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ABSTRACT 
 
Deteriorated marine ecosystems are the results of the impact of a multitude of human pressures, 
such as fisheries exploitation and human-induced climate change, and have pushed the 
introduction of comprehensive policies to manage the resources. These policies are built on the 
ecosystem based management framework. Measures to recover depleted stocks in order to 
guarantee sustainable fisheries in the future and safe and productive fish populations have been 
introduced. However, after many years of management, many stocks such as Atlantic cod 
(Gadus morhua), are still depleted and far from safe biological limits, suggesting the presence 
of complex stock dynamics, and posing doubts on their recovery potential.  
 
Over my PhD, using data from 20 Atlantic cod stocks distributed all over the North Atlantic, I 
have evaluated the recovery potential of Atlantic cod stocks under climate change and 
exploitation pressure, and whether the recovery could be hindered by discontinuous dynamics. 
Applying a range of non-linear methods, I show that cod stocks present discontinuous and 
catastrophic dynamics hindering their recovery and resulting in lower productivity under 
climate change. Moreover, I uncover these dynamics not only in biomass but also in population 
processes such as recruitment.  
 
I demonstrate that catastrophic transitions have occurred and that, most of the stocks present 
very low resilience and are currently in a low and unsafe biomass state far from historical levels. 
Temperature increase, a proxy for ecosystem changes, and unsustainable exploitation are the 
drivers of these shifts and therefore under climate change, the recovery of the stocks seems 
unlikely. Moreover, recruitment is highlighted as one of the fundamental processes to achieve 
a population rebounding, but it is also negatively (on average) influenced by climate change.  
 
These results are fundamental from a management perspective because: i) they reveal non-
linear discontinuous dynamics that are difficult to uncover but necessary to incorporate into 
management, ii) they highlight the role of climate change in limiting the productivity of Atlantic 
cod stocks, thus suggesting that new ecosystems structure might need to be expected in the 
future, and that recovery of the stocks might be unachievable in some areas, iii) they identify 
possible recovery mechanisms, thus giving the possibility to understand where the management 
action should be taken and what processes should be mainly managed and iv) they show how 
novel methods could be applied to Atlantic cod stocks management and also on other marine 
stocks (i.e. herring).  
 
Thus, these results can help define new achievable stocks´ reference points considering 
changing ecosystems and especially climate change. The methods used here can improve future 
population predictions and can define stressors´ thresholds levels to avoid in order to guarantee 
resilient and healthy fish populations and thus sustainable fisheries in the future. Therefore, my 
thesis on Atlantic cod stocks recovery gives new perspectives and new starting points to 
develop a more efficient ecosystem based management in the face of discontinuous behaviours.  
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ZUSAMMENFASSUNG 
 
Geschädigte Meeresökosysteme sind das Ergebnis einer Vielzahl anthropogener Belastungen, 
wie u.a. der Nutzung fischereilicher Ressourcen und dem vom Menschen verursachten 
Klimawandel. Zur Bewirtschaftung dieser Ressourcen wurde die Einführung umfassender 
Richtlinien, basierend auf dem ökosystemgestützten Managementansatz, stark vorangetrieben. 
Maßnahmen zur Wiederauffüllung erschöpfter Bestände wurden implementiert, um zukünftig 
eine nachhaltige Fischerei sowie sichere und produktive Fischbestände zu gewährleisten. 
Dennoch sind viele Bestände wie der Kabeljau (Gadus morhua) trotz jahrelangem Management 
immer noch erschöpft und weit entfernt von sicheren biologischen Grenzen. Dieses deutet auf 
eine komplexe Bestandsdynamik hin und stellt das Erholungspotenzial dieser Bestände in 
Frage. 
 
Im Rahmen meiner Doktorarbeit nehme ich eine Bewertung des Erholungspotentials von 
Atlantik-Kabeljaubeständen unter dem Einfluss des Klimawandels sowie des Nutzungsdrucks 
vor. Ferner soll herausgefunden werden, ob eine Erholung der Bestände durch eine 
diskontinuierliche Dynamik behindert werden könnte. Um dieses Beurteilung vorzunehmen, 
verwende ich Daten von 20 Kabeljaubeständen, welche über den gesamten Nordatlantik verteilt 
sind. Mit einer Reihe nichtlinearer Methoden zeige ich, dass Kabeljaubestände unter dem 
Einfluss des Klimawandels eine diskontinuierliche und katastrophale Dynamik aufweisen, die 
u.a. ihre Erholung behindert und zu einer geringeren Produktivität führt. Darüber hinaus belege 
ich, dass diese Dynamiken nicht nur in der Biomasse, sondern auch in Populationsprozessen 
wie der Rekrutierung auftreten. 
 
Ich zeige, dass katastrophale Übergänge bei nordatlantischen Kabeljau-Beständen 
stattgefunden haben. Zudem lege ich dar, dass eine Vielzahl dieser Bestände eine sehr geringe 
Widerstandsfähigkeit aufweist und sich derzeit in einem niedrigen sowie unsicheren 
Biomassezustand befindet, der weit vom historischen Niveau entfernt ist. Der 
Temperaturanstieg, welcher ein Indikator für Veränderungen von Ökosystemen darstellt, sowie 
eine nicht nachhaltige Bewirtschaftung sind die Treiber dieser Veränderungen. Daher ist die 
Erholung der Bestände angesichts des Klimawandels unwahrscheinlich. Darüber hinaus wird 
die Rekrutierung als einer der grundlegenden Prozesse für eine Erholung der Population 
hervorgehoben, ist jedoch auch (im Durchschnitt) negativ durch den Klimawandel beeinflusst. 
 
Aus Sicht des Managements sind diese Ergebnisse von fundamentaler Bedeutung, weil: i) sie 
nichtlineare diskontinuierliche Dynamiken beleuchten, die schwer aufzudecken sind, jedoch in 
das Management integriert werden müssen, ii) sie die Rolle des Klimawandels bei der 
Begrenzung der Produktivität der Kabeljau-Bestände im Atlantik unterstreichen, was darauf 
hindeutet, dass in Zukunft möglicherweise neue Ökosystemstrukturen zu erwarten sind und 
dass eine Erholung der Bestände in einigen Gebieten möglicherweise nicht zu erreichen ist iii) 
sie mögliche Erholungsmechanismen darstellen und so die Möglichkeit bieten, zu verstehen, 
wo welche Managementmaßnahmen ergriffen werden müssen und welche Prozesse 
hauptsächlich gesteuert werden sollten und, iv) sie darlegen, wie neuartige Methoden auf die 
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Bewirtschaftung von atlantischem Kabeljau sowie auch auf andere marine Fischbestände (z. B. 
Hering) angewendet werden könnten. 
 
In Bezug auf sich verändernde Ökosysteme und insbesondere den Klimawandel tragen diese 
Ergebnisse dazu bei neue Referenzpunkte für Bestände zu definieren. Zudem können die 
angewandten Methoden zu einer Verbesserung der Populationsvorhersagen führen sowie 
Schwellenwerte für Stressfaktoren festlegen, um somit eine resiliente und gesunde 
Fischpopulation zu erreichen.  Eine nachhaltige Fischerei kann so zukünftig gewährleistet 
werden. Meine Thesis, die sich mit der Erholung der Kabeljau-Bestände im Nordatlantik 
befasst, könnte neue Perspektiven und Ansatzpunkte für die Entwicklung eines effizienteren 
ökosystemgestützten Managements, basierend auf diskontinuierlicher Verhaltensweisen, 
bieten. 
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PREFACE  

 
“The unexamined life is not worth living” (Ὁ ἀνεξέταστος βίος οὐ βιωτὸς ἀνθρώπῳ, Plato, 
Apology) synthetizes how from ancient times humans have always tried to understand and 
explain the world that surrounds them. One of the language used by men kind, to try to put 
order in a world dominated by chaos, is Mathematics, with the application of models and 
equations. With Mathematics humans managed to explain the movement of planets, to 
understand the law governing the world and to explain ecological processes such as population 
dynamics. Today, our need to understand natural phenomena is linked especially with the 
necessity of using natural resources, such as forests, carbon, fish, and of maintaining them after 
centuries of over-exploitation. Among the fish resources there is one fish species, Atlantic cod 
(Gadus morhua), which can be defined as the species that changed the world. This fish shaped 
human migrations, cities, market routes, traditions, everywhere in the world, however at present 
it is hugely depleted and can mainly be found just in one area of the North Atlantic. Will this 
species manage to recover under global changes and in a non-linear world? My thesis will try 
to shed light into this important question, ecologically but also economically, culturally and 
socially relevant.  
 
 

 
 

“ἓν οἶδα ὅτι οὐδὲν οἶδα  
I know I know nothing” 
Socrate  
 Platone, Apology  
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INTRODUCTION        
 

 
Cumulative pressures on a non-linear world 
Anthropocene (Crutzen, 2002; Rockström et al., 2009) defines the epoch starting at the end of 
the eighteenth century and lasted until now, when human activities started to deeply modify the 
geological and ecological cycles of the planet (Walther et al., 2002; Steffen et al., 2011; 
Zalasiewicz et al., 2011). Indeed, with the offset of the industrial revolution, human population 
have constantly grown and with it, also the impact of human´s activities on the planet. The 
world human population is projected to reach quota 9.1 billion by 2050, with a consequent 
increasing need for food and energy sources (FAO, 2018a). This poses a huge challenge, since 
many resources, both non-renewable and renewable, are depleted. Indeed, even forests and 
marine resources which could theoretically be inexhaustible are at present overexploited, thus 
potentially jeopardizing global food security and livelihoods.  
 
The oceans are among the most exploited and impacted systems. Multiple, cumulative stressors 
act on the different marine ecosystems, such as fishing activity, mineral extraction, pollution 
and climate change (Halpern et al., 2008). At present 97.7% of the entire oceans are impacted 
by multiple, often synergistic stressors, and in the last 5 years the human impacts increased by 
66% (Halpern et al., 2015). Among the main stressors, overfishing and climate change are 
believed to be the most relevant and disruptive for the marine ecosystems and the marine 
species (Boonstra et al., 2015; Halpern et al., 2015). Marine species are fundamental to 
maintain not only from an ecological point of view, but also from a socio-economic side, as 
they represent a high proportion of human´s animal protein intake, and provide jobs through 
fishery and tourism (Thilsted et al., 2014). However, synergistic human stressors, coupled with 
environmental variability put them at huge risk (Reynolds et al., 2005; Khan & Neis, 2010). 
 
Fishing is one of the biggest threats endangering marine ecosystems and populations directly 
or indirectly (i.e. habitat loss) (Jennings  M.J. Kaiser et al., 1998; Mullon et al., 2005; Reynolds 
et al., 2005; Anderson et al., 2008; Halpern et al., 2015). Fishing pressure on marine ecosystems 
increased steadily until the industrial revolution when an historic change happened (Jackson et 
al., 2001). New boats, new fishing gears, new conservation methods allowed the expansion of 
fishing activity far outside national borders thus allowing the exploitation of almost all the 
marine stocks (Engelhard, 2009). Moreover, more efficient propulsion and detection systems 
lead quickly to the overexploitation of lots of marine resources and their subsequent collapses 
(Hutchings, 2000; Myers & Worm, 2003; Reynolds et al., 2005). At present, 33% of all the 

“Nothing in nature is random…a thing appears random 
only through the incompleteness of our knowledge” 
    Baruch Spinoza 
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world marine stocks is overexploited, a trend steadily increasing over the last decades, while 
60% of the stocks is exploited at the maximum sustainable levels. Just 7% of the stocks, 
compared to 40% in the 1975, is currently under-fished, indicating the profound expansion of 
fishing in the last decades (FAO, 2018b). Indeed, between 2012 and 2016, industrial fishing 
took place in more than 55% of the oceans area (Amoroso et al., 2018; Kroodsma et al., 2018a, 
2018b). 
 
Environmental drivers, such as climate variability or extreme events, can also strongly 
influence marine ecosystems (Lehodey et al., 2006). In the last decades, anthropogenic climate 
change, and in particular warming and ocean acidification, hugely harmed the marine 
environment and the human communities using it (Boyd et al., 2014; O’Leary et al., 2017; 
Sainsbury et al., 2018). These drivers can act on multiple levels of the marine ecosystems, from 
primary producers to top predators, directly (through physiological processes) or indirectly 
(Brander, 2010; Cheung et al., 2010; Pörtner & Peck, 2010). The consequences of climatic 
stressors on marine populations can be species movement, recruitment failure, growth changes, 
predator-prey mismatch and thus can reinforce and exacerbate the effect of overfishing on 
marine resources, facilitating their collapses (Perry et al., 2005; Rijnsdorp, 2009; Casini et al., 
2010; Hoegh-Guldberg & Bruno, 2010).  
 
Collapses of marine populations often came as huge surprises, and in some cases produced 
unexpected outcomes (Myers & Worm, 2003, 2005; Pinsky et al., 2011; Filbee-Dexter et al., 
2017). A text book example is the depletion of top predators, such as sharks, tunas, 
groundfishes, in many marine ecosystems (Myers & Worm, 2003; Frank et al., 2005; Casini et 
al., 2008a), which often has been attributed to a combination of unsustainable fishing pressure 
and unfavourable environmental conditions (Scheffer et al., 2005; Perry et al., 2010; Planque 
et al., 2010; Frank et al., 2016). In some areas, after the collapses and the consequent decrease 
of fishing pressure to low sustainable levels to allow the stocks of large predators to rebound, 
the stocks surprisingly did not show any sign of recovery. On the contrary, in some cases, the 
entire ecosystem completely changed its configuration (i.e. trophic cascade) hindering the 
increase of the top predators (Daskalov et al., 2007; Casini et al., 2008a; Estes et al., 2011; 
Pershing et al., 2015a). Similar examples of surprising outcomes can be described for coral 
reefs, kelp forests and a multitude of marine ecosystems (Steneck et al., 2002, 2013; Mumby, 
2009; Ling et al., 2015).  
 
These ecological surprises are characterized by the fact that they are induced by multiple 
cumulative factors, that they are often unpredictable and that they are usually very difficult, if 
not impossible, to revert (Doak et al., 2008; Filbee-Dexter et al., 2017). This kind of unexpected 
behaviours challenge the linear, predictable paradigm of natural sciences. Indeed, to explain 
the world and the laws and phenomena governing it, scientists had to create simplified models 
to overcome the world complexity. However, during the twentieth century, more and more 
scientific disciplines started to realize that natural patterns were often too complex and erratic 
to be explained with simple linear models and that most of the time nature was governed by 
chaotic and non-linear dynamics. 
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Bifurcation theory and non-linearity  

Erratic behaviours tend to be the rule more than the exception in nature, nevertheless they were 
often discarded or addressed as random noise by scientists, due to the difficulties in analysing 
them (May & Oster, 1976; Hastings et al., 1993). During the twentieth century, scientists from 
different fields started to realize that these erratic dynamics of natural phenomena, such as 
climatic and weather fluctuations, geological coastline formations and ecological systems, 
needed to be described using different approaches (Lorenz, 1963; Mandelbrot, 1967; May, 
1976a; Sugihara et al., 1996). A scientific revolution started from physic and mathematic with 
the studies of Poincare on shapes and topology, which culminated in the creation of a new 
branch of mathematics, the bifurcation theory (Poincaré, 1890; Crawford, 1991). This theory 
recognizes multiple types of behaviour of dynamical systems such as chaotic dynamics and 
critical transitions (Andersen et al., 2009).  

 
Figure 1: Systems dynamic with multiple equilibria formation. At the change of an external parameter the system can move 
towards very different states or equilibria. 

Bifurcation theory is the study of changes in dynamical systems. A bifurcation occurs when a 
smooth change in a parameter leads to a sudden change in the system dynamics, thus moving 
the system away from an equilibrium point (Figure 1) (May, 1976a; Crawford, 1991; Beisner 
et al., 2003). The theory, at the beginning more qualitative than quantitative, facilitated the 
development of catastrophe theory, from the French mathematician Thom, and chaos theory 
from the pioneer work of Lorentz (Lorenz, 1963; May, 1976a; May & Oster, 1976; Thom, 
1977). While catastrophe theory is fully rooted in the bifurcation theory and studies the 
behaviour of a system influenced by external factors and moving between multiple equilibria, 
chaos theory focuses more on systems extremely sensitive to initial conditions which can move 
apparently randomly or again between equilibria (May, 1976a; Thom, 1977). These concepts 
of perturbation and equilibria lead to the formulation of another fundamental principle: 
resilience. The concept of resilience was introduced by Holling (Holling, 1973) and can be 
defined as the ability of system to absorb disturbances and still maintain the same internal 
structure and configuration, thus staying at the equilibrium point also called “state” or 
“attractor” (Beisner et al., 2003). Repetitive disturbance can erode the system resilience thus 
moving the system away from the attractor to a new state or to “random” dynamics, following 
catastrophe or chaos theory (May, 1972; Holling, 1973; O’Leary et al., 2017). Different types 
of models have developed from these two theories which are extremely useful to describe non-
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linear and discontinuous dynamics of natural systems (Thom, 1977; Sugihara, 1994; Sugihara 
et al., 2012).  
 
The Empirical Dynamic Modelling framework was developed by Sugihara and collaborators, 
starting from Lorentz chaos-theory (Packard et al., 1980; May et al., 2008; Ye et al., 2015; 
Deyle et al., 2016; McGowan et al., 2017). It is a data-driven approach that studies systems 
extremely sensitive to initial conditions (i.e. butterfly effect) and controlled by multiple external 
drivers (Sugihara, 1994). The past dynamics of a system can be reconstructed in state-space 
through the creation of an attractor manifold (Figure 2) (Sugihara et al., 2012; Giron-Nava et 
al., 2017). Every point in the space will correspond to the state of the system in a specific time 
step (Sugihara et al., 2012; Ye et al., 2015; Deyle et al., 2018). The apparent random and erratic 
behaviour of the system can thus be reconstructed and then used to project the future system 
trajectories based on state-dependent dynamics (Sugihara et al., 2012; Ye et al., 2015).  This 
method has been used in different disciplines (Sugihara et al., 1996) and has found applications 
also in marine ecological systems, predator-prey interactions and marine management 
(Anderson et al., 2008; Ye et al., 2015; Deyle et al., 2016, 2018).  
 

 
Figure 2: Reconstruction of a system dynamic in state-space. (source: www.medium.com) 

 

 

The formulation of catastrophe theory and its 
mathematical approach (Zeeman, 1976; Thom, 1977; 
Arnol’d, 1992) was one of the first attempt to render the 
bifurcation theory more quantitative and more applicable 
to empirical data, and thus was acclaimed and quickly 
embraced by scientists in different fields (Figure 3) 
(Copes, 1970; Clark, 1976; Zahler & Sussmann, 1977). 
However, was soon also heavily criticized and its 
usefulness was questioned, due in particular to its earlier 
deterministic framework (Kolata, 1977; Sussmann & 
Zahler, 1978a, 1978b). Catastrophe theory studies 
systems undergoing abrupt transitions between multiple 
states and describes them through a differential equation that can have multiple solutions and 
thus can be at the equilibrium or not. It differentiates seven canonical forms, depending on the 

Figure 3: Dali tribute to catastrophe theory, 
which he defined as “the most beautiful 
aesthetic theory in the world”  



  Non-linear dynamics and chaos  

 7 

number of parameters of the system, of which the FOLD and the CUSP catastrophe are the 
most commonly used (van der Maas et al., 2003; Diks & Wang, 2016; Petraitis & Dudgeon, 
2016). The FOLD describes the dynamic of a system influenced by one external parameter, 
while the CUSP describes the dynamic of the system influenced by two external parameters 
(Scheffer et al., 2001; van der Maas et al., 2003). Of these two, one determines the dimension 
of the system while the other determines whether the system follow a continuous or a 
discontinuous abrupt dynamic (Figure 4) (Grasman et al., 2009; Diks & Wang, 2016). From 
this descriptive framework, the stochastic CUSP model took form. The model can explain in a 
stochastic way both linear and non-linear dynamics and thus can be really useful to apply to 
marine systems and populations. Although the stochastic CUSP model has been used a lot in a 
range of disciplines such as economics, social science and psychology (van der Maas et al., 
2003; Escartin et al., 2013; Diks & Wang, 2016), its applications in ecology and the marine 
ecosystems are limited at an early stage, to model fishery dynamics and predator prey 
interactions (Jones & Walters, 1976; Jones, 1977). Afterwards the methods was “forgotten”, 
due to the early deterministic framework, and replaced by a new theory, the regime shift theory 
(Scheffer et al., 2001).  
 

 
Figure 4: Visual representation of the CUSP catastrophe theory. The State Variable (Zt) is controlled by two control 
parameters, a and b. a controls the dimension of Zt, thus whether it is in the upper or lower shield of the fold. b controls 
whether the state variable follows a continuous or discontinuous path. The fold is the so-called bifurcation set or instability 
area. 

The regime shifts theory focuses on the FOLD catastrophe to explain the behaviour of a system 
depending on one external factor or condition (Scheffer et al., 2001; Bestelmeyer et al., 2011).  
The response of a system to the external driver can be classified in three ways: linear, non-
linear but continuous, or folded-backwards, hence discontinuous (Figure5) (Scheffer et al., 
2001; Selkoe et al., 2015). There are some disagreements about the meaning of regime shift, 
whether it just refers to the last type of behaviours (discontinuous) or to all the three. Here we 
use the term regime shift to indicate the dynamic of a system undergoing abrupt shifts and 
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showing discontinuous dynamics (see glossary, Chapter 1). In this case, the system presents 
two alternative states separated by one unstable equilibrium (Figure 5c) (Scheffer et al., 2001; 
Andersen et al., 2009). At the change of the external condition, the system, losing its resilience, 
crosses the threshold or tipping points and moves to the new attractor or stable state (Beisner et 
al., 2003; Bestelmeyer et al., 2011). Once in the new state, it has a new configuration and it is 
maintained by new feedback mechanisms. Therefore, the system is resilient and persistent in 
this new state, characteristic called hysteresis (Beisner et al., 2003; Vasilakopoulos & Marshall, 
2015; Folke, 2016). Hysteresis is very important to consider since it means that, even if the 
external condition goes back to its original level , the system would not be able to return to its 
previous state (Chapter 1 (Beisner et al., 2003)). Hysteresis can have large repercussion for 
ecosystems and for the management of the natural resources (Levin & Möllmann, 2015).  
 

 
Figure 5: The range of responses of a system to external conditions, from Scheffer et al., 2001. a) a linear and continuous 
response. b) a non-linear but still continuous response. c) a typical folded-backward discontinuous response. Here two stable 
states are present. At the increase of the external condition the system will abruptly switch from one state to the other. When 
the condition will go back to its previous state, the system will not be able to return back (i.e. hysteresis).  

 

The methods available to analyse regime shifts in empirical data are rather limited (Andersen 
et al., 2009) and in particular are based on the analysis of the changes of the statistical properties 
of time series, such as mean and variance (Kéfi et al., 2007; Dakos et al., 2008, 2012, 2015). 
Among these for instance there are different types of change point analyses and early warning 
signals indicators. Additional analyses to understand single driver impact on the system are also 
available, like the integrated resilience assessment or the use of threshold generalized additive 
models which however might not explain the mechanisms of the driver’s interaction 
(Bestelmeyer et al., 2011; Vasilakopoulos & Marshall, 2015; Vasilakopoulos et al., 2017). 
Thus, the empirical dynamic modelling and the stochastic CUSP models seem to be useful 
complementary analyses to understand the cumulative impacts of multiple drivers. Multiple 
regime shifts have been detected all over the world and especially in the marine realm, and 
effective methods are needed to fully understand them (deYoung et al., 2008; Conversi et al., 
2015; Ling et al., 2015).  
 
Regime shifts are pervasive of complex systems influenced by multiple factors and in the 
marine realm can affect a population (Perretti et al., 2015; Vasilakopoulos & Marshall, 
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2015a), a complete trophic level (Beaugrand et al., 2002; Morse et al., 2017) or even an entire 
large marine ecosystem (Hare & Mantua, 2000; Beaugrand, 2004; Casini et al., 2008b, 2008a). 
Among the most famous examples there are transition of coral reefs to algal beds, of kelp forests 
to urchin barrens, and also trophic cascades, the passage from a predator-dominated system to 
a prey-dominated system, in many marine ecosystems (Mumby, 2009; Frank et al., 2011; 
Steneck et al., 2013; Graham et al., 2015; Ling et al., 2015). Detailed examples can be found 
in Chapter 1 of this thesis.  
 
Regime shifts in the marine environment are particularly important because they can jeopardize 
the efficacy of the management measures and thus they can have important ecological but also 
socio-economic consequences, leading to failures in preserving the stocks (Blenckner et al., 
2015a, 2015b; King et al., 2015; Levin & Möllmann, 2015; Rocha et al., 2015). Indeed, these 
abrupt changes are usually very difficult to predict and sometimes they are not detectable even 
after decades from when they happened. Moreover, once the threshold is passed management 
intervention will fail to bring the system back to the desired state due to hysteresis (Beaugrand, 
2004; Auber et al., 2015). Therefore, more and more studies are trying to understand how to 
identify tipping points in advance and especially how to include these considerations into 
management, moving towards a more holistic management framework such as the ecosystem 
based management (see also Chapter 1) (Scheffer et al., 2009; Lindegren et al., 2012; Kefi et 
al., 2013; King et al., 2015). It is necessary to be able to identify these shifts and understand 
the cumulative effects of the multiple drivers acting on a system of interest, if we want to avoid 
unpleasant surprises. One example is the undesired outcomes, hugely debated in the literature, 
of the surprising collapse of all the Atlantic cod stocks (Hutchings & Myers, 1995; Frank et al., 
2016).  
 
Atlantic cod  
 

 
Figure 6: Atlantic cod (Gadus morhua) 

 
Atlantic cod (Gadus morhua, Figure 6) is an iconic fish species from an ecological, economic 
but also social point of view (Myers et al., 1997; Hutchings & Rangeley, 2011). The species 
comprises 22 assessed stocks distributed everywhere in the North Atlantic, from the east coast 
of USA and Canada, to the European waters (Figure 7). Cod is a demersal species, and a top 
predator of different marine ecosystems with a maximum length ranging from 81 to 167 cm 
(Wang et al., 2014). This variation in life history traits depends on the vast range of latitudes in 
which the species can be found, presenting different environmental conditions, different trophic 
chain and thus leading to different patterns of genetic variation (Pörtner et al., 2008; Wang et 
al., 2014; Berg et al., 2017). Nevertheless, some characteristics are typical from the species. 
Adult cod mainly preys on forage fishes and benthic animals and can be found until maximum 
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600-meter depth, but generally around 200 meters in the continental shelf (Worm & Myers, 
2003; Minto & Worm, 2012). Adults perform spawning aggregations; group spawning and 
homing towards spawning grounds have been recorded (Robichaud & Rose, 2001). The species 
has very high fecundity and one female can produce millions of eggs. The eggs and the larvae 
float in the upper layers of the water column, where they are transported by currents to feeding 
areas. They are influenced by multiple environmental drivers and can be predated by predators, 
often forage fishes (Walters & Kitchell, 2001; Beaugrand et al., 2003; Brander & Mohn, 2004; 
Stige et al., 2006). Cod larvae mainly prey on copepods and other plankton groups (Beaugrand 
et al., 2003). Differences have been detected between northern and southern stocks but also 
between eastern and western ones, such as differences in thermal tolerance, life history traits, 
maturation, condition and also fisheries exploitation patterns (Rätz & Lloret, 2003; Pörtner et 
al., 2008; Righton et al., 2010; Köster et al., 2013; Frank et al., 2016). The latter lead to the 
collapse of the stocks across the North Atlantic (Myers et al., 1997).  

 
Figure 7: Map of the distribution of Atlantic cod over the North Atlantic. (Source: www.fao.org) 

 
Atlantic cod fisheries trace back to the Medieval times, and after 
the 16th century a world market already existed for this species 
(Barrett et al., 2008; Orton et al., 2011). In European waters, the 
species became one of the most popular especially due to the 
easy way in which the meat could be preserved, either smoked 
or salted. Thus, it started to be exported everywhere, not only in 
northern Europe, where it was caught, but also in the south and 
the Mediterranean area. After the discoveries of America, new 
stocks were found in Canada and USA and this helped the 
colonization of these areas by European fishermen and the creation of a trans-oceanic and 
subsequently world market (Figure 8) (Kurlansky, 2009). Already in this period the stocks in 
both Europe and America were heavily exploited and, after the industrial revolution more and 
more pressure was exerted on them. The paucity of the European stocks, induced European 
fleets, in particular huge Spanish and Portuguese trawlers, to fish especially on Canadian stocks, 
while continuing to exploit what left in EU waters (Hutchings & Myers, 1995; Myers et al., 
1997).  Around the mid-1960s, in Canada, the small-scale coastal fishermen noticed a decline 
of their catches. In the 1970s, the introduction of the Exclusive Economic Zone excluded 
European fleets from the fishery in USA and Canada (Hutchings & Myers, 1995; Myers et al., 
1997; Bundy, 2005). However, the fishing pressure was everywhere high and the populations 
started to be extremely vulnerable, thing that went unnoticed among scientists and large scale 

Atlantic	Ocean

Figure 8: Example of the 
importance of cod in Canada.  
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fishermen. Around the 1980s-1990s almost synchronously the stocks collapsed, leading to one 
of the most unexpected and spectacular collapses of a fish species (Frank et al., 2016).     
 

All the Atlantic cod stocks, apart from the most northerly ones i.e. North-East Arctic and 
Iceland cod, collapsed or dramatically declined around the 1990s (Frank et al., 2016). The 
reasons for the collapse are still debated, even though the main cause seems to be a combination 
of unsustainable fishing pressure and non-favourable environmental conditions (i.e. very cold 
waters especially in the Canadian areas) (Hutchings & Myers, 1995; Myers et al., 1996, 1997; 
Bonanomi et al., 2015; Frank et al., 2016). The collapse was thus mainly driven by a decline 
of biomass and large fish, a high mortality of juvenile phases due to the colder temperature and 
a reproduction failure due to the selection of smaller adults in the population exerted by fisheries 
(Myers et al., 1997; Brander, 2006; Kuparinen & Hutchings, 2012). These huge collapses lead 
to the complete closure of the fishery in Canada, and the establishment of strict quotas in the 
other areas, thus leading to important socio-economic repercussions (Gray et al., 2008). The 
scientists and the managers were however confident that as the stocks collapsed quickly, they 
would have also recover relatively fast, if suitable management plans were set up.  
 

 
Figure 9: Atlantic cod fished (picture by Heike Schwemer). 

 
Recovery is difficult to define and can have multiple definitions depending on who is measuring 
it or why. In general, it can be defined as a return to a normal state, however the definition of 
“normal state” especially for ecosystems is difficult to give (Lotze et al., 2011). This is mainly 
due to the fact that ecosystems were highly impacted by human activities since centuries and 
thus we do not know what is normal anymore (shifting baseline syndrome) (Pauly, 1995). 
Moreover, declines of some ecosystems parameters can completely change the ecosystem 
structure so that a recovery to the “normal state” would become impossible. Based on Lotze et 
al., 2011, recovery can be defined as: a simple increase, an increase towards a specific target 
(such as MSY), an increase towards historical or pristine level (i.e. state before the collapse) or 
a recovery of structure and functions typical of the stocks (i.e. recruitment, growth). After more 
than 20 years of management measures, recovery of cod stocks towards their state before the 
collapse appears to be delayed. However, a comprehensive analysis of the recovery of Atlantic 
cod stocks has still to be done and should be done in the light of drivers and ecosystems changes.  
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After the collapse of the stocks, many features of the ecosystems and the socio-economic 
systems changed. The effects of climate change have become more and more severe and are 
particularly deleterious especially for cod in the lower distribution limit (Drinkwater, 2005; 
Stige et al., 2006; Pörtner et al., 2008; Pershing et al., 2015b; Stiasny et al., 2016). Temperature 
increase and ocean acidification can negatively affect recruitment and thus the entering of new 
adult in the population and growth directly but also indirectly through switch in predators and 
prey or mismatch (Beaugrand et al., 2003; Swain & Benoit, 2015), hence potentially hindering 
recovery despite management measures in place. Changes in ecosystem structure and dominant 
species (i.e. trophic cascade) occurred in many ecosystems and could also play a role in 
hindering recovery of Atlantic cod stocks (Swain & Sinclair, 2000; Walters & Kitchell, 2001; 
Frank et al., 2005; Estes et al., 2011; Frank et al., 2011; Swain & Mohn, 2012). Finally, the 
socio-economic systems relaying on these ecosystems also changed, introducing new 
management systems and switching to new resources exploitation, e.g. crustaceans (Shelton & 
Morgan, 2006; Steneck & Wahle, 2013).  Thus, at present is still not clear whether Atlantic cod 
stocks will recover across the North Atlantic, which mechanisms are fundamental to favour the 
recovery and whether the recovery potential of the stocks is high or low. 
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MOTIVATION AND OUTLINE OF THE THESIS   
 
This thesis aims to understand the recovery potential of Atlantic cod (Gadus morhua) 
under climate change and exploitation pressure. Two main questions were asked in this 
thesis:  

1) Do Atlantic cod stocks present non-linear dynamics hindering their recovery? 
2)  What is the recovery potential of the stocks under climate change? 

 
 The motivation of this work takes root in the spectacular collapse of the majority of the 22 
stocks of cod all over the North Atlantic and the subsequent delayed recovery. The reasons why 
recovery is failing in these stocks, even though the management measures in place are quite 
developed, is still controversial and is creating huge debate not only in the scientific 
community, but also among the stakeholders due to the impossibility of bringing the stocks 
back to high exploitable levels. Moreover, since the collapses happened quite abruptly and, in 
some cases were followed by ecosystems reorganization, non-linear and non-equilibrium 
dynamics might be the key to explain recovery of the stocks, but have rarely be considered.  
 
In Chapter 1, my co-author and I review non-linear, non-equilibrium dynamics (i.e. regime 
shifts) in the marine environment, to understand how pervasive these phenomena are in 
marine ecosystems, why they are important from a socio-ecological point of view and the 
challenges of incorporating these concepts into management. We also briefly review the theory 
behind the regime shift concept and try to clarify some terms used throughout this manuscript.  
 
In Chapter 2, after understanding how non-linear dynamics are pervasive of marine 
ecosystems, my co-authors and I investigate whether Atlantic cod stocks recovery can be 
explained by discontinuous stocks dynamics. Using stock assessment data from 19 cod stocks 
we firstly analyse stocks recovery 20 years after the collapses and the application of 
management measures. Subsequently we apply the stochastic CUSP model from catastrophe 
theory to understand if cod populations (i.e. biomass) follow catastrophic, discontinuous 
dynamics, which might be hindering the recovery. Moreover, we model the role of fishing 
pressure and climate change as drivers of cod populations to understand the stocks’ recovery 
potential under climate change.  
 
Chapter 2 was done at a stock level, thus in Chapter 3 my co-authors and I move more into 
population mechanism level, investigating whether the relationship between recruitment 

“Research is to see what everybody has seen and 
think what nobody has thought.” 
   Szent-György Albert 
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(number of fishes entering in the adult stock) and biomass in cod stocks is linear and 
continuous or transient, and if it can represent a mechanism of recovery. To do this we 
apply the wavelet decomposition and in particular the partial wavelet coherence to the 
recruitment and biomass of 17 cod stocks. The stock-recruitment relationship was analysed 
depending on stock status (e.g. healthy, collapsed, in hysteresis or recovering) in order to 
propose possible mechanisms of recovery for cod stocks.  
 
Starting from the results of Chapter 3, in Chapter 4 my co-authors and I then evaluate the 
performance of different models in predicting cod stocks recruitment and the advantages 
of including environmental variables when predicting it. These models could potentially be 
incorporated in management to account for non-linear dynamics in fish populations. We apply 
the standard continuous Ricker stock-recruitment model, the stochastic CUSP model and the 
empirical dynamic modelling framework to 20 cod stocks to reveal non-linear, state-dependent 
and catastrophic dynamics in cod stock-recruitment and to highlight the differences between 
stocks population dynamics.  
 
Finally, in Chapter 5, we test whether the stochastic CUSP model used for cod stocks could 
also be applied to other species presenting different life history traits, like herring (Clupea 
harengus). Firstly, we analyse whether 15 herring stocks show linear or non-linear dynamics. 
Subsequently, we apply the model considering as drivers fishing pressure, climate change, but 
also cod, to unravel possible mechanisms of trophic cascade.  
 
This thesis helps to better understand the recovery potential of Atlantic cod under climate 
change which is fundamental from a policy and also economic point of view. Moreover, it 
highlights how non-linear discontinuous dynamics need to be considered in management 
considerations and need to be investigated in fish populations, in order to apply efficient and 
effective management measures. Moving towards a comprehensive ecosystem based 
management it is necessary to unravel correctly stocks dynamics. Therefore, my study on 
Atlantic cod stocks recovery gives new perspectives and new starting points to develop a more 
efficient ecosystem based management in the face of discontinuous behaviours 
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Fractals, going from broader to deeper 
  

“to speak of non-linear physics is like calling 
zoology the study of non-elephant animals” 
  
  Stanislaw Ulam   
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Chapter 1: Regime shifts in the marine environment 

 

 

 

 

Regime shifts, a global challenge for the sustainable use of our 
marine resources 
 
Camilla Sguotti1, Xochitl Cormon1 

 
Sguotti C., Cormon X. (2018) Regime Shifts – A Global Challenge for the Sustainable Use of 
Our Marine Resources. In: Jungblut S., Liebich V., Bode M. (eds) YOUMARES 8 – Oceans 
Across Boundaries: Learning from each other. Springer, Cham 
 
Abstract 
Over the last decades many marine systems have undergone drastic changes often resulting in 
new ecologically structured and sometimes economically less valuable states. In particular, the 
additive effects of anthropogenic stressors (e.g. fishing, climate change) seem to play a 
fundamental role in causing unexpected and sudden shifts between system states, generally 
termed regime shifts. Recently, many examples of regime shifts have been documented 
worldwide and their mechanisms and consequences have been vigorously discussed. 
Understanding causes and mechanisms of regime shifts is of great importance for the 
sustainable use of natural resources and their management, especially in marine ecosystems. 
Hence, we conducted a session entitled “Ecosystem dynamics in a changing world, regime 
shifts and resilience in marine communities” during the 8th YOUMARES conference (Kiel, 13-
15th September 2017) to present regime shifts concepts and examples to a broad range of 
marine scientists (e.g. biologists and/or ecologists, physicists, climatologists, sociologists) and 
highlight their importance for the marine ecosystems worldwide.  
In this chapter, we first provide examples of regime shifts which have occurred over the last 
decades in our oceans and discuss their potential implications for the sustainable use of marine 
resources; then we review regime shift theory and associated concepts. Finally, we review 
recent advances and future challenges to integrate regime shift theory into holistic marine 
ecosystem-based management approaches. 
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Introduction 
Today, living marine resources represent a primary source of proteins for more than 2.6 billion 
people and support the livelihoods of about 11 percent of the world’s population (FAO, 2014). 
Oceans worldwide concentrate dense and diversified human activities, e.g. fishing, tourism, 
shipping, offshore energy production, while experiencing a range of environmental pressures, 
e.g. increase of water temperature, acidification (Halpern et al., 2008; Boyd et al., 2014). 
Together anthropogenic and environmental pressures may threaten the integrity of marine 
systems and their sustainable use, altering their different components in many ways. These 
ecosystem changes may have great impacts for the social-ecological systems they are a part of, 
particularly when associated with changes in ecological keystone, cultural and/or commercial 
species (Garibaldi & Turner, 2004; Casini et al., 2008b; Möllmann et al., 2008; Llope et al., 
2011; Blenckner et al., 2015b).  
 
The World Summit on Sustainable Development in Johannesburg (2002) provided a legally 
binding framework to implement the Ecosystem Approach to Fisheries Management (EAFM). 
This holistic approach aims i) to conserve the structure, diversity and functioning of marine 
ecosystems and ii) to provide the economic benefits of a sustainable exploitation of marine 
ecosystems. Scientific activities supporting approaches such as the EAFM are hence highly 
encouraged (FAO, 2014). However, the insufficient knowledge on the diversity and 
entanglement of interactions between the ecological system components (deYoung et al., 
2008), as well as their vulnerability to increasing anthropogenic and environmental pressures, 
may hinder successful management.  
 
Even if systems may react to stressors in a non-linear way shifting suddenly to a different state 
and losing important ecosystem services, management is indeed still more based on continuous 
dynamics (Scheffer et al., 2001; Sugihara et al., 2012; Glaser et al., 2014; Travis et al., 2014; 
Levin & Möllmann, 2015). Some ecosystems may be able to absorb stronger disturbances than 
others depending on their characteristics, but in general, marine ecosystems are known to be 
particularly vulnerable to drastic and unexpected shifts, referred in ecology as regime shifts 
(deYoung et al., 2008). Because such non-linear dynamics may have serious and strong 
implications for the sustainable use of natural resources and their management, they should be 
taken into account and dealt with great precaution when taking environmental policy decisions 
(Holling, 1973; Carpenter, 2001; Scheffer et al., 2009; Rocha et al., 2014).  
 
In this chapter, we first present some examples of marine ecosystems which have exhibited 
non-linear dynamics in response to external changes. These examples allow us to highlight 
different mechanisms potentially involved in regime shifts from an empirical point of view, as 
well as their potential implications for the sustainable use of marine resources. Secondly, we 
review the regime shift theory and associated concepts to finally consider recent advances and 
future challenges of integrating regime shift theory into holistic marine ecosystem-based 
management approaches. 
 
Marine ecosystems regime shifts all over the world 
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Although the regime shift concept is still vigorously discussed, an increasing number of studies 
provide evidence for the potential of abrupt changes and surprises in marine ecosystems 
worldwide (Steneck et al., 2002; Beaugrand, 2004; Mumby et al., 2007; Möllmann et al., 2008, 
2009; Mumby, 2009; Bestelmeyer et al., 2011; Frank et al., 2011; Llope et al., 2011; Auber et 
al., 2015; Beaugrand et al., 2015; Gårdmark et al., 2015; Ling et al., 2015; Vasilakopoulos & 
Marshall, 2015; Frank et al., 2016). These studies, based on empirical observations, highlight 
mechanisms of regime shifts, firstly formulated by theoretical studies (Holling, 1973; May, 
1977; Scheffer et al., 2001).  
 
The Atlantic cod trophic cascade 
Surprises in natural systems are relatively common and can happen even in well-studied 
systems, due to different drivers. One driver of non-linear dynamics is the overfishing of top-
predators. Top-predator overfishing may cause the depletion and collapse of their population 
resulting in unexpected ecosystem structure reorganisations through trophic cascades (Myers 
& Worm, 2005; Fauchald, 2010; Llope et al., 2011; Möllmann & Diekmann, 2012; Steneck & 
Wahle, 2013). Atlantic cod (Gadus morhua) is an important top-predator fish species, which 
can regulate marine ecosystems through top-down control, and has supported entire human 
communities through fisheries for centuries (Haedrich et al., 2000; Myers & Worm, 2005). 
After the industrial revolution and the increase of fishing power and capacity around the 1980’s-
90s, many cod stocks collapsed bringing high economic losses (Myers et al., 1997; Frank et al., 
2016). Multiple analyses conducted in different basins such as in the Baltic Sea or in the Eastern 
Scotian Shelf, showed that the collapse of cod stocks was caused by a combination of increased 
fishing pressure and unfavourable climatic conditions (Frank et al., 2005, 2016; Casini et al., 
2008a; Möllmann et al., 2008, 2009). The high economic loss and social issues induced, led 
governments to adopt a range of management measures, such as drastic quota reductions and, 
in some cases, even fishing moratoria. Nevertheless, despite all the management measures and 
plans adopted, cod stocks failed to recover (Hutchings, 2000; Frank et al., 2011; Hutchings & 
Rangeley, 2011).  
 
One of the reasons advanced to explain these management failures is the undergoing non-linear 
dynamics known as trophic cascades (Casini et al., 2008b; Star et al., 2011). Indeed, the 
collapse of this top-predator resulted in a shift from a cod-dominated to a forage fishes-
dominated system (Frank et al., 2005; Gårdmark et al., 2015). Before overfishing, adult cod 
biomass level was high and cod controlled forage fish populations through predation. This 
hindered the forage fish from negatively impacting younger cod (through predation and/or 
competition), thus enhancing its biologically sustainable biomass. However, when cod biomass 
became depleted, the consequently increased forage fish abundance caused a further decline of 
cod population by increasing their negative direct (predation) or indirect (competition) impacts 
on younger cod. This feedback loop is then very difficult to reverse (Walters & Kitchell, 2001; 
Möllmann et al., 2009; Nyström et al., 2012). Based on this example, it is clear how such 
systems can show two distinct configurations depending on their level of top-predator biomass. 
Of course, changes in mid-trophic levels will also reflect in lower ones, for instance high 
abundance of forage fishes will likely reduce plankton abundance. Under this new configuration 
with low cod biomass, a reduction in fishing pressure would likely lead to a very delayed or 
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even none cod recovery, since new mechanisms would keep its population in the new depleted 
state. To summarise, both Baltic Sea and Scotian Shelf  regime shifts were caused by a 
combination of overfishing and climate variation, and characterized by a trophic cascade (top-
down mechanism) due to the depletion of Atlantic cod stocks (Frank et al., 2005; Casini et al., 
2008a; Llope et al., 2011; Möllmann & Diekmann, 2012). This led to high social and economic 
losses on the short time and, subsequently, a fisheries reorganization in order to adapt to the 
new ecosystem configuration.   
 
The North Sea regime shift 
The North Sea regime shift involved different mechanisms that induced changes which started 
at the bottom of the trophic chain and propagated up to higher trophic levels (Reid et al., 2001; 
Beaugrand, 2004; deYoung et al., 2008; Conversi et al., 2010; Lynam et al., 2017). The North 
Sea regime shift occurred during the 1980s and was mainly induced by a combination of 
increased sea surface temperatures and changes in hydro-climatic forces (Beaugrand, 2004). 
Due to the increase of sea surface temperature and changes in the water inflows, phytoplankton 
biomass increased. As a consequence, the zooplankton assemblage, originally dominated by 
cold waters species, e.g. Calanus finmarchicus, shifted to an assemblage dominated by warmer 
water species, e.g. Calanus helgolandicus and gelatinous zooplankton such as jellyfish (Reid 
et al., 2001; Beaugrand, 2004; Möllmann & Diekmann, 2012). These changes in the 
zooplankton community, combined with hydro-climatic changes, propagated to higher trophic 
levels. Changes in temperature and/or salinity led to an increase of flatfish biomass (Möllmann 
& Diekmann, 2012) while the decline of C. finmarchicus, which is the preferred prey of gadoids 
and especially of cod larvae, led to cod recruitment failures (Beaugrand et al., 2003; Beaugrand, 
2004) enhancing the negative sea warming effects. These changes in recruitment had a lagged 
impact on the adult gadoids biomass that, already stressed by overfishing, started to decline 
inexorably at the end of the 1980s (Hislop, 1996). The changes in fish biomass and composition, 
together with warmer temperatures, favoured the emergence of previously scarcely present 
species such as horse mackerel (Trachurus trachurus) and mackerel (Scomber scombrus), 
especially in the northern North Sea (Reid et al., 2001; Beaugrand et al., 2003; Beaugrand, 
2004).  
 
This regime shift, induced by bottom-up processes, was more qualitative than quantitative in 
the sense that changes in assemblage and not in total biomass of trophic levels occurred 
(Beaugrand, 2004). The dynamics of these changes highlighted different response time patterns 
depending on the organisms affected. Indeed, the phytoplankton and zooplankton communities, 
with their fast life cycles, responded to climatic changes faster than the fish community. Spatial 
patterns were also different: the coastal areas were less sensitive to change in hydrodynamic 
conditions, and the regime shift was stronger in the northern North Sea (Reid et al., 2001; 
Beaugrand, 2004; Möllmann & Diekmann, 2012). This regime shift completely changed the 
structure of the North Sea fish community and led to the decline of various commercial species 
like cod, while the abundance of other species like flatfishes and mackerel increased, 
consequently having impacts on fisheries (Reid et al., 2001). 
 
Coral reefs and kelp forests transitions 
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Other examples of marine regime shifts are coral and kelps transitions (Rocha et al., 2014). For 
instance, the Caribbean coral reefs were flourishing ecosystems providing many ecosystem 
services, sustaining large fish populations and associated human communities. The integrity of 
the reefs depended on the presence of sea urchins and grazing fishes, which, by eating the algae, 
maintained the coral reef structure. When the populations of grazing fish started to decrease 
due to overfishing, nothing seemed to change in the system. Indeed, sea urchins were still able 
to regulate algae population through predation, preserving the reef structure (Nyström, 2006; 
Standish et al., 2014). However, the ability of the reef to absorb disturbances was already 
eroded by overfishing, when two concomitant and dramatic events occurred, leading to the total 
destruction of the reef (Mumby et al., 2007). Sea-urchin populations quickly collapsed due to 
an illness outbreak, while more nutrients, discarded from the islands, were added to the system, 
causing rapid eutrophication. In a short time, coral reefs were substituted by algae beds which 
were not regulated by any top-down (sea urchin predation) or bottom-up (limitation of 
nutrients) processes. This algae-dominated system is now difficult to reverse due to the 
feedback mechanisms maintaining the system in its new status (i.e. the number of new algae 
growing every year can impede the reintroduction of corals, Mumby et al. 2007; Mumby 2009; 
Kates et al. 2012).  
 
Similarly, kelp forests are highly diverse ecosystems which can maintain flourishing fish 
populations and offer many services for humans such as fisheries and cultural values (Steneck 
et al., 2013; Ling et al., 2015). Kelp forests are mainly maintained by fish predation on sea 
urchins, which controls sea urchin populations. In Australia, overharvesting of predatory fish, 
coupled with diseases weakening the kelp, led to a boom of the sea urchin population and a 
shift from high biodiversity kelp forest to poorer urchin’s barren (Ling et al., 2015). This state 
was then difficult to reverse due to various feedback mechanisms such as the increase of 
juvenile urchin abundance and facilitation of juvenile survival, but also because of the lack of 
efficient measures to recover the stocks of the sea urchin’s predators (Ling et al., 2015). In 
these two examples, the regime shifts were caused by multiple stressors which altered the 
regulation (top-down and/or bottom-up) of previously highly productive ecosystems and led to 
huge economic, social and ecological losses. Similarly to the Atlantic cod example, 
management measures failed to reverse these unexpected regime shifts due to feedback loop 
mechanisms (Steneck et al., 2002; Ling et al., 2015).  
 
From examples to theory 
From these four examples, several conclusions can be drawn. Stressors potentially inducing 
regime shifts may affect a system gradually, e.g. decline of top-predator due to fishing (Baltic 
Sea and Scotian Shelf regime shifts), or abrupt and exceptionally, e.g. disease outbreak 
(Caribbean coral reef destruction). The examples of the Atlantic cod stock collapse and the 
North Sea regime shift showed that climate change may play and important role in such 
mechanisms (Beaugrand, 2004; Conversi et al., 2015; Yletyinen et al., 2016). In addition, these 
examples showed the cumulative effects of different stressors and how they may act together 
in synergistic ways. The mechanisms and processes involved in regime shifts may be induced 
by top-down and/or bottom-up regulation (Holling, 1973; Beisner et al., 2003a; 
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Conversi et al., 2015a; Pershing et al., 2015a). Finally, these examples highlight the importance 
and necessity to understand regime shifts mechanisms for a sustainable use of marine resources 
in order to provide ecosystem services and benefits for human communities (Doak et al., 2008). 
Also, they uncovered some fundamental properties of regime shifts, e.g. the abruptness of 
changes and their lack or low reversibility (Scheffer et al., 2001, 2015; Dakos et al., 2012). 
However, due to the complexity and entanglement of the mechanisms involved, defining 
regime shifts based on empirical evidences is challenging. A review of the concepts associated 
with regime shifts, which are mostly theoretical (Levin & Möllmann, 2015), is essential to 
understand the non-linear mechanisms potentially involved in complex systems dynamics, 
particularly in a time of pronounced environmental changes. 
 
The regime shift theory 
Different mathematical frameworks lead to the development of the regime shift theory (Jones, 
1975; Thom, 1975a; Jones, 1977; Crawford, 1991), describing how changes in some controlling 
factors can lead to huge and abrupt changes in various systems (e.g. biological, physical, 
behavioural; (Jones, 1975; Carpenter, 2001; Scheffer et al., 2001)). Marine regime shifts can 
be defined as dramatic and abrupt changes in the system structure and function that are 
persistent in time, where the system can range from a single cell to a population or an ecosystem 
(Beisner et al., 2003; Scheffer & Carpenter, 2003). Due to the high number of terminologies 
and definitions used in the literature, a glossary was added to this chapter in order to have 
consistent and clear definitions. All terms highlighted in italics in the following text can be 
found in the glossary section.  

 
Figure 10.1 Regime shift theory represented by ball-in-cup diagrams (Crawford, 1991). The ball represents 
the system and the cups (or valleys) the system states (see text for more information). The thick dotted lines 
represent the tipping points. The arrows represent disturbances, red for disturbances inducing a shift and green for 
reversed disturbances having no effects. (a) System in its original state. (b) Regime shift induced by changes in 
system state variables. (c) Regime shift induced by change in system parameter variables. (d) System in its new 
state showing hysteresis. Referring to our Caribbean example (Sect. 2.3) the light grey ball represents coral reef 
dominated system while the dark grey ball, the algae dominated system. 



  The theory 

 23 

 

The easiest way to understand and visualize regime shifts is the example of the ball-in-cup or 
ball-in-valley (developed from the pioneer work of Poincare in the 1800’s in Crawford 1991, 
Figure 1.1). The ball represents the study system, for instance the Caribbean coral reef. The 
system reef (our ball) has certain parameters such as coral abundance, coverage, and 
biodiversity. The system state is represented by the valley in which our ball (system) lies 
(regime 1 in Figure 1.1). The dimension of the valley (width and height in our two dimensions’ 
figure) corresponds to the resilience of the system state. For instance, even when the Caribbean 
coral reef system was stressed by intensive fishing on grazing fishes, the system maintained its 
original state and did not shift because its resilience was high (i.e. the sea urchins were able to 
maintain top-down regulation on algae, Mumby et al., 2007). Indeed, when the valley is large 
and deep, the ball/system remains in it, maintaining its structure, despite the disturbances. 
Repetitive disturbances such as overfishing and eutrophication did, however, reduce the system 
resilience (the valley became narrower and shallower) and when a strong disturbance occurred 
(here a disease outbreak), the system shifted abruptly to a new state (i.e. algae beds). This new 
state is now resilient, maintained by new feedback mechanisms that help its stabilisation, e.g. 
the higher survival of algae and the non-recovery of grazer fishes (Beisner et al., 2003; Roe, 
2009; Conversi et al., 2015). Resilience is defined as the capacity of the system to absorb 
disturbances and reorganise, so as to still retain essentially the same functions, structure, 
identity and feedback mechanisms (Holling, 1973; Beisner et al., 2003; Vasilakopoulos & 
Marshall, 2015; Folke, 2016).  
 
Some perturbations may act either on the system state variables (pushing our ball from its valley 
into a new one, e.g. disease outbreak, Figure 1.1b) or on the system parameter variables 
(modifying the shape of the valley, hence affecting system resilience, e.g. overfishing and 
eutrophication, Figure 1.1c; Beisner et al., 2003). As highlighted by the Caribbean coral reefs 
example, combination of multiple mechanisms generally cause a system to shift from a stable 
state to another (Biggs et al., 2012). This shift of a system between two alternate stable states 
is the foundation of regime shift theory (Carpenter, 2001; Scheffer et al., 2001). The separation 
point between two regimes (or alternate stable states) is the so-called tipping point (Selkoe et 
al., 2015). Once crossed, the system will shift to a new regime with new characterising 
parameters. Clearly, once a tipping point is crossed, it is not easy to push the ball back in its 
original valley, since the new valley is deep and large, thus highly resilient, and/or the original 
valley might have disappeared. This can hinder a return of the system to the previous state even 
when disturbances stop (e.g. fishing ban, end of disease outbreak) or are reversed (Figure 1.1d 
and Figure 1.2, Beisner et al., 2003). This property of regime shifts is called hysteresis and can 
be defined as the phenomenon for which the return path of a system from the altered to the 
original state can be drastically different from the one which have led to this altered state 
(Beisner et al., 2003; Bestelmeyer et al., 2011). Hysteresis is a typical feature of discontinuous 
regime shifts and can be detected when the relationship between the stressors and the system 
differs depending on the regime (stable state) of the system (Scheffer & Carpenter, 2003; 
Bestelmeyer et al., 2011).  
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Another way to visualize the regime shift is the fold bifurcation curve (Figure 1.2, Scheffer et 
al., 2001). The system reacts in a smooth way to condition changes until a tipping point (F1 or 
F2) is reached and the system jumps from one state to another. In the area of discontinuity 
(Figure 1.2, dashed blue line) the system can present three equilibria. As evidenced by this 
visualisation, systems that show such behaviour are difficult to reverse to previous state even 
when condition changes are reversed (hysteresis). Although some debates exist regarding the 
definition of regime shift we adopted the definition of Scheffer et al. (2001) and Selkoe et al. 
(2015) of an abrupt change over time with discontinuous dynamics exhibiting hysteresis. This 
is opposed to phase shifts sensu Selkoe et al., (2015), where system state´s response to condition 
change is continuous, e.g. a logistic response, with two states but only one equilibrium. 

 
Figure 1.11 Fold bifurcation curve (reproduced from Scheffer et al. 2001). The dashed line represents the 
unstable equilibria and the border between the two alternate stable states represented by plain lines. F1 and F2 
represent the tipping points 
 

Resilience, feedback mechanisms, tipping points and hysteresis are important attributes of 
regime shifts (van der Maas et al., 2003; Bestelmeyer et al., 2011). These properties make 
regime shifts extremely important in the real world and have profound implications for 
management (Travis et al., 2014; Selkoe et al., 2015; Angeler et al., 2016). Imagine having as 
system a fish population. When you start fishing, the population still manage to absorb the 
perturbation and might decline, but would remain in a state with high biomass, high recruitment, 
a certain growth rate, etc. At some point the fishing pressure, usually combined with other 
external stressors, increases so much that the population collapses and its internal mechanisms 
change. The exploited population is now in a new state at low abundance, possibly with 
different growth and mortality rates. Now suppose that we are the managers. We could assume 
that reducing the fishing pressure to pre-collapse levels would make the population quickly 
rebound. This could work in a context of linear dynamics but if the population has crossed a 
tipping point and it is now in a new alternate stable state, controlled by new mechanisms that 
cause hysteresis, recovery of the system may be slow and difficult, or even impossible. From 
this example, the importance of regime shift appears clear. In order to apply efficient and useful 
management measures, we should aim to detect regime shifts in advance or, at least, we should 
consider the possibility that an exploited system can show non-linear behaviours, and apply 
precautionary management approaches (Holling, 1973; Carpenter, 2001; Scheffer & Carpenter, 
2003; deYoung et al., 2008; Dakos et al., 2012; Punt et al., 2012; Levin & Möllmann, 2015). 
Many marine ecosystems have undergone drastic shifts often resulting in new ecologically 
structured and/or economically less valuable states (Conversi et al., 2015b; 



  Application to management 

 25 

Möllmann et al., 2015). These regimes shifts have brought catastrophic ecological and social 
consequences (Rocha et al., 2015), such as economic losses, social issues and losses of 
ecosystem services (Casini et al., 2008b; Möllmann et al., 2008; Blenckner et al., 2015b). Thus, 
since several processes at several levels of the ecosystem are often involved, it appears evident 
from these examples that an ecosystem approach to manage marine ecosystems prone to regime 
shifts is essential (Long et al., 2015). 
 
Challenges and implications of regime shifts for management purpose 
To include the concept of regime shift into management perspectives, multiple a priori steps 
have to be made to first identify the mechanisms and the drivers involved (feedback loops, 
interactions, etc.), and then integrate this information into suitable and adapted policy. The 
documentation of a broad range of regime shift examples, involving different mechanisms 
applied to different ecosystems may be very useful to compare the various processes involved, 
to understand potential implications in a better way (Rocha et al., 2015) and therefore to adapt 
management to local characteristics (deYoung et al., 2008). In this context, the Regime Shift 
Database (Rocha et al., 2014), based on a participatory approach, aims to review regime shifts 
of social-ecological systems worldwide with a particular focus on regime shifts having a 
potential large impact on human well-being and ecosystem services. This database, available 
online (www.regimeshifts.org), is an initiative led by the Stockholm Resilience Centre to 
increase general knowledge and understanding of regime shifts and associated concepts and to 
help managers and policy makers to take these concepts into account in their future decisions. 
 
Knowledge of different mechanisms and local characteristics of regime shifts may facilitate 
their detection. Indeed, the first step and challenge to consider regime shifts in management, is 
to actually detect them (Carpenter, 2001; deYoung et al., 2008; Rocha et al., 2015). For 
instance, regime shifts in the North Sea and English Channel communities were only detected 
10 years after they occurred (Beaugrand, 2004; Auber et al., 2015). This late detection may 
partly be explained by the very large scale at which these shifts occurred and highlights the 
need of studying different spatial scales when wanting to understand ecosystems processes and 
dynamics. Similarly, temporal scales of changes might be different depending on the lifespan 
of the affected organisms and might lead to temporal lags in system responses to stressors 
(Holling, 1973; deYoung et al., 2008) as it was the case in the North Sea. These differences in 
spatio-temporal patterns need to be addressed and disentangled as they might hinder or delay 
regime shift detection and exacerbate social and economic consequences (Levin, 1992; Scheffer 
& Carpenter, 2003; Kerkhoff & Enquist, 2007; Levin & Möllmann, 2015). It might also be 
necessary to disentangle regime shifts (sensu Selkoe et al., 2015) from simple logistic dynamics 
and highlight hysteresis (which requires additional observations in time). For these reasons, 
regime shift detection requires long and extensive observation datasets of the system which is 
generally costly in time and money (Carpenter, 2001; Scheffer et al., 2009; Levin & Möllmann, 
2015). Moreover, the required time to obtain time series of suitable length might prove too long, 
particularly when such shifts may strongly impact ecosystems services and human well-being. 
For these reasons, experimental studies are necessary to enhance the understanding of systems 
responses to disturbances (Angeler et al., 2016). Particularly, experiments may help to 
understand multi-causality and dual relationships between stressors and systems which 
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generally participate in hindering detection of regimes shifts (Scheffer & Carpenter, 2003; 
Conversi et al., 2015; Levin & Möllmann, 2015). 
 
When regime shift detection may be delayed, their unexpected and abrupt behaviour hinders 
even more regime shift prediction, which is necessary to ensure effective management 
measures. In addition, a post-regime shift detection may result in increased management 
challenges, particularly due to hysteresis, as described in the previous section for coral reefs 
(Mumby et al., 2007; Mumby, 2009), kelp forests (Steneck et al., 2002) and various fish stock 
shifts (Myers et al., 1997; Hutchings, 2000; Myers & Worm, 2005; Hutchings & Rangeley, 
2011). Challenges in prediction  may be partly related to the common use of linear relationships 
to statistically describe natural processes which need to be overcome in favour of more realistic 
(thus more complex) models (Holling, 1973; Ludwig et al., 1997; Scheffer & Carpenter, 2003). 
Indeed, the non-linear relationships between stressors and system variables need to be 
understood to be able to correctly predict system responses. Also, a new branch has been 
currently developing regime shift indicators, the so-called early-warning signals, to anticipate 
regimes shifts. These signals are generally based on the fact that the recovery of a highly-
disturbed system to an equilibrium is slow, i.e. critically slowing down (Scheffer et al., 2001, 
2015; Dakos et al., 2012; Lindegren et al., 2012). Indeed, when systems are close to tipping 
points, their stability decreases, generally leading to an increased variability, and 
autocorrelation of the data describing them. These indicators work well with simulation models 
but still they have some limitations in predicting  shifts using empirical data (Dakos et al., 2008, 
2017; Scheffer et al., 2009; Dai et al., 2013). They may be constrained by the length of the 
times series available and/or the limited amount of data, by methodological assumptions and/or 
sampling errors (deYoung et al., 2008; Lindegren et al., 2012). Moreover, they are not suitable 
to predict stochastically driven shifts. To overcome these limitations, Lade and Gross (2012) 
developed a new approach to detect early warning signals with reduced time-series. Lindegren 
et al., (2012) recommended a multiple approach based on knowledge of the system and its local 
characteristics (key ecological thresholds, relationships with drivers), data availability, 
sensitivity and bias of the analysis carried out. Such advances need to be followed by the 
scientific community to develop more approaches overcoming these limitations. Alternative 
sources of data, e.g. public records and narratives, must be found and used, particularly when 
ecological data are not available, and systems must be monitored at an appropriate time scale 
to ensure shift detection as early as possible. 
 
Because prediction of regime shifts is so challenging, and because the potential consequences 
for ecosystem services and human well-being may be abrupt and very difficult (or even 
impossible) to reverse, precautionary approaches are recommended (Holling, 1973; Carpenter, 
2001; Scheffer & Carpenter, 2003; Selkoe et al., 2015). When managing systems prone to 
regime shifts, risks and uncertainties must be assessed before any management action is taken 
(Levin & Möllmann, 2015; DePiper et al., 2017). Risk assessment requires a clear definition of 
the system of interest, its potential tipping points, as well as suitable indicators. However, all 
the challenges already mentioned (multiple-causality, dual relationships to drivers, spatio-
temporal different patterns, limitation of data, etc.) may impede the definition of appropriate 
indicators (Kelly et al., 2015; Selkoe et al., 2015). For instance, Vasilakopoulos and Marshall 
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(2015) showed that the spawning stock biomass (SSB) of Barents Sea cod did not suffice to 
detect a regime shift of this population, while SSB levels are generally the reference points used 
in current fishery management plans (single- or multi-species advices), and sometimes the only 
ones. These results evidence the need to base scientific advice to fishery managers on the 
monitoring of several ecosystem (community/population) parameters, particularly when 
suspecting potential impending shifts. Similarly, stressors effects may be unclear when studied 
individually, while their importance may appear only when combined with other stressors 
(Rocha et al., 2015; Vasilakopoulos & Marshall, 2015). The factors undermining resilience 
(eutrophication, global warming, species invasion, etc.) should be of prior concern as small 
variations in stressors might lead to large changes in ecosystem structure and/or functioning 
when resilience is eroded (Ricker, 1963; Ludwig et al., 1997; Scheffer et al., 2001; Beisner et 
al., 2003; Scheffer & Carpenter, 2003). The quantitative assessment of risk and associated 
resilience is difficult and challenging. Economic cost-benefit analysis might be useful when 
trying to quantify risks for ecosystem services (Carpenter, 2001), however, it might totally 
underestimate them when too narrow-focused, e.g. focusing on yield in fisheries while 
neglecting age-structure of the stock (deYoung et al., 2008). Quantitative assessment of 
resilience may prove very useful but requires an extensive amount of data particularly in 
complex systems (Vasilakopoulos & Marshall, 2015). Therefore, qualitative analysis and/or 
conceptual models may be preferred (DePiper et al., 2017), particularly when studying data-
poor systems or when dealing with complex adaptive systems such as social-ecological ones. 
 
Despite the increasing effort in scientific research, even when risk (or resilience) may be 
assessed, ecological uncertainties (about system evolution) and livelihood uncertainties (about 
impacts on human communities) related to regime shifts are high (Pindyck, 2000). When 
managing social-ecological systems (SES) prone to regime shifts, policy makers must face 
these uncertainties and different management strategies might emerge: reducing or limiting 
system stressors (mitigation), building up system resilience (adaptation) and/or reversing a shift 
(restoration, Kates et al. 2012; Angeler et al. 2013). These strategies might have different 
outcomes, benefits, costs and efficiency depending of goals and focus of management as well 
as the status of the system (Lade et al., 2015; Selkoe et al., 2015; Fenichel & Horan, 2016; 
Mathias et al., 2017). For example, because of hysteresis, building up resilience might be more 
effective and less costly than restoration measures (Selkoe et al., 2015). These measures might 
also require different levels of governance. For instance, the reduction of tuna fishing effort in 
the Pacific Ocean would require an international consortium for management to be efficient 
while similar measures applied to a coral reef fishery would be relevant at the local management 
scale. In addition, when mitigation generally requires international and global management 
(e.g. gas emissions reduction), building up systems resilience (adaptation) may succeed at local 
scales, countering global inaction (Rocha et al., 2015). While decreasing variance of a system 
may seem a good idea, Carpenter et al. (2015) highlighted the adverse effects for system 
resilience management. Staying within a safe-operating space (Rockström et al., 2009), 
including uncertainties around tipping points and using history as guideline (Fenichel & Horan, 
2016; Liski & Salanié, 2016) might, however, prove effective and reduce risks of management 
failures. Adversely, managers might need to erode resilience of a system to tip it towards a 
preferable regime, e.g. more pristine or more valuable (Derissen et al., 2011). This so-called 
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transformation would require intentional changes in the institutional framework in which the 
utilisation of marine systems (e.g. including switch to a novel management system), as well as 
a transparent and equitable redistribution of benefits across stakeholders takes place (Selkoe et 
al., 2015). Uncertainties may as well increase immediate costs, and even if costs of inaction 
would be high in the future, they might hinder immediate decisions (Pindyck, 2000; Selkoe et 
al., 2015). 
 
Adaptive co-management might be ideal when cooperation between local and global 
stakeholders is possible (Plummer et al., 2017). However, it might slow down management 
processes opposed to the potential flexibility and responsiveness of local stakeholders required 
for a good management of regime shift effects (deYoung et al., 2008; Horan et al., 2011; 
Blenckner et al., 2015a; Rocha et al., 2015; Valman et al., 2016). Similarly, polycentric 
governance holds great potential at the international scale but is vulnerable to negative 
interactions between institutions and weak coordination (Galaz et al., 2012; Mathias et al., 
2017). In both cases, the question of responsibility might be raised in case of management 
failures (Baumgärtner et al., 2006; Fenichel & Horan, 2016). Local and/or global stakeholder 
cooperation, as well as responsiveness, may be improved by the knowledge of the stressors 
involved in regime shifts mechanisms, their shared interactions with the different components 
of the system, and the different scales at which they interact (Rocha et al., 2015). Such 
knowledge may also help policy makers to set suitable management targets otherwise 
challenged when uncertainties are high. 
 
Finally, the integration of management and regime shift theory may prove quite complicated. 
The complex responses to stressors, the multiple, cross-disciplinary interactions between each 
system components, the high uncertainties and the different stakeholder perspectives and 
conflicts need to be understood and accounted for when considering regime shifts (and/or 
resilience) in social-ecological systems (SES) management decisions. This requires holistic and 
integrative approaches such as integrative ecosystem assessment (IEA, (Levin & Möllmann, 
2015)). In this context, scientists have recently developed frameworks to conceptualize SES 
and assess their sustainability and uncertainties (Ostrom, 2009; Leslie et al., 2015; Levin et al., 
2016). Particularly, these frameworks allow the combination of classic scientific information 
and local stakeholders’ ecological, cultural and/or social knowledge of the system. These 
conceptual models may be used to promote interdisciplinary research, discussions between 
stakeholders, and allow a holistic management strategy evaluation after their operationalisation 
(Levin & Möllmann, 2015; Levin et al., 2016; DePiper et al., 2017). 
 
Conclusions 
Regime shifts are abrupt changes that can happen in complex systems worldwide at different 
temporal and spatial scales, depending on the resilience of the systems (Scheffer et al., 2001; 
deYoung et al., 2008). It is extremely important to study and understand these mechanisms 
since many regime shifts have led to catastrophic changes including ecological, social and 
economic losses worldwide (Mumby, 2009; Steneck & Wahle, 2013; Blenckner et al., 2015b). 
Despite the fact that many studies and methods have focused on the detection of regime shifts, 
there is still a lot to be done to achieve marine ecosystem management integrating resilience 
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and regime shifts (Travis et al., 2014; Selkoe et al., 2015; Angeler et al., 2016). New tools, 
such as early warning signals or new ways to assess the resilience of different systems, 
combined with an in-depth study of the mechanisms and stressors affecting natural systems are 
a good start to incorporate resilience and regime shift into policy-maker decisions (Carpenter 
& Brock, 2006; Scheffer et al., 2009; Dakos et al., 2012, 2017; Ling et al., 2015; 
Vasilakopoulos & Marshall, 2015). Since regime shifts often affect many components of  an 
ecosystem in different ways, ecosystem-based management (EBM) is necessary to include 
effectively regime shifts into management considerations (Blenckner et al., 2015a; Levin & 
Möllmann, 2015; Long et al., 2015; Rocha et al., 2015). To make this holistic approach 
effective and to preserve the natural environment and ecosystems in a more integrative way, 
there is a real need to translate regime shift and resilience concepts from theory to applications 
(Punt et al., 2012; Travis et al., 2014; Selkoe et al., 2015). Recently, the operationalisation of 
social-ecological systems (SES) conceptual models have shown promising improvements in 
this sense (Leslie et al., 2015; DePiper et al., 2017). Due to the different spatial and temporal 
scales at which regime shifts can act, i.e. from extremely local to global, and the high degree of 
associated uncertainties, innovative and flexible management options need to be developed at 
different levels of governance. For instance, Rockström et al. (2009) suggested a management 
at the planetary boundaries. Such management would require, in addition to adaptive 
management and polycentric governance, a societal shift in order to achieve a fair use of global 
resources, and a transformed economy (Hughes et al., 2013; Lade et al., 2013; O’Brien et al., 
2014). Finally, we can expect that the increasing awareness of the implications of regime shifts 
and associated concepts for human well-being worldwide will likely lead to more precautionary 
management approaches, while new tools and technics will be developed to achieve an 
integrative and efficient management of our natural resources. 
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Box 1 
 
Glossary 
Regime shift: dramatic and abrupt change in the structure and function of a system causing a 
shift between two alternate stable states following discontinuous non-linear dynamics and 
exhibiting three equilibria. There are some debates about the definition and critical transition or 
phase shift might be considered synonyms depending on the literature.  
Resilience: capacity of the system to absorb disturbances and reorganise in a way that it retains 
the same functions, structure, identity and feedback mechanisms, potentially impeding a regime 
shift. 
Regime: dynamic system maintaining certain structures and functions. It is also known as stable 
state, basin of attraction or domain of attraction. 
Tipping point: threshold separating two dynamics regimes. It is also known as critical threshold 
or bifurcation point. 
Feedback mechanism: ecological mechanisms stabilising a regime by amplifying (positive) or 
damping (negative) the response to a forcing. Positive feedbacks (reinforcing) move the system 
to an alternate stable state, out of equilibrium. Negative feedbacks (balancing) maintain the status 
of the system, close to the equilibrium dynamics.  
Hysteresis: phenomenon for which the return path from regime B to regime A, is drastically 
different from the path that led from regime A to regime B. 
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Abstract 
Collapses and regime changes are pervasive in complex systems governed by multiple stressors 
such as marine ecosystems. The demise of Atlantic cod (Gadus morhua) stocks constitutes a 
text book example of the consequences of overexploiting marine living resources, however the 
drivers of these nearly synchronous collapses are still debated. Moreover, it is still unclear why 
rebuilding of collapsed fish stocks such as cod is often slow or even absent. Here we apply the 
stochastic CUSP model which is based on catastrophe theory, and show that collapse and 
recovery of cod stocks are determined by the interaction of human exploitation pressure and 
environmental drivers, resolving earlier discussions on the relative importance of these two 
stressors. Our statistical modelling study demonstrates that for most of the cod stocks ocean 
warming induces a non-linear discontinuous relationship between fishing pressure and stock 
size, hence explaining hysteresis in their response to reduced exploitation pressure. Our study 
suggests that a continuing increase in ocean temperatures will likely limit productivity and 
hence future fishing opportunities for most cod stocks of the Atlantic Ocean. Moreover, it 
highlights the importance of considering discontinuous dynamics in holistic ecosystem-based 
management approaches, particularly under climate change. 
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Introduction 
Collapses and regime changes are pervasive in complex systems such as marine ecosystems 
(deYoung et al., 2008; Conversi et al., 2015; Möllmann et al., 2015) and comprise fish 
populations (Vert-pre et al., 2013; Perretti et al., 2017), trophic level communities (Beaugrand 
et al., 2002; Kortsch et al., 2012; Morse et al., 2017) and entire large marine ecosystems (Hare 
& Mantua, 2000; Cury & Shannon, 2004; Weijerman et al., 2005; Möllmann et al., 2009; 
Möllmann & Diekmann, 2012). Typically, such events are characterized by multiple external 
drivers that interact in causing abrupt changes, and show hysteresis effects to restoration and 
recovery efforts (Conversi et al., 2015). Anticipating and considering regime shifts is hence a 
crucial challenge for marine ecosystem-based management that has the goal of a sustainable 
exploitation of the oceans (Dakos et al., 2015; King et al., 2015; Levin & Möllmann, 2015).  
 
The demise of Atlantic cod (Gadus morhua) stocks constitutes a text book example of the 
consequences of overexploiting marine living resources (Figure S2.1) (Hutchings & Myers, 
1995; Cook et al., 1997; Myers et al., 1997). Nevertheless, it is still debated whether these near 
synchronous collapses occurred due to overfishing, were caused by concurrent climatic changes 
across the entire North Atlantic, or a combination of both (Myers et al., 1996; Frank et al., 
2016). Given the dire ecological and socio-economic consequences of these collapses 
(Haedrich et al., 2000), a wide range of management measures has been implemented in the 
attempt to promote the recovery of cod on both sides of the North Atlantic (Gray et al., 2008). 
Unfortunately, most of these recovery measures have proved inefficient. We here analysed 
trends of 19 collapsed cod stocks (Table S2.1-S2.2, Figure S2.1) and found only two stocks 
fully recovered, and six in the process of recovering (Supplementary Methods, Figure S2.2-
S2.3). Eleven cod stocks can still be considered depleted, causing a great deal of controversy 
regarding the underlying processes of failed recovery both in the scientific literature (Frank et 
al., 2016) but also in popular media (Gray et al., 2008). Here, we address the question of how 
fishing pressure and climatic changes (represented by sea surface temperature) interact to cause 
patterns of collapse and recovery of Atlantic cod stocks applying an approach based on 
catastrophe theory. 
 
Catastrophe theory and the CUSP model.  
Catastrophe theory is a branch of bifurcation theory in the field of nonlinear dynamical systems 
that studies and classifies phenomena characterized by sudden shifts in behavior derived from 
small changes in external conditions (Barkley Rosser Jr et al., 2007). The theory experienced 
an unrivaled intellectual bubble in the history of science. Developed by the French 
mathematician René Thom in the 1960s (Thom, 1972) and popularized by Christopher Zeeman 
in the 1970s (Zeeman, 1976), catastrophe theory became somewhat an intellectual fad (Barkley 
Rosser Jr et al., 2007). The theory was believed to be applicable to every branch of science and 
hence was quickly embraced by scientists in diverse fields. Examples of applications in marine 
ecology and resource management questions included models of fishery dynamics (Copes, 
1970; Clark, 1976; Jones & Walters, 1976) and predator-prey interactions of Great Lakes trout 
(Walters, 1986). But as quickly as it became popular, the theory started to be heavily criticized 
(Kolata, 1977; Zahler & Sussmann, 1977; Sussmann & Zahler, 1978b, 1978a) which resulted 
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in a major debate on its usefulness and potential misuse (responses appeared in Science and 
Nature in 1977, (Guckenheimer, 1977; Guastello, 1981; Arnol’d, 1992)). This debate gradually 
undermined the support for using catastrophe theory and led to a widespread disregard until the 
2000s (Barkley Rosser Jr et al., 2007). 
 
Standard catastrophe theory differentiates seven elementary catastrophes (canonical forms) that 
can describe systems characterized by abrupt shifts with up to six dimensions in control and 
state variables (Thom, 1972). Most of the applications of catastrophe theory use the two 
simplest forms, the FOLD and the CUSP. The FOLD catastrophe describes sudden changes of 
a dynamic system in response to a single pressure variable and has been widely used in ecology 
to discuss concepts such as resilience and hysteresis (Scheffer et al., 2001; Scheffer & 
Carpenter, 2003). The CUSP catastrophe, in contrast to the FOLD, considers a 3-dimensional 
system (Figure2.1) where a second external variable acts as splitting factor that can modify the 
system´s response to the principal external driver from linear and continuous to non-linear 
discontinuous. The CUSP catastrophe is hence an ideal model to evaluate the effect of two 
interacting drivers such as fishing pressure and environmental drivers on ecological systems, a 
potential that has not been exploited yet (but see (Petraitis & Dudgeon, 2016)). 
 
Stochastic CUSP modelling. 
A major criticism of early studies applying the deterministic catastrophe theory was their 
descriptive nature due to the lack of a stochastic framework (Grasman et al., 2009). The recent 
development of such a framework to CUSP modelling has revived interest in the concept with 
an increasing number of publications in disciplines such as economy (Diks & Wang, 2016), 
sociology and behavioral science (Grasman et al., 2009). However, despite the CUSP 
catastrophe may be ideal for explaining abrupt changes in ecological systems which are often 
due to the interaction of multiple external drivers (Conversi et al., 2015; Möllmann et al., 2015) 
the model is still rarely considered (Petraitis & Dudgeon, 2016). Here, we applied the stochastic 
CUSP model to 19 Atlantic cod stocks to understand i) whether cod stocks dynamics follow a 
continuous or discontinuous path, and ii) to understand the role of fishing and environmental 
drivers in their collapses and recovery potential.  
 
Material and methods 
Data. 
In order to represent the population dynamics across all Atlantic cod stocks we collected time-
series of comparable spawner biomass (i.e., biomass of mature fish in tonnes) and fishing 
mortality estimates derived from stock assessments. Data were provided by the International 
Council for the Exploration of the Sea (ICES), the National Oceanic and Atmospheric 
Administration of the USA (NOAA), the Northwest Atlantic Fisheries Organization (NAFO) 
and the Department of Fisheries and Ocean in Canada (DFO) (Table S2.1-S2.2). A few recent 
stock assessments (i.e., the Kattegat, the Western Baltic and the Norwegian coastal cod) 
comprised only reduced assessment periods. Where possible, we prolonged the spawner 
biomass and fishing mortality time-series by combining them with comparable estimates from 
previous assessments after performing consistency checks (Figure S2.6). To represent changes 
in environmental conditions experienced by each stock we collected time-series of sea surface 
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temperature (SST in °C). Although SST does not fully reflect the thermal habitat of cod, a 
predominately demersal (bottom-dwelling) species, SST has previously been shown to be a 
strong predictor influencing cod stock dynamics, including reproduction and growth 
(Drinkwater, 2005; Brander, 2010). SST data were collated from the NOAA Extended 
Reconstructed Sea Surface Temperature dataset (ERSST, www.ncdc.noaa.gov) version 4. The 
dataset represents a reconstruction of SST from 1854 to the present and represents monthly 
anomalies computed with respect to the period 1971-2000, resolved in a 2°x 2° grid of spatial 
coverage. For every stock, we calculated mean annual SST values averaged over the 
management area (Table S2.2). Since the Eastern Baltic cod stock is not strongly influenced by 
temperature but rather affected by oxygen, the annual extents of anoxic areas (in km2) 
(Carstensen et al., 2014) were used as environmental covariate for this particular stock.  
 
Stochastic CUSP modelling.  
We tested if a statistical approach to catastrophe theory can explain collapse and recovery 
patterns of Atlantic cod stocks. Catastrophe theory provides a mathematical framework to 
model both continuous and discontinuous changes in a system´s dynamics (Thom, 1972; Diks 
& Wang, 2016; Petraitis & Dudgeon, 2016). In particular, it is effective in describing abrupt 
changes in the system state variable as a result of small and continuous changes in control 
variables (Thom, 1972; Grasman et al., 2009). This theory is based on a non-linear dynamic 
system which follows the following differential equation:  

dy# = −
∂V y#; θ
∂y#

dt 

 
where yt represents the state of the system and V(yt; θ) is a potential function determined by a 
control parameter θ influencing the specific structure of the system. When the equation is equal 
to zero the system is in equilibrium, otherwise it will become unstable and, eventually, shift to 
an alternative state. Hence this model allows the system to create bifurcation points and 
experience multimodality.  
One finding of catastrophe theory is that the behaviour of a system around the equilibrium can 
be characterized by seven canonical forms, among which the CUSP catastrophe is the most 
commonly used (Thom, 1972; Grasman et al., 2009). The CUSP catastrophe describes sudden 
and discontinuous transitions in the equilibrium state of a state variable Zt (in our case a linear 
function of spawner biomass, see below) depending on two control parameters a and b.  

V z#; α, β =
1
4
z#1 −

1
2
βz#3 − αz# 

In stochastic CUSP modelling, a stochastic differential equation was developed allowing the 
estimation of parameters α and β as linear functions of exogenous (X1 … Xy) variables, and the 
canonical dependent state variable as a linear function of one more observable dependent state 
variables (Y1 … Yy) using a likelihood approach (Grasman et al., 2009; Diks & Wang, 2016): 

α = α4 + α6X6 + ⋯+ α9X9 
β = β4 + β6X6 + ⋯+ β9X9 
z = w4 + w6y6 + ⋯+w9y 

with w0, w1, … wy being coefficients. 
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The control parameters a and b are respectively called asymmetry and bifurcation variables 
(Grasman et al., 2009; Diks & Wang, 2016). We here applied the stochastic CUSP model to 
Atlantic cod stocks dynamics, where the status of the stocks Zt, in our case spawner biomass, 
is modelled depending on two control variables (Figure2.1). An asymmetry variable (α) 
regulates the dimension of Zt and is a linear function of fishing mortality, set by fisheries 
management and commonly assumed to be linearly related to population size (Anderson et al., 
2008). A bifurcation variable (the splitting factor, β) determines whether the state variable 
follows a continuous or discontinuous path, and in our case, is a linear function of sea surface 
temperature (SST). We used SST as an accepted proxy for environmental conditions affecting 
biological processes such as recruitment (Planque et al., 1999; O’Brien et al., 2000) and growth 
in Atlantic cod (Brander, 1995), and as an indicator for climate change effects (Drinkwater, 
2005; Stige et al., 2006).  
Equilibria of the system corresponding to the solution of the cubic equation are as follows:  

−
∂V z; α, β

∂z
= −z; + βz + α = 0 

From this equation, a Cardan´s discriminant (d) is derived, that allows us to distinguish if the 
system is in a state with only one (d > 0) or three equilibria (d < 0): 

δ = 27α3 − 4β; 

Our CUSP modelling approach can be visualized as a 3D landscape where the trajectory of cod 
stock size in response to changing fishing mortality can be continuous (i.e. linear, with one 
state) or discontinuous (i.e. folded, with two alternative states), depending on SST. As an 
example, Figure 2.1 presents the collapse of North Sea cod, indicated by the drop in spawner 
biomass from the upper to the lower fold of the phase plane due to high fishing pressure 
(Figure2.1). After the collapse, and with increasing temperatures, spawner biomass values 
progressively move below the discontinuous fold into the bifurcation area where three 
alternative states (2 stable and one unstable) are possible. Thus, critical thresholds are readily 
breached by relatively minor changes in fishing mortality (see Methods), causing stocks to 
potentially fluctuate between the two alternative states along the discontinuous path. Stocks 
following a discontinuous path, and thus staying close to the bifurcation area, are prone to 
tipping points.  A projection on the 2D plane allows to follow the stock dynamics of North Sea 
cod and understand why its recovery may be limited (Figure 2.1). Stock size decreased in 
response to increasing fishing mortality, moving in and out the bifurcation area (indicated in 
light blue). Eventually, the stock collapsed to a very low biomass state and remained in the 
unpredictable zone of the CUSP. During the last 10 years, exploitation pressure of North Sea 
cod has been drastically reduced, however spawner biomass levels remained significantly lower 
compared to the beginning of the study period, when fishing mortality was similar. This 
hysteresis in response to decreased exploitation pressure is related to an increase in SST that is 
detrimental for North Sea cod (O’Brien et al., 2000). Therefore, the CUSP model can also 
explain the slow recovery of the state variable (i.e. spawner biomass of Atlantic cod stocks), 
i.e. hysteresis. Recovery of a collapsed fish population can either occur when SST changes in 
a way that fishing mortality again has a linear effect on spawner biomass, or, within the 
bifurcation area, when chance events, e.g. high reproductive success, occur.  



Chapter 2   Discontinuous dynamics in Atlantic cod stocks 

 36 

 
Figure 2.1 | The stochastic CUSP model – from 3D to 2D representation. a) The typical 3D representation of the CUSP 
model where North Atlantic cod spawner biomass (SB) dynamics depend on two controlling variables α (fishing mortality – 
FM) set by fisheries management and β (sea surface temperature – SST) controlling whether SB follows a continuous or 
discontinuous path. b,c) 2D projection of the bifurcation area under the folded 3D phase plane shaded in grey and light blue 
(only the data range). Filled dots in b) and c) represent SB with the radius scaling relative to stock size.   

To our knowledge, our study is one of the few to apply this methodology to empirical data from 
an ecological system. We applied the stochastic CUSP model to investigate how the interaction 
of fishing pressure and environmental conditions affects patterns of collapse and recovery of 
19 Atlantic cod stocks. We compared the fitted CUSP models to alternative linear and logistic 
regression models using an information theoretic approach based on AIC. We further validated 
the fitted CUSP models by exploring the significance of the canonical state variable z, 
bimodality of the state variable in the bifurcation area as well as the percentage of observations 
in the bifurcation area (>10% being the benchmark) (Table S2.4).  
 
Software. 
All analyses were conducted in the statistical programming environment R (version 3.0) with 
Rstudio using R packages ggplot2, bcp, mgcv, ade4 and cusp. 
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Results and Discussion 
 
Table 2.1 | Results of the valid stochastic CUSP models. Given are signifcant levels (p values) for alpha (fishing mortality) 
and beta (se surface temperature), explained variance (R2) and AICc values that compare the CUSP models with alternative 
linear and logistic models (lower AIC values indicate a better model fit). 

Stock No. Stock p(a) p(b) R2 AICc (CUSP) AICc (linear) AICc (logistic) 

(1) Baltic E 0.152 0.041 0.77 107 1271 1252 

(2) Baltic W 0.878 0.311 0.69 137 1016 1015 

(3) Kattegat 0.02 <0.001 0.75 93 923 921 

(4) North 0.01 < 0.001 0.38 124 1335 1327 

(5) Scotland 0.187 < 0.001 0.64 67 751 745 

(6) Irish 0.194 < 0.001 0.59 108 975 971 

(8) Coastal 0.567 < 0.001 0.77 59 810 797 

(9) Arctic < 0.001 < 0.001 0.78 53 1978 NA 

(11) Iceland < 0.001 0.02 0.77 70 1649 1637 

(12) Northern 0.01 0.824 0.94 20 922 899 

(13) Lawrence N 0.807 0.001 0.85 72 1024 1021 

(14) Lawrence S 0.109 < 0.001 0.65 92 1128 1106 

(15) Scotian E 0.07 0.014 0.80 96 1003 974 

(16) Grand 0.006 0.196 0.62 138 1316 1302 

(17) Flemish 0.132 < 0.001 0.69 108 912 923 

(18) Georges 0.006 0.048 0.76 75 837 830 

 

 
We applied stochastic CUSP modelling to 19 cod stocks from both sides of the North Atlantic. 
Generally, the CUSP model provided better statistical fits to the data than alternative linear and 
logistic models for all Atlantic cod stocks (Table 2.1). A further evaluation exploring the 
percentage and bimodality of the observations in the bifurcation area (Grasman et al., 2009) 
revealed 16 out of the 19 CUSP models to be valid (Table S2.4-S2.5, Figure S2.4). Importantly, 
the model results indicate that in 13 out of the 16 valid CUSP models, SST is a significant 
predictor of cod spawner biomass dynamics. Additionally, fishing mortality was a significant 
predictor in five cases, and the only significant predictor in two cases (Table 2.1, Table S2.5). 
These results show that Atlantic cod stock dynamics are best described by discontinuous, 
catastrophic behaviors as reflected by the CUSP model.  
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Figure 2.2 | 2D bifurcation plots of the stochastic CUSP model. Map indicating 19 North Atlantic cod stocks (number 
according to Table S1) and their recovery status. Panels show CUSP model results for 9 stocks (a -West of Scotland, b-North 
Sea, c-Irish Sea, d-Georges Bank, e-Northern Lawrence, f-Northern cod, g-Flemish Cap, h-Iceland, i-North East Arctic); other 
stocks see Supplementary Information. Dots represent spawner biomass scaled to stock size; years > 2004 in red. The 
bifurcation area is shaded in blue and vertical dashed lines indicate stock specific management reference points of FM (Table 
S3).   

Our results provide, for the first time, an explanation of the interplay between oceanic 
temperature conditions and fishing pressure, both strongly debated to be single dominant 
drivers for Atlantic cod stock collapses (Myers et al., 1996; Frank et al., 2016). According to 
our CUSP models the importance of SST is grounded in its ability to modify the relationship 
between fishing mortality and the state variable (spawner biomass) from linear to non-linear 
and discontinuous. Eastern Atlantic cod stocks best demonstrate this catastrophic behavior, as 
also seen for North Sea cod (Figure 2.1), where an increase in SST moves the stock trajectory 
towards the discontinuous region (i.e. down the y-axis) and into the bifurcation area (Figure2.2 
a-c; Figure S2.5). Here, even minute changes of fishing mortality are sufficient to drive the 
stock to collapse. Similar dynamics are observed for Western Atlantic stocks (Figure2.2 d-f; 
Figure S2.5) where most of the spawner biomass observations are found within the bifurcation 
area. Having a large proportion of data points in the unstable region indicates a generally high 
degree of instability and vulnerability to fishing (Wang et al., 2014), a pattern also found for 
cod stocks in the Baltic Sea and at the Norwegian coast (Figure S2.5).  
 
Our study shows that all stocks, except the highly vulnerable Norwegian coastal and Northern 
cod (where most of the data points are in the bifurcation area), collapsed at a fishing mortality 
well above sustainable levels, i.e. FMSY (Figure 2.2; Figure S2.5, Table S2.3), indicating the 
paramount importance of fishing pressure for cod stock dynamics (Brander, 2018). Specifically, 
fishing below or around FMSY would have maintained larger stock sizes and reduced the 
vulnerability of these stocks to SST changes, as indicated by stocks falling outside the 
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bifurcation area (see especially North Sea and West of Scotland cod; Figure 2.2a,b). Recent 
management efforts have often reduced fishing mortality to near or far below FMSY such as in 
North and Irish Sea cod (Figure 2.2a,c). While these stocks can be considered recovering 
(Supplementary Methods, Figure S2.2-S2.2), spawner biomass remains in most cases far below 
historical levels at similar or higher exploitation pressure. This hysteresis effect is due to the 
non-linear relationship between spawner biomass and fishing mortality caused by increased 
SST, and implies that recovery may only occur after a prolonged period of very low fishing 
mortality. Extreme cases of hysteresis are presented by some of the Western Atlantic stocks 
(e.g. Southern Gulf of St. Lawrence) (Figure S2.5) that presently reside in a depleted state in 
the unstable bifurcation area. Hence, sudden increases in spawner biomass are theoretically 
possible as demonstrated by the recently recovered Flemish Cap cod (Figure 2.2g). Still, a long-
term reduction in fishing mortality is necessary to increase survival and year-class strength and 
eventually initiate a positive feedback leading to Atlantic cod stocks more resilient to the largely 
negative effects of ocean warming. 
 
Climate change will lead to a considerably warmer Atlantic Ocean (Boyd et al., 2014) and our 
results show that increasing SST will have negative repercussions for most of the Atlantic cod 
stocks that already live at their upper thermal tolerance limits (Pörtner et al., 2008; Mantzouni 
et al., 2010). However, the few stocks residing at or close to their lower thermal tolerance limits 
benefit from warming (Figure 2.2i-h). Warming and reduced fishing pressure initiated the 
recovery of the Icelandic cod stock, which could be even more pronounced if fishing mortality 
would be reduced to below FMSY. To date, North-East Arctic cod is benefiting the most from 
ocean warming (Butzin & Pörtner, 2016). According to our CUSP model, North-East Arctic 
cod resides in (or is on the verge of) a high spawner biomass stable state (recent high spawner 
biomass values are outside or at the tip of the bifurcation area; Figure 2.2i), a development 
supported by effective management (Kjesbu et al., 2014).  
 
Our results demonstrate how ocean warming induces a non-linear and discontinuous 
relationship between stock size and fishing pressure for most of the Atlantic cod stocks, limiting 
their recovery. Our study has limitations resulting from uncertainties in the stock assessment 
data used, but also due to the methodological confines of the stochastic CUSP modelling 
approach, such as deficiencies in accounting for autocorrelation in time-series (Diks & Wang, 
2016) and uncertainties when comparing the CUSP model fit to alternative models (Chow et 
al., 2015). Furthermore, we acknowledge that a detailed understanding of the effect of 
temperature on biological processes such as growth (Morgan et al., 2018; Tu et al., 2018) and 
recruitment (Pershing et al., 2015b; Koenigstein et al., 2018) is needed to better explain our 
statistical model results. However, as the CUSP models are superior to alternative models, we 
believe our modelling results are valid in resolving a long-lasting debate about the relative 
importance of ocean temperature and fishing in regulating cod stocks dynamics.  
 
Conclusions 
Here, we contribute a novel assessment of the vulnerability of Atlantic cod stocks to climate 
change, explicitly accounting for the potential of non-linear and state-dependent dynamics that 
will be useful for ecosystem-based management of other fish species as well. Other resource 
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species may follow similar catastrophic dynamics as we have here demonstrated for Atlantic 
cod, and as such we suggest that a precautionary approach accounting for environmental change 
is warranted for the sustainable management of living resources under the expected future 
climate change (Levin & Möllmann, 2015). Eventually, we demonstrated the usefulness of the 
stochastic CUSP modelling approach to explain abrupt changes in ecological systems which 
hopefully will spur application as seen in other scientific disciplines. 
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Supplementary Information Chapter 2  

Supplementary Information Text 

 
Recovery analyses  
 
Atlantic cod stocks have shown synchronous collapses and very little recovery in many areas 
of the North Atlantic. In order to confirm these results and back up our analyses on the non-
linearity of cod stocks behaviour, we performed analyses on collapse and recovery. Collapse 
was investigated using statistical change point and trend analyses on long-term time-series of 
Spawner Biomass (SB). We applied Bayesian Change Point Analysis (bcp(Erdman & Emerson, 
2007)), which returns a posterior probability of a change to occur at each year of the time series. 
In order to identify a breakpoint in time indicating a major shift, we validated the bcp results 
with a trend analysis. The trend analysis estimates the second derivative of the SB time-series 
smoothed by fitting a Generalized Additive Model (GAM) to time (Fewster et al., 2000) and 
allow to detect years with increases in the rate of change in the SB time-series. Combining the 
two approaches allowed us to identify for each cod stock the year in which a major change 
point occurred and to better understand the trends in SB (FigureS2.1). A high frequency of 
collapses occurred during the early 1990s with 15 of the stocks declining to below 50% of pre-
collapse SB. Only North-East Arctic cod collapsed already before the 1960s and afterwards SB 
increased abruptly, while the stocks in the Celtic Sea, on the Faroe Plateau and in the Gulf of 
Maine exhibited oscillating trajectories and a very recent stock depletion.  
 
In order to compare biomass trajectories across cod stocks we used Principal Component 
Analysis (PCA) using SB data from 1983 to 2016. Missing values at the end of the time-series 
(i.e. when the time-series did not include 2016 or before) were substituted with the last value 
to allow for a PCA with all stocks. The main mode of variability across stocks (PC1, 58%) 
shows constantly declining SB since the early 1990s (Figure S2.2a) to which 16 of the 19 cod 
stocks were positively correlated (Figure S2.2b). A second mode (PC2, 20%) indicates partial 
recovery since the mid-2000s, a temporal pattern highly positively correlated to the North-East 
Arctic, Icelandic and Flemish Cap, as well as North Sea cod (Figure S2.2c).  
Finally, we calculated a Recovery Index (RI) for all Atlantic cod stocks by comparing the 
average of the SB over the last 5 years (SBmean) to the pre-collapse SB (SBpre-collapse): 
 

𝑅𝐼 = 		 (𝑆𝐵EFGH 𝑆𝐵IJFKLMNNGIOF)×100 
 
Afterwords we classified all cod stocks into three recovery classes: (i) collapsed – RI ≤ 20%, 
(ii) recovering – RI >20 and ≤50%, and (iii) recovered – R >50%. We found only two stocks 
recovered, i.e. North-East Arctic and Flemish Cap cod, and six stocks recovering. 11 of the 19 
stocks can still be considered collapsed (Figure S3.3).  
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Supplementary Information Plots 
 
 

 
Figure S2.1. Spawner biomass trends and changepoints.  
Scaled (between 0 and 1, SB-min(SB)/max(SB)-min(SB)) Spawners Biomass (SB) time-series of Atlantic cod stocks. Blue 
smoother lines indicate time trends and were fitted using Generalized Additive Modelling (no smoother was fitted to stocks 
that mainly oscillate). Dotted vertical lines represent the major change points in the time series (red lines indicated negative, 
green lines positive change points) derived by Bayesian Change Point and Trend Analysis. Stock names and numbers according 
to Table S3.2.1. 
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Figure S2.2. Collapse and recovery modes.  
a, Dominant modes of Atlantic cod stock collapse and recovery revealed by PCA. PC1 (red line) indicates that most of the 
stocks are still in a collapsed state, PC2 (blue line) indicates a recovery pattern. Grey vertical bars indicate the number of stocks 
showing a significant change in any given year (light grey=1, dark grey=4). b, Loadings of Atlantic cod stocks on PC1 
indicating that most of the stock´s trajectory have a high correlation to the collapsed mode. c, Loadings of Atlantic cod stocks 
on PC2 indicating the recovery state of cod stocks, i.e. their correlation to the recovery mode indicated by PC2. Stock names 
and numbers according to Table S3.2.1. 
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Figure S2.3.  Recovery index (RI).  
Recovery state of Atlantic cod stocks indicated by a recovery index (SI methods) indicating stocks to be still collapsed (orange), 
recovering (light blue) and recovered (dark blue). Stock names and numbers according to Table S3.2.1. 
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Figure S2.4. Bimodality in the bifurcation set.  
Evaluation of bimodality inside the bifurcation set (upper left inlet) as an indicator of validity of stochastic CUSP models for 
Atlantic cod stocks. Empty plots indicate models with only one point in the bifurcation set. Stock names and numbers according 
to Table S3.2.1. 
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Figure S2.5.  2D representation of CUSP model results.  
Stock trajectories of Atlantic cod stocks depending on fishing mortality and sea surface temperature (except for Baltic E which 
is modelled depending on the extend of anoxic areas; see method). Dot size is scaled according to the annual Spawners biomass 
of each stock. Red dots represent years ≥2004. The blue area indicates the bifurcation set of the CUSP model. Vertical dotted 
lines indicate the management target specific for each stock (SI Table 3.2.3) Stock names and numbers according to Table 
S3.2.1. 
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Figure S2.6. Stock assessments series used for three short time series stocks. On the left the time series of SB of the older 
assessments, 2014, 2015 and 2016 for respectively Western Baltic, Kattegat and Coastal Cod. On the right the combined time 
series of the old stock assessments (in blue) and of the new 2017 stock assessments (black).  
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Supplementary Information Tables 
 

Table S2.1.  Stock assessment data of Atlantic cod stocks.  

No. Stock name Abbreviation Management 
area 

Stock assessment 
models*  

Institution/ 
group 

Contact person or 
other data source 

1 Eastern Baltic1 Baltic E 25-32 SAM ICES/ WGBAFS Margit Eero 

2 Western Baltic2 Baltic W 22-24 SAM ICES/ WGBAFS Margit Eero 

3 Kattegat1,2 Kattegat IIIa/21 SAM ICES/ WGBAFS Johan Lövgren 

4 North Sea North IV – VIId – IIIa SAM ICES/ WGNSSK Alexander Kempf 

5 West of Scotland Scotland VIa TSA ICES/ WGCSE Rui Catarino 

6 Irish Sea Irish VIIa SAM ICES/ WGCSE Colm Lordan 

7 Celtic Sea Celtic VIIe – VIIk XSA ICES/ WGCSE Colm Lordan 

8 Coastal Barents 
Sea2 Coastal I – I Survey SSB and F 

from VPA ICES/ AFWG Gjert Endre Dingsor 

9 Northeast Arctic Arctic I – II XSA ICES/ AFWG Gjert Endre Dingsor 

10 Faroe Plateau Faroe Vb1 XSA ICES/ NWWG Petur Steingrund 

11 Iceland Iceland Va 
Forward based 
statistical catch at 
age model 

ICES/ NWWG Einar Hjorleifsson 

12 Northern cod Northern 2J3Kl State space model DFO DFO(2016)3 

13 Northern Gulf of 
st. Lawrence Lawrence N 3Pn4Rs SPA DFO Claude Brassard 

14 Southern Gulf of 
st. Lawrence Lawrence S 4T4Vn SCA DFO Doug Swain 

15 Eastern Scotian 
Shelf Scotian E 4VsW VPA DFO Swain & Mohn 

(2012)4 

16 Grand Banks Grand 3NO SPA NAFO NAFO (2015)5 

17 Flemish Cap Flemish 3M Bayesian model NAFO Diana Gonzalez 

18 Georges Bank Georges 5z Age structured model NOAA Loretta O´Brien 

19 Gulf of Maine Maine 5y Age structured model NOAA Mike Palmer 

 
Stock number (No.), stock name, abbreviation, management area code, stock assessment models used and the institution (or 
working group within the institution) conducting the stock assessment. Scientists providing data (or other data sources) 
 
* SAM – State-space assessment model, TSA – Analytical age-based assessment (time series analysis), XSA – Extended 
survivor analysis, SPA – Sequential population analysis, SCA – Statistical catch at age, VPA – Virtual population analysis 
1 Stocks that in the last year failed the assessment 
2Stocks where, in order to have longer time series, we mixed old assessments and new ones, after checking for same trends 
and stock dimensions. 
3DFO (2016) Stock Assessment of Northern Cod (NAFO Divs. 2J3KL) in 2016. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 
2016/026 
4 Swain DP, Mohn RK (2012) Forage fish and the factors governing recovery of Atlantic cod (Gadus morhua) on the eastern 
Scotian Shelf. Can. J. Fish. Aquat. Sci. 69: 997–1001. 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Table S2.2. Summary of data used in the analysis.  

No. SB (t)  FM SST (°C) DT(°C) Assessment 
period 

1 62193 – 643064 0.37 – 1.35 6.9 – 9.7 13.5 – 18.9 1966-2013 

2 10229 – 52839 0.874 – 1.36 8.0 – 10.9 13. 4 – 19.0 1970-2016 

3 977 – 34303 0.4 – 1.52 8.8 – 11.5 11.0 – 16.4 1971-2014 

4 43739 – 274855 0.35 – 1.07 9.3 – 11.7 8.9 – 13.2 1963-2016 

5 1435 – 40438 0.66 – 1.18 10.0 – 11.4 4.2 – 6.0  1981-2016 

6 1389 – 19791 0.76 – 1.38 10.4 – 12.0 6.6 – 9.3 1968-2016 

7 3397 – 26324 0.35 – 0.99 12.0 – 13.7 5.6 – 8.5 1971-2016 

8 12709 – 219345 0.17 – 0.63 2.8 – 3.8 3.8 – 4.5 1984-2016 

9 102610 – 2692927 0.21 – 1.02 2.5 – 3.8 3.7 – 4.8 1946-2016 

10 16786 – 123077 0.19 – 0.82 8.9 – 10.3 2.9 – 4.9 1959 -2016 

11 121063 – 936957 0.27 – 0.89 5.6 – 7.5 3.3 – 5.7 1955-2016 

12 9680 – 940750 0.01 – 0.22 4.6 – 7.2 8.8 – 11.6 1983-2015 

13 6774 – 200271 0.03 – 1.96 4.6 – 7.2 14.1 – 17. 6 1974-2015 

14 33714 – 348193 0.01 – 0.48 5.8 – 8.5 15.5 – 18.7 1971-2014 

15 4412 – 155525 0.01 – 1.52 14.3 – 16.0 11. 4 – 14.0 1970-2010 

16 4231 – 125043 0.01 – 1.61 10.0 – 12.7 9.5 – 14.6 1959-2015 

17 1697 – 42514 0.003 – 1.52 13.6 – 16.0 6.5 – 9.9 1972-2015 

18 4066 – 98527 0.4 – 1.33 13.0 – 15.5 12.8 – 15.6 1978-2014 

19 2526 – 21939 0.34 – 1.53 9.0 – 11.7 13.0 – 15.9 1982-2014 

 
 
Ranges of Spawner Biomass (SB), Fishing Mortality (FM), Sea Surface Temperature (SST) and its annual variability (DSST) 
for the respective assessment period. Stock numbers (No.) according to Table S3.2.1.
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Table S2.3. Management reference points for Atlantic cod stocks  

No. FM reference point FM reference point 
value 

1 - - 

2 FMSY 0.26 

3 - - 

4 FMSY 0.33 

5 FMSY 0.17 

6 FMSY 0.3 

7 FMSY 0.35 

8 - - 

9 FMSY 0.4 

10 FMSY 0.32 

11 HRMSY 0.2 

12 * * 

13 * * 

14 * * 

15 * * 

16 Flim 0.3 

17 Flim 0.13 

18 FMSY 0.17 

19 FMSY 0.18 

 
 
Fishing Mortality (FM) management reference points and their values. “-“ shows stocks without available stock assessments. 
“*” indicates stocks for which FM reference points are not given in reports; Stock numbers (No.) according to Table S3.2.1. 
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Table S2.4| CUSP model evaluation.  

No. Percentage in bifurcation set Bimodality 

1 97.9 (+) 

2 100 (+) 

3 84 (+) 

4 44 (+) 

5 61 (+) 

6 59.1 (+) 

7 10 (-) 

8 100 (+) 

9 60 (-) 

10 1.7 (-) 

11 20.9 (+) 

12 100 (+) 

13 100 (+) 

14 88.6 (+) 

15 100 (+) 

16 82.1 (+) 

17 76.7 (+) 

18 86.1 (+) 

19 3 (-) 
 

Two criteria for a CUSP model to be considered valid; (i) percentage of data points inside the bifurcation area (should be > 
10%) and bimodality of the state variable inside the bifurcation area. Models underlined in grey are not valid CUSP models 
according to these criteria. Stock numbers (No.) according to Table S3.2.1.
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Table S2.5. CUSP model results.  

No 1 2 3 4 5 6 7 

a 0.1193 0.195 0.83 0.6521 1.766 -0.08 -4.183** 

a1 -0.8306 -0.169 -1.38* -1.81* -3.044 -0.46 3.65* 

b 0.7731 4.593 -13.4** -18.78*** -54.01*** -42.79*** -50.38** 

b1 3.76E-02* -0.37 1.53*** 1.946*** 5.26*** 3.94*** 3.87** 

w0 -2.6*** -2.501** -2.41*** -3.059*** -2.538*** -2.40*** -2.62*** 

wi 6.75E-
06*** 

8.41E-
05*** 

1.28E-
04*** 

1.649e-05 
*** 

9.272e-05 
*** 

1.993e-04 
*** 

1.711e-04 
*** 

AIC 1164 879 830 1211 684 867 784 

R2 0.77 0.69 0.75 0.38 0.64 0.59 0.006 

        

No 8 9 10 11 12 13  

a -0.68 2.42** -2.80 4.652*** -1.589* -0.3361  

a1 -0.712 -9.86*** 1.904 -14.91*** 9.028** 0.07356  

b -10.97*** 20.88*** -34.42*** 3.96 4.019 -4.384  

b1 4.49*** -5.51*** 3.603*** -0.348* 0.03434 1.432**  

w0 -2.568*** -3.17*** -2.311*** -3.166*** -2.479*** -2.532***  

wi 2.07E-
05*** 1.731e-06  2.389e-

05*** 5.465e-06 5.21E-
06*** 

2.41E-
05***  

AIC 751 1925 1184 1579 902 952  

R2 0.77 0.78 0.30 0.77 0.94 0.85  

        

No 14 15 16 17 18 19 

a -0.656** -0.4955** -0.8824** -0.5193* 2.017* -0.117 

a1 1.555 0.6841 1.431** 0.5957 -3.463** -1.186 

b -14.72*** -22.28* -5.4 -31.38* -15.12 -27.800** 

b1 2.526*** 1.626* 0.6125 2.198* 1.234* 2.631** 

w0 -3.012*** -2.143*** -1.878*** -2.132*** -2.325*** -2.286*** 

wi 1.35E-
05*** 

2.67E-
05*** 

3.46E-
05*** 

1.12E-
04*** 

4.42E-
05*** 

1.51E-
04*** 

AIC 1036 907 1178 804 762 556 

R2 0.65 0.80 0.62 0.69 0.76 0.25 
 

Estimated parameters (a0/a1 for predictor Fishing Mortality; b0,/b1 for predictor Temperature [except for stock 1 where anoxic 
areas was used]; w0,/w1 for the state variable Spawner Biomass. Model validation using AIC (DAIC computed as the difference 
between AIC of the linear and the CUSP model) and R2 (Cobb´s Pseudo R squared). Stars indicate significance of parameters 
(* <0.05, ** <0.005, *** <0.0005). Stock by stock plots of the CUSP models can be found in Extended Data. Models 
highlighted in grey are not valid CUSP models (see Table S4 ). Stock numbers (No.) according to Table S3.2.1. 
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Chapter 3: Cod stock-recruitment relationship 

 

 

 

 

Coupling and decoupling of spawner biomass and recruitment 
explain Atlantic cod collapse and recovery 
 
Camilla Sguotti1, Romain Frelat1, Xochitl Cormon1, Saskia Otto1, Christian Möllmann1 
 
Abstract  
Cumulative stressors on marine populations have led to profound changes of population 
mechanisms and astonishing collapses. The biomass of many Atlantic cod (Gadus morhua) 
stocks collapsed abruptly around the 1980s and 1990s and did not recover since then. Some 
stocks have experienced a persistent and pronounced recruitment failure. However, the 
relationship between recruitment and biomass is not fully understood. Here, applying partial 
wavelet coherence analysis on 17 cod stocks, we show that the stock - recruitment relationship 
is transient and stock state-dependent. We show that the relationship is particularly strong 
during collapse and the recovery periods. Moreover, we identify mechanisms of collapse and 
recovery using phase analysis showing that while collapses were caused by a combination of 
recruitment failure and overfishing, recovery is mainly driven by recruitment success. Stocks 
that collapse abruptly are less likely to recover compared to stocks that collapse more gradually, 
due to a stronger relationship in between recruitment and biomass. Our study sheds light into 
the complex interplay between stock size and year-class strength and can thus support the 
application of more efficient management measures, highlighting the need to consider non-
linear and state-dependent dynamics in management. 
 
Keywords: Wavelet analysis, stock-recruitment relationship, state-dependence, change point 
analysis, Atlantic cod 
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Introduction 
Marine populations have undergone huge changes (Planque et al., 2010; Tu et al., 2018) due to 
anthropogenic pressures in the last decades, in particular due to fisheries exploitation (Pauly et 
al., 1998; Myers & Worm, 2003; Hutchings & Reynolds, 2004; Branch et al., 2010) and climate 
change (Brander, 2010). The interactive effects of these external drivers have often resulted in 
spectacular collapses of living marine resources (Hsieh et al., 2006; Anderson et al., 2008) and 
significant ecological reorganizations (Frank et al., 2005; Möllmann et al., 2009; Steneck et al., 
2011), with huge economic losses (Allison et al., 2009; Srinivasan et al., 2012). To promote 
the recovery of collapsed stocks, fisheries management has partly adopted drastic measures to 
exploitation pressure (Hilborn, 2007; Melnychuk et al., 2016). However, in many cases 
recovery of fish populations was delayed or did not happen at all even after decades of good 
management (Hutchings, 2000; Lotze et al., 2011). Non-linear, discontinuous and non-
stationary dynamics may be underlying these failed comebacks of many marine resource 
populations (Frank et al. 2011).  
 
Non-linearity and chaos are the prevalent dynamics in nature (May & Oster, 1976; Sugihara, 
1994; Benincà et al., 2008) and emerge due to the inherent complexity of natural dynamical 
systems governed by multiple pressures (Hsieh et al., 2006; Anderson et al., 2008; Glaser et 
al., 2014). In the marine environment, non-linear discontinuous dynamics resulting in 
ecological surprises have been recorded at different organizational levels (Beaugrand et al., 
2015; Möllmann et al., 2015; Perretti et al., 2017). Forecasting the trajectory of fish populations 
which exhibit these non-linear dynamics is fundamental in order to anticipate their response to 
human and natural stressors (Glaser et al., 2014; Schindler & Hilborn, 2015; Ye et al., 2015; 
Dakos et al., 2016), but is often overlooked due to the difficulty of incorporating non-
stationarity and discontinuity in statistical models (May, 1976b; May & Oster, 1976; Ye et al., 
2015). However, during the last decades a number of methods have been developed and applied 
to account for non-stationarity allowing a better understanding of fluctuations of natural 
populations. These methods range from statistical non-parametric methods to spectral analysis 
methods, such as the wavelet analysis (Sugihara 1994; Cazelles et al. 2008; Ye et al. 2015; 
Deyle et al. 2018).  
 
Decomposing times series into harmonic components in order to identify regular frequencies 
of fluctuations has been a common practice in ecology since more than 50 years, using 
especially Fourier decomposition. However, time series were often assumed to be stationary, 
with invariant statistical properties over time (Platt & Denman, 1975; Chatfield, 1989). With 
the increasing evidence of non-stationarity of natural systems, new methods have been 
developed also in spectra analysis. Wavelet analysis, for instance, decomposes time series in 
time and frequency allowing to consider non-stationary dynamics (Torrence & Compo, 1998; 
Grinsted et al., 2004; Cazelles et al., 2008). The main principle of the method is to compare the 
studied time series to multiple functions, the so-called wavelets, similar in shape but more or 
less dilated. Decomposing the signals over multiple functions, wavelet analysis detects 
variations in time series at multiple frequencies, thus its results are superior to other alternative 
techniques like the windowed Fourier decomposition where the frequency is invariant over time 
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(Cazelles et al., 2008). Even though suffering from apparent lack of quantitative results, wavelet 
has been applied to many research questions in ecology, oceanography, anthropology and 
physics, such as the analysis of association between animal populations and environment 
change (Downey et al.; Rohani et al., 2003; Klvana et al., 2004; Cazelles et al., 2005).  
 
Recruitment is the most important mechanism controlling the dynamics of marine fish 
populations (Houde, 1987; Britten et al., 2016), and in fisheries science is defined as the number 
of juveniles entering the adult, fishable stock. Recruitment is directly coupled to adult biomass, 
and this coupling provides fisheries management with  estimates of incoming year-class 
strength as a basis for setting fishing opportunities (Houde, 1987; Kraus et al., 2000; Perretti et 
al., 2015). However, the stock recruitment relationship is also one of the unsolved mysteries of 
fishery science and its existence is often questioned since parametric models generally fail to 
account for the often high recruitment variability (Myers et al., 1996; Cardinale & Arrhenius, 
2000; Olsen et al., 2011; Perlala et al., 2017). Alternative hypotheses suggest that the 
relationship between recruitment and adult biomass might be non-linear and discontinuous (Ye 
et al., 2015; Harford et al., 2017; Deyle et al., 2018), or non-stationary depending on stock 
conditions, i.e. recruitment is strongly correlated with adult biomass only when the stock size 
is low (Myers & Barrowman, 1996; Brander, 2005). The high uncertainty regarding the 
coupling between recruitment and spawning stock biomass has been further complicated by the 
fact that recruitment is influenced by many exogenous variables such as temperature (Sparholt, 
1996; Planque et al., 1999; Walters & Kitchell, 2001; Stige et al., 2006; Stiasny et al., 2016). 
Finally, like the egg and the chicken causality dilemma, it is still debated whether the adult 
population is conditioned on recruitment or vice-versa (Szuwalski et al., 2015).  
 
Here we used wavelet analysis to understand the variability in the coupling between adult 
biomass and recruitment of 17 cod stocks distributed all over the North Atlantic. This species 
is particularly suitable for our analyses because it underwent abrupt collapses around the 1980s 
and the 1990s due to unsustainable fishing pressure and temperatures changes (Myers et al., 
1997; Rose, 2004; Frank et al., 2016). Moreover, cod stocks present hysteresis to recovery (i.e. 
delayed or absent recovery), discontinuous dynamics in stock biomass and, in many cases, show 
failure in recruitment success (Myers et al. 1994; Hutchings 2000; Brander 2005). Furthermore 
Atlantic cod is not only an iconic and economically valuable species for fisheries, but also an 
important species in the food webs of many ecosystems (Frank et al., 2011). Therefore, 
understanding the dynamics of the coupling between recruitment and adult biomass in Atlantic 
cod stocks can help to understand mechanisms of collapse and recovery and potential 
consequences for management. We here used partial wavelet coherence analysis that evaluates 
coupled fluctuations between two time series. Our aim was to investigate whether (i) cod adult 
biomass and recruitment show temporally coupled or decoupled fluctuations, (ii) whether 
coupling/decoupling of these fluctuations can be related to observed stages of collapse and 
recovery (iii) and identify the sequence of a coupling (i.e. whether the adult population is 
conditioned on recruitment or vice-versa) as a mechanism explaining temporal patterns of 
collapse and recovery. 
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Materials and Methods  
Data  
We analysed the relationship between Recruitment (R, i.e. number of fish that recruit to the 
adult stock in thousands) and Spawning Stock Biomass (SSB, i.e. biomass of mature fish in 
tonnes) based on assessment data of 17 Atlantic cod stocks. Data were provided by the 
International Council for the Exploration of the Sea (ICES), the National Oceanic and 
Atmospheric Administration of the USA (NOAA), the Northwest Atlantic Fisheries 
Organization (NAFO), the Department of Fisheries and Ocean in Canada (DFO) and by 
personal communication (Supplementary Information, Table S3.1). Recent assessments for cod 
stocks in the Kattegat, the Western Baltic as well as the Norwegian coast have been conducted 
only for reduced periods. Therefore, we combined the recent and older stock assessments after 
consistency checks of SSB and R time-series. We used sea surface temperature (SST) to 
represent changes in environmental conditions experienced by each stock. Although SST does 
not fully reflect the thermal habitat of cod, a predominately demersal (bottom-dwelling) 
species, it has previously been shown to be a strong predictor influencing cod recruitment and 
in general stock dynamics, such as reproduction and growth (Brander, 1995; Drinkwater, 2005; 
Ottersen et al., 2013). SST data were collated from the NOAA Extended Reconstructed Sea 
Surface Temperature dataset (ERSST, www.ncdc.noaa.gov) version 4. The dataset represents 
a reconstruction of SST from 1854 to the present and comprises monthly anomalies computed 
with respect to the period 1971-2000, resolved in a 2°x 2° grid of spatial resolution. Data on 
life history traits were also collected for every stock (Wang et al., 2014). 
 
Wavelet analysis 
Fluctuations and changes in the time series were analysed using a wavelet transform 
decomposition (Torrence & Compo, 1998; Rouyer et al., 2008a) (Supplementary Information, 
Figure S3.1-S3.2). In practice, this analysis can be thought of as a cross-correlation of a time 
series with multiple wavelets (Cazelles et al., 2008). Results are traditionally summarized into 
a wavelet coefficient map, displaying the correlations between the studied time series and the 
wavelet functions as a function of time (x-axis) and dilation (y-axis). The wavelet transform 
decomposes the time series over a translated function called “mother wavelet” with 0 mean and 
localized both in time (t) and scale (a). Here, we used the Morlet wavelet as “mother wavelet” 
since it allows for precision in both dimensions. Therefore, time series x(t) of SSB and R were 
decomposed as a wavelet transform:  
 
𝑊S 𝑎, t =	 6

G
	 𝑥(𝑡)𝜑(XKt

G
YZ
KZ )	𝑑𝑡        (1) 

 
where j is the Morlet wavelet of the form: 
 

𝜑 𝑡 = 	𝜋
]^
_ exp −𝑖2𝜋𝑓4𝑡 exp	(−𝑡3/2)       (2) 

 
where t is a non-dimensional time parameter and f a non-dimensional frequency parameter. In 
order to fit the wavelet and to avoid false periodic events, the edges of the time series needed 
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to be artificially increased adding zero-values (zero padding). Thus, the results of the spectra at 
the edge of the time series are usually lacking accuracy and should be interpret with caution 
(Torrence & Compo, 1998; Cazelles et al., 2008; Rouyer et al., 2008a). To highlight these areas 
in our plots, we computed the cone of influence for all the spectra, in which the results are 
inaccurate. Finally, 300 Monte Carlo randomizations were performed and a subsequent C2 test 
to assess whether the patterns and fluctuations identified by wavelet transform were significant 
(significance level 0.05) (Cazelles et al., 2008; Rouyer et al., 2008b; Gouhier et al., 2016).  
 
Once this first analysis was performed, we explored the wavelet coherence between R and SSB 
of Atlantic cod stocks. Wavelet coherence is a method developed to analyse the coupling 
between two time series. To enhance our analysis interpretation, we used the partial wavelet 
coherence (PWTC). This technique allows to remove the effect of a third variable, to understand 
better and more precisely the relationship between the remaining variables (Ng et al., 2012) 
(Supplementary Information, FigureS3.3). In our case, we select as third variable SST, since it 
has an effect on Atlantic cod R and it is also correlated with climate change (Brander, 2005; 
Stige et al., 2006). The coherence between two time series y and x (i.e. R and SSB) can be 
considered as the strength of their association and can be written as:  
 

𝑅3 𝑥, 𝑦 = 	 |O g S,h |i

O g S ∗O[g h ]
        (3) 

 
where s is the smoothing operator.  
 
The partial wavelet coherence was computed like:  
 

𝑅𝑃3 𝑦, 𝑥1, 𝑥2 = 	 |n h,S6 Kn h,S3 ∗n h,S6 |i

[6Kn(h,S3)]i[6Kn(S3,S6)]i
      (4) 

 
The result of the partial coherence analysis is a spectrum defining in time and scale where 
changes in correlations between the two variables, R and SSB can be detected. Significantly 
paired fluctuations of R and SSB have been detected using 300 Monte Carlo randomizations 
and a subsequent C2 test (Ng et al., 2012). To check for the presence of coupling between R 
and SST we computed the PWTC, removing SSB.   
 
Finally, our last objective was to detect the sequence of coupling i.e. whether changes in the 
synchronization between R and SSB could be detected. To understand if the two signals 
oscillate at the same time, we analyse the phases of our decomposed time series. Phase analysis 
is a non-linear technique which allows to study also weak interactions (Cazelles et al., 2008). 
The phase is one of the components originating from the decomposition of a time series by the 
PWTC. It represents the angle between a point in the spectrum (x,y) and the x-axis representing 
time (Cazelles & Stone, 2003). Two signals are phase synchronized if the phases are locked 
together in a stable relationship. However, phases will often be locked only in certain times, 
and signals can be defined as in-phase, if they fluctuate both in the same direction (i.e. for a 
maximum of y corresponds a maximum of x), antiphase, if they fluctuate in opposite directions 
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(i.e. for a maximum of y corresponds a minimum of x), and delayed in time if one of the time 
series cycle starts before the other one. Therefore, using this analysis we were able to identify 
how R and SSB fluctuated relative to each other.  
 
We summarized the results and detected common trends among Atlantic cod stocks by 
averaging the wavelet spectra derived from the PWTC, the results of the phase analysis, and 
the standardized time series of SSB and R. To average the phase analysis results, we firstly 
averaged the sine and cosine of the phase angle. Afterwards we back-transformed these 
Cartesian coordinates into angles using the inverse tangent, and obtained a mean phase for all 
the stocks. We then compared the results of the single stocks with the average to detect 
anomalous dynamics. In order to better explain the different dynamics, we categorized stocks 
depending on their status (recovered, collapsed) and the type of collapse they experienced 
(abrupt and gradual, see Supplementary Information, Table S3.2) and also averaged the PWTC 
within each category. To explain differences between stocks in the recovery patterns, due to 
different R-SSB coupling, we performed multiple Generalized Linear Models (GLM with a 
binomial distribution) using the presence of recovery as dependent and F, life history traits and 
the type of collapse as explanatory variables. Similarly, we use the same explanatory variables 
to explain the results in the phase analysis, however without testing for significance, since the 
sample sizes were too small (Supplementary Information, Table S3.3).  
 
Statistical change point analysis  
We conducted statistical change point analysis to identify abrupt changes in SSB and highlight 
periods of collapse and recovery. To detect the change points we applied two alternative 
approaches, (i) Bayesian Change Point (BCP) Analysis (Barry & Hartigan, 1993; Erdman & 
Emerson, 2007), and (ii) a binary segmentation algorithm (Rohrbeck; Killick & Eckley, 2013). 
BCP uses Bayesian statistics to calculate the probability that a change occurred at every point 
of the time series. Probabilities > 70% are considered to indicate significant changes. Binary 
segmentation uses a general likelihood ratio test to detect significant changes in the mean over 
the entire time series. After the first change has been detected, the time series is divided in two, 
and significant changes in these two parts are identified. We combined the results of both 
techniques to unequivocally define periods of significant changes in SSB. We defined periods 
instead of single years since the collapse or recovery of long-living demersal fish might be 
spread over multiple years. We subsequently evaluated whether changes in the coupling of R 
and SSB indicated by PWTC and phase analysis occurred during the periods of change 
highlighted by the change point analysis. This would indicate that SSB-R relationship is non-
stationary and dependent on stock size. Finally, we categorized Atlantic cod stocks into those 
showing abrupt or gradual dynamics, depending on the reduction in biomass and the duration 
of the collapse. Collapses were considered abrupt if the biomass declined of more than 50% in 
a time between 6-8 years, commonly referred as one generation in Atlantic cod.  
 
All the analyses were performed in R (R Core Team, 2017, version 3.3.1) using the packages: 
bcp (Erdman & Emerson, 2007), changepoint (Killick & Eckley, 2013) and biwavelet (Gouhier 
et al., 2016).  
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Results  
Trends and changes in Atlantic cod stocks 
Change point analysis revealed that all Atlantic stocks collapsed around the late 1980s and early 
1990s apart for the northern ones (Greenland (10), Iceland (9) and North-East Arctic cod (8)) 
that collapsed earlier, i.e. around the 1960s (Figure3.1). Since we were focusing on the stocks’ 
collapse dynamics, we restricted the further analyses to the years between 1985 and 2010 for 
each stock in the Eastern and Western parts of the North Atlantic, also to be able to compare 
all the stocks. However, since the three northern stocks collapsed earlier and have longer time 
series available (Figure3.1(10,9,8)), we considered for them the period between 1960 and 2010. 
All Western stocks collapsed quickly around the 1990, while the Eastern stocks (Figure3.1) 
were more variable. Out of 17 stocks 10 displayed abrupt dynamics, in particular all Western 
stocks, Greenland cod in the North (10), and the two Eastern stocks, the Eastern Baltic (1) and 
West of Scotland (5) (Figure3.1, Supplementary Information, TableS3.2). The remaining stocks 
showed more or less gradual declines (Figure1, Supplementary Information, TableS3.2).  
 

 
Figure 3.1: Trends in spawning stock biomass (SSB) of 17 North Atlantic cod stocks. In the middle, a map with the location 
of the 17 cod stocks. Numbers are according to Table S3.1 in the Supplementary Information (1=Eastern Baltic, 2=Western 
Baltic, 3=Kattegat, 4=North Sea, 5=Irish Sea, 6=West of Scotland, 7=Coastal Norwegian, 8=North-East Arctic, 9= Iceland, 
10=Greenland, 11=Northern cod, 12=North Lawrence, 13=South Lawrence, 14=Eastern Scotian Shelf, 15=Grand Banks, 
16=Flemish Cap, 17=Georges Bank). Red dots are stocks that collapse abruptly, while the green dots indicate more gradual 
dynamics. Note that the x and y axes are adjusted to fit the stock biomass range and the period of the time series and hence 
vary among plots. Grey shades indicate periods with changes in stock status. Vertical red dotted lines show the time series used 
for the wavelet and the change point analyses between 1985 and 2010, or, for the northern stocks between 1960 and 2010. 
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Partial wavelet coherence (PWTC) analysis between recruitment (R) and Spawning Stock 
Biomass (SSB) of Atlantic cod stocks, allowed us to understand the coupling of these two 
variables accounting for the effect of sea surface temperature (SST). Single stock plots, showed 
that the R-SSB relationship was not stable and its strength changed over time (Supplementary 
Information Figure S3.4-3.5; low strength in blue and high strength in red). In particular, PWTC 
revealed a change in the coupling between R and SSB at the same time as the change point 
analysis identified changes in biomass dynamics. Our analyses allowed us to identify 4 major 
stages in the dynamics of Atlantic cod, i.e. “healthy”, “collapsing”, “hysteresis” and “recovery 
kick-off. The identification of these 4 stages confirmed that the R-SSB coupling was highly 
state-dependent (Figure3.2). The 4 stages were also found in the single stock time series, but 
depending on the stock dynamics, not all four stages were present for all the stocks (Figure3, 
Supplementary Information, FigureS3.4-S3.5).  
 

 
Figure 3.2: The 4 stages of Atlantic cod stock dynamics. The upper plot shows the average of the standardized R and SSB 
time series among cod stocks (SSB in blue and R in green). Colours indicate the 4 stages of Atlantic cod stocks based on the 
PWTC results and the stock dynamics. Corresponding results of the average PWTC between R and SSB for all Atlantic cod 
stocks is given below. Time is shown on the x axis, while period in the y axis. The colours correspond to the strength of the R-
SSB coupling (red=strong, blue=weak). The arrows correspond to the average result of the phase analysis. Arrows pointing up 
indicate that SSB drives R, pointing down that R drives SSB, pointing left that the signal are antiphase and pointing right in 
phase. The white shadow represents the cone of influence of every stock; the stronger the white shadow the more uncertain the 
results.  

The 4 stages of Atlantic cod stock dynamics 
The healthy stage – Using PWTC we detected on average a strong decoupling of R and SSB 
in Atlantic cod stocks before c. 1990, i.e. before the overall collapse period (Figure 3.2, in blue). 
During this period both biomass and recruitment were relatively high, but fluctuating 
independent from each other. We observed this first stage in the dynamics of Atlantic cod in all 
the stocks with slight differences in timing related to when the collapse occurred (Figure3.3). 
For instance, in North Sea and in Flemish cod, the decoupling between R and SSB weakened 
before the 1990 (Figure3.3). Since the two variables were decoupled during the healthy stage, 
the phase analysis gave non-significant results. After 1990s, almost all the stocks collapsed and 
moved from the healthy to the collapsing stage.  
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Figure 3.3: Results of the Partial Wavelet Coherence Analysis (PWTC) for selected Atlantic cod stocks. The upper plot 
in each panel shows the R (green) and SSB (blue) time series. The colours of the different periods correspond to the stages 
highlighted in Figure3.2. The shaded areas represent the period of the change point, defined by the change point analysis. 
Below the corresponding results of the PWTC between R and SSB are given for each stock. Time is shown on the x axis, while 
period on the y axis. Colours correspond to the strength of the R-SSB coupling (red=strong, blue=weak). The black line 
identifies significant changes from the mean. The arrows correspond to the average result of the phase analysis. Arrows pointing 
up indicate that SSB drives R, pointing down that R drives SSB, pointing left that the signal is in antiphase and pointing to the 
right it is in phase. The white shadow represents the cone of influence where the results are uncertain.  
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Table 3.1: Stages characteristic of the 17 Atlantic cod stocks. Stocks, stocks numbers and the presence of recovery stage 
are indicated in the first 3 columns. The last columns show the drivers of collapse of Atlantic cod stocks at short and long 
period, and the drivers of recovery at short period, identified by the phase analysis. 

Stock  N° Existence of Recovery Kick-
off stage 

Driver short cycle 
collapse  

Driver long 
cycle collapse Driver recovery 

Eastern Baltic  1 no SSB SSB - 

Western Baltic 2 yes R SSB SSB 

Kattegat 3 no - - - 

North Sea 4 yes R SSB SSB 

West of Scotland 5 no R - - 

Irish Sea 6 no SSB R - 
Coastal 
Norwegian 7 yes - SSB R 

North-East Arctic 8 yes - - R 

Iceland 9 yes - - R 

Greenland 10 no R - - 

Northern 11 no in phase SSB - 

North Lawrence 12 no R SSB - 

South Lawrence 13 no R - - 

Eastern Scotian 14 no SSB SSB - 

Grand Banks 15 no - R - 

Flemish Cap 16 yes SSB R R 

Georges Bank 17 no R SSB - 

 
 
The collapse stage – Between 1990 and 2000 all Eastern and Western Atlantic cod stocks 
collapsed (Figure 3.2, 3.3, Supplementary Information, Figure S3.4-S3.5). During this stage of 
cod dynamics, we found a strong coupling between R and SSB at both short (around 3-4 years) 
and long time periods (around 6-8 years). This strong coupling was related to the synchronous 
decline of R and SSB detected by the change point analysis. Phase analysis revealed which 
variable initiated this strong coupling (Figure 3.2, arrows). At longer periods, in 70% of the 
stocks the main driver was SSB (arrows pointing up), while at short periods the main driver 
was R (arrows pointing down, in 58% of the stocks) (Table 3.1). For instance, the North Sea 
and the Northern cod followed exactly the described pattern, while Irish Sea and Flemish Cap 
cod displayed a reverse pattern, with the short R-SSB coupling being dominated by SSB and 
the long one by R (Figure 3.3, Table 3.1). In order to understand why stocks experienced a 
different sequence of coupling, we visually related their drivers at short and long period with 
the mean fishing pressure, the mean temperature and the age at 50% maturity during the 
collapsing stage (Supplementary Information, Table 3.3). We found that R was the driver 
during the short period coupling when fishing pressure was high, but temperatures and age at 
maturity low (Figure 3.4a). Instead, during the long period, SSB was the driver in particular 
when fishing pressure was high (Figure 3.4b).  
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Figure 3.4: Relation between drivers and state variables. a) the short and b) the long period coupling between R and 
SSB. On the x axis the main driver of the R-SSB relationship plotted against mean F during the collapse, mean standardize 
SST during the collapse and Age at 50% maturity (A50) from Wang et al., 2014. 

 
The hysteresis stage – We identified a period of hysteresis to exist after the collapse of Atlantic 
cod, where the stocks showed no signs of recovery even if the fishing activities were strongly 
reduced. Hysteresis to recovery appeared in all cod stocks, apart from South Lawrence which 
started the collapse later (Figure 3.3, Supplementary Information, Figure S3.4-S3.5). The 
hysteresis stage is hence characterized by SSB and R being low, and importantly both variables 
were decoupled especially at shorter periods (Figure 3.2). Again, the results of the phase 
analysis were not significant. The length of the period varied, e.g., in Northern and Irish Sea 
cod lasted until 2010 while in North Sea and Flemish Cap until around 2005, and these stocks 
started to recover afterwards (Figure 3.3).  
 
The recovery kick-off stage – This last stage of Atlantic cod dynamics was identified just in 
6 stocks (Figure 3.3). The average partial wavelet coherence did not really show any more 
coupling of R and SSB after the hysteresis phase except a small sign in the last two years of the 
time series (yellow area, Figure 3.2). Therefore, to investigate whether a recovery sign could 
be detected, we computed the mean PWTC separated for recovering and still collapsed stocks 
(Figure 3.5, Supplementary Information, Table S3.2). The 6 recovering stocks showed a new 
coupling between R and SSB in the last years of the time series at short periods (Figure 5a). R 
was the driver of this coupling in all stocks apart from North Sea and Western Baltic, as revealed 
by the phase analysis (Table 3.1, Figure 3.5a). Iceland and North-East Arctic cod showed this 
stage as well but not at the end of the time series. Indeed, once these stocks were fully recovered 
and the biomasses were high again, the coupling between R and SSB ceased again (Figure 3.3). 
Hence these stocks reached again a healthy stage, highlighting the cyclic nature of these stages. 
To understand why some stocks showed the recovering phase while others not, we related the 
presence of the recovering stage to a range of variables like mean fishing pressure, mean 
temperature, age at 50% maturity and the type of collapse during the last 5 years using 
generalized linear models (Supplementary Information, Table S3.3 and Figure S3.6). We only 

a) Short fluctuations b) Long fluctuations
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found collapse type to be significant (p value< 0.05), indicating that stocks that underwent 
abrupt collapses were less likely to show the recovery kick off stage compared to gradual 
collapsing stocks (Supplementary Information, FigureS3.7-S3.8). 
 

 
Figure 3.5: PWTC of recovering (a) and still collapsed (b) stocks. The upper plot show the average of the standardize R 
and SSB time series of recovering and still collapsed cod stocks defined in Table S3.2 (in blue SSB, in green R). The colours 
in which the time series is divided represent the stages of Atlantic cod stocks. Below the corresponding results of the average 
PWTC between R and SSB for all Atlantic cod stocks. Time is shown on the x axis, while period in the y axis. The colours 
correspond to the strength of the R-SSB coupling (red=strong, blue=weak). The arrows correspond to the average result of the 
phase analysis. Arrows pointing up indicate that SSB drives R, pointing down that R drives SSB, pointing left that the signal 
are antiphase and pointing right in phase. The white shadow represents the cone of influence of every stock; the stronger the 
white shadow the more uncertain the results. 
 
Discussion 
The nature of the coupling between parent stock size (spawning stock biomass – SSB) and 
subsequent reproductive success manifested by the number of young individuals recruiting to 
the fisheries (recruitment – R) is considered one of the unsolved mysteries in fisheries science.  
The existence of the SSB – R relationship hence has been frequently questioned due to the lack 
of correlation between both variables (Myers & Barrowman, 1996; Marshall et al., 1998; 
Rothschild, 2000). Moreover, it is discussed whether the reverse R – SSB relationship is not 
more important for the dynamics of exploited marine fish populations (Szuwalski et al., 2015). 
Unlike traditional approaches to investigating SSB – R relationships which usually apply 
parametric statistical models, here we applied a frequency domain analysis, the partial wavelet 
coherence analysis (PWTC), that allowed for the investigation of relative changes in periodic 
fluctuations between SSB and R. Our study demonstrates that the association between SSB and 
R of Atlantic cod, species of ecologically, but also socially and economically importance, is 
strongly variable over time but follows clearly definable common patterns.  
 
First of all, our analysis confirmed earlier studies indicating the coupling between SSB and R 
to be weak when the stock is in a healthy state, i.e. at a high SSB, and recruitment variability is 
more dependent on physical oceanographic changes related to climate as well as the interactions 
with other species (Ottersen et al., 1994; Berg & Pedersen, 2001; Begg & Marteinsdottir, 2002; 

a) Recovering stocks b) Collapsed stocks
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Dalpadado et al., 2014). Furthermore we found the coupling between SSB and R to become 
tighter and more significant when stocks have collapsed, confirming previous studies indicating 
a strong SSB – R coupling at low stock sizes (Myers & Barrowman, 1996; Brander, 2005; 
Ottersen et al., 2013).  
 
The strong coupling of SSB and R at low stock size was visible in the PWTC at short and long 
periods. We interpreted the latter as the manifestation of the long-term stock dynamics which 
is generally dependent on stock size. This was particularly obvious in heavily overexploited 
cod stocks such as  Northern cod, and Northern Lawrence, confirming findings from other 
species (Szuwalski et al., 2015). However, Flemish Cap and Irish Sea cod showed contradicting 
dynamics, demonstrating a reverse R – SSB coupling on longer time scales, determined by 
fluctuations in R. Obviously in these stocks environmental and other external drivers, such as 
predation and competition, are stronger drivers than SSB even if stock size is low (Kudlo & 
Boystov, 1979; Planque & Fox, 1998; Borovkov et al., 2005; Morgan & Lilly, 2005; Beggs et 
al., 2014). Moreover, this long term relationship was in some cases quite extended in time, 
especially for stocks that collapsed quite abruptly (e.g. in Northern Lawrence), indicating that 
these abrupt collapses may have altered the recruitment mechanisms more dramatically and 
permanently, influencing future recovery potential (Hutchings, 2000; Hsieh et al., 2006).  
 
The short-term periodical fluctuations between SSB and R during the collapsed stage indicate 
the existence of transient mechanisms that may have reinforced the collapse of the stocks. 
Reinforcing mechanisms are typical for unstable stocks with eroded resilience (Hsieh et al., 
2006; Anderson et al., 2008; Kuparinen et al., 2014; Tu et al., 2018). Short-term periodical 
fluctuations dominated by R indicate that recruitment failure exacerbated the effect of 
overfishing during cod stock collapses. For instance, in the North Sea and in Northern cod low 
year-class strength was caused by changes in prey composition and extremely cold 
temperatures (Myers et al., 1996; Beaugrand et al., 2003). Other stocks such as Irish Sea and 
Flemish Cap cod demonstrated a transient SSB – R coupling dominated by SSB, possibly 
indicating recruitment overfishing. Recruitment overfishing occurs when overexploitation 
pressure caused SSB levels too low to sustain healthy stock levels (Myers et al., 1994). In our 
analyses recruitment overfished stocks typically have a longer life cycle, indicating higher 
vulnerability, and a very high F, and thus suggesting that different exploitation patterns 
combined with different life history traits, might be the cause for different collapse mechanisms.  
 
We found the SSB – R coupling to vanish after the collapses of Atlantic cod stocks, a period 
we termed the hysteresis stage. This period is characterized in most of the stocks by no recovery 
despite lowered fishing pressure which may be results of mechanisms such as 
depensation/cultivations (Walters & Kitchell, 2001). Hysteresis, the delayed or absent recovery 
due to the presence of new feedback mechanisms in the system is typical of shifting systems 
(Beisner et al., 2003). Only six cod stocks have left the hysteresis stage and showed signs of a 
recovery. We found collapse type (abrupt vs gradual) to be a significant predictor of recovery. 
Indeed, abruptly collapsed stocks, such as Northern cod, Northern Lawrence , that have longer 
life cycles and very high exploitation rates are less likely to recover, due to their higher fragility 
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and the stronger existence of mechanisms impairing recruitment after the collapse (Hutchings, 
2000; Lotze et al., 2011).  
 
In almost all cases improved R is the main driver for recovery showing the importance of single 
good year recruitment (Drinkwater 2005, Sguotti et al. Chapter 2). However, we stress the 
importance of continued low fishing pressure for the recovery to be successful indicated by the 
fates of Coastal Norwegian and Western Baltic cod. These stocks show a recovery kick-off in 
c. 2010, but unsustainable fishing pressure in subsequent years prevented the stocks to recover. 
On the contrary, North Sea cod shows signs of recovery driven by reduced SSB (and not 
improved R) indicating that management measures are crucial to recover Atlantic cod stocks. 
Other stocks such as Irish Sea cod recently increased in SSB while no new association between 
SSB and R was visible. This indicates that the stock is not back to a healthy state because its 
internal mechanisms are not completely restored, as shown in previous studies (Planque et al., 
1999; Lotze et al., 2011).  
 
Using the frequency domain analysis PWTC our study demonstrated time-variant patterns in 
the coupling and decoupling of SSB and R in Atlantic cod stocks. Based on this non-traditional 
statistical analysis we were able to define common stages in the dynamics of cod stocks in the 
North Atlantic with an emphasis on mechanism of collapse and recovery. Our results suggest 
that SSB and R have a state-dependent relationship, largely depending on stock size. Our study 
hence contributes to the accumulating evidence that population dynamics of heavily exploited 
species are regularly non-linear and state-dependent (Ye et al., 2015; Perlala et al., 2017). We 
hence conclude that ignoring such dynamics in fisheries management unintentionally increases 
the likelihood of stock collapses, especially under increasing anthropogenic pressure and the 
expected consequences of climate change, but as well negatively influences stock recovery 
potential and hence social and economic benefits for fisheries communities. 
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Supplementary Information Chapter 3 
 
Supplementary Information Tables  
 

Table S3.1: Stock assessment data of Atlantic cod stocks. 

Stock name Stock 
N° 

Management 
area 

Geographica
l Area  

Stock 
assessment 
models*  

Institution/ 
group 

Contact person 
or other data 
source 

Eastern Baltic1 1 25-32 East SAM ICES/ 
WGBAFS Margit Eero 

Western Baltic2 2 22-24 East SAM ICES/ 
WGBAFS Margit Eero 

Kattegat1,2 3 IIIa/21 East SAM ICES/ 
WGBAFS Johan Lövgren 

North Sea 4 IV – VIId – IIIa East SAM ICES/ 
WGNSSK Alexander Kempf 

West of Scotland 5 VIa East TSA ICES/ WGCSE Rui Catarino 

Irish Sea 6 VIIa East SAM ICES/ WGCSE Colm Lordan 

Coastal Barents 
Sea2 7 I – I East Survey SSB and F 

from VPA ICES/ AFWG Gjert Endre 
Dingsor 

Northeast Arctic 8 I – II North XSA ICES/ AFWG Gjert Endre 
Dingsor 

Iceland 9 Va North 
Forward based 
statistical catch at 
age model 

ICES/ NWWG Einar Hjorleifsson 

Greenland 10 1 North XSA  Karl Werner 

Northern cod 11 2J3Kl West State space model DFO DFO(2016)3 

Northern Gulf of 
st. Lawrence 12 3Pn4Rs West SPA DFO Claude Brassard 

Southern Gulf of 
st. Lawrence 13 4T4Vn West SCA DFO Doug Swain 

Eastern Scotian 
Shelf 14 4VsW West VPA DFO Swain & Mohn 

(2012)4 

Grand Banks 15 3NO West SPA NAFO NAFO (2015)5 

Flemish Cap 16 3M West Bayesian model NAFO Diana Gonzalez 

Georges Bank 17 5z West Age structured 
model NOAA Loretta O´Brien 

Stock name, stock number (as in Figure1), abbreviation, management area code, stock assessment models used and the 
institution (or working group within the institution) conducting the stock assessment. Scientists providing data (or other data 
sources) 
 
* SAM – State-space assessment model, TSA – Analytical age-based assessment (time series analysis), XSA – Extended 
survivor analysis, SPA – Sequential population analysis, SCA – Statistical catch at age, VPA – Virtual population analysis 
1 Stocks that in the last year failed the assessment 
2Stocks where, in order to have longer time series, we mixed old assessments and new ones, after checking for same trends 
and stock dimensions. 
3DFO (2016) Stock Assessment of Northern Cod (NAFO Divs. 2J3KL) in 2016. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 
2016/026 
4 Swain DP, Mohn RK (2012) Forage fish and the factors governing recovery of Atlantic cod (Gadus morhua) on the eastern 
Scotian Shelf. Can. J. Fish. Aquat. Sci. 69: 997–1001.  
5 NAFO (2015) Assessment of the Cod Stock in NAFO Divisions 3NO. NAFO SCR Doc. No. 15/034.  
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Table S3.2: Change point analysis.  

Stock name Period of the 
main shift 

%SB after the shift 
compare SB before 

Speed of 
collapse Abrupt  Recovery 

status 

Eastern Baltic 1985-1990 39 5 Yes collapsed 

Western Baltic 1986-1990 57 4 No recovering 

Kattegat 1980-1987 42 7 No collapsed 

North Sea 1999-2006 52 7 No recovering 

West of Scotland 1996-2003 32 7 Yes* collapsed 

Irish Sea 1990-1999 52 9 No recovering 

Coastal Barents Sea2 1990-1997 56 7 No collapsed 

Northeast Arctic 1990-2008 210 18 *increase recovered 

Greenland 1958-1970 32 12 Yes collapsed 

Iceland 1985-1989 104 4 *increase recovering 

Northern cod 1990-1993 11 3 Yes collapsed 

Northern Gulf of st. 
Lawrence 1986-1990 24 4 Yes collapsed 

Southern Gulf of st. 
Lawrence 1986-1993 37 7 Yes* collapsed 

Eastern Scotian Shelf 1987-1992 36 5 Yes collapsed 

Grand Banks 1986-1991 37 5 Yes collapsed 

Flemish Cap 1994-1996 16 2 Yes recovered 

Georges Bank 1990-1994 34 4 Yes collapsed 

Description of the SB decline type of each stock, derived from the trend analysis. The combination of the Bayesian Change 
Point analysis and trend analysis helped to identify the “most probable year” in which shift happened over the time series 
(visualized in the previous Figure). % of SB after the shift compared to SB before is also shown. A stock was considered to 
change abruptly if the SB declined to around 50% of the initial biomass in 5-7 years. Stocks that collapse or change abruptly 
are shown. In the last column the recovery status based on Sguotti et al., is listed.  
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Table S3.3: Atlantic cod stocks traits table 

Stock Mean F 
1985-90 

Mean F 
2005-10 FMSY Mean st T 

1985-90 
Mean st T 
2005-10 L_inf K Age 

50% Collapse 

Eastern Baltic 0.98 0.69 - 0.45 0.82 - - 3.17 abrupt 

Western Baltic 1.17 0.99 0.26 0.39 0.74 103 0.15 2.96 gradual 

Kattegat 1.2 1.20 - 0.35 0.70 105 0.13 2.28 gradual 

North Sea 0.98 0.70 0.33 0.32 0.68 126 0.127 3.73 gradual 

West of 
Scotland 0.89 0.98 0.17 0.29 0.78 105 0.16 2.12 abrupt 

Irish Sea 0.92 1.07 0.3 0.38 0.85 99 0.309 1.97 gradual 

Coastal 
Norwegian 0.48 0.28 - 0.06 0.61 123 0.11 5.29 gradual 

North-East 
Arctic 0.78 0.44 0.4 0.28 0.70 134 0.109 8.01 gradual 

Iceland 0.77 0.46 0.2 0.31 0.71 149 0.121 6.76 gradual 

Greenland 0.6 0.30 0.15 0.3 0.71 - - - abrupt 

Northern 0.2 0.03 * 0.22 0.68 81 0.243 5.97 abrupt 

North 
Lawrence 0.55 0.42 * 0.18 0.53 110 0.16 5.28 abrupt 

South 
Lawrence 0.25 0.01 * 0.19 0.51 - - 4.36 abrupt 

Eastern 
Scotian 0.43 0.03 * 0.31 0.76 - - - abrupt 

Grand Banks 0.45 0.06 0.3 0.33 0.66 130 0.12 6.01 abrupt 

Flemish Cap 0.68 0.11 0.13 0.39 0.75 98 0.243 3.59 abrupt 

Georges Bank 0.65 0.80 0.17 0.34 0.48 132 0.166 2.01 abrupt 
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Supplementary Information Figures  
 
 

 
Figure S3.1: Wavelet decomposition for SSB of all Atlantic cod stocks. On the y axis is shown the period (length) of the 
wavelet, while on the x axis the Year. The colours of the plots increase intensity (from blue to red) as the correlation between 
the time series and the wavelets increase, thus the red areas are changes in the mean of the time series. Significant changes are 
surrounded by black line (p value 0.05).  
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Figure S3.2: Wavelet decomposition for R of all Atlantic cod stocks. On the y axis is shown the period (length) of the 
wavelet, while on the x axis the Year. The colours of the plots increase intensity (from blue to red) as the correlation between 
the time series and the wavelet increase, thus the red areas are changes in the mean of the time series. Significant changes are 
surrounded by black line (p value 0.05). 
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Figure S3.3: Visual explanation of the partial wavelet coherence. a) the wavelet decomposition of the SSB. b) The wavelet 
decomposition of recruitment. c) The partial wavelet coherence. In this case, the areas in red are areas where strong correlation 
can be identified between SSB and R (once subtracted the effect of temperature), thus where R and SSB show similar wavelet 
decomposition. The arrows are the phase of this relationship: if they point up it means that x is driving y so in our case SSB is 
driving R. If they point down y is driving x, R drives SSB. If they arrow point right the two signals are in phase, otherwise they 
are put of phase.  
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Figure S3.4: Time series of PWTC for single stocks. The upper plot show R and SSB time series (in blue SSB, in green R). 
The colours of the different periods correspond to the stages highlighted in Figure3.2. The darker areas represent the period of 
the change point, defined by the change point analysis. Below the corresponding results of the PWTC between R and SSB for 
each stock. Time is shown on the x axis, while period in the y axis. The colours correspond to the strength of the R-SSB 
coupling (red=strong, blue=weak). The black line identifies significant changes from the mean. The arrows correspond to the 
average result of the phase analysis. Arrows pointing up indicate that SSB drives R, pointing down that R drives SSB, pointing 
left that the signal are antiphase and pointing right in phase. The white shadow represents the cone of influence where the 
results are uncertain.  
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Figure S3.5: Time series of PWTC for single stocks. The upper plot show R and SSB time series (in blue SSB, in green R). 
The colours of the different periods correspond to the stages highlighted in Figure3.2. The darker areas represent the period of 
the change point, defined by the change point analysis. Below the corresponding results of the PWTC between R and SSB for 
each stock. Time is shown on the x axis, while period in the y axis. The colours correspond to the strength of the R-SSB 
coupling (red=strong, blue=weak). The black line identifies significant changes from the mean. The arrows correspond to the 
average result of the phase analysis. Arrows pointing up indicate that SSB drives R, pointing down that R drives SSB, pointing 
left that the signal are antiphase and pointing right in phase. The white shadow represents the cone of influence where the 
results are uncertain.  
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Figure S3.6: average PWTC of R and T. The upper plot show the average of the standardize R and T time series among 
recovering cod stocks (in blue SSB, in green R). Below the corresponding results of the average PWTC between R and T for 
all Atlantic cod stocks. Time is shown on the x axis, while period in the y axis. The colours correspond to the strength of the 
R-T coupling (red=strong, blue=weak).  
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Figure S3.7: PWTC of abrupt collapsed stocks (excluding Flemish Cap cod). The upper plot show the average of the 
standardize R and SSB time series among abrupt collapsed cod stocks (in blue SSB, in green R). The colours in which the time 
series is divided represent the stages of Atlantic cod stocks based on Figure3.2. Below the corresponding results of the average 
PWTC between R and SSB for all Atlantic cod stocks. Time is shown on the x axis, while period in the y axis. The colours 
correspond to the strength of the R-SSB coupling (red=strong, blue=weak). The arrows correspond to the average result of the 
phase analysis. Arrows pointing up indicate that SSB drives R, pointing down that R drives SSB, pointing left that the signal 
are antiphase and pointing right in phase. The white shadow represents the cone of influence of every stock; the stronger the 
white shadow the more uncertain the results. 
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Figure S3.8: PWTC of gradual collapsed stocks. The upper plot show the average of the standardize R and SSB time series 
among gradual collapsed cod stocks (in blue SSB, in green R). The colours in which the time series is divided represent the 
stages of Atlantic cod stocks based on Figure3.2. Below the corresponding results of the average PWTC between R and SSB 
for all Atlantic cod stocks. Time is shown on the x axis, while period in the y axis. The colours correspond to the strength of 
the R-SSB coupling (red=strong, blue=weak). The arrows correspond to the average result of the phase analysis. Arrows 
pointing up indicate that SSB drives R, pointing down that R drives SSB, pointing left that the signal are antiphase and pointing 
right in phase. The white shadow represents the cone of influence of every stock; the stronger the white shadow the more 
uncertain the results. 
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Abstract 
The stock-recruitment relationship is the basis of any stock prediction and thus fundamental for 
fisheries management. Traditional parametric stock-recruitment models often poorly fit 
empirical data, nevertheless they are still the rule in fish stock assessment procedures. We here 
apply a multi-model approach to predict recruitment of 20 Atlantic cod (Gadus morhua) stocks 
as a function of adult biomass and environmental variables. We compare the traditional Ricker 
model with two non-parametric approaches; (i) the stochastic CUSP model from catastrophe 
theory and (ii) Multivariate Simplex Projections from the Empirical Dynamic Modelling, based 
on attractor state-space reconstruction. We show that the performance of each model is 
contingent on the historical dynamics of individual stocks, and that stocks which experienced 
abrupt and state-dependent dynamics are best modelled using non-parametric approaches. 
These dynamics are pervasive in western stocks highlighting a geographical distinction 
between cod stocks which has implications on their recovery potential Furthermore, the 
addition of environmental variables always improved the models´ predictive power indicating 
that they should be considered in stock assessment and management routines. Using our multi-
model approach, we demonstrate that we should be more flexible when modelling recruitment 
and tailor our approaches to the dynamical properties of each individual stock. 
 
Keywords: stock-recruitment models, non-linear dynamics, Atlantic cod, stochastic CUSP 
model, empirical dynamic modelling, Ricker model 
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Introduction 
Forecasting complex trajectories of marine resources is essential for fishery management and 
one of the major challenges of our time (Schindler & Hilborn, 2015; Ye et al., 2015). An 
important factor to be considered in fisheries management is the stock-recruitment relationship 
(SRR), which serves as a basis for any stock assessment (Houde, 1987; Perretti et al., 2015). 
SRRs are based on the assumption that recruitment (the number of fishes that enter the adult 
population) is directly related to adult stock size (Houde, 1987; Kraus et al., 2000). Parametric 
approaches, such as the Ricker model, were developed around the 1950s (Ricker, 1954; 
Beverton & Holt, 1993) and still represent the method of choice in stock assessments. These 
models are very specific in the type of functional response curve to describe the SRR, and are 
linear, in the sense that, depending on the parameters´ value, the relationship between 
recruitment and biomass can be linearized (Ye et al., 2015). However, they often fail to capture 
the high variability in recruitment data and this has led to questioning the existence of the 
relationship itself (Szuwalski et al., 2015; Britten et al., 2016; Perlala et al., 2017). The fit of 
the SRR is sometimes so poor, that short-term predictions are conducted using an average of 
recruitment over a particular number of years prior to the starting point of the prediction, instead 
of a model (Deyle et al., 2018). Both approaches, using average recruitment or a parametric 
model, assume that natural systems behave in a linear way, which may lead to biased fisheries 
management decisions when stocks show complex dynamics such as aperiodic chaos, non-
linearity or non-stationarity (Ye & Sugihara, 2016; Perlala et al., 2017; Deyle et al., 2018).  
 
Chaos and non-stationary dynamics are pervasive in natural systems and characterize many 
marine ecosystems and populations (May & Oster, 1976; Scheffer et al., 2001; Möllmann et 
al., 2015). These dynamics emerge from the inherent complexity of nature, governed by a 
multitude of factors (Ye et al., 2015; Deyle et al., 2016; Tu et al., 2018). Assuming linearity 
and stability in recruitment models can, thus, result in wrong stock predictions (Glaser et al., 
2014; Ye et al., 2015). As a consequence, new non-parametric modelling frameworks were 
developed to predict stock trajectories accounting for state-dependent and chaotic behaviour, 
such as the Empirical Dynamic Modelling (EDM) framework (Sugihara et al., 2012; Ye et al., 
2015; Deyle et al., 2018). EDM is a minimal assumptive approach based on time series 
observations, which reconstructs the temporal dynamics of a system by constructing a so-called 
attractor manifold (Sugihara et al., 2012; Ye et al., 2015). EDM is able to predict the future 
system trajectory based on its past dynamics (Ye et al., 2015; Deyle et al., 2018), thus 
accounting for state-dependent dynamics (Sugihara, 1994). This approach, and in particular 
Multivariate Simplex Projection (MSP) has been applied to predict non-linear fish recruitment 
dynamics in a range of studies, and has also been applied directly to management, e.g. for the 
menhaden stocks along the East Coast of the USA (Sparholt, 1996; Perretti et al., 2015; Ye et 
al., 2015; Deyle et al., 2018).  
 
Another non-parametric approach suitable for modelling state-dependent and discontinuous 
recruitment dynamics is the stochastic CUSP model (SCM), which is based on catastrophe 
theory (Zeeman, 1976; Thom, 1977; Grasman et al., 2009; Petraitis & Dudgeon, 2016). Here, 
a state variable Z (for instance recruitment), depends on two control variables alpha and beta. 
The model allows Z to move from a state A (e.g. high recruitment) to a state B (e.g. low 
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recruitment) following either a continuous or discontinuous path (Diks and Wang, 2016 ). SCM 
has been widely applied to economic and behavioural studies (van der Maas et al., 2003; Diks 
& Wang, 2016), but to a lesser degree to marine ecological studies (Jones and Walters, 1976; 
Jones, 1977; Petraitis and Dudgeon, 2015).  
 
Another point often neglected in recruitment prediction is the effect of multiple external drivers 
and potential interactions such as predation, competition and environmental variables (Myers 
et al., 1995; Brander, 2005; Ottersen et al., 2006; Stiasny et al., 2016). However, in multiple 
cases the relationship between recruitment and environment can be spurious, non-linear or non-
stationary, and therefore is often not considered in stock assessments (Myers, 1998; Perlala et 
al., 2017). Parametric models, assuming fixed parameters, often fail to correctly incorporate 
the environmental information, since they just consider additive effect of SSB and climate 
variables. Instead, models like MSP and SCM, can model interactions between the different 
drivers (i.e. biomass and climate variables) and thus may be able to integrate the climate 
information correctly (Ye et al., 2015; Deyle et al., 2018). This is important since for effectively 
predicting the status of living marine resources the integration of environmental variables is 
becoming crucial given the widespread impacts of climate change on ecosystems and marine 
resources such as commercially important fish (Britten et al., 2016; Gaines et al., 2018).  
 
Atlantic cod (Gadus morhua) is an iconic species from ecological, cultural and economic points 
of view (Myers et al., 1996). In recent decades, most North Atlantic cod stocks have collapsed, 
followed by prolonged periods of no recovery even after the application of strict management 
measures (e.g. fishing moratoria) (Myers et al., 1996; Hutchings, 2000; Hutchings & Rangeley, 
2011; Frank et al., 2016). This failed recovery of Atlantic cod stocks suggests the presence of 
discontinuous dynamics and hysteresis (Frank et al., 2011; Steneck et al., 2011). Eastern and 
western Atlantic stocks differ in life history traits, exploitation trajectories and recovery 
potential (Pörtner et al., 2008; Wang et al., 2014; Frank et al., 2016). Indeed, stocks in the West 
collapsed more abruptly compared to stocks in the East which on average show more gradual 
declines (Frank et al., 2016). Cod recruitment is highly state-dependent, depending on the 
dimension of the stock and environment conditions. Recruitment is fundamental to Atlantic cod 
recovery (Myers and Barrowman, 1996; Brander, 2005; Ye et al., 2015) and influenced by 
climate change (Myers & Drinkwater, 1989; Planque et al., 1999; Stige et al., 2006; Pörtner et 
al., 2008; Pershing et al., 2015b). We here used stock assessment data from 20 Atlantic cod 
stocks to i) investigate whether cod recruitment can be best described by the parametric Ricker 
model, by the non-parametric, “discontinuous” SCM, or by the non-parametric, state-dependent 
MSP approach, and ii) test whether the model's predictive power can be optimised when 
including environmental variables. We show that the adoption of a multi-model approach 
should be considered when modelling stocks presenting different dynamics.  
 
Materials and Methods  
Data 
We used recruitment (i.e. number of fish for a particular age and stock that recruit to the adult 
biomass in thousands, R) and spawning stock biomass (i.e. biomass of mature fish in tonnes,
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 SSB) data derived from stock assessments of 20 Atlantic cod stocks (Figure 4.1, 
Supplementary Information Figure S4.1). Data were provided by the International Council for 
the Exploration of the Sea (ICES), the National Oceanic and Atmospheric Administration of 
the USA (NOAA), the Northwest Atlantic Fisheries Organization (NAFO), the Department of 
Fisheries and Ocean in Canada (DFO) and by personal communication (Supplementary 
Information, Table S4.1). Recent assessments for cod stocks in the Kattegat, the Western Baltic 
as well as the Norwegian coast have been conducted only for reduced periods. Therefore, we 
combined recent and older stock assessments after consistency checks of SSB and R time-series 
(see Supplementary Information, Figure S4.2). 
 

 
Figure 4.12: Map of Atlantic cod stocks over the North Atlantic. Each circle corresponds to the centre of distribution of an 
Atlantic cod stock. The colour code corresponds to the division between western stocks (orange) and eastern ones (pink). 

 
We selected sea surface temperature (SST) and the indices of the North-Atlantic Oscillation 
(NAO) and Atlantic Multidecadal Oscillation (AMO) as climate predictors in our models. SST 
data were collected from the NOAA Extended Reconstructed Sea Surface Temperature dataset 
(ERSST, www.ncdc.noaa.gov) version 4. The dataset represents a reconstruction of SST from 
1854 to the present and comprises monthly anomalies computed with respect to the period 
1971-2000, resolved in a 2°x 2° grid of spatial resolution. The data were averaged per year and 
per management unit. SST was chosen because of its importance for recruitment of Atlantic 
cod and is also a proxy for climate change at a local scale (Planque et al., 1999). NAO and 
AMO were used as indices of climate variability at the supraregional scale. In particular NAO 
has been shown to highly correlate with Atlantic cod recruitment (Stige et al., 2006), while 
AMO is a good proxy for climate change at longer time scales in this area. The NAO is a large 
scale, high frequency (7-25 years) climatic index depending on the different atmospheric 
pressure at sea level between Iceland and Azores. The AMO is instead a large-scale, low 
frequency (60 years) multi-decadal index representing climate-related SST changes in the 
Atlantic Ocean. The data for both indices were collected from the Earth System Research 
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Laboratory of NOAA (www.esrl.noaa.gov), and the AMO was averaged to annual values, while 
the NAO was averaged annually but just between December and March. 
 
Modelling strategy 
We compared multiple stock-recruitment models, the traditional Ricker model, the Stochastic 
CUSP model (SCM) and Multivariate Simplex Projections (MSP, from the Empirical Dynamic 
Modelling (EDM) framework). Recruitment models include either SSB alone or SSB in 
combination with one of the climate variables (i.e. SST, NAO and AMO) as predictors. Since 
recruitment can be influenced by climatic factors at different life-stages (i.e. eggs, larvae and 
juveniles), we applied multiple lags on the climate variables depending on recruitment age 
(Supplementary Information, Table S4.1). We assessed the predictive power of the different 
models (three modelling approaches and explanatory variables and corresponding lag selection) 
on the test data using 5-fold cross validation, which randomly splits the time series in 5 parts 
using 4 (training data) to predict the last one (test data). In each of the five iterations, we 
compared the predicted with the observed test values using Pearson correlation coefficients (r) 
(Ye et al., 2015; Deyle et al., 2018). We repeated this procedure 100 times to increase the 
robustness and eventually used the median of the 500 values of r for model comparison.  
 
The recruitment models  
The Ricker Model fits a curve between recruitment and SSB depending on parameters a and b 
(Ricker, 1954). These parameters allow the curve to bend in the middle, so that at very high 
SSB values recruitment will be low due to density dependent effects. However, this model can 
be considered linear, in the sense that, depending on the parameters´ value, the relationship 
between recruitment and biomass can be linearized through transformation, thus, we will refer 
to it as a linear model throughout the text. Climate effects can be added through a new parameter 
(g): 
 
𝑅X = 	𝑆𝑆𝐵Xexp	(𝛼 − 𝛽𝑆𝑆𝐵XKGqFn)        (1a) 
𝑅X = 	𝑆𝑆𝐵Xexp	(𝛼 − 𝛽𝑆𝑆𝐵XKGqFn + 𝛾𝑐𝑙𝑖𝑚𝑎𝑡𝑒XKNGqO)     (1b) 
where ageR is the age at recruitment, and lags the offset between the effect of a climate variable 
and R depending on the age of recruitment. 
 
Stochastic CUSP modelling (SCM) is based on the cusp, one of the seven canonical forms of 
catastrophe theory that describe sudden changes in a system (Thom, 1977; van der Maas et al., 
2003; Petraitis & Dudgeon, 2016). The cusp model is based on a cubic differential equation and 
describes discontinuous transitions in a state variable Zt controlled by two control variables a 
and b.  
 
𝑉 𝑧X; 𝛼, 𝛽 = 6

1
𝑧X1 −

6
3
𝛽𝑧X3 − 𝛼𝑧X         (2) 

 
In SCM, a stochastic differential equation was developed allowing the estimation of Zt, a and 
b in Eq. 2 as a linear function of exogenous variables using a likelihood approach:  
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𝑍X = 	𝑤4 + 𝑤6𝑦6 + 𝑤3𝑦3 + ⋯𝑤h𝑦h        (3a) 
𝛼X = 	𝛼4 + 𝛼6𝑥6 + 𝛼3𝑥3 + ⋯𝛼h𝑥h        (3b) 
𝛽X = 	𝛽4 + 𝛽6𝑥6 + 𝛽3𝑥3 + ⋯𝛽h𝑥h        (3c) 
 
with w, a and b being the coefficients (Diks & Wang, 2016). a is also called asymmetry 
parameter and controls the dimension of Zt. b is called the bifurcation parameter since it controls 
whether the state variable follows a continuous or discontinuous path (Petraitis and Dudgeon, 
2015; Diks and Wang, 2016). The system will present multiple equilibria if it follows a 
discontinuous path (i.e. two stable and one unstable) and just one if it follows a continuous path. 
The number of equilibria of the system depends on the solution of equation (2) from which the 
Cardan´s discriminant (d) is derived: 
 
𝛿 = 27𝛼3 − 4𝛽;          (4) 
 
If d > 0 the system has one equilibrium, indicating a continuous path. Whereas if d < 0 the 
system has three equilibria, indicating a discontinuous path (Diks & Wang, 2016). Therefore, 
SCM allows the detection of interactive effects of the two control variables on the state variable. 
Any changes in the bifurcation parameter b, will lead to changes in the relationship between a 
and Zt and consequently dramatic changes of the state variable (Supplementary Information, 
Figure S4.3). In order to test the predictive power of the model, we first produced the linear 
predictors of the parameters and the state variable. These were then fit into the equation to 
predict the new points on the surface. The model was built as:  
 
𝑍X = 	𝑤4 + 𝑤6𝑅X           (5a) 
𝛼X = 	𝛼4 + 𝛼6𝑆𝑆𝐵XKGqFn          (5b) 
𝛽X = 	𝛽4 + 𝛽6𝑆𝑆𝐵XKGqFn or 𝛽X = 	𝛽4 + 𝛽6𝑐𝑙𝑖𝑚𝑎𝑡𝑒XKNGqO      (5c) 
 
Multivariate Simplex Projection is based on the EDM framework. The cornerstone of this 
framework is the Simplex projection method. The principle of EDM is to reconstruct the 
dynamics of one or multiple time series in a multidimensional space, i.e. an attractor manifold, 
and predict the future trajectory of the system based on these past dynamics (Sugihara et al., 
2012; Ye et al., 2015; Chang et al., 2017). Reconstructing the past dynamics of a system (in 
our case recruitment) is possible either using multiple variables (i.e. SSB or climate indices) or 
just time lags of the system itself (i.e. recruitment) (Sugihara et al., 2012). We here used 
differentiated recruitment time series to build the attractor for each cod stock, and Simplex 
Projection (Eq.6-8) to approximate the attractor dynamics of the system (Sugihara et al., 2012; 
Ye et al., 2015; Deyle et al., 2018). The time series is transformed in a set of time-delayed 
coordinate vectors: 
 
𝑥X = {𝑥X, 𝑥XK}, 𝑥XK3}, 𝑥XK;}, … 𝑥XK �K6 }},       (6) 
 
where x is recruitment, t is time, t is the time lag and E the Embedding dimension. E represents 
the dimensionality of the attractor (Ye et al., 2015). E is selected by predicting the attractor 
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manifold one step ahead into the future (using leave-one-out cross validation) then comparing 
the predictive power of models with a varying E. In order to predict the system into the future, 
𝑥XY6, Euclidean Distance is used and the system is predicted using nearest neighbourhood 
estimations 
 

𝑥XY6 = 	
( 𝑤�,X�Y6

��6 𝑥�,XY6)
𝑤�,X�Y6

��6
        (7) 

 
where wi represents the weights, which are the Euclidean distance to the neighbour vector i 
relative to the nearest neighbour 𝑑. 
 

	𝑤� = exp	(− � ��,��
�

).          (8) 
Multivariate Simplex Projection (MSP) uses again Eq. 7, but with the attractor reconstruction 
of recruitment (R) based on SSB (instead of recruitment itself) alone or together with climate 
variables:  
 
𝑅X = 𝑆𝑆𝐵XKGqFn           (9a) 
𝑅X = 𝑆𝑆𝐵XKGqFn, 𝑐𝑙𝑖𝑚𝑎𝑡𝑒XKNGqO           (9b) 
 
In order to perform the MSP, it was necessary to perform two preliminary tests, the S-Map and 
the Convergent Cross Mapping (CCM) to unravel recruitment dynamics and relationship 
between recruitment and explanatory variables, respectively.  
 
EDM-specific preliminary tests S-Map & CCM 
The S-Map, was performed after the attractor reconstruction with Simplex Projection. This test 
includes a tuning parameter q that controls the weights 𝑤�from Eq. 7, and, if bigger than 0 
indicates non-linearity (Sugihara, 1994; Klein et al., 2016; Dakos et al., 2017). Significance of 
non-linearity was assessed using a null distribution generated from 500 surrogate time series 
for each S-Map model. The surrogate time series were created following Deyle et al. (2018) 
and were phase-randomized which preserves the basic statistical properties of the original time 
series (Ebisuzaki, 1997). We averaged the S-Map results for all Atlantic cod recruitment time 
series to understand the overall dynamics.  
We performed Convergent Cross Mapping (CCM) between recruitment and SSB and the 
climate variables (SST, NAO and AMO), a technique to understand causality between time 
series without assuming any distribution (Sugihara et al., 2012; Deyle et al., 2016; Pierre et al., 
2018). CCM is based on the principle that, if SSB or climate variables have an influence, then 
the recruitment time series will contain information about the past state of these variables. CCM 
is performed using Eq. 7 (see Deyle et al., 2018).  
 
Software 
All analyses were performed in the programming environment R (R Core Team, 2017, version 
3.3.1) using the packages FSA (Ogle, 2016), cusp (Grasman et al., 2009), rEDM (Ye et al., 
2016)
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Results  
In our multi-model approach, we compared the parametric, linear Ricker model with two non-
parametric, state-dependent approaches, i.e. the catastrophic stochastic CUSP model (SCM) 
and the state-dependent Multivariate Simplex Projection (MSP), with or without environmental 
variables as predictors (Figure 4.2). The two preliminary tests of the Empirical Dynamic 
Modelling (EDM), necessary to perform the MSP, revealed on average significantly non-linear 
dynamics in recruitment of Atlantic cod stocks, and an appropriate choice of explanatory 
variables (Supplementary Information, Figure S4.4-S4.5), thus allowing us to proceed with the 
analyses. For most of the Atlantic cod stocks, the best performing models produced high 
correlations between observed and predicted values (0.7 < r  < 0.8). An exception were North-
East Arctic, Iceland and Gulf of Maine cod stocks where the predictive power was reduced 
(about r = 0.4). Differences between the three model types were in general low (Figure 4.2). 
The Ricker model performed best for six stocks, the SCM for nine stocks and the MSP four 
stocks (Figure 4.2, Supplementary Information, Table S4.2). For stocks where SCM was the 
best, the MSP generally showed also a high predictive power, indicating that both models can 
well describe abrupt dynamics (e.g. Figure 4.2h,i,j,m). The addition of climate variables as 
explanatory variables to the baseline SSB models generally increased the predictive power, 
independently of the model type, even though SSB was often the most correlated explanatory 
variable (Figure 4.2, Supplementary Information Table S2 and as shown in CCM, Figure S5). 
SST and AMO were selected, based on the predictive power of the model, in eight stocks and 
NAO in the remaining four stocks, generally agreeing with CCM results (Figure 4.3, 
Supplementary Information, Figure S4.5). However, adding a climate variable had only a weak 
or even no additional effect when the baseline SSB model performed already poorly (e.g. Figure 
4.2s, Ricker model).  
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Figure 4.13: Stock-recruitment model comparison. The comparison between the predictive power of the best models 
resulting from the model selection of the Ricker, Stochastic CUSP model (SCM) and Multivariate Simplex Projection (MSP). 
The median of the predictive power, derivate from the cross-validation is shown for the three models without (blue) and with 
(green) the inclusion of the climate variables. The best model between the three, i.e. the model presenting the highest Pearson 
r, is for each stock indicated by a star. The black star indicates the best models which however had a poor fit to recruitment 
and thus were substituted by the second-best model. The environmental variable that resulted in the best predictions can be 
found in Figure4. 3 and Supplementary Information, Table S4.2. The number of years in the time series are indicated for each 
stock. The titles’ colours correspond to the geographical location of the stock, pink in the East Atlantic, and orange in the West.    
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The Ricker model best represented more gradual declines in recruitment, typical for cod stocks 
around the British Isles (i.e. North Sea, West of Scotland and Irish Sea), those closer to the 
Arctic (i.e. Faroe Plateau, North-East Arctic and Iceland cod) and Georges Bank cod (Figure 
4.3a-g, Supplementary Information, Table S4.3), as illustrated by their individual time series 
(Supplementary Information, Figure S4.1). All of these stocks, except Georges Bank, displayed 
strong density-dependence in recruitment at high SSB levels, which is characteristic for the 
Ricker model. Furthermore, Ricker models clearly revealed that recruitment in warmer years is 
usually lower for the same level of SSB when compared to colder conditions (as indicated by 
low SST, NAO or AMO in Figure 4.3a,d,g). The only exception with the reverse pattern of 
higher recruitment values at warmer conditions were North-East Arctic and Iceland cod, hence 
the only cod stocks that really profited from climate warming (Figure 4.3e,f). 
 
SCM instead is an approach from catastrophe theory which models best discontinuous 
dynamics characterized by abrupt sudden shifts and hysteresis (i.e. in this case delayed 
recovery). The recruitment and SSB time series of Canadian stocks on the Western Atlantic 
side, but also Greenland and Eastern Baltic cod (Supplementary Information, Figure S4.1) show 
this type of dynamics, and hence SCM was the best approach for these stocks. SCM identified 
discontinuous stock-recruitment dynamics caused by the interaction of SSB and the climate 
variable. Moreover, SCM can identify catastrophic collapse which occurs when SSB is found 
in the “folded” area, or area of instability (see blue shaded areas in Figure 4.3h-o, 
Supplementary Information, Figure S4.3). Recruitment collapsed in these stocks, when in the 
instability area, in response to only small reductions in stock size (Figure 4.3 h-o). 
Consequently, SSB was a significant predictor in all SCMs, controlling the stocks dimension, 
while the climate variables modified the relationship between recruitment and SSB rendering 
it discontinuous, and thus inducing hysteresis (Supplementary Information, Table S4.4). These 
two factors lead to the presence of stable low recruitment levels towards the end of the time-
series. Low SSB coupled with warming (as indicated by climate variables SST, NAO and 
AMO, Supplementary Information, Table S4.4) had the potential to stabilize low recruitment. 
This is indicated by values outside the bifurcation area as best demonstrated by Northern and 
Grand Banks cod (Figure 4.3i,m). Other cod stocks such as those from the Gulf of St. Lawrence, 
on the Eastern Scotian Shelf and off Greenland were at the boarder of stable low recruitment 
levels (Figure 4.3h,j,k,l). 
 
Eventually, we found MSP to be the best model for recruitment of stocks that did not show 
collapses, but mostly fluctuating dynamics such as cod in the Western Baltic, the Kattegat 
(since, even if the SCM was the best the model, the fit was invalid), the Celtic Sea, the 
Norwegian coast and in the Gulf of Maine (Figure 4.3p-t, Supplementary Information, Figure 
S4.1). The MSP however, seemed also appropriate to model catastrophic dynamics, but less 
effectively than the SCM. In contrast to the stocks best modelled with SCM and Ricker, stocks 
best modelled with MSP showed a mixed response to recent warming with a clear negative 
effect on recruitment in the Western Baltic only (Figure 4.3q). 
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Figure 4.14: Best model visualization. Every stock is plotted using the resulted best model from the model comparison. The 
titles’ colours correspond to the geographical location of the stock, pink in the East Atlantic, and orange in the West.  a-g) The 
results of the Ricker model, showing density-dependent effects on the stock-recruitment relationship. On the x-axis SSB in 
thousand t and on the y-axis recruitment in millions. The colour of the dots corresponds to the state of the climate variable 
indicated, red above the mean, blue below the mean. The line represents the smoothed predicted trend of the SRR. h-o) The 
results of the stock-recruitment stochastic CUSP models (SCM) on stocks showing catastrophic dynamics. On the x-axis 
Spawning Stock Biomass (SSB) in thousand tonnes, on the y-axis the best climate predictor, either Sea Surface Temperature 
(SST), North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO). The dimension of the dots corresponds 
to the recruitment dimension. The blue area corresponds to the instability area, thus the fold in the 3D visualization 
(Supplementary Information FigureS3) where 3 equilibria are possible. p-t) The results of the Multivariate Simplex Projection 
(MSP) for stocks showing more fluctuating but still state-dependent dynamics. On the x-axis the time in Year and on the y-
axis recruitment. The dimension of the dots is proportioned to the dimension of SSB. Also in this case, the colour corresponds 
to the state of the climate variable indicated, red above the mean, blue below the mean. The line showed the predicted trend of 
recruitment over time.  

 
Discussion 
Short-term predictions of the size of an incoming year-class is essential to modern assessments 
of commercial fish species, but often suffers from the accuracy of available models predicting 
recruitment based on continuous, linear relationship with spawning stock biomass (SSB). In 
our study, we investigated whether (i) recruitment dynamics in Atlantic cod stocks are better 
predicted by non-parametric, state-dependent or catastrophic statistical methodology compared 
to traditional parametric, linear approaches such as the Ricker stock-recruitment model, and (ii) 
if using climate variables as predictors in addition SSB improves the predictive performance of 
such models.  
 
The main result of our study is that predicting fish stock recruitment can be improved by 
tailoring the modelling approach to the dynamical properties of each individual stock. We found 
cod stocks with more gradual and mostly linear dynamics to be best predicted by the traditional 
linear Ricker model, while stocks that experienced sudden abrupt changes in recruitment and 
stock size are best described by the stochastic CUSP model (SCM). SCM, based on catastrophe 
theory, is well suited to represent such discontinuous regime shift dynamics (Thom, 1972; 
Grasman et al., 2009; Diks & Wang, 2016). SCM allows for the identification of drivers and 
how their interaction results in unstable recruitment dynamics and hence provides a form of 
vulnerability assessment that can be instrumental in management (Petraitis & Dudgeon, 2015; 
Diks & Wang, 2016). Eventually, Multivariate Simplex Projection (MSP) was most appropriate 
for stocks that displayed more chaotic and fluctuating behaviours (Sugihara et al., 2012; Ye et 
al., 2015). Indeed, being a minimally assumptive model the most complex dynamics are better 
captured by it. MSP as part of the EDM (Empirical Dynamic Modelling) suite of methods is 
based on attractor reconstruction and accounts for state-dependent dynamics (Ye et al., 2015). 
which makes it a suitable approach to model also discontinuous dynamics (Ye et al., 2015; 
Deyle et al., 2018). Mostly, both SCM and MSP models performed similarly in our analysis 
and their relatively high predictive power indicated the importance of using state-dependent 
and/or discontinuous approaches to model recruitment (Ye et al., 2015; Deyle et al., 2018; 
Munch et al., 2018).  
 
Our study highlights that important differences exist between cod stocks in the Eastern and 
Western areas of the North Atlantic (Frank et al., 2016). Stocks from the Western Atlantic and 
in particular off Canada and Greenland often experienced pronounced catastrophic dynamics, 



  Discussion 

 91 

i.e. abrupt and sudden changes in stock size and recruitment. Eastern Atlantic stocks instead 
showed more continuous dynamics and thus a higher degree of stability. In general Western 
Atlantic cod stocks seemed to be less resilient to abrupt collapses due to more fragile life history 
traits, an overall more extreme and difficult environment, and different exploitation histories 
(Rätz & Lloret, 2003; Pörtner et al., 2008; Wang et al., 2014; Frank et al., 2016). Moreover, 
sea surface temperature (SST) was selected in Eastern Atlantic cod stocks models, while for 
Western stocks the climate indices explained better the recruitment variability. This difference 
might indicate that the Eastern cod stocks are more influenced by local processes, while in the 
Western Atlantic large scale climatic fluctuations are more important. Nevertheless, the 
addition of the climate factors in the best stock-recruitment models almost always increased its 
predictive power and thus highlights the importance of using environmental information also 
in stock assessment and management considerations to consider broader ecosystem dynamics 
(Punt et al., 2013; Skern-Mauritzen et al., 2015).   
 
These results highlight the presence of multiple dynamics in cod stocks which are also 
supported by the results of the preliminary S-Maps tests revealing a significant level of non-
linearity in recruitment time-series of Atlantic cod stock. However, the non-linearity signal is 
lower than expected, which we assume is due to the nature of the stock assessment data we 
used, and thus could be an underestimation (Brooks et al., 2015). Such model output tends to 
be smoother and more linear than survey data (Storch et al., 2017), which are unfortunately not 
available for all cod stocks and longer time-periods needed for our study.  
 
Finally, the different models allow us to draw conclusions about the recovery potential of 
collapsed Atlantic cod stocks. Most of the stocks are negatively influenced by warming and 
climate change, since the lowest recruitment and SSB coincide with the highest temperature 
(Brander, 2005; Drinkwater, 2005; Pörtner et al., 2008). The only two exceptions are North-
East Arctic cod and Iceland where a warming environment positively influences recruitment, 
since these two stocks reside at the northern distribution limit of the species (Pörtner et al., 
2008). The stocks for which the traditional Ricker model performed best, such as the ones from 
the North Sea and around the British Isles, show continuously low recruitment and SSB in 
recent years and a continuous relationship between these parameters. These imply that, with 
low exploitation pressure these stocks have a higher recovery potential, but with climate change 
the productivity will likely remain low (Drinkwater, 2005). The situation is even worse for 
stocks that are best described by the SCM such as the Western Atlantic stocks where the 
relationship between recruitment and SSB is discontinuous and thus the stocks display a strong 
hysteresis effect. Most of them are at present in a stable low state, suggesting that recovery 
might be even further delayed and productivity will remain low.  
 
Conclusions  
We demonstrated that discontinuous, state-dependent dynamics are pervasive in at least half of 
Atlantic cod stocks and need to be considered when predicting year-class strength. Furthermore, 
we show the importance of accounting for environmental factors in recruitment predictions. 
Our findings indicate the need for more flexibility in the stock assessment process and highlight 
the importance for an adaptive multi-model approach that accounts for the inherent dynamics 
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of living marine resource populations (Punt et al., 2016). Flexible models and adaptive 
management are fundamental to move towards an ecosystem-based management approach, 
especially in the face of climate change. To achieve this, we need to move away from fixed and 
established model procedures and explore other options, to be ready to adapt to the new 
challenges that climate change will pose (King et al., 2015).  
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Supplementary Information Chapter 4 

Supplementary Information Tables 
 
Table S4.1: The stocks assessment models of the Atlantic cod stocks. Stock number and corresponding name have been 
listed together with management area code, stock assessment models used, age at recruitment (in years), and the institution 
(or working group within the institution) conducting the stock assessment. Last column provides the person or organisation 
responsible for the data 

Stock name Stock N° Management 
area 

Stock assessment 
models*  

Age at 
R 

Institution/ 
group 

Contact person or 
other data source 

Eastern Baltic1 1 25-32 SAM 2 ICES/ WGBAFS Margit Eero 

Western Baltic2 2 22-24 SAM 1 ICES/ WGBAFS Margit Eero 

Kattegat1,2 3 IIIa/21 SAM 1 ICES/ WGBAFS Johan Lövgren 

North Sea 4 IV – VIId – IIIa SAM 1 ICES/ WGNSSK Alexander Kempf 

West of Scotland 5 VIa TSA 1 ICES/ WGCSE Rui Catarino 

Irish Sea 6 VIIa SAM 1 ICES/ WGCSE Colm Lordan 

Celtic Sea 7 VIIe – VIIk XSA 1 ICES/ WGCSE Colm Lordan 

Coastal Barents 
Sea2 8 I – I Survey SSB and F 

from VPA 2 ICES/ AFWG Gjert Endre Dingsor 

Northeast Arctic 9 I – II XSA 3 ICES/ AFWG Gjert Endre Dingsor 

Faroe Plateau 10 Vb1 XSA 2 ICES/ NWWG Petur Steingrund 

Iceland 11 Va 
Forward based 
statistical catch at age 
model 

3 ICES/ NWWG Einar Hjorleifsson 

Greenland 12 1 XSA 2 Thünen Institute 
of Sea Fishery Karl Micheal Werner 

Northern cod 13 2J3Kl State space model 2 DFO DFO(2016)3 

Northern Gulf of st. 
Lawrence 14 3Pn4Rs SPA 3 DFO Claude Brassard 

Southern Gulf of st. 
Lawrence 15 4T4Vn SCA 2 DFO Doug Swain 

Eastern Scotian 
Shelf 16 4VsW VPA 2 DFO Swain & Mohn 

(2012)4 

Grand Banks 17 3NO SPA 2 NAFO NAFO (2015)5 

Flemish Cap 18 3M Bayesian model 2 NAFO Diana Gonzalez 

Georges Bank 19 5z Age structured model 1 NOAA Loretta O´Brien 

Gulf of Maine 20 5y Age structured model 1 NOAA Mike Palmer 

 
* SAM – State-space assessment model, TSA – Analytical age-based assessment (time series analysis), XSA – Extended survivor analysis, 
SPA – Sequential population analysis, SCA – Statistical catch at age, VPA – Virtual population analysis 
1 Stocks that in the last year failed the assessment 
2Stocks where, in order to have longer time series, we mixed old assessments and new ones, after checking for same trends and stock 
dimensions. 
3DFO (2016) Stock Assessment of Northern Cod (NAFO Divs. 2J3KL) in 2016. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2016/026 
4 Swain DP, Mohn RK (2012) Forage fish and the factors governing recovery of Atlantic cod (Gadus morhua) on the eastern Scotian Shelf. 
Can. J. Fish. Aquat. Sci. 69: 997–1001. 	
5 NAFO (2015) Assessment of the Cod Stock in NAFO Divisions 3NO. NAFO SCR Doc. No. 15/034. 	
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Table S4.2: Results of the model selection for each stock 
 

 Model Selected 
variables 

Predictive 
power Stock name Model Selected 

variables 
Predictive 
power 

Eastern Baltic  

Ricker 
SSB 0.65 

Western 
Baltic 

Ricker 
SSB 0.62 

SSB + 
NAO_lag2 0.73 

SSB + 
AMO_lag1 0.73 

CUSP 
SSB 0.69 

CUSP 
SSB 0.69 

SSB + 
AMO 0.83 

SSB + 
AMO_lag1 0.73 

EDM 
SSB 0.37 EDM 

SSB 0.76 
SSB + SST 0.7 SSB + SST 0.81 

Kattegat 

Ricker 
SSB 0.31 

North Sea 

Ricker 
SSB 0.67 

SSB + 
AMO 0.36 

SSB + 
SST_lag1 0.81 

CUSP 
SSB 0.64 

CUSP 
SSB 0.7 

SSB + 
NAO_lag1 0.67 

SSB + 
SST_lag1 0.74 

EDM 
SSB 0.52 

EDM 
SSB 0.39 

SSB + 
NAO_lag1 0.5 

SSB + 
AMO_lag1 0.72 

West of 
Scotland 

Ricker 
SSB 0.85 

Irish Sea 

Ricker 
SSB 0.8 

SSB + 
SST_lag1 0.87 SSB + SST 0.85 

CUSP 
SSB 0.8 

CUSP 
SSB 0.82 

SSB + 
SST_lag1 0.79 SSB + SST 0.84 

EDM 
SSB 0.52 

EDM 
SSB 0.64 

SSB + 
SST_lag1 0.69 

SSB + 
AMO_lag1 0.83 

Celtic Sea  

Ricker 
SSB 0.26 

Coastal 
Norwegian 

Ricker 
SSB 0.81 

SSB + 
SST_lag1 0.28 SSB + SST 0.8 

CUSP 
SSB 0.37 

CUSP 
SSB 0.76 

SSB + 
SST_lag1 0.34 

SSB + 
SST_lag1 0.82 

EDM 
SSB -0.14 

EDM 
SSB 0.81 

SSB + 
SST_lag1 0.51 SSB + NAO 0.88 

North-East 
Arctic  

Ricker 
SSB 0.49 

Faroe 
Plateau 

Ricker 
SSB 0.49 

SSB + 
AMO_lag3 0.54 

SSB + 
SST_lag1 0.64 

CUSP 
SSB -0.09 

CUSP 
SSB 0.29 

SSB + 
NAO_lag3 0.42 

SSB + 
SST_lag1 0.53 

EDM 

SSB 0.26 

EDM 

SSB 0.15 

SSB + 
AMO_lag2 

0.27 

SSB 
+SST_lag1 

0.36 

Iceland  

Ricker 
SSB 0.2 

Greenland 

Ricker 
SSB 0.64 

SSB + 
AMO_lag2 0.47 

SSB + 
SST_lag2 0.81 

CUSP 
SSB 0.25 

CUSP 
SSB 0.85 

SSB + 
AMO_lag2 0.44 

SSB + 
NAO_lag2 0.85 

EDM 
SSB 0.19 

EDM 
SSB 0.76 

SSB + 
NAO_lag3 0.36 

SSB + 
NAO_lag2 0.84 
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Northern 

Ricker 
SSB 0.82 

Northern 
Lawrence 

Ricker 
SSB 0.84 

SSB + 
AMO 0.8 SSB + SST 0.86 

CUSP 
SSB 0.93 

CUSP 
SSB 0.92 

SSB + 
SST_lag2 0.95 SSB + AMO 0.94 

EDM 
SSB 0.87 

EDM 
SSB 0.82 

SSB + SST 0.93 
SSB + 
SST_lag3 0.91 

Southern 
Lawrence 

Ricker 
SSB 0.69 

Easter 
Scotian Shelf  

Ricker 
SSB 0.76 

SSB + 
AMO_lag2 0.76 

SSB + 
NAO_lag2 0.75 

CUSP 
SSB 0.78 

CUSP 
SSB 0.65 

SSB + 
AMO_lag2 0.8 

SSB + 
AMO_lag2 0.76 

EDM 
SSB 0.36 

EDM 
SSB 0.56 

SSB + 
AMO 0.78 

SSB + 
NAO_lag2 0.67 

Grand Banks 

Ricker 
SSB 0.73 

Flemish Cap 

Ricker 
SSB 0.64 

SSB + NAO 0.82 SSB + SST 0.64 

CUSP 
SSB 0.87 

CUSP 
SSB 0.63 

SSB + 
SST_lag1 0.83 

SSB + 
NAO_lag2 0.68 

EDM 
SSB 0.65 

EDM 
SSB 0.24 

SSB + 
AMO_lag2 0.82 

SSB + 
SST_lag1 0.6 

Georges Bank  

Ricker 
SSB 0.89 

Gulf of Maine  

Ricker 
SSB 0.31 

SSB + 
NAO_lag1 0.9 SSB + NAO 0.43 

CUSP 
SSB 0.87 

CUSP 
SSB 0.41 

SSB + 
AMO_lag1 0.85 

SSB + 
NAO_lag1 0.36 

EDM 
SSB 0.81 

EDM 
SSB 0.06 

SSB + SST 0.79 
SSB + 
AMO_lag1 0.52 

 
For every stock the results of the best Ricker model, SCM, and EDM with and without environmental variable is shown. The 
Predictive power corresponds to the median of the 500 Pearson rho, obtained from the cross-validation. 
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Table S4.3: Results of the best Ricker stock-recruitment model 
 

 North Sea West of Scotland Irish Sea Faroe Plateau 

a 4.781e+04 1.270e+04 7.600e+07 9.044e+03 

b 2.316e-06 3.988e-05 5.243e-05 1.644e-05 

c -8.630e-01 -8.486e-01 -1.462e+00 -1.014e+00 

residual 13.7 8.5 45.7 16.9 

Better than BH *** * ** *** 

 North-East Arctic Iceland Georges Bank  

a 3.297e+00 1.017e+00 2.403e-01  

b 1.474e-06 1.716e-06 -1.220e-06  

c 1.229e+00 -9.752e-01 -2.692e-01  

residual 24.4 5.9 10  

Better then BH * *** *  

     

a,b,c are the parameter fitted in the model for the climate effect (c) and the density dependent effects (a and b) 
residual sum of square indicates the model fit  
The last line show whether the Ricker model constitutes a significant improvement from a Beverton and Holt model  
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Table S4.4: Results of the best Stochastic CUSP model 
 

 Greenland Northern cod Northern St Lawrence Southern St Lawrence 

alpha -2.409** -7.6** -1.75** -2.234** 

alhpa1 1.824e-06** 8.872e-06** 1.347e-05** 6.511e-06* 

beta 3.614*** 9.375** 2.403*** 3.082*** 

beta1 0.7237** -1.432* 2.21E+00 8.301*** 

Z -2.268e+00*** -2.451*** -2.21*** -3.013*** 

Z1 7.06e-06*** 3.08E-06 2.246e-05*** 8.978e-06*** 

delta AIC 1416 834 884 1009 

R squared 0.78 0.81 0.79 0.64 

 Eastern Scotian Shelf Grand Banks Flemish Cap Eastern Baltic 

alpha -1.546** -3.306*** -2.333** -1.554** 

alhpa1 1.175e-05* 3.575e-05** 7.044e-05* 2.873e-06** 

beta 1.999** -0.2526 2.784*** 2.701*** 

beta1 4.51** 0.2357 0.2302 5.27*** 

Z -2.27*** -2.142*** -2.187*** -2.826*** 

Z1 2.873e-05*** 1.734e-05*** 3.697e-05*** 6.834e-06*** 

delta AIC 836 1260 877 1107 

R squared 0.5 0.66 0.69 0.73 

 
alpha, beta and Z represents the intercept of respectively the asymmetry variable, the bifurcation variable and the State variable, 
while alpha1, beta1 and Z1 shows the coefficients. The stars indicate the significance (*=0.05, **=0.005, ***<0.0005). Delta 
AIC show the improvement of the Stochastic CUSP model (SCM) compared to the same linear model. Finally, the R squared 
show how well the SCM fits to the data.  
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Supplementary Information Plots  
 

 
Figure S4.1: Recruitment and Spawning Stock Biomass (SSB) trend over time for Atlantic cod stocks. On the x axis 
year, on the y axis recruitment in millions and SSB in thousands tons. Recruitment is shown in green, while SSB in blue 
dotted line. The data come from the stock assessment indicated in Supplementary Information, Table4.1. 
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Figure S4.2: Stock assessment used for short time series stocks. The plots represent SSB in tonnes over time. On the left 
panel, the older stock assessments. On the right panel the new stock assessment (black lines), merged with the old stock 
assessment (blue lines). We merged them together because we needed a long time series, but also we wanted to have the more 
recent stock assessments, from 2017.  
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Figure S4.3: Example of the Stochastic CUSP model. In this example, the state variable is spawning stock biomass (SSB) 
and the predictors are seat surface temperature (SST) and fishing Mortality (F). The CUSP model can be visualized as a 3D 
landscape (a) in which SSB is controlled by two control variables, here Fishing Mortality (F, a) and SST (b). F is the so called 
“asymmetry variable” and controls the dimension of SSB; indeed, SSB will be in the higher fold (i.e. high SSB) when F would 
be low and in the lower fold (i.e. low SSB) when F would be high. Instead, SST, the “bifurcation variable” controls whether 
the moving on SSB happens in a continuous or discontinuous way. In this example, at low SST the SSB will have a continuous 
dynamic and will respond in a continuous way to increase in F, while at high SST, the SSB will cross the fold, indicating a 
discontinuous path. The fold is the so called “instability areas”, where 3 equilibria (2 stable, 1 unstable) are possible. The same 
representation can be seen in 2D (b-c). The instability area is the blue area in the plot. The SSB follows a discontinuous path, 
since it is always closed or crossing the instability area. (c) At the beginning of the time series F was low and SSB high. At the 
increasing of F, SSB started to oscillate close to the instability area to finally collapse in the lower fold and into the unstable 
state (small dots). Even with reduction of F, SSB is now in a low state and it is pushed from the higher SST even more into the 
instability area, thus the stock resilience is low. Therefore, higher SST modifies the relationship between F and SSB, causing 
hysteresis and discontinuous, non-linear dynamics.  
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Figure S4.4: Non-linearity test on Recruitment data. a) Average of the S-map results among Atlantic cod stocks. The y axis 
shows the improvement in the predictability (r), while the x axis show the parameter q, which represent the non-linearity. The 
grey area represents the null distribution of the non-linearity test. The best prediction was obtained at a q of 1 and outside of 
the null distribution, indicating a significant non-linear trend in recruitment time series. b) The results of the non-linear test for 
each stock (represented by the numbers showed in Figure4.1). Y axis represent the value of q which corresponded to the best 
prediction. The stocks above the grey area show non-linear trend, and the stocks in bold are significantly non-linear. The colour 
of the numbers refers to the East (pink) West (orange) division. 
  

a) b)
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Figure S4.5: Convergent Cross Mapping (CCM) correlation of recruitment (R) with biomass (SSB) and environment. 
Cross-mapping skills are calculated as Pearson r between observed and predicted values using equation (2). Library size 
represents the time series length. CCM aims to detect correlation between variables, in our case R, SSB and environment. In a 
full deterministic system with zero noise, we expect the cross-map skill to increase with increasing time series length, i.e. with 
the reconstruction becoming denser. The colour of the frame refers to the East (dark blue) West (light blue) division. 
 

Library Size 

Cr
os

s-
m

ap
 s

kil
l (
r
)

SSB SST AMO NAO



 

 103 

Chapter 5: Non-linear dynamics in North Atlantic herring 
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Abstract 
Sudden structural changes, often termed regime shifts, have been increasingly documented for 
marine ecosystems with climate change as major driver, interacting with anthropogenic 
pressures such as overfishing. Whether observed changes can be classified as true catastrophic 
transitions, characterized by abrupt shifts, discontinuity in the response to drivers, and entering 
of a new state of prolonged duration, is still largely unclear and widely debated. Here, we tested 
whether 14 stocks of the commercially important Atlantic herring (Clupea harengus, 
Clupeidae) showed true catastrophic dynamics. First, we developed a new approach for 
detecting abrupt and significant regime changes in adult spawner biomass by using an ensemble 
of change point analyses. Then, we applied the stochastic CUSP model, built on the catastrophe 
theory, to test if stocks showed discontinuous behaviour and potentially hysteresis. We 
modelled potential catastrophic changes depending on fishing mortality as well as temperature 
or predation by cod (Gadus morhua, Gadidae). We found that North Sea autumn-spawning, 
Norwegian spring-spawning, and Georges Bank/Gulf of Maine herring stocks showed abrupt 
and true catastrophic changes over the last 4-6 decades. These catastrophic changes were mostly 
due to overfishing but modulated by temperature or predation by cod. By using a combination 
of novel approaches to detect discontinuous dynamics based on time-series, we show that 
Atlantic herring stocks were resilient to environmental changes when sustainably harvested. 
Management can make use of thresholds indicated by the cusp model to define limits for fishing 
pressure, in consideration of e.g. climatic change and predator-prey interactions and ensure a 
sustainable harvest. 
 
Keywords: catastrophe theory, change point analysis, Clupea harengus, discontinuity, regime 
shift, stochastic CUSP model 
 
Author´s affiliations 
 
2Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Norway 
1Institute for Marine Ecosystem and Fisheries Science, University of Hamburg, Germany



Chapter 5   Non-linear dynamics in North Atlantic herring  

 104 

Introduction 
Sudden structural and synchronous changes have been increasingly documented in the marine 
realm (deYoung et al., 2004; Möllmann & Diekmann, 2012), e.g. in the North Sea (Beaugrand, 
2004), the Baltic Sea (Möllmann et al., 2009), or the western North Atlantic (Choi et al., 2004). 
Those changes are often driven by alterations in the ocean climate for example through natural 
variability in large scale climatic indices (Stenseth et al., 2003). The North Atlantic Oscillation 
(NAO) is one example, where its transition from a negative phase to a positive phase in the late 
1980s leading to an increase in sea temperature, caused drastic changes in several trophic levels, 
among others, in the ecosystems of the North, the Baltic, and Mediterranean Seas (Alheit & 
Bakun, 2010). In addition, direct anthropogenic influences, such as fishing, can alter an 
ecosystem in an intense manner and can lead to changes in species interactions (Jackson et al., 
2001). In the North Atlantic, the severe abundance decrease of large predatory demersal fishes, 
such as Atlantic cod (Gadus morhua, Gadidae) as a major example, were partly at least due to 
overfishing (Cook et al., 1997; Choi et al., 2004). Also small pelagic fish such as Atlantic 
herring (Clupea harengus, Clupeidae) were drastically overfished and this in combination with 
unfavourable environmental factors contributed to changes in their abundance (Overholtz & 
Friedland, 2002; Toresen & Østvedt, 2008; Dickey-Collas et al., 2010). 
 
Those drastic changes in single species to entire food webs are often termed “regime shift”. 
However, the definition of a regime shift is not always clear (Lees et al., 2006), the term being 
used for smooth, abrupt, and discontinuous changes alike (Collie et al., 2004). In this work, we 
study regime shifts, which we term “catastrophic shifts” or “catastrophic transitions” (Scheffer 
et al., 2001, 2009), where species populations underwent abrupt changes of several orders of 
magnitude and with discontinuous behaviour in their functional response to drivers. In addition, 
we define such catastrophic shifts to be persistent in time (deYoung et al., 2004), meaning the 
system is locked into a possibly new state by internal feedbacks which could potentially lead 
to the occurrence of hysteresis (Scheffer et al., 2001). Hysteresis is a highly unwanted property 
in ecosystem management, since restoring the system is shown to be a lengthy and costly 
process, if at all possible (Mäler, 2000). It is usually not enough to return the forcing variable 
to its previous conditions, but often much more and drastic changes need to happen to push the 
response variable back to its previous state (Mäler, 2000; Scheffer et al., 2001). A system 
displaying discontinuous behaviour passes through an unstable state, which is highly 
unpredictable. In this state, since it is unstable, the system can switch between desired and 
undesired states. The bistability exists until the systems settles into a new stable state (Scheffer 
et al., 2001; Collie et al., 2004; Carpenter, 2005).  
 
Being able to detect such shifts and instability is particularly relevant in the management of 
commercially important fish stocks such as Atlantic herring. In this paper, we investigate if we 
can detect catastrophic shifts in past time-series of 14 Atlantic herring stocks in the North 
Atlantic (Figure 5.1). Understanding these dynamics might help direct a sustainable 
management. Atlantic herring is an important harvested resource and amounts to 2 % of the 
global marine capture production (FAO, 2018b). Furthermore, it is an important key-species in 
many food webs (Trenkel et al., 2014), thus keeping the stocks in a predictable state should be 
a goal from many perspectives.  
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We explore the dynamics of the 14 herring stocks using a two-step approach: First, we test for 
statistically significant abrupt changes in the spawning stock biomass time-series of the herring 
stocks by combining three different statistical tools for change point analysis with the duration 
and magnitude of the shift (Fig 5.2.1). Second, we test for discontinuous behaviour in the 
system dynamics in response to external drivers (Figure 5.2.2) using the stochastic CUSP model 
(Grasman et al., 2009) that builds on catastrophe theory (Thom, 1975b). 
 
We specifically investigate the interplay of fishing and environmental drivers i.e. temperature 
and cod abundance. Atlantic cod is a major predator of herring (Link et al., 2009) and we test 
for potential predation pressure relief for the herring after the cod stock collapses (Bakun & 
Weeks, 2006; Overholtz & Link, 2006). With this method, we are able to determine the 
threshold values, at which the stock jumps from one stable state, into a potentially persistent 
new alternative state, thus the system is showing bistability and potentially hysteresis, when it 
comes to recovery. Our study shows that for resource species that are vulnerable to catastrophic 
transitions, a sustainable fisheries management explicitly needs to consider the stabilizing or 
destabilizing effects of environmental factors such as climate change or species interactions.  
 
Material and Methods 
 
Table 5.1 Overview of analysed herring stocks, including regions, short names and IDs used in the figures and tables. Further 
information on the data sources for each stock are found in Appendix Table S1.  
 

Region Population Short name ID_no 

Eastern Baltic Sea Central Baltic herring cb_her 1 

Western Baltic Sea Western Baltic spring-spawning herring wbc_her 2 

North Sea North Sea autumn-spawning herring ns_her 3 

Barents Sea/Norwegian Sea Norwegian spring-spawning herring nss_her 4 

Irish Sea South Irish Sea herring irish_her 5 

 North Irish Sea herring nirish_her 6 

Celtic Sea and West of Scotland Celtic Sea and West of Scotland herring westscot_her 7 

Icelandic Sea Iceland summer-spawning herring ice_her 8 

Scotian Shelf Scotian Shelf herring scot_her 9 

Georges Bank Georges Bank/Gulf of Maine herring geob_her 10 

Southern Gulf of St. Lawrence Southern Gulf of St. Lawrence autumn-spawning herring slaw_her_aut 11 

 Southern Gulf of St. Lawrence spring-spawning herring slaw_her_spr 12 

Northern Gulf of St. Lawrence Northern Gulf of St. Lawrence spring-spawning nlaw_her_spr 13 

 Northern Gulf of St. Lawrence autumn-spawning nlaw_her_aut 14 

 
We analysed the spawning stock biomass (SSB) of six Northwest and eight Northeast Atlantic 
herring stocks (Table 5.1, Figure 5.1, Supplementary Information) for abrupt and persistent 
changes, and discontinuous behaviours in two steps. Atlantic herring is widely distributed in 
the North Atlantic and consists of several smaller to larger populations (Trenkel et al., 2014). 
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Many herring stocks undertake extensive feeding and/ or spawning migrations, thus their 
influence can extent to more than one ecosystem (Trenkel et al., 2014). Herring in the northern 
areas, such as the Norwegian spring-spawning herring, mature at around 3-6 years with a 
maximum life span of 20 years, whereas more southern distributed stocks, for example the 
Georges Bank/ Gulf of Maine herring stock, have a younger age of maturity and a lifespan of 
around 14 years (Trenkel et al., 2014). 
 
Step 1: Analyses of abrupt and significant change 
 
All studied herring stocks display considerable historical biomass changes (Figure 5.1). We 
investigated whether these changes represent statistically significant abrupt changes using three 
criteria (Figure 5.2.1): 

a) Significance of abrupt shifts(s) indicated by at least two out of three change point 
analysis tools (Figure 5.2.1a) 

b) Stability of the system during a prolonged period (quasi-stable state) (Figure 5.2.1b) 
c) Magnitude of changes in biomass between quasi-stable states (Figure 5.2.1c) 

 
1a) Change point analysis tools 
In order to detect statistical significant change points in the biomass of the herring stocks, we 
applied a multi-model inference approach (Townsend et al., 2014; Samhouri et al., 2017) and 
used three statistical change point analysis tools (Figure 5.2.1a).  
The first tool was the “changepoint” R-package (Killick & Eckley, 2013), where we used the 
binary segmentation (“BinSeg”) method on a standardized time series to calculate changes in 
the mean (Killick & Eckley, 2013). We initially tested the full time series for a change in mean 
and if a change point was detected, we subsequently split the times-series into two parts, and 
again conducted the test until the maximum number of change points was reached (Killick & 
Eckley, 2013). We allowed for a maximum of five change points and used as a penalty, to 
restrict over fitting, the modified Bayesian Information Criterion (MBIC) (Zhang & Siegmund, 
2007) as implemented in the “changepoint” package (Killick & Eckley, 2013).  
The second tool was the “strucchange” R-package which tests for structural changes in a linear 
regression (Zeileis et al., 2002). We used standardized and differenced time series and analysed 
changes in the intercept of a linear regression fitted to the data (Zeileis et al., 2002; Bestelmeyer 
et al., 2011). The best model was evaluated by using the OLS-CUSUM statistics, the BIC and 
the F-statistics to find significant change points (Bestelmeyer et al., 2011).  
 
The third change point analysis tool was the Bayesian change point analysis (“bcp” R-package) 
implemented with a Markov chain Monte Carlo (MCMC) approximation (Erdman & Emerson, 
2007). Here, we extracted the posterior probability of finding a change point and accepted 
values > 0.5 as probable of having a change in the time series.  
 
We used these three approaches in order to understand better the dynamics of the herring 
biomass (Townsend et al., 2014; Samhouri et al., 2017) and with that, we find a time range, in 
which a change occurred (see grey shaded area Figure 5.1 & 5.3; Supplementary Information, 
Figure S5.1). Our criteria for accepting a change was that that at least two tools find a change 
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within a 10-year frame, which should be in concordance with the following steps of the analysis 
(see below). These methods have varying sensitivities in detecting a change point (compare e.g. 
Figure 5.2.1a stepwise and continuous change), thus having more than one tool indicating a 
change we avoided overfitting or not detecting a change. 
 
1b) Prolonged period of quasi-stability 
When we found those significant changes, we assessed if the stock biomass was in a state of 
prolonged stability after or before a change in abundance (Figure 5.2.1b) from which we 
measured the abrupt change in biomass (Fig 5.2.1c). The duration of the quasi-stable state had 
to be longer than the duration of the change itself (deYoung et al., 2004). In order to be 
classified as a drastic shift, a change in the herring stock biomass of ≥ 70 % had to occur within 
10 years, or three generations whichever is longest (cf. IUCN, 2012). Here, we assumed a 
generation length of 3.5 years (thus, 10.5 years corresponding to three generations), because 
the majority of herring stocks mature around 3-4 years (Trenkel et al., 2014) and we set the 
threshold of being accepted as a prolonged quasi-stable state to > 10.5 years.  
 
We used a 5-year moving window linear regression analysis on the time series of stock biomass 
(scaled to range between 0 and 1 for comparability) and investigated the slopes of those 
regressions. Since ecosystems and populations are fluctuating constantly (Scheffer et al., 2001; 
Vert-pre et al., 2013), there is hardly a period of no change (slope = 0) in an ecological time 
series. Thus, we developed an acceptance level for quasi-stability, where a stable slope should 
be ≤ 20 % of the absolute maximum slope. We explored the sensitivity of setting the acceptance 
level to 20 % and found an acceptance level of quasi-stability of 10 % to reveal hardly any 
stable periods and an acceptance level of 30 % did not differ much from the results with 20 % 
acceptance level (Supplementary Information, Table S5.2). Furthermore, we tested for the 
effect of varying window sizes (four and eight years, respectively) in the moving linear 
regression. Overall results did not change significantly by the usage of different window sizes 
(Supplementary Information, Table S5.2). After these analyses, we remained with a 20 % 
acceptance level and a 5-year moving window size. We accepted a period of being quasi-stable, 
if we detected ≥ 7 consecutive stable slopes, which lead to > 10 years of stability, including the 
years covered through our window size. 
 
1c) Magnitude of change 
For these periods of quasi-stability we computed the magnitude of the change in biomass to 
detect abrupt shifts (Figure 5.2.1c). We calculated the mean of the biomass during quasi-stable 
periods (plus the four following years, due to the window-size) and related it to biomasses 
before and after the quasi-stable phase. We considered a shift to be abrupt when the biomass 
changed by ≥ 70 % within three generations, thus within 10.5 years (see IUCN Criteria). Even 
though the word “catastrophic” suggest a collapse in biomass, in the mathematical sense, a 
catastrophic shift can also happen to a higher biomass level (Roopnarine, 2008). Thus, we here 
considered abrupt negative as well as positive changes in biomass. 
 
If all the criteria fitted the stock, we acknowledged a drastic, significant shift in the time series. 
However, it is not clear based on these analyses, whether the underlying process is a linear 
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response to a driver that changed discontinuously, a non-linear response to a potentially 
continuously changing driver or the effect of multiple interacting drivers causing hysteresis 
(Andersen et al., 2009). In the next step, therefore, we assessed the underlying mechanisms 
using stochastic CUSP models (Figure 5.2.2).  
 
Step 2: Identification of discontinuity in the response to drivers 
 
Stochastic CUSP model 
To test for underlying mechanisms of observed shifts in the stocks, we applied the stochastic 
CUSP model (Grasman et al., 2009) that builds on catastrophe theory (Thom, 1972), a branch 
of bifurcation theory, which is able to address discontinuous and nonlinear behaviour of a 
system. By using the cusp catastrophe, we are able to model discontinuous behaviour with the 
inclusion of more than one control variable. The stochastic form of the cusp model is 
implemented into the R-package “cusp” (Grasman et al., 2009) and may display catastrophic 
jumps, bimodality, hysteresis and divergence in the system’s behaviour  (Jones, 1977). By using 
two variables, the model results in a 3D-visualization of the system (Petraitis & Dudgeon, 
2016). The cusp catastrophe has the canonical form 

 −𝑉 𝑦; 𝛼, 𝛽 = 𝛼𝑦 +
1
2
𝛽𝑦3 −

1
4
𝑦1 

(1) 

Where 𝑦 describes the state of the system and α and β are parameters shaping the surface, thus 
behaviour of the system, if the first derivative is equal to zero (Grasman et al., 2009). 
 −𝑉′(𝑦; 𝛼, 𝛽) = 𝛼 + 𝛽𝑦 − 𝑦; = 	0              (2)     

 
The 𝛼-variable causes smooth changes in the state variable until the threshold value with a 
critical jump will be reached (Jones, 1977; Grasman et al., 2009). The variable 𝛽 is the 
bifurcation variable and changes the behaviour of 𝛼 to the system, determining where the 
threshold lies. If 𝛽 > 0, the trajectory of the system reacting to forcing variables is single 
sheeted, however when 𝛽 < 0, it is triple sheeted, thus three solutions are possible for the 
position of the systems’ state: two stable states and one unstable state (Grasman et al., 2009) . 
This state is very unlikely to be reached, thus the systems “jumps” between the higher and the 
lower states and its behaviour becomes unpredictable (bistability). 
The catastrophe theory is a deterministic theory, but by including white noise (Wiener process, 
𝑑𝑊(𝑡)), it results into a stochastic differential equation (Grasman et al., 2009) which has the 
form: 

 
𝑑𝑦 =

𝜕𝑉(𝑦; 𝛼, 𝛽)
𝜕𝑦

𝑑𝑡 + 𝑑𝑊(𝑡) 
(3) 

 
A density function is then connected with equation (3), which describes the probability density 
of the system being in a certain state (Grasman et al., 2009). First order polynomial 
approximations are then fitted to the data by using a maximum likelihood approach (Cobb & 
Watson, 1980; Grasman et al., 2009). This means, 𝑦 is the sum of linear functions of the n 
measured dependent variables Y1, Y2, …Yn and respectively α and β are linear functions of the 
k measured independent (control) variables X1, X2,…, Xk (Grasman et al., 2009). 
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 𝑦 = 𝑤4 + 𝑤6𝑌6 + 𝑤3𝑌3 + ⋯+ 𝑤H𝑌H  (4) 
 𝛼 = 𝑎4 + 𝑎6𝑋6 + 𝑎3𝑋3 + ⋯+ 𝑎�𝑋�   

 𝛽 = 𝑏4 + 𝑏6𝑋6 + 𝑏3𝑋3 + ⋯+ 𝑏�𝑋�   

Here we modelled the state variable 𝑦 as a smooth transformation of the SSB of herring stocks; 
the α-variable was a function of fishing mortality (F) because we assumed fishing mortality is 
the main factor driving the biomass of the herring stocks (Brunel & Dickey-Collas, 2010)br. 
The fishing mortality data (Supplementary Information, Table S5.1) are in most stocks covering 
the mature part of the population, thus we chose to do the analyses on the SSB. We modelled 
the bifurcation variable β as a function of sea surface temperature (SST) with a lag of one year. 
We calculated the yearly average of the Extended Reconstructed Sea Surface Temperature v4 
(ERSST4) (Huang et al., 2015) over the statistical management area for the stock from ICES 
(International Council of the Exploration of the Sea) and NAFO (Northwest Atlantic Fisheries 
Convention) (Supplementary Information, Table S5.1). 
 
In addition, we modelled β as a function of cod SSB, also lagged by one year, instead of SST 
as bifurcation variable on the herring stocks. Here, we wanted to test for possible predation 
effects of cod on herring, which could, after the collapse of cod in many ecosystems, lead to 
changes in herring biomass. 
 
A model validation was also conducted for the non-lagged variables of SST and cod SSB, 
however the lagged version gave better results. Models with or without a lag in the variables 
were compared with the AIC (Akaike information criterion) and the model with the lowest AIC 
was selected. The difference between the AIC of the models was ≥ 2 in favour for the model 
with lagged variable apart for North Sea autumn-spawning herring cusp model with 
temperature and Georges Bank herring cusp model with cod (Supplementary Information, 
Table S5.3). However, here, the differences between the AIC was < 2, thus we chose to use the 
lagged variable.  
 
All calculation were conducted in the R version 3.4.3. (R Core Team, 2016).  
 
Model validation of the stochastic CUSP model 
Grasman et al., (2009) suggest as model validation the visual assessment of the bimodality in 
the cusp area. Furthermore, the check that at least 10 % of the α–β-points should be in the 
bifurcation area. This number is somewhat arbitrary but we used it in addition to other 
validation criteria. We chose to validate by the log-likelihood of the cusp model, which should 
be substantially better than that of a linear model fitted to the data. Furthermore, we used the 
BIC of the cusp model and compared it with the BIC of a logistic model, where the smaller BIC 
was chosen as being the better model (Raftery, 1995). Finally, at least one of the respective 
fitted model parameters 𝑤6	 …𝑤H	, 𝑎6 …	𝑎� and/or 𝑏6 …	𝑏� should be significant on the 
0.05-level (Grasman et al., 2009). Those validation criteria combined indicated to the model 
selection or rejection of the model.
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Results 
 

 
Figure 5.1: Map of the North Atlantic showing the distribution of the analysed 14 herring populations indicating their 
“stock ID” corresponding to the respective plots surrounding the map. The plots surrounding the map show the scaled spawning 
stock biomass (SSB) of the analysed herring stocks (black dotted, solid line ). The purple highlighted parts in the SSB 
time-series ( ) indicate periods of prolonged quasi-stability of four of the stocks (see Figure 5.2b). Norwegian spring-
spawning and Georges Bank herring stock show two periods of quasi-stability (nss_her: 1967-1988 and 2006-2016; geob_her: 
1975-1990 and 1996-2007) indicated by a darker purple colour ( ). Abrupt shifts by a change in biomass of ≥ 70 % are 
indicated by a red dot  and compared to the mean of the prolonged stability period (red line ) (see Figure 5.2.1b). The 
grey shaded areas (  ) in the plots indicate that at least two of the three statistical tools found a change point. For a detailed 
view see Figure 5.3 for North Sea autumn-spawning, Norwegian spring-spawning, Scotian Shelf, and Georges Bank herring 
and Supplementary Information, Figure S5.1. The yellow box around North Sea autumn-spawning herring, Norwegian 
spring-spawning herring, and Georges Bank herring indicates the valid cusp model (Table 5.1) and the purple box around the 
stocks indicates a valid change point analysis (Table 5.2, Figure 5.2) (also visible in the purple coloured and yellow lined 
diamonds in the map). 
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Figure 5.2: The two-step approach how we detected abrupt and long-lasting changes and bistable system dynamics: First was 
the identification of abrupt and long lasting changes: 1a) The first criteria is the presence of a change in the stock’s time series 
tested with the change point analyses tools. If at least two of the tools indicated a change point within 10 years, 1b) the stocks 
were further tested for prolonged quasi-stability in the time series for > 3 generations. If this exists 1c) a sudden drop/increase 
of the biomass by ≥70% compared to the biomass before or after within 3 generations was searched (cf. IUCN, 2012). 1d) If 
those criteria do not fit the time series we have a continuous change without an abrupt and long-lasting change or fluctuations. 
The second step includes, when all criteria of 1) are satisfied, the analysis with the stochastic CUSP model, where we detect 
thresholds and discontinuous behaviour of the stock, depending on the level of the driver variables. The dark triangle shows 
the bifurcation area, defined by the values of driver 2. Driver 2 (in our case temperature or cod biomass) modulates the response 
of the system to driver 1 (fishing pressure), either displaying discontinuous dynamics and hysteresis in the area at level a from 
driver 2, or a linear response at values of driver 2 at level b. 
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Step 1: Change point analysis 
 
All 14 herring stocks studied showed large interannual biomass fluctuations (Figure 5.1). 
However, going through the change point analysis displayed in three levels in Figure 5.2.1, 
reduced the number of stocks to North Sea autumn-spawning, Norwegian spring-spawning, 
Scotian Shelf, and Georges Bank herring for the further analysis for discontinuous behaviour 
(Figure 5.2.2). 
 
First level: change point tools:  
Only North Sea autumn-spawning, Norwegian spring-spawning, and Georges Bank herring 
showed clear shifts indicated by all three change point tools. That is, we detected changes in 
the mean of the biomass (“changepoint”), a high probability of a change having occurred 
(“bcp”), and structural changes in a linear regression (“strucchange”) within a range of 10 years 
from each other (Figure 5.3). In North Sea autumn-spawning and Norwegian spring-spawning 
herring, a change occurred within the period of 1964 – 1967 and 1959 – 1968, respectively 
(Figure 5.3). Georges Bank herring displayed two periods of change: in 1974 – 1976 as well as 
1991 – 1992. The “changepoint” and “bcp” packages identified the second period within one 
year (1991) (Figure 5.3). Scotian Shelf herring did not show a significant change according to 
“strucchange”, but the two other tools found a change point both in the year 1990 (Figure 5.3). 
In Central Baltic, Western Baltic spring-spawning, Irish Sea, West of Scotland, and Southern 
St. Lawrence autumn-spawning herring stocks also two change points were identified 
(Supplementary Information, Figure S5.1). Central Baltic herring showed a change point with 
the “strucchange” package as well, however this change point was not within 10 years of the 
other two breakpoints identified (Supplementary Information, Figure S5.1). In the remaining 
stocks, only “bcp” detected changes (Supplementary Information, Figure S5.1), thus these 
stocks did not show abrupt and long-lasting changes, but continuous change and/or fluctuations 
(Figure 5.2.1). 
 
Second level: Prolonged quasi-stabiliy 
The second level of the detection of abrupt and significant changes identified prolonged periods 
of quasi-stability only in North Sea autumn-spawning, Norwegian spring-spawning, Scotian 
Shelf, and Georges Bank herring (Figure 5.1 & 5.3). Norwegian spring-spawning herring and 
Georges Bank herring displayed an additional period of quasi-stability at the end of the time 
series with a higher biomass state than the previous period (Figure 5.1).  
 
Third level: Abrupt shift in biomass 
The third level of the change point analysis (Figure 5.2.1c) detected in all stocks with prolonged 
quasi-stability periods also abrupt biomass shifts by ≥ 70 % (Figure 5.1). The abrupt shift of 
North Sea autumn-spawning, Norwegian spring-spawning, Scotian Shelf, and Georges Bank 
herring resulted in a quasi-stable depleted state. Abrupt changes to the mean biomass of the 
quasi-stable state happened for the North Sea autumn-spawning and Norwegian spring 
spawning herring within one year (from 1967 to quasi-stability period in 1968 – 1983, and from 
1966 to quasi-stability period 1968 – to 1988, respectively). For the Georges Bank and Scotian 
Shelf herring the abrupt shift happened within two years (from 1993 to quasi-stability period in 
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1975 -1990) and three years (from 1989 to quasi-stability period in 1992 – 2004), respectively 
(Figure 5.1). In the Georges Bank herring stock, the second quasi-stable period with higher 
biomass shortly after the depletion period was also proceeded by another jump in biomass by 
> 70 % in 1992 (Fig 5.1). 
 

 
Figure 5.3: The detailed view of the shift identification of North Sea autumn-spawning, Norwegian spring-spawning, 
Scotian Shelf and Georges bank herring. Here the “changepoint” (dark blue, long dashed line ) and the “strucchange” 
(orange arrow) analyses as well as  the posterior probability of the “bcp” analysis (light green, dash-dotted line ) are 
indicated. The significant period of change is highlighted in dark grey (  ). Here only the stocks which showed a prolonged 
period of stability (purple highlighted parts in the SSB time-series ( )) and abrupt shift (Figure 5.1) are displayed. These 
four stocks qualified for the continued analysis with the cusp model (see Figure 5.2. The change point analyses of the other 
stocks is displayed in Supplementary Information Figure S5.1.  

 

Step 2 Investigating of system dynamics  
 
Due to the selection for an abrupt and long-lasting change, we tested for discontinuous 
behaviour in the SSB of North Sea autumn-spawning, Norwegian spring-spawning, Scotian 
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Shelf, and Georges Bank herring in response to fishing pressure, modulated by temperature or 
cod biomass.  
 
All the selected stocks apart for the Scotian Shelf herring, and the Norwegian spring-spawning 
herring in the cusp model with Coastal cod as predator, displayed bimodality in their cusp-area, 
and had > 10 % of their points in the bifurcation area (Table 5.2). The cusp model was selected 
over a linear or logistic model because the cusp log-likelihood was larger than the one of the 
linear model and the BIC of the cusp was always much lower than the BIC of a logistic model. 
These criteria indicated a better performance of the cusp model for both tested variable 
combinations, i.e. fishing pressure with lagged temperature or lagged cod abundance (Table 
5.2, Figure 5.4 & 5.5). Fishing pressure was in all the cusp models significant. Lagged SST was 
significant for North Sea autumn-spawning and Norwegian spring-spawning herring, and cod 
SSB with the Northeast Arctic (NEA) cod stock was only significant for Norwegian spring-
spawning herring (Table 5.2). The cusp model results indicated a hysteresis effect of fishing 
pressure modulated by temperature or predation pressure. 
 
Table 5.2: Validation of the stochastic CUSP model for the four valid stocks from the change point analysis: North Sea 
autumn-spawning herring (ns_her), Norwegian spring-spawning herring (nss_her), Scotian Shelf herring (scot_her), and 
Georges Bank herring (geob_her) with either fishing mortality as α-variable and lagged SST as β-variable (denoted as FT next 
to the stock’s name) or fishing mortality as α-variable and the respective lagged cod SSB as β-variable (denoted as FC, the * 
indicating the coastal cod in the Norwegian spring-spawning case). To be chosen over a linear model, the cusp log-likelihood 
(cusplogLik) had to be higher than the one of the linear model (linlogLik). Furthermore, the coefficient values of 𝑤1, α and/or 
β had to be significant at the 0.05 level. The percentage of points in the bifurcation area should be ≥ 10 %. We compared the 
lagged-variable output with non-lagged models with the AIC (Appendix Table A3 for non-lagged model output). Scotian Shelf 
herring did not show a valid cusp, since no points were in the bifurcation area. 
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Cusp model with fishing and temperature as driver 
North Sea autumn-spawning herring moved from the beginning of the time series in 1951 into 
the bifurcation area, when temperatures decreased and displayed a discontinuous shift to fishing 
pressure, which was low (< 0.3). Due to a continuous increase in fishing mortality, which 
peaked in 1971 with a fishing mortality of 1.3, the stock moved into a quasi-stable state with 
low biomass (Figure 5.4) and stayed in this state for several years (from 1968 – 1978). 
Following the depletion years with high fishing pressure, the reduction of the fishing mortality 
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in the late 1970s and co-occurrence with low temperatures pushed the stock again in the area 
of instability. Due to a pronounced hysteresis effect at lower temperatures, the increasing 
temperatures since 1997 in the recovering period linearized the relationship between fishing 
and SSB and the system was in a quasi-stable state, reaching back to higher biomass (Figure 
5.4).  
 
Norwegian spring-spawning herring displayed a similar picture of hysteresis and discontinuity: 
With decreasing temperatures and at low fishing pressure, the stock moved into the bifurcation 
area, still with high biomass, but low resilience, meaning its behaviour was unpredictable. The 
high increase in fishing pressure during the late 1960s and late 1980s however, forced the stock 
to move outside the bifurcation area and into a low, but quasi-stable state. The continuous low 
temperatures in the late 1980s, coupled with a decrease in fishing pressure, pushed the system 
back into an unstable state, followed by an increase in temperature (still at low fishing pressure), 
which linearized the relationship of fishing mortality and SSB.  
 
Georges Bank herring was not strongly affected by temperature, since it was not significant in 
the model (Table 5.2), nevertheless the effect of fishing pressure on the SSB was still modulated 
by temperature. The stock was in the bifurcation area, starting from the beginning of the time 
series in 1968, over the course of the depletion years starting in 1975 until the recovery (biomass 
attracted to the higher biomass state) of the biomass starting in 1991. A further increase in 
temperatures could change the relationship of SSB and fishing (linearize it); however, this lies 
outside the range of the analysed data (Figure 5.4).  
 
Cusp model with fishing and cod biomass as driver 
In the late 1950s as well as the mid 1960s, the low cod biomass < 300 000 t pushed the 
Norwegian spring-spawning herring in the unstable area (Figure 5.5), indicating the 
discontinuous shift. Then, the high fishing pressure in the 1970s forced the stock out of the 
unstable area into a low, but quasi-stable state. However, the low cod biomass in the mid 1970s 
until late 1980s, which was in most years < 300 000 t, again destabilized the herring stock. A 
hysteresis effect of fishing pressure on SSB was displayed, when the cod stock strongly 
increased its biomass after 2001, and the relationship of fishing mortality and herring biomass 
was linearized (Figure 5.5).  
 
For the North Sea autumn-spawning and the Georges Bank herring stock, cod SSB is not 
significant and thus had not a strong effect on the herring biomass. However, cod biomass was 
still modulating the effect of fishing on herring SSB, which led to the display of hysteresis 
(Figure 5.5). North Sea autumn-spawning herring showed hysteresis at high cod SSB, whereas 
for the Georges Bank herring, the hysteresis effect of fishing was more pronounced at low cod 
biomass and the stock managed to jump to higher biomass levels (Figure 5.5). The high cod 
SSB at the beginning of the time series in 1979, stabilized the relationship of fishing pressure 
on the herring SSB, leading to a low, quasi-stable state.  
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Figure 5.15: The cusp model for the valid North Sea autumn-spawning herring, Norwegian spring-spawning herring, 
and Georges Bank herring complex (according to Table 5.2) with fishing mortality and 1-year-lagged temperature as pressure 
variables. The grey area in the plots in the left column shows the bifurcation area (  ), thus the unstable area, points in this 
area are marked with a yellow lining. The colours indicate the different periods of the stock, purple before the depletion, blue 
for the period of depletion and green for the period following depletion (recovery). Some years, which display changes in the 
variables are indicated with an arrow in red, further information is found in the text. The dots are the scaled biomass, the larger 
one dot, the larger the biomass and thus a high state of the stock. On the right side, the scaled SSB is visualized with the same 
colour scale as in the bifurcation plot, as well as the fishing mortality and temperature. 
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Figure 16: The cusp model for the valid North Sea autumn-spawning herring, the Norwegian spring-spawning 
herring and the Georges Bank herring complex (according to Table 5.2) with fishing mortality and 1-year-lagged cod 
SSB as pressure variables. The grey area in the plots in the left column shows the bifurcation area (  ), thus the unstable 
area, points in this area are marked with a yellow lining. The colours indicate the different periods of the stock, purple before 
the depletion, blue for the period of depletion and green for the period following depletion (recovery). The respective first 
year of a period is indicated with an arrow. The dots are the scaled biomass, the larger one dot, the larger the biomass and 
thus a high state of the stock. On the right side, the scaled SSB is visualized with the same colour scale as in the bifurcation 
plot, as well as the fishing pressure and cod SSB. The Georges Bank cod stock data started in 1979, thus the period before the 
depletion of the herring stock is excluded from the analysis
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Discussion 
Catastrophic shift in the herring stocks 
Of the 14 herring stocks, all with large biomass fluctuations only North Sea autumn-spawning, 
Norwegian spring-spawning, and Georges Bank herring stock satisfied our criteria of the 
change point analysis for an abrupt and long-lasting shift and the validity of the cusp model 
(Figure 5.1). 
 
All the herring stocks, apart for the Northern Gulf of St. Lawrence autumn-spawning, were at 
least in some periods fished with relatively high fishing pressure (Appendix Figure A3) and the 
temperature increased in the analysed period (Boyd et al., 2014), which could have had the 
potential of catastrophic shifts (Dickey-Collas et al., 2010; Essington et al., 2015). The herring 
stocks seem, since most of the stocks fluctuated strongly and bounced quickly back after 
disturbances (Figure 5.1), resilient to these changes and can recover after strong impacts fairly 
fast (Hutchings, 2000). The Georges Bank herring stock even returned to a higher biomass state 
when fishing mortality was decreased.  
 
Still, fishing in combination with environmental drivers or species interactions can cause a 
discontinuous response of the stock biomass to fishing as was shown in the cusp analysis of 
North Sea autumn-spawning and Norwegian spring-spawning herring and Georges Bank 
herring stock. In both North Sea autumn-spawning herring and Norwegian spring-spawning 
herring, lower temperatures destabilized the stock. The low temperatures during the depletion 
period kept the Norwegian spring-spawning herring in an unstable state (Figure 5.4). Warmer 
temperatures positively affect Norwegian spring-spawning herring SSB and productivity 
(Toresen & Østvedt, 2008; Ottersen et al., 2013). Higher temperatures could have contributed 
to a faster recovery of the herring stock, when fishing pressure was low (Figure 5.4), since the 
stock was during the depletion period mainly in an unstable state. In the cusp model an increase 
in temperature stabilized the SSB in the North Sea autumn-spawning herring, however, the 
recruitment success is depending on rather colder temperatures (Ottersen et al., 2013) . Thus, a 
further increase in temperature due to climate change could be a limiting factor in the full 
recovery of the stock and quite deleterious, since warm waters will lead to high growth, but 
shorter lifespan and low weight (Brunel & Dickey-Collas, 2010).  
 
The North Sea and Georges Bank herring and cod stocks experienced both strong depletions, 
however the herring stocks a few decades earlier than the cod stock, when herring gained higher 
biomass again. North Sea and Georges Bank cod had their highest level of SSB in 1971, and 
1980 respectively (Figure 5.5), in years, when the respective herring stock was depleted. Both 
cod stocks declined since their maximum, which may have allowed the herring stocks to 
increase their biomass again. The successive strong decline in both species are in concordance 
to the ecosystem changes described by Möllmann and Diekeman (2009), where the overfishing 
of large predators lead to increases in the small-pelagic fishes. Even though the effect of cod 
on herring in our model is not significant, it is still visible that high North Sea and Georges 
Bank herring biomass did not co-occur with high cod biomass (Figure 5.5). In the case of the 
Norwegian spring-spawning herring and NEA cod it seemed the stocks were more driven by 
the same external conditions, most likely temperature, which leads in colder years to lower 
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herring and cod abundances (Rouyer et al., 2011). Here, predation of cod might be low, since 
the adult stocks overlap only during the spawning migration of the NEA cod to its spawning 
grounds along the Norwegian Coast. However, in general, other predators, next to fishing, 
might be more important and influence the herring biomass more strongly than cod biomass 
(Overholtz & Link, 2006). 
 
The faster recovery of the herring stocks after high fishing pressure and stock depletion, 
compared to many other overfished stocks such as Gadidae (Hutchings, 2000) could be due to 
the difference in fishing impacts on the adult stock and the number of fish remaining, once the 
stocks are depleted. Herring has the characteristic to form shoals, contract their habitat, and 
with that is still able to effectively reproduce (Beverton, 1990). Both the North Sea autumn-
spawning herring as well as the Norwegian spring-spawning herring experienced strong 
recruitment overfishing and with that, decreases in the population’s age structure (Dickey-
Collas et al., 2010; Rouyer et al., 2011). This can erode the resilience of the stock and contribute 
to their collapse (Anderson et al., 2008; Rouyer et al., 2011). The strong fishing pressure over 
several years had the potential to lead to long-lasting population changes (Dickey-Collas et al., 
2010). Yet, for both North Sea autumn-spawning and Norwegian spring-spawning herring 
stocks, the genetic diversity was not severely affected and it seems no fisheries induced 
evolution to earlier maturation, but rather a plastic response to increased pressure, was triggered 
(Engelhard & Heino, 2004). Reducing the fishing pressure allowed the stocks to regain their 
former population structure with the contribution of a few good years of recruitment, supporting 
the rebuilding of the stock as seen from the Norwegian spring-spawning herring (Toresen & 
Østvedt, 2008).  
 
Methodological considerations 
The chosen criteria of a stock undergoing a catastrophic shift were quite conservative, since 
only four stocks satisfied the criteria of an abrupt and long-lasting change (Figures 2.1 & 3). 
However, after our test of the sensitivity of our chosen criteria, we are confident to have 
identified the main patterns in the herring stocks with our criteria, since North Sea autumn-
spawning, Norwegian spring-spawning, Scotian Shelf, and Georges Bank herring, showed the 
same results in a vast majority of the sensitivity analyses (Supplementary Information, Table 
S2). 
 
We set the generation length for the herring stocks at 3.5 years, which is rather short for 
especially the Norwegian spring-spawning herring (ca. 6.5 years) (Ottersen et al., 2013). In our 
analysis, the stock’s SSB declined within one year (Figure 5.1) and the duration of the 
prolonged stability is 22 years long, thus the stock, even with a longer generation time, would 
still fit into our definition of the prolonged period of quasi-stability (3-times the generation 
time). With this, it is visible how drastic this decline was for the Norwegian spring-spawning 
herring (Toresen & Østvedt, 2008). We acknowledge that the analysis might look different with 
the usage of different change point detection tools and approaches, which are available in great 
amounts (for some examples on further change point detection tools see e.g.(Andersen et al., 
2009; Bestelmeyer et al., 2011; Möllmann & Diekmann, 2012)), which might detect regime 
shifts (with its various definitions) in more herring stocks. However, we are confident that our 
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combination of methods and analyses steps, found long-lasting, significant and catastrophic 
shifts, but also detected different behaviours of SSB changes such as fluctuations (e.g. Northern 
Irish herring stock) and gradual decline (e.g. Central Baltic herring stock, followed by a gradual 
increase).  
 
In the cusp model, it is important to identify and understand the underlying mechanisms driving 
the system (Roopnarine, 2008), however one can assume the drivers, which might lead to 
discontinuous, catastrophic behaviour, if the system shows e.g. catastrophic transitions, stable 
states and hysteresis (Roopnarine, 2008; Grasman et al., 2009). We tested our herring stocks 
for abrupt and long-lasting changes with periods of prolonged quasi-stability, indicating 
catastrophic behaviour, thus excluding stocks, which might show a false positive in the cusp 
validity. We deliberately chose as modelling variables those drivers that are known to have a 
key effect on herring (Beverton, 1990; Link et al., 2009; Brunel & Dickey-Collas, 2010) in 
order to explore the discontinuous behaviour of the stocks. However, in the case of the Scotian 
Shelf herring (Figure 5.1), it is likely that we missed the key variables to which the stock does 
respond in a discontinuous manner. Nevertheless, since we wanted to have an overall 
comparison between the stocks, we did not explore this any further in this study. For some of 
the stocks, the available time series was too short, in order to potentially find drastic changes, 
for example the Icelandic herring, where a collapse was reported in 1957 (Beverton, 1990) and 
which seems to have a strong decline in recent years again (Figure 5.1). In addition, the Western 
Baltic spring-spawning herring stock is still on a declining path, so it would be interesting to 
follow the development of these stocks.  
 
Conclusion 
In conclusion, from our study and as seen from other studies on small pelagic fish, herring 
stocks are susceptible to disturbances and might fluctuate strongly, but are able to recover fast 
and thus might show a high resilience (Folke, 2016). Herring stocks seem to be able to reverse 
population effects of strong fishing pressure. This might indicate that herring, in contrast to 
other relatively long-lived fish species such as cod (Anderson et al., 2008; Rouyer et al., 2011), 
might be more sustainable to harvest, since it seems with reasonable precautionary fishing 
pressure, the integrity of the herring stocks can be preserved. The cusp model gives an 
opportunity to develop a safe operating space for the fisheries (Carpenter et al., 2017). We show 
here that the previous experience of the stock, the limits of the bifurcation area (see Figure 5.4 
& 5.5) can indicate where to set management efforts to decrease the fishing mortality to a safe 
level and with that avoid the occurrence of hysteresis. Here, climate change and species 
interactions, like here illustrated through the interaction with cod were modulating the 
hysteresis effect of fishing on stock biomass. Due to the uncertainty in productivity regimes, 
which might not necessarily depend on the abundance of the stock (Vert-pre et al., 2013), it is 
important to fish small pelagics in regard to their importance in the ecosystem with an 
precautionary approach and have suitable reference points for their management. 
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Supplementary Information Chapter 5 

Supplementary Information Text 

Data 

The spawning stock biomass and the fishing mortality used for the 14 herring stocks and 13 
cod stocks were collected from various sources, mainly stock assessments. For Norwegian 
spring-spawning and Northern Irish herring stocks, as well as for Kattegat, Western Baltic, and 
Norwegian coastal cod two assessments were used in order to prolong the time series (Table 
S1). One high fishing mortality value in the year 1968 (> 3 (ICES 2006)) for the Norwegian 
spring-spawning herring seemed unrealistically high in relation to the noted fishing mortalities 
from Toresen and Ostevedt (2008). This high value was replaced with the value given in 
Toresen and Ostevedt (2008) for the year 1968 after comparisons with their other fishing 
mortalities for the period covered (mean difference of 0.02). The fishing mortality they found 
for 1968 (1.7) is still the highest, as well as the one noted in the stock assessment of ICES. The 
range of fishing mortality and temperature experienced by the stocks is illustrated in Figure 
S5.2. 

 

Reasoning for generation lengths for herring 

The Atlantic herring mature 2-6 years, however the majority at 3-4 years (Trenkel et al., 2014). 
Thus, we use the mean 3.5 years as our generation lengths. Thus, one generation lengths is 
longer than the first breeding individual (IUCN 2012) and shorter than the oldest breeding 
individual (maximum ages up to 20, but mostly 12-14 years (Trenkel et al., 2014) so it can 
count as one generation (IUCN 2012). With this, the change in the stock has to happen within 
3-generations, thus ≤ 10.5 years and the prolonged duration of the stability should be > 10.5 
years. The assumption of this generation length can be short for some of the stocks, however 
there were no stocks, where this lead to changes in the result (see discussion main text). The 
analysis takes its cues from the IUCN criteria of an endangered species, where an abrupt change 
of 70 % has to happen within three generations or ten-years, whichever is longest, thus even if 
herring stocks might show shorter generation times than 3.5 years, the 10 year threshold would 
still be valid.  

Sensitivity to moving window size and acceptance level of being stable 

The stocks, which showed significant change points within 10 years (Figure S5.1, Figure 5.3 
main text), were further investigated for prolonged quasi-stability. We chose to do our analysis 
with the use of a 5 year-window size for calculating the slope of a linear regression and used 
an acceptance level of 20 % of being stable (calculated from the absolute maximum slope of 
the respective time series). However, since this choice might have influenced our results, we 
tested also a 4-year moving window, an 8-year moving window with acceptance levels of 10 
%, 20 % and 30 % respectively. The 10 % acceptance level was quite a restrictive choice and 
only North Sea autumn-spawning, Norwegian spring-spawning herring and Scotian Shelf 
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herring showed periods of prolonged quasi-stability. The 30 % acceptance level included many 
random fluctuations in the stock, however often the periods were not long enough (results not 
shown). For the 5-year moving window, at least seven consecutive slopes of the linear 
regressions had to fall within our confidence band of being stable, in order to achieve > 10 
years. Accordingly, for the 4-year moving window it had to be at least eight consecutive years 
and for the 8-year window at least four years. We find especially with the 8-year moving 
window some additional stable periods. However, then in the next step, finding an abrupt shift 
in the biomass within 10 years (Figure 2.1c, main text), only gives two additional stocks: Irish 
Sea and South St. Lawrence autumn-spawning herring (Table S5.2, Figure S5.2). However, 
both stocks did not fit into the cusp criteria, thus they do not show bistability (results not 
shown). Otherwise, the results obtained with a 20 % acceptance level and a 5-year moving 
linear regression did not differ from the results obtained with other threshold or window sizes 
(Table S5.2). 
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Supplementary Information Table 
Table S5.2 Overview over the herring stocks and their corresponding cod stocks, which are used in the cusp-model analysis 
and the available years of data we had for the SSB, fishing mortality was often shorter and then in the cusp analysis, data was 
cut at that year. The overlapping years of the herring and cod stocks were used. Temperature data was available for all used 
years. The source indicates from which report, or contact person, the data was collected. SAM – State-space assessment model, 
TSA – Analytical age-based assessment (time series analysis), XSA – Extended survivor analysis, SPA – Sequential population 
analysis, SCA – Statistical catch at age, VPA – Virtual population analysis 
1 Stocks that in the last year failed the assessment 
2Stocks where, in order to have longer time series, we mixed old assessments and new ones, after checking for same trends and 
stock dimensions 
 

Region Stock Short name NAFO/ICES 
management 
area 

Available 
years 

Source 

Western Baltic Kattegat 
cod1,2 

 IIIa, 21 1971-
2015 

ICES/WGBAFS, SAM stock 
assessment model, Johan 
Lövengren 

 Western 
Baltic cod2 

 22-24 1970-
2016 

ICES/WGBAFS, SAM stock 
assessment model, Margit 
Eeron 

 Western 
Baltic 
spring-
spawning 
herring 

wbc_her 22-24 1991-
2017 

ICES Stock Assessment 
Database. Copenhagen, 
Denmark. ICES. [accessed 
25.10.2017]. 
http://standardgraphs.ices.dk 
 

Eastern Baltic Eastern 
Baltic cod1 

 25-32 1966-
2016 

 
 
 

 Central 
Baltic 
herring 

cb_her 25-29,32 
(without Gulf of 
Riga, 28-1) 

1974-
2017 

WGBFAS Report 2017, 
Table 4.2.15, 4.2.20,  
 
 

North Sea North Sea 
cod 

 IV, IIIa(N), VIId 1963-
2016 

ICES/WGNSSK, TSA stock 
assessment model, 
Alexander Kempf 

 North Sea 
autumn 
spawning 
herring 

ns_her IV, IIIa, VIId 1947-
2017 

HAWG Report 2017, Table 
3.6.3.12, 3.7.12  
 
 
 

Irish Sea Irish Sea 
cod 

 VIIa 1968-
2017 

ICES/WGCSE, SAM stock 
assessment, Colm Lordan 
 

 North Irish 
Sea 
herring 

nirish_her VIIa(N) 1961-
2017 

HAWG Report 2017, Table 
7.6.3.12, ICES stock 
assessment 2014, accessed 
17.2.15 

Celtic Sea South Irish 
Sea 
herring 

irish_her VIIa(S), VIIghjk 1958-
2017 

HAWG Report 2017 (ICES 
2017a), Table 6.6.2.4 
 
 

Celtic Sea and 
West of 
Scotland 

West of 
Scotland 
cod 

 VIa 1981-
2017 

ICES/WGSCE, TSA stock 
assessment, Rui Catarino 
 
 

 Celtic Sea 
and West 
of 
Scotland 
herring 

westscot_her VIa(combined), 
VIIbc 

1957-
2017 

HAWG Report 2017 (ICES 
2017a), Table 4.6.12 
 
 
 
 

Barents 
Sea/Norwegian 
Sea 

Northeast 
Arctic cod 

 I, II 1946-
2016 

ICES/AFWG, XSA stock 
assessment, Gjert Endre 
Dingsør 
 

 Coastal 
cod2 

 I, II 1984-
2016 

ICES/AFWG, Survey SSB 
and F from VPA, Gjert Endre 
Dingsør 
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 Norwegian 

spring 
spawning 
herring2 

nss_her I, II, V 1950-
2016 

WGWIDE Report 2017 
(ICES 2017c) Table 4.5.1.4,  
ICES Stock Assessment 
Database 2014. 
Copenhagen, Denmark.  
 

Iceland Iceland 
cod 

 Va 1955-
2016 

ICES/NWWG, Forward 
based statistical catch at age 
model, Einar Hjörleifsson 
 

 Iceland 
summer 
spawning 
herring 

ice_her Va 1987-
2017 

NWWG Report 2017 (ICES 
2017b), Table 11.3.2.5 
 
 
 

South of Gulf 
of St. 
Lawrence 

South of 
St. 
Lawrence 
cod 

 4TVn 1971-
2016 

DFO, SCA assessment 
model, Doug Swain 
 
 
 

 South of 
St. 
Lawrence 
spring 
spawning 
herring 

slaw_her_spr 4T 1974-
2007 

RAM legacy database, 
Version 3.0, accessed 
10.01.2018 (Ricard et al. 
2012) 
 
 
 

 South of 
St. 
Lawrence 
autumn 
spawning 
herring 

slaw_her_aut 4T 1974-
2007 

RAM legacy database 
Version 3.0, accessed 
10.01.2018 (Ricard et al. 
2012) 
 
 
 

North of Gulf of 
St. Lawrence 

North of 
St. 
Lawrence 
cod 

 3Pn4Rs 1974-
2015 

DFO, SPA assessment 
model, Claude Brassard 
 
 
 

 North of 
St. 
Lawrence 
spring 
spawners 

nlaw_her_spr 4R 1963-
2002 

RAM legacy database 
Version 3.0, accessed 
10.01.2018 (Ricard et al. 
2012) 
 
 

 North of 
St. 
Lawrence 
autumn 
spawners 

nlaw_her_aut 4R 1971-
2003 

RAM legacy database 
Version 3.0, accessed 
10.01.2018 (Ricard et al. 
2012) 
 
 

Scotian Shelf Eastern 
Scotian 
Shelf cod 

 4VsW 1970-
2010 

DFO, VPA (Swain and Mohn 
2012) 
 
 

 Scotian 
Shelf 
herring 

scot_her 4VWX 1964-
2005 

RAM legacy database 
Version 3.0, accessed 
10.01.2018 (Ricard et al. 
2012) 

Georges Bank Georges 
Bank cod 

 5Z 1978-
2016 

NOAA; Age structured 
model, Loretta O’Brien 
 

 Georges 
Bank/Gulf 
of Maine 
herring 

geob_her 5Z, 5Y 1967-
2008 

Shepherd et al. (2009), 
Table 18 
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Table S5.3: Overview of the periods which fit the criteria of a prolonged quasi-stability (Figure 5.2.1b main text) for an 
acceptance level of 10 %, 20 % and 30 % and 4-year, 5-year and 8-year moving window size for the linear regression. Only 
stocks are shown, which satisfied the first criteria of a significant change indicated by at least two change point analysis tools 
(Figure S5.1; Figure 5.2.1a, Figure 5.3 main text) and at least one long enough period of stability. The analysis of the slope 
needed to indicate 8, 7 and 4 consecutive stable years respectively, for 4-year, 5-year and 8-years sliding to reach > 10 years 
of stability. If the stocks indicated a sudden shift to or from the prolonged quasi-stability the period is indicated, as well as the 
year in which the ≥ 70 % biomass shift compared to the mean in the stable period occurred. If there is more than one period, 
the shift and years are indicated with the respective number in () behind the year. 

stock perio
d 1 

perio
d 2  

perio
d 3 

perio
d 4 

perio
d 5 

sudden 
shift year of 70% jump acceptanc

e level 
moving 
window size 

wbc_he
r 

1995-
2001     no  20% 8-year 

wbc_he
r 

1996-
2005     no  30% 4-year 

wbc_he
r 

1995-
2009     no  30% 8-year 

ns_her 1968-
1978     yes 1967, 1985 10% 5-year 

ns_her 1968-
1979     yes 1967, 1984 20% 4-year 

ns_her 1968-
1979     yes 1967, 1985 20% 5-year 

ns_her 1968-
1976     yes 1967, 1985 20% 8-year 

ns_her 1968-
1980     yes 19,671,985 30% 4-year 

ns_her 1968-
1979     yes 1967, 1985 30% 5-year 

ns_her 1953-
1958 

1967-
1977 

1984-
1987 

1989-
1993 

2003-
2009 

yes(1:4), 
no(5) 

1968(1), 1966(2), 1988(2); 
1981(3); 1981(4) 30% 8-year 

nss_her 1968-
1984     yes 1967, 1988 10% 4-year 

nss_her 1968-
1983     yes 1967, 1988 10% 5-year 

nss_her 1968-
1980     yes 1967, 1988 10% 8-year 

nss_her 1968-
1984     yes 1967, 1988 20% 4-year 

nss_her 1967-
1984 

2006-
2012    yes(1), 

no(2) 1966(1), 1989(1) 20% 5-year 

nss_her 1967-
1981 

1994-
1999    yes(1,2) 1966(1), 1989(1); 1987(2) 20% 8-year 

nss_her 1967-
1985 

2006-
2013    yes(1), 

no(2) 1966(1), 1989(1) 30% 4-year 

nss_her 1967-
1984 

2006-
2012    yes(1), 

no(2) 1966(1), 1989(1) 30% 5-year 

nss_her 1966-
1982 

1987-
2000 

2003-
2009   yes(1,2), 

no(3) 1965(1), 1990(1); 1986(2) 30% 8-year 

westsco
t_her 

1999-
2003     no NA 20% 8-year 

westsco
t_her 

1975-
1982 

1984-
1992 

2001-
2011   no NA 30% 4-year 

westsco
t_her 

1974-
1977 

1985-
1988 

1999-
2005   no(1:3) NA 30% 8-year 

irish-her  1958-
1962     yes 1975 20% 8-year 

irish-her 1958-
1963 

1973-
1976 

1988-
1991 

1996-
2000  yes(1,2), 

no(3,4) 1975(1), 1968(2) 30% 8-year 

scot_he
r 

1993-
2001     yes 1990 10% 4-year 

scot_he
r 

1967-
1970 

1992-
1996    no(1); 

yes(2) 1989 (2) 10% 8-year 

scot_he
r 

1992-
2001     yes 1989 20% 4-year 

scot_he
r 

1992-
2000     yes 1989 20% 5-year 

scot_he
r 

1967-
1970 

1992-
1997    no(1), 

yes(2) 1989 (2) 20% 8-year 



Chapter 5   Non-linear dynamics in North Atlantic herring  

 126 

scot_he
r 

1992-
2001     yes 1989 30% 4-year 

scot_he
r 

1992-
2000     yes 1989 30% 5-year 

scot_he
r 

1966-
1971 

1974-
1977 

1991-
1997   no(1,2), 

yes(3) 1988(3) 30% 8-year 

geob_h
er 

1976-
1987     yes 1973, 1992 20% 4-year 

geob_h
er 

1975-
1986 

1996-
2003    yes(1,2) 1973(1), 1992(1); 1989(2) 20% 5-year 

geob_h
er 

1976-
1981     yes 1974, 1992 20% 8-year 

geob_h
er 

1975-
1987 

1996-
2004    yes(1,2) 1973(1), 1992(1); 1989(2) 30% 4-year 

geob_h
er 

1975-
1986 

1996-
2003    yes(1,2) 1973(1), 1992(1); 1989(2) 30% 5-year 

geob_h
er 

1975-
1983 

1993-
2000    yes(1,2) 1973(1), 1992(1); 1989(2) 30% 8-year 

slaw_he
r_aut 

1980-
1983     yes 1977 20% 8-year 

slaw_he
r_aut 

1980-
1984     yes 1977 30% 8-year 
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CONCLUSIONS 

 
Understanding the recovery mechanisms and potential of our marine resources is fundamental 
to apply effective management measures and to unravel how the ecological but also socio-
economic system will react. In this thesis, I investigated the recovery potential of 20 Atlantic 
cod stocks under climate change applying a range of methodologies to unravel non-linear 
discontinuous dynamics. These methods range from the basic change point analysis to the more 
sophisticated wavelet transform, and to two non-parametric models, the stochastic CUSP model 
and the Empirical Dynamic Modelling. I applied these methods to the biomass and the 
recruitment of single stocks in order to understand cod stocks dynamics and their drivers, 
namely climate change and fishing pressure; important information to incorporate into 
management. 
 
Linear or non-linear?  
 
In this thesis, I show that Atlantic cod stocks present non-linear dynamics. Non-linear 
discontinuous dynamics and chaos are pervasive in marine systems and can interest different 
compartments of the marine ecosystems, from single stocks, to a full trophic level or even the 
entire ecosystem (Chapter 1) (Beaugrand, 2004; Möllmann & Diekmann, 2012; Vasilakopoulos 
& Marshall, 2015; Morse et al., 2017). Applying a range of non-linear methods, I show that 
non-linear, state-dependent dynamics can be detected in cod stocks not only at a biomass level, 
but also in the recruitment process and the stock-recruitment mechanism (Chapter 2,3 and 4). 
Some stocks presented a higher degree of linearity compared to others, having either 
recruitment described by the linear Ricker model, or not showing catastrophic dynamics in their 
biomass (Chapter 2 and 4). However, all the stocks presented non-linearity at least in one trait, 
thus suggesting that non-linear dynamics might be more the rule then the exception in cod 
stocks. Indeed, these types of dynamics have been detected for multiple species, from large top 
predators such as salmon, to small pelagic fishes (Vasilakopoulos et al., 2014; Perretti et al., 
2015; Ye et al., 2015; Deyle et al., 2018; Munch et al., 2018), and can also be confirmed by the 
trophic cascade reported in previously cod-dominated ecosystems (Frank et al., 2005; Casini et 
al., 2008a; Minto & Worm, 2012; Steneck & Wahle, 2013).  
 
Detecting non-linear dynamics is fundamental for management, since they can jeopardize the 
management measures in place resulting in management failures and societal issues (Chapter 
1) (Blenckner et al., 2015b; Levin & Möllmann, 2015). The methods applied in this thesis, 
proved to be efficient methods to detect true discontinuous dynamics in the time series of fish 

“πάντων γὰρ ὅσα πλείω µέρη ἔχει καὶ µὴ ἔστιν οἷον σωρὸς τὸ πᾶν” 
“The totality is not, as it were, a mere heap, but the whole is 
something besides the parts” 
    Aristotle, Methapysics 
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stocks. For instance, the stochastic CUSP model was applied to both cod and herring, species 
that show different life history traits, i.e. in the generation time. Herring presented more linear 
dynamics compared to cod, indicating that this method is able to discern between different 
dynamics and is efficient in detecting abrupt changes of the populations (Chapter 5). The 
presence of non-linearities and abrupt changes indicates a decreased resilience of the system 
(Holling, 1973; Scheffer et al., 2001; Beisner et al., 2003) Applying the methods used in this 
thesis to multiple species will help to understand their dynamics and their resilience, and thus 
will help to apply more efficient and specific management measures in order to favour the 
sustainable use of the stocks (Hutchings, 2000; Standish et al., 2014; Vasilakopoulos & 
Marshall, 2015; Ye et al., 2015). The consideration of multiple traits of fish populations, such 
as growth, maturity, spatial components, could also lead to more robust and more reliable 
resilience assessments (Vasilakopoulos & Marshall, 2015). Using 20 stocks from all over the 
North Atlantic, it was impossible to consider all these traits here, however the strong agreement 
between my results derived from the various, innovative methods and different population 
characteristics (biomass and recruitment) allows to confirm that cod stocks present non-linear, 
state-dependent dynamics.  
 
Non-linear dynamics are often caused by the cumulative impacts of multiple drivers on the 
marine environment (Doak et al., 2008; Maxwell et al., 2013; Halpern et al., 2015). Here, I 
investigated the effects of two drivers, fishing and climate change, which are believed to be the 
most relevant stressors for marine ecosystems and populations, and to act in additive or 
synergistic ways (Lehodey et al., 2006; Anderson et al., 2008; Kirby et al., 2009; Perry et al., 
2010; Planque et al., 2010; Halpern et al., 2015). Two stressors are synergistic if the effect of 
the two stressors combined is greater than the sum (addition) of the two single effects (Boyd & 
Brown, 2015). The application of the stochastic CUSP model allowed for the first time the full 
disclosure of the mechanism of interaction between these two drivers (Chapter 2,5 and 4). The 
model showed that while fishing pressure is the driver controlling the population dimension, 
climate change induces hysteresis, lowering the resilience of the populations and reinforcing 
the effects of fishing. This is a key information for management, because it identifies threshold 
values of drivers which should not be crossed in order to maintain the population safe and stable 
(Rockström et al., 2009; Standish et al., 2014; Carpenter et al., 2015). It also highlights the 
need to move towards a more precautionary approach when dealing with marine systems under 
climate change (Costanza et al., 1998; Grafton & Quentin Grafton, 2010; Blenckner et al., 
2015b; Levin & Möllmann, 2015). My thesis confirms the primary importance of these two 
drivers not only for cod stocks but also for herring, and move an additional step forward 
identifying their synergistic effect.  
 
Investigating at a stock level, I did not consider the mechanisms through which climate change 
and in particular warming affect cod (Pörtenr & Farrell, 2008; Pörtner & Peck, 2010). 
Temperature can have an effect on cod populations acting directly on growth, fertility or 
mortality, or indirectly through predator-prey switches, changes in currents and habitat 
degradation (Brander, 1995; Brander et al., 2001; Beaugrand et al., 2003; Stige et al., 2006; 
Wang et al., 2014; Huebert et al., 2018). Moreover, temperature increase can also induce 
population movement towards deeper waters and northern areas, thus potentially altering the 
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structure of entire ecosystems and of the socio-ecological systems relying on them (Perry P.J. 
Low, J.R. Ellis, J.D. Reynolds et al., 2005; Dulvy et al., 2008; Pinsky et al., 2018). Finally, 
here I considered global indices while spatially resolved indices may be more relevant. Indeed, 
the main stressors might have a more local effect and be more specific for each population, i.e. 
anoxic areas in the Baltic Sea (Bates et al., 2018; Reusch et al., 2018). A more detailed 
understanding of the drivers and mechanisms at a local scale could be important to integrate in 
order to understand the consequences of climate change in specific areas and adapt the local 
management measures accordingly.  
 
To recover or not to recover? That is the question! 
 
The presence of non-linear, discontinuous dynamics has an important effect on the recovery of 
stocks (Chapter 1) (Beisner et al., 2003; Levin & Möllmann, 2015; Vasilakopoulos & Marshall, 
2015). In my thesis, I show that the majority of cod stocks is still in a very depleted state, even 
after more than 20 years of management (Chapter 2). A property of a system presenting non-
linear dynamics is hysteresis, being the delayed or absent return of the system to previous 
conditions after the removal of the stressor (Chapter 1) (Scheffer et al., 2001; Scheffer & 
Carpenter, 2003; Bestelmeyer et al., 2011). The stochastic CUSP model detected hysteresis in 
almost all the Atlantic cod stocks, thus explaining the failed recovery (Chapter 2). Indeed, even 
if fishing pressure was delayed or removed in some areas, the presence of hysteresis delayed or 
hindered completely the recovery of cod stocks, highlighting the importance of detecting these 
types of dynamics in management (Folke et al., 2004; Levin & Möllmann, 2015; Selkoe et al., 
2015). In this thesis, I referred to recovery as an increase towards historical biomass level, even 
if multiple definitions of recovery could be used and more parameters should be evaluated to 
have a comprehensive view of cod stocks recovery (Lotze et al., 2011; Vasilakopoulos & 
Marshall, 2015). Nevertheless, the application of multiple methods and the consideration of 
different population mechanisms allowed me to understand the recovery potential of cod stocks, 
which varies depending on geographical areas.  
 
Among the Atlantic cod stocks North-East Arctic cod and Iceland are the biggest stocks and 
can be found in a very healthy state (Chapter 2,3 and 4). In particular, North-East Arctic cod is 
at its largest population size since the last 60 years. These stocks reside at their northern 
distribution limits, thus at the edge of their possible physiological distribution and far from their 
thermal optima (Pörtner et al., 2008; Butzin & Pörtner, 2016). Warming is thus beneficial for 
these stocks and therefore an increase of temperature can have positive effects on both adult 
and larvae (Drinkwater, 2005). At the moment, the populations are in a such high state that 
recruitment is rather low, due to the strong density dependent effects (Chapter 3 and 4). These 
two stocks present also peculiar types of dynamics and never really showed collapses, but 
before the 1990s, were mostly in a depleted state due to the cold temperatures (Chapter 2 and 
3). For all the remaining stocks, warming and climate change, on top of fishing pressure, 
resulted in negative effects on both biomass and recruitment, as also shown in many other 
studies (Chapter 2 and 4) (Brander, 2005; Drinkwater, 2005; Stige et al., 2006; Butzin & 
Pörtner, 2016).  
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In this thesis, I show that the recovery potential of cod stocks varies between stocks in west and 
in the east Atlantic. These stocks present dissimilarities concerning life history traits, 
environmental conditions and exploitation history (Rätz & Lloret, 2003; Pörtner et al., 2008; 
Wang et al., 2014; Frank et al., 2016). Western stocks (i.e. Canadian and USA stocks and 
Greenland) present more fragile life history traits and tend to be exposed to more variable 
environmental conditions (Köster et al., 2013). The Stochastic CUSP model highlighted that 
western stocks are less resilient and more unstable compared to eastern stocks, indicating that 
the former might be more difficult to recover. However, all the stocks present non-linear 
discontinuous dynamics and recently also the eastern ones present a decreased resilience due to 
the increase of the water temperature (Chapter 2).  
 
After many years, some stocks showed small signs of recovery due to a spike in recruitment 
during a year with favourable environmental conditions, in combination with efficient 
management measures (Chapter 3). Recruitment in this thesis is thus identified as an important 
mechanism to start population recovery, as also seen in other studies (Myers et al., 1995; 
Hutchings & Rangeley, 2011; Kuparinen et al., 2014). However, in stocks residing in the south 
and central areas of the North Atlantic, recruitment is negatively influenced by warming 
(Brander, 2005; Stige et al., 2006). Thus even if recovery is theoretically possible, the 
productivity of most of the population will likely stay low under global changes, as also shown 
in another study (Drinkwater, 2005). Also in this case differences between eastern and western 
stocks can be detected. The stock-recruitment relationship showed discontinuous and 
catastrophic dynamics in western stocks pointing out their lower resilience compared to the 
eastern ones (Chapter 4). Moreover, recruitment in the East seemed more affected by local 
conditions (i.e. temperature), while in the West responded more to large scale climatic 
fluctuations (i.e. Atlantic Multidecadal Oscillation) (Chapter 4), indicating that these stocks 
might experience more fluctuating environmental conditions, again stressing on their higher 
instability (Pörtner et al., 2008; Köster et al., 2013; Botero et al., 2015).   
 
The main finding of this thesis is that Atlantic cod stocks recovery potential in the central and 
southern North Atlantic is low since the stocks present discontinuous dynamics and hysteresis 
and since climate change has a negative effect on the adults and the larvae of these stocks 
(Figure 10, Chapter 2, 3 and 4) (Brander, 1995; Drinkwater, 2005; Pörtner et al., 2008). Stocks 
in the Northwest Atlantic appear even more vulnerable compared to stocks in the Northeast, 
confirming that important differences exist depending on the geographical areas (Rätz & Lloret, 
2003; Pörtner et al., 2008).  
 
Of course, there might be different outcomes in nature. Local environmental conditions and the 
presence of subpopulations inside the stocks can have an impact on recovery and were not 
considered in this thesis (Smedbol & Wroblewski, 2002; Reiss et al., 2009). Also the 
evolutionary potential of cod and its capacity to adapt to climate change documented in various 
fish populations were ignored (Hoffmann & Sgrò, 2011; Crozier & Hutchings, 2014; Botero et 
al., 2015). The temperature increase in southern areas, especially if outside the thermal niche 
of cod, could lead to a complete migration of cod populations northwards (Engelhard et al., 
2014; Kortsch et al., 2015). Consequently, an increase of the stocks in northern areas is 
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theoretically possible. The disappearance of cod from the south will confirm the failed recovery 
highlighted in this thesis. Indeed, the stocks will not reside anymore in their “traditional” areas 
leading to repercussion on the entire socio-ecological system (Pinsky et al., 2018; Selden et al., 
2018). 

 
Figure 10: Synthetic figure of main thesis results framed in a management perspective (produced by Xochitl Cormon).  

 
This thesis stresses that the detection of non-linear dynamics is fundamental for management, 
to i) understand the resilience of the system, ii) identify the drivers and their thresholds 
necessary to maintain the system in a high and stable state, iii) understand the mechanisms that 
could favour the system´s recovery (Standish et al., 2014; Blenckner et al., 2015a; Carpenter et 
al., 2015; Levin & Möllmann, 2015). The methods applied here proved extremely good in 
unravelling non-linear dynamics. The definition of resilience and of reference points in 
management could be done using a combination of the methods applied in this thesis, in 
particular the stochastic CUSP model (Chapter 2) (Selkoe et al., 2015; Hunsicker et al., 2016). 
Management intervention in some cases requires knowledge of the mechanisms of collapse and 
recovery, which was achieved here with the wavelet analysis (Chapter 3). Modern management 
in some areas such as USA and Australia, already uses multiple model frameworks to increase 
the robustness of the management measures, therefore the multi-model approach applied in this 
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thesis could also be applied and improve management efficiency(Chapter 4) (Punt et al., 2013; 
Levin & Möllmann, 2015; Punt et al., 2016).  
 
Finally, these methods seemed also able to give indications of non-linearity before they occur. 
For instance, the stochastic CUSP model did not fit well to Gulf of Maine and Faroe cod stock 
data. However, the models still indicated that even though the stocks are at present in a stable 
state with linear dynamics, future temperature changes might induce discontinuous dynamics 
and thus abrupt collapses (Chapter 2). This of course could be important for management to 
anticipate possible undesired surprises, and to confirm results from other indicators like the 
early warning signals (Dakos et al., 2008, 2017; Kefi et al., 2013). The presence of 
discontinuous dynamics and the low resilience of many stocks can highlight areas in which 
management outcomes are more uncertain and where more adaptation options are needed 
(Figure10). To develop more flexible management approaches and to be ready to adapt to 
unforeseen changes the methods applied in this thesis can help to move towards more 
integrative ecosystem based management (King et al., 2001).  
 
Consequences of the failed recovery of Atlantic cod stocks 
 
Here, I show that Atlantic cod stocks might not be able to recover in the future years due to 
climate change, and thus that many ecosystems will permanently lose their dominant predator. 
This could lead to huge repercussion both from an ecological but also socio-economic 
perspective (Hutchings & Myers, 1995; Haedrich et al., 2000).   
 
The consequences of the depletion of southern and central Atlantic cod stocks can be already 
seen in various ecosystems, both in the East and West Atlantic (Frank et al., 2005; Österblom 
et al., 2007; Casini et al., 2008a). Atlantic cod is a top predator of marine food-webs (Link et 
al., 2009) preying mainly on forage fish and benthos at an adult stage, and on plankton at a 
juvenile stage (Hanson & Chouinard, 2002; Beaugrand et al., 2003; Minto & Worm, 2012). 
The theory suggests that the removal of an apex predator, i.e. “trophic downgrading, can lead 
to major shifts in the full ecosystem based on 3 pillars: i) the so-called trophic cascade, ii) the 
presence of alternative stable states and iii) the connectivity in food-webs (Estes et al., 2011). 
This can already be seen in different ecosystems where cod collapsed, such as in the Eastern 
Scotian Shelf (Frank et al., 2011). The disappearance of cod led to a release of its predation 
pressure on its preys and to a strong trophic cascade with consequent increase of forage fishes 
but also macroinvertebrate animals, i.e. crustaceans (Frank et al., 2005; Jordán, 2009; Ellingsen 
et al., 2015; Malhi et al., 2016; Ichii et al., 2017). This led to the instauration of an alternative 
new state, which, if cod stocks will fail to recover in the future, has to be considered the new 
and permanent state (Estes et al., 2011). In some areas, the new system is characterized by a 
restructured trophic chain, where the food-web becomes less homogeneous and present greater 
variation of species and abundances. Thus, with the increase of the heterogeneity, resilience 
and resistance may decline, leading to less stable and novel ecosystems (Ellingsen et al., 2015). 



  Implications 

 133 

 
The decline and disappearance of cod brought also huge socio-economic repercussions (Myers 
et al., 1996; Haedrich et al., 2000; Xu et al., 2013; Quaas et al., 2016). Especially in Canada 
where a fishing moratoria was established, thousands of fishermen lost their job, leading to the 
disappearance of many fishing villages and consequent social issues (Kurlansky, 2009). To 
adapt to the disappearance of cod, in many areas fishermen have changed their target resources, 
moving towards substitutes (Steneck et al., 2011). This adaptation required some years but was 
favoured also by the increase of other species such as forage fish or macroinvertebrates 
consequent to the trophic cascade (Frank et al., 2005; Conway & Shaw, 2008). For instance, in 
Maine, many fishermen have switched towards more advantageous resources such as lobsters 
or crustaceans (Steneck et al., 2011, 2013). The market is so prosperous that at the moment 
there is no will to have cod back in the ecosystem, since the new business is far more valuable. 
However, this opens many questions about the sustainability of fishing down marine food-webs 
and what will happen if the lobster will also be gone (concept called “gilded trap”) (Steneck et 
al., 2011). Of course, social conflicts are present; indeed, some fishermen are winners (the ones 
who changed their business or who already had licences for the emergent species) and some 
losers (the ones who continued to fish for cod).  
 
The loss of key-stone species or apex predators, such as cod, is often coupled with climate 
change and other anthropogenic stressors, and thus the consequent changes in biodiversity, 
ecosystem structure and functioning are not always easy to explain or predict (Estes et al., 2011; 
Ellingsen et al., 2015). The loss of cod could just result in the increase of forage fish and thus 
a downgrading of the food-chain or could open up new niches in the ecosystem and favour the 
entering or the establishment of new species from other areas (i.e. southern). An example is the 
projected increase of spiny dogfish as new regulator of the food-web in Gulf of Maine after the 
collapse of cod due to fishing and climate change (Selden et al., 2018). The new predator could 
help the ecosystem to maintain a similar structure and thus, the entrance of new species could 
act as buffer mechanism and increase the system´s resilience (Selden et al., 2018). Therefore, 
the consequences of apex predators’ loss may vary between areas and ecosystems and are not 
easy to understand and predict due to the complexity of the food-webs and the multiple 
anthropogenic pressures acting on them. Similarly, it is not entirely clear whether the decline 
of cod is completely negative from a socio-economic point of view, and whether the new states 
are less or more desirable economically.  
 
In the Northern areas, i.e. Barents Sea and Iceland, cod populations present really high 
abundances. The stocks in the north are projected to increase and likely to expand even further 
north. In this case cod will become the “colonizer” species of new food-webs as it is happening 
in the Arctic. The Arctic food-web is in general quite simple, and the entrance of cod can 
completely change its structure rendering it more heterogeneous and thus decreasing the 
resilience and stability of the system itself, with important repercussions on its functions 
(Blanchard, 2015; Kortsch et al., 2015). The very high abundances of cod especially in the 
Barents Sea have hugely changed its world market. Indeed, even if depleted, cod is still one of 
the main requested species by the public (Quaas et al., 2016). At the moment, the entire world 
cod market is dominated by the Barents Sea cod, and thus looks very different compared to the 
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market some decades ago (Figure 11) (Sguotti et al., 2018). This of course raises concerns about 
the market resilience and the capacity of the new cod market to absorb stresses (Richter & 
Dakos, 2015). Moreover, a single stock-dominated market can have important repercussions 
on the management and the fishing activities for cod in other areas, thus potentially influencing 
the recovery of the stocks. Socio-economic factors were just very weakly touched in this thesis, 
however, a comprehensive analysis on the impact of the market on the recovery of cod stocks, 
and an analysis of the social components of the systems would improve our understanding on 
cod stocks dynamics and especially recovery. The socio-ecological system should be analysed 
as a whole and should be maintained within a safe space, defined by management (Färber et 
al., 2018) (Rockström et al., 2009; Carpenter et al., 2015, 2017)  
 

 
Figure 11: Snapshots of Atlantic cod market in the 1970s and 2010s. a,c) Export per countries respectively in the 1970s 
and 2010s. b,d) Stocks which mainly served the market respectively in the 1970s and 2010s.  

The hypothesised failed recovery of Atlantic stocks could lead to some socio-economic and 
ecological repercussions, difficult to fully estimate and predict. The adaptation towards a world 
with less cod has already started in some areas and therefore can give an indication of what will 
happen in the future if the recovery would be hindered (Frank et al., 2011; Steneck & Wahle, 
2013; Selden et al., 2018). Adaptation is the only way in which society and management can 
handle the future changes of marine ecosystems (Allison et al., 2009; Kates et al., 2012; Ogier 
et al., 2016). If we want to be able to feed the planet and secure livelihoods for humans, we 
need to apply adaptive and flexible management which can adjust to the projected global 
changes (Merino et al., 2012; Sale et al., 2014). In this context, the ecosystem based 

a) b)

c) d)



  Implications 

 135 

management, considering the systems as a whole, is trying to move towards this direction (Long 
et al., 2015). The inclusion of non-linear, discontinuous dynamics in this management 
framework is important to avoid ecological surprises and requires the utilization of non-
traditional models and the reformulation of some management practice (Osterblom et al., 2010; 
Levin & Möllmann, 2015; Selkoe et al., 2015; Ye et al., 2015; Deyle et al., 2018). Even if the 
change of management practices might be scary or with unknown outcomes, we need to move 
towards a new, more flexible and more adaptive management to be able not only to cope, but 
also to adapt and take advantage of the present and future global changes (Creighton et al., 
2016). 
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