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Summary (English Version) 

As global population is expected to double by 2050, the need for securing adequate 

food production is becoming an urgent problem to be solved. At the same time agriculture‘s 

environmental footprint needs to be decreased drastically. As pathogens and pests are 

responsible for the loss of one third of global crop production, optimizing their management 

is of utmost importance. By combining information systems, sensors and enhanced 

machinery, the field of ‘precision agriculture’ promises to be a smart solution to fulfil the 

demands of modern agriculture. The site- and crop-specific adaption of precision agriculture 

can account for the variability and uncertainty in a managed landscape and thus allows for 

an improved use of resources, such as water, fertilizer or even pesticides and fungicides 

which in turn can help maintain environmental integrity.  Remote sensing technologies, such 

as spectral sensors and spectral vegetation indices, are now routinely incorporated into 

precision agriculture strategies to monitor crop needs such as fertilizer, water and pathogen 

deterring agrochemicals across large areas.  

In this thesis, the pathogen myrtle rust (Austropuccinia psidii) on lemon myrtle 

(Backhousia citriodora) is studied to explore whether it is possible to establish a remote 

sensing approach for the detection ‒ and management ‒ of myrtle rust in managed 

landscapes. Hyperspectral and multispectral sensors were utilized at leaf- and canopy-scale 

to collect spectral signatures of fungicide treated and untreated lemon myrtle trees. These 

reflectance signatures were used to build random forest classification models which were 

evaluated for their accuracy to discriminate treated and untreated trees at both scales. 

Further, relevant wavebands for both classification problems were selected to reduce 

redundancy and data load. We developed an innovative method to design a new form of 

spectral vegetation indices, a disease-specific spectral vegetation index (SDI). We tested the 

classification accuracy of our new SDI and compared it to common spectral vegetation 

indices. 
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Overall, results indicate that sensor-guided disease detection is possible at leaf- and 

canopy-scale. High classification accuracies were found based on data collected on a single 

lemon myrtle plantation and from a botanical garden. If more spectral data can be collected 

from the investigated pathosystem it would be possible to validate the findings of this thesis, 

and the integration of our developed methods into standardized management workflow 

seems feasible. However, there is still much research required to use remote sensing 

techniques commercially for plant disease detection. Until we are able to compare and 

harmonize spectral disease data from different geographical locations, pathosystems and 

abiotic stress sources, it will be difficult to generalize gained insights from this 

interdisciplinary field. More research is necessary to understand plant physiological 

responses to different sources of stress and then link these responses to specific spectral 

regions and signatures. Future research should be guided by questions addressing (i) the 

detection of pre-symptomatic phases of diseases of pathogenesis, (ii) the differentiation 

among different pathogens on identical and different hosts, (iii) the separation of biotic and 

abiotic stresses, and (iv) the quantification of disease severity. 
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Summary (German version) 

Es wird erwartet, dass sich die Weltbevölkerung bis 2050 verdoppelt. Daher ist eine 

nachhaltige Versorgung mit Nahrung ein ernstzunehmendes Problem, das umgehend gelöst 

werden muss. Dies muss jedoch im Einklang mit der Reduzierung des immensen, 

ökologischen Fußabdruckes der Landwirtschaft geschehen. Da Krankheitserreger und 

Schädlinge von Pflanzen für den Verlust von einem Drittel der weltweiten 

landwirtschaftlichen Produktion verantwortlich sind, ist die Optimierung ihrer derzeitigen 

Behandlungsmethoden von größter Bedeutung. Durch die Kombination von Sensoren, 

Informationssystemen und modernen, Nutzmaschinen bietet das Forschungsfeld der 

Präzisionslandwirtschaft Lösungen für die Ansprüche des modernen Agrarwesens. Das 

Prinzip der Präzisionslandwirtschaft ist die gezielte und systemspezifische Anwendung von 

Maßnahmen, die zu einer optimierten Verwaltung aller Produktionsbereiche führen. Dies 

beinhaltet unter anderem die gezielte Applikation von Wasser, Nährstoffen und Chemikalien. 

Im Gegensatz zu der systemischen Verwendung von Resourcen, kann durch gezielte 

Maßnahmen nicht nur die Produktionseffizienz gesteigert werden, sondern auch eine, an der 

natürlichen Umwelt angepasste Landwirtschaft gewährleistet werden. Die Umsetzung von 

Strategien in der Präzisionslandwirtschaft wird heutzutage durch Methodiken aus der 

Fernerkundung unterstützt. Optische Sensoren und spektrale Vegetationsindizes können zur 

Überwachung von relevanten Produktionsparametern routinemäßig in den 

landwirtschaftlichen Arbeitsablauf integriert werden.  

Die vorgelegte Dissertation erbringt einen Nachweis zur sensorgesteuerten 

Erkennung des pathogenen Rostpilzes Austropuccinia psidii auf einer industriell relevanten 

Wirtspflanze, der Zitronenmyrte (Backhousia citriodora). Hyperspektrale und multispektrale 

Sensoren kamen auf Blatt- und Baumkronenebene zum Einsatz um spektrale Signaturen 

von fungizid-behandelten und unbehandelten Zitronenmyrtebäumen aufzuzeichnen. Diese 

Signaturen wurden daraufhin verwendet, um mehrere Random Forest Klassifikationsmodelle 

zu trainieren, welche wiederum nach ihrer Genauigkeit evaluiert wurden, um die 
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behandelten und unbehandelten Zitronenmyrtebäume zu unterscheiden. Auf Blatt- und 

Baumkronenebene wurden klassifkationsrelevante Prädiktoren (Bänder) selektiert, um 

Informationsredundanz und Datenmenge zu reduzieren. Darauf basierend, wurde ein 

innovativer spektraler Index entwickelt, der spezifisch für das untersuchte Pathosystem ist 

(LMMR Index = Lemon Myrtle/ Myrtle Rust). Letztendlich wurde die 

Klassifikationsgenauigkeit des LMMR Index getested und mit herkömmlichen spektralen 

Indizes verglichen. 

Die gefundenen Ergebnisse deuten darauf hin, dass optische Sensoren für die 

Detektion des Rostpilzes A. psidii sowohl auf Blatt- als auch auf Baumkronenebene geeignet 

sind. Hohe Klassifikationsgenauigkeiten konnten anhand von spektralen Signaturen, die auf 

einer Zitronenmyrtenplantage und in einem botanischen Garten aufgezeicnet wurden, 

ermittelt werden. Weitere spektrale Daten des untersuchten Pathosystems müssen in 

Zukunft aufgezeichnet werden, um die Ergebnisse dieser Dissertation zu validieren. Es lässt 

sich schlussfolgern, dass eine Integration und Erweiterung der hier entwickelten Methoden 

in standartisierte Arbeitsabläufe möglich und lohnenswert sind. Um eine routinemäßige und 

kommerziell nutzbare Anwendung basierend auf unseren Ergebissen zu etablieren, ist 

jedoch weitere Forschung notwenig. Das Harmonisieren und Vergleichen von 

kontinentübergreifenden spektralen Daten unterschiedlichster Pathosysteme und auch von 

abiotischen Stressquellen ist notwendig, um generalisierbare Ergebnisse in diesem 

interdisziplinären Feld zu erzielen. Weitere Forschung sollte versuchen eine sinnvolle 

Beziehung zwischen spektralen Signaturen und physiologischen Veränderungen von 

Pflanzen unter biotischem und abiotischem Stress herzustellen. Hier könnten sich zukünftige 

Forschungsprojekte durch folgende Fragen bezüglich der Erkennung von 

Pflanzenkrankheiten leiten lassen: Ist die spektrale Übersetzung von Symptomen an 

unterschiedlichen Zeitpunkten des Krankheitsverlaufes umsetzbar? Können unterschiedliche 

Krankheiten spektral voneinander unterschieden werden? Können abiotische und biotische 

Signale ebenfalls voneinander unterschieden werden und kann die Anfälligkeit von Pflanzen 
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gegenüber Krankheiten quantifiziert werden? Auch die Erkennung von Pflanzenkrankheiten 

bevor Symptome mit dem bloßen Auge erkennbar werden ist von großer Bedeutung. 
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CHAPTER I 

General introduction into developing a remote sensing 
framework for myrtle rust (Austropuccina psidii) detection on 
lemon myrtle (Backhousia citriodora) 

 

RHJ Heim 
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General Introduction 

The importance of plants 

Based on biomass, plants are the most dominant organism of the earth’s living 

environment and provide all the food, directly or indirectly, on which humans and all other 

animals depend (Agrios et al., 2005). Current estimates report 452 vascular plant families, 

while 80% of the food derived from plants comes from only 17 plant families (Willis, 2017). 

Over 30,000 species have been documented as being “useful”, meaning that they fulfil a 

specific need for the wider environment, humans and other animals. The largest number of 

plants with a documented use are those that have been utilised as medicines or 

building/textile materials (Willis, 2017). Probably one of the most important “use” of plants is 

that they enable our survival by providing oxygen, shaping our environment and providing 

indirect benefits by restricting erosion and allow for fertile soil in agronomy. That is, plants 

provide essential “ecosystem services” to humanity (Reid et al., 2005). 

The provision of food is an essential service. Securing future food supplies requires 

basic quality standards and the production of sufficient quantities. At the same time, 

agricultural production must be intensive, sustainable and yet environmentally safe (Gebbers 

& Adamchuk, 2010). However, over the last 10,000 years, we developed agricultural 

practices that now seem unsustainable to support human population beyond 2050 

(Palmgren et al., 2015). One reason for this projection is that genetic diversity of many 

species has decreased as the selection of traits that provide higher yields and quality are 

desired (Warschefsky et al., 2014). As a consequence, such species now suffer severely 

depleted gene pools (Van De Wouw et al., 2010). Often, traits that result in higher yields 

cannot be harmonized with those that enable resilience to changing climates or to pests and 

diseases, leaving them vulnerable to these threats (Palmgren et al., 2015). 

Plants that show reduced resilience to pests, diseases and environmental factors are 

more easily stressed and cannot perform to their full genetic potential. By conservative 
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estimates, stress is causing the reduction or destruction of one third of the global production 

of all crops (Agrios et al., 2005). Increased globalization and connectedness via world trade 

allow pests and pathogens to invade new habitats and their impact on native and managed 

landscapes can be drastic. An analysis of 1,300 currently known invasive pests and 

pathogens projected potential cost to global agriculture at over US$540 billion annually 

(Willis, 2017). In the United States alone, agricultural and forestry losses from invasive pests 

have been estimated at US$40 billion annually (Paini et al., 2016). Losses caused by 

environmental and abiotic factors such as droughts and nutrient deficiencies are not included 

in those estimates. To secure food availability and increase its production efficiency, plant 

pathologists strive to understand causes of disease (i.e. aetiology), disease mechanisms 

(i.e. pathogenesis) and disease cycles (i.e. epidemiology). This allows them to manage 

diseases and focus on mitigating the environmental impact caused by control measures 

such as agrochemicals. However, it is now acknowledged that unilateral research 

enterprises might be too inefficient to solve problems of this extent (Rhoten & Parker, 2004). 

A discipline that might be able to support the efforts of plant pathologists is precision 

agriculture. 

 

Precision Agriculture 

The concept of ‘precision agriculture’ emerged approximately 30 years ago and has 

been commercially applied since the 1990´s (Mulla, 2013). Precision agriculture shows great 

potential to optimize agricultural production by reducing the expansion of arable land and 

closing ‘yield gaps’ through increased production efficiency (Foley et al., 2011). Agricultural 

expansion into natural ecosystems is detrimental to biodiversity, carbon storage and 

environmental services (Foley, 2005; Vogel, 2017). Yield gaps are created ‒ and should be 

avoided ‒ by management methods that result in differences between average and potential 

yields (Foley et al., 2011). Traditional agriculture assumes that crops demand homogenous 

management strategies which is one of the driving factors of the above-mentioned 
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shortcomings. This leads to the application of fertilizer, pesticides and other agrochemicals 

in a holistic and inefficient manner (Mahlein, 2016). By contrast, management strategies in 

precision agriculture aim at managing a crop in a targeted and timely fashion by dividing 

arable land into management zones that each receives customised management inputs 

based on their specific needs (Gebbers & Adamchuk, 2010; Mulla, 2013). Tools for such 

site-specific management are available for most tasks, including tillage, sewing, mechanical 

weeding, and the distribution of agrochemicals. Adoption rates of precision agricultural 

management are most notable in the European Union, North America and Australia (Mulla, 

2013). 

To obtain reliable and objective diagnosis of stressed and underperforming crops, 

adopters of precision agriculture have to rely on state-of-the-art sensor systems and data 

analysis techniques (Mahlein, 2016). Typically applied sensors measure either spectral 

reflectance, temperature or fluorescence (West et al., 2003; Sankaran et al., 2010). To 

choose the optimal sensor and platform for the task at hand, the required temporal and 

spatial resolution must be considered. The smallest ground area that can be resolved by a 

sensor, the spatial resolution, strongly depends on the distance between the sensor and the 

object (Figure 1). It also has a strong influence at what level stress can be detected (West et 

al., 2003; Mahlein, 2016). For stress causing agents at leaf-level, proximal sensors with high 

spatial (< 5 cm) resolution could be mounted on ground-based autonomous robots, tractors 

or even unmanned aerial platforms. Such platforms also offer the advantage of high 

temporal resolutions, the time it takes to revise a certain area, as the sensor can be 

deployed in short intervals (<0.5 days). High temporal resolution might be required when 

disease progression or the phases of other stresses are monitored. To monitor vegetation at 

larger scales (e.g. forests), it would be possible to use airplane- and satellite-mounted 

sensors with lower spatial (>1 m) and temporal (> 1 week) resolution (Mahlein, 2016). As it is 

projected that future farms are likely to be managed with tools allowing for high spatial and 

temporal resolution there is considerable interest in collecting remote sensing data across 
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temporal, spatial and spectral scales to conduct near real time soil, crop and pest 

management (Mulla, 2013). 

 

 

Figure 1 | Remote sensing platforms and sensors can be deployed at various scales depending on the required 
temporal and spatial resolution. Satellite-mounted sensors (Sensor A) can have a temporal resolution of more 
than 14 days and a spatial resolution of more than 50 m. Unmanned aircraft systems (Sensor C) can be deployed 
more frequently (temporal resolution < 30 min) and, depending on the flight altitude resolve incident, reflected 
radiation below 5 cm. Figure adapted from Groundwater-Illustration (2012) 

 

Remote Sensing for Stress Detection in Precision Agriculture 

Multispectral or hyperspectral sensors are commonly integrated as a remote sensing 

tool into precision agriculture (Moshou et al., 2004; Devadas et al., 2009; Mahlein et al., 

2010; Calderón et al., 2015; Candiago et al., 2015). These types of sensors mainly differ in 

their number and width of measured wavebands (i.e. spectral resolution) and whether they 

produce an image (imaging sensor) or record single reflectance signatures (non-imaging 

sensor). The first routinely applied multispectral sensor was mounted on the Landsat 1 

satellite in 1972 (Campbell & Wynne, 2011). The Landsat Multispectral Scanner (MSS) 
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spectrally resolved four broad bands between 500 and 1100 nm, each wider than 100 nm. 

Then, during the 1980s, scientists at the Jet Propulsion Laboratory (Pasadena, California) 

developed the first hyperspectral sensors (Campbell & Wynne, 2011). Instead of four 

wavebands, these sensors were able to resolve more than 200 spectral bands within similar 

spectral ranges as earlier multispectral sensors. By contrast, our standard mobile phone 

cameras can detect radiation in three relatively broad bands, the red, green and blue band. 

Today, hyperspectral sensors provide spectral data with tremendous complexity: typically, 

within a spectral range between 400 and 2,500 nm, and a spectral resolution below 1 nm 

(Mahlein, 2016). The spectral range between 400 and 2500 nm has become standard 

because incident solar radiation in this region is not blocked by the atmosphere. Whereas 

most other radiation emitted from the sun is blocked by the atmosphere (e.g. X-rays and 

ultraviolet radiation). The range of 400 and 2500 nm is traditionally subdivided into the visible 

region (VIS, 400 to 700 nm), the red-edge (RE, ~700±30 nm), the near-infrared (NIR, 700 to 

1400 nm) and the shortwave-infrared region (SWIR, 1400 to 2500 nm).  

Both multi- and hyperspectral sensors rely on either an active (light bulb) or passive 

(sun) source of electromagnetic energy and on the physical principle that this energy is 

either reflected, absorbed or transmitted by the complex assemblage of biological, geological 

and hydrological features of the earth's surface (Figure 1). For vegetation studies, either 

single leaves or entire canopies are diagnosed. The interpretation of leaf reflectance 

signatures is relatively simple because incident energy is emitted from an active illumination 

source and therefore not scattered through the atmosphere. However, the interpretation of 

plant canopy signatures is often difficult because the reflected electromagnetic radiation 

contains complex information of leaves and stems mixed with soil and plant litter (Knipling, 

1970). Patterns across entire plant reflectance signatures are usually analysed to form 

conclusions about plant properties. For instance, healthy vegetation (Figure 2A – green 

signature) at leaf-level usually reflects 10% of the total reflectance in the VIS region. Around 

550 nm, where roughly 20% of the light is reflected, the “green peak” can be found. It is this 

spectral feature that causes human vision to perceive plants as being green. In the NIR, total  
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reflectance increases to approximately 50% but gradually decreases to a low value at about 

2500 nm (SWIR). The typical VIS reflectance pattern is evoked by much absorbed radiation 

through leaf pigments, primarily the chlorophylls. Also, the carotenoids, xanthophylls, and 

anthocyanins have an effect (Gates et al., 1965). The high NIR reflectivity is caused by 

internal leaf cellular structures (Knipling, 1970). The radiation is diffused and scattered 

through the cuticle and epidermis to the mesophyll cells and air cavities in the interior of the 

leaf (Figure 2B). Here the radiation undergoes multiple reflections and refractions caused by 

refractive index differences between air (1.0) and hydrated cellulose walls (1.4). Finally, 

spectral reflectance variation in the SWIR is mainly caused by water and parts of the 

vegetation that is photosynthetically not active, such as litter, senesced leaves, bark and 

other lignin-cellulose dominated parts (Jacquemoud & Ustin, 2001; Thenkabail et al., 2011). 

The reflectance properties of single leaves are fundamental for understanding plant-light 

interactions. However, these leaf-scale principles cannot be applied to canopies without 

modifications (Knipling, 1970). Hence, the physics of radiation, the underlying physiology of 

stressed vegetation and the timing of assessments must be considered to extract useful 

information. 
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Figure 2 | A) Simplified principle of radiation energy (light) interacting with plant leaves. B) Simplified principle of 
the interaction between fungal pathogens and plant leaves. C) General spectral response of diseased and 
healthy leaves across the typical proportions of the electromagnetic spectrum.  Figure adapted from Figure 3 and 
5 in Mahlein, 2016. 

 

This leaf-light interaction principle can be extended to study the interaction of plant 

pathogens and their hosts. During pathogenesis variation in light reflectance is caused by 

changes in surface structure, chemical composition and physiology (Figure 2C). Each 

pathogen can provoke a specific pattern and sequence of symptoms that can be detected by 

optical sensors. For instance, biotrophic fungi such as powdery mildews or rusts are less 

aggressive and therefore do not destroy leaf structures and plant pigment processes at early 

stages of infection. For stripe rust, it has been found that vegetative growth of the pathogen 

may extend around an infection site (Sharp et al., 1985; Jackson, 1986). Symptoms of stem 

rust are initially restricted to the immediate area of individual rust pustules; later the fungus 

forms secondary and tertiary colonized areas and further pustule development can be 

observed. These variation in fungal structures on the leaf surface may be detected in the VIS 

region of the electromagnetic spectrum (Figure 2B and 2C). By contrast, perthotrophic 

pathogens are more aggressive and often degrade tissue due to toxins or enzymes that 

swiftly result in membrane damage and cell death after the fungus has penetrated the leaf 
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(Knogge, 1996; Mahlein et al., 2010). While there has been no attempt to spectrally quantify 

pathogen-related enzymes and toxins, specific chemical substances, such as phenolic 

compounds (Kokaly & Skidmore, 2015), can be quantified in the SWIR region. Variation in 

structure and chemical composition of pathosystems are often reflected in very specific 

regions of the electromagnetic spectrum. Therefore, hyperspectral sensors are preferred to 

detect plant diseases. Their high spectral resolution allows them to mirror these complex and 

spectrally confined processes and to pinpoint singular relevant wavebands related to specific 

pathosystem. Detailed pathosystem exploration turns out to be difficult with multispectral 

sensors as they do not offer enough spectral resolution and range (Mahlein et al., 2018).  

 

Spectral Vegetation Indices 

Spectral vegetation indices (SVIs) only require a few relevant wavebands to highlight 

changes in physiological, structural and chemical plants instead of evaluating entire spectral 

signatures. They have been developed for over 40 years and are especially useful to reduce 

computational processing time and redundant information of the high-dimensional output of 

hyperspectral sensors (Carter, 1993; Huete et al., 2002). Relevant wavebands can be 

selected by using a “feature selection” techniques which are usually integrated in machine 

learning algorithms (Kuhn & Johnson, 2013). The most well-known SVI is probably the 

normalized difference vegetation index (NDVI, Rouse et al., 1973). The NDVI is calculated 

based on the VIS and NIR proportion reflected by vegetation. Healthy vegetation absorbs 

most of the energy in the VIS for photosynthesis and reflects a large portion of the incident 

NIR energy. Stressed or sparse vegetation reflects more VIS and less NIR energy. Other 

indices, such as the anthocyanin reflectance index (ARI) pick up the concentrations of 

anthocyanins and suppress the impact of variable chlorophyll (Gitelson et al., 2007). Most of 

these SVIs have been developed to explore physiological changes in plants without 

considering the influence of pathogens. Therefore, it could be useful to design a new suite of 

indices that take the influence of specific pathogens into account.  
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Spectral disease indices (SDIs) appeared just recently in the literature. Mahlein et al. 

(2013) were the first to develop SDIs and selected relevant spectral bands for three fungal 

pathogens of sugar-beet. Mahlein et al. (2013) were able to successfully discriminate 

Cercospora beticola, Erysiphe betae, and Uromyces betae causing Cercospora leaf spot, 

powdery mildew and rust, respectively. Initially, Mahlein et al. (2010) tested whether it would 

be possible to differentiate those three pathogens using multiple SVIs (e.g. NDVI and ARI) 

and a hyperspectral sensor at leaf-level. As they also assessed spectral changes during 

pathogenesis, they could monitor disease severity. Because reflectance spectra were 

recorded under constant light and temperature conditions, pre-processing to smooth the 

spectrum and reduce signal noise was not necessary. To select relevant features, they 

subtracted the mean reflectance of diseased sugar beet plants from the mean reflectance of 

healthy sugar beet plants at each wavelength and used standard analysis of variance 

(ANOVA) to compare them. They concluded that SVIs are useful for the differentiation 

between healthy and diseased plants, and some are also useful for disease quantification. 

However, they also found that single SVIs lack the potential to differentiate among diseases. 

They suggested the use of SVI combinations to improve disease detection and 

differentiation of biotic and abiotic plant stress and started to work on the development of 

SDIs (Mahlein et al., 2013). Various other studies, mentioned in the following, successfully 

discriminated healthy and diseased plants at leaf-level using field spectrometry. 

 

Studies on Disease Detection using Remote Sensing 

Most of these studies used pure spectral signatures for classification and additionally 

tested multiple SVIs to discriminate healthy and diseased vegetation. Ashourloo et al. (2014) 

tested whether a set of SVIs (e.g. NBNDVI, NDVI, PRI) would be effective to reflect the 

disease severity of wheat leaf rust (Puccinia triticina) infected hosts. They encountered 

difficulties when attempting to detect early symptoms as only minor reflectance changes 

were observed, and with increasing disease severity the symptoms became too scattered for 
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Figure 3 | Research buggy used by Bravo et al 
(2003) to detect yellow rust on wheat. 

specific classification of the pathogen. They concluded that SVIs are valuable due to the 

reduction of data dimensionality and data processing time, but it would be necessary to 

carefully choose suitable SVIs for disease detection depending on the pathosystem and 

symptoms. Another study used different apple cultivars to assess if leaves infected with 

apple scab (Venturia inaequalis) could be differentiated from non-infected leaves (Delalieux 

et al., 2007). They also investigated at which developmental stage V. inaequalis infection 

could be detected, and they selected wavelengths that best differentiated between 

treatments. They collected hyperspectral data using a field spectrometer and compared 

classification results based on logistic regression, partial least squares logistic discriminant 

analysis, and tree-based models. Tree-based modelling suggested good predictability (c-

index = 80%). It was concluded that the SWIR spectral domains between 1350–1750 nm 

and 2200–2500 nm were the most important regions for separating stressed from healthy 

leaves immediately after infection. The VIS wavelengths, especially around 650–700 nm, 

increased in importance three weeks after infection at a well-developed infection stage. 

Ultimately, they acknowledged the high potential of hyperspectral data in particular to detect 

diseases at early points in time but also when pathogenesis was already in an advanced 

stage. 

Apart from studies that measured spectral reflectance directly at the leaf surface, 

there are studies that placed their spectral sensors further away but still close to the canopy. 

Bravo et al. (2003) assessed the difference 

in spectral reflectance between healthy and 

diseased wheat plants infected with Puccinia 

striiformis (yellow rust). They used a custom-

made buggy (Figure 3) to carry a visual 

monochromatic camera with a mounted 

spectrograph (460 nm – 900 nm). Their data 

could classify healthy and diseased wheat 

plants with an accuracy of 96%. However, measurements that are not recorded directly at 
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the leaf surface show high variations in upward radiation as the light has to travel a certain 

distance to reach the sensor. To correct for these variations, Bravo et al. (2003) applied a 

sensor irradiance normalization. To select important wavebands, they used an Analysis of 

covariance (ANCOVA) F-test and to discriminate healthy and diseased plants they used a 

quadratic discriminant analysis model (QDA). Just recently, Herrmann et al. (2018) used a 

hyperspectral sensor mounted on a tractor and collected reflectance signatures from 

Fusarium virguliforme on soy plants (Glycine max) at leaf and canopy level to compare 

relevant wavebands at both levels. Partial least squares discriminant analysis revealed that 

canopy and leaf spectral data can be classified with accuracies of 82% and 92%, 

respectively. Interestingly, they found differences in relevant wavelengths between leaf and 

canopy measurements which confirms that upscaling experiments cannot be done without 

modification.  

Increasing the distance to the canopy, Albetis et al. (2017) collected reference data 

on the ground and multispectral imagery in the VIS and NIR domain from the air using an 

unmanned aerial vehicle (UAV). Data were captured from red and white grape cultivars 

infected with Flavescence Dorée, a phytoplasma (wall-less bacterial pathogens)-borne 

grapevine disease. A set of eleven vegetation indices (e.g. NDVI and ARI) and four 

biophysical parameters (e.g. anthocyanin and carotenoid content) were calculated from five 

spectral bands (i.e. blue=B, green=G, red=R, red-edge=RE and near-infrared=NIR). Based 

on these parameters, both cultivars were classified, using generalized linear models, and 

important classification variables were selected. For red grape cultivars classification results 

were more successful (90-100%) than for white cultivars (68-80%). Important predictors 

were the RE and NIR region and four vegetation indices (GRVI, NDVI, RGI and ACI). 

Another study (Calderón et al., 2014) acquired spectral leaf measurements (350–1 000 nm) 

and airborne thermal and multispectral imagery using an UAV. Their aim was to detect 

downy mildew (caused by Peronospora arborescens) on opium poppy (Papaver 

somniferum). The VIS and RE spectral region were useful to detect infections due to the 

necrotic and chlorotic lesions caused by chlorophyll degradation. Also, the NIR region due to 
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changes in canopy density and leaf area, and the thermal-infrared region because of the 

changes in the transpiration rate that affect canopy temperature, were found to be relevant. 

Sensors mounted on airplanes can capture spectral data from canopies while 

covering a greater spatial extent than UAVs. López-López et al. (2016) investigated the 

fungal disease red leaf blotch (Polystigma amygdalinum), a major foliar disease affecting 

almond (Prunus amigdalus) orchards. Their study entailed leaf-level measurements of 

chlorophyll fluorescence, stomatal conductance and hyperspectral reflectance 

measurements in the VIS and NIR regions to calculate multiple pigment indices (chlorophyll, 

carotenes, and xanthophyll), ratios of bands within the VIS region, and disease-related 

indices. By obtaining and comparing high-resolution thermal and hyperspectral airborne 

imagery in addition to their leaf-level measurements they added another level of information 

to evaluate disease incidence and severity. The use of airplanes as sensor platforms, and 

therefore increasing the distance to an object of interest, increases the complexity of data 

pre-processing. López-López et al. (2016) had to atmospherically correct and ortho-rectify 

their hyperspectral images to allow for the conversion of radiance values to reflectance. 

Their classification methods, linear discriminant analysis and support vector machine, using 

linear and radial basis kernels, revealed that chlorophyll and carotenoid indices and 

chlorophyll fluorescence were effective in detecting red leaf blotch at the early stages of 

disease development. Leaf-level measurements of stomatal conductance, chlorophyll 

content, chlorophyll fluorescence, photochemical reflectance index, and spectral reflectance 

showed no significant differences between healthy leaves and the green areas of 

symptomatic leaves. Remote sensing proved to be a useful tool for decision support in their 

study but also demonstrated the difficulty of the quantification of red leaf blotch in almond 

orchards due to the unreliably detectable temperature increase caused by P. amygdalinum 

infection. The necessity of high-resolution imagery for monitoring the disease was 

emphasized.  

Probably the most advanced and complex study in this field was published by Zarco-

Tejada et al. (2018). They showed that changes in plant functional traits retrieved from 
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airborne imaging spectroscopy and thermography could be used to detect Xylella fastidiosa 

infection in olive trees (Olea spp.) before symptoms were visible. The bacterium X. fastidiosa 

is a plant pathogen of global importance as it is associated with a devastating olive tree 

disease epidemic in Italy (Sicard et al., 2018). Zarco-Tejada et al. (2018) carried out 

intensive in situ inspections of thousands of olive trees across several years and obtained 

accuracies of disease detection exceeding 80%. These results were confirmed by 

quantitative polymerase chain reaction, high-resolution fluorescence imaging and thermal 

stress indicators that were coupled with photosynthetic traits sensitive to rapid pigment 

dynamics and degradation. They also found that the visually asymptomatic trees originally 

scored as affected by spectral plant-trait alterations developed X. fastidiosa symptoms at 

almost twice the rate of the asymptomatic trees classified as not affected by remote sensing. 

They demonstrated that spectral plant-trait alterations caused by X. fastidiosa infection are 

pre-visually detectable at the landscape scale, a critical requirement to help eradicate some 

of the most devastating plant diseases worldwide. 

Finally, using the satellite mounted NASA's EO-1 Hyperion sensor, Apan et al. (2004) 

attempted to discriminate sugarcane areas affected by ‘orange rust’ (Puccinia kuehnii) 

disease. They calculated SVIs, related to leaf pigments, leaf internal structure, and leaf 

water content and confirmed that Hyperion imagery can be used to detect orange rust 

disease in sugarcane crops. They formulated a suite of ‘Disease–Water Stress Indices’ 

using only visible near-infrared (VNIR) bands (e.g. SIPI and R800/R680) and a moisture-

sensitive band (1660 nm) which produced good correlations with orange rust infected plants. 

However, satellite-based disease detection might prove difficult to integrate into precision 

agriculture strategies as even Hyperion images are spatially resolved to 30 m. A targeted 

application of agrochemicals needs an even finer resolution. 
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Introduction to Myrtle Rust (Austropuccinia psidii) 

Most of the above-mentioned studies investigated diseases where fungi were the 

causal agent. The division of Ascomycetes and Basidiomycetes are part of the subkingdom 

Dikarya and contain the highest number of known species in the kingdom of fungi (Raven et 

al., 2006). Among the Basidiomycetes, the order Pucciniales (previously known as 

Uredinales and also known as Rusts) causes some of the most destructive plant diseases. 

They mostly threaten the production of grain crops such as wheat or barley. Infamous 

examples are the stem rust of wheat (Puccinia graminis), yellow or stripe rust of wheat, 

barley, and rye (P. striiformis), leaf or brown rust of wheat and rye (P. triticina) and leaf rust 

of barley (P. hordei). Just recently, Puccinia graminis destroyed tens of thousands of 

hectares of wheat crops in southern Europe (Bhattacharya, 2017). But rusts are not 

restricted to grain crops, they are also jeopardizing vegetables such as bean and asparagus, 

field crops such as cotton and soybeans, and ornamentals such as carnation, 

chrysanthemum, and snapdragon (Agrios et al., 2005). 

 Symptoms of rust fungi often appear on leaves and stems as numerous rusty, 

orange, yellow, or even white-coloured spots (Agrios et al., 2005). Wang et al. (2018) 

explained that the yellow-orange colour of some rust species is due to four carotenoid 

pigments: phytoene, lycopene, g-carotene and b-carotene. The impact of rusts can escalate 

when host and pathogen did not co-evolve and pathogens become invasive (Helfer, 2014). 

For instance, host species of the coffee rust Hemileia vastatrix developed natural resistance 

in its natural range in Ethiopia. However, in the Americas, where coffee is highly cultivated 

and therefore lacks genetic diversity, the rust spread explosively and caused massive 

damage to yield and economic return (McCook & Vandermeer, 2015). Fortunately, most rust 

fungi are restricted to few host species. However, the fungus Austropuccinia psidii, the study 

species in this thesis, is different. 

The causal agent of myrtle rust, formerly known as Puccinia psidii, has recently been 

assigned to a new genus as Austropuccinia psidii (G. Winter) Beenken, and placed in the 
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family Sphaerophragmiaceae (Beenken, 2017). Currently, at least 513 host species from 78 

genera, exclusively within the Myrtaceae plant family, are known (Giblin & Carnegie, 2014; 

Soewarto et al., 2017; Berthon et al., 2018). This pathogen was first reported from Brazil in 

1884 infecting common guava (Psidium guajava) (Winter, 1884), from which the original 

name was gained, guava rust. It was believed to have undergone a host shift from native 

Myrtaceae to species of Eucalyptus and Syzygium jambos (De Castro et al., 1983; 

McTaggart et al., 2016). Today, it is established in numerous countries in South and Central 

America (Coutinho et al., 1998), as well as in the USA in Hawaii (Killgore et al., 2007), 

Florida (Marlatt & Kimbrough, 1980) and California (Zambino & Nolan, 2011). Other 

countries reporting incursions of A. psidii are Japan (Kawanishi et al., 2009), China (Zhuang 

et al., 2011), Australia (Carnegie et al., 2010), New Caledonia (Giblin, 2013; Soewarto et al., 

2017), South Africa (Roux et al., 2013), Indonesia (McTaggart et al., 2016), Singapore (du 

Plessis et al., 2017), and New Zealand (http://mpi.govt.nz/protection-and-

response/responding/alerts/myrtle-rust/). Especially in Australia, the study area of this work, 

the occurrence of A. psidii is a major threat as the Myrtaceae are one of the most dominant 

plant families (Makinson, 2014) and probably the most iconic with widespread genera such 

as the eucalypts (Eucalyptus, Angophora and Corymbia), paperbarks and bottlebrushes 

(Melaleuca and formerly, Callistemon), and tea-trees (Leptospermum). Their ecological 

importance in Australia is without question (Myerscough, 1998). There are approximately 

2,250 native species within 88 genera of Myrtaceae in Australia (Makinson, 2014), with half 

of these occurring in climatic zones identified as suitable for the establishment of myrtle rust 

(Berthon et al., 2018; Carnegie & Pegg, 2018). Studies on the susceptibility to myrtle rust of 

species of Myrtaceae in Australia, including those from controlled screening (Potts et al., 

2016) and field-based assessments (Pegg et al., 2014a; Carnegie et al., 2016), show that 

more than 90% have been identified as being susceptible to A. psidii (Berthon et al. 2018). 

Further complicating the situation, the interspecific susceptibility of many host species can 

vary tremendously from fully resistant to extremely susceptible, while others show a great 

range of intraspecific variation in susceptibility (Morin et al., 2012; Sandhu & Park, 2013; Lee 
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et al., 2014; Pegg et al., 2018). Unfortunately, the unusually wide host range and curious 

variability within and between species in Australia is not the only unanswered question on A. 

psidii. 

Currently, several strains of A. psidii are known from native and introduced 

Myrtaceae in Brazil, Colombia, Jamaica and Uruguay (Graça et al., 2013; Granados et al., 

2017; Carnegie & Pegg, 2018). Only one A. psidii strain, the ‘pandemic’ strain, is present in 

Australia (da S. Machado et al., 2015; Stewart et al., 2018). The pandemic strain has a yet 

unknown origin (Graça et al., 2013; McTaggart et al., 2016), and has spread across the 

globe where it is present now in Hawaii, China, New Caledonia, Indonesia, New Zealand 

(Carnegie & Pegg 2018) and Singapore (Stewart et al., 2018). However, a completely 

different strain occurs on several hosts in South Africa (Roux et al., 2016).  

Until recently, A. psidii was considered clonal (Morin et al., 2014), and genetic 

diversity within a population has been attributed to mutations. Latest findings suggest that A. 

psidii produces basidiospores through recombination and therefore is not strictly clonal 

(McTaggart et al., 2017). While life cycles of rust fungi are often macrocyclic and undergo all 

five spore stages (Agrios et al., 2005), A. psidii has three known life cycle stages (McTaggart 

et al., 2017) and is considered a microcyclic fungus. The stages are (i) a mitotic, dikaryotic 

uredinial stage, which is used to distinguish it from other rusts on Myrtaceae (Maier et al., 

2016), (ii) a telial stage with diploid teliospores (Morin et al., 2014), and (iii) basidiospores 

that develop on a basidium and have either one or two nuclei (Morin et al., 2014).  

Infections occur on young, actively growing leaves, shoots, as well as on fruits and 

sepals (Coutinho et al., 1998; Glen et al., 2007). Juvenile and highly susceptible species 

may be defoliated and show signs of severe stem and foliage blight (Coutinho et al., 1998; 

Glen et al., 2007). Following infection, evidence of the rust becomes visible after two to four 

days and produces great amounts of yellow urediniospores that intensify in their visibility ten 

to twelve days after inoculation. This yellow-orange colour has been associated with 

carotenoid pigments for some other rust species (Wang et al., 2018), but there is no 

information on spore chemical composition available for A. psidii. Infected areas 
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subsequently increase in size in a circular manner due to the radial growth of the fungus 

while they are generally confined to areas between the veins. Leaves are often deformed. 

Secondary infections occur within a few days and are, again, confined to new plant tissues 

(Coutinho et al., 1998). Coutinho et al. (1998) also reported that urediniospores are usually 

restricted to the lower leaf surfaces and that leaves show less intense sporulation when 

infected after reaching 50% of their full growth. However, for Backhousia citriodora leaves, 

we (Heim, 2018, chapter 2) observed yellow urediniospores on the upper leaf surface, an 

important feature for myrtle rust detection using remote sensing techniques. Sporulation of 

A. psidii on infected parts of seedlings ceases after 2 weeks. Plants recover by producing 

new growth that may become infected if the conditions are favourable. If the trees are 

continuously re-infected, they become stunted (Coutinho et al., 1998) and eventually die 

(Carnegie et al., 2016). The gross symptoms of disease caused by A. psidii are similar for all 

strains (Figure 4). This poses a great biosecurity risk in Australia as it aggravates the 

differentiation of the currently occurring pandemic strain, from newly arriving, more virulent 

strains at the Australian border. Hence, timely management responses are unlikely and a 

new strain could as well rapidly spread in Australia (Makinson, 2018).  
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Figure 4 | Austropuccinia psidii infection on species within the Myrtaceae. (A) Urediniospores on 
Syzygium jambos flower. (B) Necrotic Syzygium anisatum shoot. (C) Urediniospores on Psidium guajava 
fruit. (D) Urediniospores on Syzygium jambos leaf. (E) Dieback cause by A. psidii on Syzygium jambos. 
(Source: Angus Carnegie). 
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While the external disease pattern of A. psidii hosts is well described, little is known 

about the internal physiological symptoms. In general, physiological interactions between a 

fungal disease and its host vary depending on the pathogen (Knogge, 1996; Jones & Dangl, 

2006). Often composition and content of leaf pigments (e.g. chlorophylls, carotenoids and 

anthocyanins), water content, functionality of tissue or the appearance of pathogen-specific 

structures change when the plant is exposed to phytopathogens. Leaf pigments are affected 

in particular when pathogens induce chlorotic- and necrotic-like symptoms (Gamon & Surfus, 

1999; Carter & Knapp, 2001). 

 

Environmental and Economic Impact of Myrtle Rust in Australia 

The ecological consequences associated with the incursion of A. psidii are quick and 

serious decline in the extent and abundance of highly susceptible Australian native plant 

species (Makinson, 2018). Pegg (2014b) found 48 species to be highly susceptible in 

Queensland, Australia. Among these species were the keystone species Melaleuca 

quinquenervia, and the rare and endangered species Backhousia oligantha, Gossia 

gonoclada and Rhodamnia angustifolia. Especially at risk, because of their high 

susceptibility in some provenances, are three broad-leaved Melaleuca species (M. 

leucadendra, M. quinquenervia and M. viridiflora) and two understory rainforest species 

(Rhodomyrtus psidioides, Rhodamnia rubescence). All three Melaleuca species are a crucial 

component of the tropical and sub-tropical biota of Australia (Pegg & Carnegie, 2018). After 

Eucalyptus, Melaleuca is the most species-rich genus in Australia Myrtaceae containing 

approximately 259 species (Edwards et al., 2010). They are of high conservation 

significance as they are an integral part of wetlands and occur in riverine gallery forests and 

the margins of rainforests (Barlow, 1986; Cook et al., 2008). Regarding R. rubescens and R. 

psidioides, Carnegie et al. (2016) showed that repeated, severe infection by A. psidii 

resulted in a reduction in foliage production eventually leading to tree death in a native forest 

ecosystem in fewer than four years. Both species are now in decline, while the impact on R. 
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psidioides is particularly severe with deaths of more than half the trees in many stands, 

including mature trees up to 12-m tall (Pegg et al., 2017). Pegg et al. (2017) also reported 

local extinction of R. psidioides in south-eastern Queensland, with no evidence of 

regeneration. After A. psidii was detected in 2010, the pathogen was so aggressive that it 

changed the ecological status in Australia for R. rubescens and R. psidioides from being 

considered common and widespread to being preliminarily listed as Critically Endangered in 

NSW (NSW Scientific Committee, 2017a,b). 

Additionally, economic risks associated with the spread and impact of A. psidii have 

been reported. While the impact on tourism has been briefly touched by Booth (2000), the 

impact on horticulture, forestry and iconic native food products was discussed more widely. 

For the eucalyptus forestry industry, no current damage was reported in Australia (Carnegie, 

2015) as Australia currently harbours only a single strain of A. psidii, the ‘pandemic’ strain 

(Stewart et al., 2018). If any further strain of A. psidii would arrive in Australia, it could 

escalate the threats posed by this pathogen. Other strains of the pathogen are likely to have 

different host ranges with potentially different effects and environmental tolerances on 

current hosts (Makinson, 2018). Two strongly eucalypt-associated strains (C2, C3) are 

known from South America, where A. psidii has caused major economic damage to eucalypt 

species and hybrids (Makinson, 2018; Stewart et al., 2018; Carnegie & Pegg, 2018). 

Myrtle rust first became a threat to the eucalyptus industry in South America in 1973 

when large scale damage in nurseries was reported on Eucalyptus grandis (Ferreira, 1983; 

Furtado & Marino, 2002). Later, commercial plantations of E. globulus and E. viminalis have 

been found infected with A. psidii; disease severity was reported as being highly variable 

among plants of both species (Alfenas et al., 2003). Usually, Eucalyptus species younger 

than 2 years old were most susceptible (Coutinho et al., 1998). In Uruguay (Pérez et al., 

2011), pathogenicity tests showed that isolates from native Myrtaceae could infect E. 

globulus and E. grandis. Although the impact on Eucalyptus forestry has not been reported 

to be severe elsewhere than in Brazil, the potential impact of the spread of new strains 

should not be underestimated as the incursion of a more virulent strain of A. psidii into a not 
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yet threatened region can become problematic (Cannon, 2011; Burgess & Wingfield, 2017; 

Carnegie & Pegg, 2018).  

In Australia, where this study took place, A. psidii is reported along the eastern coast 

from Batemans Bay to northern Queensland, and around Darwin, with localised distribution 

in Victoria (Melbourne) and northern Tasmania (Makinson, 2018). Few data exist on the 

impact of myrtle rust on Australian horticultural production. However, it has been shown that 

Geraldton Wax (Chamelaucium spp.), which accounts for 40% of Australian cut-flower 

production (Makinson, 2018), is extremely susceptible to A. psidii and there is no known 

resistant genotype across the genus in the wild (Tobias et al., 2015). A number of other 

industries rely on the Myrtaceae family for their products. Based on economic return, the 

largest product is tea-tree oil, followed by Lemon Myrtle, Aniseed Myrtle, and Riberry 

products (Makinson, 2018). 

Lemon Myrtle (Backhousia citriodora) started its commercial trajectory in the 1990s, 

with a fresh weight leaf harvest of up to 1,000 tonnes p.a., compared with less than 15 

tonnes for most other native food crops (AgriFutures, 2017). The expanding lemon myrtle 

industry has been particularly affected, as cultivars of B. citriodora currently in use are 

moderately to highly susceptible to myrtle rust (Doran et al., 2012). Leaves of B. citriodora 

are commercially harvested to produce lemon-flavoured herbal teas, culinary herbs, and 

lemon-scented essential oils used for food flavouring and personal care products (Clarke, 

2012). The farm gate value of this market has been estimated to be between AUD$ 7-23 

million annually (Clarke, 2012). Rust-affected leaves of B. citriodora are unsuitable for use 

and cause yield losses up to 70%. The application of fungicides to control the disease is 

undesirable as the market demands a clean, organic product (Carnegie & Pegg, 2018). 

Therefore, the industries reliant on lemon myrtle are in urgent need of rust-resistant cultivars 

or measures to reduce the use of fungicides. 
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Rationale and Aims 

As mentioned above, there is increasing interest in using remote sensing to detect 

and discriminate plant pathogens in precision agriculture (Mahlein, 2016). Because current 

field-based detection of myrtle rust and other plant pathogens are solely conducted by 

trained experts and rely on their experience, assessment performance may vary 

considerably, leading to issues with repeatability (Mahlein, 2016). Thus, disease assessment 

is subject to human bias. Automated, sensor-based disease detection can be performed with 

high reliability, sensitivity and specificity and improve the assessment of disease incidence 

and severity beyond the processes of visual disease detection (Mahlein, 2016). While efforts 

have been made to collect and interpret spectral information of various pathosystems, no 

one has explored remote sensing methods that could detect myrtle rust in a plant production 

system. Consequently, the aim of this doctoral thesis was to develop proof-of-concept for the 

sensor-guided detection of myrtle rust. The thesis is divided into three main data chapters 

(Chapters 2, 3, 4) that are formally introduced (Chapter 1) and discussed (Chapter 5). The 

data chapters consist of individual projects that explore the spectral reflectance signature of 

infected and fungicide treated lemon myrtle trees across multiple scales.  

The initial study (Chapter 2) explored whether it would be possible to spectrally 

discriminate treated and untreated leaves of lemon myrtle trees. It was assumed that typical 

symptoms, such as the bright, orange-yellow urediniospores would cause variation in 

reflectance. From a lemon myrtle plantation, spectral signatures of fungicide-treated and 

untreated leaves were collected using a portable field spectrometer. A third class of spectra 

was collected from a botanical garden (Australian Botanic Garden Mount Annan, New South 

Wales, Australia), where lemon myrtle leaves had not been exposed (naïve) to A. psidii. 

Reflectance spectra in their primary form and their first-order derivatives were used to train a 

random forest classifier resulting in an overall accuracy of 78% (kappa = 0.68) for primary 

spectra and 95% (kappa = 0.92) for first-order derivative-transformed spectra. A broad set of 

relevant discrimination features was selected. Thus, an optical sensor-based discrimination, 
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using spectral reflectance signatures of this as yet uninvestigated pathosystem, seems 

technically feasible. This study provided a foundation for the development of automated, 

sensor-based detection and monitoring systems for myrtle rust and allowed us to focus on 

the selection of relevant discrimination features as well as to up-scale the detection at 

canopy-level.  

In chapter 3, we continued to analyse the data collected for chapter 2. We were 

interested whether it is possible to accurately discriminate treated and untreated plants from 

the plantation by using a minimal number of relevant wavebands. The aim was, to develop a 

novel spectral disease index (SDI), the lemon myrtle-myrtle rust index (LMMR). We sampled 

236 fungicide-treated (disease free) and 228 untreated (diseased) lemon myrtle leaves and 

used a random forest classifier to show that the LMMR discriminates those classes with an 

overall accuracy of 90%. Compared to three classical SVIs (PRI, MCARI, NBNDVI), 

commonly applied for stress detection, the LMMR clearly improved classification accuracies 

(58%, 67%, 60%, respectively). If the LMMR can be validated on independent datasets from 

similar and different host-species, it could enable land managers to reduce disease impact 

by earlier control. There might also be potential to collect useful data for epidemiology 

models. Calculating the LMMR based on hyperspectral data collected from aerial platforms 

(e.g. drones) would allow for rapid and high capacity screening for disease outbreaks. 

For chapter 4, we were interested whether accurate detection was still possible at 

canopy level and if relevant features would differ between leaf- and canopy scale. We a 

used a multispectral imaging approach and unmanned aerial systems (UAS) to explore 

whether myrtle rust could be detected on a lemon myrtle plantation from the air. Multispectral 

aerial imagery was collected from fungicide treated and untreated tree canopies and 

compared to multispectral data from individual leaves from the same canopies. Spectral 

vegetation indices and single spectral bands were used to train a random forest classifier. 

The UAS-derived classification yielded far higher accuracy (95%) than the leaf-level 

classification (74%). Important predictors for the UAS classifier were the near-infrared (NIR) 

and red edge (RE) spectral band. At the leaf level NIR was no longer deemed important. Our 
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work suggests there is clear potential for mapping myrtle rust-related stress from aerial 

multispectral images. Output from studies of this type could be used for pinpointing disease 

hotspots, for adjusting management strategies, and as input for epidemiological models.  

In the final chapter of my thesis, I summarise the main findings of my research and I 

briefly touch on the potential implications of this work for plantation managers, plant 

pathologists and remote sensing scientists who aim to further advance the integration of 

remote sensing tools into the management of A. psidii for the lemon myrtle industry. Lastly, I 

discuss directions for future research. 
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Abstract 

Hundreds of species in one of Australia’s dominant plant families, the Myrtaceae, are 

at risk from the invasive pathogenic fungus Austropuccinia psidii. Since its arrival in Australia 

in 2010, native plant communities have been severely affected, with highly susceptible 

species likely to become extinct from recurring infections. While severe impact on Australian 

native and plantation forestry has been predicted, the lemon myrtle industry is already under 

threat. Commercial cultivars of lemon myrtle (Backhousia citriodora) are highly susceptible to 

A. psidii. Detecting and monitoring disease outbreaks is currently only possible by eye, 

which is costly and subject to human bias. This study aims at developing a proof-of-concept 

for automated, non-biased classification of healthy (naïve), fungicide-treated and diseased 

lemon myrtle trees by means of their spectral reflectance signatures. From a lemon myrtle 

plantation, spectral signatures of fungicide-treated and untreated leaves were collected 

using a portable field spectrometer. A third class of spectra, from naïve lemon myrtle leaves 

that had not been exposed to A. psidii, was collected from a botanical garden. Reflectance 

spectra in their primary form and their first-order derivatives were used to train a random 

forest classifier resulting in an overall accuracy of 78% (kappa = 0.68) for primary spectra 

and 95% (kappa = 0.92) for first-order derivative-transformed spectra. Thus, an optical 

sensor-based discrimination, using spectral reflectance signatures of this as yet 

uninvestigated pathosystem, seems technically feasible. This study provides a foundation for 

the development of automated, sensor-based detection and monitoring systems for myrtle 

rust. 
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Introduction 

Rust fungi and other plant pathogens are affecting humans and their environment by 

damaging plants and their products on which we depend for clothing, housing and, most 

importantly, food. Outbreaks of rust fungi may result in extensive damage to agricultural and 

forestry crops, as seen when a new, highly virulent strain of Puccinia graminis destroyed 

tens of thousands of hectares of wheat crops in southern Europe (Bhattacharya, 2017). This 

study focuses on the rust fungus Austropuccinia psidii (Sphaerophragmiaceae, Pucciniales). 

In Australia, A. psidii causes a disease commonly known as myrtle rust and is an obligate 

biotroph and pathogenic organism in the highly diverse phylum Basidiomycota (Helfer, 

2014). In contrast to most other rust diseases, myrtle rust has the potential to infect 

hundreds of different species, escalating the potential consequences of infection. 

Myrtle rust has already caused damage to a multitude of species in South and 

Central America, its native region (Coutinho et al., 1998), and to native vegetation in various 

countries between the Americas and Australia (Loope, 2010). Austropuccinia psidii was first 

identified in Australia in 2010, on the central east coast of New South Wales (NSW; 

Carnegie et al., 2010). Subsequently, a single strain of A. psidii (Machado et al., 2015) has 

undergone a remarkable range expansion, establishing along the Australian east coast from 

NSW to Queensland, and with localized distributions in Victoria, Tasmania and Northern 

Territory (Carnegie et al., 2016; Berthon et al., 2018). Myrtle rust has since also invaded 

New Caledonia (Giblin, 2013), South Africa (Roux et al., 2013), Indonesia (McTaggart et al., 

2016), Singapore (du Plessis et al., 2017) and, most recently, New Zealand 

(www.mpi.govt.nz, accessed 02 December 2017). 

Although most rust pathogens are limited to infecting only a few host species 

(Makinson, 2014), myrtle rust infects many hundred species, meaning the potential impact 

on the Australian flora is very serious. The Myrtaceae is one of the dominant plant families in 

the Australian flora, contributing more than 2000 species (approximately 10% of the total 

flora), including iconic, widespread genera such as Eucalyptus (gum trees) and Melaleuca 
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(paper barks). About half of all Australian Myrtaceae occur in climatic zones identified as 

suitable for the establishment of myrtle rust (Berthon et al., 2018). Currently, over 500 host 

species in 86 Myrtaceae genera are known worldwide, with 347 of these species occurring in 

Australia (Carnegie et al., 2016; Soewarto et al., 2017). Of the species studied in Australia, 

including those from controlled screening (Potts et al., 2016) and field-based assessments 

(Pegg et al., 2014; Carnegie et al., 2016), 90% have been identified as being susceptible to 

A. psidii. Several species have been identified as being highly susceptible, with severe 

decline in natural populations recorded. This includes the common species Rhodamnia 

rubescens and Rhodomyrtus psidioides, where deaths of mature stands have been reported 

(Carnegie et al., 2016). Both species, previously listed as ‘least concern’, have now been 

provisionally listed as ‘critically endangered’ in NSW. The NSW scientific committee of the 

Department for Environment and Heritage has acknowledged myrtle rust as constituting a 

major threat to the native Australian environment and the Myrtaceae, listing it as a ‘key 

threatening process’ (NSW Scientific Committee, 2011). 

Unfortunately, the impact of myrtle rust in Australia has not been limited to native 

ecosystems, with industries reliant on Myrtaceae also affected. Loss of commercial varieties 

and trade restrictions, in addition to increased reliance on fungicides, have severely affected 

the nursery and garden industry. The young, expanding lemon myrtle industry has also been 

significantly impacted (Doran et al., 2012). Backhousia citriodora (lemon myrtle) is a small to 

medium-sized tree (2 to 30 m), occurring naturally in Queensland coastal forests from 

Brisbane to Mackay. Lemon myrtle leaves are rich in antioxidants, vitamin E, lutein (a 

carotenoid compound important for eye function) and calcium. Lemon myrtle has 

antimicrobial and antifungal properties that are superior to tea tree oil (Rural Industries 

Research and Development Corporation, 2012). Leaves are commercially harvested to 

produce lemon-flavoured herbal teas, culinary herbs or lemon-scented essential oils used for 

food flavouring and in personal care products. Cultivars of B. citriodora currently in use are 

moderately to highly susceptible to myrtle rust. Rust-affected leaves of B. citriodora are 

unsuitable for its main uses and the application of fungicides to control the disease is 
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undesirable as the market demands a clean, organic product. A total farm gate value at 

between AU$7 million and AU$23 million is estimated for dried leaf and essential oil, 

respectively (Rural Industries Research and Development Corporation, 2012). Therefore, the 

industry’s reliance on lemon myrtle is in urgent need of rust-resistant cultivars or measures 

to reduce the use of fungicides. Reports of susceptibility within the eucalypts (Pegg et al., 

2014; Potts et al., 2016) indicate an escalation of the problem as it suggests the potential of 

myrtle rust to affect the forestry industry in Australia, both native and plantation. In Brazil, 

commercial plantations of Eucalyptus globulus and E. viminalis have suffered reduced 

growth and yield loss because of myrtle rust incursions (Alfenas et al., 2003).  

Myrtle rust forms purplish lesions with abundant bright, orange-yellow urediniospores 

on young leaves and shoots, which may die-back because of rust attack. Current field 

identification of these symptoms and dis- ease incidence assessments for myrtle rust and 

other plant pathogens are reliant on trained experts and are dependent on the experience 

and performance of individuals that vary considerably, leading to issues with repeatability 

(Mahlein, 2016). Thus, disease assessment is subject to human bias. Automated, sensor-

based dis- ease detection can be performed with high reliability, sensitivity and specificity 

and improve the assessment of disease incidence and severity beyond the processes of 

visual disease detection (Mahlein, 2016). To date, no one has explored sensor-based 

methods that could detect these and less obvious symptoms of myrtle rust. 

 Currently there is increasing interest in using spectral reflectance measurements 

(field spectroscopy) to detect and discriminate plant pathogens in precision agriculture 

(Mahlein, 2016). Spectral reflectance signatures of vegetation can indicate biochemical, 

physiological and molecular changes caused by abiotic or biotic processes (Mahlein et al., 

2010). Disease symptoms often result from such changes brought about by pathogens and 

can be investigated by analysing spectral reflectance signatures (Bravo et al., 2003; 

Delalieux et al., 2007; Mahlein et al., 2010). Mahlein et al. (2010) used reflectance spectra of 

sugar beet leaves to show that there was a distinctive differentiation of three sugar beet fun- 

gal pathogens, Cercospora beticola (cercospora leaf spot), Erysiphe betae (powdery mildew) 
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and Uromyces betae (beet rust). Bravo et al. (2003) built a classification model that could 

discriminate wheat plants infected with Puccinia striiformis (yellow rust) from healthy ones 

with an overall accuracy of 96%. However, spectral reflectance signatures are very specific 

to the source of reflection (e.g. specific to the pathogen infecting a certain species or specific 

to the content of biochemical compounds of a leaf) and more research is required to explore 

the utility of these approaches for other pathosystems. 

The present study builds on the fact that spectral information (including visible light) 

is reflected by leaf surfaces. This reflection was captured with an optical sensor and 

portrayed as a waveform (intensity versus wavelength). Waveforms from different plant 

pathogens are likely to vary in distinct sections of the light spectrum, e.g. in the visible 

portion (VIS, 400–700 nm), where the bright, orange-yellow urediniospores of myrtle rust 

would potentially cause variation in reflectance. For myrtle rust, no efforts have yet been 

made to investigate its specific spectral reflectance signature. Consequently, the aim of this 

study was to test whether it is possible to spectrally discriminate naïve, fungicide-treated and 

infected leaves of B. citriodora trees. In this study the following questions were addressed: 

 

(i) Can the spectral response of naïve and fungicide- treated B. citriodora individuals 

be distinguished from ones displaying infection symptoms of A. psidii (myrtle 

rust)? 

(ii) Amongst all predictor variables (wavebands), what are the most useful 

wavebands for discriminating spectral responses of these classes? 
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Methods 

Study site 

Spectral reflectance signatures of lemon myrtle leaves were measured at two 

locations in subtropical eastern Australia. The first site was a commercial lemon myrtle 

plantation in northern NSW (lat. ?28.691, long. 153.295) and the second site was the 

Australian Botanic Garden at Mount Annan (lat. ?34.071, long. 150.766), 800 km south of 

the plantation, also in NSW near Sydney. At the plantation site, the mean annual 

temperature is 19.4 °C and mean annual rainfall 1343 mm, while a mean annual 

temperature of 16.7 °C and mean annual rainfall of 792.4 mm have been recorded at the 

botanical garden (Australian Government Bureau of Meteorology, 2017). The plantation site 

was selected to take advantage of an existing experiment in which the impact of fungicide 

was being measured on lemon myrtle trees affected by myrtle rust. The plantation had trees 

that were free of active disease symptoms, having had fungicide successfully applied to 

them (‘treated’ trees), and ‘untreated’ trees, showing symptoms of active myrtle rust 

infection. Treated trees could potentially have been infected previously with myrtle rust (prior 

to fungicide application) and thus the leaves may have had necrotic lesions even after killing 

the fungus by fungicide treatment. Consequently, the botanical gar- den was chosen as an 

additional field site: it offered plants in a region that suffers only rare episodes of myrtle rust, 

and were, therefore, free from infection and corresponding symptoms (here deemed ‘naïve’ 

trees). 

Trees sampled at the plantation were approx. 2 m tall and pruned regularly into a 

pyramid shape to get maximal sunlight and increase foliage production rates. The sampling 

area was composed of nine rows of trees with the treated and untreated trees separated by 

buffer rows (Fig. 1a). Plants at the botanical garden were not managed and varied in their 

habits. In general, they were approximately 2–3 times taller, produced larger, tougher 

leaves, and were planted in clusters instead of rows. Including these plants from a different 
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location (and provenance, most probably) added an unknown degree of variation to the 

spectral reflectance measured in this study. However, it gave a valuable comparison, 

providing spectral signatures from the same species that were not influenced by myrtle rust. 

 

 

Figure 1 | Sampling design. (a) An aerial image of the plantation site; the box highlights nine rows of Backhousia 
citriodora trees that had been exposed to Austropuccinia psidii. Spectra were collected at three sampling points 
from both sides of each tree in rows that had been untreated (U) or treated (T) with fungicide, separated by buffer 
trees (B). (b) One side of a single row with sampling points highlighted as crosses. At each sampling point, the 
first two pairs of freshly expanding leaves, just large enough to apply the leaf clip accessory, were used to record 
the spectra. Plants growing close to management trails (grey) were not used in this study. 

 
Spectral measurements 

Spectral reflectance between 350 and 2500 nm was measured using a portable, non-

imaging spectroradiometer (Spectral Evolution PSR+ 3500) with spectral resolutions of 3 nm 

up to 700 nm, of 8 nm up to 1500 nm, and of 6 nm up to 2100 nm. The field spectrometer 

was set to 15 internal repetitions, meaning that each spectrum was measured 15 times, in 

order to reduce measurement variability. A leaf clip holder with a 3 mm sample area, a built-

in reflectance standard and a separate 5 W light source (ILM-105) was used to take 

measurements, while also keeping heat from the light source away from the plant tissue. 

Heat stress could complicate the selection of relevant wavebands by causing physiological, 

biochemical or molecular changes in plants that would be represented in spectral reflectance 

responses and mix with the stress signal caused by myrtle rust infections.  

At the plantation, from each of the two untreated and treated rows of trees, leaves 

from five trees were selected to record spectra at three sampling points: 180, 100 and 50 cm 

height (Fig. 1b). Plants that appeared disturbed by close proximity to frequently used 

management trails were avoided. For each sampling point, one terminal shoot was selected 

and the first two pairs (four leaves) of newly expanding leaves, just large enough to apply the 

leaf clip accessory, were used to record the spectral responses. The height-stratified 



49 
 

sampling points were chosen on both east- and west-facing sides of trees, in order to 

represent the spectral response of a single tree most effectively. This design resulted in 240 

spectra from 240 leaves for each class and 480 spectra in total at the plantation.  

Spectra at the botanical garden were collected following the same general procedure 

as on the plantation (i.e. height stratification; east- and west-sampling). Ten naïve plants 

located in the Myrtaceae beds of the garden were selected. In total, 240 spectra of 240 

naïve leaves were sampled, resulting in an overall dataset of 720 spectra. 

 

Analysis pipeline 

After data collection, all analyses were conducted using the R statistical platform (R 

Core Team, 2016) using several add-on packages (detailed below). For transparency and 

reproducibility, the full analysis, including figures and tables, can be repeated using code 

and data archived at https://github.com/ReneHeim/ MyrtleRust-LemonMyrtle-Classification 

(https://doi.org/10.5281/ zenodo.1142944). 

 

Pre-processing of spectral reflectance signatures 

First, all wavelengths below 500 nm were deleted because they contained intense 

spectral noise. Detection and removal of out- lying spectra followed, using depth measures 

included in the FUNCTIONAL DATA ANALYSIS AND UTILITIES (FDA) package (Febrero- 

Bande & Oviedo de la Fuente, 2012). After the outliers had been removed the final dataset 

consisted of 216 observations for the naïve class, 236 for the treated class and 228 for the 

untreated class (from the original 240 spectra per class). Spectral resampling was used to 

reduce multicollinearity between predictor variables. This reduced the spectral resolution 

from 3–8 nm (2151 predictor variables) to a resolution of 10 nm (202 predictor variables). 

Spectral resampling was carried out using the PROSPECTR package (Stevens & Ramirez-

Lopez, 2014). Finally, first-order derivatives (FOD) of each spectral signature were 

calculated. FOD transformations of the spectral curve are a commonly applied technique 
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used to increase classification quality by enhancing spectral features and minimizing random 

noise (Demetriades-Shah et al., 1990). 

 

Random forest classification 

An ensemble machine learning method was used to assign each spectrum to one of 

the three classes (i.e. naïve, treated, untreated). Ensemble methods reduce variance by 

providing an outcome that is based on multiple independent classifiers. Here, a random 

forest classifier (Breiman, 2001) was used. This approach is based on multiple decision 

trees (Hastie et al., 2009) and is nonparametric, because high-resolution spectral data rarely 

meet the criteria for standard parametric tests. Several studies, including the original paper 

by Breiman (2001), have shown that random forest classifiers are a suitable tool for 

analysing spectral and other high-dimensional, multicollinear data (e.g. Immitzer et al., 

2012). 

For classification, the CARET package (Kuhn et al., 2017) was used. Two 

parameters are primarily responsible for the performance of a random forest classifier and 

must be tuned depending on the dataset to be classified. First, the number of randomly 

selected predictors to choose from at each split (mtry) was optimized. Secondly, the number 

of trees generated to gain a full ensemble (n-tree) was optimized. The dataset was split 

80:20 into training and test data subsets, and a 10- fold repeated cross-validation was 

applied on the training data. This approach breaks the data into 10 equal-sized fractions: 

nine of them are used to build/train a tree, and then used to predict the values of the 10th 

fraction, allowing the user to estimate the training accuracy. This process was repeated 100 

times and the mean accuracy over these repetitions was calculated. 

By default, the accuracy of the training and validation process was evaluated using 

the overall accuracy (OA) as a metric. OA reflects the agreement between the reference and 

predicted classes and has the most direct interpretation. However, it does not provide 

information about the origin of an error (Kuhn & Johnson, 2013). Here, an additional metric, 
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the kappa statistic (Cohen, 1960) is useful. Kappa can take on values between ?1 and 1; a 

value of 0 implies no agreement between the observed and predicted classes, while kappa 

of 1 indicates perfect concordance of the model prediction and the observed classes. Landis 

& Koch (1977) first defined the following standards for the strength of agreement: kappa of 0 

= poor; kappa 0.01–0.20 = slight; 0.21–0.40 = fair; 0.41–0.60 = moderate; 0.61– 0.80 = 

substantial; and 0.81–1 = almost perfect. In addition to kappa and OA, two further metrics 

were used that can indicate class-specific errors, the producer accuracy (PA) and user 

accuracy (UA; Story & Congalton, 1986). PA is the number of correctly classified references 

for a class divided by the total number of references of that class and, thus, represents the 

accuracy of the classification for a specific class. UA divides the number of correct 

classifications (predictions) for a class by the total number of classifications (predictions) for 

that class. A high UA means that spectra within that class can be reliably classified as 

belonging to that class. UA is often termed to be a measure of reliability, which can be also 

interpreted as the agreement between repeated measurements within a class (Jones & 

Vaughan, 2010). 

Finally, all three classes, naïve (216 observations), treated (236 observation) and 

untreated (228 observations) were classified based on 202 predictor variables (wavebands). 

The final model parameters were tuned to mtry = 52 and n-tree = 2000 after the best 

classifier was identified using the training data. Eventually, the test data (20% = 135 spectra) 

were used to validate the classifier, using kappa, OA, PA and UA as accuracy indices. 

 

Waveband selection 

Spectral datasets often contain thousands of predictor variables (wavebands). Using 

all available wavebands at a time to make a prediction is computationally intensive and 

problems with multicollinearity are very likely. Waveband selection techniques reduce the 

predictor space and provide a reduced set of wavebands that can be used in the same 

efficiency to predict the response variable. Here, a first set of the most important wavebands 
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to classify naïve, untreated and treated trees was identified to provide future studies a 

starting point for validation or further classification tests. While including the naïve class in 

the waveband selection might be valuable to distinguish truly healthy trees from infected 

ones, the waveband selection derived only for the classes untreated and treated may be 

more relevant for detection systems applied on plantations as naïve plants are unlikely to 

occur there. Waveband selection was performed using the VSURF package in R (Genuer et 

al., 2015). 
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Results 

Random forest classification 

In order to investigate whether it was possible to spectrally discriminate naïve, 

treated and untreated lemon myrtle trees, 135 primary spectra (i.e. 20% of the data- set) 

were analysed. The random forest classifier internally compared the prediction to the known 

class information of each spectral group, achieving a substantial prediction accuracy 

according to the scheme of Landis & Koch (1977): kappa = 0.68, OA = 79%. The procedure 

was repeated using 135 FOD spectra, yielding markedly improved accuracy (kappa = 0.92, 

OA = 95%). According to Landis & Koch (1977) these accuracies can be considered almost 

perfect. 

When evaluating the accuracy assessment in greater detail (Table 1) it was found 

that the naïve (N) and treated (T) spectral responses received good PA values (N = 79.1%, 

T = 87.2%) and UA values (N = 97.1%, T = 75.9%). By contrast, spectral response from 

untreated (U) trees received a slightly lower PA (U = 68.9%) and UA (U = 67.4%), meaning 

that this class-specific prediction was less accurate. For the FOD- transformed spectra, all 

three class-specific accuracies were excellent (UA: N = 100%, T = 90.0%, U = 95.3%; PA: N 

= 97.7%, T = 95.7%, U = 91.1%). 
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Table 1 | Assessment of classification accuracy using (a) primary spectra and (b) first-
order derivative-transformed spectra. Diagonals represent correctly classified groups, 
off-diagonals were misclassified. The lower right cell contains the overall accuracy (no. of 
correct classified groups⁄total no. of groups (135)). User accuracy and producer accuracy 
are shown to provide class-specific accuracies. Lemon myrtle trees were in the 
plantation, treated and untreated with fungicide against myrtle rust, and in the botanical 
garden unexposed to myrtle rust (naïve). 

a 

Primary Spectra 

  Reference     

#Samples 
Naïve Treated Untreated Totals 

User 

Accuracy 

P
re

d
ic

ti
o

n
 Naïve 34 0 1 35 97.1% 

Treated 0 41 13 54 75.9% 

Untreated 9 6 31 46 67.4% 

  Totals 43 47 45 135   

  

Producer 

Accuracy 79.1% 87.2% 68.9%   78.5% 

       

b 

First-Order Derivative Spectra 

  Reference     

#Samples 
Naïve Treated Untreated Totals 

User 

Accuracy 

P
re

d
ic

ti
o

n
 Naïve 42 0 0 42 100.0% 

Treated 1 45 4 50 90.0% 

Untreated 0 2 41 43 95.3% 

  Totals 43 47 45 135   

  

Producer 

Accuracy 97.7% 95.7% 91.1%   94.8% 

 

Important wavebands for this classification 

Many of the features useful for discriminating all three classes (Table 2a, Fig. 2a, c) 

were within the shortwave infrared region (SWIR; 1300–2500 nm), and this was true for 

analyses based on primary spectra or on FOD spectra. Considering other spectral regions, 

the visible region (VIS; 400–700 nm) was more useful for discriminating primary spectra, and 

the near-infrared region (NIR; 700–1300 nm) was more useful for discriminating FOD 

spectra. Figure 2b, d and Table 2b highlight features that were selected when comparing 
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spectra collected only at the plantation. By examining the NIR region (Fig. 2a) and 

comparing the average spectral sig- nature for naïve and treated, it can be observed that 

they are more similar to each other than compared to untreated. 

 

Table 2 | Selected features for the spectra collected from myrtle trees at the plantation, treated and untreated 
with fungicide against myrtle rust, and from myrtle trees at the botanical garden unexposed to myrtle rust (naïve). 
FOD, first-order derivative; VIS, visible; NIR, near-infrared; SWIR, shortwave infrared. 

  a b 

  

Primary Spectra  
(Naïve, Treated, 

Untreated) 

Derivative Spectra 
 (Naïve, Treated, 

Untreated) 

Primary Spectra  
(Treated, 

Untreated) 

Derivative 
Spectra 

(Treated, 
Untreated) 

S
p

e
c

tr
a

l 
R

e
g

io
n

s
 

V
IS

  

555, 605, 695, 715 - 545, 555, 715 555, 625 

N
IR

 

725, 735, 755,  795, 815, 825, 915  725, 735, 745 
795, 815, 845, 

915 

S
W

IR
 

1405, 1415, 1425, 
1435, 1895, 2025, 
2035, 2085, 2095, 
2115, 2145, 2165, 

2175 

1435, 1445, 1455, 
1665, 1775, 1805, 
1815, 2145, 2225, 

2295 

1455, 1475, 
1485, 2125, 
2145, 2175 

1645, 1655, 
2145, 2225 

 

 

Figure 2 | Spectral signatures and selected features for spectra from lemon myrtle trees collected at the 
plantation and botanical garden (a, c) and at the plantation only (b, d). Trees at the plantation were either treated 
or untreated with fungicide to eliminate myrtle rust, whereas trees at the botanical garden were untreated but free 
from infection (naïve). Important wavebands (grey dashed vertical lines) are presented for primary spectra (a, b) 
and their first-order derivatives (c, d). All plots emphasize a traditional subsetting of the electromagnetic spectrum 
to better assign the features to a specific region and support interpretation of each feature. VIS, visible; NIR, 
near-infrared; SWIR, shortwave infrared. 
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Discussion 

In this study, spectral signatures were compared of lemon myrtle leaves from plants 

that had not been exposed to A. psidii (naïve), from plants that were infected and thus 

showing myrtle rust symptoms (un- treated), and from plants that had been treated with 

fungicide and had no obvious symptoms of active myrtle rust (treated). Naïve trees were not 

available at the plantation, so trees from a botanical garden in a separate region were used. 

The spectral signatures of naïve trees were expected to be more similar to those from 

treated plants than to untreated plants, and indeed this was the case. High NIR (700–1300 

nm) reflectance is generally an indicator for cellular integrity (Jensen, 2009). Thus, the 

similarly high NIR reflectance in naïve and treated plants in the present study suggest that A. 

psidii was not present (or at least had not caused damage) in fungicide- treated plants; if it 

had been present, it would have caused damage in mesophyll cells (Morin et al., 2014) and 

would have been detected in the NIR region. All three groups were correctly classified, either 

using primary spectral signatures (kappa = 0.68, OA = 79%), or, with far higher accuracy, 

using FOD spectra (kappa = 0.92, OA = 95%). 

It was not surprising that the FOD spectra performed better than primary spectral 

signatures, as FOD spectra are in general better at resolving overlapping wavebands and at 

reducing random noise (Demetriades-Shah et al., 1990). Better performance of FOD than 

primary spectra was also reported by Mutanga et al. (2004) in a study focusing on 

biochemical indices of pasture quality in five grass species. However, this is not the case in 

every study. In a detailed investigation of spectral classification techniques, Ghiyamat et al. 

(2013) showed that FOD- based approaches showed least improvement (over primary 

spectra) in very complex datasets, and most improvement in less complex datasets, but also 

that some classification methods (e.g. Euclidean distance and Jeffreys–Matusita distance) 

typically performed better than others. Here, it was found that classification accuracy was 

increased when using a random forest classifier combined with FOD spectra. Classification 

accuracy using primary spectra and a random forest classifier could still be considered as 
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substantial. Taken together with results from other studies, it seems that both the choice of 

classification method and the number of classes included in the classification influence 

whether FOD spectra improve classification accuracy. 

In another step in the present study, the number of wavebands was reduced from 

2151 to 202 to avoid effects of multicollinearity; nevertheless, high classification accuracies 

were still achieved. Therefore, it is reason- able to assume that, as in other spectral 

datasets, some wavebands contained redundant information (Thenkabail et al., 2011). In 

addition, to avoid multicollinearity, reducing the number of wavebands can have multiple 

positive effects, for example (i) reducing long computation times, (ii) identifying critical 

wavebands specific to host and pathogen, (iii) using these wavebands as input parameters 

to improve classifiers, or (iv) to design dis- ease-specific vegetation indices based on such a 

refined set of wavebands (Thenkabail et al., 2011). For the pathosystem in the present 

investigation (lemon myrtle–myrtle rust), a preliminary set of wavebands was identified that 

had higher relevance over other wavebands used in this study. 

Wavebands in the visible (VIS, 400–700 nm) and near- infrared (NIR, 700–1300 nm) 

regions were most important for distinguishing the three infection groups. The visible domain 

(556–660 nm) often corresponds to necrotic or chlorotic lesions, and a reduction in 

chlorophyll activity, while the red-edge (685–715 nm) can be used to detect general 

symptoms of plant stress (Delalieux et al., 2007). Some wavebands in the shortwave 

infrared region (SWIR; 1300–2500 nm) were also found to be important. Variation in this 

region has been linked to changes in water content caused by air humidity or water loss from 

lesions (Delalieux et al., 2007). In the present study, many lesions were observed on 

untreated (infected) leaves, very few, and probably old, on treated leaves, and none on 

naïve leaves. The few lesions found on the naïve leaves were probably caused by other 

biotic or abiotic factors. These observations provide a possible explanation why the 

waveband selection resulted in wavebands within the SWIR regions. Consequently, results 

of this study echoed those of Delalieux et al. (2007), not only in the high classification 

accuracies (80%) but also in finding similar wavebands important for plant disease detection. 



58 
 

The refined set of wavebands listed in the present study are a first indication of which 

wavebands might be unique for this pathosystem but, without further refinement, they cannot 

be confidently distinguished from general indicators of stress caused by fungal pathogens. 

There is increasing demand in precision agriculture for differentiation between 

pathogen-related effects and other stress-inducing factors (Mahlein, 2016). For example, it 

may be necessary to refine spectral sets of data down to some level where single 

wavebands can be considered unique for the system under investigation. Amongst the 

important regions found in the present study, that could be related to those found by 

Delalieux et al. (2007), the wavebands 545, 555, 625, 745, 755 and 845 nm were also 

considered by Bravo et al. (2003) to be important for successfully classifying spectral 

signatures from healthy and yellow rust (P. striiformis) infected wheat plants. Bravo et al. 

(2003) were limited to using wavebands between 460 and 900 nm but could still achieve 

classification accuracies of 96% using four wavebands only (543, 630, 750 and 861 nm). As 

yellow rust is a closely related family to A. psidii and the wave- bands found in the present 

investigation are in close proximity to those found by Bravo et al. (2003), it seems 

reasonable to suggest that some of the selected wave- bands might be unique for the lemon 

myrtle–myrtle rust pathosystem. Further investigation would be needed to confirm or 

disprove this suggestion. 

The successful discrimination between spectral signatures is only the first step 

towards using spectral approaches to detect and monitor myrtle rust in the lemon myrtle 

industry. A promising next step would be the development of a disease-specific vegetation 

index (Mahlein et al., 2013). Such indices allow land managers a straightforward disease 

assessment by indicating, for example, the level of infection. In theory, a disease- specific 

spectral index for lemon myrtle–myrtle rust pathosystem could be developed by refining the 

provided set of wavebands. Sensor systems based on those specifications could be built 

and used in a plantation setting, mounted on terrestrial or aerial vehicles, to detect infection 

hotspots and enable targeted fungicide application. This would reduce the costs spent on 
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fungicides, the human-caused interassessor bias and also damage caused by fungicides on 

vegetation in close proximity to the crop of interest. 

Austropuccinia psidii, has not previously been subject to investigations using spectral 

sensor systems. The results of the present study represent a proof-of-concept for 

incorporating a spectral approach into a precision farming tool used for the lemon myrtle 

industry as well as other industries. The establishment of spectral libraries of specific plant–

pathogen interactions could enable land managers to detect pathogens before symptoms 

are visible to the naked eye, accurately track the spread of infection, objectively quantify 

disease severity and differentiate pathogen-related effects from other stress- inducing 

factors. 
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Abstract 

Since 2010 Australian ecosystems and managed landscapes have been severely 
threatened by the invasive fungal pathogen, Austropuccinia psidii. Detecting and monitoring 
disease outbreaks is currently only possible by human assessors, which is slow and labour 
intensive. Over the last 25 years, spectral vegetation indices (SVIs) have been designed to 
assess variation in biochemical or biophysical traits of vegetation. However, diagnosis of 
individual diseases based on classical SVIs is currently not possible since they lack disease 
specificity. We develop a novel spectral disease index (SDI), the lemon myrtle-myrtle rust 
index (LMMR). The index was designed from hyperspectral leaf-clip data collected at a 
lemon myrtle plantation in New South Wales, Australia. We sampled 236 fungicide-treated 
(disease free) and 228 untreated (diseased) lemon myrtle leaves and used a random forest 
classifier to show that the LMMR discriminates those classes with an overall accuracy of 
90%. Compared to three classical SVIs (PRI, MCARI, NBNDVI), commonly applied for 
stress detection, the LMMR clearly improved classification accuracies (58%, 67%, 60%, 
respectively). If the LMMR can be validated on independent datasets from similar and 
different host-species, it could enable land managers to reduce disease impact by earlier 
control. There also might be potential to collect useful data for epidemiology models. 
Calculating the LMMR based on hyperspectral data collected from aerial platforms (e.g. 
drones) would allow for rapid and high capacity screening for disease outbreaks. 
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Introduction 

Plant pathogens, such as rust fungi, play a versatile role in ecology and economy. 

They affect community dynamics and diversification through co-evolution with their host 

plants (Helfer, 2014) but also cause extensive damage to agricultural and forestry crops. 

This was recently demonstrated by a new, highly virulent strain of Puccinia graminis, a rust 

fungus, that destroyed tens of thousands of hectares of wheat crops in southern Europe 

(Bhattacharya, 2017). Here we focus on the rust fungus Austropuccinia psidii 

(Sphaerophragmiaceae, Pucciniales), an obligate biotrophic plant pathogen in the highly 

diverse phylum Basidiomycota (Beenken, 2017). In Australia, A. psidii is invasive and 

causes a disease, commonly known as “myrtle rust” that exclusively affects one of 

Australia’s dominant plant families, the Myrtaceae (Carnegie & Pegg, 2018). In contrast to 

other rust diseases, which are mostly restricted to few host species, myrtle rust infects 

hundreds of species, escalating the potential consequences for Australia’s natural 

landscapes (Carnegie & Pegg, 2018). Australian native species have already been severely 

damaged by myrtle rust in the wild (Carnegie & Pegg, 2018). 

Industries that rely on species within the Myrtaceae, such as the nursery and garden 

industry, have also been affected by myrtle rust through losses of commercial varieties, 

trade restrictions, and increased dependency on fungicides (Carnegie & Pegg, 2018). In 

Australia, the expanding lemon myrtle (Backhousia citriodora) industry has been particularly 

affected, as cultivars of B. citriodora currently in use are moderately to highly susceptible to 

myrtle rust (Doran et al., 2012). Leaves of lemon myrtle are commercially harvested to 

produce lemon-flavoured herbal teas, culinary herbs, and lemon-scented essential oils used 

for food flavouring and personal care products (Clarke, 2012). The farm gate value of this 

market has been estimated to be between 7-23 million AUD annually (Clarke, 2012). Rust-

affected leaves of B. citriodora are unsuitable for use and cause yield losses up to 70%. The 

application of fungicides to control the disease is undesirable as the market demands a 

clean, organic product (Carnegie & Pegg, 2018). Therefore, the industries reliant on lemon 
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myrtle are in urgent need of rust-resistant cultivars or measures to reduce the use of 

fungicides.  

The detection of myrtle rust symptoms and those of other pathogens has traditionally 

relied on human, visual assessment. However, human assessment is somewhat subjective 

such as the assessor’s individual experience and the visual cues humans use, vary through 

time within individuals (Bock et al., 2010). Automated methods using optical remote sensing 

have the potential to detect diseases with greater sensitivity, specificity and reliability than 

what is possible by humans using visual estimation (Mahlein, 2016).  

Over the last 30 years, the field of ‘precision agriculture’ adopted optical remote 

sensing to optimize all production-related materials such as fertilizers and agro-chemicals 

(Mulla, 2013). A sub-field in precision agriculture is efficient disease detection and 

management. Acquiring disease-related spectral data is information-intense and often 

requires a reduction to the most relevant wavebands to reflect the pathosystem under 

investigation (Stafford, 2000). In many cases, the visual region (VIS, 400 nm – 700 nm) has 

been found most useful for indicating visible disease symptoms (e.g., discolorations), while 

the near-infrared region (NIR, 700 nm – 1300 nm) has indicated changes in structural leaf 

traits (Jacquemoud & Ustin, 2001; Mulla, 2013). Parallel to the progress in precision 

agriculture, spectral vegetation indices (SVIs) have been developed to simplify the prediction 

of biochemical, structural or physiological changes in plants. For instance, the photochemical 

reflectance index (PRI) was developed as an indicator for the efficiency of carbon fixation 

using photosynthetic radiation (Gamon et al., 1997). Ashourloo et al. (2014) evaluated the 

effect of wheat rust symptoms on a set of SVIs (e.g. NDVI, NBNDVI and PRI) and they were 

found to be effective when disease severity was high while being less effective in 

discriminating different symptoms. Mahlein and colleagues (2013) already stated a year 

earlier that SVIs would not be suitable for disease detection as they were originally designed 

for other purposes. Therefore, they developed spectral disease indices (SDIs) that could 

successfully discriminate among different sugar beet diseases.  
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The primary aim of the presented study was to develop a SDI for myrtle rust 

detection on lemon myrtle plants (Backhousia citriodora). We base our analyses on data 

recorded on a myrtle rust infested plantation, also used in a previous study (Heim et al., 

2018). In that previous work we showed that fungicide treated and untreated B. citriodora 

leaves could be classified with high accuracy based on a broad set of 202 wavebands (i.e. 

predictor variables). In the presented study, we first refined these 202 wavebands to provide 

the minimum number of wavebands required to accurately classify the two classes 

(treated/untreated). Next, by using the refined wavebands, we designed the SDI. Finally, we 

compared the classification accuracy of our SDI to that of three SVIs widely used in plant 

disease detection. An additional aim was to provide the first coded framework presented in 

the R statistical programming environment (R Core Team, 2017) for developing SDIs. 
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Methods 

Data collection 

Leaf spectral data were collected on a lemon myrtle (Backhousia citriodora) 

plantation in northern New South Wales, Australia (28.6911090 S, 153.295480 E). For more 

information refer to Heim et al. (2018). A proportion of trees had been treated with fungicide 

to control A. psidii, while a proportion was untreated and thus diseased. Measurements were 

made on leaves affected by A. psidii (untreated leaves; Fig. 1 B, C, D) and on leaves that 

had been treated with fungicides and therefore showed negligible signs of A. psidii infection 

(Fig. 1 A). Leaves from untreated trees had varying levels of disease, including small purple 

spots through to large necrotic lesions and yellow pustules. Leaves from treated trees 

showed mostly no signs of A. psidii infection, although some had small purple spots, likely 

due to infection occurring prior to fungicide application, with fungicide that have been shown 

effective and halting the infection process (Horwood et al., 2013). We exclude the influence 

of other biotic agents as no other serious pathogen on lemon myrtle was known prior to A. 

psidii (Dr Angus Carnegie and Gary Mazzorana, pers. comm.). Spectral reflectance 

signatures between 350 nm and 2500 nm were recorded with a portable non-imaging 

spectroradiometer (Spectral Evolution PSR+ 3500) with a spectral resolution of 3 nm steps 

between 450 nm and 700 nm, 8 nm steps between 700 nm and 1500 nm and 6 nm steps 

between 1500 nm and 2100 nm. Measurements were made from the adaxial leaf surface 

using a leaf clip holder with a 3-mm sample area, a built-in reflectance standard and a 

separate 5-watt light source (ILM-105; please see supp. material for illumination spectrum). 

We measured 236 fungicide-treated and 228 untreated lemon myrtle leaf samples, with 

three leaves sampled per tree (n=464). Further details on sampling design were given by 

Heim et al. (2018).  
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Figure 1 | Fungicide treated (A) and untreated (B, C, D) Backhousia citriodora leaves that have been assessed 
at a lemon myrtle plantation in New South Wales, Australia. Fungicide treated trees were free of active disease 
but could show stray, necrotic lesions or purple spots, likely due to infection occurring prior to fungicide 
application. Leaves that were not treated, were largely covered with dark necrotic lesions, purple lesions and 
yellow spores (D) as A. psidii was not contained (B). Images: Ina Geedicke 

 

Data preparation 

The original dataset (Heim et al., 2018) contained 2151 spectral wavebands (i.e. 

predictor variables), thus more predictor variables than observations, a situation referred to 

as ‘high dimensionality’ (Hastie et al., 2009). High-dimensional data can contain unknown 

groups of highly correlated predictors (Genuer et al., 2015). Correlated predictor variables 

may lead to inaccurate selection of relevant wavebands. To counter this, we used spectral 

resampling. This reduced the original spectral resolution of 3 nm – 8 nm (2151 wavebands) 

to a resolution of 10 nm (202 wavebands; Heim et al., 2018). The spectral data used in this 
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study is no longer high-dimensional (Mahlein et al., 2013) and still contains 464 spectral 

reflectance profiles, including 236 fungicide-treated and 228 untreated lemon myrtle leaves. 

All analyses were conducted using the R statistical platform (R Core Team, 2017). 

The full analysis (Fig. 2) can be reproduced using code and data archived at 

https://reneheim.github.io/RustIndex/ (doi to be provided on acceptance). The provided code 

has potential to serve as a framework to develop SDIs for other host-pathogen 

combinations. 
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Figure 2 | Workflow summarizing each step from original raw data to the final classification report. A) This 
section produces the linear, parsimonious model including the four most relevant wavebands and their 
coefficients. B) This section takes the parsimonious model from A) which is transformed and simplified to yield 
the new spectral index specific to the pathosystem lemon myrtle/myrtle rust (LMMR). The performance of the 
LMMR, to discriminate treated and untreated lemon myrtle trees, is compared against common spectral 
vegetation indices PRI, MCARI and NBNDVI. 
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Raw data to linear model 

Spectral vegetation indices commonly use two to four wavebands, and ratios thereof 

(Mahlein et al., 2013). Similarly, we decided to reduce our 202 wavebands to four 

wavebands, allowing us to design an easily interpretable index in the form of  SVIs like the 

NBNDVI (Eqn 7; Thenkabail et al., 2000).  

To create ratio indices from linear models, as we attempted to do, we log-

transformed the original reflectance data yielding logged reflectance values (i.e., log(B1)). By 

introducing a log-term into a linear equation, the following basic algebra rules (Eqn 1 and 2) 

apply and ratios and products of reflectance adhere to: 

Eqn 1 

 

Eqn 2 

 

 

Before these rules became relevant, we applied a random-forest-based feature 

selection on our original data (following Fig. 2A), repeating it ten times to account for 

variability in the selection process. This resulted in a set of 27 wavebands which retained 

predictive power while avoiding redundancy. Here, the R package ‘VSURF’ (Genuer et al., 

2015) was used, as it is suitable for regular and high-dimensional data. This was necessary 

because the computational effort of a direct exhaustive model selection, as applied in the 

following, would have been too high and time-consuming using 202 predictor variables. This 

refined set of twelve wavebands was submitted as a candidate set of predictor variables to 

an exhaustive model search using a binominal generalized linear model. This allowed us to 

identify a linear model containing the four most relevant wavebands to discriminate our 
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binary response (treated and untreated).  The best model was indicated by the small-

sample-corrected Akaike Information Criterion (AICc). 

At this stage, we had to include an intermediate step to compute the coefficients for 

our best model as wavelength (parameters) were provided without the corresponding 

numerical coefficients. By submitting the linear combination of the best four wavebands 

(e.g., Response~1+Band545+Band555+Band1505+Band2195) from the previous step to 

another binominal generalized linear model, we yielded the required model coefficients (Eqn 

3). 

 

Linear model to classification report 

The best four parameters including their coefficients from the above described 

binominal generalized linear model characterized the predicted probability, p, that a given 

leaf was infected (Eqn 3). As mentioned in the beginning, the model (Eqn 3) contains log-

transformed reflectance values to make use of the algebraic rules (Eqn 1 and 2). 

 

Eqn 3 

 

 

Wavelengths 545 nm and 555 nm straddle the VIS spectrum; 1485 nm and 2195 nm 

are both in the short-wavelength infrared (SWIR) spectrum. In our model (Eqn 3) the 

coefficients for log(B545) and log(B555) are of approximately equal magnitude and opposite 

in sign, as are the coefficients for log(B1505) and log(B2195). This observation also 

indicates that both pairs of variables can be treated as ratios for the construction of our 

specific disease index and is further supported by overlapping 95% confidence intervals 

found during the analysis (95% CI B545 [57.01, 96.09], B555 [99.93, 60.08], B1505 [37.32, 

56.03], B2195 [57.07, 38.05]). The magnitudes of the coefficients for log(B545) and 
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log(B555) are approximately 1.66-times greater than those for log(B1505) and log(B2195). 

Thus, to transpose Equation 3 into the form of a ratio SDI, giving our Lemon Myrtle –Myrtle 

Rust index (LMMR; Eqn 6), we applied the following steps (see also Fig. 2): 

1. Summarise coefficients of approximately equal magnitude and opposite in sign. 

Eqn 4 

 

2. Drop constant coefficient (18.387 = const.) and transpose further ( ). 

Eqn 5 

 

3. Take exponential of both sides. 

Eqn 6 

 

 

To assess the performance of our LMMR (Eqn 6) we compared its accuracy to 

discriminate untreated and treated lemon myrtle leaves to the accuracy of spectral 

vegetation indices commonly applied to detect plant pathogens (Ashourloo et al., 2014; 

Mahlein et al., 2013). We selected these indices according to the biological processes they 

indicate and whether these processes could be linked with physiological changes caused by 

myrtle rust. For example, urediniospores of rust fungi contain carotenoids and melanin-like 

pigments, hence their brown-orange-yellow colour (Mahlein et al., 2013). Changes in plant 

pigments can be detected, amongst others, by applying either the photochemical reflectance 

index (PRI; Eqn 7; Gamon et al., 1997) or the modified chlorophyll absorption in reflectance 

index (MCARI; Eqn 8; Daughtry, 2000). Also, the structural integrity of the mesophyll cells is 
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reduced when hyphae of A. psidii enter this cell layer (Morin et al., 2014). Processes that 

interfere with the cellular integrity, and therefore cause stress, are usually reflected in the 

near-infrared region (Peñuelas & Filella, 1998). Therefore, the narrow-band normalized 

difference vegetation index (NBNDVI; Eqn 9, Thenkabail et al., 2000), could mirror this 

variation as it measures the ratio between the near-infrared and visual region. 

Eqn 7 

 

Eqn 8 

 

Eqn 9 

 

 

We calculated values for each index from our original reflectance data and yielded a 

new dataset (n=464) containing two response classes (treated and untreated) and four 

predictor variables (PRI, MCARI, NBNDVI and LMMR). This data was randomly split (75/25) 

into a training set (n=348) and a test set (n=116). As the LMMR was developed on the log-

scale, it should only receive log-transformed data when compared to other indices.  

A logistic regression classifier was used to evaluate which index was the most 

accurate predictor variable for our classification problem. To increase model accuracy data 

were resampled (drawing random samples with replacement) using the ‘.632+ bootstrap’ 

method (Efron & Tibshirani, 1997); this approach estimates prediction error with less 

variability than cross-validation (Efron and Tibshirani,1997). The training models of all four 

indices were used to predict the probability, using a threshold of 0.5, that a leaf/tree in the 

test data was either fungicide treated or untreated. The test dataset was not seen by the 

classifier before and could therefore be used to validate the models. To evaluate the 
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prediction performance, we produced an error matrix containing the following metrics: overall 

accuracy (OA), producer accuracy (PA) and user accuracy (UA).  

By default, the accuracy of the training and testing process was evaluated using OA 

as a metric. OA reflects the agreement between the reference and predicted classes and 

has the most direct interpretation. However, it does not provide information about the origin 

of an error (Kuhn & Johnson, 2013). Here, PA and UA can indicate class-specific errors 

(Congalton & Green, 2009). PA is the number of correctly classified references for a class 

divided by the total number of references of that class and, thus, represents the accuracy of 

the classification for a specific class. UA divides the number of correct classifications 

(predictions) for a class by the total number of classifications (predictions) for that class. A 

high UA means that spectra within that class can be reliably classified as belonging to that 

class. User accuracy is often termed to be a measure of reliability, which can be also 

interpreted as the agreement between repeated measurements within a class. 
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Results 

We selected the four most import spectral wavebands, 545 nm, 555 nm, 1505 nm 

and 2195 nm, (Fig. 3E - vertical, dashed lines) from a dataset originally containing 202 

wavebands for each spectral signature. The binominal generalized linear model containing 

these wavebands as parameters was more successful in predicting whether a lemon myrtle 

tree was treated with fungicides or untreated than models containing other wavebands 

between 500 nm and 2500 nm. While the wavebands at 545 nm and 555 nm are situated in 

the visual region (VIS 400 to 700 nm) of the electromagnetic spectrum, the wavebands at 

1505 nm and 2195 nm can be found in the short-wave infrared region (SWIR 1300 to 2500 

nm). Based on these wavebands, we derived a new disease-specific spectral index, the 

LMMR (Eqn 6) 

 

LMMR classification performance 

The training process of the classifier was assessed graphically (Figs. 3A-D). The PRI 

and the MCARI (Figs. 3A, 3B) could discriminate between treated (red circles) and untreated 

(blue triangles) lemon myrtle trees only marginally (OA; PRI=66.7%, MCARI=66.3%). The 

NBNDVI (Fig. 3C) does not improve disease detection over random guessing (OA; 

NBNDVI=52.9%). By contrast, the LMMR (Fig. 3D) could clearly discriminate treated and 

untreated trees in the training process (OA; LMMR=86.5%). 
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Figure 3 | A-D displays the potential of the applied classifier to discriminate treated (red-circle) and untreated 
(blue-triangle) lemon myrtle leaves (Backhousia citriodora) after the training process. Plot E is showing a 
classical sub-division of the electromagnetic spectrum (VIS, NIR, SWIR) and the locations of the four most 
important wavebands to successfully discriminate the spectral signatures. 

 

We isolated 25% of our data before running the training procedure so as to validate 

the classifier on data not yet seen by the classifier. For the validation, LMMR substantially 

outperformed other indices in predicting the disease. The LMMR classified untreated and 

treated trees with an overall accuracy of 90% (Table 1 A-D – lower right cells). Other indices 

ranged from OA 58% to 67%. Evaluating producer accuracies (PA) and user accuracies 

(UA), yielded the same overall trend. The MCARI had similar UA (Treated=68%, 

Untreated=66%) and PA (Treated=66%, Untreated=68%). Also, the UA for both indices 

(Table 1 A and C), the PRI (Treated=58%, Untreated=58%) and the NBNDVI (Treated=59%, 

Untreated=63%) are balanced. For the PA, the probability that a certain class found on the 

plantation is classified as such, it seems that treated trees can be detected slightly better 

(PRI - Treated=63%, Untreated=53%, NBNDVI - Treated=75%, Untreated=46%). Overall, 

the LMMR delivers high user accuracies (Treated=89%, Untreated=91%) and high producer 

accuracies (PA) for both classes (Treated=92%, Untreated=88%). 
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Table 1 | Accuracy assessment for the logistic regression classification using validation data (116 observations) 
that was isolated before the training classifier was trained. Classification was performed using the index values 
derived by applying the indices PRI (A), MCARI (B), NBNDVI (C) and LMMR (D) on spectral reflectance data 
from fungicide treated (TR) and untreated (UN) lemon myrtle trees. Accuracy can be evaluated comparing the 
overall accuracy in every lower right corner of each table and user (UA) and producer accuracies (PA). The error 
matrix is also showing class totals (TOTAL) for the reference columns and prediction rows. The number of 
correctly classified trees is highlighted in each grey shaded cell. 

 

A) PRI 
Reference 

UA B) MCARI 
Reference 

UA 
TR UN TOTAL TR UN TOTAL 

Pred 

TR 37 27 64 58% 

Pred 

TR 39 18 57 68% 

UN 22 30 52 58% UN 20 39 59 66% 

TOTAL 59 57 116   TOTAL 59 57 116   

PA 63% 53%   58% PA 66% 68%   67% 

C) NBNDVI 
Reference 

UA D) LMMR 
Reference 

UA 
TR UN TOTAL TR UN TOTAL 

Pred 

TR 44 31 75 59% 

Pred 

TR 54 7 61 89% 

UN 15 26 41 63% UN 5 50 55 91% 

TOTAL 59 57 116   TOTAL 59 57 116   

PA 75% 46%   60% PA 92% 88%   90% 
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Discussion 

In this study, we derived a new potential spectral disease index (SDI) that allowed us 

to detect symptoms caused by the invasive, fungal pathogen Austropuccinia psidii on lemon 

myrtle trees (Backhousia citriodora). The LMMR (lemon myrtle – myrtle rust) index 

discriminated between fungicide treated and untreated lemon myrtle plants with notably 

higher accuracy (90%) than classical spectral vegetation indices (SVIs; 58%-67%).  

The increased classification accuracy was achieved by selecting the four most 

relevant wavebands from initially 202 wavebands. They are specific to our pathosystem and 

were able to perform better than indices developed for other situations. We aimed at 

dropping as many wavebands as possible while sustaining substantial prediction accuracies 

and were guided by the common principle to use three-band indices at the leaf-scale and 

four band indices at canopy-scale (Thenkabail et al., 2000). 

The waveband selection process resulted in two wavebands (545 nm, 555 nm) with 

high predictive power for myrtle rust disease in the visible (VIS) region of the 

electromagnetic spectrum, and two wavebands (1505 nm and 2195 nm) in the short-wave-

infrared (SWIR) region. Variation in reflectance in the VIS region between treated and 

untreated leaves is mainly caused by changing contents of leaf pigments, while reflectance 

variation in the SWIR region is often influenced by the composition of leaf chemicals and 

water content (Jacquemoud and Ustin, 2001). 

In this study, we found variation in spectral reflectance around 550 nm and it is 

known that between 510 nm and 550 nm spectral variation is closely related to the total 

carotenoid pigment content of leaves (Gitelson et al., 2002). Carotenoids are presumably the 

pigments giving the yellow colour to urediniospores of some rusts (Wang, 2018). On B. 

citriodora, we found yellow pigmented pustules on the adaxial (Figure 4 A-C) and abaxial 

(Figure 4 D-F) leaf surfaces of infected leaves. It is likely that the same pigments also occur 

within the leaves, as during the infection and penetration process of A. psidii, the orange-

yellow pigmented contents are transferred into the leaf by the infection hyphae (Hunt, 1968). 



83 
 

There are no studies describing the exact biochemical composition of A. psidii pigments (Dr 

Robert Park pers. comm.).  

 

Figure 4 | Lemon myrtle (Backhousia citriodora) leaves as they were assessed at the plantation in New South 
Wales, Australia. Images A-C are showing the adaxial leaf surface with yellow urediniospores (Austropuccinia 
psidii) present. Images D-F are showing yellow urediniospores on the abaxial leaf surface. Red discolorations 
around lesions are visible from both sides. Image G-shows lemon myrtle trees how they occurred on the 

plantation. Images H-I are showing reddish young leaves with various hue intensities. 

 

We also observed red discolorations around lesions caused by A. psidii (Fig. 4 A-F). 

Anthocyanins are the basis for most orange, pink, red, magenta, purple, blue and blue-black 

colours in plants (Davies, 2004) and might be responsible for the red colouring around 

lesions as they are often found at later stages of an infection (Glen et al., 2007). 

Anthocyanins are water-soluble vacuolar pigments of higher plants that are abundant in 

juvenile and senescing plants and are represented by a spectral reflectance peak around 

550 nm (Gitelson et al., 2007). Thus, anthocyanins might be responsible for the observed 

spectral shift around 550 nm.  

That said, we observed red discolorations on young leaves (Fig. 4 G-I) of B. 

citriodora plants, and this might be regarded as a confounding factor. However, red young 
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leaves were present on treated as well as on untreated plants. As the spectral feature, linked 

to anthocyanin content, was still selected it should represent a difference in pigment content.  

We are also aware, that both carotenoids and anthocyanins absorb light between 500 nm 

and 550 nm (Ustin et al., 2009). Nearby wavebands are usually highly correlated, and these 

have been selected although we applied methods designed to avoid choosing correlated 

bands. Overlapping signals often resulted in inconsistencies in separating and quantifying 

different pigments (Ustin et al., 2009). However, as the wavebands at 545 nm and 555 nm 

were chosen consistently in our study, this may indicate that carotenoids, as well as 

anthocyanins are both independently important for indicating the presence of A. psidii 

urediniospores.   

For the two important wavebands at 1505 nm and 2195 nm found in our study, we 

assume that these might be caused by lack of water, caused by necrotic lesions occurring 

on leaves during A. psidii infection (Glen et al., 2007). Within the SWIR region (1300 nm – 

2500 nm), light is primarily absorbed by water in a fresh leaf, but also by dry matter. 

Therefore, this region is linked to changes in water content (Peñuelas & Filella, 1998). It has 

been shown that water loss in leaves can be caused by the destruction of the leaf cuticle 

(Lindenthal et al., 2005) which, in our case, was damaged by many necrotic lesions on 

untreated leaves (Fig. 1B).  Leaves from fungicide treated trees did have some evidence of 

A. psidii infection (purple spots), likely due to infection occurring prior to fungicide 

application. However, the fungicide used (Bayfidan, Amistar, copper oxychloride) has been 

shown to work effectively as an eradicant (i.e. kill the rust) (Horwood et al. 2013) such that 

these purple spots did not develop further into yellow pustules and necrotic spots as they did 

on untreated trees. Furthermore, prior to myrtle rust, there were no other significant biotic 

agents that caused damage to lemon myrtle trees (Gary Mazzorana, Australian Rainforest 

Products, pers. comm.). Of course, it needs further testing whether the LMMR index can 

specifically detect myrtle rust against other stress causing agents. However, differentiation 

among diseases using optical sensors has already been proven feasible for sugar beet 

pathogens (Mahlein et al., 2013). 
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Conclusion 

We presented a newly developed spectral disease index (SDI) which performs better 

(90% OA) than common spectral vegetation indices (SVIs, 58%-67% OA). By publishing the 

code of our analysis, we provide a framework to generate new SDIs for other pathosystems. 

While further testing and validation for the LMMR is required, the concept of specific disease 

indices is a promising tool in plant disease detection (Mahlein et al. 2013). Our study was 

conducted in a plantation setting where leaves on untreated trees had varying levels of 

severity of A. psidii, from small purple spots through to necrotic lesions. Thus, the LMMR 

index is specific to physiological and phenotypic changes caused by A. psidii. Confounding 

stress causing agents could be excluded during our study as effective fungicides were 

applied and no stress causing agent prior to A. psidii was known. Future research could 

focus on the development of specific disease indices for certain infection stages (e.g. early). 

Additionally, it would be interesting to test the LMMR index on infected lemon myrtle plants 

at different locations and against other abiotic and biotic stress causing agents. Moreover, it 

should be tested if the index correlates with disease severity. Similar goals for the 

development of specific disease indices were already postulated (Mahlein 2016). For the 

lemon myrtle industry, that seeks to meet organic standards to be able to compete 

economically (Doran et al., 2012), a validated LMMR could enable land managers to assess 

high areas of their arable land and make decisions on fungicide applications. 
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Abstract 

Disease management in agriculture often assumes that pathogens are spread 
homogeneously across crops. In practice, pathogens can manifest in patches. Currently, 
disease detection is predominantly carried out by human assessors, which can be slow and 
expensive. A remote sensing approach holds promise. Current satellite sensors are not 
suitable to spatially resolve individual plants or lack temporal resolution to monitor 
pathogenesis. Here, we used multispectral imaging and unmanned aerial systems (UAS) to 
explore whether myrtle rust (Austropuccinia psidii) could be detected on a lemon myrtle 
(Backhousia citriodora) plantation. Multispectral aerial imagery was collected from fungicide 
treated (to control myrtle rust) and untreated tree canopies and compared to multispectral 
data from individual leaves from the same canopies. Spectral vegetation indices and single 
spectral bands were used to train a random forest classifier. The UAS-derived classification 
yielded higher accuracy (95%) than the leaf-level classification (74%). Important predictors 
for the UAS classifier were the near-infrared (NIR) and red edge (RE) spectral band. At the 
leaf level NIR was no longer deemed important. Our work suggests potential for mapping 
myrtle rust-related symptoms from aerial multispectral images. Similar studies could focus 
on pinpointing disease hotspots to adjust management strategies and to feed 
epidemiological models. 
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Introduction 

Sustaining human food demands in a world with a global population growing toward 

10 billion has been identified as a major challenge (Foley et al., 2011; Crist et al., 2017). The 

implementation of technologies to increase food supply through intensification rather than 

expansion is regarded as a sensible approach to tackle this challenge (Crist et al., 2017). 

Precision agriculture comprises a set of technologies that combines sensors and information 

systems to inform management decisions for optimizing farm inputs by accounting for 

variability and uncertainties within agricultural systems (Gebbers & Adamchuk, 2010). 

Satellite imagery is often used to study variations in crop and soil conditions, however, the 

availability, limited resolution and sometimes prohibitive costs of satellite imagery limits its 

universal application in precision agriculture. Unmanned aerial systems (UAS, also known as 

drones) are now commercially available to anyone and can be equipped with a wide range of 

sensors (e.g. thermal or spectral). Thus, they offer a cost-effective alternative to satellite 

systems while providing a higher spatial and temporal resolution (Zhang & Kovacs, 2012; 

Mulla, 2013). 

 

In agriculture, UAS have been used for estimating leaf area index, chlorophyll 

content and water stress (Berni et al., 2009). Various other applications were reviewed by 

Zhang and Kovacs (Zhang & Kovacs, 2012) and Mulla (Mulla, 2013). One of these 

applications is sensor-guided disease detection (West et al., 2003). Plant diseases can 

cause tremendous damage to agricultural production as has been shown recently when a 

new strain of wheat rust destroyed tens of thousands of hectares of crops in Italy 

(Bhattacharya, 2017). Traditional disease management practices often assume that 

pathogens are spread homogeneously over cultivation areas, potentially leading to 

untargeted and wasteful application of fungicides and other crop management measures 

(Mahlein, 2016). By contrast, site- and problem-specific use of pesticides is likely to reduce 

amounts required for application and therefore reduce costs and ecological impact in 
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agricultural crop production systems (Gebbers & Adamchuk, 2010). To detect disease 

hotspots, sensors with a spatial resolution of more than 1 m (e.g. satellite mounted sensors) 

are hardly suitable and often proximal sensor platforms are preferred as they allow for high 

(>10 cm) spatial resolution (Oerke et al., 2014). Nowadays, the same high spatial resolution 

can be achieved by camera systems mounted on UAVs (Dash et al., 2017) and compared to 

proximal sensors, UAV systems allow for disease screening at high capacity and frequency 

(Zhang & Kovacs, 2012). As an example, Calderón et al. (Calderón et al., 2014) acquired 

airborne thermal and multi-spectral imagery using an UAS to detect downy mildew (caused 

by Peronospora arborescens (Berk.)) on opium poppy (Papaver somniferum L.). The 

following spectral regions were useful to detect infections: the visible (VIS, 400–700 nm) and 

red-edge (670–750 nm) spectral region, due to the necrotic and chlorotic lesions caused by 

chlorophyll degradation; the near-infrared region (800 nm) due to changes in canopy density 

and leaf area; and the thermal-infrared region because of the changes in the transpiration 

rate that affect canopy temperature. It was further demonstrated that canopy temperature 

and the green/red ratio (R550/R670) were related to physiological stress caused by downy 

mildew infection. 

 

The rust fungus Austropuccinia psidii, known as myrtle rust, is now regarded as a 

globally invasive pathogen that has been established in Australia since 2010 (Carnegie & 

Pegg, 2018). A. psidii infects growing shoots, fruits and flowers, resulting in leaf and shoot 

distortion, dieback and tree mortality in severe cases (Glen et al., 2007; Carnegie et al., 

2016). Infection of young foliage results in discoloration (chlorosis and reddening), 

development of yellow uredinia (pustules) and ultimately necrosis (Glen et al., 2007). In 

contrast to other rust diseases, which are mostly restricted to few host species, myrtle rust 

has the potential to infect hundreds of different hosts, escalating the potential consequences 

for Australia’s natural landscapes (Berthon et al., 2018) where it specializes exclusively on 

one of Australia’s dominant plant families, the Myrtaceae. Industries that rely on species 

within the Myrtaceae, such as the nursery and garden industry, have also been affected by 
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myrtle rust through losses of commercial varieties, trade restrictions, and increased 

dependency on fungicides (Carnegie & Pegg, 2018). In Australia, the expanding lemon 

myrtle (Backhousia citriodora) industry has been particularly affected (Carnegie & Pegg, 

2018). Leaves of lemon myrtle are commercially harvested to produce lemon-flavored herbal 

teas, culinary herbs, and lemon-scented essential oils used for food flavoring and personal 

care products. The farm gate value of this market has been estimated to be 5.3 - 17.5 million 

USD annually (Clarke, 2012). Cultivars of B. citriodora that are currently in use are 

moderately to highly susceptible to myrtle rust. Rust-affected leaves of B. citriodora are 

unsuitable for use, and the application of fungicides to control the disease is undesirable as 

the market demands a clean, organic product (Doran et al., 2012). Therefore, industries 

reliant on lemon myrtle are in urgent need of rust-resistant cultivars or measures to reduce 

the use of fungicides.  

 

In a previous study (Heim et al., 2018), we showed that it is feasible to use ground-

based, narrow-band hyperspectral sensors to discriminate fungicide treated and untreated 

lemon myrtle leaves with high accuracy (95%). In the present study, we deployed an UAV 

carrying a broad-band multispectral sensor. We aimed to test (1) if it would be possible to 

accurately discriminate fungicide-treated and untreated plants at canopy-level. Because we 

were interested in whether a multispectral sensor would be sufficient at leaf-level to 

accurately discriminate our tree classes, we then compared (2) the classification 

performance of multispectral data at leaf-level to multispectral data at canopy-level. The leaf-

level multispectral data were derived by down-sampling the hyperspectral data from our 

previous study (Heim et al., 2018). Finally, it has been shown to be important to select for 

wavebands specific to the pathosystem for accurately detecting a disease (Mahlein et al., 

2013). Thus, (3) we tested if the important wavebands, derived from multispectral data, 

would differ between canopy- and leaf-level. To answer the last question, we considered four 

vegetation indices in addition to the five spectral bands provided by the multispectral sensor 

to explore if vegetation indices behave differently as pure spectral bands. 
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Methods 

Study site and spectral data 

Spectral data of lemon myrtle trees were collected at canopy- and leaf-level on a 

commercial lemon myrtle (Backhousia citriodora) plantation in northern New South Wales, 

subtropical eastern Australia (latitude -28.691055, longitude 153.295510). Mean annual 

temperature is 19.4 °C and mean annual rainfall 1343 mm. Leaf-level spectral signatures 

were collected in a previous study (Heim et al., 2018) using a PSR+ 3500 hand-held 

(Spectral Evolution, Lawrence, MA, U.S.) spectrometer. At the plantation, we took advantage 

of an existing experiment in which the impact of fungicide was being assessed on lemon 

myrtle trees affected by myrtle rust (Heim et al., 2018). We recorded spectral data from trees 

that were free of active disease, having had fungicide successfully applied to them 

(“treated”), and trees showing symptoms of active myrtle rust infection (“untreated”). Leaves 

from treated trees showed mostly no signs of A. psidii infection, although some had small 

purple spots, likely due to infection occurring prior to fungicide application, with fungicide that 

have been shown effective and halting the infection process (Horwood et al., 2013). We 

exclude the influence of other biotic agents as no other serious pathogen on lemon myrtle 

was known prior to A. psidii (Manager Gary Mazzorana, pers. comm.). The experimental 

design consisted of two treated and two untreated rows of trees, separated by rows of trees 

designated as “buffer” trees to avoid accidental treatment of trees intended to be untreated 

(Figure 1). Plants that appeared disturbed by proximity to frequently used management trails 

were avoided. Each row had five trees, and on each tree, we recorded four leaf spectral 

signatures of four leaves at 180, 100 and 50 cm height. Leaves were selected from a single 

terminal shoot and the first two pairs (four leaves) of newly expanding leaves were used to 

record the spectral responses. The height-stratified sampling points were chosen on both 

east- and west-facing sides of trees, in order to represent the spectral response of a single 

tree most effectively. We sampled 240 spectra from the 240 selected leaves for each class 

resulting in a total of 480 spectra. After removing outlier spectra, a total of 236 treated leaves 
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(from 79 trees) and 228 untreated leaves (from 76 trees) were included in the analysis. 

Further details of sample design and hand-held sensor specifications were reported by Heim 

et al. (2018) (Heim et al., 2018). 

 

Aerial imagery of the experimental site was captured in the same year as spectra 

collection (05.06.2016 – 3 pm). Daily temperatures were between 14.5°C and 22.5°C, daily 

global solar exposure was 16.4 MJ/m2 with a scattered cloud cover (~30%). A five-band 

multispectral camera (B=475±20 nm, G=560±20 nm, R=668±10 nm, NIR=840±40 nm and 

RE=717±10 nm; RedEdge 3, MicaSense, Inc., Seattle, WA, U.S.) was mounted on a 

consumer-grade Inspire-1 quadcopter (DJI Inc., Shenzhen, China). The camera had a focal 

length of 5.5 mm and captured images at a resolution of 1280 x 960 and a pixel size of 3.75 

x 3.75 µm. Images were captured with a forward overlap (e.g. overlap between photos along 

the same flight line) of 70%, a lateral overlap (overlap between photos on adjacent flight 

lines) of 80%, a flight speed of 3 m/s (10.8 km/h) and a flight altitude of 40 m above ground 

on average. Considering the tree height (~180 cm), the mentioned settings achieved a 

ground sampling distance of approx. 2.78 cm per pixel. 

 

Image processing 

Aerial images were processed in Agisoft PhotoScan Professional (Version: 1.4.2 

build 6205, 64 bit). Spectral reflectance for each band was calibrated and normalized using 

images and the according correction factors of a white reference panel (RP02-1543031-SC). 

Images were aligned by matching tie points across all adjacent images using “high accuracy” 

settings. Such tie points are reference points that can be clearly identified by the software in 

two or more images and used to reconstruct the entire scene. Subsequently, images were 

optimized by fitting the reconstruction uncertainty and the projection accuracy. High 

reconstruction uncertainty is often caused by noisy points reconstructed from nearby 

images. The projection accuracy was used to filter out projected points that were below an 
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error threshold of three. The reprojection error determines the distance between 

reconstructed projection and the original projection and was reduced to 0.35 by removing 

bad points due to pixel residual error. Image post-processing was guided by 

recommendations of the United States Geological Survey scientific agency (USGS National 

UAS Project Office, 2017). Then, a dense point cloud was generated and cropped to the 

extent of our sample area (Figure 1). Further, the dense point cloud was categorized in tree-

points-only (T) and tree-ground-points (TG). Therefore, we tuned the ground point 

classification tool in Agisoft PhotoScan Professional. The categorization was done to remove 

all areas classified as being “ground”, yielding an image only displaying the relevant lemon 

myrtle trees. This image was useful to apply our classification model and create a risk map 

(see results). Without the categorization, non-relevant ground points would have been 

included in the prediction model. Eventually, both dense point clouds (TG and T) were 

exported as orthophotos (e.g. an ortho-rectified image is free of distortion and shows a 

uniform scale over its entire surface).  

Our radiometric calibration was not optimal as we had to fly under sporadically cloudy 

conditions. Therefore, our aerial multispectral data is not suitable for temporal variation 

analysis or comparisons between sensors (Wang & Myint, 2015). However, in our study we 

only compare classification accuracies based on self-contained datasets and therefore the 

relative relationships between treated and untreated spectra should not be affected. 
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Figure 1 | Bird’s eye view of the experimental setup. For each of the three classes (TR=treated, UN=untreated, 
SHD=shadow) eight equally sized polygons were drawn and representatively distributed across the lemon myrtle 
trees. In our analysis, these circular areas were used to sample pixels from each class. These pixel samples 
were used to train our random forest classification model. UN=brown/orange, TR=green, SHD=black. 

 

Data preparation 

To yield sample data to train our classification model, we used the open-source 

software QGIS (version 3.4.1) (QGIS Development Team, 2009) to draw circular shaped 

polygons as pixel sample areas onto the TG orthophoto (Figure 1). We created eight sample 

areas for each class (shadow=SHD, treated=TR, untreated=UN). The class “SHD” was 

specified to discriminate areas where trees were overcast by shadows. Shadow areas (east-

facing tree sides, Figure 1) are likely to confound a classification between treated and 

untreated trees as they were much darker than sample areas from sunlit canopies. Pixel 

samples were extracted for each class and polygon using the ‘raster’ package (Hijmans, 

2017) within the R environment (version 3.4.3) (R Core Team, 2017). The full analysis can 

be reproduced by re-running our stored data and code 

(https://github.com/ReneHeim/MR_Drone). 

 

The pixel data extraction process yielded an initial spectral dataset at canopy (C) 

level (Figure 2) containing 14438 observations, 9 predictor variables (see below) and a 



98 
 

response column containing the classes (SHD, TR, UN). We ran a random forest 

classification on these data to explore whether it would be possible to discriminate treated 

and untreated myrtle rust trees at canopy-level. To answer the question whether the 

classification performance of multispectral data at canopy level would differ from 

multispectral data collected at leaf level, we had to compare the initial dataset (C, Figure 2) 

to data recorded at leaf-level. We derived the leaf-level dataset by down-sampling the 

hyperspectral leaf-clip spectra from our previous study (Heim et al., 2018) to the band 

specifications of the MicaSense RedEdge camera used in the presented study. This leaf-

level (L) dataset (Figure 2) contained 464 observations, 9 predictor variables and two 

classes (TR and UN) as response variables. Because the leaf level dataset was recorded 

using a leaf-clip accessory the SHD-class was not existing as the active illumination source 

did not cast shadows. We dropped the SHD-class from our initial canopy dataset (C) and 

derived a third dataset at canopy level without shadows (C-S, Figure 2) containing 9628 

observations, 9 predictor variables and two classes (TR and UN) as response variables. 

Thereby, we could fairly compare classification results of data at leaf level (L) and at canopy 

level (C-S). 
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Figure 2 | Overview of dataset modifications that were applied to answer our research 
questions (A) and the according multispectral signatures (B). We collected multispectral 
data at canopy level (C) to run an overall classification of all present classes 
(TR=treated, UN=untreated, SHD=shadow). Hyperspectral leaf level data was down-
sampled to match the specifications of our multispectral sensor. This yielded a second 
dataset at leaf level (L) which was compared to a third canopy dataset (C-S) created by 
dropping the SHD-class from data (C). 

 
Each dataset contained 9 predictor variables. These were five spectral bands native 

to the MicaSense RedEdge camera (B, G, R, RE, NIR) and four vegetation indices (Table 1) 

that we added according to variation in biophysical and physiological parameters, likely to be 

caused by infection by A. psidii. Red discoloration (Figure 3C/D) has been observed during 

A. psidii infection (Glen et al., 2007), and we assume that this is caused by anthocyanin 

pigments which are responsible for most red and purple discolorations in plants (Davies, 

2004). Therefore, we used the anthocyanin reflectance index (ARI, (Gitelson et al., 2007)). 



100 
 

Also, chlorotic lesions have been observed during A. psidii infection (Lee et al., 2014), and 

as chlorophyll breakdown and reduction in photosynthesis rate has been associated with 

other biotrophic pathogens and especially rusts (Walters & McRoberts, 2006), we assumed 

that chlorophyll content and regulation were also affected. Therefore, we calculated the 

Red/Green ratio, a simple ratio index that has been applied by Calderon (Calderón et al., 

2014) to detect downy mildew in poppy seed and has been found to be related to changes in 

chlorophyll content. Yellow/orange pigments in A. psidii urediniospores (Figure 3C/D) have 

been speculated to provide UV protection and to resist desiccation (Ramsfield et al., 2010). 

As carotenoids are known to provide UV protection and being present in other rusts (Wang 

et al., 2018), we also assume changes in carotenoid content caused by A. psidii. We thus 

applied the structure insensitive pigment index (SIPI, (Penuelas et al., 1995)) which is known 

to be related to changes in carotenoid content. Regarding biophysical parameters, it is 

known that A. psidii hyphae enter the mesophyll layer (Morin et al., 2014), therefore it is 

likely that mesophyll cell integrity is lowered. Hyphae entering mesophyll cells is likely to 

cause plant stress, therefore we selected the NDVI. The NDVI (Rouse et al., 1973) has been 

used in numerous studies to detect stress in vegetation (Calderón et al., 2014; Di Gennaro 

et al., 2016; Dash et al., 2017).  
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Figure 3 |The sampled lemon myrtle trees (A) are grown in rows on the plantation. Trees without fungicide 
treatment can show various symptoms depending on the phase of pathogenesis. The upper right image (B) 
shows treated mature leaves that are not actively infected and thus show only old necrotic lesions caused by 
infections when those leaves were still young. Examples of active infections are found in image C and D 
where yellow urediniospores cause symptoms on untreated younger leaves. Surrounding those infections 
sites, red halos can be observed. (Source: Ina Geedicke) 

 

Table 1| Spectral vegetation indices included as predictor variables in our classification models. 

Spectral Vegetation Index (SVI) SVI Abbrev. Formula Reference 

Normalized Difference Vegetation Index NDVI 

 

(Rouse et al., 1973) 

Structure Insensitive Pigment Index SIPI 

 

(Penuelas et al., 1995) 

Anthocyanin Reflectance Index ARI 

 

(Gitelson et al., 2007) 

Red/Green Simple Ratio Index R/G 

 

(Calderón et al., 2014) 
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Random forest classification 

We used a non-parametric random forest classifier (Breiman, 2001) to produce 

classification models for all three datasets (C, C-S, L). This approach reduces classification 

variance by evaluating accuracy across multiple independent decision trees (Hastie et al., 

2009). Random forests and their variable importance measures have been extensively 

exploited in different scenarios and can successfully handle multicollinear data of high 

dimensionality. Also, they are less sensitive to overfitting and do not require as high quality 

training samples as other streamline machine learning classifiers (Belgiu & Drăgu, 2016). 

This is due to the large number of decision trees produced and by randomly selecting a 

subset of training samples and a subset of variables for splitting at each tree node (Belgiu & 

Drăgu, 2016). For our models, we first optimized the chosen number of randomly selected 

predictors at each split (mtry) by iterating over a sequence of ascending mtry-values and 

selected mtry=5 (C), mtry=6 (C-S) and mtry=7 (L). Secondly, the number of trees generated 

to gain a full ensemble (n-tree) was optimized. All three datasets were initially split 75:25 into 

training (C=10380 obs., C-S=7222 obs., L=348 obs.) and test data (C=3608 obs., C-S=2406 

obs., L=116 obs.). Each of the three models was trained by drawing 100 bootstrap samples 

from the training data. For each bootstrap sample, an individual and independent decision 

tree was constructed. Then, from each bootstrap sample, another subsample (out-of-bag 

sample) was set aside. The out-of-bag sample is passed down each of the 100 decision 

trees to estimate an unbiased training classification error. To assess the importance of each 

contributing variable for each tree we applied a random-forest-based feature selection 

(Genuer et al., 2015) for each dataset. The method is suitable for regular, high-dimensional 

and correlated data (Genuer et al., 2010). 
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Accuracy assessment 

We quantified the accuracy of the classification using three metrics: overall accuracy 

(OA, producer accuracy (PA) and user accuracy (UA). While, OA reflects the agreement 

between reference and predicted classes and has the most direct interpretation, PA and UA 

(Story & Congalton, 1986) are class-specific accuracy measures. PA is the number of 

correctly classified references for a class divided by the total number of references of that 

class and, thus, represents the accuracy of the classification for a specific class. UA divides 

the number of correct classifications (predictions) for a class by the total number of 

classifications (predictions) for that class. A high UA means that spectra within that class can 

be reliably classified as belonging to that class. UA is often termed to be a measure of 

reliability, which can be also interpreted as the agreement between repeated measurements 

within a class. 
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Results 

Canopy data classification 

The random forest classification, discriminating between fungicide treated and 

untreated lemon myrtle trees, resulted in an overall accuracy of test data of 95%. 

Considering the class “Shadow” (Table 2) from the perspective of the person who sampled 

the reference data, 1202 pixels were extracted from trees and were labelled as such (Table 

2 – Reference, columns). The classifier slightly disagreed with our observation and 

suggested that 16 shaded pixels should have been labelled as “Treated” and 27 as 

“Untreated” (PA= 96.4%, columns). When changing this to the perspective of the classifier 

(Table 2 – Prediction, rows), the model predicted 1198 pixels as being the class “Shadow”. 

However, from those pixels we initially labelled 16 belonging to the class “Treated” and 23 to 

the class “Untreated”. In 96.7% of cases our labels confirmed the prediction for that class 

(User Accuracy). When evaluating the remaining classes, the agreement between our labels 

and the classifier’s predictions was high from both perspectives.  

To emphasize the high accuracy of the prediction, we applied our model to an aerial 

image of the experimental site to predict whether a pixel could be classified as being a 

shadow or a treated or untreated lemon myrtle tree. Thus, we created a map, using the 

orthophoto where all ground pixels were removed (T, see chapter 2.2), that could be used to 

pinpoint areas of potential incidence of myrtle rust (Figure 4).  
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Table 2 | Classification metrics for the dataset C (canopy, all classes). The lower 
right cell contains the overall accuracy (95.0%). Class specific accuracies can be 
found in the lower marginal row (producer accuracy, PA) and outer right marginal 
column (user accuracy, UA). Values shown in diagonal cells contain correctly 
classified pixel samples for each class and the total number of pixel samples 
(3608). 

Data C 

Reference 

Shadow Treated Untreated Total UA 

P
re

d
ic

ti
o

n
 

Shadow 1159 16 23 1198 96.7% 

Treated 16 1135 45 1196 94.9% 

Untreated 27 52 1135 1214 93.5% 

Total 1202 1203 1203 3608  

PA 96.4% 94.3% 94.3%  95.0% 

 

 

Figure 4 | Experimental site from an aerial view. Each fungicide treated (TR) row of trees was separated by a 
buffer row (B) from untreated (UN) trees. Buffer rows were interspersed to avoid unintentional fungicide treatment 
of untreated trees. All trees have been colored according to the predictions of our classification model. Treated 
rows are expected to be healthy (green) and were mostly predicted as such. Rows without fungicide treatment 
are likely to be infected (orange) and were also predicted with high accuracy. East-facing shadows (black; 
compare Figure 1) were added to the prediction to avoid confusion between shadows of treated trees and 
untreated trees. Shadows were also predicted with high accuracy. 
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Comparing canopy and leaf-level classification 

Whether it would be more accurate to classify treated and untreated trees by using a 

multispectral camera at the canopy level (40 m above ground) or by using the same type of 

sensor at leaf-level can be evaluated by comparing their respective overall accuracies 

(Tables 3 and 4). At leaf level, treated and untreated trees were discriminated with an 

accuracy of 74.1% (Table 4). By contrast, at canopy level, the tree classes were 

discriminated with an OA of 96.2% (Table 3). Note that this canopy-level classification is 

almost the same as before (Table 2) except the shadow-class was dropped to facilitate a fair 

comparison of canopy- and leaf-level data. As the leaf data were collected in a previous 

study with a field-spectrometer, including an active illumination source, no shadow-class 

could be recorded. A classification at leaf level, using the multispectral data derived by 

spectral resampling of hyperspectral leaf-clip data, is less accurate then using the same 

sensor at canopy level. This is also reflected by PA and UA for both classes. At the leaf level 

(Table 4) PA and UA range between 72.9% and 75.4%. However, at the canopy level they 

range between 96% and 96.4% (Table 3).  

Table 3 | Classification metrics for the dataset B (aerial, shadow 
class dropped). The lower right cell contains the overall accuracy 
(96.2%). Class specific accuracies can be found in the lower 
marginal row (producer accuracy, PA) and outer right marginal 
column (user accuracy, UA). Values shown in diagonal cells 
contain correctly classified pixel samples for each class and the 
total number of pixel samples (2406). 

Data C-S 
Reference 

Treated Untreated Total UA 

P
re

d
ic

ti
o

n
 Treated 1155 43 1198 96.4% 

Untreated 48 1160 1208 96.0% 

Total 1203 1203 2406  

PA 96.0% 96.4%  96.2% 
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Table 4 | Classification metrics for the dataset C (leaf, no shadows 
when recording leaf spectra). The lower right cell contains the 
overall accuracy (74.1%). Class specific accuracies can be found in 
the lower marginal row (producer accuracy, PA) and outer right 
marginal column (user accuracy, UA). Values shown in diagonal 
cells contain correctly classified spectral reflectance signatures for 
each class and the total number of spectra (116). 

Data L 
Reference 

Treated Untreated Total UA 

P
re

d
ic

ti
o

n
 Treated 43 14 57 75.4% 

Untreated 16 43 59 72.9% 

Total 59 57 116  

PA 72.9% 75.4%  74.1% 

 

Important variables at canopy and leaf-level 

In addition to comparing accuracy metrics between canopy- and leaf-level we aimed 

to assess the importance of the spectral bands (blue=B, green=G, red=R, red-edge=RE and 

near-infrared=NIR) and the vegetation indices (NDVI, SIPI, ARI, R/G) for the classification at 

both levels and for all datasets (C, C-S and L). The importance is given in absolute values, 

as provided by the selection algorithm, and as normalized, relative values between 0 and 1 

(Table 5). Overall, at canopy level (Table 5, C and C-S), the NIR and RE have a high 

relevance for the classification. The RE loses importance (Table 5, C-S, Rank 4) when no 

shadows are present. At leaf-level (Table 5, L) the NIR is less important (Rank 6) while the 

NDVI (Rank 3) and the G (Rank 2) band were more relevant. Specifically, for dataset C 

(canopy, treated, untreated, shadow), the RE (717±10 nm, Rank 1) and the NIR 

(840±40 nm, Rank 2) were most important. The G band (560±20 nm, Rank 6) band, was 

among the least important predictors to discriminate treated, untreated and shadow overcast 

trees. The most important index, the R/G simple ratio ranked on 4th place.  For dataset C-S 

(canopy without shadow class) the NIR band was most important. The RE lost importance 

(Table 5, C-S, Rank 4 instead of 1). For spectral indices, the R/G ratio was most important 

(Table 5, C-S, Rank 2) while the SIPI, had very low influence on the classification (Table 5, 

C-S, Rank 9). The NDVI ranked sixth. For leaf level data (Table 5, L), most relevant 
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predictors were the RE band and the G band. The NDVI had a higher relevance compared 

to data collected at canopy level (Table 5, L, Rank 3). Interestingly, the R/G index was most 

important for canopy data without shadows (Table 5, C-S, Rank 2), lost importance when 

shadows were included (Table 5, C, Rank 4) and had no relevance at leaf-level (Table 5, L, 

Rank 8). 

 

Table 5 | Important predictors for each classified dataset (C, C-S, L). The absolute and relative 
importance is provided. The first row indicates the overall rank for each predictor. 

  Rank 1 2 3 4 5 6 7 8 9 

D
a

ta
 C

 Band RE NIR R R/G ARI G NDVI B SIPI 

Abs. Imp. 0.3 0.26 0.13 0.13 0.11 0.09 0.08 0.07 0.04 

Rel. Imp. 1 0.85 0.36 0.34 0.26 0.21 0.17 0.13 0 

D
a

ta
 C

-S
 Band NIR R/G ARI RE G NDVI B R SIPI 

Abs. Imp. 0.23 0.16 0.07 0.06 0.05 0.04 0.03 0.03 0.02 

Rel. Imp. 1 0.67 0.23 0.19 0.14 0.1 0.07 0.06 0 

D
a

ta
 L

 Band RE G NDVI B R NIR SIPI R/G ARI 

Abs. Imp. 0.1 0.06 0.05 0.04 0.03 0.02 0 0 0 

Rel. Imp. 1 0.63 0.52 0.41 0.34 0.19 0 0 0 
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Discussion 

In recent years the rust fungus Austropuccinia psidii has caused tremendous damage 

globally and also in Australia, where it is threatening plant industries and native vegetation 

(Carnegie & Pegg, 2018). In 2017, A. psidii was detected in New Zealand. Industries in 

Australia and New Zealand are now severely threatened (Government, 2018; Carnegie & 

Pegg, 2018). While the extent of damage in Australia was already projected (Berthon et al., 

2018), it can be assumed that all Myrtaceae species in New Zealand are at risk and the 

impacts could be devastating (Lambert et al., 2018). A rapid measure to detect and monitor 

the impact of A. psidii on arable land could make it possible to optimize management 

strategies. 

 

Given this context, the primary goal of this study was to explore whether it would be 

possible to spectrally discriminate lemon myrtle trees on a plantation at canopy-level. At this 

level, detection and monitoring could be carried out by UASs to facilitate a rapid and 

versatile surveillance strategy. Instead of using an expensive hyperspectral sensor, we used 

an affordable lightweight (150 g) UAS-borne multispectral sensor with a coarser spectral 

resolution and successfully classified treated, untreated and shaded trees with an accuracy 

of 95%.  

 

Depending on the time when aerial images are captured, trees can be partially 

overcast by shadows. If this is the case, a classifier should be able to discriminate healthy, 

infected and shaded trees. The inclusion of shadows can be reduced by capturing the data 

at noon when the sun is at its zenith. When we removed data derived from shadows from 

our classification, we were still able to discriminate treated and untreated trees with an 

accuracy of 96.2%. As multispectral sensors are more affordable than hyperspectral 

sensors, we investigated whether we could also achieve accurate classification results at 

leaf-level when using a multispectral sensor. Thus, we simulated multispectral leaf spectra 
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by down-sampling the leaf spectral signatures captured for our previous study (Heim et al., 

2018). The classification accuracy for down-sampled leaf spectra was reduced to 74%. A 

likely explanation is the coarser spectral resolution of the multispectral sensor. The 

hyperspectral sensor in Heim et al. (2018) could capture spectral variation in 2 nm intervals, 

resulting in hundreds of bands that may vary depending on physiological and phenotypic 

changes caused by myrtle rust. However, the multispectral sensor in this study utilizes only 

five broad spectral bands (blue 475±20 nm, green 560±20 nm, red 668±10 nm, red-edge 

717±10 nm and near-infrared 840±40 nm). While multispectral sensors are cheaper than 

hyperspectral sensors, their less detailed spectral signature is more likely to be related to 

general stress symptoms caused by A. psidii.  

 

Another feasible framework to detect A. psidii was recently published by Sandino et 

al. (Sandino et al., 2018) for paperbark tea trees (Melaleuca quinquenervia), similarly using 

treated and untreated trees. They used a hyperspectral camera at 20 m above the ground, 

resulting in a ground sample distances of 4.7 cm/pixel. Healthy paperbark trees were 

detected at rates of 97.24% and affected trees at 94.72%. Sandino et al. (Sandino et al., 

2018) emphasized that future studies should focus on monitoring disease progression and 

link specific biophysiological parameters with spectral responses caused by infection through 

A. psidii. Such an inclusion of biophysiological parameters was considered by Asner et al. 

(Asner et al., 2018). They linked leaf chemical parameters with spectral reflectance 

signatures at leaf and canopy level of Metrosideros polymorpha to develop a monitoring 

approach for Rapid Ohia Death (ROD). They found that close to 80% of ROD-infected plants 

underwent marked decreases in foliar concentrations of chlorophyll, water and non-structural 

carbohydrates, which collectively resulted in strong consistent changes in leaf spectral 

reflectance in the visible (400–700 nm) and shortwave-infrared (1300–2500 nm) wavelength 

regions. Leaf-level results were replicated at the canopy level using airborne laser-guided 

imaging spectroscopy, with quantitative spectral separability of normal green-leaf canopies 
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from suspected ROD-infected brown-leaf canopies in the visible and shortwave-infrared 

spectrum. 

  

We selected relevant wavebands for each of our classifications and found spectral 

bands (RE, NIR) and spectral vegetation indices (ARI, NDVI and R/G) that contain more 

discriminatory power than others. At canopy level, the NIR and RE were important spectral 

regions for the classification of treated and myrtle rust infected trees. Also, a simple ratio 

index, the red/green ratio, seems to be useful. In a study by Calderon et al. (Calderón et al., 

2014), the red/green ratio was applied on canopy multispectral data for the detection of 

physiological stress in opium poppy infected with downy mildew (Calderón et al., 2014). 

However, in our study the red/green ratio lost importance at canopy level when shadows 

were part of the classification. The red/green ratio had low relevance at leaf level. Further, 

the green and blue band, SIPI and NDVI were also less important at canopy level. These 

results show what was already suggested by Mahlein et al. (Mahlein et al., 2010), namely 

that the variation of single predictors is too high to use them for comparisons between 

pathosystems and detect specific diseases. The application and development of specific 

disease indices can be recommended (Mahlein et al., 2013). While the NIR and RE are 

important predictors, they are unlikely to be specific for myrtle rust as they have been found 

to be an important predictor for various other diseases (Delalieux et al., 2007; Mahlein et al., 

2010; AL-Saddik et al., 2017). 

 

The MicaSense RedEdge camera, which was used in our study, covers a spectral 

range between 455 nm and 880 nm. With its five bands it only covers broad sections within 

that range (Figure 5 - blue, green, red, violet and black peak). For instance, the RE and NIR 

band ranges between 707 nm and 727 nm and from 800 nm to 880 nm, respectively. In our 

previous study, when using a hyperspectral sensor with very narrow bands, we selected 

735 nm, 755 nm as being important wavebands to detect myrtle rust symptoms at leaf level. 

If these would be the only important bands for a specific disease, they could not have been 
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detected by a multispectral camera with the above-mentioned band specifications. A similar 

downside of the MicaSense RedEdge camera is, that it does not cover the SWIR (short-

wave-infrared) region. However, studies that used hyperspectral sensors, found this region 

to be important for the detection of their pathogen under investigation (Delalieux et al., 2009; 

Asner et al., 2018; Heim et al., 2018). As plant diseases often affect the integrity of the leaf 

cuticle, the plant´s transpiration rate and water content is affected (Yeats & Rose, 2013). 

Fluctuations in plant water is usually reflected though the SWIR (Seelig et al., 2008). It can 

be suggested that including the SWIR region could be beneficial for specific disease 

detection. 

 

Figure 5 | Spectral range and bandwidth of the applied multispectral camera (Source: MicaSense RedEdge™ 3 
Multispectral Camera User Manual Rev 06 – October 2015) 
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Conclusion 

By using an unmanned aerial system (UAS) and a multispectral camera, we were 

able to discriminate fungicide treated and untreated lemon myrtle trees at canopy-level with 

high accuracy (95%). These results corroborate those of other studies that aimed to classify 

diseased and healthy vegetation using UAS and multispectral sensor systems. An ultimate 

goal in plant disease detection is to detect a pathogen while its symptoms are still 

imperceptible to visual screening, measuring disease severity, discriminating biotic and 

abiotic stress and differentiation among disease. As we performed our experiment on a 

plantation, we can assume that the land manager maintains optimal growth conditions for 

the plants and that they were not subject to any relevant stress causing agents other than A. 

psidii. There were no other pests and disease issues in lemon myrtle plantations, supporting 

our assumptions that the spectral stress indicators we identified are associated with myrtle 

rust. Our study also selected relevant multispectral wavebands and spectral vegetation 

indices for an accurate classification at leaf- and canopy level.  

 While the red-edge (RE) and near-infrared (NIR) band were important 

predictors at both levels, we also found that the relevance of other predictors can change 

depending on the level. As RE and NIR are known to be generally good predictors for stress 

detection in plants it seems likely that our selected variables are not specific for myrtle rust 

and only useful when other stresses can be avoided by suitable management strategies as 

was the case in our experimental setting. We recommend the use of hyperspectral sensors 

for future studies in the realm of plant disease detection as they reflect physiological and 

structural changes caused by pathogens on a finer spectral scale than multispectral sensors. 

Also, the inclusion of thermal, fluorescence and plant biochemical/physiological parameters 

(via canopy reflectance models) can be recommended as such measures could be linked 

with a specific disease response. However, the fact that our selected predictor variables 

varied between leaf- and canopy- level classification for a multispectral sensor, also allows 

us to conclude that this variation might occur for other optical sensor systems. Therefore, 
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future studies should design their experiments according to standards that allow for across 

scale and pathosystem comparison. 
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CHAPTER V 

General discussion of developing a remote sensing framework 
for myrtle rust (Austropuccina psidii) detection on lemon myrtle 
(Backhousia citriodora)  

 

RHJ Heim 
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General Discussion 

Key results 

This thesis showed that sensor-guided detection of A. psidii is generally possible at 

leaf-scale and remotely, at canopy scale. The first data chapter focused on leaf-scale 

experiments and showed that raw spectral signatures of fungicide treated (healthy) and 

untreated (diseased) lemon myrtle trees (Backhousia citriodora) can be discriminated with 

an overall accuracy (OA) of 78%. By converting the raw spectra, consisting of more than 200 

wavebands, into their first-order derivatives, classification accuracies were improved to 95%. 

In the second data chapter it was demonstrated that not the entire array of 200 wavebands 

is necessary to accurately discriminate treated and untreated trees. Hyperspectral signature 

dimensionality was reduced by selecting relevant wavebands for accurate classification. By 

using four wavebands only, it was possible to build a disease-specific spectral disease index 

(SDI), the LMMR (lemon myrtle-myrtle rust) index. The LMMR performed better than 

conventional spectral vegetation indices (SVIs) used for stress detection, discriminating 

between treated and untreated trees with an overall accuracy of 90%. Conventional SVIs 

used in this thesis achieved accuracies of only 58%, 67% and 60%, respectively. Finally, 

results of the third data chapter showed that fungicide-treated and untreated trees could also 

be accurately discriminated (95%) at canopy-scale. Data for this study were collected by 

deploying a multispectral imaging sensor mounted on an unmanned aerial system. As the 

spectral and spatial resolution of aerial multispectral sensors is inferior to those of 

hyperspectral sensors applied directly at the leaf surface, and because the classification 

results were as accurate as found in the first data chapter (95% OA), it raised the question of 

whether hyperspectral sensors are necessary to accurately identify pathogen-related 

disease symptoms. To explore this question, the third data chapter also included the 

simulation of multispectral data at leaf-scale. This allowed me to explore spectral differences 
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between leaf- and canopy-scale. I found that relevant wavebands to accurately classify 

selected tree classes were different at leaf-scale compared to canopy-scale. 

My overall conclusion is that optical sensors have clear potential for myrtle rust 

detection. I could show this by using a hyperspectral and a multispectral sensor applied at 

leaf- and canopy-scale. Additionally, I developed a novel disease-specific vegetation index 

by selecting relevant spectral wavebands for the investigated pathosystem. There are 

practical uses for such research but also various limitations, as expanded on below. 

 

Discriminating A. psidii from other stress causing agents 

This thesis explored the potential for ground-based and aerial optical sensors to 

detect A. psidii in a commercial plantation setting. To avoid confounding sensor signals, the 

presence of other stress causing agents was minimised as much as possible. Fungicides 

used on the plantation to control myrtle rust (e.g. triadimenol, azoxystrobin, tebuconazole) 

have been shown to work effectively as both an eradicant and a protectant for myrtle rust 

(Horwood et al., 2013). Furthermore, prior to myrtle rust, there were no other significant 

biotic agents that caused damage to lemon myrtle trees (Plant Health Australia, 2017) 

suggesting that treated plants were not affected by other biotic stressors. Furthermore, 

examination of leaves in this study, including by lemon myrtle experts and myrtle rust 

experts, indicated no other damaging agents present. However, to further strengthen the 

specificity of the spectral signatures recorded in this thesis, I could have investigated the 

possible link between the physiological changes caused exclusively by A. psidii. For 

example, I could have explored the production of specific biochemical compounds or 

quantified the presence of pathogen-related pigments during infection. While this approach 

seems not applicable to discriminate hundreds of different stress sources, it could be used 

on a plantation where only a limited number of stress-causing agents might be present at 

any point in time.  
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For A. psidii, it might be useful to look at the biochemical composition of 

urediniospores that land on leaf surfaces and start infecting their host. Carotenoids are 

presumably the pigments giving the yellow colour to urediniospores of some rusts (Wang et 

al., 2018). For B. citriodora, the host plant in this thesis, we found yellow pigmented pustules 

associated with A. psidii on the adaxial and abaxial leaf surfaces of infected leaves (data 

chapter 2). It is likely that the same pigments also occur within the leaves, as during the 

infection and penetration process of A. psidii the orange-yellow pigmented contents are 

transferred into the leaf by the infection hyphae (Hunt, 1968). However, there are no studies 

describing the exact biochemical composition of A. psidii pigments (Robert Park, University 

of Sydney, pers. comm.). Also, secondary metabolites, such as terpenes, might be of 

interest as they have been found at higher levels in relation to infection with A. psidii (Hsieh, 

2018). Individual terpenes and groups of terpenes were also successfully predicted from 

hyperspectral data in Eucalyptus grandis (Naidoo et al., 2018) and within Eucalyptus 

polybractea (Kainer, Windley, Kulheim, unpublished, pers. comm.). 

Another promising approach to discriminate among diseases is the development of 

disease-specific indices, as conducted here in data chapter two. The use of SVIs is a 

common method to analyse and detect changes in plant physiology and biochemistry. 

Usually consisting of only a few relevant wavebands, these indices were designed to 

respond to different plant parameters, such as pigment content (Ustin et al., 2009), leaf area 

(Broge & Leblanc, 2001) or leaf water content (Penuelas et al., 1993). As these physiological 

changes are caused in some combination by plant pathogens, SVIs can be used to 

potentially detect plant diseases (Hatfield et al., 2008). However, it has been criticized that 

common SVIs lack disease specificity (Mahlein et al., 2013). Therefore, Mahlein et al. (2013) 

optimized SDIs and tested their ability to detect and classify healthy and diseased sugar 

beet leaves infected with Cercospora leaf spot, sugar beet rust and powdery mildew. They 

found that their SDIs could discriminate their classes with high accuracies (89%, 92%, 87%, 

85%, respectively). These findings are in line with those of our data chapter 2 as we were 

able to develop a new SDI, the LMMR, that could discriminate between treated and 
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untreated trees with an overall accuracy of 90%. Conventional SVIs, such as the PRI, 

MCARI and NBNDVI, achieved accuracies of only 58%, 67% and 60%, respectively.  

To summarize, it is crucial to understand the biology of a pathosystem to create 

meaningful links between sensor systems and pathological processes. For the development 

of SDIs, it is especially important to link selected wavebands to those pathological processes 

that occurred while the data was being recorded. Thus, we can reinforce the relationship of 

the specificity of a recorded signal to a certain pathosystem. Due to the change of symptoms 

during pathogenesis it would be valuable to also link pathogen-related alteration in A. psidii 

hosts and other pathosystems to specific points in time. If the aim would be to detect a 

disease before obvious symptoms appear (Zarco-Tejada et al., 2018) it would be necessary 

to know about subtle changes in host plants that could be detected with a sensor. 

 

Early (pre-visual) detection of plant diseases 

In this thesis I took advantage of an existing experiment where the impact of 

fungicide was being measured on lemon myrtle trees affected by myrtle rust (Lancaster et 

al., in preparation). As described in data chapter 2, in that experiment the trees in the 

plantation were either classified as ‘untreated’, or ‘treated’. The ‘untreated’ trees showed 

symptoms of active myrtle rust infection, whereas the ‘treated’ trees were free of active 

disease symptoms following a fungicide treatment. Treated trees could potentially have been 

infected previously with myrtle rust (prior to fungicide application) and thus the leaves may 

have had some necrotic lesions due to old infections. Hence, the recorded reflectance 

signatures only captured a single and arbitrary stage during pathogenesis of A. psidii. 

However, stress responses like those caused by pathogens undergo multiple phases (Selye, 

1936; Lichtenthaler, 1998). After pathogen infection two possible stress responses can 

occur: a positive, adaptive stress triggered by low levels of a stressor (eustress), and a 

negative stress caused by high levels of a stressor (distress). After the plant recovers from 

eustress, a resistance phase may occur, which is dominated by adjustment of metabolism to 
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cope with the stressor (Wojtaszek, 1997). Distress and long-term exposure to a stress-

causing agent can subsequently result in an exhaustion phase, leading to plant death (Kilian 

et al., 2007). Thus, detecting stress at a single time point does not capture the full extent of 

the readjustment of plant metabolism. The understanding of stress responses is vital to 

explore whether the origin of stress is biotic or abiotic (Jansen & Potters, 2017) and then 

create meaningful links between those responses and spectral features at certain points in 

time. Without such information it will be difficult to find a useful application for remote 

sensing techniques in disease detection and precision agriculture. 

A potential measure to detect disease at specific phases during pathogenesis is the 

fusion of sensor systems (Martinelli et al., 2015). For instance, by adding thermal sensors it 

would be possible to capture temperature changes caused by variances in transpiration 

during early infection (Oerke et al., 2011; Mahlein, 2016; Zarco-Tejada et al., 2018). The leaf 

temperature shows a close correlation to the plant transpiration (Jones, 2002). The 

epidermal layer (cuticle and stomata), the outermost barrier of a leaf, is partially responsible 

for the regulation of leaf transpiration and the uncontrolled loss of water (Riederer & 

Schreiber, 2001). Many foliar pathogens, such as leaf spots or rusts like A. psidii, modify the 

leaf cuticle and therefore cause unintentional transpiration (Oerke et al., 2011; Mahlein, 

2016). Other pathogens affect transpiration rates differently. For instance, root pathogens 

(e.g., Rhizoctonia solani or Pythium spp.) or systemic infections (e.g., Fusarium spp.) often 

influence the transpiration rate by altering plant vascular tissue and therefore the water flow 

of entire plants or plant organs (Mahlein, 2016).  

Pathogen-related plant water stress could also be detected by solar-induced 

chlorophyll fluorescence emission (Zarco-Tejada et al., 2012, 2018). Chlorophyll 

fluorescence is associated with photosynthesis and other physiological processes (Krause & 

Weis, 1984) and can be detected passively at leaf to canopy level (Rascher et al., 2009) 

using high-resolution spectrometers and the Fraunhofer Line Depth (FLD) principle (Plascyk, 

1975; Malenovský et al., 2009). Direct or indirect recording of plant fluorescence signals has 

been applied successfully for plant fungal pathogens (Konanz et al., 2014). 



128 
 

Finally, plant architecture and plant biomass can provide important information about 

the health status or the presence of a disease (Paulus et al., 2014). Both parameters can be 

changed when pathogens cause deviations from natural growth. Some of the symptoms of 

A. psidii are defoliation and leaf distortion (Coutinho et al., 1998). Laser scanning devices 

have been used in an agricultural context to capture plant architecture traits and biomass 

(Paulus et al., 2014) and could be deployed to detect A. psidii incidence. Unfortunately, leaf 

distortion and defoliation are not early symptoms, occurring later in the disease cycle 

(Coutinho et al., 1998). Therefore, their detection could only be useful as a decision support 

system for management at later disease stages. However, the successful combination of 

different sensor systems for disease detection has recently been shown in a study by Zarco-

Tejada et al. (2018). They successfully combined remotely deployed hyperspectral and 

thermal sensors to carry out the first intensive multiyear study of more than 7,000 olive trees, 

infected with X. fastidiosa, across 15 orchards. By modelling fluorescence emissions of 

individual tress, they successfully identified X. fastidiosa as the stress-causing pathogen and 

detection of infection was even possible pre-visually.  

Symptoms of Xylella fastidiosa are usually browning of leaves and yellowing of leaf 

veins (i.e. leaf scorch) and only appear several weeks after successful inoculation 

(Chatterjee et al., 2008). During this pre-visual phase management options are limited and a 

detection early during this life-cycle stage would allow to react on the disease more swiftly 

(Zarco-Tejada et al., 2018). For myrtle rust and its causal agent A. psidii, initial symptoms 

become already visible two to four days after a host has been infected with urediniospores 

(Coutinho et al., 1998). Thus, for early detection, the stress response of an infected host 

needs to be detected within the first four days. There is reasonable doubt that remote 

sensing techniques for the detection of fast-spreading foliar fungal disease, such as rusts, 

can provide a means for better management because foliar fungal diseases often disperse 

rapidly through the air (Cooke et al., 2006). Only highly reliable detection of infection 

hotspots would potentially convince a manager to conduct curative treatment locally, if 

curative agrochemicals are available. However, the decision to apply remote sensing 
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techniques as a decision support tool must be made by managers on an individual basis 

which requires close collaboration with land managers to develop applicable systems. Often, 

preventive agrochemicals against foliar fungal diseases are inexpensive and managers will 

apply them over the entire crop area to avoid the risk of secondary infections. In some 

cases, it might be possible to use sensor systems for remote screening of infection hotspots. 

For instance, after heavy rainfall events remote sensing techniques could be applied to 

locate areas where additional fungicide treatment might be necessary as the rain has 

washed off earlier applied agrochemicals. These locally untreated spots would enable a 

pathogen to infect its host and the host response could then be detected. Another case, 

specific to the lemon myrtle industry and other crop sectors that demand an organic product 

and try to avoid any agrochemical treatments (Carnegie & Pegg, 2018), the incentive to 

explore possibilities for the incorporation of remote sensing detection and the avoidance of 

agrochemicals might be higher. In cases where pathogen dispersion rates are low, mostly 

due to the mode of spread (e.g. wind, soil, rain) and propagule type (e.g. spore size, weight, 

shape), remote sensing techniques can generally be regarded as a useful detection tool. In 

those cases, it can take several months for hosts to develop symptoms which in turn 

increases response time for management (Pablo Zarco-Tejada and Rocio Calderón-Madrid, 

pers. comm.). Unfortunately, this is not the case for myrtle rust. However, sensor guided 

detection could be an option for fast-spreading pathogens like A. psidii as the estimation of 

disease severity might lead to dosage adjustment of agrochemicals.  

 

Quantifying disease severity 

In the lemon myrtle plantation used for the work in this thesis, the assessed leaves 

showed symptoms of various disease severity. The disease severity was influenced, 

amongst other factors, by leaf age, microclimate, proximity of neighbouring plants and 

inoculum load. While we aimed to provide a general concept for myrtle rust detection, an 

additional step could have been to assess the trees for its disease severity, e.g. either by 
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random sampling of leaves or by calculating the Crown Damage Index (Stone et al., 2003), 

after taking their spectral signature.  Such an additional sampling would have allowed us to 

evaluate whether individual trees varied in susceptibility. Studies have shown that A. psidii 

causes a disease pattern with substantial variability in host-susceptibility within species 

across provenances (Morin et al., 2012; Sandhu & Park, 2013; Pegg et al., 2018). For 

example, Pegg et al. (2018) examined variability in susceptibility to A. psidii within 

populations of M. quinquenervia, M. leucadendra and M. viridiflora and identified wide 

variation in susceptibility between the three species, among provenances within these 

species, as well as within provenances (i.e., between individual trees). Sensor-guided 

severity assessment of symptoms can be useful in first locating susceptible individuals and 

secondly in determining disease-resistant genotypes. The tremendously negative impact of 

A. psidii on important natural plant communities in Australia (Carnegie et al., 2016; Pegg et 

al., 2017) might make it imperative to select resistant individuals across susceptible species 

for plant breeding programs, at least in a commercial context (Pegg et al., 2014). However, 

this wide variability in host-susceptibility to A. psidii makes it complicated to design a 

structured screening process for resistance. Plant breeding processes can be aimed at 

finding resistant genotypes, therefore a large number of those genotypes need to be tested 

for disease- and abiotic stress resistance, potential yield, biomass quality, and many other 

secondary traits (Fiorani & Schurr, 2013). During resistance screening processes, 

researchers are interested in subtle defence reactions that are crucial for the ability of plants 

to prevent pathogen invasion across all scales, from cell cultures to single plant organs to 

entire fields (Granier & Vile, 2014). Using optical sensors in plant phenotyping is a fast-

developing research field that combines plant biology, sensor technology, and automation 

engineering while gaining increasing importance owing to the need to accelerate progress in 

plant breeding (Fiorani & Schurr, 2013). It is centred around the assessment of appearance 

and performance of a plant genotype under distinct environmental conditions (Granier & Vile, 

2014). Especially the need for high-throughput screening methods due to the high number of 

repeated genotype measurements in plant phenotyping makes this field very suitable for the 
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use of optical sensor (Granier & Vile, 2014; Mahlein, 2016). In the case of A. psidii and the 

highly variation of host-susceptibility, sensor-guided phenotyping approaches could be 

applied to screen for resistant genotypes across all vulnerable species within the Myrtaceae. 

Currently, experts are using disease scales and screen for resistant genotypes by using the 

naked eye. This approach could be optimized by using fast, objective and automated sensor 

systems. 
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Conclusion 

By using a hyperspectral sensor at leaf-level and a multispectral sensor at canopy-

level, this thesis took an across-scale approach to show that optical remote sensing is a 

suitable tool for the detection of A. psidii in a managed landscape. This was done 

successfully with classification accuracies of 95% at both levels. These findings contribute to 

the emerging field of sensor-guided disease detection in precision agriculture by providing 

relevant discrimination features in the VIS, NIR and SWIR spectral region of the 

pathosystem lemon myrtle (Backhousia citriodora) and myrtle rust (Austropuccinia psidii). 

Further, we developed a coded framework to design our innovative spectral disease index. 

This coded framework might enable other researchers to design SDIs for their pathosystem 

of interest. The presented findings provide a foundation for future research on myrtle rust 

detection using remote sensing techniques. Extensions could be experiments on sensor-

guided disease severity and resistance screening on vulnerable A. psidii hosts, spectral 

discrimination of A. psidii against other biotic and abiotic host responses and the pre-visual 

detection of A. psidii symptoms.  

Applications for myrtle rust detection using the presented technologies are manifold. 

A task of high priority is to prevent the arrival of new strains in countries with vulnerable host-

species. Biosecurity detection protocols at international borders could be equipped with 

spectral sensors to screen potentially infected plant material. The nursery industry (including 

growing for forestry, essential oils, landscaping and ornamental retail supply chains) would 

be a suitable field of application as plants are grown in a homogenous manner. Depending 

on the size of a nursery or other enterprises it would be possible to use hyperspectral 

sensors at leaf level to screen for A. psidii. These sensors are superior to multispectral 

sensors, especially at leaf-level, as they provide more spectral information. Therefore, they 

are more likely to reveal complex plant-pathogen interactions at early stages of infection. 

Infected plants at nurseries could be discarded to prevent further spread through transport, 

or fungicides applied at an early stage to reduce damage to affected plants and spread of 
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inoculum to other plants. Eventually, the large-scale screening of managed forests could be 

supported by spectral sensor systems. Spectral information collected from airplanes, 

helicopters or drones can guide human assessors to infection hotspots (e.g. in Eucalyptus 

plantation forestry) to estimate spore load for the integration into epidemiology models and 

the prediction of further spread.  

For future research and applications, it is imperative to create meaningful links 

between spectral signatures and structural, physiological and biochemical alterations in 

hosts. Because experimental setups in plant phenotyping are often better to control, it is 

likely that progress will be made here first before systems can be adopted for the field. For a 

successful trajectory of sensor-guided disease detection, it will be indispensable to involve 

complementary research fields, such as plant pathology, sensor engineering, informatics, 

and machine learning. Thirty years ago, Jackson (1986) suggested that: “…continued 

research at all levels, ground, aircraft, and satellite, should build the foundation for a future 

global stress-detection system that would be readily available to all.” It seems that these 

conclusions are still valid. As new technologies are available now, we should focus on clear 

communication and common research goals in this interdisciplinary field to overcome the 

discussed major challenges. 
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