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A B S T R A C T

This work considers the phase-space evolution of an externally injected
electron beam under various plasma-based acceleration scenarios
using numerical methods.

Plasma wakefield acceleration, an exceptional technology with the
potential to drive the next generation of particle accelerators, uses a
particle driver to excite a wakefield carrying gradients in the range
of 10 GV m−1 to 100 GV m−1, orders of magnitude higher than the
conventional cavities currently available. However, the plasma envi-
ronment has stringent requirements with respect to acceptable beam
parameters which need to be carefully analyzed to enable stable beam
transport and acceleration. Since the analytic description of electron-
plasma interactions is all but impossible given the nature of the prob-
lem, the approach taken in this work relies on the dominant numerical
method in the field of plasma-based acceleration, the Particle-in-Cell
approach, supported by analytic and semi-analytic descriptions of
special cases. It focuses on the behavior of a preaccelerated beam
and the mechanisms involved in its phase-space evolution, aiming
to preserve beam-quality parameters and potentially minimize the
energy spread using the dechirping approach.

After introducing a simplified analytic method for the calculation
of uncorrelated emittance evolution and finding it in agreement with
simulated results, the studies focused on the selection, vacuum-to-
plasma transport and acceleration of an idealized beam, identifying
a suitable working point for efficient energy gain and witness-beam
parameter preservation. The wakefield encountered by the witness
in such an acceleration scenario can increase its energy spread, a
detrimental effect which can potentially be reversed using so-called
dechirping. This work studied its applicability, finding that the reduc-
tion in projected energy spread is followed by an increase in the slice
energy spread, before identifying a promising parameter range for a
planned experiment and presenting data obtained from a successful
demonstration at FLASHForward, concluding with a discussion of the
dechirping potential of the beam obtained from earlier simulations.
Finally, the studies focused on beam distributions obtained from a
particle-tracking method, which showed clear deviations, both from
the symmetric picture and the longitudinal current profiles. The asym-
metries of the beams obtained after the separation of the initial bunch
interfered with the acceleration process and necessitated the introduc-
tion of mitigation strategies, which were successfully implemented,
resulting in tangible improvements in beam stability.
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Z U S A M M E N FA S S U N G

Diese Arbeit benutzt numerische Methoden zur Betrachtung der
Phasenraumentwicklung eines extern injizierten Elektronenstrahls
in verschiedenen plasmabasierten Beschleunigungsszenarien. Plas-
makielwellenbeschleunigung („plasma wakefield accleration“) ist eine
außergewöhnliche Technologie mit den Potential, die nächste Genera-
tion von Teilchenbeschleunigern anzutreiben. Sie benutzt dazu einen
Teilchenstrahltreiber um Kielwellen anzuregen, die Feldgradienten
im Bereich von 10 GV m−1 bis 100 GV m−1 tragen können, mehrere
Größenordnungen über den aktuell verfügbaren konventionellen Kav-
itäten. Die Plasmaumgebung stellt jedoch strikte Voraussetzungen
an die Strahlparameter, die präzise analysiert werden müssen, um
stabilen Strahltransport und -beschleunigung zu ermöglichen. Da die
analytische Beschreibung von Elektronen-Plasma-Interaktionen auf-
grund der betrachteten Problemparameter praktisch unmöglich ist,
nutzt die vorliegende Arbeit die auf dem Feld der Plasmabasierten
Beschleunigung vorherrschende numerische Methode, den sogenan-
nten „Particle-in-Cell“-Ansatz, unterstützt von analytischen und semi-
analytischen Beschreibungen ausgewählter Spezialfälle.

Die Arbeit fokussiert sich auf das Verhalten vorbeschleunigter
Strahlen sowie die für ihre Phasenraumentwicklung relevanten Mech-
anismen, mit dem Ziel, die Strahlqualität zu erhalten und potentiell
die Energiebandbreite durch den Einsatz des „Dechirping“-Ansatzes
zu minimieren. Nach der Vorstellung einer vereinfachten analytis-
chen Berechnungsmethode für die Entwicklung der unkorrelierten
Emittanz, fokussierten sich die Studien auf die Auswahl, den Vakuum-
Plasma-Transport sowie die Beschleunigung eines idealisierten Elek-
tronenstrahls und identifizierten dabei passende Einstellungen für
die effiziente Beschleunigung eines „Witness“-Strahls unter Erhaltung
seiner Qualitätsparameter.

Der Feldgradient in einem solchen Beschleunigungsszenario kann
die Energiebandbreite des „Witness“-Strahls erheblich vergrößern.
Dieser Effekt kann potentiell durch den Einsatz der sogenannten
„Dechirping“-Technik rückgängig gemacht werden. Die vorliegende
Arbeit befasste sich mit der Anwendbarkeit dieser Methode und fand
dabei, dass eine Verringerung der projizierten Energiebandbreite mit
einer Erhöhung der unkorrelierten Energiebandbreite einhergeht. An-
schließend wurde ein vielversprechender Parameterbereich für ein
geplantes Experiment idenzifiziert sowie Daten einer erfolgreichen
Demonstration dieser Technik, aufgenommen bei FLASHForward,
präsentiert. Das Kapitel endet mit einer Diskussion des „Dechirping“-
Potentials des im vorherigen Kapitel beschleunigten Strahls.
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Schließlich befassten sich die Studien mit Strahlverteilungen, die
aus einem „Particle tracking“-Programm stammen und deutliche Ab-
weichungen zeigten, sowohl in ihrer Symmetrie als auch bei den
longitudinalen Stromprofilen. Die Asymmetrie der Elektronenpakete,
die nach der Auftrennung des ursprünglichen Strahls erhalten wur-
den, hatte negative Auswirkungen auf den Beschleunigungsprozess.
Dies erforderte die Einführung von Bewältigungsstrategien, deren er-
folgreiche Umsetzung eine deutliche Verbesserung der Strahlstabilität
ermöglichte.
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I N T R O D U C T I O N

When an international collaboration, comprised of thousands of scien-
tists, announced the discovery of the Higgs boson in 2013, it not only
marked a momentous achievement in the study of the Standard Model,
it also helped put a machine that enabled the observation of this elu-
sive particle into the spot light. The Large Hadron Collider is part of
a long tradition of instruments which enabled the scientific study of
nature on scales far beyond the limits of human perception. Particle
accelerators are commonly found on the forefront of studies involv-
ing atomic to subatomic scales—either by providing the relativistic
particles needed for collision experiments probing the constituents of
matter and the forces they are subjected to, or driving synchrotron ra-
diation sources analyzing molecular and atomic interactions critical for
applications such as medical research, material science and chemistry.
In their wake, a multitude of accelerator designs with a diverse set of
application profiles — from historical record dating [Grolimund et al.,
2004] to medical therapy [Levin et al., 2005; Suortti et al., 2003] — have
been introduced and implemented, further enlarging the footprint of
this technology on the current scientific and industrial landscape.

Mirroring their impact and the increasing demand, new facilities
are either already online (e.g. the European X-Ray Free Electron Laser,
XFEL) or being planned (such as the International Linear Collider
ILC). However, the promised increases in temporal and spatial reso-
lutions come at a significant cost, often requiring large international
collaborations and complex funding structures. Current acceleration
technologies are ultimately limited to gradients of 100 MV m−1, while
currently used structures are rated significantly lower (as an example,
the European XFEL has cavities designed for 23.6 MV m−1, necessi-
tating an acceleration section of 1.7 km to reach its final energy of
17.5 GeV [Altarelli, 2011]). To reach higher energies for collision exper-
iments thus requires increasingly large accelerating structures, raising
the question whether potential new technologies can help reach higher
gradients and thus reduce the necessary footprint and corresponding
investment.

Plasma-based acceleration [Esarey et al., 2009], a proposal which
uses the high field gradients available due to charge separation of the
electron-ion mixture in the wake of a high-intensity laser or particle
driver, is currently seen as one of the most promising candidates for a
new generation of cost-effective accelerator designs. Offering accelerat-
ing gradients in the range of 10 GeV to 100 GeV [Modena et al., 1995],
machines implementing this technology either by using short laser
pulses for so-called laser wakefield acceleration (LWFA) or charged
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2 introduction

particle beams as drivers for plasma wakefield acceleration (PWFA)
promise an orders-of-magnitude reduction in the size of corresponding
accelerating structures. Since its inception in 1979 [Tajima et al., 1979],
the exceptional potential of plasma-based accelerators has prompted
an increasing number of experiments to probe its many aspects and
deliver promising results. From the production of ultra-relativistic
narrow-band electron beams [Geddes et al., 2004] in LWFA, to the
energy doubling of a bunch on a meter scale [I. Blumenfeld et al.,
2007] and the successful acceleration of an electron bunch up to 2 GeV
in the wake of a proton driver [Adli et al., 2018] in PWFA, towards
the demonstration of X-ray radiation generation either in the plasma
channel [Kneip et al., 2010] or the undulator structures downstream
[Fuchs et al., 2009], this field has seen significant advances driving
the implementation of dedicated facilities such as FLASHForward
[Aschikhin et al., 2016] and FACET-II [Joshi et al., 2018].

Concurrent developments in the numerical description of the pro-
cesses under consideration have provided the sound theoretical footing
required for all scientific advancement. Originating in the methods
which quickly followed the original proposals [John M Dawson, 1983]
and recognized the need to side-step the impossible task of a complete
analytic description of the constituent processes, they instead rely
on highly performant simulations fine-tuned to the targeted param-
eter space. It is not surprising, therefore, that major strides in the
understanding of plasma behavior have happened in lock-step with
significant developments in the fields of corresponding numerical
methods, long established as a third pillar between theory and ex-
periment. Among those, the Particle-in-Cell (PIC) approach [Charles
et al., 1985; John M Dawson, 1983; Harlow et al., 1955] can be seen
as the dominant one, covering a wide range of acceleration and injec-
tion scenarios and providing a robust and straightforward description
mechanism. It is implemented by subsuming the individual particles
into so-called macroparticles, representations of the local phase-space
density structure, and placing them into a grid harboring the field
components. This allows for the complete evaluation of the kinetic and
electromagnetic aspects of plasma-bunch interactions, made possible
by highly parallized codes running on supercomputers. However, it
too can be further optimized by carefully focusing the considered
parameter range. When analyzing PWFA scenarios, the observation of
vastly different dominant time and length scales between the plasma
and the electron bunches leads to the introduction of the quasistatic
approximation scheme [Mora and Antonsen Jr, 1996; Whittum, 1997],
which enables significant increases in efficiency for scenarios consid-
ered in this dissertation.

Despite the substantial advances presented above, the technology
of plasma-based acceleration still faces a multitude of challenges with
respect to the stability of the process and the provision of resulting
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beams of consistently high quality. The shift from vastly different
environments, from the conventional beam line to a plasma stage
and back into the focusing structures, requires careful tuning of the
simulated process to avoid severe degradation of quality parameters
such as emittance and energy spread, both figures of merit for beam
transport and potential downstream applications such as FELs. Quasi-
static PIC codes such as HiPACE [T. Mehrling, C. Benedetti, et al.,
2014], by virtue of their focus on the efficient description of the beam
phase-space development, allow for wide-ranging parameter scans
to establish configurations which allow either the preservation of the
beam phase-space. The present work applies this approach to demon-
strate the numerical description of a successful acceleration process
within a parameter range motivated by the FLASHForward accelera-
tor, helped by a newly introduced analytic description of emittance
evolution and leading to a so-called start-to-end treatment of the accel-
eration involving a simulated preaccelerator beam line. It additionally
explores advantageous phase-space modifications permitted by the
plasma environment in the case of dechirping. This technique uses
the longitudinal field properties in the wake of an electron beam to
reduce its negative energy chirp and minimize its energy spread.





Part I

T H E O RY





1
P L A S M A P H Y S I C S

As the name suggests, one of the the crucial components of plasma-
based acceleration is the plasma environment itself — a quasineutral
distribution of ionized particles showing collective effects. It is these
two characteristic attributes [F. F. Chen, 2012] which help distinguish
plasma from other forms of ionized matter, forming the basis for a
useful classification among the wide range of possible plasma densities
and temperatures. Their thorough theoretical definition is a required
foundation to allow for the discussion of possible effects and associated
length and time scales.

1.1 plasma definition

As a form of ionized matter, plasma is composed of positive and
negative charges occupying a volume in space. Its quasineutral nature
becomes apparent when a test particle charge q is introduced in this
environment, causing plasma particles of opposite charge to cluster
around it an effect known as Debye shielding and causing the test
particle’s potential Φ to decay as

(1.1)Φ ∼ q
r

e−r/λD ,

as a function of radial distance r, instead of the normal Coulomb
dependency Φ ∼ q/r, with the characteristic decay length λD defined
as the Debye length [Spatschek et al., 1990],

(1.2)
1

λ2
D

=
1

λ2
D,e

+
1

λ2
D,i

,

composed of the shielding contributions from electrons λD,e and ions
λD,i, respectively. However, it is common to ignore the ion contribution
to the shielding process itself, based on the significant difference in
weight and thus response times and frequencies [F. F. Chen, 2012]
— an approach adapted in the following discussion and throughout
this work. The electron contribution to the Debye length is given by
[F. F. Chen, 2012]

(1.3)λ2
D,e =

ε0kBTe

nee2 ,

with the particle density ne, the temperature Te, the Boltzmann con-
stant kB, and the vacuum permittivity ε0. A higher particle density
reduces the Debye length, providing more particles to shield the poten-
tial, while a higher temperature increases it, inhibiting the shielding
response.

7



8 plasma physics

Thus, a plasma appears quasineutral on length scales much larger
than the Debye length, L� λD, shielding charge imbalances through
the arrangement of its constituent particles. This definition can be
coupled to the second condition for a plasma — the emergence of
collective effects — since it requires enough particles to be present
around the charge to allow for a statistical consideration. In other
words, a Debye sphere must contain a distribution with a sufficient
number of particles,

(1.4)
4
3

πneλ
3
D � 1.

This condition for collective behavior can be expressed using the
so-called plasma parameter,

(1.5)Λ =
4π

3
nλ3

D,

so that a plasma where Λ� 1 is called an ideal plasma (following the
definition of an ideal gas, where collective thermal effects dominate
individual particle interactions). Thus, both conditions for a plasma
environment can be seen as closely connected (L� λD, Λ� 1). How-
ever, it remains to consider the conditions and typical time scales for
both the collective processes as well as individual particle interactions.

The response frequencies for plasma electrons and ions carrying a
single charge are given by [F. F. Chen, 2012]

(1.6a)ωpe =

√
nee2

meε0

(1.6b)ωpi =

√
nie2

miε0
,

with the respective weights mi,e and particle densities ni,e. Considering
the respective frequencies supports the argument made above in
favor of ignoring ion contributions to the shielding and collective
effects for cases relevant in the following sections — with a ratio of
me/mi ≈ 5.49 · 10−4 for even a hydrogen plasma, the resulting plasma
frequency ω2

p = ω2
e + ω2

i is almost fully defined by the quick electron
response,

(1.7)ωp ' ωpe =

√
n0e2

meε0
.

This frequency is an important parameter defining the typical time
scales of the plasma response to external perturbations and thus of
great importance to the discussion of acceleration processes. Addition-
ally, it can be used to formulate a condition for the transition into a
state where collective effects are dominant. Considering the frequency
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of Coulomb collisions between ions and electrons — a typical example
of particle interactions in plasma, given by (cf. [F. F. Chen, 2012])

(1.8)νm ≈
n0e4

ε0v3m2
e

log(Λ),

with the average particle velocity v, the ratio between the frequencies
of the two processes can be approximated as

(1.9)
ωp

νm
≈ Λ

log(Λ)
≈ Λ� 1,

recovering the condition for the collective effects within a Debye sphere
presented above.

In addition to the plasma frequency, which provides a typical time
scale, the following sections will use a so-called skin depth to provide a
typical length scale based on considerations related to the propaga-
tion of electromagnetic waves in its environment. The corresponding
dispersion relation is given by [F. F. Chen, 2012]

(1.10)ω2 = ω2
p + c2k2,

with the frequency ω and the wave number k for a given light pulse.
Rearranging this equation for the wave number,

(1.11)k =

√
ω2 − ω2

p

c2 ,

shows a decreasing k for higher densities (since ωp ∼ n1/2
0 ), reaching

zero at a critical density,

(1.12)nc =
ω2meε0

e2 .

For values above this boundary, the once transparent (so-called under-
dense) plasma turns opaque to incident light of the considered fre-
quency (consequently known as over-dense plasma), its dispersion rela-
tion now having the form

(1.13)k = i
|ω2

p − ω2|1/2

c
,

with the characteristic decay length of the wave amplitude, termed
the skin depth, |k−1|= c/(ω2

p −ω2)1/2. Its asymptotic form, k−1
p = c/ωp,

while limited to the description of attenuation in over-dense plasma
in the physical sense, is commonly used as a typical length-scale for
plasma-based acceleration processes.

In summary, the crucial plasma parameters that determine its classi-
fication and suitability for acceleration, all depend on plasma density
and temperature — the Debye length λD ∼ (Te/n0)

1/2, the plasma
frequency ωp ∼ n1/2

0 and the plasma parameter Λ ∼ n0 (Te/n0)
3/2.



10 plasma physics

The plasma available for acceleration processes is commonly ob-
tained through photo-ionization at densities 1× 1015 cm−3 ≤ n0 ≤
1× 1022 cm−3 and temperatures 1 eV ≤ Te ≤ 1000 eV, forming an ideal
plasma which allows particle collisions and associated effects to be
ignored and to focus on collective processes only — a restriction valid
for all subsequent discussions.

1.2 models for theoretical plasma description

After the initial classification and corresponding introduction of typi-
cal parameters and its specific time and length scales, a more thorough
description of the plasma is required for a better understanding of the
acceleration and focusing processes discussed below. A naive interpre-
tation would aim for the consideration of all plasma particles to allow
for the most accurate description possible, evaluating particle motions
within the fields generated by the surrounding particles. It should be
clear, however, that such an approach is neither practical nor necessary
for a system consisting of a large particle population dominated by
collective effects (see classification above). The most common solution,
therefore, is to employ models with varying degree of granularity sup-
ported by specific assumptions about plasma properties and behavior
and limited by the required accuracy, usually hierarchically structured
as follows:

• Microscopic Picture: Describing individual plasma particles and
their self-consistent fields, this is the most accurate model with
little practical use for typical descriptions in plasma-acceleration
cases;

• Kinetic Picture: Replacing individual particles with correspond-
ing statistical averages of their distribution, this picture is a
widely used approximation in the description of plasma pro-
cesses;

• Macroscopic Picture: Treating the plasma as a fluid allows for a
potentially straightforward description, however at the cost of
more restrictions on its applicability;

1.2.1 Microscopic Picture and the Klimontovich Equation

This description can be seen as the most straightforward one—focusing
on point-like particles in plasma together with their self-consistent
fields generated by their charge and current, given by

(1.14a)ρm(r, t) = ∑
s

qs

∫
dp f m

s (r, p, t),

(1.14b)J(r, t) = ∑
s

qs

∫
dpv f m

s (r, p, t)
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in the macroscopic picture denoted by the superscript m for a specific
particle s, with charge qs and mass ms, where

(1.15)v =
p

ms
√

1 + (p/msc)2
.

Here, f m
s denotes the microscopic time-dependent density distribution

in six-dimensional phase space,

(1.16)f m
s (r, p, t) =

Ns

∑
i=1

δ(r− Ri(t))δ(p− Pi(t),

for a species with Ns constituent particles evaluated at the individual
particle position Ri and momentum Pi using the Dirac delta function,
making them Lagrangian quantities of the particle (r and p refer to
coordinates in 6D phase space). Their description is complemented
by the Eulerian field, charge and current density quantities, in turn
described given the well-known Maxwell equations [Maxwell, 1873]

(1.17a)∇ · E =
ρ

ε0
,

(1.17b)∇ · B = 0,

(1.17c)∇× E = −∂B
∂t

,

(1.17d)c2∇× B =
∂E
∂t

+
j
ε0

,

forming the basis for the equations of motion for the individual parti-
cles,

(1.18a)
dRi

dt
= Vi(t),

(1.18b)
dPi

dt
= qsE(Ri(t), t) +

qs

c
Vi(t)× B(Ri(t), t),

the right-hand side of the latter equation describing the Lorentz force
acting on the particle moving with individual velocity Vi.

Based on these equations, a description of the exact plasma evolu-
tion can be found, first considering the time derivative of its density
[Nicholson, 1983]

(1.19)

∂ f m
s (r, p, t)

∂t
= −

Ns

∑
i=1

∂Ri

∂t
∂

∂r
δ(r− Ri(t))δ(p− Pi(t))

−
Ns

∑
i=1

∂Pi

∂t
∂

∂p
δ(r− Ri(t))δ(p− Pi(t)).

Using equations (1.18) to (1.18a), the equation above can be written as

(1.20)

∂ f m
s (r, p, t)

∂t
= −v

Ns

∑
i=1

δ(r− Ri(t))δ(p− Pi(t))

−qs

[
Em(r, t)+

v
c
×Bm(r, t)

] ∂

∂p

Ns

∑
i=1

δ(r−Ri(t))δ(p−Pi(t)),
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with the field quantities provided using the superscript m denoting
the microscopic notation. Observing that the Dirac delta functions
on the right-hand side of this equation provide the plasma particle
density equation (1.15), yields the Klimontovich equation [Nicholson,
1983],

∂ f m
s (r, p, t)

∂t
+ v · ∂ f m

s (r, p, t)
∂r

+ qs

[
E(r, t) +

v
c
×Bm(r, t)

]
· ∂ f m

s (r, p, t)
∂p

= 0.

(1.21)

This equation, together with the Maxwell field equations, provides
a complete classical description for the deterministic evolution of
all Ns plasma particles of a given species, while ignoring quantum-
mechanical effects. It should be clear, however, that such an approach
is highly impractical for typical plasma acceleration cases at the appro-
priate densities, where it is dominated not by individual trajectories
but by collective effects which can be described much more elegantly
by appropriate methods such as the kinetic description.

1.2.2 Kinetic Picture and the Vlasov Equation

To avoid the impractical evaluation requirements of the Microscopic
description outlined above, a typical approach converts the discrete
particle positions into a distribution function. While based on a sta-
tistical formulation of the collective effects within the plasma particle
ensemble, this description is nevertheless concerned with its motion,
thus termed a kinetic description. The essential idea (cf. [Nicholson,
1983]) is to introduce statistical averaging over the particle distribution
as employed in the Klimontovich equation (1.20), where it serves to
indicate whether a provided coordinate is occupied by a particle at
a specific point in time. When averaged over a small phase-space
volume ∆V = ∆x∆y∆z∆px∆py∆pz, the notion of individual particle
locations is replaced by a smooth distribution, given as [Callen, 2006]

(1.22)
〈 f m

s (r, p, t)〉 = lim
n−1/3�∆x�λD

1
∆V

∫
∆V

drdp f m
s (r, p, t)

= lim
n−1/3�∆x�λD

∫
∆V drdp f m

s (r, p, t)∫
∆V drdp

.

The limit in the equation serves to guarantee a smooth distribution,
requiring a sufficiently large phase-space volume to contain enough
particles—both in configuration space ∆x � n−1/3 and momentum
space ∆px � msvtn−1/3λ−1

D [Callen, 2006]. The upper limit for the
volume is given by the Debye length itself, since the averaging should
capture variations due to collective effects. The averaged particle
distribution for a given species s thus describes its parameters with
an associated error δ f m

s = f m
s − 〈 f m

s 〉 which in turn has a vanishing
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average 〈δ f m
s 〉 = 0. The description based on averaged quantities is

not limited to the particle distribution, requiring averaging of the field,
current and charge quantities as well,

(1.23a)Em = 〈Em〉 + δE,
(1.23b)Bm = 〈Bm〉 + δB,
(1.23c)Jm = 〈Jm〉 + δJ,
(1.23d)ρm = 〈ρm〉 + δρ.

Similar to the smooth particle distribution, the error associated with
their averaging has a vanishing average itself, 〈δEm〉 = 〈δBm〉 = 〈δJm〉 =
〈δρm〉 = 0. Using the averages so defined, the Klimontovich equa-
tion (1.20) thus becomes [Callen, 2006]

(1.24)
〈 f m

s (r, p, t)〉 + v · 〈 f
m
s 〉

δr

+qs

(
〈Em +

v
c
×〈Bm〉

)
· ∂〈 f

m
s 〉

∂p
=−qs

〈(
δEm +

v
c
×δBm

)
· ∂δ f m

s
∂p

〉
.

While the error averages of the individual smoothed quantities vanish
as per the definition above, the average of their products in general
does not. Therefore, the right-hand side of equation (1.23d) is kept
and incorporates microscopic effects not captured by averaging, such
as elastic Coulomb collisions between the constituent plasma particles.

The transition away from the microscopic regime requires that the
averaged quantities be replaced by representations of their smoothed
counterparts, E = 〈Em〉, B = 〈Bm〉, together with the introduction of
the fundamental particle distribution function fs(r, p, t) = 〈 f m

s (r, p, t)〉.
The more concise description results in the plasma kinetic equation,

(1.25)
∂ fs

∂t
+ v · ∂ fs

∂r
+ qs

(
E +

v
c
× B

)
· ∂ fs

∂p
= C( fs),

featuring the Coulomb collision term introduced on the right-hand
side of equation (1.23d). As discussed above, the collision processes can
be neglected as a major contribution to particle processes compared to
collective effects for the plasma regime of interest for acceleration, due
to the different associated time scales (and a large plasma parameter
Λ� 1). Assuming C( fs) ' 0 leads to the collisionless plasma kinetic
equation, known as the Vlasov equation,

(1.26)
∂ fs

∂t
+ v · ∂ fs

∂r
+ qs

(
E +

v
c
× B

)
· ∂ fs

∂p
= 0.

Connected to the Maxwell equations by the charge and current
densities,

(1.27a)ρ(r, t) = ∑
s

qs

∫
dp fs(r, p, t)

(1.27b)J(r, t) = ∑
s

qs

∫
dpv fs(r, p, t),
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the Maxwell-Vlasov system of equations — equations (1.17) to (1.17c),
equation (1.27), equation (1.27a) and equation (1.26) — is of funda-
mental importance for the theoretical treatment of plasma acceleration
processes described below. Its implications, such as the time-reversible
nature and the incompressibility of the phase-space volume occupied
by the particle distribution, will be discussed in more detail in the
following sections.

1.2.3 Macroscopic Picture and Fluid Equations

The essential mechanism for the simplification of the plasma descrip-
tion has been the introduction of statistical averages with an associated
particle distribution, moving away from a Lagrangian treatment to-
wards a Eulerian fluid picture. Consequently, the complexity of the
Vlasov equation can be further reduced provided the plasma particles
exhibit only a small deviation from a macroscopic thermal velocity,
which allows them to be treated within a two-fluid model (electron
and ion fluids) through the introduction of momentum moments.
Using the definitions for the spatial particle density as well as the
fluid-momentum and fluid-velocity distributions,

(1.28a)ns(r, t) =
∫

dp fs(r, p, t)

(1.28b)ps(r, t) =
1
ns

∫
dp p fs(r, p, t)

(1.28c)vs(r, t) =
1
ns

∫
dp v fs(r, p, t),

the Vlasov equation (1.26) can be converted into a density continuity
equation after its integration over all momentum space,

(1.29)
∂

∂t
ns +∇r · (nsvs) = 0,

provided the particle distribution decays to zero outside the relevant
area. The fluid force equation, the second fundamental element of the
fluid model, can be found by multiplying the Vlasov equation with p,
again integrating over all momentum space [Nicholson, 1983],

(1.30)
∂

∂t
(nsps) +

[
∇r ·

(∫
dp(vpᵀ fs

)]ᵀ
= nsqs

(
E +

vs

c
× B

)
,

with outer vector product vpᵀ. Assuming a cold plasma (where
fs(r, p, t) = ns(r, t)δ(p− ps)), the equation can be simplified to

(1.31)
∂

∂t
(nsps) +

[
∇r ·

(
nsvsp

ᵀ
s
)]ᵀ = nsqs

(
E +

vs

c
× B

)
,

which, given the identity (∇ · (abᵀ)ᵀ = b(∇ · a) + (a · ∇)b becomes

(1.32)
ns

∂ps

∂t
+ ps

∂ns

∂t
+ p(∇r · (nsvs))

+ (nsvs · ∇r)ps = nsqs

(
E +

vs

c
× B

)
.
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Using the density continuity equation (1.28c) multiplied by p allows
the fluid momentum equation,

(1.33)
∂ps

∂t
+ (vs · ∇r)ps = qs

(
E +

vs

c
× B

)
to be obtained. Both the density continuity and the fluid momentum
equations, equation (1.28c) and equation (1.33), complete the plasma-
fluid picture, presenting the basis for an adequate description for
its perturbation by a laser or electron driver. The specifics of such a
scenario are the subject of the following section.





2
B E A M - D R I V E N P L A S M A WAV E S

This section continues elaborating the theoretical description of the
acceleration process, now adding the plasma response to an external
perturbation by a driver. The assumptions that permit the fluid de-
scription, most importantly the Vlasov system, to be introduced, still
hold—the plasma is defined by collective effects, its response domi-
nated by electron motion occurring at much shorter time scales than
both the ion background motion (assumed static) and ion-electron
collisions, while the electron velocity closely follows the mean local
thermal velocity. In other words, a driver in this scenario approaches
a pre-ionized plasma considered to be a cold electron fluid, governed
by the smooth distribution functions and momentum moments intro-
duced in chapter 1, above all the density continuity equation (1.28c),
the fluid momentum equation (1.33) and the Maxwell equations (1.17)
to (1.17c), which are connected to the fluid density and velocity via
ρ = e(n0 − ne) and J = −eneve, respectively. With the addition of the
scalar potential Φ and the vector potential A, related to the fields as

(2.1a)E = −∇Φ− ∂A
∂ct

,

(2.1b)B = ∇× A,

both the density continuity and fluid momentum equations can now
be expressed as

∂n
∂ct

+∇ · (nβ) = 0, (2.2)

∂pe

∂t
+ (ve · ∇)pe = −e

(
−∇Φ− ∂A

∂t
+

ve

∂t
× (∇×A)

)
, (2.3)

with the normalized electron fluid velocity β = ve/c and the local
electron density now and in the following denoted as n = ne. Using
the normalized versions of the scalar potential φ = eΦ/mec2, the vector
potential a = eA/mec2 and the electron fluid momentum u = pe/mec,
equation (2.3) can be rewritten as

∂u
∂ct

+
(

u
γ
· ∇
)

u = ∇φ +
∂a
∂ct
− u

γ
× (∇× a). (2.4)

Using the identity (u · ∇)u = ∇u2/2− u× (∇× u), the above equation
now reads (cf. [Meyer-ter-Vehn et al., 2001])

∂

∂ct
(u− a) = ∇(φ− γ) +

u
γ
× (∇× (u− a)), (2.5)

17
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with the Lorentz factor γ = 1/
√

(1− v2/c2). Taking the curl of the
above equation and using ∇× (∇φ) = 0,

∂

∂ct
(∇× (u− a)) = ∇×

(
u
γ
× (∇× (u− a))

)
, (2.6)

leads to an important observation—if ∇× (u− a) is initially zero, it
will remain so for all times. Since the assumed unperturbed and cold
plasma without a laser field initially exhibits u = a = 0, the second
term of the right-hand side of equation (2.5) can be ignored, allowing
it to be simplified into the fluid momentum equation [Esarey et al., 2009]

∂

∂ct
(u− a) = ∇(φ− γ). (2.7)

The electrostatic force term ∇φ offers a straightforward interpretation
for a charged driver beam, while the nonlinear term ∇γ is associated
with the general non-linear ponderomotive force [Esarey et al., 2009],

Fp,n = −mec2∇γ, (2.8)

which expels electrons out of regions of high field magnitude or
intensity. Now that the framework for the description of the plasma
fluid response is in place, the focus of the theoretical consideration
can shift towards the incident driver itself, to account for its specific
parameter range and evolution, as part of the commonly used quasi-
static approximation.

2.1 quasi-static approximation

The general picture of the process under consideration is that of a
laser or highly relativistic charged particle bunch entering the pre-
ionized plasma. Since its behavior and the immediate plasma response
are normally the features of interest, the theoretical formulation is
conducted after a Galilean transformation into the co-moving frame of
reference, with

ζ = z− vt, (2.9)

τ = t, (2.10)

centered around the driver propagating with velocity v in the positive
z-direction. The corresponding derivatives of a dependent quantity
Q = Q(ζ , t),

∂

∂z
Q(ζ, t) =

∂τ

∂z
∂Q
∂τ

+
∂ζ

∂z
∂Q
∂ζ

=
∂Q
∂ζ

, (2.11)

∂

∂t
Q(ζ, t) =

∂τ

∂t
∂Q
∂τ

+
∂ζ

∂t
∂Q
∂ζ

=
∂Q
∂τ
− v

∂Q
∂ζ

, (2.12)

while further considerations are done in the speed-of-light frame, so that
v ≡ c.
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The essential idea of the quasi-static approximation is based on the ob-
servation that there is a significant disparity between the typical time
scales dominating plasma and electron behavior. While the plasma
response occurs at the inverse of its frequency τp ∼ ω−1

p , the time scale
of the particle-beam evolution is defined by its betatron frequency,
connected to the plasma in this picture by [Esarey et al., 2009]

t ∼ ω−1
β '

√
2γ

ω−1
p

, (2.13)

which can be larger by orders of magnitude for highly relativistic
beams with γ� 1. In other words, the charge distribution of a particle
driver does not change significantly during the typical time scale of
the plasma response. In the speed-of-light frame, Eulerian quantities
transform as ∂tQ = ∂τQ− c∂ζQ, where the time-scale disparity implies
[Eric Esarey, Sprangle, Krall, Ting, and Joyce, 1993]

|∂τQ| ∼ τ−1
b |Q| , (2.14)

c
∣∣∂ζQ

∣∣ ∼ τ−1
p |Q| , (2.15)

so that for typical driver beams the evolution of Eulerian quantities
such as charge and current densities as well as the corresponding
fields in the speed-of-light frame is dictated by their ζ-dependency,

∂Q
∂t
' −c

∂Q
∂ζ

. (2.16)

In other words, the beam encounters an environment that reconfigures
itself quickly enough to appear quasi-static over its defining time scale.

2.2 plasma density perturbations

The quasi-static approximation allows for an adequate treatment of
plasma-beam interactions, as depicted in the following descriptions,
where a cold, initially unperturbed plasma is assumed. The resulting
environment is commonly described using the wakefield potential

ψ = φ− az, (2.17)

with the normalized scalar potential and the z-component of the
normalized vector potential a. Its structure given an incident particle
beam with density nb is governed by the second-order differential
equation (cf. [Timon Johannes Mehrling, 2014] and for a detailed
discussion)

k−2
p

∂2ψ(ζ)
∂ζ2 =

1 + a2(ζ)
2(1 + ψ)2 ±

nb(ζ)
n0
− 1

2
, (2.18)

with the plasma skip depth kp, the ambient plasma electron density n0

and the sign of nb defined as the opposite of the charge of the particles
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in the beam. The resulting fluid quantities—the relativistic factor of
the electron fluid γ, the z-component of the fluid momentum and the
local plasma electron density n, are given as [Esarey et al., 2009]

γ(ζ) =
1 + a2 + (1 + ψ)2

2(1 + ψ)
, (2.19)

n(ζ)
n0

=
1 + a2 + (1 + ψ)2

2(1 + ψ)2 , (2.20)

uz(ζ) =
1 + a2 − (1 + ψ)2

2(1 + ψ)
, , (2.21)

and form a complete description of longitudinal plasma waves in the
one-dimensional cold-fluid picture.

As a general consideration, a particle beam in a radially symmetric
quasi-static system will be subjected to wakefields with their longi-
tudinal Ez and transverse Er − Bθ field components connected to the
wakefield potential by [Timon Johannes Mehrling, 2014]

Ez

E0
= −k−1

p
∂ψ

∂ζ
, (2.22)

Er − Bθ

E0
= −k−1

p
∂ψ

∂r
, (2.23)

where E0 = ωmec/e is the cold non-relativistic wave-breaking field [J. M
Dawson, 1959]. A perturbation in plasma, caused by a radially symmet-
ric beam, can thus support fields with both accelerating (for qEz > 0)
and focusing (for q∂r(Er − Bθ < 0)) properties for a test charge q fol-
lowing in the same direction in its wake, forming the basis for the
plasma-wakefield acceleration process at the core of this work. The
specifics of the acceleration itself are defined by the peak densities of
the beam or peak intensities of the laser driver, separately considered
as

• Linear regime (ψ� 1)

• Nonlinear regime (ψ ∼ 1)

• Blowout regime (ψ� 1)

whose specifics will be described in more detail in the following

2.3 linear regime

The linear regime describes a perturbation scenario caused by a driver
of relatively low density (nb/n0 � 1, thus ψ� 1) with a density distri-
bution f . The resulting wakefield structure is found to be [Gorbunov
et al., 1987]

ψ(ζ , r) = kp

∫ ζ

∞
sin(kp(ζ − ζ ′)) f (ζ ′, r)dζ ′, (2.24)
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with the amplitude of a particle driver given as

f (ζ, r) = ±nb(ζ , r)
n0

, (2.25)

with a plus sign for negative charges and vice versa. For the commonly
assumed Gaussian beam distribution,

f (ζ, r) = f0 exp

(
− (ζ − ζc)2

2σ2
ζ

)
exp

(
− r2

2σ2
r

)
, (2.26)

the wakefield structure for positions behind the driver (so that (ζc −
ζ)/σζ � 1 can be expressed as (compare [Timon Johannes Mehrling,
2014])

ψ(ζ, r) = − f0
√

2πkpσζ exp

(
−

(kpσζ)2

2

)
sin(kp(ζ− ζc)) exp

(
− r2

2σ2
r

)
,

(2.27)

while the field structures are provided by evaluating equation (2.22)
and equation (2.23), obtaining [Gorbunov et al., 1987]

Ez

E0
= f0
√

2πkpσζ exp

(
−

(kpσζ)2

2

)
cos(kp(ζ − ζc)) exp

(
− r2

2σ2
r

)
(2.28a)

(2.28b)

Er − Bθ

E0
= − f0

√
2πkpσζ exp

(
−

(kpσζ)2

2

)

× sin(kp(ζ − ζc))
kpr

(kpσr)2 exp
(
− r2

2σ2
r

)
.

Figure 2.1 shows the wakefield potential and the longitudinal field
component on axis, evaluated based on both the analytic approxi-
mations equation (2.27) and equation (2.28) as well as a numerical
solution of equation (2.18) (where a was neglected due to the absence
of a laser beam). Mirroring the assumption of positions situated be-
hind the driver, the analytic deviations align well with their numerical
counterparts in the wake of the particle beam.

2.4 non-linear regime

The cold-fluid description of the plasma electrons is valid for pertur-
bations by low-density drivers causing plasma electron oscillations
with momenta not significantly different from the thermal plasma
average. within the picture of a thermal plasma without a significant
deviation from a momentum average. Higher density beams with
nb/n0 ' 1 and above allow the plasma electrons to reach relativistic
velocities and thus relativistic mass, altering the plasma frequency
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Figure 2.1: Particle beam profile (with kpσζ = 1.0, f0 = 0.01, solid orange lines)
and resulting wakefield potential (upper plot) and longitudinal
field component on axis (lower plot), obtained from analytic
descriptions in equations (2.27) to (2.28) (dashed lines) as well as
numerical evaluations based on equation (2.18) (solid lines).

through its inverse mass dependency (see [Esarey et al., 2009] for more
details regarding relativistic plasma waves). To study the subsequent
deviation from a linear plasma response with sinusoidal wakefield
properties, a Gaussian particle drive beam is introduced with different
peak densities, followed by a numerical interpretation of the wakefield
potential equation (2.18) and derived quantities (the beam is assumed
to be of sufficient transverse size to allow for the one-dimensional
wave description to hold kpσr & 1). Figure 2.2 depicts the resulting
wakefield potential and longitudinal field component at varying peak
densities for an incident driver. The deviation from sinusoidal struc-
tures is evident for both quantities, together with a non-linear increase
in respective peak values. The high-density perturbation causes a sig-
nificant deviation from the presumed cold-fluid picture of the plasma,
with distinct regions not governed by the presumed thermal picture,
necessitating a different model to correctly describe their behavior.

2.5 blowout regime

The linear regime caused by a sufficiently broad driver of low ambient
peak density can be seen as a purely longitudinal effect, causing a
sinusoidal wake structure with a potential radial dependency in the
case of a Gaussian beam. The last section described a deviation from
that regime through the introduction of higher-density beams, which
caused non-linear wakefields to form in their wake. However, the
assumptions of a fluid description are rendered invalid in the case of a
high-density particle beam with a spot size on the order of the plasma
skin depth k−1

p = c/ωp propagating through the plasma. The beam
expels plasma electrons in its path, forming a cavity surrounded by a
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Figure 2.2: Wakefield structure (top) and longitudinal wakefield component
(bottom), both for driver beam peak densities nb/n0 = 0.1, nb/n0 =
0.25, nb/n0 = 0.5 (top plot) and evaluated on axis, derived from a
numerical evaluation based on equation (2.18).

sheath of electrons which converges to a high-density crest behind the
driver. Such an environment does not follow the cold fluid assump-
tion presented above, exhibiting non-thermal transverse momentum
spreads in clearly defined regions of the beam wake. The study of
such a system is best conducted using a numerical implementation
of the Maxwell-Vlasov framework of equations. While it does not
allow for an analytical solution, it has been successfully implemented
numerically (see [Rosenzweig et al., 1991]), e.g. in the form of so-called
Particle-in-Cell simulations (described in chapter 5).

Figure 2.3: Longitudinal (top) and transverse focusing (bottom) wakefield
components taken in the ζ − x plane on the central axis. The
wakefield structure is established behind the driver positioned
at kpζ = 0 with nb/np = 4.0 and shows clear indications of a
blowout regime, with a linear dependency in the longitudinal
component and a radial dependency in the transverse component,
respectively.
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Figure 2.3 depicts two components of the plasma wakefield environ-
ment created by a high-density particle beam with a limited transverse
spot size below the skin depth, taken from a PIC simulation. The den-
sity distribution of the plasma follows the cavity structure described
above, with its electrons expelled from a bubble-like region in the
wake of the driver, forming a sheath which closes into a high-density
region approximately a plasma wavelength behind the beam. Within
this cavity, the longitudinal field shows no significant variation in
the radial domain, while the transverse focusing fields remain mostly
constant over the longitudinal coordinate for a fixed radial position.

To a first approximation, the blowout can be assumed to follow a
spherical structure, with a radius R, so that the wakefield potential is
given by [Michail Tzoufras et al., 2008]

ψ(ζ , t) =
(kpR)2

4
−

k2
p(ζ2 + r2)

4
− 1, (2.29)

with the resulting fields given as

Ez

E0
=

kpζ

2
, (2.30)

Er − Bθ

E0
=

kpr
2

. (2.31)



3
P L A S M A - WA K E F I E L D A C C E L E R AT I O N

3.1 introduction and overview

The preceding sections focused on the description of plasma density
variations following a perturbation caused by an incident driver beam.
The motivation for this specific setup becomes clear once the resulting
field distributions, or wakefields are considered for their potential accel-
erating and focusing properties. A relativistic driver beam of sufficient
density with a spatial distribution tuned to the wavelength of the
plasma environment will create a wake following at a phase velocity
close to the speed of light. A particle distribution placed at an offset
behind the driver (referred to as a witness) traveling at relativistic
velocities in the same direction will be subjected to the gradients in
the driver wake. These wakefields can lead to an energy gain of the
witness, provided it is placed in their accelerating region. This accelera-
tion technology is known as plasma-wakefield acceleration. Conceptually
developed by [Veksler, 1956] and [P. Chen et al., 1985], followed by ana-
lytical investigations [Keinigs et al., 1987] and numerical studies [Lotov,
2004; Rosenzweig et al., 1991], its potential as a future acceleration
technology saw significant experimental validation at an experiment
conducted at the Stanford Linear Accelerator Center (SLAC) [I. Blu-
menfeld et al., 2007]. Following their propagation through 85 cm of
plasma, a small fraction of the electrons from a 42 GeV bunch were
demonstrated to have energies over 80 GeV. Modern accelerator fa-
cilities are capable of providing high-current beams with sufficiently
small dimensions to allow for the establishment of the blowout regime
at plasma densities permitting gradients of ∼ 30 GV m−1 (for a plasma
of np = 1× 1023 m−3), with focusing properties advantageous for wit-
ness beam transport and quality preservation, a fact several currently
proposed experimental facilities (FACET-I, FACET-II and FLASHFor-
ward, the latter the focus of this work) are aiming to explore.

It should also be noted that the theoretical description of the plasma
perturbation process can also involve the displacement of its elec-
trons through the ponderomotive force of a high-intensity laser beam,
forming the foundation of the alternative plasma-based acceleration
approach, known as laser-wakefield acceleration [Esarey et al., 2009] and
offering the potential to realize a true ‘tabletop‘ accelerator structure.
Its treatment and appropriate description, however, is beyond the
focus of this work. To exploit the promising wakefield properties to
full effect, both bunches still need to be injected with a well-defined
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offset with appropriate phase-space properties at a particular place in
the plasma bubble.

3.2 witness beam injection

One of the defining characteristics of a plasma-based acceleration
regime is its stability over the relevant beam length scales, provided
the driver remains relativistic over the acceleration period to sustain
the wake. This ability is compromised, however, since the driver also
scans a decelerating region of the longitudinal wakefield component
(see figure 2.1), which causes energy loss in the tail portion of its
distribution during its propagation, followed by charge depletion and
finally a collapse of the wakefield. This natural limit on the length (or
duration) of the acceleration process can be associated with a depletion
length,

L =
mec2γb

eE−z
, (3.1)

for a driver with an initial energy mec2γb and the decelerating longi-
tudinal field value E−z . Below this limit, however, it is the placement
of the witness beam or its transition into the wakefield environment
which has the potential to have the most profound effect on its prop-
erties and the effectiveness and stability of the acceleration process.
Additionally, the incompressibility of the phase-space volume gov-
erned by the Vlasov system means that the initial distribution has a
profound effect on the parameters obtainable after the acceleration.
As a general consideration, an injection process should allow for the
selection of a well-defined phase-space region with optimal initial
parameters into a controlled spatial location behind the driver. Several
of the more prominent methods used in PWFA are presented below.

3.2.1 Density-gradient injection

The density perturbation following the highly relativistic driver beam
is stable within the limit of its own typical time scales, propagating
with a phase velocity close to the speed of light. Electrons from the
plasma background, lacking the necessary longitudinal momentum,
thus cannot propagate into a region behind the driver to gain energy
in a sustainable manner. However, if the typical plasma length and
time scales change during the driver propagation, a defined phase-
space region of plasma electrons can be caught in the driver wake
and accelerated. This is the essential idea of density gradient injection
[Bulanov et al., 1998], considered either as a step-like shift with the
typical transition length L . λp or as a gradual transition with L� λp.

Considering the linear regime for a step-wise shift with the wake-
field potential expressed as ψ = ψ0 cos(kpζ), a phase location Nperλp,1
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for the wave period number Nper will see a shift to Nperλp,2 between
two plasma density regions with the corresponding wave lengths λp,1

and λp,2. If this region, ∆ζ = Nper(λp,1− λp,2) corresponds to positions
behind the driver with a sufficiently large gradient, background elec-
trons might gain enough velocity to be carried into the wake and see
further acceleration behind the transition [Suk et al., 2000].

For a transition on a length scale much bigger than the plasma
wavelength, the phase position can be expressed as

φ(z) = kp(z)(z− ct), (3.2)

for a highly relativistic drive beam, with the corresponding effective
plasma frequency and wave number thus given as

ωp,eff = −∂φ

∂t
, (3.3)

kp,eff =
∂φ

∂z
, (3.4)

The phase velocity of the plasma wave can thus be given as [Esarey
et al., 2009]

βph =
ωp,eff

ckp,eff
=
[

1 + k−1
p ζ

dkp(z)
dz

]−1

, (3.5)

which can be expanded for small variations in density n and positions
behind the driver (with k−1

p ζdkp/dz� 1) and thus approximated as

βph ' 1− k−1
p ζ

dkp

dz
= 1− ζ

2n
dn
dz

. (3.6)

For electrons with a normalized velocity β = v/c, the trapping condi-
tion can be formulated as β = βph, which according to the equation
above is valid for positions behind the driver where

ζtr = 2(β−1 − 1)n
(

dn
dz

)−1

. (3.7)

A density transition will thus define an acceptable region behind
the driver where plasma background electrons can be injected into
the wake and accelerated, making it a crucial parameter influencing
a wide range of the resulting witness-bunch properties (see studies
done by [Grebenyuk et al., 2014] and [Ossa, Hu, et al., 2017]).

3.2.2 Ionization injection

Every injection method relying on the plasma electron background to
obtain its witness bunch must define a narrow phase-space region for
the injected particles to avoid instabilities and limit the range of quality
parameters — for example by fine-tuning the plasma density gradient,
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as mentioned above. Another method involves an introduction of
additional electrons (from either an admixture of additional gas species
— a dopant gas — or a higher ionization potential of the main plasma)
through a precisely timed ionization into an accelerating plasma wake
behind the driver. This can be caused by a laser beam, the space-charge
fields of the driver itself or the wakefields it creates. The first method
in the PWFA regime can be realized by a laser beam focused into the
plasma channel following the drive beam. In the case of a transverse
Gaussian mode with a spot size at focus r0 and peak intensity I0, its
intensity evolution in vacuum can be described as [Esarey et al., 2009]

I(r, z) = I0

(
r0

rs(z)

)2

exp
(
− 2r2

rs(z)2

)
, (3.8)

where the spot size rs(z) is given as rs = 2σr and evolves as

rs(z) = r0

√
1 +
(

z
zR

)2

. (3.9)

The beam thus diffracts during its propagation in vacuum (with similar
behavior in plasma [Eric Esarey, Sprangle, Krall, and Ting, 1996]), with
the characteristic length of this process given by the Rayleigh length,

zR =
r2

0π

λ
, (3.10)

and the intensity decaying as I ∝ z−2 for z � zR. A laser pulse can
thus be focused to a predefined region behind the driver to reach
the necessary ionization threshold of either the higher-order plasma
potential or dopant gas and enable the acceleration of emitted electrons
in the driver’s wake [Hidding et al., 2012].

The necessary ionization threshold can also be reached by the trans-
verse modulation of a non-matched driver beam (see matching ex-
planations below), its space-charge fields undergoing a modulation
following its compression and potentially reaching intensities suf-
ficient for ionization [Oz et al., 2007] and subsequent trapping of
background electrons.

Finally, the wakefields of a driver of sufficiently high density were
found to have regions with both sufficient magnitude for dopant gas
ionization and subsequent trapping of the released electrons, allowing
for the generation, focusing and acceleration of a witness beam [Ossa,
Grebenyuk, et al., 2013].

3.2.3 External injection

All injection methods discussed above can be seen as instances of
internal injection, relying on the electrons obtained from the plasma
background to construct and accelerate a witness beam distribution.
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However, the witness beam can also be introduced from a preacceler-
ating structure as a second bunch co-propagating with a well-defined
spatial offset behind the driver, a method consequently termed exter-
nal injection. Originally introduced in the context of an alternative to
the laser-wakefield accelerator concept [P. Chen et al., 1985], it saw
increased interest as facilities began exploring this regime, supported
by the demonstration of energy doubling of a tail section of a single
driver bunch [I. Blumenfeld et al., 2007] which proved the viability of
a particle-beam-driven acceleration setup.

While conceptually straightforward in nature, this injection method
nevertheless requires careful consideration both of the preaccelerating
structures used to obtain the necessary double-bunch setup and the
plasma cavity itself. For the combination of a conventional linear
accelerator with a plasma stage—the main focus of this work—it is
the profound shift from the vacuum beamline to the plasma wakefield
environment which needs to be carefully navigated to facilitate the
efficient acceleration and transport of the witness. Due to the stringent
matching conditions [T. Mehrling, J. Grebenyuk, et al., 2012], the beams
need to be focused far below the typical meter-length scales of the
betatron function for all relevant density regions. A special interface
between the two regimes is required for stable beam transport into the
accelerating stage, facilitating an adiabatic or semi-adiabatic phase-
space shift in the witness (cf. section 7.3). The energy gain itself is very
sensitive to the offset between the two beams, while the high gradient
can also imprint an energy chirp on the witness (as seen in section 7.4).
In other words, the promising properties afforded by the plasma
environment can also have potentially negative side effects which can
be mitigated by careful adjustment of the preaccelerator settings. To
identify this optimal working point for an existing accelerator design
is one of the main topics of this work (see chapter 7).
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PA RT I C L E B E A M D Y N A M I C S

The considerations focusing on the theoretical descriptions of accelera-
tion processes above have used individual particles or particle bunches
almost interchangeably. As a general rule, the beam is a collection of
particles with a longitudinal momentum that is much larger than the
transverse momentum 〈pz〉 � 〈px,y〉. The specifics of the accelerating
structures in accelerators lead to the formation of particle bunches,
individual beams or their separated substructures with distinct dimen-
sions in both the longitudinal and transverse directions σz, σx,y. The
following sections aim to provide a clear picture of the accelerated
particle beam and its properties, placing it within the well-established
context of accelerator physics.

4.1 particle transport in an ideal system

Considering the plasma wakefield regimes introduced above, a single
particle placed in a favorable position within can, in the case of a
blowout regime, be approximated as being subjected to linear focusing
factors defined by the position along the propagation axis only, while
the particle beam itself has a negligible energy spread and follows the
approximation of paraxial motion [Reiser, 2008]. Such a particle has
the equation of motion describing its transverse position (applicable
to both directions)

x′′ + K(z)x = 0, (4.1)

where the transverse position x, and its derivative x′′ = d2x/dz2 for a
focusing function K = K(z) are expressed in trace-space coordinates, a
system of variables x− x′, y− y′, x′ = dx/dz = ẋ/ż = px/pz (thus y′ =
dy/dz = py/pz) commonly used in accelerator physics. The equation
can be solved as [Reiser, 2008]

x(z) = Aw(z) cos[ψ(z) + φ], (4.2)

with a constant amplitude A and phase φ defined by initial conditions
and the phase advance ψ and amplitude functions w(z) depend on
the longitudinal position only. Assuming the equation carries an ad-
ditional degree of freedom allows for the definition ψ′ = w−2 [Reiser,
2008], so that equation (4.1) can be expressed as an amplitude function
for the beam-particle oscillations,

w′′ + Kw− 1
x3 = 0. (4.3)
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A function describing the closed particle trajectories in trace-space can
be found from equation (4.3) and the derivative of equation (4.1) as

x2

w2 + (wx′ − w′x) = A2. (4.4)

A particular choice of variables,

β̂ = w2, (4.5)

α̂ = −ww′ = − β̂′

2
, (4.6)

γ̂ =
1

w2 + w′2 =
1 + α̂2

β̂
, (4.7)

transforms equation (4.4) into the equation of an ellipse,

γ̂(z)x2 + 2α̂(z)xx′ + β̂(z)x′2 = ε̂, (4.8)

where the amplitude term was set as A2 = ε̂, showing its conservation
in the process.

4.2 trace-space emittance and courant-snyder parame-
ters

The above description for the particle trajectory in an ideal system
serves as the motivation for the general beam description in trace-
space, since the amplitude term can be associated with the trace-space
emittance [Floettmann, 2003],

ε̂ =
√
〈x2

c 〉〈x′2c〉 − 〈xcx′c〉2, (4.9)

with the trace-space variables xc = x− 〈x〉, x′c = x′ − 〈x′〉 (assumed to
be centered in the following unless stated otherwise) after transitioning
into the moment description (introduced in chapter 1) for a particle
distribution function f ,

〈Φ(r, p)〉 =
1
N

∫
drdpΦ(r, p) f (r, p, t). (4.10)

The variables introduced in equations (4.5) to (4.7) can be associated
with the Courant-Snyder parameters [E. D. Courant et al., 1958] with
their general definition given as

β̂ =
〈x2〉

ε̂
, (4.11)

γ̂ =
〈x′2〉

ε̂
, (4.12)

α̂ = −〈xx′〉
ε̂

. (4.13)
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x

x′

F = πε̂

√
γ̂ε̂

√
β̂ε̂

−α̂
√

ε̂
β̂

Figure 4.1: Idealized depiction of the trace-space ellipse as defined in equa-
tion (4.14), along with the relationships of all Courant-Snyder
parameters as well as the trace-space emittance—having a direct
geometric interpretation as proportional to the area of the ellipse
F ∝ ε̂ (see [Reiser, 2008]).

For a given trace-space distribution, the Courant-Snyder parameters
can be understood as normalized moments, related to the beam size

σx =
√

β̂ε̂, the transverse momentum spreads σx′ =
√

γ̂ε̂ as well as the
beam convergence or divergence given by α̂. The ellipse equation for an
ideal system equation (4.8) can thus be seen as a special interpretation
of the general emittance relation,

γ̂x2 + 2α̂xx′ + β̂x′2 = ε̂, (4.14)

connecting the Courant-Snyder parameters through the relation

β̂γ̂ = 1 + α̂2. (4.15)

Figure 4.1 provides a depiction of such a trace-space ellipse relating
the introduced quantities.

4.3 betatron oscillations in focusing channels of ideal

systems

The β̂ parameter can also be interpreted as the betatron function β̂(z)
of the beam, related to both the beam size and the local betatron-
oscillation length, as introduced for the theoretical depiction of the
beam-particle trajectory in the ideal system above. Returning to that
configuration, the beta-function can be expressed using 4.3 and 4.5 as

β̂β̂′′ − β̂′2

2
+ 2Kβ̂2 − 2 = 0, (4.16)

or in Courant-Snyder parameters,

Kβ̂ = γ̂ + α̂′. (4.17)
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Assuming a plasma-blowout environment, the main focus of this
work, allows the focusing parameter tp be set constant or slowly
varying with K > 0 (see section 2.5), so that the beta function is given
by [Reiser, 2008]

β̂(z) = β̂0 cos2
(√

Kz
)

+
1

β̂0K
sin2

(√
Kz
)

, (4.18)

making the beta function oscillate between two boundaries — β̂0 and
1/(β̂0K). Therefore, the condition which must be fulfilled to avoid
these oscillations, that is for a beam to be matched into a focusing
channel, is found from β̂′ = 0 = α̂ and equation (4.18) as

β̂0 = β̂m =
1√
K

, (4.19)

together with the other Courant-Snyder parameters,

α̂m = 0, (4.20)

γ̂m =
√

K, (4.21)

now denoted in their matched variants. This description is of particular
interest for beams which deviate from the ideal system description
specifically through a non-negligible energy spread, as can be seen in
chapter 7.

4.4 beam-emittance evolution

Every accelerator design process must be tuned to potential down-
stream applications to maximize its usefulness — simply providing
a particle bunch with more energy is of no use to applications with
stringent beam-quality requirements. It is therefore important to con-
sider figures of merit inherent in processes targeted by the particles
provided by plasma-based acceleration. Luminosity and brightness
are two such major areas in particle physics research.

4.4.1 Luminosity and Brightness as figures of merit

The event rate in high-energy colliders is given by dNev/dt = L · σl ,
with the interaction cross section σl and the luminosity L. The former
is determined by the physical process under consideration, while the
latter represents both the flux and frequency of bunch crossings. The
luminosity for two Gaussian bunches is given by [Edwards et al., 2008]

L =
N2 fcoll

4πσxσy
, (4.22)

with the particle number N, the bunch collision frequency fcoll and the
RMS bunch sizes σx, σy. As mentioned above, the beam size is related



4.4 beam-emittance evolution 35

to the beta-function, σx =
√

β̂x ε̂x (analogous in the y direction), so that
the above equation can be rewritten as

L =
N2 fcoll

4π
√

β̂x ε̂x β̂yε̂y

. (4.23)

Since the beta function is an inherent property of the beamline design,
it is the beam emittance which can be seen as the free parameter
determining the intensity of collision processes.

Another prominent application for accelerated particles, specifically
electrons, is their use as sources of radiation in a free-electron laser
(FEL). The corresponding figure of merit for such a process is the
brightness, given by [Reiser, 2008]

B =
dI

dSdΩ
, (4.24)

with the current I, the transverse area S and the solid angle of the par-
ticles in phase-space Ω. The associated transverse phase-space volume
V4 can be expressed by integrating over the population hyperellipsoid
K [Reiser, 2008]

V4 =
∫

K
dSdΩ '

∫
K

dxdydx′dy′ =
π2

2
ε̂x ε̂y. (4.25)

For a box-shaped current profile with I = I0, the brightness can be
directly obtained as

B =
I0

V4
=

2I0

π2ε̂x ε̂y
, (4.26)

which also allows to approximate beams with non-constant profiles by
current-weighted integration over longitudinal beam slices. Again, it
is the beam emittance which proves pivotal in determining the output
of the physical application downstream.

4.4.2 Emittance degradation processes

Conservation of emittance is of crucial importance to all acceleration
processes — an accelerator providing high gradients at the cost of sig-
nificant emittance increases is of no use to applications with stringent
demands for high luminosity or brightness. To measure emittance
and its evolution, two additional definitions are commonly used. To
compensate for the compression of the trace-space volume during
acceleration through the damping of x′ = px/pz, a normalized transverse
trace-space emittance is introduced, defined as

ε̂n =
〈pz〉
mec

ε̂ =
〈pz〉
mec

√
〈x2〉〈x′2〉 − 〈xx′〉2. (4.27)
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Often, another definition is used, especially in the context of a numeri-
cal analysis, the normalized transverse phase-space emittance [Floettmann,
2003],

εn =
1

mec

√
〈x2〉〈p2

x〉 − 〈xpx〉2. (4.28)

While both definitions are equal for beams at the waist 〈xx′〉 = 0,
they can deviate significantly in the case of divergent beams with
significant energy spreads—while the normalized trace-space emit-
tance remains constant during free drifts, its phase-space counterpart
can vary when a correlation between the transverse position and
longitudinal momentum emerges [Floettmann, 2003].

Conceptually, the emittance is related both to the beam phase-space
volume and its shape [Reiser, 2008]. While the phase-space volume
and particle density can be shown to be constant for a trajectory
governed by the Vlasov system which ignores particle collisions or
radiation effects (a result of the second statement of the Liouville’s
theorem, see [Nicholson, 1983]), it is the shape of the volume which
can change significantly in the acceleration processes described in
the main sections of this work. The main influences on emittance
development for plasma-based acceleration systems are (compare
[Timon Johannes Mehrling, 2014; Reiser, 2008])

1. Off-axis injections into the plasma channel (especially relevant
in external injection scenarios, see chapter 9)

2. Parameter mismatch between beam and focusing channel (pre-
sented for an ideal system above)—for both beams with non-
negligible correlated or uncorrelated energy spreads and non-
constant fields over the beam length (see the considerations in
chapters 6 to 7.)

3. Nonlinear transverse forces and the resulting beam filamentation

4. Nonlinear coupling of the transverse and longitudinal motion

5. Scattering and collision effects, both within the beam and be-
tween the beam particles and the background

In the scope of this work, it is the first two points on this list that
can cause significant increases in emittance during the plasma-based
acceleration process, while the last item is ignored both because of
the assumptions made for the plasma environment and its interaction
limitations (see chapter 1) and the longer time-scales for intrabunch
scattering processes (see [Reiser, 2008]).

The general aim of the main analysis section will be the treatment of
a PWFA acceleration process using well-established numerical meth-
ods, complementing the discussion with a new analytic description
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(see chapter 6). The parameter range for the beams and plasma configu-
rations, while motivated by a current experiment and its requirements,
represents a generally promising foundation for PWFA studies. Within
this context, the discussion of beam evolution and the mechanisms
responsible for emittance growth as well as strategies for its preser-
vation will play a defining role, given its importance for downstream
applications briefly motivated above.





Part II

N U M E R I C A L M E T H O D S A N D T O O L S





5
T H E PA RT I C L E - I N - C E L L A N D S A N A M E T H O D S

The aim of this work is the appropriate description of the requirements,
limitations and proposed solutions for a plasma-based acceleration
process in the PWFA regime, using an externally injected witness
beam—helped by a new description of its emittance evolution (see
chapter 6) and phase-space modulations (see chapter 8). As seen in
the last section, the theoretical treatment of such processes is all but
impractical in a microscopic regime treating the Lagrangian parti-
cle quantities. By building an argument around the introduction of
appropriate requirements, a theoretical framework, centered around
the Maxwell-Vlasov system, can be formed to facilitate workable de-
pictions of plasma-bunch interactions. Its concrete implementations,
mostly focused on the environment of high-performance computing,
have always happened in tune with new proposals and experiments,
starting with the introduction of the initial concept for plasma-based
accelerators by Tajima and Dawson in 1979 [Tajima et al., 1979] and
reflecting the increasing relevance of computational physics in the field
of plasma physics studies [Pritchett, 2003]. Among those, the Particle-
in-Cell (PIC) ([Charles et al., 1985; John M Dawson, 1983; Harlow et al.,
1955]) method is the most prevalent one in the plasma-based accelera-
tion domain, allowing the relevant processes for both the LWFA and
PWFA regimes to be resolved.

5.1 theoretical foundations of particle-in-cell

One of the essential principles of the Particle-in-Cell method, and
by extension the root of its name, is the separation of the Maxwell-
Vlasov system for a collisionless plasma into two domains, reflecting
both Eulerian and Lagrangian quantities and their intertwined de-
velopment (the depiction follows [Timon Johannes Mehrling, 2014]).
As a potential starting point, the particle density so relevant for the
theoretical derivations used in chapter 1 (and specifically the Vlasov
equation, equation (1.26) is replaced by a collection of discrete parti-
cles, representing sections of the phase-space of a species s divided
into Ms so-called macroparticles (sometimes also called numerical or
quasi particles). The corresponding discretization of the distribution
function (see equation (1.15)) is then given by

fs(r, p, t) ≈
Ms

∑
α=1

ñs,α (r− Rs,α(t)) δ (p− Ps,α(t)) , (5.1)
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based on the spatial shape function ñs,α of the macroparticles at po-
sitions Rs,α and moments Ps,α commonly set to zero outside of a de-
fined region of interest. This function should provide the smoothness
necessary to approach a valid description of the continuous density
distribution, while the macroparticle number is required to be suffi-
ciently high to approximate the momentum component of fs(r, p, t)
despite the point-like nature of equation (5.1).

The discrete particle trajectories, reflecting equation (1.20), are given
by

dRs,α

dt
= Vs,α, (5.2)

dPs,α

dt
= Qs,α

(
E +

Vs,α

c
× B

)
, (5.3)

Vs,α being the macroparticle velocity and Qs,α its integrated charge.
The corresponding charge and current densities are then given by

ρ(r, t) ≈∑
s

qs

Ms

∑
α=1

ñs,α (r− Rs,α(t)) , (5.4)

J(r, t) ≈∑
s

qs

Ms

∑
α=1

Vs,αñs,α (r− Rs,α(t)) , (5.5)

The discretization represents the Lagrangian aspect of PIC simu-
lations by introducing distinct particles. They are complemented by
Eulerian quantities, the charge and current densities above, together
with the electric and magnetic fields, which are then evaluated on a
spatial mesh structure, forming a system of particles interacting with
a grid of cells, hence giving the method its name and pointing the way
towards a numerical implementation.

5.2 implementation of particle-in-cell

The theoretical description above served as a stepping stone between
the density-distribution-based methods described in chapter 1 and
the concrete implementation of the PIC method. Within this picture
of distinct macroparticles located within a grid-based evaluation of
Eulerian quantities, the focus can switch to the steps involved in their
evolution. For the typical PIC loop, the steps are

1. Current Deposition

2. Field Solver

3. Field Interpolation and Particle pusher

This loop repeats in time steps ∆t, following an important initial
configuration—both the charge and current densities need to be zero
at the start of the simulation to fulfill the time-independent Maxwell
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equations (equations (1.17) to (1.17a)), which are then implicitly correct
if the time-dependent Maxwell equations (equations (1.17b) to (1.17c))
and the charge continuity equation (see equation (1.28c)) are valid for
all time steps.

5.2.1 Current Deposition

The current of the configuration of macroparticles, given in equa-
tion (5.5), is evaluated by a predefined grid mesh using an interpo-
lation of the underlying density shape function, which is usually
decomposed into a particular magnitude Ñα and a normalized shape
function,

ñα (r− R) = ÑαS (x− Xα, y−Yα, z− Zα) , (5.6)

with the normalization∫
dxdydzS(x− Xα, y−Yα, z− Zα) = 1. (5.7)

Starting with a one-dimensional grid with constant grid spacing ∆x,
a simple linear interpolation scheme for a macroparticle at position Xα

and the nearest grid indices i, i + 1 (and the corresponding grid mesh
coordinates xi, xi+1) can be formulated as [Pritchett, 2003]

S1D
i (Xα) = 1− xi − Xα

∆x
, (5.8)

S1D
i+1(Xα) =

xi − Xα

∆x
, (5.9)

while a more precise deposition using a second-order polynomial and
three closest grid points is given by [Esirkepov, 2001]

S1D
i (Xα) =

3
4
−
(

xi − Xα

∆x

)2

, (5.10)

S1D
i+1(Xα) =

1
2

[
1
2
∓
(

xi − Xα

∆x

)]2

, (5.11)

where |xi − Xα| ≤ ∆x/2. Consequently, for the three-dimensional case,
the function is given by

S3D
i,j,k(Xα, Yα, Zα) = S1D

i (Xα)S1D
j (Yα)S1D

k (Zα), (5.12)

which allows for the current density to be deposited on the grid as

Ji,j,k = QαVαS3D
i,j,k (Xα, Yα, Zα) , (5.13)

with the corresponding charge simply Qα = qαÑα. This procedure is
performed for all particles present in the simulation, summing up
their contributions on the grid.
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5.2.2 Field Solver

Once the grid-based current information is available, the correspond-
ing Maxwell equations, equations (1.17b) to (1.17c) can be evaluated
using finite differences based on the time steps of the simulation. How-
ever, to minimize the error stemming from the spatial and temporal
approximations, the commonly used scheme is based on the Yee lattice
employing a finite-difference time-domain (FDTD) method [Yee, 1966].

n n + 1/2 n + 1

jx

By

Ex

By

Figure 5.1: Simplified depiction of the Yee mesh in two dimensions, addi-
tionally showing its time-centered FDTD method evaluation. The
staggering is done through a grid-based offset—the electric fields
are defined at the center positions of the cell edges together with
the currents, while the magnetic fields are positioned at the center
of the cell faces. The time-centering is done by evaluating the two
sets of quantities at differing time steps, shown here based on
equations (5.14) to (5.15).

Depicted in figure 5.1, the Yee lattice is shifted by half-cell lengths
between both field quantities. Additionally, a temporal integration
scheme is used which evaluates the field quantities at different time
steps, known as a leap-frog method. The errors associated with the
finite-difference approximations are on the order ofO(∆x2) andO(∆t2),
respectively. A corresponding time-staggered evaluation is then given
by [Pritchett, 2003]

En+1/2 = En−1/2 + ∆t (c∇× Bn − 4πJn) , (5.14)

Bn+1 = Bn − c∆t∇× En+1/2, (5.15)

given here and in the remainder of the chapter in Gaussian units for
convenience. This explicit numerical scheme to solve partial differen-
tial equations is considered robust and stable, provided it is evaluated
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on a grid which additionally fulfills the Courant-Friedrichs-Lewy
(CFL) condition [R. Courant et al., 1928],

∆t = CCFL

√
∆x2 + ∆y2 + ∆z2

c
, (5.16)

where CCFL is required to be both close to one but bounded below it.

5.2.3 Particle Pusher

With the grid-based field information available from equations (5.14)
to (5.15), an interpolation scheme can be introduced to obtain the field
components at the particle position of interest, such as the quadratic
spline interpolation introduced above,

Eα = ∑
λ,µ,ν={−1,0,1}

Ei+λ,j+µ,k+νS1D
i+λ(Xα)S1D

j+µ(Yα)S1D
k+ν(Zα), (5.17)

Bα = ∑
λ,µ,ν={−1,0,1}

Bi+λ,j+µ,k+νS1D
i+λ(Xα)S1D

j+µ(Yα)S1D
k+ν(Zα), (5.18)

so that the particle position and velocity can be updated using [Vay,
2008]

γn+1
α V n+1

α − γn
αV n

α

∆t
=

q
m

(
En+1/2

α +
V̄ n+1/2

α

c
× Bn+1/2

α

)
, (5.19)

Rn+3/2
α − Rn+1/2

α

∆t
= V n+1

α . (5.20)

The above equation relies on the particle velocity at half-integer time
steps, which is not known explicitly. However, a possible solution is
based on the separation of the magnetic and electric field contributions
to the particle motion, since the unknown quantity can be rewritten
as [Vay, 2008]

V̄ n+1/2
α =

γn
αV n

α + γn+1
α V n+1

α

2γ̄n+1/2α
, (5.21)

which allows the Lorentz factor to be expressed as

γ̄
n+1/2
α =

√
1 +
(

γn
αV n

α +
q∆t
2m

En+1/2
α

)
, (5.22)

since the magnetic field cannot change the particle’s kinetic energy.
Equation (5.19) now contains a closed system allowing the calculation
of γn+1

α V n+1
α given the fields. The particle positions are then evaluated

as

Rn+1
α =

(
Rn+1/2

α + Rn+3/2
α

)
2

= Rn+3/2
α − ∆tV n+1

α

2
(5.23)

closing the evaluation loop.
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5.3 hipace - a quasistatic particle-in-cell method

A fully explicit Particle-in-Cell code is capable of describing all pro-
cesses prevalent in a plasma-based acceleration scenario for both the
LFWA and PWFA regimes, including its constituent elements such as
lasers and particle bunches and their typical length and time scales.
It is this versatility, however, that also requires significant computing
resources, with typical simulations of acceleration processes taking on
the order of 105 CPU core hours to run. The explicit FDTD schemes
used for PIC calculations place stringent limits on the length and
time scales of the simulations (see the CFL condition, equation (5.16)),
which aim to resolve the propagation and interaction between high-
intensity lasers with sub-micron wavelengths or micron-scale beams
in centimeter- or even meter-scale plasma targets. Multiple proposals
have been put forward to minimize the effects of this disparity, from
implicit schemes [Petrov et al., 2011] to laser envelope models for
LWFA regimes [Benedetti et al., 2010] to boosted frame transitions
[Vay, 2007].

Considering the arguments summarized in section 2.1, an arguably
more fundamental departure from the fully explicit model is centered
around the quasi-static approach (QSA) [Mora and Antonsen Jr, 1996;
Whittum, 1997]. Based on the significant disparities in the typical
time-scales of both the plasma-electron background evolution and
the developments of both the laser envelope and particle bunches,
the QSA argues for a separation of the two domains, allowing for a
time step orders of magnitude larger then the one afforded by fully
explicit codes. The proposal was quickly followed by its numerical
implementations such as WAKE [Mora and Antonsen Jr, 1996] or
LCODE [Lotov, 2003], both two-dimensional Cartesian/Cylindrical
codes, or the 3D Particle-in-Cell codes QuickPIC [Chengkun Huang
et al., 2006] and HiPACE [T. Mehrling, C. Benedetti, et al., 2014]. The
latter, a comparatively recent addition to the options available for
QSA-based plasma-acceleration studies, was developed at DESY in
collaboration with the Lawrence Berkeley National Laboratory (LBNL)
and used extensively for the description of the PWFA regime studies
discussed in this work.

5.3.1 Physical foundations and numerical implementations in HiPACE

5.3.1.1 Plasma-based normalizations

HiPACE is based on the Maxwell-Vlasov system of equations, nor-
malizing them to the plasma environment, so that the field quantities
become E = E/E0 and B = B/E0 given the cold nonrelativistic wave-
breaking field E0 = ωpmc/e. The corresponding Maxwell equations
are expressed as (unless stated otherwise, the descriptions in this
section follow [T. Mehrling, C. Benedetti, et al., 2014; Timon Johannes
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Mehrling, 2014] while employing the Gaussian unit system for conve-
nience)

∇̃ · E = $, (5.24)

∇̃ ·B = 0, (5.25)

∇̃ × E +
∂B
∂t̃

= 0, (5.26)

∇̃ ×B− ∂E
∂t̃

= J , (5.27)

with the normalized charge and current densities, $ = ρ/en0 and
J = J/ecn0, respectively. The length and time scales are given by
x̃ = kpx and t̃ = ωpt, reflected in the differential operator ∇̃, with the
plasma skin depth kp = ωp/c and frequency ωp

√
4πn0e2/me (compare

chapter 1).
Both the plasma and beam particle densities are approximated using

discrete macroparticles (see above), their motion and momentum again
normalized by X = kpR and U = P/Mc respectively and governed by
the Newtonian and Lorentz-force equations,

dX
dt̃

= β, (5.28)

dU
dt̃

= η (E + β×B) , (5.29)

introducing the normalized macro-particle velocity β = V/c = U/γ

and charge-mass ratio η = Qme/eM (yielding η = −1 for electrons).

5.3.1.2 Plasma macroparticle pushing

Returning to the specifics of the QSA section 2.1, the fundamental
assumption of HiPACE states that the Eulerian quantities Q can be
considered in the speed-of-light frame as

∂Q
∂t̃
' −∂Q

∂ζ̃
, (5.30)

with the transformation ζ̃ = z̃− t̃ = kpz−ωpt and τ̃ = t̃. The macropar-
ticles describing the plasma electrons are considered Lagrangian in
the transverse and Eulerian in the longitudinal domain. For the latter,
a given macroparticle quantity χp is described using the normalized
particle velocity βp,z = Vp,z/c in the z-direction under the QSA

dχp

dt̃
=
(

βp,z − 1
) ∂χp

∂ζ̃
+

∂χp

∂τ̃
'
(

βp,z − 1
) ∂χp

∂ζ̃
. (5.31)

Their transverse position can be described using their normalized
velocity in the x- and y-directions Up,⊥ by

∂Xp,⊥

∂ζ̃
= FX,⊥ = −

Up,⊥
1 + ψp

, (5.32)



48 the particle-in-cell and sana methods

where the wakefield potential ψ = φ− az (see section 2.2) is assumed
to be a Lagrangian quantity of the plasma macroparticles ψ = ψp. Its
evolution is given by

∂ψp

∂ζ̃
= Fψ =

Up,⊥
1 + ψp

·
(
Ex −By

Ey + Bx

)
− Ez. (5.33)

The macroparticle transverse momentum evolves according to

∂Up,⊥

∂ζ̃
= FU,⊥ =

γp

1 + ψp
·
(
Ex −By

Ey + Bx

)
+

(
By

−Bx

)
, (5.34)

with the plasma macroparticle Lorentz factor, γp =
√

1 + U2
p,⊥ + U2

p,z

defined as

γp =
1 + U2

p,⊥ + (1 + ψp)2

2(1 + ψp)
. (5.35)

In the concrete numerical implementation, the plasma macropar-
ticles and unperturbed fields are initialized on a two-dimensional
sublattice at the upper simulation box boundary after the deposition
of the beam current density according to the typical PIC methods
described above (see section 5.2.1). The routine then moves towards
the lower boundary, pushing the particles in each slice using the right-
hand side information of equations (5.32) to (5.34) in the transverse
directions, while the longitudinal positions are always moved by −∆ζ̃

owing to the QSA.

5.3.2 Plasma current deposition

When depositing the plasma current based on the plasma macroparti-
cle evolution, the charge and current densities need to be weighted by
a particle-specific factor compensating the contribution of the longitu-
dinal velocity which is neglected,

wα =
Qa

e
γp,α

1 + ψp,α
, (5.36)

which results in the corresponding quantities,

$ = ∑
α

wαS2D (r̃⊥ − Xα,⊥(ζ̃)
)

, (5.37)

J = ∑
α

βαwαS2D (r̃⊥ − Xα,⊥(ζ̃)
)

. (5.38)

The transverse shape function has the normalization,∫
S2D (r̃⊥ − Xα,⊥(ζ̃)

)
dr̃⊥ = 1, (5.39)

and allows for higher-order depositions in the transverse directions.
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5.3.3 Field solver

Under the QSA, the Maxwell equations in the system given by equa-
tions (5.24) to (5.27), together with the source term of the wake poten-
tial ψ = φ− Az,

∇̃⊥ψ = − ($−Jz) , (5.40)

allow for the field component equations to be expressed as (see [Weim-
ing An et al., 2013])

∇̃2
⊥ (E⊥ + ẑ×B⊥) = ∇̃⊥ ($−Jz) , (5.41)

∇̃2
⊥B⊥ = ẑ×

(
∂

∂ζ̃
J ⊥ + ∇̃⊥Jz

)
, (5.42)

∇̃2
⊥Bz = −∇̃⊥ ×J ⊥, (5.43)

∇̃2
⊥E z = ∇̃⊥ ·J ⊥. (5.44)

with equation (5.41) obtained from,

E⊥ + ẑ×B⊥ = −∇̃⊥ψ. (5.45)

The particular quantities so depicted can then be directly mapped to
the relevant equations in the particle pusher routines.

In the numerical implementation, the first step consists of a charge
and current density deposition. This allows for the solution of equa-
tion (5.41), corresponding to the focusing force acting on the particles,
via the wakefield potential. This is done using a two-dimensional fast
Poisson solver based on the fast Fourier transform mechanism (FFT)
parallelized over the transverse slice domain. Equations (5.43) to (5.44)
are solved the same way, after deriving the curl and divergence of
the transverse current component. These equations all have source
terms limited to the transverse domain, allowing their evaluation at
the given longitudinal position within the HiPACE algorithm which
performs the calculation on individual grid slices, starting at the front
of the simulation and progressing towards the end. Within this con-
text, equation (5.42) demands special consideration, since it features a
longitudinal dependency on the current. Since it requires information
contained in the next slice and inaccessible in the backpropagation
scheme used, a predictor-corrector method [Mora and Antonsen, 1997]
is used to solve equation (5.42) in an iterative way for the transverse
magnetic field components, terminating this loop once the correspond-
ing error function falls under a certain threshold.

5.3.4 Beam pushing

Since the beam macroparticles are highly relativistic, they do not
adhere to the QSA, instead evolving on the characteristic time scale t̃.
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Thus, they are treated separately from the slice-based plasma-particle
mechanism described above, governed by the set of equations

dXb,⊥
dt̃

=
Ub,⊥
γb

, (5.46)

dUb,⊥
dt̃

= η

(
Ex −By

Ey + Bx

)
, (5.47)

dUb,z

dt̃
= η

(
Ez +

Ub,xBy −Ub,yBx

γb

)
, (5.48)

γb =
√

1 + U2
b,⊥ + U2

b,z. (5.49)

Provided with the grid-based field component values obtained in the
plasma-based iteration, the macroparticle information can now be
updated, first moving them by a half time-step,

Xn+1/2
b,⊥ = Xn

b,⊥ +
∆t̃
2

Un
b,⊥

γn
b

, (5.50)

followed by the interpolation of the field quantities to the new posi-
tions. Subsequently, the particle moments can be updated based on
the above equations,

Un+1
b,⊥ −Un

b,⊥
∆t̃

= η

(
Ex −By

Ey + Bx

)n+1/2

, (5.51)

Un+1/2
b,⊥ =

Un+1
b,⊥ + Un

b,⊥
2

, (5.52)

Un+1
b,z −Un

b,z

∆t̃
= η

En+1/2
z +

Un+1/2
b,x Bn+1/2

y −Un+1/2
b,y Bn+1/2

x

γ̄
n+1/2
b

 ,

(5.53)

γ̄
n+1/2
b =

√
1 +
(

Un+1/2
b,⊥

)2
+
(

Un
b,z +

∆t̃
2

ηEn+1/2
z

)2

. (5.54)

After the momentum has been updated, the final half-step can be
performed for the position pusher,

Xn+1
b,⊥ = Xn+1/2

b,⊥ +
∆t̃
2

Un+1/2
b,⊥

γ̄
n+1/2
b

, (5.55)

while the longitudinal position is updated to first order only,

Xn+1
b,z = Xn

b,z + ∆t̃
Un+1/2

b,z

γ̄
n+1/2
b − 1

, (5.56)

a new feature introduced as part of this work and allowing for the
consistent description of processes where a significant loss in energy
results in beam loss.
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Because of the QSA-based decoupling of the plasma and beam
macroparticle descriptions, the time stepping follows the typical length
scales of the particle bunches present in the system, with ∆t̃ chosen
to best describe their dynamics based on the macroparticle energy
and the local plasma density. This can be seen as a crucial advantage
over fully explicit PIC codes, which resolve the propagation on the
length scales determined by the plasma itself and limited by the
CFL condition. For highly relativistic beams, this difference can be
expressed using the typical length scales, the plasma skin depth k−1

p

and the betatron oscillation length k−1
β , related by k−1

β =
√

2γk−1
p , with

an intuitive reduction in the steps necessary to resolve a simulation
following a particle beam evolution in the quasistatic regime.

HiPACE thus provides an excellent tool for the description of the
processes prevalent in the PWFA regime given an externally injected
bunch, one of the main topics of this work. In that regard, it was espe-
cially useful for iterations probing parameter ranges often inaccessible
to simplified analytic descriptions, as well as the study of preaccel-
erated beams obtained from particle tracking codes. The capabilities
of HiPACE to interface with external codes and provide its data in a
well-structured format for further analysis were improved as part of
this work, as discussed below.

5.4 extended hipace capabilities

At the start of this work, HiPACE already provided well-tested mech-
anisms for the efficient simulation of PWFA processes involving
highly relativistic beams. The additional capabilities added during
the progress of the analyses presented in the following main sections,
therefore, were aimed more at enhancing the interfacing options avail-
able to potential developers and users. Consequently, the focus was
mostly on the input and output — that is, the initial HiPACE con-
figuration, beam setup or import of macroparticles from other codes
and the subsequent output of the information generated during the
simulations.

The focus of this work was the introduction of a HiPACE setup
approach revolving around a configuration file based on the YAML
specification [Ben-Kiki et al., 2005]. This hierarchically structured file
format offers the most relevant data types for the construction of a
simulation domain with incident particles and plasma profiles (floats,
integers, strings and arrays) as built-in structures and is implemented
by a well-documented library provided in the programming language
of HiPACE. Furthermore, the configuration file is a simple human-
readable text file, which allows for easy manipulation and parsing
by external tools, an important capability with respect to automated
iteration runs needed for some analysis sections of this work, where
a specific beam- or plasma-profile attribute could be changed to take
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on many values and thus find an optimal point with respect to a
predefined quality parameter.

Two additional aspects can be seen as related to this input and
output standardization—the capacity to define arbitrary beam-density
functions to mimic known or expected distributions and a widely
accepted data storage format for both simulation quantity output and
beam distribution input.

5.4.1 Beam-density-function definition

The capability to initialize beams with arbitrary current profiles is
an important requirement in multiple studies such as beam loading
[Lotov, 2005], and is used extensively in this work (cf. the distributions
presented in chapter 9). The corresponding implementation in HiPACE
relies on the specifics of the beam macroparticle initialization. HiPACE
allows for the introduction of variable-weight macroparticles on a
sub-grid mesh within each cell, approximating a density distribution
according to principles of the Particle-in-Cell method outlined above.
During the initial setup, the provided profile function is evaluated on
each sub-mesh position, introducing macroparticles of corresponding
density provided it is above a predefined threshold value. A simplified
representation of this method is depicted in figure 5.2. The function
itself is provided in the configuration file, which is parsed using the
GNU libmatheval library and turned into an internal function repre-
sentation allowing for the evaluation of the respective longitudinal
macroparticle position. The specific density value is then obtained
after a convolution with the transverse Gaussian profile function.

As an additional feature, this capability was extended to allow the
definition of arbitrary plasma profiles. These can be provided for
both the longitudinal and transverse domains. While the latter is of
interest to descriptions relying on non-constant transverse electron
background distributions such as a plasma lens [Forsyth et al., 1965],
the former was directly applied in the course of this work to model
beneficial vacuum-plasma transitions (cf. chapter 7).

5.4.2 Data input and output using the HDF5 format

Every high-performance code requires a stable, efficient and poten-
tially fault-tolerant interface between the in-memory data structures
and the file system. Simply writing the relevant quantities to disk is a
simple method especially useful for debugging, but reaches its limits
quickly once the program matures beyond the initial implementation
stages towards user-facing applications with corresponding require-
ments with respect to stability and standardization. This is especially
relevant for highly parallelized PIC codes, where the simulation do-
main is divided among up to hundreds or thousands of nodes. The
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ζ

x

Figure 5.2: HiPACE macroparticle deposition using a variable-weight scheme
and a predefined sub-mesh cell division using a 3x3 structure
in two dimensions, placing the particles at the corresponding
equidistant positions within the cell. The longitudinal profile is
evaluated using an arbitrary mathematical function and convo-
luted with a transverse Gaussian description (in this case, a linear
function was used).

corresponding grid-based quantities need to be carefully mapped onto
the respective substructures of a data file, while maintaining low-
latency communication over the available communicator points. The
same is true for the macroparticle information, with the added com-
plication of variable particle structure sizes subject to change during
the simulation process (e.g. due to charge depletion).

The HDF5 data format [Folk et al., 1999] is not only widely used
in the context of high-performance computing applications, but also
offers a straightforward interface to the MPI standard used by HiPACE
for parallelization. The standard uses binary files with a hierarchy
similar to a file-system, allowing for efficient data storage and access.
The simulation domain quantities are mapped onto array structures,
complete with attributes providing additional information potentially
useful for further analysis steps. However, while this is straightforward
for grid-based information such as the plasma density distribution
where the array dimensions and thus the required file structure are
known at the initialization and for all following time steps, the par-
ticular nature of the HiPACE node communication and evaluation
loop requires a more elaborate approach for the beam macroparticle
phase-space.

Due to the restrictions of the quasistatic implementation in HiPACE,
its internode communication process in the longitudinal direction
follows the backstreaming mechanism of the plasma macroparticles
introduced in the previous sections (cf. section 5.3.1.2). The solution
used for the macroparticle phase-space output was to communicate
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#0 #1 #2 #3256

Figure 5.3: Representation of the offset communication mechanism for
macroparticle information output. The number of particles is
passed on to the next slice, where it is used as an offset in the file
structure.

the number of particles along the same direction, thus informing
the following nodes of the necessary offset parameter and avoiding
data corruption. In the transverse domain, the data output is han-
dled by a single root node, which collects the grid-based information
and macroparticle quantities within its slice and writes them to the
respective offsets, as depicted in figure 5.3.

The adoption of the HDF5 format had an additional benefit with
respect to data input into HiPACE. Together with the output, HiPACE
gained the capability to read its macroparticle data from a standard-
ized HDF5 file. This allows to interface with other simulation codes
using the macroparticle concept for the particle beam description. A
prominent example is the fully explicit PIC code OSIRIS [Ricardo A
Fonseca et al., 2002], which is able to describe a wide range of plasma-
acceleration-related processes currently inaccessible in the quasistatic
approximation—specifically the LWFA regime and certain injection
methods. In a symbiotic setup, this capacity could be used to obtain a
macroparticle distribution which is then read into HiPACE and propa-
gated through the plasma in a much more efficient way. A different
interface is used directly in this work, where the distributions from
the particle-tracking code ELEGANT [Michael Borland, 2000] are used
to approximate the expected beam configurations at the plasma cell
(chapter 9). The ability to exchange information in a standardized way
between different numerical implementations is an important capabil-
ity, allowing HiPACE to act as a mediating mechanism between diverse
applications, parameter ranges and environments. Consequently, sim-
ulation quantities produced by HiPACE can serve as a foundation
for a system which otherwise foregoes elaborate PIC simulations to
directly evaluate the Vlasov equation based on mono-energetic subsets
of the particle beam phase space, as described in the next section.
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5.5 sana - a semi-analytic numerical approach

The semi-analytic numerical approach (SANA) (unless otherwise noted,
the following derivations follow [T. J. Mehrling et al., 2016]) was in-
troduced with the aim of calculating the emittance evolution of a
witness beam propagating in a blowout-regime wakefield environ-
ment. The beam, while non- to mildly relativistic in the transverse
directions, is assumed to be highly relativistic in the longitudinal
domain, so that the Lorentz factor is expressed as pz ' γ � 1. The
corresponding phase-space distribution function is therefore defined
by f = f (x, px, ζ, γ, t) and is evaluated in the system normalized to
plasma-based units introduced above—the time to the plasma fre-
quency ω−1

p,0, the momentum to mec and both the transverse position
and the longitudinal coordinate in the co-moving frame ζ = z− t to
the skin depth k−1

p,0 = c/ωp,0. Both transverse directions are assumed
symmetric and centered around zero for both the position and mo-
mentum.

As explained above, the temporal evolution of this distribution is
governed by the Vlasov equation (see section 1.2.2). Introducing the
two transverse and longitudinal forces acting on the particles as Fx

and Fz, both normalized to ωp,0mec, allows for this description to be
approximated as(

∂t +
px

γ
∂x + ∂px Fx + ∂γFz

)
f = 0. (5.57)

Since the aim is to calculate the transverse phase-space emittance,

ε =
√
〈x2〉〈p2

x〉 − 〈xpx〉2, (5.58)

which requires the knowledge of averages only, given by

〈Φ(x, px, ζ, t)〉 =
1
N

∫
dx
∫

dpx

∫
dζ
∫

dγΦ f , (5.59)

with the particle number

N =
∫

dx
∫

dpx

∫
dζ
∫

dγ, f , (5.60)

the above Vlasov approximation can be replaced with the general
moment equation [Robson et al., 2015]

∂t〈Φ〉 = 〈 px

γ
∂xΦ〉 + 〈Fx∂px Φ〉 + 〈Fz∂γΦ〉, (5.61)

after its multiplication with Φ, followed by an integration by parts
over the phase-space variables.

The restriction of the considerations to a blowout regime (see sec-
tion 2.5) additionally allows a depiction of the transverse force to be
found

Fx(x, t) = −k̂x(t)x, (5.62)
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with a focusing parameter k̂x, yielding

∂t〈x2〉 = 2〈x px

γ
〉, (5.63)

∂t〈xpx〉 = 〈 p2
x

γ
〉 − k̂x〈x2〉, (5.64)

∂t〈p2
x〉 = −2k̂x〈xpx〉, (5.65)

∂t〈γ〉 = 〈Fz〉. (5.66)

While equations (5.63) to (5.66) can be related to the beam-envelope
equations for mono-energetic beams [Reiser, 2008], one of the essential
ideas of the semi-analytical numerical approach is to replace the
distribution function by a discretized variant,

f (x, px, ζ , γ, t) '
M

∑
k=1

Nkδ(γ− γk(t))δ(ζ − ζk) fk(x, px, t), (5.67)

with the total number of mono-energetic subsets M, each carrying
an invariant number of electrons Nk all exhibiting the same Lorentz
factor γk(t) and governed by the transverse-phase-space distribution
subset fk(x, px). The discretization can thus approximate beams with
correlated and uncorrelated energy spreads, their total electron num-
ber then given by N = ∑M

k=1 Nk. Assuming the phase-space averages
are separable, Φ(x, px, ζ , γ) = Φt(x, px) ·Φl(ζ , γ) allows for the phase-
space averages to be expressed as [T. J. Mehrling et al., 2016]

〈Φ(x, px, ζ, γ)〉 =
1
N

∫
dxdpxdζdγΦ(x, px, ζ , γ) f (x, px, ζ, γ, t)

(5.68)

=
1
N

M

∑
k=1

Nk〈Φl(ζ , γ)〉k · 〈Φt(x, px)〉k. (5.69)

In other words, the phase-space averages are constructed by form-
ing sums over the products of both the longitudinal and transverse
averages,

〈Φl(ζ , γ)〉k = Φl(ζk, γk) (5.70)

〈Φt(x, px)〉k =
∫

dx
∫

dpxΦt(x, px) fk(x, px, t), (5.71)

which finally allows the general phase-space moment equations (equa-
tions (5.63) to (5.66)) to be transferred into the energy subset descrip-
tion,

∂t〈x2〉k = 2
〈xpx〉k

γk
, (5.72)

∂t〈xpx〉k =
〈p2

x〉k
γk
− k̂x(t)〈x2〉k, (5.73)

∂t〈p2
x〉k = −2k̂x(t)〈xpx〉k, (5.74)

∂tγk = Fz(ζk, t). (5.75)
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For highly relativistic beams not exhibiting charge depletion and
slippage (a valid assumption in typical PWFA blowout regimes),
this allows their emittance evolution and corresponding transverse-
phase-space moments to be described using a priori knowledge of the
blowout environment and the longitudinal wakefield gradient. For a
potential application, see the analysis section of this work (chapter 6),
where an idealized beam slice is propagated in a plasma-blowout
regime to benchmark an analytic model for the description of uncorre-
lated emittance evolution given a finite beam-energy spread. However,
SANA is not limited to descriptions of single-slice scenarios experienc-
ing a constant accelerating gradient Fz. Its formulation allows for the
approximation of a longitudinal wakefield distribution, constructing
the beam from subsets placed at distinct co-moving positions. The
demand for an existing wakefield distribution can be mitigated by a
short HiPACE simulation which allows the necessary information to
be extracted after a few time steps.

5.6 concluding remarks

The adequate description of plasma-based acceleration processes is
a challenging requirement for the investigation of its capacities, re-
strictions and potential applications. From the microscopic picture,
to the Klimontovich equation and the Maxwell-Vlasov system, the
approaches have been narrowed to focus predominantly on the ex-
pected parameter range, gaining efficiency at the cost of a potentially
wider view including processes argued to be irrelevant (e.g. interpar-
ticle collisions). The Particle-in-Cell framework can be understood
as following this trajectory into the numerical domain, enabling a
robust and stable description of processes involving large quantities
of particles in regimes inaccessible to analytical treatments. The theme
of specific parameter ranges and appropriate assumptions and limi-
tations is carried forward by quasistatic approaches, exemplified by
HiPACE. Through the focus on the particle beam and its inherent time
domain, significant gains in efficiency are possible, again at the cost
of a narrowed applicability. However, the final focus is often on the
statistical quantities representing parameters which can be extracted
in an experimental acceleration setup such as emittance and energy
spread. Taking the idea of a moment-based description and assuming
a preexisting wakefield environment allows the numerical descriptions
of the evolution of corresponding beam attributes for a collection of
beam phase-space subsets, which can often serve as a good benchmark
leading into PIC simulations or avoid them altogether, as shown in
the SANA framework.

The theme of narrowing the parameter range, process space and
interactions towards highly specialized tools is mirrored in the follow-
ing main analysis sections of this work. Starting from a theoretical
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description of the emittance evolution that is comparatively narrow in
scope (chapter 6), the work will use the methods introduced above to
construct the descriptions of more complex or elaborate interaction
schemes (chapters 7 to 8), finishing with a simulation incorporat-
ing and discussing distributions from another simulation code, as
mentioned above (chapter 9).
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B E A M S T U D I E S





6
A N A LY T I C A L M O D E L F O R T H E U N C O R R E L AT E D
E M I T TA N C E E V O L U T I O N

6.1 introduction

This chapter introduces a novel approach to calculate the evolution
of uncorrelated emittance in linear focusing environments (e.g. the
plasma blowout regimes discussed above). It can provide important
insights on its development without the need for numerical meth-
ods such as PIC (cf. chapter 5), avoiding the need for potentially
time-consuming calculations in certain cases. The model is thus an
important addition to the subsequent discussion of external injec-
tion scenarios presented in the following chapters, offering best-case
approximations of important parameters such as emittance growth
length scales.

As an essential beam-quality parameter, e.g. for FEL applications,
the transverse phase-space emittance received extensive attention in
several works concerned with plasma-based acceleration processes [T.
Mehrling, J. Grebenyuk, et al., 2012; Michel et al., 2006]. Furthermore,
it was shown that transitions into and the propagation within multiple
stages can lead to significant emittance growth if the beams are not
matched and the vacuum-to-plasma and plasma-to-vacuum transitions
not tapered properly [Dornmair et al., 2015; Floettmann, 2014; K. A.
Marsh et al., 2005; T. Mehrling, J. Grebenyuk, et al., 2012].

In general, an emittance increase is related to a change in the shape
of the phase-space volume occupied by the beam. This effect can be
caused by multiple factors, from an off-axis injection to nonlinear
transverse forces or coupling effects in the transverse-longitudinal
beam-particle motion. In the context of the blowout regime considered
in this chapter, however, it is the mismatch between the beam and
the plasma environment, together with significant correlated or un-
correlated energy spreads or variations of the longitudinal fields over
the intra-bunch length, that most strongly contribute to an emittance
degradation.

The extensive analysis of such a critical component and the corre-
sponding processes typically involves the use of particle-in-cell (PIC)
simulations, which offer valuable insights at the cost of time consum-
ing computations, especially when performing parameter scans. While
models such as the semi-analytic numerical approach [T. J. Mehrling
et al., 2016] provide a significant increase in efficiency, the analytic
model has the advantage that it not only immediately delivers the
relevant parameters and their evolution, but also offers direct insights

61
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on the impact of the different factors involved in the acceleration
process.

This chapter presents a set of analytic descriptions of the evolution
of beam moments in a PWFA process for two different scenarios.
The first scenario involves a slice of the witness beam with a specific
uncorrelated energy spread propagating in a PWFA blowout regime
without energy gain. The second scenario considers the same situation,
additionally taking into account an energy gain along the propagation
axis. Both scenarios are discussed within their respective sections,
which follow the same structure — an initial introduction of the
physical and mathematical basis for the consideration, a description
of the physical environment, as well as a depiction and analysis of the
resulting formulas where appropriate, followed by a comparison with
PIC simulations and the aforementioned SANA calculation results.

6.2 scenario i — beam slice without energy gain

In general, the beam emittance is a six-dimensional phase-space vol-
ume with a conserved density along any particle trajectory [Floettmann,
2003]. Usually, however, two-dimensional projections into orthogonal
planes are considered (e.g. x-px), occupying an area comprised of those
particles positions at the core of a given distribution. In the following
section, an analytic description of the evolution of such a phase-space
area is derived, starting with individual particle trajectories and con-
sidering their phase-space distribution to arrive at a description of
their beam moments and, consequently, the beam emittance.

6.2.1 Mathematical Model

The starting point for this analysis is the differential equation for the
transverse position x of a single electron with constant energy within
a linearly focusing ion channel forming an harmonic oscillator,

d2x
dt2 + ω2

βx = 0, (6.1)

with the betatron frequency ωβ = ωp/
√

2γ, the Lorentz factor γ, and
where ωp =

√
4πn0e2/m is the plasma frequency, with the ambient

plasma density n0, the elementary charge e and the electron rest mass
m. The solution for equation (6.1) is given by

x(t) ' x0 cos[ϕ(t)] +
px,0

mγ0ωβ,0
sin[ϕ(t)], (6.2)

with the initial position x0, the initial transverse particle momentum
px,0 as well as the initial Lorentz factor γ0 and betatron frequency
ωβ,0. The phase advance, defined as the argument in the trigonometric
functions, is ϕ(t) =

∫
ωβ, with ϕ(t) = ωβ,0t in this consideration.
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In the following, the description evolves from a single-particle pic-
ture towards a statistical approach involving collective beam-slice
averages in order to arrive at an analytic formulation of the normal-
ized transverse phase-space emittance [Floettmann, 2003]

εn =
1

mec

√
〈x2〉 〈p2

x〉 − 〈xpx〉2, (6.3)

with the phase-space beam moments
〈

x2〉, 〈p2
x
〉
, 〈xpx〉2 (cf. equa-

tions (6.4) to (6.6) for a suitable definition). It is necessary to chose an
ansatz to evaluate equation (6.2) that relies on a separable beam distri-
bution function (as outlined in [T. J. Mehrling et al., 2016]). The assump-
tion is that the beam particle slice possesses an initial phase-space dis-
tribution f0(x0, p0, γ0) (with the normalization

∫
f0dxx,0dpx,0dγ0 = 1),

where the initial transverse position x0 and the initial transverse mo-
mentum px,0 are not correlated with the energy. This means that the
beam distribution is separable f0 = f⊥(x0, px,0) fγ(γ0), thus allowing
for the reconstruction of the phase-space moments using

〈x2〉(t) =
∫ ∞

−∞
(x2(t)) f0dx0dpx,0dγ0 (6.4)

〈p2
x〉(t) =

∫ ∞

−∞
(p2

x(t)) f0dx0dpx,0dγ0 (6.5)

〈xpx〉(t) =
∫ ∞

−∞
(x(t)px(t)) f0dx0dpx,0dγ0, (6.6)

with an arbitrary f⊥(x0, px,0) except that f⊥ = 0 outside of the ion-
channel and the energy distribution is assumed to follow a Gaus-

sian form with fγ = (
√

2πσγ)
−1

exp (−δγ2/2σ2
γ), where δγ = γ− γ, de-

scribes a deviation of individual particles from the mean slice en-
ergy, γ. Assuming a small relative energy deviation of the electrons,
|δγ/γ| � 1, allows for an approximation of the betatron frequency

(6.7)ωβ ' ωβ

(
1− δγ/2γ

)
,

with the mean betatron frequency ωβ = ωp/
√

2γ. Since the energy
variations are ignored in this scenario, the betatron frequency remains
constant, ωβ = ωβ,0, making it possible to determine the phase advance
as ϕ(t) = ωβ,0 (1− δγ/2γ0) t. Using this expression, together with the
original solution for the individual particle position, equation (6.2) as
well as px(t) = mγdx/dt, allows the transverse beam moments to be



64 analytical model for the uncorrelated emittance evolution

obtained and hence the transverse phase-space emittance, which can
be written analytically as

ε2
n(t) =

1
4

(γ0kβ

)2 〈
x2

0
〉2

+
1(

γ0kβ

)2

〈
u2

x,0
〉2


×
(

1− e−bt2
)

+
1
2
〈

x2
0
〉 〈

u2
x,0
〉 (

1 + e−bt2
)

− 〈x0ux,0〉2 e−bt2
,

(6.8)

with the normalized momentum ux = px/mec, the mean betatron os-
cillation wave number kβ = ωβ/c, together with an emittance growth
factor b = ωβ

2∆γ2 (using the common depiction of the energy spread
∆γ = σγ/γ). It is straightforward to recover the initial normalized

phase-space emittance ε0 =
√〈

x2
0

〉 〈
u2

x,0

〉
− 〈x0ux,0〉2 of the slice, by

setting t = 0. It can also be observed that the subsequent time-dependent
change in emittance is driven by the exponential terms and thus,
through the growth factor, the initial energy spread of the slice. This
betatron-phase mixing effect, owing to the finite energy spread in
the slice and the corresponding energy-dependent oscillations of the
electrons, is an example of the so-called betatron decoherence. Its in-
fluence on the development of emittance growth can be seen from the
prominent role of the betatron wave number (or frequency) in the first
term. It can be observed from equation (6.8) that the emittance growth
reaches a saturation point once the contribution from the exponential
term is sufficiently small, providing a time scale for the decoherence
as td � b−1/2 = 1/

(
∆γωβ

)
. Assuming t→ ∞, an expression for the

final beam emittance—that is, once full decoherence is reached—can
be derived,

ε2
n =

(
γ0kβ

)2

4
〈

x2
0
〉2

+

〈
u2

x,0
〉2

4
(

γ0kβ

)2 +
1
2
〈

x2
0
〉 〈

u2
x,0
〉

. (6.9)

It is relevant to note that the energy spread of the beam slice does
not play a role in this expression (reproducing previous results, see
[T. Mehrling, J. Grebenyuk, et al., 2012]). While it is the driving factor
behind the betatron decoherence and determines the time-scale of its
progression, the final emittance is dictated by the initial beam parame-
ters. This means that a beam not properly matched to the intrinsic beta-
tron motion in the plasma will exhibit emittance growth [T. Mehrling,
J. Grebenyuk, et al., 2012]. This behavior can be avoided if matching
conditions are met. These conditions can be translated into quan-
tities relevant for this formulation as 〈xux〉m = 0, kβ

〈
x2〉

m = ε0/γ0,
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〈
u2

x
〉

m /kβ = ε0γ0. Together with these expressions for matched beam
moments and equation (6.8), the emittance growth factor is found as(

εn(t)
ε0

)2

=
1
4

( 〈x2
0
〉

〈x2〉m

)2

+

(〈
u2

x,0
〉

〈u2
x〉m

)2


×
(

1− e−bt2
)

+
1
2

〈
x2

0
〉

〈x2〉m

〈
u2

x,0
〉

〈u2
x〉m

(
1 + e−bt2

)
− 〈x0ux,0〉2

ε2
0

e−bt2
.

(6.10)

Following the matching requirements in the above equation results
in a growth factor of one for sufficiently long time scales t� b−1/2 =
1/
(
∆γωβ

)
, equivalent to a preservation of the initial transverse phase-

space emittance.

6.2.2 Physical Studies

The analytic description presented above is benchmarked using a
Particle-in-Cell (PIC) simulation provided by the 3D quasi-static code
HiPACE [T. Mehrling, C. Benedetti, et al., 2014]. The blowout regime,
which allows an assumption of no radial dependence of the longi-
tudinal wakefield and thus decouples the radial and longitudinal
phase-space distributions, was established using a Gaussian drive
beam with a peak current Ib = 3 kA, total charge Qb = 240 pC, mean
energy γ0 = 2000, energy spread σγ/γ0 = 0.1 % and a transverse phase-
space emittance εn = 2.0 µm, moving through a homogeneous plasma
of constant density (i.e. without a tapered vacuum-to-plasma transi-
tion) of np = 1× 1023 m−3 (with the local peak density of the beam
nb/np = 28.5� 1.0). The witness beam was modeled as a slice of
macroparticles with a mean energy γ0 = 2000, an energy spread of
σγ/γ0 = 10 %, a transverse phase-space emittance of ε0 = 2.0 µm and

initial root-mean-square (rms) beam moments σx,0 =
√〈

x2
0

〉
= 5 µm,

〈x0ux,0〉 = 0, and the momentum spread thus given by

(6.11)σpx ,0 =
√〈

u2
x,0

〉
= ε0/

√〈
x2

0

〉
.

Apart from the energy spread, which was chosen to be relatively high
in order to observe the effects leading to beam-quality loss more easily,
the particular values reflect a commonly encountered parameter range
(e.g. at the FLASHForward experiment [Aschikhin et al., 2016], where
σγ/γ0 ' 0.1 %, see also chapter 7).

Following the requirements of the analytic model, the witness slice
was placed behind the driver at the zero-crossing of the electric field,
avoiding changes in its energy as much as possible. An additional
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benchmark was provided by an implementation of the semi-analytic
numerical approach (SANA) (cf. section 5.5), using a calculation based
on the parameters provided for the PIC simulation.
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Figure 6.1: Evolution of the beam size σx and the instantaneously matched
parameter σx,m.
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Figure 6.2: Evolution of the rms beam moment σpx and the instantaneously
matched parameter σpx ,m.

The results are provided in figures 6.1 to 6.4 depicted in SI units
using a notation for the rms beam moments where σx =

√
〈x2〉,

σpx =
√
〈p2

x〉. Additionally, the provided beam parameters are dy-
namically matched to the current emittance and energy, given as

σx,m =
√

ε/kp
√

2/γ and σpx ,m =
√

εkp
√

γ/2. This definition is also
reused for the physical studies of the next section, when both the
emittance and the energy vary over the simulation length. Because
of the mismatched initial beam parameters, the emittance of the slice
grows significantly during the propagation. As mentioned above, this
is due to the energy dependence of the betatron frequency, causing
its decoherence and thus an increase in the emittance of the slice. The
decoherence can be observed as a damping effect on the beam moment
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Figure 6.3: Evolution of the correlation beam moment 〈x · px〉 and the
matched parameter 〈x · px〉m.
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Figure 6.4: Evolution of the transverse phase-space emittance εn together
with the value for the final emittance obtained from the ana-
lytic model according to equation (6.9), and plotted as an upper
boundary.

oscillations, which ultimately approach their matched values once com-
plete decoherence is reached. Using the growth factor derived above
allows a time scale for full decoherence for the given parameters to be
provided as td � b−1/2 = 1/

(
∆γωβ

)
, or zd � c/

(
∆γωβ

)
≈ 10.6 mm)

in units of distance used in the plots. Over these lengths, no significant
drive-beam head erosion can be observed in the simulations, result-
ing in a constant Ez for the simulation time and distance. Since the
description considers a single slice of electrons without acceleration,
the correlated emittance growth due to an energy chirp for a witness
beam of finite length (see [T. J. Mehrling et al., 2016; T. Mehrling, J.
Grebenyuk, et al., 2012]) can be ignored, keeping the focus on the
uncorrelated emittance growth. However, while the macroparticle slice
in the PIC simulations was chosen to be as thin as possible in the
longitudinal direction (σζ � k−1

p,0), it nevertheless samples the electric
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field variation over its length, thus deviating from the assumption
of no energy variation for the witness beam, potentially contributing
to a slightly higher emittance value than the one calculated using
the analytic model. Otherwise, an excellent agreement between the
analytic model and the numerical results is found.

6.3 scenario ii – beam slice with energy gain

6.3.1 Mathematical Model

The second scenario exhibits an increase in complexity, by allowing
energy to vary, while keeping the single-slice picture, again allowing to
ignore the correlated emittance growth to be ignored. In more physical
terms, translated into a PIC simulation setup, it can be thought of as a
thin layer of macroparticles with a transverse distribution following
a driver in the blowout regime at an offset where a non-negligible
longitudinal electric field is providing an accelerating gradient.

The change in energy is reflected in an updated differential equation
for the transverse position of a single particle [T. Mehrling, R. A.
Fonseca, et al., 2017],

d2x
dt2 +

γ̇

γ

dx
dt

+ ω2
β(t)x = 0, (6.12)

with γ̇ = dγ/dt and where the acceleration of the electron leads to a
damping of the particle oscillation through the term γ̇/γ (conversely,
a loss in energy would result in an amplification of the oscillation
amplitude). Equation (6.12) has the solution (cf. [T. Mehrling, R. A.
Fonseca, et al., 2017] for derivation)

x(t) ' x0A(t) cos[ϕ(t)] +
px,0

meγ0ωβ,0
A(t) sin[ϕ(t)], (6.13)

with the amplitude term A(t) = [γ0/γ(t)]1/4. The energy of a sin-
gle electron is again expressed through the Lorentz factor, given as
γ(t) = γ0 + E t + δγ, again with the initial mean energy γ0, the uncorre-
lated energy spread δγ and a linear term incorporating a change in
energy, where E = −eEz/mec and Ez = Ez(ζ) is the longitudinal electric
field. The variation in energy also means a time-dependent electron
betatron oscillation term ωβ(t) and the resulting phase advance

ϕ(t) =
∫

ωβdt = ϕ

(
1− δγ

2γ0

ωβ

ωβ,0

)
, (6.14)

with the mean phase advance ϕ = 2
(
ωβ,0/ωβ − 1

)
/ε, mean betatron

frequency ωβ(t) = ωβ,0/
√

εωβ,0t + 1 and the finite relative energy change
per betatron cycle ε = −

√
2/γ0Ez/E0, with the cold nonrelativistic

wavebreaking field E0 = ωpmc/e [J. M Dawson, 1959]. Using the phase-
advance description together with the term for energy development
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allows the beam moment equations and the emittance to be calculated.
The resulting formulas are given in appendix A, while the results from
their application are presented in the following section.

6.3.2 Physical Studies

The setup chosen for bench-marking the model developed following
the restrictions imposed by the second scenario is similar to the one
used for the first — a beam slice with an uncorrelated energy spread
following a driver at an offset, this time with a non-zero longitudinal
electric field resulting in an energy gain. With the other values such
as the transverse beam moments kept the same, the slice placement
was chosen so that the longitudinal field is Ez(ζ) ≈ 0.3 · E0.
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Figure 6.5: Evolution of the beam size σx and the instantaneously matched
parameter σx,m.
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Figure 6.6: Evolution the rms beam moment σpx and the instantaneously
matched parameter σpx ,m.

Figures 6.5 to 6.8 show the evolution of the respective beam pa-
rameters with energy gain, provided with the respective matched
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Figure 6.7: Evolution of the correlation beam moment 〈x · px〉 and the
matched parameter 〈x · px〉m.
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Figure 6.8: Evolution of the transverse phase-space emittance εn, together
with a final emittance value obtained from the analytic model
according to equation (6.9).

parameters for the varying emittance and energy. Again, oscillations
of the beam moments are observed for the chosen, mismatched initial
transverse beam parameters, eventually approaching the matched pa-
rameters after full decoherence. The subsequent propagation within
the plasma shows a variation in the rms beam moments σx and σpx

resulting from the energy dependence of the matched parameters σx,m

and σpx ,m (or equivalently
〈

x2〉
m and

〈
p2

x
〉

m) that originates from the
amplitude term in equation (6.13).

In addition, the energy spread drives a significant increase in emit-
tance until the matched values are reached. Since the mechanism for
the emittance growth is the decoherence effect caused by the energy-
dependent oscillations of particles, the subsequent acceleration within
the plasma is expected to have no effect on the development of the
normalized emittance once the matched parameters are reached (see
[T. Mehrling, J. Grebenyuk, et al., 2012; Michel et al., 2006]). Thus, the
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final value of the emittance obtained from equation (6.9) is plotted,
showing that it can indeed be seen as a target value for the evolu-
tion of the emittance over the propagation length. All three models
follow each other closely in their description of the overall emittance
evolution, while the specific deviations observable during its initial
degradation can be attributed to the particular properties of the nu-
merical methods (such as the approximations for the longitudinal
beam-slice position in the PIC simulation and the blowout-regime
model used in SANA). Additionally, it should be noted that the en-
ergy spread used for benchmarking the presented results is assumed
to be much higher than expected for externally injected witness beams
in proposed PWFA experiments [Aschikhin et al., 2016], with typical
values of ∆γ0 = 0.1 %. Using such an energy spread while keeping all
the other parameters fixed and recalculating the decoherence time
scale using the growth-factor b results in a distance on the order
of zd � c/

(
∆γωβ

)
≈ 1.06 m. While beyond the plasma-target dimen-

sions proposed, it is nevertheless of the order of the plasma-cell length
and can thus play a role during the internal acceleration process.

The emittance plots again show a slightly higher value for the PIC
simulation, due to the finite beam length and the resulting contribution
from correlated emittance growth, mirroring the observation from the
first scenario. Apart from these minor deviations, the analytic model
shows a very high accuracy when describing the beam moment and
the emittance developments.

6.4 summary and conclusion

In this chapter, the development of an analytical model for the calcula-
tion of the evolution of transverse beam moments and the normalized
phase-space emittance has been presented, together with an investiga-
tion of the uncorrelated emittance growth of externally injected beams
in plasma wakefield accelerators. The models allow for a quick evalua-
tion not only of initial beam parameters with respect to their matching
conditions, but also of their development over an acceleration length
within a section of homogeneous plasma, providing important infor-
mation such as typical length scales for emittance growth and final
emittance values. The validity of both models is presented by bench-
marking it against results obtained from two different approaches — a
standard Particle-in-Cell simulation following the scenario restrictions
as closely as possible, together with the semi-analytic numerical ap-
proach (SANA). The model’s limitations are given by the assumption
of a constant longitudinal field and a constant focusing environment.
As such, the study of a more complex acceleration process for a whole
beam — possibly involving plasma-vacuum transition regions or vari-
ations of intra-bunch longitudinal fields — is not possible within
this model at the moment. Nevertheless, it provides valuable insights
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into the decoherence process and its drivers, together with potential
estimates as to the time and length scales involved. The model can
also form the basis of a semi-analytic numerical calculation, using
beam slices with varying parameters to approximate a beam within a
varying longitudinal field.



7
E X T E R N A L I N J E C T I O N I N T H E P W FA B L O W O U T
R E G I M E

7.1 introduction

Accelerator designs aiming to make use of the promising features of
plasma-based acceleration are generally classified based on the driver
used for wakefield generation and the origin of the witness. For a
project such as FLASHForward [Aschikhin et al., 2016], which aims to
use a pregenerated beam of electrons for a driver in a scheme known
as beam-driven plasma-wakefield acceleration (PWFA) [Seryi et al.,
2009], external injection offers a versatile and valuable option for the
demonstration of plasma-based acceleration. In this approach, the
driver generating the wakefield is followed by a second beam with
a specific temporal and spatial offset. The aim of the project is to
use a driver strong enough to cause the establishment of a so-called
blowout regime [Lotov, 2004], which not only supports high-gradient
acceleration fields, but also a linearly focusing transverse environment
offering the potential for the preservation of witness-beam phase-
space. However, it is also this environment which poses a challenge to
driver and witness design. The accelerating fields can cause the forma-
tion of an energy chirp along the length of the witness beam, while
the focusing fields will lead to energy-dependent oscillations of the
constituent particles inside witness beams with non-negligible energy
spread. Both of these effects can contribute to the so-called betatron
decoherence, a phase-space rotation driven by the energy spread in
the case of a blowout regime, and originating from energy-dependent
betatron oscillations [K. A. Marsh et al., 2005]. The decoherence can
affect the shape and size of the phase-space area occupied by the beam
and thus its emittance [Floettmann, 2003]

In order to facilitate successful acceleration in the external injection
regime and demonstrate its usefulness, the effects driving betatron
decoherence need to be understood and mitigated. This chapter fo-
cuses on the properties of external injection in the blowout regime and
the implications for the parameter space of experiments at facilities
such as FLASHForward. An initial introduction to the theory and phe-
nomenology is followed by the depiction of limitations and problems
that need to be addressed to facilitate an acceleration process that
conserves the advantageous beam properties that FLASH accelerator
offers. Potential mitigation strategies for beam quality loss such as pa-
rameter matching, tailored transition sections from vacuum to plasma

73
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as well as beam loading, are introduced successively and discussed,
including supporting Particle-in-Cell simulations and numeric studies.

7.2 theoretical considerations

One of the defining characteristics of the blowout regime (see sec-
tion 2.5) is a wakefield distribution that can be factorized into trans-
verse and longitudinal dimensions. The high-current driver expels all
plasma electrons in its wake, thus creating a region of charge deple-
tion behind it. This bubble or blowout exhibits a transversely focusing
field without a longitudinal dependence and a longitudinal wakefield
without a radial dependence. It is this property that allows the phase-
space development of a potential witness beam to be separated into
transverse and longitudinal components. However, its highly nonlin-
ear nature limits theoretical descriptions of the blowout mostly to its
phenomenology [Lotov, 2003] or special scenarios limited by certain
assumptions concerning the acceleration process (see chapter 6). A
valid description of acceleration in the blowout regime is possible,
however, using PIC codes described earlier and applied here within
HiPACE. Where appropriate, this description will be accompanied by
an implementation of the SANA [T. J. Mehrling et al., 2016] approach,
allowing the results to be more clearly interpreted.

The starting point is the transverse motion of an individual particle
in a transversely focusing field, defined by the focusing parameter K,

x′′ + Kx = 0, (7.1)

where K for the blowout regime is given as

K =
k2

p

2γ
, (7.2)

with the plasma wave number kp and the individual particle energy
proportional to the Lorentz factor γ. Two characteristics define this
depiction. First, since the wave number kp depends on the surround-
ing plasma density, so does the focusing force acting on each particle.
Additionally, the energy dependence means that a beam with non-
negligible energy spread will be subjected to a differential phase-space
rotation. Both the focusing environment and the energy dependence
lead to a differential rotation of the witness phase-space until satura-
tion is reached. This effect, known as betatron decoherence, can cause
severe emittance growth and thus beam-quality degradation.

Figure 7.1 depicts the transverse phase-space of a witness beam
with typical parameters (provided in the appendix) before and after
propagation through the plasma blowout. The area occupied by the
individual beam slices grows, reflected in the corresponding increase
of the beam emittance. Additionally, there is a strong longitudinal
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Figure 7.1: Transverse phase-space of a witness beam before (left) and af-
ter (right) propagating through about 42 mm of plasma with
density np = 1× 1023 m−3 (right), undergoing differential phase-
space rotation and showing significant changes in the projected
phase-space distributions.

dependence of the accelerating field, which would imprint an exter-
nally injected bunch with a chirped energy profile, thus increasing the
correlated energy spread over the acceleration length.

Mitigation strategies aiming to avoid severe beam-quality degra-
dation for an externally injected beam in the blowout regime can
be divided into two main subsets. One focuses on emittance growth
induced by the transverse properties of the beam and dealing with
mismatching and tailored transition regions. The other is related to
quality degradation stemming from the longitudinal field distribution.
Both of these areas will be addressed in the following two sections.

7.3 uncorrelated emittance growth and matching con-
ditions

As outlined in the previous section, the blowout regime of charge
depletion after the driver produces a focusing environment for parti-
cles placed behind it. Their behavior can be compared to a harmonic
oscillator with an energy-dependent frequency dictated by the plasma
density. A beam with a non-negligible energy spread will thus expe-
rience a differential phase-space rotation until saturation, increasing
the projected phase-space area it occupies and thus the corresponding
emittance – an effect already introduced as betatron decoherence. A
possible approach to mitigate this effect stemming from the specifics
of the plasma environment is to match the beam parameters to that
allowed by current regulations. The so-called matched parameters can
be provided using the corresponding phase-space parameters as (see
also chapter 6)

(7.3a)〈xux〉m = 0
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(7.3b)kβ

〈
x2〉

m = ε0/γ

(7.3c)
〈
u2

x
〉

m /kβ = ε0γ,

provided here using a plasma-based normalization of the particle
position in units of the plasma wave number k−1

p (also known as
the plasma skin depth c/ωp), the normalized momentum given in
ux = px/mec), the mean betatron-oscillation wave number kβ = ωβ/c,
and the mean particle energy, γ. Matching the beam to these parame-
ters will avoid a betatron decoherence and will guarantee preservation
of the beam emittance. However, the idea of external injection is to
use a preaccelerated beam to follow the driver at a predefined offset.
Because of its nature, this process is limited by the beam parameters
that the accelerator can provide before the plasma stage.

The parameter space of the following study is based on the values
encountered in the FLASH accelerator and thus proposed for the
FLASHForward facility. They are represented by an electron beam
with a Gaussian distribution in all directions, carrying a total charge of
1.0 nC, with a longitudinal beam size of σζ ≈ 40 µm and a symmetric
transverse size of σx,y ≈ 3.12 µm, entering the plasma with a normal-
ized phase-space emittance of εn = 2.0 µm, an energy of E = 1.0 GeV
and an energy spread of σγ/γ = 0.1 %. Where appropriate, this beam
is split into two smaller Gaussian beams with identical transverse
properties, resulting in a driver-witness pair setup. The specifics of the
splitting method are ignored for now, but will be treated subsequently
. The beam properties presented above result in a beta function of
β ≈ 10 mm.

Figure 7.2 shows the phase-space development of a witness beam
with the energy, energy spread and transverse phase-space parameters
given above propagating through a plasma with a flat-top profile and
a constant plasma density of np = 5.0× 1022 m−3. An immediate onset
of oscillations in the transverse beam size can be observed, which
subsequently follows and approaches the corresponding matched
value, which is σx,m ≈ 1.23 µm at the onset of the stage and increases
due to the growing emittance according to equation (7.3c).

Since the matched parameters for the considered plasma-density
range are all but impossible to obtain using classical beam-line optics
(e.g. the matched beta function for np = 5.0× 1022 m−3 is β̂m ≈ 1.5 mm),
the proposed solution to the mismatch problem consists of a tailored
vacuum-to-plasma transition region, allowing for an adiabatic change
of beam parameters until they match the plasma environment. This
transition region is commonly described by either an exponential or
power-law profile, the latter introduced in [Floettmann, 2014].

In the following, the transition region is defined to be

np(z) = n0e(z−z0)/L, (7.4)

with the end of the transition section located at z0 and a scaling
parameter L, which in turn defines the adiabatic nature of the region.
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Figure 7.2: Evolution of the beam phase-space parameters and the core phase-
space emittance (defined here and in the following using a cutoff
function excluding values higher than 3 · σx,y,ζ to avoid errant
particles ejected from the cavity from skewing the calculation)
(blue line), together with the matched parameters (orange line).
The beam enters the plasma through a step-wise transition at
zsim = 0.

As presented in [Timon Johannes Mehrling, 2014], the transition fulfills
the matching requirement when β̂/L� 1.0, with the total length of
the section usually determined as z0 = 5.0 · L. Given the parameters
introduced, a proper vacuum-to-plasma transition would thus need
to be z0 � 5 · β̂� 10 cm, an unrealistic requirement given the total
plasma cell length of zc ≈ 25 cm considered in this chapter.

However, the time scale of the emittance growth process is defined
not by the parameter mismatch, but by the magnitude of the energy
spread of the beam. Using the considerations presented in chapter 6

and ignoring changes in energy and energy spread, a decoherence
distance scale of zd �

√
2γ/∆γ · k−1

p ≈ 1.5 m can be calculated for the
beam considered in this chapter — a length far beyond the considered
total plasma cell length of zc ≈ 25 cm. However, this value can be
significantly shorter once the energy spread increases due to the
aforementioned chirp of the accelerating field, an effect which can be
observed in figure 7.2 after a propagation distance of about 40 mm.
The resulting final emittance reached after decoherence, given a non-
negligible energy spread, is the same irrespective of the particular
value of the energy spread.

For the particular case of a pre-accelerated beam with a relatively
low energy spread, the approach is thus to introduce a transition
section to reduce the degree of parameter mismatch and thus the
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Figure 7.3: Plasma density profiles (top) and normalized phase-space emit-
tance evolution (bottom) during and after propagation through
several transition sections for three different transition-region
lengths. The corresponding scaling parameter L was set to
L = 1/4 · z0.

Figure 7.4: Plasma density profiles (top) and normalized phase-space emit-
tance evolution (bottom) during and after propagation through
several transition sections for three different scaling parameters
L.

final emittance value while preserving the energy spread to avoid a
decrease in the decoherence length. By fine-tuning the two parame-
ters defining the exponential section, the beam can matched into the
plasma environment without significant losses in beam quality, as
shown in figure 7.3 and figure 7.4 for a beam with the same parame-
ters as in the step-wise transition study described above. In general,
every transition region helps reduce emittance growth significantly,
when compared to figure 7.1. Considering the length of the transition
region, figure 7.3 shows that a longer and thus more adiabatic region
reduces emittance growth. Considering the scaling parameter based
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on figure 7.4, it is the most gradual and smooth transition which
guarantees emittance preservation.

In the ideal adiabatic case, once the beam has reached the parame-
ters corresponding to the intrinsic beam-particle motion in the plasma
environment following the transition region, it can be considered
matched. After that, all changes to its properties which happen on
adiabatic scales — that is, in distances much larger than the betatron
length — will have no negative effects on beam quality. The transi-
tion region introduced above helps to minimize emittance growth
by bringing the crucial beam parameters such as beta function and
beam size closer to the matched values semi-adiabatically. However,
because of the low energy spread of the beam under consideration, a
matched state cannot be reached within the proposed cell size. Fig-
ure 7.5 shows the principles of this argument – higher energy spreads
allow the beam to decohere more quickly, reaching the final emittance
values much earlier than the witness under consideration. Because of
the low energy spread and the corresponding low growth rate, this
has no significant degrading effect on the beam emittance within the
length scales considered for the transition region. However, a growing
energy spread during the main acceleration procedure could lead to a
reduction of the decoherence length and thus faster emittance growth.

Figure 7.5: Evolution of the beam size (top) and emittance (bottom) for
different initial energy spreads ∆γ given a transition region of
z0 ≈ 47.5 mm with a scaling parameter L = 400k−1

p . A damped
oscillation for higher energy spread values can be observed, show-
ing earlier decoherence towards the final emittance value, while
the beam with a low energy spread, ∆γ = 0.1 % oscillates without
significant emittance growth.

Based on previous observations, a transition region can be intro-
duced which allows a Gaussian beam with parameters which are
comparable to the FLASH characteristics to remain close to its initial
beam quality parameters in a plasma environment with a density of
np = 5.0× 1022 m−3, as shown in figure 7.6.
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Figure 7.6: Evolution of the core phase-space emittance for two different
transition regions — a step-wise (blue) and an exponential (red)
(the latter defined using L = 400k−1

p and z0 = 2000k−1
p based on

equation (7.4)). The simulation employing a tailored transition
shows a significantly lower emittance growth compared to the
step-wise profile.

The tailored transition section is a very useful mitigation strategy
helping with transitioning from the vacuum to the plasma focusing
environments without significant losses in beam quality. It provides a
method to transport the beam into the blowout cavity while avoiding
decoherence through a gradual increase of the surrounding plasma
density. Moreover, transitions with an exponential profile are closely
related to profiles suggested by [Floettmann, 2014], which in turn have
been demonstrated using gas capillaries [Schaper et al., 2014] and thus
proven viable for an experimental setup. However, the particular prob-
lem of uncorrelated emittance growth caused by parameter mismatch
is only one potential effect leading to beam quality degradation in
external injection. As mentioned in the introductory section of this
chapter, the beam can also be subjected to an accelerating field with a
strong longitudinal dependency, causing the development of an energy
chirp over its length, corresponding to an increase in correlated energy
spread for both a mismatched and a matched beam. The next section
will thus focus on mitigation strategies for this particular effect.

7.4 correlated emittance growth and beam loading

Because of the energy-dependency of the focusing force acting on the
witness beam, it will exhibit a differential phase-space rotation given
a non-negligible energy spread. When considering a single slice of
the beam, it is the energy spread within the slice which determines
the length scales involved until total decoherence as well as the final
emittance value, dictated by the degree of mismatch between the beam
parameters and the plasma environment. However, when considering
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a witness beam of finite length propagating behind a driver generating
an accelerating wakefield, another effect can contribute to the degrada-
tion of the beam quality. As shown before, the resulting wakefields can
vary significantly in the longitudinal domain within the blowout cav-
ity, giving the witness beam an energy chirp as it is accelerated. This
process can lead to a significant increase in projected energy spread, as
seen in figure 7.7, in turn a crucial parameter emittance preservation
efforts, as previously discussed. Not only does this process contribute
to higher correlated energy spread, but for a mismatched beam, the
individual slices along the beam exhibit a differential phase-space
rotation according to their longitudinal position, which in turn results
in a growth of the correlated emittance.

Figure 7.7: Evolution of the energy (top) as well as the projected energy
spread (bottom) of a witness beam in the blowout regime subject
to a gradient with strong longitudinal dependency.

A potential mitigation strategy for correlated energy-spread growth
involves the use of the beam loading effect. A beam placed in the wake
of a driver can influence the motion of the plasma electrons around
itself, thus distorting the corresponding wakefields. This phenomenon
is known as beam loading – shown for two Gaussian beams in fig-
ure 7.8 and apparent in the change of the longitudinal accelerating
field when compared to a witness-free, or non-loaded wake.

The ability of the loaded beam to feed back on the wake it is subject
to offers the potential to overcome the field variation along its length
and thus minimize an energy chirp and an increase in projected energy
spread and emittance. The core idea is to use a specially tailored
longitudinal beam profile to guarantee a constant accelerating field.
Taking the longitudinal profile proposed in [M. Tzoufras et al., 2009],

λ(ζ) =

√
E4

t +
R4

b
24 − Et(ζ − ζt), (7.5)

expressed here as charge per unit length, λ(ζ) =
∫ ∞

0 r[nb(r)/np]dr with
the wakefield at the front of the witness Et, the maximum of the bubble
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Figure 7.8: Comparison of non-loaded (dashed grey line) and loaded (green
line) longitudinal fields. The former was obtained from a PIC
simulation that used only a Gaussian driver (orange line), while
the latter included a witness beam (blue line) as well. Both beams
are shown using their current Ib, mapped to the right axis, while
the non-loaded and loaded longitudinal fields are mapped to the
left axis. A clear modification of the loaded wakefield can be ob-
served, with implications for the energy profile of the accelerated
witness.

radius Rb and the rightmost coordinate of witness-beam profile ζt, the
following longitudinal witness beam density profile can be derived

nb(ζ)
np

=
1
σ2

r

√E4
t +

R4
b

24 − Et(ζ − ζt)

 , (7.6)

using the transverse rms beam size σr. This was done by assuming
a Gaussian distribution in the transverse domain with a local peak
beam density nb,0,

nb(r) = nb,0 · e
− r2

2σ2
r , (7.7)

and performing the integration in λ(ζ). According to the discussion
presented in [M. Tzoufras et al., 2009], equation (7.6) represents a
witness-beam profile that minimizes longitudinal field variation along
its length.

Figure 7.9 shows various current profiles based on the beam-density
profiles calculated using equation (7.6), together with the resulting
longitudinal fields, which clearly deviate from an ideal case of a near-
constant gradient over the beam length. This is due to the limitations
of the model underlying the formula in equation (7.5), which assumes
a highly nonlinear blowout regime where the cavity radius is much
larger than the plasma skin depth, Rb � 1.0 · c/ωp � 1.0 · k−1

p . The
present study is limited, however, by the properties of the beam to be
expected from the FLASH accelerator, which delivers a bubble with
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Figure 7.9: Longitudinal fields (dashed lines) with witness beam current
profiles (solid lines) taken from three different PIC simulations
(grouped by line color) featuring a bubble regime generated by a
driver (not shown). The witness beams were placed at different
longitudinal positions for each simulation. Their profiles were
defined according to the formula shown in equation (7.6). The
ideal case of a near-constant longitudinal field over the witness-
beam length can be observed for only one position, showing the
model’s limitations for the considered blowout regime.

Rb ∼ 1.0 · k−1
p for a density of np = 5× 1022 m−3. Unfortunately, the

beam properties expected from the preaccelerator do not allow for
significantly higher bubble sizes because of the peak current available
— scaling studies for PWFA blowout regimes have shown Rb ≈ 2.0k−1

p
for driver peak currents Ib ≈ 10 kA, while the current FLASH beam
allows for peak currents Ib ≈ 2.5 kA.

Alternatively, the witness-beam profile can be obtained based on
the given wakefield environment in an iterative process. Starting with
a Gaussian beam, a scraper can be used to remove a section of its
charge distribution along the propagation axis to obtain a driver-
witness pair. This process imitates the experimental setup currently
proposed for the FLASHForward external injection experiment (cf.
chapter 9). Figure 7.10 shows a possible procedure to find the cutoff
points and scraper width most suitable to obtain an optimal, or near-
constant, longitudinal field over the witness length. This process can
be formalized further by calculating the standard deviation of the
longitudinal field over the witness length, σEz and choosing the scraper
position and width that is associated with its minimum.

Additionally, the changes to the witness phase space imprinted by
the transition region introduced in the previous section need to be
taken into consideration. Because of the plasma-density variation, the
bubble size together with the wakefield dimensions will vary until the
final density is reached, imprinting this variation on the longitudinal
witness phase-space in the process, as shown in figure 7.11.
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Figure 7.10: The top subplot shows the current profiles of the driver (dashed
gray lines) and witness (colored solid lines). Both were obtained
by removing a section of a Gaussian distribution along the
longitudinal domain, imitating a scraping mechanism. Each
driver-witness pair represents a single PIC simulation with a
corresponding longitudinal scraper position (its length was kept
constant at ∆s ≈ 50 µm). The resulting longitudinal fields are
shown in the bottom subplot (using the same colors as the
witness current profiles).

Figure 7.11: Longitudinal phase-space of the witness together with the slice
energy spread, before the tapered transition region (top) and
after propagation at the onset of the main accelerating region
(bottom). There is a non-negligible upwards shift at the back of
the beam, leading to an increase in the projected energy spread
(from ∆γ = 0.1 % to ∆γ ≈ 0.2 %).

Fortunately, the energy increase of the beam particles is a linear
process dictated by the local value of the accelerating field. Using
that observation and varying the scraper position along the length
of the main bunch allows two beams to be produced to facilitate a
beam-loaded wakefield capable of reversing the phase-space shift
induced by the transition region. The necessary longitudinal field can
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be defined by considering the longitudinal phase-space properties of
the witness beam after the transition. Assuming a simplified model,
where the increase in energy along the bunch can be described by

γ(t, ζ) = −Ez(ζ) · t + γ0(ζ), (7.8)

using the average energy γ of a slice at longitudinal intra-bunch
position ζ together with its starting value γ0 as well as the accelerating
field at the respective position Ez. Introducing a term to describe
the deviation from the value of the rightmost starting energy value,
∆γ0 = γ0(ζ0)− γ0(ζ), the requirements concerning the accelerating
field distribution over the bunch length can be formulated as

Ez(ζ) = −Ez(ζ0) +
∆γ0

te
, (7.9)

using the final time step for the acceleration te. Given this simple
formula and the phase-space of the witness after the transition allows
the wakefield required to compensate for the phase-space tilt at the
beginning of the acceleration to be calculated, as seen in figure 7.12.

Figure 7.12: Average longitudinal momentum (closely related to the mean
slice energy) for a witness beam after a propagation through
the vacuum-plasma transition region with scaling parameter
L = 400k−1

p (top). Using slice momentum data and the total ac-
celeration length in plasma, ze ≈ 150 mm, in equation (7.9), the
ideal longitudinal field profile can be derived (orange line in
bottom plot), shown with the actual longitudinal field profile
obtained from the PIC simulation (blue line in bottom plot).

The proper parameters for the scraper width and positions that
minimize the deviation of the observed field from the ideal compen-
sating wakefield can be found using an iterative approach. However,
because of the non-linear nature of the beam current profile and the
small bubble size, a perfect overlap of both curves is not possible,
reflected in the development of the projected beam energy spread over
the whole acceleration length, as shown in the next and final section.
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Limiting the growth of the projected energy spread of the witness
beam is a necessary requirement for emittance preservation as well,
since a significant increase of the energy spread (up to ∆γ ≈ 1.0 %)
leads to a reduction in the decoherence length and thus a quicker
approach of the emittance value for full decoherence, dictated by the
parameter mismatch. Observing the requirements described so far
allows to set up a full simulation run which also includes the two
transition sections, as discussed in the next section.

7.5 complete acceleration process

Using a scraper of optimized width and position to produce a loaded
wakefield to achieve the maximum energy gain under the require-
ment of reduced energy spread growth, a pre-accelerated Gaussian
beam described in the previous sections can be divided into a driver
and witness, the latter carrying a total charge of Qb ≈ 60 pC. After
propagation through a transition region where it is focused into the
plasma cell environment, the beam remains in a non-matched state,
oscillating around the matched beta value of β ≈ 1.5 mm, defined by
the plasma density used (np = 5.0× 1022 m−3) and the initial bunch
energy (γ0 = 2000). The optimized loaded wakefield structure helps to
keep the energy spread low over the acceleration length (z ≈ 150 mm),
which in turn allows the emittance growth to be reduced. The result-
ing parameter evolution obtained from a PIC simulation is shown in
figures 7.13 to 7.15.

Figure 7.13: (Top plot) energy (blue line), energy spread (orange line, right-
hand scale) and emittance evolution (bottom plot) for the witness
beam in the acceleration region. A significant increase in energy
can be observed, while the energy spread is kept relatively
low compared to the non-optimized results in figure 7.7. The
emittance increases by about 10 %, driven by the increase in
energy spread over the acceleration length.
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Figure 7.14: Transverse phase-space moment development of the accelerated
witness beam (blue lines), together with values for the corre-
sponding parameters (orange lines) as it propagates through the
transition and acceleration regions (50 mm and 150 mm, respec-
tively).

Figure 7.15: Longitudinal phase-space of the accelerated witness beam after
its propagation through 150 mm of plasma. The top plot shows
a density distribution of the longitudinal momentum, together
with its projected histograms (light blue lines) and slice energy
spread (red line, right-hand scale). The bottom plot shows slice
emittance (blue and orange lines, left-hand scale) and current
(green line, right-hand scale).

7.6 transition section into vacuum

After the acceleration, the bunch is extracted from the plasma region
using a mirrored version of the initial transition profile (i.e. using an
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exponential profile defined by a scaling parameter L) to produce an
adiabatic expansion of the beam into the downstream beamline. The
smaller beam size and the corresponding beta function result in a
wide range of acceptable scaling parameters L, provided the condition
β̂/L� 1.0 holds, as seen in figure 7.16. Under the adiabatic condition,
the beam expands in the transition region defined by z = 5 · L. The
wide range of acceptable scaling parameter values and corresponding
transition lengths make it possible to transport the witness beam into
the post-plasma optics section with the desired beta value, all without
significant losses in its quality parameters.

Figure 7.16: Beta function (top) and emittance (bottom) evolution of the
witness beam as it propagates through a plasma-to-vacuum tran-
sition following its acceleration. A wide range of scaling param-
eters L can be considered acceptable for emittance preservation,
while a significant degradation only occurs once the value of L
is too close to the witness beam beta function (β̂ ≈ 2.0 mm in
this scenario) to guarantee an adiabatic transition.

7.7 complete run at higher density

The approach presented above relied on the low energy spread and
the resulting long decoherence length scale. In keeping the energy-
spread low using beam loading, emittance growth can be avoided
or at least kept within the percent scale over the whole accelera-
tion distance. This also means that the matching conditions can
be relaxed, with a higher possible difference in the beta values al-
lowing for a higher plasma density and thus higher absolute ac-
celerating gradients (the cold non-relativistic wave breaking field
for np = 5.0× 1022 m−3 is E0 ≈ 21.5 GV m−1 while np = 1.0× 1023 m−3

permits E0 ≈ 30.41 GV m−1). Thus, the total accelerating region can be
shorter while permitting the same (or potentially higher) gain in en-
ergy. Using the same iteration method as described in the last section
produces an optimal combination of scraper width and position to



7.8 conclusion 89

minimize energy spread growth given the acceleration environment
of the higher plasma density, as shown in figure 7.17.

Figure 7.17: Witness-beam current (orange line, right-hand scale) and the
accelerating wakefield (blue line, left-hand scale) after transition
region propagation, showing an optimized scraper position for
minimal longitudinal field variation over the beam length.

It should be noted, however, that the higher density and gradients
pose an additional challenge in the form of driver-beam stability. From
figure 7.17, a deaccelerating field over the majority of the driver-beam
density on the order of Ez ≈ 2.0 · E0 ≈ 6.0 GV m−1 can be observed,
which would lead to a loss of a significant portion of its charge after
the considered total plasma cell length of 250 mm. Based on the initial
driver energy of Ed = 1.0 GeV the resulting length scale for the energy
depletion is approximately 167 mm). The charge loss in the driver has
a profound influence on the surrounding wakefields and thus the
witness environment, resulting in a loss of the optimized beam-loaded
accelerating field and thus a degradation of beam quality. However,
the higher gradients also permit a higher energy gain, reducing the
acceleration length needed for a given final energy. Figures 7.18 to 7.20

show the evolution of a witness beam propagating through a vacuum-
plasma-transition region of zt ≈ 50 mm, followed by an acceleration
section of za ≈ 100 mm.

7.8 conclusion

The plasma environment offers the potential for significant energy
gains, provided with a driver of sufficient current and a witness placed
within a well-defined offset behind it. However, this environment,
through the forces acting in the blowout regime, also strictly limits
viable witness-beam parameters. The focusing force within the bubble,
while being helpful in keeping the witness bunch particles confined,
also requires careful matching through a tailored transition section.
When a proper adiabatic matching section is not possible due to
the betatron function of the incoming witness beam, an exponential
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Figure 7.18: Energy (top plot, blue line, left-hand scale), energy spread (top
plot, orange line, right-hand scale) and emittance evolution (bot-
tom plot, blue line) for the witness beam in the acceleration
region for np = 1.0× 1023 m−3. Similar to figure 7.13, a signifi-
cant increase in energy can be observed, again while the energy
spread is kept relatively low.

Figure 7.19: Transverse phase-space moment development of the accelerated
witness beam (blue lines). The matched parameters are provided
for comparison (orange lines).

transition section can nevertheless offer a solution in bringing the beam
size closer to the matched value, thus lowering the final emittance
value dictated by the mismatch. The emittance growth is further
delayed by low energy spread, which results in a decoherence length
much longer than the proposed plasma-cell length, provided the
energy spread can be kept close to the relatively low initial value.
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Figure 7.20: Longitudinal phase-space of the accelerated witness beam after
its propagation through 150 mm of plasma. The top plot shows
a density distribution of the longitudinal momentum, together
with its projected histograms (light blue lines) and slice energy
spread (red line, right-hand scale). The bottom plot shows slice
emittance (blue and orange lines, left-hand scale) and current
(green line, right-hand scale).

The accelerating gradient and its magnitude, on the other hand, is
one of the advantages of plasma-wakefield acceleration compared to
conventional designs – but without a specifically modeled longitudinal
witness density profile, it would imprint a significant energy chirp
and increase the energy spread. In short, both the transverse and the
longitudinal properties need to be carefully adjusted to fit within
the plasma wake and avoid severe degradation of beam properties.
Working through these limitations and the associated mechanisms, a
working point can be established based on realistic assumptions about
beams produced by an existing accelerator. This study can form the
basis of both more realistic simulations of the beam line preceding the
plasma cell and the matching, focusing and diagnostic sections in the
post-plasma region.





8
P H A S E - S PA C E M A N I P U L AT I O N U S I N G
D E C H I R P I N G

The wakefield environment in a plasma-based acceleration regime
offers distinct advantages such as focusing and high accelerating gra-
dients, allowing for the acceleration and propagation of an injected
bunch over much shorter distances than possible in conventional accel-
erator designs. However, it is also this regime which poses challenges
when it comes to the phase-space development of a witness beam
within the plasma, greatly affecting its properties and potentially de-
grading its quality parameters in the process. Some of the aspects,
such as emittance growth and energy spread, together with mitiga-
tion strategies, were addressed in previous sections of this work. The
mitigation strategies revolved around properly designed transition
sections to address the parameter mismatch problem, together with
optimized wakefield structures to reduce energy spread degradation.
Assuming that beam-loading is not achievable on the desired scale
(or is unwanted for beams requiring hosing mitigation, see below),
however, the witness is presented with a wakefield which shows a
strong longitudinal dependency over its length, a situation commonly
found in the plasma-acceleration regime.

Consequently, an acceleration process within such an environment
will significantly impact the longitudinal phase-space of the beam,
imprinting an energy chirp and thus increasing the energy spread in
the process, thus degrading one of its essential quality parameters
(additionally, an increase of the energy spread can severely increase
emittance growth, as discussed in chapter 7). This can help reduce the
hosing instability [Mehrling et al., 2017], however, and will be briefly
discussed in the concluding remarks of this chapter.

A potential mitigation strategy dealing with a preaccelerated beam
exhibiting a significant negative chirp in its energy is based on the
observation that a beam driving a plasma wakefield will be subjected
to a decelerating longitudinal field with a particular longitudinal
dependency. By carefully matching the plasma density to the beam
properties, it is possible to reduce and potentially remove the energy
chirp of a witness-turned-driver — a process referred to as dechirping
[D’Arcy, 2018].

This chapter focuses on the description of the plasma environment
relevant for dechirping, the resulting beam properties as well as the
dechirping process itself, followed by a presentation of simulation
studies done in preparation for an experiment at the Brookhaven Na-
tional Laboratory Accelerator Test Facility (ATF) [Swinson et al., 2018],
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exploring a promising parameter range. It then presents a successful
dechirping study performed at the FLASHForward facility [D’Arcy,
2018], before discussing the dechirping potential of the accelerated
FLASHForward beam produced in the previous chapter and con-
cludes with considerations regarding emittance preservation in the
given dechirping scenarios.

8.1 basic dechirping considerations

A witness beam within a plasma-based acceleration regime that pro-
vides non-existent or sub-optimal beam-loading conditions will un-
dergo a significant longitudinal phase-space shift, commonly leading
to an increase in the projected energy spread due to a chirp established
over its length. As seen in figure 8.1, a driver propagating through a
plasma environment will be followed by an accelerating field with a
clear longitudinal chirp.

Figure 8.1: Witness current (orange line, right-hand scale), driver current
(gray line, right-hand scale) and accelerating wakefield gradient
(blue line, left-hand scale) for plasma density np = 1.0× 1020 m−3.

A witness beam placed with a specific offset behind the driver will
thus be subjected to the accelerating properties of the wakefield, while
also shifting its longitudinal momentum distribution accordingly. Fig-
ure 8.2 shows the longitudinal phase-space distribution of a possible
witness beam after an acceleration process. A clear energy chirp can be
observed for the presented case, leading to an increased energy spread
and thus a degradation of an important beam-quality parameter.

At the same time, figure 8.2 leads to another interesting observation
— the driver beam in turn is subjected to a decelerating field with
almost inverse properties when compared to the witness beam. This
leads to the conclusion that, given a new plasma environment where
it can act as a driver, a preaccelerated witness beam will exhibit a
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Figure 8.2: Longitudinal phase-space overview of a witness beam before (top)
and after the propagation through the introduced environment
(bottom), including projected histograms of the distribution (light
blue lines). A clear energy chirp is present, while the slice energy
spread, presented here and in all comparable plots using a red
line, remains low over the main section of the beam. The initial
projected energy spread of the witness beam, ∆γ) = 0.1 %, was
increased to ∆γ ≈ 1.0 % after a propagation length of z ≈ 53 mm
in a plasma environment with np = 1.0× 1020 m−3.

phase-space shift that could potentially counter the degrading effect
of its chirp, reducing the projected energy spread in the process.

The properties of the plasma environment, such as the possible field
strengths, will need to be carefully adjusted to fit the properties of an
injected beam. An essential requirement stems from the plasma wake-
field geometry itself, which will need to be able to accommodate the
beam in a specific decelerating region. Taking the plasma wavelength
λp as a crucial characteristic allows a rough limit for the longitudinal
beam size to be estimated as

6 · σζ .
λp

4
(8.1)

following the requirement that the majority of the beam needs to fit
in the initial, decelerating quarter of the plasma wave to optimize
chirp removal and energy spread minimization. In commonly used
normalized units, this condition can be simplified to σζ ,n . 1/4. It
should be noted that, strictly speaking, it only holds for the linear case
nb/n0 � 1.0, when the plasma-density evolution can be described as
a sinusoidal perturbation with the characteristic wavelength. However,
since a high-density driver in a non-linear case (nb/n0 � 1.0) results
in a bigger perturbation length scale by creating a cavity in its wake,
the condition can be seen as an upper longitudinal beam-size limit for
efficient dechirping.

Apart from its geometry, it is the energy distribution of the beam
which provides the main limitation on the plasma density, through
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Figure 8.3: Longitudinal wakefields (dashed lines, left-hand scale) for three
driver peak densities nb/n0 = 0.2, nb/n0 = 1.0 and nb/n0 = 2.0
(solid lines, right-hand scale, same colors as the resulting wake-
fields), all with kpσr = 0.25, kpσζ = 0.2.

the longitudinal fields required for energy chirp compensation over a
given length. Figure 8.3 shows the longitudinal wakefields caused by
an electron beam driver with varying peak density and constant beam
size, obtained from HIPACE simulations. The magnitude of the field,
together with its characteristic length scale, is influenced by the driver
density, which acts as the cause for the sinusoidal perturbation behind
it. Additionally, the dechirping field length scales with the longitudinal
beam dimensions, commonly reaching its maximum value at the
tail portion of the driver. Despite this advantageous characteristic, it
should be noted that the wakefield shape over the beam length is
not suitable for complete dechirping of a linear chirp, given its non-
linear shape. Instead, a Gaussian beam with a negative linear energy
chirp subjected to the wakefield will exhibit a lower projected energy
spread after a certain propagation distance in a plasma environment,
approaching its own slice energy spread in the process.

Assuming a simplified distribution of the wakefield established over
the witness length used as a driver with a linear chirp in its energy, the
chirp compensation requirement can be formulated in the normalized
unit description as

6 · σγ = E0 · te, (8.2)

with the energy spread σγ expressed in the Lorentz factor γ the
wakefield gradient value at the tail of the bunch E0 and the total
acceleration time te.

Apart from the non-linear nature of the wakefield on axis, another
limiting characteristic needs to be pointed out. The wakefield gener-
ated by the witness beam can have a significant radial dependency,
as depicted in figure 8.4. Thus, particles positioned away from the
central axis will be subjected to a lower wakefield gradient, which can
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Figure 8.4: Longitudinal wakefields (dashed lines, left-hand scale) for three
driver peak densities (solid lines, right-hand scale), nb/n0 = 0.2,
nb/n0 = 1.0 and nb/n0 = 2.0, all with kpσr = 0.25, kpσζ = 0.2. The
field values were taken from a HIPACE simulation at different
radial offsets in units of the transverse beam size σr.

increase the energy spread in the individual slices and thus reduce
the potentially lowest attainable value for dechirping. Two potential
strategies can be applied to avoid a degradation in the beam slice
energy spread. First, the beam can be limited to a transverse beam size
kpσr � 0.25, either by beam optics design or the choice of a specific
plasma density. Second, establishing a non-linear regime through a
high-current beam can widen the wakefield and thus reduce its radial
dependency as well.

Figure 8.5 depicts the longitudinal phase-space of a witness beam
both before (upper plot) and after (lower plot) its propagation through
a plasma section of z ≈ 20 mm. A clear energy chirp is present initially,
which is rotated during the propagation, reducing the energy spread
from ∆γ = 1.0 % to ∆γ ≈ 0.3 %. However, this happens at the cost of an
increased slice energy spread specifically present in longitudinal beam
portions with a significant radial wakefield dependency—mainly the
tail regions of the beam.

The limitations of the dechirping approach both for the longitudinal
and transverse aspects — the former affecting the projected and the
latter affecting the slice-energy spreads, respectively — raises the
question of an optimal dechirping regime. That is, a beam-plasma
configuration where the resulting wakefield allows the driver to be
rotated in phase-space such that the lowest possible value of the
projected energy spread — the slice-energy spread — is achieved.
Considering the longitudinal distribution, a deviation from a Gaussian
profile is beneficial, to avoid sampling the wakefield over its maximum
with the elongated tail section. A trapezoidal profile is well-suited,
although similar shapes are also possible, as long as they do not carry
any charge too far behind the main wakefield-generating front section.
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Figure 8.5: Longitudinal phase-space overview of a witness beam with a clear
linear chirp with an initial projected energy spread of ∆γ = 1.0 %,
before (top), and after (bottom) a propagation through z ≈ 20 mm
of plasma with density np = 1.0× 1022 m−3. Also shown are the
slice energy spread (red lines, right-hand scale) and histogram
axis projections of the distribution (blue lines) for both times. The
beam follows size requirements proposed above — kpσζ = 0.1,
kpσr = 0.1 and shows a reduced energy spread of ∆γ ≈ 0.3 %
after propagation.

The increase in slice-energy spread caused by the radial wakefield
dependency can be reduced by using a high-current beam, which
creates a bubble with little radial variation. The results of a study
observing these considerations are presented in figures 8.6 to 8.7,
where the front half of a high-current Gaussian beam with a negative
linear chirp was used. A clear longitudinal phase-space rotation is
observable for this example, which approaches the slice-energy spread,
while avoiding its significant degradation. For specific realistic beam
distributions, this case can be seen as an upper dechirping limit, with
their longitudinal distributions and current profiles determining the
degree of deviation towards a sub-optimal setup.

To facilitate optimal dechirping, certain parameter restrictions need
to be observed. The plasma density needs to be adjusted to the beam
length, since the corresponding plasma wavelength determines the
area of the wakefield that defines the dechirping characteristics. Addi-
tionally, the gradients available for dechirping, dictated by both the
plasma density and the witness current, need to be able to counter the
energy chirp, placing a second restriction on the available parameter
space. A beam which is too long for the plasma scale will be subjected
to a wakefield with a longitudinal shape not suitable for optimal chirp
reduction, potentially degrading its energy-spread profile even fur-
ther. Consequently, a plasma environment with insufficient density
will not be able to reduce the witness tail energy enough for a given
propagation length to minimize the energy spread, while a density
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Figure 8.6: (Top plot) longitudinal phase-space distribution (blue, left-hand
scale), together with axis histogram projections of the distribution
(light blue lines) and slice energy spread (red line, right-hand
scale) of a beam optimized for dechirping. (Bottom plot) longitu-
dinal wakefields taken on-axis and at three different radial offsets
(dashed lines, left-hand scale), together with the beam current
profile (orange line, right-hand scale). The beam is shown before
its injection into a plasma stage.

Figure 8.7: (Top plot) longitudinal phase-space distribution (blue, left-hand
scale), together with axis histogram projections (light blue lines)
and slice energy spread (red line, right-hand scale) of a high-
current beam after dechirping. (Bottom plot) longitudinal wake-
fields taken on-axis and at three different radial offsets (dashed
lines, left-hand scale), together with the beam current profile (or-
ange line, right-hand scale), shown after a propagation distance
of zsim ≈ 1.7 mm in a plasma with density np = 1.0× 1022 m−3.
The observed reduction in projected energy spread is signifi-
cantly more pronounced for this optimized profile compared to
figure 8.5, going from the initial value ∆γ ≈ 1.0 % to ∆γ ≈ 0.13 %.

above the required range will overchirp the beam and increase the
energy spread after a minimum has been reached prematurely. Addi-
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tionally, the length of the plasma cell provides another optimization
parameter, influencing both the projected and slice energy spreads.
These parameters need to be adjusted given a specific beam provided
by an initial accelerating structure, while observing the potential of
the beam to drive a plasma wake in a linear or non-linear regime.
The process begins by considering the beam size, which provides an
upper limit on the density and thus the potentially available maxi-
mum wakefield. The propagation distance required for dechirping is
estimated from the wakefield distribution over the driver-beam length
— either derived analytically or obtained from simulations. However,
the parameter space is often constructed from the physical dimensions
of the experimental area, such as the plasma-cell length, while the
beam parameters can be adjusted within a specific machine-dependent
range. If that is the case, then an iterative approach aimed at finding a
good working point based on initial parameters might be helpful in
setting up an experiment and probing its potential limitations. The
following section describes such an approach, taken in preparation for
a dechirping experiment at the ATF.

8.2 parameter iterations for atf experiment

The accelerator at the Brookhaven National Laboratory Accelerator
Test Facility provides an electron beam within a promising parameter
range suitable for testing the applicability of dechirping under realistic
experimental conditions. In preparation for the experimental run, a
parameter range of potential plasma densities, beam-focusing settings
and energy-chirp values needed to be analyzed to find a good working
point based on the physical limitations of the facility. This serves not
only as preparation for the experiment itself, but as an insightful study
on the dechirping properties presented above.

According to recent parameter studies [Swinson et al., 2018], the
beam at the ATF is within the energy range E = 30 MeV− 80 MeV,
has a charge Qb = 0.1 nC− 1 nC, a duration of tb ≈ 100 fs, a transverse
size of σt ≈ 50 µm, while exhibiting an emittance of εn = 1.0 µm. These
values are assumed under optimal focusing conditions, but can be
adjusted within a certain range. The plan for the experiment was to
propagate the beam off-crest in the accelerating cavities, thus obtaining
a beam with a quasi-linear chirp within a modifiable range of up to
several percent. The plasma cell itself had a total length of L = 40 mm.

Given these limiting conditions, one of the first questions to pursue
is the amount of dechirping expected from different plasma densities,
starting with a beam exhibiting a negative linear chirp of σγ/σζ = 1.0 %,
for a mean energy E = 70 MeV. Injecting a beam at a specific density
value not only changes the wakefield gradient available, it also intro-
duces size limits on the beam expressed in normalized plasma units.
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Given the dimensions of the ATF beam, the assumed plasma densities
were in the range np = 1.0× 1020 m−3 − 1.0× 1021 m−3.

Figure 8.8: Evolution of the projected energy spread for the beam driving a
wakefield based on the ATF beam parameters. The charge was set
to Qb = 120 pC, with the beam length σζ = 30 µm and a transverse
spot size σr = 50 µm for a varying density.

Figure 8.9: Evolution of the projected energy spread for the beam driving
a wakefield based on the ATF beam parameters with varying
transverse spot size and thus focusing. The charge was set to
Qb = 120 pC, with the beam length σζ = 30 µm and a plasma den-
sity np = 4.0× 1020 m−3.

The results of the initial iterations can be seen in figures 8.8 to 8.9.
As expected, a lower plasma density might not allow for a gradient
high enough to compensate the chirp, while a higher density can lead
to an overchirping effect, rotating the beam too far in the longitudinal
phase space by virtue of its high gradient.

The lowest attainable energy-spread value depends on the density
not only through the gradient, but also through the transverse wake-
field dependency — a beam with a high local peak density and small
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Figure 8.10: Evolution of the projected energy spread for the beam driving a
wakefield based on the ATF beam parameters, for three different
transverse beam size and charge combinations chosen to obtain
comparable wakefield distributions with a constant beam length
σζ = 60 µm. As expected, the lowest obtainable value for the en-
ergy spread is defined by the beam size and thus the transverse
wakefield variation of the beam samples.

Figure 8.11: (Top plot) longitudinal phase-space distribution (blue, left-hand
scale), together with axis histogram projections (light blue lines)
and slice energy spread (red line, right-hand scale) of the ATF
beam focused to a transverse spot size of σr = 40 µm. (Bottom
plot) longitudinal wakefields taken on-axis and at three differ-
ent radial offsets (dashed lines, left-hand scale), together with
the beam current profile (orange line, right-hand scale). The
beam is shown after a propagation distance of zsim ≈ 25.0 mm
through a plasma with density np = 3.0× 1020 m−3. Compared
to figure 8.12, the beam samples less variation of the longitudinal
wakefield over its width, which results in a lower growth of the
slice energy spread (up to ∆γ ≈ 0.26 % in this case).

radial footprint, as expressed in plasma-based units, will generate a
larger wake and be subjected to less transverse variations over its spot
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size. This is evident in figure 8.9 — not only does the more focused
beam see higher dechirping through an increased wakefield, it can
also approach a lower energy spread value when compared to bigger
beams, all having the same charge. All beams experience growth of
their slice-energy spread over the propagation length, however, mak-
ing it a significant limiting factor of the dechirping process and a
potential trade-off to reduce the projected energy spread. Relaxing the
condition of constant beam charge, this effect can be studied further by
setting this parameter in such a way as to obtain comparable wakefield
distributions for varying transverse beam sizes. As presented in fig-
ure 8.10, a variation in transverse beam size while the charge is tuned
to keep the wakefield produced by the beam nearly constant, will
change the lowest attainable energy-spread value, since the beam will
sample less wakefield variation over the transverse domain. This ob-
servation is supported by the phase-space plots shown in figures 8.11

to 8.12, where the beam with a smaller transverse footprint exhibits a
smaller increase in the projected energy spread.

Figure 8.12: (Top plot) longitudinal phase-space distribution (blue, left-hand
scale), together with axis histogram projections (light blue lines)
and slice energy spread (red line, right-hand scale) of the ATF
beam focused to a transverse spot size of σr = 80 µm. (Bottom
plot) longitudinal wakefields taken on-axis and at three different
radial offsets (dashed lines, left-hand scale), together with the
beam current profile (orange line, right-hand scale). The beam is
shown after a propagation distance of zsim ≈ 25.0 mm through
a plasma with density np = 3.0× 1020 m−3. Compared to fig-
ure 8.11, the beam samples more variation of the longitudinal
wakefield over its width, which results in a higher slice-energy
spread (up to ∆γ ≈ 0.48 % in this case).

Despite the limitations outlined in this section, the simulations show
a clear potential for dechirping given the presented parameters, albeit
without complete minimization of the energy spread to initial slice
values.
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8.3 flashforward dechirping experiment

The dechirping principles outlined in the previous sections formed the
basis of a dedicated experiment at the FLASHForward facility [D’Arcy,
2018]. The FLASH accelerator was used to obtain a single beam with
a measured energy of E ≈ 681 MeV, a charge of Q = 300± 2 pC, ac-
celerated off-crest to obtain a negative chirp of 1.31 % FWHM before
being compressed to a spot size of σt ≈ 60 µm× 20 µm and a length
of tb ≈ 6 ps. According to previous considerations (cf. equations (8.1)
to (8.2)), the optimal plasma density due to the beam size and mean
energy, given the total length of the plasma capillary of zp ≈ 33 mm,
can be calculated as np = 2× 1021 m−3, which puts the beam in a lin-
ear regime with a corresponding maximum dechirping gradient of
Ez ≈ 210 MV m−1 at its tail. PIC simulations for a range of plasma
densities were performed in preparation for this work, sending a
Gaussian representation of the beam with the same rms parameters
and charge into a flattop plasma and calculating the final FWHM
energy spread. Figure 8.13 shows the simulation results together with
the experimental data, taken at varying temporal offsets following the
discharge corresponding to different plasma densities. The simulations
show excellent agreement with one of the first observed dechirping
experiments in the plasma environment.

Figure 8.13: The FWHM energy spread of the experimental beam and simu-
lated Gaussian, both after propagation through a plasma stage
of zp ≈ 33 mm, given for different PIC plasma densities (top
scale) and discharge times relative to the electron bunch arrival
time (bottom scale). The experimental data is provided with
symmetric rms error bars, given as the standard deviation of
the observed data points at each delay step and representing
shot-to-shot fluctuations.
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8.4 dechirping potential of the flashforward beam af-
ter acceleration

As depicted in the preceding chapters, the result of the external injec-
tion acceleration process in FLASHForward is a beam which exhibits
a low slice-energy spread, lending itself to potential post-acceleration
phase-space manipulation to retain or optimize its beam-quality pa-
rameters through dechirping. However, since the core dechirping
mechanism can also lead to a significant increase in slice-energy
spread, the potential usefulness of this technique for the beam distribu-
tion obtained in the main acceleration study will be further analyzed
in this section.

As shown in a previous chapter, the parameter space of the proposed
FLASHForward accelerator enables the acceleration of an externally in-
jected witness beam, provided a scraper can be used with sufficient pre-
cision to obtain two optimized beam distributions from an initial preac-
celerated Gaussian bunch. The resulting witness beam was shown to
preserve its emittance (εn,rms = 2.0 µm) while increasing the projected
energy spread from ∆γ = 0.1 % to ∆γ ≈ 0.2 %, all while nearly dou-
bling its energy over an acceleration distance of zsim ≈ 20 cm in PIC
simulations. In absolute terms, the projected energy spread obtained
in the simulation is equivalent to σγ ≈ 7.7641/mec, corresponding to
σE = 3.97 MeV. Consequently, the witness would need to generate a
wakefield of sufficient gradient for a given propagation length for
successful dechirping. Ideally, it would do so while entering the re-
gion with a longitudinal phase-space distribution showing a negative
linear or quasi-linear chirp, mimicking the longitudinal wakefield
structure for optimized reduction of the energy spread. The beam in
question, however, shows a more complex longitudinal distribution
(cf. corresponding chapter and phase-space plots post-acceleration),
albeit with a suitably low slice energy spread. Nevertheless, a study
of the parameter range and its dechirping potential can form the basis
of possible mitigation measures in case of beam quality degradation
following the acceleration, specifically focusing on a suitable plasma
density range.

Based on the considerations above, the witness beam obtained in
the previous chapter was reinjected into a plasma section with den-
sity np = 5.0× 1022 m−3 following its acceleration. The results of the
corresponding PIC simulation for a witness beam with the initial longi-
tudinal configuration shown in figure 8.14 are presented in figure 8.15

and exhibit a promising shift in the longitudinal phase-space after a
short propagation distance of zsim ≈ 3.0 mm, with a minor increase in
slice energy spread, confirming the beam to be within an acceptable
parameter range for dechirping to be effective given its energy profile.
Because of the inherent, non-linear shape of the witness phase-space
chirp of this particular distribution, however, it is not possible to cause
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a significant reduction in projected rms energy spread, despite the
accompanying rotation in longitudinal phase space (it can be noted
that the more linear front-section of the beam, amounting to about
4/5 of the overall charge, shows a reduction of the projected energy
spread down to the initial value ∆γ ≈ 0.1 %).

Figure 8.14: (Top plot) longitudinal phase-space distribution (blue, left-hand
scale), together with axis histogram projections of the distribu-
tion (light blue lines) and slice energy spread (red line, right-
hand scale) of the FLASHForward beam after its acceleration
in a plasma section with a density np = 1.0× 1023 m−3 and be-
fore injection into a dechirping stage. (Bottom plot) longitudinal
wakefields taken on-axis and at three different radial offsets
(dashed lines, left-hand scale), together with the beam current
profile (orange line, right-hand scale).

The central question of this section was whether an appropriate
plasma density environment can be found to enact a significant shift
in the longitudinal phase-space profile of a preaccelerated FLASHFor-
ward type beam, such as the one described at the end of chapter 7. It
was found that the plasma density range around np = 5.0× 1022 m−3

is suitable to fulfill this requirement. However, it was not possible
to reduce the projected energy spread for the whole beam given the
non-linear nature of its longitudinal phase-space profile. Nevertheless,
the dechirping technique can potentially be used in this scenario as
well, to counter driver-witness configurations with non-optimal beam
loading. It should be noted that this consideration additionally does
not take into account the problem of drive-beam removal.

8.5 emittance evolution during dechirping

The main focus of this chapter was the dechirping effect induced on a
driver beam to reduce its energy spread. However, this discussion is
not complete without a description of the beam-emittance evolution.
The starting point for further consideration is the matching mechanism
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Figure 8.15: (Top plot) longitudinal phase-space distribution (blue, left-hand
scale), together with axis histogram projections of the distribu-
tion (light blue lines) and slice energy spread (red line, right-
hand scale) of the FLASHForward beam after a dechirping stage.
(Bottom plot) longitudinal wakefields taken on-axis and at three
different radial offsets (dashed lines, left-hand scale), together
with the beam current profile (orange line, right-hand scale).
The beam is shown after its propagation through zsim ≈ 3.0 mm
of plasma with a density of np = 5.0× 1022 m−3, obtained from
a PIC simulation. While a clear shift in its longitudinal phase-
space is observable, it does not result in a reduced projected
energy spread due to the non-linear nature of the chirp.

mentioned in chapter 7. It dictates that a beam propagating through a
focusing plasma channel needs to have properly matched transverse
parameters to avoid emittance growth through betatron decoherence.
It should be noted that the previous descriptions are a special case
in that regard, since the beam generates the focusing environment
itself. Therefore, the degrading effects for a mismatched case would
be evident mostly in the tail section, and for plasma wavelengths
at the limit of the condition described in equation (8.1). Figure 8.16

shows the same simulations as depicted in figure 8.8, together with
the emittance evolution. The beam is mismatched for all considered
densities, with an initial beta value of β̂ ≈ 28.2 cm and the matched
counterpart ranging from 25.2 cm to 2.5 cm. The emittance increases
more severely for higher density values due to the higher degree of
mismatch while the beam additionally samples a bigger section of
the focusing environment it generated in its wake. Consequently, it
is the tail section of the beam that experiences the highest increase in
emittance, as shown in figure 8.17 for np = 1× 1021 m−3.

However, the matching mechanism is not the only factor contribut-
ing to emittance growth. Since the beam is only partially subjected
to a focusing channel, its spot size does not remain constant, grow-
ing during propagation and increasing emittance even for matched
cases. This effect is shown in figure 8.20, where the beam used in fig-
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Figure 8.16: Evolution of the projected energy spread for the beam driving
a wakefield based on the ATF beam parameters (top plot). The
charge was set to Qb = 120 pC, with the beam length σζ = 30 µm
and a transverse spot size σr = 50 µm) for a varying density. The
lower plot shows the corresponding emittance evolution. An
increase is evident with higher density values (the turn over
can be explained by the cutoff mechanism removing heavily
degraded tail portions of the beam).

Figure 8.17: (Top plot) longitudinal phase-space distribution (blue, left-hand
scale), together with axis histogram projections of the distribu-
tion (light blue lines) and slice energy spread (red line, right-
hand scale) of the ATF beam after its propagation through
zsim ≈ 40 mm of plasma with the highest considered density,
np = 1× 1021 m−3. (Bottom plot) slice emittance values (blue
and orange lines, left-hand scale) and current profile (green line,
right-hand scale) of the same beam. The parameters are not
matched, showing clear quality degradation of the slice quanti-
ties (energy spread and emittance) for the tail section reaching
into the focusing wake.

ure 8.16 was focused to transverse parameters matched to the plasma
density np = 2× 1020 m−3 in a blowout regime. While this behavior
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is an unavoidable consequence of the wakefield environment, it is
mostly confined to the front section of the beam, where the phase-
space rotation through defocussing is most pronounced, as shown in
figure 8.18.

Figure 8.18: Evolution of the projected emittance for the ATF beam driving
a wakefield matched to a plasma density of np = 2× 1020 m−3,
provided for both its front and main sections. The beam was
separated at ζ = 0.9 · ∆ζ. The two sections exhibit distinct emit-
tance growth rates due to their different plasma and wakefield
environments.

Figure 8.19: Evolution of the projected energy spread (top) and emittance
for the ATF beam provided for both its front and main sections
(bottom). The beam was matched to a plasma density of np =
1× 1021 m−3 and separated at ζ = 0.9 · ∆ζ.

Since the main interest of dechirping considerations is in the main
section of the beam where the energy profile alteration is most pro-
nounced, it is reasonable to neglect the emittance degradation of the
front beam section. However, an emittance increase is unavoidable
even for the rest of the beam, as evident in figure 8.18, where it in-
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creases from εn,rms = 2.0 µm to εn,rms ≈ 3.26 µm. Thus, the preferable
application scenario for the ATF parameter range would aim to limit
the propagation distance as much as possible, using higher densities
to achieve the longitudinal phase-space rotation. This approach is
depicted in figure 8.19, where the highest considered density for ATF
studies, np = 1× 1021 m−3 was used to achieve quick dechirping after
zsim ≈ 11 mm and a comparatively modest emittance growth from
εn,rms = 2.0 µm to εn,rms ≈ 2.35 µm.

Figure 8.20: Evolution of the projected energy spread for the beam driving a
wakefield matched to a plasma density of np = 2× 1020 m−3. The
charge was set to Qb = 120 pC, with the beam length σζ = 30 µm,
a transverse spot size σr = 10 µm and a normalized emittance
εn,rms = 2.0 µm, for a varying density. The lower plot shows the
corresponding emittance evolution. Despite the matching, the
emittance increases, albeit at a significantly lower rate, owing to
beam defocussing.

The discussion can be extended to the FLASHForward dechirp-
ing experiment described in section 8.3. The used setup, primarily
concerned with the demonstration of successful phase-space rotation,
shows clear increases in emittance at the end of the plasma stage
for all but the lowest densities, as depicted in figure 8.21. However,
the beam was not matched to this environment, with an initial beta
function of β̂ ≈ 27.7 cm in the x domain, while the matched beta
varies between 88.5 mm for the lowest and 4.4 mm for the highest
densities. At σζ ≈ 62.8 µm, the beam samples most of the wake it gen-
erates in the most effective density range (5× 1014 m−3 to 4× 1015 m−3

with the corresponding plasma wavelengths λp varying from 1.49 mm
to 0.53 mm). Consequently, the mismatch mechanism is expected to
have the biggest effect on emittance degradation. Indeed, compress-
ing the beam to match the transverse parameters at a density of
np = 2× 1021 m−3 — chosen for the high degree of dechirping evi-
dent in figure 8.13 — results in a significant suppression of emittance
growth, shown in figure 8.22. Additionally, this figure shows that the



8.5 emittance evolution during dechirping 111

remaining emittance growth can be mostly attributed to the degra-
dation of the front section, since its removal results in near-constant
emittance. The necessary spot size of σx,y ≈ 3.0 µm is close to the
parameters obtained from tracking codes describing the upstream
FLASHForward beamline in table 9.2. While not a sufficient argument
in itself due to the different energy profile, this observation neverthe-
less points toward a feasible implementation of the matching approach
in this context and plasma environment.

Figure 8.21: Final FWHM energy spread and emittance values of the beam
used in the FLASHForward dechirping experiment simulations
after propagation through zp ≈ 33 mm of plasma at varying
densities.

Figure 8.22: Evolution of the projected energy spread (top plot) and emittance
(bottom plot) of the beam used in FLASHForward dechirping
experiment simulations, modified to match the plasma environ-
ment with np = 2× 1021 m−3. The resulting spot size in both
transverse directions is σx,y ≈ 3.0 µm. The gray dotted line in the
bottom plot represents the emittance evolution of the main beam
section, obtained by considering only particles at longitudinal
positions smaller than ζ = 0.7 · ∆ζ.
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The above discussion is not limited to the parameter space outlined
by the ATF beam or the FLASHForward dechirping experiment, but
can be applied to any dechirping scenario. For a beam that fits into the
plasma domain defined by its energy spread and chirp (e.g. the right
length and current), emittance growth can be suppressed provided it
can be matched to the density regime.

8.6 concluding remarks

Beams accelerated in plasma-wakefield environments can be subjected
to accelerating fields with significant variations over the beam length,
leading to a corresponding energy chirp imprinted during the acceler-
ation process. The idea behind dechirping is to reinject the accelerated
beam into a new plasma density section, thus creating a wakefield
that can potentially reduce the energy chirp for a given propagation
distance. Because of the inherent wakefield properties, however, the
witness-turned-driver needs to satisfy certain requirements with re-
spect to its size and current, dictated by the absolute energy and the
corresponding necessary plasma density. A beam which is too long
will oversample the wakefield in its tail section, increasing projected
energy spread. Additionally, a beam which is too wide given the wake-
field profile it can generate will be subjected to the radial variations
of the wakefield, which can negatively impact its slice energy spread.
The width or spot size is also related to the matching requirements
of the plasma density under consideration, causing emittance growth
for mismatched parameters. All of these effects are interconnected
— a beam that might be narrow and short enough for a low plasma
density might not be able to experience a gradient high enough for
a short dechirping distance, necessitating a longer propagation and
thus increased slice energy spread, which can be seen as a lower limit
for the projected energy spread. To accommodate all of these con-
siderations and aspects for a given beam parameter setup, extensive
iterations can help narrow down the acceptable plasma density re-
gion and expected dechirping potential, as was presented in the case
for a proposed experiment at the ATF facility. Comparable iteration
runs supported the experiment performed at the newly commissioned
FLASHForward facility, showing excellent agreement between theory
and experiment and positioning this technology as a suitable measure
for beam optimization and phase-space modification. Additionally,
the case for dechirping given the FLASHForward beam parameter
range, exemplified by the distribution taken from the simulations
presented in the last chapter, was analyzed for potential usefulness,
confirming a phase-space shift for a plasma density range around
np = 5.0× 1022 m−3 and distances below 5 mm.

Finally, it should be noted that the observations presented in this
chapter can also be used in the context of beams with asymmetric



8.6 concluding remarks 113

transverse phase-space distributions which have been shown to seed
a transverse oscillation leading to eventual beam breakup, a severe
destabilization known as hosing [Whittum et al., 1991]. Recent results
[Mehrling et al., 2017] indicate that a driver with an initial energy chirp
can mitigate this instability, since the resulting betatron decoherence
helps to decouple the slice oscillations from resonant plasma back-
ground oscillation. In this context, dechirping can form an important
part of an elaborate strategy, reversing a deliberately induced initial
chirp in beams used for stabilization of the acceleration process in the
PWFA regime.





9
S TA RT- T O - E N D S I M U L AT I O N S

9.1 introduction

In the previous chapters, the FLASHForward beam parameter space
was analyzed with respect to its suitability for driving a plasma-
acceleration regime, provided a scraper can select two optimized
beam portions from an initially Gaussian beam charge distribution
with otherwise favorable attributes such as emittance and energy
spread. It could be shown that even this optimized regime is sen-
sitive to changes in the setup parameters such as plasma density,
the vacuum-to-plasma transition region, as well as the longitudinal
beam distributions after their separation by an idealized scraper. It
is clear, however, that more realistic distributions lead to additional
unwanted qualities that need to be analyzed to understand their im-
pact and to allow the introduction of potential mitigation strategies.
This chapter thus focuses on investigating the properties of beam
distributions obtained from beamline simulations describing electron
behavior in the FLASH preaccelerator, assumed to be more realistic
depictions of the actual beam expected at the plasma stage. Starting
with a comparison of the distribution to the idealized case used above,
the chapter then proceeds to identify the most significant deviations
and resulting instabilities, before moving on to the presentation of
corresponding mitigation strategies and finishing with a complete
acceleration description mirroring the final sections of chapter 7.

9.2 initial comparison between beam distributions

The simulations presented in the previous chapters — describing the
external injection scenario based on the parameter space of a beam ob-
tained from the FLASH accelerator — all assumed a Gaussian shape
for the initial phase-space distribution. However, the actual beam
provided by the preaccelerator can significantly deviate from this
idealized distribution, showing asymmetric behavior in both the longi-
tudinal and transverse dimensions — with a potentially severe impact
on its suitability for efficient plasma-based acceleration. To obtain a
more realistic beam depiction before the plasma cell, an ELEGANT
[Michael Borland, 2000] simulation modeling the design of the FLASH
accelerator, together with the proposed setup of the FLASHForward
beamline up to the plasma cell [Aschikhin et al., 2016] was used. A
start-to-end simulation pipeline was set up, allowing the beam to be
obtained from the ELEGANT file format and its 6D coordinates to be
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transformed into the plasma-normalized format preferred by HiPACE,
calculating the quasiparticle weight from the total beam charge, the
number of particles and simulation grid dimensions. The first beam
distributions were optimized for the expected length scales of a plasma
environment with a density of np = 5.0× 1022 m−3 to allow for higher
tolerances with respect to beam focusing and matching from the beam
line compared to the density np = 1.0× 1023 m−3 proposed in the final
sections of chapter 7.

A comparison between the driver-witness current configuration
used for the simulated acceleration process in section 7.5 and the
current profile of the beam obtained through ELEGANT is depicted in
figure 9.1. While the more realistic beam distribution roughly observes
the same length scales at the relevant longitudinal positions, it is the
clear deviation of the longitudinal profile from the idealized Gaussian
distribution assumed in previous simulations that necessitates changes
in the simulation configuration and scraper position, specifically due
to the different wakefield caused by the charge profile in the front
section.

Figure 9.1: Comparison between the ELEGANT-sourced current profile of a
beam before application of the scraper and the idealized driver-
witness profiles used for the acceleration procedure description
in section 7.5.

The theme of the departure from the idealized symmetric picture
continues when considering the transverse domain, both through a
comparison of the Twiss parameters, seen in table 9.1 and the phase-
space depictions in figure 9.2. While crucial attributes of the ELEGANT
distribution are similar to those of the idealized case, the deviations
need to be scrutinized with respect to their potential repercussions for
wakefield and beam stability during acceleration.

While the overall beam picture makes a strong case for asymmetries
being present, it does not provide a clear indication whether they are
due to possible phase-space correlations over the beam length, and
thus suppressible through beam separation into a driver and witness.
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Parameter Ideal Beam ELEGANT Beam

βx 9.9 mm 44.5 mm

βy 9.9 mm 6.6 mm

αx 0.0 0.0

αy 0.0 −0.1

∆γ 0.1 % 0.2 %

εn,x 2.0 µm 4.7 µm

εn,y 2.0 µm 1.4 µm

σx 3.1 µm 10.3 µm

σx 3.1 µm 2.2 µm

Table 9.1: A comparison of relevant beam quality parameters between the
idealized and ELEGANT beams, showing asymmetries for crucial
transverse parameters such as the beta function.

Figure 9.2: Comparison between the proposed idealized beam (left) and EL-
EGANT beam (right) distribution phase spaces, showing clear
deviations from the symmetric picture assumed in previous sim-
ulations.

Therefore, the consideration will follow chapter 7 and establish a
simulation regime from a single beam by applying an idealized scraper
at a position suitable for optimal beam-loading to obtain a driver-
witness pair.

9.3 longitudinal optimization

The electron beam distribution obtained from a simulated beam line
description before the plasma cell is not fixed — it can be adjusted and
modified within a wide parameter range, constrained by the specific
setup of the preaccelerator. To form the basis of the ongoing optimiza-
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tion, however, some considerations based on this initial distribution
can be helpful in steering the efforts in a sustainable and efficient
direction. An essential feature of an externally injected beam is its
position and current profile, determining the degree of beam loading
in the wake behind the driver. The approach taken for the idealized
distribution and depicted in chapter 7 was an iterative process consid-
ering the longitudinal domain only, since the nature of the blowout
regime permitted the transverse properties with respect to the acceler-
ating gradient to be ignored provided the witness-beam spot size was
sufficiently small (this condition can be violated if the beam deviates
significantly from the driver propagation axis, as seen below). Based
on the available distribution, the approach will be similar — assuming
a scraper of a certain thickness and iterating through its longitudinal
position to minimize the variation of the resulting longitudinal fields
over the witness-beam length. While the scraper definition is only an
approximation and does not describe the corresponding physical pro-
cesses behind the beamline component with sufficient accuracy, it can
nevertheless guide further optimizations by limiting the permissible
parameter range.

Figure 9.3: Longitudinal field (dashed lines, left-hand scale) and witness
current profiles (solid lines, right-hand scale). Each color repre-
sents a single HIPACE simulation with a specific longitudinal
position of the scraper that was applied to the ELEGANT-sourced
distribution shown in figure 9.1.

Figure 9.3 depicts the iteration process of the idealized scraper posi-
tion and width, mirroring similar considerations in previous chapters.
Despite the clear deviations from a theoretical profile, the wakefield
shows promising beam-loading results with a stable wakefield over
the witness length. The next step following considerations focused
on the longitudinal domain is more elaborate, since it involves longer
simulation distances concerned with matching mechanisms transport-
ing the beams from the vacuum to the plasma environments. Again,
results obtained from earlier optimized simulations form the basis
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for the parameters chosen in PIC simulations using the more realistic
beam distribution. However, its significant deviations from the radi-
ally symmetric picture have the potential to disrupt beam transport
and acceleration by driving the hosing instability mechanism through
off-axis oscillations [Mehrling et al., 2017; Whittum et al., 1991].

Figure 9.4 depicts the propagation of the sliced beam through a
transition region (with a scaling parameter L = 400k−1

p ) and into the fol-
lowing plasma region with has a plateau density np = 5.0× 1022 m−3.
The two beams show mutual transverse displacement, resulting in a
clear degradation of the witness beam spot size. This observation is
supported by the statistical data in table 9.2, now given for the two
beams after their separation and the witness beam from the idealized
simulation. As an example, the Twiss parameter α̂ = −〈xx‘〉/ε̂, which
needs to fulfill α̂ ≈ 0 to allow for proper matching (as mentioned in
the previous chapters), clearly deviates from its optimal value in in
table 9.1 once the beam is separated.

Figure 9.4: Beam centroid evolution of both the driver and witness obtained
from the ELEGANT-beam distribution after applying a simplified
scraper for separation. The witness beam shows an oscillation
around the driver path driving growth in the rms beam-spot size,
which is represented here and in the following as the shaded area
around the beam.

9.4 witness-beam stabilization

The generation of beam distributions with favorable properties is
anything but straight-forward, since it requires careful tuning of a
multitude of parameters with intertwined dependencies (e.g. evident
in CSR effects [Borland, 2001]) throughout the simulated beam line.
The start-to-end approach is thus meant to foster constructive co-
ordination between two separate areas of the accelerator, with the
PIC simulations serving as a benchmark for the quality of the beams
tracked through the upstream sections. It does not however prevent
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Parameter Idealized Parameters S2E Driver S2E Witness

βx 9.9 mm 73.32 mm 15.0 mm

βy 9.9 mm 3.94 mm 3.6 mm

αx 0.0 −1.8 0.7

αy 0.0 −0.5 0.5

∆γ 0.1 % 0.093 % 0.155 %

εn,x 2.0 µm 2.21 µm 2.0 µm

εn,y 2.0 µm 1.08 µm 0.636 µm

σx 3.1 µm 9.1 µm 3.9 µm

σx 3.1 µm 1.5 µm 1.1 µm

Table 9.2: A comparison of some relevant beam quality parameters between
the proposed FLASHForward setup and two beams after a simple
scraper-based separation of an ELEGANT-sourced beam.

the plasma environment from helping to suppress potentially destabi-
lizing properties such as strong asymmetries initially present in the
distributions, which seed the hosing instability [Whittum et al., 1991]
observed in figure 9.4.

Figure 9.5: Comparison between the ELEGANT-sourced current profiles of a
witness and driver used in the previous section and their retuned
counterparts which form the basis for subsequent stabilization
considerations.

As a first measure, a second scraper was introduced that removed
a tail section of the witness beam, limiting its length to ≈ 25 µm.
It can be observed in figure 9.3 that this witness-beam section is in
close proximity to the plasma wave crest, located behind the min-
imum of the longitudinal field. Since this area is very sensitive to
oscillations of the electron bubble sheath caused by the driver, limiting
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its interaction with the witness is expected to help with the latter’s
stability. Additionally, the beam distribution was retuned to increase
driver current, leading to a larger bubble. A comparison of both the
initial and retuned driver and witness current profiles is provided in
figure 9.5. Figure 9.6 shows the evolution of the driver and witness
beams obtained from the retuned configuration as they propagate
through a tapered section (of length z ≈ 50 mm) and into the plasma.
The increase in stability is evident both in the betatron oscillation
of the witness beam as well as its spot size, compared to the results
shown in figure 9.4. However, while the destabilization of the witness
beam is significantly suppressed, the oscillations still drive a betatron
decoherence and thus an emittance increase, also evident in the plot.

Figure 9.6: Beam centroid evolution of the driver and witness (top), together
with the absolute difference in their centroids (bottom) obtained
from an ELEGANT-beam distribution with an optimized tail
section. The witness oscillation, while smaller than in figure 9.4,
nevertheless leads to beam quality degradation, as seen in the
emittance evolution (shown by the gray line in the lower plot and
corresponding to the right-hand vertical axis).

The focus thus shifts to measures proposed against the hosing
instability in order to minimize decoherence effects and limit beam
quality degradation (e.g. emittance growth). One of the proposed
solutions was already applied to all simulations in this chapter. As
discussed in [Mehrling et al., 2017], a tapered vacuum-to-plasma
transition section can greatly reduce the initial hosing seed of the
beam distributions. An exponential profile of the tapering, with the
scaling parameters used throughout this work (see chapter 7), was
found to be optimal in reducing the oscillation compared to a step-
like transition and will thus be applied to all further simulations.
Unfortunately, it can be considered as the only tuning parameter
unrelated to the more complex beamline design simulations. All other
strategies — from driver defocussing to pre-chirping — demand a
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Figure 9.7: Comparison between the unmodified beam distributions and a
configuration with an artificially widened beam. A reduction
in the overall witness oscillation is evident once it reaches the
plasma density plateau (which starts after zsim ≈ 48 mm).

more elaborate modification of the beam phase-space, as discussed
below.

9.4.1 Drive beam defocussing

As shown in [Ossa, Mehrling, et al., 2018], the hosing instability in
PWFAs is rapidly suppressed for drive beams with an initial transverse
size comparable to the blowout radius. To test the effectiveness of
this approach in the presented scenario, the driver obtained by the
aforementioned separation of an ELEGANT single-beam distribution
was widened numerically by multiplying the transverse positions
with scaling factors, thus approximating a selective beam-spoiling
mechanism before the plasma cell. As shown in figure 9.7, this leads to
a more stable propagation with respect to the inter-beam oscillations
when compared to a non-modified beam after separation (the same
transition region is used for both, with a length of z0 ≈ 50 mm). Of
the two beam spot sizes obtained, kpσx = kpσy = 0.5 shows the smaller
oscillation amplitude, with a better overall stability — interpreted as
the variation in the amplitude overall and reduced emittance growth.

9.4.2 Drive beam prechirping

One of the crucial aspects of the hosing instability is the beam-plasma
interaction, which can drive a resonant oscillation in the ion channel
and destabilize the bunch. However, as shown in [Mehrling et al.,
2017], this effect can be dampened if the beams exhibit strong decoher-
ence due to a non-negligible energy spread. In the case of an energy
chirp, the individual longitudinal slices would oscillate at different
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frequencies, disrupting the resonance and damping the constructive
ion-channel feedback loop. As a possible mitigation measure for the
present case, the beams could be introduced with an initial chirp,
potentially necessitating a dechirping mechanism (as discussed in
chapter 8) after the plasma cell. It should be noted, however, that
the best-case scenario would involve the modification of the drive
beam only, since a significant correlated energy spread of the witness
would reduce the decoherence length and thus spoil the emittance
during acceleration for unmatched cases such as the one under consid-
eration (see chapter 7). Figure 9.8 depicts a setup with a numerically
prechirped drive beam for three values of the correlated energy spread.
As with the case of the widened beam, the methods suggested by pre-
vious studies help to suppress the oscillations to a small degree, more
evident as an impact on emittance growth.

Figure 9.8: Comparison between PIC simulations featuring a non-modified
double-beam setup juxtaposed with a witness following a
prechirped driver. The oscillations are slightly damped for cases
with higher energy spreads, suggesting a disruption of the reso-
nant coupling via the onset of a decoherence. This effect is more
pronounced for the emittance evolution shown in the bottom
figure.

To complete the analysis considering the applicability of three of
the currently prevalent mitigation methods — a tapered transition, the
defocussing of the driver and its prechirping — a simulation including
all three was performed. The results are depicted in figure 9.9. The
configuration used the values which lead to the lowest oscillation
amplitudes over the propagation length — a spot size of kpσx,d = 0.5
and a prechirped energy spread ∆γ = 2 %.

9.4.3 Initial centroid offset

Having explored two measures offered for the hosing instability, the
most evident deviation from the symmetric picture — the clear offset
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Figure 9.9: Comparison between two PIC simulations featuring a non-
modified double-beam setup juxtaposed with a witness following
a prechirped and widened driver. The witness oscillations are
damped, suggesting a reduction of the betatron decoherence and
showing suppressed emittance growth.

between the two beams evident from the start of the simulations —
can be considered as well. While it is reduced due to the focusing
channel established by the driver, it nevertheless contributes to the
initial hosing seed. Additionally, the initial analysis of the Twiss pa-
rameters showed a clear divergence, especially pronounced after the
single beam was divided into a driver-witness pair. In simple terms,
this is related to a corresponding offset in the transverse momentum
phase space. To test the influence of these asymmetries, the trans-
verse phase-space positions of the quasiparticles were centered by
subtracting the respective mean values as a simple approximation of
a symmetric picture neglecting potential correlations. The resulting
simulation, together with an unmodified case, is shown in figure 9.10.
The difference between the unmodified and recentered setups is most
evident in the emittance evolution, with the centered setup showing
reduced emittance growth. However, the amplitude of the centroid
differences remains largely comparable to the non-centered case. Thus,
removing the phase-space offset in this scenario does not suppress the
development of witness beam oscillations, which develop during its
propagation in the plasma bubble.

It should be noted that such a modification of the quasiparticle
phase-space constitutes the least experimentally viable option, since it
cannot be related to a beamline component facilitating the necessary
beam adjustments, leaving only iterations performed in ELEGANT as
a means of approximation. As such, this approach nevertheless follows
the argument presented at the beginning of this chapter, which aimed
to discuss the instabilities and their causes to derive a direction for
potential further optimizations, weighing the importance of beam pa-
rameters and asymmetries. Having established a possible optimization
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Figure 9.10: Comparison between two PIC simulations featuring a non-
modified double-beam setup together with a system where the
offsets of the beams were removed following their separation.

path together with mitigation strategies, the study follows chapter 7

in considering a complete acceleration procedure.

9.5 complete acceleration run

The hosing mitigation strategies presented above resulted in a witness
beam propagation exhibiting a smaller oscillation amplitude when
compared to the non-modified case of two beams obtained using the
simplified scraping mechanism. However, the considerations so far
have been limited to the beam stability problem evident in the hosing
regime and leading to growth in the beam-spot size and oscillation.
To obtain a full picture of the acceleration process, together with the
evolution of crucial quality parameters such as emittance and energy
spread, the beam setup which uses a driver modified to be more
conductive to hosing mitigation as discussed above, was introduced
into the plasma stage with the aforementioned transition section and
a plateau density of np = 5.0× 1022 m−3, as used in chapter 7.

Figure 9.11 shows the evolution of the energy, energy spread and
normalized emittance for the PIC simulated acceleration process, both
for the separated beams without any phase-space modifications and
the configuration featuring a widened driver (with kpσr = 0.5) show-
ing an energy chirp of ∆γ = 2 %. The witness beam reaches a final
energy of E ≈ 1.5 GeV, comparable to the results obtained in chapter 7.
However, both the energy spread and emittance are not preserved,
owing both to a non-optimal witness position with respect to the
beam loading effect and its oscillation around the driver propagation
axis. However, the slice quantities, presented in figures 9.12 to 9.13

are preserved over the acceleration distance, which might enable the
application of the dechirping technique after the plasma.
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Figure 9.11: Evolution of the energy and energy spread (top) as well as the
normalized rms emittance (bottom) of the beam configuration
modified for hosing mitigation, together with the non-modified
case. The energy gain is accompanied by a significant increase in
the energy spread, which in turn contributes to the witness beta-
tron decoherence, and consequent saturation of the emittance
growth, as discussed in section 7.4. However, the growth is sig-
nificantly damped in the modified case, mirroring the increased
beam stability.

Figure 9.12: (Top plot) longitudinal phase-space distribution (blue, left-hand
scale), together with axis histogram projections of the distribu-
tion (light blue lines) and slice energy spread (red line, right-
hand scale) of the witness bunch. (Bottom plot) slice emittance
in both transverse directions (left-hand scale) and witness bunch
current profile (green line, right-hand scale). The beam is shown
at the start of the simulation.

The plots shown in figures 9.11 to 9.13 can be seen the verification
that the stabilization strategies applied can lead to successful accelera-
tion of a preselected electron bunch trailing a modified driver. Further
optimizations of the scraper position are clearly necessary to retain
the advantageous energy spread and emittance values in line with
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Figure 9.13: (Top plot) longitudinal phase-space distribution (blue, left-hand
scale), together with axis histogram projections of the distribu-
tion (light blue lines) and slice energy spread (red line, right-
hand scale) of the witness bunch. (Bottom plot) slice emittance
in both transverse directions (left-hand scale) and witness bunch
current profile (green line, right-hand scale). The beam is shown
after a propagation distance of z = 150 mm in plasma with
np = 5.0× 1022 m−3 following the transition section introduced
in previous sections.

observations presented in chapter 7. However, need to be considered
not only in the perspective of a PIC simulation, but within the start-
to-end framework as a whole. Instead of implementing the necessary
phase-space modifications as numerical tools, the descriptions should
incorporate the beam-line designs featuring the components necessary
for the adequate preparation and tuning of the beam upstream, since
the changes proposed are bound to introduce further deviations from
the ideal symmetric picture.

9.6 conclusion

The beam descriptions used in the previous chapters all followed
common assumptions made when using numerical tools to probe
the processes under investigation — a beam with a radial symmetry
in the transverse domain, allowing for a straightforward description
of its phase-space shape and the corresponding quality parameters.
Even then, mechanisms such as mismatched parameters and longitu-
dinal wakefield dependencies could lead to significant losses in beam
quality and stability. However, the introduction of quasiparticle distri-
butions obtained from tracking codes immediately uncovered a more
problematic nature of the beam distributions expected at the plasma
cell—clear phase-space asymmetries with potential higher-order cor-
relations. While the beam moments and resulting beam parameters
such as the beta function and emittance were well within the favorable
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conditions outlined in chapter 7, the particular shape of the beam-
density distributions resulted in an unstable propagation once the
beams entered the plasma, resulting in witness beam destabilization
caused by the plasma wake coupling into the coherent driver oscilla-
tions. The observed behavior can be related to the hosing instability,
which is seeded by the deviations from the ideal picture observed
for more realistic beam distributions. Recent works such as [Lehe
et al., 2017; Mehrling et al., 2017; Ossa, Mehrling, et al., 2018; Vieira
et al., 2014] have provided potential mitigation strategies, some of
which were explored in section 9.4, leading to promising results and
showing improvements in beam stability over the initial, non-modified
case. The corresponding implementations, however, would involve
a more complex setup to allow for stable acceleration, potentially
necessitating additional structures in the upstream beam-line sections
(e.g. to defocus the driver). As such, the focus remains on the careful
modification of the beam phase-space through iterative parameter
adjustments in the beam-line description, since it had the biggest
impact on beam stability, as evident in the comparison between the
initial (e.g. figure 9.4) and retuned (e.g. figure 9.6) distributions. This
approach points towards a promising optimization regime, which cou-
ples tracking code results with PIC simulations using the established
framework.
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summary

For all its extraordinary potential, the plasma-based acceleration tech-
nology still faces some challenges on the path toward first main-
stream applications. Collision experiments and FEL undulators for
synchrotron radiation generation have stringent requirements with
respect to beam quality and stability, while the conventional beam-
line components upstream and downstream of the plasma interaction
region place certain limits on the beam parameter range. These condi-
tions need to be carefully navigated during the acceleration process of
an externally injected witness bunch. Thankfully, the modern numeri-
cal methods and tools available help in probing potential parameter
ranges and beam configurations, forming a solid basis for follow-
up experiments. However, their theoretical picture can be expanded
by both analytical descriptions of the beam moments evolution and
consistent particle tracking simulations. Between these two aspects,
the current work focused on the considerations revolving around the
phase-space development of the witness beam in an external injection
scenario and the necessary configurations enabling its effective accel-
eration, together with strategies aimed at subsequent corrections of
its energy spread. Starting with the introduction of an analytic beam
moment description in chapter 6, which helped motivate certain as-
sumptions regarding the connection between the beam energy spread
and emittance evolution, the work progressed toward a complete
numerical description of the acceleration process assuming a preaccel-
erated beam with a certain parameter range, as discussed in chapter 7.
The chapter focused on building a case for an efficient acceleration
process with preserved beam-quality parameters, identifying crucial
beam-plasma interaction mechanisms such as parameter matching and
beam loading and employing numerical iterations based on theoretical
considerations to identify optimal configurations. The specifics of the
plasma wakefield can imprint a significant energy chirp on the witness.
However, a beam driving the wakefield is subjected to a longitudinal
gradient which can potentially reduce the resulting energy spread,
given favorable plasma environments, a mitigation strategy known
as dechirping. Chapter 8 introduced this technique and its potential
limitations, before considering the parameter range of a proposed
experiment at the ATF and presenting data taken from a successful
demonstration at the FLASHForward facility, concluding with a test
run involving the accelerated beam distribution obtained from the
previous chapter. The capacity of the main numerical tool used in this
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work, HiPACE, to accept distributions obtained from either previous
simulations or other numerical methods, was instrumental in chap-
ter 9. This final chapter described a start-to-end simulation pipeline
allowing for a more realistic treatment of the acceleration process
taking into account the upstream beamline configuration and its im-
pact on the beam distributions. Clear deviations from the idealized
picture used for preceding analyses were identified, necessitating the
introduction of potential mitigation strategies centered around the
resulting hosing instability mechanism. The chapter concluded with
a complete simulation of an external injection acceleration involving
beam distributions obtained from a particle tracking code and modi-
fied for increased stabilization, showing promising results supporting
the argument for further optimizations.

conclusion

The significant differences in the environments encountered by the
proposed beam configurations, from the vacuum of a conventional
beamline design to the ion channel in plasma into the focusing optics
channel downstream, need to be carefully navigated to allow for suc-
cessful acceleration and phase-space manipulation in external injection
scenarios. Their theoretical description can be provided by multiple
numerical and theoretical methods, each based on certain assumptions
and accuracy requirements.

The analytic approach presented in chapter 6 could successfully
reproduce the simulated behavior of a witness slice given certain
plasma environment conditions, supporting conclusions derived in
following chapters with respect to emittance development, its final
value and the length scales required to reach it, especially given
non-optimal matching conditions. Their role was one of the major
aspects of the numerical analysis presented in chapter 7. Based on
the advantageous properties of the low initial energy spread and the
corresponding large decoherence length, the proposed solution to the
significant difference between the initial and matched beta functions
consisted of a tapered profile allowing for semi-adiabatic vacuum-to-
plasma transition. However, the method relies on the preservation of
the low energy spread to avoid shortening the decoherence length,
leading to the next section introducing the beam loading mechanism.
Starting with a single Gaussian beam distribution in six-dimensional
phase-space, an idealized scraper could be shown to allow for near-
optimal selection of a witness-driver configuration as subsets of the
original bunch, allowing the energy spread growth to be suppressed
sufficiently for emittance preservation. The chapter concluded with the
demonstration of a complete simulation process, including a plasma-
to-vacuum transition section exhibiting a wide range of acceptable
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scaling parameters tunable to the requirements of the downstream
optics and diagnostics section.

Due to the large gradients, the wakefield structure can imprint
the longitudinal phase-space of the witness with a significant energy
chirp, a common result in all but the optimal current distributions
allowing for perfect beam loading. Chapter 8 discussed a potential
strategy meant to reverse such beam-quality degradation by using the
chirped beam as a driver. Provided both the plasma density and the
beam distribution can be combined into a favorable setup, which was
the subject of the first section of the chapter, the simulations showed
reductions in the projected energy spread, albeit at the cost of increased
slice energy spread for all but the high-current beam configurations.
The observations formed the basis for iterative preparations of a
dechirping experiment planned at the ATF as well as a successful
demonstration at the newly commissioned FLASHForward facility,
with a section dedicated to a comparison of the data gathered at the
latter and supporting PIC results. The chapter finally explored the
dechirping potential of the beam produced in chapter 7, concluding
that a plasma density similar to the acceleration region plateau value
can lead to shifts in phase-space and a lower energy spread in the
head sections of the distribution under consideration.

The last chapter of this work focused on more deviations from the
idealized profiles used before, keeping with the theme of increas-
ing accuracy and subsequent analysis of resulting instabilities, by
introducing the results of particles tracked through the FLASH and
FLASHForward beamlines using the ELEGANT code into the plasma
environment. Despite promising initial beam parameters for the whole
distribution, significant deviations from the symmetric picture after
witness-driver separation using a simple scraping method could be
observed. The initially presented configuration was then shown to
eventually destabilize within the plasma stage, despite a near-optimal
initial current configuration and resulting beam loading. A second
beam distribution was subsequently introduced, optimized for better
matching conditions in the tail section corresponding to the witness
beam origin, yet still exhibiting instabilities within plasma. The chap-
ter thus focused on potential hosing mitigation strategies, based on
approaches and discussions presented in recent publications. Using a
combination of driver defocusing to a transverse size of kpσx,y ≈ 0.5
and its prechirping to an energy spread of ∆γ = 2% resulted in clear
increases in stability in PIC simulations and lower emittance growth
when compared to the non-modified case.

The present work considered the phase-space development of beams
within the plasma acceleration environment for external injection sce-
narios. It discussed the constituent mechanisms and their impact while
assembling complete descriptions of the procedure using analytic and
numerical methods. While the process itself demands careful observa-
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tion of many interacting components and attributes, from the beam
line design to the plasma density and transitions, from the beam
profiles to their transverse parameters, the results provide a sound
foundation for the numerical and experimental domains on the path
to the successful application of the ideas presented in this thesis.

outlook

The results presented in this work were often demonstrated in the
context of currently planned experiments and commissioned facilities,
aiming to provide the theoretical context for their configurations. Their
nature serves as an insightful representation of the current situation
of plasma-based acceleration facing increasingly complex setups on
its way to mainstream adoption. The promising initial experimental
results confirming the extraordinary properties of this method pro-
vided the impetus behind new collaborations and experiments, fuelled
by theoretical advances and improvements in numerical description
methods. In the case of external injection, critical aspects of beam
transport, injection and parameter preservation needed to be tackled
not only in theory, but also in experiments. The latest results, such as
the successful dechirping demonstration at FLASHForward [D’Arcy,
2018], are thus crucial milestones of a maturing technology, while new
facilities presently going online ([Adli et al., 2018] and [Aschikhin et al.,
2016]) or undergoing construction [Joshi et al., 2018] promise to offer
the dedicated platforms for its full-scale realization. The optimizations
performed in this work are thus mirrored by the progress within the
field, focusing on narrowing down parameter ranges and configura-
tions to enable the next generation of acceleration facilities, which
could potentially provide the building blocks of scientific advances in
such diverse fields as high-energy physics and drug research.
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A
B E A M M O M E N T S F O R B E A M S L I C E W I T H E N E R G Y
G A I N

Starting from the solution to equation (6.13),

x(t) ' x0 A(t) cos[ϕ(t)] +
px,0

meγ0ωβ,0
A(t) sin[ϕ(t)], (A.1)

the single particle depiction is transferred into the distribution picture using
the phase-advance approximation,

ϕd(t) =
∫

ωβdt = ϕ
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2γ0
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ωβ,0

)
, (A.2)

with the quantities as provided in section 6.2.1. The momentum expression
is found using px(t) = meγ(t)x′(t) using the approximation
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Using the chosen energy distribution function fγ(δγ) = 1√
2πσγ

e
−
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2σ2
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rms energy spread σγ, allows to find the beam momenta as convolutions,
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Assuming the separability of the underlying phase-space distributions, a
necessary condition outlined in chapter 6, yields the following depictions
for the moments (unless indicated by an index, all quantities are time-
dependent),
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Finally, the normalized emittance squared, based on
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can be given using the new expressions as
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It should be noted that the amplitude term only describes the slice energy
average evolution, allowing it to be carried through the integration, which
can then be done in a relatively straightforward way using the analytical code
Mathematica. A path incorporating the full amplitude energy dependency
in the convolution and leading to the beam moment description could not
be identified in the context of this work. This approximation might help
explain the slight deviations in the emittance evolution when compared with
semi-numerical methods and PIC simulations as seen in chapter 6.
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Simulation Parameters

kp∆ζ 0.0073

kp∆x 0.0098

kp∆y 0.0098

kp Lζ 15.0000

kp Lx 10.0000

kp Ly 10.0000

Plasma Parameters

np[cm−3] 1.0× 1017

k−1
p [µm] 16.805

E0[GeV] 30.408

n/np(z) 1.0

Driver Parameters

nb/np 4.000

kpζ 0.000

kpx 0.000

kpy 0.000

kpσζ 0.500

kpσx 0.800

kpσy 0.800

kpεx 0.100

kpεy 0.100

γ 2000.000

∆γ[%] 0.100

Table B.1: PIC Simulation Parameters used for Figure 2.3

Simulation Parameters

kp∆ζ 0.0098

kp∆x 0.0156

kp∆y 0.0156

kp Lζ 10.0000

kp Lx 8.0000

kp Ly 8.0000

Plasma Parameters

np[cm−3] 1.0× 1017

k−1
p [µm] 16.805

E0[GeV] 30.408

n/np(z) 1.0

Driver Parameters

nb/np 28.500

kpζ 7.600

kpx 0.000

kpy 0.000

kpσζ 0.594

kpσx 0.110

kpσy 0.110

kpεx 0.100

kpεy 0.100

γ 2000.000

∆γ[%] 0.100

Witness Parameters

nb/np 0.001

kpζ 5.500

kpx 0.000

kpy 0.000

kpσζ 0.000

kpσx 0.300

kpσy 0.300

kpεx 0.120

kpεy 0.120

γ 2000.000

∆γ[%] 10.000

Table B.2: PIC Simulation Parameters used for Figures 6.1 to 6.4
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Simulation Parameters

kp∆ζ 0.0098

kp∆x 0.0156

kp∆y 0.0156

kp Lζ 10.0000

kp Lx 8.0000

kp Ly 8.0000

Plasma Parameters

np[cm−3] 1.0× 1017

k−1
p [µm] 16.805

E0[GeV] 30.408

n/np(z) 1.0

Driver Parameters

nb/np 28.500

kpζ 7.600

kpx 0.000

kpy 0.000

kpσζ 0.594

kpσx 0.110

kpσy 0.110

kpεx 0.100

kpεy 0.100

γ 2000.000

∆γ[%] 0.100

Witness Parameters

nb/np 0.001

kpζ 4.200

kpx 0.000

kpy 0.000

kpσζ 0.000

kpσx 0.300

kpσy 0.300

kpεx 0.120

kpεy 0.120

γ 2000.000

∆γ[%] 10.000

Table B.3: PIC Simulation Parameters used for Figures 6.5 to 6.8

Simulation Parameters

kp∆ζ 0.0049

kp∆x 0.0156

kp∆y 0.0156

kp Lζ 10.0000

kp Lx 8.0000

kp Ly 8.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) 1.0

Driver Parameters

nb/np 4.000

kpζ 8.000

kpx 0.000

kpy 0.000

kpσζ 1.000

kpσx 0.133

kpσy 0.133

kpεx 0.084

kpεy 0.084

γ 2000.000

∆γ[%] 0.100

Witness Parameters

nb/np 4.000

kpζ 5.000

kpx 0.000

kpy 0.000

kpσζ 0.300

kpσx 0.133

kpσy 0.133

kpεx 0.084

kpεy 0.084

γ 2000.000

∆γ[%] 0.100

Table B.4: PIC Simulation Parameters used for Figures 7.1 to 7.7

Simulation Parameters

kp∆ζ 0.0049

kp∆x 0.0195

kp∆y 0.0195

kp Lζ 10.0000

kp Lx 10.0000

kp Ly 10.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) f (z)

Driver Parameters

nb/np 4.000

kpζ 7.000

kpx 0.000

kpy 0.000

kpσζ 1.000

kpσx 0.133

kpσy 0.133

kpεx 0.084

kpεy 0.084

γ 2000.000

∆γ[%] 0.100

Witness Parameters

nb/np 4.000

kpζ 4.000

kpx 0.000

kpy 0.000

kpσζ 0.300

kpσx 0.133

kpσy 0.133

kpεx 0.084

kpεy 0.084

γ 2000.000

∆γ[%] 0.100

Table B.5: PIC Simulation Parameters used for Figure 7.3
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Simulation Parameters

kp∆ζ 0.0049

kp∆x 0.0195

kp∆y 0.0195

kp Lζ 10.0000

kp Lx 10.0000

kp Ly 10.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) f (z)

Driver Parameters

nb/np 4.000

kpζ 7.000

kpx 0.000

kpy 0.000

kpσζ 1.000

kpσx 0.133

kpσy 0.133

kpεx 0.084

kpεy 0.084

γ 2000.000

∆γ[%] 0.100

Witness Parameters

nb/np 4.000

kpζ 4.000

kpx 0.000

kpy 0.000

kpσζ 0.300

kpσx 0.133

kpσy 0.133

kpεx 0.084

kpεy 0.084

γ 2000.000

∆γ[%] 0.100

Table B.6: PIC Simulation Parameters used for Figure 7.4

Simulation Parameters

kp∆ζ 0.0049

kp∆x 0.0195

kp∆y 0.0195

kp Lζ 10.0000

kp Lx 10.0000

kp Ly 10.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) f (z)

Driver Parameters

nb/np 4.000

kpζ 7.000

kpx 0.000

kpy 0.000

kpσζ 1.000

kpσx 0.133

kpσy 0.133

kpεx 0.084

kpεy 0.084

γ 2000.000

∆γ[%] 0.100

Witness Parameters

nb/np 4.000

kpζ 4.000

kpx 0.000

kpy 0.000

kpσζ 0.300

kpσx 0.133

kpσy 0.133

kpεx 0.084

kpεy 0.084

γ 2000.000

∆γ[%] [0.100− 10.000]

Table B.7: PIC Simulation Parameters used for Figure 7.5

Simulation Parameters

kp∆ζ 0.0049

kp∆x 0.0195

kp∆y 0.0195

kp Lζ 10.0000

kp Lx 10.0000

kp Ly 10.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) f (z)

Driver Parameters

nb/np 4.000

kpζ 7.000

kpx 0.000

kpy 0.000

kpσζ 1.000

kpσx 0.133

kpσy 0.133

kpεx 0.084

kpεy 0.084

γ 2000.000

∆γ[%] 0.100

Witness Parameters

nb/np 4.000

kpζ 4.000

kpx 0.000

kpy 0.000

kpσζ 0.300

kpσx 0.133

kpσy 0.133

kpεx 0.084

kpεy 0.084

γ 2000.000

∆γ[%] 0.100

Table B.8: PIC Simulation Parameters used for Figure 7.6
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Simulation Parameters

kp∆ζ 0.0049

kp∆x 0.0195

kp∆y 0.0195

kp Lζ 10.0000

kp Lx 10.0000

kp Ly 10.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) 1.0

Driver Parameters

nb/np 5.000

kpζ 7.000

kpx 0.000

kpy 0.000

kpσζ 1.000

kpσx 0.200

kpσy 0.200

kpεx 0.100

kpεy 0.100

γ 2000.000

∆γ[%] 0.100

Witness Parameters

nb/np 5.000

kpζ 3.500

kpx 0.000

kpy 0.000

kpσζ 0.300

kpσx 0.200

kpσy 0.200

kpεx 0.100

kpεy 0.100

γ 2000.000

∆γ[%] 0.100

Table B.9: PIC Simulation Parameters used for Figure 7.8

Simulation Parameters

kp∆ζ 0.0049

kp∆x 0.0195

kp∆y 0.0195

kp Lζ 10.0000

kp Lx 10.0000

kp Ly 10.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) 1.0

Driver Parameters

nb/n0(ζ) f (ζ)

kpζ0 6.000

kpζ1 10.000

kpx 0.000

kpy 0.000

kpσx 0.133

kpσy 0.133

kpεx 0.084

kpεy 0.084

γ 2000.000

∆γ[%] 0.100

Witness Parameters

nb/n0(ζ) f (ζ)

kpζ0 [3.100− 3.500]

kpζ1 [3.500− 4.000]

kpx 0.000

kpy 0.000

kpσx 0.133

kpσy 0.133

kpεx 0.084

kpεy 0.084

γ 2000.000

∆γ[%] 0.100

Table B.10: PIC Simulation Parameters used for Figure 7.9

Simulation Parameters

kp∆ζ 0.0049

kp∆x 0.0195

kp∆y 0.0195

kp Lζ 10.0000

kp Lx 10.0000

kp Ly 10.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) 1.0

Driver Parameters

nb/n0(ζ) f (ζ)

kpζ0 [5.800− 10.000]

kpζ1 [6.000− 10.000]

kpx 0.000

kpy 0.000

kpσx 0.133

kpσy 0.133

kpεx 0.084

kpεy 0.084

γ 2000.000

∆γ[%] 0.100

Witness Parameters

nb/n0(ζ) f (ζ)

kpζ0 [2.800− 3.800]

kpζ1 [3.000− 4.000]

kpx 0.000

kpy 0.000

kpσx 0.133

kpσy 0.133

kpεx 0.084

kpεy 0.084

γ 2000.000

∆γ[%] 0.100

Table B.11: PIC Simulation Parameters used for Figure 7.10
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Simulation Parameters

kp∆ζ 0.0049

kp∆x 0.0156

kp∆y 0.0156

kp Lζ 10.0000

kp Lx 8.0000

kp Ly 8.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) f (z)

Driver Parameters

nb/n0(ζ) f (ζ)

kpζ0 6.700

kpζ1 10.000

kpx 0.000

kpy 0.000

kpσx 0.133

kpσy 0.133

kpεx 0.084

kpεy 0.084

γ 2000.000

∆γ[%] 0.100

Witness Parameters

nb/n0(ζ) f (ζ)

kpζ0 3.800

kpζ1 4.800

kpx 0.000

kpy 0.000

kpσx 0.133

kpσy 0.133

kpεx 0.084

kpεy 0.084

γ 2000.000

∆γ[%] 0.100

Table B.12: PIC Simulation Parameters used for Figures 7.11 to 7.12

Simulation Parameters

kp∆ζ 0.0049

kp∆x 0.0156

kp∆y 0.0156

kp Lζ 10.0000

kp Lx 8.0000

kp Ly 8.0000

Plasma Parameters

np[cm−3] 1.0× 1017

k−1
p [µm] 16.805

E0[GeV] 30.408

n/np(z) 1.0

Driver Parameters

nb/n0(ζ) f (ζ)

kpζ0 7.000

kpζ1 10.000

kpx 0.000

kpy 0.000

kpσx 0.188

kpσy 0.188

kpεx 0.119

kpεy 0.119

γ 2000.000

∆γ[%] 0.100

Witness Parameters

nb/n0(ζ) f (ζ)

kpζ0 4.100

kpζ1 4.600

kpx 0.000

kpy 0.000

kpσx 0.188

kpσy 0.188

kpεx 0.119

kpεy 0.119

γ 2000.000

∆γ[%] 0.100

Table B.13: PIC Simulation Parameters used for Figure 7.17

Simulation Parameters

kp∆ζ 0.0049

kp∆x 0.0156

kp∆y 0.0156

kp Lζ 10.0000

kp Lx 8.0000

kp Ly 8.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) f (z)

Driver Parameters

nb/n0(ζ) f (ζ)

kpζ0 6.700

kpζ1 10.000

kpx 0.000

kpy 0.000

kpσx 0.133

kpσy 0.133

kpεx 0.084

kpεy 0.084

γ 2000.000

∆γ[%] 0.100

Witness Parameters

nb/n0(ζ) f (ζ)

kpζ0 3.800

kpζ1 4.800

kpx 0.000

kpy 0.000

kpσx 0.133

kpσy 0.133

kpεx 0.084

kpεy 0.084

γ 2000.000

∆γ[%] 0.100

Table B.14: PIC Simulation Parameters used for Figures 7.13 to 7.15
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Simulation Parameters

kp∆ζ 0.0049

kp∆x 0.0156

kp∆y 0.0156

kp Lζ 10.0000

kp Lx 8.0000

kp Ly 8.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) f (z)

Driver Parameters

Source HiPACE

kpζ 7.744

kpx −0.008

kpy −0.007

kpσζ 0.775

kpσx 0.287

kpσy 0.286

kpεx 0.397

kpεy 0.395

γ 1387.860

∆γ[%] 25263.137

Witness Parameters

Source HiPACE

kpζ 4.348

kpx −0.020

kpy −0.002

kpσζ 0.285

kpσx 0.056

kpσy 0.055

kpεx 0.094

kpεy 0.086

γ 2813.008

∆γ[%] 617.483

Table B.15: PIC Simulation Parameters used for Figure 7.16

Simulation Parameters

kp∆ζ 0.0049

kp∆x 0.0156

kp∆y 0.0156

kp Lζ 10.0000

kp Lx 8.0000

kp Ly 8.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) f (z)

Driver Parameters

nb/n0(ζ) f (ζ)

kpζ0 7.000

kpζ1 10.000

kpx 0.000

kpy 0.000

kpσx 0.188

kpσy 0.188

kpεx 0.119

kpεy 0.119

γ 2000.000

∆γ[%] 0.100

Witness Parameters

nb/n0(ζ) f (ζ)

kpζ0 4.100

kpζ1 4.600

kpx 0.000

kpy 0.000

kpσx 0.188

kpσy 0.188

kpεx 0.119

kpεy 0.119

γ 2000.000

∆γ[%] 0.100

Table B.16: PIC Simulation Parameters used for Figures 7.18 to 7.20

Simulation Parameters

kp∆ζ 0.0049

kp∆x 0.0312

kp∆y 0.0312

kp Lζ 10.0000

kp Lx 16.0000

kp Ly 16.0000

Plasma Parameters

np[cm−3] 1.0× 1014

k−1
p [µm] 531.409

E0[GeV] 0.962

n/np(z) 1.0

Driver Parameters

nb/np 10.000

kpζ 7.000

kpx 0.000

kpy 0.000

kpσζ 0.282

kpσx 0.094

kpσy 0.094

kpεx 0.002

kpεy 0.002

γ 112.720

∆γ[%] 0.100

Witness Parameters

nb/np 1.500

kpζ 4.200

kpx 0.000

kpy 0.000

kpσζ 0.282

kpσx 0.094

kpσy 0.094

kpεx 0.002

kpεy 0.002

γ 112.720

∆γ[%] 0.100

Table B.17: PIC Simulation Parameters used for Figures 8.1 to 8.2
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Simulation Parameters

kp∆ζ 0.0049

kp∆x 0.0078

kp∆y 0.0078

kp Lζ 5.0000

kp Lx 4.0000

kp Ly 4.0000

Plasma Parameters

np[cm−3] 1.0× 1014

k−1
p [µm] 531.409

E0[GeV] 0.962

n/np(z) 1.0

Driver Parameters

nb/np [0.200− 2.000]

kpζ 4.000

kpx 0.000

kpy 0.000

kpσζ 0.200

kpσx 0.250

kpσy 0.250

kpεx 0.002

kpεy 0.002

γ 112.720

∆γ[%] 0.100

Table B.18: PIC Simulation Parameters used for Figures 8.3 to 8.4

Simulation Parameters

kp∆ζ 0.0049

kp∆x 0.0156

kp∆y 0.0156

kp Lζ 5.0000

kp Lx 8.0000

kp Ly 8.0000

Plasma Parameters

np[cm−3] 1.0× 1016

k−1
p [µm] 53.141

E0[GeV] 9.616

n/np(z) 1.0

Driver Parameters

nb/np 10.000

kpζ 4.000

kpx 0.000

kpy 0.000

kpσζ 0.200

kpσx 0.100

kpσy 0.100

kpεx 0.100

kpεy 0.100

γ 1000.000

∆γ[%] 0.100

Table B.19: PIC Simulation Parameters used for Figure 8.5

Simulation Parameters

kp∆ζ 0.0049

kp∆x 0.0195

kp∆y 0.0195

kp Lζ 5.0000

kp Lx 10.0000

kp Ly 10.0000

Plasma Parameters

np[cm−3] 1.0× 1016

k−1
p [µm] 53.141

E0[GeV] 9.616

n/np(z) 1.0

Driver Parameters

Source HiPACE

kpζ 4.145

kpx −0.000

kpy −0.000

kpσζ 0.100

kpσx 0.100

kpσy 0.100

kpεx 0.100

kpεy 0.100

γ 984.575

∆γ[%] 967.041

Table B.20: PIC Simulation Parameters used for Figures 8.6 to 8.7
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Simulation Parameters

kp∆ζ 0.0059

kp∆x 0.0156

kp∆y 0.0156

kp Lζ 6.0000

kp Lx 4.0000

kp Ly 4.0000

Plasma Parameters

np[cm−3] 1.0× 1013 − 5.0× 1015

k−1
p [µm] 1680.464− 75.153

E0[GeV] 0.304− 6.799

n/np(z) 1.0

Driver Parameters

nb/np [63.407− 0.634]

kpζ 5.000

kpx 0.000

kpy 0.000

kpσζ [0.018− 0.179]

kpσx [0.030− 0.298]

kpσy [0.030− 0.298]

kpεx [0.001− 0.006]

kpεy [0.001− 0.006]

γ 112.720

∆γ[%] 0.100

Table B.21: PIC Simulation Parameters used for Figures 8.8 to 8.19

Simulation Parameters

kp∆ζ 0.0059

kp∆x 0.0156

kp∆y 0.0156

kp Lζ 6.0000

kp Lx 4.0000

kp Ly 4.0000

Plasma Parameters

np[cm−3] 4.0× 1014

k−1
p [µm] 265.705

E0[GeV] 1.923

n/np(z) 1.0

Driver Parameters

nb/np [39.630− 0.619]

kpζ 5.000

kpx 0.000

kpy 0.000

kpσζ [0.113− 0.113]

kpσx [0.038− 0.301]

kpσy [0.038− 0.301]

kpεx [0.004− 0.004]

kpεy [0.004− 0.004]

γ [112.720− 112.720]

∆γ[%] 0.100

Table B.22: PIC Simulation Parameters used for Figure 8.9

Simulation Parameters

kp∆ζ 0.0059

kp∆x 0.0156

kp∆y 0.0156

kp Lζ 6.0000

kp Lx 4.0000

kp Ly 4.0000

Plasma Parameters

np[cm−3] 3.0× 1014 − 3.0× 1014

k−1
p [µm] 306.809− 306.809

E0[GeV] 1.666− 1.666

n/np(z) 1.0

Driver Parameters

nb/np [3.440− 1.204]

kpζ 5.000

kpx 0.000

kpy 0.000

kpσζ [0.196− 0.196]

kpσx [0.130− 0.261]

kpσy [0.130− 0.261]

kpεx [0.003− 0.003]

kpεy [0.003− 0.003]

γ [140.000− 140.000]

∆γ[%] 0.100

Table B.23: PIC Simulation Parameters used for Figures 8.10 to 8.12
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Simulation Parameters

kp∆ζ 0.0035

kp∆x 0.0110

kp∆y 0.0110

kp Lζ 7.0711

kp Lx 5.6569

kp Ly 5.6569

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) 1.0

Witness Parameters

Source HiPACE

kpζ 3.080

kpx −0.011

kpy −0.008

kpσζ 0.102

kpσx 0.044

kpσy 0.044

kpεx 0.085

kpεy 0.084

γ 3885.496

∆γ[%] 776.762

Table B.24: PIC Simulation Parameters used for Figures 8.14 to 8.15

Simulation Parameters

kp∆ζ [0.0098− 0.0098]

kp∆x [0.0007− 0.0139]

kp∆y [0.0007− 0.0139]

kp Lζ [10.0000− 10.0000]

kp Lx [0.3570− 7.1408]

kp Ly [0.3570− 7.1408]

Plasma Parameters

np[cm−3] 1.0× 1013 − 4.0× 1015

k−1
p [µm] 1680.464− 84.023

E0[GeV] 0.304− 6.082

n/np(z) 1.0

Driver Parameters

nb/np [157.360− 0.393]

kpζ 6.000

kpx 0.000

kpy 0.000

kpσζ [0.037− 0.749]

kpσx [0.012− 0.238]

kpσy [0.036− 0.714]

kpεx [0.001− 0.024]

kpεy [0.001− 0.024]

γ [1386.000− 1386.000]

∆γ[%] 0.100

Table B.25: PIC Simulation Parameters used for Figures 8.13 to 8.21

Simulation Parameters

kp∆ζ 0.0117

kp∆x 0.0156

kp∆y 0.0156

kp Lζ 6.0000

kp Lx 4.0000

kp Ly 4.0000

Plasma Parameters

np[cm−3] 1.0× 1013 − 1.0× 1015

k−1
p [µm] 1680.464− 168.046

E0[GeV] 0.304− 3.041

n/np(z) 1.0

Driver Parameters

nb/np [1585.200− 15.852]

kpζ 5.000

kpx 0.000

kpy 0.000

kpσζ [0.018− 0.179]

kpσx [0.006− 0.060]

kpσy [0.006− 0.060]

kpεx [0.001− 0.012]

kpεy [0.001− 0.012]

γ [112.720− 112.720]

∆γ[%] 0.100

Table B.26: PIC Simulation Parameters used for Figure 8.20
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Simulation Parameters

kp∆ζ 0.0195

kp∆x 0.0156

kp∆y 0.0156

kp Lζ 10.0000

kp Lx 4.0000

kp Ly 4.0000

Plasma Parameters

np[cm−3] 1.0× 1015 − 3.0× 1015

k−1
p [µm] 168.046− 97.022

E0[GeV] 3.041− 5.267

n/np(z) 1.0

Driver Parameters

nb/np [209.810− 69.938]

kpζ 6.000

kpx 0.000

kpy 0.000

kpσζ [0.375− 0.649]

kpσx [0.018− 0.031]

kpσy [0.018− 0.031]

kpεx [0.012− 0.021]

kpεy [0.012− 0.021]

γ [1386.000− 1386.000]

∆γ[%] 0.100

Table B.27: PIC Simulation Parameters used for Figure 8.22

Simulation Parameters

kp∆ζ 0.0098

kp∆x 0.0156

kp∆y 0.0156

kp Lζ 20.0000

kp Lx 8.0000

kp Ly 8.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) 1.0

Electron Parameters

Source ELEGANT

kpζ [4.862− 6.876]

kpx [−0.159−−0.225]

kpy [−0.001−−0.001]

kpσζ [1.543− 2.182]

kpσx [0.414− 0.586]

kpσy [0.072− 0.102]

kpεx [0.217− 0.307]

kpεy [0.053− 0.075]

γ [1962.592− 1962.592]

∆γ[%] [442.411− 442.411]

Table B.28: PIC Simulation Parameters used for Figures 9.1 to 9.2

Simulation Parameters

kp∆ζ 0.0098

kp∆x 0.0312

kp∆y 0.0312

kp Lζ 10.0000

kp Lx 16.0000

kp Ly 16.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) 1.0

Driver Parameters

Source ELEGANT

kpζ [6.036− 6.721]

kpx [−0.280−−0.437]

kpy [0.019− 0.026]

kpσζ [0.962− 0.679]

kpσx [0.496− 0.564]

kpσy [0.076− 0.063]

kpεx [0.119− 0.119]

kpεy [0.059− 0.058]

γ [1959.471− 1958.051]

∆γ[%] [210.848− 168.588]

Witness Parameters

Source ELEGANT

kpζ [2.405− 3.448]

kpx [0.091−−0.056]

kpy [−0.025−−0.034]

kpσζ [0.363− 0.356]

kpσx [0.223− 0.092]

kpσy [0.060− 0.042]

kpεx [0.120− 0.028]

kpεy [0.029− 0.027]

γ [1971.305− 1966.089]

∆γ[%] [203.688− 161.588]

Table B.29: PIC Simulation Parameters used for Figure 9.3
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Simulation Parameters

kp∆ζ 0.0098

kp∆x 0.0312

kp∆y 0.0312

kp Lζ 10.0000

kp Lx 16.0000

kp Ly 16.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) f (z)

Driver Parameters

Source ELEGANT

kpζ 7.310

kpx −0.296

kpy −0.004

kpσζ 0.817

kpσx 0.382

kpσy 0.135

kpεx 0.105

kpεy 0.068

γ 1958.728

∆γ[%] 180.074

Witness Parameters

Source ELEGANT

kpζ 3.970

kpx −0.004

kpy −0.024

kpσζ 0.296

kpσx 0.148

kpσy 0.048

kpεx 0.054

kpεy 0.028

γ 1968.960

∆γ[%] 200.407

Table B.30: PIC Simulation Parameters used for Figures 9.5 to 9.6

Simulation Parameters

kp∆ζ 0.0098

kp∆x 0.0312

kp∆y 0.0312

kp Lζ 10.0000

kp Lx 16.0000

kp Ly 16.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) f (z)

Driver Parameters

Source ELEGANT

kpζ [7.310− 7.310]

kpx [−0.296−−0.296]

kpy [−0.004−−0.004]

kpσζ [0.817− 0.817]

kpσx [0.501− 0.993]

kpσy [0.501− 1.002]

kpεx [0.138− 0.274]

kpεy [0.252− 0.503]

γ [1958.728− 1958.728]

∆γ[%] [180.074− 180.074]

Witness Parameters

Source ELEGANT

kpζ [3.970− 3.970]

kpx [−0.004−−0.004]

kpy [−0.024−−0.024]

kpσζ [0.296− 0.296]

kpσx [0.148− 0.148]

kpσy [0.048− 0.048]

kpεx [0.054− 0.054]

kpεy [0.028− 0.028]

γ [1968.960− 1968.960]

∆γ[%] [200.407− 200.407]

Table B.31: PIC Simulation Parameters used for Figure 9.7

Simulation Parameters

kp∆ζ 0.0098

kp∆x 0.0312

kp∆y 0.0312

kp Lζ 10.0000

kp Lx 16.0000

kp Ly 16.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) f (z)

Driver Parameters

Source ELEGANT

kpζ [7.310− 7.310]

kpx [−0.296−−0.296]

kpy [−0.004−−0.004]

kpσζ [0.817− 0.817]

kpσx [0.382− 0.382]

kpσy [0.135− 0.135]

kpεx [0.105− 0.105]

kpεy [0.068− 0.068]

γ [1958.728− 1958.728]

∆γ[%] [1148.954− 19755.109]

Witness Parameters

Source ELEGANT

kpζ [3.970− 3.970]

kpx [−0.004−−0.004]

kpy [−0.024−−0.024]

kpσζ [0.296− 0.296]

kpσx [0.148− 0.148]

kpσy [0.048− 0.048]

kpεx [0.054− 0.054]

kpεy [0.028− 0.028]

γ [1968.960− 1968.960]

∆γ[%] [200.407− 200.407]

Table B.32: PIC Simulation Parameters used for Figure 9.8
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Simulation Parameters

kp∆ζ 0.0098

kp∆x 0.0312

kp∆y 0.0312

kp Lζ 10.0000

kp Lx 16.0000

kp Ly 16.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) f (z)

Driver Parameters

Source ELEGANT

kpζ [7.310− 7.310]

kpx [−0.296−−0.296]

kpy [−0.004−−0.004]

kpσζ [0.817− 0.817]

kpσx [0.501− 0.501]

kpσy [0.501− 0.501]

kpεx [0.138− 0.138]

kpεy [0.252− 0.252]

γ [1958.728− 1958.728]

∆γ[%] [4085.700− 19755.109]

Witness Parameters

Source ELEGANT

kpζ [3.970− 3.970]

kpx [−0.004−−0.004]

kpy [−0.024−−0.024]

kpσζ [0.296− 0.296]

kpσx [0.148− 0.148]

kpσy [0.048− 0.048]

kpεx [0.054− 0.054]

kpεy [0.028− 0.028]

γ [1968.960− 1968.960]

∆γ[%] [200.407− 200.407]

Table B.33: PIC Simulation Parameters used for Figure 9.9

Simulation Parameters

kp∆ζ 0.0098

kp∆x 0.0312

kp∆y 0.0312

kp Lζ 10.0000

kp Lx 16.0000

kp Ly 16.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) f (z)

Driver Parameters

Source ELEGANT

kpζ 7.310

kpx −0.000

kpy 0.000

kpσζ 0.817

kpσx 0.382

kpσy 0.135

kpεx 0.105

kpεy 0.068

γ 1958.728

∆γ[%] 180.074

Witness Parameters

Source ELEGANT

kpζ 3.970

kpx 0.000

kpy −0.000

kpσζ 0.296

kpσx 0.148

kpσy 0.048

kpεx 0.054

kpεy 0.028

γ 1968.960

∆γ[%] 200.407

Table B.34: PIC Simulation Parameters used for Figure 9.10

Simulation Parameters

kp∆ζ 0.0098

kp∆x 0.0391

kp∆y 0.0391

kp Lζ 10.0000

kp Lx 20.0000

kp Ly 20.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) f (z)

Driver Parameters

Source ELEGANT

kpζ 6.452

kpx −0.364

kpy 0.024

kpσζ 0.794

kpσx 0.539

kpσy 0.069

kpεx 0.120

kpεy 0.059

γ 1958.631

∆γ[%] 187.126

Witness Parameters

Source ELEGANT

kpζ 2.940

kpx 0.025

kpy −0.030

kpσζ 0.621

kpσx 0.259

kpσy 0.047

kpεx 0.133

kpεy 0.029

γ 1968.587

∆γ[%] 316.158

Table B.35: PIC Simulation Parameters used for Figure 9.4
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Simulation Parameters

kp∆ζ 0.0098

kp∆x 0.0312

kp∆y 0.0312

kp Lζ 10.0000

kp Lx 16.0000

kp Ly 16.0000

Plasma Parameters

np[cm−3] 5.0× 1016

k−1
p [µm] 23.765

E0[GeV] 21.502

n/np(z) 1.0

Driver Parameters

Source HiPACE

kpζ 7.247

kpx −1.628

kpy −2.204

kpσζ 0.782

kpσx 0.648

kpσy 1.285

kpεx 1.505

kpεy 2.515

γ 1433.184

∆γ[%] 13144.297

Witness Parameters

Source HiPACE

kpζ 3.970

kpx −1.654

kpy −2.340

kpσζ 0.296

kpσx 0.065

kpσy 0.052

kpεx 0.137

kpεy 0.118

γ 2544.750

∆γ[%] 8544.349

Table B.36: PIC Simulation Parameters used for Figures 9.11 to 9.13
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