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Zusammenfassung

Die Arbeit, die in dieser Dissertation vorgestellt wird, illustriert die Unter-

suchung von kollektiven Ladungsanregungen und die Vereinigung von lokalen

und nicht lokalen korrelationen in stark korrelierten Materialien und Gitter

Systemen. Dabei wurde moderne zeitkontinuierliche Quantum-Monte-Carlo

Algorithmen und Störungstheorie um die dynamische Molekularfeldtheorie

herum verwendet.

Die verwendeten numerischen Modelle wurden auf realistische Materiealen

angewandt, um kollektive Ladungsanregungen in den dotierten Mott Isola-

toren C2H und C2F zu untersuchen.

Darüber hinaus wurde eine e↵ektive bosonische Wirkung für die Ladungs-

freiheitsgrade für das erweiterte Hubbard Modell hergeleitet. Es wurde

gezeigt das Ladungsanregungen mit einer einfachen Theorie, welche ähnlich

zur RPA Theorie beschrieben werden können.

Abschliessend wurde Frequenzverdoppelung in Graphen mittels brechung

der Inversionssymmetrie untersucht. Dieser E↵ekt kann als sensitives Werkzeug

genutzt werden um Valley Polarization erzeugt durch polarisierendes Licht

zu untersuchen.





Abstract

The work presented in this thesis illustrates the applicability of collective

charge excitations and how to combine local and non-local correlations of

strongly correlated materials and lattice systems by using modern continuous

time quantum Monte Carlo algorithms and perturbation expansions around

dynamical mean field theory.

The used numerical models were applied to realistic materials, to discuss

collective charge excitations in the highly doped Mott Insulator materials

C2H and C2F.

Furthermore, e↵ective bosonic action for the charge degrees of freedom

for the extended Hubbard model was derived and it was showed that charge

excitations can be described by a simple RPA-like theory.

Subsequently, second-harmonic generation in graphene by breaking of in-

version symmetry was probed. It can be used as a sensitive tool to measure

the valley polarization e.g. by polarized light.
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I. PREFACE

Description of electronic systems with strong Coulomb correlations
is one of the most interesting topics in modern condensed matter
physics. Even though there are plenty of available methods which
are rich enough and contain interesting physics, the task is still the-
oretically challenging. In the case where one can assume that the
electron-electron interaction is local and that long-range inter-site in-
teractions are fully screened or may be ignored the underlying physics
is well described by the Hubbard model. The Hubbard model de-
scribes the physics of the competition of electron localization and
itinerancy. It is one of the simplest models which can describe this
competition and therefore used to describe correlation e↵ects in lat-
tices [1]. It is also believed that the single-band Hubbard model
in two dimensions with the local on-site interaction can be used to
explain the general physics of high-temperature superconductivity of
cuprates [2].
Dynamical mean-field theory (DMFT) [1, 3], which is a well-

established approximation for strongly correlated system, provides
an approximate solution of Hubbard model by mapping it to a local
quantum impurity model. In the limit of infinite dimensions this ap-
proximation becomes exact [1, 3]. DMFT is a very powerful method
and captures the formation of Hubbard bands [4, 5] as well as the
Mott transition [6, 7].
There are also cases where the non-local Coulomb interaction is

not negligible [8] and this provides motivation to look at the ex-
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tended Hubbard model, where charge- ordering e↵ects and screening
of the local interactions due to the non-local Coulomb interaction
are included in addition to the Hubbard model physics. The ex-
tended Hubbard model describes the screening of local Coulomb in-
teractions by the non-local Coulomb repulsion. The investigation of
charge-ordering transition and the screening e↵ect in the extended
Hubbard model have been done in numerous theoretical studies [9–
12].

To treat screening by non-local interactions one has to deal with
the extended dynamical mean-field theory (EDMFT) [9, 13–15],
which was introduced to include bosonic degrees of freedom, such
as charge or spin fluctuations, into DMFT. Within the EDMFT
framework, a description of fermionic and bosonic correlations on an
equal footing was started [9, 16]. Although DMFT and EDMFT are
by construction similar, the reduction of correlation e↵ects to their
local part is more e�cient for fermions than for bosons. Furthermore,
it was realized that the EDMFT approach was not fully successful
due to strongly non–local nature of collective excitations, therefore it
was necessary to extend EDMFT to treat non-local correlations. One
of the first examples beyond EDMFT is EDMFT+GW approach [9],
where EDMFT served as a starting point and all spatial contributions
are added by GW. In EDMFT+GW one has to be aware of double
counting which is related to the fact that all local contributions have
already been accounted at EDMFT level.

More sophisticated approaches that treat non-local e↵ects dia-
grammatically in terms of lattice and impurity quantities include
D�A [17], 1PI [18] and DMF2RG [19]. These methods demon-
strate an extension of DMFT by including two-particle vertex cor-
rections for the diagrams. Nevertheless, these approaches cannot
describe collective degrees of freedom coming up from non-local in-
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teractions. The recent TRILEX [20] approach, which is not based
on the mean-field solution, was introduced to treat diagrammati-
cally both fermionic and bosonic excitations. In this method, the
authors approximate an exact Hedin [21] form of lattice self-energy
and polarization operator by including full impurity fermion-boson
vertex correction in the diagrams. In all these approaches EDMFT
served as a starting point for theories that include spatial correla-
tions. TRILEX, as well as EDMFT+GW, have their drawbacks.
For example, EDMFT+GW depends on a decoupling scheme of the
Coulomb interaction and the results di↵ers strongly. Both theories
are not su�cient to satisfy conservation laws such as charge conser-
vation.

Beside the route of constructing one can also use the proper
dynamical mean-field extension in terms of lattice Green’s func-
tions and introduce so-called dual fermions (DF) [22] and the dual
bosons (DB) [23, 24] and then do diagrammatic perturbation theory
with new dual degrees of freedom. Nonetheless, the local impurity
model still serves as the starting point of the perturbation expansion
and (E)DMFT is reproduced in DF(DB) respectively as the non-
interacting dual problem. Still, there are major advantages e.g. the
self-energy and polarization operator in DF and DB are free from
double counting problems by construction. There is no overlap be-
tween the impurity contribution to the self-energy and polarization
operator and local parts of dual diagrams since the impurity model
deals with purely local Green’s functions only and the dual theory
is constructed from purely non-local building blocks.

The focus of this work lies on some particular cases of the DB ap-
proach, in which one uses the dual way of excluding non-locality from
diagrams and constructs correct EDMFT extensions with the three
point and four point vertex as well as without vertex corrections. As
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well as applications for realistic materials.
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II. THEORETICAL FRAMEWORK

In this Chapter we will give a brief overview over the most impor-
tant concepts which will be used in this thesis. The extended Hub-
bard model serves as the canonical example of a strongly correlated
systems where non-local e↵ects play a crucial role. In momentum
space, its action is given by the following relation

S = �
X

k⌫�

c
⇤
k⌫�

[i⌫ + µ� "
k
]c
k⌫�

+
1

2

X

q!

U
q
⇢
⇤
q!
⇢
q!
. (1)

Here we are interested only in the charge fluctuations, so in the
following we suppress the spin labels on Grassmann variables c

⇤
q⌫

(c
q⌫
) corresponding to creation (annihilation) of an electron with

momentum k and fermionic Matsubara frequency ⌫. The interac-
tion Uq = U + Vq consists of the on-site and nearest-neighbour
interactions respectively. The charge fluctuations are given by the
complex bosonic variable ⇢! = n!�hni �!, where n!

=
P

⌫�
c
⇤
⌫
c
⌫+!

counts the number of electrons and ! is a bosonic Matsubara fre-
quency. The chemical potential µ is chosen in such a way that the
average number of electrons per site is one (half-filling). Finally, "k is
the Fourier transform of the hopping integral t between neighboring
sites.

In EDMFT, the lattice action (75) is split up into a set of single-site
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local impurity actions Simp and a non-local remaining part Srem

S =
X

j

S
(j)

imp
+ S

rem
, (2)

which are given by the following explicit relations

Simp =�
X

⌫

c
⇤
⌫
[i⌫ + µ��

⌫
]c
⌫

+
1

2

X

!

U
!
⇢
⇤
!
⇢
!
, (3)

Srem =�
X

k⌫

c
⇤
k⌫
[�

⌫
� "

k
]c
k⌫

+
1

2

X

q!

(U
q
� U

!
) ⇢⇤

q!
⇢
q!
. (4)

All theories which are an extension of EDMFT we call here
EDMFT++. Importantly, a solution of every EDMFT++ theory
can be exactly written in terms of EDMFT Green’s functions and
renormalized interactions as follows

G
�1

k⌫
= G

�1

0
� ⌃

k⌫
= G

�1

E
� ⌃̃

k⌫
, (5)

W
�1

q!
= W

�1

0
� ⇧

q!
= W

�1

E
� ⇧̃

q!
, (6)

where ⌃k⌫ and ⇧q! are the exact, unknown in general, self-energy
and polarization operator of the model respectively, and
⌃̄k⌫ = ⌃k⌫� ⌃imp and ⇧̄q! = ⇧q!�⇧imp are the corrections to the
dynamical mean-field solution. With EDMFT as a starting point,
the goal of EDMFT++ theories is to approximate these corrections.
As pointed out above, ⌃̄k⌫ and ⇧̄q! should be introduced without
double counting with an e↵ective local impurity problem, but still can
give a local contributions to the lattice self-energy and polarization
operator.
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Now we introduce the so called DB approach which uses EDMFT
as a starting point and can be seen as an EDMFT++ theory. The DB
theory can be viewed as a perturbation expansion around EDMFT.
The dual transformations of the non-local part of the action Srem

can be made in the same way as in previous works on DB approach.
In order to define the three-point vertex in the TRILEX way, here
we introduce a di↵erent rescaling of the dual bosonic fields.
The partition function of our problem is given by

Z =

Z
D[c⇤, c] e�S (7)

where the action S is given by (23). Performing the Hubbard–
Stratonovich transformations one can introduce the new dual vari-
ables f ⇤

, f,�

e

P

k⌫�
c
⇤
k⌫�[�⌫��"k]ck⌫�

= Df⇥Z
D[f ⇤

, f ] e
�
P

k⌫�
{f⇤k⌫�[�⌫��"k]

�1
fk⌫�+c

⇤
⌫�f⌫�+f

⇤
⌫�c⌫�}

,

e

1
2
P
q!

⇢
⇤
q![⇤!�Vq]⇢q!

= Db⇥Z
D[�] e

�1
2
P
q!
{�⇤q![⇤!�Vq]

�1
�q!+⇢

⇤
!�!+�

⇤
!⇢!}

. (8)

Terms Df = det[�⌫� � "k] and D
�1

b
=
p

det[⇤! � Vq] can be
neglected, because they do not contribute to expectation values.
Rescaling the fermionic fields fk⌫� as fk⌫�g

�1

⌫�
, the bosonic fields �q!

as �q!↵
�1

!
, where ↵! = (1+U!�!), and integrating out the original

degrees of freedom c
⇤ and c we arrive at the dual action

S̃ = �
X

k⌫

f
⇤
k⌫
G̃

�1

0
f
k⌫

� 1

2

X

q!

�
⇤
q!
W̃

�1

0
�
q!

+ Ṽ . (9)
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with the bare dual propagators

G̃0 = [g�1

⌫
+�⌫ � "k]

�1 � g⌫ = GE � g⌫, (10)

W̃0 = ↵
�1

!

⇥
[Uq � U!]

�1 � �!

⇤�1

↵
�1

!
= WE �W!, (11)

and the dual interaction term Ṽ . The explicit form of the dual
interaction can be obtained by expanding the c

⇤ and c dependent
part of partition function in an infinite row and integrating out these
degrees of freedom as follows

Z
e
�
P
⌫!
{c⇤⌫g�1

⌫ f⌫+f
⇤
⌫ g

�1
⌫ c⌫+⇢

⇤
!↵

�1
! �!+�

⇤
!↵

�1
! ⇢!}

e
�Simp[c

⇤
,c]
D[c⇤, c] = f

⇤
⌫1
f
⌫2

⌦
c
⌫1
c
⇤
⌫2

↵
g
�1

⌫1
g
�1

⌫2

+
1

2
�
⇤
!1
�
!2

⌦
⇢
!1
⇢
⇤
!2

↵
↵
�1

!1
↵
�1

!2

� f
⇤
⌫1
f
⌫2
�
⇤
!3

⌦
c
⌫1
c
⇤
⌫2
⇢
!3

↵
g
�1

⌫1
g
�1

⌫2
↵
�1

!3

+
1

4
f
⇤
⌫1
f
⇤
⌫2
f
⌫3
f
⌫4

⌦
c
⌫1
c
⌫2
c
⇤
⌫3
c
⇤
⌫4

↵
g
�1

⌫1
g
�1

⌫2
g
�1

⌫3
g
�1

⌫4
+ . . .

= �f
⇤
⌫
g
�1

⌫
f
⌫
� 1

2
�
⇤
!
↵
�1

!
�
!
↵
�1

!
�
!

� f
⇤
⌫1
f
⌫2
�
⇤
!3

⌦
c
⌫1
c
⇤
⌫2
⇢
!3

↵
g
�1

⌫1
g
�1

⌫2
↵
�1

!3

+
1

4
f
⇤
⌫1
f
⇤
⌫2
f
⌫3
f
⌫4

⌦
c
⌫1
c
⌫2
c
⇤
⌫3
c
⇤
⌫4

↵
g
�1

⌫1
g
�1

⌫2
g
�1

⌫3
g
�1

⌫4
+ . . .

= e
�{f⇤⌫ g�1

⌫ f⌫+
1
2�

⇤
!↵

�1
! �!↵

�1
! �!+Ṽ }

. (12)

Therefore dual interaction has the form of infinite expansion on
the full vertices of the local impurity problem

Ṽ = f
⇤
⌫1
f
⌫2
�
⇤
!3

⌦
c
⌫1
c
⇤
⌫2
⇢
!3

↵
g
�1

⌫1
g
�1

⌫2
↵
�1

!3
�

1

4
f
⇤
⌫1
f
⇤
⌫2
f
⌫3
f
⌫4
g
�1

⌫1
g
�1

⌫2
g
�1

⌫3
g
�1

⌫4

� ⌦
c
⌫1
c
⌫2
c
⇤
⌫3
c
⇤
⌫4

↵
�

⌦
c
⌫1
c
⇤
⌫4

↵ ⌦
c
⌫2
c
⇤
⌫3

↵
+
⌦
c
⌫1
c
⇤
⌫3

↵ ⌦
c
⌫2
c
⇤
⌫4

↵  
+ . . . . (13)
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Here we define the three- and four-point vertex functions as (�⌫! is
the shorthand notation for the �2,1

⌫!
)

�
⌫!

= g
�1

⌫
g
�1

⌫+!
↵
�1

!
hc

⌫
c
⇤
⌫+!

⇢
!
i , (14)

�
4,0

⌫⌫0! = g
�1

⌫
g
�1

⌫0 g
�1

⌫0�!
g
�1

⌫+!

h ⌦
c
⌫
c
⌫0c

⇤
⌫0�!

c
⇤
⌫+!

↵
�

g⌫g⌫0(�! � �⌫0,⌫+!)
i
, (15)

with the simple connection between them

�
⌫!

= ↵
�1

!

X

⌫0

⇥
1� �

4,0

⌫⌫0!g⌫0g⌫0�!

⇤
. (16)

In the weakly-interacting limit, namely U ! 0, the renormaliza-
tion factor ↵! goes to unity and the four-point vertex �

4,0 is zero, as
detailed in the previous works [23–25] on the DB approach. Then,
the three-point vertex can be reduced to its bare form �0 = 1.

Then, the two first terms in Ṽ are given by

Ṽ = �
⌫!

f
⇤
⌫
f
⌫+!

�
⇤
!
+

1

4
�
4,0

⌫⌫0! f
⇤
⌫
f
⇤
⌫0f⌫+!

f
⌫0�!

. (17)

The dual Green’s function G̃k⌫ = �hf
k⌫
f
⇤
k⌫
i and renormalized

dual interaction W̃q! = �
⌦
�
q!
�
⇤
q!

↵
, as well as dual self-energy

⌃̃k⌫ and polarization operator ⇧̃q!, can be obtained diagrammati-
cally [23–25]. These dual quantities have usual connection

G̃
�1

k⌫
= G̃

�1

0
� ⌃̃

k⌫
, (18)

W̃
�1

q!
= W̃

�1

0
� ⇧̃

q!
. (19)

Finally, lattice Green’s function Gk⌫ and susceptibility Xq! can
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be expressed in terms of dual propagators via exact relations

Gk⌫ = � ["k ��⌫]
�1

+ ["k ��⌫]
�1
g
�1

⌫
G̃

k⌫
g
�1

⌫
["k ��⌫]

�1
, (20)

Xq! = � [Uq � U!]
�1

+ [Uq � U!]
�1
↵
�1

!
W̃

q!
↵
�1

!
[Uq � U!]

�1
. (21)

One can also rewrite the last relation and obtain the relation for the
full dual renormalized interaction

↵
�1

!
W̃

q!
↵
�1

!
= [Uq � U!] + [Uq � U!]Xq![Uq � U!], (22)

to show that the dual propagator W̃q! is evidently a renormalized
interaction in the non-local part of the action, where the impurity
interaction is excluded on the level of the bare interaction. It is worth
mentioning, that for the case of ⇤! = 0, which corresponds to the
DMFT theory as a basis, the renormalized interaction is exactly that
of the usual V – decoupling.
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III. FROM LOCAL TO NON-LOCAL CORRELATIONS: THE DUAL BOSON
PERSPECTIVE

Development of first-principles electronic structure methods for
correlated materials including high-Tc cuprates, iron pnictides as well
as heavy-fermion compounds presents a great challenge for compu-
tational material science. In the last decade one of the main break-
throughs is related to a new theoretical approach which combined
the accuracy of realistic GW–scheme with advanced local many body
(extended) dynamical mean–field theory ((E)DMFT+GW). Avoid-
ing double-counting is crucial for every diagrammatic approach that
treats non-local correlations beyond the dynamical mean-field level
((E)DMFT++ theory). Until now, the general issue of double-
counting remained unsolved.
The goal of this work was to combine local and non-local correla-

tions, by deriving it from a higher principle and using reasonable and
controllable approximations. Furthermore, a condition was that the
approximation could be used for real material applications, meaning
it should not be too heavy computationally. Here we used the dual
boson approximation as a starting point, which can be derived by
using a special form of a Hubbard-Stratonovich transformation.
We employed the dual boson approach and simplified it to an

EDMFT+GW like approximation, but with the advantage to have a
methodical derivation, a controllable limit (for small local Coulomb
interaction) and without having to take care of double-counting of
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diagrams by construction. This approximation is called dual boson
GW (DB�GW). Existing approximations for the treatment of local
and non-local correlation e↵ects and its physics were done before,
for example in the above mentioned the EDMFT+GW approxima-
tion. The idea of the EDMFT+GW approximation is to combine the
purely local self-energy and polarization function of EDMFT with
the spatially non-local contributions from GW approach.
In the previous studies phase diagrams in the on-site Coulomb

interaction U and the nearest-neighbor Coulomb Interaction V, as
well as retarded interactions and local spectral functions, have been
calculated for the extended Hubbard model and the GW-EDMFT
approach [9, 11, 12, 15, 26].
It was found that the charge-ordering line Vc(U) in the U/V phase

diagram for the transition from Fermi liquid to charge-ordering, that
EDMFT overestimates the local interaction while the EDMFT+GW
approach in the V -decoupling underestimates the local interaction
or rather overestimates the non-local interaction V in comparison
to the naive mean-field estimation Vc = U/z [12]. Where here z is
the number of nearest neighbors. In contrast to the V -decoupling
scheme of the EDMFT+GW approximation there is also the so
called UV�decoupling scheme where the local and non-local inter-
actions are treated on equal footing [26]. GW+EDMFT in the UV-
decoupling scheme reproduces the GW phase boundary for small
local interactions and slightly di↵ers for larger U , when one reaches
the Mott insulator phase [27]. Nonetheless, the dual boson approxi-
mation is very successful [28]. It is still an important topic to find a
suitable and computationally lightweight approximation which com-
bines local and non-local correlations and describes collective bosonic
excitations for real materials.
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Extended dynamical mean-field theory (EDMFT) is insufficient to describe nonlocal effects in strongly
correlated systems, since corrections to the mean-field solution are generally large. We present an efficient
scheme for the construction of diagrammatic extensions of EDMFT that avoids the usual double-counting
problem by using an exact change of variables (the Dual Boson formalism) to distinguish the correlations
included in the dynamical mean-field solution and those beyond. With a computational efficiency comparable to
the EDMFT + GW approach, our scheme significantly improves on the charge order transition phase boundary
in the extended Hubbard model.

DOI: 10.1103/PhysRevB.94.205110

I. INTRODUCTION

The description of strongly correlated electronic systems
is still one of the most challenging problems in condensed
matter physics, despite a lot of efforts and plenty of sug-
gested theories. One of the most popular approaches is the
dynamical mean-field theory (DMFT) [1–4], which provides
an approximate solution of the (multiband) Hubbard model
by mapping it to a local impurity problem. Although DMFT
neglects nonlocal correlation effects, it is able to capture
important properties of the system such as the formation of
Hubbard bands [5,6] and the Mott transition [7,8]. Later, an
extended dynamical mean-field theory (EDMFT) [9–12] was
introduced to include collective (bosonic) degrees of freedom,
such as charge or spin fluctuations, into DMFT. Unfortunately,
these collective excitations have a strongly nonlocal nature,
so a dynamical mean-field approach is insufficient and it
was necessary to develop some extensions, we will call them
EDMFT++, to treat nonlocal correlations.

The quantities of physical interest in EDMFT++ are the
electronic self-energy !kν and polarization operator #qω. The
main idea of the dynamical mean-field approach is that all
local correlations are already accounted for in the effective
local impurity problem which results in the self-consistency
conditions on the local part of lattice Green’s function and
susceptibility. The mean-field ideology implies that in the
EDMFT approach, the local self-energy and polarization
operator are given by those of the impurity model. To go
beyond, one needs to determine the corrections !̄kν and #̄qω

to the electronic self-energy and polarization operator that
describe nonlocal excitations.

However, as soon as one goes beyond the dynamical
mean-field level, the nonlocal corrections also change the local
parts of !kν and #qω. Indeed, the self-consistency condition
on the local part of the lattice Green’s function Gkν is not
able to fix the local part of the self-energy !kν at the same
time. Thus, the exact local part of full self-energy is no longer
determined within the effective impurity problem and has
contributions both from the dynamical mean-field solution
and from the nonlocal corrections. The same holds true for
the polarization operator and the self-consistency condition
on the local part of renormalized interaction. Therefore, great
care should be taken to avoid double-counting of correla-

tion effects when merging EDMFT with a diagrammatic
approach.

The EDMFT + GW approach [13–19] combines GW
diagrams [20–22] for the self-energy and polarization operator
with EDMFT. In an attempt to avoid double-counting, all
local contributions of the GW diagrams are subtracted and
only the purely nonlocal part of !̄kν and #̄qω is used to
describe nonlocal correlations. Exclusion of the impurity
contributions from the diagrams introduced beyond EDMFT is
necessary for a correct construction of the theory. However, the
EDMFT + GW way of treating the double-counting problem
is not unique and is the subject of hot discussions.

More complicated approaches invented to describe nonlocal
effects with the impurity problem as a starting point are
D%A [23], 1PI [24] and DMF2RG [25]. These extensions
of DMFT include two-particle vertex corrections in their
diagrams. However, D%A and 1PI methods cannot describe
the collective degrees of freedom arising from nonlocal inter-
actions that are of interest here, and the DMF2RG approach
has not yet been applied to this problem. On the other hand,
the recent TRILEX [26,27] approach was introduced to treat
diagrammatically both fermionic and bosonic excitations. In
this method the exact Hedin form [20] of the lattice self-energy
and polarization operator are approximated by including the
full impurity fermion-boson vertex in the diagrams.

Instead of trying to construct the proper dynamical mean-
field extension in terms of lattice Green’s functions, one can
take a different route and introduce so-called dual fermions
(DF) [28] and Dual Bosons (DB) [29–31] and then deal
with new dual degrees of freedom. In these methods the
local impurity model still serves as the starting point of a
perturbation expansion, so (E)DMFT is reproduced as the
noninteracting dual problem. It is important to point out
that the self-energy and polarization operator in DF and
DB are free from double-counting problems by construction:
There is no overlap between the impurity contribution to
the self-energy and polarization operator and local parts
of dual diagrams since the impurity model deals with
purely local Green’s functions only and the dual theory
is constructed from purely nonlocal building blocks. The
impurity contribution has been excluded already on the level
of the bare dual Green’s function and interaction. Contrary
to the existing methods, the DB approach does allow one
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to describe strongly nonlocal collective excitations such as
plasmons [32].

The self-energy and polarization operator in self-consistent
DB are built up as a ladder consisting of full fermion-fermion
and fermion-boson vertices obtained from the local impurity
problem. For computational applications, particularly those
aimed at realistic multiorbital systems, it can be convenient
to use simpler approximations that do not require the com-
putational complexity of the full two-particle vertex. To that
end, we construct EDMFT++ schemes that do not require the
full two-particle vertex, that exclude double-counting using
the dual theory, and that contain the most essential parts
of the nonlocal physics. We illustrate this by means of the
charge-order transition in the extended Hubbard model.

II. EDMFT++ THEORIES

The extended Hubbard model serves as the canonical
example of a strongly correlated system where nonlocal effects
play a crucial role. In momentum space, its action is given by
the following relation:

S = −
∑

kνσ

c∗
kνσ [iν + µ − εk]ckνσ + 1

2

∑

qω

Uq ρ∗
qωρqω. (1)

Here we are interested only in the charge fluctuations, so
in the following we suppress the spin labels on Grassmann
variables c∗

qν (cqν) corresponding to creation (annihilation)
of an electron with momentum k and fermionic Matsubara
frequency ν. The interaction Uq = U + Vq consists of the
on-site U and nonlocal interaction Vq, respectively. Here we
consider Vq as a nearest-neighbor interaction for simplicity.
The charge fluctuations are given by the complex bosonic
variable ρω = nω − ⟨n⟩δω, where nω =

∑
νσ c∗

νcν+ω counts
the number of electrons and ω is a bosonic Matsubara
frequency. The chemical potential µ is chosen in such a
way that the average number of electrons per site is one
(half-filling). Finally, εk is the Fourier transform of the hopping
integral t between neighboring sites.

First of all, since we are interested in the EDMFT++
theories, let us briefly recall the main statements of the
extended dynamical mean-field theory. In EDMFT, the lattice
action (1) is split up into a set of single-site local impurity
actions Simp and a nonlocal remaining part Srem,

S =
∑

j

S(j )
imp + Srem, (2)

which are given by the following explicit relations:

Simp = −
∑

ν

c∗
ν [iν + µ − *ν]cν

+ 1
2

∑

ω

Uω ρ∗
ωρω, (3)

Srem = −
∑

kν

c∗
kν[*ν − εk]ckν

+ 1
2

∑

qω

(Uq − Uω) ρ∗
qωρqω. (4)

Since the impurity model is solved exactly, our goal is to
move most of the correlation effects into the impurity, so that
the remainder is only weakly correlated. For this reason, two
hybridization functions *ν and +ω are introduced to describe
the interplay between the impurity and external fermionic and
bosonic baths, respectively. These functions are determined
self-consistently for an optimal description of local correlation
effects. The local bare interaction of the impurity model is
then equal to Uω = U + +ω. The impurity problem can be
solved using, e.g., continuous-time quantum Monte Carlo
solvers [33,34], and one can obtain the local impurity Green’s
function gν , susceptibility χω and renormalized interactionWω

as

gν = −⟨cνc
∗
ν⟩imp, (5)

χω = −⟨ρωρ∗
ω⟩imp, (6)

Wω = Uω + UωχωUω, (7)

where the average is taken with respect to the impurity
action (3). One can also introduce the local impurity self-
energy !imp and polarization operator #imp,

!imp = iν + µ − *ν − g−1
ν , (8)

#−1
imp = χ−1

ω + Uω, (9)

that are used as the basis for the EDMFT Green’s function GE
and renormalized interaction WE defined as

G−1
E = G−1

0 − !imp = g−1
ν − (εk − *ν), (10)

W−1
E = W−1

0 − #imp = U−1
q −

(
χ−1

ω + Uω

)−1
. (11)

Here G0 = (iν + µ − εk)−1 is the bare lattice Green’s function
and W0 is the bare interaction, which is equal to Uq, or Vq in
the case of UV –, or V – decoupling, respectively [15,16].

Importantly, a solution of every EDMFT++ theory can
be exactly written in terms of EDMFT Green’s functions and
renormalized interactions as follows:

G−1
kν = G−1

0 − !kν = G−1
E − !̄kν, (12)

W−1
qω = W−1

0 − #qω = W−1
E − #̄qω, (13)

where !kν and #qω are the exact, unknown in general,
self-energy and polarization operator of the model, respec-
tively, and !̄kν = !kν − !imp and #̄qω = #qω − #imp are
the corrections to the dynamical mean-field solution. With
EDMFT as a starting point, the goal of EDMFT++ theories
is to approximate these corrections. As pointed out above,
!̄kν and #̄qω should be introduced without double-counting
with an effective local impurity problem, but still can give a
local contribution to the lattice self-energy and polarization
operator.

There is, in fact, a numerically exact way to obtain the
nonlocal self-energy using the so-called bold diagrammatic
Monte Carlo method [35]. However, this method is very
expensive for realistic calculations, so we will be focused on
less expensive diagrammatic methods.
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A. (E)DMFT + GW approach

Historically, the EDMFT + GW approach [13–17] intro-
duced the first approximations for !̄kν and #̄qω. Here, the
self-energy and polarization operator diagrams from the GW
approximation [20–22] are added to the dynamical mean-field
solution to treat nonlocal correlations,

!GW
kν = −

∑

q,ω

Gk+q,ν+ωWqω, (14)

#GW
qω = 2

∑

k,ν

Gk+q,ν+ωGkν, (15)

where the coefficient “2” in Eq. (15) accounts for the spin
degeneracy. To avoid double-counting between the impurity
correlations and the GW correlations, only the nonlocal part
of Eqs. (14) and (15) is used, i.e., !̄GW

kν = !GW
kν − !GW

loc
and #̄GW

qω = #GW
qν − #GW

loc . Since the local interaction U has
already been accounted for in the impurity problem, the bare
nonlocal interaction in Eq. (14) can be taken in the form of
V – decoupling (W0 = Vq), which leads to a simple separation
of local and nonlocal contributions to the self-energy !̄kν .
Unfortunately, this form of renormalized interaction overesti-
mates nonlocal interactions [15,16]. Alternatively, the form of
UV – decoupling (W0 = Uq) is more consistent with standard
perturbation theory for the full Coulomb interaction, but leads
to the problems with separation of local and nonlocal parts
of the diagrams. For example, it accounts only for the large
local contribution Wω instead of the small full local four-point
vertex function γ 4,0 as shown in Appendix B. Therefore, the
form of the renormalized interaction and the way to avoid
the double-counting in general is a topic of hot discussions
nowadays [36].

Note that hereinafter the name V – or UV – decoupling in the
EDMFT++ theories implies only the form of interaction W0
used in the self-energy diagrams beyond the dynamical-field
level. Since the aim of the paper is to compare the existing
schemes of exclusion of the double-counting, the form of the
self-energy diagrams in these both cases remains the same.
Our notations can differ from those introduced in the previous
works on EDMFT++ theories by the presence of additional
diagrams in the different versions of decoupling schemes (see,
for example, Ref. [16]).

It should be noted, that there is another clear way to
avoid the double-counting problem, namely simply ignoring
nonlocal interactions in the dynamical mean-field part of
the action and including them in the nonlocal corrections
only. The impurity model then corresponds to DMFT, i.e.,
Uω = U . Then, the nonlocal renormalized interaction in
Eq. (14) can be taken in the form of V – decoupling as
W0 = Vq, and the local part of this self-energy diagram is
automatically zero. Although the DMFT + GW approach is
free from double-counting by construction, it is less advanced
than EDMFT+GW, since it ignores screening of the local
interaction by nonlocal processes.

B. Local vertex corrections beyond the EDMFT

The exact self-energy and polarization operator of
the lattice problem (1) are given by the following

relations [20]:

!kν = −
∑

qω

Gk+q,ν+ωWqω%kq
νω = , (16)

#qω = 2
∑

kν

Gk+q,ν+ωGkν %kq
νω = , (17)

where %
kq
νω is the exact three-point Hedin vertex. Unfortunately,

the full three-point vertex of the considered problem is
unknown, and the self-energy and polarization operator can
be found only approximately. The most important correlation
effects beyond EDMFT and the GW diagrams are expected in
the frequency dependence of the fermion-boson vertex [26,30].
For this reason, the recent TRILEX [26,27] approach with
application to the Hubbard model was introduced. In this
approach the exact Hedin vertex is approximated by the full
local three-point vertex of impurity problem, which results in

!TRILEX
kν = −

∑

qω

Gk+q,ν+ωWqωγνω, (18)

#TRILEX
qω = 2

∑

kν

Gk+q,ν+ωGkν γνω, (19)

where γνω is the full three-point vertex of the impurity problem
determined below [see Eq. (33)]. Thus, the local parts of
the self-energy and polarization operator are identically equal
to the local impurity quantities !imp and #imp, respectively.
Moreover, it is possible to split !TRILEX

kν and #TRILEX
qω into the

local impurity part and nonlocal contribution as it was shown
in Ref. [27],

!TRILEX
kν = !imp + !̄TRILEX

kν , (20)

#TRILEX
qω = #imp + #̄TRILEX

qω , (21)

where

!̄TRILEX
kν = −

∑

qω

ḠTRILEX
k+q,ν+ωW̄TRILEX

qω γνω, (22)

#̄TRILEX
qω = 2

∑

kν

ḠTRILEX
k+q,ν+ω ḠTRILEX

kν γνω, (23)

and ḠTRILEX
kν = Gkν − gν , W̄TRILEX

qω = Wqω − Wω are nonlo-
cal parts of the full lattice Green’s function and renormalized
interaction, respectively. Therefore, the TRILEX approach is
nothing more than an (E)DMFT+GW approximation with the
same exclusion of double-counting, where the GW diagrams
are additionally dressed with the local three-point vertex
from one side. In this case, the lattice Green’s function
and renormalized interaction are given by the same Dyson
Eqs. (12) and (13) with !̄TRILEX

kν and #̄TRILEX
qω introduced

beyond the dynamical mean-field level.
The main advantage of the TRILEX approach compared to

existing diagrammatic methods is a computational efficiency
due to the use of only the three-point vertex γνω to treat
nonlocal correlations. Nevertheless, even with this vertex
function one can approximate the exact Hedin form of the
self-energy and polarization function in a better way.

It is of course true, that if the self-energy and polarization
operator in the exact form of Eqs. (16) and (17) do not
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FIG. 1. Hedin form of the self-energy diagram in case of (a) at
least one nonlocal Green’s function G̃ and nonlocal renormalized
interaction W̃ , and (b) only local renormalized interactions W .
Straight and wave lines correspond to the Green’s function and
renormalized interaction.

contain any nonlocal propagators, then these quantities are
given by the impurity !imp and #imp, respectively. Therefore,
the improvements concern only the contributions !̄TRILEX

kν and
#̄TRILEX

qω , written in terms of nonlocal propagators and local
impurity vertex functions. As it was mentioned above, the
self-consistency condition on the local parts of the Green’s
function and renormalized interaction cannot also fix the local
parts of !kν and #qω at the same time. Therefore, additional
local contributions to the self-energy and polarization operator,
hidden in the nonlocal structure of the exact three-point
vertex, can appear from the diagrams introduced beyond the
dynamical mean-field level. For example, the Hedin vertex
with the same lattice indices at all three external points can
contain nonlocal parts,

(24)

Therefore, these contributions are not provided by the local
impurity problem and should be taken into account.

It is worth mentioning, that the Hedin form of the self-
energy and polarization operator is exact for the theories with
only one type of propagators. As soon as one includes the
vertex functions of the impurity problem in the diagrams, all
propagators become effectively separated into two different
types. Now, since the correction to the dynamical mean-field
level is introduced in terms of only one (nonlocal) type of lines
and all local lines are gathered in the local vertices, the Hedin
form does not provide the exact result for the self-energy and
polarization as shown in Refs. [37,38].

In order to discuss this in more detail, let us take a
closer look at the Hedin diagram (16) for the self-energy.
Above we discussed the case of only local propagators. Now
let us assume, that the Hedin vertex contains at least one
nonlocal Green’s function G̃kν and renormalized interaction
W̃qω. Then, the self-energy diagram can be reduced to the form
of two renormalized three-point vertices with the nonlocal
propagators in between as shown in Fig. 1(a). It may also
happen that one particular contribution to the lattice self-
energy does not contain the nonlocal renormalized interaction
at all. This case is shown in Fig. 1(b). The last case without
a nonlocal Green’s function is not considered here due to
appearance of higher-order vertex functions of the impurity
problem in the diagrams. The same procedure can be used
for the polarization operator. Then, if we restrict ourselves
only to the lowest order vertex function γνω, the self-energy

FIG. 2. Structure of the vertex corrections in theories consisted of
(a) one and (b) two types of propagators. Solid straight and wave lines
correspond to the Green’s function and renormalized interaction of
one type and the dashed lines to those of the second type, respectively.

and polarization operator introduced beyond the dynamical
mean-field level are

,
(25)

,
(26)

where, according to the above discussions, the three-point
vertices appear at both sides of the GW diagrams, as was
already discussed in Ref. [13]. Moreover, the specified form
of the diagrams for the self-energy and polarization operator
allows one to resum more diagrams than with the use of the
TRILEX form.

The illustration of the importance of having the three-point
vertex functions on both sides is also shown in Fig. 2. The
top row corresponds to a theory constructed from only one
type of Green’s function. Then, the fermion-boson vertices
are composed of the same propagators as the remainder of
the diagram, and it is always possible to “move” all vertex
correction to the right side of the diagram and obtain the Hedin
form for the self-energy [20]. On the other hand, if the vertex
functions are constructed from propagators (for example, gν

and Wω obtained from the impurity problem) that differ from
the Green’s function G and renormalized interaction W , it is
no longer possible to obtain the Hedin form for this diagram.
More clearly, the Hedin form is hidden inside of the impurity
vertices. “Moving” the left part of the diagram to the right, as
in the bottom row of Fig. 2, gives a diagram with the same
Hedin structure, but with different propagators.

So, if one prefers to work with the bare lattice propagators
and to use the Hedin form of self-energy, then it would be
consistent to approximate the exact Hedin vertex using the
same bare lattice quantities without inclusion of any other
types of propagators. If, instead, a combination of Green’s
functions and impurity vertices coming from different models
is used, the renormalized vertices should be included at both
ends of the GW diagram for the self-energy and polarization
operator.

In order to take the above corrections into account and
to compare the double-counting exclusion schemes, one can
introduce the EDMFT + GW γ approach in the same way as
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EDMFT+GW by including the local impurity vertex γνω in
the GW diagrams as

!
GWγ
kν = −

∑

q,ω

γνωGk+q,ν+ωWqωγν+ω,−ω, (27)

#GWγ
qω = 2

∑

k,ν

γνωGk+q,ν+ω Gkνγν+ω,−ω. (28)

Similarly to the EDMFT+GW case, only the nonlocal parts
!̄

GWγ
kν and #̄

GWγ
qω of the self-energy (27) and the polarization

operator (28) are used beyond the EDMFT. Then, the lattice
quantities are given by the same equations (12) and (13).

III. DUAL BOSON APPROACH

A different way of accounting for nonlocal correlations
beyond EDMFT is given by the Dual Boson approach [29,31].
The nonlocal part Srem of the lattice action (1) can be rewritten
in terms of new dual variables f ∗,f,φ by performing a
Hubbard-Stratonovich transformation, which leads to the dual
action,

S̃ = −
∑

kν

f ∗
kνG̃

−1
0 fkν − 1

2

∑

qω

φ∗
qωW̃−1

0 φqω + Ṽ , (29)

with the bare dual propagators,

G̃0 = GE − gν, (30)

W̃0 = WE − Wω, (31)

and the full dual interaction Ṽ that includes the impurity vertex
functions γ n,m with n fermion and m boson lines to all orders
in n and m, as detailed in Appendix A. The first two terms in
Ṽ are given by the following relation:

Ṽ = γ 2,1
ν,ω f ∗

ν fν+ωφ∗
ω + 1

4 γ 4,0
ν,ν ′,ω f ∗

ν f ∗
ν ′fν+ωfν ′−ω. (32)

We define the three-point vertex γ 2,1
νω in the same way as it is

done in the TRILEX [26,27] approach:

γ 2,1
νω = g−1

ν g−1
ν+ωα−1

ω ⟨cνc
∗
ν+ωρω⟩, (33)

where αω = Wω/Uω = (1 + Uωχω) is the local renormaliza-
tion factor. It is important to realize that this factor only
affects the transformations from lattice to dual quantities and
vice versa. Therefore, it does not change the final results
written in terms of the initial lattice degrees of freedom.
In order to shorten notations, hereinafter we call the three-
point vertex γνω. The four-point vertex function γ 4,0

νν ′ω can be
determined similarly to the previous papers on the Dual Boson
formalism [29,31],

γ 4,0
νν ′ω = g−1

ν g−1
ν ′ g−1

ν ′−ωg−1
ν+ω[⟨cνcν ′c

∗
ν ′−ωc∗

ν+ω⟩
− gνgν ′(δω − δν ′,ν+ω)]. (34)

Then, the dual Green’s function G̃kν = −⟨fkνf
∗
kν⟩ and renor-

malized dual interaction W̃qω = −⟨φqωφ∗
qω⟩, as well as dual

self-energy !̃kν and polarization operator #̃qω, can be obtained
diagrammatically [29–31]. These dual quantities have the

usual connection,

G̃−1
kν = G̃−1

0 − !̃kν, (35)

W̃−1
qω = W̃−1

0 − #̃qω. (36)

To close the circle, the Green’s function Gkν and renor-
malized interaction Wqω of the original model can be exactly
expressed in terms of dual quantities via the similar Dyson
Eqs. (12) and (13) as follows:

G−1
kν = G−1

E − !̄kν, (37)

W−1
qω = W−1

E − #̄qω, (38)

where the self-energy and polarization operator introduced
beyond EDMFT are

!̄kν = !̃kν

1 + gν!̃kν

, (39)

#̄qω = #̃qω

1 + Wω#̃qω

. (40)

It should be noted that the bare dual Green’s function (30)
and renormalized interaction (31) are strongly nonlocal due to
the EDMFT self-consistency conditions,

∑

k

GE = gν, (41)

∑

q

WE = Wω. (42)

Therefore, the dual theory is free from the double-counting
problem by construction, and the local impurity contribution
is excluded from the diagrams on the level of the bare
propagators (30) and (31). The DB relations up to this point
are exact and derived without any approximations.

It is worth mentioning, that the noninteracting dual theory
(Ṽ = 0) is equivalent to EDMFT. However, even in the
weakly interacting limit of the original model, U → 0, the
fermion-boson vertex γ 2,1 is nonzero and equal to unity,
as shown in Appendix A and previous works on the DB
approach. Thus, the Dual Boson formalism explicitly shows
that corrections to EDMFT are not negligible. Therefore,
the dynamical mean-field level is insufficient for describing
nonlocal bosonic excitations, because the interactions between
the nonlocal fermionic and bosonic degrees of freedom are
always relevant.

A. Dual diagrams for the self-energy and polarization operator

The impurity vertices γ n,m are computationally expensive
to calculate for large n and m. Practical DB calculations are
usually restricted to γ 4,0 and γ 2,1, since that is sufficient to
satisfy conservation laws and since processes involving higher-
order vertices can be suppressed with the appropriate self-
consistency condition [31].

As it was shown above, the dual theory can be rewritten in
terms of lattice quantities [see Eqs. (37) and (38)], where the
dual diagrams are constructed in terms of only one type of bare
propagators, i.e., the nonlocal part of EDMFT Green’s function
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FIG. 3. Structure of the vertex corrections in different theories in
case of one (top line) and two (bottom line) types of propagators.
Solid straight and wave lines correspond to the Green’s function and
renormalized interaction of one type and the dashed lines to those of
the second type, respectively.

and renormalized interaction given by Eqs. (30) and (31). Local
parts of the bare EDMFT propagators, namely gν and Wω, are
of the second type and hidden in the full local vertex functions
of the impurity problem, which serve as the bare interaction
vertices in dual space. Then, with the same logic presented in
Sec. II B, the DB self-energy and polarization operator in the
ladder approximation are given by

= + , (43)

=
, (44)

where the renormalized vertex functions are taken in the
ladder approximation (see Fig. 3, top line). Note that here
the splitting of propagators into the two parts is nominal and
matters only for the dual theory when all diagrams are written
in terms of only one nonlocal type of bare propagator. In
general, the initial lattice theory works only with one type
of Green’s function and renormalized interaction, namely the
bare EDMFT propagators, that for the local case we call
impurity gν or Wω and for nonlocal dual G̃0 or W̃0. Since the
dual theory gives the correction to the lattice quantities, the
dual contributions !̄kν and #̄qω introduced beyond EDMFT
should be irreducible with respect both to the impurity and the
dual propagators.

Let us turn to a more detailed explanation. As was shown in
Eqs. (37) and (38), the lattice self-energy and polarization
operator introduced beyond EDMFT are not given by the
dual !̃kν and #̃qω and have the form of Eqs. (39) and (40).
Note that the denominators in the expressions for !̄kν and
#̄qω have a very important physical meaning. The DB theory
works with the full vertex functions of the impurity problem,
that obviously contain one-particle reducible contributions.
Therefore, the denominators in Eqs. (39) and (40) exclude
these one-particle reducible contributions from the diagrams
for the self-energy and polarization operator in order to avoid
the double-counting in the Dyson Eqs. (37) and (38). Similar
discussions were presented in Ref. [24] with regards to the DF
approach.

To show this more explicitly, let us consider the following
example. The dual polarization operator in the form of the full
two-particle ladder can be written in a matrix form as (see the

FIG. 4. Diagrammatic representation of the second- and the third-
order contribution to the renormalized interaction.

second line of Fig. 3 for the diagrammatic representation)

#̃kω = γ G̃G̃γ

1 + [γ ]−1γ 4,0G̃G̃γ
, (45)

where γ 4,0 is the full local four-point vertex of the impurity
problem. Using these relations, Eq. (38) can be rewritten as
(see the third line of Fig. 3)

#̄qω = γ G̃G̃γ

1 + [γ ]−1(γ 4,0 + γWωγ )G̃G̃γ
. (46)

Here

γ4,0
irr = γ4,0 + γWωγ,

(47)

is identically the irreducible part γ 4,0
red of the full four-fermionic

vertex function of the impurity problem with respect to the
renormalized interaction Wω. Then the polarization operator
#̄ introduced beyond EDMFT is nothing more than the normal
dual polarization operator #̃ taken in the form of the full dual
ladder, but with irreducible four-point vertices γ 4,0

irr instead
of the full vertices γ 4,0 of the impurity problem. Therefore,
the exact relation (40) automatically corrects the structure
of the polarization operator, which is irreducible with respect
to the dual renormalized interaction, to be also irreducible with
respect to the impurity interaction Wω.

Let us then compare the second- and the third-order term
of diagrammatic expansion of Eq. (38) shown in Fig. 4,

W (2)
qω = WE

qω#̄qωWE
qω, (48)

W (3)
qω = WE

qω#̄qωWE
qω#̄qωWE

qω. (49)

After the substitution of the the second term of #̄ to Eq. (48)
and of the first term of #̄ to Eq. (49) we get

W (2)
qω = −WEγGGγ 4,0

irr GGγWE, (50)

W (3)
qω = WEγGGγWωγGGγWE

+WEγGGγ (WE − Wω)γGGγWE
qω, (51)

W (2)+(3)
qω = −WEγGGγ 4,0

irr GGγWE

+WEγGGγWEγGGγWE
qω. (52)
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Then one can see that the first term in Eq. (51) exactly gives
the reducible contribution to the full four-point vertex function
that was excluded from Eq. (50) by the denominator of #̄. If
one neglects this denominator, it will immediately lead to the
double-counting in Dyson Eq. (52).

The same holds for the self-energy, where all contributions,
coming from the denominator, give corrections to the six-point
vertices γ 6,0 and γ 2,2 and remove the reducible contributions
with respect to the local impurity Green’s function gν . Previous
DB studies did not account for the six- and higher-point
vertices, because they are negligibly small in both the large
and small U limits [31]. Therefore, from one point of view,
if the ladder approximation for the dual self-energy does
not contain these six-point vertices, then the denominator in
Eq. (39) should be neglected, because otherwise it will cancel
the reducible terms in Dyson Eq. (37) with respect to the
impurity gν . On the other hand, one of the advantages of the DB
formalism is the fact that all dual diagrams are written in terms
of full impurity vertices instead of irreducible ones. Therefore,
in the strong interaction limit, where the formal diagrammatic
expansion cannot be performed, the full high-order vertices
are small, which is not the case for the irreducible ones. Thus,
writing the dual diagrams in terms of full vertices, it allows
us to exclude the terms with the six-point vertices from the
self-energy. Then, the presence of the denominator in Eq. (39)
helps to include irreducible contributions of the high-order
vertices when their full contributions are negligibly small.

B. DB − GW approach

With the four-fermion vertex γ 4,0, the Dual Boson approach
can obviously include more correlation effects than EDMFT +
GW, at a significant computational cost. However, it is also
possible to construct a EDMFT++ approach from DB that
does not require the full two-particle vertex. Taking γ 4,0 = 0,
the fermion-boson vertex γνω can be approximated as unity,
as was discussed above, and the expressions for the dual !̃kν

and #̃qω operator are

!̃DB−GW
kν = −

∑

qω

G̃k+q,ν+ωW̃qω, (53)

#̃DB−GW
qω = 2

∑

kν

G̃k+q,ν+ωG̃kν . (54)

We call this the DB − GW approximation. According to the
above discussions, in this simplest case the denominator in
Eqs. (39) and (40) should be excluded, since we are interested
in the contribution of only lower-order vertex functions, so we
should take

!̄kν = !̃DB−GW
kν , (55)

#̄qω = #̃DB−GW
qω , (56)

without the denominators presented in Eqs. (39) and (40). Thus
we see that the EDMFT + GW and DB − GW approaches
start with the same form of the self-energy and polarization
operator diagrams and with similar propagators based on the
same EDMFT quantities GE and WE. The difference between
the two approaches lies in the way double-counting is excluded
from these diagrams, which for the DB − GW case is shown

in Eqs. (30)and (31). This results in different self-energies
!̃kν , and polarization operators #̃qω that are used to treat
nonlocal effects beyond the EDMFT in these two different
cases. Since the local and nonlocal correlation effects are
intertwined in a complicated way, it is more efficient to exclude
double-counting already on the level of the bare EDMFT
Green’s function and bare interaction in the dual formalism,
rather than to remove the local contribution of the full diagram.
This happens naturally in the exact dual Hubbard-Stratonovich
transformation.

It is worth mentioning that the dual renormalized interaction
W̃qω does not depend on the form of decoupling. As it is shown
in Eq. (A16), both UV – and V – decoupling forms lead to the
same result Uq − Uω = Vq − +ω for the interaction accounted
beyond the dynamical mean-field level in the DB theory. It is
then easy to see that the DMFT+GW theory in a V – decou-
pling form excludes the impurity interaction in a proper way,
since the dual renormalized interaction (A16) in the case +ω =
0 has exactly the form of V – decoupling. Due to the problems
arising in the EDMFT+GW approach in the UV – decoupling
form mentioned in Appendix B we take the renormalized
interaction for the EDMFT + GW(γ ) theories in the form of
V – decoupling for the later comparison with DB results.

C. Local vertex corrections in DB method

To add vertex corrections to the DB − GW approach,
one can take the second-order diagrams for the dual self-
energy !̃GWγ = !̄

(2)
kν (25) and polarization operator #̃GWγ =

#̄
(2)
qω (26), which are dressed with the full local impurity

fermion-boson vertices γνω as

!̃
GWγ
kν = −

∑

qω

γνωG̃k+q,ν+ωW̃qωγν+ω,−ω, (57)

#̃GWγ
qω = 2

∑

kν

γνωG̃k+q,ν+ωG̃kνγν+ω,−ω. (58)

Similarly to the DB − GW approach we neglect the denomi-
nator in Eqs. (39) and (40) and repeat all calculations in the
same way.

The four approaches are summarized in Fig. 5, showing the
self-energy and polarization operator diagram, where square
brackets [. . .]nloc denote the exclusion of the local part. The
computational recipes for all the EDMFT++ theories is shown
in Fig. 6.

IV. NUMERICAL RESULTS

To test the EDMFT++ schemes, we study the charge-order
transition in the square lattice Hubbard model, a popular
testing ground for extensions of EDMFT [16,17,30]. Here
we show calculations where first *ν and +ω are determined
self-consistently on the EMDFT level for all schemes. Then,
the nonlocal correlation effects are included. Having the same
impurity problem as the starting point for all approaches allows
us to compare clearly the effect from the extensions only. We
use t = 1/4, β = 50, and a 32 × 32 lattice. The resulting phase
boundary between the charge-ordered phase (CO) and the
Fermi liquid (FL), determined in the same way as in Ref. [30],
is shown in Fig. 7. The checkerboard CO phase is characterized
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FIG. 5. Self-energy and polarization operator for EDMFT++
approaches. The square brackets [. . .]nloc denote exclusion of the
local part. DMFT + GW is not listed here, it has the same diagrams
as EDMFT + GW and only differs in their choice of Uω.

by a divergent charge susceptibility at the wave vector q =
(π,π ). The phase boundary may therefore be located by
looking for zeros of the inversed susceptibility X−1

ω=0,q=(π,π).
Note that the renormalized interaction Wqω in DMFT + GW,
EDMFT + GW, and EDMFT + GW γ approaches is taken in
the form of the V – decoupling as discussed above.

Since ordering is unfavorable for the interaction energy for
V < U/4, the true phase boundary is expected to be above the
V = U/4 line. Indeed, the full DB result is above this line [30].
In all other EDMFT++ approximations with fewer correlation
effects, the phase transition occurs at smaller V . The DB −
GWγ approximation performs best in this respect, and is close
to the DB phase boundary for all values of U . The two approx-
imations that include local vertex corrections via γνω perform
better than their counterparts without, and both DB-based
approaches outperform their EDMFT + GW counterpart.

At U = 0, we expect the random phase approximation
(RPA) to give a reasonable prediction for the phase bound-
ary. The RPA limit is recovered by all shown EDMFT++
approaches, but already at relatively small U = 0.5, strong
differences between the methods become clear.

In the opposite limit of large U , EDMFT itself starts to
give an accurate phase boundary, since it accounts for all local
effects and those are most important at large U . Both DB-based
approaches converge to EDMFT at U = 2.5, whereas both
EDMFT + GW approaches give a phase boundary at the same,
slightly smaller V .

We even observe that DMFT + GW performs better than
EDMFT + GW, although it is simpler. Although DMFT +
GW contains fewer correlation effects than EDMFT + GW,
it is free from double-counting by construction. This clearly
shows the huge role that double-counting can play. On the other
hand, comparison of DMFT + GW and DB − GW schemes
confirms the fact that inclusion of bosonic correlations already
on the impurity level is also very important and provides
the better starting point for extending dynamical mean-field
theory.

In Fig. 8, we show the polarization operator corrections
#̄qω at high-symmetry q points, according to the EDMFT +
GW(γ ) and DB − GW(γ ) approaches. The results of the
two approaches DB − GW and EDMFT + GW, that do not
take into account the frequency dependent vertex function
γ , are similar. The presence of the full local three-point

FIG. 6. The recipe to construct an EDMFT++ theory. DMFT +
GW is obtained by taking Uω = U instead of determining it self-
consistently.

vertex function in the diagrams significantly changes the
results [30]. Moreover, the inclusion of the vertex function
results in the different behavior of the polarization operator of
the DB − GWγ and EDMFT + GW γ approaches. The dual
contribution to the polarization operator in this case is larger.
Therefore, using the dual way one excludes fewer contributions
from the diagrams, than in the case of the EDMFT + +
theories. Thus, the main difference in the approaches lies in
their description of the collective excitations and comes from
the different ways of treating the double-counting problem.

The fermion-boson vertex exhibits less structure as the
metallicity of the system is increased and becomes mostly
flat as the phase boundary to the CO phase is approached [30].
The influence of nonlocal interaction V on the three-point
vertex function γνω is shown in Fig. 9. The effects of the
three-leg vertex are also visible in the nonlocal part of the
polarization operator in the difference between DB − GW

FIG. 7. U − V phase diagram in EDMFT, DB and EDMFT++
theories at inverse temperature β = 50. The dashed line shows V =
U/4; the dot at U = 0 shows the starting point of RPA data. CO and
FL denote charge-ordered and Fermi-liquid metallic phases, respec-
tively. The EDMFT and DB data are taken from [30]; EDMFT + GW
data practically coincides with results shown in [15,16] papers.
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FIG. 8. Frequency dependence of nonlocal Re #̄qω for momentum k = (0,0), k = (π,π ) for on-site interaction U = 2.3 and the nearest-
neighbor interaction V = 0.2.

and DB − GWγ (or between EDMFT + GW and EDMFT +
GW γ ) approaches (see Fig. 8).

V. CONCLUSIONS

We have presented a recipe to create approximations beyond
EDMFT that take into account nonlocal correlation effects
while simultaneously avoiding double-counting issues. By
properly including nonlocality we see an improvement in
the phase boundary between the charge-ordered phase and
the Fermi liquid. Even in weakly and moderately inter-
acting systems, the phase boundary is shifted significantly
upwards compared to traditional EDMFT + GW. In fact,
EDMFT+GW is even improved upon by DMFT + GW, which
neglects the effect of nonlocal interactions on the impurity
model but does avoid double-containing. This allows us to
study the physics in a larger part of parameter space, where
EDMFT + GW has undergone a spurious transition. This
is important for accurately determining the charge-ordering
transition in real materials and in surface systems.

The approaches presented here work without requiring
the computationally expensive full two-particle vertex. The
frequency dependence of the much simpler fermion-boson
vertex already contains most of the relevant physics, and
including it via DB − GWγ gives a phase boundary close
to the full DB result. Without access to the fermion-boson
vertex, deviations are bigger. In both cases, however, the dual
way of treating the double-counting problem greatly improves
the results.

The ladder Dual Boson approach can be derived from
the dual functional, that automatically solves the complicated
issue of the conservation laws [31]. For the future, it would
be useful to obtain a similar functional description for the
approximated theories presented in this work.
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APPENDIX A: DUAL TRANSFORMATIONS

The dual transformations of the nonlocal part of the action
Srem can be made in the same way as in previous works on the
DB approach. In order to define the three-point vertex in the
TRILEX way, here we introduce a different rescaling of the
dual bosonic fields. The partition function of our problem is
given by

Z =
∫

D[c∗,c] e−S, (A1)

where the action S is given by (2). Performing the Hubbard-
Stratonovich transformations one can introduce the new dual
variables f ∗,f,φ,

e

∑
kνσ

c∗
kνσ [*νσ −εk]ckνσ

= Df

∫
D[f ∗,f ] e

−
∑
kνσ

{f ∗
kνσ [*νσ −εk]−1fkνσ +c∗

νσ fνσ +f ∗
νσ cνσ }

,

e
1
2

∑
qω

ρ∗
qω[+ω−Vq]ρqω

= Db

∫
D[φ] e

− 1
2

∑
qω

{φ∗
qω[+ω−Vq]−1φqω+ρ∗

ωφω+φ∗
ωρω}

. (A2)

Terms Df = det[*νσ − εk] and D−1
b =

√
det[+ω − Vq] can

be neglected because they do not contribute to expectation
values. Rescaling the fermionic fields fkνσ as fkνσg−1

νσ , the
bosonic fields φqω as φqωα−1

ω , where αω = (1 + Uωχω), and
integrating out the original degrees of freedom c∗ and c we
arrive at the dual action,

S̃ = −
∑

kν

f ∗
kνG̃

−1
0 fkν − 1

2

∑

qω

φ∗
qωW̃−1

0 φqω + Ṽ , (A3)
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FIG. 9. Local three-point vertex function γνω for two bosonic frequencies ωm = 2mπ/β with m = 0 and m = 6 for different values of
nearest-neighbor interaction V and local interaction U = 1.5 (top line) and U = 2.3 (bottom line).

with the bare dual propagators,

G̃0 =
[
g−1

ν + *ν − εk
]−1 − gν = GE − gν, (A4)

W̃0 = αω[[Uq − Uω]−1 − χω]−1αω = WE − Wω, (A5)

and the dual interaction term Ṽ . The explicit form of the
dual interaction can be obtained by expanding the c∗ and
c dependent part of the partition function in an infinite
series and integrating out these degrees of freedom as
follows:

∫
e
−

∑
νω

{
c∗
νg

−1
ν fν +f ∗

ν g−1
ν cν+ρ∗

ωα−1
ω φω+φ∗

ωα−1
ω ρω

}
,

e−Simp[c∗,c] D[c∗,c]

= f ∗
ν1

fν2
⟨cν1

c∗
ν2

⟩g−1
ν1

g−1
ν2

+ 1
2
φ∗

ω1
φω2

⟨ρω1
ρ∗

ω2
⟩α−1

ω1
α−1

ω2

−f ∗
ν1

fν2
φ∗

ω3
⟨cν1

c∗
ν2

ρω3
⟩g−1

ν1
g−1

ν2
α−1

ω3

+1
4

f ∗
ν1

f ∗
ν2

fν3
fν4

⟨cν1
cν2

c∗
ν3

c∗
ν4

⟩g−1
ν1

g−1
ν2

g−1
ν3

g−1
ν4

+ . . .

= −f ∗
ν g−1

ν fν − 1
2
φ∗

ωα−1
ω χωα−1

ω φω

−f ∗
ν1

fν2
φ∗

ω3
⟨cν1

c∗
ν2

ρω3
⟩g−1

ν1
g−1

ν2
α−1

ω3

+1
4

f ∗
ν1

f ∗
ν2

fν3
fν4

⟨cν1
cν2

c∗
ν3

c∗
ν4

⟩g−1
ν1

g−1
ν2

g−1
ν3

g−1
ν4

+ . . .

= e−
{

f ∗
ν g−1

ν fν + 1
2 φ∗

ωα−1
ω χωα−1

ω φω+Ṽ
}
. (A6)

So the dual interaction has the form of an infinite expansion
off the full vertices of the local impurity problem,

Ṽ = f ∗
ν1

fν2
φ∗

ω3
⟨cν1

c∗
ν2

ρω3
⟩g−1

ν1
g−1

ν2
α−1

ω3

− 1
4

f ∗
ν1

f ∗
ν2

fν3
fν4

g−1
ν1

g−1
ν2

g−1
ν3

g−1
ν4

{
⟨cν1

cν2
c∗
ν3

c∗
ν4

⟩

− ⟨cν1
c∗
ν4

⟩⟨cν2
c∗
ν3

⟩ + ⟨cν1
c∗
ν3

⟩⟨cν2
c∗
ν4

⟩
}

+ . . . . (A7)

Here we define the three- and four-point vertex functions as
(γνω is the shorthand notation for the γ 2,1

νω ),

γνω = g−1
ν g−1

ν+ωα−1
ω ⟨cνc

∗
ν+ωρω⟩, (A8)

γ 4,0
νν ′ω = g−1

ν g−1
ν ′ g−1

ν ′−ωg−1
ν+ω

× [⟨cνcν ′c
∗
ν ′−ωc∗

ν+ω⟩ − gνgν ′(δω − δν ′,ν+ω)],(A9)

with the simple connection between them,

γνω = α−1
ω

∑

ν ′

[
1 − γ 4,0

νν ′ωgν ′gν ′−ω

]
. (A10)
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In the weakly interacting limit, namely U → 0, the renor-
malization factor αω goes to unity and the four-point vertex
γ 4,0 is zero, as detailed in previous works [29–31] on the
DB approach. Then, the three-point vertex can be reduced to
its bare form γ0 = 1. Frequency dependence of the full local
three-point vertex function γνω and the influence of nonlocal
interaction V is shown in Fig. 9.

Then, the two first terms in Ṽ are given by

Ṽ = γνω f ∗
ν fν+ωφ∗

ω + 1
4

γ 4,0
νν ′ω f ∗

ν f ∗
ν ′fν+ωfν ′−ω. (A11)

The dual Green’s function G̃kν = −⟨fkνf
∗
kν⟩ and renormalized

dual interaction W̃qω = −⟨φqωφ∗
qω⟩, as well as dual self-

energy !̃kν and polarization operator #̃qω, can be obtained
diagrammatically [29–31]. These dual quantities have the
usual connection,

G̃−1
kν = G̃−1

0 − !̃kν, (A12)

W̃−1
qω = W̃−1

0 − #̃qω. (A13)

Finally, lattice Green’s function Gkν and susceptibility
Xqω can be expressed in terms of dual propagators via exact
relations,

Gkν = −[εk − *ν]−1

+ [εk − *ν]−1 g−1
ν G̃kν g−1

ν [ εk − *ν]−1, (A14)

Xqω = −[Uq − Uω]−1

+ [Uq − Uω]−1α−1
ω W̃qωα−1

ω [Uq − Uω]−1. (A15)

One can also rewrite the last relation and obtain the relation
for the full dual renormalized interaction,

α−1
ω W̃qωα−1

ω = [Uq − Uω] + [Uq − Uω]Xqω[Uq − Uω],

(A16)

to show that the dual propagator W̃qω is evidently a renor-
malized interaction in the nonlocal part of the action, where
the impurity interaction is excluded on the level of the
bare interaction. It is worth mentioning, that for the case of
+ω = 0, which corresponds to the DMFT theory as a basis,
the renormalized interaction is exactly that of the usual V –
decoupling.

APPENDIX B: COMPARISON OF THE DIFFERENT
DECOUPLING SCHEMES WITH THE DB APPROACH

As a consequence of the exact dual transformations pre-
sented in Appendix A, the renormalized interaction introduced
beyond the DMFT when the bosonic hybridization function
+ω is equal to zero (i.e., Uω = U ) should be taken in the form
of V – decoupling (A16). Contrary to DMFT, the impurity
model in the EDMFT approach contains nonzero bosonic
retarded interaction +ω, thus the renormalized interaction in
EDMFT++ theories has neither UV –, nor V – decoupling
form. In this case the bare nonlocal interaction Uq − Uω for
small +ω (i.e., Uω ≃ U ) is closer to Vq than to Uq = U + Vq,
and therefore in this paper we take Wq in the form of V –
decoupling for all EDMFT++ theories.

One more argument to avoid treating the renormalized
interaction in the UV – decoupling form is the fact that in
this case EDMFT+GW reproduces the results of the GW
approach in the region close to the phase boundary. Indeed, the
self-energy and polarization operator for the GW approach are
given by Eqs. (14) and (15), respectively. The EDMFT + GW
approach uses only nonlocal parts of these diagrams beyond
the dynamical mean-field solution. They can be written as
follows:

!̄E+GW
kν = −

∑

qω

ḠE+GW
k+q,ν+ωW̄E+GW

qω , (B1)

#̄E+GW
qω = 2

∑

kν

ḠE+GW
k+q,ν+ω ḠE+GW

kν , (B2)

where ḠE+GW
kν = Gkν − gν , W̄E+GW

qω = Wqω − Wω are nonlo-
cal parts of the full lattice Green’s function and renormalized
interaction, respectively. Then, the full self-energy and polar-
ization operator of the lattice problem can be written as

!kν = !imp + !̄E+GW
kν , (B3)

#qω = #imp + #̄E+GW
qω , (B4)

where

!imp = −
∑

ω

gν+ωWωγνω, (B5)

#imp = 2
∑

ν

gν+ω gν γνω, (B6)

are the exact self-energy and polarization operator of the
impurity problem written in the Hedin form. Then, one can
rewrite the full lattice self-energy and polarization operator as

!kν = −
∑

qω

Gk+q,ν+ωWqω −
∑

ω

gν+ωWω(γνω − 1)

= !GW
kν −

∑

ω

gν+ωWω(γνω − 1), (B7)

#qω = 2
∑

kν

Gk+q,ν+ω Gkν + 2
∑

ν

gν+ωgν(γνω − 1)

= #GW
qω + 2

∑

ν

gν+ωgν(γνω − 1). (B8)

Therefore, in the region where the value of the three-point
vertex γνω is close to the value of the bare three-point vertex
γ0 = 1, the EDMFT + GW approach reproduces the result
of the GW method. Thus, the contribution of the exactly
solvable impurity model in this region is lost. It happens,
because one cancels the very big local contribution from the
GW diagrams in order to avoid the double-counting problem,
and then this local contribution suppresses the contribution of
the local impurity model. It turns out that the EDMFT + GW
approach cancels too much from the diagrams introduced
beyond the dynamical mean-field level, and treating of the
double-counting problem can be done in a better way.

To see this, one can compare the dual way of exclusion
of the double-counting with the UV – decoupling scheme.
Since the inner self-consistency for the diagrams beyond the
dynamic mean-field level is used, it is hard to compare the
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resulting diagrams of these two approaches. Nevertheless, let
us consider the polarization operator in the first iteration, when
only the bare EDMFT Green’s functions enter the diagrams.
Studying the first iteration is sufficient since the nonlocal
self-energy !̃kν is small in our region of interest. Then, one
can see, that the polarization operator for EDMFT+GW and
DB − GW has the same form,

#̃0
qω = 2

∑

kν

G̃0 G̃0, (B9)

where G̃0 = GE − gν . Then, one can obtain for the difference
between the renormalized interactions used in EDMFT + GW
and DB − GW the following relation:

[Wqω − Wω] − W̃qω

= WE

1 − #̃0
qωWE

− W̃0

1 − #̃0
qωW̃0

− Wω

= Wω

[
1 − #̃0

qωW̃0
]−1[1 − #̃0

qωWE
]−1 − Wω

= Wω#̃0
qω

[
W̃qω + Wqω + W̃qω#̃0

qωWqω

]
. (B10)

Therefore, the self-energy (B1) in the form of UV – decoupling
additionally to the nonlocal dual contribution accounts for
some diagrams that have local renormalized interaction Wω

in their structure. In the Dual Boson formalism all local
propagators are gathered in the local vertex functions of the
impurity problem, including the local renormalized interaction
Wω, which is a part of the local four-point vertex γ 4,0. For
example, the first term in the right-hand side of Eq. (B10)
gives the following contribution to the self-energy,

(B11)

which is a part of the dual diagram for the self-energy shown in
Fig. 1(a). The second term in the right-hand side of Eq. (B10),
when one takes only the local part of the EDMFT renormalized
interaction in Eq. (13), namely Wqω = WE

1−#̃0
qωWE

∼ Wω

1−#̃0
qωWω

, is
then equal to

(B12)

which is again a part of the dual diagram for the self-energy
shown in Fig. 1(b). This fact leads to two important problems
in the EDMFT + GW approach. First of all, these additional
self-energy diagrams in case of UV – decoupling presented
above are very selective and account only for the local
renormalized interactionWω instead of the full local four-point
vertex functions γ 4,0, as the DB approach does. This selective
choice is not well-controlled and may result in over- or
underestimation of interaction effects. Also, the existence of
the local propagators as a part of the nonlocal interaction
shows that the EDMFT + GW approach in the form of UV –

decoupling is not able to separate local and nonlocal degrees
of freedom in a proper way. This leads, in particular, to the
double-counting problem in the next-order nonlocal diagrams
introduced beyond EDMFT. Indeed, if one does not restrict
himself to the simplest GW diagram accounted beyond the
dynamical mean-field level and additionally includes the four-
point vertex functions γ 4,0 in the diagrams for the self-energy
[for example, the diagrams shown in Fig. 1(b)], then, as it
was shown in Eqs. (B11)–(B12), the GW diagram (B1) for the
self-energy would have contributions with the local Wω, that
would already be accounted for in these additional diagrams
with the local four-point vertices.

Let us study what happens in the region, where the impurity
renormalized interaction Wω gives the main contribution
in the full local four-point vertex γ 4,0. In this region the
EDMFT + GW solution should be close to the Dual Boson
ladder approximation with the self-energy and polarization
operator diagrams shown in Figs. 1(a) and 1(b). Substituting
“−Wω” for the four-point vertex γ 4,0 in Eq. (A10) and using
Eq. (B6) and the relation α−1 = 1 − #imp Uω one can get the
trivial solution

∑
ν gν+ωgν(γνω − 1) = 0. Therefore, as it was

shown in Eqs. (B7) and (B8), in this region EDMFT + GW
in the UV – decoupling form reproduces the result of the GW
approach. In the other regions, where the bare vertex γ0 = 1
does not give the main contribution to the full three-point
vertex γνω, EDMFT + GW shows a result different from
the GW approach, but unfortunately, it is not correct to
approximate the full local vertex γ 4,0 by the local Wω there.
As it was pointed out above, one of the advantages of the DB
formalism is that the full impurity vertices, in particular the
full four-point vertex γ 4,0, are used in the dual diagrams for
the self-energy and polarization operator. This full vertex γ 4,0

is small and consists of the two large contributions: reducible
(γ 4,0

red ) and irreducible (−γWωγ ) with respect to renormalized
interaction Wω. These two contributions compensate each
other as shown in Eq. (47). If one accounts for only one large
irreducible contribution to the vertex function, it leads to an
incorrect description of the collective excitations and problems
mentioned above.

Finally, one can rewrite Eq. (B10) as follows:

W̃qω = Wqω − Wω

[
1 + #̃0

qωW̃qω + #̃0
qωWqω

+ #̃0
qωW̃qω#̃0

qωWqω

]
, (B13)

and see that DB excludes not the full local renormalized
interaction Wω of the impurity model from the full lattice
interaction Wqω, but the local interaction, that is renormalized
by nonlocal polarization and nonlocal interactions Wqω and
W̃qω. Therefore, the DB approach, which is free from the
double-counting problem by construction, excludes fewer
contributions from the full lattice renormalized interaction
than the EDMFT + GW approach, and effects of the impurity
model are not suppressed in our calculations.
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IV. EFFECTIVE ISING MODEL FOR CORRELATED SYSTEMS WITH
CHARGE ORDERING
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Collective electronic fluctuations in correlated materials give rise
to various important phenomena, such as charge ordering, supercon-
ductivity, Mott insulating and magnetic phases, and plasmon and
magnon modesNote⇤. Unfortunately, the description of these correla-
tion e↵ects requires significant e↵ort, since they almost entirely rely
on strong local and nonlocal electron-electron interactions. Some col-
lective phenomena, such as magnetism, can be su�ciently described
by simple Heisenberg-like models that are formulated in terms of
bosonic variables. This fact suggests that other many-body excita-
tions can also be described by simple bosonic models in the spirit
of Heisenberg theory. Here we derive an e↵ective bosonic action for
charge degrees of freedom for the extended Hubbard model and de-
fine a physical regime where the obtained action reduces to a classical
Hamiltonian of an e↵ective Ising model.

Note⇤ Major parts of this section have been published as Phys. Rev. B 99, 115124 (2019)
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A. Introduction

Studies of highly correlated electron systems are one of the ”hot”
areas of condensed matter physics. In particular, a tremendous num-
ber of papers have been concerned with the problem of collective phe-
nomena is solids, such as charge ordering, superconductivity, Mott
insulating and magnetic phases, plasmon, magnon modes and oth-
ers. Some of these properties, e.g. magnetism, can be described by
Heisenberg-like models formulated in terms of bosonic variables only,
which drastically simplifies solution of the problem. The existence
of a classical ”bosonic” description for spin degrees of freedom relies
on the existence of a, so called, adiabatic approximation. The lat-
ter implies that spin degrees of freedom are much slower and have
lower energy than single-particle (electronic) excitations. Therefore,
magnetic excitations can be clearly distinguished from electronic fluc-
tuations at the corresponding time and energy scale. Over the past
decades, the random phase approximation (RPA) [29–31] was and
is still the dominant approximation of collective charge excitations
in the modern condensed matter theory. The reason for its success
are due to the fulfillment of the charge conservation as well as qual-
itatively good description of plasmonic modes. However the RPA is
limited to weakly correlated systems since plasmons are considered as
a infinite summation of electron-hole pairs of bare electron propaga-
tors with unrenormalized energy spectrum. For a correct description
of plasmons in a correlated system with large electron-electron inter-
actions it is unavoidable to consider diagrammatic vertex corrections
to the polarization operator. In practice most of the advanced meth-
ods with diagrammatic corrections violate the charge conservation
law [12, 32], which is reflected in the plasmonic modes. Neverthe-
less, recently a new theory that allows a conserving description of
plasmons beyond RPA was proposed in [33]. This approach is based

37



on the Dual Boson (DB) theory [23, 25] and considers the polariza-
tion operator in the two-particle ladder form written in terms of local
three- and four-point vertex functions. A further extension of this
method to the multiorbital case is challenging due to its complicated
diagrammatic structure.

Another interesting feature of collective charge excitations in many
realistic systems is a tendency to charge ordering (CO), which is
widely discussed in the literature starting from the discovery of the
Verwey transition in magnetite Fe3O4 [34–36]. Nowadays, there is a
number of materials, such as the rare-earth compound Yb4As3 [37–
39], transition metal MX2 [40–42] and rare-earth R3X4 [43–45]
chalcogenides (M= V, Nb, Ta; R=Eu, Sm; X=S, Se), Magnéli
phase Ti4O7 [46–49], vanadium bronzes NaxV2O5 and LixV2O5 (see
Ref. 39 and 50, and references therein), where CO was observed.
Since this phenomenon is based on the presence of strong local and
nonlocal electron-electron interactions, the theoretical description of
this issue also requires the use of very advanced approaches (see e.g.
Refs. 51 and 52).

Recent theoretical investigations of charge correlation e↵ects caused
by the strong nonlocal Coulomb interaction indicate that the descrip-
tion of collective charge excitations in the correlated regime can be
drastically simplified. Thus, the study of charge ordering within
the DCA [28], Dual Boson [24, 53] and GW+EDMFT [12, 27] ap-
proaches showed similar results for the phase boundary between the
normal and CO phases. The fact that a much simpler GW+EDMFT
theory performs in reasonable agreement with the more advanced
DB approach and with almost exact DCA method suggests that
collective charge fluctuations can be described via a simple theory,
at least in a specific physical regime. Unfortunately, the use of the
GW+EDMFT theory for description of charge excitations is not fully
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justified, since this approach su↵ers from the Fiertz ambiguity when
the charge and spin channels are considered simultaneously [20, 54]
and the “HS-UV/V ” decoupling problem [9, 55]. In this regard,
the simplified (DB�GW) [24, 53] approximation of the DB theory
that does not consider vertex corrections and is free of the above-
mentioned problems seems more preferable. However, it provides
much worse results than the DB [53] and GW+EDMFT [27] theo-
ries. Therefore, the problem of the e�cient description of collective
charge excitations in correlated materials is still open.

In the case when accurate quantum mechanical calculations are
challenging, the initial quantum problem can be replaced by an ap-
propriate classical one. This thermodynamical approach is widely
used, for example, for a description of ordering in alloys [56–61].
There, the total energy of the ground state is mapped onto an ef-
fective Ising Hamiltonian, with parameters determined from ab ini-

tio calculations within the framework of the density functional the-
ory [62–64]. However, to our knowledge, no attempts to extend
this theory to the description of charge fluctuations in the corre-
lated regime and to derive the pair interaction of the Ising model
directly from the quantum problem have been reported yet. Addi-
tional impulse for investigation of this important problem is given by
theoretical studies of magnetism in correlated electronic systems [65–
69], where an e↵ective classical Heisenberg model for the quantum
problem was derived. Since magnetism is also a collective electronic
property, one may expect that charge degrees of freedom can be
treated in a similar way.

Motivated by above discussions, we introduce a new theory that
describes charge excitations of the extended Hubbard model in terms
of bosonic variables that are related to electronic charge degrees of
freedom. The corresponding bosonic action of the model is derived
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with the use of the advanced ladder DB approach. Consequently,
the charge susceptibility that enters the action has a complicated di-
agrammatic structure that takes into account frequency dependent
vertex corrections. Further, we observe that the dependence of local
vertex functions on fermionic frequencies is directly connected to the
value of the double occupancy of lattice sites. Moreover, we find that
in a wide range of physical parameters, when the double occupancy
is large, this dependence is negligible, and the expression for the
charge susceptibility can be drastically simplified. Thus, the theory
reduces to an improved version of the GW+EDMFT and DB�GW
approaches, and the expression for the susceptibility takes a sim-
ple RPA-like form constructed from the lattice Green’s functions.
Finally, It has been showed that in the case of well-developed collec-
tive charge fluctuations the initial quantum problem can be mapped
onto an e↵ective classical Ising Hamiltonian written in terms of pair
interaction between charge densities.

B. Bosonic action for electronic charge

Let us start with the following action of the extended Hubbard
model written in the Matsubara frequency (⌫,!) and momentum
(k,q) space

S = �
X

k,⌫

c
⇤
k⌫
[i⌫ + µ� "

k
] c

k⌫
+

1

2

X

q,!

[U + Vq] ⇢
⇤
q!
⇢
q!
. (23)

Here c
⇤
k⌫

(c
k⌫
) are Grassmann variables corresponding to the cre-

ation (annihilation) of an electron. "k is the Fourier transform of the
hopping amplitude tij, which is considered here in the nearest neigh-
bor approximation on a two-dimensional square lattice. The energy
scale is 4t = 1. U and Vq are local and nonlocal Coulomb inter-
actions, respectively. Charge degrees of freedom are described here
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introducing the bosonic variable ⇢q! = nq! � hnq!i that describes
variation of the electronic density nq! =

P
k,⌫,�

c
⇤
k⌫�

c
k+q,⌫+!,�

from
the average value. Hereinafter, spin labels � =", # are omitted.

An e↵ective bosonic action for charge degrees of freedom can be
derived following transformations, as presented in a recent work [69].
There, the lattice action (23) is divided into the local impurity prob-
lem of the extended dynamical mean-field theory (EDMFT) [13–
16, 70] and the remaining nonlocal part. In order to decouple the
single-electronic and collective charge degrees of freedom, one can
perform dual transformations of the nonlocal part of the lattice ac-
tion that lead to a new problem written in the dual space [24, 53].
The inverse transformation back to the initial “lattice” space after
truncation of the interaction of the dual action at the two-particle
level results in the following bosonic action for charge variables (for
details see Ref. 69 and Appendix IVG)

Sch = �1

2

X

q,!

⇢
⇤
q!
X

�1

q!
⇢
q!
. (24)

Here, the charge susceptibility Xq! in the conserving ladder DB
approximation is given by the following relation [69]

X
�1

q!
=
⇥
X

DMFT

q!

⇤�1

+ ⇤! � Vq, (25)

where ⇤! is the local bosonic hybridization function of the impu-
rity problem. X

DMFT

q!
=
P

⌫⌫0
⇥
X

DMFT

q!

⇤
⌫⌫0 is the charge suscepti-

bility in the DMFT form [1, 3] written in terms of lattice Green’s
functions Gk⌫ and two-particle irreducible (2PI) in the charge chan-
nel four-point vertices � 2PI

⌫⌫0! of the local impurity problem (see Ap-
pendix IVG)

⇥
X

DMFT

q!

⇤�1

⌫⌫0
=
⇥
X

0

q!

⇤�1

⌫⌫0
+ �

2PI

⌫⌫0!. (26)
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Here,
⇥
X

0

q!

⇤
⌫⌫0 =

P
k
Gk+q,⌫+!Gk⌫ �⌫⌫0 is a generalized bare lattice

susceptibility, and the inversion should be understood as a matrix
operation in the fermionic frequency ⌫, ⌫

0 space. Note that in the
ladder DB approximation the lattice Green’s function is dressed only
in the local impurity self-energy and therefore coincides with the
usual EDMFT expression [13–16, 70]. Thus, the relation for the
lattice susceptibility can be written as X

q!
=
P

⌫⌫0
⇥
X

q!

⇤
⌫⌫0, where

⇥
X

q!

⇤�1

⌫⌫0
=
⇥
X

0

q!

⇤�1

⌫⌫0
� U

e↵

⌫⌫0! � Vq, (27)

and we introduced an e↵ective bare local Coulomb interaction

U
e↵

⌫⌫0! = �⇤! � �
2PI

⌫⌫0!. (28)

Note that the 2PI vertex function � 2PI

⌫⌫0! is defined here in the particle-
hole channel.

A recent study of magnetism of correlated electrons [69] shows that
if the system exhibits well-developed bosonic fluctuations, the corre-
sponding local vertex functions mostly depend on bosonic frequency
!, while their dependence on fermionic frequencies ⌫, ⌫ 0 is negligible.
Therefore, one can expect that in a physical regime where charge
fluctuations are dominant the local 2PI vertex function in the charge
channel can be approximated as �2PI

⌫⌫0! ' �
2PI

!
, and the charge sus-

ceptibility (25) takes the following simple form

X
�1

q!
= X

0 �1

q!
� U

e↵

!
� Vq. (29)

Here, X0

q!
=
P

⌫⌫0
⇥
X

0

q!

⇤
⌫⌫0 =

P
k⌫
Gk+q,⌫+!Gk⌫ is the bare lattice

susceptibility, and the e↵ective bare local Coulomb interaction (28)
transforms to U e↵

!
= �⇤! � �

2PI

!
. As it is also shown in Ref. 69 and

Appendix IVH, in the considered case of well-developed collective
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fluctuations the 2PI vertex function can be approximated as

�
2PI

!
' �

�1

!
� �

0 �1

!
' �U � ⇤!, (30)

where �! and �
0

!
are the full and bare local susceptibilities of the im-

purity problem, respectively. As a consequence, the e↵ective bare lo-
cal Coulomb interaction reduces to the usual form U

e↵

!
' U . There-

fore, the expression in Eq. 29 is nothing more than the RPA suscepti-
bility constructed on top of the EDMFT result for Green’s functions.
It is worth noting that in the regime of strong charge fluctuations the
local self-energy takes the same form as in GW approach [21, 71, 72]
(see Ref. 69 and Appendix IVH). Hence, the simplified theory can
be reduced to the GW method in the case when the nonlocal contri-
bution to the self-energy is also considered. Thus, we show that it
is indeed possible to describe strong charge excitations by a simple
bosonic action (24) in terms of charge susceptibility (29) that does
not contain vertex corrections.

C. Regime of strong charge fluctuations

Now, let us define the physical regime where the presented above
technique is applicable. In Ref. 69 collective excitations were studied
in the ordered (antiferromagnetic) phase, where the proximity of the
local magnetic moment m to its maximum value served as a signa-
ture of well-developed spin fluctuations. Here, we are interested in a
similar description of a more complicated case when collective charge
excitations are present in the system already in the normal phase.
Since in the latter case all lattice sites are described by the same lo-
cal impurity problem, the corresponding signature of strong bosonic
fluctuations can no longer be found among local single-particle ob-
servables that are identical for every lattice site. It is also worth
mentioning that, contrary to the magnetic phase where the order-
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Figure 1. (Color online) Double occupancy of the extended Hubbard model shown on the U -V phase
diagram. Calculations are performed in the normal phase where the value of the double occupancy
d is depicted by color. The gray part corresponds to the charge ordered phase. Values of the
double occupancy at the phase boundary are explicitly mentioned. The area depicted by the black
dashed line corresponds to the case of large value of the double occupancy d � 0.18 and shows the
regime where charge excitations can be described by an e↵ective Ising model. Values of Coulomb
interactions U and V are given in units of half of the bandwidth (W/2 = 4t = 1). Therefore, the
e↵ective Ising model can be used for a broad range of values of the Coulomb interaction, which
may even exceed half of the bandwidth. The inverse temperature is � = 50.

ing of single-particle quantites (local magnetizations) is realized, the
CO phase on a lattice corresponds to the ordering of dublons (see
i.e. Refs. 73 and 74) that are two-particle observables. For these
reasons, the double-occupancy of the lattice site, which is defined as
d = hn"n#i with the maximum value dmax = 0.25, could be used
as a fingerprint of the existence of strong charge fluctuations in the
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system. The corresponding result for the double occupancy of the
two-dimensional extended Hubbard model (23) on the square lattice
is shown on the U -V phase diagram in Fig. 1 and obtained using the
DB approach [75] without the above approximation of the four-point
vertex function. The phase boundary (red dashed line) between the
normal (colored) and CO (gray) phases is determined from the ze-
ros of the inverse charge susceptibility X

�1

q!
(25) at q = (⇡, ⇡) and

! = 0 point similarly to Refs. 24 and 53. As expected, large charge
fluctuations in the normal phase emerge in the region close to the
phase transition to the ordered state. However, one can see that the
strength of these fluctuations is not uniformly distributed along the
phase boundary, since the value of d decreases with the increase of
the local Coulomb interaction.

In order to clarify the connection between the value of the double
occupancy and the strength of charge fluctuations, one can study
an e↵ective bare local Coulomb interaction U

e↵

⌫⌫0! defined in Eq. 28.
Fig. 2 shows the ratio U e↵

⌫⌫0!/U between the e↵ective and actual local
Coulomb interactions as the function of fermionic frequency ⌫ at the
⌫
0 = ! = 0 point. This result is obtained close to the phase bound-

ary between the normal and CO phases shown in Fig. 1 for di↵erent
values of the local Coulomb interaction U and, as a consequence,
of the double occupancy d. The exact values of U , V , and d for
these calculations are specified in Table II. Here, one can immedi-
ately see that the e↵ective Coulomb interaction at small values of U
(large values of d) is almost frequency independent. Decreasing the
double occupancy the frequency dependence of U e↵ becomes crucial
and one can no longer approximate the local 2PI vertex function
by neglecting its dependence on fermionic frequencies. Remarkably,
the e↵ective Coulomb interaction tends to the actual value of the
local Coulomb interaction at large frequencies for every value of U ,
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which is in perfect agreement with the theory presented above. A
similar asymptotic behavior was reported for the 2PI vertex func-
tion of the DMFT impurity problem (⇤! = 0) in Ref. 76. Thus, one
can conclude that the inclusion of the bosonic hybridization function
⇤! in the local impurity problem changes the !-dependence of local
vertex functions. The presence of ⇤! in Eq. 25 restores the correct
frequency behavior of the lattice susceptibility. Therefore, the inclu-
sion of the ⇤! in the theory has to be done consistently both in the
local impurity problem and the lattice susceptibility (25), otherwise
it may lead to incorrect frequency behavior of bosonic quantities.
Results for U e↵

⌫⌫0!/U for other values of ⌫ 0 and ! can be found in Ap-
pendix IVG and show a similar connection of the double occupancy
to the frequency dependence of the e↵ective Coulomb interaction.

Let us now investigate the dependence of the e↵ective local Coulomb
interaction on the bosonic frequency !. As shown in Fig. 2, the use of
the approximation presented above for the 2PI vertex �

2PI

⌫⌫0! ' �
2PI

!

in the large double occupancy regime is now justified. Then, the
e↵ective Coulomb interaction U

e↵

!
can be extracted from the simpli-

fied expression for the charge susceptibility (29), where the left-hand
side is substituted from Eq. 25. Since the leading contribution to
the lattice susceptibility in this regime is given by the q = (⇡, ⇡)
momentum, the corresponding e↵ective interaction shown in Fig. 3
reads

U
e↵

!
= X

0 �1

(⇡,⇡),!
�
h
X

DMFT

(⇡,⇡),!

i�1

� ⇤!. (31)

Here, the result is obtained in the normal phase close to the CO
for the same values of Coulomb interactions as in Fig. 2. It is worth
mentioning that the above definition of the e↵ective local Coulomb
interaction is similar to the one of the two-particle self-consistent
theory proposed by Vilk and Tremblay [77]. However, we use a more
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Figure 2. (Color online) Frequency dependence of the e↵ective local Coulomb interaction U e↵
⌫⌫0!

obtained for di↵erent values of U at the phase boundary between the normal and CO phases at
the ⌫ 0 = ! = 0 point for � = 50. As the double occupancy is decreased, the dependence of the
e↵ective interaction on fermionic frequency becomes larger.

advanced expression for the lattice susceptibility Xq!, contrary to
the RPA form with the bare Green’s functions considered in their
work. Remarkably, in the case when the double occupancy is close
to its maximum value, the e↵ective Coulomb interaction U

e↵ does
not depend on bosonic frequency either, and again coincides with
the actual Coulomb interaction. In the smaller d regime the bosonic
frequency dependence appears and cannot be avoided for considera-
tion anymore. Therefore, the large value of the double occupancy is
indeed an indicator of a well-developed charge fluctuations. Taking
into account results shown in Figs. 2 and 3, the value of the dou-
ble occupancy for which the e↵ective local interaction is frequency
independent and coincides with the bare local Coulomb interaction
U can be estimated as d � 0.18. As schematically shown in Fig. 1,
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Figure 3. (Color online) Frequency dependence of the e↵ective local Coulomb interaction U e↵
!

obtained for � = 50 close to the phase boundary between the normal and charge ordered phases
for di↵erent values of the actual Coulomb interaction U . When the double occupancy is decreased,
the di↵erence between the e↵ective and actual local Coulomb interactions becomes more notable.

the corresponding region depicted by the black dashed line can be
distinguished for the relatively broad range of Coulomb interactions.
Remarkably, the latter may even exceed half of the bandwidth.

D. Extended Hubbard model upon doping

In order to demonstrate the power of the derived above approach,
let us investigate the phase boundary of the extended Hubbard model
in the hole doped case. Recently, this issue was addressed in the
Ref. [78] with the use of the within the dynamical cluster approx-
imation (DCA). It can be argued the latter method is much more
elaborate than the one presented in this work, and provides a quan-
titatively good result for the phase boundary between the normal
and CO phases. Here, the simplified result for the phase boundary
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is obtained using the expression (29) for the charge susceptibility,
where the e↵ective local interaction U

e↵

!
is replaced by the actual

value of the Coulomb interaction U according to the above discus-
sions. Parameters for numerical calculations are taken the same as
in the Ref. [78].

E. E↵ective Ising model

In general, the existence of separate dynamics and a corresponding
classical Hamiltonian for charge degrees of freedom is questionable.
The possibility to introduce a classical problem for certain collective
excitations is usually related to the existence of an adiabatic pa-
rameter that distinguishes these excitations from others that belong
to di↵erent energy and time scales. Thus, in the case of spin fluc-
tuations the adiabatic approximation is intuitive and implies that
collective (spin) degrees of freedom are slower and have lower energy
than single-particle (electronic) excitations [79]. Unfortunately, the
corresponding adiabatic approximation for charge degrees of freedom
does not exist. Therefore, it is very challenging to find a specific phys-
ical regime where the classical problem for charge degrees of freedom
can still be introduced. As was recently obtained for spin fluctua-
tions [69], the possibility of di↵erent energy and time scales separa-
tion lies in a nontrivial frequency behavior of local vertex functions.
If the dependence of the local vertex on fermionic (single-particle)
frequencies is negligibly small compared to the bosonic (collective)
frequency dependence, the separation of the corresponding bosonic
excitation is justified.
Thus, in the regime of large double occupancy (d � 0.18), which

is shown in Fig. 1 by the dashed black line, the quantum action (24)
can be mapped onto an e↵ective classical Hamiltonian, similarly to
the case of collective spin fluctuations with the well-defined local
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moment [69]. Note that in the case of charge degrees of freedom, the
classical problem is given by the e↵ective Ising Hamiltonian

Hch =
X

q

Jq�q��q (32)

written in terms of classical variables � = ±1. An e↵ective pair in-
teraction Jq between electronic densities can be defined from the non-
local part of the inverse charge susceptibility at the zero bosonic fre-
quency [68, 69]. Additionally, every quantum variable ⇢q! in Eq. 24
has to be replaced by a classical value ⇢q! ! 2

p
d that describes a

deviation of the local electronic density from the average (half-filled)
value in the large double occupancy regime. In order to distinguish
local and nonlocal contributions to the inverse susceptibility (25),
one can again use an approximated version of the local 2PI vertex
function in the charge channel. Since the latter does not depend
on fermionic frequencies in the regime of well-developed charge fluc-
tuations, the full four-point vertex �⌫⌫0! of the impurity problem
can also be approximated by the leading bosonic contribution. Ac-
cording to the Ref. 69 the latter corresponds to the full local charge
susceptibility �! that connects two three-point vertex functions �⌫!
(for details see Appendix IVG)

�⌫⌫0! ' ��⌫! �! �⌫0+!,�! = . (33)

Then, the relation (25) for the charge susceptibility reduces to

X
�1

q!
= �

�1

!
+ ⇤! � Vq � ⇧̃(2)

q!
, (34)

where the second order polarization operator reads

⇧̃(2)

q!
=
X

k⌫

�⌫+!,�!G̃k+q,⌫+!G̃k⌫�⌫,!, (35)
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Table I. Double occupancy d, correction U 0 to the e↵ective local Coulomb interaction U e↵ , and
static dielectric function " obtained close to the phase boundary between the normal and CO phases
for the given values of the local U and nonlocal V Coulomb interactions.

U 0.1 0.5 1.0 1.5 2.0 2.5

V 0.045 0.130 0.265 0.420 0.630 0.965

d 0.25 0.23 0.21 0.18 0.14 0.10

U
0 �0.48 �0.68 �1.11 �1.81 �2.85 �5.24

" 1.26 3.78 10.09 6.00 3.35 1.91

and G̃k⌫ is a nonlocal part of the lattice Green’s function. Then, the
e↵ective pair interaction takes the following form

Jq

4d
= Vq +

X

k,⌫

�⌫,0G̃k+q,⌫G̃k⌫�⌫,0 = Vq + . (36)

Using an exact relation between the 2PI four-point and full three-
point vertices, the latter can also be approximated as

�⌫! ' �
�1

!
+ ⇤! + U

e↵

⌫⌫0! ' �
0 �1

!
, (37)

as shown in Appendix IVH. Therefore, the result for the pair inter-
action (36) between electronic densities at first glance reduces to a
similar expression for the exchange interaction derived for the mag-
netic system in Ref. 69. However, the “correction”

U
0 = �

�1

!=0
+ ⇤!=0 (38)

to the e↵ective bare Coulomb interaction U
e↵ in expression (37)

is larger than the local Coulomb interaction U as shown in Ta-
ble II. This is not surprising, because the relatively large value of
the inversed local charge susceptibility, which is defined as �! =
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�hn⇤
!
n
!
i, when two electrons occupy the same lattice site is ex-

pected. Therefore, the term U
0 cannot be neglected, contrary to the

case of spin fluctuations at half-filling when the inversed local mag-
netic susceptibility �

�1

!=0
is negligibly small [69]. Since the e↵ective

bare Coulomb interaction U
e↵ in the regime of large double occu-

pancy coincides with the actual value of U , one can obtain a static
approximation for the three-point vertex (see Appendix IVH)

�⌫,0 ' �
0 �1

!=0
' � U

"� 1
= �Ũ , (39)

where " = U/W0 is a static dielectric function defined via the renor-
malized local interaction W!. Therefore, the final expression for the
pair interaction of the e↵ective classical Ising model reads

Jq

4d
= Vq +

X

k,⌫

Ũ G̃k+q,⌫ G̃k⌫ Ũ . (40)

The e↵ective Ising model is then can be used for modeling finite-
temperature thermodynamic properties of the system, such as the
electronic density, charge susceptibility, ground-state energy, and
configurational structure of material [56–61]. All these observables
make more sense in the broken symmetry (CO) phase, which is be-
yond the scope of the current study. However, the Ising model also
provides the analytical result for the transition temperature between
the normal and CO phases

Tc = 2J/ ln(1 +
p
2), (41)

where J = Jq=(⇡,⇡) is the nearest-neighbor pair interaction. The
result for the transition temperature can be compared to the one of
the Ref. [78]. To this aim, the e↵ective exchange interaction J is cal-
culated using the expression (40) for the model parameters specified
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in this work.

F. Conclusion

In this work the bosonic action (24) for charge degrees of free-
dom of the extended Hubbard model (23) has been derived. It was
found that local four-point vertex function of the impurity model is
independent on fermionic frequencies in the regime of well-developed
charge fluctuations. Remarkably, the latter can be e�ciently deter-
mined looking at the deviation of the double occupancy from its
maximum value. Thus, strong charge fluctuations are revealed in
the case of large double occupancy (d � 0.18), which corresponds to
a broad range of values of Coulomb interaction. As a consequence,
it was found that in this regime the dynamics of charge fluctuations
can be described via a simplified RPA-like charge susceptibility (29)
constructed from the EDMFT Green’s functions. Moreover the e↵ec-
tive local Coulomb interaction in this case coincides with the actual
value of the bare Coulomb interaction. Further, it was shown that in
the regime of well-developed charge fluctuations, the initial quantum
problem can be mapped onto an e↵ective classical Ising model writ-
ten in terms of a pair interaction between local electronic densities.
Importantly, the expression for the pair interaction contains only
single-particle quantities, which can be e�ciently used in realistic
multiband calculations. We further speculate that similar approxi-
mations are valid for systems that reveal strong charge fluctuations
beyond the half-filling (see e.g. Ref. 80 and references therein). We
believe therefore that results obtained in this work will help to de-
scribe collective charge excitations and ordering in a very broad class
of realistic materials with strong local and nonlocal electron-electron
interactions.
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G. Appendix A: Bosonic action for the extended Hubbard model

Here we explicitly derive a bosonic problem for charge degrees of
freedom of the extended Hubbard model. For this reason, one can di-
vide the lattice action (23) into the local impurity Simp and nonlocal
Srem parts following the standard procedure of the DB theory [23, 24]

Simp =�
X

⌫,�

c
⇤
⌫�
[i⌫ + µ��

⌫
] c

⌫�
(42)

+ U

X

!

n
⇤
!"n!# +

1

2

X

!

⇤
!
⇢
⇤
!
⇢
!
,

Srem =�
X

k,⌫,�

c
⇤
k⌫�

[�
⌫
� "

k
] c

k⌫�
(43)

+
1

2

X

q,!

⇥
V
q
� ⇤

!

⇤
⇢
⇤
q!

⇢
q!

+
X

q,!

j
⇤
q!

⇢
q!
,

where we introduced fermionic �⌫ and bosonic ⇤! hybridization
functions, and sources jq! for bosonic variables. The partition func-
tion of our problem is given by the following relation

Z =

Z
D[c⇤, c] e�S

, (44)

where the action S is given by the Eq. 23. Using the Hubbard–
Stratonovich transformation of the reminder term Srem, one can in-
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troduce dual fermionic f ⇤
, f , and bosonic variables � as follows

e

P
k,⌫,� c

⇤
k⌫�[�⌫�"k]ck⌫� = (45)

Df

Z
D[f ] e�

P
k,⌫,�(f⇤k⌫�[�⌫�"k]

�1
fk⌫�+c

⇤
k⌫�fk⌫�+f

⇤
k⌫�ck⌫�),

e
1
2
P

q,! ⇢
⇤
q![⇤!�Vq ]⇢q! = (46)

D�

Z
D[�] e

�
⇣
1
2
P

q,! �
⇤
q![⇤!�Vq ]

�1
�q!+�

⇤
q! ⇢q!

⌘

,

where terms Df = det[�⌫ � "k] and D
�1

�
=
p

det[⇤! � Vq] can be
neglected when calculating expectation values. Rescaling fermionic
and bosonic fields on corresponding Green’s functions of the impurity
problem as f (⇤)

k⌫
! f

(⇤)
k⌫

g
�1

⌫
and �q! ! �q! �

�1

!
, and shifting bosonic

variables, the nonlocal part of the action transforms to

SDB = �
X

k,⌫,�

f
⇤
k⌫�

g
�1

⌫�
["

k
��

⌫
]�1

g
�1

⌫�
f
k⌫�

(47)

+
X
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⇥
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k⌫�
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�1
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f
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+ f
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� 1
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!

⇤�1
�
�1

!

�
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�
.

Integrating out initial degrees of freedom with respect to the im-
purity action (42), one gets [23]
Z

D[c] e�
P

i S
(i)
imp�

P
k,⌫,�[c⇤k⌫�g�1

⌫� fk⌫�+f
⇤
k⌫�g

�1
⌫� ck⌫�]�

P
q,! �

⇤
q! �

�1
! ⇢q! =

Zimp ⇥ e
�
P

k,⌫,� f
⇤
k⌫�g

�1
⌫� fk⌫��

1
2
P

q,! �
⇤
q! �

�1
! �q!�W̃ [f,�]

, (48)

where Zimp is a partition function of the impurity problem. Here,
the interaction W̃ [f,�] is presented as an infinite series of full vertex
functions of the local impurity problem (42) [23, 25]. The lowest
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order interaction terms are

W̃ [f,�] =
X

k,k0,q

X

⌫,⌫0,!

X

�(0)

�
�
⇤
q!
�
⌫!

f
⇤
k⌫�

f
k+q,⌫+!,�

(49)

�1

4
�
⌫⌫0! f

⇤
k⌫�

f
k+q,⌫+!,�0f

⇤
k0+q,⌫0+!,�00fk0⌫0�000

◆
,

where the full three- and four-point vertex functions are defined as

�
⌫!

=
⌦
c
⌫�
c
⇤
⌫+!,�

⇢
!

↵
imp

�
�1

!
g
�1

⌫�
g
�1

⌫+!,�
, (50)

�⌫⌫0! =
⌦
c
⌫�
c
⇤
⌫+!,�0c⌫0+!,�00c

⇤
⌫0�000

↵
c imp

g
�1

⌫�
g
�1

⌫+!,�0 g
�1

⌫0+!,�00 g
�1

⌫0�000.

Note that the four-point vertex �⌫⌫0! is defined here in the particle-
hole channel.

Therefore, the initial lattice problem transforms to the following
dual action

S̃ = �
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In order to come back to the original bosonic variables, one can
perform the third Hubbard-Stratonovich transformation as

e
1
2
P

q,!(�⇤q!�j
⇤
q! �!)��1

! [Vq�⇤!]
�1

�
�1
! (�q!��!jq!) = (52)
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P
q,! (12T ⇢̄q! [Vq�⇤!]⇢̄q!��q! �

�1
! ⇢̄�q,�!+jq! ⇢̄�q,�!).

Comparing this expression to the Eq. 43, one can see that sources j⇤
q!

introduced for the initial degrees of freedom ⇢q! are also the sources
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for new bosonic fields ⇢̄q!. Therefore, fields ⇢̄q! indeed represent ini-
tial degrees of freedom and have the same physical meaning as origi-
nal composite bosonic variables ⇢q! =

P
k⌫�

c
⇤
k⌫�

c
k+q,⌫+!,�

�
⌦
n
q!

↵

of the lattice problem (23). Nevertheless, ⇢̄q! can now be treated as
elementary bosonic fields that have a well-defined propagator, since
they are introduced as a decoupling fields of dual degrees of freedom
�q! and therefore, independent on fermionic variables c

⇤
k⌫�

(c
k⌫�

).
Taking sources to zero and replacing ⇢̄q! by ⇢q!, dual bosonic fields
can be integrated out as [69]

Z
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⇤
q! �

�1
! ⇢q!�W [f,⇢]

,

where Z� is a partition function of the Gaussian part of the bosonic
action. Here, we restrict ourselves to the lowest order interaction
terms of W̃ [f,�] shown in Eq. 49. Then, the integration of dual
bosonic fields in Eq. 53 simplifies and W [f, ⇢] keeps an e�cient dual
form of W̃ [f,�] (49) with replacement of bosonic variables � ! ⇢

W [f, ⇢] =
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As can be seen in Ref. 69, the four-point vertex becomes irreducible
with respect to the full local bosonic propagator �!, while the three-
point vertex �⌫! remains invariant. Therefore, the problem trans-
forms to the following action of an e↵ective s-d model
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� 1
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+W [f, ⇢], (55)
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where

XE =
⇥
�
�1

!
+ ⇤

!
� V

q

⇤�1

(56)

is the EDMFT susceptibility and G̃0 is a nonlocal part of the
EDMFT Green’s function. When the main contribution to the
four-point vertex is given by the reducible contribution with respect
to the full local bosonic propagator, i.e.

�⌫⌫0! ' ��⌫! �! �⌫0+!,�! = , (57)

the interaction part of the action (55) takes the most simple form
that contains only the three-point vertex function

W
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According to derivations presented in Ref. 69, one can integrate
out dual fermionic degrees of freedom using the ladder approximation
and obtain an e↵ective problem written in terms of bosonic degrees
of freedom only

S = �1

2

X

q,!

⇢
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q!
X

�1

q!
⇢
q!
, (59)

where the expression for the lattice susceptibility reads
⇥
X

ladd
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⇤�1

=
⇥
X
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⇤�1

+ ⇤! � Vq. (60)

Here,
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= Tr
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h
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!
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0

q!
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(61)

is the DMFT-like [1, 3] susceptibility written in terms of lattice
Green’s functions, and 2PI vertex functions of impurity model de-
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Figure 4. Frequency dependence of the e↵ective local Coulomb interaction U e↵
⌫⌫0! obtained for

di↵erent values of the actual Coulomb interaction U = 0.1; 0.5; 1.0; 1.5 (from left to right) in
the normal phase close to the charge ordering for di↵erent values of fermionic ⌫ 0 and bosonic !
frequencies for � = 50. The dependence of the e↵ective interaction on fermionic frequency becomes
larger at larger Coulomb interaction.

fined as

�̂
2PI

!
= �̂

!

h
I � �̂

0

!
�̂
!

i�1

. (62)

Here, multiplication and inversion should be understood as a stan-
dard matrix operations in the space of fermionic frequencies ⌫, ⌫ 0. I is
the identity matrix in the same space, and the trace is taken over the
external fermionic indices. For simplicity, we omit fermionic indices
wherever they are not crucial for understanding. Matrix elements
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of the bare lattice X̂0

q!
and local impurity �̂

0

!
charge susceptibilities

are defined as

X
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Matrix elements �⌫⌫0! of the four-point vertex function �̂! are defined
in (50).

Therefore, the charge susceptibility (60) in the ladder approxima-
tion can be rewritten as

X
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where we introduced an e↵ective bare local interaction

U
e↵

⌫⌫0! = �⇤
!
� �

2PI

⌫⌫0! (66)

shown in Fig. 4 for di↵erent values of fermionic ⌫
0 and bosonic !

frequencies.

Another simplified expression for the charge susceptibility can be
obtained after expanding the simplified form of interaction W [f, ⇢]
given by Eq. 58 up to the second order with respect to bosonic fields
⇢ in the expression for the partition function of the action (55). This
results in
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where

⇧̃(2)

q!
=
X

k,⌫,�

�
⌫+!,�!

G̃
k+q,⌫+!�

G̃
k⌫�

�
⌫,!

(68)
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is the second order polarization operator and G̃k⌫ is a nonlocal part
of the lattice (EDMFT) Green’s function. As discussed in the main
text, this expression can be transformed to a pair interaction of the
classical Ising model.

H. Appendix B: Vertex approximation

According to discussions presented in the main text, the expres-
sion for the 2PI four-point vertex function can be approximated as
�
2PI

⌫⌫0! ' �
2PI

!
when its dependence on fermionic frequencies is negli-

gible. Then, using the exact relation for the local impurity suscepti-
bility

�! = Tr
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0
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0
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(69)

and assuming that the 2PI vertex does not depend on fermionic
frequencies, one gets

�
2PI

⌫⌫0! ' �
2PI

!
= �

�1

!
� �

0 �1

!
. (70)

As shown in Ref. 69, in the case of well-developed collective fluctu-
ations the four-point function is described by the bosonic frequency
and three-point vertex function that enters the exact Hedin equa-
tion [21] for the self-energy and polarization operator of the im-
purity problem is close to unity. As a consequence, the local self-
energy and polarization operator take the same form as in GW ap-
proach [21, 71, 72]. Thus, the polarization operator of the impurity
problem can be approximated as ⇧! ' �

0

!
neglecting the vertex

function. Using the exact relation for the local charge susceptibility
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of the impurity problem, one gets the following relation

�
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U + ⇤
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�
. (71)

Therefore, in the regime of strong charge fluctuations the 2PI vertex
function can be approximated as

�
2PI

⌫⌫0! ' �U � ⇤
!
. (72)

The three-point vertex can also be approximated using the ex-
act relation between three- and four-point vertex functions, and the
simplified form of the 2PI vertex [69]
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where U e↵

!
= �⇤

!
� �

2PI

!
. Taking into account that in the regime of

well-developed charge fluctuations the e↵ective interaction coincides
with the actual value of the bare local Coulomb interaction U e↵

!
' U ,

one can further write

�! ' �
�1

!
+ ⇤

!
+ U = ⇧�1

!
=

UW!

W! � U
=

U

1� "!
, (74)

where we introduced the renormalized local Coulomb interaction
W! = U/(1 � ⇧!U) that is connected to the bare Coulomb in-
teraction via the dielectric function "! = U/W!.
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V. PLASMONS IN DOPED MOTT INSULATORS
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A. Introduction

The progress in the study of the electronic structure in strongly cor-
related systems has gone very far. The development of the dynamical
mean-field theory (DMFT) [1, 3] was an essential step forward for
correlated systems since it covers the interpolation between atomic
and band limits. In DMFT just the local correlations are taken into
account through the self-energy which is purely local and frequency-
dependent. Phenomena like the formation of Hubbard bands which,
arises from the spectral weight transfer, the band renormalization
and the associated mass enhancement, and the Mott transition [1, 7]
are described by DMFT. The success of DMFT gave rise to various
extension including non-local correlations. For example extensions
of DMFT are quantum cluster approaches [81] as well as the di-
agrammatic extensions such as the D�A [17], dual fermion [22],
and one-particle irreducible approach [18]. In contrast to that re-
alistic describtion of collective excitations in strongly correlated sys-
tems has not progressed as much. For example plasmons can be
described within the random phase approximation (RPA) [82–84] by
the Lindhardt function. RPA, where the bare Greens functions are
used within the bubble diagram renormalization has been applied
to many physical problems like the Landau-Fermi-liquid theory of
He3 and also to ordinary metals [83]. If one uses the RPA approx-
imation for the electron liquid, it is known to capture the essential
physics in the high-density regime. RPA leads to the screening of
the long-range part of the Coulomb interaction and e↵ectively reduc-
ing it. Also the well known GW and GW+EDMFT approximations
do not capture the essential e↵ects due to their simple perturbative
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structure. Recently plasmons for a strongly correlated model sys-
tem have been calculated with the Dual Boson approach [33] with
very interesting e↵ects like spectral weight transfer and renormal-
ized dispersion. The DB approach can be seen as a diagrammatic
extension around EDMFT. The momentum dependence of the polar-
ization operator is restored through a ladder summation of diagrams
containing three-point and four-point vertex corrections, which are
crucial for a conserving theory. Within DB one needs at least the
ladder approximation to restore a conserving theory.

Plasmonics seems to be the only viable way of realization of
nanophotonics, that means control of light at scales much smaller
than the wavelength. [85–87] On the other hand, plasmonics is a
key component for implementation of most metamaterials, and all
the interesting phenomena like negative refraction, superlensing, and
cloaking that they enable [86, 88, 89]. Plasmonic materials which
have tunable plasmons and low loss in the visible–ultraviolet range
are of interest. In principle such plasmons occur in metals but have
high plasmonic loss in the optical range. Since correlated plasmons
are found to be tunable with low loss in the visible–ultraviolet range
plasmonics research in insulating and strongly-correlated materials
is of high interest [90]. In addition properties of graphene still con-
tinue to attract intense research and the interest has also expanded
to stable graphene derivatives. Since graphene physics and plas-
monics, two rapidly developing fields match, this motivates us to
explore plasmons and in a newly available Mott Insulator materials
C2F and C2H with interesting properties. In this context, C2F and
C2H emerge as alternative, unique two-dimensional plasmonic ma-
terials that contain a wide range of specific properties (see Ref. [91]
and references therein). To describe plasmons in a material with
strong nonlocal Coulomb interaction like C2F and C2H we have to
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understand screening of Coulomb interaction induced by many-body
e↵ects.
For the theory of interacting electron liquids exact sum rules are

good way to gain insight and to test the validity of certain approx-
imations. In the theory of two-dimensional and three-dimensional
Landau-Fermi liquids the f-sum rule was widely used. Especially in
the high-density regime, the relevant excitations are correctly cap-
tured by the RPA resummation and give rise to Landau quasiparti-
cles and a collective plasmon mode.
Here we study the plasmon spectrum with the DB and RPA ap-

proximation for doped C2F and C2H at arbitrary wave vector q and
frequency !.
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B. Calculation

For our purpose we introduce the extended Hubbard model which
is the canonical example of a strongly correlated system which cap-
ture non-local correlation e↵ects. In momentum space, its action is
given by

S = �
X

k⌫�

c
⇤
k⌫�

[i⌫ + µ� "
k
]c
k⌫�

+
1

2

X

q!

U
q
⇢
⇤
q!
⇢
q!
. (75)

Since we are interested just in charge fluctuations, the spin labels
will be suppressed in the following. Here Grassmann variables c⇤

q⌫

(c
q⌫
) corresponding to creation (annihilation) of an electron with mo-

mentum k and fermionic Matsubara frequency ⌫. The charge fluctu-
ations are given by the complex bosonic variable ⇢! = n! � hni �!,
where n

!
=
P

⌫�
c
⇤
⌫
c
⌫+!

counts the number of electrons and ! is a
bosonic Matsubara frequency. Additionally µ is the chemical poten-
tial and "k is the Fourier transform of the hopping matrix element
t. In our case we choose five next nearest neighbors, where the
matrix elements are taken from a Wannier parametrization of the
first-principles LDA+SO Hamiltonian [91].
The long-range Coulomb interaction Uq = U + Vq is constructed

by first fitting the Coulomb interaction UR in the real space with
parameters from table II. Afterwards the summention is performed
over 720 basis vectors of the lattice taking care of divergent terms and
tails. The used Coulomb matrix elements were calculated using the
constrained random-phase approximation technique (cRPA) [92, 93].
For calculation details see [91].
For our calculations, we choose the inverse temperature as � = 5,

while varying the chemical potential µ from 1.7 to 2.0, where µ =
2.0 corresponding the half-filed case. Our lattice size is chosen as
144 ⇥ 144. In each case, we start from a standard, self-consistent
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Table II. The local and nonlocal partially screened Coulomb interactions (in eV) and the hopping
parameters (in meV) for C2F and C2H.

C2H C2F

Interaction

U00 4.69 5.16

U01 2.19 2.46

U02 1.11 1.66

U03 0.85 1.46

Hopping

t01 39 -246

t02 -115 6

t03 -99 -21

t04 28 -12

t05 12 -10

EDMFT calculation. For this purpose a hybridization expansion
continuous-time quantum Monte Carlo solver [94, 95] with improved
estimators [96] is used to compute the imaginary-time correlation
functions of the impurity model. After the last impurity solver step,
we additionally calculate the full impurity vertex �⌫,⌫0,! in the charge
channel where ⌫ and ! are fermionic and bosonic Matsubara frequen-
cies respectively. In the DB theory all non-local contributions are
constructed through dual fermionic (bosonic) self-energies ⌃̃⌫ (⇧̃⌫).
In our case the dual fermionic self-energy is zero and the polarization
operator in DB formalism [23] is represented in the form
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⇧�1

!
(q) =

⇥
�! + �!⇧̃⌫(q)�!

⇤�1 � U!, (76)

where �! denotes the impurity charge susceptibility and U! is the
retarded interaction, which describes the mean-field screening of the
local interaction. The dual bosonic self-energy is given by

⇧̃!(q) =
X

⌫

�⌫+!,�!X̃
0

⌫!
(q)⇤⌫!(q) (77)

and

�̃
0

!
(q) =

T

N

X

k⌫

G̃
0

⌫+!
(k + q)G̃0

⌫
(k) (78)

where X̃0

⌫!
(q) is the non-local part of the bubble diagram 78 and

�⌫! denotes the triangular electron-boson impurity vertex.

In the DB ladder approximation the vertex corrections are taken
into account by

⇤⌫!(q) = �⌫! +
X

⌫0
�⌫⌫0!(q)X̃

0

⌫0!(q)�⌫0!, (79)

where �⌫⌫0!(q) is the lattice vertex function in the particle-hole
channel, which is obtained by the Bethe-Salpeter equation [23]. The
ladder approximation in the DB approach, which is obtained by the
Bethe-Salpeter equation describes the repeated particle-hole scatter-
ing processes that cause the long-wavelength collective excitations.
In comparison the RPA charge susceptibility reads as
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�
RPA

!
(q) =

�
0

q

1� U�0
q

, (80)

where �0

q
is defined in 78 without the tilde.

C. Analysis of the Results

In Fig. 5 we show the local density of states (DOS) for di↵er-
ent chemical potentials for C2H and C2F describes by an extended
Hubbard model within the DB and RPA approximation. Indeed we
see for RPA that the DOS exhibits a single quasiparticle peak at
the Fermi energy. In contrast the DOS in the DB approximation is
completely di↵erent and one can see two separated Hubbard bands.

Now we move to the discussion of the collective excitations. In
Fig. 6 we plot the real part of the lattice susceptibility � 1

⇡
�!(q)

as a function of momenta and real energies obtained by an opti-
mized implementation of a stochastic analytical continuation proce-
dure proposed by Andrey S. Mishchenko [97, 98]. One can compare
the obtained spectrum with experimental data from the angular re-
solved electron energy loss spectroscopy (EELS) [82, 99]. We find
in the doped case, that the overall behavior of the DB results is
qualitatively similar to RPA. In the undoped case RPA gives still a
metalic solution, whereby in the DB case it is a Mott insulator. In
the vicinity of the � point one can see a single plasmon branch for all
chemical potentials. The small di↵erence in the plasmon spectrum
between RPA and DB is that in the DB approximation the spectrum
is rather well-defined whereas in the RPA case its more broadened.
Throughout the Brillouin zone we see a continuum of particle-hole
excitations which are vanishing at the � point. The maximum energy
of the branch for C2H can be found between the � and the M point
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Figure 5. Finite temperature local density of states of the two-dimensional extended Hubbard
model calculated within DB and RPA approximation for di↵erent values of the chemical potential.
On the right side one can see the DOS calculated within DB for C2F (top) and C2H (bottom) with
its characteristic double peak structure. On the left side one can see the DOS calculated within
RPA for C2F (top) and C2H (bottom) with its characteristic single quasiparticle peak. Analytical
continuation was obtained via Maxent.

as well as K and �. In Fig. 7 one can see two branches. The lower
branch can be seen in Fig. 6. On the one hand the lower branch
stems mainly from particle-hole excitations for which the electron
is excited from the Hubbard band to the quasiparticle peak. On
the other hand the upper branch stems from excitations between
the Hubbard bands. These kind of splitting was also observed in
EDMFT+GW calculations with short-range interaction described
by the extended Hubbard model [11, 12].

Systematic experimental studies should give a clear evidence of
plasmon mode in doped Mott Insulators, which can be observed in
angle resolved photoemission spectroscopy ARPES experiments.
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Figure 6. Real part of the inverse susceptibility function of the 2D Hubbard model with for di↵erent
values of the chemical potential.

Figure 7. Real part of the inverse susceptibility function of the 2D Hubbard model with for di↵erent
values of the chemical potential.
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D. Conclusions

We have presented the plasmon spectrum at high doping for C2F
and C2H which are located at the Mott Insulator Phase. We showed
that the RPA approximation can desribe plasmons in the strongly
doped Mott insulators well.
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VI. PROBING OF VALLEY POLARIZATION IN GRAPHENE VIA OPTICAL
SECOND-HARMONIC GENERATION

Graphene which is a monolayer of carbon atoms arranged in a hon-
eycomb lattice became several years ago one of the most promising
material with very interesting e↵ects for applications [100–102]. In
the short history of Graphene there is already a considerable amount
of new fundamental physics. Through its unusual electronic spec-
trum Graphene gives rise to the emergence of relativistic condensed
matter physics, where relativistic phenomena can be mimicked and
observed on the table (see e.g. [103]). The electronic band struc-
ture of Graphene allows for a description of the electronic properties
in terms of an e↵ective field theory which is equivalent to quantum
electrodynamics (QED) in 2 + 1 dimensions. The most significant
phenomena which were observed in Graphene are the Klein para-
dox [104] and the Zitterbewegung [104]. The electronic spectrum of
Graphene results from the charge carriers which are massless Dirac
fermions [105, 106]. Graphene also fascinates with its high crystal
quality responsible for the ability of charge carriers to bypass thou-
sands of interatomic distances without scattering [105, 107, 108].
The valley degree of freedom of charge carriers for Graphene and

other semiconductor systems with Valleys gives rise to promising ap-
plications [109, 110]. So far di↵erent proposals have been made how
to probe valley generation in Graphene [111–115]. Nevertheless the
lack of e�cient and robust methods to create valley polarization in

77



Graphene is still a challenge. In this work, we use a single-particle
approximation to describe valley polarization in Graphene through
breaking inversion symmetry which leads to second harmonic gener-
ation. This could be used for investigating ultrafast valleytronics in
Graphene.
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Valley polarization in graphene breaks inversion symmetry and therefore leads to second-harmonic generation.
We present a complete theory of this effect within a single-particle approximation. It is shown that this may be
a sensitive tool to measure the valley polarization created, e.g., by polarized light and, thus, can be used for the
development of ultrafast valleytronics in graphene.

DOI: 10.1103/PhysRevB.91.041404 PACS number(s): 78.67.Wj, 42.65.Ky

The unique electronic properties of graphene [1– 3] open
ways for many interesting and unusual applications. In
particular, a concept of valleytronics was suggested [4], that
is, a manipulation of valley degree of freedom (conical
points K and K ′), in analogy with the well-known field of
spintronics [5]. Up to now, many different ways for the creation
of the valley polarization in graphene have been proposed
(see, e.g., Refs. [6– 8]). At the same time, detection of the
valley polarization is a tricky issue. The first suggestion,
the use of a superconducting current through graphene [9],
does not look suitable for practical applications, e.g., due
to a requirement of low temperatures. It was mentioned in
Ref. [7] that the breaking of inversion symmetry by the valley
polarization can be probed via second-harmonic generation
(SHG), a well-known nonlinear optical effect [10]. Together
with their suggestion to use linearly polarized light to create
the valley polarization (recently, it was experimentally realized
for another two-dimensional crystal, MoS2 [11,12], with
circularly polarized light) it would open a way to ultrafast
valleytronics where all manipulations with the valley degree
of freedom are performed via short laser pulses, as illustrated
in Fig. 1. In spintronics, this is now one of the most prospective
lines of development [13].

There is, however, a problem. SHG is related to the term in
the current density j⃗ proportional to the square of the electric
field E⃗:

jα = χαβγ EβEγ . (1)

For a system with inversion center χ̂ = 0. This does not mean,
however, that SHG is impossible since the photon wave vector
q⃗ plays the role of a factor violating inversion symmetry, and
there is a contribution to the current

jα = φαβγ δEβEγ qδ. (2)

For the case of graphene and other two-dimensional electron
systems it was calculated in Ref. [14]. In comparison with
Eq. (1) it contains a relativistic smallness parameter vF /c ≈
1/300 where vF is the Fermi velocity and c is the velocity of
light. At the same time, the current in Eq. (1) is expected to be
proportional to the valley polarization. The order of magnitude

*wehling@itp.uni-bremen.de

of the valley polarization which can be really probed via SHG
depends on explicit values of the tensor χ̂ , which will be
calculated in this work.

Valley polarization can refer either to different occupations
or to different current densities due to electrons from the K
and K ′ valleys [4]. In the following, we consider different
occupations in the K and K ′ valleys, which corresponds to
different chemical potentials µ ± δµ, as illustrated in Fig. 1.
Possibilities to generate this kind of valley polarization include
quantum pumping [8], nonuniform valley current densities [4]
as well as valley Hall effects [15].

We start with a derivation of the effective Hamiltonian of
electron-photon interaction for the case of graphene (c.f., e.g.,
Refs. [3,16]), as the case of nonlinear optics requires special
care. Let us consider a general Hamiltonian of band electrons
in electromagnetic field described by the vector potential
A(r,t):

H =
∑

ij,LL′,σ

tL
′L

ij exp

(

i
e

c

∫ RiL

RjL′

drA(r,t)

)

c
†
iLσ cjL′σ , (3)

where RiL is the atomic position and L = (n,l,m,γ ) is a
combined index of quantum numbers of atom γ (in the
equations we assume ! = 1). The atomic positions can be
separated into two parts

RiL = Ri + ρL, (4)

where the former indexes the unit cell i and the latter the atom
L within the cell in the case of a multiatomic unit cell (like the
honeycomb lattice of graphene). We assume, as usual, that the
interaction with the electromagnetic field is taken into account
via Peierls substitution

c
†
iLσ → c

†
iLσ exp

(
i
e

c

∫ RiL

drA(r,t)
)

(5)

for the electron creation operators c
†
iLσ and similarly for the

electron annihilation operators ciLσ . tL
′L

ij are the parameters of
the band-structure Hamiltonian.

Since we are interested in terms up to second order in the
vector potential we expand the hopping and treat the additional
terms proportional to the vector potential as perturbation. The
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FIG. 1. (Color online) Illustration of second-harmonic genera-
tion in graphene. SHG requires breaking of inversion symmetry
which can be achieved through valley polarization as illustrated in
the left panel. Valley polarization is modeled in terms of different
chemical potentials µ ± δµ in valleys K and K ′. With the choice of
the coordinate system illustrated in the right panel, valley polarization
breaks the x → − x mirror symmetry. The second-harmonic intensity
I is proportional to δµ2.

Hamiltonian then becomes

H ≡ H (0) + H (1) + H (2) + O(A3)

=
∑

ij,LL′,σ

tL
′L

ij c
†
iL′σ cjLσ + i

e

c
Aα(t)

×
∑

ij,LL′,σ

tL
′L

ij (RiL′α − RjLα)c†iL′σ cjLσ

+ 1
2

(
i
e

c

)2

Aα(t)Aβ(t)
∑

ij,LL′,σ

tL
′L

ij (RiL′α

− RjLα)(RiL′β − RjLβ)c†iL′σ cjLσ + O(A3), (6)

where the second equation is defined in powers of the
vector potential and we further assumed that the vector
potential slowly varies in r. With a basis transformation
to Bloch waves ckLσ = 1√

N

∑
j exp(ikRj )cjLσ the bare part

of the Hamiltonian is diagonalized according to H (0) =∑
k,LL′,σ H 0

k,LL′c
†
kLσ ckL′σ with

H 0
k,LL′ =

∑

ij

tL
′L

ij exp[− ik(Ri − Rj )]. (7)

Now one can distinguish between two currents which are
defined using the Hamiltonian (6) by

j (1)
α ≡ δH

δAα(r,t)

∣∣∣∣
A=0

= e
∑

LL′,k,σ

vLL′

kα c
†
kL′σ ckLσ , (8)

j
(2)
αβ ≡ δ2H

δAα(r,t)δAβ(r,t)

∣∣∣∣
A=0

= e2
∑

LL′,k,σ

vLL′

kαβc
†
kL′σ ckLσ ,

(9)

where

vLL′

kα ≡ i
∑

i− j

tL
′L

ij (RiL′α − RjLα)

× exp[− ik(Ri − Rj )] (10)

and

vLL′

kαβ ≡ (i)2
∑

i− j

tL
′L

ij (RiL′α − RjLα)(RiL′β − RjLβ)

× exp[− ik(Ri − Rj )]. (11)

With Fourier transform of the band Hamiltonian (6) we can
reexpress the generalized velocities resulting from Eq. (10)
according to

vLL′

kα =
[
∂kα

− i
(
ρα

L′ − ρα
L

)]
H

(0)
k,LL′ (12)

and Eq. (11) leads to

vLL′

kαβ =
[
∂kα

∂kβ
+ i

(
ρα

L′ − ρα
L

)
∂kβ

+ i
(
ρ

β
L′ − ρ

β
L

)
∂kα

−
(
ρα

L′ − ρα
L

)(
ρ

β
L′ − ρ

β
L

)]
H

(0)
k,LL′ . (13)

We will use these general expressions for the particular
case of graphene, in a single-band approximation (π bands
only) taking into account only the nearest-neighbor (t) and the
next-nearest-neighbor (t ′) hopping parameters [17]; the latter
can be important since it breaks the electron-hole symmetry
of the Hamiltonian which as we will see is essential for SHG.

There are two contributions to the electric current quadratic
in the vector potential A(r,t). Note that we now switch to the
response of an electric field by using the identity

1
c
Aα(r,t) = − i

Eα(r,t)
ω

. (14)

The contributions to the nonlinear optical conductivity (1) via
Feynman diagrams are drawn in Fig. 2.

The corresponding algebraic equation for the triangle
diagram is given by

χ
triangle
αβγ (iω,iω,2iω)

= − i
e3

ω2

1
β

∑

ν

∑

k

∑

L1,...,L6

v
L6L1
kα GL1L2 (k,iν)

×v
L2L3
kβ GL3L4 (k,iν + iω)vL4L5

kγ GL5L6 (k,iν − iω), (15)

H

j

j

(1)

H(1)

H(2)

ω

2ω ω

2ω
ω

ω

FIG. 2. (Color online) Two second-order contributions to the
nonlinear susceptibility. Top: triangle diagram. Bottom: nonlinear
bubble diagram. Solid lines are electron Green’s functions and wavy
tails indicate photons involved in the processes.
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and for the nonlinear bubble diagram

χbubble
αβγ (iω,iω,2iω)

= − i
e3

ω2

1
β

∑

ν

∑

k

∑

L1,...,L4

×vL4L1
kαβ GL1L2 (k,iν − iω)vL2L3

kγ GL3L4 (k,iν + iω). (16)

Here L1, . . . ,L6 are pseudospin indices, β = 1/T is the
inverse temperature (we use the units ! = kB = 1), and

Ĝ (iν) = 1

iν + µ − Ĥ
(17)

is the Green’s function with µ being the chemical potential
counted from the neutrality (conical) point. Thus, the nonlinear
susceptibility is given by

χαβγ = χbubble
αβγ + χ

triangle
αβγ . (18)

Note that the minus sign from the fermion loop should be taken
into account in both diagrams. The factor 1

ω2 appears due to
Eq. (14). We pass, as usual [18] to imaginary (Matsubara)
frequencies; at the end of the calculations the analytical
continuation to the real axis iω → ω + iδ is performed.

If we take into account electron-electron interactions the
nonlinear conductivity will be renormalized by three-leg and
six-leg electron vertices; the corresponding expressions can be
found in Ref. [19].

It is obvious by inversion symmetry that for the non-valley-
polarized case χ̂ = 0. We mimic the valley polarization by
splitting the Brillouin zone into two symmetrically chosen
parts, one containing the point K and the other part containing
the point K ′, and assuming different chemical potentials for
these two parts. We then expand all the quantities dependent
on the chemical potential as

f (µ + δµ) − f (µ − δµ) ≈ 2
∂f (µ)
∂µ

δµ. (19)

We evaluated the derivative ∂χ/∂δµ analytically using
Eqs. (15) and (16) and then performed a numerical summation
over Matsubara frequencies and wave vectors involving half of
the Brillouin zone. We choose β = 40/eV, which corresponds
to a temperature of 290 K. In this case, sampling of the
Brillouin with 121 × 121 k points and summation of 200
(1000) fermionic Matsubara frequencies are required to reach
convergence for the triangle (nonlinear bubble) diagram at
bosonic Matsubara frequencies -n = 2πn/β in the range of
n = 1, . . . ,20.

A symmetry analysis shows that there are only two
independent components of the tensor χ̂ , χxxx = − χxyy =
− χyxy = − χyyx and χyyy = − χyxx = − χxxy = − χxyx [10].
With the choice of coordinates made here, the K and K ′ points
of the Brillouin zone are on the positive/negative x axis (see
Fig. 1). Thus valley polarization breaks inversion symmetry
with respect to the x direction, x → − x, but the y → − y
symmetry is preserved. Thus, we have χyyy = 0 and we will
show the results only for χxxx .

The computational results for the case of finite chemical
potential µ = 0.2t are shown in Fig. 3. For the case µ = 0,t ′ =
0 one finds dχxxx/dµ = 0, due to electron-hole symmetry.
Nearest-neighbor hopping t ′ breaks this symmetry and leads

FIG. 3. (Color online) Computational results for . =
− (!ω)2 ∂χxxx

∂µ
(in the units of e3a/!, a is the lattice constant)

as a function of real frequency ω (in the units of t/!). The total
answer is the sum of the triangle and bubble contributions.

to nonzero dχxxx/dµ even at µ = 0 and according to Ref. [17]
we have t ′ ≈ 0.1t . Our calculations show, however, that for
µ = 0.2t the effects of finite t ′ are negligible leading only to
a few-percent corrections.

One can see from Fig. 3 that a dimensionless quantity .
characterizing the valley-polarization induced SHG is pretty
large, of the order of ten, despite the smallness of the ratios
t ′/t and µ/t . It is consistent with the computational results
[20– 22] on SHG in chiral nanotubes which turned out to be
strongly enhanced in comparison with conventional materials
without inversion symmetry. A comparison with the results of
Ref. [14] shows that the valley-polarization induced SHG will
be dominant if |δµ|/t > 0.01vF /c ≈ 3 × 10− 5. Note, that one
additional smallness in order of magnitude originates from the
factor 3/8π ≈ 0.1 in Ref. [14] and another one from the fact
that . ≈ 10.

Typical nonlinear crystals have second-order nonlinear
susceptibilities on the order of χ̃ = 0.1 to 100 pm/V [10].
It is interesting to see which amount of valley polariza-
tion is required to reach this order in graphene. From
the current density j = χE2 we obtain the oscillating
in-plane charge density |σ | = |j |/c and the associated
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electric field E2ω = σ/ϵ0 = χE2/ϵ0c = χ̃E2. With photon
energies on the order of !ω = 1.5 eV ≈ 0.5t and . ≈ 10 we
find thus χ̃/δµ = − .(e3a/!)/[ϵ0c(!ω)2] ≈ 1(Å/V)/eV =
100 (pm/V)/eV. Thus δµ ! 1 meV is required to reach
χ̃ = 0.1 pm/V.

This means that SHG is, indeed, a very efficient tool to
probe the valley polarization in graphene. Our results show that
“triangle” and “bubble” contributions to the second-harmonic
generation are, in general, comparable. Also, one can see that
they have quite a similar frequency dependence. An alternative
way to probe the valley polarization is the photogalvanic effect,
that is, generation of dc current under laser pulses. This process
is described by the quantity χαβγ (ω,ω,0) which is of the
same order of magnitude as χαβγ (ω,ω,2ω) calculated here.
It would be very interesting to probe both of these effects
experimentally in graphene with valley polarization.

In monolayer MoS2, valley polarization is controllable by
(linear) optics [11,12]. Symmetry-wise MoS2 corresponds to
graphene with broken sublattice symmetry (i.e., D3h), where
Mo atoms occupy sublattice A and the S atoms reside on
sublattice B. Thus, there is no y → − y mirror symmetry
and χyyy ̸= 0 even in the absence of valley polarization. The
initial x → − x mirror symmetry of MoS2 ensures, however,
that nonzero χxxx requires additional symmetry break as
provided, e.g., by valley polarization. Thus, the concept of
nonlinear optics and photogalvanic effects to detect valley
polarization is partly transferable to MoS2. It works with light

which is linearly polarized in the x direction but not in the y
direction.

Lattice matched graphene-hBN (hexagonal boron nitride)
heterostructures have proven to allow for nonlocal transport
phenomena based on the valley degree of freedom over
micron scale distances [15]. It appears thus highly promising
to combine the advantages of MoS2 (optical generation of
valley polarization [11,12]) with those of graphene (trans-
port properties). Finally, for graphene (not lattice matched
to hBN) very close to the neutrality point a flavor Hall
effect has been observed which could be of spin or valley
origin [23]. Measuring SHG could solve this puzzle, since
only valley but not spin polarization would lead to an SHG
signal.

Note added. Recently, a related work, Ref. [24], reporting
similar results has been published. While Ref. [24] focuses on
lower energies (the authors of that work use Dirac spectrum
with trigonal warping corrections, instead of the full tight-
binding spectrum as in the present work), the conclusions
drawn here and in Ref. [24] are in agreement.
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Graphene Flagship and the Deutsche Forschungsgemeinschaft
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support from the European Research Council Advanced Grant
program (Contract No. 338957).

[1] A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
[2] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,

and A. K. Geim, Rev. Mod. Phys. 80, 315 (2008).
[3] M. I. Katsnelson, Graphene: Carbon in Two Dimensions

(Cambridge University Press, Camnbridge, 2012).
[4] A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, Nat. Phys. 3,

172 (2007).
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VII. GENERAL CONCLUSIONS AND PERSPECTIVES

The work presented in this thesis has contributed to the devel-
opment of an approximation improving over EDMFT, which takes
local correlations from EDMFT and includes in a proper way non-
local correlations. It is based on the exact path-integral transforma-
tion from numerically exact local solutions to pure non-local dual
variables. This technic serves a way to include non-local correlation
to EDMFT already at the propagator level in the diagrams and is
by construction free of double-counting problems. This way of in-
cluding non-locality gives an improvement in the phase boundary
between the charge-ordered and the Fermi liquid phase compared to
the EDMFT+GW in the V-decoupling schema. It is also shown,
that previous approaches, such as EDMFT+GW and TRILEX, can
be easily derived from the exact dual transformations. Moreover,
the dual way of exclusion of the double-counting can be straightfor-
wardly extended to all EDMFT++ approaches. Therefore, for the
same computational complexity as the standard EDMFT+GW ap-
proach. The non-trivial ”dual boson” way of including local vertices
in the first-principle EDMFT+GW approach opens a new direction
in the description of collective excitations in solids.
Additionally we derived the bosonic action for charge degrees of

freedom of the extended Hubbard model. In the region where the
charge fluctuations are prominent, the local four-point vertex of the
underlying impurity model does not depend on the fermionic frequen-
cies. In the region where the charge fluctuations are well-developed
one can decisively determine by looking at the deviation of the dou-
ble occupancy from its maximum. As our study shows, the latter
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corresponds to a large value of the double occupancy and can be dis-
tinguished for a broad range of values of Coulomb interaction. Re-
markably, the local Coulomb interaction may even exceed half of the
band-width. Thus, in the case of well-developed charge fluctuations,
the derived quantum bosonic problem can be mapped onto an e↵ec-
tive classical Ising model formulated in terms of a pair interaction
between local electronic densities. Importantly, this pair interaction
can be obtained calculating a convolution of two non-local Green’s
functions without vertex corrections. To our knowledge, the derived
simple formalism was never presented in the literature before and is
believed to be applicable to a very broad class of alloys and ordered
systems.
Finally, we showed that second harmonic generation is, indeed, a

very e�cient tool to probe the valley polarization in Graphene. The
”bubble” and the ”triangular” diagrams which were calculated have a
comparable magnitude. The third diagram of third order with three
curly lines and a bubble, which is a constant, gives no contribution.
The frequency dependence of both diagrams has similar behavior.
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