profile.find(id). It employs the unified REST API by

posing an HTTP request: GET db/profiles/id. For illustration, suppose the Orestes mid-

dleware wraps a MongoDB cluster. After parsing and checking the request, the server will

call the CRUD data module’s load method for MongoDB. The data module will then issue

a query to MongoDB that returns the document (db.find()). Based on the schema de-

fined for Profile, the server converts and returns the requested object. The fully-typed

profile object returned by the SDK can eventually be displayed, for instance by feeding it

into a template of a single-page application framework like Angular or React.

102 3 Providing Low Latency for Cloud Data Management

Table 3.2 shows exemplary REST resources and interactions for the CRUD module. This

subset of the data management API includes operations for creating, retrieving, deleting,

and overwriting objects, as well as discovery of buckets and contained objects. Orestes ab-

stracts from data models by referring to aggregates as objects (e.g., a document, record, or

key-value pair) and collections of objects as buckets (e.g., tables, folders, or namespaces).

The HTTP methods are followed by URL templates with path placeholders prefixed by “:”

and URL parameters assigned with their respective default value. The REST API makes

use of HTTP’s extensibility of status codes. For example, when an object is loaded (GET

/db/:bucket/:id) the canonical 404 status code indicates that the object was not found,

while the non-standardized status code 461 which is also in the class of 4xx client errors,

expresses that the bucket for the requested object does not exist. This refines the semantics

of the REST API and simplifies the development of persistence SDKs.

The central requirement dominating the design of the unified REST API is that any side-

effects impacting data management capabilities (see Section 3.1) have to be eliminated.

By strictly incorporating the semantics of HTTP [IET15], Orestes enables cacheability of

data and correct behavior of middleboxes like load balancers, firewalls, and web caches.

In case of CRUD operations, new objects are created using the POST method which is

non-idempotent: multiple invocations create multiple new objects. Similar to PUT and

DELETE requests, any standard web cache will perform an invalidation by side-effect for

POST requests, assuming that the requested resource has changed through the request.

Replacing and overwriting objects are idempotent operations and therefore use the PUT

and DELETE HTTP verbs. Since reads of objects are free or side-effects, they are performed

with the GET method against a unique URL. Conditional request headers can be attached

for revalidation using an ETag version number as the cache validator.

In practice, REST APIs for cloud data management can lead to performance problems. Two

conditions we examined in detail are falsely non-persistent HTTP methods and temporary
TCP deadlocks. Falsely non-persistent HTTP methods cause non-idempotent requests to

open a new TCP connection, provoking unnecessary round-trips and negatively impacting

latency. Temporary TCP deadlocks of 200-500 ms can occur by an interference of the Nagle
algorithm and the delayed ACK algorithm defined in the TCP protocol standard to increase

the effectiveness of TCP buffer management [APB09]. Both problems which we described

in more detail in [GFW+14] are reasons for the difficulty of consolidating performance

requirements with powerful abstractions in data management REST APIs.

A recently proposed alternative to REST APIs for data-centric services is GraphQL [Gra17].

Though GraphQL is utilized by large companies (e.g., Facebook), it exhibits the above

problem of failing in performance requirements due to the inadequate use of HTTP. The

problem arises as both queries and update operations are posed as POST requests with a

JSON body as payload. While this simplifies the implementation of GraphQL interfaces, it

is not suitable for low-latency cloud data management: queries and reads are inherently

uncacheable, as HTTP caching requires the use of GET requests and the associated caching

headers [FR14]. Further, GraphQL operation cannot be retried in case of connection loss

3.5 Orestes: A Data Management Middleware for Low Latency 103

(e.g., by a proxy or a browser), as HTTP assumes non-idempotency. Our proposed unified

REST API avoids this problem by aligning the semantics of HTTP with the requirements of

cloud data management.

3.5.3 Polyglot Data Modeling and Schema Management

To accommodate the demand for both schemaless and schemaful data modeling, Orestes

has to support hybrid schemas that allow strict typing, but do not enforce it. To achieve

database independence, data modeling and schema management have to be decoupled

from the database system. This enables polyglot persistence, as data models are checked

and maintained at the database-independent middleware and mapped to the underlying

database systems that can be either schemaless or schemaful.

To this end, Orestes integrates object-oriented schemas as a default module. Schema-

free databases (e.g., Redis [Car13] and MongoDB [CD13]) thus get “bolt-on" rich schemas,

whereas schema-aware databases (e.g., PostgreSQL [Pos17], Versant [Ver17]) can expose

their own schemas. In most cases, explicit schemas are an advantage as they enable type-

checking and validation that can prevent data corruption [Kle17]. The key idea in Orestes

is to allow the co-existence of schemaless fields with typed fields for a single bucket. An

Orestes schema is a mapping of field names to types for a particular bucket. Whenever an

entity is saved, field values are checked against the types defined by the schema. Several

field types are therefore supported:

Primitive Types. The primitive types String, Boolean, Integer, Double, Date, DateTime,

Time, GeoPoint are scalar fields. If a database system does not implement a particular

type, it will be stored as the next more general type in the hierarchy (e.g., a String
instead of a DateTime).

References. To enable navigational access patterns and normalized data models, Orestes

supports references as native types. Internally, references are represented as Strings

(e.g., /db/Todo/84b9...). A file reference type allows mixing structured and un-

structured data, by offloading the file contents to a specialized data store.

Collections. The three collection types Set, Map, List enable simple modeling of compo-

sition and 1:n relationships. The type of a collection can be any of the other types,

including collections. A list stores a resizable array of elements, a set automatically

eliminates duplicates, and a map consists of key-value pairs.

Subtypes. Nested data models are an efficient way to structure certain 1:1 and 1:n re-

lationships. Embedded objects are as powerful as normal Orestes objects, but only

exist in the context of their containing object and do not have an individual identity.

Embedded objects, collections, and references can be combined arbitrarily.

Schema-free Fields. By exposing JSON objects and JSON arrays, schema-free parts of a

data model can be stored as documents. If the underlying database system supports

queries on schema-free data, the content of JSON fields can be queried similar to

104 3 Providing Low Latency for Cloud Data Management

other fields. As the JSON types grant all freedoms of schema-free data stores, the

application has to manage their schema evolution explicitly.

{

 id : "mylist",

 name : "Todo List",

 owner : "2333790852",

 items :

 [

 { name : "Todo A" },

 { name : "Todo B" }

],

 icon: "img/233.png"

}

{

 name : "Jim",

 logins : 59

}

id : "2333790852",Reference

TodoList Object

List of
Embedded
Objects

"img/233.png"

Img File

Owner Object

File
Reference

: String

: Owner

: List[Todo]

: Todo

: File

Figure 3.8: Example data model combining schemaless and schemaful elements, also
showing the graphical schema editor.

The flexibility of the proposed data model is illustrated in Figure 3.8. As a use case, con-

sider the data model of a simple to-do list application. The TodoList schema consists of

primitive fields such as the name of the list and the ID. Since a user can create multiple

lists (1:n relationship), every list has a reference to the respective owner object. A list has

a composition relationship with its contained items that do not exist outside the context

of a list and are therefore modeled as a list of embedded objects. As a simple example of

polyglot persistence, the illustrated list holds an icon image as a first-class abstraction that

3.5 Orestes: A Data Management Middleware for Low Latency 105

is transparently persisted to an object store and referenced by the respective TodoList ob-

ject (e.g., Amazon S3 [Ama17a]). The lower part of Figure 3.8 shows the data modeling

UI for designing schemas in the Orestes server’s dashboard. Besides the graphical inter-

face, the schema API exposes methods to evolve and create schemas as well as creating

indexes and constraints on fields. The schema has a simple JSON representation that can

be used to manage and version it as part of a source code repository and to deploy it via

the CLI. In addition, a UML-based graphical meta-modeling editor can be used to manage

the complete schema of an application [Mö17].

To allow reuse of defined models, the schema supports generalization hierarchies. When

a bucket extends another bucket, it automatically inherits all of its parent’s fields. All

objects extend the OrestesObject which prescribes the existence of a primary key (ID).

By default, the ID is generated as a UUID to ensure an even distribution for range sharding

over the identifier. Furthermore, each object has a createdAt and updatedAt field that

the Orestes server automatically maintains for convenience. The ACL property contains

object-level access rules as described in 3.5.4. A version field is updated automatically

and lays the foundation for cache revalidations and concurrency control.

Schema management is provided by the Orestes server, unless the underlying database

system explicitly opts into implementing the schema API. Schema changes can be grouped

into two categories based on their potential effects on data and the required coordina-

tion:

Safe Changes. Adding fields, adding new buckets, and changing field types to a parent

type are commutative, associative, and idempotent and thus can be safely applied

asynchronously. As safe changes are non-destructive towards existing data, they can

be applied without side-effects at a later point in time [RRS+13].

Unsafe Changes. Deleting and renaming fields, dropping buckets, reordering fields, and

changing field types to a non-parent type have side-effects and therefore require

coordination. Unsafe changes can potentially corrupt existing data and negatively

interact with concurrent schema changes. Therefore, unsafe changes have to be ap-

plied atomically across all Orestes servers in a synchronous fashion. Unsafe changes

can be mitigated by using schemaless JSON types, thus offloading the responsibility

of schema migration to the application.

Every Orestes server holds the complete schema in memory. To ensure global consistency

of the data model, unsafe changes are published across all Orestes servers using the two-

phase commit protocol [Lec09]. This ensures that all unsafe updates are applied atomi-

cally. Changes requiring data migration are executed by only one of the Orestes servers

during this process. Safe changes, on the other hand, can be propagated asynchronously

without blocking other schema updates.

106 3 Providing Low Latency for Cloud Data Management

3.5.4 Authentication and Access Control

To extend a DBaaS to a BaaS, user and access control are required as clients cannot

be trusted to execute or see protected application logic. Ideally, even database systems

without fine-grained access control should be enabled for bucket- and object-level access

control. In Orestes, this is achieved by role-based access control (RBAC) and default

schemas for common BaaS use cases: users, roles, and installations. These BaaS schemas

have special semantics. User instances are automatically created when a user registers6.

All user logins are checked against stored user objects. Registration and login are thus

provided as database-independent default modules. Roles consist of a set of users that are

granted that role and are stored in a roles bucket. Installations track mobile apps that are

installed through app stores and are used to send push notifications to specific devices or

groups of devices.

The core requirement for authentication and access control is their compatibility with

caching for low latency and horizontal scalability. Therefore, Orestes uses a novel type of

access token that can be interpreted in caches that support scripting languages without

requiring coordination or session state lookups. In the Orestes prototype, VCL [Kam17]

is used for the implementation of token handling in proxy caches and CDNs, but the

overall scheme is generic. Upon successful login, an access token is generated. To enable

stateless authentication and authorization, the token has to encode permissions and the

user’s identity in a secure way. To this end, we propose a variation of a token scheme

proposed by Fu et al. [FSSF01] used for each user:

expires =< t1 > &renew =< t2 > &data =< u > &digest =< HMACk(token)> (3.1)

For the token, & indicates concatenation, u =< ID(user)> & < {ID(role) |user ∈ role}> is

a binary encoding of a user’s roles, and k =< tenant_ID ,& < server_secret > is the secret

for securely signing the token. The token thus contains the user’s ID and his roles and a

signature guaranteeing integrity (an HMAC for performance reasons). The same server

secret used for signatures is also employed to hash passwords (each with an additional

salt [Sch96]), so that a copy of the user database cannot be attacked unless an Orestes

server is compromised, too. The two timestamps t1 and t2 indicate for how long the

token is valid. Until t1 expires, the token can be renewed providing the given token as

authorization. t1 thus bounds the maximum duration for which a token stolen by an

attacker can be exploited. t2 is the refresh interval of the token that is prescribed to

guarantee the freshness of permissions encoded in the token as well as timely revocations.

t2 is typically in the order of minutes to hours, whereas t1 can be in the order of months to

years.

Based on this token, the Orestes servers check Access Control Lists (ACLs) on schema

level and on object level. An ACL grants or denies access to users and roles for certain

6Besides a simple registration without identity validation, the Orestes prototype supports email-based regis-
tration and the OAuth protocol for providers such as Facebook, Google, GitHub, and LinkedIn.

3.5 Orestes: A Data Management Middleware for Low Latency 107

operations: read and write on object level and read, query, create, delete, extend

schema, subclass schema on schema level. Typically, schema-level ACLs are assigned at

design time, when data models are defined. As more complex application rights cannot

be purely defined declaratively in schema ACLs, an object ACL API exposes individual

permissions for each object. As an example, consider the previous to-do list application:

a typical configuration would grant schema-level insert rights for every user. However,

modifications of a list would be limited to the respective creator. To express this, the

predefined ACL property of a TodoList instance would be modified programmatically:

todo.acl.allowWriteAccess(DB.User.me).

To maximize the flexibility of the permission system, rights can be granted but also be de-

nied. All of the above operations, e.g., read and write for objects, are represented by two

lists (allowed and denied) containing user and role references. The decision procedure for

determining whether access can be granted is based on the idea that deny rules win over

allow rules. For a certain operation and user, access is first checked against schema-level

rules and upon success also validated against object-level rules:

1. If a user has admin rights7, access is always granted. This enables the development

and administration of the application.

2. If no rules are defined, (public) access is granted.

3. If the user or one of her roles are contained in the deny list, access is denied.

4. If rules exist, but the user or one of her roles are not explicitly allowed, access is

denied. Otherwise, the user or one of her roles are contained in the allow list, so

access is granted.

Any objects that are publicly visible are eligible to caching in arbitrary web caches. For

many websites and web applications, this is the most substantial part of the data. However,

if read and query access is restricted by permissions, cacheability and therefore latency of

the respective objects, query results, and files would be impacted negatively. Therefore, in

our proposed scheme, even reverse proxy caches and CDNs can perform the ACL checks

for read operations, if they support sufficiently expressive configuration languages (e.g.,

VCL). This scheme is illustrated in Figure 3.9. In order to enable authorization per ob-

ject, a merged view of schema- and object-level ACLs is attached to protected responses.

This metadata is used by supported caches for validation of access rights on cached data

and stripped before forwarding the response to clients. The formats of schema-level and

object-level ACLs are compatible, so that access can be checked based on bitwise oper-

ations and substring matching. Thus, even configuration languages that are not Turing-

complete can validate tokens.

In contrast to schema-level ACLs, object-level ACLs need a specific data module for a

particular database system. In MongoDB, for instance, object-level ACLs are enforced by

7In Orestes, there are three predefined roles. admin users have full access to everything. Users that are
logged in automatically have the LoggedIn role. If an operation is triggered by backend code, it receives
the node role. This allows to easily adapt permissions to the user’s context.

108 3 Providing Low Latency for Cloud Data Management

ServerClient CDN

590…AAAAABgAAAABgAAAADda0…
GET /ProtectedResource
Authorization: Cached

User rights:
AAAAAB gAAAAB gAAAAD

Schema and object ACLS as HTTP headers:
Bucket-Read-Allow: gAAAAD AAAAB7
Object-Read-Allow: gAAAAD AAAACC

Figure 3.9: Example request validated against a protected, cached resource in the CDN.

conditioning data operations over a per-object, indexed ACL field containing allowed and

denied users and groups. Thus, the task of ACL validation is pushed down to the query

engines of database systems whenever possible. As the access token is self-contained, no

shared server state is required. The same permission system is applied to files: folders

can define schema-level ACLs, and the metadata of objects can contain read and write

permissions. Schema-level ACLs and ACLs of cached objects and files are handled by

Orestes independently of the database systems and object stores. The rich permission

system thus enables the use of any supported data store in the context of serverless, client-

driven application architectures.

3.5.5 Function-as-a-Service

To complement data storage with scalable business logic, Orestes incorporates a database-

independent Function-as-a-Service layer (backend code). Server-side scripts can be regis-

tered for execution of critical business logic. In order to facilitate application development,

server-side code is executed using the same JavaScript SDK that clients use (isomorphic
JavaScript). The two primary requirements that the FaaS layer addresses are the need

for application-specific backend APIs as well as the extensibility of data operations with

custom behavior.

To this end, Orestes introduces code modules and handlers. They serve the purpose

of running and structuring backend code closely integrated with stored data. Typical

application use cases are tasks that require considerable resources or confidentiality, e.g.,

a payment process, training machine learning models, image processing, or validation of

user-uploaded files. To make use of the large JavaScript ecosystem, the package repository

npm is integrated into the FaaS engine of our prototype, allowing arbitrary libraries and

extensions to be installed and reused. Orestes categorizes backend code as follows:

Code Modules. Code can be stored as a module under a certain path. On the one hand,

this allows calling the module as a REST API, if it exposes the respective handlers for

3.5 Orestes: A Data Management Middleware for Low Latency 109

HTTP methods. On the other hand, the module can be imported in other backend

code to enable code reuse and a clear application architecture.

Scheduled Code. Code modules can be scheduled for repeated execution using cron pat-

terns [SS94, SGGS12] that define the intervals of automatic invocation. Orestes

takes care of ensuring that scheduled code is called at most once per interval and

that jobs are distributed evenly across Orestes servers.

Insert Handlers. Each bucket can have associated before and after handlers that are

called before or after successful execution of the respective operation on the un-

derlying data store. The insert handler can, for example, modify or abort the opera-

tion, invoke third-party services, check special permissions, or maintain materialized

views.

Update Handlers. Update handlers are similar to insert handlers and are executed for

changes to existing objects. Update operations in Orestes are object-based and not

set-based, to enable efficient caching through invalidations by side-effect (cf. Section

2.3).

Delete Handlers. In contrast to update and insert handlers, delete handlers do not have

access to a provided object, but instead need to base their behavior on the identity

of the object being deleted.

Validation Handlers. Before inserts and updates, any registered validation handlers

check for violations of custom rules that cannot be defined declaratively in the

schema (e.g., checking whether a name field starts with “X”). Like the schema, the

validation code is made available in the client to combine preliminary client-side

checks (e.g., in forms) with secure server-side validation.

Noticeably, load and query handlers are not provided, as their execution cannot be guaran-

teed in the presence of caches. Handlers and code modules do not affect caching, as they

always have to be handled by the server. Backend code in Orestes enables the application

to make a trade-off between data shipping and function shipping [ÖV11] in cases where

both client-side and server-side processing would be possible.

The FaaS abstractions provided by Orestes are independent of the implementation of the

code execution and can therefore rely on available FaaS platforms (e.g., AWS Lambda

[Rob16]). However, to minimize latency, the execution engine should be co-located with

the REST API server to prevent unnecessary network round-trips. In the Orestes prototype,

tenants are therefore deployed in pairs of co-located Node.js and Orestes server containers

(cf. p. 95). The Java-based Orestes servers can thus efficiently communicate with the

Node.js FaaS engine through low-latency inter-process communication. The trade-off is

that lower latency is chosen over independent scaling of the FaaS and BaaS tier that can

only be provisioned in pairs. Since idle or underutilized Orestes or Node.js containers

consume negligible resources, the latency benefit outweighs the stronger coupling. The

advantage of containerizing the FaaS component is that new instances can be scaled within

seconds with very little memory, CPU, and space overhead [Mer14,Swa17].

110 3 Providing Low Latency for Cloud Data Management

3.5.6 Query Processing

Queries are the primary means of data access for most database systems and therefore

should not be restricted in their expressiveness by Orestes. Purely key-based lookups are

handled without queries and are often the default for object-oriented data models that rely

heavily on navigational access. Unlike queries, however, key-based access can be easily

abstracted for all potential data stores. Queries, on the other hand, vary substantially

depending on the category of database system that is exposed through the middleware

(cf. Section 2.2). To allow different data models, Orestes therefore does not enforce a

common query language and does not interpret or parse queries. Instead, queries are

submitted by clients as opaque query predicates accompanied by general parameters for

defining the maximum number of returned objects, an offset, sorting instructions, and

potential projections of the result. The query module therefore only has to forward queries

appropriately to the database system, preferably applying projections and ACL checks

directly on the database to skip post-processing in Orestes. The database system can also

implement the index module, enabling application developers to explicitly set secondary,

unique, spatial, and full-text indexes based on the schema editor.

The primary goal for any read operations in Orestes is to enable low latency access through

caching. This is achieved for queries through learning and invalidation mechanisms de-

scribed in detail in Chapter 4. Besides these classic pull-based queries where clients

explicitly have to pose a request in order to receive a result, Orestes also supports push-

based queries. A pushed-based query is formulated using the exact same semantics as for

a pull-based query. However, instead of receiving a single query result, a self-maintaining
query is exposed as an abstraction for real-time changes.

Listing 3.2 shows examples for both types of queries in the JavaScript SDK. The query

builder in the client constructs filter queries that are supported for both push- and pull-

based queries (lines 1 to 5). The regular query (resultList) is executed against the

1 //Query with filtering conditions
2 var query = DB.Todo.find()
3 .matches(’name’, /^NoSQL/)
4 .containsAny(’tags’, ’lecture ’, ’video’, ’book’)
5 .equal(’done’, false);
6
7 // Regular pull -based query
8 query.ascending(’name’)
9 .resultList (...); // Called once

10
11 //Push -based query
12 query.descending(’createdAt ’)
13 .limit (30)
14 .resultStream (...); // Called every time the result changes

Listing 3.2: Comparison of pull-based and push-based queries.

3.5 Orestes: A Data Management Middleware for Low Latency 111

REST API and forwarded to the database – for example MongoDB for the Orestes proto-

type (lines 7 to 9). Push-based queries, in contrast, use WebSockets to enable real-time

communication8 (lines 11 to 14). The query is also sent to the Orestes server and executed

in the database while also being forwarded to the distributed real-time query processing

engine InvaliDB. As soon as InvaliDB detects that an update changes the previous re-

sult of a pull-based query, it sends a notification to subscribed clients. The architecture

and properties of InvaliDB are described in Section 4.4, since the task of sending change

notifications is mostly similar to that of query result cache invalidations.

From a software engineering perspective, continuous queries provided as self-maintaining

results have the advantage that semantics are easy to reason about and do not require

knowledge of query languages for real-time and streaming data [WGFR16, GÖ10, YG16,

CGH+17]. As real-time query matching is decoupled from the database system, continu-

ous queries can be posed in any query language that is supported by InvaliDB (MongoDB

queries in the prototype). For example, if Orestes is configured as a middleware for the

key-value store Redis, continuous queries can still be posed as more powerful MongoDB

queries, as the real-time processing is purely based on the polyglot abstractions of Orestes.

In contrast to database systems with built-in real-time interfaces (e.g., RethinkDB, Fire-

base, Meteor, and Parse) Orestes does not prescribe one particular query language and can

enhance any database system with a push-based query interface for real-time queries.

In summary, Orestes makes as few assumptions about query capabilities of underlying

database systems as possible. This allows cacheable pull-based and scalable push-based

queries across different database systems.

3.5.7 Concurrency Control

In two-tier architectures, concurrent updates must be expected, since clients are directly

involved in data modifications. Therefore, synchronization mechanisms for protecting

against update anomalies are required for both single-object updates and multi-object

transactions. Our concurrency strategy is coupled with the requirement that updates

should be executed without overhead on latency and scalability, which precludes expen-

sive mutual exclusion schemes.

To allow comparison of object versions, all Orestes objects have to expose a version field.

The only requirement is that two different versions of an object have non-equal version

numbers. Thus the implementation can be different depending on the built-in versioning

schemes of the database system. In case of MongoDB, for example, documents are not ver-

sioned by the data store itself. Therefore, the version field is implemented by initializing

objects with version numbers of 1 and incrementing them in each update, implicitly lever-

aging MongoDB’s $inc update operator. Version numbers are exposed in Orestes as ETag

8Push notification services for mobile platforms (e.g., Apple Push Notification Service and Google Cloud
Messaging) are not suitable for real-time query maintenance, as they have unpredictable latency [YAD14].

112 3 Providing Low Latency for Cloud Data Management

(entity tag) HTTP headers. For REST clients, this allows the use of the conditional header

If-Match for specifying the update behavior for POST, PUT, and DELETE operations.

Based on the versioning scheme, Orestes offers three types of concurrency control with

different performance trade-offs and guarantees:

Conditional Updates. A common concurrency anomaly in BaaS systems is a lost up-

date [WV02]: two clients read the same object, both perform an update, and one

modification gets overwritten. To prevent this anomaly, conditional updates apply

a server-side validation to ensure that the version which the update is based on is

still up-to-date. At REST level, the condition is expressed through an If-Match and

the latest ETag of the object known to the client. At the database level, this type of

update requires strong consistency and conditional updates at a per-operation level.

When a conditional update fails, Orestes returns the newest object version. As the

update cannot be retried automatically, the JavaScript SDK offers a convenient way

of retrying updates through an optimisticSave method that calls an update method

with the latest object version, potentially multiple times.

Partial Updates. As an alternative to the read-modify-write cycle of conditional updates,

partial updates directly apply updates in the database. Orestes expresses partial

updates as a collection of atomic update operations on field level. Atomic updates

include setting a value, arithmetic operations (e.g., increment), adding, removing,

and replacing elements in collections and bitwise operations. Under high concur-

rency, partial updates are preferable to conditional updates as they always succeed.

Often, the application can exploit commutativity of partial updates to ensure appli-

cation invariants. As an example, consider a stock counter in an e-commerce appli-

cation. Using conditional updates, the entity containing the stock value has to be

read, updated, and written back. Since subtractions are commutative, though, par-

tial updates can be used to perform concurrent stock updates from different clients

in single round-trips. At the database level, partial updates rely on the capability to

perform updates without reading objects first, which is possible in most document

and wide-column stores (e.g., in MongoDB [Mon17], DocumentsDB [STR+15], and

HBase [Hba17]). In contrast to conditional updates, this does not require strong

consistency and allows the database system to apply partial updates through con-

vergent or commutative replicated data types [LPS09].

ACID Transactions. Conditional updates and partial updates only prevent anomalies for

isolated write operations. To ensure correctness of multiple operations, multi-key

ACID transactions are required. Orestes achieves them in a database-independent

fashion, allowing any database system with linearizable updates to be exposed as a

transactional data store. The scheme is compatible with caching and described in

detail in Section 4.8.

By providing the three above concurrency schemes, applications can trade performance

against ease of development and the required degree of correctness. While commercial

3.5 Orestes: A Data Management Middleware for Low Latency 113

BaaS systems and many NoSQL databases fall short in their support of strong concurrency

semantics, we are convinced that the ability to opt into more sophisticated concurrency

schemes is strictly necessary for complex or critical applications. In polyglot persistence

architectures, they should therefore be provided on top of existing data stores whenever

possible. Conditional updates offer the simplest programming model, but drastically re-

duce throughput under high concurrency. Partial updates are powerful for single-object

updates, but require the application developer to reason about the commutativity of up-

dates. ACID transactions are the most powerful mechanism and the only option to ensure

correct serialization of concurrent updates spanning multiple objects.

3.5.8 Scalability and Multi-Tenancy

The crucial requirement of the Orestes scalability model is to avoid introducing any bottle-

neck to elasticity and scalability that is not present in the underlying database systems. At

the same time, read scalability should be increased by offloading data stores from reads,

queries, and file downloads. This goal is achieved by scaling each tenant independently

from other tenants and the database system. The approach is shown in Figure 3.10.

A management and orchestration service is responsible for deploying new tenants,

maintaining the cluster and scaling the infrastructure. Orestes is designed to be provided

on top of IaaS clouds, so that new VMs can be provisioned on demand and added to the

cluster. To avoid the substantial resource and time overhead of providing a VM for each

new tenant and tenants that need to scale, Orestes servers run in lightweight containers

for process-level isolation. For example, in the Orestes prototype, VMs and containers are

orchestrated through the cluster framework Docker Swarm [Swa17] that coordinates with

a master server co-located with the Orestes management server. Like the Apache Storm

master (Nimbus), the stream processing system that the prototype of the real-time layer

is based on, Swarm achieves resilience to machine failures by storing state in a Zookeeper

(ZK) instance under control of the Orestes management service [HKJR10].

Each virtual machine in the cluster comprises an TLS terminations proxy that accepts

connections from CDNs and forwards requests to a reverse proxy cache. Besides caching

responses in the reverse proxy, this setup allows zero-downtime configuration updates,

as a new mapping of container endpoints can be updated in the reverse proxy without

dropping active TCP connections. For each tenant, at least one container pair of Orestes

servers and the FaaS runtime is active. The container pair forms a private network where

the FaaS component can contact Internet services and the Orestes server, but no inter-

nal services. Usually, the underlying database systems are addressed through a proxy

co-located with each VM that forwards operations and data to the independently scaled

database clusters.

The cluster is maintained as a set of N VMs, each of which contains M container pairs.

Thus, Orestes can provide the following scalability, multi-tenancy, and availability charac-

teristics:

114 3 Providing Low Latency for Cloud Data Management

Scaling cluster capacity. If machines in the cluster become overloaded according to met-

rics like CPU, memory, and network usage [LBMAL14], new VMs are provisioned

and added to the cluster. Afterwards, new or migrated containers can leverage the

increased resource pool. To scale down the cluster capacity, containers are migrated

away from a VM, and the host machine is stopped.

Provisioning tenants. To add a new tenant, a pair of containers is provisioned and sched-

uled to the VM with the most remaining capacity. The Orestes container is registered

in the reverse proxy and exposed through a combination of a hostname and TCP port

that gets registered in CDNs.

Updating tenants. In order to update a tenant without downtime (e.g., with a new

Orestes server), a new container pair is provisioned first. Afterwards, the connec-

tions to the old container pair are drained by redirecting requests only to the new

containers. Eventually, the old container can be safely shut down without affecting

any users.

Scheduler
(Swarm)

Streaming
(Nimbus)

Coord.
(ZK)

Management and Orchestration Service

Database
System 2

Database
System 3

Real-Time
Layer

State
Service

Database
System 1

Scale machines
based on load,

restart on error

Provision and scale
tenants, migrate
failed containers

Web
Cache

TLS
Proxy

Virtual Machine
(Docker Swarm Node)

Database
Proxy

Orestes
Server

FaaS
Engine

Container (Docker)

Orestes
Manager

Figure 3.10: Scalability and multi-tenancy model of Orestes and its prototype implemen-
tation.

3.5 Orestes: A Data Management Middleware for Low Latency 115

Scaling out and in. To scale an individual tenant, its resources can be monitored similar

to VMs, since they are reported by the container runtime. Under high load, a new

pair of containers can be added at any time and take over a fraction of the overall

load.

Reacting to failures. When a tenant fails, CDNs detect failed requests and report the

error to the management service. The failed containers can then be restarted on any

available machine. Similarly, when a VM becomes unavailable, all containers on the

machine are restarted over the cluster.

Scaling the database system. In the typical setup, all tenants are distributed over a sin-

gle database cluster and use sharding to generate uniform load of data and opera-

tions. As many NoSQL systems support sharding [GWFR16], Orestes can proactively

scale in and out the database system to match the aggregate workload of all tenants.

Like any other system, Orestes is subject to the CAP/PACELC trade-off. The design goal

of Orestes is to keep any guarantees provided by the database system. In addition, Orestes

offers consistent operations, schema management, and transactions. These are not avail-

able under certain network partitions, e.g., when the Orestes server is separated from the

state service while a schema update has to be applied. Therefore, Orestes only guaran-

tees availability for coordination-free operations that only require the database system to

be available. Nonetheless, the CAP/PACELC trade-offs of specific database systems are

maintained and only forwarded through Orestes. As Orestes supports a superset of poten-

tial non-functional properties, operations that are subject to unavailability during network

partitions will become unavailable in Orestes, too. The only notable exception are cached

objects, files, and query results. When the database system is unavailable, Orestes can

continue to serve (potentially stale) data from caches. In contrast to availability, scalabil-

ity is always enhanced by Orestes, as solely non-cached read operations and updates reach

the database systems.

3.5.9 Server Implementation

The architecture of Orestes is geared towards providing low latency and high throughput

for the REST API. For performance reasons, the Orestes prototype is written in Java. The

Java Virtual Machine was chosen for the compromise between little overhead over native

code, maintainability, and the availability of rich server frameworks for providing an HTTP

server that is able to scale vertically with cores and CPUs [Oak14]. Also, the language had

to be common enough to have good support for database system drivers that are employed

in the data modules. Orestes is based on asynchronous, non-blocking I/O for high network

throughput. The internal processing is structured in stages, similar to the staged event-

driven architecture (SEDA [WCB01]) commonly found in web server implementations like

Nginx.

The internal architecture of the Orestes server prototype with respect to the processing

of an incoming request is shown in Figure 3.11. The request travels through several

116 3 Providing Low Latency for Cloud Data Management

HTTP Requests

Handle
directly or

dispatch

Objects/queries
for InvaliDB

Database
operations

Cross-functional Services and Components

 CRUD
 Queries
 …

Resource
Router

Specific
Resource

Converter
Service

Asynchron-
ous I/O

RESTful
Jetty (HTTP)

Permission
Stage

Operation
Stage

Event
Stage

FaaS
Stage

Data
Modules

Database
Driver

Shared
Thread Pool

Static & Run-
time Config

Web
Dashboard

Transaction
Service

Caching
Service

State
Service

Schema
Service

Invalidation
Service

Dependency
Injection

Rate-Limit
Service

Figure 3.11: Prototype architecture of the Orestes server with respect to processing of
incoming requests.

components in the direction of the database systems before being returned via the same

path in return:

1. An incoming HTTP request is handled by an asynchronous non-blocking connector

in order to minimize the memory overhead and latency of network communication.

2. The HTTP request is parsed by RESTful Jetty, our open-source enhancement of the

Jetty HTTP server framework.

3. Based on the requested URL and passed headers, a registered Resource class (e.g.,

for /db/bucket/id) is selected by the router to handle the request.

4. If the request has a body, its content is converted to appropriate data structures

(e.g., an OrestesObject containing fields and values).

5. The resource implementation decides how to handle a request. For data operations

like CRUD and queries, the request is dispatched to a staged pipeline. Otherwise,

the request may be directly answered (e.g., to return the server’s current version).

3.6 Discussion 117

a) The first stage checks whether the provided token represents sufficient permis-

sions to perform the request. Each stage can perform logic either on the way

of the request to the database or when the response is traveling back through

the server.

b) The event stage provides the real-time layer InvaliDB with object snapshots

and queries for both continuous queries and query result cache invalidation.

c) The FaaS stage invokes handlers, code modules, and scheduled code. After-

wards, it returns the results of the invocation.

d) The operation stage passes the request to the appropriate data module imple-

mented for specific database systems. This step can either be based on a static

configuration or our concept of the Polyglot Persistence Mediator.

6. In the data module, the request is mapped to the specific database driver. Depending

on the operation, this step can be very simple or require additional logic (e.g., for

checking object-level ACLs).

7. When the database returns the result, it is passed through the same components and

stages in reverse order to apply any checks or modifications for the response. Typ-

ically the communication to the database systems is synchronous, as even modern

NoSQL databases mostly use blocking, thread-based I/O [GWFR16].

8. Cross-cutting concerns are structured in services. For example, the state service

offers a generalized interface for storing and retrieving state across Orestes servers

such as registered FaaS code.

In summary, Orestes supports both horizontal and vertical scalability. Horizontal scalabil-

ity relies on load balancing over multiple Orestes server instances. Vertical scalability is

enabled by a staged server architecture that relies on request-parallel, asynchronous HTTP

communication for low latency and high throughput.

3.6 Discussion

The purpose of Orestes is to enable low latency with tunable consistency for a broad set

of database systems. This is achieved by a middleware design that promotes database

independence of central data management capabilities such as schema management and

caching. To exploit the benefits in a broad set of application contexts, Orestes exposes

data stores as a DBaaS and BaaS by enhancing them with the necessary functional ex-

tensions (e.g., backend code) and security mechanisms (e.g., object-level access control).

By making the middleware tier scale independently from database systems, multi-tenant

cloud data management is achieved without compromising the heterogeneous trade-offs

found in NoSQL database systems.

118 3 Providing Low Latency for Cloud Data Management

To illustrate the usefulness of Orestes with respect to requirements-driven development of

data-centric applications, consider a typical development process for a scalable two-tier

application:

1. First, an Orestes data model is defined that leverages the hybrid approach of mixing

well-known data types with more flexible schemaless elements. The schema design

uses a visual editor in a web dashboard to allow easy definition and sharing of the

core application data model.

2. One or more database technologies are chosen to provide the DBaaS/BaaS used

by the application. The step can either happen manually based on the NoSQL tool-

box proposed in the beginning of this chapter, or through an automized process as

described in Chapter 5.

3. If the application is based on an existing corpus of data, it is imported and trans-

formed to the specified data model.

4. The application’s web or app frontend is developed without requiring any previously

developed server-side application logic (e.g., HTML template rendering). Orestes

exposes a database REST API that is consistent across projects and therefore easy to

apply.

5. Any critical or confidential parts of the business logic are developed as backend

code modules, handlers, or scheduled code using the same APIs as the frontend to

perform queries, load and save objects, and manage users.

6. Access to data is secured by defining appropriate schema ACLs during the modeling

phase, and setting object-level ACLs that protect access according to any application-

level notion of permissions.

7. The application artifacts like the schema, backend code, and frontend assets are ver-

sioned and shared across teams through an arbitrary version control system. Based

on the source code repository, the application is deployed to testing, staging, and

production environments using a CLI either from development machines or contin-

uous integration servers throughout the different phases of development.

8. In production, Orestes handles the database and middleware infrastructure to de-

liver data consumed and displayed in the frontend with minimal latency while trans-

parently scaling with data volume and request load.

9. If new applications based on the same data are created, they can share and reuse the

backend side using the same REST interface without compromising performance.

While any application could also be developed through the explicit use of disparate

database and cloud storage technologies, we believe that a common API and middle-

ware for database systems is a promising way to solve critical non-functional and func-

tional problems across many systems. Thus, development efforts can be focused on the

application-specific problems, while generic components are already available.

3.6 Discussion 119

HTTP Performance Evaluation

In Chapter 4, we will provide in-depth evaluations of the performance and latency im-

provements obtained through Orestes. To give a first quantitative impression on the po-

tential effects and the overhead of Orestes, we present results for experiments on the

REST/HTTP layer in the following. Figure 3.12 compares the performance of Orestes to

that of a database-specific access protocol9.

50 100 150 200 250

300 / 1

300 / 2

300 / 3

3000 / 1

3000 / 2

3000 / 3

30000 / 1

30000 / 2

30000 / 3

Time [s]

VOD native

Orestes

S
e
tu

p
 [

#
o

b
je

c
ts

/r
u

n
]

(a) Performance of Orestes compared to VOD for
300/3 000/30 000 total database objects over 3 runs.

50

100

150

1 2 3

T
im

e
 [

s]

Run

Squid 2 Squid 3 Squid 3 patched

Microsoft TMG No cache VOD

(b) Performance for different web caches and Orestes with
and without caching.

Figure 3.12: Evaluation of the Orestes REST/HTTP layer in a micro-benchmark compared
to native database access.

In the experiments, 50 client machines connected to an Orestes server with a Versant Ob-

ject Database (VOD) are separated by a network latency of 165ms±2ms using the Amazon

EC2 regions Ireland and California. Web Caching is performed through a forward-proxy

cache co-located with the clients. The workload that is concurrently executed by all clients

9The detailed results are published in [GBR14].

120 3 Providing Low Latency for Cloud Data Management

is a micro-benchmark modeled after a social networking scenario (500 operations per sec-

ond, 90% reads, 10% writes, navigational access with sporadic queries and transactions).

There were three consecutive runs for different sizes of the database comparing Orestes

exposing VOD against VOD with its binary TCP protocol.

Figure 3.12a shows that the average execution time of the test is heavily reduced with

Orestes. The performance improvements are not only a consequence of the applied web

caching. The ability of the Orestes unified interface to combine different operations in

a single round-trip, makes network communication significantly more effective in high-

latency environments. For example, by batching a transaction commit into a single HTTP

request, multiple round-trips can be saved.

Figure 3.12b reports the results of the same micro-benchmark for a setup of hardware

machines using a single client, different caches (both in Hamburg) accessing Orestes/VOD

(California). The results show that the large performance advantage is consistent across

different web caches. This is a consequence of Orestes relying on standard HTTP caching.

Furthermore, the experiments also show that Orestes without any caching is competitive

to custom database protocols. For detailed results in this setting, we refer to [GBR14] as

well as the evaluations discussed in Chapter 4.

Due to the low overhead and efficient communication of updates in Orestes, even without

any caching, the overall performance of Orestes is roughly 30% better compared to VOD’s

native protocol. Thus, the overall performance of REST/HTTP as the only interface of

Orestes, does not impose a substantial overhead. Any latency optimization achieved by

Orestes therefore directly improves performance over native database protocols.

3.7 Summary

In this chapter, we derived an architecture that enables low latency across different data-

base systems. The set of data management requirements that should be supported was

gathered through an extensive survey of scalable NoSQL database systems. We introduced

a classification scheme that captures the dependencies between database implementation

techniques and the related functional and non-functional properties. This NoSQL toolbox

was used to deduct a simple decision tree to narrow down the possible system choices to

candidates that support them.

The surveyed set of capabilities allowed us to propose Orestes as a DBaaS/BaaS mid-

dleware architecture that maintains the different systems’ trade-offs and enhances them

with low-latency access, BaaS capabilities for two-tier architectures, and a scalable multi-

tenancy model. We then discussed how these extensions can be provided in an efficient

and expressive fashion and proposed a scalable and database-independent implementa-

tion. Orestes employs a unified REST API as a superset of data management capabilities

that can be consumed directly from any, even untrusted, clients. To this end, a data-centric

access control model is proposed, as well as an FaaS execution environment. Orestes tack-

3.7 Summary 121

les query processing and concurrency control in a database-agnostic middleware. Thus,

these features are available irrespective of the individual databases’ capabilities. In par-

ticular, real-time queries enable users to subscribe to specific queries and optimistic ACID

transactions introduce strong guarantees for interleaved multi-object modifications.

The Orestes architecture offers a universal DBaaS/BaaS environment that we utilize to

obtain our core contribution of latency reduction in cloud data management as described

in the following chapter.

122 3 Providing Low Latency for Cloud Data Management

123

4 Web Caching for Cloud Data Man-
agement

This chapter introduces a cache coherence scheme for dynamic data to significantly reduce

latency on the web. The approach leverages traditional web caching technology and en-

hances it with the capability to keep data up-to-date in real time on a global scale. Fresh-

ness is particularly challenging in cloud data management, as data tends to be volatile

and may change at any time. For this reason, we introduce means to expose fine-grained

trade-offs between the desired latency and the guaranteed consistency levels for applica-

tions. This approach enables data-driven web applications and mobile apps that rely on

cloud-hosted data and are still able to achieve imperceptible response times.

First, we will introduce the Cache Sketch data structure that allows Orestes to transfer

the task of maintaining cache coherence from the server to the client. Using the Cache

Sketch, we enable end devices to keep expiration-based caches up-to-date with very lit-

tle overhead. The strategy is complemented by proactive updates to invalidation-based

caches executed by the DBaaS/BaaS. The Cache Sketch enables several tunable consis-

tency levels for caching objects and files. The key guarantee is ∆-atomicity that bounds

staleness and exposes ∆ as a parameter that can be chosen per request, session, or appli-

cation.

Based on the construction of the Cache Sketch, we extend the caching scheme to support

dynamic query results. To this end, changes to query results have to be detected in real

time. To enable high cache hit rates and low space overhead, we propose TTL Estimation

as a mechanism to determine the approximate time until a cached query result becomes

stale. To minimize the number of round-trips to assemble a query result, we introduce an

analytic model that determines the best encoding of results for a given access pattern.

To solve the problem of high abort rates for optimistic transactions, we propose Dis-

tributed, Cache-Aware Transactions (DCAT). DCAT exploits our caching scheme to lower

the overall transaction execution time and significantly reduces aborts. This allows appli-

cations to fall back to the strong guarantees of ACID transactions when the guarantees of

the Cache Sketch alone are insufficient.

We provide evidence for the performance improvements through both Monte Carlo simu-

lation and experimental evaluation. For typical workloads on the web, the Cache Sketch

124 4 Web Caching for Cloud Data Management

approach can improve performance by an order of magnitude and therefore is a major

step towards a web without loading times.

4.1 Cache Sketches: Bounding Staleness through Expiring
Bloom Filters

In this section, we introduce the Cache Sketch methodology that employs automatic

caching of database objects and files requested through a REST/HTTP API. As motivated

in Chapter 2, latency for cloud services is an open challenge that can currently not be

addressed through web caching, as expiration-based models offer insufficient consistency

guarantees for data management. Subsequently in Section 4.4, we extend this approach

from object and file caching to query result caching.

We achieve cache coherence through a dual approach: expiration-based web caches

(browser/device caches, forward proxy caches, ISP caches) are kept consistent through

client-side revalidations enabled by the Cache Sketch data structure, whereas invalidation-
based web caches are updated by purge requests issued by the database service. The

proposed caching methodology is applicable to any data-serving cloud service, but par-

ticularly well-suited for DBaaS and BaaS systems. The Cache Sketch is a Bloom filter of

potentially stale objects maintained in the database service. To determine whether an ob-

ject can safely be fetched from caches, clients query the Cache Sketch before reads. If the

object’s ID is contained in the Cache Sketch, a revalidation request is sent, as intermediate

caches might hold a stale copy. The issued HTTP revalidation request instructs caches to

check whether the database object has a different version than the locally cached copy. If

a false positive occurs, a harmless revalidation on a non-stale object is performed, which

has performance implications comparable to those of a cache miss.

Clients leverage the Cache Sketch for three different goals: fast application and session

starts (cached initialization), cached reads with consistency guarantees (bounded stale-
ness), and low-latency transactions (distributed cache-aware transactions). For cached ini-
tialization, clients transparently store every fetched object in the client cache (usually the

browser cache). At the begin of a new session or page visit, the Cache Sketch is trans-

ferred, so clients can check which cached copies from the last session are still up-to-date.

The number of necessary requests is thus reduced to the cache miss ratio of intermediate

caches. To maintain ∆-bounded staleness, the Cache Sketch is refreshed in intervals of ∆.

The interval constitutes a controllable upper bound on the staleness of loaded objects.

Similarly, distributed cache-aware transactions load the Cache Sketch at transaction begin.

Subsequent transactional reads exploit cached objects, reducing the overall duration and

associated abort probability of the transaction.

By optimistically caching all objects and employing the Cache Sketch to only revalidate

stale objects, almost the same cache hit ratio is achieved as if the time to the next write

was known in advance. An object can only be removed from the Cache Sketch once

4.1 Cache Sketches: Bounding Staleness through Expiring Bloom Filters 125

it is known to have been expired in all caches. Thus, precise estimations of expiration

times impact cache hit ratios after writes as well as the number of necessary invalidations.

To tune the inherent trade-off between cache hits, stale reads, invalidations, and false

positives towards a given preference, we present the Constrained Adaptive TTL Estimator
(CATE) that complements the Cache Sketch by adjusting cache expirations to optimize the

trade-off.

This section covers three central contributions:

• We propose the Cache Sketch as a data structure that enables the use of expiration-

and invalidation-based web caching for cloud data management systems to combine

the latency benefits of caching with rich consistency guarantees.

• We describe the Constrained Adaptive TTL Estimation (CATE) algorithm that com-

putes object expiration dates to minimize stale read probabilities and invalidations

while maximizing cache hits.

• We present the Monte Carlo caching simulation Framework YCSB wrapper for Monte

Carlo simulation (YMCA) that allows to analyze and optimize caching strategies and

Cache Sketch parameters for pluggable network, database, and caching topologies.

In the following, we first present the Cache Sketch with its properties and effects. Next, we

outline the TTL estimation problem and a possible solution. Afterwards, we introduce the

YMCA simulation framework and present simulated and empirical results for the proposed

combination of web caching and cloud data management.

4.1.1 The Cache Sketch Scheme

The expiration-based caching model of HTTP was deliberately designed for scalability and

simplicity. It therefore lacks cache coherence protocols and assumes a static TTL (time

to live) which indicates the time span for which a resource is valid, allowing every cache

to keep a copy. This model works well for immutable content, for example a particular

version of a JavaScript library. With the rise of REST APIs for cloud services, however, this

model fails in its naive form – TTLs of dynamic content, in particular database objects and

query results are not known in advance. This has led to database interfaces that forbid

caching in the first place as staleness would be uncontrollable otherwise (cf. Section

2.3.3).

Figure 4.1 shows an architectural overview of how our Cache Sketch approach addresses

this problem. Every cache in the request path serves cached database objects requested

by their respective keys to the client, which can either be an end user’s browser, a mobile

application, or an application server. The Bloom filter of the client Cache Sketch is queried

to send a request either as normal request (object not contained) or a revalidation (object

contained). The revalidation forces caches to update their copy using an HTTP request

conditioned over the object’s version (ETag).

126 4 Web Caching for Cloud Data Management

Client

Expiration-
based Caches

Invalidation-
based Caches

Server Cache Sketch

St
al

en
es

s-
M

in
im

iz
at

io
n

In
va

li
d

a
ti

o
n

-
M

in
im

iz
at

io
n

10201040

10101010

Counting
Bloom Filter

Non-expired
Object Keys

Request
Path

Server/DB

Invalidations,
Objects Report Expirations

and Writes

Needs Invalidation?

Client Cache Sketch

at
connect

Periodic
every Δ

seconds

at
transaction

begin

Cache
Hits

10101010
Bloom
filterNeeds Revalidation?

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

1

2 3

4

Cached
Initialization

2
Δ-Bounded
Staleness

1

3
Distributed Cache-
Aware Transactions

4
Invalidation
Minimization

Figure 4.1: Architectural overview of the client and server Cache Sketch.

The database service tracks the highest TTLs per resource provided at a cache miss. On

a subsequent write, the object is added to a Counting Bloom filter [BM03] of the server

Cache Sketch and removed when the object’s TTL is expired. The database service is

furthermore responsible for purging objects from invalidation-based caches (CDNs and

reverse proxy caches), which allows them to answer revalidations. To minimize invali-

dation broadcasts, purges are only sent, if the server Cache Sketch reports an object as

non-expired. It is important to note, that this scheme does not require any modifications

of the HTTP protocol or web cache behavior. The proposed Cache Sketch approach is

further not specific to a particular database service architecture and can be realized either

directly in the nodes of database system or as a tier of stateless REST servers exposing the

database. We chose the latter approach by building on Orestes as described in detail in

Chapter 3.

There are several advantages of caching database objects close to clients:

• Cache hits have lower latency and higher throughput than uncached requests, as

TCP throughput is inversely proportional to round-trip time [Gri13].

• The database service is under lighter load, as it only has to handle write requests

and cache misses.

4.1 Cache Sketches: Bounding Staleness through Expiring Bloom Filters 127

• Clients profit from requests of other clients, as all caches except the browser/device

cache are shared and thus increase read scalability.

• Flash crowds, i.e., load spikes caused by unexpected and sudden popularity, are

mitigated by caching and do not bring down the database service [FFM04].

• Temporary unavailability of the database service can be compensated for reads by

letting CDNs and reverse proxies serve cached objects while the service is unreach-

able.

4.1.2 The Client Cache Sketch

For each potentially non-expired, cached object x, the client Cache Sketch has to contain

its key key(x). For now, we will only consider key/ID lookups – the most common access

pattern in key-value, document, and wide-column stores – and discuss how the scheme

can be extended to query results in the following section. The client Cache Sketch is based

on Bloom filters, as they satisfy several properties that are central to our requirement for

efficient detection of potentially stale objects:

Additions and Removals in Server, Lookups in Client. The server needs the ability to

add and remove potentially stale objects from the Cache Sketch, whereas the client

needs to check for containment. The Bloom filter with its extension to counting

offers these operations for the client and server, respectively [FCAB00].

Fast Client-Side Lookups. The Bloom filter supports O(1) lookups and thus is very effi-

cient for clients to be queried as an in-memory data structure for any read.

Small Size. As the client Cache Sketch needs to be transferred often, its size should be as

small as possible. Bloom filters are within a factor of 1.44 of the theoretical lower

bound of required space for a given false positive rate [BM03].

No False Negatives. Any false negative for a Cache Sketch lookup would entail an in-

consistent read with unbounded staleness. Therefore, false negatives must be pre-

vented, which is the case for Bloom filters. Occasional false positives, on the other

hand, are permissible, as they only impact latency (cache misses) and not correct-

ness.

Generation in Constant Time. To scale with the number of clients, fetching the Cache

Sketch should not impose any computation overhead in the server, but instead corre-

spond to a constant-time in-memory dump of a data structure. This can be achieved

with Bloom filters, as described in the following section.

According to Broder et al. [BM03] the concept of using Bloom filters for sets, when space

requirements are of high importance and false positives can be tolerated, is known as the

Bloom filter Principle (cf. [BM03]). A Bloom filter is a space-efficient encoding of a set

and is based on bit vectors and hash functions. Bloom filters were developed in 1970

by Burton Bloom [Blo70] as a memory-efficient data structure for hyphenation programs.

The idea is to query a word to determine whether it is suitable for rule-based hyphenation,

128 4 Web Caching for Cloud Data Management

like 90% of all English words, or whether it needs to be looked up in a dictionary on hard

disk. Memory efficiency is critical to maintaining the data structure in main memory, while

the negative side-effect of a false-positive is negligible (the lookup of a word from disk in

Bloom’s original setting). Bloom filters have since been used for a wide variety of database

problems [BM03, FCAB00]. In the last 10 years, their usefulness has been discovered for

many other areas such as collaboration, routing, and data analysis [TRL12].

We only cover aspects of Bloom filters and probabilistic data structures that are relevant to

our approach and refer to the comprehensive treatment of their mathematical properties

by Broder et al. [BM03] for details. A discussion and comparison to alternative data

structures for the Cache Sketch is provided in Section 6.1.4.

k hash functions m Bloom filter bits

1 0 0 1 1 0 1 1
h1

hk

...keyfind(key) Bits = 1

Client Cache Sketch

no

yes

GET request

Revalidation

Cache

Hit

Miss

key

key

Figure 4.2: Database read using the Cache Sketch.

As shown in Figure 4.2, a read on a key is performed by querying the Bloom filter bt of

the client Cache Sketch ct that was generated at time t. A Bloom filter represents a set

S = key1,key2,...,keyn with n elements through a bit array of length m. The key is hashed

using k independent uniformly distributed hash functions that map from the key domain

to [1,m], where m is the bit array size of bt . If all bits h1(key), . . . ,hk(key) equal 1, the

object is contained and has to be considered stale. Thus, false positives can occur: if all

positions of a key have been set to 1 by inserting other keys, it is wrongly recognized as

being contained. Orestes abstracts from this by transparently performing the lookup for

each client-side load and query operation and automatically refreshes the Cache Sketch

according to the desired consistency level.

4.1.3 Proof of ∆-Atomicity

Theorem 4.1 deducts the central guarantee offered by the Cache Sketch using the time-

based consistency property ∆-atomicity [GLS11] (cf. Chapter 2). ∆-atomic semantics

assert that every value becomes visible during the first ∆ time units after the acknowledg-

ment of its write.

Theorem 4.1. Let ct3 be the client Cache Sketch generated at time t3, containing the key
key(x) of every object x that was written before it expired in all caches, i.e., every x for which
holds that ∃r(x,t1,T T L),w(x,t2) : t1 +T T L > t3 > t2 > t1. The read r(x,t1,T T L) is a cache miss
on x at time t1, where T T L is the time to live provided for that read and w(x,t2) is a write on
x at time t2 happening after the read.

4.1 Cache Sketches: Bounding Staleness through Expiring Bloom Filters 129

A read on object x performed at time t4 using ct3 satisfies ∆-atomicity with ∆ = t4− t3, i.e., the
read is guaranteed to see only objects that are at most ∆ time units stale.

Proof. Consider there was a read issued at time t4 which used the latest Cache Sketch ct3

and that returned an object x that was stale for ∆ > t4− t3 which would violate ∆-atomicity.

This implies that x must have been written at a time t2 < t3 as otherwise ∆ < t4− t3 (∆-

atomicity no violated). For x to be stale, there must have been a previous read r(x,t1,T T L)

with t1 +T T L > t4 > t2 so that x was still cached in at the time of the stale read. However,

by the construction of ct3 the object’s key is contained in ct3 until t1 +T T L. Therefore, the

read at t4 < t1 +T T L using ct3 could not have been stale (proof by contradiction).

t1

r(x)
TTL

t2

w(x)

t3

ct3

t4

r(x)
 Δ

t1 + TTL

Retrieved
Cache Sketch

Staleness
Bound

timespan for which x ∈ c

Figure 4.3: Illustration of the proof of ∆-atomicity for the Cache Sketch.

Theorem 4.1 states that clients can tune the desired degree of consistency by controlling

the age ∆ of the Cache Sketch: the age directly defines ∆-atomicity. The proof with its used

variables is illustrated in Figure 4.3 that shows the different operations and timestamps.

The guarantee relies on the linearizability of the underlying database system, i.e., writes

are assumed to be directly visible to uncached reads. If the database is only eventually

consistent with ∆db-atomicity, the guarantee is weakened to (∆+∆db)-atomicity1. Similarly,

if the invalidation-based caches only support asynchronous invalidations (which is typical

for real-world CDNs [PB08]) with ∆c-atomicity, the consistency guarantee becomes (∆+

∆c)-atomicity2.

If ∆c is either unbounded or an undesired source of uncertainty, ∆-atomicity can be es-

tablished in two ways. First, invalidation-based caches can be treated as pure expiration-

based caches by not letting them answer revalidation requests. The trade-off is that this

increases read latency and the load on the database service. Second, invalidations can be

performed synchronously. This is a good option for reverse proxy caches located in the net-

1Bailis et al. [BVF+12] have extensively studied the staleness of Dynamo-style systems. They found that with
high probability ∆db is very low (in the order of single-digit milliseconds) and for many configurations not
perceivable at all.

2We are not aware of any scientific studies on CDN purge latencies. Anecdotally, the Fastly CDN used in our
evaluations employs the bimodal multicast protocol for invalidations with measured latencies typically
much lower than 200ms [Spa17].

130 4 Web Caching for Cloud Data Management

work of the database service. Here, the trade-off is that cache misses have higher latency

and can be blocked by the unavailability of a cache node (no partition tolerance).

4.1.4 Controlling Consistency

Definition 4.1 introduces three client-driven age-control techniques for the Cache Sketch.

Cached initialization builds on the insight that initially ∆ = 0 for a Cache Sketch piggy-

backed upon connection. This implies that every cached object can be used without de-

grading consistency, i.e., loading the Cache Sketch is at least as fresh as loading all initially

required objects in bulk, which may also include all static resources (images, scripts, etc.)

of the application or website.

Definition 4.1. A client follows cached initialization, if all initial reads are performed using
a freshly loaded Cache Sketch ct . A read at tnow follows ∆-bounded staleness, if it only uses ct

if tnow < t +∆. A distributed cache-aware transaction started at ts uses cts for transactional
reads.

∆-bounded staleness guarantees ∆-atomicity by not letting the age of the Cache Sketch

exceed ∆. Updates may be performed eagerly or lazily. With eager updates, the client

updates ct in intervals of ∆. As this may incur updates despite the absence of an actual

workload, lazy updates only fetch a new Cache Sketch on demand. To this end, if a read

request is issued at tnow > t +∆, the request is turned into a revalidation instructing the

service to append the Cache Sketch to the result. Hence, at the mild cost of a cache miss

at most every ∆ time units, ct is updated without additional requests.

Similar to cached initialization, a distributed cache-aware transaction (DCAT) is started

by loading the Cache Sketch3. The caching model is only compatible with optimistic

transactions as reads are performed in caches which cannot participate in a lock-based

concurrency control scheme. By having clients collect the read sets of their transactions

consisting of object IDs and version numbers, the database service can realize the trans-

action validation using BOCC+, as described in Section 4.8. The important alteration

that DCAT brings to this scheme is that cached reads can drastically reduce the duration

T of the transaction, while the Cache Sketch limits staleness during transaction execu-

tion. Since the abort probability of optimistic transactions quickly grows with T [Tho98],

lowering T through cache hits can greatly reduce abort rates.

Figure 4.4 shows an end-to-end example of Cache Sketch usage, in which a client reads

two different objects x3 and x2 first and then updates a third object x1. First, the client

fetches the Cache Sketch (step 1). Then, x3 is loaded which is not contained in the Cache

Sketch and therefore requested normally, resulting in a cache hit (step 2). Next, the client

reads x2 which is contained and hence a revalidation is sent, causing the expiration-based

cache to evict its cached copy (step 3). The server returns x2 with a new TTL/expiration

3Transactions could potentially start by reusing an already available Cache Sketch, however this increases
stale reads that always lead to an abort.

4.1 Cache Sketches: Bounding Staleness through Expiring Bloom Filters 131

4. The client writes object x1.

3. The client revalidates object x2 from the server.

2. The client reads object x3 from the cache.

1. The client connects to the server and retrieves a Bloom filter b.

Client
Expiration

Cache
Invalidation

Cache
Server

Client Cache
Sketch

Server Cache
Sketch

b={x2}
t = {(x2, t2),(x1, t1)}

b=∅

b={x2}

Connect
bt0={x2}

Query
x2

Response
inv=true

c={(x2,t2),(x3,t3)} c={(x1,t1)}

Revalidate
x2

c={(x3,t3)}
Response

x2,t4
c={(x2,t4),(x3,t3)} c={(x1,t1),(x2,t4)}

Report Read
x2,t4

Put
x1=v

Report Write
x1 b={x2,x1}

t = {(x2, t4),(x1, t1)}

Response
ok

Invalidate

x1

Response
true

Query
x3

Response
false

Get
x3

Response
x3

b={x2}
t = {(x2, t4),(x1, t1)}

Figure 4.4: An end-to-end example of the proposed Cache Sketch methodology.

date t4, which is saved in both invalidation-based and expiration-based caches. Addition-

ally, the new expiration date is also reported to the server Cache Sketch, where expiration

state is tracked. On the subsequent write on x1, it is added to Counting Bloom filter of

the server Cache Sketch, since its expiration date t1 has not yet passed (step 3). This also

tells the server to invalidate the object in invalidation-based caches. Any later readers are

therefore able to revalidate x1 from an invalidation-based cache.

As discrepancies between actual and estimated TTLs can cause extended periods for which

objects are contained in the Cache Sketch and considered stale, clients perform a differen-
tial whitelisting: every object that has been revalidated since the last Cache Sketch update

is added to a whitelist and considered fresh until the next Cache Sketch renewal4. While

4This assumes that all requests by a client pass through the same set of caches, which is true for most
networks and TLS-encrypted connections.

132 4 Web Caching for Cloud Data Management

this may incur stale reads, staleness of whitelisted objects is bounded to ∆ and thus per-

formance is improved without violating the overall consistency guarantee.

The achieved consistency levels are similar to those provided by related work (e.g., Pileus

[TPK+13]), but we employ widespread web caches instead of custom replication sites and

support both key-based access and queries. A detailed analysis of consistency guarantees

provided by the Cache Sketch is given in Section 4.5, including both object and query

caching.

4.1.5 The Server Cache Sketch

The purpose of the server Cache Sketch cs
t specified in Definition 4.2 is the efficient and

correct generation of a client Cache Sketch as defined in Theorem 4.1. This requires two

important capabilities the client Cache Sketch lacks. First, the server Cache Sketch must

support removal of keys in order to evict expired items. Second, it must support invalida-
tion queries which report, whether a write has to be propagated as an invalidation.

Definition 4.2. The server Cache Sketch cs
t consists of a Counting Bloom filter cbt con-

taining all elements of ct and a mapping of keys to their maximum expiration date e =

{(ki,ti)|maxti=tr+T T L(r(x,tr,T T L)∧ ti > tnow)}. When x is updated or deleted, kx is added to cbt

iff ∃t > tnow : (kx,t) ∈ e. Similarly, an invalidation is only necessary, if ∃t > tnow : (kx,t) ∈ e.

The employed Counting Bloom filter [FCAB00] is an extension of the Bloom filter that

allows removals and can be implemented to materialize the corresponding normal Bloom

filter, so retrievals of ct do not require any computation. This is achieved by coupling the

increment and decrement operations on counters to setting the respective bit in the ma-

terialized Bloom filter, if the counter is greater than 0. To make the retrieval of the Cache

Sketch efficient, the size m of the Bloom filter must be chosen carefully. The false positive

rate p is determined by the size m of the bit vector, the number of inserted elements n,

and the number of hash functions k: p≈ (1− exp(−kn/m))k. The optimal number of hash

functions is k = dln(2) · (n/m)e, giving the size as m =−n · ln(p)/ln(2)2.

The Orestes prototype supports multiple implementations of Bloom filters. Depending

on whether the Cache Sketch is shared between Orestes servers, either an in-memory

implementation or a distributed, persistent implementation based on the key-value store

Redis is used (for details see Section 4.3.5)

4.1.6 Optimizing Cache Sketch Size

A simple model is to choose m such that transferring ct only requires a single round-trip,

even at connection startup. This is achieved, if the message size of m bits (and some

HTTP metadata) measured in TCP segments of 1 460 bytes does not exceed the initial

TCP congestion window size 10, i.e., m≈ 10 ·1460B = 11680B (cf. Chapter 2). For a false

positive rate p ≤ 0.05, the filter could hence contain up to n ≈ 18732 distinct objects. If n

4.1 Cache Sketches: Bounding Staleness through Expiring Bloom Filters 133

increased to 50 000, p would grow logarithmically to p = 0.326. If the Bloom filter is only

transferred over an already established connection (e.g., after loading an HTML page),

it can be significantly larger without incurring an additional round-trip5. Furthermore,

HTTP responses are compressed with Gzip which reduces the size for sparse Bloom filters

with many 0 bits, so that despite the static size of m, the transferred size is proportional to

the number of stale objects.

The server Cache Sketch represents shared state between all server nodes and therefore

has to scale with reads and writes alike. It is part of the critical request path as read,

update, and delete operations require modifying it. Read scalability is achieved by repli-

cating the complete Cache Sketch at Redis-level and balancing loads of the Bloom filter

over the replicas6. Write scalability is reached through partitioning. Previously, we as-

sumed a single cs
t of every tenant’s database. As a generalization, cs

t can be partitioned and

replicated based on buckets (resp. tables, collections, classes) by maintaining a separate

cs
t for each bucket. This solves two problems. First, updates to the Cache Sketch scale

horizontally, mitigating potential write bottlenecks. Second, if an aggregate Cache Sketch

for all tables is too large, clients can opt to fetch the Cache Sketch only for the required

tables. To expose the aggregate Cache Sketch, the database service assembles the Cache

Sketch by performing a union over the respective Bloom filters, which is a simple bitwise

OR operation over their respective bit vectors [BM03]. Clients can also exploit the table-

specific Cache Sketches to decrease the total false positive rate at the expense of loading

more individual Cache Sketches.

4.1.7 Quantifying (∆,p)-Atomicity for the Web Caching Model

For consistent database systems, the Cache Sketch guarantees (∆+∆c)-atomicity, where

∆c is the upper bound for the staleness of objects read from invalidation-based caches.

∆c largely overestimates staleness, since access is often local to geographic regions and

seldom governed by worst-case delays. We therefore refine ∆c to (∆c,p)-atomicity7, which

a read satisfies, if it is ∆c-atomic with probability p [BVF+12]. The probability p for (∆c,p)-

atomic semantics can be expressed through the round-trip latencies Tcc (client-cache), Tsc

(server-cache) and Ti (invalidation). A revalidation or cache miss hitting an invalidation-

based cache is ∆c-atomic, if the time for the corresponding write acknowledgment to travel

back to the client issuing the write plus the time for the read to reach the cache subtracted

from the invalidation latency is smaller than ∆c:

p = Pr[Ti− (Tsc/2+Tcc/2+Tcc/2)≤ ∆c] (4.1)

5This is an effect of the TCP slow-start algorithm which continuously increases the congestion window
[WDM01].

6While it would be possible to fully replicate the Cache Sketch between Orestes servers through reliable
broadcast or consensus protocols such as Raft or Paxos, there are two major downsides. First, horizontal
scalability would be sacrificed – every server would have to process each read and write operation as
a local Cache Sketch modification. Second, write latency would increase, since at least two round-trips
between Orestes servers would be necessary for every Cache Sketch update.

7(∆, p)-atomicity is also referred to as t-Visibility [BVF+14].

134 4 Web Caching for Cloud Data Management

Purge N(80,10)

Purge N(160,30)

t-Visibility N(80,10)

t-Visibility N(160,30)

Client-CDN

CDN-Server

-100 0 100 200 300
0.0

0.2

0.4

0.6

0.8

1.0

milliseconds

C
D
F

(a) (∆c,p)-atomicity in the web caching model:
cumulative probability distribution for read-
ing a value that was stale for at most ∆ ms
after a write acknowledgment.

3.6 3.8 4.0 4.2 4.4
Latency [ms]

1

2

3

4

PDF

(b) Distribution of client-cache latency Tcc.

3.6 3.8 4.0 4.2 4.4

3.8

4.0

4.2

4.4

Theoretical Quantiles of Fitted Normal Distribution

E
m
pi
ric
al
Q
ua
nt
ile
s

(c) QQ-Plot for the normal fit of Tcc: except for
outliers, latencies can be described by a nor-
mal distribution.

Normal

Log-Normal

Gamma

Fisher-Tippet

Weibull

Cauchy

Student T

172.6 173.0 173.2 173.4
Latency [ms]

1

2

3

4

PDF

(d) Distribution of server-cache latency Tsc

Figure 4.5: Analysis of exemplary latencies and their effect on (∆c,p)-atomicity.

We gathered real-world latency traces to quantify (∆c,p)-atomicity and to feed our later

simulations with realistic assumptions. Figure 4.5 summarizes our findings. The setup

consisted of a client located in the Amazon EC2 California region, a server in EC2 Ire-

land, and the Fastly CDN as an example of an invalidation-based web caching system.

We derived maximum-likelihood distribution fits for Tcc and Tsc for different continuous

distribution families as shown in Figure 4.5b and Figure 4.5d, after applying the Tukey-

outlier criterion [Tuk77] to account for measurement noise, such as the noisy-neighbor

problem [GSHA11].

Though there is consensus in the networking literature that in the general case, network

delays cannot be modeled using a single distribution [VM14], the normal and Gamma

Normal Log-Normal Gamma Fisher-Tippet Weibull Student T
Client-CDN 0.21 0.21 0.21 0.20 0.32 0.21
CDN-Server 0.68 0.68 0.68 0.94 0 0.68
Client-Server 0.94 0.94 0.94 0.52 0 0.94

Table 4.1: Cramér-von Mises p-values for maximum-likelihood fits of different latency dis-
tributions.

4.2 Cacheability Estimation: Whether and How Long to Cache 135

distribution yield good fits for the described setup as shown in Table 4.1 (goodness-of-fit

p-values 0.21 and 0.68 with the Cramér-von Mises test [VdV00]). This is illustrated in

the QQ-plot in Figure 4.5c, which shows that apart from the tails of the raw data (with

outliers), the normal distribution describes Tcc accurately.

Based on this data, (∆c,p)-atomicity can be computed according to Equation 4.1 which is

shown in Figure 4.5a with Tcc/2∼ N(2.00,0.06) and Tsc/2∼ N(86.54,0.06) for two Ti distri-

butions. For Ti ∼ N(80,10), which we found to be a good upper bound in our experiments,

the probability of reading a fresh value starts high at 90% and quickly converges8. For

caches located nearer to the server, the probability would converge even faster because of

the lower physical latency.

In conclusion, with asynchronous invalidations that exhibit (∆c,p)-atomicity, the Cache

Sketch guarantees (∆+∆c, p)-atomicity. This allows precise reasoning about the latency-

consistency trade-off for a given scenario of latency distributions and eases the decision

on whether invalidations should be allowed to be asynchronous.

4.2 Cacheability Estimation: Whether and How Long to Cache
The TTLs for which caches are allowed to store objects significantly affect cache hits, stale

reads, invalidations and false positives in the Cache Sketch. For instance, objects that

experience a write-only workload but are cached with large TTLs will hurt performance, as

each write will entail an unnecessary invalidation and fill up the Cache Sketch. Likewise,

read-heavy objects will suffer from small cache hit ratios, when assigned TTLs are too

small. The usefulness of the Cache Sketch depends on its false positive rate. Therefore,

we introduce the concept of TTL estimators which try to minimize costs.

Definition 4.3. A TTL estimator E(id,λ id
m ,λ id

w)→ T T Lid maps an object’s historic cache miss
rate λ id

m and write rate λ id
w to a TTL that minimizes the cost function:

cost = w1 ·
#cachemisses

#ops
+w2 ·

#invalidations
#ops

+w3 ·
#stalereads

#ops
+w4 · p (4.2)

The cost function is parameterized by weights wi that express the relative severity of each

condition: the number of caches misses, invalidations, stale reads, and the false posi-

tive rate of the Cache Sketch. For example, in a setup with a slow single server, many

invalidation-based caches, and an application with low consistency requirements, w1 and

w2 would be large to protect the server, while w3 and w4 would be smaller. We defined the

miss and write rates as the default input of the estimator, though implementations could

potentially require different input parameters, e.g., the global distribution of writes over

objects in a bucket or the exact timestamps of past cache misses. TTL estimation subsumes

the question of whether to cache at all: a TTL of 0 returned by the estimator indicates that

the given object should not be cached (e.g., for objects that are mostly written).
8In the plot the negative millisecond range for t-visibility is shown, which indicates the probability of reading

a new value before the respective write acknowledgment was received [BVF+12].

136 4 Web Caching for Cloud Data Management

The estimator is invoked for cache misses to decide on the next TTL. As a baseline, we

propose the Static Estimator Estatic(id) = T T Lmax that always minimizes cache miss costs

through a high static TTL. The trade-off is that every write on object x happening t seconds

before the expiration causes an invalidation, opens the possibility of a stale read caused by

the asynchronous invalidation and forces the cache sketch to contain x for the remaining t

seconds, increasing its false positive rate. This implies that the static estimator should only

be employed, if the Cache Sketch is large enough to provide a reasonable false positive

rate for holding all objects that might be updated in a time window of T T Lmax.

A straightforward improvement is thus obvious: instead of always estimating very large

TTLs, TTLs should rather be correlated to the expected time to the next write on an object.

Furthermore, TTLs should also be lower, when the workload is write-dominant. Similarly

when reads dominate writes, the TTLs should be increased to prevent cache misses at the

expense of some additional invalidations, stale reads, and objects in the Cache Sketch.

This is the central intuition behind the improved algorithms proposed next.

4.2.1 Stochastic Model

To make the improved TTL estimation feasible, some assumptions have to be made. First,

we assume, that the per-object workloads are readily available to estimators in the form

of cache-miss rates λ id
m and write rates λ id

w . Second, to estimate the probability of writes

in certain time intervals, a continuous-time stochastic process of writes {W (t), t ∈ T} is

assumed where the random variables W (t) model the amount of writes seen until time t.

Intuitively, given that exactly one write happened in the interval [0,t], the time of occur-

rence should be uniformly distributed over [0,t]. This requirement is met by the Poisson
process, which is the most commonly used stochastic process for modeling arrival pro-

cesses [VM14]. It is characterized by increments that follow a Poisson distribution:

Pr[W (t + s)−W (s) = k] = (λwt)k/k!e−λwt (4.3)

The write rate is λw, i.e., the expected amount of writes in a time interval of length t is

E[W (t)] = λwt.

A central property for our TTL estimation problem is that inter-arrival times between

writes Ti are exponentially distributed with mean 1/λw, i.e., Pr[Ti < T T L] = 1− e−λwT T L.

This implies that knowing an object’s write rate is sufficient information to derive the ex-

pected time of the next write E[Ti] = 1/λw and the quantiles Q(p,λw) =−ln(1− p)/λw. As

the stochastic process of reads is unobservable (hidden through caches), we specifically do

neither require knowledge about the workload mix (i.e., object-specific read-write ratios)

nor the popularity distribution (i.e., the underlying distribution of object access frequen-

cies). Instead, the TTL estimator implicitly adapts to these conditions.

In principle, the TTL estimator can be employed in two different modes. In general, the

TTL estimator can be called for each cache miss in order to estimate a new TTL. This

4.2 Cacheability Estimation: Whether and How Long to Cache 137

has the advantage that the newest read rate is always considered and it accounts for

the memorylessness [MU05] of the inter-arrival times distribution. However, it requires

frequent recomputations. Instead, TTLs can be computed once for the first read after

an invalidation and afterwards be read from the expiration mapping of the server Cache

Sketch where they are stored anyway.

4.2.2 Constrained Adaptive TTL Estimation

The goal of the Constrained Adaptive TTL Estimator (CATE) is to minimize the cost

function (see Equation 4.3), while constraining the size of the Cache Sketch to meet a

good false positive rate. To this end, CATE adjusts TTLs to the cache miss rate λr and write

rate λw instead of merely estimating the time to the next write. The estimation approach

is illustrated in Figure 4.6a: write and cache miss metrics are aggregated in the server and

fed into the estimator for each cache miss to retrieve a new TTL. The algorithm is based

on four design choices:

1. Read-only objects yield T T Lmax and write-only objects are not cached.

2. If the miss rate λm approximately equals the write rate λw, the object should be

cached for its expected lifetime expressed by the interarrival time median of writes

Q(0.5,λw), i.e., the TTL is chosen so that the probability of a write before expiration

is 50%.

3. A ratio function f : R→ [0,1] expresses how the miss-write ratio impacts the esti-

mated TTLs. It maps the imbalance between misses and writes to ptarget which gives

the TTL as the quantile Q(ptarget ,λw). If for instance misses dominate writes, p = 0.9
would allow a 90% chance of a write before expiration, in order to increase cache

hits. Using quantiles over TTLs for the ratio function has two advantages. First, the

probability of a write happening before the expiration is easier to interpret than an

abstract TTL. Second, the quantile scales with the write rate. The ratio function and

its parameters can be tuned to reflect the weights in the cost function.

4. Constraints on the false positive rate of the Cache Sketch and the number of invali-

dations per time period are satisfied by lowering TTLs.

Algorithm 1 describes CATE. The ESTIMATE procedure is invoked for each cache miss. It

requires three constants: the maximum TTL T T Lmax, the ratio function f , and the slope

which defines how strongly f translates the imbalance between misses and writes into

smaller or greater TTLs.

First, the miss-write imbalance is calculated (line 4). We define it to be 0 if λm = λw, x if λm

is x times greater than λw and −x if λw is x times greater than λm (line 5). Next, the ratio

function maps the imbalance to the allowed probability ptarget of a write (and invalidation)

before the expiration date. ptarget is capped at pmax = Pr[Ti < T T Lmax], so that the estimated

TTL never gets larger than T T Lmax. We consider three types of ratio functions shown in

138 4 Web Caching for Cloud Data Management

Algorithm 1 Constrained Adaptive TTL Estimation (CATE)
1: procedure ESTIMATE(λm : miss rate, λw : write rate)→T T L
2: constants: T T Lmax,slope, f : ratio function
3: if λw = NIL then return T T Lmax

4: imbalance =

λm/λw−1 if λm ≥ λw

−(λr/λw−1) else

5: pmax← Pr[Ti < T T Lmax] = (1− e−λwT T Lmax)

6: if f is linear then ptarget ← 0.5+ slope · imbalance
7: else if f is logistic then ptarget ← pmax/(2pmax · e−slope·imbalance)

8: else if f is unweighted then ptarget ← λm/(λm +λw)

9: if Cache Sketch capacity exceeded then
10: Decrease ptarget by a penalty proportional to false positive rate

11: if Invalidation budget exceeded then
12: Decrease ptarget

13: T T L =

0 if ptarget ≤ 0

T T Lmax if ptarget ≥ pmax

Q(ptarget ,λw) else
14: return T T L

Figure 4.6c: a linear and a logistic function of the imbalance, as well as the unweighted
fraction of misses in all operations (lines 6 to 8).

In order not to overfill the Cache Sketch, its current false positive rate is considered. If

it exceeds a defined threshold, ptarget is decreased to trade invalidations on non-expired

objects against revalidations on expired objects (lines 9 to 10). By lowering the probability

of writes on non-expired objects, Cache Sketch additions decrease, too. Invalidations are

treated similarly: if the budget of allowed invalidations is exceeded, ptarget is decreased

(lines 11 to 12). In this way, Cache Sketch additions and invalidations are effectively

rate-limited. The optimal amount to decrement depends on the severity a of a violation

and can be computed as ptarget = ptarget · (1− f)a, where f is the degree of violation, for

example the difference between the allowed and actual false positive rate. Last, the TTL

derived as the quantile Q(p,λw) is returned (lines 13 to 14).

Figure 4.6b gives an example of estimated TTLs for a read-heavy scenario, as well as the

corresponding probability Pr[Ti < T T L] of a write before expiration. By construction, all

three ratio functions yield a TTL that is higher than the median time between two writes

in order to drive cache misses down. The magnitude of this TTL correction is determined

by the ratio function and its slope. This makes it obvious that minimizing the cost function

requires tuning of the ratio function in order to meet the relative weights between misses,

invalidations, stale reads, and false positives. As finding the right T T Lmax and slope in

a running system is a cumbersome, manual, and error-prone process, we introduce a

framework in Section 4 that chooses parameters using Monte Carlo simulations to find

the best solution under a given workload and error function.

4.2 Cacheability Estimation: Whether and How Long to Cache 139

Client

Server

Reads

Misses

λm: Miss Rate

λw: Write RateC
o

lle
ct TTL

Per Record
λm λw

Caches

 Writes
~ Poisson

TTL Estimator

Objective:
-Maximize Hits
-Minimize Purges
-Minimize Stale
Reads
-Bound Cache Sketch
 False Positive Rate

 Writes
~ Poisson

(a) The TTL estimation process.

0

M
ed
ia
n

U
nw
.

Li
ne
ar

Lo
gi
st
ic

60

TTL [s]0.0

0.2

0.4

0.6

0.8

Write CDF
E[TM]=19000, E[TW]=30000

(b) TTL estimations for an example workload.

Linear (slope=0.5) Logistic (slope=1)

Unweighted

1:3 1:2 1:1 2:1 3:1 4:1 5:1 6:1
0.0

0.2

0.4

0.6

0.8

1.0

Miss:Write Ratio

In
va
lid
at
io
n
P
ro
ba
bi
lit
y

(c) Ratio functions.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

miss rate [ops/time unit]

w
rit
e
ra
te

[o
ps

/ti
m
e
un
it]

0.1 0.3 0.5 0.7 0.9

Maximum
TTL

No
Caching

(d) ptarget contour plot for linear ratio function.

Figure 4.6: Constrained Adaptive TTL Estimation.

Figure 4.6d shows the effect of different miss and write rates as a contour plot of the linear

ratio function. In the upper left area, writes clearly dominate misses, so the estimator opts

to not cache the object at all – frequent invalidations would clearly outweigh seldom cache

hits. In the bottom right area, on the other hand, misses dominate writes, so the object is

cached for T T Lmax. The area in between gradually shifts to higher TTLs (values of ptarget),

with the steepness of the ascent varying with the slope.

As explained above, estimating TTLs requires each Orestes server to have approximations

of write and miss rates for each object. To this end, inter-arrival times are monitored and

averaged over a time window using a simple moving average (SMA) or exponentially-

weighted moving average (EWMA). The space requirements of the SMA are high, as the

latest arrival times for each object have to be tracked, whereas the EWMA only requires

a single value. Similarly, a cumulative moving average (CMA) requires little space, but

weighs older inter-arrival times as heavily as newer ones. While this assumption is optimal

for Poisson processes, it fails for non-stationary workloads, e.g., when the popularity of

objects decreases over time. To address the overall space requirements, sampling can

be applied. More specifically, exponentially-biased reservoir sampling is an appropriate

140 4 Web Caching for Cloud Data Management

stream sampling method that prefers newly observed values over older ones [Agg06].

The reservoir is a fixed-size stream sample, i.e., a map of object IDs to their write and miss

moving averages. In the Orestes approach of load-balanced middleware service nodes,

every server already sees an unbiased sample of operations, whereas in the case that

Cache Sketch maintenance is co-located with each partitioned database node, only local

objects would have to be tracked, lowering the space requirements.

4.2.3 TTL Estimation for Fluctuating Workloads

The CATE algorithm is based on the assumption of a pure Poisson process. In particular

it relies on static inter-arrival times, i.e., a stationary stochastic process. However, many

real-world workloads exhibit seasonality, e.g., shopping sites experiencing heavier traffic

before holidays. Furthermore, the slope of the read/write imbalance and the quantile are

two hyperparameters that are difficult to tune.

Therefore, we propose a few simple alternative TTL estimators for objects and files that

only rely on an object’s CreatedAt (C) and LastModified (LM) timestamps9, as well as the

n latest write timestamps tm, tm−1, ..., tm−n:

C-LM Model. We introduce a modification of the Alex protocol [GS96] for object and

file TTL estimation. The idea is to predict a TTL as the weighted time between

the point in time of the estimation and the last modification or the creation: α ·
(tnow−max(Cid ,LMid)). Like the other estimations, the result is normalized to the

range [0,T T Lmax] as Enorm(id) = max(0,min(T T Lmax,E(id))). The intuition of the C-

LM model is that inter-arrival times vary heavily over time and therefore the best

indicator for the write frequency of an object is its latest modification. The C-LM

model assumes a distribution that is not memoryless, as – in contrast to the Poisson

model of CATE – estimates increase with elapsed time.

LWMA Estimator. To capture the near past of an object in its TTL estimate, the linearly-

weighted moving average (LWMA) estimator considers the last n writes with lin-

early decreasing weights: E(id) = 2
n(n+1) ∑

n
i=1 i · tm−n+i. For a small n, e.g., 1, 3, or 5,

the space overhead is negligible and only the most recent changes of inter-arrival

times are reflected. For the first invocations, a default TTL has to be assumed

until sufficient writes have been observed. Without the assumption of a mem-

oryless inter-arrival time distribution, the estimate has to be shifted to Eshi f ted =

max(0,E(id)− (tnow− tm)) to account for the passed time since the last write.

EWMA Estimator. The exponentially-weighted moving average (EWMA) estimator is

similar to the LWMA, but requires less space as only the last estimate and the last

inter-arrival time are used: Em(id) = α · (tm− tm−1) + (1−α) · Em−1(id). The rele-

vance of past inter-arrival times decreases linearly and, like for the C-LM model, an

appropriate α ∈ [0,1] parameter has to be set.

9Both fields are automatically maintained by Orestes for each object and file.

4.2 Cacheability Estimation: Whether and How Long to Cache 141

0% 10% 20% 30% 40% 50% 60%

Baseline
C-LM 1

C-LM 0.8
C-LM 0.5
C-LM 0.2
LWMA 2
LWMA 5

LWMA 10
EWMA 0.1
EWMA 0.4
EWMA 0.8

EWMA 1

Relative Error

Overestimation Underestimation

(a) Poisson process.

1% 10% 100% 1000% 10000% 100000%

Baseline
C-LM 1

C-LM 0.8
C-LM 0.5
C-LM 0.2
LWMA 2
LWMA 5

LWMA 10
EWMA 0.1
EWMA 0.4
EWMA 0.8

EWMA 1

Relative Error (Log-Scale)

Overestimation Underestimation

(b) Writes of Orestes production application.

0% 20% 40% 60% 80%

Baseline
C-LM 1

C-LM 0.8
C-LM 0.5
C-LM 0.2
LWMA 2
LWMA 5

LWMA 10
EWMA 0.1
EWMA 0.4
EWMA 0.8

EWMA 1

Relative Error

Overestimation Underestimation

(c) Medium-attention article (“Hamburg”).

0% 10% 20% 30% 40% 50% 60%

Baseline
C-LM 1

C-LM 0.8
C-LM 0.5
C-LM 0.2
LWMA 2
LWMA 5

LWMA 10
EWMA 0.1
EWMA 0.4
EWMA 0.8

EWMA 1

Relative Error

Overestimation Underestimation

(d) Static inter-arrival times (fixed-rate writes).

0% 50% 100% 150% 200%

Baseline
C-LM 1

C-LM 0.8
C-LM 0.5
C-LM 0.2
LWMA 2
LWMA 5

LWMA 10
EWMA 0.1
EWMA 0.4
EWMA 0.8

EWMA 1

Relative Error

Overestimation Underestimation

(e) Low-attention Wikipedia article (“BaaS”).

0% 50% 100% 150%

Baseline
C-LM 1

C-LM 0.8
C-LM 0.5
C-LM 0.2
LWMA 2
LWMA 5

LWMA 10
EWMA 0.1
EWMA 0.4
EWMA 0.8

EWMA 1

Relative Error

Overestimation Underestimation

(f) High-attention article (“Donald Trump”).

Figure 4.7: Prediction errors of TTL estimators for different workloads.

142 4 Web Caching for Cloud Data Management

We evaluated the above estimators for several workloads to compare their feasibility given

real-world inter-arrival times. To this end, we compared the estimators to a static baseline

estimator that always predicts a TTL of 0 and measures the relative overestimation and

underestimation for the actual TTL (the normalized difference between the estimated

expiration and the time of the next write) for the respective workload. The evaluated

workloads are a Poisson process, fixed inter-arrival times, an object-access workload from

an Orestes production application, and the inter-arrival times of changes for three different

Wikipedia articles of different attention levels (“Backend-as-a-Service”, “Hamburg”, and

“Donald Trump”).

The results are shown in Figure 4.7. The estimators were evaluated in different param-

eterizations as indicated by the number after the name. The C-LM model was tested for

α ∈ {0.2,0.5,0.8,1}, the LWMA estimator for n ∈ {2,5,10} and the EWMA estimator for

α ∈ {0.1,0.4,0.8,1}.
As expected, the EMWA and LWMA estimators that both converge to average inter-arrival

times perform best for the Poisson process (see Figure 4.7a) especially when past mea-

surements outweigh newer ones (lower α, resp. higher n). The C-LM model, however,

is biased towards underestimation for the Poisson process. Therefore, if the cost function

favors fewer invalidations and a low false positive rate over a high cache hit rate, the

C-LM model is preferable, otherwise the LWMA and EWMA estimators are. For a fixed

write rate, the LWMA and EWMA estimators quickly adopt the correct inter-arrival time

and yield the best result (see Figure 4.7d). In case of the Orestes production application,

writes follow a mixed distribution with long periods of inactivity mixed with sudden ac-

tivity. This leads to massive overestimation by the LWMA and EWMA estimators, whereas

the distribution-agnostic C-LM model yields good results (see Figure 4.7b). The same is

true for the three Wikipedia articles (see Figure 4.7e,4.7c,4.7f): as past write rates are

apparently not a good indicator for the next editorial content updates, the C-LM model

achieves the lowest overestimation and total error.

In summary, if no single inter-arrival time distribution can be assumed, the C-LM model

achieves very good results, while allowing to tune the degree of overestimation against

underestimation through the α parameter. It also requires no additional space, as required

information is attached to each object. Another advantage of the C-LM model is that it

continues to work well in multi-server deployments where individual servers estimate

TTLs independently, as it does not require to observe each write operation. As another

distinction to the other estimators, the C-LM model can be used without prior workload

analysis and is therefore the default choice in Orestes for unknown workloads. The C-LM

model can also be combined with the false positive rate and invalidation budgeting of

CATE to constrain the number of false positives and invalidations.

4.3 Evaluation of the Cache Sketch for Object Caching 143

4.3 Evaluation of the Cache Sketch for Object Caching

In this section we will evaluate the Cache Sketch through both simulation and cloud-based

experiments. This combination is necessary to study the hidden system parameters (e.g.,

cache hit rates), to tune hyperparameters, as well as to measure real-world performance

of all involved components.

4.3.1 YMCA: An Extensible Simulation Framework for Staleness Analysis

We have implemented a Yahoo! Cloud Serving Benchmark (YCSB) wrapper for Monte

Carlo simulation (YMCA) with arbitrary caching architectures which runs completely in

memory. YCSB [CST+10] is a widely-adopted standard benchmark for CRUD data stores.

As shown in Figure 4.8, YMCA consists of a client that implements the YCSB interface

for basic CRUD operations, an arbitrary number of cache layers and additional modules

for collecting metrics, in particular stale reads, cache misses, and invalidations. Cache

layers are stacked onto each other and can model any caching topology (e.g., a CDN

or a reverse proxy). Latencies between layers are drawn from pluggable distributions,

assuming symmetric latencies.

Pluggable simulated caches,
configurable topology

YCSB
workload

YMCA
Client

Stale Read
Detector

Cache Miss
Detector

Expiration-
based
Cache

Invalidation
-based
Cache

Database
Server

Pluggable latency distributions

purge

CRUD

CRUDCRUDCRUD

Figure 4.8: Concept of the extensible Monte Carlo simulation framework YMCA.

Overall, YMCA provides a toolbox to analyze caching behavior of multi-layered database

infrastructures. The YMCA client tracks and reports stale reads. A read is considered stale,

if two conditions are met: 1) there was an acknowledged write with a newer version than

the one that was read 2) the read started after the write was acknowledged. Cached data

is stored in simulated cache nodes throughout the simulation. The database is maintained

as a key-value store. Apart from stale reads, invalidations, latencies, and throughput,

YMCA also keeps track of cache hits and misses reported by each cache. In order to

simulate long durations, YMCA implements a time scaling mechanism: all latencies and

TTL estimations can be scaled by a defined factor. In the following, we assume the setting

from Subsection 4.1.7 that includes an infrastructure consisting of a client, a CDN, and the

database service. The database service employs the server Cache Sketch to decide whether

an update requires an invalidation and then passes cache misses to the TTL estimator to

assign the object-specific TTL.

144 4 Web Caching for Cloud Data Management

4.3.2 Parameter Optimization for the CATE TTL Estimator

As discussed above, adaptive TTL estimation depends on the slope of the ratio function as

well as T T Lmax. Naturally, if the maximum TTL is much longer than the actual simulation,

results will show a high cache hit rate and a lot of invalidations compared to a relatively

short maximum TTL. Hence, the maximum TTL is set to the duration of the simulation

and all other TTLs are estimated in relation to this maximum. In order to optimize these

parameters, we use a variation of maximum descent hill climbing. Initial slopes of the ratio

function are drawn uniformly at random in the [0,1] range.

The optimization algorithm tests whether increasing or decreasing the slope provides an

improvement of the simplified cost function (w ·#cachemisses+(1−w) ·#invalidations)/#ops

that is to be minimized. The score is calculated as the sum of cache misses and invalida-

tions normalized by the total number of operations. It thus is a simplified version of the

score introduced in the model. This simplification is reasonable, because stale reads show

a lot of variance (i.e., depending on indeterministic thread-scheduling) while having min-

imal impacts on the score, thus presenting more of a noise to the optimization. Since the

number of invalidations is an approximate indicator of stale reads as well as a measure

of the Bloom filter population, we have found the simplified cost function to be a well-

working simplification of the original cost function. Depending on the cost of cache misses

compared to invalidations (and the subsumed false positive and stale read rates), terms

are weighted with w ∈ [0,1].

Testing directions of T T Lmax and slope constitutes a super-step, which concludes by per-

sisting the direction of maximum change (towards a lower cost) for the next super-step

to start with. The algorithm terminates after a given number of super-steps or when it

cannot improve the cost function.

Optimizations were performed for YCSB workloads A [CST+10, Section 4] (write-heavy;

read/write balance 50%/50%) and B (read-heavy; read/write balance 95%/5%) with a

Zipfian popularity distribution. Each simulation step was run on 100 000 operations for

10 threads, with a targeted throughput of 200 ops/s and a time scaling factor of 50, on

the default amount of 1 000 objects. We ran the hill climbing algorithm from 25 starting

points. Figure 4.9a and 4.9c show the resulting costs as a function of w for the optimized

parameters of CATE, with a linear ratio function compared to the static TTL estimation

with a high T T Lmax. The results demonstrate that CATE performs significantly better than

static estimation for applications that do prefer high cache hit rates (workload A). Unsur-

prisingly, read-heavy workloads leading to many cache hits perform slightly better with a

static (maximum) TTL estimation (unless cache misses are weighted very low).

As page load time is arguably the most important web performance metric, we analyzed

the gains of cached initialization for different browser cache and CDN cache hit rates and

two Cache Sketch false positive rates (5% and 30%). The analysis assumes an average

web page with 90 resources using 6 connections [GBR14] and that the Cache Sketch is

used for every resource. The results shown in Figure 4.9b are as drastic as expected: for

4.3 Evaluation of the Cache Sketch for Object Caching 145

●
●

●
●

●
●

■

■

■

■
■

■

0.1 0.2 0.3 0.4 0.5
w

0.1

0.2

0.3

0.4

0.5

cost

● Static ■ CATE (linear)

(a) Costs for Workload A.

0/0 0/20 20/0 20/20 40/40 66/20 80/80
hit ratios

500

1000

1500

2000

2500

load time

p = 5% p = 30%

(b) Page load time improvement through the
cached initialization model. Labels on the
x-axis indicate the percentual cache hit rate
in the browser (first number) and CDN
(second number).

● ● ● ● ● ●

■

■ ■ ■ ■ ■

0.1 0.2 0.3 0.4 0.5
w

0.01

0.02

0.03

0.04

0.05

cost

● Static ■ CATE (linear)

(c) Costs for Workload B.

●

●

●

●

●
● ● ● ● ●

■
■

■

■

■

■
■ ■

■ ■

100k 200k 300k 400k 500k
operations

0.2

0.4

0.6

0.8

1.0

p

● Static ■ CATE (linear)

(d) False positive rate for a n=1k, p=0.05
Cache Sketch under Zipf-distributed opera-
tions.

Figure 4.9: YMCA simulation results.

instance, for a cache hit rate of 66% in the browser and 20% in the CDN as described for

the Facebook photos workload [HBvR+13], the speedup is over 320% for p = 0.05.

The development of the Cache Sketch false positive rate is shown in Figure 4.9d for

100 000 objects, workload B, a slope optimized for 100 000 operations, and the Bloom

filter configured to contain 1 000 elements with p = 0.05. As expected, CATE achieves

lower false positive rates by decreasing TTLs, when p grows too large. Even though the

Cache Sketch is provisioned to only hold 1% of all objects, the static estimator performs

surprisingly well, as long as the number of operations is smaller than the number of total

objects.

4.3.3 YCSB Results for CDN-Cached Database Workloads

To validate the results in an experimental setup, we conducted the YCSB benchmark for

the described setup on Amazon EC2, using c3.8xlarge instances for the client (northern
California region) and server (Ireland), while caching in the Fastly CDN [Spa17]. We

employed the document store MongoDB as a baseline for classic database communication.

It was compared to an Orestes server running with MongoDB to add the Cache Sketch

and the REST API. The benchmark was performed with the same configuration as the

146 4 Web Caching for Cloud Data Management

●
●

●

●

●

●

■ ■ ■
■

■

■

◆◆
◆

◆

◆

◆

▲▲ ▲
▲

▲

▲

200 400 600 800 1000
threads

2000

4000

6000

8000

10000

12000

operations/s

● Orestes (B) ■ MongoDB (B)

◆ Orestes (A) ▲ MongoDB (A)

(a) Throughput for a single client.

●● ● ● ● ●

■ ■
■

■

■

■

200 400 600 800 1000
threads

0.6

0.7

0.8

0.9

cache hit ratio

● Workload B ■ Workload A

(b) Cache hit ratios.

●
● ● ● ●

●

■ ■ ■ ■ ■
■

◆◆ ◆ ◆ ◆
◆

▲ ▲ ▲ ▲ ▲ ▲

200 400 600 800 1000
threads

50

100

150

ms

● Orestes (B) ■ MongoDB (B)

◆ Orestes (A) ▲ MongoDB (A)

(c) Latencies of read operations.

●

● ●

● ●
●

■

■

■

■
■

■

200 400 600 800 1000
threads

0.001
0.002
0.003
0.004
0.005
0.006
0.007

stale read ratio

● Workload B ■ Workload A

(d) Stale read ratios.

Figure 4.10: Performance and consistency metrics for YCSB with CDN-caching for two
different workloads (A and B).

simulation, but using the static TTL estimator. Figure 4.10 shows latency, throughput,

cache hit ratios, and stale reads for 32 to 1 024 threads (i.e., YCSB clients).

The results reveal the expected behavior: latency and throughput are improved consid-

erably in both workloads, although a slight non-linearity between 512 and 1 024 threads

occurs because of thread scheduling overhead of the limited single-machine design of

YCSB. MongoDB achieves the same latency and throughput in both workloads, since all

operations are bounded by network latency. The very few stale reads show considerable

variance and were largely independent from the number of threads, as seen in Figure

4.10d. This fact supports our argument that (∆c,p)-atomicity is an appropriate consistency

measure and that CDNs are well-suited to answer Cache Sketch-triggered revalidations.

4.3.4 Industry Backend-as-a-Service Evaluation

For a practical performance comparison of BaaS systems, we developed a simple bench-

mark to test the end-to-end latency of a serverless web application. Here we provide a

short summary of the performance of Baqend, the commercial service offering of Orestes.

The comparison between our approach and several popular commercial BaaS providers

4.3 Evaluation of the Cache Sketch for Object Caching 147

0 2000 4000 6000 8000 10000 12000

Frankfurt

Tokyo

Sydney

California

Page Load Time (in ms)

Baqend Kinvey Firebase Azure Apiomat Parse

(a) Performance with a cold browser cache and a warm CDN (first load).

0 1000 2000 3000 4000 5000 6000 7000

Frankfurt

Tokyo

Sydney

California

Page Load Time (in ms)

Baqend Kinvey Firebase Azure Apiomat Parse

(b) Performance with a warm browser cache and a warm CDN (second load).

Figure 4.11: Page load time comparison for different industry Backend-as-a-Service
providers for the same data-driven web application.

(Kinvey, Firebase, Azure Mobile Services, Apiomat, Parse) is open-source and can be vali-

dated in a web browser10.

The benchmark uses the example of a simple news website loaded from different geo-

graphical locations (Frankfurt, Tokyo, Sydney, California) with a cold browser cache and

a warm CDN cache. Both the web application files (HTML, CSS, and JavaScript) and the

actual database objects are fetched from the respective BaaS. The data model is structured

by news stream objects that reference individual news. Each news item contains text fields

like the title and teaser, as well as the reference to an image object. The data model is

adapted to each of the providers abstractions, but conceptually identical. Data is rendered

10The benchmark can be run at http://benchmark.baqend.com/ and the source code of all implementations
is published on GitHub [Baq18]

http://benchmark.baqend.com/

148 4 Web Caching for Cloud Data Management

through JavaScript that uses the respective SDKs to fetch the data of 30 news articles with

images.

The results are shown in Figure 4.11a. For each location (measured from AWS data centers

and a Chrome browser) the page load time (load event) is plotted as an average over ten

consecutive runs with cold connections and a cold browser cache (first visit). As reads

from Baqend rely on invalidation-based CDN caching, the average performance advantage

is factor 15.4. As the Cache Sketch becomes effective with expiration-based caching, we

also measured the second load. This measurement corresponds to the loading time for

a returning visitor with a warm browser cache (see Figure 4.11b). Some of the other

providers cache data in the browser, however without the ability to maintain consistency.

Nonetheless, the performance advantage of the Cache Sketch is even greater: on second

load, the other providers are outperformed by factor of 21.1 on average. This shows that

the predicted performance improvements of our proposed caching approach translate into

the setting of practical websites and web applications through file and object caching.

4.3.5 Efficient Bloom Filter Maintenance

The server Cache Sketch requires an efficient underlying Counting Bloom filter. For this

purpose, we developed a Bloom filter framework available as an already widely-used open-

source project11. It supports normal and Counting Bloom filters as in-memory data struc-

tures as well as shared filters backed by the in-memory key-value store Redis [San17].

The library supports the table-based sharding and replication introduced in Section 4.1.6

for high-throughput workloads. The Redis Bloom filter uses the data structures of Redis to

maintain an efficient bit vector for the materialized Bloom filter and relies on pipelining

and batch transactions to ensure performance and consistency. We chose Redis because of

its tunable persistence complemented with very low latency [Car13].

Figure 4.12 shows selected performance characteristics of the Cache Sketch under differ-

ent hash functions and operations. The uniformity of implemented hash functions for

random Strings is evaluated in Figure 4.12a using the p-values for 100 χ2-goodness-of-fit

tests. For random inputs (e.g., UUID object keys) all hash functions perform reasonably

well – including simple checksums. However, for keys exhibiting structure, the best trade-

off between speed of computation and uniformity is reached by Murmur 3.

Figure 4.12b plots the throughput of the unpartitioned, non-replicated Redis Bloom filters

for a growing amount of connections with m = 100000 and k = 5 on an a server with 16

GB RAM and a CPU with four cores and 3 GHz. Read operations (querying, pulling the

complete filter) achieve roughly 250 000 ops/s, while write operations (adding, removing)

that require some overhead for counter maintenance and concurrency still achieve over

50 000 ops/s resp. 100 000 ops/s.

We also report the performance of Cache Sketch operations on the DBaaS variant of Re-

dis (AWS ElastiCache) for two different instance sizes (see Table 4.2). Each operation
11Available at https://github.com/Baqend/Orestes-Bloomfilter along with more detailed results.

https://github.com/Baqend/Orestes-Bloomfilter

4.3 Evaluation of the Cache Sketch for Object Caching 149

0.0 0.2 0.4 0.6 0.8 1.0

MD2
Murmur3
CRC32

FNVWithLCG
Murmur2

RNG
CarterWegman
Murmur3KM

SHA512
SHA1

SHA384
SHA256

MD5
Adler32

p-Value

hashes = 100000, m = 1000, k = 10

(a) Quality of Bloom filter hashes for random
words (Box-Whisker plot of p-values).

●

●

●

●
●

● ●

■

■ ■ ■ ■ ■ ■

◆

◆
◆ ◆ ◆ ◆ ◆

▲

▲

▲

▲ ▲ ▲ ▲

▼

▼ ▼ ▼ ▼ ▼ ▼○

○

○
○

○ ○ ○

1 2 4 8 16 32 64
conn.

50000

100000

150000

200000

250000

operations/s

● contains

■ add

◆ remove

▲ pull

▼ add (BF)

○ contains (BF)

(b) Throughput of the Redis-backed Counting
Bloom filter and Bloom Filter (BF).

Figure 4.12: Analysis of the Redis-backed Bloom filters.

type was performed 10M times and averaged over 5 repetitions. The small instance

(cache.m3.large, 2 cores, 6 GB RAM, medium I/O performance) and the large instance

(cache.r3.8xlarge, 237 GB RAM, 10 GBit/s I/O) showed less than 30% performance

difference. The only exception is the load operation, which fetches the complete Bloom

filter. As the operation is bounded by network bandwidth, the larger EC2 instance shows

a proportional throughput advantage here. Latencies of all operations in the experiment

were consistently below 1 ms.

Cache Sketch add remove pull

In-Memory 4.411M 12.787M 1.311M
Redis (small) 213K 379K 22.8K
Redis (large) 174K 313K 184K

Table 4.2: Throughput of different Cache Sketch implementations in operations/s.

The results provide clear evidence that the Redis-based implementation of the Cache

Sketch provides sufficient performance to sustain a throughput of >100 K queries or in-

validations per second with a single backing Redis instance. With the per-table partitioning
model introduced in Section 4.1.6, the Cache Sketch can thus easily support much higher

throughput than the Orestes servers and will not become a bottleneck.

In conclusion, the simulations and the experimental evaluation show that the Cache

Sketch is able to considerably reduce latency for data management workloads. Through

the combination of an efficient Cache Sketch and TTL estimation, the performance bene-

fits are achieved with ∆-atomic reads. In the following, we will extend the scheme from

key-based object caching to arbitrary query results. Then, we will discuss an integrated

approach for low-latency access to files, objects, and queries.

150 4 Web Caching for Cloud Data Management

4.4 Query Caching: Motivation and Problem Statement

In Section 4.1, we showed that the problem of dynamic data in expiration-based caching

can be addressed by an appropriate summary data structure combined with server-side

invalidations. However, the challenge of caching dynamic data becomes more difficult, if

responses can contain arbitrary query results. In the following, we propose an extension

to the Cache Sketch approach that does not only account for objects and files, but also

the query interfaces provided by DBaas and BaaS systems. The query caching techniques

(Quaestor, Query Store)12 are also part of Orestes [GSW+17].

As an example, consider a social blogging application. To retrieve posts on a particular

topic, the client queries the DBaaS:

SELECT * FROM posts

WHERE tags CONTAINS ’example’

This (pseudocode) query is posed as an HTTP GET request. The web’s infrastructure

consisting of caches, load balancers, routers, firewalls, and other middleboxes handles

the query similar to any other request issued by websites. In particular, any expiration-

based caches as well as invalidation-based caches and reverse proxy caches are allowed to

directly answer the query, if the DBaaS previously provided a TTL indicating cacheability

for a defined time span. This offloads the database system from query processing and

greatly reduces end-to-end query latency.

In order to make the Cache Sketch scheme applicable, we need to refine three problems

from key-based caching to query result caching:

1. Invalidation detection. Does a given update operation change the result set of

cached queries?

2. Cache Coherence. How can cached queries be kept consistent similar to objects (cf.

Section 4.1) when they cannot be invalidated by the DBaaS?

3. Cacheability. Which queries are cacheable and what is their optimal TTL?

These challenges are illustrated in Figure 4.13. For every database operation, the backend

has to determine whether it invalidates any cached data (1). For object and file caching,

this decision is trivial as it only requires to observe each update and delete operation in

combination with information from the server Cache Sketch on whether a non-expired TTL

has ever been issued. For query caching, invalidation detection is enabled by InvaliDB, a

scalable subsystem for detecting invalidations of cached query results in real time. In the

above example, an invalidation will be triggered when a blog post contained in the query

result is changed or a previously non-matching post adds a tag that matches the query

predicate.

12We will use the names Orestes and Quaestor interchangeably depending on which capabilities of the mid-
dleware are in focus.

4.4 Query Caching: Motivation and Problem Statement 151

Client (Browser)

Expiration-
based Caches

Invalidation-
based Caches

DBaaS (Backend)

Files, Records,
Query Results

Cache Hits

Q

1

Invali-
dations

Q

2

Cached Query Q

First Post
Lorem ipsum dolor sit amet,
consetetur sadipscing elitr, sed
diam nonumy eirmod tempor
invidunt ut labore et dolore
magna aliquyam erat, sed diam
voluptua. At vero eos et accusam
et justo duo dolores

Tagged: example , other

 Second Post
Lorem ipsum dolor sit amet,
consetetur sadipscing elitr, sed
diam nonumy eirmod tempor
invidunt ut labore et dolore
magna aliquyam erat, sed diam
voluptua. At vero eos et accusam
et justo duo dolores

Tagged: example

 1

 2

Invalidation
Detection

Cache
Coherence

Expiration (TTL)

Result Cacheable?
(Read-Heavy)

3Cacheability

Figure 4.13: The three central challenges of query web caching.

Cache coherence (2) of expiration-based caches is based on extending the Cache Sketch, in

order to indicate any potentially stale queries. Clients check the Cache Sketch before each

query to decide whether cached results are permissible or a revalidation should instead

be performed in order to proactively update any stale caches. To this end, queries are

represented by a normalized string form that can be looked up in the Cache Sketch.

The cache hit rates are maximized by statistically deriving expiration estimates for query

results and deciding which query results are worth caching (3). Query TTL estimation

relies on the TTL estimation for individual objects, but is more complex as inter-arrival

times of query invalidations potentially depend on any object in the database system.

Traditional web caching does not give any guarantees on freshness when expiration-based

caches such as browser caches, are involved. Furthermore, web caches cannot execute

any application-specific logic. Instead, they only serve non-expired resources by their

unique URL. For queries, this implies that a query can either be served as a list of record

URLs (ID-list) or as a full result set (object-list). There is a difficult trade-off between

both representations. When retrieving space-efficient ID-lists, clients have to assemble

the result on their own, by fetching each referenced object. The objects are therefore

individually cacheable, but more round-trips are necessary to aggregate the result. Object-

lists, on the other hand, contain the fully specified objects, so that no additional round-

trips are required. However, since caches are unaware of the objects contained in an

object-list, objects are re-transmitted for each query result. In addition, object-lists are

more prone to frequent invalidations, as any change to a contained object (e.g., a counter)

invalidates the complete result.

152 4 Web Caching for Cloud Data Management

The proposed query caching approach is a good match for common web workloads that are

mostly read-heavy with many clients accessing the same data before it is updated [HN13].

To the best of our knowledge, Quaestor is the first approach that provides fresh query

results served over the web caching infrastructure. It can thus improve performance and

scalability of database and backend services without requiring additional server infrastruc-

ture. The contributions are threefold:

• We propose a comprehensive, service-independent approach for caching dynamic

query results with rich default consistency guarantees (bounded staleness, mono-

tonic reads and writes, read-your-writes).

• We introduce a scalable middleware infrastructure for maintaining cache coherence

through a query matching pipeline and Cache Sketches.

• We provide empirical evidence that tremendous latency improvements can be ob-

tained through query caching with arbitrarily bounded staleness for web-typical,

read-heavy workloads.

In the following, we will present the key techniques used to make query caching feasible

on web caches: a cache coherence mechanism, a query invalidation system, and a model

for dynamic TTL estimation. Afterwards, an in-depth evaluation of Quaestor is given.

4.5 Cache Coherence for Query Results

To illustrate the value of a cache coherence mechanism, consider query caching with static

TTLs as a straw-man solution. In that case, the server would assign a constant, applica-

tion-defined TTL to each query, so that any web cache may serve the query where staleness

is bounded by the TTL. This does not require any query invalidation logic in the client or

server, as the regular expiration-based semantics of HTTP web caching are used. The

problem of this naive solution is that either many stale queries will occur when the TTL

is too high, or cache hit ratios will suffer when the TTL is too low. As in object-based

caching, the first step to improving this scheme is adapting the purely static TTLs to the

actual frequency of changes for each query. However, even for a better stochastic TTL

estimation, stale query results occur for each deviation from the estimate. To address this,

the Cache Sketch needs to be extended to capture stale query results.

4.5.1 Cache Sketches for Query Caching

The purpose of the extended Cache Sketch is to answer the question whether a given

query is potentially stale. This information allows the server to compensate for TTLs of

queries that change before their TTL expires.

4.5 Cache Coherence for Query Results 153

SDK

Query

Hash1(), Hashk()

Is stale?

Client Cache Sketch
Revalidate if stale

Get
ORESTES with Quaestor

After-image of update u

 Distribution Layer (Publish/Subscribe, Active

 Queries, Capacity Management, Result States)

TTL Estimator
Prediction for
Query Results

Server Cache
Sketch

Stale Queries

Database
CRUD & Queries
handled by DB

(DBaaS/BaaS Middleware with
query & record caching)

Purge

BackendClient Internet

1

2

 InvaliDB - Streaming Layer

(which cached queries
 does u invalidate?)

 InvaliDB - Streaming Layer

(which cached queries
 does u invalidate?)

4

In
v

a
li

d
a

ti
o

n
-

b
a

se
d

 C
a

ch
e

s

Decision Model
Cache-Optimal

Result Structure

1 0 0 1 1 0 1 11 0 0 1 1 0 1 1

E
x

p
ir

a
ti

o
n

-
b

a
se

d
 C

a
ch

e
s

3

Figure 4.14: Query Caching architecture and request flow for providing cacheable query
results.

Request Flow for Queries

Figure 4.14 gives a high-level overview of the query caching architecture with the role of

the Cache Sketch for queries. From the perspective of a client performing a query, the

request flow is as follows:

1. Upon connection, the client gets a client Cache Sketch (cf. Theorem 4.1) containing

freshness information on potentially stale query results. During a client’s session,

the Cache Sketch is renewed periodically.

2. Before issuing a query, the Cache Sketch is queried by the SDK to decide between a

normal cached load and a revalidation request.

3. The caches either serve their cached copy or forward the query upstream.

4. For cache misses and revalidations, the server returns the query result from the

database using an appropriate TTL through query TTL estimation (cf. Section 4.6.2)

and an appropriate result structure (cf. Section 4.6.3) using a decision model. The

query is registered in InvaliDB to detect changes to the delivered query result in

real time. If operations on the database implicitly update the query result before

the TTL is expired, the query is added to the server Cache Sketch and purged from

invalidation-based caches.

Construction and Properties of the Query Cache Sketch

A query or read is performed by querying the client Cache Sketch ct that was generated at

time t. The key is the normalized query string and hashed to the underlying Bloom filter,

similar to object IDs. Theorem 4.2 derives the guarantees of the Cache Sketch for queries

by generalizing Theorem 4.1 (see page 128) that derived ∆-atomic semantics for object

reads.

154 4 Web Caching for Cloud Data Management

Definition 4.4. Let ct3 be the Expiring Bloom Filter generated at time t3. It contains the
normalized query string q of every result result(q) that became stale before it expired in all
caches. Formally, this is every q for which holds that ∃r(q,t1,T T L),w(x,t2) : t1 +T T L > t3 >

t2 > t1. The operation r(q,t1,T T L) is a query of q at time t1 with a T T L for the query result and
w(x,t2) is a write happening at t2 on a record x so that result(q) is invalidated (see notification
events add, change, and remove in Section 4.6).

Theorem 4.2. A query q performed at time t4 using the client Cache Sketch ct3 satisfies ∆-
atomicity with ∆ = t4− t3, i.e., the client is guaranteed to see only query results result(q) that
are at most ∆ time units stale.

Proof. Analogous to the proof of Theorem 4.1, consider a query issued at time t4 using ct3

returning the query result result(q) that was stale for ∆ > t4− t3. Therefore, q must have

been invalidated at a time t2 < t3 as otherwise t4− t2 < ∆. Hence, there must have been

an earlier query r(q,t1,T T L) with t1 +T T L > t4 > t2 so that result(q) is still cached. By the

construction of ct3 , the query is contained in ct3 until t1 +T T L > t4 and therefore not stale

at time t4 (proof by contradiction).

The Cache Sketch thus contains all stale queries for one point in time, i.e., queries that

became invalid while still being stored in some cache.

Freshness Policies

The achieved freshness is linked to the age of the Cache Sketch. Similar to object caching,

the basic way of utilizing the Cache Sketch is to fetch it on page load and use it for the

initial resources of the application, e.g., stylesheets and images (cached initialization, see

Definition 4.1). To maintain ∆-bounded staleness, the Cache Sketch is refreshed in a con-

figurable interval of ∆. Clients can therefore precisely control the desired level of consis-

tency for queries, objects, and files. This polling approach for the Cache Sketch resembles

Pileus’ [TPK+13] method, where clients poll timestamps from all replication sites to de-

termine which replica can satisfy the demanded consistency level. However, the Cache

Sketch is significantly more scalable as the freshness information is already aggregated

and does not have to be assembled by clients from different caches or replicas.

4.5.2 Consistency

The consistency levels provided by Quaestor are summarized in Figure 4.15. They can

be grouped into default guarantees that are always met and opt-in guarantees that are

associated with an overhead and can be enabled per request, session, or application13.

Default Consistency Guarantees

The central consistency level enabled by the Cache Sketch is ∆-atomicity with the applica-

tion and clients being able to choose ∆. Several additional session consistency guarantees
13In Section 2.2.4, formal definitions of the discussed consistency models are given.

4.5 Cache Coherence for Query Results 155

are achieved. Monotonic writes, i.e., a global order of all writes from one client session,

are assumed to be given by the database (e.g., MongoDB) and are not impeded by the

Cache Sketch. Read-your-writes consistency is obtained by having the client cache its own

writes within a session: after a write, the client is able to read her writes from the local

cache. Monotonic read consistency guarantees that a client will only see monotonically

increasing versions of data within a session. This is achieved by having clients cache the

most recently seen versions and comparing any subsequent reads to the highest seen ver-

sion. If a read returns an older version (e.g., from a different cache), the client resorts to

the cached version, if it is not contained in the Cache Sketch, or triggers a revalidation

otherwise. These session consistency guarantees are maintained by the SDK, transparent

for the developers using it.

As discussed in Section 4.1.7, Orestes can expose an eventually consistent data store.

The inconsistency window ∆DB of the data store then lowers the ∆-atomicity guarantee.

The same holds true, if invalidations are performed asynchronously with lag ∆. However,

as the probability that this violates consistency is low, it is a common choice to accept

(∆+∆DB +∆c)-atomicity. By choosing a lower ∆, developers can easily compensate both

effects. In practice, adjusting ∆ to ∆− ∆c allows revalidation requests to be answered

by invalidation-based caches instead of the origin servers. This optimization significantly

offloads the backend. If however, the exposed database system does not offer strong

consistency, but potentially unbounded staleness (e.g., due to asynchronous replication)

the Cache Sketch’s guarantee becomes a probabilistic consistency level of (∆ + ∆DB,p)-

atomicity (cf. discussion in Section 4.1.7).

Consistency Level Realization

Δ-atomicity (staleness never
exceeds Δ seconds)

Controlled by age (i.e. refresh
interval) of Cache Sketch

Monotonic Writes
Guaranteed by underlying database
system

Read-Your-Writes and
Monotonic Reads

Written data and most recent read-
versions cached in client

Causal Consistency
If read timestamp is older than
Cache Sketch it is given, else
revalidation required

Strong Consistency
(Linearizability)

Explicit revalidation (cache miss at
all levels)

A
lw
ay
s

O
p
t-
in

Figure 4.15: Consistency levels provided by Quaestor: ∆-atomicity, monotonic writes,
read-your-writes, monotonic reads are given by default, causal consistency
and strong consistency can be chosen per operation (with a performance
penalty).

156 4 Web Caching for Cloud Data Management

Opt-in Consistency Guarantees

By allowing additional cache misses, causal consistency and even strong consistency are

possible as an opt-in by the client. With causal consistency, any causally related operations

are observed in the same order by all clients [VV16]. With caching, causal consistency

can be violated, if of two causally dependent writes one is observed in the latest version

and the other is served by a cache. Using the Cache Sketch, any causal dependency

younger than the Cache Sketch is observed by each client, as the Cache Sketch acts a

staleness barrier for the moment in time it was generated: any writes that happened

before the generation of the Cache Sketch are visible along with the causal dependencies.

However, if a read is newer than the Cache Sketch, causal consistency might be violated

on a subsequent second read. Therefore, the client has two options to maintain causal

consistency after a read newer than the Cache Sketch is returned14. First, The Cache

Sketch can be refreshed to reflect recent updates. Second, every read happening before

the next Cache Sketch refresh is turned into a revalidation. For strong consistency within

a client session, every read within that session is performed as a revalidation. In that

case, latency is not reduced, but an unnecessary transfer of the object or query result is

prevented, if the data is still up-to-date.

All default and opt-in consistency guarantees are identical for objects, files, and queries.

From the perspective of the Orestes middleware, a query result is simply a special type

of object identified by a query string that changes based on invalidation rules. Therefore,

the consistency guarantees provided through the combination of the Cache Sketch and

server-side invalidations are the same for all types of cached data delivered by Orestes.

The strongest semantics Orestes can provide are ACID guarantees through distributed

cache-ware transactions (see Section 4.8). These optimistic transactions exploit the fact

that caching reduces transaction durations and can thereby achieve low abort rates with

a variant of backward-oriented optimistic concurrency control. As described in detail in

Section 4.8, the key idea is to collect read sets of transactions in the client and validate

them at commit time to detect both violations of serializability and stale reads. The scheme

is similar to externally consistent optimistic transactions in F1 and Spanner [CDE+13,

SVS+13], but can leverage caching and the Cache Sketch to decrease transaction duration

for clients connected via wide-area networks.

Additionally, clients can directly subscribe to query result change streams that are other-

wise only used for the construction of the Cache Sketch. For this purpose, Orestes exposes

a continuous query interface that leverages Websockets [Gri13] to proactively push query

result updates to connected end devices. Through this synchronization scheme, the appli-

cation can define its critical data set through queries and keep it up-to-date in real time.

For applications with a well-defined scope of queries, this approach is preferable, while

complex web applications will profit from using the Cache Sketch due to lower latency for

the initial page load and lower resource usage in the backend.

14This can easily be observed based on the LastModified field provided in the response for each object.

4.6 Invalidations and Expirations 157

4.5.3 Cache Sketch Maintenance for Queries

Query caching relies on the server Cache Sketch that stores the Bloom filter and tracks a

separate mapping of queries to their respective TTLs. In this way, only non-expired queries

are added to the Bloom filter upon invalidation. After their TTL is expired, queries are

automatically removed from the Bloom filter. These removals are based on a distributed

queue implementation storing the outstanding Bloom filter removals shared across Orestes

servers. To achieve this without coordination overhead, the Orestes prototype relies on

sorted sets in Redis.

The client-side usage of the Cache Sketch for queries is similar to objects. A stale query is

contained in the Cache Sketch until the highest TTL that the server previously issued for

that query has expired. While contained, the query always causes a cache miss. To main-

tain the Cache Sketch in the server, changes to cached query results have to be detected

and added in real time, as described in the following section.

4.6 Invalidations and Expirations

To provide server-side query invalidations, Quaestor registers all cached queries in In-
valiDB15 which in turn notifies Quaestor as soon as a query result becomes stale. While

we use SQL for the sake of clarity in our illustrations, the concept is generic for any

database query language. The Orestes prototype with InvaliDB supports MongoDB’s query

language.

4.6.1 Invalidation Detection

The invalidation pipeline (InvaliDB) matches change operations to cached queries. For

each cached query, it determines whether an update changes the result set. The invalida-

tor then outputs a set of queries with stale cached query results to Orestes, which sends out

invalidations to reverse proxy caches and CDNs. This check is performed by re-evaluating

queries on after-images of the relevant database partition in a distributed stream process-

ing system (Storm [Mar14]) co-located with Orestes. The throughput of the invalidation

pipeline is the limiting constraint of query caching and determines how many queries can

be cached at the same time. Through a capacity management model, only queries that are

cacheable for a sufficient time span are admitted and prioritized based on the costs of

maintaining them.

InvaliDB continuously matches record after-images provided with each incoming write

operation (insert, update, delete)16 against all registered queries. Orestes can subscribe

to an arbitrary combination of the following notification events, each of which triggers a

notification message:

15While InvaliDB originates from the development of Orestes, it has primarily been researched by Wolfram
Wingerath [EPM+16,GSW+17,WGF+17,WGFR16].

16A delete operation provides the identifier of the deleted object and null as after-image.

158 4 Web Caching for Cloud Data Management

• match: an after-image matches a query (stateless since independent of result set)

• add: an object enters a result set

• remove: an object leaves a result set

• change: an object already contained in a result set is updated without altering its

query result membership

• changeIndex (for sorted queries only): an object already contained in a result set is

updated and changes its position within the result

• all: any of the above

Of the notification types, only match events can be determined in a stateless fashion com-

paring after-images with queries, i.e., without relying on the previous query result. All

other notifications are stateful and require keeping track of result state in order to deter-

mine whether a given after-image changes, enters, or leaves a query result.

To illustrate these different events, consider the query in Figure 4.16 which selects blog

posts tagged with the keyword example. First, a new blog post is created which is yet

untagged and therefore not contained in the result set (box). When an update operation

adds the example tag to the blog post, it enters the result set which triggers either a match

or an add notification, depending on the parameters provided on subscription. Later,

another tag is added which does not affect the matching condition and therefore only

changes the object’s state, thus entailing another match or a change notification. When

the example tag is finally removed from the blog post, the matching condition does not

hold anymore and the object leaves the result set, causing a remove notification to be

sent.

SELECT * FROM posts WHERE tags CONTAINS 'example'

+'example' +'music' -'example'

add change remove

tags:
{'example'}

tags:
{'music'}

tags:
{'example', 'music'}

Figure 4.16: Notifications as an object gets updated (figure taken from [GSW+17]).

With respect to query invalidation, only two combinations of event notifications are useful,

both of which are stateful since they require knowledge of the result: When the cached

query result contains the IDs of the matching objects (ID-list), an invalidation is only re-

quired on result set membership changes (add/remove). Caching full data objects (object-

list), on the other hand, also requires an invalidation as soon as any object in the result

set changes its state (add/remove/change).

4.6 Invalidations and Expirations 159

Query
Part. 2

Query
Part. 3

Query
Part. 1

O
b

je
ct

P

ar
t.

 1
O

b
je

ct

P
ar

t.
 3

O
b

je
ct

P

ar
t.

 2

Invalidations

addchange remove %

Is Match?

Was Match? Was Match?

For Each Query:

SELECT * FROM posts WHERE tags CONTAINS 'example'

ta
gs

:
{'

e
xa

m
p

le
',

'm
u

si
c'

}

Figure 4.17: InvaliDB workload distribution: every node is only assigned a subset of all
queries and a fraction of all incoming updates (figure taken from [GSW+17]).

Workload Distribution

In order to provide the scalable real-time notifications, the InvaliDB prototype relies on

three tasks for query ingestion, change stream ingestion, and matching, each of which is

distributed over the nodes in the cluster using the Storm real-time computation framework

[Mar14, TTS+14]. The matching workload is distributed by hash-partitioning both the

stream of incoming data objects and the set of active queries orthogonally to one another,

so that every instance of the matching task is responsible for only a subset of all queries

(query partitioning) and only a fraction of their result sets (data stream partitioning). The

ingestion workload, in contrast, is not partitioned, but scattered across task instances.

Every instance of the query and change stream ingestion tasks transactionally pulls newly

arrived data items (query activations/deactivations or update operations, respectively)

from the source and forwards them according to the partitioning scheme.

160 4 Web Caching for Cloud Data Management

Figure 4.17 illustrates workload distribution in a 9-node cluster17 with three object parti-

tions (lightly shaded rows) and three query partitions (strongly shaded columns). When a

query is received by one instance of the query ingestion task, it is forwarded to all match-

ing task instances in its respective query partition (e.g., query partition 2). Since InvaliDB

has to be aware of the result sets of all newly added stateful queries in order to maintain

their correct state, every new stateful query is initially evaluated on Quaestor and then

sent to InvaliDB together with the initial result set.

To rule out the possibility of missing updates in the timeframe between the initial query

evaluation (on Orestes) and the successful query activation (on all responsible InvaliDB

nodes), all recently received objects are replayed for a stateful query when it is installed.

When an update operation is registered by one of the change stream ingestion task in-

stances, this operation and its corresponding after-image are forwarded to all matching

task instances in the respective object partition (e.g., object partition 3). If the after-image

matches any of the currently active queries, one of the matching task instances in the re-

ceiving object partition will register the match. In the example, the one that is responsible

for query partition 2 and object partition 3 detects a new match for the example query

and therefore sends out an add notification.

As a basic rule, all nodes in the cluster are assumed to have equal resources and therefore

should also receive the same fraction of the workload. However, if all task instances

were distributed as uniformly as possible across all nodes in the cluster, some nodes in

the cluster were exclusively concerned with matching, while others were concerned with

matching and change stream or query ingestion. Therefore, we do not co-locate matching

and ingestion task instances on the same nodes, but instead employ a large number of

matching-only nodes and a small number of query and change stream ingestion nodes.

Since all matching operations are independent from one another, data objects and queries

are hash-partitioned, thus gaining predictable system performance without any hotspots.

The sustainable system throughput can be increased by adding more nodes in additional

object partitions and, correspondingly, the set of continuously evaluated queries can be

increased by adding more nodes in additional query partitions.

Scalability

Since InvaliDB partitions both the change stream and the set of all active queries, single-

node performance does not limit overall system performance: as long as every query can

be handled by a single node, change stream partitioning is not required and the load

can be spread across the cluster by simply assigning every node a fair share of all active

queries. However, additional change stream partitioning allows distributing responsibility

for a single query over several machines and guarantees low latency, even when the re-

sources required for handling individual queries exceed single-node capacity, e.g., due to

huge result sets or very low query selectivity at very high update rates. Thus, overall per-

17Please note that we omit the parallelism of the data ingestion tasks here in favor of simplicity and only
make the distribution of the matching task explicit.

4.6 Invalidations and Expirations 161

formance is neither bounded by update throughput nor by the number of active queries

nor by query selectivity or result set size and scales linearly with the number of cluster

nodes (see Section 4.7.4).

Managing Query State

Simple static matching conditions such as WHERE tags CONTAINS ’example’ are state-

less, meaning that no additional information is required to determine whether a given

after-image satisfies them. As a consequence, the only state required for providing state-

ful add, remove, or change notifications to stateless queries is the former matching status

on a per-record basis. This state can be partitioned by object ID and thus can be easily

distributed, just like the computation itself.

With additional ORDER BY, LIMIT, or OFFSET clauses, however, a formerly stateless query

becomes stateful in the sense that the matching status of a given record becomes depen-

dent on the matching status of other objects. For sorted queries, InvaliDB is consequently

required to keep the result ordered and maintain additional information such as the en-

tirety of all items in the offset, but also has to rely on receiving all operations in the same

order as the Orestes nodes to prevent missing or false notifications due to out-of-order

arrival. To capture result permutations, changeIndex events are emitted that represent

positional changes within the result. Our current implementation maintains order-related

state in a separate processing layer partitioned by query.

Implementation

All current components of the InvaliDB prototype are written in Java. To make our ap-

proach towards real-time notifications applicable to a wide range of use cases, we designed

InvaliDB with a pluggable query engine, the default supporting MongoDB. We evaluated

several other options before implementing our own query engine to copy existing behav-

ior. Specifically, we evaluated using third-party MongoDB-like query engines and instances

of MongoDB for query evaluation. However, we had to abandon them due to correctness

and performance issues. As a consequence, we implemented a Java-based query matching

engine that operates on abstract syntax trees and is able to reuse predicate evaluation

across query subscriptions. Communication between Quaestor and InvaliDB is handled

through Redis message queues.

At the time of writing, the InvaliDB prototype does not support joins and aggregations.

Since Orestes is designed for aggregate-oriented, denormalized NoSQL databases, the ca-

pability to pose predicates on nested documents is sufficient to reflect 1:1 and 1:n relation-

ships. Aggregations with groupings are ongoing work and therefore currently uncached.

In summary, InvaliDB provides a scalable stream processing mechanism for detecting

query invalidations on top of Orestes. Its central trade-off lies in the partitioning of both

queries and changes, which makes most joins inherently expensive, but enables linear

162 4 Web Caching for Cloud Data Management

scalability and low latency for filter queries over collections as promoted by many scalable

NoSQL systems.

4.6.2 Statistical TTL Estimation

As described in Section 4.2.1, TTL Estimators provide stochastic estimations of cache ex-

piration times for query results. Our mechanism is based on the insight that any cached

query result should ideally expire right before its next update occurs, thus achieving max-

imum cache hit rates while avoiding unnecessary invalidations. The discrepancy between

the actual and the estimated TTL directly determines the amount of data considered stale

and hence affects the false positive rate of the Cache Sketch. High cache hit rates and an

effective Cache Sketch size thus require reliable TTL estimates.

We use a dual strategy for estimating expirations for query results. Initially, TTLs are

estimated through the stochastic process of incoming updates. As described in Section

4.2.1, Poisson processes count the occurrences of events in a time interval t characterized

by an arrival rate λ . The inter-arrival times of events have an exponential cumulative

distribution function (CDF), i.e., each of the identically and independently distributed

random variables Ti has the cumulative density F(x;λ) = 1− e(−λx) f or x ≥ 0 and mean

1/λ . For each database object, Orestes can estimate the rate of incoming writes λw in

some time window t through sampling.

The result set Q of a query of cardinality n can then be regarded through a set of in-

dependent exponentially distributed random variables Ti, . . . ,Tn with different write rates

λw1, . . . ,λwn. Estimating the TTL for the next change of the result set requires a distribution

that models the minimum time to the next write, i.e., min{T1, . . . ,Tn}, which is again ex-

ponentially distributed with λmin = λw1 + . . .+λwn (minimum value distribution [Gal95]).

The quantile function then provides estimates that have a probability p of seeing a write

before expiration:

F−1(p,λmin) =
−ln(1− p)

λmin
. (4.4)

By varying the quantile, higher/lower TTLs (and thereby cache hit rates) can be traded

off against more or fewer invalidations. Alternatively, the TTL can be estimated using the

expected time until the next write. This results in always using the observed mean TTL,

but in turn does not allow fine-grained adjustments.

For individual records, we always use an estimate based on the approximated write rates.

For queries, the Poisson estimate based on the write rates on the keys of the result set

is only used as an initial estimate. The initial estimate has a bias, as the used minimum

value distribution models the probability of one contained record changing. This sub-

sumes change and remove events, but not add events. Considering potential add events is

infeasible as it would require knowledge about each database object as well as cardinality

4.6 Invalidations and Expirations 163

estimates of the query. Therefore, the system quickly needs to converge to a more precise

estimate after observing actual invalidations.

If a query result is invalidated, the actual TTL of the result can be computed as the differ-

ence between the invalidation timestamp and the previous read timestamp. We can hence

update the old estimate according to an exponentially weighted moving average (EWMA)

closer towards the true TTL:

T T Lquery = α ·T T Lold +(1−α) ·T T Lactual (4.5)

As an alternative to the EWMA, all strategies from Section 4.2.3 can be employed, too.

The current TTL estimate for a query is kept in a shared partitioned data structure called

the active list, which is accessed by all Quaestor nodes. The key idea of the query TTL

estimation model is to make an educated guess about the initial TTL which should then

move towards the “true” TTL with some lag after invalidations. TTL estimation is used for

queries and records in both expiration- and invalidation-based caches. Note that this does

not require clock synchronization, as only relative time spans are used.

4.6.3 Representing Query Results

A cached query result can either be served as a list of record URLs (ID-list) or as a full

result set (object-list). ID-lists are more space-efficient and yield higher per-record cache

hit rates as objects of query results are stored and retrieved individually. However, they

require more round-trips to assemble the result – the decision which representation to use

cannot be made by the cache. Quaestor employs a cost-based decision model in order to

weigh fewer invalidations (ID-lists) against fewer round-trips (object-lists) when choosing

a result representation.

Cost Model

The goal is to minimize invalidations and query latency while maximizing cache hits. Our

decision model weighs the costs of fewer invalidations against lower round-trip costs when

deciding between object-lists and ID-lists. Web caches remain unmodified by Orestes,

therefore sending a query result in one response (object-list) hides the fact that a result

contains separately cacheable objects. With ID-lists, clients load the ID-list first and the in-

dividual objects in a subsequent second round-trip, so that caches store individual objects

as well as the ID-list itself. For HTTP/1.1, the number of round-trips for ID-lists depends

on the result set cardinality (resp. a limit clause) and the number of connections, because

only six objects can be transferred in parallel [Gri13]:

crtt = 1+
⌈

min(limit,card(result))
connections

⌉
. (4.6)

164 4 Web Caching for Cloud Data Management

Through multiplexing, HTTP/2 [IET15] reduces the cost for ID-lists to 2: one request

for the ID-list and an arbitrary number of parallel subsequent requests for the referenced

objects. For object-lists, the cost is always 1, as they only require a single request. Note

that a user-defined limit on the number of records to be returned also impacts the caching

decision, because it overrules the original cardinality of the query result. On the other

hand, ID-lists have lower invalidation costs, as only add and remove notifications trigger

an invalidation, whereas cached object-lists are also invalidated by change notifications.

A third hybrid decision is also possible, which is a combination of ID-lists with objects that

are likely to be uncached proactively piggybacked through HTTP/2 push. As the hybrid

model involves a complex learning problem, we leave it to future work to design and

evaluate a respective strategy.

Comparing Costs

The decision to represent cached query results as object-lists or ID-lists depends on the

preference between cacheability and round-trip costs. Fewer round-trips result in im-

proved latency, while the ID-list model causes fewer invalidations and thus more cache

hits for both queries and record reads. The query cost equation hence compares the

fraction of saved invalidations (ID-lists) to the fraction of saved round-trip costs (object-

lists):

asIds := (w · changes
removes+adds+ changes

> 1− 1
crtt

) (4.7)

We also introduce a bias w to express a preference. The decision model provides a straight-

forward, cheap calculation that only requires Quaestor to track counters on match types

and the current result set cardinality. In the following section, we introduce how Quaestor

manages local and shared state to provide globally consistent TTLs and decisions on the

object-list versus ID-list structure.

4.6.4 Capacity Management

Required matching capacities scale linearly with the number of concurrently cached

queries. Based on past cache miss rates and invalidations, only queries that are executed

sufficiently often should be activated and passed to InvaliDB. By maintaining node-local,

probabilistic heavy-hitter sets of queries that get invalidated too often, queries with mod-

erate expected TTLs can be identified and become eligible for caching.

The distributed caching algorithm that decides how queries are handled is shown in Al-

gorithm 2. Incoming queries are first compared to a local blacklist of hard uncacheable
queries (line 2): queries are locally marked uncacheable, if their invalidation frequency

is above a predefined threshold. In contrast, a query is soft uncacheable, it is cacheable

per se, but is not admitted at the given time, because InvaliDB has no capacity to match

the query. Uncacheable queries are returned to the client as full object-lists after query

execution. Clients can mark queries as hinted to indicate that their results should always

4.6 Invalidations and Expirations 165

Untracked

 Tracked

Active
Query either hinted or

cachable & capacity available

On cache miss
re-add using
existing
metrics

Discard metrics
on inactivity

Query
invalidated

or expired

Track cache miss frequency
(cacheability) of
new queries

Figure 4.18: Quaestor’s query capacity management.

be cached, even if capacity is exceeded18. For all queries, we differentiate between three

states, as shown in Figure 4.18:

• Untracked queries are queries for which there are currently no metrics, either be-

cause they are new or because they have not been executed in the last time window.

• Active queries are currently cached.

• Tracked queries have expired or were invalidated, but their read rates are still

tracked. This allows us to adapt the TTL and representation upon reactivation.

Algorithm 2 Distributed query caching algorithm
1: procedure EXECUTE(query) returns result
2: if query ∈ hardUncacheable return db.execute(query)
3: metrics← activeList.getMetrics(query)
4: if active or f ree capacity or hinted then

metrics.state← active
5: else if capacity exceeded then

metrics.state← tracked
6: metrics.asIds← Equation (4.7)
7: result← db.execute(query)
8: if metrics.previousState = untracked then

T T L← estimate so that P(Tnextwrite > T T L) = 50%
9: else

T T L← metrics.T T L
10: if T T L > T T Lmin then

CacheSketch.reportRead(query,T T L)
set T T L and card(result)
InvaliDB.subscribe(query,T T L), on invalidation do:

CacheSketch.reportWrite(query)
T T L← α ·T T Lold +(1−α) ·T T Lactual
update card(result) and invalidation counters

11: return result

18Hinting is only available for users with administration privileges, in order to prevent end users from de-
grading overall performance.

166 4 Web Caching for Cloud Data Management

If a query is cacheable, the Quaestor node receiving the query modifies the central active
list of cached queries. It has to perform the state transition of the query, decide how to

represent the result, execute the query, and write back the updated metrics. The rele-

vant metrics are the current state, invalidation counters (changes, adds, removes), cache

misses, how the query was previously cached, and its previous TTL.

After updating the query state in the active list (lines 2 to 6), the query is executed and

a TTL for the result set is estimated (lines 8 to 9). For new queries, the Poisson quantile

described in Section 4.6.2 is used. TTLs of known queries are adjusted towards the actual

T T L upon expiration or invalidation and reused, if the query is re-executed later. If the

estimated TTL is larger than T T Lmin, the query and its TTL are reported to the central

Cache Sketch, the active list, and InvaliDB (line 10). A compare-and-swap approach in

the active list is used to prevent race conditions arising from conflicting TTL estimates of

concurrent query executions. New queries and those with updated TTLs are subscribed

to InvaliDB. Upon each invalidation, affected queries are reported to the Cache Sketch

and invalidation counters in the active list are updated. Further, invalidations trigger TTL

updates in the metrics component that will impact the TTL for the next incoming cache

miss on a query. Finally, the query result is returned to the client. The active list’s capacity

is limited by the throughput of the given InvaliDB deployment.

Quaestor uses different admission policies to accept or reject queries. In a naive ap-

proach, the active list greedily accepts all new queries until working at capacity. However,

a first-come-first-serve order can be problematic depending on the request distribution. If

queries that are expensive to match or hard to cache are requested first, InvaliDB’s match-

ing capacity will be expended on them. A more refined model than the greedy approach

is to only accept queries that have caused at least m cache misses in the last t seconds

indicating that caching them would be advantageous. We hence suggest an optimization

where queries are not cached on their first read. Instead, Quaestor first registers the read

timestamp and begins tracking the number of reads over a timeframe of t seconds. The

model therefore pre-filters queries by popularity before making them cacheable.

4.6.5 End-to-end Example

Figure 4.19 gives an end-to-end example of the steps involved in serving cacheable

queries. In the depicted setting, the client begins by fetching the Cache Sketch contain-

ing a stale query (q2) still cached in the client (1). Therefore, when loading the query,

the client triggers a revalidation that refreshes the client cache and causes a miss at the

invalidation-based cache. Using the active list, the server passes the query to InvaliDB for

future change detection, while estimating the TTL and deciding between an ID-list and

object-list representation (2).

Before returning the result, the server reports the query to the Cache Sketch, so that every

subsequent invalidation within the newly estimated TTL will mark the cached query as

stale. The returned result is cached in both caches using the new expiration timestamp.

4.7 Evaluation of Query Caching 167

4. Query q1 is invalidated by an update and added to the Bloom filter.

2. A query q2 (contained in the Bloom filter) revalidates the caches.

b={q2}
(q2, t3),(q1, t2)

∅

b={q2}
(q2, t2),(q1, t1)

b={q2}

(q2,t2) (q1,t1)b=∅

q2 ∈ b

b={q2}

Revalidate q2

object-list, TTL
Estimate

TTL
New q2

(q2,t3) (q1,t1),(q2,t3)

Update obj ∈ q1

Match on q1

Invalidate q1

(q2,t3)

obj After-Image

Continue

Matching q2

b={q2,q1}
 (q2, t3),(q1, t1)

q1 ∉ b
Cached query q1

(q1,t1),(q2,t3)

1. The client connects to the server and retrieves a Bloom filter b.

3. A second query q1 (not in the Bloom filter) is served from the cache.

Client
Exp.

Cache
Inv.

Cache
Server

TTL
Est.

InvaliDB
Cache
Sketch

Cache
Sketch

4. Query q1 is invalidated by an update and added to the Bloom filter.

2. A query q2 (contained in the Bloom filter) revalidates the caches.

b={q2}
(q2, t3),(q1, t2)

∅

b={q2}
(q2, t2),(q1, t1)

b={q2}

(q2,t2) (q1,t1)b=∅

q2 ∈ b

b={q2}

Revalidate q2

object-list, TTL
Estimate

TTL
New q2

(q2,t3) (q1,t1),(q2,t3)

Update obj ∈ q1

Match on q1

Invalidate q1

(q2,t3)

obj After-Image

Continue

Matching q2

b={q2,q1}
 (q2, t3),(q1, t1)

q1 ∉ b
Cached query q1

(q1,t1),(q2,t3)

1. The client connects to the server and retrieves a Bloom filter b.

3. A second query q1 (not in the Bloom filter) is served from the cache.

Client
Exp.

Cache
Inv.

Cache
Server

TTL
Est.

InvaliDB
Cache
Sketch

Cache
Sketch

Figure 4.19: End-to-end example of query caching.

When the client performs a query that is not stale (q1), the cache can serve the result

(3). A change operation to a record contained in that query result is forwarded to the

database and the respective after-image is passed to InvaliDB (4). InvaliDB detects the

change to the query and reports the invalidation to the Cache Sketch. As the query still

has a non-expired TTL, the Cache Sketch adds the stale query and triggers an invalidation

to prevent stale reads of the old query result.

4.7 Evaluation of Query Caching

In this section, we demonstrate that Quaestor’s scalability is only limited by the write

throughput of the underlying database system. We evaluate Quaestor with regard to la-

tency, throughput, and staleness (and hence the effectiveness of TTL estimators) com-

pared to a baseline of just using a CDN, only using a client cache, and no caching at all.

168 4 Web Caching for Cloud Data Management

We further demonstrate the linear scalability of InvaliDB and the high throughput of our

distributed Cache Sketch implementation.

4.7.1 Experimental setup

Our experimental design is based on the YCSB benchmark [CST+10]. YCSB defines a set of

common workloads to evaluate the performance of cloud databases (cf. Section 4.3.1). We

implemented a YCSB-style framework that extends the widely-used original benchmark in

two aspects: a multi-threading model for massive connection parallelism and a multi-

client model to scale the client tier [FWGR14]. As a baseline to our experiments, we used

an Orestes deployment with uncached communication, which we deem representative for

state-of-the-art database services that do not use web caching (cf. Section 2.2.6).

We evaluated Quaestor on the following EC2 setup: MongoDB was configured in a clus-

ter setting with 3 m3.xlarge (4 vCPUs, 15 GB RAM, 2x40 GB SSDs) instances with 2

shard servers and 1 configuration server. Objects were sharded through their hashed

primary key. The Cache Sketch as well as the Redis-backed active list were hosted on

one m3.xlarge instance, respectively. Further, we used 3 Quaestor servers and a varying

number of workload-generating client instances (all m3.xlarge). To demonstrate the full

impact of geographic round-trip latency, Quaestor, MongoDB, and InvaliDB were hosted

in a virtual private cloud in the EC2 Ireland region, with workloads being generated from

the Northern California region. In the setups using a CDN, Fastly was used (client-CDN

round-trip latency 4 ms). Cache misses at CDN edge servers were forwarded to Quaestor

nodes in a round-robin manner.

Workloads were specified by defining a discrete multinomial distribution of operation

types (reads, queries, inserts, partial updates, and deletes). TCP connections were pre-

warmed for 30 seconds on a dummy table. Load was generated using asynchronous

requests with 300 HTTP connections per client instance. Each data point was created

under 5 minutes of load, which was sufficient to achieve stable and reproducible results.

Requests were generated by first sampling an operation type and then sampling the key/-

query and table to use (using a Zipfian distribution). For the workloads we analyzed,

10 database tables, each with 10 000 objects, were generated for each run. Each object

consisted of 10 fields with randomly drawn integers and strings. Further, 100 distinct

queries per table were generated to initially return an average of 10 objects. Throughout

the experiment, the number of objects per query result changed, when objects matching

the query predicate were updated.

We also extended the YMCA Monte Carlo simulation framework to queries. Simulation

is the most reliable method to analyze properties like query staleness as it provides glob-

ally ordered event timestamps for each operation and does not rely on error-prone clock

synchronization. Further, the simulation enables detailed analysis optimization of various

workload parameters such as latency distributions, TTL estimation models, and capacity

configurations.

4.7 Evaluation of Query Caching 169

4.7.2 Cloud-Based Evaluation of Query Caching

To demonstrate the effectiveness of Quaestor, we varied typical workload parameters such

as incoming connections, the number of queries and objects, and update rates. We studied

Quaestor’s scalability and performance under high throughput and extended the analysis

to more clients and measured staleness using simulation. We did not compare Quaestor

to geo-replicated systems (e.g., Pileus) as our main point is to show that commodity web

caching highly improves latency with very little staleness and no additional servers. Geo-

replication schemes tuned towards one specific geographical setup might still outperform

Quaestor.

300 600 1200 1800 2400 3000
Connections

0

25k

50k

75k

100k

125k

150k

T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

Quaestor CDN only UncachedCS only

Figure 4.20: Throughput for a varying number of parallel connections comparing un-
cached database access (Uncached), query caching in the CDN (CDN only),
query caching in the client (CS only), and full client and CDN query caching
(Quaestor).

Read-Heavy Workload

We begin evaluating Quaestor on a read-heavy workload with 99% queries and reads

(equally weighted) and 1% writes. Figure 4.20 demonstrates Quaestor’s throughput scal-

ability against a baseline without dynamic caching (Uncached), a CDN with InvaliDB (CDN
only), and the client cache based on the Cache Sketch (CS) only (CS only). At maximum

load (3 000 asynchronous connections delivered by 10 client instances), Quaestor achieves

an 11-fold speedup versus an uncached baseline, a 5-fold improvement over the Cache

Sketch-based client caches and a 69.5% improvement over a CDN with InvaliDB. Using a

CDN with InvaliDB yields superior performance to only using client caches since clients

rely on the CDN to fill up their caches quickly.

Client-side Bloom filters were refreshed every second (∆ = 1) to ensure minimal stale-

ness. Figure 4.21 illustrates the latency distribution: while most queries are client cache

170 4 Web Caching for Cloud Data Management

Client Cache Hits (capped)

CDN Cache Hits

Cache Misses

Figure 4.21: Query latency histogram showing peaks for client cache hits, CDN cache hits,
and cache misses.

hits with no latency, CDN hits induce an average latency of 4 ms and cache misses 150

ms. Mean round-trip latency between client instances and Quaestor was 145 ms with a

variance of 1 ms between runs (error bars omitted due to scale). Please note that linear

scalability is not possible, since an increasing number of clients increases the number of

updates and thus reduces cacheability.

300 600 1200 1800 2400 3000
Connections

0

50

100

150

200

M
e
a
n
 l
a
te

n
cy

 (
m

s)

Quaestor CDN only UncachedCS only

Figure 4.22: Object read latency for a varying number of parallel connections comparing
cached to uncached database access.

Figures 4.22 and 4.23 show read and query latency for the same setup. For 3 000 connec-

tions, Quaestor achieved a mean query latency of 3.2 ms and a mean read latency of 17.5

ms. As there are 100× more records than queries, cache hit rates for queries are higher

and latencies lower. Note that the latency of the variant with the client cache (CS only)

increases due to more overhead at the database. In contrast, CDN latency for queries im-

4.7 Evaluation of Query Caching 171

300 600 1200 1800 2400 3000
Connections

0

50

100

150

200

M
e
a
n
 l
a
te

n
cy

 (
m

s)

Quaestor CDN only UncachedCS only

Figure 4.23: Query latency for a varying number of parallel connections comparing cached
to uncached database access.

proves initially and remains constant afterwards, because separate clients access the same

CDN edge.

It is important to note that the relation between query and read latency depends not only

on access distributions, but also on how query predicates “cover” the space of primary

keys with respect to the concurrent update operations. That is, if most queries select a key

that is also frequently updated, invalidations and thus latency increase. In this workload,

query predicates were selected uniformly over the primary keys, but not all primary keys

were necessarily covered. With increasing query count, updates are more likely to trigger

invalidations, which we demonstrate in the following by varying the number of queries

executed by clients.

Varying Query Count

Scalability with regard to query count is governed by the provided InvaliDB configuration

(which scales linearly, as shown in Section 4.7.4). We demonstrate the effect of increasing

query counts with regard to average request latency and cache hit rates for the same

InvaliDB configuration used in the read-heavy workload (8 InvaliDB matching nodes).

Figure 4.24 shows how both read and query request latencies are affected by an increasing

query count. Read latency improves, because a larger portion of keys is part of a cached

query result. When queries that are cached as ID-lists, all records in a result are inserted

into the cache as individual entries, thus causing read cache hits by side effect. This

improves read latency from initially 20 ms to a mean read latency of 15 ms. The average

query latency increases to slightly above 10 ms for larger query counts due to decreasing

cache hit rates at the client, as shown in Figure 4.25. Cache hit rates at the CDN are

comparably stable, since the concurrent client instances cause sufficient cache hits by

172 4 Web Caching for Cloud Data Management

side effect for each other. Ultimately, Quaestor’s performance for increasing query counts

depends more on the popularity of individual queries and the update rate than on the total

number of queries.

1000 2000 4000 6000 8000 10000
Query count

0

10

20

30

M
e
a
n
 l
a
te

n
cy

 (
m

s)

Queries Reads

Figure 4.24: Mean latency for reads and queries for different numbers of total queries.

1000 2000 4000 6000 8000 10000
Query count

0.2

0.4

0.6

0.8

1.0

C
a
ch

e
 h

it
 r

a
te

Client/Qrs. Client/Reads CDN/Qrs CDN/Reads

Figure 4.25: Read and query cache hit rates at the client and CDN for different numbers
of total queries.

Varying Write Rates

Read-dominant workloads naturally lend themselves to caching, since they allow higher

consistency, longer TTLs, fewer invalidations, and less database load. With increasing up-

date rates, throughput is limited by the database. We demonstrate how cache hit rates

degrade by increasing update rates (keeping equal read and query rates) in Figure 4.26.

4.7 Evaluation of Query Caching 173

Only 1 200 connections were used to avoid being limited by the write throughput of the

MongoDB cluster. Client cache hit rates for both records and queries decrease predictably

with increasing update rate. Figure 4.26 shows how staleness (Cache Sketch refresh inter-

val) can be used to mitigate performance degradation in write-heavy scenarios. Notably,

the refresh interval has only little impact on cache hit rate degradation. There is no lin-

ear correlation between increasing refresh rate and lower latency on higher write rates,

because increasing write rates also leads to lower TTLs. Hence, increasing Cache Sketch

refreshes above a certain threshold only leads to more staleness without improved client

performance.

0.00 0.05 0.10 0.15 0.20
Update rate

0.2

0.4

0.6

0.8

1.0

Q
u
e
ry

 c
a
ch

e
 h

it
 r

a
te

100k obj./1k queries/1 s
100k obj./1k queries/10 s
100k obj./1k queries/100 s
100k obj./10k queries/1 s

Figure 4.26: Client cache hit rates for queries with varying update rates for different Cache
Sketch refresh intervals. The labels indicate the respective number of total
objects and queries, as well as the refresh interval.

Varying Object Count

Finally, we investigate Quaestor’s performance for varying object counts. Table 4.3 com-

pares latencies for different database sizes indicated by the number of objects. Each collec-

tion contains 10 000 objects and is accessed by 100 distinct queries. We increased experi-

ment durations to 600 s and changed the Zipf constant to 0.99 to account for the fact that

caches take significantly longer to fill up with increasing object and query counts. Results

show that for very small databases and distributions with high Zipf constants, reads and

writes concentrate on the same few objects and thus limit cache hit rates. For increasing

database sizes, caches take longer to fill up and TTLs have to be adjusted upwards, thus

limiting performance during experiments. Nonetheless, query latencies remain below 35

ms, while read latencies slightly suffer from low cache hit rates for the (relatively) short

duration of the experiment for higher numbers of total objects.

174 4 Web Caching for Cloud Data Management

Objects Queries Queries Reads

10 000 100 13.8 ms 70 ms
100 000 1 000 5.5 ms 40.2 ms
1 million 10 000 11.9 ms 27.2 ms
10 million 100 000 34.8 ms 133 ms

Table 4.3: Average query and read latency for increasing object counts for a request distri-
bution with Zipfian constant 0.99.

Production Results

Baqend currently hosts a range of production applications and has delivered performance

improvements to numerous websites. As an example we report the results of the e-

commerce company Thinks. While being featured in a TV show with 3.5 million view-

ers, the shop had to provide low latency to potential customers. By relying on Orestes

to cache all static data (e.g., files) and dynamic query results (e.g., articles with stock

counters) the website achieved sub-second loads while being requested by 50 000 con-

current users (>20 000 HTTP requests per second). The business effect was measurable:

the shop achieved a conversion rate of 7.8%, which is roughly 3 times above the industry

average [Cha17]. Usually, such a request volume requires massive scale in the backend.

However, since the CDN cache hit rate was 98%, the load could be handled by 2 DBaaS

servers and 2 MongoDB shards.

4.7.3 Simulation-Based Evaluation of Query Caching

In the following, we analyze client-side staleness, TTL Estimation, and the decision model

through Monte Carlo simulation of Quaestor.

The EC2-based evaluation showed Quaestor under maximum load, using relatively few

client instances with many parallel connections. To analyze staleness and the decision

model, we use a more web-typical configuration of many clients (100) with fewer HTTP

connections per client (6) in the simulation. The simulation detects staleness (i.e., any vi-

olations of linearizability [GLS11]) in the client caches and the CDN. Client-side staleness

is bounded by the Cache Sketch refresh interval. Upon every Cache Sketch renewal, clients

revalidate stale cache entries identified by the filter. CDN staleness is primarily governed

by invalidation latency. In our experiments, CDN staleness was constantly below 0.1%

with 100 ms mean invalidation latency (10 ms variance).

A stale read at the client cache occurs, if the version read from a cache vr is older than

the last acknowledged write version vw (possibly written by another client). A stale read

at the CDN occurs when a write vw has been acknowledged, but the corresponding record

has not been invalidated from the CDN, yet, and a later read retrieves version vr older

than the written version (vr < vw).

Figure 4.27 illustrates the relationship between Bloom filter refresh rate and client stale-

ness. Staleness initially increases fast between 1 s and 10 s refresh rate, but is limited by

4.7 Evaluation of Query Caching 175

1 10 20 30 40 50
Bloom filter refresh interval (s)

0.0

0.1

0.2

0.3

0.4

0.5

S
ta

le
n
e
ss

 r
a
te

10 clients/queries
10 client/reads
100 clients/queries
100 clients/reads

Figure 4.27: Stale read and stale query rates for 10 and 100 clients with different refresh
intervals.

two factors for higher refresh intervals. First, every time a client begins an update opera-

tion it invalidates the corresponding record from its own cache. Second, client staleness

rates are limited by cache hit rates, which were up to 60% for records and up to 95%

for queries in the benchmark, thus explaining the difference between record and query

staleness.

TTL Estimation

We also used simulation to compare our query TTL estimation scheme against the true
TTL for every query, which we define as the time period a query could have been cached

until invalidation. Figure 4.28 shows the cumulative distribution functions (CDFs) for

estimated and true TTLs for a 1% write rate for 10 minutes. The CDF comparison shows

the expected result of having a similar distribution for the majority of TTLs and larger

errors on the unpredictable long tail of the access distribution. Due to the learning phase

and the bias of initial estimates, there is a systematic underestimation that could be tuned

by adjusting the EWMA constant α of the TTL estimator. As query caching assumes that

relevant queries are executed often and by many clients, the high accuracy on the short

tail is a highly relevant property of the TTL estimation scheme.

Decision Model

The decision model enables dynamic representations for query results that depend on

result size, the number of connections, and different matching events. Object-lists offer

minimal latency due to a single round-trip, ID-lists offer better cache utilization due to not

requiring invalidation on change events. As discussed in Section 4.6.3, the bias w allows

expressing a preference over the representation. We analyzed the advantage of using

176 4 Web Caching for Cloud Data Management

0 100 200 300 400 500 600
TTL (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Quaestor TTLs

True TTLs

Figure 4.28: CDF of the query TTL estimation scheme compared with the CDF of the true
TTL as measured in the simulation.

ID-lists in a setting with 10% write rate where many invalidations could be avoided. The

caching decision was evaluated by introducing a probability p of changing an attribute that

is not part of the query predicate and hence only causes change events, thus decreasing

invalidations for ID-lists with increasing p.

0.0 0.2 0.4 0.6 0.8 1.0
Probability p of non-predicate change

16k

18k

20k

22k

24k

T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

Prefer object-lists
Prefer id-lists

Figure 4.29: Throughput of object/ID-lists for an increasing probability of non-predicate
changes for 100 simulated clients (600 connections total).

Figure 4.29 illustrates that object-lists are a better choice for workloads where fields in the

query predicate are changed, while ID-lists gain considerably from avoiding invalidations

on non-predicate changes. Figure 4.30 compares query staleness for increasing p, which

demonstrates that ID-lists can reduce staleness considerably. We also observed a slight

4.7 Evaluation of Query Caching 177

0.0 0.2 0.4 0.6 0.8 1.0
Probability p of non-predicate change

0.00

0.02

0.04

0.06

0.08

0.10

S
ta

le
n
e
ss

 r
a
te

Prefer object-lists
Prefer id-lists

Figure 4.30: Query staleness for object/ID-lists. At higher probability p of non-predicate
changes, ID-lists avoid more invalidations and thus achieve lower staleness.

performance increase for higher p when using object-lists, which is caused by the lower

probability of non-predicate changes causing multiple invalidations.

4.7.4 InvaliDB

To demonstrate the scalability of our real-time matching approach, we measured sustain-

able matching throughput and match latency for differently sized InvaliDB deployments

on Amazon EC2. Our test setup comprised one client machine, one Orestes server, one

Redis server, and an InvaliDB cluster. As a baseline, we evaluated the InvaliDB deploy-

ment with only a single node for query matching and then doubled both the number of

active queries and the number of matching nodes with every subsequent experiment se-

ries. Every deployment had a single node dedicated to query and change stream ingestion.

The Redis server hosting the message queues for communication between InvaliDB and

the Quaestor server as well as all InvaliDB nodes were c3.large instances with 2 vCPUs

(Xeon E5-2680 v2, Ivy Bridge) and 3.75 GB RAM each. Every matching node hosted two

separate matching task instances (one per vCPU) on two separate JVMs. The Quaestor

server was a c3.xlarge instance and did not become a bottleneck.

Workload

For every InvaliDB configuration, we performed a series of experiments, each of which

consisted of two phases: In the preparation phase, any still-active queries from earlier

experiments were removed and queries for the upcoming one were activated. In the

subsequent 2-minute measurement phase, the client machine performed 1 000 insert

operations per second against the Quaestor server and measured notification latency as the

178 4 Web Caching for Cloud Data Management

1 2 4 8 16
Matching Nodes

2.5M

5M

10M

20M

40M

80M

T
h
ro

u
g
h
p
u
t

(o
p
s/

s)
99th Percentile Latency 25 ms

99th Percentile Latency 20 ms

99th Percentile Latency 15 ms

Figure 4.31: Notification latency as a function of the executed matching operations per
second for InvaliDB clusters employing 1, 2, 4, 8, and 16 matching nodes
(figure taken from [GSW+17]).

difference between the timestamp of notification arrival and of the point in time directly

before sending the corresponding insert statement.

We chose the same constant update throughput of 1 000 inserts per second for all experi-

ment series, but varied the number of active queries relatively to the number of matching

nodes in each InvaliDB cluster, so that all clusters were exposed to the same relative load.

We started each experiment series with 500 active queries per node and increased their

number by the same amount until the system was saturated and incoming operations

started queueing up. Thus, the cluster with only 1 matching node started with 500 active

queries, whereas the 16-node cluster started with 8 000.

Evaluation

To demonstrate the efficiency and scalability of InvaliDB, we measured notification la-

tency under increasing load for 5 InvaliDB clusters employing between 1 and 16 matching

nodes. The line plot in Figure 4.31 illustrates that matching throughput scales linearly

with the number of matching nodes, even under tight latency bounds. Please note that

we plotted the number of active queries on a logarithmic scale for better readability, since

both the number of matching nodes and the number of active queries and thus overall

system load were doubled with every experiment series.

All clusters achieved 99th percentile latencies below 20 ms up to 3 million and below 30

ms up to 4 million ops/s per node, while huge latency spikes marked system capacity at

roughly 5 million ops/s per node. Peak latencies never exceeded 100 ms under load of 3

million ops/s per node or less. Table 4.4 shows that all clusters displayed almost identical

latency characteristics under an identical relative load of 3 million ops/s per node and thus

4.8 Cache-Aware Transaction Processing 179

demonstrates that InvaliDB provides predictable low latency, irrespective of the number

of matching nodes in the cluster.

1 node 2 nodes 4 nodes 8 nodes 16 nodes
ops/s 3M 6M 12M 24M 48M

la
te

nc
y

(m
s) avg 8.5 8.8 8.9 8.8 8.5

std. dev. 2.6 2.7 2.8 3.5 2.7
95 perc. 13.0 13.0 13.0 13.0 13.0
99 perc. 15.9 16.0 17.0 18.0 16.0

max 38.0 65.0 68.0 84.0 58.0

Table 4.4: Details on the latency characteristics of the different InvaliDB clusters at 3 mil-
lion matching operations per second per node (data taken from [GSW+17]).

4.7.5 Evaluation Summary

In summary, we have shown that Quaestor can provide substantial, scalable query latency

improvements which are primarily governed by write rates. In particular, we have shown

that the combination of the Cache Sketch and CDNs provides a super-linear performance

increase that cannot be achieved by either one of the components. Up to tenfold per-

formance improvements were obtained for different workloads by caching queries and

objects in the CDN and in clients. Further, we showed that the Cache Sketch was able to

achieve low stale reads rates with arbitrary fine-tuning of the latency-staleness trade-off

available to the application. Our result confirmed that the query TTL estimation scheme

converges towards the correct TTL for frequent queries and the decision model exploits

the workload to optimize cache hit rates through an optimal query representation. We also

demonstrated the feasibility of scalable invalidation detection for queries at consistent low

latency, irrespective of cluster size. Sustainable throughput was measured above 4 million

ops/s per EC2 c3.large instance and scaled linearly with the number of instances.

4.8 Cache-Aware Transaction Processing

As derived in the previous sections, the Cache Sketch approach offers tunable consistency

guarantees that applications can choose at granularity down to single reads and queries.

However, grouping multiple operations into a transaction for correctness is an indispens-

able capability of various data management problems [SSS15, WV02, BN09]. In Section

2.2.7, we identified latency as a pivotal problem for abort rates of both optimistic and

pessimistic transactions. The central observation was that the transaction runtime due to

external aborts is directly linked to the latency of operations performed in the context of

that transaction.

We identified multiple challenges for distributed transaction processing that Orestes can

address:

180 4 Web Caching for Cloud Data Management

1. For distributed environments, the latency of transactional operations has to be

tackled as it drastically affects both pessimistic and optimistic concurrency control.

2. State-of-the-art concurrency control schemes do not support the use of web caching.

A cache-aware transaction scheme that enables the use of expiration-based and

invalidation-based caches is missing.

3. Most current NoSQL database systems offer superior scalability and performance for

web applications, but lack the refined semantics of ACID transactions. Therefore,

polyglot persistence transactions should enable ACID guarantees as an opt-in fea-

ture without compromising other system properties.

4. Latency problems usually arise due to the distribution of users. Traditional trans-

action APIs assume access from application servers in a three-tier architecture, but

transactional access in BaaS applications has not been addressed.

In this section, we will extend the single-object concurrency abstractions of Orestes (con-

ditional and partial updates described in Section 3.5.7) to general-purpose ACID trans-

actions with low latency19. While the identified problems exist for both optimistic and

pessimistic transactions, the challenge of cache-awareness rules out pessimistic strategies

as a potential solution (cf. Section 2.2.7). First, we will therefore quantify the problem of

aborts in optimistic transactions through a stochastic analysis of rollback probabilities and

transaction runtimes.

4.8.1 The Abort Rate Problem of Optimistic Transactions

In order to motivate the benefits of low read latency in transaction processing, we ana-

lyze the abort probability of optimistic transactions in a theoretical model (cf. [Wit16]).

The drawback of optimistic concurrency control is that long-running transactions access-

ing many objects have a high abort probability. The main factors determining the abort

probability are [GHKO81]:

1. The runtime of the transaction and the related size of the read set

2. The update frequency of accessed objects

3. The access distribution for reads and writes (e.g., Zipfian or uniform)

The abort probability of non-cached optimistic transactions is determined by the update

probabilities of the objects in the read set. For a baseline analysis, we consider updates

to be uniformly distributed over a set of N objects and performed at a constant rate r.

Time is discretized into steps of length s (e.g., 1 ms). The question whether an object is

updated in a certain time-step is a Bernoulli trial with a success probability of p = r
N . The

19This section is based on results obtained in a master thesis by Witt, supervised in the context of this thesis
[Wit16].

4.8 Cache-Aware Transaction Processing 181

corresponding binomial experiment Y ∼ B(d,p) expresses the probability that k objects are

updated in l time steps:

P(Y = k) =
(

l
k

)
pk · (1− p)l−k (4.8)

P(Y = 0) = (1− p)l =

(
N− r

N

)l

(4.9)

We further assume that a transaction successively reads objects with a uniform popularity

distribution over the same set of N objects and that a read operation takes l time steps.

Thus, l represents round-trip latency of reads. Each transaction reads n objects. The

transaction model is illustrated in Figure 4.32.

Transaction 1

Read Random
Object

Updates

Write Random
Object

Time

0 100 200 300 400

Fixed Rate r

Transaction Size n

Read Latency l
Commit

Figure 4.32: The transaction model parameters for the stochastic analysis.

Intuitively, the ith read has a vulnerability window of (n− i+ 1) · l time steps in which it

can be overwritten and hence cause the overall transaction to abort20. The corresponding

conflict probability for the ith read is P(Y = 0)(n−i+1)·l. For example, the first read has a

probability of P(Y = 0)n·l to cause the whole transaction to abort. As before, the random

variable A describes the outcome of a transaction (abort or commit). The probability of a

successful commit for a transaction is:

P(A = 0) =
n

∏
i=1

P(Y = 0)i =
n

∏
i=1

(
N− r

N

)i·l
=
(

1− r
N

) 1
2 l·n·(n+1)

(4.10)

Figure 4.33 shows the abort probability as a function of the transaction size, update rate,

and read latency. It is clearly visible that lower read latency leads to drastically reduced

abort rates.

20Without loss of generality, we assume reads to logically happen at the begin of an invocation. Shifting the
linearization point of the read between invocation and response only changes the result by a fixed factor
and can therefore be ignored.

182 4 Web Caching for Cloud Data Management

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

Accessed Objects n

A
bo
rt
P
ro
ba
bi
lit
y
P
(A
=
1)

l = 10

l = 50

l = 100

l = 150

Figure 4.33: The abort probability for an increasing number of accessed objects at different
read latencies l for N = 10000 objects in the database, time steps of s = 1ms,
and 50 writes per second (r = 0.02).

Transaction Duration with Retries

Most applications require a failed transaction to be retried, after rollback due to an exter-

nal abort. The number of aborts R before a successful commit is described by a geometric

distribution:

P(R = k) = P(A = 0) ·P(A = 1)k (4.11)

The geometric distribution yields the expected number of aborts E[R]:

E[R] =
1−P(A = 0)

P(A = 0)
(4.12)

The duration of a transaction execution is t = l ·n. Let T = (R+1) ·t be the random variable

that describes the duration of a transaction including retries. Due to linearity of expected

values, E[T] can be derived as follows:

E[T] = (E[R]+1) · l ·n =

(
1−P(A = 0)

P(A = 0)
+1
)
· l ·n (4.13)

4.8 Cache-Aware Transaction Processing 183

0 20 40 60 80 100 120 140
0

20

40

60

80

100

Accessed Objects n

T
ra
ns
ac
tio
n
D
ur
at
io
n
w
ith
R
et
rie
s
in
s

l = 10

l = 50

l = 100

l = 150

Figure 4.34: Transaction runtime with retries for an increasing number of accessed objects
at different read latencies l for N = 10000 objects in the database, time steps
of s = 1ms, and 50 writes per second (r = 0.02).

Figure 4.34 shows the transaction duration including retries for the same parameters as

the abort analysis (see Figure 4.33). If the application requires retries of externally aborted

transactions, the impact of read latency is thus even higher.

The above discussion and analysis reveal that neither pessimistic nor optimistic protocols

are well-suited for long-running transactions and thus high-latency environments. As the

system can control neither the update frequency, access distribution, nor read set size, the

only way to reduce aborts is to minimize transaction duration by improving the latency of

each operation.

4.8.2 DCAT: Distributed Cache-Aware Transactions

We introduce distributed cache-aware transactions (DCAT) as an extension to Orestes that

uses the Cache Sketch approach to reduce latency and thus abort rates. The algorithm

is based on backward-oriented concurrency control, since in contrast to other pessimistic

and optimistic schedulers, it allows integrating web caches into the transaction processing

(see Section 2.2.7).

184 4 Web Caching for Cloud Data Management

Validation
Phase

Write
Phase

Read
Phase

PUT /transaction PUT .../committed

Begin
reads, writes, queries, ...

Commit

T

Client:
- Update read set on read
- Buffer writes locally
Server:
- Send Cache Sketch

Client:
- Send read & write set
Server:
- Validate T with BOCC
against database

Client:
- Handle outcome of T
Server:
- Write back changes
of T to database

If T valid → proceed

Figure 4.35: The three phases of an optimistic DCAT transaction.

Latency of interactive transactions is almost exclusively governed by the number of round-

trips between client and server. DCAT minimizes round-trips by serving read operations

from nearby caches and buffering write operations at the client. In the ideal case, a trans-

action requires two round-trips (fetching the Cache Sketch and committing the transac-

tion), which is independent of the number of accessed objects.

The two operations that DCAT exposes towards the client via REST are begin and commit

in order to define the transaction boundaries. The three phases of a DCAT transaction

are depicted in Figure 4.35. The overall transaction structure is similar to BOCC [KR81],

and respectively the variant BOCC+ [Rah88] that is based on version numbers to prevent

false aborts. In the read phase, the client signals the start of the transaction to the server

which in response sends the newest Cache Sketch. During the read phase all writes in

the client are buffered locally and all read versions are tracked in the read set. If the

transaction aborts internally, the client simply discards its local state. To commit, the

read and write set are transferred to the server, which uses this information to validate

whether the transaction can commit or whether it has to be aborted (validation phase).

If the validation succeeds, transactional changes are made permanent and visible in the

database during the write phase.

The detailed transaction scheme involving processing steps in the client and server is

shown in Figure 4.36. The steps of the transaction are:

1. The client initiates a transaction with the begin operation which fetches the Cache

Sketch from one (of potentially various) Orestes servers and creates a transaction

context to handle further operations.

2. Read operations and queries during the transaction are preferably served from

caches, using the fresh Cache Sketch to bound the staleness to the time elapsed

since transaction begin. This mechanism is essential to DCAT, as the Cache Sketch

conceptually provides an up-to-date snapshot view on all caches linked to the trans-

action begin.

4.8 Cache-Aware Transaction Processing 185

3. Write operations are buffered in the transaction context and not sent to the server.

Instead, the write set is applied atomically in the write phase, depending on the

successful validation.

4. The commit operation sends the read and write sets to one of the Orestes servers for

it to handle the commit process. This requires the commit procedure to be stateless,

so that any server can process the validation and write phase for a committing trans-

action. We achieve statelessness through a decoupled coordination service that runs

independently from the Orestes servers.

5. The Orestes server is responsible for validating transaction read sets and applying

write sets to the database. Following BOCC+, the server has to ensure mutual exclu-

sion of the commit process between overlapping transactions. Therefore, it acquires

coordination locks in the coordinator.

6. Once the critical section of the commit process is entered, the validation procedure

compares the versions from the read set to the current database state. The valida-

tion is successful, if all versions coincide. After successful validation, the write set is

applied to the database and coordination locks are released. An unsuccessful vali-

dation results in a transaction abort. In this case, the write set is discarded and the

coordination locks are released afterwards.

7. The server returns the result of the transaction to the client. If the transaction failed,

the client can decide to re-execute the transaction by starting at step 1.

4.8.3 Server-Side Commit Procedure

The commit procedure has to ensure isolation of transactions by testing for any violations

of serializability that may have arisen from concurrent transactions or cached reads. As

most NoSQL systems do not support a native transaction concept (cf. Chapter 3), a delib-

Orestes Server

Orestes Server

Orestes Server

DB

Coordinator

Mutual Exclusion

Begin Transaction

Cache Sketch

Reads

Writes

Commit: read-set and updates

Committed OR aborted + stale objects

1

4

5

6Writes

Client

Read all
Buffer

3

7

Cache

Cache

Cache

2

Figure 4.36: DCAT transaction concept and the steps involved at the client and server.

186 4 Web Caching for Cloud Data Management

erate design choice was to build on abstractions in the Orestes middleware21 in order to be

applicable to many data stores. The only requirement towards the database system is the

option for linearizable read operations. This is necessary for correctness when comparing

versions of the read set to the current state of the database.

Algorithm 3 shows the DCAT commit procedure. First, validation locks are acquired in the

coordinator to prevent validation of transactions that access the same objects (line 2). Our

prototype implementation of the coordinator is based on a single-server Redis, but could

be scaled easily, as validation locks may be hash-sharded across multiple servers. Next, the

commit procedure ensures that the bucket-level permissions for all buckets accessed in the

write set are met for the user executing the transaction (line 3). Similarly, the server-side

FaaS business logic is executed to check whether any of the individual handlers aborts the

transaction (line 4).

Algorithm 3 DCAT commit procedure.
1: procedure COMMIT(tid, readSet,writeSet)→{COMMIT T ED,ABORT ED}
2: coordinator.acquireLocks(tid,readSet,writeSet)
3: if !db.hasBucketPermission(tid,bucket) for each bucket ∈ writeSet then return ABORT ED
4: if db.executeBusinessLogic(writeSet) raises Exception then return ABORT ED
5: for (id,version) ∈ readSet

⋃
writeSet do . Check for stale reads and conflicts

6: if db.get(id).version 6= version then return ABORT ED
7: if !db.hasOb jectPermission(tid, id) then return ABORT ED

8: coordinator.log(tid,readSet,writeSet) . Ensure durability
9: db.update(writeSet) . Make private changes visible

10: coordinator.releaseLocks(tid,readSet,writeSet)
11: return COMMIT T ED

The main validation step verifies that the version is still up-to-date for each object that

was read or written by the transaction [Rah88] (lines 5 to 7). If one of the objects is stale,

a conflict occurred and a rollback of the transaction is necessary. Similar to other glob-

ally distributed, transactional systems (e.g, Spanner [CDE+13]), the validation accepts

schedules that are in the class of commit order-preserving conflict serializable (COCSR)

schedules, also known as external consistency [Coo13] or strict serializability [WV02].

In particular, this means that some conflict serializable (CSR) schedules are not accepted

by the DCAT commit procedure22. Besides the version check, it is also ensures that the

transaction possesses the object-level permissions required to access each of the objects.

After the validation steps, durability is ensured by logging the transaction as committed

(line 8). Afterwards, all updates from the write set are applied to the database and the

locks can safely be released as the transaction is committed (lines 9 to 11).

21For systems with transaction support, the commit procedure can make use of short-lived validation trans-
actions as an alternative to the BOCC procedure in Orestes [BBB+17].

22As an illustrating example, consider two transactions t1 and t2 producing the interleaved schedule
b1b2r1(x)r2(x)w2(x)c2w1(y)c1 (for notation see [WV02, Ch. 3]). There is only one conflict from t1 to t2
on object x. While this schedule is in CSR, it would be aborted by DCAT as the validation would detect
that t1 read an outdated version of x, hence violating COCSR.

4.8 Cache-Aware Transaction Processing 187

In summary, the DCAT commit procedure validates access rights and serializability and

applies successful transactions to the database using a mutual exclusion mechanism pro-

vided independently from underlying database systems. As servers can crash at any time,

a recovery mechanism is required to achieve fault tolerance.

Recovery

To enable recovery of successfully validated transactions that failed during their applica-

tion to the database, read and write sets are logged. The Roll-Forward Recovery [PV97]

uses these log entries to apply the write set to the database and release the locks. Once the

log entry for a transaction is persisted, the transaction will commit eventually (without re-

quiring rollbacks). A crashed transaction can, however, block all overlapping transactions

until its recovery. The recovery procedure can be triggered by two mechanisms. First, any

transaction that tries to commit and is unable to obtain the respective validation locks,

will retry the lock acquisition. Upon repeated failure, the recovery process is activated, to

check whether a transaction crashed during validation and has to be completed from its

log entry. This allows the blocked transaction to proceed. Second, the recovery periodi-

cally scans the log for pending writes to proactively finish any orphaned transactions.

Correctness

DCAT generates only schedules that are in COCSR (correctness) and is able to produce any

valid COCSR schedule (completeness). COCSR is a restriction of CSR demanding that if an

edge from ni to n j exists in the conflict graph (a conflict from ti to t j), then ti must commit

before t j [WV02, p. 102f]. While COCSR accepts fewer schedules, it is particularly useful

for distributed data management. If local transactions on a cluster executing with COCSR

are composed in a global transaction, that global transaction is conflict serializable [WV02,

p. 678]. This makes it straightforward to compose multiple DCAT transactions to global

transactions, for example in the context of polyglot persistence.

We prove correctness and completeness of DCAT regarding COCSR in Theorem 4.3 and

Theorem 4.4.

Theorem 4.3. Let S be the set of schedules generated by the DCAT commit procedure. Every
produced schedule is in COCSR: S⊆COCSR (correctness).

Proof. Consider a produced schedule with two transactions ti and t j (i 6= j) that exhibit a

conflict from ti to t j on object x, both completed successfully with t j committing before ti
(violation of COCSR). As the coordinator ensures mutual exclusion, ti and t j cannot have

been validated concurrently, as otherwise they would not be in conflict. Therefore, t j must

have been validated first, since by assumption it committed first. As there is a conflict

from ti to t j on object x, either

(i) ti has written x that was later read by t j.

(ii) ti has written x that was later written by t j.

188 4 Web Caching for Cloud Data Management

(iii) ti read x that was later written by t j.

By construction of the DCAT protocol, (i) and (ii) are impossible, as writes of ti are kept

locally until it has committed, but t j committed first. t j can therefore neither read nor

overwrite an x updated by ti. For case (iii), ti must have read x in version k and t j must

have updated x to version n > k. However, in that case, validation of ti in Algorithm 3 on

line 5 will abort, as the commit procedure observes the outdated version. Thus, all three

potential causes of the conflict are impossible (proof by contradiction).

Theorem 4.4. Let S be the set of schedules generated by the DCAT commit procedure. There
is no schedule in COCSR that is not produced by DCAT: S⊇COCSR (completeness).

Proof. DCAT aborts a transaction ti, iff ti read or wrote an object x in version k that a second

transaction t j updated to version n > k afterwards (conflict ti to t j on x). This implies that

t j has committed before ti, as otherwise its write would not be visible to ti. A schedule with

a conflict from ti to t j where t j has committed before ti is not in COCSR according to its

definition [WV02, p. 102f]. Therefore, DCAT only aborts schedules that are not in COCSR

and is thus complete.

With the set of schedules produced by DCAT being both complete and correct regarding

the serializability class COCSR, DCAT provides the full set of ACID guarantees:

Atomicity. DCAT transactions are either applied completely or not at all. This is ensured

by the logging step performed before any objects are written. If the log entry was

written completely, the transaction will eventually become visible with its complete

write set. The recovery process guarantees that only if all of the transaction’s writes

are applied, other transactions can obtain validation locks for access to the same

objects. If the log was not written completely, the transaction is not applied at all.

As no undo recovery is necessary, atomicity cannot be affected by potential cascading

aborts [WV02].

Consistency. DCAT does not currently support automatic or declarative consistency con-

straints (e.g., uniqueness and referential integrity). Therefore, we only consider

logical consistency [SSS15, p. 10] which is a property in the responsibility of appli-

cation developers. A logically consistent transaction produces a consistent database

state, if it is based on a consistent state at transaction begin and both isolation and

atomicity are guaranteed for its execution. Since isolation and atomicity are pro-

vided, logically consistent DCAT transactions will keep the database consistent.

Isolation. As proven in Theorem 4.3 and Theorem 4.4 DCAT ensures isolation of trans-

actions by only allowing schedules that are in COCSR. As the DCAT validation op-

erates on object level, it is able to detect all concurrency anomalies that arise from

serializability violations on single objects: dirty writes, dirty reads, lost updates,

non-repeatable reads, as well as read an write skew. However, since queries are only

tracked in the form of the specific objects returned in the produced result set, the

4.8 Cache-Aware Transaction Processing 189

phantom problem can occur. For example, if a transaction queries all bank accounts

that were created in 2018, a concurrent transaction could insert a new matching

account object without causing a conflict in validation. In future work, DCAT can be

extended to queries, by explicitly tracking them in the read set in order to validate

them in the commit procedure.

Durability. DCAT transactions are durable, once their write phase has completed. Dura-

bility is ensured by the underlying database and an option available in almost any

database system.

The major non-functional properties of DCAT are low latency, elastic scalability, database

independence, and fault tolerance. Low latency is achieved by leveraging the Cache

Sketch approach for transactional reads and queries. In the best case, all operations dur-

ing a transaction can be answered by web caches, so that only the begin and commit

require a client-server round-trip. As the stochastic analysis revealed (cf. Section 4.8.1),

read latency is the determining factor for the abort probability, which implies that DCAT

can drastically increase the success probability of transactions. Elastic scalability is en-

abled by building on the distributed Orestes architecture (cf. Chapter 3). Each Orestes

server can handle transaction commits. The only potential scalability bottleneck is the co-

ordinator that therefore can be partitioned over the keyspace of objects. As Orestes relies

on range- and hash-sharded NoSQL database systems, scalability of the writing commit

procedure is also given. The coordination mechanism is decoupled from the database

and only requires linearizability. Thus, DCAT is database-independent. The fault tol-

erance model is inherited from Orestes: according to the CAP theorem [GL02], certain

networks partitions render DCAT unavailable, as linearizability is required23. However,

DCAT is fault-tolerant with respect to server failures through its recovery mechanism and

it increases read availability by allowing reads and queries to be answered from caches.

4.8.4 Cache-Aware RAMP Transactions

We have furthermore investigated the use of Read Atomic Multi-Partition (RAMP) trans-

actions [BFG+16] in combination with DCAT as an optimization to reduce abort rates of

read transactions and to further improve latency as well as throughput.

RAMP transactions “enforce atomic visibility while offering excellent scalability, guar-

anteed commit despite partial failures [. . .] and minimized communication between

servers” [BFG+14, p. 1]. The central idea of RAMP is to provide an isolation level called

read atomic (RA) isolation, that itself is weak, but sufficient for some applications. By

combining the scalable, non-blocking RAMP protocol with the strong semantics of DCAT,

23Davidson et al. showed that serializability in general cannot be achieved in the presence of network parti-
tions [DGMS85].

190 4 Web Caching for Cloud Data Management

applications can trade transactional isolation guarantees against additional latency bene-

fits and RAMP’s guaranteed commit24.

Orestes Server

Orestes Server

Orestes Server
Read

Objects with RAMP metadata

Check for fractured reads
based on metadata

Resolve fractured reads

1

3

Client 2

Figure 4.37: Execution steps of a read-only RAMP transaction: reading annotated objects,
client-side validation, and resolution of fractured reads.

RAMP transactions guarantee read atomic (RA) isolation, which is met, if neither frac-

tured read anomalies occur, nor reads of uncommitted, aborted, or intermediate data. A

fractured read happens, if transaction ti writes version xm and yn and transaction t j reads

version xm and yk with k < n [BFG+14, p. 6]. Intuitively, a fractured read occurs, if only

parts of a committed transaction’s write set are observed. The other key properties of

RAMP transactions are scalability, minimized server communication, and a guaranteed

commit, i.e., RAMP transactions do not abort or block.

RAMP prevents fractured reads for multi-partition transactions by validating read opera-

tions at the client side and loading missing versions in a second round-trip as depicted in

Figure 4.37. In the first step, a RAMP transaction reads the objects from the server in-

cluding additional metadata stored with each object. This object metadata references all

other objects that were written together with the object. The metadata is used in the sec-

ond step to validate the read set for potential fractured read anomalies. If fractured reads

were found, the client resolves them by requesting missing object versions from the server.

Transactional writes (not shown in the figure) are applied in bulk at transaction commit.

The commit procedure annotates the object metadata in a two-phase write process that

contacts each accessed object partition [BFG+14].

To combine the benefits of RAMP transactions with the latency improvements and ACID

semantics of DCAT, RAMP transactions are used for read-only transactions that only re-

quire read atomic isolation. DCAT, on the other hand, is used whenever full ACID se-

mantics are needed and especially to avoid anomalies not prevented by RAMP (e.g., lost

updates [BFG+14, p. 9]). The combination thus is an option to mitigate the abort rate

problem for long-running read-only transactions.

The Cache Sketch scheme can be applied to RAMP transactions in order to improve read

latency. Instead of contacting the server in step one (Figure 4.37), objects can be served

from caches and validated at the client side (step two). The server only has to be con-

24RAMP transactions are guaranteed to commit, as they are coordination-free. A coordination-free execution
ensures that a transaction cannot be blocked by other transactions and will commit, if the system partition
of each accessed object can be reached [Bai15].

4.8 Cache-Aware Transaction Processing 191

tacted for resolving potential fractured reads. In the best case, RAMP transactions com-

bined with Cache Sketch-based caching therefore do not contact the server at all.

4.8.5 Evaluation

In order to evaluate the benefits of DCAT for both latency and transaction abort rates, we

conducted a Monte Carlo simulation based on our YMCA framework (cf. Section 4.3.1)

to compare optimistic BOCC+ transactions with and without caching. The simulation ex-

ecutes read-only transactions on a system with a baseline traffic of 50 writes and 1 500

reads per second (≈ 95% reads), distributed uniformly over a set of 10 000 database ob-

jects. As in the evaluation of Quaestor, CDN cache hits induce 4 ms latencies and cache

misses 150 ms. We compare results for latency, abort rate, and runtime of a transaction,

retried until their eventual success, each as a function of the transaction size.

0 50 100 150 200
Number of elements

0

5

10

15

20

25

30

T
im

e
 i
n
 s

Caching
No C aching

Figure 4.38: Transaction duration as a function of transaction size (data taken from
[Wit16]).

Figure 4.38 shows the immense benefit caching has on transaction execution time. While

standard transactions need about 150 ms for each read operation, cached transactions

achieve about 10 ms per read and thus are on average 15 times faster. The performance

of uncached transactions quickly becomes prohibitively high, DCAT remains usable up to

a high number of objects used in a transaction.

The latency benefit has a substantial effect on the transaction abort rate as shown in

Figure 4.39. The short execution time improves the abort probability while the increased

risk of loading stale objects from the cache is balanced by fetching the Cache Sketch at

transaction begin. Note that the empirical results correspond to the stochastic model as

shown in Figure 4.33.

192 4 Web Caching for Cloud Data Management

50 100 150
Number of elements

0.0

0.2

0.4

0.6

0.8

1.0

A
b
o
rt

 r
a
te

Caching
No C aching

Figure 4.39: Abort rate as a function of transaction size (data taken from [Wit16]).

50 100 150
Number of elements

0

100

200

300

400

500

600

700

800

900

T
im

e
 i
n
 s

Caching
No C aching
Exponential Fit

Figure 4.40: Runtime as a function of transaction size (data taken from [Wit16]).

The practical effect of the abort rate improvement is shown in Figure 4.40, which illus-

trates transaction runtime with retries, measured from the begin of a transaction until

successful completion (i.e., commit). In this setting, clients retry failed transactions, until

they commit. While non-cached transactions with more than 100 read objects practically

never succeed, cache-aware transactions are much faster and succeed within a few tries.

Besides the simulation-based evaluation of DCAT, we analyzed throughput, latency, and

scalability for a cloud-based Orestes deployment. The throughput of Orestes scales linearly

up to a point of roughly 8 servers, where the underlying, sharded MongoDB cluster be-

4.9 Summary 193

comes bottlenecked due to an implementation issue in its findAndModify operation used

for applying write sets25. Overall, the latency overhead compared to non-transactional

read and write operations in Orestes was approximately 40%. The single-node Redis co-

ordinator showed consistent low latency and was able to sustain a throughput of approx-

imately 4 000 transaction validations per second. In future work, the practical evaluation

can be extended to confirm the simulation results for various types of transactional appli-

cation workloads.

In summary, the evaluation provides evidence for our claim that caching can significantly

improve latency and abort probabilities of optimistic transactions in the context of cloud

data management. The Cache Sketch approach lowers transaction durations by roughly

an order of magnitude and thus combines the performance benefits of modern NoSQL

systems with the strong guarantees of ACID transactions.

4.9 Summary

In this Chapter, we investigated the applicability of web caching for mutable records,

files, and query results. To this end, we derived a novel caching approach for dynamic

data that improves loading times in web applications. We rely on three pivotal ideas to

make this possible: (1) the Cache Sketch as a compact client representation for stale data,

(2) online TTL estimators for objects and queries, and (3) invalidation detection in real-

time. We implemented these techniques in the Orestes middleware to offer low latency for

data management through caching with client-defined staleness bounds as well as several

practically useful client-centric consistency guarantees.

First, we proposed the Cache Sketch as a data structure that ensures ∆-atomicity and en-

ables clients to read every non-stale object from expiration-based caches (e.g., browser

caches). The database service maintains the Cache Sketch as a Bloom filter of potentially

stale objects. At the server-side, the Cache Sketch minimizes the number of cache in-

validations by deciding, whether update operations require purging of invalidation-based

caches (e.g., CDNs). To minimize the Cache Sketch size, invalidation costs, and cache

misses, we proposed the concept of TTL estimators that produce expiration dates based

on the frequency by which resources are accessed. To reason about the performance

and consistency implications, the YCSB Monte Carlo Caching Simulator offers a generic

framework for analyzing different workloads, caching architectures, and Cache Sketch

parameters. Our simulations and cloud-based results for object-based caching showed a

substantial performance uplift of 4 to 10 times for typical database workloads.

Next, we extended the approach to query result caching in the Quaestor architecture.

We designed a TTL estimation scheme that is able to handle the composition of objects

to result sets in order to provide accurate predictions for future query invalidations. We

25The findAndModify operation limits overall system throughput as it obtains unnecessarily coarse-grained
locks [Mon18].

194 4 Web Caching for Cloud Data Management

introduced a cost-based decision model to optimize the query result representation ac-

cording to a trade-off between invalidations, cache hits, and the false positive rate of the

Cache Sketch. To tackle invalidation detection, we introduced a scalable architecture for

matching cached queries to incoming updates in realtime. Evaluation results demonstrate

Quaestor’s effectiveness in reducing query latency by up to an order of magnitude while

strictly limiting staleness.

Last, we applied the Cache Sketch to transaction processing by designing distributed

cache-aware transactions (DCAT). We provided a stochastic model to quantify the impact

of latency on abort probabilities and found that latency is the key to improving optimistic

transactions for distributed environments. To this end, we derived a concurrency control

scheme that provides COCSR transactions while using the Cache Sketch scheme for la-

tency reduction. In the evaluation, we demonstrated that our caching approach can make

previously infeasible transactions fast enough for interactive workloads.

195

5 Towards Automated Polyglot Per-
sistence

In this chapter, we present a solution for automated polyglot persistence based on ser-

vice level agreements (SLAs). The goal is to unburden applications of the complexities

associated with manual polyglot persistence by automating the choice of a well-suited

database system. This vision of completely automated polyglot persistence complements

our previously presented contributions on low-latency cloud data management by mak-

ing the performance improvements applicable to arbitrary systems while also tackling the

remaining issue of insufficient backend performance.

We introduce the Polyglot Persistence Mediator (PPM) as a middleware to database sys-

tems that is capable of mapping schemas annotated with SLAs to different systems. A

scoring algorithm provides a routing model that is used at runtime to forward data and

operations to the most suitable system. Thus, the PPM can transparently apply the Cache

Sketch approach to diverse data stores while consolidating them behind a single interface

for applications. For a typical polyglot persistence scenario, the PPM can improve write

throughput by 50-100% and simultaneously reduce read and query latency drastically.

5.1 Motivation

As described in Chapter 2, polyglot persistence is the concept of using different database

systems within a single application domain, addressing different functional and non-

functional needs with each system [SF12]. While virtually any multi-purpose applica-

tion could benefit from polyglot persistence, there are currently some obvious drawbacks.

Designing and implementing an application on multiple databases is considerably harder

than just using one backend. Application demands frequently exceed capabilities of single

databases. At the same time, overhead of configuration, deployment, and maintenance

increases drastically with each database system used. Today, superior polyglot persistence

solutions are therefore often abandoned for lack of know-how and resources.

Recently, cloud providers enabled software engineers to develop and deploy applications

at fast paces through Backend-, Platform-, and Infrastructure-as-a-Service systems. How-

ever, using state-of-the-art cloud services, tenants still have to make the choice of using

196 5 Towards Automated Polyglot Persistence

a certain database [HIM02, DAEA13, CJP+11]. To solve this dilemma, we will present

the Polyglot Persistence Mediator (PPM) as a new kind of middleware layer. Employ-

ing a service level agreement (SLA), developers can define specific requirements for their

schemas. Schemas are centrally managed by the Orestes middleware, which maps them

to individual database systems. Even though many NoSQL systems do not employ explicit

schemas1, we assume the presence of a central schema (cf. Chapter 3) in order to compute

a database-independent evaluation of requirements.

For illustration, consider an example use case of an online newspaper. Usually, there is a

list of the most popular articles. To enable a ranking, counters for article impressions need

to be written up to many thousand times per second, whereas the article itself is rarely

changed after publication. Therefore, if impression counters and articles were stored to-

gether, counter writes would eventually slow down article reads. On the other hand, if

both were stored separately, the application would lose the ability to sort articles by im-

pressions. The solution is to use schema annotations for write throughput and sorting, so

that the PPM could for example decide to store counters in a sorted set in Redis (achiev-

ing much higher throughput), while article reads are directed to MongoDB (supporting

complex ad-hoc queries).

In the following, we will first apply the NoSQL Toolbox classification from Chapter 3 to

annotation-based declaration of functional and non-functional requirements. This enables

us to derive the concept of an automated choice of backends. We will then explain the

architecture of the mediator and evaluate its prototype in an experimental case study.

Last, we will discuss a number of potential enhancements and further lines of research.

5.2 Concept: Choosing Database Systems by Requirements

The polyglot persistence mediation is structured in three phases. In the requirements

phase (1), schemas are annotated with desired SLAs. In the resolution phase (2), the

cloud provider computes a suitable mapping of requirements to databases. Throughout

the mediation phase (3), operations and queries are rewritten and distributed to different

database systems [WFGR15].

Automated polyglot persistence requires formal decision criteria. To this end, we first pro-

pose a classification of functional and non-functional requirements with suitable places for

schema-based annotations. Table 5.1 provides an overview of these requirements building

on the NoSQL Toolbox. On the highest level, requirements are divided into binary and

continuous requirements. Binary requirements support yes-or-no decisions. For example,

a database either supports server-side joins or it does not. This might be subjective for

some non-functional requirements like scalability, since there is no agreed-upon way of

measuring them.

1Some NoSQL databases like DynamoDB [Dyn17], OrientDB [Tes13], and Cassandra [LM10] support ex-
plicit schemas without a middleware.

5.2 Concept: Choosing Database Systems by Requirements 197

Continuous requirements like write latency, on the other hand, can be evaluated by com-

paring specific values to the context of an application. For instance, low latency for an

interactive website usually would not constitute low latency for high-frequency trading.

Therefore, automated polyglot persistence needs to provide a rich syntax for SLAs that

can be parameterized with application-specific goals.

Annotation Type Annotated at

Read Availability Continuous Field/Bucket/DB
Write Availability Continuous Field/Bucket/DB
Read Latency Continuous Field/Bucket/DB
Read Throughput Continuous Field/Bucket/DB
Write Latency Continuous Field/Bucket/DB
Write Throughput Continuous Field/Bucket/DB
Data Scalability Non-Functional Field/Bucket/DB
Write Scalability Non-Functional Field/Bucket/DB
Read Scalability Non-Functional Field/Bucket/DB
Elasticity Non-Functional Field/Bucket/DB
Durability Non-Functional Field/Bucket/DB
Linearizability Non-Functional Field/Bucket
Sequential Consistency Non-Functional Field/Bucket
∆- and k-Atomicity Non-Functional Field/Bucket
PRAM Consistency Non-Functional Field/Bucket
Read-your-Writes Non-Functional Field/Bucket
Causal Consistency Non-Functional Field/Bucket
Writes follow reads Non-Functional Field/Bucket
Monotonic Read Non-Functional Field/Bucket
Monotonic Write Non-Functional Field/Bucket
Scan Queries Functional Field
ACID Transactions Functional Bucket/DB
Sorting Functional Field
Range Queries Functional Field
Point Lookups Functional Field
Conditional Updates Functional Field
Joins Functional Bucket/DB
Filter Queries Functional Bucket/DB
Analytics and Aggregation Functional Field/Bucket/DB
Full-text Search Functional Field
Atomic Updates Functional Field/Bucket

Table 5.1: Proposed SLA annotations (cf. Section 2.2.4 and 3.1).

5.2.1 Defining Requirements Through SLAs

Figure 5.1 provides an overview of the initial requirements phase that yields a schema an-

notated with application-specific requirements expressed as SLAs. On a high level, tenants

define schemas consisting of databases, buckets, and fields (cf. Chapter 3).

Tenants may then define annotations that can be used to annotate complete databases,

buckets, or attributes of a bucket. For instance, annotating a single field to support joins

would not be useful. Binary functional and non-functional requirements (capabilities)

annotated at a certain hierarchy level result in constraints that have to be met by ev-

198 5 Towards Automated Polyglot Persistence

1

Database

Bucket

Field Field Field

Materialization Model

• Sticky Partitioning
schema-node db mapping

• Primary database
materializes data with
staleness bound

2. Choose1. Define
schema

Annotations

• Continuous non-functional
e.g., write latency < 15ms

• Binary functional
e.g., Atomic updates

• Binary non-functional
e.g., Read-your-writes

3. Add

Tenant

Inherits continuous
annotations

annotated

Bucket

Field

Requirements

Figure 5.1: First phase of meditation: schema-based SLA annotations.

ery entity on and below that level. Continuous requirements are simply pushed down

to the field level: for example, if a complete database is annotated to support 99.5% of

read availability, every field in that database inherits that annotation. Enforcing continu-

ous requirements on higher levels (i.e., buckets) is not feasible, since this would require

knowledge about the distribution of this requirement on all its child entities.

An annotation consists of an arbitrary number of binary requirements and continuous

non-functional requirements specified either through utility functions or specific goals on

the requirement (e.g., latency below 15 ms).

Finally, using polyglot persistence, tenants also have to choose a materialization model:

Sticky Partitioning. Instructs the mediator to always route operations for a schema-node

to the same database.

Primary Database. Defines a read-only master copy to which the mediator periodically

materializes data stored in other databases. A staleness bound defines the maximum

tolerable delay ∆ between materializations. Under the primary database model, ap-

plications must thus tolerate eventual consistency with ∆-atomicity, i.e., the possibil-

ity of reading a value that has been stale for at most ∆ time units. This model allows

5.2 Concept: Choosing Database Systems by Requirements 199

to unite complex, slightly stale queries in the primary database with high throughput

and low latency for simple updates and queries performed in other databases and is

therefore the default in Orestes.

In the following section, we will demonstrate how the SLA specifications translate to rout-

ing decisions by introducing a scoring model. We will also elucidate how annotations

combined over different hierarchy levels can be resolved.

5.2.2 Scoring Databases against SLA-Annotated Schemas

The DBaaS/BaaS provider is responsible for resolving the requirements to a database map-

ping as shown in Figure 5.2. Annotations are resolved by the provider by first comparing

the specified binary requirements with all currently available systems. If no system can

provide the desired combination, the provider can either reject the annotation right away

or try to provision another type of database. In this context, a system is one specific de-

ployment of a database, i.e., an IaaS provider might manage a number of different config-

urations of the same database. All databases capable of delivering the binary requirements

are then scored to find an optimal setup for a specific tenant.

Routing Model
Route schema_element db

• Transforms db-independent to db-specific operations

• Handles composition of polyglot query results

Provider

Capabilities for
available DBs

1. Find optimal 2a. If unsatisfiable

Either: Refuse or
Provision new DB

2b. Generate
routing model

RANK(schema_root, DBs)
through recursive descent

using annotated schema and metrics

Resolution2

Figure 5.2: Second phase of meditation: scoring of available systems.

The evaluation of annotations is performed recursively over all hierarchy levels of the

schema, as shown in Algorithm 4. The scoring algorithm starts at the database (root) level

200 5 Towards Automated Polyglot Persistence

of the schema. First, it excludes all databases incompatible with the current node’s con-

straints (i.e., its binary requirements), so child nodes cannot choose databases their parent

nodes do not support. Field nodes simply calculate their scores according to the scoring

model (cf. Equation 5.1). Other nodes recursively calculate mappings of databases to

scores for their child nodes. The algorithm then intersects among the resulting databases

(line 7) to find systems that can support all requirements of the child nodes and averages

over the resulting scores of each database of each child node. When the recursion returns

to the current node and it is annotated (line 8), it adds the optimal mapping to the routing

model. Finally, aggregated scores are returned.

Consider the following example: a bucket is annotated for object-level atomic updates.

One field of this bucket requires a certain level of write throughput, another one has an

annotation for read latency. At the root level, there is nothing to do, so the algorithm turns

to bucket nodes. For the specific bucket, all databases incapable of ensuring atomicity

are removed. Individual field-level annotations are now evaluated and each returns a

set of databases capable of supporting both their binary and continuous requirements.

The recursion then returns and computes the intersection of each field node, determining

which databases can support the required combination of throughput and latency best.

Finally, the bucket node adds the result to its routing model so that all data items will

be stored in the according database. Annotating a node with a binary requirement at

database or bucket level means that all items of that database or bucket will be stored

in the same data store. The algorithm ensures compatibility of annotations along the

schema hierarchy. It should be noted that schema or annotation changes may require

repartitioning, the details of which we leave to future work.

Algorithm 4 Scoring algorithm for input schema node
1: procedure RANK(node, DBs) returns {db→ score}
2: drop db ∈ DB if not node.annotations⊆ db.capabilities
3: if node is f ield then
4: scores←{db ∈ DBs→ score(db,node)}
5: else
6: childScores←{(child,db,score) |

child ∈ node.children and
(db,score) ∈ RANK(child,DBs)}

7: scores← db, avg(score) from childScores
group by db
having count(child) = |node.children|

8: if node is annotated then
9: add (node→ argmaxdb scores) to routingModel

10: return scores

The score of a database is calculated by adding individual scores for each continuous

non-functional requirement cn ∈ CN. Tenants can also assign arbitrary weights to each

5.2 Concept: Choosing Database Systems by Requirements 201

requirement to model relative importance. The total score is then normalized by the sum

of weights:

score(db) =
∑
|CN|
i=1 wi · fi(metric(cni))

∑
|CN|
i=1 wi

(5.1)

For our scoring model, we propose two alternatives. First, we consider requirement-

specific, normalized utility functions. A utility function maps values of a particular metric

to the utility this requirement has for a specific use case:

f (metric)→ utiltiy ∈ [0,1] (5.2)

Figure 5.3 shows two examples of requirement-specific utility. For instance, an interactive

application may consider any latency below 20 ms to be acceptable, with a linear decrease

to zero utility at 50 ms. On the other hand, availability might be scored by a sigmoid

function, indicating that availability below a certain threshold is of little utility and then

drastically increases in utility up to some point of saturation (e.g., 98% vs 99.99% of

availability). Practically, users could interactively manipulate these functions in a service

dashboard.

Normalization of utility functions helps computing a unified score and defining SLA viola-

tions. For instance, an SLA may include multiple thresholds with different consequences.

First, monitoring such thresholds helps providers to better understand their setups and the

impact of changes on their performance. Falling under a certain threshold could also re-

sult in auto-scaling the respective database. Second, violations may trigger compensations

for tenants in the form of partial refunds or service credits.

The second scoring model does not require users to specify a mapping of values to utilities.

Instead, they simply specify goal values for each requirement. Goals are then compared

against current metrics of the system in a manner of performance indexing [LS13]:

f (cni) =
goal(cni)

metric(cni)
(or inverse) (5.3)

For instance, a goal of 50 milliseconds in latency compared to an actual average latency of

20 milliseconds would result in a score of 2.5. Thanks to the collected metrics, arbitrary

SLA models may be defined (e.g., pricing models based on deviations [Bas12]).

After computing scores, the database with the maximum score will be selected to store the

annotated field. This decision is made based on both the current and historic values, using

a weighted moving average of all the metrics collected by the provider (i.e., calculating

either performance indices or current values of all utility functions). If annotations are

allowed to be changed later, the provider has to support live data migration between

different databases.

202 5 Towards Automated Polyglot Persistence

U
ti

lit
y

U
ti

lit
y

1 1

0 0

99.5% 20 ms

Availability Latency

Figure 5.3: Examples of normalized utility functions.

5.2.3 Mediation

The Polyglot Persistence Mediator acts as a broker between applications and databases.

Applications use the unified REST API (cf. Section 3.5.2) to issue queries, CRUD opera-

tions, transactions, and other operations to the mediator in a database-agnostic fashion.

Based on the routing model, the mediator selects the appropriate database and transforms

the incoming operations to database-specific operations:

trans f orm(agnosticOperation,db)→ dbOperations (5.4)

As an example, consider the addition of a value to an array-valued field, for which the

resolution step determined MongoDB as most appropriate for the tenant’s annotations.

The mediator looks up the affected field in the routing model which yields MongoDB. Next,

the mediator queries its transformation rule repository to map the incoming operation

push(obj, field, val) to the specific operation {$push: { field: val }} and forwards it to

the selected MongoDB cluster. In general, an operation can be transformed into a set of

operations to account for potential data model transformations and denormalization (e.g.,

secondary index maintenance).

The mediator is stateless and can thus be replicated arbitrarily for linear scalability. Up-

dates to the routing model (schema changes) can be shared through coordination services

(e.g., Zookeeper [HKJR10]), consensus protocols (e.g., Paxos [Lam01], Raft [OO13]) or

classic 2PC with different availability/consistency trade-offs [BBC+11, BVF+12]. The me-

diator also manages the aforementioned materialization model.

The PPM continuously monitors operations issued to backend databases to report metrics

for throughput, latency, and availability, aggregating them into means, modes, weighted

moving averages, percentiles, and standard deviations. The metrics are used for scoring

in the resolution step as well as the detection of SLA violations. Scoring thus reflects the

5.2 Concept: Choosing Database Systems by Requirements 203

Mediation3

Application

Polyglot Persistence Mediator

• Uses Routing Model

• Triggers periodic
materialization

Report
metrics

1. CRUD, queries,
transactions, etc.

db1db2db3
Periodic materializations

to primary database

2. route

Figure 5.4: Third phase: polyglot persistence mediation.

actual system state. Of course, when a new database is provisioned, metrics are unknown.

They can either be estimated using a system performance model of the database or by

running a synthetic workload or historic traces [CST+10,SSS+08].

The mediator allows two deployment models:

Cloud Broker. The PPM can be deployed on-premise (e.g., in a private cloud), relying

on local database deployments and Database-as-a-Service offerings of public cloud

providers (e.g., Amazon RDS, DynamoDB, S3, Elasticache, Windows Azure Table

Storage [DHJ+07, CWO+11]). In this case, some flexibility is lost, as public cloud

providers will not adjust deployments to optimize scores nor will they allow SLAs

based on scores and utility functions.

Public Database-as-a-Service. A public cloud provider could adopt the mediator and ex-

pose it as a “meta” database or backend service to achieve better internal resource

utilization while offering richer SLAs and functionalities.

5.2.4 Architecture of the Polyglot Persistence Mediator

We implemented a prototype of the PPM as part of the Orestes middleware. Thus, appli-

cations can use the unified REST API interface which maps all client-side operations to

the appropriate server-side system. As Orestes implements a powerful hybrid schema sys-

tem that is independent of individual database technologies, the PPM can offer polyglot

persistence on field level by adding annotations as schema metadata. In our experiments,

204 5 Towards Automated Polyglot Persistence

we used MongoDB as the principal storage facility (i.e., the primary copy materializa-

tion model) and Redis as a caching layer to accelerate writes, which constitutes a typical

polyglot persistence scenario. The PPM analyses annotations (using simple performance

indices) and routes partial updates according to the annotations (write throughput, write

latency, etc.) either to the primary database (MongoDB) or the caching layer (Redis).

The PPM contains a module that schedules materialization between databases while pro-

viding strong guarantees through strictly ordered materialization and an upper bound on

the materialization time for any particular object. Similar measures are taken to ensure

that delete operations are carried out for all databases containing fragments of an object.

Orestes inherits the availability model of the underlying systems. If a database node fails,

all writes and materializations to that respective partition or database will fail, too.

5.3 Experimental Case Study

We performed experimental evaluations using various distributed Amazon EC2 setups.

We implemented a custom benchmark client that collects metrics similar to the Yahoo

Cloud Serving Benchmark (YCSB) [CST+10], i.e., averages, minimums, maximums, and

percentiles on latency as well as average throughput.

The first test scenario encompasses a single-client/single-server setup for the introductory

scenario of impression counters in an online newspaper. Access patterns were generated

according to a Zipf distribution. Materialization intervals were set to 60 seconds.

Figure 5.5a demonstrates typical latency behavior for a medium range of throughputs.

MongoDB and Redis each ran on a separate m1.large instance, whereas the benchmark

client and the Orestes server with and without PPM each ran on a c3.4xlarge instance to

account for the fact that the main performance overhead occurs between benchmark client

and Orestes server. MongoDB instances were equipped with 1 000 provisioned IOPS for

their main storage volumes and the write concern was set to acknowledged.

For the benchmark, 100 000 update operations were executed on 100 different articles in

MongoDB with impression counters annotated for high throughput and thus maintained in

Redis. The line chart shows that the Orestes middleware supported by the PPM performs

significantly better than Orestes without a PPM2. We found that the throughput-limit cor-

responds to an average latency of approximately 500 ms. In this setup, the PPM achieved

a 50% increase in write throughput while maintaining lower latencies. For an HTTP base-

line, we used a Varnish cache [Kam17] to benchmark performing GET requests against

a static resource. At low throughputs, the PPM constantly achieved better latencies than

both Varnish and Orestes without a PPM.

Next, we demonstrate the results for a setup of 12 benchmark clients, 4 servers, and 1

server for each database (all m1.large). Figure 5.5b shows results for a read-only bench-

2In this context, Orestes without a PPM means that all database operations were routed to a single database
(i.e., MongoDB).

5.3 Experimental Case Study 205

0

500

1000

1500

2000

7500 9500 11500 13500 15500 17500

La
te

n
cy

 in
 m

s

Actual throughput in OPS

Orestes with PPM Orestes without PPM Varnish

(a) Latency behavior for a single-client/single-server setup.

3007 5995 9069 12119 15178
3007

5995

3419

1

10

100

1000

10000

100000

3000 6000 9000 12000 15000

La
te

n
cy

 in
 m

s

Desired throughput in OPS, actual throughput at labels.

Orestes with PPM Orestes without PPM

(b) Read-only benchmark results for 12 clients and 4 servers.

Figure 5.5: Evaluation of the Polyglot Persistence Mediator for a single-node setup and a
read-only setup with multiple client and server nodes.

mark. In the use case of top-listed articles, we were interested only in the top-10 articles in

the sorted set. While articles were stored in MongoDB, PPM-supported reads were routed

to the Redis set. Reads without the PPM were simply executed on MongoDB. Visibly, the

persistence mediator provided a consistent latency under 10 ms up to 15,000 reads per

second on the sorted set. Please note that the mediator would still route reads on other

fields or the complete object to MongoDB (since we only annotated a specific attribute).

Figure 5.6a demonstrates the same setup in a write-only scenario. Comparing desired and

actual throughputs, we can see that MongoDB can serve up to 12 000 writes per second,

206 5 Towards Automated Polyglot Persistence

0

5000

10000

15000

20000

25000

30000

6000 12000 18000 24000 30000

A
ct

u
al

 t
h

ro
u

gh
p

u
t

Desired throughput in OPS

Orestes with PPM Orestes without PPM

(a) Write-only benchmark results, 12 clients and 4 servers

6029 8069 12116 15173 17984

6027

4841
1614

0

5000

10000

15000

20000

25000

6000 9000 12000 15000 18000

La
te

n
cy

 in
 m

s

Desired throughput in OPS, actual throughput at labels.

Orestes with PPM Orestes without PPM

(b) Mixed benchmark results, 12 clients and 4 servers, 95% reads.

Figure 5.6: Evaluation of the Polyglot Persistence Mediator for a write-only and a mixed
workload.

while the persistence mediator reaches 25 000. Hence, employing the PPM with MongoDB

as our default storage, we effectively doubled write throughput for a common scenario.

5.4 Outlook

While the PPM offers a general methodology for handling polyglot persistence in an auto-

mated fashion, it can be extended in many potential ways.

5.4 Outlook 207

5.4.1 Scoring and Database Selection

The ability of a cloud provider to maintain its SLA guarantees heavily depends on the scor-

ing, i.e., the cost-utility ratio. Therefore, it is crucial for the provider to select database

configurations that indeed fulfill the requirements, i.e., consistently achieve high scores.

One line of further research therefore is the estimation of future scores based on his-

toric metrics. The scoring could then be adapted to prefer selections that have expected

high scores in the future. There are many potential statistical and machine learning tech-

niques to achieve this. For instance, reinforcement learning (e.g., Q-learning [DKM+11])

could be used to learn from past selection decisions based on the utility achieved for the

provider (i.e., minimizing SLA violations and maximizing resource utilization). Similarly,

time series analysis (e.g., ARMA [PHS+09]) and regression can be employed to estimate

the future development of metrics. Validating these different prediction models will also

require new synthetic or production workload traces that capture the dynamics of multiple

consolidated tenants.

5.4.2 Workload Management and Multi-Tenancy

The PPM could improve performance by actively scheduling requests. Requests that per-

tain to throughput-oriented annotations can be improved by batching, while latency-

sensitive requests can be scheduled to experience minimum queuing delays. This work-

load management has to be implemented per database and depends on the multi-tenancy

strategy (e.g., private process or private schema, see Section 2.2.6) employed by the me-

diator to ensure sufficient isolation between tenants.

5.4.3 Polyglot Setups

As a practical question, the PPM needs to consider which system setups might provide

optimal polyglot persistence functionality. For our experiments, Redis was used as an

on-demand caching layer to complement MongoDB as the primary data store. But many

other combinations are useful, too. For instance, object stores (e.g., S3 [Ama17a]) can be

used to store binary data (e.g., images), while shared-nothing file systems such as HDFS

[Whi15] and Tachyon [LGZ+13] could be used for fields with analytic potential, leveraged

through platforms such as Hadoop [Whi15] and Spark [ZCF+10]. Wide-column stores

(e.g., HBase [Hba17], Accumulo [CRW15]) and table stores (e.g., DynamoDB [Dyn17],

Azure Tables [CWO+11]) can similarly be used to store analyzable, structured, write-

heavy data. Dynamo-style systems (e.g., Riak [Ria17], Cassandra [LM10]) can be lever-

aged to keep fields that require high availability, but can tolerate temporary inconsis-

tencies. A full-text search annotation could be handled by adding a distributed search

platform (e.g., Solr [Luc17], ElasticSearch [Ela17]) as an additional primary copy that

the mediator exploits for search queries. The mediator can also feed modifying operations

into InvaliDB for continuous query processing, which should then allow different query

languages applicable to polyglot data.

208 5 Towards Automated Polyglot Persistence

5.4.4 Adaptive Repartitioning

Changing existing annotations at runtime implies that in order to adapt, data might have

to be migrated to a more suitable database system. In contrast to existing migration

approaches such as Zephyr [EDAE11], Albatross [DNAE11], Dolly [CSSS11], and Slacker

[BCM+12] that migrate complete databases, it is sufficient for the PPM to migrate on

a field or bucket level. The PPM could thus perform migration through iterative state

replication [EDAE11]: to transfer a snapshot to the newly selected database, incoming

requests are still applied to the old database, while buffering them for migration. Once

bootstrapping of the snapshot completes, buffered requests are applied. Afterwards, the

PPM can route all requests to the new database. One major challenge is to either obtain

a consistent snapshot from distributed databases without downtime or design a migration

algorithm that tolerates snapshot inconsistencies.

5.5 Summary

In this chapter, we introduced the idea of a Polyglot Persistence Mediator. The PPM is an

extension of Orestes that enables tenants of DBaaS/BaaS systems to leverage automated

polyglot persistence on a declarative basis using schema annotations. Tenants can pre-

cisely specify their requirements. Through annotations, they can define utility functions

for non-functional requirements (e.g., availability and latency) as well as necessary binary

properties (e.g., object-level atomicity). The mediator scores available database systems

and selects the optimal system for each part of the tenant’s schema and automatically

routes data and operations accordingly. Exploiting the proposed annotations, providers

are free to define which requirements they provide SLAs on and tenants can employ an-

notations in an opt-in fashion, maximizing flexibility on both ends. We provided evidence

that tremendous improvements in latency and throughput can be obtained and outlined

the remaining challenges for providing a general-purpose Polyglot Persistence Mediator.

209

6 Related Work

This chapter provides a discussion of related work. We start with caching and replica-

tion as the two primary techniques for low latency. Next, we discuss related transaction

protocols and Database-as-a-Service approaches. This thesis is inspired by the idea of geo-

replication and influenced by various techniques from related work, such as Bloom filters

for compact digests, expiration-based caching for passive replication, as well as contin-

uous queries for cache invalidations. We believe that Orestes adds a very useful design

choice for low-latency, data-centric cloud services and support this claim by comparing its

characteristics and trade-offs to related work.

6.1 Caching

Related work on caching can be categorized by several dimensions (see Figure 6.1). The

first dimension is the location of the cache. We focus on caches relevant for cloud and

database applications, in particular, server-side and database caching, reverse and for-

ward proxy caching (mid-tier), and client caching [LLXX09]. The second dimension is

the granularity of cached data. In particular, these are files, database records and pages,

query results, and page fragments [APTP03a,APTP03b,AJL+02,CLL+01a,CZB99,CRS99,

DDT+04, LC99, LN01]. The third dimension is the update strategy that determines the

provided level of consistency [Cat92,GS96,NWO88,LC97,CL98,BAK+03,BAM+04].

Caching Dimensions

Location

 Client

 Proxy

 Reverse-Proxy

 Server

 Database

Updates

 Expirations (TTLs

and Leases)

 Invalidations

Granularity

 Files

 Database Records

 Database Pages

 Query Results

 Fragments

Figure 6.1: The three central dimensions of caching.

210 6 Related Work

Besides these major dimensions, there are smaller distinctions. The cache replacement

strategy defines how the limited amount of storage is best allocated to cached data [PB03,

DFJ+96]. The initialization strategy determines whether the cache is filled on-demand

or proactively1 [ABK+03,LGZ04,LKM+02,BAK+03,LR00,LR01a]. The update processing

strategy indicates whether changes to cached data are replacements, incremental changes,

or based on recomputation [Han87, BCL89, AGK95, LR01a, IC98, BLT86]. This work is

orthogonal to these minor dimensions, but heavily based on the different locations (end-

to-end), caching granularities (files, query results, and records), and update strategies

(expiration and invalidation). We will discuss other work on caching that employs specific

combinations and compare it to our end-to-end approach.

Table 6.1 summarizes major related work according to the dimensions location and up-
dates. In the following, we will first discuss server-side and client-side application caching

as well as database caching and contrast both to web caching approaches. Next, we will

show the different methods for cache coherence that can be grouped into expiration-based

and invalidation-based approaches. Finally, we will review related work on caching query

and search results and discuss summary data structures for caching.

Expiration-based Invalidation-based Hybrid

Client Browser
cache [IET15],
ORMs [Rus03a,
ABMM07,CSH+16],
ODMs [SHKS15], User
Profiles [BR02], Alex
Protocol [GS96],
CSI [RXDK03], Service
Workers [Ama16]

Avoidance-based Algorithms
[ÖV11,FCL97,WN90]

Client-Server
Databases [KK94,
ÖDV92,CALM97],
Oracle Result
Cache [Ora17]

Mid-Tier HTTP proxies [IET15],
PCV [KW97],
ESI [TWJN01]

PSI [KW98],
CDNs [PB08,FFM04,Fre10]

Leases [Vak06],
Volume
Leases [YADL99,
YADL98],
TTR [BDK+02]

Server and DB Incremental
TTLs [AAO+12],

CachePortal [CLL+01b],
DCCP [KLM97], Reverse
Proxies [Kam17],
Ferdinand [GMA+08],
Facebook Tao [BAC+13],
Cache Hierarchies [Wor94],
DBProxy [APTP03a],
DBCache [BAM+04],
MTCache [LGZ04],
WebView [LR01a]

Memcache [Fit04,
NFG+13,XFJP14],
Redis [Car13],
IMDGs
[ERR11,Lwe10],
CIP [BBJ+10],
Materialized
Views [LLXX09]

Table 6.1: Selected related work on caching classified by location and update strategy.

1Proactive filling of the cache is also referred to as materialization [LR00].

6.1 Caching 211

6.1.1 Server-Side, Client-Side, and Web Caching

Server-Side Caching

Caching is often a primary concern in distributed backend applications. Numerous

caching systems have been developed to allow application-controlled storage and queries

of volatile data. Typically, they are employed as look-aside caches storing hot data of the

underlying database system, with the application being responsible for keeping the data

up-to-date. Among the most popular of these systems is Memcache, an open-source, in-

memory hash table with a binary access protocol introduced by Fitzpatrick in 2004 [Fit04].

Memcache does not have any native support for sharding, but there are client-side libraries

for distribution of records over instances using consistent hashing. Facebook, for exam-

ple, uses this approach for their high fan-out reads of pages [NFG+13, XFJP14] and their

social media graph [BAC+13]. The key-value store Redis is used for similar caching sce-

narios, enabling more advanced access patterns with its support for data structures (e.g.,

hashes, lists, sorted sets) instead of opaque data values [Car13]. In contrast to Memcache,

Redis additionally supports different levels of persistence and an optimistic batch trans-

action model. Considerable research went into the optimization of these caches in terms

of hashing performance [FAK13], fair cache resource sharing between clients [PLZ+16],

and optimal memory allocation [CEAK16]. For the Java programming language, a stan-

dard caching API has been defined and implemented by various open-source and commer-

cial caching projects [Luc14]. For server-side caching with higher persistence guarantees,

key-value stores such as Riak [Ria17], Voldemort [ABD+12], Aerospike [Aer18], Hyper-

Dex [EWS12], and DynamoDB [Dyn17] are suitable.

In-memory data grids (IMDGs) [RRND15, p. 247] are distributed object stores used for

state management and caching in Java and .Net applications. Industry products include

Oracle Coherence, VMware Gemfire, Alachisoft NCache, Gigaspaces XAP, Hazelcast, Sca-

leout StateServer, Terracotta, JBoss Infinispan, and IBM eXtreme Scale [ERR11, Lwe10].

Compared to key-value caches, IMDGs offer the advantage of tightly integrating into the

application’s programming language and its class and object models. In this respect,

IMDGs are similar to object-oriented database management systems (OODBMSs), as they

expose native data types (e.g., maps and lists). Additionally, distributed coordination ab-

stractions such as semaphores, locks, and atomic references as well execution of MapRe-

duce jobs are typically supported. IMDGs are also used in related research projects (e.g.,

CloudSim [KV14]), due to the simple abstractions for shared distributed state. An IMDG

is not a good fit for a database system in Orestes, because the abstraction level is too

language-specific and persistence is not guaranteed.

Server-side caching with key-value stores and IMDGs is a proven technique for reducing

backend processing latency by offloading persistent data stores in I/O-bound applications.

This comes at a cost, however: the application has to maintain the caches using domain-

specific logic. The complexities of maintaining consistency and retrieving cached data are

thus left to application developers. In contrast to server-side caching solutions, this work

212 6 Related Work

aims to provide low end-to-end latency by exploiting existing HTTP caching infrastructures

and automating the process of caching for the application. Nonetheless, Orestes builds

on key-value caches, in particular Redis, both for maintenance of shared state and for

coordination of transaction commits.

Client-Side Database Caching

Client-side database caching has been discussed for decades in the database commu-

nity [LLXX09,BAK+03,LKM+02,LGZ04]. In this case, the term “client” does not refer to a

browser or mobile device, but to a server node of a backend application. In the context of

distributed object databases, object-based, page-based, and hybrid approaches have been

studied [KK94, ÖV11, CALM97]. Object-based buffer management has the advantage of

a lower granularity, allowing for higher concurrency in the client for transactional work-

loads. Page-based buffers are more efficient when queries tend to access all objects within

a page and imposes less messaging overhead. This caching model is fundamentally dif-

ferent from web caching, as the client buffer has to support the transaction model of the

database system. As the cache is retained across transaction boundaries (inter-transaction

caching), the problem of transactional isolation is closely tied to that of cache consis-

tency [CFLS91, BP95]: neither transactions from the same client nor transactions from

different clients are allowed to exhibit anomalies caused by stale reads and concurrent

buffer updates.

Cache consistency algorithms from the literature can be classified as avoidance-based or

detection-based [ÖV11, FCL97, WN90]. The idea of avoidance-based cache consistency

is to prevent clients from reading stale data. This can be achieved by having writing

clients ensure that any updated objects are not concurrently cached by any other client.

Detection-based algorithms allow reading stale data, but perform a validation at commit

time to check for violations of consistency. The second dimension of cache consistency

algorithms is their approach to handling writes. Writes can be synchronous, meaning that

at the time a client issues a write, the write request is sent to the server. The server

can then, for example, propagate a write lock to all clients holding a cached copy of the

written object (Callback-Read Locking [FC92]). With asynchronous writes, clients still

inform the server about each write, but optimistically continue processing until informed

by the server. This can lead to higher abort rates [ÖVU98]. In the deferred scheme, clients

batch write requests and send them at the end of each transaction, thus reducing the write

message overhead. Avoidance-based deferred algorithms typically suffer from high abort

rates as well [FC92].

There are commercial relational database systems that offer client-side caching, for exam-

ple, Oracle implements a client- and server-side result cache [Ora17]. The protocols and

algorithms for client-side caching in databases serve the purpose of reducing the load on

the database system, thereby decreasing backend processing latency. However, they are

not applicable to end-to-end latency reduction in cloud data management, as web and

mobile clients cannot exploit this form of caching. The overhead of locks distributed over

6.1 Caching 213

potentially hundreds of thousands of clients and the complexity of client-specific state in

the database server impose a prohibitive overhead.

We use a detection-based approach, since with web caching it can never be guaranteed

that no stale cached data is read. Similar to Özsu et al. [ÖDV92], we employ invalidations

to minimize the probability of stale reads. In contrast to this model, expiration-based

caches can neither execute custom consistency logic nor receive server-side invalidations

which motivates the introduction of our Cache Sketch approach. As any optimistic proto-

col, our DCAT transaction protocol performs conflict checks at commit time, making this

work a detection-based deferred consistency scheme. Adya et al. [AGLM95] have proposed a

similar scheme called Adaptive Optimistic Concurrency Control (AOCC). It also relies on

a backward-oriented validation step [ABGS86,CO82,LW84], but serializes transactions in

timestamp order of the committing server. Effectively, AOCC performs timestamp order-

ing [SS94] with a two-phase commit protocol [Lec09] and thus accepts a smaller class

of schedules than DCAT which is based on BOCC+ [KR81, Rah88]. Moreover, instead of

relying on version numbers, AOCC servers maintain a set of metadata items for each of

the client’s cached data. AOCC was designed for the case of very few clients: the meta-

data maintained in each server increases with both the number of cached records and the

number of clients, making it unable to scale for web scenarios with many clients.

Caching in Object-Relational and Object-Document Mappers

Due to the reasons laid out above, most persistence frameworks today rely on program-

matic control of object-based caches with no support from the database system. With

the increasing adoption of scalable NoSQL systems, the landscape of mappers bridging

the impedance mismatch between the data model of the database system and the appli-

cation has grown [SHKS15]. In fact, many applications do not use any native database

system API, but instead rely on the convenience of object mappers such as Hibernate,

DataNucleus, Kundera, EclipseLink, Doctrine, and Morphia [TGPM17]. In case of Java,

the Java Persistence API (JPA) standard [DeM09] is considered state-of-art superseding

the older Java Data Objects API (JDO) [Rus03a].

Both JPA and JDO and the equivalent technology from Microsoft called Entity Frame-

work [ABMM07], support the notion of a first-level (L1) and a second-level (L2) cache.

The L1 cache is exclusive to a persistence context and ensures that queries and lookups

always resolve to the same object instances. The L2 is shared across contexts to leverage

access locality between different contexts, processes, or even machines. The L2 interface is

pluggable, so various options from in-process storage to Memcache- or IMDG-backed dis-

tributed implementations are available. Both L1 and L2 caches are write-through caches

that directly reflect any updates passing through them. However, if data is changed from

different contexts or even different clients, the L1 and L2 caches suffer from stale reads.

The application has to explicitly flush or bypass these caches in order to prevent violations

of consistency.

214 6 Related Work

The first iterations of the Orestes prototype were based on JDO and JPA for the client

API and the OODBMSs db4o [Db417] and Versant [Ver17] for data storage. It quickly

became apparent that the missing capability of both systems to shard and replicate data

limited the capabilities of the overall system. Additionally, JDO and JPA are mostly em-

ployed in three-tier applications where clients are located close to the database. In these

settings, the performance-critical latency of HTTP requests cannot be optimized with web

caching. Paired with the continued shift to single-page applications [MP14] and cloud-

based services consumed directly in browsers and mobile devices, we chose to adopt core

JPA concepts such as the L1 cache and the persistence life cycle in a JavaScript persistence

API. In contrast to object mappers, the synchronization of the L1 cache is fully automatic in

Orestes, as it exploits the Cache Sketch in the same ways as expiration-based caches (e.g.,

the browser cache). An L2 cache is not required, as regular web caches take its place.

Chen et al. [CSH+16] recently proposed CacheOptimizer as a tool to help developers find

the optimal cache configuration of their mapper to increase throughput. However, devel-

opers and application architects still face the problem of reasoning about the isolation and

consistency guarantees offered for their specific application workloads. Orestes abstracts

from the complexities introduced by caching in mappers and offers rigorous consistency

guarantees.

Web Caching

In related work, web caches are either treated as a storage tier for immutable content

or as a means of content distribution for media that do not require freshness guarantees

[HBvR+13, Fre10]. Web caches are further defined by their implementation of the HTTP

caching standards [IET15]. They can be employed in every location on the end-to-end

path from clients to server. The granularity is typically files, though this is up to the

application. Updates are purely expiration-based.

The applicability of web caching schemes is closely tied to web workloads and their proper-

ties. Breslau et al. were the first to systematically analyze how Zipf-distributed access pat-

terns lend themselves for limited storage capacities of web caches [BCF+99,HL08,WF11].

Across six different traces, they found a steep average exponent of 0.85. Zipf-distributed

popularity is closely related to our proposed capacity management scheme: even if only

a small subset of “hot” queries can be actively matched against update operations, this is

sufficient to achieve high cache hit rates.

The literature on workload characterization presents mixed conclusions. Based on an anal-

ysis of school logs, Gewertzman et al. [GS96], and Besavros [Bes95] found that most pop-

ular files tend to remain unchanged. Labrindis et al. [LR01b] and Douglis et al. [DFKM97],

however, concluded that there is a strong correlation between update frequency and pop-

ularity of files. In another analysis of a more diverse set of university and industry traces

conducted by Breslau et al. [BCF+99], the correlation between popularity and update rate

was found to be present, but weak. In our work, we therefore do not assume a correlation

6.1 Caching 215

for the estimation of TTLs and the capacity model, but instead rely on individual treatment

of cache miss and update rates.

Another question particularly important for simulations is, how the arrival processes of

reads, writes, and queries can be modeled stochastically. Poisson processes with expo-

nentially distributed inter-reference times are most widely used [Tot09,WAWB05,VM14].

However, homogeneous Poisson processes do not capture any rate changes (e.g., increased

popularity) or seasonality (e.g., massive frequent changes upon deployments). Session-

based models describe web traffic as a combination of individual user sessions. Session

inter-arrival times typically follow a Poisson process, while inter-click times follow heavy-

tailed distributions like Weibull, LogNormal, and Pareto distributions [Den96,Gel00]. For

all Poisson-like workloads, TTL estimators will exhibit high error rates due to the high

variance of the exponential distribution. As the Cache Sketch “corrects” estimation er-

rors, the concrete workload and estimation accuracy only affect the false positive and

cache hit rates. This is in stark contrast to pure TTL-based cache coherence schemes

[GS96, LLXX09, BR02, RS03, KR01] which will exhibit high staleness rates, if workloads

are inherently unpredictable.

Many optimizations of web caches have been studied. This includes cache replacement

schemes [CI97], cooperative caching [RL04, RLZ06, TC03], and bandwidth-efficient up-

dates [MDFK97]. As we assume unmodified web caches, this line of work does not

have a direct impact on the design of Orestes. In the past twenty years, numerous

cache prefetching schemes have been proposed for browser, proxy, and CDN caches

[PM96,Bes96,KLM97,MC+98]. Today, these schemes are not widely used in practice due

to the overhead in the cache and excess network usage caused by wrong prefetching de-

cisions. Prefetching at the level of caches slightly affects cache hit rates, but is orthogonal

to Orestes, so we do not discuss it in detail here.

6.1.2 Cache Coherence: Expiration-Based and Invalidation-Based Caching

Cache coherence is a major concern for any caching approach. Similar to distributed

databases, there is an inherent trade-off in caching approaches between throughput and

latency on the one side and ease-of-use and provided correctness guarantees on the other.

Often in practice, developers even have to bypass caching manually in order to achieve

the desired consistency level [NFG+13,ABK+15].

Expiration-Based Caching

In the literature, the idea of using an expiration-based caching model has previously

been explored in the context of file and search result caching [DFJ+96, APTP03a, LGZ04,

BAM+04, KFD00, KB96, HKM+88, Mog94]. Expiration-based caching (also referred to as

pull-based caching [LLXX09]) can be categorized into TTL-based, lease-based, and piggy-
backing strategies. Expiration-based caching usually involves asynchronous validation of

cached entries, i.e., the freshness is validated when cached data is expired. Synchronous

216 6 Related Work

validation (polling-every-time [LLXX09]) only reduces bandwidth, but not latency, which

makes it inapplicable for the goal of this work.

Leases

The lease model is a concept from the distributed file systems literature [HKM+88,Mog94]

originally proposed by Gray et al. [GC89]. A lease grants access to a local copy of an object

until a defined expiration time [Vak06]. It is therefore similar to a lock, however combined

with a limited validity to mitigate the problem of client failures and deadlocks. For the

duration of the lease, the holder has to acknowledge each server-side invalidation in order

to maintain strong consistency. A lease combines the concepts of expiration-based and

invalidation-based cache coherence: while the lease is still active, the client will receive

invalidations, afterwards the client has to acquire a new lease which is accompanied by a

renewed expiration time [Vak06].

A central problem of leases is that long leases may incur high waiting times for updates, if a

client does not respond, whereas short leases imply a large control message overhead and

increase latency. A major refinement of the basic lease scheme addressing this problem are

volume leases proposed by Yin et al. [YADL99,YADL98]. A volume groups related objects

together and introduces a coarser level of granularity. Clients need to have both an active

volume and object lease in order to perform an object read. By giving volume leases

short expiration times and object leases longer expiration times, writes experience shorter

delays and the message overhead for object lease renewals is reduced. By additionally

incorporating access metrics, adaptive leases introduced by Duvuri et al. [DST03] can

further optimize the read-versus-write latency trade-off by dynamically calculating lease

durations.

The lease model is not well-suited for client caches in the web. Especially with mobile

devices and high-traffic websites, leases on objects will usually expire, as client connectiv-

ity is intermittent and potentially thousands of clients will hold leases on the same object.

The effect would therefore be similar to a TTL-based model, where the server has to delay

writes until the respective TTL is expired.

However, clients can achieve a model similar to leases using real-time queries in Orestes.

In order to lower the ∆ of the Cache Sketch’s ∆-atomicity guarantee, clients can register

a real-time query to receive notifications upon changes of currently used objects. These

notification are still asynchronous (similar to CDN invalidations), but usually received in

the order of one round-trip latency (cf. Section 4.7). Implicitly, each continuous query

in Orestes has an assigned expiration to limit resource consumption, which makes this

approach very similar to an opt-in lease. However, the central difference is that subscribed

clients do not need to acknowledge updates, so writes do not get blocked. This advantage

comes at the cost of lowering linearizability in the classic lease-model to (∆, p)-atomicity

because of notification latency.

6.1 Caching 217

Piggybacking

Piggybacking schemes batch together validations or invalidations and transfer them in

bulk. Krishnamurthy et al. [KW97] proposed Piggyback Cache Validation (PCV). PCV is

designed for proxy caches to decrease staleness by proactively renewing cached data. Each

time a proxy cache processes a request for an origin server, the local cache is checked for

objects from that origin that are either expired or will be expired soon. The revalidation

requests for these objects are then batched and attached (piggybacked) with the original

request to the origin server. With sufficient traffic to frequently piggyback revalidations,

this can reduce latency and staleness as cached data is refreshed before it is requested by a

client. Piggyback Server Invalidation (PSI) [KW98] follows a similar idea: when the server

receives a revalidation request based on the version, the server additionally piggybacks a

list of resources that have been invalidated since that modification, too. PCV and PSI can

be combined in a hybrid approach [KW99, CKR98]. The idea is to use PSI, if little time

has passed since the last revalidation, and PSV otherwise as the overhead of invalidation

messages is smaller, if few objects have changed.

These piggybacking schemes only work for shared caches (proxy caches, ISP caches, re-

verse proxy caches) and require modifications of the caching logic of HTTP [FR14]. As a

central premise of this work is to keep the semantics of HTTP caching intact to potentially

exploit every web cache, Orestes does not use PCV and PSI. Instead, piggybacking is used

for transparent renewals of the Cache Sketch: messaging overhead and request latency

are reduced.

Time-to-Live (TTL)

TTLs are usually assumed to be implicit, i.e., they are not explicitly defined by the applica-

tion as they are not known in advance [LLXX09]. HTTP adopted the TTL model as it is the

most scalable and simple approach to distribute cached data in the web [FGM+99,IET15].

The core of every TTL scheme is the latency-recency trade-off. Cao et al. [BR02] propose

to employ user profiles for browsers that express the preference towards either higher re-

cency or lower latency. Fixed TTL schemes that neither vary in time nor between requested

objects/queries lead to a high level of staleness [Wor94]. We think this approach is not

applicable in the modern web, as users expect maximum performance without notice-

able staleness. It therefore becomes the task of the application and the cloud services to

minimize and hide any occurring staleness.

A popular and widely used TTL estimation strategy is the Alex protocol [GS96] (also

referred to as Adaptive TTL [RS03, Wan99, KW97, CL98]) that originates from the Alex

FTP server [Cat92]. It calculates the TTL as a percentage (e.g., 20%) of the time since

the last modification, capped by an upper TTL bound. Simulations have shown that for

certain workloads this scheme can contain the staleness rate to roughly 5% [GS96]. In

an AT&T trace analyzed by Feldmann et al. [FCD+99] for a low percentage of 20%, the

overall staleness for the Alex protocol was 0.22%. On the other hand, 58.5% of all requests

were revalidations on unchanged resources. The Alex protocol is similar to the query TTL

218 6 Related Work

update strategy in Orestes, but has the downside of neither converging to the actual TTL

nor being able to give estimates for new queries.

Alici et al. proposed an adaptive TTL computation scheme for search results on the web

[AAO+12]. In their incremental TTL model, expired queries are compared with their latest

cached version. If the result has changed, the TTL is reset to a minimum TTL, otherwise

the TTL is augmented by an increment function (linear, polynomial, exponential) that

can either be configured manually or trained from logs. Though the model is adaptive, it

requires offline learning and assumes a central cache co-located with the search index. If

the time of an invalidation is known (e.g., in a database setting instead of a search engine

application), TTLs can potentially be computed more precisely than in their scheme, which

only relies on subsequent reads to detect staleness and freshness.

The central difference between TTL-based schemes from related work and our Cache

Sketch approach is that over- or underestimating TTLs only reduces efficiency, but does

not affect the correctness guarantees provided by Orestes. When used as the only means

of cache coherence, the above approaches exhibit potentially high levels of staleness that

are only bounded by the maximum permissible TTLs. We do, however, strongly build upon

previous work on TTL-based caching, as the quality of TTL estimates directly influences

the effectiveness of the Cache Sketch and the cache hit ratio.

Invalidation-Based Caching

Arguably, invalidations are the most intuitive mechanism to deal with updates of cached

data. In this case, the server is responsible for detecting changes and distributing in-

validation messages to all caches that might have cached that data. Invalidation-based

caching can either be invalidation-only or update-based [LLXX09]. In the invalidation-

only scheme, stale content is only evicted from the cache and reloaded upon the next

cache miss. With the update-based approach, new versions are proactively pushed to

caches. Almost every CDN works with the invalidation-only scheme in order to limit

network overhead [PB08]. A notable exception is the academic Coral CDN, which is

mainly designed for static, non-changing content and hence supports the update-based

model [FFM04,Fre10].

Candan et al. [CLL+01b] first explored automated invalidation-based web caching with

the CachePortal system that detects changes of HTML pages by analyzing corresponding

SQL queries. CachePortal is a reverse proxy cache with two major components. The

sniffer is responsible for logging incoming HTTP requests and relating them to SQL queries

detected at the JDBC database driver level to produce a query-to-URL mapping. The

invalidator monitors update operations and detects which queries are affected to purge

the respective URLs. The authors find the overhead of triggers or materialized views

prohibitive and hence rely on a different approach. For each incoming update, a polling

query is constructed. The polling query is either issued against the underlying relational

database or an index structure maintained by the invalidator itself. If a non-empty result is

returned, the update changes the result set of a query and a URL invalidation is triggered.

6.1 Caching 219

The number of polling queries is proportional to both the number of updates and the

number of cached queries. CachePortal therefore incurs a very high overhead for caching

on the database and the invalidator.

Unlike InvaliDB, the load on the invalidator cannot be scaled horizontally. Furthermore,

the approach is strictly specific to a fixed set of technologies (JDBC, Oracle RDBMS, BEA

Weblogic application server) and only covers reverse proxy caching. Furthermore, the

mapping from HTTP requests to queries breaks under concurrent access, as it is based

on observing queries within a time window. If multiple users request different resources

at the same time, the mapping is flawed. Orestes, on the other hand, eliminates the

indirection by exposing queries and objects directly via HTTP, so that the mapping is

always unambiguous.

Dilley et al. [KLM97] proposed the invalidation-based protocol DOCP (Distributed Object

Consistency Protocol). The protocol extends HTTP to let caches subscribe to invalidations.

DOCP therefore presents an effort to standardize invalidation messages, which are pro-

vided through custom and vendor-specific approaches in practice (e.g., the HTTP PURGE

method [Kam17]). The authors call the provided consistency level delta-consistency which

is similar ∆-atomicity, i.e., all subscribed caches will have received an invalidation of

a written data item at most delta seconds after the update has been processed. Our

Websocket-based query subscription mechanism is more powerful than DOCP as it allows

subscriptions to an arbitrary number of conditions and queries multiplexed over a single

connection to the origin. It is also update-based, while DOCP is invalidation-only.

Worrel [Wor94] studied hierarchical web caches to derive more efficient cache coher-

ence schemes. He designed an invalidation protocol specifically suited for hierarchical

topologies and compared it to fixed TTL schemes w.r.t. server load, bandwidth usage, and

staleness. He found the scheme to be superior in terms of staleness and competitive to

TTLs in server load and bandwidth usage. In Orestes, the topology of caches is unknown

and hence our invalidation scheme is agnostic regarding the internal structure of CDNs

and interception caches. A particular problem of deep hierarchies is the age penalty prob-

lem studied by Cohen et al. [CK01]: older content in the upper levels of the hierarchy

propagates downstream and negatively impacts dependent caches. Orestes addresses this

problem by decoupling the age of cached data from freshness through proactive use of the

Cache Sketch.

An alternative to cache invalidation was proposed by the Akamai founders Leighton and

Lewin [LL00]. The idea is to include a hash value of the content in the URL, so that upon

changes the old version does not get invalidated, but instead is superseded by a new URL

containing the new fingerprint (cache busting). This approach is widely used in practice

through build tools such as Grunt, Gulp, and Webpack. The downside is that this scheme

only works for embedded content that does not require stable URLs (e.g., images and

scripts). In particular, it cannot be applied to database objects, query results, and HTML

220 6 Related Work

pages. Furthermore, it only allows for invalidation at application deployment time and

not at runtime.

Edge Side Includes (ESI) [TWJN01] take the approach of Leighton and Lewon a step fur-

ther by shifting template-based page assembly to the edge, i.e., CDN caches. ESI is a simple

markup language that allows to describe HTML pages using inclusion of referenced frag-

ments that can be cached individually. Rabinovich et al. [RXDK03] proposed to move ESI

assembly to the client arguing that the rendering of ESI on the edge adds to the presumed

main bottleneck of last-mile latency [Nag04]. While ESI has not gained relevance for the

browser, the underlying idea is now widely used in practice [BPV08]. Every single-page

application based on Ajax and MVC-frameworks for rendering employs the idea of as-

sembling as website from individual fragments usually consumed from cloud-based REST

APIs. Orestes is fundamentally based on this paradigm, as it enables the Backend-as-a-

Service model on top of existing database systems with fine-granular caching of database

records and query results.

Bhide et al. [BDK+02] also proposed a scheme to combine invalidation- and expiration-

based caching in proxies. They argue that web workloads are inherently unpredictable

for the server and therefore propose a Time-to-Refresh (TTR) computed in the proxy to

replace TTLs. TTRs are computed for each data item based on previous changes and take

a user-provided temporal coherency requirement into account that expresses the tolerable

staleness based on data values (e.g., the stock price should never diverge by more than

one dollar). TTRs therefore dynamically reflect both the rate of change (as expressed

in TTLs) and the desired level of coherence. Bhide et al. present algorithms to mix the

communication-intensive expiration-based revalidations through TTRs with invalidations.

Orestes, in contrast, uses a coherency requirement based on time (∆-atomicity) which

is easier to reason about and applicable to all data types. Furthermore, the trade-off

towards lower TTRs is very different, as the Cache Sketch refreshes only impose little

overhead compared to per-object revalidations. Additionally, invalidations in Orestes are

not specific to each proxy cache, which eliminates the need to avoid costly invalidations

and associated server-side state.

Browser Caching

Traditionally, browsers only supported transparent caching at the level of HTTP, as spec-

ified in the standard [FGM+99]. The only recent additions to the original caching model

are means to specify that stale content may be served during revalidation or unavailabil-

ity of the backend [Not10], as well as an immutability flag to prevent the browser from

revalidating upon user-initiated page refreshes [McM17]. For workloads of static con-

tent, Facebook reported that the browser cache served by far the highest portion of traffic

(65.5%) compared to the CDN (20.0%) and reverse proxy caches (4.6%) [HBvR+13].

Two extensions have been added to browsers in order to facilitate offline website us-

age and application-level caching beyond HTTP caching. AppCache was the attempt to

let the server specify a list of cacheable resources in the cache manifest. The approach

6.1 Caching 221

suffered from various problems, the most severe being that no resource-level cache co-

herence mechanism was included and displaying non-stale data required refreshing the

manifest [Ama16]. To address these problems, Service Workers were proposed. They

introduce a JavaScript-based proxy interface to intercept requests and programmatically

define appropriate caching decisions [Ama16]. Still, cache coherence is not in the scope

of Service Workers and has to rely on application-specific heuristics. A set of best prac-

tices for developing with Service Workers was published by Google and termed Progressive
Web Apps [Mal16]. Orestes can leverage Service Workers to not only employ the Cache

Sketch for data requested via explicit JavaScript API calls, but also cache HTML docu-

ments, scripts, stylesheets, and images implicitly fetched by the browser.

To structure client-side data beyond a hash table from URLs to cached data and enable pro-

cessing of the data, three techniques have been proposed and partly standardized [Cam16]

(cf. Section 2.4.2). LocalStorage provides a simple key-value interface to replace the use

of inefficient cookies. Web SQL Database is an API that exposes access to an embedded

relational database, typically SQLite. The specification is losing traction and will likely be

dropped [Cam16, p. 63]. IndexedDB is also based on an embedded relational database sys-

tem. Data is grouped into databases and object stores that present unordered collections

of JSON documents. By defining indexes on object stores, range queries and point lookups

are possible via an asynchronous API. These storage capabilities of the browsers can be

leveraged in Service Workers and hence Orestes can provide offline query processing on

records previously fetched through the CRUD API and queries (cf. [Twe17,Sch17]).

Web Performance

A central finding of performance in modern web applications is that perceived speed and

page load times (cf. Section 2.4.1) are a direct result of physical network latency [Gri13].

The HTTP/1.1 protocol that currently forms the basis of the web and REST APIs suffers

from inefficiencies that have partly been addressed by HTTP/2 [IET15]. Once adopted

by caches, CDNs, and end devices, its push model will allow to simplify the query result

representation in Orestes to use ID-lists without performance downsides: along the ID-

list the referenced objects get pushed a single round-trip instead of two. As operations

are furthermore multiplexed through a single TCP connection, any refreshes of the Cache

Sketch can be performed without causing head-of-line blocking [Gri13] for other requests

such as queries and CRUD operations.

Wang et al. [WKW16] explored the idea of offloading the client by preprocessing data

in proxies with higher processing power. Their system Shandian evaluates websites in

the proxy and returns them as a combination of HTML, CSS, and JavaScript including

the heap to continue the evaluation. For slow Android devices, this scheme yielded a

page load time improvement of about 50%. Shandian does, however, require a modified

browser which makes it inapplicable for broad usability in the web. The usefulness of the

offloading is also highly dependent on the processing power of the mobile device, as the

222 6 Related Work

proxy-side evaluation blocks delivery and introduces a trade-off between increased latency

and reduced processing time.

Netravali et al. proposed Polaris [NGMB16] as an approach to improve page load times.

The idea is to inject information about dependencies between resources into HTML pages,

as well as JavaScript-based scheduling logic that loads resources according to the depen-

dency graph. This optimization works well in practice, because browsers rely on heuris-

tics to prioritize fetching of resources. By an offline analysis of a specific server-generated

website, the server can determine actual read/write and write/write dependencies be-

tween JavaScript and CSS ahead of time and express them as a dependency graph. This

allows parallelism where normally the browser would block to guarantee side-effect free

execution. Depending on the client-server round-trip time and bandwidth, Polaris yields

a page load time improvement of roughly 30%. The limitations of the approach are that

it does not allow non-determinism and that dependency graphs have to be generated for

every client view. For personalized websites, this overhead can be prohibitive. Further-

more, the approach assumes server-side rendering as opposed to Orestes that is designed

for single-page applications.

6.1.3 Query-Level Caching

Query caching has previously been tackled from different angles in the context of dis-

tributed database systems [DFJ+96, APTP03a, LGZ04, BAM+04, KFD00, KB96], mediators

[LC99,CRS99,ACPS96], data warehouses [DRSN98,KP01,LKAP01], peer-to-peer systems

[GMA+08, PH03, KNO+02], and web search results [BLV11, CJP+10, BBJ+10, AAO+11].

Most of this work is focused on the details of answering queries based on previously

cached results, while only few approaches also cover cache coherence which is in the

focal point of this thesis.

Peer-to-Peer Query Caching

Garrod et al. have proposed Ferdinand, a proxy-based caching architecture forming a

peer-to-peer distributed hash table (DHT) [GMA+08]. When clients query data, the proxy

checks a local, disk-based map from query strings to result sets. If the result is not present,

a lookup in another proxy is performed according to the DHT scheme. The consistency

management is based on a publish/subscribe invalidation architecture. Each proxy sub-

scribes to multicast groups corresponding to the locally cached queries. A limiting assump-

tion of Ferdinand is that updates and queries follow a small set of fixed templates defined

by the application. This is required to map updates and queries to the same publish/sub-

scribe topics, so that only relevant updates will be received in each caching proxy.

Orestes does not limit applications to the use of prepared queries. Instead, InvaliDB decou-

ples the problem of query matching from broadcasting invalidations. Peer-to-peer query

caching has also been employed for reducing traffic in file sharing protocols [PH03], as

well as to distributed OLAP queries [KNO+02]. IPFS [Ben14] also employs a peer-to-peer

6.1 Caching 223

approach with DHTs to cache file chunks across many users. In contrast to Orestes, it

cannot accelerate the delivery of web content, as the overhead of metadata lookups is

prohibitive for low latency.

Mediators

In contrast to reverse proxies that can serve any web application, mediators are typically

designed to handle one specific use case, type of data, or class of data sources. Related

work in this area is mostly concerned with constructing query plans using semantic tech-

niques to leverage both locally cached data from the mediator as well as distributed data

sources [LC99, CRS99, ACPS96]. To comply with the web caching model, Orestes cannot

evaluate query plans in caches. Therefore, we instead reuse previous query results and

individual records without semantic analysis of query predicates.

Query Caching Proxies and Middlewares

DBProxy, DBCache, and MTCache [APTP03a,LGZ04,BAM+04] rely on dedicated database

proxies to generate distributed query plans that can efficiently combine cached data with

the original database. However, these systems need built-in tools of the database system

for consistency management and are less motivated by latency reduction than by reducing

query processing overhead in the database similar to materialized views [Shi11].

DBProxy [APTP03a] is designed to cache SQL queries in a proxy, similar to a reverse

proxy cache or a CDN. DBProxy adapts the schema as new queries come in and learns

query templates by comparing queries to each other. When a query is executed in the

database, results are stored in DBProxy. To reuse cached data, DBProxy performs a con-

tainment check that leverages the simplicity of templates to lower the complexity of tradi-

tional query containment algorithms [APTP03b]. DBProxy receives asynchronous updates

from the database system and hence offers ∆-atomicity by default. The authors describe

monotonic reads and strong consistency as two potential options for reducing staleness in

DBProxy, but do not evaluate or elaborate on the implications. DBProxy assumes that the

application runs as a Java-based program in the proxy and enhances the JDBC driver to

inject the caching logic. The authors do not discuss the impact of transactional queries on

correctness when they are invisible to the database system.

DBCache [BAM+04,LKM+02,BAK+03] and MTCache [LGZ04] are similar approaches that

employ nodes of relational database systems for caching (IBM DB2 and Microsoft SQL

Server, respectively). Both systems rewrite query plans to exploit both local and remote

data. In DBCache, the query plan is called a Janus plan and consists of a probe query and

a regular query. The probe query performs an existence check to determine whether the

local tables can be used for the query. Afterwards, a regular query containing a clause

for both local and remote data is executed. Cache coherence is based on the DB2 repli-

cation interface that asynchronously propagates all updates of a transaction. MTCache

uses the corresponding asynchronous replication mechanism from Microsoft SQL Server.

It maintains the cache as a set of materialized views and performs cost-based optimization

224 6 Related Work

on query templates to decide between local and remote execution. Due to their strong

relation to database replication protocols, DBCache and MTCache are effectively lazily

populated read replicas. Orestes is orthogonal to caching proxies and mid-tier caches as

they serve the purpose of database offloading and can be combined with our end-to-end

caching for latency reduction.

Labrinidis et al. proposed WebViews as a technique of caching website fragments [LR01a,

LR00]. A WebView refers to HTML fragments generated by database queries, e.g., a styled

table of stock prices. Through a cost-based model, WebViews are either materialized in

the web servers, in the database, or not at all. The authors found that materialization in

the web servers is generally more effective than materialization in the database by at least

a factor of 10, since it incurs fewer round-trips to the database. This is in accordance with

Orestes where query results are cached in arbitrary caches as near as possible to the client

to avoid network round-trips.

Search Result Caching

According to Bortnikov et al. [BLV11], caching approaches for search results can be classi-

fied into coupled and decoupled design. In a decoupled design (e.g., [CJP+10]), the caches

are independent from the search index (i.e., the database), while a coupled design is more

sophisticated and actively uses the index to ensure cache coherence. Blanco et al. investi-

gated query caching in the context of incremental search indices at Yahoo and proposed a

coupled design [BBJ+10]. To achieve cache coherence, their cache invalidation predictor

(CIP) generates a synopsis of invalidated documents in the document ingestion pipeline.

This summary is checked before returning a cached search query to bypass the cache when

new indexed document versions are available. Unlike our evolving Cache Sketch, the syn-

opses are immutable, created in batch, and only used to predict likely invalidations of

server-side caches.

Bortnikov et al. [BLV11] improved the basic CIP architecture using realistic workloads,

more efficient cache replacement algorithms and optimizations to deal with less popular

documents. Alici et al. [AAO+11] were able to achieve comparable invalidation accuracy

using a timestamp-based approach where an invalidation is detected by having the cache

distribute the timestamp metadata of a cached query to all responsible search servers.

These confirm freshness, if they did not index updated document versions, nor new docu-

ments that also match the search term, based on the respective timestamps. The broadcast

is less expensive than reevaluating the query, but not suitable for latency reduction in a

web caching scenario.

6.1.4 Summary Data Structures for Caching

Bloom Filters for Caching

A related system using Bloom filters for web caching is Summary Cache proposed by Fan et

al. [FCAB00] which employs Bloom filters as metadata digests in cooperative web caches.

6.1 Caching 225

The approach, however, is fundamentally different to ours, as these summaries (“cache

digests”) are generated in intervals to communicate the set of locally available cached data

to cooperating web caches. In the context of Summary Cache, Counting Bloom filters were

introduced in the literature for the first time. Since each server has to delete URLs from

the Bloom filter when they are replaced from the cache, a removal operation is necessary.

In this setting, considerations about the optimal Bloom filter size and invalidations are not

required as the Bloom filter only serves as a means of bandwidth reduction.

Recently, cache fingerprinting has been proposed for improving HTTP/2 push [ON16].

The idea is to construct a digest of the browser cache’s contents – similar to Summary

Cache – to efficiently identify resources that are already available in the client and there-

fore do not have to be pushed by the server. Instead of Bloom filters, Golomb-compressed

sets (GCS) [PSS09] are used. GCS exploit the fact that in a Bloom filter with only one

hash function, the differences between values follow a geometrical distribution [MU05].

This pattern can be optimally compressed using Golomb-coding, yielding a smaller size

than Bloom filters. The fingerprinting scheme has not been standardized, yet, but an

experimental implementation is available in the H2O web server [Hev16].

In NoSQL systems, Bloom filters are frequently used to accelerate storage engines based

on log-structured merge-trees (LSMs). Google’s BigTable [CDG+08] pioneered the ap-

proach that has been adopted in various systems (e.g., Cassandra, LevelDB, HyperDex,

WiredTiger, RocksDB, TokuDB) [LM10, EWS12, GD11]. In BigTable, data is stored in im-

mutable SSTables located on disk. In order to avoid disk I/O for the lookup of a key for

each SSTable, a Bloom filter is loaded into memory. Only when the check is positive,

the SSTable is queried on disk. In contrast to the Cache Sketch, the Bloom filters only

need to be constructed once, as on-disk data is immutable. The Orestes prototype extends

the Bloom filter hash function implementation (Murmur) of Cassandra’s LSM-engine to

Counting Bloom filters and JavaScript-based Bloom filters [GSW+15].

Alternatives to Bloom Filters

Space-efficient alternatives to Bloom filters have been proposed. While Golomb-coded sets

[PSS09] achieve slightly smaller sizes, they are not suited for Orestes, as fast O(1) lookups

are not possible. Mitzenmacher [Mit02] proposed Compressed Bloom Filters. They are

based on the observation that a very sparse Bloom filter can be efficiently compressed by

an entropy encoding like Huffman and arithmetic codes [Rom97]. However, due to the

size of the uncompressed filter, memory consumption is infeasible for the client. Using

several Blocked Bloom filters with additional compression would mitigate this problem,

but increase the complexity and latency of lookups [PSS09]. Cuckoo filters have been

proposed by Fan et al. [FAKM14] as a more space-efficient alternative to Counting Bloom

filters. However, they are not applicable for the Server Cache Sketch as the number of

duplicate entries is strictly bounded. If Cuckoo Filters were used, updates to the Cache

Sketch would fail during phases of many writes, implying later false negatives. Matrix

filters proposed by Porat et al. [PPR05, Por09] achieve the lower limit of required space

226 6 Related Work

for a given false positive rate. This advantage is contrasted by linear lookup time and a

complex initial construction of the data structure. As Bloom filters are already within a

factor of 1.44 of the theoretical lower bound of required space [BM03] and offer O(1)
inserts and lookups, they are the best choice for the Cache Sketch. Kirsch et al. [KM06]

showed that the use of a linear combination of two independent hash functions reduces

the amount of costly hash computations without loss of uniformity. The Cache Sketch

implements this optimization. An overview of other Bloom filter variants and applications

is given by Broder and Mitzenmacher [BM03] and Tarkoma et al. [TRL12].

In summary of the above, Orestes separates itself from previous work on caching in multi-

ple aspects. First, it uses existing HTTP infrastructure and does not require custom caching

or replication servers. Employing stochastic models, this work provides fine-grained

TTL estimates for query results, records, and files. The expiration- and invalidation-

based caching models in Orestes are combined by a scalable real-time query invalidation

pipeline. Furthermore, the cost-based optimization and flexibility of the Cache Sketch

yield a tunable trade-off between latency, consistency, and server load by adapting to the

workload at runtime.

6.2 Geo-Replication

6.2.1 Replication and Caching

The goal of replication is to increase read scalability and to decouple reads from writes

to offload the database and reduce latency. Replication can protect the system against

data loss. In case of geographically distributed replicas (geo-replication), read latency

for distributed access from clients is improved, too [BBC+11, SVS+13, KPF+13, LFKA13,

CDE+12, CDE+13, SPAL11, CDG+08, DHJ+07, CRS+08, TPK+13]. In this setting, a central

constraint is that intra-data center latencies are small (<5 ms), while inter-data center

communication is expensive (50-150 ms) [AEM+13]. Caching can be viewed as an alter-

native to replication. With caching, data is fetched and stored on-demand, while with geo-

replication the complete data set is synchronized between multiple replica sites, incurring

higher management overhead. If replicas are allowed to accept writes (multi-master),

considerable coordination is required to guarantee consistency. Orestes’ caching distin-

guishes between caches that require expensive updates (invalidation-based caches) and

passive caches that do not incur any overhead to the server (expiration-based caches).

Charron-Bost et al. [CBPS10, Chapter 12] and Öszu and Valduriez [ÖV11, Chapter 13]

provide a comprehensive review of replication techniques. We will focus on a discussion

of exemplary, influential geo-replicated systems and outline how their trade-offs differ

from the trade-offs inherent to Orestes. The advantage of geo-replication is that consis-

tency and transactional isolation levels can be chosen through the replication protocol

and be tuned for the respective database system. A major downside is that usually these

systems either have to perform multiple synchronous wide-area round-trips for consistent

6.2 Geo-Replication 227

updates [BBC+11,KPF+13] or only provide eventual consistency without recency guaran-

tees [CDG+08,DHJ+07,CRS+08].

6.2.2 Eager Geo-Replication

Through eager geo-replication as implemented in Megastore [BBC+11], Spanner

[CDE+13, CDE+12], and F1 [SVS+13] as well as in MDCC [KPF+13] and Mencius

[MJM08], applications achieve strong consistency at the cost of higher write latencies

(typically 100 ms [CDE+12] to 600 ms [BBC+11]).

Megastore

Baker et al. [BBC+11] came to the conclusion, that the cost of strong consistency and

ACID transactions in highly distributed systems is often acceptable in order to empower

developers. Megastore’s data model is based on entity groups, that represent fine-grained,

application-defined data partitions (e.g., a user’s message inbox). Transactions are sup-

ported per co-located entity group, each of which is mapped to a single row in BigTable

that offers row-level atomicity. Transactions spanning multiple entity groups are possible,

but not encouraged, as they require expensive 2PC [Lec09].

Megastore (also available as a DBaaS called Google Cloud Datastore) uses synchronous

wide-area replication. The replication protocol is based on Paxos consensus [Lam98] over

positions in a shared write-ahead log. Megastore uses the Multi-Paxos [Lam01] optimiza-

tion to achieve best-case performance of one wide-area round-trip per write as opposed

to two round-trips with regular Paxos. This replication protocol has been improved by

Kraska et al. [KPF+13] in MDCC (Multi-Data Center Consistency). They include two addi-

tional Paxos optimizations (fast and generalized Paxos) and reduce conflicts by leveraging

commutativity of certain updates.

To allow consistent local read operations, Megastore tracks the replication status of each

entity group in a per-site coordinator. In order for the coordinator to reflect the latest

state of each entity group, the Paxos replication not only has to contact a quorum as in the

original protocol, but has to wait for acknowledgments from each replica site. This implies

that lower latency for consistent reads is achieved at the expense of slower writes.

The authors report average read latencies of 100 ms and write latencies of 600 ms. These

numbers illustrate the considerable cost of employing synchronous wide-area replication.

The high latency of writes is critical, as Megastore employs a form of optimistic con-

currency for writes on the same entity group: if two writes happen concurrently during

replication, only one will succeed. This limits the throughput to 1/lw, where lw is the write

latency, i.e., about 10 writes per second in the best case. Both read and write latencies are

significantly lower in our approach and write throughput is not limited by latency.

228 6 Related Work

Spanner and F1

Spanner [CDE+13, CDE+12] evolved from the observation that Megastore’s guarantees –

though useful – come at performance penalty that is prohibitive for some applications.

Spanner is a multi-version database system that unlike Megastore provides efficient cross-

shard ACID transactions. The authors argue: “We believe it is better to have application

programmers deal with performance problems due to overuse of transactions as bottle-

necks arise, rather than always coding around the lack of transactions” [CDE+12, p. 4].

Spanner automatically groups data into partitions (tablets) that are synchronously repli-

cated across sites via Paxos and stored in Colossus, the successor of GFS [GGL03]. Trans-

actions in Spanner are based on two-phase locking and 2PC executed over the leaders for

each partition involved in the transaction. Spanner serializes transactions according to

their global commit times2. To make this feasible, Spanner introduces TrueTime, an API

for high precision timestamps with uncertainty bounds implemented using atomic clocks

and GPS. Each transaction is assigned a commit timestamp from TrueTime. Using the

uncertainty bounds, the leader can wait until the transaction is guaranteed to be visible

at all sites before releasing locks. This also enables efficient read-only transactions that

can read a consistent snapshot for a certain timestamp across all data centers without any

locking.

Mahmoud et al. [MNP+13] proposed an optimization for faster commits that integrates

local 2PC in data centers with a Paxos consensus as to whether the transaction should

commit (replicated commit protocol). This reduces commit latency, but comes at the cost

of high read latency, since every read needs to contact a majority of data centers to only

read committed data.

F1 [SVS+13] and its commercial version Cloud Spanner [Bre17] build on Spanner to sup-

port SQL-based access for Google’s advertising business. To this end, F1 introduces a

hierarchical schema based on Protobuf, a rich data encoding format similar to Avro and

Thrift [Kle17]. To support both OLTP and OLAP queries, it uses Spanner’s abstractions

to provide consistent indexing. A lazy protocol for schema changes allows non-blocking

schema evolution [RRS+13]. Besides pessimistic Spanner transactions, F1 supports opti-

mistic transactions that use a similar commit procedure as our DCAT approach. Each row

bears a version timestamp that is used at commit time to perform a short-lived pessimistic

transaction to validate a transaction’s read set. In contrast to Orestes, optimistic transac-

tions in F1 still suffer from the abort rate problem, as the read phase is latency-bound and

the commit requires slow, distributed Spanner transactions (cf. Section 4.8.1).

According to the CAP theorem [Bre00], Spanner and F1 cannot be highly available sys-

tems. Brewer [Bre17] argues that in practice, however, they behave as highly available

systems through engineering best practices. For example, Cloud Spanner does not rely

on the public Internet to perform geo-replication, but instead transfers data over private,

redundant networks owned and operated by Google.

2This is termed external consistency by the Spanner authors and known in the literature as strict serializability
or commit order-preserving conflict serializable (COCSR) [WV02].

6.2 Geo-Replication 229

CockroachDB [Coc17] is an open-source, geo-replicated, relational database system based

on the design of Spanner and F1. To support commodity hardware, CockroachDB does

not use TrueTime, but instead uses NTP synchronization with hybrid logical clocks3

[KDM+14]. As a consequence, CockroachDB cannot provide strict serializability for trans-

actions, only serializability4. The transaction protocol is based on an underlying key-

value store that is replicated using Raft consensus [OO13] for groups of keys. Atom-

icity is achieved through a locking protocol on per-record metadata, similar to Percola-

tor [PD10]. Isolation is implemented as multi-version timestamp ordering [WV02] per

consensus group and 2PC across groups. Read-write and write-write conflicts therefore

cause transaction aborts, if the operations are not ordered according to the transaction

begin timestamps. Like Spanner and F1, CockroachDB is prone to high read, write, and

transaction latency due to synchronous geo-replication and 2PC.

Summing up, strict serializability is an important property for applications. Without this

guarantee, blind writes (e.g., inserting a comment record) can be delayed arbitrarily and

may never become visible. Spanner and F1 achieve strict serializability by delaying trans-

action commits and using high-precision clocks, while CockroachDB sacrifices the guar-

antee for performance reasons. Orestes, on the other hand, provides strict serializability

through its optimistic protocol executed at a single site, thus preventing timing constraints

between distributed data centers.

6.2.3 Lazy Geo-Replication

With lazy geo-replication as in Dynamo [DHJ+07], BigTable/HBase [CDG+08, Hba17],

Cassandra [LM10], MongoDB [CD13], CouchDB [ALS10], Couchbase [LMLM16],

Espresso [QSD+13], PNUTS [CRS+08], Walter [SPAL11], Eiger [LFKA13], and COPS

[LFKA11] stale reads are allowed, but the system performs better and remains available

during partitions.

Eventually Consistent Geo-Replication

Most asynchronously replicated NoSQL systems support using their intra-data center repli-

cation protocol for cross-data center replication. In contrast to systems with transparent

geo-replication, the application needs to be explicitly configured to route read and write

requests to the correct data center. MongoDB [CD13] allows tagging shards with a zone

parameter to allocate data to regions based on properties (e.g., an “address” field in user

documents). It also supports distributing replicas within a replica set over multiple loca-

tions. However, this comes at a cost, as replicas from another data center can be elected

to masters upon network partitions and transient failures. Couchbase [LMLM16] uses

the asynchronous Memcache replication protocol for geo-replication. Most RDBMSs in-

3Hybid logical clocks combine the benefits of logical clocks [Lam78] for simple tracking of causality with
physical clocks that are within a defined drift from real time by merging both.

4In particular for individual operations (transactions with a single read or write), the lack of strict serializ-
ability implies that linearizability is not guaranteed in CockroachDB.

230 6 Related Work

clude only limited support for geo-distributed deployments, mostly directly based on their

asynchronous intra-data center replication protocols (e.g., in MySQL, MySQL Cluster, and

PostgresSQL [Pos17]).

CouchDB [ALS10] has a multi-master replication protocol that was designed for heav-

ily geo-distributed setups from device-embedded instances to multiple data centers. As

writes are allowed on each slave, conflicts are tracked using hash histories [AEM+13],

an alternative to vector clocks [DHJ+07] for causality tracking. Quorum systems such

as Dynamo, Cassandra, and Riak [LM10, DHJ+07] require location-awareness for each

key’s preference list, i.e., the information on whether the responsible database nodes are

local to the data center or connected through wide-area networks. Cassandra, for exam-

ple, supports configuring remote site behavior through topology strategies and per oper-

ation quorums. These quorums define whether data is replicated purely asynchronously

(e.g., for analytics) or whether a remote cluster has to participate in the overall quorum

(“EACH_QUORUM”) [CH16]. Riak distinguishes between a source cluster for operational

workloads and sink clusters that do not participate in quorums and only asynchronously

receive writes from the source cluster.

BigTable and HBase [CDG+08, Hba17] are synchronously replicated within a data center

at the file system level (GFS and HDFS [GGL03], respectively), but offer asynchronous

wide-area replication, mainly for purposes of disaster recovery. LinkedIn’s Espresso is a

document store that uses asynchronous master-slave replication within a data center built

on top of a change data capturing system called Databus [DBS+12]. Subscribers to this

replication bus can be placed in remote data centers.

PNUTS

Causal consistency is the strongest level of consistency achievable without inter-data cen-

ter coordination [LFKA11]. Yahoo’s PNUTS system [CRS+08] was influential in this re-

spect, as it combines stronger consistency with a geo-replicated design. PNUTS leverages

the observation that updates for a particular record tend to originate from the same re-

gion. Therefore, the primary is chosen per record (“record-level mastering”). Updates are

propagated through an asynchronous pub/sub message broker that enforces a serial order

for updates on the same key which guarantees causal consistency per key (termed “time-

line consistency”). Reads can be directed to any replica, if timeline consistency is sufficient

(“read-any”), or explicitly request monotonic reads (“read-critical”) or strong consistency

(“read-latest”) else. In each region, records are range-sharded and stored in MySQL. The

design of PNUTS presents a compromise between multi-master and master-slave replica-

tion. It decouples failures of primaries for different records and achieves low latency, if

the primary only receives writes from nearby clients.

Eiger, COPS, and Walter

Eiger [LFKA13] and COPS [LFKA11] are two approaches for providing full causal consis-

tency for asynchronous replication. Eiger and COPS have strong similarities, their major

6.2 Geo-Replication 231

difference is that causality tracking in COPS is based on per-record metadata, while Eiger

tracks dependencies between operations. COPS introduces the notion of causal+ con-
sistency that combines causal consistency with guaranteed convergence of writes. While

COPS is not the first system to provide causal+ consistency for geo-replication, it is the

first that is not based on unscalable use of the database log like Bayou [DPS+94] and

PRACTI [BDG+06]. The key idea of COPS is to have clients attach metadata of causally

relevant read operations to each write operation. During replication at a remote site, a

write is only applied if all causal dependencies have also been applied already. To ensure

convergence, conflicting writes are resolved using a commutative and associative handler

(e.g., last-writer-wins). COPS also introduces a two-phase commit algorithm for read-only

transactions that only see causally consistent records.

Walter [SPAL11] extends the COPS approach for causality tracking to transactions, by

introducing Parallel Snapshot Isolation as an isolation level that relaxes snapshot isolation

to allow different transaction orderings on different sites. Bailis et al. have proposed bolt-
on causal consistency [BGHS13] that provides causal consistency at the client side. The

idea is similar to the concept behind COPS: writes are only made visible for reads, once

their casual dependencies are available. However, as this safety guarantee is not paired

with a liveness guarantee, clients can end up reading very stale data.

The main problem of all geo-replication schemes for causal consistency is that either po-

tential causality is tracked which imposes a large overhead or that developers are faced

with the burden of explicitly declaring causal relationships. In Orestes, the key insight for

providing efficient causal consistency is that the Cache Sketch represents a natural time

bound for all records that must satisfy causal consistency, since the primary site guarantees

causal consistency.

Pileus

Our work has similarities with Pileus [TPK+13] proposed by Terry et al. from Microsoft

Research. Pileus also achieves low latency, single round-trip writes, and bounded stale-

ness. It is based on an SLA concept, in which developers can annotate consistency levels

and latency bounds with utility values. For example, an application could specify that up

to 5 minutes of staleness are tolerable and then define the monetary value of requests that

return in 200 ms, 400 ms or 600 ms. Pileus has a key-value data model with CRUD-based

access. It employs a primary site for updates and all geo-replicated secondary sites are

asynchronously replicated.

Clients are responsible for selecting a replica by evaluating the SLA and returning the

sub-SLA (a combination of a consistency and latency requirement with a utility) that has

the highest utility multiplied by the probability of meeting the consistency and latency

requirement. Data is then read from the replica that maximizes the selected sub-SLA. The

decision whether a replica can satisfy a consistency requirement is based on computing

a minimum acceptable read timestamp that indicates how far a replica is allowed to lag

behind the primary without violating the consistency level. To make this feasible, clients

232 6 Related Work

need to frequently collect information about network latency and replication lag from all

replicas. The consistency levels are similar to Orestes (strongly, eventual, monotonic reads,

∆-atomic, causally consistent). However, Pileus assumes a higher ∆ (typically minutes

[TPK+13, p. 316]), as otherwise polling from replicas becomes inefficient and strict clock

synchronization would be required.

In a follow-up work, Pileus was extended by the ability for dynamic primary/secondary

reconfiguration in order to maximize global utility of SLAs in a system called Tuba [AT14].

Here, a configuration service periodically collects observed latencies and SLA violations

from clients and selects a new configuration with the best utility-to-cost ratio. Potential

reconfigurations include adding or switching a primary site and changing the replication

factor and replica locations. Clients need to always be aware of configuration changes in

order not to perform strongly consistent reads and writes on non-primaries. Compared to

Pileus, Tuba increases the probability of strongly consistent reads from 33% to 55%.

The major differences between Pileus/Tuba and Orestes are:

• Orestes supports queries, while Pileus is limited to CRUD.

• Our approach to low latency relies on standard web caches instead of custom repli-

cas.

• Staleness bounds in Orestes do not depend on clock synchronization.

• Cache Sketches scale to an arbitrary number of caches, as staleness information is

consolidated in one Bloom filter instead of being polled from each replica.

Tao

Tao is an example of a system that combines geo-replication with caching. Bronson et

al. [BAC+13] describe the system that stores Facebook’s multi-petabyte social graph. The

data is held in a sharded MySQL which is asynchronously replicated across data centers.

Caching is performed at two levels of cache tiers. The leader cache tier is located in front of

MySQL and is allowed to perform writes on it. Multiple follower cache tiers service requests

to their nearest application servers and forward requests to the leader if necessary. Each

tier consists of many modified Memcache [Fit04] servers with custom memory allocation

and LRU cache eviction schemes [XFJP14,NFG+13]. Tiers are sharded through consistent

hashing to avoid reshuffling of data in case of failures. To mitigate popularity-induced

hotspots, each shard inside a tier can be master-slave replicated. The tiers behave like

synchronous write-through caches, i.e., when a write request arrives at a follower tier’s

Memcache shard, it is forwarded to the respective leader shard. If the current data center

is the master for that data item, the write is performed on the corresponding MySQL shard.

Otherwise, it is forwarded to the leader tier of the master data center. When the write is

complete, invalidation messages are issued to every cache holding that data item. Cache

coherence is thus asynchronous, i.e., there are no consistency guarantees, but anecdotally

the lag is in the order of one second [BAC+13]. Tao handles roughly 1 billion reads per

second with a read-heavy workload (over 99% reads).

6.2 Geo-Replication 233

Lu et al. [LVA+15] performed extensive consistency checking for Tao’s two-level caching

architecture by sampling requests. They analyzed violations of linearizability, read-your-

writes consistency, and per-object sequential consistency. For Facebook’s workload, the vi-

olation are reported to be very rare (e.g., 0.00151% in case of linearizability). The authors

attribute this to the fact that writes are very rare and only 10%-25% of all objects experi-

ence both reads and writes. The effects on transactional isolation were not measured, as

the distributed nature of transactions made a tracing and checking approach impossible.

In contrast to Orestes, Tao does not provide consistency guarantees (but only violation

probabilities) and also does not allow developers to fine-tune performance against consis-

tency on a per-operation basis.

Tunable Consistency and the Latency-Consistency Trade-Off

The idea of exposing tunable consistency to developers is also found in other systems. In

many applications some operations need to be performed with strong consistency (e.g.,

password checking), while eventual consistency is acceptable for others (e.g., adding a

product to the shopping cart). Both Twitter and Facebook have sub-systems providing

strong consistency for operations on critical data [Sch16, LVA+15]. In Google’s Mega-

store [BBC+11], weakly consistent reads are allowed for performance reasons despite

strongly consistent updates. In Gemini [LPC+12], red (strongly consistent) and blue

(weakly consistent) operations are distinguished for geo-replicated storage. Gemini max-

imizes the use of fast, locally executed blue operations by determining when an operation

is commutative to every potentially concurrent operation.

Kraska et al. [KHAK09] proposed to attach SLAs to objects in order to include the cost as

an optimization factor for cloud-based storage systems (consistency rationing). The two

SLA classes A and C reflect data that is always handled with strong or weak consistency,

respectively, while class B is continuously optimized according to a cost function. Florescu

and Kossmann [FK09] argue that most cloud-based applications are not concerned with

the concrete level of consistency, but the overall cost of the application.

Application complexity is usually increased by different consistency choices [LLC+14].

Guerraoui et al. [GPS16] proposed Correctables as a new programming model that ab-

stracts different consistency levels. The main idea is to provide a Promise-based [LS88b]

interface that can either directly execute an operation at the desired consistency level or

return multiple results with increasing consistency and delay. For example, in a ticket

checkout process, a potentially stale stock counter could be returned first to proceed,

when it is sufficiently high, with the option to abort shortly afterwards, if the actual stock

value is already zero. A similar scheme is used in Meteor [HS16], to hide potentially slow

write operations from users (latency compensation). Correctables could be combined with

Orestes to return results that are ∆-atomic first, while in the background, a linearizable

result is fetched.

234 6 Related Work

Geo-Replica Placement

In contrast to caching, the decision where to replicate data involves intimate knowledge

of workloads and access patterns. Web caching is inherently more adaptive than repli-

cation, as data is materialized on demand and as near to the client as possible. Wu et

al. [WBP+13] have proposed SPANStore to address replica-placement in multi-cloud en-

vironments. SPANStore minimizes the cost of a data storage deployment based on appli-

cation requirements such as latency SLOs and desired consistency levels. For each access

set of an application’s workload, a placement manager decides where to store data and

from where to serve reads and writes. To provide transparency to the application, a client

library proxies access to the different cloud data centers.

The problem of geo-replication was also studied for transactional workloads by Sharov et

al. [SSMS15]. They proposed a replication framework for transactional, highly distributed

workloads that minimizes latency through appropriate primary and replica placement. Za-

khary et al. [ZNAE16] described a similar approach for majority-based replication. They

employ a cache-like “optimistic read” optimization: instead of always reading from a ma-

jority of replicas, a passive replica (effectively a client cache) can be used and reads can

be validated before transaction commit. This idea is similar to DCAT, but only leverages a

single cache.

Consistency

Consistency in replicated storage systems has been studied in both theory [GLS11] and

practice [BVF+12, LVA+15, Ber14]. An up-to-date and in-depth discussion of consistency

in distributed systems and databases is provided by Viotti and Vukolic [VV16]. Their two

main observations are that there is a complex relationship between different consistency

levels and that similar guarantees are often named differently across research commu-

nities. Similar to asynchronously replicated systems [DHJ+07, CRS+08, LM10], Orestes

trades consistency against performance by invalidating asynchronously and allowing stale

reads. We studied the strict staleness bounds imposed by the Cache Sketch through the

Monte Carlo simulation framework YMCA (cf. Section 4.3.1) that is similar to PBS pro-

posed by Bailis et al. [BVF+12].

Lee et al. [LPK+15] proposed to decouple the problem of consistency from database system

design through a system called RIFL (Reusable Infrastructure for Linearizability). RIFL

builds on remote procedure calls (RPCs) with at-least-once semantics (i.e., invocations

with retries) and enhances them to exactly-once semantics which are sufficient to guaran-

tee linearizability. To this end, each request is assigned a unique identifier and a persistent

log guarantees that completed requests will not be re-executed5. The authors report a

write overhead of their implementation in RAMCloud [OAE+11] of only 4% compared to

the base system without RIFL. The exactly-once semantics also simplify the implementa-

tion of transactions. Their approach builds on Sinfonia [AMS+07], an in-memory service

5The idea of building distributed transactions on a shared log is also found in Calvin [TDW+12] (cf. p. 241).

6.3 Transaction Processing 235

System
Concurrency
Control Isolation Granularity

Commit
Protocol

Megastore [BBC+11] OCC SR Entity Group Local
G-Store [DAEA10] OCC SR Entity Group Local
ElasTras [DAEA13] OCC SR Entity Group Local
Cloud SQL Server [BCD+11] PCC SR Entity Group Local
Spanner [CDE+12] PCC SR/SI Multi-Shard 2PC
F1 [SVS+13] PCC or OCC SR/SI Multi-Shard 2PC
Percolator [PD10] OCC SI Multi-Shard 2PC
MDCC [KPF+13] OCC RC Multi-Shard 2PC-like
TAPIR [ZSS+15] TO SR Multi-Shard 2PC-like
CloudTPS [WPC12] TO SR Multi-Shard 2PC
Cherry Garcia [DFR15a] OCC SI Multi-Shard Client-coord.
Omid [GJK+14] MVCC SI Multi-Shard Local
FaRMville [DNN+15] OCC SR Multi-Shard Local
RAMP [BFG+14] Custom Read-Atomic Multi-Shard Client-coord.
Walter [SPAL11] PCC Parallel SI Multi-Shard 2PC
H-Store/VoltDB [KKN+08] Deterministic CC SR Multi-Shard Local
Calvin [TDW+12] Deterministic CC SR Multi-Shard Local
Orestes with DCAT OCC SR Multi-Shard Custom

Table 6.2: Related transactional systems and their concurrency control protocols (OCC:
optimistic concurrency control, PCC: pessimistic concurrency control, TO:
timestamp ordering, MVCC: multi-version concurrency control), achieved isola-
tion level (SR: serializability, SI: snapshot isolation, RC: read committed), trans-
action granularity, and commit protocol.

infrastructure that provides a mini-transaction primitive for atomic cross-node memory

access. A central limitation of RIFL is its assumption that clients are reliable and do not

lose their state upon crashes. In the web this assumption does not hold and hence RIFL

cannot be applied to the same BaaS context as Orestes.

In summary, geo-replication and caching are two very useful techniques for low latency

that can be combined. Geo-replication is more powerful to provide protection against dis-

aster scenarios and can reduce latency for strongly consistent reads. Orestes, on the other

hand, has a higher number of potential replicas, since each web cache can answer reads.

Furthermore, both reads and writes require at most one wide-area round-trip and cache

coherence imposes only little overhead. Another advantage is that transaction process-

ing in Orestes can leverage cached/replicated data without cross-data center transaction

protocols.

6.3 Transaction Processing

In this section, we will review related work on transaction processing for cloud data man-

agement and NoSQL databases. Table 6.2 summarizes important systems for distributed

transaction processing and their central properties. We will give a short discussion of each

approach and summarize the differences to Orestes with DCAT at the end of the section.

236 6 Related Work

6.3.1 Entity Group Transactions

The approaches can be distinguished by their scope and the degree to which they exploit

data locality. Megastore [BBC+11] made the concept of entity groups popular that define

a set of records that can be accessed in the same transactional context. Megastore’s trans-

action protocol suffers from low throughput per entity group as discussed in the previous

section.

In G-Store [DAEA10], entity groups (termed key groups) are created dynamically by the

system as opposed to statically through schema-based definitions as in Megastore. Each

group has a dedicated master that runs the transactions in order to avoid cross-node coor-

dination. Ownership of a group can be transferred to a different master using a protocol

similar to 2PC. G-Store assumes a stable mapping of records to groups, as otherwise many

migrations are required to run transactions. The master uses optimistic concurrency to

run transactions locally on a single group.

Microsoft’s Cloud SQL Server [BCD+11] is also based on entity groups, which are defined

through a partition key. Unlike the primary key, a partition key is not unique and iden-

tifies a group of records that can be updated in single transactions. A similar concept is

employed in Cassandra, Twitter’s Manhattan, Amazon DynamoDB, and Windows Azure

Table Services [CWO+11, LM10] to enable local sorting or multi-record atomic updates.

By introducing the partition key, the concurrency control protocol of Microsoft SQL Server

can remain unchanged and still serve multi-tenant workloads, as long as the data per

partition key does not exceed the limits of a single database node.

ElasTras [DAEA13] is a DBaaS architecture that builds on entity groups and optimistic

concurrency per group managed by an owning transaction manager. The central assump-

tion is that either each tenant is so small that data fits into a single partition or that

larger databases can be split into independent entity groups. ElasTras employs the mini-
transactions concept by Aguilera et al. [AMS+07] to support transactions across nodes

for management operations like schema changes. ElasTras supports elasticity through a

live-migration protocol (Albatross [DNAE11]) that iteratively copies entity groups to new

nodes in a multi-step process. This is in contrast to Orestes where we see elastic scal-

ability as a property that should be provided by the underlying database system (e.g.,

MongoDB) using sharding instead of being added on top of a single-server database sys-

tem design. ElasTras’ largest practical downside is that it assumes completely static entity

groups, which is prohibitive for real-world application [CDE+12].

In Orestes, transactions are not constrained to entity groups. While entity groups are a

lightweight solution for enabling transactions using well-known single-node concurrency

control schemes, scalability is limited and the scope of transactions is limited, too. Instead,

we employ multi-tenancy at a higher level, allowing each tenant to scale horizontally

across database nodes. If tenants only work on a small data set, transactions will still be

constrained to a single database node and hence be less prone to latency stragglers.

6.3 Transaction Processing 237

6.3.2 Multi-Shard Transactions

As reviewed in the previous section, Spanner [CDE+12], MDCC [KPF+13], CockroachDB

[Coc17], and F1 [SVS+13] implement transactions on top of eager geo-replication by

trading correctness and fault tolerance against increased latency, whereas Walter [SPAL11]

relaxes isolation to increase the efficiency of geo-replication.

FaRMville is a multi-shard transaction approach that has similarities to our approach and

was independently proposed by Dragojevic et al. [DNN+15]. The design itself is based on

DRAM memory and RDMA (Remote Direct Memory Access) for very low latency. RAM is

made persistent through per-rack batteries for uninterrupted power supply. The transac-

tion protocol uses optimistic transactions over distributed shard servers. To this end, the

write set is locked by a coordinator executing the commit procedure. The versions of the

read set are then validated for freshness and changes are persisted to a transaction log and

each individual shard. Using the high-performance hardware setup, FaRMville achieves

4.5 million TPC-C new order transactions per second6.

FaRMville follows a very different design goal of optimizing intra-data center latency for

transactions executed from application servers. In contrast, Orestes is designed for remote

web clients executing the transactions to support the Backend-as-as-Service model. The

motivating idea is similar, though: while FaRMville minimizes abort rates by low latency

storage hardware within a data center, we minimize it through caching. Nonetheless,

FaRMville could be combined with our Cache Sketch approach, as writes in our scheme

are buffered in clients and read sets – including potentially cached reads – are validated

at commit time.

TAPIR (Transactional Application Protocol for Inconsistent Replication) [ZSS+15] is based

on the observation that replication and transaction protocols typically do the same work

twice when enforcing a strict temporal order. The authors propose a consensus-based

replication protocol that does not enforce ordering unless explicitly necessary. TAPIR only

uses a single consistent operation: the prepare message of the 2PC protocol. All other op-

erations are potentially inconsistent. TAPIR achieves strict serializability using optimistic

multi-version timestamp ordering based on loosely synchronized clocks, where the valida-

tion happens on read- and write sets at commit time. The authors show that commit la-

tency can be reduced by 50% compared to consistent replication protocols. TAPIR assigns

transaction timestamps in clients, but assumes a low clock drift for low abort rates. This

is impossible for the web-based use cases of Orestes, where browsers and mobile devices

can exhibit arbitrary clock drift [Aki15, Aki16]. Unlike Orestes, TAPIR also suffers from

high client-server latencies and exhibits more aborts caused by timestamp ordering.

6The achieved transaction throughput is above the highest-ranking TPC-C result at that time, but below the
performance of the coordination-free approach by Bailis et al. [BFF+14]

238 6 Related Work

6.3.3 Client-Coordinated Transactions

Percolator [PD10], Omid [GJK+14], and the Cherry Garcia library [DFR15a] are ap-

proaches for extending NoSQL databases with ACID transactions using client coordina-

tion. While Omid and Percolator only address BigTable-style systems, Cherry Garcia is

similar to Orestes in regard to its support for heterogeneous data stores.

Google published the design of its real-time web crawler and search index Percolator

[PD10]. Percolator is implemented as an external protocol on top of BigTable. It uses

several metadata columns to implement a locking protocol with snapshot isolation guar-

antees. A client-coordinated 2PC enables multi-key transactions using a timestamp service

for transaction ordering. Percolator’s protocol is designed for high write throughput in-

stead of low latency reads in order to accommodate massive incremental updates to the

search index: latency is reported to be in the order of minutes. The client coordination,

multi-round-trip commits and writes, and the lack of a deadlock detection protocol make

it unsuitable for access across high-latency WANs.

Omid [GJK+14] also provides snapshot isolation for transactions with a lock-free middle-

ware for multi-version concurrency control on top of a slightly modified HBase. It relies

on a central Transaction Status Oracle (SO) (similar to the earlier ReTSO work [JRY11])

for assigning begin and commit timestamps to transactions and to perform a snapshot iso-

lation validation at commit time. Omid is designed for application servers, where status

information of the SO can be replicated into the servers to avoid most of the round-trips.

However, for a highly distributed scenario as addressed by Orestes, relying on a single

centralized SO limits scalability and incurs expensive wide-area round-trips for distant

application servers.

In his PhD thesis, Dey proposes the Cherry Garcia library [Dey15] for transactions across

heterogeneous cloud data stores. The library requires the data store to support strong

consistency, multi-versioning, and compare-and-swap updates (e.g., as in Windows Azure

Storage [CWO+11]). Similar to Percolator [PD10] and ReTSO [JRY11], the transac-

tion protocol identifies read sets based on transaction begin timestamps and write sets

based on transaction commit timestamps, with the metadata maintained in the respective

data stores [DFR15a]. For the generation of sequentially ordered transaction timestamps,

Cherry Garcia either requires a TrueTime-like API [CDE+12] with error bounds or a cen-

tralized timestamp oracle [GJK+14]. In the two-phase transaction commit of Cherry Gar-

cia, the client checks for any write-write and read-write conflicts and makes uncommitted

data visible to other transactions. Cherry Garcia is not well-suited for low-latency, as a

read potentially requires multiple round-trips to determine the latest valid version suit-

able for a read, thus increasing the probability of transaction aborts during validation.

Like Percolator, Omid, and Cherry Garcia, Orestes does not modify the underlying data-

base system. All three approaches assume, however, that the client coordinating the trans-

action is a server in a three-tier application. Unlike Orestes, they are not suited for web

and mobile clients participating in transactions, since the latency overhead would be pro-

6.3 Transaction Processing 239

hibitive for starting transactions, reading and writing, as well as coordinating the commit.

DCAT addresses this problem by caching reads, buffering writes, and only contacting the

server for commits. Also, DCAT does not burden the primary database system with main-

tenance of transactional metadata, but instead employs much faster transaction validation

and commits using a coordination service.

RAMP (Read Atomic Multi-Partition) by Bailis et al. [BFG+14] also realizes client-coor-

dinated transactions. RAMP only offers a weak isolation level (read atomic) in order to

be always available, even under network partitions. As discussed in Section 4.8.4, RAMP

transactions can be combined with DCAT in order to merge their respective strengths:

Orestes provides improved performance and opt-in ACID semantics, whereas RAMP offers

a lightweight mechanism to prevent the fractured read anomaly. The client is responsible

for the RAMP validation and to resolve missing dependencies, so that it is fully compatible

with our web caching.

6.3.4 Middleware-Coordinated Transactions

An alternative to embedding transaction processing in the database system or the involved

clients is to provide a transactional middleware that accepts transactions from applications

and executes them over non-transactional database systems.

CloudTPS [WPC12] is a transaction middleware for web applications. It supports cross-

shard transactions using a two-level architecture. In order to avoid a bottleneck through

a single coordinator, CloudTPS employs Local Transaction Managers (LTMs) that manage

mutually disjoint partitions of the underlying database. Isolation is implemented through

timestamp ordering [WV02]. Each LTM executes a sub-transaction of the global transac-

tion and ensures that local commits are properly ordered. A 2PC executed by a designated

LTM over all other participating LTMs ensures atomicity of the global commit. Trans-

actions are executed non-interactively in the middleware and have to be predefined at

each LTM as a Java function. All keys accessed in a transaction have to be declared at

transaction begin, so that the responsible LTMs are known in advance.

As timestamp ordering is susceptible to conflicts, transactions in CloudTPS have to be

short-lived and only access a limited set of keys (excluding range and predicate queries).

Instead of persisting each write to the underlying storage system, LTMs hold the data in-

dependently, distributed through consistent hashing and replicated across multiple LTMs.

Periodically, data is persisted to the storage system. Orestes is less prone to aborts, as the

BOCC+ concurrency control scheme generates a larger set of permissible schedules than

timestamp ordering. Also, DCAT transactions are interactive and ad-hoc, allowing any

number of records to be part of the transaction without prior declaration.

Xi et al. [XSL+15] proposed a scheme to effectively combine pessimistic and optimistic

concurrency control algorithms. Their system Callas groups transactions by performance

characteristics and applies the most appropriate concurrency control mechanism to each.

240 6 Related Work

This is enabled by a two-tiered protocol that applies locking across groups and arbitrary

schemes within a group of similar characteristics.

Deuteronomy [LLS+15] follows the idea of separating data storage (data component, DC)

and transaction management (transaction component, TC). Similar to Orestes, it also re-

lies on heterogeneous database systems. The authors demonstrate that building on a

high-performance key-value store, a throughput of over 6M operations per second can be

achieved on scale-up hardware with an appropriate TC. Scalability, however, is limited to

the threads of the underlying NUMA (Non-Uniform Memory Access) machines. Therefore,

Deuteronomy is not suited for scale-out architectures as addressed by DCAT.

Hekaton [DFI+13], the storage engine of Microsoft SQL Server [Gra97], is another ex-

ample for the wide-spread use of optimistic transactions in the industry. The authors

introduce a new multi-version, optimistic concurrency control scheme for serializability

that is optimized for OLTP workloads in main memory. Besides the validation of the read

set as in DCAT, Hekaton also validates commit dependencies introduced by concurrent op-

erations during the validation phase. While this optimization increases concurrency and

hence throughput, it also introduces cascading aborts. DCAT only exposes committed data

and cannot use multi-versioning, as caches cannot perform version checks required for

correct visibility.

6.3.5 Deterministic Transactions

H-Store [KKN+08] and its commercial successor VoltDB [SW13] are horizontally scalable

main-memory RDBMSs. Sometimes, this new class of scale-out relational databases is

referred to as NewSQL [GHTC13]. Other examples of the NewSQL movement are Clustrix

[Clu17], a MySQL-compatible, scalable RDBMS and NuoDB [Nuo17], an RDBMS built on

top of a distributed key-value store.

VoltDB is based on eager master-slave replication and shards data via application-defined

columns (similar to MongoDB). Transactions are defined at deployment time as stored pro-

cedures written in Java or SQL. Each shard has a Single Partition Initiator (SPI) that works

off a transaction queue for that partition in serial order. As data is held in memory, this

lack of concurrency is considered an optimization to avoid locking overhead [HAMS08].

Single-shard transactions are directly forwarded to SPIs and do not require additional con-

currency control as the execution is serial. Read-only transactions can directly read from

any replica without concurrency control (called one-shot). Multi-shard transactions are

sequenced through a Multi Partition Initiator (MPI) that creates a consensus among SPIs

for an interleaved transaction ordering. During execution, cross-shard communication is

required to distribute intermediate results. Written data is atomically committed through

2PC. VoltDB scales well for workloads with many single-shard transactions. For multi-

shard transactions serialized through the MPI, however, the consensus overhead causes

throughput to decrease with increasing cluster size.

6.3 Transaction Processing 241

Calvin [TDW+12] is a transaction and replication service for enhancing available database

systems with ACID transactions. Transactions in Calvin have to be run fully server-side

(written in C++ or Python) and must not introduce non-determinism, similar to H-Store

and VoltDB [KKN+08, SW13]. This permits Calvin to schedule the order of transactions

before their execution. Client-submitted transactions are appended to a shared replicated

log that is similar to the Tango approach [BZM+13]. To achieve acceptable performance

despite this centralized component, requests are batched, persisted to a storage back-

end (e.g., Cassandra), and the batch identifiers are replicated via Paxos. The scheduler

relies on the log order to create a deadlock-free, deterministic ordering of transactions

using two-phase locking. As each transaction’s read and write sets have to be declared

in advance, allocation of locks can be performed before the transaction begin (preclaim-
ing [WV02]). Transactions execute locally on each shard by exchanging the read sets with

other shards and only writing local records. While Calvin achieves high throughput in

TPC-C benchmarks, its model is strictly limited to deterministic, non-interactive transac-

tions on pre-defined read and write sets, which eliminates most forms of queries. DCAT,

in contrast, allows clients to dynamically create their read sets at runtime based on other

reads and queries. Furthermore, there is an inherent trade-off between commit latency

and throughput introduced by the batching interval of the shared log.

Orestes supports interactive, potentially non-deterministic transactions, which are more

flexible than stored procedures. However, executing server-side transactions could be

an interesting fall-back for high-contention transactions, that repeatedly abort. In that

case, Orestes could revert to server-side transaction execution as proposed in H-Store and

Calvin.

6.3.6 Comparison with DCAT

Our DCAT approach for serializable, multi-shard transactions has several similarities with

related work (cf. [Wit16]):

• Low-latency reads are the central goal, as in systems and approaches with eager

geo-replication (Megastore [BBC+11], Spanner [CDE+13, CDE+12], F1 [SVS+13],

MDCC [KPF+13], Mencius [MJM08], Replicated Commit [MNP+13], and Cock-

roachDB [Coc17]).

• DCAT relies on optimistic concurrency control, similar to Megastore [BBC+11], F1

[SVS+13] , G-Store [DAEA10] , Percolator [PD10], MDCC [KPF+13], Cherry Garcia

[DFR15a], H-Store/VoltDB [KKN+08] , TAPIR [ZSS+15], and FaRMville [DNN+15].

• To minimize round-trips induced by transactional updates, the write set is buffered

in the client, similar to FaRMville [DNN+15], F1 [SVS+13], and Cherry Garcia

[DFR15a].

• Orestes with DCAT enables polyglot persistence by allowing transactions to be

processed on top of non-transactional database systems, similar to Cherry Garcia

242 6 Related Work

[DFR15a], Omid [GJK+14], CloudTPS [WPC12], Calvin [TDW+12], and Deuteron-

omy [LLS+15].

• The DCAT commit procedure requires two phases (validation and writing), similar

to Spanner [CDE+12], F1 [SVS+13], Percolator [PD10], MDCC [KPF+13], CloudTPS

[WPC12], TAPIR [ZSS+15], Cherry Garcia [DFR15a], FaRMville [DNN+15], and

Walter [SPAL11].

In summary, our approach is a novel research perspective on low-latency transaction pro-

cessing that builds on caching instead of geo-replication. To our knowledge, it is the first

approach to leverage web caching for transactions. By accelerating the reads during opti-

mistic transactions and combining them with a lightweight, single-site commit procedure,

DCAT avoids the problem of slow wide-area coordination associated with geo-replication.

DCAT therefore broadens the design space of transactions for cloud data management and

offers a solution to the abort rate problem of optimistic transactions.

6.4 Database-as-a-Service and Polyglot Persistence

The DBaaS model promises to shift the problem of configuration, scaling, provisioning,

monitoring, backup, privacy, and access control to a service provider [CJP+11]. Hacigu-

mus et al. [HIM02] coined the term DBaaS and argued that it provided a new paradigm

for organizations to alleviate the need for purchasing expensive hardware and software to

build a scalable deployment. Lehner and Sattler [LS13] and Zhao et al. [ZSLB14] provide

a comprehensive overview of current research and challenges introduced by the DBaaS

paradigm.

The DBaaS model emerged as a useful service category offered by PaaS and IaaS providers

and is therefore mainly rooted in industry. Table 6.3 summarizes selected commercial sys-

tems and groups them by important properties such as data model, sharding strategy,

and query capabilities. All systems except Cloudant are based on proprietary REST APIs

and details about their internal architectures are not published. Another observation is

that fine-grained SLAs are not provided, due to the difficulty of satisfying tenant-specific

requirements on a multi-tenant infrastructure. We address this problem through the Poly-

glot Persistence Mediator.

6.4.1 Multi-Tenancy and Virtualization

Most related work focuses on specific aspects of DBaaS models. Multi-tenancy and vir-

tualization are closely related, as resource sharing between tenants requires some level

of virtualization of underlying resources (the schema, database process, operating sys-

tem, computing hardware, and storage systems). The trade-off between performance

and isolation for multi-tenant systems has been studied extensively [ASJK11, AGJ+08,

AJKS09, KL11, SKM08, WB09, JA07]. Orestes employs containerization (based on Docker

[Mer14]) for lightweight shared-machine multi-tenancy. Virtualization can also be a

6.4 Database-as-a-Service and Polyglot Persistence 243

System Data
Model

CAP Queries/
Indexing

Replication Sharding Trans-
actions

SLAs

Cloudant
[BGH+15]

Document
Store

AP Incremental
MR Views

Lazy,
Local &
Geo

Hashing No No

DynamoDB
[Dyn17]

Wide-
Column

CP Local &
Global
Index

Eager,
Local

Hashing No No

Azure Tables
[CWO+11]

Wide-
Column

CP By key,
Scans

Eager,
Local

Hashing No 99.9%
Uptime

Google Cloud
DataStore
[Dat17,
BBC+11]

Wide-
Column

CP Local &
Global
Index

Eager,
Geo

Entity
Groups

Per
Group

No

S3, Azure Blobs,
GCS [Ama17a]

Blob-
Store

AP No Lazy,
Local &
Geo

Hashing No 99.9%
Uptime
(S3)

Table 6.3: Selected industry DBaaS systems and their main properties: data model, cat-
egory according to the CAP theorem, support for queries and indexing, repli-
cation model, sharding strategy, transaction support, and service level agree-
ments.

means to enable elasticity, by live-migrating tenants based on workloads and require-

ments [EDAE11, BCM+12, DNAE11, DAEA13, DEAA09]. Orestes does not perform live

migration and instead relies on the database layer to shard data and on statelessness to

replicate the application tier.

6.4.2 Database Privacy and Encryption

Since a DBaaS is hosted by third party, security and privacy are particularly important.

Several researchers have proposed solutions to prevent attackers and providers from an-

alyzing data stored in a DBaaS system. A survey of the field is provided by Köhler et

al. [KJH15]. The ideal solution for DBaaS privacy is fully homomorphic encryption, which

enables arbitrary computations on encrypted data stored in the database. Though Gen-

try [Gen09] proposed a scheme in 2009, the performance overhead is still prohibitive for

use in real-world application.

The naive approach to ensure data confidentiality is to perform queries only in the client,

so that data can be fully encrypted. This approach is used in ZeroDB [EW16]. The obvious

limitation is that the client and network quickly become the bottleneck: in ZeroDB, the

query logic is executed in the client and each descent in the B-tree requires one round-

trip, leading to very high latency. MIT’s CryptDB project [PRZB11, Pop14] is based on

a layered encryption scheme, where different encryption levels enable different query

operators, e.g., homomorphic encryption for sum-based aggregation and deterministic

encryption for equality predicates. CryptDB assumes a database proxy out of the threat

scope that is responsible for rewriting queries with the appropriate keys before forwarding

244 6 Related Work

them to the database holding the encrypted data. The MySQL-based prototype exhibited

a processing overhead of 26% compared to native access, but latency was increased by

an order of magnitude. The problem of CryptDB is that the vulnerability is only moved

into the proxy that is co-located with application servers and therefore typically cloud-

hosted, too. Nonetheless, first commercial DBMSs have implemented explicitly declared

encryption levels for queries on encrypted data, e.g., Microsoft SQL Server supporting

random and deterministic encryption [Alw17].

The problem of vulnerable proxies in CryptDB was addressed in a follow-up system called

Mylar [KFPC16,PZ13,PSV+14]. Mylar implements multi-key keyword search on encrypted

data with a middleware operating only on encrypted data without access to keys. The

browser is responsible for encrypting and decrypting data based on user keys. Data is

stored and encrypted using the key of the user owning the record. The core idea of

the encrypted keyword search is that clients generate an encrypted token for search that

works on any record irrespective of the key it was encrypted with. When a user grants

access to another user, a delta value is constructed in a way that allows the server to

transform tokens without leaking data. The downside of Mylar is that it only enables

keyword search. Performance is further limited, as the server has to scan every record for

a token comparison, only per-record duplicates of keywords can be indexed. Nonetheless,

Mylar is an important step towards secure sharing of information between application

users and it is also notable for providing security against attacks of both middleware and

database.

Due to the efficiency and applicability constraints of Mylar, CryptDB, ZeroDB, and fully

homomorphic encryption, Orestes does not process queries on encrypted data. However,

the Polyglot Persistence Mediator could be extended to interpret privacy SLAs and map

the respective operations and queries to an encrypted data store. Furthermore, the perfor-

mance of the above system could significantly be improved by applying the Cache Sketch

to speed up reads and queries.

Relational Cloud is a visionary architecture for a secure, scalable, and multi-tenant DBaaS

by Curino et al. [CJP+11]. It proposes to use private database virtualization for multi-

tenancy and CryptDB for privacy. Access to the database is handled through a JDBC driver

which directs requests to load-balancing frontend servers that partition data across back-

end servers to store the actual data in CryptDB. The partitioning engine Schism [CJZM10]

is based on workload graphs: whenever two tuples are accessed within a transaction,

the weight of their edge is increased. By finding a partitioning of tuples with a minimal

cut, cross-node transactions are minimized. The partitioning rules are compacted and

generalized by training a decision tree that is used in frontend servers for routing. The

consolidation engine Kairos [CJMB11] monitors workloads and outputs a mapping from

virtual machines to physical nodes in order to optimize combined resource requirements

of multiple tenants. In contrast to Orestes, Relational Cloud is fundamentally based on

live migration to ensure both resource efficiency and an optimal partitioning, whereas our

idea is to scale transactions and data storage independently. Furthermore, the Polyglot

6.4 Database-as-a-Service and Polyglot Persistence 245

Persistence Mediator does not infer a partitioning solely based on transaction co-access,

but relies on the application to define more fine-grained SLAs to support this process.

6.4.3 Service Level Agreements (SLAs)

Various approaches have been proposed for SLAs in cloud services and DBaaS systems

[CAAS07,ZSLB14,ABC14,Bas12,XCZ+11,TPK+13,LBMAL14,PSZ+07,Sak14]. Tradition-

ally, this topic has been tackled in the context of workload management for mainframe sys-

tems, to optimize simple performance metrics like query response time [CDF+07, LS13].

Many approaches rely on the underlying virtualization environment to enforce SLAs by

means of live migration, e.g., Zephyr [EDAE11], Albatross [DNAE11], Dolly [CSSS11],

and Slacker [BCM+12]. Baset [Bas12] reviews SLAs of commercial cloud providers like

AWS, Azure, and Rackspace and concludes that performance-based SLAs are not guaran-

teed by any provider. Furthermore, the burden of providing evidence of SLA violations

rests on the customer.

Xiong et al. have proposed ActiveSLA [XCZ+11] as an admission control framework for

DBaaS systems. By predicting the probability of a query completing before its deadline,

a cost-based decision on allowing or rejecting the query can be made using the SLA. Chi

et al. [CMH11] have proposed a similar approach that uses an SLA-based scheduler iCBS
to minimize expected total costs. Sakr et al. [SL12] presented the CloudDB AutoAdmin

framework that monitors SLAs of cloud-hosted databases and triggers application-defined

rules upon violations to help developers build on SLAs. Armbrust et al. [ACK+11] pro-

posed the SQL extension PIQL (Performance Insightful Query Language) that predicts

SLA compliance using a query planner which is aware of developer-provided hints. In-

stead of choosing the fastest plan, the optimizer only outputs plans where the number

of operations is known in advance. Lang et al. [LSPK12] formulate the SLA problem for

DBaaS systems as an optimization task of mapping client workloads to available hardware

resources. In particular, they provide a way for DBaaS providers to choose the class of

hardware that best suits the performance SLOs of their tenants.

To our best knowledge, Orestes is the first DBaaS approach to combine service level agree-

ments with schema design for database-driven applications. Instead of focusing on a

specific performance SLA as common in most related work, we propose to express each

functional and non-functional data management requirement based on our NoSQL classi-

fication scheme.

6.4.4 Resource Management and Scalability

Resource Allocation and Workload Characterization

Problems closely related to SLAs are resource and storage allocation [MRSJ15, SLG+09],

pricing models [LS13, p. 145], and workload characterization [GKA09, GMU+12]. As

Orestes is built on the Infrastructure-as-a-Service abstraction level, we consider low-level

246 6 Related Work

hardware and virtual machine allocation schemes to be out of scope for this work. Further,

our approach to workload characterization is indirect: we observe the effects of workloads

through the overall SLA compliance and perform the appropriate scaling or migration logic

accordingly.

Auto-Scaling and Elasticity

For providing elasticity, DBaaS systems have to automatically scale in and out to accommo-

date the current and future mix of tenant workloads. The ability to forecast workloads en-

ables the most efficient forms of auto-scaling, as the service does not have to react to over-

load situations and SLA violations, but can instead proactively adjust its capacities. Kim et

al. [KWQH16] and Lorido-Botran et al. [LBMAL14] provide an overview of commonly em-

ployed workload predictors and auto-scaling techniques from the literature. Related work

on auto-scaling can be grouped into approaches for threshold-based rules (e.g., [HMC+12,

HGGG12,KF11,MBS11,GSLI11,CS13]), reinforcement learning (e.g., [DRM+10,BHD13,

TJDB06, BRX13, XRB12]), queuing theory (e.g., [USC+08, VPR07, ZCS07]), time series

analysis and prediction (e.g., [CDM11, GGW10, SSGW11, FLWC12, IKLL12, PN09]), con-

trol theory (e.g., [PHS+09,XZF+07,BGS+09,ATE12,PH09]), and database live-migration

(e.g., [EDAE11, DNAE11, CSSS11, BCM+12, DAEA13]). While auto-scaling does not re-

place capacity planning, it significantly increases flexibility as the cloud infrastructure can

be adapted at runtime.

Orestes is not fixed to a single auto-scaling technique. In practice, rule-based systems

based on parameters such as CPU load, I/O operations, and memory usage are often suf-

ficient and therefore the default in Orestes [LBMAL14]. Complex, proactive models are

usually stronger for sudden surges in demand, but most of the algorithms proposed in

the literature strongly depend on a certain workload type. A special architectural trait

of Orestes is its integration into CDNs. This potentially allows scaling based on end-user

metrics such as HTTP latency. Orestes already uses the same channel for high-availability:

if the CDN reports a failed request, the management server is contacted by the CDN, a

health check is performed, and a failover to a new Orestes container is initiated. Mar-

cus and Papaemmanouil [MP17] argue that scalability and query planning decisions for

cloud data management should not depend on humans or simple rules but instead harness

machine learning techniques, in particular reinforcement learning. We follow a similar

idea in the context of learning query result TTLs by applying deep reinforcement learn-

ing [SGDY16].

6.4.5 Benchmarking

Different benchmarks have been proposed to evaluate latency, throughput, consistency,

and other non-functional properties of distributed and cloud databases [DFNR14,CST+10,

CST+10,PPR+11,BZS13,BKD+14,BT11,BK13,BT14,Ber15,Ber14] .

6.4 Database-as-a-Service and Polyglot Persistence 247

Performance Benchmarking

The Yahoo Cloud Serving Benchmark (YCSB) [CST+10] was published in 2010 and is

the de-facto standard for benchmarking NoSQL systems. YCSB is designed to measure

throughput and latency for CRUD and scan operations performed against different data

stores [FWGR14, WFGR15]. The main shortcoming is the missing distribution of work-

load generation to prevent clients from becoming the actual bottleneck. The second

problem is that YCSB’s thread-per-request model incurs high overhead and increases la-

tency [FWR17]. We addressed this problem in YMCA by scaling the client tier and using an

asynchronous workload generation, while keeping the well-known semantics and work-

loads of YCSB.

While YCSB’s generic workloads make it easily applicable to any data store, its lack of

application-specific workloads render the results hard to interpret. Particularly in contrast

to the widely used TPC benchmarks [PF00] for RDBMSs, YCSB neither covers queries nor

transactions. BG [BG13] was proposed as an alternative to YCSB that models interac-

tions in a social network. BG not only collects performance indicators, but also measures

the conformance to application-specific SLAs and consistency. The Under Pressure Bench-
mark (UPB) [FMdA+13] is based on YCSB and quantifies the availability of replicated

data stores by comparing the performance during normal operation with the performance

during node failures. Since neither YCSB, BG, nor UPB allow simulation of database and

network architectures, we developed YMCA. It therefore allows to test assumptions about

performance metrics such as throughput, latency, and cache hit rates without having to

deploy a distributed system, first.

Consistency Benchmarking

As consistency is one of the central properties that many cloud data management systems

trade against other non-functional properties for performance reasons, various bench-

marks have been proposed to quantify eventual consistency and staleness. Wada et al.

[WFZ+11] proposed a methodology to measure the staleness of reads for cloud databases

based on a single reader and writer. As reader and writer rely on simple timestamps for

consistency checks, the strategy is highly dependent on clock synchronization and unsuit-

able for geo-replicated systems. Bermbach et al. [BT11, BT14] extended the approach by

supporting multiple, distributed readers frequently polling the data store. This uncovered

a pattern for the staleness windows of Amazon S3. However, the scheme still assumes

clock synchronization and therefore might lead to questionable results [BZS13].

Golab and Rahman et al. [GLS11,RGA+12] argue that a consistency benchmark should not

introduce a workload that stresses the system artificially, but should rather extend exist-

ing workloads to also capture staleness information. The authors propose an extension of

YCSB that tracks timestamps and uses them to compute an empirical ∆ for the ∆-atomicity

of the underlying data store by finding the maximum time between two operations that

yielded a stale result. YCSB++ [PPR+11] circumvents the problem of clock synchroniza-

tion by relying on a centralized Zookeeper instance for coordination of readers and writers

248 6 Related Work

to measure consistency. As a consequence, YCSB++ can only provide a lower bound for

the inconsistency window. Furthermore, we discovered that the implementation of the

coordination is flawed, leading to false experimental results [WFGR15].

Bailis et al. proposed the Probabilistically Bounded Staleness (PBS) [BVF+12, BVF+14]

prediction model to estimate the staleness of Dynamo-style systems based on messag-

ing latencies between nodes. PBS relies on a Monte Carlo simulation sampling from

latency distributions to calculate the probability of a stale read for a given time after a

write ((∆,t)−atomicity). As PBS only works for Dynamo-style systems and does not in-

clude caching, we adopted this approach for YCSB workloads and arbitrary topologies of

database nodes and caches in YMCA (cf. Section 4.3.1). This allows us to study staleness

introduced not only by replication, but also by invalidation-based and expiration-based

caching. Furthermore, the simulation frees the analysis from the trade-off between er-

rors introduced by clock drift and imprecision introduced by coordination delay, as exact

simulation times can be used.

Any database system can potentially be provided in the form of a DBaaS. However, low-

latency access, elastic scalability, polyglot persistence, cross-database transactions, and

efficient multi-tenancy play important roles for scalable web applications and have only

partly been addressed by related work so far. In this thesis, we seek to provide a compre-

hensive methodology for DBaaS environments that combines these properties.

6.4.6 Database Interfaces and Polyglot Persistence

REST APIs

Most cloud services, including DBaaS and BaaS systems, use REST APIs to ensure in-

teroperability and accessibility from heterogeneous environments. Originally proposed

as an architectural style by Fielding [Fie00], REST now commonly refers to HTTP-based

interfaces. HTTP [FGM+99] emerged as the standard for distributing information on the

Internet. Originally, it was employed for static data, but now serves sophisticated use cases

from web and mobile application to Internet of Things (IoT) applications. The growing

adoption of HTTP/2 [IET15] solving the connection multiplexing problem of HTTP/1.1

facilitates this movement. For web applications, REST and HTTP have largely replaced

RPC-based approaches (e.g., XML RPC or Java RMI [Dow98]), wire protocols (e.g., Post-

greSQL protocol [Pos17]), and web services (specifically, SOAP and WS-* standards fam-

ily [ACKM04]).

Google’s GData [Gda17] and Microsoft’s OData (Open Data Protocol) [Oda17] are two

approaches for standardized REST/HTTP CRUD APIs that are used by some of their re-

spective cloud services. Many commercial DBaaS systems offer custom REST APIs tai-

lored for one particular database (e.g., DynamoDB, Cloudant). A first theoretic attempt

for a unified DBaaS REST API has been made by Haselman et al. [HTV10] for RDBMSs.

Dey [Dey15] proposed REST+T as a REST API for transactions. In REST+T, each object

6.4 Database-as-a-Service and Polyglot Persistence 249

is modeled as a state machine modified through HTTP methods. It cannot be applied to

DCAT, as the implicit state machine forbids object caching.

Orestes differentiates itself from other DBaaS/BaaS REST APIs in that it actively incorpo-

rates infrastructure support (caching and load balancing) as well as complex data man-

agement concepts (schema management and transactions). Unlike the Orestes REST API,

related DBaaS APIs do not make use of caching and do not support the BaaS model where

arbitrary clients are authenticated and are then granted access to the database.

Backend-as-a-Service

According to Roberts [Rob16], serverless architectures are applications that depend on

cloud services for server-side logic and persistence. The two major categories of server-

less services are Function-as-a-Service (FaaS) and Backend-as-a-Service (BaaS). Both ap-

proaches are rooted in commercial cloud platforms rather than research efforts.

FaaS refers to stateless, event-triggered business logic executed on a 3rd-party platform

[Rob16]. Industry offerings are AWS Lambda, Microsoft Azure Functions, and Google

Cloud Functions. While FaaS offers a very simple and scalable programming model, its

applicability is limited by the lack of persistent state. The major difference between FaaS

and Platform-as-a-Service lies in the ability of FaaS to seamlessly scale on a per-request

basis, as no application server infrastructure (e.g., Rails, Django, Java EE) is required.

The term “BaaS” refers to services that enable the development of rich client applications

through database access, authentication and authorization mechanisms, as well as SDKs

for websites and mobile apps. BaaS therefore is a natural extension of DBaaS towards

scenarios of direct client access Apps without intermediate application servers.

Orestes merges capabilities of FaaS with BaaS by a tier of stateless REST servers that

provide FaaS capabilities through handlers and API endpoints coupled to the Backend-as-

a-Service interfaces for persistence, user management, etc (see Section 3.5.5).

Many commercial BaaS platforms are available (e.g., Firebase, Kinvey, and Azure Mobile

Services). Most of these platforms are based on proprietary software and unpublished

architectures which hinders a comparison. However, different open-source BaaS platforms

have been developed. They typically consist of an API server (e.g., Node.js or Java) for

BaaS functionality and user-submitted code and a NoSQL database system for persistence

(e.g., MongoDB, Cassandra or CouchDB).

Meteor [HS16] is a development framework and server for running real-time web ap-

plications. It is based on MongoDB and directly exposes the MongoDB query language

to JavaScript clients for both ad-hoc and real-time queries. Node.js-based application

servers run custom code and standard APIs, e.g., for user login. Scalability is limited,

as each application server subscribes to the MongoDB replication log (oplog tailing)7, in

order to match subscribed queries to updates. Each server therefore has to maintain the

7Historically, there is another approach called poll-and-diff that relies on periodic query execution for discov-
ery of result changes. However, poll-and-diff does not scale with the number of real-time query subscribers.

250 6 Related Work

aggregate throughput of a potentially sharded MongoDB cluster. As the replication log

furthermore only contains partial information on updates, the application servers need

to perform additional database queries to check for a match. The Meteor architecture

is therefore unsuitable for query caching and real-time queries as employed in Orestes

(cf. [WGW+18]).

Deployd [Dep17], Hoodie [Hoo17], and Parse Server [Par17] are based on Node.js, too.

Deployd [Dep17] is a simple API server for common app functionalites and a simple,

MongoDB-based CRUD persistence API. It is focused on simplicity and is neither horizon-

tally scalable nor multi-tenant. Hoodie [Hoo17] is a BaaS that combines CouchDB and a

client-side CouchDB clone called PouchDB for offline-capable apps with synchronization.

Through CouchDB change feeds, clients can subscribe to simple CRUD events with limited

querying capabilities. Hoodie is focused on offline-first applications and offers no support

for data and request scalability.

Parse Server [Par17] is an open-source implementation of the Parse platform that was ac-

quired by Facebook in 2013 and later discontinued [Lac16]. It has extensive mobile SDKs

that go beyond wrapping the REST API and also provide widgets and tooling for building

the frontend. Parse Server is based on Node.js and MongoDB and supports file storage, a

JSON CRUD API, user management, access control, and real-time queries that are func-

tionally similar to those provided by InvaliDB (cf. Section 4.6), but without support for

ordering [Wan16]. The real-time query architecture relies on broadcasting every update to

every server that holds WebSocket connections to clients through a single Redis instance.

This does not allow the system to scale upon increasing update workloads beyond single-

server capacity. Parse Server does not expose many data management abstractions such

as indexes, partial updates, concurrency control, and schemas, making it unsuitable for

performance-critical and advanced applications. In particular, latency of HTTP requests is

not reduced through caching. However, in order to prevent the browser from performing

two round-trips due to cross-origin pre-flight requests, REST semantics are violated and

every interaction is wrapped in an HTTP POST and GET request [Gri13].

BaasBox [Bas17] and Apache Usergrid [Use17] are open-source Java-based BaaS plat-

forms. BaasBox [Bas17] is a simple single-server platform based on the multi-model

database OrientDB [Tes13]. Its main capabilities are CRUD-based persistence and a simple

social media API for app development. Apache Usergrid [Use17] is a scalable BaaS built

on Cassandra and geared towards mobile applications. Through a REST API and SDKs, it

supports typical features such as user management, authorization, JSON and file storage,

as well as custom business logic expressed in Java. Multi-tenancy is achieved through a

shared database model by running private API servers for each tenant, while consolidating

rows in a single Cassandra cluster. Query support is limited due to Cassandra’s architec-

ture and there are no consistency guarantees nor multi-key transactions. Both BaasBox

and Usergrid are designed for mobile applications, so they do not address the latency and

performance requirements of websites as the Orestes middleware does.

6.4 Database-as-a-Service and Polyglot Persistence 251

The major difference between other BaaS platforms and Orestes is the capability to support

large-scale, low-latency web applications. While many native mobile applications can

tolerate high network latencies to some extent by packaging as much data as possible

into the binary release, the user satisfaction in web applications is typically governed by

page load time, so that the amount of overall payload has to be minimized. This point is

addressed through our caching approach. The need for scalability to support both high

request loads, real-time requirements, and large volumes of user-generated content are

addressed through our architecture that decouples data storage from stateless application

logic. The ability to scale real-time queries with respect to both update throughput and

query concurrency is also novel. Furthermore, Orestes is the only BaaS to expose ACID

transactions and explicit fine-grained control over consistency levels.

Polyglot Persistence

The term polyglot persistence was introduced by Leberknight [Leb08] and later popular-

ized by Fowler [SF12]. Most web-scale architectures are heavily based on polyglot persis-

tence both within application components as well as across different applications. Twitter

uses Redis [San17] for storing tweets, a custom eventually consistent wide-column store

named Manhattan [Sch16] for user and analytics data, Memcache [Fit04] for caching, a

custom graph store called FlockDB as well as MySQL, HDFS, and an object store [Has17].

Google, Facebook, and Amazon are also recognized for their broad spectrum of employed

database systems. While there is no shortage of polyglot persistence architectures in prac-

tice, little research has gone into addressing the problem of how to design, implement,

and maintain polyglot persistence architectures.

Object-relational (OR) and object-document (OD) mappers are important classes of tools

that limit vendor lock-in and minimize impedance mismatch [Mai90, Amb12]. By ab-

stracting from implementation details of database systems, they facilitate polyglot per-

sistence. Popular mappers are Hibernate, DataNucleus, Kundera, EclipseLink, Open-

JPA, Entity Framework, Active Record, Spring Data, Core Data, Doctrine, Django, and

Morphia [IBNW09, TGPM17, DeM09]. Torres et al. [TGPM17] provide a comprehensive

overview of mappers and propose a catalog of criteria to evaluate their capabilities (e.g.,

metadata extraction, foreign key support and inheritance). Störl et al. [SHKS15] reviewed

mappers specifically targeted to NoSQL databases. The authors observed that, while basic

CRUD functionality works well across all analyzed mappers, query expressiveness vastly

differs. This is a consequence of providing high-level query languages in the mapper,

that potentially cannot be mapped to the limited querying capabilities of the underlying

database system and therefore has to be emulated client-side. Also, the authors observed

that the overhead introduced by some mappers is significant, in particular for updates

and deletes. Wolf et al. [WBGsS13] describe the steps required to adapt traditional OR-

mappers such as Hibernate to key-value stores. Their effort makes it obvious that there

is a significant feature gap between state-of-the-art mapper abstractions and capabilities

found in low-level data stores.

252 6 Related Work

Contrasting the above-discussed mappers, Orestes moves the abstraction layer from a

client persistence library into the middleware. We are convinced that this approach in-

creases flexibility, as the middleware has more information available (e.g., workloads,

SLAs, database and cluster state). To abstract from the heterogeneity of different database

systems, our unified REST API takes the place of the OR/OD mapper API and provides a

coherent interface for heterogeneous persistence frameworks usable from various pro-

gramming languages.

Multi-model databases address polyglot persistence of data models and seek to provide

them in a single data store. This imposes heterogeneous requirements on a single database

system and hence implies tremendous engineering challenges. ArangoDB [Ara17] and

OrientDB [Tes13] are two examples of systems that provide main APIs for storing and

querying documents, but also support graph traversal and key-value storage. While these

systems simplify operations by integrating polyglot capabilities into single systems, there

are more sophisticated solutions available for each of the supported polyglot models. Sev-

eral RDBMSs also incorporate non-relational data models such as XML and JSON [Cro06]

as a data type with SQL extensions to modify and query its contents. The major limita-

tion of multi-model approaches is that the data model is only one of many requirements

that necessitate polyglot persistence (e.g., scalability and latency). Many requirements

are directly tied to replication, sharding, and query processing architectures and therefore

are very difficult to consolidate in a single system. For this reason, our Polyglot Persis-

tence Mediator leverages the broad landscape of data management systems and reduces

the challenge to providing a mapping between application requirements and individual

systems.

In summary, Orestes builds on related work on DBaaS systems and scalable cloud services.

It consolidates well-known techniques with novel methods for polyglot persistence, SLAs,

latency requirements, and scalable transactions in an end-to-end cloud data management

approach.

253

7 Conclusions

This thesis addresses low latency for cloud data management by proposing a novel caching

approach for dynamic data. In Chapter 1, we identified four central challenges contribut-

ing to the latency problem: latency of dynamic data, direct client access, transaction abort

rates, and polyglot persistence. Chapter 2 discussed these challenges in the context of

backend, network, and frontend performance. In the following, we analyzed and cate-

gorized data management requirements in Chapter 3, deriving the cloud platform design

Orestes which combines rigorous consistency guarantees and rich client interfaces with

low latency. As a centerpiece of our framework, we presented the Cache Sketch approach

in Chapter 4 to make cache coherence of dynamic data feasible on the web. In Chapter 5,

we extended the idea through a Polyglot Persistence Mediator for mapping requirements

to suitable systems. We surveyed related work in Chapter 6 and discussed how different

paradigms for scalable, low-latency data management align to our work.

In this chapter, we conclude the dissertation by summarizing our main contributions. We

then discuss opportunities for future work on cloud data management with low latency.

We close with our thoughts on the role that latency may play for the future of the web.

7.1 Main Contributions

In this dissertation, we introduced Orestes as an approach to reduce latency on the web

through a novel cache coherence strategy for dynamic data. We showed that high la-

tency in data management (cf. Challenge C1) can be reduced to the problem of serving

replicated or cached data from nearby locations while maintaining configurable levels

of consistency. To translate advantages in low-latency data access to faster applications,

we addressed the challenge of providing direct client access to cloud-based DBaaS sys-

tems (cf. Challenge C2). Since transactions are a key abstraction in data management

that is particularly latency-sensitive, we introduced a scheme to achieve low abort rates

through optimistic transactions over cached data (cf. Challenge C3). Finally, we showed

that NoSQL database systems can be accurately classified through the NoSQL Toolbox

that provides decision support for choosing a system. Based on the toolbox, we demon-

strated that polyglot persistence can be achieved in an automated, declarative fashion for

heterogeneous NoSQL database systems (cf. Challenge C4).

254 7 Conclusions

Throughout our work, we found that the separated worlds of web and database technology

can profit immensely from each other. In particular, the web caching model that was long

thought of as irreconcilable with modern data management is, in fact, an ideal basis for

data-driven, geo-distributed applications. As our goal has been to make our findings easily

applicable in practice, we reinforced that the Backend- and Database-as-a-Service models

should be provided as a middleware to tap into the huge potential of the current database

ecosystem. In this section, we summarize the main contributions of this work and the

lessons learned from building Orestes and its commercial implementation Baqend.

7.1.1 Object, File, and Query Caching

To minimize latency between users and cloud services, we proposed to use the web caching

infrastructure with its broad distribution of available caches. As the web caching model

assumes mostly static data, we derived a dual strategy for maintaining cache coherence for

dynamic data. On the one hand, the developed cloud service is responsible for proactively

updating invalidation-based caches that can be controlled through a server (e.g., CDNs).

On the other hand, we assign the task of updating expiration-based caches (e.g., browser

caches) to the client through a probabilistic Cache Sketch data structure based on Bloom

filters. To make the scheme feasible, we solved invalidation detection for objects, files,

and queries, i.e., the problem of triggering a cache purge, whenever an update potentially

affects the consistency of data stored in caches. The efficiency of the scheme was fur-

ther improved through TTL estimation to deliver cacheable responses with an expiration

time that is close to the expected time until the next invalidation. Our approach offers

many useful client-centric consistency guarantees out-of-the-box (e.g., monotonic reads

and ∆-atomicity) and allows tuning staleness bounds through the Cache Sketch. As strong

semantics are often required in critical parts of applications, we derived a solution to

combine low latency with optimistic ACID transactions in DCAT (Distributed Cache-Aware
Transactions).

Our proposed Cache Sketch scheme is a new means for any cloud service to reduce latency

with fine-grained control of the exposed level of consistency. It is deployed in production

for thousands of applications. To validate our approach, we showed that performance of

common web workloads is improved by an order of magnitude.

7.1.2 Backend-as-a-Service

Latency improvements in data management only become effective for users, if end devices

are enabled to access cloud-hosted data directly in a two-tier architecture, as backend

latency has little effects on end-to-end latency. Therefore, we proposed a unified REST

API for cloud data management that combines individual system capabilities in a coherent

interface. We argued that many functional and non-functional properties can be provided

in a generic fashion as a Database/Backend-as-a-Service middleware. With Orestes, we

demonstrated that the unified REST API can be offered in an extensible, scalable, and

7.2 Future Work 255

highly available manner on top of different NoSQL database systems. Besides our central

contribution of low latency, the design enhances data stores with various other capabilities,

including authentication and access control, schema management, transactions, real-time

queries, and a co-located Function-as-a-Service engine. Orestes thus enables aggregate-

oriented data stores to be offered as a low-latency Backend-as-a-Service.

We are convinced that in research, data management should be addressed as the interac-

tion of requirements with system implementation techniques. We investigated this idea

by constructing the NoSQL Toolbox that puts requirements in relation with schemes for

sharding, replication, storage, and queries. By covering potential data management re-

quirements in a single unified REST API, database system implementations can focus on

specific query, consistency, and transaction requirements. Many non-functional require-

ments – in particular low latency – are therefore solved in a database-independent middle-

ware for all stores instead of individually for different stores.

7.1.3 Polyglot Persistence Mediation

Based on the lessons learned from designing and implementing Orestes, we concluded

that combining multiple database systems should be an automated process that is based

purely on requirements. Therefore, we introduced the Polyglot Persistence Mediator (PPM)

to orchestrate data stores based on schemas annotated with SLAs. The PPM can thus route

data and queries to systems that are equipped to fulfill the demanded functional and non-

functional requirements (e.g., data scalability and conditional updates). The main idea is

that application architects only have to define what they expect from their data systems

and that the mediator chooses the appropriate systems and enforces SLAs. To select a set

of applicable data stores, a ranking algorithm descends through the annotated schema and

maps portions of the schema to available systems. Data is then transparently partitioned

on field, bucket, or database level and operations are rewritten by the PPM.

We showed that automated polyglot persistence can outperform one-size-fits-all solutions

by 50-100% in latency and throughput. As the trend towards polyglot persistence contin-

ues, we are convinced that automating and optimizing the distribution of data fragments

to heterogeneous database systems, is one of the central research challenges in cloud data

management. The PPM is a conceptual framework and prototype to start this new line of

scientific work.

7.2 Future Work

This work opens several promising directions for future research on low-latency cloud

data management. These range from extensions to the overall caching scheme to new op-

portunities arising from the approach itself. In the following, we will discuss four relevant

areas of future work.

256 7 Conclusions

7.2.1 Caching for Arbitrary Websites, APIs, and Database Systems

This thesis is based on the assumption of a DBaaS/BaaS model for cloud data manage-

ment. However, the Cache Sketch can be applied to any type of data, in particular un-

structured resources of websites. Service Workers (cf. Section 2.4.2) offer a novel browser

technique for implementing client-side proxies that can modify the networking behavior

of end user devices [Ama16]. This allows decoupling the idea of caching dynamic data

from database interfaces and extending it to arbitrary requests of existing websites by

leveraging Orestes and its Cache Sketch as a proxy/CDN.

Cache Sketches for APIs and Website Resources. Websites and APIs can be enhanced to

serve data through Orestes without changing the given application frontend and backend.

To this end, a configurable Service Worker has to reroute requests that would otherwise

go to a slow backend, so that requests are instead delivered from web caches managed

by Orestes. Resource that have not been cached before can be fetched from the origi-

nal backend, so that Orestes can apply TTL estimates. Invalidations and Cache Sketch

maintenance can be performed by comparing the cached version in Orestes to the orig-

inal version. In the frontend, the Cache Sketch logic has to be applied in the Service

Worker by orchestrating its dedicated cache to return resources that are not stale. By

defining or learning a working set of critical resources, the website furthermore becomes

offline-capable. To facilitate offline operations, the Cache Sketch guarantees prompt and

fine-grained synchronization whenever the device resumes connection.

Learning TTLs for Unstructured Data. The new challenge for applying the Cache Sketch

to external data sources is the difficulty of unknown semantics: without knowing the

structure of data, a TTL estimation and a decision on cacheability is difficult to make

(cf. Section 4.1). Therefore, a novel TTL estimation process is required that incorpo-

rates the evolution of the cached resources over time and across applications, without any

prior assumptions. This task can be formulated as a regression and classification problem

requiring an application-independent machine learning approach. Besides learning the

optimal TTLs, content optimizations such as minification, transcoding, and concatenation

can also be optimized based on real-user performance monitoring.

Consistency Guarantees. As updates to external data sources are unobservable to

Orestes, either invalidations have to be reported through an API (e.g., from shop and

content management systems) or Orestes has to periodically crawl and refresh currently

cached data. Through the centralized storage of metadata, periodic refreshes can be spec-

ified by the application based on content types, URL patterns, and other metadata. This

improves upon the purely URL-based invalidation model of CDNs [PB07]. The consis-

tency guarantees in the refresh model are defined by the ∆-atomicity of the Cache Sketch

combined with the refresh interval. Within these bounds, the system can learn to adapt

to the actual frequency with that content changes in a stochastic model to optimize the

probabilistic (∆, p)-atomicity (cf. Section 2.2.4). Furthermore, the optimization prob-

lem of trading cache misses against refresh overhead arises as small intervals can impose

7.2 Future Work 257

substantial overhead on the original data source. The system therefore has to learn distin-

guishing between infrequently accessed resources and the critical working set of a REST

API or website.

Customization and Segmentation through Dynamic Blocks. A primary challenge for

proxy-based caching are personalized server-generated pages, e.g., a user-specific shop-

ping promotion based on tracking data. This problem can be addressed by the Cache

Sketch through a concept for dynamic blocks: if developers can declare portions of the

page as user- or segment-specific through selectors, Orestes can deliver a cached anony-

mous version of the page immediately while fetching the customized version in the back-

ground. When the slower response arrives, the anonymous dynamic blocks are replaced by

the customized version in the client. Thus, the frontend starts rendering early and swaps

the dynamic blocks later. The scheme potentially accelerates even highly customized web-

sites with complex business logic (e.g., e-commerce platforms) because a cached generic

page can be loaded faster than customized views, so that dependencies (e.g., images and

scripts) can be resolved while the dynamic content is still being loaded. An important

question for future work therefore is, whether dynamic blocks can be detected automati-

cally by online analysis of the workload and page structure.

Low Latency for RDBMSs. While the proxy model with Service Workers enables the

use of Cache Sketches for websites and REST APIs, applying the techniques to relational

database systems requires further work. The central problem for caching is that every

query result may have a different form, including joined attributes and aggregations. In-

expensive object-based caching thus is the exception, whereas SQL query results consti-

tute most of the requests. Therefore, Orestes needs to support real-time matching of SQL

queries in order to perform appropriate cache invalidations and to support the continu-

ous query API (cf. Section 4.6). This implies the question of how to perform joins and

aggregations efficiently in a streaming fashion for cached queries. To limit the problem

of matching overhead, identifying underlying SQL query templates used in the applica-

tion may be an essential optimization to reduce resources for different instantiations of

the same query pattern. To combine relational with non-relational modeling, the poly-

glot schema of Orestes has to be extended to support complex integrity constraints and

referential actions. Optimistic DCAT transactions can be optimized for relational systems

by employing server-side pessimistic transactions for the short-lived optimistic commit

procedure. By combining the performance and scalability benefits of NoSQL databases

with the high level of expressiveness in RDBMSs, Orestes could become a general-purpose

middleware for low latency data management.

7.2.2 Reinforcement Learning of Caching Decisions

The problem of optimizing TTLs and deciding which resources to cache is pivotal to the

effectiveness and size of the Cache Sketch. Therefore, in future work, this problem may be

258 7 Conclusions

addressed through a comprehensive machine learning approach that adapts to the actual

workload characteristics of applications.

Predictive Online Learning. The current TTL estimation approach for query results and

objects in Orestes is backward-oriented: by continuously monitoring actual TTLs, the sys-

tem adapts to new conditions. However, any spikes or patterns are only detected after

they arise. To tackle this problem, a forward-oriented or predictive approach is required

that extrapolates from the current workload to adapt to patterns such as seasonal spikes

before they occur. To this end, prior work on regression, predictive analytics, and time

series models [LBMAL14] can be extended to this new context of deriving caching deci-

sions from read, query, and update operations over time. In addition, the challenges of

selecting the right model for a type of application and finding an online solution or an

optimal frequency of model retraining have to be tackled, too.

Reinforcement Learning of TTLs at Runtime. Training a predictive model for TTL esti-

mation is difficult in a real-world production setting, because the system exhibits several

hidden parameters such as cache hit rates, read frequencies, and the state of expiration-

based caches. This issue can be tackled by posing the problem as a reinforcement learning

scenario: though certain parameters are unobservable, several proxy values (e.g., invali-

dation rate and system load) indicate the effectiveness of TTL estimates and cacheability

decisions. By treating TTL estimates as the output of a reinforcement learning model with

a delayed reward, a generic online solution may be derived in follow-up research. While

we have shown the basic feasibility of this idea [SGDY16], it remains to be shown that

(deep) reinforcement learning can achieve performance comparable to that of pre-trained

predictive models for both object and query result caching.

Learning Cacheability. Besides learning optimal TTLs, it is crucial to optimize the false

positive rate of the Bloom filter by only caching data that has the potential to achieve a

high cache hit rate. The required computing capacity for query matching scales linearly

with the number of cached query results. Therefore, the optimization problem of selecting

the most rewarding queries for caching has to be addressed. Under a given matching

throughput of query-to-object comparisons per second, the relevant subset of queries has

to be identified and maintained for changing workloads. This problem is inherently similar

to reinforcement learning of TTLs, as decisions on cacheability are reflected in a later

reward for global system performance parameters and SLA compliance.

Predictive Pushing. Apart from data management, learning can also improve network-

ing and protocol usage. The number of network round-trips before the first meaningful

paint in the browser is critical for user-perceived performance. One central optimization

to minimize the number of round-trips is to push resources with HTTP/2 that the client

is likely to request. However, determining what to push is inherently difficult as pushed

resources slow down other resources when they are already cached in the client or not

requested at all. Therefore, treating the pushing strategy as an optimization problem is

difficult, as the state of the client’s cache is unknown and resources that might be re-

7.2 Future Work 259

quested (e.g., referenced objects in a query result) are non-deterministic. The problem

can be tackled through a reinforcement learning process that decides what to push based

on historic performance metrics reported by clients.

Model Training through Monte Carlo Simulation. To precisely evaluate the performance

of caching and learning algorithms, knowledge on hidden system parameters is required.

In future work, our approach of the YCSB Monte Carlo Simulator (YMCA, cf. Section

4.3.1) can be extended from simple client-server setups and predefined distributions to

real-world network topologies with accurate latency distributions based on network pro-

tocol traces. This not only allows offline training of predictive models, but also enables

pre-testing any TTL estimator and cache coherence scheme for a potentially broad set of

application workloads and network topologies.

7.2.3 Fully Automatic Polyglot Persistence

Our proposed mediator approach offers extensive opportunities for future work in order

to make it applicable to sophisticated data management problems.

Measurement and Enforcement of SLAs. The first step towards automated polyglot

persistence is to not only map the desired SLAs to database systems, but to monitor com-

pliance of each SLO in realtime. This enables reacting to violations of SLAs, so that the

system can maximize the overall fulfillment of SLAs and make predictions on the costs of

providing a particular SLA. The optimization goal of minimizing expected SLA violation

costs ∑
N
n=0 P(violationn) · penalty(violationn) could potentially be tackled through various

time series prediction methods. However, since the mediator has detailed knowledge on

the employed system, it could potentially learn a system model for each type of database

system that maps a set of SLAs under a given system configuration to a probability of

violation. In future research, it should therefore be evaluated whether optimal SLA fulfill-

ment is rather achieved through workload management at the level of the PPM or through

configuration changes and scaling actions on the underlying database systems (cf. Section

5.4). While we presented the PPM in the context of a cloud service orchestrating different

database systems, it could also be employed as a meta-DBaaS that incorporates and re-

fines the SLA models of employed DBaaS systems. Thus, the following research question

emerges: how can composition relationships of SLAs within a schema be treated in mod-

eling and enforcement, in order to meet the top-level SLA definition of the application?

Live Migration. In order to prevent imminent SLA violations caused by system overload,

the mediator has to perform live migrations. While Orestes provides offloading of critical

reads during migration, writes need to be handled explicitly by the PPM, while migra-

tions are ongoing. Therefore, prior work on live migration [EDAE11, BCM+12, DNAE11,

DAEA13, DEAA09, SKD17] has to be extended to polyglot settings by supporting multi-

model data transformation, field-level migrations, and rewriting of queries during the

migration process. Further, the risk of violating SLAs during migration has to be learned

in order to find the right point in time for a migration.

260 7 Conclusions

Polyglot Auto-Scaling. Similar to live migration, prior work on auto-scaling [PN09,

HMC+12,KF11,GSLI11,CS13,BHD13,TJDB06,XRB12,USC+08,CDM11,SSGW11] is sub-

stantially limited in polyglot persistence architectures as each system is treated individu-

ally. Therefore, incorporating the possibility of scaling in and out multiple NoSQL database

systems in the context of a single application workload constitutes an important area of

future work. Ideally, auto-scaling measures should be tightly integrated into the SLA mon-

itoring and workload management process, to actively prevent SLA violations through

scaling as well as optimizing resource utilization for a multi-tenant service.

Visual Configuration and Decision Guidance. A key element of making polyglot per-

sistence practically relevant is ease of use in the various application development phases

from design to implementation. This is particularly true for small applications where in-

depth knowledge of database technologies cannot be presumed. Visual modeling tools

can simplify the usage of the PPM, by offering tunable “knobs” to define SLA trade-offs in

the form of simple, visually presented utility functions (e.g., the usefulness of latency over

throughput). The simple presentation of complex functional and non-functional system

traits like consistency is an interesting research problem in the intersection of human-

computer interaction and data management. Another problem that can be supported by

visual tools is the definition of polyglot schemas. Presenting both the schema-based SLAs

as well as hints for the physical placement of schema components visually might simplify

the use of different data stores.

Polyglot Data Analytics and Queries. As soon as data is split across multiple systems,

analytics, machine learning, OLAP, and data science applications cannot easily make use

of the complete data set. In the primary database model where the PPM asynchronously

materializes all data to a defined system for a complete view (cf. Section 5.2.1), data

analytics can be performed on the primary system. However, if real-time or near-real-time

analytics are required, computations and queries are only feasible when split across the

partitions, as typically done in Big Data frameworks like Hadoop’s YARN [Whi15] and

Spark’s RDDs [ZCD+12]. The scheduling and query rewriting needs to be performed in

the PPM, which is only possible, when the various challenges of virtual integration in a

polyglot context are solved, in particular, the mapping between different query languages

and compensating for the lack of expressiveness in low-level query languages. The same

problem applies to OLTP workloads, where system-agnostic query languages like GraphQL

[Gra17] might help to build a standard interface for polyglot queries with non-trivial

expressiveness.

7.2.4 Polyglot, Cache-Aware Transactions

We proposed DCAT as a general-purpose, optimistic transaction approach that is applicable

to any data store supporting linearizability. The idea of combining server-side validation

with latency reduction based on Cache Sketches can be extended in several ways.

7.2 Future Work 261

Constraint Checking and Full Query Support. In future work, DCAT should be ex-

tended to constraint checking during the commit procedure. This would allow to guaran-

tee global correctness invariants that are otherwise impossible to maintain (e.g., referen-

tial integrity). Furthermore, explicit support for queries is necessary in order to prevent

the phantom problem which is currently not prevented by DCAT (cf. Section 4.8). Further

research on scaling the coordinator of the validation should analyze whether the central-

ized approach can be improved in latency and scalability by a sharded lock allocation

scheme.

Exploiting Commutativity. An important performance optimization is the consideration

of partial update operations in the commit procedure. As certain partial updates com-

mute with each other and do not rely on object versions (e.g., counter increments and

decrements), the potential for lock conflicts during validation can be reduced to lower

the overall abort rate. In the best case, a transaction contains only mutually commutative

updates which can be executed concurrently, without any locking at all.

Multi-System Polyglot Transactions. As Orestes unifies access to different systems, trans-

actions are exposed in a coherent fashion irrespective of the underlying databases. In fu-

ture work, the use of multiple data stores within a single transaction should be explicitly

supported. For developers, this should be transparent, as the distribution of data is im-

plicitly based on the schema and its annotations. Polyglot DCAT transactions would thus

allow Orestes and the PPM to organize the data independently from transaction scopes.

Automatic Transaction Protocol Selection. For transactions with high contention, the

pessimistic protocols can achieve lower abort rates than an optimistic commit procedure.

By detecting such cases and reverting to a pessimistic protocol, performance could im-

prove substantially. Furthermore, if relaxed transaction properties are sufficient for a par-

ticular transaction, an automatic choice between several client-, middleware-, and server-

coordinated protocols could be made [XSL+15,WPC12,BFG+14,Dey15,GJK+14,LLS+15,

KKN+08]. A central future research goal therefore is the automatic selection of the most

appropriate transaction protocol to minimize transaction latency and external aborts. The

decision can be based on both the outcome of a single transaction (e.g., repeated re-

tries) as well as the overall transaction workload of an application or even a multi-tenant

service. By treating the transaction protocol selection as a machine learning problem,

Orestes could potentially select the most appropriate approach based on performance,

success probability, resource usage, and the required level of transaction guarantees. For

example, when excessive deadlocks compromise pessimistic transactions, Orestes would

switch to an optimistic commit and revert when write hotspots lead to repeatedly failed

validations. This approach combined with the PPM could eventually hide the choice of

a database system or transaction protocol behind a purely declarative interface without

compromising performance. Effectively, developers would be enabled to build transac-

tional applications that guarantee high throughput, low latency, and scalability without

having to know or choose the underlying transaction implementation.

262 7 Conclusions

7.3 Closing Thoughts

High latency is a fundamental challenge in our increasingly connected, digital society.

With ever-growing scale and distribution, the web is facing a performance problem seem-

ingly imposed by simple rules of physics: the speed of light as the upper bound for the

speed of information propagation. Though caching is arguably the most wide-spread per-

formance optimizations in computer science, loading times on computers and mobile de-

vices are omnipresent in our everyday lives. The missing piece in transforming the web

towards instant response times is fast access to dynamically changing pieces of data. In

the past, volatile content such as personalized shopping recommendations, tailored news

streams, and social media updates could not be tackled by caching, making them com-

pletely subject to the physical distance between a user and a service.

In this dissertation, we introduce Orestes to address latency by bringing web and database

technology together. Orestes disentangles physical network latency from application per-

formance, by caching dynamic data in distributed web caches available all over the world.

For caching of queries, reads, and files, we derived means for explicit control over both

consistency requirements and ACID transactions. Orestes solves cache coherence in a

database-independent fashion by exposing cloud data management through a unified

REST interface. It enhances NoSQL systems to become full-fledged Database/Backend-

as-a-Service systems which profoundly increases developer productivity compared to tra-

ditional software architectures. We argued that not only low latency can be accomplished

in a generic fashion, but even the choice of the most suitable database technology can

be automated by an SLA-aware Polyglot Persistence Mediator. We provided empirical ev-

idence that across a range of workloads, our approach scales horizontally and improves

latency by an order of magnitude over the current state of the art.

In times where the web has become an indispensable cornerstone of society, people are

accustomed to slow-loading websites, and developers accept spending copious amounts of

time optimizing performance. The techniques introduced in this thesis enable a web with

imperceptible delays. The dramatic latency improvements may open up use cases that

were not yet conceivable for performance reasons. Caching of dynamic data potentially

makes the difference between an application with sub-second loading times and one that

users will never use. With Orestes, we address a severe problem that the database com-

munity has been facing recently. While newly proposed data stores usually excel in one

particular performance property, none excel in all. With this dissertation, we argue that

tackling latency in cloud data management is a challenge that can be solved once for all

systems through a database-independent middleware that combines their strengths. We

are convinced that further research on this idea within the web and database fields can

eventually eliminate noticeable loading times entirely.

263

Bibliography

[AA17] Joshua Bell Ali Alabbas. Indexed Database API 2.0. https://w3c.github.

io/IndexedDB/, 2017. (Accessed on 07/14/2017).

[AAB05] Amitanand S. Aiyer, Lorenzo Alvisi, and Rida A. Bazzi. On the Availability

of Non-strict Quorum Systems. In Pierre Fraigniaud, editor, Distributed Com-
puting, 19th International Conference, DISC 2005, Cracow, Poland, September
26-29, 2005, Proceedings, volume 3724 of Lecture Notes in Computer Science,

pages 48–62. Springer, 2005.

[AAO+11] Sadiye Alici, Ismail Sengor Altingovde, Rifat Ozcan, Berkant Barla Cam-

bazoglu, and Özgür Ulusoy. Timestamp-based result cache invalidation for

web search engines. In Proceedings of the 34th international ACM SIGIR con-
ference on Research and development in Information Retrieval, pages 973–982.

ACM, 2011.

[AAO+12] Sadiye Alici, Ismail Sengor Altingovde, Rifat Ozcan, B. Barla Cambazoglu,

and Özgür Ulusoy. Adaptive time-to-live strategies for query result caching

in web search engines. In European Conference on Information Retrieval, pages

401–412. Springer, 2012.

[Aba12] D. Abadi. Consistency tradeoffs in modern distributed database system de-

sign: CAP is only part of the story. Computer, 45(2):37–42, 2012.

[ABC14] Ioannis Arapakis, Xiao Bai, and B. Barla Cambazoglu. Impact of Response

Latency on User Behavior in Web Search. In Proceedings of the 37th Inter-
national ACM SIGIR Conference on Research & Development in Informa-
tion Retrieval, SIGIR ’14, pages 103–112, Gold Coast, Queensland, Australia,

2014. ACM.

[ABD+12] Aditya Auradkar, Chavdar Botev, Shirshanka Das, Dave De Maagd, Alex Fein-

berg, Phanindra Ganti, Lei Gao, Bhaskar Ghosh, Kishore Gopalakrishna,

Brendan Harris, Joel Koshy, Kevin Krawez, Jay Kreps, Shi Lu, Sunil Na-

garaj, Neha Narkhede, Sasha Pachev, Igor Perisic, Lin Qiao, Tom Quiggle, Jun

Rao, Bob Schulman, Abraham Sebastian, Oliver Seeliger, Adam Silberstein,

Boris Shkolnik, Chinmay Soman, Roshan Sumbaly, Kapil Surlaker, Sajid Topi-

wala, Cuong Tran, Balaji Varadarajan, Jemiah Westerman, Zach White, David

Zhang, and Jason Zhang. Data Infrastructure at LinkedIn. In Anastasios Ke-

https://w3c.github.io/IndexedDB/
https://w3c.github.io/IndexedDB/

264 Bibliography

mentsietsidis and Marcos Antonio Vaz Salles, editors, IEEE 28th International
Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Arling-
ton, Virginia), 1-5 April, 2012, pages 1370–1381. IEEE Computer Society,

2012.

[ABGS86] Divyakant Agrawal, Arthur J. Bernstein, Pankaj Gupta, and Soumitra Sen-

gupta. Distributed Multi-Version Optimistic Concurrency Control for Rela-

tional Databases. In Spring COMPCON’86, Digest of Papers, Thirty-First IEEE
Computer Society International Conference, San Francisco, California, USA,
March 3-6, 1986, pages 416–421. IEEE Computer Society, 1986.

[ABK+03] Mehmet Altinel, Christof Bornhövd, Sailesh Krishnamurthy, C. Mohan,

Hamid Pirahesh, and Berthold Reinwald. Cache Tables: Paving the Way for

an Adaptive Database Cache. In VLDB, pages 718–729, 2003.

[ABK+15] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd, and Kaushik

Veeraraghavan. Challenges to adopting stronger consistency at scale. In 15th
Workshop on Hot Topics in Operating Systems (HotOS XV), 2015.

[ABMM07] Atul Adya, José A Blakeley, Sergey Melnik, and S Muralidhar. Anatomy of

the ado. net entity framework. In Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, pages 877–888. ACM, 2007.

[ABN+95] H. Attiya, A. Bar-Noy, et al. Sharing memory robustly in message-passing

systems. JACM, 42(1), 1995.

[ACK+11] Michael Armbrust, Kristal Curtis, Tim Kraska, Armando Fox, Michael J.

Franklin, and David A. Patterson. PIQL: success-tolerant query processing

in the cloud. PVLDB, 5(3):181–192, 2011.

[ACKM04] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web ser-

vices. In Web Services, pages 123–149. Springer, 2004.

[ACPS96] Sibel Adali, K. Selçuk Candan, Yannis Papakonstantinou, and V. S. Subrahma-

nian. Query Caching and Optimization in Distributed Mediator Systems. In

H. V. Jagadish and Inderpal Singh Mumick, editors, Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data, Montreal,
Quebec, Canada, June 4-6, 1996., pages 137–148. ACM Press, 1996.

[ADE12] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. Data Management in
the Cloud: Challenges and Opportunities. Synthesis Lectures on Data Manage-

ment. Morgan & Claypool Publishers, 2012.

[Ady99] Atul Adya. Weak consistency: a generalized theory and optimistic implemen-
tations for distributed transactions. PhD thesis, Massachusetts Institute of

Technology, 1999.

[AEM+13] Divyakant Agrawal, Amr El Abbadi, Hatem A. Mahmoud, Faisal Nawab, and

Kenneth Salem. Managing Geo-replicated Data in Multi-datacenters. In

Aastha Madaan, Shinji Kikuchi, and Subhash Bhalla, editors, Databases in

Bibliography 265

Networked Information Systems - 8th International Workshop, DNIS 2013,
Aizu-Wakamatsu, Japan, March 25-27, 2013. Proceedings, volume 7813 of

Lecture Notes in Computer Science, pages 23–43. Springer, 2013.

[Aer18] Aerospike. http://www.aerospike.com/, 2018. (Accessed on 05/11/2018).

[AG17] Nick Antonopoulos and Lee Gillam, editors. Cloud Computing: Principles, Sys-
tems and Applications (Computer Communications and Networks). Springer,

2nd ed. 2017 edition, 7 2017.

[Agg06] Charu C. Aggarwal. On biased reservoir sampling in the presence of stream

evolution. In Proceedings of the 32nd international conference on Very large
data bases, pages 607–618. VLDB Endowment, 2006.

[AGJ+08] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger. Multi-tenant

databases for software as a service: schema-mapping techniques. In Pro-
ceedings of the 2008 ACM SIGMOD international conference on Management of
data, pages 1195–1206, 2008.

[AGK95] Brad Adelberg, Hector Garcia-Molina, and Ben Kao. Applying Update

Streams in a Soft Real-Time Database System. In Michael J. Carey and Dono-

van A. Schneider, editors, Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, San Jose, California, May 22-25, 1995.,
pages 245–256. ACM Press, 1995.

[AGLM95] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh Maheshwari. Effi-

cient Optimistic Concurrency Control Using Loosely Synchronized Clocks. In

Michael J. Carey and Donovan A. Schneider, editors, Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data, San Jose, Cal-
ifornia, May 22-25, 1995., pages 23–34. ACM Press, 1995.

[AJKS09] Stefan Aulbach, Dean Jacobs, Alfons Kemper, and Michael Seibold. A com-

parison of flexible schemas for software as a service. In Ugur Çetintemel,

Stanley B. Zdonik, Donald Kossmann, and Nesime Tatbul, editors, Proceed-
ings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July 2, 2009, pages

881–888. ACM, 2009.

[AJL+02] Jesse Anton, Lawrence Jacobs, Xiang Liu, Jordan Parker, Zheng Zeng, and

Tie Zhong. Web caching for database applications with Oracle Web Cache.

In Michael J. Franklin, Bongki Moon, and Anastassia Ailamaki, editors, Pro-
ceedings of the 2002 ACM SIGMOD International Conference on Management
of Data, Madison, Wisconsin, June 3-6, 2002, pages 594–599. ACM, 2002.

[Aki15] Tyler Akidau. The world beyond batch: Streaming 101. O’Reilly Media, Au-

gust 2015. Accessed on 08/21/2017.

[Aki16] Tyler Akidau. The world beyond batch: Streaming 102. O’Reilly Media, Jan-

uary 2016. Accessed on 08/21/2017.

http://www.aerospike.com/

266 Bibliography

[All10] Subbu Allamaraju. Restful web services cookbook: solutions for improving scal-
ability and simplicity. " O’Reilly Media, Inc.", 2010.

[ALO00] Atul Adya, Barbara Liskov, and Patrick E. O’Neil. Generalized Isolation Level

Definitions. In David B. Lomet and Gerhard Weikum, editors, Proceedings of
the 16th International Conference on Data Engineering, San Diego, California,
USA, February 28 - March 3, 2000, pages 67–78. IEEE Computer Society,

2000.

[ALS10] J. Chris Anderson, Jan Lehnardt, and Noah Slater. CouchDB - The Definitive
Guide: Time to Relax. O’Reilly, 2010.

[Alw17] Always Encrypted (Database Engine). https://msdn.microsoft.com/

en-us/library/mt163865.aspx, 2017. (Accessed on 05/20/2017).

[Ama16] Sean Amarasinghe. Service worker development cookbook. 2016. OCLC:

958120287.

[Ama17a] Amazon Simple Storage Service (S3). //aws.amazon.com/documentation/

s3/, 2017. (Accessed on 07/28/2017).

[Ama17b] Amazon Web Services AWS – Server Hosting & Cloud Services. https://

aws.amazon.com/de/, 2017. (Accessed on 05/20/2017).

[Amb12] Scott Ambler. Agile database techniques: Effective strategies for the agile soft-
ware developer. John Wiley & Sons, 2012.

[AMS+07] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and Christos

Karamanolis. Sinfonia: a new paradigm for building scalable distributed

systems. In ACM SIGOPS Operating Systems Review, volume 41, pages 159–

174. ACM, 2007.

[Amu17] Mike Amundsen. RESTful Web Clients: Enabling Reuse Through Hypermedia.

O’Reilly Media, 1 edition, 2 2017.

[Ang17] Angular Framework. https://angular.io/, 2017. (Accessed on

05/26/2017).

[Apa17a] Apache jclouds. https://jclouds.apache.org/, 2017. (Accessed on

06/05/2017).

[Apa17b] Apache Libcloud. http://libcloud.apache.org/index.html, 2017. (Ac-

cessed on 06/05/2017).

[APB09] Mark Allman, Vern Paxson, and Ethan Blanton. TCP congestion control. Tech-

nical report, 2009.

[App17] App Engine (Google Cloud Platform). https://cloud.google.com/

appengine/, 2017. (Accessed on 05/20/2017).

[APTP03a] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. DBProxy: A dynamic data

cache for Web applications. In Proceedings of the ICDE, pages 821–831, 2003.

https://msdn.microsoft.com/en-us/library/mt163865.aspx
https://msdn.microsoft.com/en-us/library/mt163865.aspx
//aws.amazon.com/documentation/s3/
//aws.amazon.com/documentation/s3/
https://aws.amazon.com/de/
https://aws.amazon.com/de/
https://angular.io/
https://jclouds.apache.org/
http://libcloud.apache.org/index.html
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/

Bibliography 267

[APTP03b] Khalil Amiri, Sanghyun Park, Renu Tewari, and Sriram Padmanabhan. Scal-

able template-based query containment checking for web semantic caches.

In Umeshwar Dayal, Krithi Ramamritham, and T. M. Vijayaraman, editors,

Proceedings of the 19th International Conference on Data Engineering, March
5-8, 2003, Bangalore, India, pages 493–504. IEEE Computer Society, 2003.

[AR17] Ejaz Ahmed and Mubashir Husain Rehmani. Mobile Edge Computing: Oppor-

tunities, solutions, and challenges. Future Generation Comp. Syst., 70:59–63,

2017.

[Ara17] ArangoDB. https://www.arangodb.com/documentation/, 2017. (Accessed

on 05/20/2017).

[Arc18] HTTP Archive. http://httparchive.org/trends.php, 2018. Accessed:

2018-07-14.

[ASJK11] Stefan Aulbach, Michael Seibold, Dean Jacobs, and Alfons Kemper. Extensi-

bility and Data Sharing in evolving multi-tenant databases. In Serge Abite-

boul, Klemens Böhm, Christoph Koch, and Kian-Lee Tan, editors, Proceedings
of the 27th International Conference on Data Engineering, ICDE 2011, April 11-
16, 2011, Hannover, Germany, pages 99–110. IEEE Computer Society, 2011.

[AT14] Masoud Saeida Ardekani and Douglas B. Terry. A Self-Configurable Geo-

Replicated Cloud Storage System. In Jason Flinn and Hank Levy, editors,

11th USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’14, Broomfield, CO, USA, October 6-8, 2014., pages 367–381. USENIX

Association, 2014.

[ATE12] Ahmed Ali-Eldin, Johan Tordsson, and Erik Elmroth. An adaptive hybrid elas-

ticity controller for cloud infrastructures. In Filip De Turck, Luciano Paschoal

Gaspary, and Deep Medhi, editors, 2012 IEEE Network Operations and Man-
agement Symposium, NOMS 2012, Maui, HI, USA, April 16-20, 2012, pages

204–212. IEEE, 2012.

[AWS17] AWS Elastic Beanstalk - PaaS Application Management. https://aws.

amazon.com/de/elasticbeanstalk/, 2017. (Accessed on 05/20/2017).

[Azu17] Microsoft Azure: Cloud Computing Platform & Services. https://azure.

microsoft.com/en-us/, 2017. (Accessed on 05/20/2017).

[BAC+13] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Di-

mov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry C. Li,

and others. TAO: Facebook’s Distributed Data Store for the Social Graph. In

USENIX Annual Technical Conference, pages 49–60, 2013.

[Bac17] Backbone.js. http://backbonejs.org/, 2017. (Accessed on 05/26/2017).

[Bai15] Peter Bailis. Coordination Avoidance in Distributed Databases. PhD thesis,

University of California, Berkeley, USA, 2015.

https://www.arangodb.com/documentation/
http://httparchive.org/trends.php
https://aws.amazon.com/de/elasticbeanstalk/
https://aws.amazon.com/de/elasticbeanstalk/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
http://backbonejs.org/

268 Bibliography

[BAK+03] Christof Bornhövd, Mehmet Altinel, Sailesh Krishnamurthy, C. Mohan,

Hamid Pirahesh, and Berthold Reinwald. DBCache: Middle-tier Database

Caching for Highly Scalable e-Business Architectures. In Alon Y. Halevy,

Zachary G. Ives, and AnHai Doan, editors, Proceedings of the 2003 ACM SIG-
MOD International Conference on Management of Data, San Diego, California,
USA, June 9-12, 2003, page 662. ACM, 2003.

[BAM+04] C. Bornhövd, M. Altinel, C. Mohan, H. Pirahesh, and B. Reinwald. Adaptive

database caching with DBCache. Data Engineering, 27(2):11–18, 2004.

[Baq18] News BaaS Benchmark. https://github.com/Baqend/news-benchmark,

2018. (Accessed on 09/08/2018).

[Bas12] Salman A. Baset. Cloud SLAs: present and future. ACM SIGOPS Operating
Systems Review, 46(2):57–66, 2012.

[Bas17] The BaasBox server. https://github.com/baasbox/baasbox, 2017. (Ac-

cessed on 05/20/2017).

[BBB+17] David F. Bacon, Nathan Bales, Nicolas Bruno, Brian F. Cooper, Adam Dickin-

son, Andrew Fikes, Campbell Fraser, Andrey Gubarev, Milind Joshi, Eugene

Kogan, Alexander Lloyd, Sergey Melnik, Rajesh Rao, David Shue, Christo-

pher Taylor, Marcel van der Holst, and Dale Woodford. Spanner: Becoming

a SQL system. In Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang,

and Dan Suciu, editors, Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May
14-19, 2017, pages 331–343. ACM, 2017.

[BBC+11] J. Baker, C. Bond, J.C. Corbett, JJ Furman, A. Khorlin, J. Larson, J.M. Léon,

Y. Li, A. Lloyd, and V. Yushprakh. Megastore: Providing scalable, highly

available storage for interactive services. In Proc. of CIDR, volume 11, pages

223–234, 2011.

[BBJ+10] Roi Blanco, Edward Bortnikov, Flavio Junqueira, Ronny Lempel, Luca Telloli,

and Hugo Zaragoza. Caching search engine results over incremental indices.

In Proceedings of the 33rd international ACM SIGIR conference on Research and
development in information retrieval, pages 82–89. ACM, 2010.

[BCD+11] Philip A. Bernstein, Istvan Cseri, Nishant Dani, Nigel Ellis, Ajay Kalhan, Gopal

Kakivaya, David B. Lomet, Ramesh Manne, Lev Novik, and Tomas Talius.

Adapting Microsoft SQL server for cloud computing. In Data Engineering
(ICDE), 2011 IEEE 27th International Conference on, pages 1255–1263. IEEE,

IEEE, 2011.

[BCF+99] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching

and Zipf-like distributions: Evidence and implications. In INFOCOM’99. Eigh-
teenth Annual Joint Conference of the IEEE Computer and Communications So-
cieties. Proceedings. IEEE, volume 1, pages 126–134. IEEE, IEEE, 1999.

https://github.com/Baqend/news-benchmark
https://github.com/baasbox/baasbox

Bibliography 269

[BCL89] José A. Blakeley, Neil Coburn, and Per-Åke Larson. Updating Derived Rela-

tions: Detecting Irrelevant and Autonomously Computable Updates. ACM
Trans. Database Syst., 14(3):369–400, 1989.

[BCM+12] Sean Barker, Yun Chi, Hyun Jin Moon, Hakan Hacigümüş, and Prashant

Shenoy. Cut me some slack: Latency-aware live migration for databases.

In Proceedings of the 15th international conference on extending database tech-
nology, pages 432–443. ACM, 2012.

[BDF+03] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield. Xen and the art of virtualization. In ACM SIGOPS
Operating Systems Review, volume 37, pages 164–177, 2003.

[BDF+13] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M Hellerstein,

and Ion Stoica. Highly Available Transactions: Virtues and Limitations. Pro-
ceedings of the VLDB Endowment, 7(3), 2013. 00001.

[BDF+15] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno

Preguiça, Mahsa Najafzadeh, and Marc Shapiro. Putting consistency back

into eventual consistency. pages 1–16. ACM Press, 2015.

[BDG+06] Nalini Moti Belaramani, Michael Dahlin, Lei Gao, Amol Nayate, Arun

Venkataramani, Praveen Yalagandula, and Jiandan Zheng. PRACTI replica-

tion. In Larry L. Peterson and Timothy Roscoe, editors, 3rd Symposium on
Networked Systems Design and Implementation (NSDI 2006), May 8-10, 2007,
San Jose, California, USA, Proceedings. USENIX, 2006.

[BDK+02] Manish Bhide, Pavan Deolasee, Amol Katkar, Ankur Panchbudhe, Krithi Ra-

mamritham, and Prashant Shenoy. Adaptive push-pull: Disseminating dy-

namic web data. IEEE Transactions on Computers, 51(6):652–668, 2002.

[Bec00] Kent Beck. Extreme programming explained: embrace change. addison-wesley

professional, 2000.

[Bel10] Mike Belshe. More Bandwidth Doesn’t Matter (much). Technical report,

Google Inc., 2010.

[Ben14] Juan Benet. IPFS - content addressed, versioned, P2P file system. CoRR,

abs/1407.3561, 2014.

[Ber99] Philip A. Bernstein. Review - A majority consensus approach to concurrency

control for multiple copy databases. ACM SIGMOD Digital Review, 1, 1999.

[Ber14] David Bermbach. Benchmarking Eventually Consistent Distributed Storage Sys-
tems. KIT Scientific Publishing, Karlsruhe, Baden, 2014.

[Ber15] David Bermbach. An Introduction to Cloud Benchmarking. In 2015 IEEE
International Conference on Cloud Engineering, IC2E 2015, Tempe, AZ, USA,
March 9-13, 2015, page 3. IEEE Computer Society, 2015.

270 Bibliography

[Bes95] Azer Bestavros. Demand-based document dissemination to reduce traffic and

balance load in distributed information systems. In Proceedings of the Seventh
IEEE Symposium on Parallel and Distributed Processing, SPDP 1995, San Anto-
nio, Texas , USA, October 25-28, 1995, pages 338–345. IEEE, 1995.

[Bes96] A. Bestavros. Speculative data dissemination and service to reduce server

load, network traffic and service time in distributed information systems. In

Proc. Twelfth Int. Conf. Data Engineering, pages 180–187, February 1996.

[BFF+14] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Heller-

stein, and Ion Stoica. Coordination avoidance in database systems. Proceed-
ings of the VLDB Endowment, 8(3):185–196, 2014.

[BFG+13] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica.

HAT, not CAP: Highly available transactions. In Workshop on Hot Topics in
Operating Systems, 2013.

[BFG+14] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica.

Scalable Atomic Visibility with RAMP Transactions. In ACM SIGMOD Confer-
ence, 2014.

[BFG+16] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica.

Scalable atomic visibility with RAMP transactions. ACM Trans. Database Syst.,
41(3):15:1–15:45, 2016.

[BG13] Sumita Barahmand and Shahram Ghandeharizadeh. BG: A benchmark to

evaluate interactive social networking actions. In CIDR 2013, Sixth Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA, January
6-9, 2013, Online Proceedings. www.cidrdb.org, 2013.

[BGH+15] Christopher D Bienko, Marina Greenstein, Stephen E Holt, Richard T Phillips,

et al. IBM Cloudant: Database as a Service Advanced Topics. IBM Redbooks,

2015.

[BGHS13] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Bolt-on Causal

Consistency. In Proceedings of the 2013 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’13, pages 761–772, New York, NY,

USA, 2013. ACM.

[BGS+09] Peter Bodík, Rean Griffith, Charles Sutton, Armando Fox, Michael Jordan,

and David Patterson. Statistical Machine Learning Makes Automatic Control

Practical for Internet Datacenters. In Proceedings of the 2009 Conference on
Hot Topics in Cloud Computing, HotCloud’09, San Diego, California, 2009.

USENIX Association.

[BHD13] Enda Barrett, Enda Howley, and Jim Duggan. Applying reinforcement learn-

ing towards automating resource allocation and application scalability in the

cloud. Concurrency and Computation: Practice and Experience, 25(12):1656–

1674, 2013.

Bibliography 271

[BJ87] Ken Birman and Thomas Joseph. Exploiting virtual synchrony in distributed
systems, volume 21. ACM, 1987.

[BK13] David Bermbach and Jörn Kuhlenkamp. Consistency in Distributed Storage

Systems - An Overview of Models, Metrics and Measurement Approaches.

In Vincent Gramoli and Rachid Guerraoui, editors, Networked Systems - First
International Conference, NETYS 2013, Marrakech, Morocco, May 2-4, 2013,
Revised Selected Papers, volume 7853 of Lecture Notes in Computer Science,

pages 175–189. Springer, 2013.

[BK14] Peter Bailis and Kyle Kingsbury. The network is reliable. Queue, 12(7):20,

2014.

[BKD+13] David Bermbach, Jörn Kuhlenkamp, Bugra Derre, Markus Klems, and Stefan

Tai. A Middleware Guaranteeing Client-Centric Consistency on Top of Even-

tually Consistent Datastores. In 2013 IEEE International Conference on Cloud
Engineering, IC2E 2013, San Francisco, CA, USA, March 25-27, 2013, pages

114–123. IEEE Computer Society, 2013.

[BKD+14] David Bermbach, Jörn Kuhlenkamp, Akon Dey, Sherif Sakr, and Raghunath

Nambiar. Towards an Extensible Middleware for Database Benchmarking. In

Raghunath Nambiar and Meikel Poess, editors, Performance Characterization
and Benchmarking. Traditional to Big Data - 6th TPC Technology Conference,
TPCTC 2014, Hangzhou, China, September 1-5, 2014. Revised Selected Papers,
volume 8904 of Lecture Notes in Computer Science, pages 82–96. Springer,

2014.

[Blo70] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13(7):422–426, 1970.

[BLT86] José A. Blakeley, Per-Åke Larson, and Frank Wm. Tompa. Efficiently Updating

Materialized Views. In Carlo Zaniolo, editor, Proceedings of the 1986 ACM
SIGMOD International Conference on Management of Data, Washington, D.C.,
May 28-30, 1986., pages 61–71. ACM Press, 1986.

[BLV11] Edward Bortnikov, Ronny Lempel, and Kolman Vornovitsky. Caching for Re-

altime Search. In Paul D. Clough, Colum Foley, Cathal Gurrin, Gareth J. F.

Jones, Wessel Kraaij, Hyowon Lee, and Vanessa Murdock, editors, Advances in
Information Retrieval - 33rd European Conference on IR Research, ECIR 2011,
Dublin, Ireland, April 18-21, 2011. Proceedings, volume 6611 of Lecture Notes
in Computer Science, pages 104–116. Springer, 2011.

[BM03] Andrei Broder and Michael Mitzenmacher. Network Applications of Bloom

Filters: A Survey. Internet Mathematics, 1(4):485–509, 2003.

[BM13] Arshdeep Bahga and Vijay Madisetti. Cloud Computing: A Hands-on Ap-
proach. CreateSpace Independent Publishing Platform, 2013.

272 Bibliography

[BMZA12] Flavio Bonomi, Rodolfo A. Milito, Jiang Zhu, and Sateesh Addepalli. Fog

computing and its role in the internet of things. In Mario Gerla and Dijiang

Huang, editors, Proceedings of the first edition of the MCC workshop on Mobile
cloud computing, MCC@SIGCOMM 2012, Helsinki, Finland, August 17, 2012,

pages 13–16. ACM, 2012.

[BN09] Philip A. Bernstein and Eric Newcomer. Principles of Transaction Processing.

Morgan Kaufmann, 2009.

[BP95] Alexandros Biliris and Euthimios Panagos. A High Performance Configurable

Storage Manager. In Philip S. Yu and Arbee L. P. Chen, editors, Proceedings of
the Eleventh International Conference on Data Engineering, March 6-10, 1995,
Taipei, Taiwan, pages 35–43. IEEE Computer Society, 1995.

[BPV08] Rajkumar Buyya, Mukaddim Pathan, and Athena Vakali, editors. Content
Delivery Networks (Lecture Notes in Electrical Engineering). Springer, 2008

edition, 9 2008.

[BR02] Laura Bright and Louiqa Raschid. Using Latency-Recency Profiles for Data

Delivery on the Web. In VLDB 2002, Proceedings of 28th International Confer-
ence on Very Large Data Bases, August 20-23, 2002, Hong Kong, China, pages

550–561. Morgan Kaufmann, 2002.

[Bre00] Eric A. Brewer. Towards Robust Distributed Systems., 2000.

[Bre17] Eric Brewer. Spanner, TrueTime and the CAP Theorem. Technical report,

2017.

[BROL14] Oscar Boykin, Sam Ritchie, Ian O’Connell, and Jimmy Lin. Summingbird:

A Framework for Integrating Batch and Online MapReduce Computations.

VLDB, 7(13), 2014.

[BRX13] Xiangping Bu, Jia Rao, and Cheng-Zhong Xu. Coordinated Self-Configuration

of Virtual Machines and Appliances Using a Model-Free Learning Approach.

IEEE Trans. Parallel Distrib. Syst., 24(4):681–690, 2013.

[BT11] David Bermbach and Stefan Tai. Eventual consistency: How soon is even-

tual? An evaluation of Amazon S3’s consistency behavior. In Karl M. Göschka,

Schahram Dustdar, and Vladimir Tosic, editors, Proceedings of the 6th Work-
shop on Middleware for Service Oriented Computing, MW4SOC 2011, Lisbon,
Portugal, December 12-16, 2011, page 1. ACM, 2011.

[BT14] David Bermbach and Stefan Tai. Benchmarking Eventual Consistency:

Lessons Learned from Long-Term Experimental Studies. In 2014 IEEE In-
ternational Conference on Cloud Engineering, Boston, MA, USA, March 11-14,
2014, pages 47–56. IEEE Computer Society, 2014.

[BVF+12] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Heller-

stein, and Ion Stoica. Probabilistically bounded staleness for practical partial

quorums. Technical Report 8, 2012.

Bibliography 273

[BVF+14] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Heller-

stein, and Ion Stoica. Quantifying eventual consistency with PBS. The VLDB
Journal, 23(2):279–302, April 2014.

[BWA13] Meenakshi Bist, Manoj Wariya, and Amit Agarwal. Comparing delta, open

stack and Xen Cloud Platforms: A survey on open source IaaS. In Advance
Computing Conference (IACC), 2013 IEEE 3rd International, pages 96–100.

IEEE, 2013.

[BWT17] David Bermbach, Erik Wittern, and Stefan Tai. Cloud Service Benchmarking -
Measuring Quality of Cloud Services from a Client Perspective. Springer, 2017.

[BYV+09] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud com-

puting and emerging IT platforms: Vision, hype, and reality for delivering

computing as the 5th utility. Future Generation computer systems, 25(6):599–

616, 2009.

[BZM+13] Mahesh Balakrishnan, Aviad Zuck, Dahlia Malkhi, Ted Wobber, Ming Wu,

Vijayan Prabhakaran, Michael Wei, John D. Davis, Sriram Rao, and Tao Zou.

Tango: distributed data structures over a shared log. pages 325–340. ACM

Press, 2013.

[BZS13] David Bermbach, Liang Zhao, and Sherif Sakr. Towards Comprehensive Mea-

surement of Consistency Guarantees for Cloud-Hosted Data Storage Services.

In Raghunath Nambiar and Meikel Poess, editors, Performance Characteriza-
tion and Benchmarking - 5th TPC Technology Conference, TPCTC 2013, Trento,
Italy, August 26, 2013, Revised Selected Papers, volume 8391 of Lecture Notes
in Computer Science, pages 32–47. Springer, 2013.

[CAAS07] Ítalo S. Cunha, Jussara M. Almeida, Virgílio A. F. Almeida, and Marcos San-

tos. Self-Adaptive Capacity Management for Multi-Tier Virtualized Environ-

ments. In Integrated Network Management, IM 2007. 10th IFIP/IEEE Inter-
national Symposium on Integrated Network Management, Munich, Germany,
21-25 May 2007, pages 129–138. IEEE, 2007.

[CALM97] Miguel Castro, Atul Adya, Barbara Liskov, and Andrew C. Myers. HAC: hy-

brid adaptive caching for distributed storage systems. In Michel Banâtre,

Henry M. Levy, and William M. Waite, editors, Proceedings of the Sixteenth
ACM Symposium on Operating System Principles, SOSP 1997, St. Malo, France,
October 5-8, 1997, pages 102–115. ACM, 1997.

[Cam16] Raymond Camden. Client-side data storage: keeping it local. O’Reilly, Beijing,

first edition edition, 2016. OCLC: ocn935079139.

[Car13] Josiah L. Carlson. Redis in Action. Manning Publications Co., Greenwich, CT,

USA, 2013.

[Cas81] Marco A. Casanova. The Concurrency Control Problem for Database Systems,
volume 116 of Lecture Notes in Computer Science. Springer, 1981.

274 Bibliography

[Cat92] Vincent Cate. Alex-a global filesystem. In Proceedings of the 1992 USENIX File
System Workshop, pages 1–12. Citeseer, 1992.

[CBPS10] Bernadette Charron-Bost, Fernando Pedone, and André Schiper, editors.

Replication: Theory and Practice, volume 5959 of Lecture Notes in Computer
Science. Springer, 2010.

[CCDM13] Jerry Chu, Yuchung Cheng, Nandita Dukkipati, and Matt Mathis. Increasing

TCP’s initial window. 2013.

[CCRJ14] Yuchung Cheng, Jerry Chu, Sivasankar Radhakrishnan, and Arvind Jain. Tcp

fast open. Technical report, 2014.

[CD13] Kristina Chodorow and Michael Dirolf. MongoDB - The Definitive Guide.

O’Reilly, 2013.

[CDE+12] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-

pher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher

Heiser, Peter Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Ko-

gan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Na-

gle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szyma-

niak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s

Globally-Distributed Database. In Chandu Thekkath and Amin Vahdat, edi-

tors, 10th USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012, pages 261–264.

USENIX Association, 2012.

[CDE+13] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-

pher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher

Heiser, Peter Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Ko-

gan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Na-

gle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szyma-

niak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s

Globally Distributed Database. ACM Trans. Comput. Syst., 31(3):8:1–8:22,

2013.

[CDF+07] Pierre Cassier, Annamaria Defendi, Dagmar Fischer, John Hutchinson, Alain

Maneville, Gianfranco Membrini, Caleb Ong, and Andrew Rowley. System
Programmer’s Guide To–Workload Manager. IBM, 2007.

[CDG+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-

lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber.

Bigtable: A distributed storage system for structured data. ACM Transactions
on Computer Systems (TOCS), 26(2):4, 2008.

[CDM11] Eddy Caron, Frédéric Desprez, and Adrian Muresan. Pattern Matching Based

Forecast of Non-periodic Repetitive Behavior for Cloud Clients. J. Grid Com-
put., 9(1):49–64, 2011.

Bibliography 275

[CEAK16] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti.

Cliffhanger: scaling performance cliffs in web memory caches. In 13th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
16), pages 379–392, 2016.

[CFLS91] Michael J. Carey, Michael J. Franklin, Miron Livny, and Eugene J. Shekita.

Data caching tradeoffs in client-server DBMS architectures. In James Clif-

ford and Roger King, editors, Proceedings of the 1991 ACM SIGMOD Inter-
national Conference on Management of Data, Denver, Colorado, May 29-31,
1991., pages 357–366. ACM Press, 1991.

[CGH+17] Paris Carbone, Gábor E. Gévay, Gábor Hermann, Asterios Katsifodimos, Juan

Soto, Volker Markl, and Seif Haridi. Large-Scale Data Stream Processing

Systems. In Albert Y. Zomaya and Sherif Sakr, editors, Handbook of Big Data
Technologies, pages 219–260. Springer, 2017.

[CH16] Jeff Carpenter and Eben Hewitt. Cassandra: The Definitive Guide. " O’Reilly

Media, Inc.", 2016.

[Cha15] Lee Chao. Cloud Computing Networking: Theory, Practice, and Development.
Auerbach Publications, 2015.

[Cha17] Dave Chaffey. Ecommerce conversion rates. smartinsights.com, 2017. ac-

cessed: 2017-05-15.

[CI97] Pei Cao and Sandy Irani. Cost-aware WWW proxy caching algorithms. In 1st
USENIX Symposium on Internet Technologies and Systems, USITS’97, Monterey,
California, USA, December 8-11, 1997. USENIX, 1997.

[CJMB11] Carlo Curino, Evan P. C. Jones, Samuel Madden, and Hari Balakrishnan.

Workload-aware database monitoring and consolidation. In Timos K. Sellis,

Renée J. Miller, Anastasios Kementsietsidis, and Yannis Velegrakis, editors,

Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011, pages 313–324. ACM,

2011.

[CJP+10] Berkant Barla Cambazoglu, Flavio Paiva Junqueira, Vassilis Plachouras,

Scott A. Banachowski, Baoqiu Cui, Swee Lim, and Bill Bridge. A refreshing

perspective of search engine caching. In Michael Rappa, Paul Jones, Juliana

Freire, and Soumen Chakrabarti, editors, Proceedings of the 19th International
Conference on World Wide Web, WWW 2010, Raleigh, North Carolina, USA,
April 26-30, 2010, pages 181–190. ACM, 2010.

[CJP+11] Carlo Curino, Evan PC Jones, Raluca Ada Popa, Nirmesh Malviya, Eugene

Wu, Sam Madden, Hari Balakrishnan, and Nickolai Zeldovich. Relational

Cloud: A Database-as-a-Service for the Cloud. In Proc. of CIDR, 2011.

[CJZM10] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. Schism: a

workload-driven approach to database replication and partitioning. Proceed-

276 Bibliography

ings of the VLDB Endowment, 3(1-2):48–57, 2010.

[CK01] Edith Cohen and Haim Kaplan. The Age Penalty and Its Effect on Cache

Performance. In Tom Anderson, editor, 3rd USENIX Symposium on Internet
Technologies and Systems, USITS’01, San Francisco, California, USA, March
26-28, 2001, pages 73–84. USENIX, 2001.

[CKR98] Edith Cohen, Balachander Krishnamurthy, and Jennifer Rexford. Improving

End-to-End Performance of the Web Using Server Volumes and Proxy Filters.

In SIGCOMM, pages 241–253, 1998.

[CL98] Pei Cao and Chengjie Liu. Maintaining Strong Cache Consistency in the World

Wide Web. IEEE Trans. Computers, 47(4):445–457, 1998.

[CLL+01a] K. Selçuk Candan, Wen-Syan Li, Qiong Luo, Wang-Pin Hsiung, and Divyakant

Agrawal. Enabling Dynamic Content Caching for Database-Driven Web Sites.

In Sharad Mehrotra and Timos K. Sellis, editors, Proceedings of the 2001 ACM
SIGMOD international conference on Management of data, Santa Barbara, CA,
USA, May 21-24, 2001, pages 532–543. ACM, 2001.

[CLL+01b] K. Selçuk Candan, Wen-Syan Li, Qiong Luo, Wang-Pin Hsiung, and Divyakant

Agrawal. Enabling Dynamic Content Caching for Database-driven Web Sites.

In SIGMOD, pages 532–543, New York, NY, USA, 2001. ACM.

[Clo17a] Cloud Application Platform - Devops Platform | Cloud Foundry. https://

www.cloudfoundry.org/, 2017. (Accessed on 06/05/2017).

[Clo17b] Cloud Application Platform | Heroku. https://www.heroku.com/, 2017.

(Accessed on 05/20/2017).

[Clo17c] vCloud Suite, vSphere-Based Private Cloud: VMware. http://www.vmware.

com/products/vcloud-suite.html, 2017. (Accessed on 06/05/2017).

[Clu17] Clustrix: A New Approach to Scale-Out RDBMS.

http://www.clustrix.com/wp-content/uploads/2017/01/

Whitepaper-ANewApproachtoScaleOutRDBMS.pdf, 2017. (Accessed on

05/20/2017).

[CMH11] Yun Chi, Hyun Jin Moon, and Hakan Hacigümüs. iCBS: Incremental Cost-

based Scheduling under Piecewise Linear SLAs. PVLDB, 4(9):563–574, 2011.

[CO82] Stefano Ceri and Susan S. Owicki. On the Use of Optimistic Methods for

Concurrency Control in Distributed Databases. In Berkeley Workshop, pages

117–129, 1982.

[Coc17] CockroachDB - the scalable, survivable, strongly-consistent SQL database.

https://github.com/cockroachdb/cockroach, 2017. (Accessed on

05/20/2017).

[Coo13] Brian F. Cooper. Spanner: Google’s globally-distributed database. In Ronen I.

Kat, Mary Baker, and Sivan Toledo, editors, 6th Annual International Systems

https://www.cloudfoundry.org/
https://www.cloudfoundry.org/
https://www.heroku.com/
http://www.vmware.com/products/vcloud-suite.html
http://www.vmware.com/products/vcloud-suite.html
http://www.clustrix.com/wp-content/uploads/2017/01/Whitepaper-ANewApproachtoScaleOutRDBMS.pdf
http://www.clustrix.com/wp-content/uploads/2017/01/Whitepaper-ANewApproachtoScaleOutRDBMS.pdf
https://github.com/cockroachdb/cockroach

Bibliography 277

and Storage Conference, SYSTOR ’13, Haifa, Israel - June 30 - July 02, 2013,

page 9. ACM, 2013.

[CRF08] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. Serializable Isolation for

Snapshot Databases. In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’08, pages 729–738, New York,

NY, USA, 2008. ACM.

[Cro06] Douglas Crockford. JSON: Javascript object notation. URL http://www. json.
org, 2006.

[CRS99] Boris Chidlovskii, Claudia Roncancio, and Marie-Luise Schneider. Semantic

Cache Mechanism for Heterogeneous Web Querying. Computer Networks,
31(11-16):1347–1360, 1999.

[CRS+08] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon,

H. A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s hosted

data serving platform. PVLDB, 1(2):1277–1288, 2008.

[CRW15] Aaron Cordova, Billie Rinaldi, and Michael Wall. Accumulo: Application De-
velopment, Table Design, and Best Practices. " O’Reilly Media, Inc.", 2015.

[CS13] Emiliano Casalicchio and Luca Silvestri. Autonomic management of cloud-

based systems: the service provider perspective. In Computer and Information
Sciences III, pages 39–47. Springer, 2013.

[CSH+16] Tse-Hsun Chen, Weiyi Shang, Ahmed E. Hassan, Mohamed N. Nasser, and

Parminder Flora. CacheOptimizer: helping developers configure caching

frameworks for hibernate-based database-centric web applications. In

Thomas Zimmermann, Jane Cleland-Huang, and Zhendong Su, editors, Pro-
ceedings of the 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016,

pages 666–677. ACM, 2016.

[CSSS11] Emmanuel Cecchet, Rahul Singh, Upendra Sharma, and Prashant Shenoy.

Dolly: virtualization-driven database provisioning for the cloud. In ACM SIG-
PLAN Notices, volume 46, pages 51–62. ACM, 2011.

[CST+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and

Russell Sears. Benchmarking cloud serving systems with YCSB. In Proceedings
of the 1st ACM symposium on Cloud computing, pages 143–154. ACM, 2010.

[CWO+11] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold,

Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, and Huseyin

Simitci. Windows Azure Storage: a highly available cloud storage service

with strong consistency. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, pages 143–157. ACM, ACM, 2011.

[CZB99] Pei Cao, Jin Zhang, and Kevin Beach. Active Cache: caching dynamic con-

tents on the Web. Distributed Systems Engineering, 6(1):43–50, 1999.

278 Bibliography

[DAEA10] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-store: a scalable

data store for transactional multi key access in the cloud. In Proceedings of
the 1st ACM symposium on Cloud computing, pages 163–174. ACM, 2010.

[DAEA13] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. ElasTraS: An elastic,

scalable, and self-managing transactional database for the cloud. ACM Trans-
actions on Database Systems, 38(1):1–45, April 2013.

[Dat17] Google Cloud Datastore. https://cloud.google.com/datastore/docs/

concepts/overview, 2017. (Accessed on 05/20/2017).

[DB13] Regine Dörbecker and Tilo Böhmann. The Concept and Effects of Service

Modularity - A Literature Review. In 46th Hawaii International Conference
on System Sciences, HICSS 2013, Wailea, HI, USA, January 7-10, 2013, pages

1357–1366. IEEE Computer Society, 2013.

[Db417] db4o. https://github.com/lytico/db4o, 2017. (Accessed on

05/20/2017).

[DBS+12] Shirshanka Das, Chavdar Botev, Kapil Surlaker, Bhaskar Ghosh, Balaji

Varadarajan, Sunil Nagaraj, David Zhang, Lei Gao, Jemiah Westerman,

Phanindra Ganti, and others. All aboard the Databus!: Linkedin’s scalable

consistent change data capture platform. In Proceedings of the Third ACM
Symposium on Cloud Computing, page 18. ACM, 2012.

[DDT+04] Anindya Datta, Kaushik Dutta, Helen M. Thomas, Debra E. VanderMeer, and

Krithi Ramamritham. Proxy-based acceleration of dynamically generated

content on the world wide web: An approach and implementation. ACM
Trans. Database Syst., 29(2):403–443, 2004.

[Dea09] Jeff Dean. Designs, lessons and advice from building large distributed sys-

tems, 2009. Keynote talk at LADIS 2009.

[DEAA09] Sudipto Das, Amr El Abbadi, and Divyakant Agrawal. ElasTraS: An Elastic

Transactional Data Store in the Cloud. HotCloud, 9:131–142, 2009.

[DeM09] Linda DeMichiel. JSR 317: Java Persistence 2.0. Java Community Process,
Tech. Rep, 2009.

[Den96] Shuang Deng. Empirical model of WWW document arrivals at access link.

In Communications, 1996. ICC’96, Conference Record, Converging Technologies
for Tomorrow’s Applications. 1996 IEEE International Conference on, volume 3,

pages 1797–1802. IEEE, 1996.

[Dep17] Deployd: a toolkit for building realtime APIs. https://github.com/

deployd/deployd, 2017. (Accessed on 05/20/2017).

[Dey15] Akon Samir Dey. Cherry Garcia: Transactions across Heterogeneous Data

Stores. 2015.

https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/datastore/docs/concepts/overview
https://github.com/lytico/db4o
https://github.com/deployd/deployd
https://github.com/deployd/deployd

Bibliography 279

[DFI+13] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,

Ryan Stonecipher, Nitin Verma, and Mike Zwilling. Hekaton: SQL server’s

memory-optimized OLTP engine. In Proceedings of the 2013 international
conference on Management of data, pages 1243–1254. ACM, 2013.

[DFJ+96] Shaul Dar, Michael J. Franklin, Björn Þór Jónsson, Divesh Srivastava, and

Michael Tan. Semantic Data Caching and Replacement. In T. M. Vijayaraman,

Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda, editors, VLDB’96,
Proceedings of 22th International Conference on Very Large Data Bases, Septem-
ber 3-6, 1996, Mumbai (Bombay), India, pages 330–341. Morgan Kaufmann,

1996.

[DFKM97] Fred Douglis, Anja Feldmann, Balachander Krishnamurthy, and Jeffrey C.

Mogul. Rate of Change and other Metrics: a Live Study of the World

Wide Web. In 1st USENIX Symposium on Internet Technologies and Systems,
USITS’97, Monterey, California, USA, December 8-11, 1997. USENIX, 1997.

[DFNR14] Anamika Dey, Alan Fekete, Raghunath Nambiar, and Uwe Rohm. YCSB+T:

Benchmarking web-scale transactional databases. In Data Engineering Work-
shops (ICDEW), 2014 IEEE 30th International Conference on, pages 223–230.

IEEE, 2014.

[DFR15a] A. Dey, A. Fekete, and U. Röhm. Scalable distributed transactions across

heterogeneous stores. In 2015 IEEE 31st International Conference on Data
Engineering, pages 125–136, April 2015.

[DFR15b] Akon Dey, Alan Fekete, and Uwe Rohm. REST+T: Scalable Transactions over

HTTP. pages 36–41. IEEE, March 2015.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing

on Large Clusters. In Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, OSDI’04, pages 10–

10, San Francisco, CA, 2004. USENIX Association.

[DGMS85] Susan B Davidson, Hector Garcia-Molina, and Dale Skeen. Consistency in a

partitioned network: a survey. ACM Computing Surveys (CSUR), 17(3):341–

370, 1985.

[DHJ+07] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: ama-

zon’s highly available key-value store. In ACM SOSP, volume 14 of 17, pages

205–220. ACM, 2007.

[DKM+11] Xavier Dutreilh, Sergey Kirgizov, Olga Melekhova, Jacques Malenfant, Nico-

las Rivierre, and Isis Truck. Using reinforcement learning for autonomic re-

source allocation in clouds: towards a fully automated workflow. In ICAS
2011, The Seventh International Conference on Autonomic and Autonomous
Systems, pages 67–74, 2011.

280 Bibliography

[DLNW13] Hoang T Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A survey of mo-

bile cloud computing: architecture, applications, and approaches. Wireless
communications and mobile computing, 13(18):1587–1611, 2013.

[DNAE11] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi. Al-

batross: lightweight elasticity in shared storage databases for the cloud us-

ing live data migration. Proceedings of the VLDB Endowment, 4(8):494–505,

2011.

[DNN+15] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale,

Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. No

compromises: distributed transactions with consistency, availability, and per-

formance. In Proceedings of the 25th Symposium on Operating Systems Princi-
ples, pages 54–70. ACM, ACM Press, 2015.

[Dom18] Jörn Christopher Domnik. Integration der Baqend Backend-as-a-Service APIs

in Android. Masterarbeit, Universität Hamburg, Fachbereich Informatik,

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany, 2018.

[Dow98] Troy Bryan Downing. Java RMI: remote method invocation. IDG Books World-

wide, Inc., 1998.

[DPS+94] Alan J. Demers, Karin Petersen, Mike Spreitzer, Doug Terry, Marvin Theimer,

and Brent B. Welch. The Bayou Architecture: Support for Data Sharing

Among Mobile Users. In First Workshop on Mobile Computing Systems and
Applications, WMCSA 1994, Santa Cruz, CA, USA, December 8-9, 1994, pages

2–7. IEEE Computer Society, 1994.

[DPS13] Erik Dahlman, Stefan Parkvall, and Johan Skold. 4G: LTE/LTE-advanced for
mobile broadband. Academic press, 2013.

[DRM+10] Xavier Dutreilh, Nicolas Rivierre, Aurélien Moreau, Jacques Malenfant, and

Isis Truck. From Data Center Resource Allocation to Control Theory and Back.

In IEEE International Conference on Cloud Computing, CLOUD 2010, Miami,
FL, USA, 5-10 July, 2010, pages 410–417. IEEE Computer Society, 2010.

[DRSN98] Prasad Deshpande, Karthikeyan Ramasamy, Amit Shukla, and Jeffrey F.

Naughton. Caching Multidimensional Queries Using Chunks. In Laura M.

Haas and Ashutosh Tiwary, editors, SIGMOD 1998, Proceedings ACM SIG-
MOD International Conference on Management of Data, June 2-4, 1998, Seat-
tle, Washington, USA., pages 259–270. ACM Press, 1998.

[DST03] Venkata Duvvuri, Prashant J. Shenoy, and Renu Tewari. Adaptive leases: A

strong consistency mechanism for the world wide web. IEEE Trans. Knowl.
Data Eng., 15(5):1266–1276, 2003.

[Dyn17] DynamoDB. http://docs.aws.amazon.com/amazondynamodb/latest/

developerguide/Introduction.html, 2017. (Accessed on 05/20/2017).

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html

Bibliography 281

[EDAE11] Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi.

Zephyr: live migration in shared nothing databases for elastic cloud plat-

forms. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data, pages 301–312. ACM, 2011.

[EGLT76] Kapali P. Eswaran, Jim Gray, Raymond A. Lorie, and Irving L. Traiger. The

Notions of Consistency and Predicate Locks in a Database System. Commun.
ACM, 19(11):624–633, 1976.

[Ela17] Elasticsearch: Open Source Distributed Real Time Search & Analytics. http:

//www.elasticsearch.org/, 2017. (Accessed on 05/26/2017).

[Emb17] Ember.js Framework. https://www.emberjs.com/, 2017. (Accessed on

05/26/2017).

[EPM+16] EDBT, Evaggelia Pitoura, Sofian Maabout, Georgia Koutrika, Amelie Mar-

ian, Letizia Tanca, Ioana Manolescu, Kostas Stefanidis, International Confer-

ence on Extending Database Technology, and EDBT. Advances in database
technology - EDBT 2016 19th International Conference on Extending Database
Technology, Bordeaux, France, March 15-18, 2016: proceedings. University of

Konstanz, University Library, Konstanz, 2016. OCLC: 957156764.

[ERR11] Mohamed El-Refaey and Bhaskar Prasad Rimal. Grid, soa and cloud com-

puting: On-demand computing models. Computational and Data Grids: Prin-
ciples, Applications and Design: Principles, Applications and Design, page 45,

2011.

[ESW78] Robert S. Epstein, Michael Stonebraker, and Eugene Wong. Distributed Query

Processing in a Relational Data Base System. In Eugene I. Lowenthal and

Nell B. Dale, editors, Proceedings of the 1978 ACM SIGMOD International Con-
ference on Management of Data, Austin, Texas, USA, May 31 - June 2, 1978,

pages 169–180. ACM, 1978.

[Eve14] Tammy Everts. State of the Union for Ecommerce Page Speed &

Web Performance (Winter 2013-14). https://blog.radware.com/

applicationdelivery/applicationaccelerationoptimization/2014/02/

report-sotu-for-ecommerce-page-speed-web-performance-winter-2013-14/,

2014. (Accessed on 05/26/2017).

[Eve16] Tammy Everts. Time Is Money: The Business Value of Web Performance. O’Reilly

Media, 2016.

[EW16] Michael Egorov and MacLane Wilkison. ZeroDB white paper. arXiv preprint
arXiv:1602.07168, 2016.

[EWS12] Robert Escriva, Bernard Wong, and Emin Gün Sirer. HyperDex: A distributed,

searchable key-value store. ACM SIGCOMM Computer Communication Re-
view, 42(4):25–36, 2012.

http://www.elasticsearch.org/
http://www.elasticsearch.org/
https://www.emberjs.com/
https://blog.radware.com/applicationdelivery/applicationaccelerationoptimization/2014/02/report-sotu-for-ecommerce-page-speed-web-performance-winter-2013-14/
https://blog.radware.com/applicationdelivery/applicationaccelerationoptimization/2014/02/report-sotu-for-ecommerce-page-speed-web-performance-winter-2013-14/
https://blog.radware.com/applicationdelivery/applicationaccelerationoptimization/2014/02/report-sotu-for-ecommerce-page-speed-web-performance-winter-2013-14/

282 Bibliography

[EWS13] Robert Escriva, Bernard Wong, and Emin Gün Sirer. Warp: Multi-key trans-

actions for keyvalue stores. United Networks, LLC, Tech. Rep, 5, 2013.

[FAK13] Bin Fan, David G. Andersen, and Michael Kaminsky. MemC3: Compact and

Concurrent MemCache with Dumber Caching and Smarter Hashing. In Nick

Feamster and Jeffrey C. Mogul, editors, Proceedings of the 10th USENIX Sym-
posium on Networked Systems Design and Implementation, NSDI 2013, Lom-
bard, IL, USA, April 2-5, 2013, pages 371–384. USENIX Association, 2013.

[FAKM14] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher.

Cuckoo Filter: Practically Better Than Bloom. pages 75–88. ACM Press, 2014.

[Far06] Dan Farber. Google’s Marissa Mayer: Speed wins. http://www.zdnet.

com/article/googles-marissa-mayer-speed-wins/, 2006. (Accessed on

05/26/2017).

[FC92] Michael J. Franklin and Michael J. Carey. Client-Server Caching Revisited. In

M. Tamer Özsu, Umeshwar Dayal, and Patrick Valduriez, editors, Distributed
Object Management, Papers from the International Workshop on Distributed
Object Management (IWDOM), Edmonton, Alberta, Canada, August 19-21,
1992, pages 57–78. Morgan Kaufmann, 1992.

[FCAB00] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache: a

scalable wide-area web cache sharing protocol. IEEE/ACM TON, 8(3):281–

293, 2000.

[FCD+99] Anja Feldmann, Ramón Cáceres, Fred Douglis, Gideon Glass, and Michael

Rabinovich. Performance of Web Proxy Caching in Heterogeneous Bandwidth

Environments. In Proceedings IEEE INFOCOM ’99, The Conference on Computer
Communications, Eighteenth Annual Joint Conference of the IEEE Computer
and Communications Societies, The Future Is Now, New York, NY, USA, March
21-25, 1999, pages 107–116. IEEE, 1999.

[FCL97] Michael J. Franklin, Michael J. Carey, and Miron Livny. Transactional

Client-Server Cache Consistency: Alternatives and Performance. ACM Trans.
Database Syst., 22(3):315–363, 1997.

[FFM04] Michael J. Freedman, Eric Freudenthal, and David Mazieres. Democratizing

Content Publication with Coral. In NSDI, volume 4, pages 18–18, 2004.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. RFC 2616: Hypertext Transfer Protocol–HTTP/1.1, 1999.

URL http://www. rfc. net/rfc2616. html, 1999.

[Fid87] Colin J Fidge. Timestamps in message-passing systems that preserve the

partial ordering. 1987.

[Fie00] R. T Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, Citeseer, 2000.

http://www.zdnet.com/article/googles-marissa-mayer-speed-wins/
http://www.zdnet.com/article/googles-marissa-mayer-speed-wins/

Bibliography 283

[Fir16] Maximiliano Firtman. High Performance Mobile Web: Best Practices for Opti-
mizing Mobile Web Apps. O’Reilly Media, 1 edition, 9 2016.

[Fit04] Brad Fitzpatrick. Distributed caching with Memcached. Linux journal,
2004(124):5, 2004.

[FK09] Daniela Florescu and Donald Kossmann. Rethinking cost and performance of

database systems. SIGMOD Record, 38(1):43–48, 2009.

[FLO+05] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Den-

nis Shasha. Making snapshot isolation serializable. ACM Transactions on
Database Systems (TODS), 30(2):492–528, 2005.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed

consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–

382, 1985.

[FLR+14] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Pe-

ter Arbitter. Cloud Computing Patterns - Fundamentals to Design, Build, and
Manage Cloud Applications. Springer, 2014.

[FLWC12] Wei Fang, ZhiHui Lu, Jie Wu, and ZhenYin Cao. RPPS: A novel resource pre-

diction and provisioning scheme in cloud data center. In Louise E. Moser,

Manish Parashar, and Patrick C. K. Hung, editors, 2012 IEEE Ninth Inter-
national Conference on Services Computing, Honolulu, HI, USA, June 24-29,
2012, pages 609–616. IEEE Computer Society, 2012.

[FMdA+13] Alessandro Gustavo Fior, Jorge Augusto Meira, Eduardo Cunha de Almeida,

Ricardo Gonçalves Coelho, Marcos Didonet Del Fabro, and Yves Le Traon. Un-

der pressure benchmark for DDBMS availability. JIDM, 4(3):266–278, 2013.

[For12] A Behrouz Forouzan. Data communications & networking. Tata McGraw-Hill

Education, 2012.

[FR14] Roy Fielding and J Reschke. RFC 7234: Hypertext Transfer Protocol

(HTTP/1.1): Caching. Technical report, IETF, 2014.

[Fre10] Michael J. Freedman. Experiences with CoralCDN: A Five-Year Operational

View. In NSDI, pages 95–110, 2010.

[FRT92] Peter A. Franaszek, John T. Robinson, and Alexander Thomasian. Concur-

rency Control for High Contention Environments. ACM Trans. Database Syst.,
17(2):304–345, 1992.

[FSSF01] Kevin Fu, Emil Sit, Kendra Smith, and Nick Feamster. The Dos and Don’ts

of Client Authentication on the Web. In USENIX Security Symposium, pages

251–268, 2001.

[FWGR14] Steffen Friedrich, Wolfram Wingerath, Felix Gessert, and Norbert Ritter.

NoSQL OLTP Benchmarking: A Survey. In Erhard Plödereder, Lars Grunske,

Eric Schneider, and Dominik Ull, editors, 44. Jahrestagung der Gesellschaft für

284 Bibliography

Informatik, Informatik 2014, Big Data - Komplexität meistern, 22.-26. Septem-
ber 2014 in Stuttgart, Deutschland, volume 232 of LNI, pages 693–704. GI,

2014.

[FWR17] Steffen Friedrich, Wolfram Wingerath, and Norbert Ritter. Coordinated Omis-

sion in NoSQL Database Benchmarking. In Bernhard Mitschang, Norbert Rit-

ter, Holger Schwarz, Meike Klettke, Andreas Thor, Oliver Kopp, and Matthias

Wieland, editors, Datenbanksysteme für Business, Technologie und Web (BTW
2017), 17. Fachtagung des GI-Fachbereichs „Datenbanken und Informationssys-
teme" (DBIS), 6.-10. März 2017, Stuttgart, Germany, Workshopband, volume

P-266 of LNI, pages 215–225. GI, 2017.

[GAAU15] Younghwan Go, Nitin Agrawal, Akshat Aranya, and Cristian Ungureanu. Re-

liable, Consistent, and Efficient Data Sync for Mobile Apps. In Jiri Schindler

and Erez Zadok, editors, Proceedings of the 13th USENIX Conference on File
and Storage Technologies, FAST 2015, Santa Clara, CA, USA, February 16-19,
2015, pages 359–372. USENIX Association, 2015.

[Gal95] R.G. Gallager. Discrete Stochastic Processes. The Springer International Series

in Engineering and Computer Science. Springer US, 1995.

[GBR14] Felix Gessert, Florian Bücklers, and Norbert Ritter. ORESTES: a Scalable

Database-as-a-Service Architecture for Low Latency. In CloudDB 2014, Data
Engineering Workshops (ICDEW), pages 215–222. IEEE, 2014.

[GC89] Cary G. Gray and David R. Cheriton. Leases: An Efficient Fault-Tolerant

Mechanism for Distributed File Cache Consistency. In Gregory R. Andrews,

editor, Proceedings of the Twelfth ACM Symposium on Operating System Prin-
ciples, SOSP 1989, The Wigwam, Litchfield Park, Arizona, USA, December 3-6,
1989, pages 202–210. ACM, 1989.

[GD11] Sanjay Ghemawat and Jeff Dean. LevelDB. http://leveldb.org, 2011.

[Gda17] Google Data APIs. https://developers.google.com/gdata/, 2017. (Ac-

cessed on 05/26/2017).

[Gel00] Erol Gelenbe. System performance evaluation: methodologies and applications.
CRC press, 2000.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford

University, 2009.

[GFW+14] Felix Gessert, Steffen Friedrich, Wolfram Wingerath, Michael Schaarschmidt,

and Norbert Ritter. Towards a Scalable and Unified REST API for Cloud Data

Stores. In Erhard Plödereder, Lars Grunske, Eric Schneider, and Dominik Ull,

editors, 44. Jahrestagung der Gesellschaft für Informatik, Informatik 2014, Big
Data - Komplexität meistern, 22.-26. September 2014 in Stuttgart, Deutsch-
land, volume 232 of LNI, pages 723–734. GI, 2014.

http://leveldb.org
https://developers.google.com/gdata/

Bibliography 285

[GGL03] S. Ghemawat, H. Gobioff, and S. T. Leung. The Google file system. In ACM
SIGOPS Operating Systems Review, volume 37, pages 29–43, 2003.

[GGW10] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. PRESS: predictive elastic

resource scaling for cloud systems. In Proceedings of the 6th International
Conference on Network and Service Management, CNSM 2010, Niagara Falls,
Canada, October 25-29, 2010, pages 9–16. IEEE, 2010.

[GH02] Rachid Guerraoui and Corine Hari. On the consistency problem in mobile

distributed computing. In Proceedings of the 2002 Workshop on Principles of
Mobile Computing, POMC 2002, October 30-31, 2002, Toulouse, France, pages

51–57. ACM, 2002.

[GHa+96] Jim Gray, Pat Hell and, et al. The dangers of replication and a solution.

SIGMOD Rec., 25(2):173–182, June 1996.

[GHKO81] Jim Gray, Pete Homan, Henry F. Korth, and Ron Obermarck. A Straw Man

Analysis of the Probability of Waiting and Deadlock in a Database System. In

Berkeley Workshop, page 125, 1981.

[GHTC13] Katarina Grolinger, Wilson A Higashino, Abhinav Tiwari, and Miriam AM

Capretz. Data management in cloud environments: NoSQL and NewSQL

data stores. Journal of Cloud Computing: Advances, Systems and Applications,
2(1):22, 2013.

[GJK+14] Ferro Daniel Gómez, Flavio Junqueira, Ivan Kelly, Benjamin Reed, and

Maysam Yabandeh. Omid: Lock-free Transactional Support for Distributed

Data Stores. In ICDE, 2014.

[GJP11] K. Gilly, C. Juiz, and R. Puigjaner. An up-to-date survey in web load balanc-

ing. World Wide Web, 14(2):105–131, 2011.

[GKA09] Ajay Gulati, Chethan Kumar, and Irfan Ahmad. Storage workload characteri-

zation and consolidation in virtualized environments. In Workshop on Virtual-
ization Performance: Analysis, Characterization, and Tools (VPACT). Citeseer,

2009.

[GL02] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services. ACM SIGACT News, 33(2):51–59,

2002.

[GL06] J. Gray and L. Lamport. Consensus on transaction commit. ACM Transactions
on Database Systems (TODS), 31(1):133–160, 2006.

[GLPT76] Jim Gray, Raymond A. Lorie, Gianfranco R. Putzolu, and Irving L. Traiger.

Granularity of Locks and Degrees of Consistency in a Shared Data Base. In

G. M. Nijssen, editor, Modelling in Data Base Management Systems, Proceed-
ing of the IFIP Working Conference on Modelling in Data Base Management
Systems, Freudenstadt, Germany, January 5-8, 1976, pages 365–394. North-

Holland, 1976.

286 Bibliography

[GLS11] Wojciech Golab, Xiaozhou Li, and Mehul A. Shah. Analyzing consistency

properties for fun and profit. In ACM PODC, pages 197–206. ACM, 2011.

[GMA+08] Charles Garrod, Amit Manjhi, Anastasia Ailamaki, Bruce Maggs, Todd Mowry,

Christopher Olston, and Anthony Tomasic. Scalable query result caching for

web applications. Proceedings of the VLDB Endowment, 1(1):550–561, 2008.

[GMU+12] Ajay Gulati, Arif Merchant, Mustafa Uysal, Pradeep Padala, and Peter J. Var-

man. Workload dependent IO scheduling for fairness and efficiency in shared

storage systems. In 19th International Conference on High Performance Com-
puting, HiPC 2012, Pune, India, December 18-22, 2012, pages 1–10. IEEE

Computer Society, 2012.

[GÖ10] Lukasz Golab and M. Tamer Özsu. Data Stream Management. Synthesis

Lectures on Data Management. Morgan & Claypool Publishers, 2010.

[Goo17a] Google Cloud Computing, Hosting Services & APIs | Google Cloud Platform.

https://cloud.google.com/, 2017. (Accessed on 05/20/2017).

[Goo17b] Google Cloud Prediction API. https://cloud.google.com/prediction/

docs/, 2017. (Accessed on 06/18/2017).

[Gos05] John Gossmann. Introduction to Model/View/View-

Model pattern for building WPF apps. https://

blogs.msdn.microsoft.com/johngossman/2005/10/08/

introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/,

08 2005. (Accessed on 05/26/2017).

[GPS16] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi. Incre-

mental Consistency Guarantees for Replicated Objects. In Kimberly Keeton

and Timothy Roscoe, editors, 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4,
2016., pages 169–184. USENIX Association, 2016.

[GR15a] Felix Gessert and Norbert Ritter. Polyglot Persistence. Datenbank-Spektrum,

15(3):229–233, November 2015.

[GR15b] Felix Gessert and Norbert Ritter. Skalierbare NoSQL- und Cloud-

Datenbanken in Forschung und Praxis. In Datenbanksysteme für Business,
Technologie und Web (BTW 2015) - Workshopband, 2.-3. März 2015, Ham-
burg, Germany, pages 271–274, 2015.

[GR16] Felix Gessert and Norbert Ritter. Scalable Data Management: NoSQL Data

Stores in Research and Practice. In 32nd IEEE International Conference on
Data Engineering, ICDE 2016, 2016.

[Gra97] Jim Gray. Microsoft SQL Server. January 1997.

[GRA+14] Wojciech M. Golab, Muntasir Raihan Rahman, Alvin AuYoung, Kimberly Kee-

ton, and Indranil Gupta. Client-Centric Benchmarking of Eventual Consis-

https://cloud.google.com/
https://cloud.google.com/prediction/docs/
https://cloud.google.com/prediction/docs/
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/

Bibliography 287

tency for Cloud Storage Systems. In IEEE 34th International Conference on
Distributed Computing Systems, ICDCS 2014, Madrid, Spain, June 30 - July 3,
2014, pages 493–502. IEEE Computer Society, 2014.

[Gra17] GraphQL. https://facebook.github.io/graphql/, 2017. (Accessed on

05/25/2017).

[Gri13] Ilya Grigorik. High performance browser networking. O’Reilly Media, [S.l.],

2013.

[GS96] James Gwertzman and Margo I Seltzer. World Wide Web Cache Consistency.

In USENIX ATC, pages 141–152, 1996.

[GSHA11] Ajay Gulati, Ganesha Shanmuganathan, Anne M. Holler, and Irfan Ahmad.

Cloud Scale Resource Management: Challenges and Techniques. In Ion Sto-

ica and John Wilkes, editors, 3rd USENIX Workshop on Hot Topics in Cloud
Computing, HotCloud’11, Portland, OR, USA, June 14-15, 2011. USENIX As-

sociation, 2011.

[GSLI11] Hamoun Ghanbari, Bradley Simmons, Marin Litoiu, and Gabriel Iszlai. Ex-

ploring alternative approaches to implement an elasticity policy. In Cloud
Computing (CLOUD), 2011 IEEE International Conference on, pages 716–723.

IEEE, 2011.

[GSW+12] Tian Guo, Upendra Sharma, Timothy Wood, Sambit Sahu, and Prashant J.

Shenoy. Seagull: Intelligent Cloud Bursting for Enterprise Applications. In

Gernot Heiser and Wilson C. Hsieh, editors, 2012 USENIX Annual Technical
Conference, Boston, MA, USA, June 13-15, 2012, pages 361–366. USENIX

Association, 2012.

[GSW+15] Felix Gessert, Michael Schaarschmidt, Wolfram Wingerath, Steffen Friedrich,

and Norbert Ritter. The Cache Sketch: Revisiting Expiration-based Caching

in the Age of Cloud Data Management. In Datenbanksysteme für Business,
Technologie und Web (BTW), 16. Fachtagung des GI-Fachbereichs "Datenbanken
und Informationssysteme". GI, 2015.

[GSW+17] Felix Gessert, Michael Schaarschmidt, Wolfram Wingerath, Erik Witt, Eiko

Yoneki, and Norbert Ritter. Quaestor: Query Web Caching for Database-as-a-

Service Providers. Proceedings of the VLDB Endowment, 2017.

[GTS+02] D. Gourley, B. Totty, M. Sayer, A. Aggarwal, and S. Reddy. HTTP: The Definitive
Guide. Definitive Guides. O’Reilly Media, 2002.

[GWFR16] Felix Gessert, Wolfram Wingerath, Steffen Friedrich, and Norbert Ritter.

NoSQL database systems: a survey and decision guidance. Computer Science
- Research and Development, November 2016.

[GWR17] Felix Gessert, Wolfram Wingerath, and Norbert Ritter. Scalable Data Man-

agement: An In-Depth Tutorial on NoSQL Data Stores. In BTW (Workshops),

volume P-266 of LNI, pages 399–402. GI, 2017.

https://facebook.github.io/graphql/

288 Bibliography

[HA90] Phillip W Hutto and Mustaque Ahamad. Slow memory: Weakening con-

sistency to enhance concurrency in distributed shared memories. In Dis-
tributed Computing Systems, 1990. Proceedings., 10th International Conference
on, pages 302–309. IEEE, 1990.

[Ham07] James Hamilton. On designing and deploying internet-scale services. In 21st
LISA. USENIX Association, 2007.

[HAMS08] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. OLTP through

the looking glass, and what we found there. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pages 981–992,

2008.

[Han87] Eric N. Hanson. A Performance Analysis of View Materialization Strategies. In

Umeshwar Dayal and Irving L. Traiger, editors, Proceedings of the Association
for Computing Machinery Special Interest Group on Management of Data 1987
Annual Conference, San Francisco, California, May 27-29, 1987, pages 440–

453. ACM Press, 1987.

[Här84] Theo Härder. Observations on optimistic concurrency control schemes. Inf.
Syst., 9(2):111–120, 1984.

[Har14] Dickt Hardt. The OAuth 2.0 authorization framework (2012). URL:
https://tools. ietf. org/html/rfc6749. html, 2014.

[Has17] Mazdak Hashemi. The Infrastructure Behind Twitter: Scale. https:

//blog.twitter.com/2017/the-infrastructure-behind-twitter-scale,

2017. (Accessed on 05/25/2017).

[HB09] Urs Hoelzle and Luiz Andre Barroso. The Datacenter As a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan and Claypool

Publishers, 2009.

[Hba17] HBase. http://hbase.apache.org/, 2017. (Accessed on 05/25/2017).

[HBvR+13] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev Kumar,

and Harry C. Li. An analysis of Facebook photo caching. In SOSP, pages

167–181, 2013.

[HDF13] Kai Hwang, Jack Dongarra, and Geoffrey C Fox. Distributed and cloud com-
puting: from parallel processing to the internet of things. Morgan Kaufmann,

2013.

[Hel07] Joesph Hellerstein. Architecture of a Database System. Foundations and
Trends in Databases, 1(2):141–259, November 2007.

[Hev16] H2o Server. https://h2o.examp1e.net/configure/http2_directives.

html, 2016. (Accessed on 05/26/2017).

[HGGG12] Rui Han, Li Guo, Moustafa Ghanem, and Yike Guo. Lightweight Resource

Scaling for Cloud Applications. In 12th IEEE/ACM International Symposium

https://blog.twitter.com/2017/the-infrastructure-behind-twitter-scale
https://blog.twitter.com/2017/the-infrastructure-behind-twitter-scale
http://hbase.apache.org/
https://h2o.examp1e.net/configure/http2_directives.html
https://h2o.examp1e.net/configure/http2_directives.html

Bibliography 289

on Cluster, Cloud and Grid Computing, CCGrid 2012, Ottawa, Canada, May
13-16, 2012, pages 644–651. IEEE Computer Society, 2012.

[Hil16] Tony Hillerson. Seven Mobile Apps in Seven Weeks: Native Apps, Multiple
Platforms. Pragmatic Bookshelf, 2016.

[HIM02] H. Hacigumus, B. Iyer, and S. Mehrotra. Providing database as a service. In

Data Engineering, 2002. Proceedings. 18th International Conference on, pages

29–38, 2002.

[HKJR10] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed.

ZooKeeper: Wait-free Coordination for Internet-scale Systems. In USENIX
Annual Technical Conference, volume 8, page 9, 2010.

[HKM+88] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, Ma-

hadev Satyanarayanan, Robert N. Sidebotham, and Michael J. West. Scale

and Performance in a Distributed File System. ACM Trans. Comput. Syst.,
6(1):51–81, 1988.

[HL08] R. T. Hurley and B. Y. Li. A Performance Investigation of Web Caching Ar-

chitectures. In Proceedings of the 2008 C3S2E Conference, C3S2E ’08, pages

205–213, Montreal, Quebec, Canada, 2008. ACM.

[HMC+12] Masum Z. Hasan, Edgar Magana, Alexander Clemm, Lew Tucker, and Sree

Lakshmi D. Gudreddi. Integrated and autonomic cloud resource scaling. In

Filip De Turck, Luciano Paschoal Gaspary, and Deep Medhi, editors, 2012
IEEE Network Operations and Management Symposium, NOMS 2012, Maui,
HI, USA, April 16-20, 2012, pages 1327–1334. IEEE, 2012.

[HN13] J. Huang and D. Nicol. Trust mechanisms for cloud computing. Journal of
Cloud Computing, 2, 2013.

[Hoo17] GitHub - hoodiehq/hoodie: A backend for Offline First applications. https:

//github.com/hoodiehq/hoodie, 2017. (Accessed on 05/25/2017).

[HR83] Theo Haerder and Andreas Reuter. Principles of transaction-oriented

database recovery. ACM Comput. Surv., 15(4):287–317, December 1983.

[HS07] Marc Hadley and P Sandoz. JSR 311: Java api for RESTful web services.

Technical report, Java Community Process, 2007.

[HS16] Stephan Hochhaus and Manuel Schoebel. Meteor in action. Manning Publ.,

2016.

[HTV10] T. Haselmann, G. Thies, and G. Vossen. Looking into a REST-Based Universal

API for Database-as-a-Service Systems. In CEC, pages 17–24, 2010.

[HW90] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness con-

dition for concurrent objects. ACM Transactions on Programming Languages
and Systems (TOPLAS), 12(3):463–492, 1990.

https://github.com/hoodiehq/hoodie
https://github.com/hoodiehq/hoodie

290 Bibliography

[HW03] Gregor Hohpe and Bobby Woolf. Enterprise Integration Pattern. Addison-
Wesley Signature Series, 2003.

[HYA+15] Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Nor Badrul Anuar, Salimah

Mokhtar, Abdullah Gani, and Samee Ullah Khan. The rise of "big data" on

cloud computing: Review and open research issues. Inf. Syst., 47:98–115,

2015.

[IBM17] IBM Bluemix – Cloud-Infrastruktur, Plattformservices, Watson, &

weitere PaaS-Lösungen. https://www.ibm.com/cloud-computing/bluemix,

2017. (Accessed on 05/20/2017).

[IBNW09] Christopher Ireland, David Bowers, Michael Newton, and Kevin Waugh. A

Classification of Object-Relational Impedance Mismatch. pages 36–43. IEEE,

2009.

[IC98] Arun Iyengar and Jim Challenger. Data Update Propagation: A Method for

Determining How Changes to Underlying Data A ect Cached Objects on the

Web. Technical report, Technical Report RC 21093 (94368), IBM Research

Division, Yorktown Heights, NY, 1998.

[IET15] IETF. RFC 7540 - Hypertext Transfer Protocol Version 2 (HTTP/2). 2015.

[IKLL12] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. Empirical prediction

models for adaptive resource provisioning in the cloud. Future Generation
Comp. Syst., 28(1):155–162, 2012.

[Int17] Ecma International. ECMAScript 2017 Language Specification. 6 2017. (Ac-

cessed on 09/22/2017).

[JA07] Dean Jacobs and Stefan Aulbach. Ruminations on Multi-Tenant Databases.

In Alfons Kemper, Harald Schöning, Thomas Rose, Matthias Jarke, Thomas

Seidl, Christoph Quix, and Christoph Brochhaus, editors, Datenbanksys-
teme in Business, Technologie und Web (BTW 2007), 12. Fachtagung des GI-
Fachbereichs "Datenbanken und Informationssysteme" (DBIS), Proceedings, 7.-
9. März 2007, Aachen, Germany, volume 103 of LNI, pages 514–521. GI,

2007.

[Jet] Jetty - Servlet Engine and Http Server. https://www.eclipse.org/jetty/.

(Accessed on 04/30/2018).

[Joy17] Joyent | Triton. https://www.joyent.com/, 2017. (Accessed on

06/05/2017).

[JRY11] Flavio Junqueira, Benjamin Reed, and Maysam Yabandeh. Lock-free trans-

actional support for large-scale storage systems. In IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W 2011),
Hong Kong, China, June 27-30, 2011., pages 176–181. IEEE, 2011.

https://www.ibm.com/cloud-computing/bluemix
https://www.eclipse.org/jetty/
https://www.joyent.com/

Bibliography 291

[Kam17] Poul-Henning Kamp. Varnish HTTP Cache. https://varnish-cache.org/,

2017. (Accessed on 04/30/2017).

[KB96] Arthur M. Keller and Julie Basu. A Predicate-based Caching Scheme for

Client-Server Database Architectures. VLDB J., 5(1):35–47, 1996.

[KDM+14] S Kulkarni, M Demirbas, D Madeppa, A Bharadwaj, and M Leone. Logical

physical clocks and consistent snapshots in globally distributed databases,

2014.

[KF11] Pawel Koperek and Wlodzimierz Funika. Dynamic Business Metrics-driven

Resource Provisioning in Cloud Environments. In Roman Wyrzykowski, Jack

Dongarra, Konrad Karczewski, and Jerzy Wasniewski, editors, Parallel Pro-
cessing and Applied Mathematics - 9th International Conference, PPAM 2011,
Torun, Poland, September 11-14, 2011. Revised Selected Papers, Part II, volume

7204 of Lecture Notes in Computer Science, pages 171–180. Springer, 2011.

[KFD00] Donald Kossmann, Michael J. Franklin, and Gerhard Drasch. Cache invest-

ment: integrating query optimization and distributed data placement. ACM
Trans. Database Syst., 25(4):517–558, 2000.

[KFPC16] Nikolaos Karapanos, Alexandros Filios, Raluca Ada Popa, and Srdjan Cap-

kun. Verena: End-to-End Integrity Protection for Web Applications. In IEEE
Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26,
2016, pages 895–913. IEEE Computer Society, 2016.

[KHAK09] Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann. Con-

sistency rationing in the cloud: pay only when it matters. Proceedings of the
VLDB Endowment, 2(1):253–264, 2009.

[KHR02] Dina Katabi, Mark Handley, and Charles E. Rohrs. Congestion control for high

bandwidth-delay product networks. In Matthew Mathis, Peter Steenkiste,

Hari Balakrishnan, and Vern Paxson, editors, Proceedings of the ACM SIG-
COMM 2002 Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication, August 19-23, 2002, Pittsburgh, PA, USA,

pages 89–102. ACM, 2002.

[KJH15] Jens Köhler, Konrad Jünemann, and Hannes Hartenstein. Confidential

database-as-a-service approaches: taxonomy and survey. Journal of Cloud
Computing, 4(1):1, 2015.

[KK94] Alfons Kemper and Donald Kossmann. Dual-Buffering Strategies in Object

Bases. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors, VLDB’94,
Proceedings of 20th International Conference on Very Large Data Bases, Septem-
ber 12-15, 1994, Santiago de Chile, Chile, pages 427–438. Morgan Kaufmann,

1994.

[KKN+08] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E.P.C. Jones,

S. Madden, M. Stonebraker, Y. Zhang, et al. H-store: a high-performance,

https://varnish-cache.org/

292 Bibliography

distributed main memory transaction processing system. Proceedings of the
VLDB Endowment, 1(2):1496–1499, 2008.

[KL11] Tim Kiefer and Wolfgang Lehner. Private Table Database Virtualization for

DBaaS. In IEEE 4th International Conference on Utility and Cloud Computing,
UCC 2011, Melbourne, Australia, December 5-8, 2011, pages 328–329. IEEE

Computer Society, 2011.

[KLAR10] Heba Kurdi, Maozhen Li, and HS Al-Raweshidy. Taxonomy of Grid Systems.

In Handbook of research on P2P and grid systems for service-oriented comput-
ing: Models, Methodologies and Applications, pages 20–43. IGI Global, 2010.

[Kle17] Martin Kleppmann. Designing Data-Intensive Applications. O’Reilly Media, 1

edition edition, January 2017.

[KLL+97] David R. Karger, Eric Lehmanl, Tom Leightonl, Rina Panigrahy, Matthew S.

Levine, and Daniel Lewin. Consistent hashing and random trees: distributed

caching protocols for relieving hot spots on the World Wide Web. In ACM
Symposium on Theory of Computing, pages 654–663, 1997.

[KLM97] Tom M. Kroeger, Darrell D. E. Long, and Jeffrey C. Mogul. Exploring the

Bounds of Web Latency Reduction from Caching and Prefetching. In 1st
USENIX Symposium on Internet Technologies and Systems, USITS’97, Monterey,
California, USA, December 8-11, 1997. USENIX, 1997.

[KM06] Adam Kirsch and Michael Mitzenmacher. Less hashing, same performance:

Building a better Bloom filter. In Algorithms–ESA 2006, pages 456–467.

Springer, 2006.

[KNO+02] Panos Kalnis, Wee Siong Ng, Beng Chin Ooi, Dimitris Papadias, and Kian-Lee

Tan. An adaptive peer-to-peer network for distributed caching of OLAP re-

sults. In Michael J. Franklin, Bongki Moon, and Anastassia Ailamaki, editors,

Proceedings of the 2002 ACM SIGMOD International Conference on Manage-
ment of Data, Madison, Wisconsin, June 3-6, 2002, pages 25–36. ACM, 2002.

[Kos00] Donald Kossmann. The State of the art in distributed query processing. ACM
Comput. Surv., 32(4):422–469, 2000.

[KP+88] Glenn E Krasner, Stephen T Pope, et al. A description of the model-view-

controller user interface paradigm in the smalltalk-80 system. Journal of
object oriented programming, 1(3):26–49, 1988.

[KP01] Panos Kalnis and Dimitris Papadias. Proxy-server architectures for OLAP. In

Sharad Mehrotra and Timos K. Sellis, editors, Proceedings of the 2001 ACM
SIGMOD international conference on Management of data, Santa Barbara, CA,
USA, May 21-24, 2001, pages 367–378. ACM, 2001.

[KPF+13] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan

Fekete. MDCC: Multi-data center consistency. In EuroSys, pages 113–126.

ACM, 2013.

Bibliography 293

[KR81] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency con-

trol. ACM Transactions on Database Systems (TODS), 6(2):213–226, 1981.

[KR01] B. Krishnamurthy and J. Rexford. Web Protocols and Practice, HTTP/1.1,

Networking Protocols, Caching, and Traffic Measurement. Recherche, 67:02,

2001.

[KR10] James F Kurose and Keith W Ross. Computer networking: a top-down ap-
proach, volume 5. Addison-Wesley Reading, 2010.

[Kre14] Jay Kreps. Questioning the Lambda Architecture. https://www.oreilly.

com/ideas/questioning-the-lambda-architecture, 2014. (Accessed on

09/23/2018).

[Kri13] Raffi Krikorian. Timelines at Scale. http://infoq.com/presentations/

Twitter-Timeline-Scalability, 2013. (Accessed on 04/30/2017).

[Kri15] Michael Krigsman. Research: 25 percent of web projects fail. http://www.

zdnet.com/article/research-25-percent-of-web-projects-fail/, Dec

2015. (Accessed on 04/30/2017).

[KV14] Pradeeban Kathiravelu and Luís Veiga. An Adaptive Distributed Simulator

for Cloud and MapReduce Algorithms and Architectures. In Proceedings of
the 7th IEEE/ACM International Conference on Utility and Cloud Computing,
UCC 2014, London, United Kingdom, December 8-11, 2014, pages 79–88. IEEE

Computer Society, 2014.

[KW97] Balachander Krishnamurthy and Craig E. Wills. Study of Piggyback Cache

Validation for Proxy Caches in the World Wide Web. In 1st USENIX Sym-
posium on Internet Technologies and Systems, USITS’97, Monterey, California,
USA, December 8-11, 1997. USENIX, 1997.

[KW98] Balachander Krishnamurthy and Craig E. Wills. Piggyback Server Invalida-

tion for Proxy Cache Coherency. Computer Networks, 30(1-7):185–193, 1998.

[KW99] Balachander Krishnamurthy and Craig E. Wills. Proxy Cache Coherency and

Replacement - Towards a More Complete Picture. In Proceedings of the 19th
International Conference on Distributed Computing Systems, Austin, TX, USA,
May 31 - June 4, 1999, pages 332–339. IEEE Computer Society, 1999.

[KWQH16] In Kee Kim, Wei Wang, Yanjun Qi, and Marty Humphrey. Empirical Evalua-

tion of Workload Forecasting Techniques for Predictive Cloud Resource Scal-

ing. In 9th IEEE International Conference on Cloud Computing, CLOUD 2016,
San Francisco, CA, USA, June 27 - July 2, 2016, pages 1–10. IEEE Computer

Society, 2016.

[Lac16] Kevin Lacker. Moving On. Parse Blog, January 2016. Accessed on

12/09/2017.

https://www.oreilly.com/ideas/questioning-the-lambda-architecture
https://www.oreilly.com/ideas/questioning-the-lambda-architecture
http://infoq.com/presentations/Twitter-Timeline-Scalability
http://infoq.com/presentations/Twitter-Timeline-Scalability
http://www.zdnet.com/article/research-25-percent-of-web-projects-fail/
http://www.zdnet.com/article/research-25-percent-of-web-projects-fail/

294 Bibliography

[Lam78] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed

System. Commun. ACM, 21(7):558–565, 1978.

[Lam86a] Leslie Lamport. On interprocess communication. part I: basic formalism. Dis-
tributed Computing, 1(2):77–85, 1986.

[Lam86b] Leslie Lamport. On interprocess communication. part II: algorithms. Dis-
tributed Computing, 1(2):86–101, 1986.

[Lam98] Leslie Lamport. The part-time parliament. ACM Transactions on Computer
Systems (TOCS), 16(2):133–169, 1998.

[Lam01] Leslie Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[Lan01] Douglas Laney. 3d Data Management: Controlling Data Volume, Velocity,

and Variety. Technical report, META Group, February 2001.

[LBMAL14] Tania Lorido-Botran, Jose Miguel-Alonso, and JoseA. Lozano. A Review

of Auto-scaling Techniques for Elastic Applications in Cloud Environments.

Journal of Grid Computing, 12(4):559–592, 2014.

[LC97] Chengjie Liu and Pei Cao. Maintaining Strong Cache Consistency in the

World-Wide Web. In Proceedings of the 17th International Conference on Dis-
tributed Computing Systems, Baltimore, MD, USA, May 27-30, 1997, pages

12–21. IEEE Computer Society, 1997.

[LC99] Dongwon Lee and Wesley W. Chu. Semantic Caching via Query Matching

for Web Sources. In Proceedings of the 1999 ACM CIKM International Confer-
ence on Information and Knowledge Management, Kansas City, Missouri, USA,
November 2-6, 1999, pages 77–85. ACM, 1999.

[LCSA99] Barbara Liskov, Miguel Castro, Liuba Shrira, and Atul Adya. Providing Persis-

tent Objects in Distributed Systems. In Rachid Guerraoui, editor, ECOOP’99
- Object-Oriented Programming, 13th European Conference, Lisbon, Portugal,
June 14-18, 1999, Proceedings, volume 1628 of Lecture Notes in Computer
Science, pages 230–257. Springer, 1999.

[Leb08] Scott Leberknight. Polyglot Persistence. http://www.sleberknight.

com/blog/sleberkn/entry/polyglot_persistence, 2008. (Accessed on

04/30/2017).

[Lec09] Jens Lechtenbörger. Two-Phase Commit Protocol. In LING LIU and M.TAMER

ÖZSU, editors, Encyclopedia of Database Systems, pages 3209–3213. Springer

US, 2009.

[Len02] Maurizio Lenzerini. Data integration: A theoretical perspective. In Lu-

cian Popa, Serge Abiteboul, and Phokion G. Kolaitis, editors, Proceedings
of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 3-5, Madison, Wisconsin, USA, pages 233–246. ACM,

2002.

http://www.sleberknight.com/blog/sleberkn/entry/polyglot_persistence
http://www.sleberknight.com/blog/sleberkn/entry/polyglot_persistence

Bibliography 295

[LFKA11] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Ander-

sen. Don’t settle for eventual: scalable causal consistency for wide-area stor-

age with COPS. In Proceedings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles, pages 401–416. ACM, 2011.

[LFKA13] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Ander-

sen. Stronger semantics for low-latency geo-replicated storage. In Presented
as part of the 10th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 13), pages 313–328, 2013.

[LGZ04] Per-Åke Larson, Jonathan Goldstein, and Jingren Zhou. Mtcache: Trans-

parent mid-tier database caching in SQL server. In Z. Meral Özsoyoglu and

Stanley B. Zdonik, editors, Proceedings of the 20th International Conference
on Data Engineering, ICDE 2004, 30 March - 2 April 2004, Boston, MA, USA,

pages 177–188. IEEE Computer Society, 2004.

[LGZ+13] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Eric Baldeschwieler, Scott Shenker,

and Ion Stoica. Tachyon: Memory Throughput I/O for Cluster Computing

Frameworks. memory, 18:1, 2013.

[Lin06] Greg Linden. Make Data Useful. http://sites.google.com/site/

glinden/Home/StanfordDataMining.2006-11-28.ppt, 2006. (Accessed on

04/30/2017).

[LKAP01] Thanasis Loukopoulos, Panos Kalnis, Ishfaq Ahmad, and Dimitris Papadias.

Active caching of on-line-analytical-processing queries in WWW proxies. In

Lionel M. Ni and Mateo Valero, editors, Proceedings of the 2001 International
Conference on Parallel Processing, ICPP 2002, 3-7 September 2001, Valencia,
Spain, pages 419–426. IEEE Computer Society, 2001.

[LKM+02] Qiong Luo, Sailesh Krishnamurthy, C. Mohan, Hamid Pirahesh, Honguk Woo,

Bruce G. Lindsay, and Jeffrey F. Naughton. Middle-tier database caching for

e-business. In Michael J. Franklin, Bongki Moon, and Anastassia Ailamaki,

editors, Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, Madison, Wisconsin, June 3-6, 2002, pages 600–611.

ACM, 2002.

[LL00] F Thomson Leighton and Daniel M Lewin. Global hosting system, August 22

2000. US Patent 6,108,703.

[LLC+14] Cheng Li, João Leitão, Allen Clement, Nuno M. Preguiça, Rodrigo Rodrigues,

and Viktor Vafeiadis. Automating the Choice of Consistency Levels in Repli-

cated Systems. In Garth Gibson and Nickolai Zeldovich, editors, 2014 USENIX
Annual Technical Conference, USENIX ATC ’14, Philadelphia, PA, USA, June 19-
20, 2014., pages 281–292. USENIX Association, 2014.

[LLS+15] Justin J. Levandoski, David B. Lomet, Sudipta Sengupta, Ryan Stutsman, and

Rui Wang. High Performance Transactions in Deuteronomy. In CIDR 2015,

http://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-28.ppt
http://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-28.ppt

296 Bibliography

Seventh Biennial Conference on Innovative Data Systems Research, Asilomar,
CA, USA, January 4-7, 2015, Online Proceedings. www.cidrdb.org, 2015.

[LLXX09] Alexandros Labrinidis, Qiong Luo, Jie Xu, and Wenwei Xue. Caching and

Materialization for Web Databases. Foundations and Trends in Databases,
2(3):169–266, 2009.

[LM10] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized struc-

tured storage system. ACM SIGOPS Operating Systems Review, 44(2):35–40,

2010.

[LMLM16] Sarath Lakshman, Sriram Melkote, John Liang, and Ravi Mayuram. Nitro:

A fast, scalable in-memory storage engine for nosql global secondary index.

PVLDB, 9(13):1413–1424, 2016.

[LN01] Qiong Luo and Jeffrey F. Naughton. Form-Based Proxy Caching for Database-

Backed Web Sites. In Peter M. G. Apers, Paolo Atzeni, Stefano Ceri, Stefano

Paraboschi, Kotagiri Ramamohanarao, and Richard T. Snodgrass, editors,

VLDB 2001, Proceedings of 27th International Conference on Very Large Data
Bases, September 11-14, 2001, Roma, Italy, pages 191–200. Morgan Kauf-

mann, 2001.

[LPC+12] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno M. Preguiça,

and Rodrigo Rodrigues. Making Geo-Replicated Systems Fast as Possible,

Consistent when Necessary. In Chandu Thekkath and Amin Vahdat, edi-

tors, 10th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012, pages 265–278.

USENIX Association, 2012.

[LPK+15] Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Matsushita, and John K.

Ousterhout. Implementing linearizability at large scale and low latency. In

Ethan L. Miller and Steven Hand, editors, Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7,
2015, pages 71–86. ACM, 2015.

[LPS09] Mihai Letia, Nuno Preguiça, and Marc Shapiro. CRDTs: Consistency without

concurrency control. arXiv preprint arXiv:0907.0929, 2009.

[LR00] Alexandros Labrinidis and Nick Roussopoulos. WebView Materialization. In

Weidong Chen, Jeffrey F. Naughton, and Philip A. Bernstein, editors, Pro-
ceedings of the 2000 ACM SIGMOD International Conference on Management
of Data, May 16-18, 2000, Dallas, Texas, USA., pages 367–378. ACM, 2000.

[LR01a] Alexandros Labrinidis and Nick Roussopoulos. Adaptive WebView Material-

ization. In WebDB, pages 85–90, 2001.

[LR01b] Alexandros Labrinidis and Nick Roussopoulos. Update Propagation Strate-

gies for Improving the Quality of Data on the Web. In Peter M. G. Apers,

Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Kotagiri Ramamohanarao,

Bibliography 297

and Richard T. Snodgrass, editors, VLDB 2001, Proceedings of 27th Interna-
tional Conference on Very Large Data Bases, September 11-14, 2001, Roma,
Italy, pages 391–400. Morgan Kaufmann, 2001.

[LS88a] Richard J Lipton and Jonathan S Sandberg. PRAM: A scalable shared memory.

Princeton University, Department of Computer Science, 1988.

[LS88b] Barbara Liskov and Liuba Shrira. Promises: Linguistic Support for Efficient

Asynchronous Procedure Calls in Distributed Systems. In Richard L. Wexel-

blat, editor, Proceedings of the ACM SIGPLAN’88 Conference on Programming
Language Design and Implementation (PLDI), Atlanta, Georgia, USA, June 22-
24, 1988, pages 260–267. ACM, 1988.

[LS13] Wolfgang Lehner and Kai-Uwe Sattler. Web-Scale Data Management for the
Cloud. Springer, New York, auflage: 2013 edition, April 2013.

[LSPK12] Willis Lang, Srinath Shankar, Jignesh M. Patel, and Ajay Kalhan. Towards

Multi-tenant Performance SLOs. In Anastasios Kementsietsidis and Marcos

Antonio Vaz Salles, editors, IEEE 28th International Conference on Data En-
gineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1-5 April,
2012, pages 702–713. IEEE Computer Society, 2012.

[Luc14] Gregory Robert Luck. The Java Community Process(SM) Program - JSRs:

Java Specification Requests - detail JSR# 107. https://www.jcp.org/en/

jsr/detail?id=107, 2014. (Accessed on 04/30/2017).

[Luc17] Apache Lucene - Apache Solr. http://lucene.apache.org/solr/, 2017.

(Accessed on 04/30/2017).

[LVA+15] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt, Yee Jiun

Song, Wendy Tobagus, Sanjeev Kumar, and Wyatt Lloyd. Existential con-

sistency: measuring and understanding consistency at Facebook. In Ethan L.

Miller and Steven Hand, editors, Proceedings of the 25th Symposium on Oper-
ating Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015,

pages 295–310. ACM, 2015.

[LW84] Ming-Yee Lai and W. Kevin Wilkinson. Distributed Transaction Management

in Jasmin. In Umeshwar Dayal, Gunter Schlageter, and Lim Huat Seng, ed-

itors, Tenth International Conference on Very Large Data Bases, August 27-31,
1984, Singapore, Proceedings., pages 466–470. Morgan Kaufmann, 1984.

[Lwe10] Bernhard Lwenstein. Benchmarking of Middleware Systems: Evaluating and
Comparing the Performance and Scalability of XVSM (MozartSpaces), JavaS-
paces (GigaSpaces XAP) and J2EE (JBoss AS). VDM Verlag, 2010.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[Mö17] Konstantin Möllers. A Graphical Metamodelling Framework for the Web

Applied on Backend-as-a-Service Systems. Masterarbeit, Universität Ham-

burg, Fachbereich Informatik, Vogt-Kölln-Str. 30, 22527 Hamburg, Germany,

https://www.jcp.org/en/jsr/detail?id=107
https://www.jcp.org/en/jsr/detail?id=107
http://lucene.apache.org/solr/

298 Bibliography

7 2017.

[MAD+11] Prince Mahajan, Lorenzo Alvisi, Mike Dahlin, et al. Consistency, availability,

and convergence. University of Texas at Austin Tech Report, 11, 2011.

[Mai90] David Maier. Representing database programs as objects. In Advances in
database programming languages, pages 377–386. ACM, 1990.

[Mal16] Ivano Malavolta. Beyond native apps: web technologies to the res-

cue!(keynote). In Proceedings of the 1st International Workshop on Mobile
Development, pages 1–2. ACM, 2016.

[Mar14] Nathan Marz. History of Apache Storm and lessons learned. Thoughts from
the Red Planet, 10 2014. Accessed: 2015-12-17.

[MB16] San Murugesan and Irena Bojanova. Encyclopedia of Cloud Computing. John

Wiley & Sons, 2016.

[MBS11] Michael Maurer, Ivona Brandic, and Rizos Sakellariou. Enacting SLAs in

clouds using rules. In European Conference on Parallel Processing, pages 455–

466. Springer, 2011.

[MC+98] Evangelos P Markatos, Catherine E Chronaki, et al. A top-10 approach to

prefetching on the web. In Proceedings of INET, volume 98, pages 276–290,

1998.

[McK16] Martin McKeay. Akamai’s State of the Internet Report Q4 2016. Technical

report, Akamai, 2016.

[McM17] Patrick McManus. Using Immutable Caching To Speed

Up The Web. https://hacks.mozilla.org/2017/01/

using-immutable-caching-to-speed-up-the-web/, 2017. (Accessed

on 04/30/2017).

[MDFK97] Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and Balachander Krishna-

murthy. Potential benefits of delta encoding and data compression for HTTP.

In Christophe Diot, Christian Huitema, Scott Shenker, and Martha Steen-

strup, editors, Proceedings of the ACM SIGCOMM 1997 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communication,
September 14-18, 1997, Cannes, France., pages 181–194. ACM, 1997.

[Mee12] Patrick Meenan. Speed Index - WebPagetest Documentation. https:

//sites.google.com/a/webpagetest.org/docs/using-webpagetest/

metrics/speed-index, 2012. (Accessed on 07/16/2017).

[Mer14] Dirk Merkel. Docker: lightweight linux containers for consistent develop-

ment and deployment. Linux Journal, 2014(239):2, 2014.

[MG09] Peter Mell and Tim Grance. The NIST definition of cloud computing. National
Institute of Standards and Technology, 53(6):50, 2009.

https://hacks.mozilla.org/2017/01/using-immutable-caching-to-speed-up-the-web/
https://hacks.mozilla.org/2017/01/using-immutable-caching-to-speed-up-the-web/
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index

Bibliography 299

[Mic16] Microsoft. TypeScript Language Specification. https://github.com/

Microsoft/TypeScript/blob/master/doc/spec.md, 01 2016. (Accessed on

10/06/2017).

[Mil68] Robert B Miller. Response time in man-computer conversational transactions.

In Proceedings of the December 9-11, 1968, fall joint computer conference, part
I, pages 267–277. ACM, 1968.

[Mit02] M. Mitzenmacher. Compressed bloom filters. IEEE/ACM Transactions on Net-
working (TON), 10(5):604–612, 2002.

[MJM08] Yanhua Mao, Flavio Paiva Junqueira, and Keith Marzullo. Mencius: Building

Efficient Replicated State Machine for WANs. In Richard Draves and Robbert

van Renesse, editors, 8th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2008, December 8-10, 2008, San Diego, California,
USA, Proceedings, pages 369–384. USENIX Association, 2008.

[MKC+12] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, et al. SFS: random write

considered harmful in solid state drives. In FAST, 2012.

[MNP+13] Hatem A. Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal,

and Amr El Abbadi. Low-Latency Multi-Datacenter Databases using Repli-

cated Commit. PVLDB, 6(9):661–672, 2013.

[Mog94] Jeffrey C. Mogul. Recovery in spritely NFS. Computing Systems, 7(2):201–

262, 1994.

[Mon17] MongoDB. https://www.mongodb.com/, 2017. (Accessed on 06/18/2017).

[Mon18] FAQ: Concurrency — MongoDB Manual 3.0. https://docs.mongodb.com/

v3.0/faq/concurrency/, 2018. (Accessed on 05/27/2018).

[MP14] M Mikowski and J Powell. Single Page Applications, 2014.

[MP17] Ryan Marcus and Olga Papaemmanouil. Releasing Cloud Databases from the

Chains of Performance Prediction Models. In CIDR, 2017.

[MRSJ15] Gabor Madl, Ramani Routray, Yang Song, and Rakesh Jain. Account cluster-

ing in multi-tenant storage management environments. In 2015 IEEE Interna-
tional Conference on Big Data, Big Data 2015, Santa Clara, CA, USA, October
29 - November 1, 2015, pages 1698–1707. IEEE, 2015.

[MSL+11] Prince Mahajan, Srinath T. V. Setty, Sangmin Lee, Allen Clement, Lorenzo

Alvisi, Michael Dahlin, and Michael Walfish. Depot: Cloud Storage with

Minimal Trust. ACM Trans. Comput. Syst., 29(4):12:1–12:38, 2011.

[MSMO97] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. The

macroscopic behavior of the TCP congestion avoidance algorithm. ACM SIG-
COMM Computer Communication Review, 27(3):67–82, 1997.

[MTK+11] Kunal Mukerjee, Tomas Talius, Ajay Kalhan, Nigel Ellis, and Conor Cunning-

ham. SQL Azure as a Self-Managing Database Service: Lessons Learned and

https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://www.mongodb.com/
https://docs.mongodb.com/v3.0/faq/concurrency/
https://docs.mongodb.com/v3.0/faq/concurrency/

300 Bibliography

Challenges Ahead. IEEE Data Eng. Bull., 34(4):61–70, 2011.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and computing - randomized
algorithms and probabilistic analysis. Cambridge University Press, 2005.

[MW15] Nathan Marz and James Warren. Big Data: Principles and Best Practices of
Scalable Realtime Data Systems. Manning Publications Co., 2015.

[Mye85] Brad A Myers. The importance of percent-done progress indicators for

computer-human interfaces. In ACM SIGCHI Bulletin, volume 16, pages 11–

17. ACM, 1985.

[MyS17] MySQL Documentation. https://dev.mysql.com/doc/, 2017. (Accessed on

09/15/2017).

[Nag04] S. V. Nagaraj. Web caching and its applications, volume 772. Springer, 2004.

[New15] Sam Newman. Building microservices - designing fine-grained systems, 1st Edi-
tion. O’Reilly, 2015.

[NFG+13] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,

Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David

Stafford, Tony Tung, and Venkateshwaran Venkataramani. Scaling Memcache

at Facebook. In NSDI, pages 385–398. USENIX Association, 2013.

[NGMB16] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. Po-

laris: Faster page loads using fine-grained dependency tracking. In 13th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
16). USENIX Association, 2016.

[Nie94] Jakob Nielsen. Usability engineering. Elsevier, 1994.

[NMMA16] Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and Mike Amundsen. Mi-
croservice Architecture: Aligning Principles, Practices, and Culture. " O’Reilly

Media, Inc.", 2016.

[Not10] Mark Nottingham. RFC 5861 - HTTP Cache-Control Extensions for Stale

Content. 2010.

[NSWW16] Mihir Nanavati, Malte Schwarzkopf, Jake Wires, and Andrew Warfield. Non-

volatile storage. Commun. ACM, 59(1):56–63, 2016.

[Nuo17] NuoDB: Emergent Architecture. http://go.nuodb.com/rs/nuodb/images/

Greenbook_Final.pdf, 2017. (Accessed on 04/30/2017).

[NWG+09] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil So-

man, Lamia Youseff, and Dmitrii Zagorodnov. The eucalyptus open-source

cloud-computing system. In Proceedings of the 2009 9th IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid, pages 124–131. IEEE

Computer Society, 2009.

[NWO88] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. Caching in the

Sprite Network File System. ACM Trans. Comput. Syst., 6(1):134–154, 1988.

https://dev.mysql.com/doc/
http://go.nuodb.com/rs/nuodb/images/Greenbook_Final.pdf
http://go.nuodb.com/rs/nuodb/images/Greenbook_Final.pdf

Bibliography 301

[OAE+11] John K. Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Ja-

cob Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan, Diego

Ongaro, Guru M. Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric

Stratmann, and Ryan Stutsman. The case for RAMCloud. Commun. ACM,

54(7):121–130, 2011.

[Oak14] Scott Oaks. Java Performance - The Definitive Guide: Getting the Most Out of
Your Code. O’Reilly, 2014.

[Oda17] OData - open data protocol. http://www.odata.org/, 2017. (Accessed on

06/05/2017).

[ÖDV92] M. Tamer Özsu, Umeshwar Dayal, and Patrick Valduriez. An Introduction to

Distributed Object Management. In M. Tamer Özsu, Umeshwar Dayal, and

Patrick Valduriez, editors, Distributed Object Management, Papers from the
International Workshop on Distributed Object Management (IWDOM), Edmon-
ton, Alberta, Canada, August 19-21, 1992, pages 1–24. Morgan Kaufmann,

1992.

[Off17] Office 365 for Business. https://products.office.com/en-us/business/

office, 2017. (Accessed on 06/05/2017).

[OL88] Brian M. Oki and Barbara Liskov. Viewstamped replication: A general pri-

mary copy. In Danny Dolev, editor, Proceedings of the Seventh Annual ACM
Symposium on Principles of Distributed Computing, Toronto, Ontario, Canada,
August 15-17, 1988, pages 8–17. ACM, 1988.

[ON16] Kazuho Oku and Mark Nottingham. Cache Digests for HTTP/2. https://

tools.ietf.org/html/draft-ietf-httpbis-cache-digest-01, 2016. (Ac-

cessed on 06/05/2017).

[Onl17] Salesforce Online CRM. https://www.salesforce.com/en, 2017. (Accessed

on 06/05/2017).

[OO13] Diego Ongaro and John Ousterhout. In search of an understandable consen-

sus algorithm. Draft of October, 7, 2013.

[Ope17] Open API Initiative. https://www.openapis.org/, 2017. (Accessed on

07/28/2017).

[Ora17] Oracle Result Cache. https://docs.oracle.com/database/121/TGDBA/

tune_result_cache.htm#TGDBA616, 2017. (Accessed on 06/05/2017).

[ÖV11] M.T. Özsu and P. Valduriez. Principles of distributed database systems.
Springer, 2011.

[ÖVU98] M Tamer Özsu, Kaladhar Voruganti, and Ronald C Unrau. An Asynchronous

Avoidance-Based Cache Consistency Algorithm for Client Caching DBMSs. In

VLDB, volume 98, pages 440–451. Citeseer, 1998.

http://www.odata.org/
https://products.office.com/en-us/business/office
https://products.office.com/en-us/business/office
https://tools.ietf.org/html/draft-ietf-httpbis-cache-digest-01
https://tools.ietf.org/html/draft-ietf-httpbis-cache-digest-01
https://www.salesforce.com/en
https://www.openapis.org/
https://docs.oracle.com/database/121/TGDBA/tune_result_cache.htm#TGDBA616
https://docs.oracle.com/database/121/TGDBA/tune_result_cache.htm#TGDBA616

302 Bibliography

[Par17] Parse Server. http://parseplatform.github.io/docs/parse-server/

guide/, 2017. (Accessed on 07/28/2017).

[PB03] Stefan Podlipnig and László Böszörményi. A survey of Web cache replace-

ment strategies. ACM Comput. Surv., 35(4):374–398, 2003.

[PB07] Al-Mukaddim Khan Pathan and Rajkumar Buyya. A taxonomy and survey of

content delivery networks. Grid Computing and Distributed Systems Labora-
tory, University of Melbourne, Technical Report, page 4, 2007.

[PB08] Mukaddim Pathan and Rajkumar Buyya. A Taxonomy of CDNs. In Rajkumar

Buyya, Mukaddim Pathan, and Athena Vakali, editors, Content Delivery Net-
works, volume 9 of Lecture Notes Electrical Engineering, pages 33–77. Springer

Berlin Heidelberg, 2008.

[PD10] Daniel Peng and Frank Dabek. Large-scale Incremental Processing Using Dis-

tributed Transactions and Notifications. In OSDI, volume 10, pages 1–15,

2010.

[PF00] Meikel Pöss and Chris Floyd. New TPC benchmarks for decision support and

web commerce. SIGMOD Record, 29(4):64–71, 2000.

[PG12] Dan RK Ports and Kevin Grittner. Serializable snapshot isolation in Post-

greSQL. Proceedings of the VLDB Endowment, 5(12):1850–1861, 2012.

[PH03] Sunil Patro and Y. Charlie Hu. Transparent Query Caching in Peer-to-Peer

Overlay Networks. In 17th International Parallel and Distributed Processing
Symposium (IPDPS 2003), 22-26 April 2003, Nice, France, CD-ROM/Abstracts
Proceedings, page 32. IEEE Computer Society, 2003.

[PH09] Sang-Min Park and Marty Humphrey. Self-Tuning Virtual Machines for Pre-

dictable eScience. In Franck Cappello, Cho-Li Wang, and Rajkumar Buyya,

editors, 9th IEEE/ACM International Symposium on Cluster Computing and the
Grid, CCGrid 2009, Shanghai, China, 18-21 May 2009, pages 356–363. IEEE

Computer Society, 2009.

[PHS+09] Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal,

Zhikui Wang, Sharad Singhal, and Arif Merchant. Automated control of mul-

tiple virtualized resources. In Proceedings of the 4th ACM European conference
on Computer systems, pages 13–26. ACM, 2009.

[Pla13] Hasso Plattner. A course in in-memory data management. Springer, 2013.

[PLZ+16] Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, and Ion Stoica. FairRide:

near-optimal, fair cache sharing. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages 393–406, 2016.

[PM96] Venkata N. Padmanabhan and Jeffrey C. Mogul. Using predictive prefetch-

ing to improve World Wide Web latency. Computer Communication Review,

26(3):22–36, 1996.

http://parseplatform.github.io/docs/parse-server/guide/
http://parseplatform.github.io/docs/parse-server/guide/

Bibliography 303

[PN09] Radu Prodan and Vlad Nae. Prediction-based real-time resource provision-

ing for massively multiplayer online games. Future Generation Comp. Syst.,
25(7):785–793, 2009.

[Pop14] Raluca Ada Popa. Building practical systems that compute on encrypted data.

PhD thesis, Massachusetts Institute of Technology, 2014.

[Por09] Ely Porat. An Optimal Bloom Filter Replacement Based on Matrix Solving.

In Anna E. Frid, Andrey Morozov, Andrey Rybalchenko, and Klaus W. Wag-

ner, editors, Computer Science - Theory and Applications, Fourth International
Computer Science Symposium in Russia, CSR 2009, Novosibirsk, Russia, August
18-23, 2009. Proceedings, volume 5675 of Lecture Notes in Computer Science,

pages 263–273. Springer, 2009.

[Pos81] Jon Postel. Transmission control protocol. 1981.

[Pos17] PostgreSQL: Documentation: 9.6: High Availability, Load Balanc-

ing, and Replication. https://www.postgresql.org/docs/9.6/static/

high-availability.html, 2017. (Accessed on 07/28/2017).

[PPR05] Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao. An optimal Bloom filter re-

placement. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2005, Vancouver, British Columbia, Canada, Jan-
uary 23-25, 2005, pages 823–829. SIAM, 2005.

[PPR+11] Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio

López, Garth Gibson, Adam Fuchs, and Billie Rinaldi. YCSB++: benchmark-

ing and performance debugging advanced features in scalable table stores. In

Jeffrey S. Chase and Amr El Abbadi, editors, ACM Symposium on Cloud Com-
puting in conjunction with SOSP 2011, SOCC ’11, Cascais, Portugal, October
26-28, 2011, page 9. ACM, 2011.

[Pri08] Dan Pritchett. BASE: An Acid Alternative. Queue, 6(3):48–55, May 2008.

[PRZB11] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB: pro-

tecting confidentiality with encrypted query processing. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, pages 85–100,

2011. 00095.

[PSS09] Felix Putze, Peter Sanders, and Johannes Singler. Cache-, hash-, and space-

efficient bloom filters. ACM Journal of Experimental Algorithmics, 14, 2009.

[PSV+14] Raluca Ada Popa, Emily Stark, Steven Valdez, Jonas Helfer, Nickolai Zel-

dovich, and Hari Balakrishnan. Building Web Applications on Top of En-

crypted Data Using Mylar. In Ratul Mahajan and Ion Stoica, editors, Proceed-
ings of the 11th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI 2014, Seattle, WA, USA, April 2-4, 2014, pages 157–172.

USENIX Association, 2014.

https://www.postgresql.org/docs/9.6/static/high-availability.html
https://www.postgresql.org/docs/9.6/static/high-availability.html

304 Bibliography

[PSZ+07] Pradeep Padala, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang,

Sharad Singhal, Arif Merchant, and Kenneth Salem. Adaptive control of

virtualized resources in utility computing environments. In Paulo Ferreira,

Thomas R. Gross, and Luís Veiga, editors, Proceedings of the 2007 EuroSys
Conference, Lisbon, Portugal, March 21-23, 2007, pages 289–302. ACM, 2007.

[PV97] Dhiraj K. Pradhan and Nitin H. Vaidya. Roll-Forward and Rollback Recovery:

Performance-Reliability Trade-Off. IEEE Trans. Computers, 46(3):372–378,

1997.

[PZ13] Raluca A. Popa and Nickolai Zeldovich. Multi-Key Searchable Encryption.

IACR Cryptology ePrint Archive, 2013:508, 2013.

[QSD+13] Lin Qiao, Kapil Surlaker, Shirshanka Das, Tom Quiggle, Bob Schulman,

Bhaskar Ghosh, Antony Curtis, Oliver Seeliger, Zhen Zhang, Aditya Auradar,

and others. On brewing fresh espresso: LinkedIn’s distributed data serving

platform. In Proceedings of the 2013 international conference on Management
of data, pages 1135–1146. ACM, 2013.

[Rah88] Erhard Rahm. Optimistische Synchronisationskonzepte in zentralisierten und

verteilten Datenbanksystemen/Concepts for optimistic concurrency control

in centralized and distributed database systems. it-Information Technology,

30(1):28–47, 1988.

[RAR13] Leonard Richardson, Mike Amundsen, and Sam Ruby. RESTful Web APIs:
Services for a Changing World. " O’Reilly Media, Inc.", 2013.

[Rea17] React - A JavaScript library for building user interfaces. https://facebook.

github.io/react/, 2017. (Accessed on 05/26/2017).

[Ree08] Will Reese. Nginx: the high-performance web server and reverse proxy. Linux
Journal, 2008(173):2, 2008.

[Res17] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3

(Draft). https://tools.ietf.org/html/draft-ietf-tls-tls13-21, 2017.

(Accessed on 07/29/2017).

[RGA+12] Muntasir Raihan Rahman, Wojciech M. Golab, Alvin AuYoung, Kimberly Kee-

ton, and Jay J. Wylie. Toward a Principled Framework for Benchmarking

Consistency. CoRR, abs/1211.4290, 2012.

[Ria17] Riak. http://basho.com/products/, 2017. (Accessed on 05/25/2017).

[Rig17] RightScale Cloud Management. http://www.rightscale.com/, 2017. (Ac-

cessed on 06/05/2017).

[RL04] Lakshmish Ramaswamy and Ling Liu. An Expiration Age-Based Document

Placement Scheme for Cooperative Web Caching. IEEE Trans. Knowl. Data
Eng., 16(5):585–600, 2004.

https://facebook.github.io/react/
https://facebook.github.io/react/
https://tools.ietf.org/html/draft-ietf-tls-tls13-21
http://basho.com/products/
http://www.rightscale.com/

Bibliography 305

[RLZ06] Lakshmish Ramaswamy, Ling Liu, and Jianjun Zhang. Efficient Formation of

Edge Cache Groups for Dynamic Content Delivery. In 26th IEEE International
Conference on Distributed Computing Systems (ICDCS 2006), 4-7 July 2006,
Lisboa, Portugal, page 43. IEEE Computer Society, 2006.

[Rob16] Mike Roberts. Serverless Architectures. https://martinfowler.com/

articles/serverless.html, 2016. (Accessed on 07/28/2017).

[Rom97] Steven Roman. Introduction to coding and information theory. Undergraduate

texts in mathematics. Springer, 1997.

[RRND15] Pethuru Raj, Anupama Raman, Dhivya Nagaraj, and Siddhartha Duggirala.

High-Performance Big-Data Analytics - Computing Systems and Approaches.
Computer Communications and Networks. Springer, 2015.

[RRS+13] Ian Rae, Eric Rollins, Jeff Shute, Sukhdeep Sodhi, and Radek Vingralek. On-

line, asynchronous schema change in F1. Proceedings of the VLDB Endowment,
6(11):1045–1056, 2013.

[RS03] M. Rabinovich and O. Spatscheck. Web caching and replication. SIGMOD
Record, 32(4):107, 2003.

[Rus03a] C Russell. Java data objects (jdo) specification jsr-12. Sun Microsystems,
2003.

[Rus03b] C. Russell. JSR 12: Java Data Objects (JDO) specification. Sun Microsystems,
2003.

[RXDK03] Michael Rabinovich, Zhen Xiao, Fred Douglis, and Charles R. Kalmanek.

Moving Edge-Side Includes to the Real Edge - the Clients. In Steven D.

Gribble, editor, 4th USENIX Symposium on Internet Technologies and Systems,
USITS’03, Seattle, Washington, USA, March 26-28, 2003. USENIX, 2003.

[Sak14] Sherif Sakr. Cloud-hosted databases: technologies, challenges and opportu-

nities. Cluster Computing, 17(2):487–502, 2014.

[Sak17] Kunihiko Sakamoto. Time to First Meaningful Paint: a

layout-based approach. https://docs.google.com/document/d/

1BR94tJdZLsin5poeet0XoTW60M0SjvOJQttKT-JK8HI/, 2017. (Accessed

on 07/16/2017).

[San17] Salvatore Sanfilippo. Redis. http://redis.io/, 2017. (Accessed on

07/16/2017).

[SB02] Ken Schwaber and Mike Beedle. Agile software development with Scrum, vol-

ume 1. Prentice Hall Upper Saddle River, 2002.

[SBCD09] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Cáceres, and Nigel Davies.

The Case for VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Com-
puting, 8(4):14–23, 2009.

https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
https://docs.google.com/document/d/1BR94tJdZLsin5poeet0XoTW60M0SjvOJQttKT-JK8HI/
https://docs.google.com/document/d/1BR94tJdZLsin5poeet0XoTW60M0SjvOJQttKT-JK8HI/
http://redis.io/

306 Bibliography

[Sca17] Scalr: Enterprise-Grade Cloud Management Platform. https://www.scalr.

com/, 2017. (Accessed on 06/05/2017).

[Sch96] Bruce Schneier. Applied cryptography - protocols, algorithms, and source code
in C, 2nd Edition. Wiley, 1996.

[Sch16] Peter Schuller. Manhattan, our real-time, multi-tenant distributed database

for Twitter scale. Twitter Blog, 2016.

[Sch17] Julian Schenkemeyer. Integration der Baqend-as-a-Service APIs in IOS. Mas-

terarbeit, Universität Hamburg, Fachbereich Informatik, Vogt-Kölln-Str. 30,

22527 Hamburg, Germany, 12 2017.

[SF12] Pramod J. Sadalage and Martin Fowler. NoSQL distilled: a brief guide to the
emerging world of polyglot persistence. Pearson Education, 2012.

[SGDY16] Michael Schaarschmidt, Felix Gessert, Valentin Dalibard, and Eiko Yoneki.

Learning Runtime Parameters in Computer Systems with Delayed Experience

Injection. In Deep Reinforcement Learning Workshop, NIPS 2016, 2016.

[SGGS12] Abraham Silberschatz, Peter B Galvin, Greg Gagne, and A Silberschatz. Op-
erating system concepts, volume 9. Addison-Wesley Reading, 2012.

[SGR15] Michael Schaarschmidt, Felix Gessert, and Norbert Ritter. Towards Auto-

mated Polyglot Persistence. In Datenbanksysteme für Business, Technologie
und Web (BTW), 16. Fachtagung des GI-Fachbereichs "Datenbanken und Infor-
mationssysteme", 2015.

[Shi11] Rada Shirkova. Materialized Views. Foundations and Trends R© in Databases,
4(4):295–405, 2011.

[SHKS15] Uta Störl, Thomas Hauf, Meike Klettke, and Stefanie Scherzinger. Schema-

less NoSQL Data Stores - Object-NoSQL Mappers to the Rescue? In Thomas

Seidl, Norbert Ritter, Harald Schöning, Kai-Uwe Sattler, Theo Härder, Steffen

Friedrich, and Wolfram Wingerath, editors, Datenbanksysteme für Business,
Technologie und Web (BTW), 16. Fachtagung des GI-Fachbereichs "Datenbanken
und Informationssysteme" (DBIS), 4.-6.3.2015 in Hamburg, Germany. Proceed-
ings, volume 241 of LNI, pages 579–599. GI, 2015.

[Sim08] Bojan Simic. The performance of web applications: Customers are won or

lost in one second. Aberdeen Group, 2008.

[SKD17] Johannes Schildgen, Yannick Krück, and Stefan Deßloch. Transformations

on Graph Databases for Polyglot Persistence with NotaQL. In Bernhard

Mitschang, Daniela Nicklas, Frank Leymann, Harald Schöning, Melanie Her-

schel, Jens Teubner, Theo Härder, Oliver Kopp, and Matthias Wieland, ed-

itors, Datenbanksysteme für Business, Technologie und Web (BTW 2017),
17. Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme"
(DBIS), 6.-10. März 2017, Stuttgart, Germany, Proceedings, volume P-265 of

LNI, pages 83–102. GI, 2017.

https://www.scalr.com/
https://www.scalr.com/

Bibliography 307

[SKM08] Aameek Singh, Madhukar R. Korupolu, and Dushmanta Mohapatra. Server-

storage virtualization: integration and load balancing in data centers. In

Proceedings of the ACM/IEEE Conference on High Performance Computing, SC
2008, November 15-21, 2008, Austin, Texas, USA, page 53. IEEE/ACM, 2008.

[Sky17] Skytap. https://www.skytap.com/, 2017. (Accessed on 06/05/2017).

[SL12] Sherif Sakr and Anna Liu. SLA-Based and Consumer-centric Dynamic Provi-

sioning for Cloud Databases. In Rong Chang, editor, 2012 IEEE Fifth Interna-
tional Conference on Cloud Computing, Honolulu, HI, USA, June 24-29, 2012,

pages 360–367. IEEE Computer Society, 2012.

[Sla17] Slack. https://slack.com/, 2017. (Accessed on 06/05/2017).

[SLG+09] Gokul Soundararajan, Daniel Lupei, Saeed Ghanbari, Adrian Daniel Popescu,

Jin Chen, and Cristiana Amza. Dynamic Resource Allocation for Database

Servers Running on Virtual Storage. In Margo I. Seltzer and Richard Wheeler,

editors, 7th USENIX Conference on File and Storage Technologies, February 24-
27, 2009, San Francisco, CA, USA. Proceedings, pages 71–84. USENIX, 2009.

[SMA+07] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and

P. Helland. The end of an architectural era:(it’s time for a complete rewrite).

In Proceedings of the 33rd international conference on Very large data bases,
pages 1150–1160, 2007.

[Sof17] SoftLayer | Cloud Servers, Storage, Big Data, & More IAAS Solutions. http:

//www.softlayer.com/, 2017. (Accessed on 06/05/2017).

[Spa17] Bruce Spang. Building a Fast and Reliable Purging System. https://www.

fastly.com/blog/building-fast-and-reliable-purging-system/, 02

2017. (Accessed on 07/30/2017).

[SPAL11] Yair Sovran, Russell Power, Marcos K Aguilera, and Jinyang Li. Transactional

storage for geo-replicated systems. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, pages 385–400. ACM, 2011.

[SPBZ11] M. Shapiro, N. Pregui\cca, C. Baquero, and M. Zawirski. A comprehensive

study of convergent and commutative replicated data types. 2011.

[SRH97] Aman Singla, Umakishore Ramachandran, and Jessica K. Hodgins. Temporal

Notions of Synchronization and Consistency in Beehive. In SPAA, pages 211–

220, 1997.

[SS83] Dale Skeen and Michael Stonebraker. A Formal Model of Crash Recovery in

a Distributed System. IEEE Trans. Software Eng., 9(3):219–228, 1983.

[SS94] Mukesh Singhal and Niranjan G Shivaratri. Advanced concepts in operating
systems. McGraw-Hill, Inc., 1994.

[SSGW11] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. Cloud-

Scale: elastic resource scaling for multi-tenant cloud systems. In Jeffrey S.

https://www.skytap.com/
https://slack.com/
http://www.softlayer.com/
http://www.softlayer.com/
https://www.fastly.com/blog/building-fast-and-reliable-purging-system/
https://www.fastly.com/blog/building-fast-and-reliable-purging-system/

308 Bibliography

Chase and Amr El Abbadi, editors, ACM Symposium on Cloud Computing
in conjunction with SOSP 2011, SOCC ’11, Cascais, Portugal, October 26-28,
2011, page 5. ACM, 2011.

[SSMS15] Artyom Sharov, Alexander Shraer, Arif Merchant, and Murray Stokely. Take

me to your leader! Online Optimization of Distributed Storage Configura-

tions. PVLDB, 8(12):1490–1501, 2015.

[SSS+08] Will Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy Nguyen, Hu-

bert Wong, Arthur Klepchukov, Sheetal Patil, Armando Fox, and David Patter-

son. Cloudstone: Multi-platform, multi-language benchmark and measure-

ment tools for web 2.0. In Proc. of CCA, volume 8, 2008.

[SSS15] S. Sippu and E. Soisalon-Soininen. Transaction Processing: Management of the
Logical Database and its Underlying Physical Structure. Data-Centric Systems

and Applications. Springer International Publishing, 2015.

[STR+15] Dharma Shukla, Shireesh Thota, Karthik Raman, et al. Schema-agnostic in-

dexing with Azure DocumentDB. PVLDB, 8(12), 2015.

[SVS+13] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric

Rollins, Mircea Oancea, Kyle Littlefield, David Menestrina, Stephan Ellner,

et al. F1: A distributed SQL database that scales. Proceedings of the VLDB
Endowment, 6(11):1068–1079, 2013. 00004.

[SW13] Michael Stonebraker and Ariel Weisberg. The voltdb main memory DBMS.

IEEE Data Eng. Bull., 36(2):21–27, 2013.

[SW14] Ivan Stojmenovic and Sheng Wen. The Fog Computing Paradigm: Scenarios

and Security Issues. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Pa-

przycki, editors, Proceedings of the 2014 Federated Conference on Computer
Science and Information Systems, Warsaw, Poland, September 7-10, 2014.,
pages 1–8, 2014.

[Swa17] Docker Swarm. https://www.docker.com/products/docker-swarm, 2017.

(Accessed on 05/20/2017).

[TAR99] Francisco J. Torres-Rojas, Mustaque Ahamad, and Michel Raynal. Timed Con-

sistency for Shared Distributed Objects. In Brian A. Coan and Jennifer L.

Welch, editors, Proceedings of the Eighteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC, ’99Atlanta, Georgia, USA, May 3-6,
1999, pages 163–172. ACM, 1999.

[TC03] Xueyan Tang and Samuel T. Chanson. Coordinated Management of Cascaded

Caches for Efficient Content Distribution. In Umeshwar Dayal, Krithi Ramam-

ritham, and T. M. Vijayaraman, editors, Proceedings of the 19th International
Conference on Data Engineering, March 5-8, 2003, Bangalore, India, pages

37–48. IEEE Computer Society, 2003.

https://www.docker.com/products/docker-swarm

Bibliography 309

[TCB14] Adel Nadjaran Toosi, Rodrigo N Calheiros, and Rajkumar Buyya. Intercon-

nected cloud computing environments: Challenges, taxonomy, and survey.

ACM Computing Surveys (CSUR), 47(1):7, 2014.

[TDW+12] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip

Shao, and Daniel J Abadi. Calvin: fast distributed transactions for partitioned

database systems. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 1–12. ACM, 2012.

[Tec14] Akamai Technologies. 2014 Consumer Web Performance Expectations Sur-

vey. https://www.akamai.com/us/en/multimedia/documents/content/

akamai-performance-matters-key-consumer-insights-ebook.pdf, 2014.

(Accessed on 07/16/2017).

[Tes13] Claudio Tesoriero. Getting Started with OrientDB. Packt Publishing Ltd, 2013.

[TGPM17] Alexandre Torres, Renata Galante, Marcelo S Pimenta, and Alexandre

Jonatan B Martins. Twenty years of object-relational mapping: A survey on

patterns, solutions, and their implications on application design. Information
and Software Technology, 82:1–18, 2017.

[The17] Django Web Framework. https://www.djangoproject.com/, 2017. (Ac-

cessed on 05/20/2017).

[Tho98] A. Thomasian. Concurrency control: methods, performance, and analysis.

ACM Computing Surveys (CSUR), 30(1):70–119, 1998. 00119.

[TJDB06] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani. A Hybrid Reinforcement

Learning Approach to Autonomic Resource Allocation. In Proceedings of the
2006 IEEE International Conference on Autonomic Computing, ICAC ’06, pages

65–73, Washington, DC, USA, 2006. IEEE Computer Society.

[TM05] Francisco J. Torres-Rojas and Esteban Meneses. Convergence Through a

Weak Consistency Model: Timed Causal Consistency. CLEI Electron. J., 8(2),

2005.

[Tot09] Alexander Totok. Modern Internet Services. Alexander Totok, 2009.

[TPK+13] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakr-

ishnan, Marcos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based

service level agreements for cloud storage. In Michael Kaminsky and Mike

Dahlin, editors, ACM SIGOPS 24th Symposium on Operating Systems Princi-
ples, SOSP ’13, Farmington, PA, USA, November 3-6, 2013, pages 309–324.

ACM, 2013.

[TRL12] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz. Theory

and Practice of Bloom Filters for Distributed Systems. IEEE Communications
Surveys & Tutorials, 14(1):131–155, 2012.

https://www.akamai.com/us/en/multimedia/documents/content/akamai-performance-matters-key-consumer-insights-ebook.pdf
https://www.akamai.com/us/en/multimedia/documents/content/akamai-performance-matters-key-consumer-insights-ebook.pdf
https://www.djangoproject.com/

310 Bibliography

[TTS+14] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jig-

nesh M. Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong

Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy.

Storm@Twitter. In Proceedings of the 2014 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’14, pages 147–156, Snowbird,

Utah, USA, 2014. ACM.

[Tuk77] John W. Tukey. Exploratory data analysis. Addison-Wesley series in behavioral

science : quantitative methods. Addison-Wesley, 1977.

[TV10] Stefan Tilkov and Steve Vinoski. Node.js: Using JavaScript to Build High-

Performance Network Programs. IEEE Internet Computing, 14(6):80–83,

2010.

[TvS07] Andrew S. Tanenbaum and Maarten van Steen. Distributed systems - principles
and paradigms, 2nd Edition. Pearson Education, 2007.

[TW11] Andrew S. Tanenbaum and David Wetherall. Computer networks, 5th Edition.

Pearson, 2011.

[Twe17] Kevin Twesten. Entwicklung einer deklarativen Offline-First Applikation

unter dem Backend-as-a-Service Paradigma. Masterarbeit, Universität Ham-

burg, Fachbereich Informatik, Vogt-Kölln-Str. 30, 22527 Hamburg, Germany,

6 2017.

[TWJN01] Mark Tsimelzon, Bill Weihl, Larry Jacobs, and M Nottingham. ESI language

specification 1.0. Akamai Technologies, Inc. Cambridge, MA, USA, Oracle Cor-
poration, Redwood City, CA, USA, pages 1–0, 2001.

[Usa17] Usage Statistics of HTTP/2 for Websites, July 2017. https://w3techs.

com/technologies/details/ce-http2/all/all, 2017. (Accessed on

07/29/2017).

[USC+08] Bhuvan Urgaonkar, Prashant J. Shenoy, Abhishek Chandra, Pawan Goyal,

and Timothy Wood. Agile dynamic provisioning of multi-tier Internet appli-

cations. TAAS, 3(1):1:1–1:39, 2008.

[Use17] Apache Usergrid. https://usergrid.apache.org/, 2017. (Accessed on

07/16/2017).

[Vak06] Athena Vakali. Web Data Management Practices: Emerging Techniques and
Technologies: Emerging Techniques and Technologies. IGI Global, 2006.

[VdV00] Aad W Van der Vaart. Asymptotic statistics (Cambridge series in statistical

and probabilistic mathematics). 2000.

[Ver17] Versant Object-Oriented Database. http://www.actian.com/products/

operational-databases/versant/, 2017. (Accessed on 06/05/2017).

[VGS+17] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,

Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz

https://w3techs.com/technologies/details/ce-http2/all/all
https://w3techs.com/technologies/details/ce-http2/all/all
https://usergrid.apache.org/
http://www.actian.com/products/operational-databases/versant/
http://www.actian.com/products/operational-databases/versant/

Bibliography 311

Kharatishvili, and Xiaofeng Bao. Amazon Aurora: Design Considerations for

High Throughput Cloud-Native Relational Databases. In Semih Salihoglu,

Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu, editors, Proceed-
ings of the 2017 ACM International Conference on Management of Data, SIG-
MOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, pages 1041–1052.

ACM, 2017.

[VM14] Piet Van Mieghem. Performance analysis of complex networks and systems.
Cambridge University Press, 2014.

[Vog09] Werner Vogels. Eventually consistent. Communications of the ACM, 52(1):40–

44, 2009.

[VPR07] Daniel A. Villela, Prashant Pradhan, and Dan Rubenstein. Provisioning

servers in the application tier for e-commerce systems. ACM Trans. Internet
Techn., 7(1):7, 2007.

[Vue17] Vue.js. https://vuejs.org/, 2017. (Accessed on 05/26/2017).

[VV16] Paolo Viotti and Marko Vukolić. Consistency in Non-Transactional Distributed

Storage Systems. ACM Computing Surveys, 49(1):1–34, June 2016.

[VW99] Paul Vixie and Duane Wessels. Hyper Text Caching Protocol (HTCP/0.0).

Technical report, 1999.

[Wag17] Jeremy Wagner. Web Performance in Action: Building Faster Web Pages. Man-

ning Publications, 2017.

[Wal14] Craig Walls. Spring in Action: Covers Spring 4. Manning Publications, 2014.

[Wan99] J. Wang. A survey of web caching schemes for the internet. ACM SIGCOMM
Computer Communication Review, 29(5):36–46, 1999.

[Wan16] Mengyan Wang. Parse LiveQuery Protocol Specification. GitHub:
ParsePlatform/parse-server, March 2016. Accessed on 12/14/2017.

[WAWB05] Adepele Williams, Martin Arlitt, Carey Williamson, and Ken Barker. Web

workload characterization: Ten years later. In Web content delivery, pages

3–21. Springer, 2005.

[WB09] Craig D. Weissman and Steve Bobrowski. The design of the force.com multi-

tenant internet application development platform. In Ugur Çetintemel, Stan-

ley B. Zdonik, Donald Kossmann, and Nesime Tatbul, editors, Proceedings of
the ACM SIGMOD International Conference on Management of Data, SIGMOD
2009, Providence, Rhode Island, USA, June 29 - July 2, 2009, pages 889–896.

ACM, 2009.

[WBGsS13] Florian Wolf, Heiko Betz, Francis Gropengie\s ser, and Kai-Uwe Sattler. Hi-

bernating in the Cloud-Implementation and Evaluation of Object-NoSQL-

Mapping. In BTW, pages 327–341. Citeseer, 2013.

https://vuejs.org/

312 Bibliography

[WBP+13] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Har-

sha V. Madhyastha. SPANStore: cost-effective geo-replicated storage span-

ning multiple cloud services. In Michael Kaminsky and Mike Dahlin, edi-

tors, ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP
’13, Farmington, PA, USA, November 3-6, 2013, pages 292–308. ACM, 2013.

[WCB01] Matt Welsh, David E. Culler, and Eric A. Brewer. SEDA: an architecture for

well-conditioned, scalable internet services. In Keith Marzullo and M. Satya-

narayanan, editors, Proceedings of the 18th ACM Symposium on Operating
System Principles, SOSP 2001, Chateau Lake Louise, Banff, Alberta, Canada,
October 21-24, 2001, pages 230–243. ACM, 2001.

[WDM01] Jörg Widmer, Robert Denda, and Martin Mauve. A survey on TCP-friendly

congestion control. IEEE network, 15(3):28–37, 2001.

[Wes97] Duane Wessels. Application of internet cache protocol (ICP), version 2. 1997.

[Wes04] Duane Wessels. Squid - the definitive guide: making the most of your internet.
O’Reilly, 2004.

[WF11] Patrick Wendell and Michael J. Freedman. Going viral: flash crowds in an

open CDN. In Proceedings of the 2011 ACM SIGCOMM conference on Internet
measurement conference, pages 549–558. ACM, 2011.

[WFGR15] Wolfram Wingerath, Steffen Friedrich, Felix Gessert, and Norbert Ritter. Who

Watches the Watchmen? On the Lack of Validation in NoSQL Benchmarking.

In Datenbanksysteme für Business, Technologie und Web (BTW), 16. Fachta-
gung des GI-Fachbereichs "Datenbanken und Informationssysteme", 2015.

[WFZ+11] Hiroshi Wada, Alan Fekete, Liang Zhao, Kevin Lee, and Anna Liu. Data Con-

sistency Properties and the Trade-offs in Commercial Cloud Storage: the

Consumers’ Perspective. In CIDR 2011, Fifth Biennial Conference on Inno-
vative Data Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online
Proceedings, pages 134–143. www.cidrdb.org, 2011.

[WGF+17] Wolfram Wingerath, Felix Gessert, Steffen Friedrich, Erik Witt, and Norbert

Ritter. The Case For Change Notifications in Pull-Based Databases. In Daten-
banksysteme für Business, Technologie und Web (BTW 2017) - Workshopband,
2.-3. März 2017, Stuttgart, Germany, 2017.

[WGFR16] Wolfram Wingerath, Felix Gessert, Steffen Friedrich, and Norbert Ritter. Real-

time stream processing for Big Data. it - Information Technology, 58(4), Jan-

uary 2016.

[WGW+18] Wolfram Wingerath, Felix Gessert, Erik Witt, Steffen Friedrich, and Norbert

Ritter. Real-Time Data Management for Big Data. In Proceedings of the 21th
International Conference on Extending Database Technology, EDBT 2018, Vi-
enna, Austria, March 26-29, 2018. OpenProceedings.org, 2018.

Bibliography 313

[Whi15] Tom White. Hadoop - The Definitive Guide: Storage and Analysis at Internet
Scale (4. ed., revised & updated). O’Reilly, 2015.

[Wie15] Lena Wiese. Advanced data management: for SQL, NoSQL, cloud and dis-
tributed databases. De Gruyter, Oldenbourg, Berlin ; Boston, 2015.

[Wil17] WildFly Homepage · WildFly. http://wildfly.org/, 2017. (Accessed on

05/20/2017).

[Wit16] Erik Witt. Distributed Cache-Aware Transactions for Polyglot Persistence.

Masterarbeit, Universität Hamburg, Fachbereich Informatik, Vogt-Kölln-Str.

30, 22527 Hamburg, Germany, 8 2016.

[WJW15] Da Wang, Gauri Joshi, and Gregory Wornell. Using straggler replication to

reduce latency in large-scale parallel computing. ACM SIGMETRICS Perfor-
mance Evaluation Review, 43(3):7–11, 2015.

[WKW16] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. Speeding

up web page loads with Shandian. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages 109–122, 2016.

[WM13] Zhe Wu and Harsha V. Madhyastha. Understanding the latency benefits

of multi-cloud webservice deployments. Computer Communication Review,

43(2):13–20, 2013.

[WN90] W. Kevin Wilkinson and Marie-Anne Neimat. Maintaining Consistency of

Client-Cached Data. In Dennis McLeod, Ron Sacks-Davis, and Hans-Jörg

Schek, editors, 16th International Conference on Very Large Data Bases, Au-
gust 13-16, 1990, Brisbane, Queensland, Australia, Proceedings., pages 122–

133. Morgan Kaufmann, 1990.

[Wor94] Kurt Jeffery Worrell. Invalidation in Large Scale Network Object Caches.

1994.

[WP11] Erik Wilde and Cesare Pautasso. REST: from research to practice. Springer

Science & Business Media, 2011.

[WPC12] Zhou Wei, Guillaume Pierre, and Chi-Hung Chi. CloudTPS: Scalable transac-

tions for Web applications in the cloud. Services Computing, IEEE Transactions
on, 5(4):525–539, 2012.

[WPR10] Jim Webber, Savas Parastatidis, and Ian Robinson. REST in practice: Hyper-
media and systems architecture. " O’Reilly Media, Inc.", 2010.

[WV02] G. Weikum and G. Vossen. Transactional information systems. Series in Data

Management Systems. Morgan Kaufmann Pub, 2002.

[XCZ+11] P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu, and H. Hacigümü\cS. Ac-

tiveSLA: A profit-oriented admission control framework for database-as-a-

service providers. In Proceedings of the 2nd ACM Symposium on Cloud Com-
puting, page 15. ACM, 2011. 00019.

http://wildfly.org/

314 Bibliography

[XFJP14] Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. Characteriz-

ing Facebook’s Memcached Workload. IEEE Internet Computing, 18(2):41–49,

2014.

[XRB12] Cheng-Zhong Xu, Jia Rao, and Xiangping Bu. URL: A unified reinforcement

learning approach for autonomic cloud management. J. Parallel Distrib. Com-
put., 72(2):95–105, 2012.

[XSL+15] Chao Xie, Chunzhi Su, Cody Littley, Lorenzo Alvisi, Manos Kapritsos, and

Yang Wang. High-performance ACID via modular concurrency control. In

Ethan L. Miller and Steven Hand, editors, Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7,
2015, pages 279–294. ACM, 2015.

[XZF+07] Jing Xu, Ming Zhao, José A. B. Fortes, Robert Carpenter, and Mazin S. Yousif.

On the Use of Fuzzy Modeling in Virtualized Data Center Management. In

Fourth International Conference on Autonomic Computing (ICAC’07), Jack-
sonville, Florida, USA, June 11-15, 2007, page 25. IEEE Computer Society,

2007.

[YAD14] Yavuz Selim Yilmaz, Bahadir Ismail Aydin, and Murat Demirbas. Google

cloud messaging (GCM): an evaluation. In IEEE Global Communications
Conference, GLOBECOM 2014, Austin, TX, USA, December 8-12, 2014, pages

2807–2812. IEEE, 2014.

[YADL98] Jian Yin, Lorenzo Alvisi, Michael Dahlin, and Calvin Lin. Using Leases to Sup-

port Server-Driven Consistency in Large-Scale Systems. In Proceedings of the
18th International Conference on Distributed Computing Systems, Amsterdam,
The Netherlands, May 26-29, 1998, pages 285–294. IEEE Computer Society,

1998.

[YADL99] Jian Yin, Lorenzo Alvisi, Michael Dahlin, and Calvin Lin. Volume Leases

for Consistency in Large-Scale Systems. IEEE Trans. Knowl. Data Eng.,
11(4):563–576, 1999.

[YBDS08] Lamia Youseff, Maria Butrico, and Dilma Da Silva. Toward a unified ontol-

ogy of cloud computing. In Grid Computing Environments Workshop, 2008.
GCE’08, pages 1–10. IEEE, 2008.

[YG16] Shui Yu and Song Guo, editors. Big Data Concepts, Theories, and Applications.
Springer, 1st ed. 2016 edition, 3 2016.

[ZCD+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Re-

silient distributed datasets: A fault-tolerant abstraction for in-memory cluster

computing. In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, pages 2–2. USENIX Association, 2012.

Bibliography 315

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and

Ion Stoica. Spark: cluster computing with working sets. In Proceedings of the
2nd USENIX conference on Hot topics in cloud computing, pages 10–10, 2010.

[ZCO+15] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui Zhang. In-

Memory Big Data Management and Processing: A Survey. IEEE Transactions
on Knowledge and Data Engineering, 27(7):1920–1948, July 2015.

[ZCS07] Qi Zhang, Ludmila Cherkasova, and Evgenia Smirni. A Regression-Based An-

alytic Model for Dynamic Resource Provisioning of Multi-Tier Applications.

In Fourth International Conference on Autonomic Computing (ICAC’07), Jack-
sonville, Florida, USA, June 11-15, 2007, page 27. IEEE Computer Society,

2007.

[ZNAE16] Victor Zakhary, Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. DB-

Risk: The Game of Global Database Placement. In Fatma Özcan, Georgia

Koutrika, and Sam Madden, editors, Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San Francisco,
CA, USA, June 26 - July 01, 2016, pages 2185–2188. ACM, 2016.

[ZS17] Albert Y. Zomaya and Sherif Sakr, editors. Handbook of Big Data Technologies.
Springer, 2017.

[ZSLB14] Liang Zhao, Sherif Sakr, Anna Liu, and Athman Bouguettaya. Cloud Data
Management. Springer, auflage: 2014 edition, 2014.

[ZSS+15] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy,

and Dan R. K. Ports. Building consistent transactions with inconsistent repli-

cation. In Ethan L. Miller and Steven Hand, editors, Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP 2015, Monterey, CA, USA,
October 4-7, 2015, pages 263–278. ACM, 2015.

316 Bibliography

317

List of Figures

1.1 The three primary sources of latency and performance problems of web

applications: frontend rendering, network delay, and backend processing. . 2

1.2 The dependency of page load time on bandwidth (data rate) and latency.

For typical websites, increased bandwidth has a diminishing return above

5 MBit/s, whereas any decrease in latency leads to a proportional decrease

in page load time. The data points were collected by Belshe [Bel10] who

used the 25 most accessed websites. 3

1.3 High-level contributions of this thesis: (1) and (2) are concerned with Chal-

lenge C1, (3) and (4) with C2, (5) with C3, and (6) with C4. 8

2.1 The three-tier web application architecture. 17

2.2 The two-tier web application architecture. 20

2.3 Potential sources of latency in distributed, cloud-based applications. 29

2.4 The two high-level approaches of categorizing NoSQL systems according to

data models and consistency-availability trade-offs. 31

2.5 Key-value stores offer efficient storage and retrieval of arbitrary values. . . . 31

2.6 Document stores are aware of the internal structure of the stored entity and

thus can support queries. 32

2.7 Data in a wide-column store. 33

2.8 An overview of selected consistency models. Arrows indicate which models

are subsumed by a stronger model. 36

2.9 An example execution of interleaved reads and writes from three clients

that yields different read results depending on the consistency model.

Brackets indicate the time between invocation and response of an opera-

tion. 39

2.10 Example of a polyglot persistence architecture with database systems for

different requirements and types of data in an e-commerce scenario. 42

2.11 Polyglot persistence requirements for a product catalog in an e-commerce

application. 44

2.12 Architectural patterns for the implementation of polyglot persistence:

application-coordinated polyglot persistence, microservices, and polyglot

database services. 45

318 List of Figures

2.13 Classes of cloud databases and DBaaS systems according to their data model

and deployment model. 48

2.14 Architecture and usage of a Backend-as-a-Service. 49

2.15 Different approaches to multi-tenancy in DBaaS/BaaS systems. The dashed

line indicates the boundary between shared and tenant-specific resources. . 50

2.16 Distributed transaction architecture consisting of an atomic commitment

protocol, concurrency control and a replication protocol. 53

2.17 Latency components across network protocols of an HTTP request against

a TLS-secured URL. 62

2.18 Different types of web caches distinguished by their location. Caches 1-3

are expiration-based, while caches 4-6 are invalidation-based. 66

2.19 Scalability mechanisms of web caches: replication, sharding, query-based

hierarchies, and geo-replication. 67

2.20 Validation of resource freshness in expiration-based HTTP caching. 69

2.21 Cache coherence problems of web caches for data management caused by

access of two different clients. 71

2.22 The critical rendering path as a model for frontend performance. 73

3.1 The NoSQL Toolbox: It connects the techniques of NoSQL databases with

the desired functional and non-functional system properties they support. . 81

3.2 The storage pyramid and its role in NoSQL systems. 84

3.3 A direct comparison of functional requirements, non-functional require-

ments and techniques among MongoDB, Redis, HBase, Riak, Cassandra,

and MySQL according to the proposed NoSQL Toolbox. 88

3.4 A decision tree for mapping requirements to (NoSQL) database system can-

didates. 90

3.5 The High-Level Architecture of the Orestes middleware. 93

3.6 The Orestes middleware architecture with an exemplary request for loading

a database object. 94

3.7 Composition of the unified REST API through resource specifications. 100

3.8 Example data model combining schemaless and schemaful elements, also

showing the graphical schema editor. 104

3.9 Example request validated against a protected, cached resource in the CDN. 108

3.10 Scalability and multi-tenancy model of Orestes and its prototype implemen-

tation. 114

3.11 Prototype architecture of the Orestes server with respect to processing of

incoming requests. 116

3.12 Evaluation of the Orestes REST/HTTP layer in a micro-benchmark com-

pared to native database access. 119

4.1 Architectural overview of the client and server Cache Sketch. 126

4.2 Database read using the Cache Sketch. 128

List of Figures 319

4.3 Illustration of the proof of ∆-atomicity for the Cache Sketch. 129

4.4 An end-to-end example of the proposed Cache Sketch methodology. 131

4.5 Analysis of exemplary latencies and their effect on (∆c,p)-atomicity. 134

4.6 Constrained Adaptive TTL Estimation. 139

4.7 Prediction errors of TTL estimators for different workloads. 141

4.8 Concept of the extensible Monte Carlo simulation framework YMCA. 143

4.9 YMCA simulation results. 145

4.10 Performance and consistency metrics for YCSB with CDN-caching for two

different workloads (A and B). 146

4.11 Page load time comparison for different industry Backend-as-a-Service

providers for the same data-driven web application. 147

4.12 Analysis of the Redis-backed Bloom filters. 149

4.13 The three central challenges of query web caching. 151

4.14 Query Caching architecture and request flow for providing cacheable query

results. 153

4.15 Consistency levels provided by Quaestor: ∆-atomicity, monotonic writes,

read-your-writes, monotonic reads are given by default, causal consistency

and strong consistency can be chosen per operation (with a performance

penalty). 155

4.16 Notifications as an object gets updated (figure taken from [GSW+17]). . . . 158

4.17 InvaliDB workload distribution: every node is only assigned a subset of

all queries and a fraction of all incoming updates (figure taken from

[GSW+17]). 159

4.18 Quaestor’s query capacity management. 165

4.19 End-to-end example of query caching. 167

4.20 Throughput for a varying number of parallel connections comparing un-

cached database access (Uncached), query caching in the CDN (CDN only),

query caching in the client (CS only), and full client and CDN query caching

(Quaestor). 169

4.21 Query latency histogram showing peaks for client cache hits, CDN cache

hits, and cache misses. 170

4.22 Object read latency for a varying number of parallel connections comparing

cached to uncached database access. 170

4.23 Query latency for a varying number of parallel connections comparing

cached to uncached database access. 171

4.24 Mean latency for reads and queries for different numbers of total queries. . 172

4.25 Read and query cache hit rates at the client and CDN for different numbers

of total queries. 172

4.26 Client cache hit rates for queries with varying update rates for different

Cache Sketch refresh intervals. The labels indicate the respective number

of total objects and queries, as well as the refresh interval. 173

320 List of Figures

4.27 Stale read and stale query rates for 10 and 100 clients with different refresh

intervals. 175

4.28 CDF of the query TTL estimation scheme compared with the CDF of the true
TTL as measured in the simulation. 176

4.29 Throughput of object/ID-lists for an increasing probability of non-predicate

changes for 100 simulated clients (600 connections total). 176

4.30 Query staleness for object/ID-lists. At higher probability p of non-predicate

changes, ID-lists avoid more invalidations and thus achieve lower staleness. 177

4.31 Notification latency as a function of the executed matching operations per

second for InvaliDB clusters employing 1, 2, 4, 8, and 16 matching nodes

(figure taken from [GSW+17]). 178

4.32 The transaction model parameters for the stochastic analysis. 181

4.33 The abort probability for an increasing number of accessed objects at dif-

ferent read latencies l for N = 10000 objects in the database, time steps of

s = 1ms, and 50 writes per second (r = 0.02). 182

4.34 Transaction runtime with retries for an increasing number of accessed ob-

jects at different read latencies l for N = 10000 objects in the database, time

steps of s = 1ms, and 50 writes per second (r = 0.02). 183

4.35 The three phases of an optimistic DCAT transaction. 184

4.36 DCAT transaction concept and the steps involved at the client and server. . . 185

4.37 Execution steps of a read-only RAMP transaction: reading annotated ob-

jects, client-side validation, and resolution of fractured reads. 190

4.38 Transaction duration as a function of transaction size (data taken from

[Wit16]). 191

4.39 Abort rate as a function of transaction size (data taken from [Wit16]). . . . 192

4.40 Runtime as a function of transaction size (data taken from [Wit16]). 192

5.1 First phase of meditation: schema-based SLA annotations. 198

5.2 Second phase of meditation: scoring of available systems. 199

5.3 Examples of normalized utility functions. 202

5.4 Third phase: polyglot persistence mediation. 203

5.5 Evaluation of the Polyglot Persistence Mediator for a single-node setup and

a read-only setup with multiple client and server nodes. 205

5.6 Evaluation of the Polyglot Persistence Mediator for a write-only and a mixed

workload. 206

6.1 The three central dimensions of caching. 209

321

List of Tables

3.1 A qualitative comparison of MongoDB, HBase, Cassandra, Riak, and Redis. . 91

3.2 REST resources for CRUD with parameterized requests and potential re-

sponses. 101

4.1 Cramér-von Mises p-values for maximum-likelihood fits of different latency

distributions. 134

4.2 Throughput of different Cache Sketch implementations in operations/s. . . . 149

4.3 Average query and read latency for increasing object counts for a request

distribution with Zipfian constant 0.99. 174

4.4 Details on the latency characteristics of the different InvaliDB clusters

at 3 million matching operations per second per node (data taken from

[GSW+17]). 179

5.1 Proposed SLA annotations (cf. Section 2.2.4 and 3.1). 197

6.1 Selected related work on caching classified by location and update strategy. 210

6.2 Related transactional systems and their concurrency control protocols

(OCC: optimistic concurrency control, PCC: pessimistic concurrency con-

trol, TO: timestamp ordering, MVCC: multi-version concurrency control),

achieved isolation level (SR: serializability, SI: snapshot isolation, RC: read

committed), transaction granularity, and commit protocol. 235

6.3 Selected industry DBaaS systems and their main properties: data model,

category according to the CAP theorem, support for queries and indexing,

replication model, sharding strategy, transaction support, and service level

agreements. 243

322 List of Tables

323

Listings

3.1 Example of using the Orestes JavaScript SDK. 99

3.2 Comparison of pull-based and push-based queries. 110

324 Listings

325

Statutory Declaration /
Eidesstattliche Erklärung

English: Statutory Declaration

I hereby declare, on oath, that I have written the present dissertation entitled

“Low Latency for Cloud Data Management”

by myself and have not used sources or means without declaration in the text. Any

thoughts or quotations which were inferred from these sources are clearly marked as

such.

This thesis was not submitted in the same or in a substantially similar version, not even

partially, to any other authority to achieve an academic grading and was not published

elsewhere.

I agree that a copy of this thesis may be made available in the Informatics Library of the

University of Hamburg.

Felix Gessert Hamburg, September 24th, 2018

326 Statutory Declaration / Eidesstattliche Erklärung

German: Eidesstattliche Erklärung

Ich versichere hiermit an Eides statt, dass ich die vorstehende Arbeit mit dem Titel

„Low Latency for Cloud Data Management“

selbständig und ohne fremde Hilfe angefertigt und mich anderer als der angegebenen Hil-

fsmittel nicht bedient habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichun-

gen entnommen wurden, sind als solche kenntlich gemacht. Die Arbeit hat in dieser oder

ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Ich bin mit einer Einstellung in den Bestand der Bibliothek des Fachbereiches einver-

standen.

Felix Gessert Hamburg, 24. September 2018

	Abstract
	Introduction
	Problem Statement
	Challenges
	Primary Contributions
	Web Caching of Records and Query Results with Rich Consistency Guarantees
	A Database-as-a-Service Middleware for Scalable Web Applications
	Polyglot Persistence Mediation with Database-Independent Caching and ACID Transactions

	Outline and Previously Published Work
	List of Own Publications

	Background
	End-to-End Latency in Cloud-based Architectures
	Three-Tier Architectures: Server-Side Rendering
	Two-Tier Architectures: Client-Side Rendering
	Latency and Round-Trip Time
	Cloud Computing as a Source of Latency

	Backend Performance: Scalable Data Management
	NoSQL Database Systems
	Different Data Models
	Latency, Consistency, and Availability: Trade-Offs
	Relaxed Consistency Models
	Polyglot Persistence
	Cloud Data Management: Database- and Backend-as-a-Service
	Latency Problems in Distributed Transaction Processing
	Low-Latency Backends through Replication, Caching, and Edge Computing

	Network Performance: HTTP and Web Caching
	HTTP and the REST Architectural Style
	Latency on the Web
	Web Caching
	Challenges of Web Caching for Data Management

	Frontend Performance
	Client-Side Rendering and Processing
	Client-Side Caching and Storage

	Summary

	Providing Low Latency for Cloud Data Management
	A Classification Scheme for NoSQL Database Systems
	Sharding
	Replication
	Storage Management
	Query Processing

	System Case Studies
	System Decision Tree
	Requirements for Low Latency Cloud Data Management
	Orestes: A Data Management Middleware for Low Latency
	Architecture
	Unified REST API
	Polyglot Data Modeling and Schema Management
	Authentication and Access Control
	Function-as-a-Service
	Query Processing
	Concurrency Control
	Scalability and Multi-Tenancy
	Server Implementation

	Discussion
	Summary

	Web Caching for Cloud Data Management
	Cache Sketches: Bounding Staleness through Expiring Bloom Filters
	The Cache Sketch Scheme
	The Client Cache Sketch
	Proof of -Atomicity
	Controlling Consistency
	The Server Cache Sketch
	Optimizing Cache Sketch Size
	Quantifying (,p)-Atomicity for the Web Caching Model

	Cacheability Estimation: Whether and How Long to Cache
	Stochastic Model
	Constrained Adaptive TTL Estimation
	TTL Estimation for Fluctuating Workloads

	Evaluation of the Cache Sketch for Object Caching
	YMCA: An Extensible Simulation Framework for Staleness Analysis
	Parameter Optimization for the CATE TTL Estimator
	YCSB Results for CDN-Cached Database Workloads
	Industry Backend-as-a-Service Evaluation
	Efficient Bloom Filter Maintenance

	Query Caching: Motivation and Problem Statement
	Cache Coherence for Query Results
	Cache Sketches for Query Caching
	Consistency
	Cache Sketch Maintenance for Queries

	Invalidations and Expirations
	Invalidation Detection
	Statistical TTL Estimation
	Representing Query Results
	Capacity Management
	End-to-end Example

	Evaluation of Query Caching
	Experimental setup
	Cloud-Based Evaluation of Query Caching
	Simulation-Based Evaluation of Query Caching
	InvaliDB
	Evaluation Summary

	Cache-Aware Transaction Processing
	The Abort Rate Problem of Optimistic Transactions
	DCAT: Distributed Cache-Aware Transactions
	Server-Side Commit Procedure
	Cache-Aware RAMP Transactions
	Evaluation

	Summary

	Towards Automated Polyglot Persistence
	Motivation
	Concept: Choosing Database Systems by Requirements
	Defining Requirements Through SLAs
	Scoring Databases against SLA-Annotated Schemas
	Mediation
	Architecture of the Polyglot Persistence Mediator

	Experimental Case Study
	Outlook
	Scoring and Database Selection
	Workload Management and Multi-Tenancy
	Polyglot Setups
	Adaptive Repartitioning

	Summary

	Related Work
	Caching
	Server-Side, Client-Side, and Web Caching
	Cache Coherence: Expiration-Based and Invalidation-Based Caching
	Query-Level Caching
	Summary Data Structures for Caching

	Geo-Replication
	Replication and Caching
	Eager Geo-Replication
	Lazy Geo-Replication

	Transaction Processing
	Entity Group Transactions
	Multi-Shard Transactions
	Client-Coordinated Transactions
	Middleware-Coordinated Transactions
	Deterministic Transactions
	Comparison with DCAT

	Database-as-a-Service and Polyglot Persistence
	Multi-Tenancy and Virtualization
	Database Privacy and Encryption
	Service Level Agreements (SLAs)
	Resource Management and Scalability
	Benchmarking
	Database Interfaces and Polyglot Persistence

	Conclusions
	Main Contributions
	Object, File, and Query Caching
	Backend-as-a-Service
	Polyglot Persistence Mediation

	Future Work
	Caching for Arbitrary Websites, APIs, and Database Systems
	Reinforcement Learning of Caching Decisions
	Fully Automatic Polyglot Persistence
	Polyglot, Cache-Aware Transactions

	Closing Thoughts

	Bibliography
	List of Figures
	List of Tables
	Listings
	Statutory Declaration / Eidesstattliche Erklärung

