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There are men who struggle for a day and they are good. There are men who struggle for a
year and they are better. There are men who struggle many years, and they are better still.
But there are those who struggle all their lives: These are the indispensable ones.

He who fights, can lose. He who doesn’t fight, has already lost.

Bertolt Brecht.



To my Parents



Zusammenfassung

Ultrakalte Atome in optischen Gittern bilden eine vielseitige Umgebung fiir Vielkorper-
probleme mit gut kontrollierbaren Parametern, die es uns erlauben, eine Vielzahl komplexer
Quantensysteme im Labor zu simulieren, auch solche, die keine analytische Behandlung
ermoglichen. Insbesondere die Nicht-Gleichgewichtsdynamik stark korrelierter Vielteilchen-
systeme ist eine der herausforderndsten Probleme der modernen Quantenphysik, mit An-
wendungen die von Thermalisierungsdynamik iiber Transporteigenschaften bis hin zur Kon-
trolle von Korrelationen und der Dynamik reichen. Das Verstandnis von Nichtgleichgewicht-
sphdnomenen stark korrelierter Systeme ist eine weitreichende Aufgabe. Einblick in solche
Systeme wird ermoglicht durch die Untersuchung von Systemen mit wenigen Teilchen, die nur
eine kleine Anzahl relevanter Freiheitsgrade besitzen. Dennoch miissen Quantenkorrelationen
zwischen den Teilchen beriicksichtigt werden.

Die vorliegende Dissertation tréagt zum Verstandnis der Nichtgleichgewichtsdynamik stark
korrelierter Quanten-Vielteilchensysteme bei, durch Untersuchung von Systemen mit weni-
gen Bosonen, die einer oder zwei Spezies zugehéren und in optischen Gittern gefangen
sind. Die Systeme werden aus dem Gleichgewicht gebracht, entweder durch einen Quench
(plotzliche Anderung) eines Hamilton-Parameters oder durch eine zeitperiodischen Mod-
ulation der &dufleren Begrenzung. Im Laufe einiger konsekutiven Untersuchungen zeigen
wir verschiedene Moglichkeiten, die Nichtgleichgewichtsmoden zu koppeln, und enthiillen
ihre korrelierte Natur und mikroskopische Herkunft. Um die Nichtgleichgewichtsdynamik
zu simulieren, nutzen wir eine verfeinerte, hochflexible Ab-initio-Methode zur numerischen
Losung der zeitabhangigen Mehrkorper-Schrédinger-Gleichung namens ” Multi-Layer Multi-
Configuration Time-Dependent Hartree Method for Atomic Mixtures” (ML-MCTDHX).

Im ersten Teil untersuchen wir in sechs aufeinander folgenden Studien die korrelierte
Nichtgleichgewichtsdynamik von Systemen, bestehend aus wenigen Bosonen, in eindimen-
sionalen endlichen Gittern. Beginnend bei schwachen Wechselwirkungen wird gezeigt, dass
eine abrupte Erhohung der Interaktionsstarke eine globale Dichtewellentunneldynamik sowie
Intra-Topf-Breathing und Cradle-dhnliche Prozesse in angeregten Bandern generiert. Der
Cradle-Prozess ist ein dipoldhnlicher Prozess, der durch den quench-induzierten Transport
iiber die Barriere erzeugt wird und eines der zentralen Ergebnisse der vorliegenden Disser-
tation darstellt. Die Wechselwirkungs-Quenches koppeln auf bemerkenswerte Art und Weise
die Dichtewellen- und Cradle-Moden, und induzieren Resonanzphinomenen zwischen der
Inter- und Intra-Topf-Dynamik. Wir zeigen weiter, dass die Cradle-Mode inhérent mit der
anfianglichen Delokalisierung verkniipft ist und nach einem Quench von starken zu schwachen
Wechselwirkungen nur fiir inkommensurable Konfigurationen mit Fiillung grofler als Eins
angeregt werden kann. Alternativ wird eine plotzliche Verringerung der Gittertiefe einge-
setzt, die die rdumliche Delokalisierung begiinstigt und die Cradle-Mode fiir Setups mit
Fiillung kleiner als Eins zuganglich macht. Durch Verwendung eines Protokolls mit mehreren
Wechselwirkungs-Quenches beobachten wir den Anstieg von mehreren Tunnelmoden in den
niedrigsten Béndern sowie die Cradle- und Breathing-Mode. Neben der Cradle-Mode sind alle
anderen angeregten Moden in hohem Mafle kontrollierbar und besitzen unterschiedliche Fre-
quenzen wihrend und zwischen den Quenches. In der Anregungsdynamik wird ein monotones



Verhalten mit zunehmender Quenchamplitude und eine nichtlineare Abhéngigkeit von der
Dauer der Anwendung der Quench-Wechselwirkungsstiarke aufgedeckt. Zusétzlich wird ein
periodischer Populationstransfer zwischen Impulsen fiir Quenches mit zunehmender Interak-
tion beobachtet, folgend einem Potenzgesetz fiir die Frequenz in Abhéngigkeit von der Quen-
champlitude. Lineare Wechselwirkungs-Quenches von einem suprafluiden zu einem Mott-
Isolator-Zustand regen verschiedene Inter- und Intraband-Tunnelmoden an. Die Konkurrenz
zwischen der Quenchrate und der Interpartikelabstoffung fiihrt zu einer resonanten dynamis-
chen Antwort bei moderaten linearen Quenchzeiten, die in Zusammenhang mit vermiede-
nen Kreuzungen im Vielkdrpereigenspektrum steht. Es wird gezeigt, dass die resultierende
Anregungsdynamik der héheren Bander einem exponentiellen Zerfall unterliegt, der zwei
unterschiedliche Zeitskalen besitzt mit variierender Rampenzeit. Bei der Untersuchung des
Ubergangs von flachen zu tiefen Gittern finden wir heraus, dass fiir einen diabatischen Quench
der Anteil der angeregten Bander abnimmt, wihrend er im adiabatischen Limes ein nichtlin-
eares Verhalten aufweist mit zunehmender Hohe der Potentialbarriere. Quenches von starken
zu schwachen Wechselwirkungen fiihren zu einem Zusammenbruch des Mott-Isolators und zu
vernachlassigbaren Anregungen hoherer Bander. Das Ausfithren von Quenches des Wellen-
vektor oder der Phase eines rdumlich abhéingigen Interaktionsprofils 16st eine Streuung in
verschiedene Tunnelkanéle und eine reiche Anregungsdynamik aus, die bei héherer Inho-
mogenitatsamplitude verstarkt wird. Besonders wichtig ist dabei, dass der Phasen-Quench
einen gerichteten Transport induziert, der es uns ermoglicht, zwischen urspriinglich ener-
getisch entarteten Tunnelwege zu differenzieren. Anschlielend beobachten wir einen peri-
odischen Populationstransfer zwischen verschiedenen Impulsen fiir Quenches mit zunehmen-
dem Wellenvektor und eine gerichtete Besetzung von hoheren Impulsen nach einem Phasen-
Quench. Wenn wir eine zusétzliche harmonische Falle von starker zu schwacher Frequenz
quenchen, stellen wir fest, dass die Konkurrenz zwischen der anfanglichen Lokalisierung und
der abstoflenden Wechselwirkung zu einer resonanten Reaktion des Systems fiihrt, die in
Zusammenhang mit vermiedenen Kreuzungen im Vielkorpereigenspektrum bei variierender
Endfallenfrequenz steht. Dariiber hinaus zeigen wir, dass diese vermiedenen Kreuzungen
genutzt werden konnen, um das System in einem Wunschzustand zu praparieren.

Der zweite Teil umfasst zwei Studien und widmet sich der Analyse der Nicht-Gleichgewichtsdynamik
von ultrakalten bosonischen Ensembles in periodisch getriebenen eindimensionalen optis-
chen Gittern. Fiir ein geschiitteltes Gitter wird eine grofle Bandbreite von Treibfrequen-
zen abgedeckt und ein resonantes Verhalten der Intrawell-Dynamik aufgedeckt, das mit
einem reichen Intraband-Anregungsspektrum in Zusammenhang steht. Dariiber hinaus wird
gezeigt, dass fiir eine zunehmende Abstoung eine starke Unterdriickung des Inter-Topf-
Tunnelns und eine verstarkte Anregungsdynamik auftritt. Fiir ein vibrierendes Gitter fiihrt
ein zusétzlicher Wechselwirkungs-Quench zu Beimischungen verschiedener Anregungen in den
auleren Topfen, einem verstarkten Breathing in der Mitte und einer Verstarkung der entste-
henden Tunneldynamik. Das Auftreten von mehrfachen Resonanzen zwischen der Inter- und
Intra-Topf-Dynamik bei unterschiedlichen Quenchamplituden wird aufgezeigt, wobei die Posi-
tion der Resonanzen iiber die Treibfrequenz abstimmbar ist und somit eine weitere Steuerung
der Modenkopplung in optischen Gittern ermdoglicht.

Im dritten und letzten Teil dieser Arbeit wird die Quenchdynamik einer Bose-Bose- und



einer Bose-Fermi-Mischung aufgeklart. Unter Verwendung eines Interspezies-Interaktions-
Quenchs iiberschreiten wir die Mischbarkeits-Unmischbarkeits-Schwelle in einer harmonisch
begrenzten Bose-Bose-Mischung. Wir zeigen, dass eine Erhohung des Interspezieswechel-
wirkungsstiarke zu einer Filamentierung der Dichte jeder Spezies fithrt, wobei die spon-
tan erzeugten Filamente stark korreliert sind und Doménenwandstrukturen aufweisen. Be-
merkenswerterweise wird die Bildung von mehreren dunkel-antidunkel solitaren Wellen beobachtet,
wenn man dem umgekehrten Quench-Protokoll folgt, das heifit, wenn man die Interspezieswech-
selwirkungsstérke verringert. Diese solitdren Wellenstrukturen zerfallen in die Vielkorpe-
rumgebung kurz nach ihrer Erzeugung, in scharfem Gegensatz zu den Vorhersagen der Mean-
Field-Approximation. Um unsere Ergebnisse mit mdoglichen experimentellen Realisierungen
zu verkniipfen, simulieren wir zum ersten Mal fiir bindre Mischungen Momentaufnahmen,
die zeigen, dass die Wachstumsrate der Varianz einer Stichprobe von Momentaufnahmen
den Grad der Verschrinkung, inhdrent im System, sondiert. Als néchsten Schritt unter-
suchen wir die Expansionsdynamik einer Bose-Fermi-Mischung mit gleicher Masse, die in
einem eindimensionalen optischen Gitter gefangen ist, indem die verwendete harmonische
Falle von stark zu schwach geschaltet wird. Indem wir die Interspezies-Interaktionsstarke
verandern, realisieren wir die nicht mischbaren und mischbaren korrelierten Grundzustand-
sphasen. Wir zeigen weiter, dass die dynamische Reaktion des Systems entscheidend von der
Anfangsphase abhéngt und aus einer Ausdehnung aller Wolken und einer Inter-Topf-Tunnel-
Dynamik besteht. Durch Variieren der Quenchamplitude wird eine Vielzahl von Reaktion-
sregimen im Bezug auf eine feste Phase enthiillt, die innerhalb der nicht mischbaren Phase re-
icher sind und durch unterschiedliche Expansionsstarken und Tunnelkanéle beschrieben wer-
den. Schliefllich wird in der Expansionsdynamik ein antikorreliertes Zwei-Korper-Verhalten
zwischen den iiberwiegend besetzten Topfen enthiillt.






Abstract

Ultracold atoms in optical lattices constitute a versatile many-body platform with highly
tunable parameters, allowing us to emulate a multitude of complex quantum systems, in
the laboratory, even those eluding analytical treatment. In particular, the nonequilibrium
dynamics of strongly correlated many-body systems represents one of the most challenging
problems of modern quantum physics, with applications ranging from thermalization dy-
namics and transport properties to the management of correlations and the control of the
dynamics. Understanding nonequilibrium phenomena of strongly correlated systems is a
formidable task. A very promising route to gain insight into such systems is to examine
few-body setups which contain only a few relevant degrees of freedom, yet incorporating the
quantum correlations between the particles.

The present dissertation contributes to the understanding of the nonequilibrium dynamics
of strongly-correlated quantum many-body systems by exploring systems of few-bosons — of
one or two species — trapped in optical lattices. The systems are driven out-of-equilibrium
either by performing a quench of a Hamiltonian parameter or by considering a time-periodic
modulation of the external confinement. In the course of several consecutive works, we show-
case different ways to couple the nonequilibrium modes, while unveiling their correlated na-
ture and microscopic origin. To simulate the nonequilibrium dynamics, a sophisticated, highly
flexible ab-initio method for numerically solving the time-dependent many-body Schrédinger
equation is utilized, namely the Multi-Layer Multi-Configuration Time-Dependent Hartree
Method for Atomic Mixtures (ML-MCTDHX).

Within the first part we study in six consecutive works the correlated nonequilibrium
dynamics of few-boson systems in one-dimensional finite lattices. Starting from weak in-
teractions, it is shown that a sudden increase of the interaction strength generates a global
density-wave tunneling dynamics as well as intrawell breathing and cradle-like excited-band
processes. The cradle process is a dipole-like process generated by the quench-induced over-
barrier transport and it is one of the central results of the present thesis. Remarkably enough,
the interaction quenches couple the density-wave and cradle modes, inducing resonance phe-
nomena between the inter and intrawell dynamics. We further show that the cradle mode is
inherently related to the initial delocalization and, following a quench from strong-to-weak
interactions, can be excited only for incommensurate setups with filling larger than unity.
Alternatively, a sudden ramping down of the lattice depth which favors the spatial delocaliza-
tion is employed to access the cradle mode for setups with filling smaller than unity. Following
a multiple interaction quench protocol, we observe the rise of several lowest-band tunneling
modes as well as the cradle and the breathing mode. Besides the cradle mode, all other excited
modes are highly tunable possessing different frequencies during and in between the quenches.
In the excitation dynamics a monotonic behavior with increasing quench amplitude and a
non-linear dependence on the duration of the application of the quenched interaction strength
is revealed. Additionally, a periodic population transfer between momenta for quenches of
increasing interaction is observed, with a power-law frequency dependence on the quench
amplitude. Linear interaction quenches from a superfluid to a Mott-insulator state excite
various inter- and intraband tunneling modes. The competition between the quench rate and



the interparticle repulsion leads to a resonant dynamical response, at moderate ramp times,
being related to avoided-crossings in the many-body eigenspectrum. The resultant higher-
band excitation dynamics is shown to obey an exponential decay possessing two distinct time
scales with varying ramp time. Inspecting the crossover from shallow to deep lattices we
find that for a diabatic quench the excited-band fraction decreases, while approaching the
adiabatic limit it exhibits a nonlinear behavior for increasing height of the potential bar-
rier. Quenching from strong-to-weak interactions leads to a melting of the Mott-insulator
and negligible higher-band excitations. Performing quenches either on the wavevector or the
phase of a spatially dependent interaction profile triggers various tunneling channels and a
rich excitation dynamics which is amplified for increasing inhomogeneity amplitude. Most
importantly, the phase quench is shown to induce a directional transport enabling us to dis-
cern, otherwise, energetically degenerate tunneling pathways. Finally, a periodic population
transfer between distinct momenta for quenches of increasing wavevector and a directed oc-
cupation of higher momenta following a phase quench is observed. Employing a quench of
an additional harmonic trap from strong-to-weak confinement, we find that the competition
between the initial localization and the repulsive interaction leads to a resonant response of
the system related to avoided-crossings in the many-body eigenspectrum with varying final
trap frequency. Furthermore, we show that these avoided-crossings can be utilized to prepare
the system in a desired state.

The second part comprises two efforts and is devoted to the study of the nonequilibrium
dynamics of finite ultracold bosonic ensembles in periodically driven one-dimensional optical
lattices. For a shaken lattice, a wide range of driving frequencies is covered and a resonant
behavior of the intrawell dynamics is revealed and found to be related to a rich intraband
excitation spectrum. Moreover, it is shown that for increasing repulsion a strong suppression
of the interwell tunneling and an enhanced excitation dynamics occurs. For a vibrating
lattice, an additional interaction quench gives rise to admixtures of different excitations in
the outer wells, an enhanced breathing in the center and an amplification of the emerging
tunneling dynamics. The occurence of multiple resonances between the inter- and intrawell
dynamics at different quench amplitudes is revealed, with the position of the resonances being
tunable via the driving frequency and thus allowing for further control of the mode coupling
in optical lattices.

In the third and final part of this thesis we unravel the quench dynamics of a Bose-
Bose and a Bose-Fermi mixture. Utilizing an interspecies interaction quench we cross the
miscibility-immiscibility threshold in a harmonically confined Bose-Bose mixture. We show
that increasing the interspecies repulsion coefficient results in a filamentation of the density
of each species, with the spontaneously generated filaments being strongly correlated and
exhibiting domain-wall structures. Strikingly, by following the reverse quench protocol, i.e.,
upon decreasing the interspecies interaction strength, the formation of multiple dark-antidark
solitary waves is observed. These solitary wave structures are found to decay into the many-
body environment, soon after their generation in sharp contrast to the predictions of the
mean-field approximation. To relate our findings with possible experimental realizations, we
simulate, for the first time for binary mixtures, single-shot images showcasing that the growth
rate of the variance of a sample of single-shots probes the degree of entanglement inherent
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in the system. As a next step we investigate the expansion dynamics of a mass balanced
Bose-Fermi mixture confined in a one-dimensional optical lattice upon quenching an imposed
harmonic trap from strong-to-weak confinement. Tuning the interspecies interaction strength
we realize the immiscible and miscible correlated ground state phases. We further show that
the system’s dynamical response crucially depends on the initial phase and consists of an
expansion of each cloud and an interwell tunneling dynamics. Varying the quench amplitude
and referring to a fixed phase a multitude of response regimes is unveiled, being richer within
the immiscible phase, which are described by distinct expansion strengths and tunneling
channels. Finally, in the expansion dynamics a two-body anti-correlated behavior between
the predominantly occupied wells is unveiled.

11






Contents

Preface iii
1 Introduction 13
2 Theoretical Framework 19
2.1 Optical Lattices . . . . . . . .« . e 19
2.1.1 AC Stark Shift and Dissipative Interaction . . .. ... .. ... ... 20
2.1.2 Bose-Hubbard Model . . . . . . . . .. ... ... ... ... ... ... 21
2.1.3 Extended Bose-Hubbard Models . . . . . .. .. ... ... ...... 25
2.2 Mean-Field Theory and the Gross-Pitaevskii Equation . . . . . ... ... .. 27
2.3 Many-Body Methodological Approach: ML-MCTDHX . . . ... ... .. .. 28
2.3.1 Many-body Wavefunction ansatz for Binary Mixtures . . ... .. .. 29
2.3.2 Limiting Cases and Convergence of the Many-Body Simulations . .. 31
2.3.3 Wavefunction Ansatz for Scalar Bosons . . . . .. . ... ... .... 32
2.4 Many-Body Eigenspectrum of Few-Bosons in a Triple-Well . . . . . . . .. .. 33
2.4.1 The Multiband Wannier Number State Basis . . . . . . ... ... .. 34
2.4.2 Improved Relaxation Scheme . . . . . ... ... ... ... ...... 35
2.4.3 Eigenspectrum of Three and Four Bosons . . . . . ... .. ... ... 35
2.5 Single-Shot Simulations in Binary Bosonic Mixtures and Scalar Bosons . . . . 38
2.5.1 Single-Shot Procedure . . . . . . . . ... ... ... ... 38
3 Outline of the Scientific Contributions 41
3.1 Hamiltonian of Few-Bosons in a Lattice . . ... ... ... ... .. ..... 41
3.2 Basic Ground State Properties . . . . . .. ... Lo 42
3.3 Quench Dynamics in Scalar Few-Boson Ensembles . . . . .. .. .. .. ... 44
3.3.1 Quench Dynamics from Weak-to-Strong Interactions [[1]] . . . .. .. 44
3.3.2  Quench Dynamics from Strong-to-Weak Interactions [[2]] . . ... .. 48
3.3.3 Dynamics after Multiple Interaction Quenhes [[3]] . . . ... ... .. 49

3.3.4 Dynamics Following a Linear Interaction Quench in Finite Optical Lat-
tices of Unit Filling [[4]] . . . . . . . . . .. . ... ... 51

3.3.5 Quench Dynamics of Finite Bosonic Ensembles in Optical Lattices with

Spatially Modulated Interactions [[5]] . . ... ... ... ... .... 53



CONTENTS

3.4

3.5

3.3.6 Quench-induced Resonant Tunneling Mechanisms of Bosons in an Op-
tical Lattice with Harmonic Confinement [[6]] . . . . . . . ... .. ..
Driven Lattices . . . . . . . . . . L
3.4.1 Resonant Quantum Dynamics of Few Ultracold Bosons in Periodically
Driven Finite Lattices [[7]] . . . . . . . . ... ... ... ... ...
3.4.2 Mode Coupling of Interaction Quenched Ultracold Few-Boson Ensem-
bles in Periodically Driven Lattices [[8]] . . . . .. .. ... ... ...
Quench Dynamics in Binary Mixtures . . . . . ... ... .. ... ......
3.5.1 Correlation Effects in the Quench-Induced Phase Separation Dynamics
of a Two-Species Ultracold Quantum Gas [[9]] . . . . . ... ... ...
3.5.2  Many-Body Expansion Dynamics of a Bose-Fermi Mixture Confined in
an Optical Lattice [[10]] . . . . . . ... ... .. .. ... ...

4 Scientific Contributions

4.1

4.2

4.3

Quench Dynamics . . . . . . . . . . ...
4.1.1 Interaction Quench Induced Multimode Dynamics of Finite Atomic En-
sembles . . ...
4.1.2 Negative-Quench-Induced Excitation Dynamics for Ultracold Bosons
in One-Dimensional Lattices . . . . ... ... ... ... .......
4.1.3 Quantum Dynamical Response of Ultracold Few-Boson Ensembles in
Finite Optical Lattices to Multiple Interaction Quenches . . . . . . . .
4.1.4 Bosonic Quantum Dynamics Following a Linear Interaction Quench in
Finite Optical Lattices of Unit Filling . . . . ... ... ... ... ..
4.1.5 Quench Dynamics of Finite Bosonic Ensembles in Optical Lattices with
Spatially Modulated Interactions . . . . . . .. ... .. ... ... ..
4.1.6 Quench-Induced Resonant Tunneling Mechanisms of Bosons in an Op-
tical Lattice with Harmonic Confinement . . . . . ... ... ... ..
Driven Lattices . . . . . . . . o . oL L
4.2.1 Resonant Quantum Dynamics of Few Ultracold Bosons in Periodically
Driven Finite Lattices . . . . . . . . . . . . . ... ... ... ... ..
4.2.2 Mode Coupling of Interaction Quenched Ultracold Few-Boson Ensem-
bles in Periodically Driven Lattices . . . . . . . . ... ... ... ...
Quench Dynamics in Binary Mixtures . . . . . .. ... .. .. ... .....
4.3.1 Correlation Effects in the Quench-Induced Phase Separation Dynamics
of a Two-Species Ultracold Quantum Gas . . . .. . ... .. ... ..
4.3.2 Many-Body Expansion Dynamics of a Bose-Fermi Mixture Confined in
an Optical Lattice . . . . . . .. .. . . o o

5 Conclusions and Outlook

Acknowledgments

ii



Preface

This cumulative dissertation is based on the following sequence of publications, which through-
out the thesis will be referenced with double brackets [[...]].
List of publications this dissertation is based on

[[1]]

S.I. Mistakidis, L. Cao, and P. Schmelcher. Interaction quench induced multimode
dynamics of finite atomic ensembles, J. Phys. B: At. Mol. Opt. Phys. 47, 225303
(2014).

S.I. Mistakidis, L. Cao, and P. Schmelcher. Negative-quench-induced excitation dy-
namics for ultracold bosons in one-dimensional lattices, Phys. Rev. A 91, 033611
(2015).

J. Neuhaus-Steinmetz, S.I. Mistakidis, and P. Schmelcher, Quantum dynamical re-
sponse of ultracold few-boson ensembles in finite optical lattices to multiple interaction
quenches, Phys. Rev. A 95, 053610 (2017).

S.I. Mistakidis, G.M. Koutentakis, and P. Schmelcher. Bosonic quantum dynamics
following a linear interaction quench in finite optical lattices of unit filling, Chem.
Phys. (2017).

T. PlaBmann, S.I. Mistakidis, and P. Schmelcher. Quench Dynamics of Finite Bosonic
Ensembles in Optical Lattices with Spatially Modulated Interactions, arXiv:1802.06693
(2018).1

G.M. Koutentakis, S.I. Mistakidis, and P. Schmelcher. Quench-induced resonant tun-
neling mechanisms of bosons in an optical lattice with harmonic confinement, Phys.
Rev. A 95, 013617 (2017).

S.I. Mistakidis, T. Wulf, A. Negretti, and P. Schmelcher. Resonant quantum dynamics
of few ultracold bosons in periodically driven finite lattices, J. Phys. B: At. Mol. Opt.
Phys. 48, 244004 (2015).

!This paper has been submitted to Journal of Physics B: Atomic, Molecular and Optical Physics and it is
still under review.

iii



CONTENTS

[[8]] S.I. Mistakidis and P. Schmelcher. Mode coupling of interaction quenched ultracold
few-boson ensembles in periodically driven lattices, Phys. Rev. A 95, 013625 (2017).

[[9]] S.I. Mistakidis, G.C. Katsimiga, , P.G. Kevrekidis, and P. Schmelcher. Correlation
effects in the quench-induced phase separation dynamics of a two-species ultracold
quantum gas, New J. Phys. (2018).

[[10]] P. Siegl, S.I. Mistakidis, and P. Schmelcher. Many-Body Expansion Dynamics of a
Bose-Fermi Mixture Confined in an Optical Lattice, Phys. Rev. A 97, 053626 (2018).

Outline of this Thesis: Chapter 1 contains a general introduction to the field of trapped
ultracold atoms, with emphasis on the intricate phenomena observed during the nonequi-
librium dynamics of such systems. We provide the scientific context into which the above
contributions are embedded. Additionally we discuss the basic theoretical framework that is
needed to describe the nonequilibrium dynamics in optical lattices. To this end, the Bose-
Hubbard model and the mean-field approximation are outlined while the main focus is given
to the employed correlated many-body methodological approach. The latter method provides
access to beyond Bose-Hubbard phenomena and it is employed in the present thesis to in-
vestigate the few-boson correlated out-of-equilibrium dynamics in finite optical latttices. To
obtain a basic knowledge regarding the modes occuring for increasing interparticle repulsion
in a lattice trapped few-body setup the many-body eigenspectrum of three and four bosons
confined in a triple well is presented. Additionally, we briefly outline the basic ingredients
of a novel computational alrgorithm that has been developed in the present thesis, enabling
us to simulate single-shot absorption images. The latter are employed for thr first time in
the case of binary mixtures. An outline for each of the above-mentioned list of publications
and their interconnections to the existing literature are discussed in Chapter 2. In Chapter
3 we present all the scientific contributions [[1-10]] as published. Finally, Chapter 4 provides
a concluding discussion and some perspectives for future research.
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Chapter 1

Introduction

The experimental realization of Bose-Einstein condensates (BECs) in ultracold atoms [1-3]
opened a new and highly attractive venue for studying correlated many-body systems in a
controllable fashion within a clean and well-isolated environment. Major steps towards this
level of control include e.g. the ability to precisely adjust both the sign and the strength
of interparticle interactions by means of confinement-induced, optical and magnetic Fano-
Feshbach resonances [4-8]|, the design of arbitrary potential landscapes or even the possibility
to move the external confinement in a time-periodic manner [9]. Remarkably enough, recent
advances in optical trapping even allow to control the size and atom number of these quantum
systems providing access to few-body physics [10-14]. The above-mentioned characteristics
make systems of ultracold atoms powerful quantum many-body platforms for simulating
a diversity of physical phenomena, in part inspired from condensed matter physics, and
emulating them in the laboratory.

Ultracold atoms in optical lattices constitute particularly appealing setups to assess the
strongly correlated regime of interactions, where the system cannot be described by a simple
mean-field approximation [15-18]. Optical lattices are periodic potentials created by the
formation of a standing wave when a pair of counter-propagating laser beams interfere and are
used to trap the atoms. The most popular theoretical model to describe both the static and
the dynamical properties of such systems is the so-called Bose-Hubbard model [19,20] which
rests upon the restriction of on-site interactions and nearest-neighbor tunneling processes. A
basic feature of this model is the presence of two distinct phases: The Mott-insulator phase,
where a constant number of atoms resides at each lattice site, and the superfluid phase,
characterized by delocalized atoms across the system. In the presence of disorder, a third
phase occurs, called Bose glass [16,21,22]. The quantum phase transition from a superfluid to
a Mott-insulating state has been observed experimentally [23] for bosons in three-dimensional
optical lattices, verifying in this way the predictions of the Bose-Hubbard Hamiltonian [20].
This hallmark experiment triggered a new era of theoretical and experimental investigations
regarding strongly correlated quantum gases. A variety of phases with unique properties and
increasing complexity has been realized with atoms confined in periodic potentials. These
include one- and two-dimensional bosonic Mott phases [24,25], tunable Mott-insulator states
[26], fermionic Mott-insulators [27, 28], the Tonks-Girardeau gas [29, 30], strongly paired
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fermions in lattice potentials [31-34], and unconventional superfluids involving excited-bands
[35-38].

To gain a deeper understanding of the many-body state, a multitude of novel experimental
methods have been further developed to probe the static and dynamical properties of strongly
correlated quantum gases in optical lattices. For instance, in-situ imaging of the atomic
cloud can be employed to detect the density distribution in real space [39,40], time-of-flight
images give access to the momentum distribution of trapped atoms [41], and density-density
fluctuation measurements provide information about the system’s correlation functions [42—
46]. Another paradigmatic example of recent experimental advances constitutes the so-called
quantum gas microscope which allows for the detection of atoms in lattice systems with single-
site resolution [47—49]. Even dynamical response functions can be obtained, via e.g. Radio-
frequency [50,51] or Bragg spectroscopy [52,53]. Moreover, a great variety of unique lattice
geometries has been realized, such as superlattices [54-56], cubic [57], hexagonal [59, 60],
honeycomb [58] and Kagome lattices [61].

Despite the wide success of the Bose-Hubbard Hamiltonian to predict several physical
phenomena which are also experimentally supported, there is a huge class of processess that
lie beyond its applicability. These limitations stem from the inherent restrictions of this
model and refer, for instance, to offsite interaction effects and the occupation of excited-
bands. Apart from the purely theoretical interest in those effects, the aforementioned recent
experimental advancements offer an excellent testbed to study many-particle physics beyond
the lowest-band Bose-Hubbard approximation. Models operating beyond the standard Bose-
Hubbard approximation are known as extended Hubbard models and can be employed to
enter previously inaccesible regimes [62-64]. Indeed, a variety of quantum phases and dynam-
ical phenomena have been based on mechanisms beyond the standard Hubbard model. For
instance, offsite interactions give rise to novel experimentally confirmed correlated quantum
phases such as the charge-density-wave insulator where the onsite occupancy alternates from
site to site [65-73], unconventional superfluids [36, 37, 74] with a complex phase twist of the
order parameter, dimerized insulators [75-79] possessing a unique excitation spectrum, or su-
persolids [67,70,73,80-84] that involve diagonal and off-diagonal long range order. Moreover,
density-induced tunneling processes [85-91] and effects of interaction-induced occupation of
higher orbitals [64,96] have been observed and found to affect the lattice band structure
causing a significant shift of the superfluid to Mott-insulator phase boundary. Note that
studies of extended Hubbard models have been conducted majorly relying on exact diag-
onalization techniques [92], strong-coupling expansion schemes [93,94] and the Gutzwiller
approximation [19,95]. In the present dissertation, we use a variational approach, the Multi-
Layer Multi-Configuration Hartree Method for Atomic Mixtures [97-100], which incorporates
the system’s important correlation effects, to demonstrate among others the participation of
beyond Hubbard processes of ultracold atoms trapped in optical lattices.

Besides the above-mentioned plethora of static phases, the nonequilibrium dynamics of
such systems exhibits even more fascinating phenomena. Here, for instance, correlation
induced mechanisms and collective excitations provide further insights into this new and
burgeoning field. Owing to their unique experimental controllability, ultracold atoms in
optical lattices provide an ideal setting for studying out-of-equilibrium quantum many-body
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dynamics. The most frequently considered way to induce the nonequilibrium dynamics is a
quantum quench [101-104]. Here, a many particle system initially prepared in a quantum
state |Wy), possessing certain correlation properties, of a Hamiltonian H; evolves unitarily
in time following the sudden change of an intrinsic system’s parameter (quench protocol) to
a final Hamiltonian Hy. Considering a closed quantum system, the energy after the quench
remains constant and is distributed among the various degrees of freedom during the unitary
evolution. Dynamics generated by a quantum quench is an active field of research since it
poses many fundamental questions such as the development of new correlations [105-111], the
possible thermalization of the system [112-123], the scaling of defect formation when crossing
a phase transition and the associated dynamical universality classes [124-133], as well as the
controllability of the participating modes [134—-141], to name only a few. It is the latter field of
quench-induced dynamics that the present thesis mainly aims to address, providing further
insight on the correlated mechanisms that take place in the out-of-equilibrium few-boson
dynamics.

A series of consecutive experimental realizations on quench-induced phenomena evinced,
further, the issue of thermalization [101, 112, 142-144] and the crossover between balistic
and diffussive expansion of atoms in optical lattices [145, 146] depending on the dimen-
sionality and interaction strength. Moreover, peculiar transport phenomena of bosons and
fermions [147-150], scaling properties of the defect density when crossing the superfluid to
Mott-insulator transition [126-128,151], and quench generated excitations [101,152-155] have
been revealed. Among the above studies, and as far as the notion of thermalization is con-
cerned, a prominent example constitutes the collisional dynamics of two one-dimensional
Tonks-Girardeau gases [142]. In this system no sign of thermalization has been observed, a
behavior that is directly related to the integrability of the system. However, indications of
relaxation dynamics have been observed when inspecting the evolution of one-dimensional
condensates after their splitting [143,144]. In this context of thermalization, a focal point
of theoretical research has been the crossover from integrability to non-integrability and the
consequent thermal or non-thermal behavior in relation to quantum chaos [112,156-158,365].
Its presence implies that simple observables are represented by random matrices in the eigen-
basis of the Hamiltonian and thermalization occurs at the level of individual eigenstates.
Thermalization in nonintegrable systems has also been formulated recently in terms of the
eigenstate thermalization hypothesis [120,159-161].

Despite the huge progress achieved over the past years on the theoretical side, the efficient
simulation of nonequilibrium dynamics is still a challenging task and stresses the importance
of developing novel theoretical approaches. The central problem is that the Hilbert space
of a quantum many-body system grows exponentially with the number of its constituents
and therefore obtaining analytical or numerically exact solutions becomes, in most cases,
impossible already for small systems. Another complicating feature of the nonequilibrium
dynamics is the presence of interactions leading to the appearance of strong interparticle
correlations, at a level that often precludes the use of a perturbative analysis or mean-field
approximations. In this respect, the dynamics beyond the paradigm of linear response the-
ory has been a subject of growing theoretical interest [162-169], triggered also by the recent
progress in ultracold atom experiments mainly focused on one-dimensional settings [10-14].
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A quench protocol inevitably excites the system and a number of defects, including correlated
two-body processes and higher-band excitations, can be formed during the dynamics. For
ultracold bosons confined in optical lattices, this implies the necessity to consider a multiband
treatment [62,63], in order to describe the emergent nonequilibrium correlated dynamics and
to gain information about the higher-band excitation spectrum, inaccessible by the standard
Bose-Hubbard model or mean-field methods. In the present dissertation, we provide a mul-
timode treatment for the nonequilibrium dynamics of few-bosons confined in finite optical
lattices in one spatial dimension, with all correlations taken into account. Among others, we
demonstrate that such an approach is suitable for extracting information from the resulting
many-body dynamics. In particular, we obtain the complete excitation spectrum, character-
ize the emergent various collective modes during the evolution, and provide, when possible,
a scale-free universality of the system’s dynamical response.

Yet another widely used technique to probe and study the out-of-equilibrium dynamics
of ultracold atoms in optical lattices is the time periodic modulation, or driving, of either
their position, e.g. shaken lattices, or their potential depth [9,170,171]. These modulations
can be experimentally routinely achieved by controlling the phase or the intensity of the
involved laser beams. In such systems the lattice band structure is modified during the driving
which consequently affects the physical properties of the system, giving rise to a variety of
intriguing effects. For instance, phase modulations have been used to address parametric
amplification of matter waves [172], four-wave mixing [173,174], coherent band coupling
[175,176], topological states of matter [177], coherent control of the superfluid to Mott-
insulator phase transition [178], hybridization of the lattice band structure [172,179], and
even to engineer artificial gauge fields [180-183]. On the other hand, amplitude modulations
of the lattice depth have been employed to probe the excitation spectrum of the system
[24,88,184], the participating nearest-neighbor correlations [185] as well as to realize intriguing
mechanisms such as photon-assisted tunneling [186] and orbital excitation blockade [187].
Furthermore lattice potentials can also be easily accelerated, creating inertial forces for the
atoms in the co-moving reference frame. It has been shown [188-191] that within a time-
averaged effective picture these oscillating forces lead to a renormalization of the tunneling
matrix elements in both amplitude and sign. Representative processes here include Bloch-
oscillations [192-195], Wannier-Stark ladders [196,197], and Landau-Zener tunneling [195,
197].

As already argued, time-periodic modulations of optical lattices constitute an important
concept towards the manipulation of the atomic motion [9,171]. For instance, as it has
recently been shown, the dynamics triggered by shaking an optical lattice can lead to an ad-
mixture of excited orbitals [198] or even induce dynamical instabilities caused by the interplay
between the interparticle interactions and the external driving [199-202]. Accordingly, it is
very important to carefully explore and design the relevant driving protocol so as to transfer
the energy to the desired final degrees of freedom [134-139]. In the present dissertation,
we study the dynamics of finite bosonic systems subjected to a shaken [[7]] or a vibrating
[[8]] lattice potential with a particular emphasis on the microscopic characterization of the
dynamical modes, their parametric coupling and thus their dynamical control.

Until now, we provided an overview of some intriguing effects arising in scalar, alias
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single-component, bosonic ensembles. We have mainly focussed in their corresponding non-
equlibrium properties induced either by a quench protocol or a time-periodic driving of the
optical lattice in which they are trapped. Next, we shall turn our attention to the case of
two-component mixtures mainly comprised of bosonic constituents and briefly report some
of the outstanding phenomena observed in this field. Two-component Bose-Einstein conden-
sates [1-3,203-205] consisting e.g. by two alkali metals such as 2> Na-8" Rb, two isotopes like
85 Rb-87Rb, or two hyperfine states of the same alkali metal, provide an ideal platform for
studying intriguing and novel phenomena that cannot be addressed in a single-component
setting. Three scattering lengths characterize the intra- and interspecies interaction between
the atoms, being tunable with the aid of magnetic or optical Feshbach resonances [4-8].
The interplay between the inter- and intraspecies scattering has a direct consequence on
several static properties of the condensate, such as its density profile and correlation prop-
erties. Correlation in interacting mixtures have been extensively studied [36,206-210], re-
vealing, for instance, altered phase separation regimes [211-214], the formation of quantum
droplets [215-218], modified superfluid-insulator transitions [206,219], composite fermion-
ization [220], quantum emulsions [221], and spin-charge separation [222]. Moreover, insta-
bilities [223] as well as new phases including paired or counterflow superfluidity [209] and
twisted superfluidity in bi-spinor mixtures [36] have been observed. Additionally, quenching
a binary mixture across the miscible-immiscible phase boundary has been a focal point of the-
oretical studies examining, for instance, the consequent scaling properties of the underlying
correlation functions [224-226].

Besides the aforementioned two-component systems, also Bose-Fermi mixtures have been
experimentally realized with the aid of sympathetic cooling [227-229]. This kind of mixtures
serve as prototypical examples in which the intermingled particles obey different statistics
[1,2]. Indeed, s-wave interactions among spin-polarized fermions are prevented due to the
Pauli exclusion principle. Such systems can be realized e.g. by a mixture of isotopes of Li
and °Li [230] or '"'Yb and '72Yb [231,232]. The complex interplay of Bose-Bose and Bose-
Fermi interactions led to numerous theoretical studies of Bose-Fermi mixtures regarding,
e.g., their phase separation process [233,234] stability conditions [223,235] and collective
excitations [236,237]. Bose-Fermi mixtures confined in optical lattices unveil a multitude
of intriguing quantum phases including, among others, exotic Mott-insulator and superfluid
phases [238-240], charge-density waves [241,242], supersolid phases [243,244] and polaron-like
quasiparticles [242,245].

The vast majority of the above-mentioned studies has been focused on a mean-field
description, while the role of many-body effects, e.g. in the transition from the misci-
ble to the immiscible phase, is much less understood. Recently, the inclusion of corre-
lations in multi-component few-boson systems revealed altered phase separation processes
[206, 219, 223, 246, 247], composite fermionization [220, 248, 249], or even the crossover be-
tween the two [250,251]. Furthermore, the dynamical properties of such many-body ultra-
cold mixtures have been studied, including the dependence of the tunnelling dynamics on
the mass ratio [252,253] and the the intra- and interspecies interactions [254], as well as the
emergence of Andersons orthogonality catastrophe upon quenching the interspecies repul-
sion [255]. However, far less emphasis has been placed on the many-body character of the
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quench-induced dynamical phase separation phenomena. Our last two works [[9,10]] aim at
partially addressing this latter apparent gap for both few and larger atomic ensembles. In
particular, we study the dynamical phase separation of a repulsively interacting Bose-Bose
mixture upon quenching the interspecies interaction coefficient across the phase boundary
by intitializing the system either in the phase miscible or the phase immiscible regime [[9]].
Finally, we move to a Bose-Fermi mixture confined in an optical lattice and examine, for the
first time, the correlation effects in the many-body expansion dynamics of such a mixture
residing either within the miscible or immiscible phase [[10]].

Objectives of this thesis

In this cumulative dissertation we theoretically study the zero-temperature nonequilibrium
many-body quantum dynamics of repulsively short-range interacting few atomic ensembles
and mixtures thereof confined in one-dimensional finite lattices. The correlated nonequi-
librium dynamics is induced either by performing a quench on a system’s parameter (e.g.
the interaction strength) or via a periodic driving of the optical lattice. In particular, we
theoretically explore the impact of correlations on the many-body quantum dynamics from
various perspectives. By investigating a series of exemplary driving scenarios we demonstrate
different ways to couple the triggered dynamical modes (such as single-particle or atom-pair
tunneling) and reveal their corresponding correlation properties. Particularly, we mainly

e characterize the dynamical response of the system after the quench or during the peri-
odic driving of the optical lattice;

e design the appropriate quench protocol in order to trigger certain dynamical modes;

e characterize the microscopic properties and reveal the correlated nature of the quench-
induced modes;

e obtain a control of the non-equlibrium dynamics by coupling distinct dynamical modes;
e unveil novel higher-band excitations that participate in the nonequilibrium dynamics;

e provide experimental evidences of the observed dynamics by simulating single-shots
absorption measurements.

We also clarify which processes can be obtained within a mean-field approximation or a
lowest-band Bose-Hubbard model and which of them require the use of more elaborated
methods that include interparticle correlations. These insights are obtained by utilizing the
Multi-Layer Multi-Configuration Time-Dependent Hartree method for bosonic and fermionic
mixtures, an ab-initio variational method designed for the treatment of the nonequilibrium
quantum dynamics of ultracold multi-component systems.
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Chapter 2

Theoretical Framework

2.1 Optical Lattices

Optical lattices are essentially artificial crystals of light generated by interfering optical laser
beams. Atoms illuminated by a laser beam acquire a dipole moment, induced by the electric
field of the laser, which in turn let them interact with the electric field. This interaction alters
the energy of the atomic internal states depending on both the laser frequency and intensity.
To confine the atoms within a periodic spatially dependent potential energy landscape a
spatially dependent intensity is used. Such a periodic potential energy landscape that the
atoms experience as a result of the standing wave pattern generated by the interference of
laser beams is typically called an optical lattice, see Fig. 2.1 (a).

Ultracold atoms confined in optical potentials are reminiscent of solid state materials.
For instance, the optical lattice can be perceived as playing the role of the crystal lattice in
a solid while the atoms mimic the corresponding valence electrons. In that sense, the atoms
are able to move within the lattice (quantum tunneling between the distinct sites) as the
valence electrons move in the periodic energy landscape created by the positively charged
ions in a crystal. Meanwhile, optical lattices possess several advantages with respect to solid
state systems. They are largely free of defects and highly controllable systems by means
of changing the laser properties. For instance the lattice depth can be tuned by changing
the laser intensity, its spacing can be modified by the interference angle between the laser
beams, its geometry is determined by the laser configuration and the entire configuration
can be dynamically moved by changing the polarization of the light. Furthermore, atoms are
much heavier than electrons which means that in order to probe the same physics occuring
e.g. at a temperature of 100 Kelvins in a solid state setup one needs to cool atoms below a
few nanokelvin. The latter requires the use of state-of-the-art cooling techniques which are
nowdays available. In these systems it is possible to follow the dynamics of the atoms on time
scales of the order of ms or even seconds. Finally and in sharp contrast to electrons, being
charged particles and strongly coupled to their environment, atoms are neutral and almost
completely isolated from their environment. Due to the above, ultracold atoms in optical
lattices offer an ideal platform for simulating certain problems of condensed matter physics
and constitute many-body systems exhibiting a diversity of physical phenomena.
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Below, we first briefly outline the basic theory of optical lattices and discuss the single-
particle properties of atoms in a periodic potential. Then, we introduce the so-called Bose-
Hubbard Hamiltonian which is the simplest non trivial model that describes interacting
bosons in an optical lattice.

Counterpropagating laser beams 7//
() aeting %m@
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Figure 2.1: (a) Two counter propagating laser beams of intensity I and wavenumber X forming
a lattice potential V' (x). (b) Schematic representation of the Wannier functions of the first
two energetically lowest-lying single-particle bands of a triple well.

2.1.1 AC Stark Shift and Dissipative Interaction

Neutral atoms interact with the light in a dissipative and a conservative manner. The con-
servative interaction originates from the interaction of the light field with the induced dipole
moment of the atom resulting in a shift of the potential energy called AC-Stark shift. The
dissipation is caused by the absorption of photons followed by a spontaneous emission event.
Spontaneous emission processes can be neglected only for fairly large detunings providing
a case where the energy shift can be used to create a conservative trapping potential. We
shortly explain both processes below.

Let us consider a two-level atom with internal states |g) and |e) being energetically sepa-
rated by Awg. The atom is further illuminated by a classical monochromatic elecromagnetic
field E(z) = Eo(x)e™! + Ej(z)e™™! with amplitude Eo(z) and frequency w. This electro-
magnetic field induces a dipole moment (d) to the atom which then interacts with E(z)
as H = —d-E. Hered =Y, 5 (ald|8)|a)(8| with 3 |e)(a| = 1, {aldla) = 0 and
feg = (e|d|g) # 0 because the atoms do not have a permanent dipole moment. Then,
d = pegle)(g] + tsglg){e] and the Hamiltonian of the total system reads

H = heole{e] — (egled (9] + uglgd(el) (Bolw)e ™" + Bj(x)e™"). (2.1)

This Hamiltonian can be transformed into a time-independent one by performing the rotating
wave approximation which is valid in the limit of small detunings, 0] = |w — wo| < |w + wpl-
The rotating frame of the laser is determined by the unitary transformation U(t) = e wbz/2
where 6, = |e)(e| — |g)(g| is the Pauli matrix, and the Hamiltonian transforms according to

H— UTHU + ihaa—lff] . Neglecting processes with a rapidly oscillating phase, eF/@*«0) and
considering only the near resonant frequency processes the Hamiltonian is reduced to

- ho . hQ(x hQ*(x

i = =o. - (M el + 5 el (2.2
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where Q(x) = 2Ey(x)teg/h is the so-called Rabi frequency. Employing second order pertur-
bation theory which is applicable in the limit that the detuning is large compared to the Rabi
frequency i.e. |d] > Q we can determine the effect of atom-light interaction on the states |e),

|g). Then, the energy shift Eg) reads

0% (z

EQ = ihzlfs), (2.3)
where + refers to the states |g) and |e) respectively. This latter energy shift is known as
the AC-Stark shift and defines the optical potential that atoms in the state |g) experience.
Of course, in the case that the atoms are illuminated by superimposed counter propagating
laser beams which interfere they experience a standing wave pattern resulting from this
interference. The resulting periodic landscape of the energy experienced by the atoms is the
optical lattice potential. The simplest possible lattice geometry is that of a one-dimensional
optical lattice [see Fig. 2.1 (a)]. The latter can be generated by creating a standing wave
interference pattern by the retroreflection of a single laser beam with Rabi frequency €.
This results in a Rabi frequency Q(z) = 2Qg sin(kx) yielding the periodic potential

RQ2
V(z) = TO sin?(kx), (2.4)
where k = 2w /X denotes the magnitude of the laser wavevector and V) = @ is the lattice

depth. This potential possesses a lattice constant, a = A\/2, determined by V(z + a) = V(x)
for every .

Up to now, we have assumed that the excited state possesses an infinite life time since
we neglected its decay due to the spontaneous emission of photons. This latter effect can be
modelled phenomenologically by attributing to the excited state a complex valued energy.
Indeed, when the excited state has a life time 1/T, the energy of the perturbed ground state
becomes Eg(,z) = V(x) + iy(z) where
02 (x) Q2 (x)Te

49 892

Here V' (z) (real part of the energy) corresponds to the optical potential. Most importantly,
the sign of the detuning § determines the sign of V(x). For 6 > 0 (blue detuning) V' (z) > 0
resulting in a repulsive potential whose minima correspond to the points with zero light
intensity (atoms are repealed from the high intensity regions). For 6 < 0 (red detuning)
V(z) is attractive and its minima correspond to the regions with maximum light intensity
where atoms are likely to reside. We remark here that the cases of blue and red detuning are
also often called as “weak field seekers” and ”strong field seekers” respectively. On the other
hand, vy(x) (imaginary part of the energy) refers to the loss rate of atoms from the ground
state.

V(z)=h

and y=h (2.5)

2.1.2 Bose-Hubbard Model

The Hubbard model, originally introduced in 1963 by J. Hubbard [256], has been derived
for describing the behaviour of strongly-correlated electrons in solids. It has been used
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to describe a multitude of systems in solid state physics such as short correlation length
superconductors, Josephson arrays and the critical behavior of * He. More surpisingly, since
more than a decade now, variations of this model are routinely being implemented with
ultracold atoms in optical lattices, allowing for their study in a clean and almost perfectly
isolated (defect-free) environment. In the following, our aim is to briefly outline the derivation
of the Hubbard model for ultracold bosons in optical lattices and discuss its limitations as
well as its possible extensions.

In second quantization, the Hamiltonian for a three-dimensional dilute interacting bosonic
gas confined in an optical lattice potential V' (r) reads

H= /dr‘lﬁ (—V—i—V( )) U(r) —|—;/drdr/‘lﬁ(r)‘lﬁ(r')v[(r,r')\Il(r)\I/(r'), (2.6)

where WT(r), ¥(r) denote the bosonic creation, annihilation field operators respectively and
m is the bosonic mass. The isotropic short-range pseudopotential V;(r,r’) modelling s-wave
interactions )
Ak as Sr—1)—2 0

Jlr —r'|
Here a, is the s-wave scattering length which characterizes the interparticle interactions
through low-energy elastic collisions between neutral atoms, independently of the actual two-
body potential. Indeed, for ultracold atoms the de Broglie wavelength is much larger than the
effective extension of the interaction potential, implying that the interatomic potential can
be replaced by a pseudopotential. For a non-singular ¥(r) this pseudopotential is equivalent
to a contact interaction

Vi(r 1) = r—1/|. (2.7)

Arh2a,

m

Vi(r —1') = 5(r—r1')=gd(r —1'). (2.8)

The above approximation is valid when long-range contributions are negligible. For a more
elaborated discussion about the scattering theory see for instance [257,258]. Note that positive
values of as account for repulsive interactions while negative values for attractive ones.

The natural energy scale of the Hamiltonian of Eq. (2.6) is the recoil energy EFr = h; 7’;2,
with k£ = 27/ and X being the wavelength of the optical lattice. The optical lattice potential
is typically V(z,y, 2) = Vo sin?(kyz) + Vo usin®(kyy) + Voo sin?(kz2). If Voo < Vo, = Vo
then a setup for a one-dimensional optical lattice is obtained, namely excitations to the
y and z directions are highly supressed and the system may be considered as a series of
independent one-dimensional tubes along the x direction. In what follows, we assume that
the above condition is fulfilled and therefore the analysis refers to one spatial dimension.

Within the weakly interacting regime, lattice trapped bosonic atoms are well described by
a Bose-Hubbard Hamiltonian [20]. Let us therefore explain how the Bose-Hubbard Hamilto-
nian is derived from the many-body Hamiltonian of Eq. (2.6) by simply expanding the field
operators onto single-particle Wannier modes [266]. We remind that the field operators W (x)
can always be expanded in the basis of Bloch functions ¢y, »(x), which are the eigenfunctions
of the single-particle Hamiltonian consisting of only the kinetic term and the lattice potential

2) =Y bpadn(@). (2.9)
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The indices x, n of the Bloch functions denote the quasi-momentum and the band number
respectively. Intuitively k might be viewed as a quantum number characteristic of the trans-
lational symmetry of the periodic potential, just as the momentum is a quantum number
characterizing the translational symmetry in free space. Of course in a strict sense « is not
the same as the momentum, but it turns out that it plays the same fundamental role in the
dynamics within a lattice potential as the momentum does in the absence of the lattice. To
emphasize this similarity « is called the quasimomentum. For sufficiently deep lattice poten-
tials and at low temperatures the band gap between the lowest and the first excited-band
may be fairly large so that the second and higher-bands will not be populated and therefore
can be disregarded. Within the lowest Bloch band of the optical lattice the field operators
can be expanded into an orthonormal Wannier basis. This basis consists of functions be-
ing localized around the lattice sites. We remark here that Wannier orbitals are a unitary
transformation of the Bloch functions and constitute an equivalent representation to describe
such a periodic system. Moreover, they constitute a more appropriate representation than
the Bloch functions, as the lattice depth (or equivalently the interaction) is increased and the
atoms become progressively more localized at individual lattices sites. The Wannier func-
tions will be denoted in the following as w;(x) = w(z — x;) with z; corresponding to the
minima of the lattice potential and 7 is the site index. The expansion of the field operator in
terms of this basis is known as the tight-binding approximation and it is justified when the
temperature is sufficiently low and the typical interaction energies are not strong enough to
excite energetically higher-band modes. The corresponding expansion reads

U(z) = Z biw;(z), (2.10)

where b; (l;j) refers to the annihilation (creation) operator of a boson localized at the i-
th lattice site and obey the standard canonical commutation relations [i)l,i);] = 0;j. For
simplicity in the following we will omit the hat symbol from the operators. Inserting the
above expansion into the Hamiltonian of Eq. (2.6) we obtain the celebrated lowest-band
Bose-Hubbard model

U
H=— Z Jljblb;r + 5 Z [n@(nl — 1) — ,uni] , (2.11)
(6.5) i

where (ij) indicates that the sum is performed over nearest neighbors. Note that each pair
(i, j) appears twice in the summation ensuring in this way the hermiticity of the first term.
Furthermore, n; = bibz is the boson number operator at site ¢ and u denotes the chemical
potential being introduced to control the total number of atoms. The corresponding tunneling
matrix elements between adjacent sites read

2 2
Jij = —/dxwf(z)[ L + V(z)| wi(z). (2.12)

- 2m 922

Moreover, the strength of the two-body on-site interactions U for a contact potential is given
by

U= g/dx lwi(z)]*. (2.13)
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Finally we remark here that in the presence of an additional external potential, Vs, one more
term has to be included in the Bose-Hubbard Hamiltonian accounting for a potential energy
Hy =Y, en; with €, = [ dzVy(z) |wl($)]2 This latter term essentially describes an energy
offset for each lattice site and typically is absorbed into a site-dependent chemical potential
Hi = [+ €.

((1/) Superfluid (b) Mott Insulator
-
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Figure 2.2: Schematic representation of the transition from (a) a superfluid phase to (b) a
Mott insulating state of three bosons confined in a triple well for increasing interparticle
repulsion. Note that the degree of the on-site excitation is the same for all wells.

The Bose-Hubbard Hamiltonian [Eq. (2.11)] predicts a quantum phase transition from
a superfluid to a Mott-insulator state. This transition has already been observed experi-
mentally for bosons confined in a three-dimensional optical lattice [23]. In particular, the
Bose-Hubbard model exhibits two different quantum phases depending on the ratio between
the tunneling energy and the on-site repulsion energy. A superfluid, compressible, gapless
phase occurs when the tunneling term dominates, J > U, while an incompressible Mott-
insulator ground state exists when the on-site interaction dominates i.e. J < U. For a
schematic representation of these two phases see also Fig. 2.2. The onset of superfluidity
is a consequence of the competition between the kinetic energy, which favors particle delo-
calization, and the interaction energy, which promotes particle localization resulting in small
particle-number fluctuations. Within the superfluid phase the kinetic energy term dominates
the Hamiltonian of Eq. (2.11). Then, quantum correlations can be neglected and the system
can be described by a macroscopic wavefunction. The many-body state is almost a product
over identical single-particle wavefunctions

N

Ve (2, an) = [ [ o), (2.14)
=1

where ¢(x) obeys the mean-field Gross-Pitaevskii equation (for a detailed description of this
equation see Sec. (2.2)). For increasing interaction the average kinetic energy required for an
atom to tunnel between adjacent lattice sites becomes insufficient to overcome the potential
energy cost. The atoms tend to be localized at individual lattice sites and the particle-number
fluctuations almost vanish. This is the Mott-insulator phase where the ground state of the
system consists of localized atomic wavefunctions with a fixed number of atoms per lattice
site. The corresponding ground state is a product of Fock states

lllj{lzlo(xla”'al‘N) :H|n0>ia (215)
i
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where ng denotes the number of bosons per lattice site ¢ in the Mott-insulator state. The
corresponding lowest-lying excitations that conserve the particle number are the so-called
particle-hole excitations being obtained by adding and removing a particle from the system.
This phase is characterized by the existence of an energy gap which is determined by the
energy necessary to create one particle-hole pair. For further details regarding the properties
of the above-mentioned phase transition we refer the interested reader to [19,20]. Here we only
mention that the Bose-Hubbard model and its phase transition has been studied extensively
both analytically and numerically. On the theoretical side many different techniques have
been employed such as mean-field approximations [259-261], renormalization group theories
[20] and strong-coupling expansions [93,94]. On the numerical side, most of the studies have
been conducted with quantum Monte Carlo methods and density matrix renormalization
techniques [15,18,262-265,311].

(a)

Bose-Hubbard Model Extended Bose-Hubbard Model

2 A A V;\ //JH\\ /N\ /|
WAWAYY By \WSWAY,
SOPZARA T/ BV T

Figure 2.3: Schematic representation of the basic underlying mechanisms within (a) the
Bose-Hubbard and (b) an extended Bose-Hubbard model. The symbols .J, J" and J¢// refer
to the intraband within the lowest-band interwell, first excited-band and the corresponding
interband tunneling amplitudes respectively. U denotes the onsite repulsion energy.
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2.1.3 Extended Bose-Hubbard Models

As already discussed above, within the Bose-Hubbard model only the energetically lowest
single-particle band is assumed to be occupied since higher excited-bands are energetically
well separated. However, it turns out that such a single band approximation is often insuf-
ficient, e.g. for strong interparticle interactions or shallow lattices, and that contributions
of higher-bands can not be neglected. Taking into account higher-bands is an important
extension of the standard Bose-Hubbard model. For instance, in strongly correlated systems,
the interaction induced coupling between the distinct orbital bands becomes fairly strong
so that higher-bands are mixed with the lowest-band. Due to the dominant contribution of
energetically higher-bands to the total energy, the orbital occupation is determined by on-site
interaction processes. Following a mean-field treatment it can be shown [62,63] that the oc-
cupation of higher orbitals results in a modified on-site wave function of the particles in order
to minimize the on-site interaction energy. The contribution of higher orbitals also alters
the wavefunction overlap between neighboring lattice sites, leading to a modified tunneling
amplitude which becomes occupation dependent.

Let us then formulate a multiorbital Bose-Hubbard model. We first expand the field
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operator ¥(z) taking explicitly excited-bands into account

U(z) =Y bfwf(x), (2.16)
2,0
where w{*(z) denotes a Wannier function of the band « being localized at site i. b3, b?T are
the annihilation, creation operators for a boson located at site ¢ and energy band «. Inserting
Eq. (2.16) into the many-body Hamiltonian [see Eq. (2.6)] we obtain the tunneling matrix
elements
N .
_ / dzwt™ (z) [—mw + Vm(m)] w? (x). (2.17)
By construction Jgﬂ = 0 for a # B. Furthermore for suficiently deep lattices it is enough to
restrict the hopping to nearest neighbor sites, since the tunneling amplitudes are exponentially
damped with the hopping distance. However, for shallow lattices the inclusion of next nearest
neighbor hoppings might be necessary [114]. The energies in the different orbitals are given
by

2m Ox?

while the corresponding interaction integrals by

— [ g [_’12‘92 n vmcc)] Wl (x), (2.18)

Ugi;"s = /da:dx’w?*(x)wf*(x')V(a: — 2" )w] (z)w] (2). (2.19)
Combining all the above terms we obtain the full multiorbital Bose-Hubbard model described
by the many-body Hamiltonian

ap atia aBydio a a
H=="ggbdTos + > vo6 vl To)b) + Z(e — p)ng. (2.20)

a7l7] Q.. 61 l

The full description of lattice and orbital degrees of freedom captured by the multiorbital
Bose-Hubbard model leads to an extremely complex many-particle problem. In addition to
that for very strong interactions such a description might lead to convergence problems [see
[63] and references therein|. It follows from the above that the key point for the description
of a many-body bosonic system trapped in an optical lattice is the implementation of an
effective multiorbital Hubbard model in order to restrict the corresponding computational
costs and also take the important, for the system under consideration, effects into acount.
In this direction extended Hubbard models have been constructed including, for instance,
correlated and occupation dependent tunneling contributions within the lowest-band as well
as correlated tunnelings and occupation of higher-bands. A multitude of such extended
Hubbard models have already been suggested and are also summarized in various reviews
e.g. see [62-64]. As a final remark let us list some of the effects predicted by such models and
also observed in the past decade in many different experiments: i) modifications of on-site
interactions [26,187,267-269], ii) observation of density-induced tunneling [64,85-91,270], iii)
effects of excited-bands [38,271-276], iv) shift of the Mott-insulator transition in a Bose-Fermi
mixture [86,88,277,278] and v) dynamical spin effects [279-281] to name a few.
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2.2 Mean-Field Theory and the Gross-Pitaevskii Equation

Within the weakly interacting regime and large particle number limit, quantum fluctuations
can be neglected to a good approximation. In this regime most of the atoms occupy the same
condensate wavefunction [1-3,282]. This latter assumption essentially reduces the many-
body problem to an effective single-particle one, where all interaction effects solely manifest
themselves in the deformation of the associated single-particle orbital.

As already discussed in Sec. 2.1.2 a sufficiently dilute ultracold atomic gas, composed
by N interacting bosons each of mass m and confined by an external potential Viz(z) is
described by the many-body Hamiltonian of Eq. (2.6). The mean-field approximation is
based on the assumption that only one single-particle state ¢(x) is mainly occupied in a
macroscopic way, i.e. its occupation number Ny is of the order of the number of bosons V.
Then, the state of the total system is given by

N

U(zy,...,zn) = [ [ o), (2.21)

i=1

where x; labels the spatial coordinate of the atoms. For simplicitly below we shall use
the notation z; = x. According to the above, within the mean-field realm it makes sense
to consider the following separation of the macroscopic (condensate) contribution from the
bosonic field operator

U(z) = (¥(z)) +0¥(x), (2.22)

where (¥(x)) = ¥(z) is known as the macroscopic wavefunction of the condensate, while
0¥ (x) describes its non-condensed part and accounts for quantum and thermal fluctuations
[1,2]. Operating in the low energy limit where V(x —2') = gé(z — 2') with g = 4wh?a/m, the
zeroth order theory (i.e. ignoring quantum and thermal fluctuations described by 0¥ (x)) for
the underlying bosonic system can be obtained e.g. by means of the Heisenberg equation of
motion ih%—‘f = [H,¥]. Such a consideration leads to the famous Gross-Pitaevskii equation

2 52
malll(x,t): hs 0

o — o g+ Vert(0) + 9[22, )| W(a,t). (2.23)
Here W¥(x,t) is normalized to the number of atoms, namely N = [ dz |¥(z, t)|* and the non-
linearity introduced by the interatomic interactions is characterized by the s-wave scattering
length a with @ > 0 (a < 0) for repulsive (attractive) interatomic interactions respectively.
It is worth mentioning that the Gross-Pitaevskii equation can also be obtained by following
a variational procedure, namely by imposing the stationarity condition §S = 0 to the action
S = [dtdz(ih¥* 2 W) + [ dt€ with € = [ dx [2% U1 + Vewr |9 + § |x1/|4} being the energy
functional. While the Gross-Pitaevskii theory describes a perfect Bose-Einstein condensed
state with all atoms occupying the same single-particle orbital, small deviations can be taken
into account in the large particle limit NV > 1 via a perturbative approach known as the
Bogoliubov theory [1,2,283]. Indeed, decomposing the bosonic field operator as in Eq. (2.22),
the Hamiltonian can be expanded up to quadratic order with respect to 6V assuming that
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this term is small when compared to the condensate orbital. The resulting Hamiltonian is
then diagonalized using the so-called Bogoliubov transformation [see details in [282, 283]]
leading to a non-interacting theory of quasi-particles with a pair-correlated ground state
[284,285]. This approach can provide valuable information for the breakdown of the mean-
field approximation [286-294]. However, its first basic assumption of small quantum depletion
cannot be systematically checked, while the requirement N > 1 makes this approach not
suitable for studying few-body systems as well as the crossover from few- to many-body
physics.

The Gross-Pitaevskii framework can naturally be generalized to describe a weakly inter-
acting bosonic mixture consisting of species A and B each one being governed by its own
wavefunction U 4(z,t) and ¥p(z,t) respectively [1-3]. Considerations similar to the ones dis-
cussed in the single component case yield, for instance, the corresponding energy functional
of the mixture of the two condensates. Then, following a variational principle leads to the
coupled Gross-Pitaevskii equations

2 2
iha‘llA(:L‘,t) _ |: ¢ 0

VA (2) + g [Uale, ) + gan |w3<x,t>ﬂ U, t)

¢ 2 2
0 T;”LA 32 (2.24)
mwz 9 + VB, (2) + g5 |Up(z, 1) + (W a(z,1)?|| Up(z,t)
ot 2mp Ot? ext 9B 1T BT gAB 24 B

Here m 4, mp denote the mass of each component subjected to the external potentials V4, ()
and VB,(x) respectively. Furthermore, g4 = 4wh?as/ma, gp = 4nh?ap/mp and gap =
47rh2aAB/mAB refer to the intra and interspecies coupling constants with a4, ap, aap the
corresponding scattering lengths and 1/map = 1/ma + 1/mp.

Concluding, the mean-field Gross-Pitaevskii approximation has been proved very success-
ful in describing phenomena in various areas of physics concerning weakly interacting bosonic
gases and mixtures thereof. For instance, within the Gross-Pitaevskii framework the forma-
tion, interactions and dynamics of various types of excitations in a Bose-Einstein condensate
such as dark [283,295,296], bright [3,297,298] and dark-bright solitons [299-302] or vortices
(see Refs. [303-308]) have been described. However, alterations on the properties of these
structures have already been reported when correlations are taken into account. Some of
the most prominent examples of such alterations include the decay and splitting of quantum
dark [286-294] and dark-bright solitons [309], interactions between bright solitons embedded
in a many-body environment [334] and the smearing effect of a vortex core [310].

2.3 Many-Body Methodological Approach: ML-MCTDHX

The field of ultracold atoms constitutes nowdays a major challenge for theoretical approaches
due to the enormous variety of relevant scenarios that can be considered involving a broad
range of interaction strengths and particle numbers, the presence of more than a single
species, various trapping potential landscapes and different dimensionalities. Recently, there
are many highly sophisticated computational methods to treat the nonequilibrium quantum
dynamics of many-body systems (see e.g. Ref. [311] and references therein). Here, we are
not aiming at reviewing all these methods but rather mention only a few of them. Well
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celebrated examples of such many-body methods include but are not limited to the exact
diagonalization approach [246, 247,250,251, 312], the density matrix renormalization group
methods (DMRG) [313-316], field-theoretical approaches [317-319], the Monte Carlo methods
[320,321] and variational methods [322].

In the following, we focus on a variational approach, namely the Multi-Layer Multi-
Configuration Time-Dependent Hartree method for atomic mixtures (ML-MCTDHX) [97—
100] employed in Refs. [[1-10]]. ML-MCTDHX is a wave packet dynamical approach tailored
to treat finite size systems of bosons and atomic mixtures and it is therefore perfectly suited
for our studies. Moreover, it naturally allows for studying the dynamics as well as the ground
state of an ultracold atom system. This method originates from the quantum chemistry Multi-
Configuration Time-Dependent Hartree method (MCTDH) [323,324] designed for molecular
dynamics. It has recently been applied successfully also to few-boson systems [325-328].
MCTDH has been initially designed for handling distinguishable particles, a fact that limits
its efficiency in simulations of indistinguishable bosonic systems. New methods have been de-
veloped based on MCTDH to conquer this limitation by taking into account the permutation
symmetry of the bosons on the very fundamental level of the working equations, and these
new methods, e.g. MCTDHB [329-332], have been successfully applied to various bosonic
systems [333-339]. To extend the research to macroscopic bosonic and fermionic mixtures
of arbitrary number of species, ML-MCTDHX has been recently developed [97-100]. This
method does not only takes into account the permutation symmetry of the bosons (fermions)
in the working equations, but also utilizes the multilayer scheme for the system wave vector
expansion, a fact that grants the method the flexibility of studying bosonic and fermionic
mixtures of arbitrary species in all spatial dimensions and internal degrees of freedom, e.g.
spin components [340, 341].

Next, we explicate the working principles of ML-MCTDHX by providing the wavefunction
ansatz for an atomic mixture and elaborate on the significance of the involved reduced density
matrices. Finally, we provide a short discussion on the convergence of the method. For a more
detailed discussion on this method, however, we refer the interested reader to Refs. [97,98].

2.3.1 Many-body Wavefunction ansatz for Binary Mixtures

ML-MCTDHX [97-100] is a flexible variational method for solving the time-dependent many-
body Schrédinger equation of atomic mixtures. It relies on expanding the total many-body
wavefunction with respect to a time-dependent and variationally optimized basis. The latter
enables us to capture the important correlation effects using a computationally feasible basis
size. In this way, we can obtain converged results with a reduced number of basis states
compared to expansions relying on a time-independent basis. Finally, its multi-layer ansatz
for the total wavefunction allows us to account for intra and interspecies correlations when
simulating the dynamics of e.g. bipartite systems.

A binary ultracold atomic setup is a bipartite composite system residing in the Hilbert
space HAB = HA @ 1B, with H° being the Hilbert space of the o species. To take into
account correlations between the different (inter-) or the same (intra-) species, M distinct
species functions for each species are introduced obeying M < min(dim(H4), dim(#?)). In
this way, the many-body wavefunction Wjysp can be expressed according to the truncated
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Schmidt decomposition [342,343] of rank M

M
Uyp(x,xPit) = () U (x0T (xP ). (2.25)
k=1

The Schmidt weights A () in decreasing order are referred to as the natural species popula-
tions of the k-th species function W§ of the o species. Note that {¥{} forms an orthonormal
Ny-body wavefunction set in a subspace of H?. To quantify the presence of interspecies
correlations or entanglement we use the eigenvalues A\ of the species reduced density matrix

PV (x7, %7 1) = /de"ﬂS'UI‘IJ}(V[B(XU,Xg/;t)\I’MB(X/G,XJ/;t) (2.26)

where x7 = (z9),--- TN, 1), and o # o’. In case that multiple eigenvalues of p’Vo are
macroscopically populated the system is referred to as species entangled or interspecies cor-
related, otherwise it is said to be non-entangled. Evidently [see also Eq. (2.25)], the system
is entangled [342, 344, 345] when at least two distinct Mg (¢)’s are finite, which implies that
the corresponding many-body state cannot be expressed as a direct product of two states
stemming from H* and HB. Therefore the quantity 1 — \;(t) offers a measure for the degree
of the system’s entanglement. A particular configuration of A species Wy (x4;t) is always
accompanied by a particular configuration of B species \Ilk(xB ;t) and vice versa. Indeed,
measuring one of the species states e.g. \Iff, collapses the wavefunction of the other species
to \I/E thus manifesting the presence of bipartite entanglement [342,346,347]. Summarizing,
the above many-body wavefunction ansatz W,;p constitutes an expansion in terms of differ-
ent interspecies modes of entanglement, where /A (t) W (x; £)¥B (x5 t) corresponds to the
k-th entanglement mode.

To include interparticle correlations each of the species functions ¢ (x7;t) is expanded us-
ing the permanents (determinants) of m? distinct time-dependent bosonic (fermionic) single-
particle functions (SPFs) ¢1,..., ome

Mmoo

No'! ni
‘I’%(XU§ t) = Z Ck,(nl,‘..,nma)(t) Z Slgn(Pz)CPz H (pl(:Ej; t) e H Pme (ﬂjj; t)
=1 j=1 j=1

N1yeeeyNno
> ni=N
(2.27)

¢ = 0,1 refers to the case of bosons and fermions respectively and sign(P;) denotes the sign
of the corresponding permutation. P is the permutation operator exchanging the particle
configuration within the SPFs. ¢, . . .)(t) are the time-dependent expansion coefficients
of a particular determinant (for fermions) or permanent (for bosons), and n;(t) denotes the
occupation number of the SPF ¢;(x;t). Furthermore, the SPFs are expanded within a time-
independent primitive basis |k) of dimension M,,. For the physical systems presented in this
thesis, within our implementation we use a sine discrete variable representation as a primitive
basis for the SPFs. Following a variational principle, such as the Lagrangian [348], McLachlan
[349] or the the Dirac Frenkel [350,351], for the generalized ansatz [see Eqs. (2.25), (2.27)]
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yields the ML-MCTDHX equations of motion [97,98]. For bosonic mixtures, these consist
of a set of M? ordinary (linear) differential equations of motion for the coefficients A (%),

mA—1)! mB_1)1
coupled to a set of M |:(]]\\7[:!—é_mA_11))!' (]1\[\/5!4(—”13_11))!'

the species functions, and m 4 +mp non-linear integrodifferential equations for the SPFs. We
note here that e.g. for Bose-Fermi mixtures, the non-linear integro-differential equations for

B_ ..
(]J\\,:’: !J(rgg_ll))!! + N (n??;l NF)!:| , where the indices B, F' denote the

corresponding bosonic and fermionic component respectively. A detailed derivation of these
equations of motion can be found in [97-100].

The corresponding one-body reduced density matrix of the o species can be expanded
[see Eq. (2.25)] as

} non-linear integrodifferential equations for

the species functions are M {

PV (@0 ) = / ANz AN 7 W, %X ) g (%77 )

v (2.28)
1
- Z Ak (%) pl(C >’U(x,x';t),
k=1
Where o # O'/, i'o' — (m‘f’ xg, e 7.’[:?’\7071), and
V7 (@, a5 ) = / VT (2,27 )W (2!, 275 1) (2:29)

denotes the one-body density matrix of the i-th species function. We remark here that
the bosonic (fermionic) subsystem is termed intraspecies correlated if more than one (N,)
eigenvalvalue(s) of p(17(z, ') are macroscopically occupied, otherwise it is fully coherent
(Hartree-Fock correlated).

Moreover, the eigenfunctions of the o-species one-body density matrix, p(l)’”(:v, x'), are
the so-called o-species natural orbitals, ¢7 (x;t). For our purposes, here, we consider them to
be normalized to their corresponding eigenvalues

nf () = [ do |7 @0 (2.30)

ng

7(t) are known as the natural populations and for bosons 1 — n{(t) [1 — >, nf(t) with
i = 1,...,N, for N, fermions| serves as a measure of the degree of the o species inter-
particle correlations [352-355]. Finally, it can be easily shown that in a bosonic [fermionic]
system when n{(t) = N7, n,,(t) = 0 [32;nf(t) = N7, n,y (¢) = 0] the first [first ]
natural orbital(s) ¢7(z7;t) [¢7(x7;t), ¢ = 1,..., Ny] reduces to the mean-field [Hartree Fock]
wavefunction.

2.3.2 Limiting Cases and Convergence of the Many-Body Simulations

A major challenge for many-body simulations is to achieve a desirable degree of convergence.
To judge the quality of the ML-MCTDHX ansatz one has to carefully examine the trun-
cation order of the total system’s Hilbert space which is indicated by the used numerical
configuration space C' = (M;ma; mp; My,). Here, M = My = Mp refers to the number of
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species functions and m 4, mp denote the amount of SPFs for each of the species while M,
is the size of the employed primitive basis. It is also worth mentioning at this point that ML-
MCTDHX can operate in different approximation orders. As such when choosing m, = M,

and M, = %, our wavefunction ansatz is of full configuration-interaction type thus
covering the Jcomplete system’s Hilbert space. In the other extreme case of neglecting all
correlations by setting M = 1 and m, = 1 for bosons (m, = N, for fermions), the ML-
MCTDHX equations of motion reduce to coupled Gross-Pitaevskii (Hartree-Fock) equations
of motion, depending on the statistics of the components. In between the above-mentioned
extreme cases, i.e. for not too strong inter and intraspecies correlations, one expects that it
is sufficient to consider only a few species functions and orbitals, a fact that leads to a much
higher efficient representation of the many-body state. Therefore employing ML-MCTDHX,
my, and M need to be chosen according to the dominant correlations in the system under
consideration such that the many-body expansion becomes efficient, i.e. it involves as few
coefficients as possible, while capturing all relevant correlations.

To infer about the convergence of a many-body simulation, one has to systematically
increase mgy, M and M,,, namely enlarge the subspace within which ML-MCTDHX finds the
variationally optimal solution, and compare the results for the observables of interest, e.g.
the variance of the density distribution or the total energy of the system. Additionally, in
distinct situations, there are observables which can provide analytical estimations, e.g. the
center of mass variance given that the center of mass motion is decoupled. Such observables,
although limited, can also be employed to judge the convergence of the ML-MCTDHX sim-
ulations [97]. Let us emphasize here that increasing the number of basis functions of the
ML-MCTDHX method implies that the corresponding many-body simulations become com-
putationally costly and at some point prohibitive. An auxiliary indicator for the obtained
numerical accuracy is provided by the population of the lowest occupied species functions
and natural orbitals for each species which should be kept below 1%. Therefore, if there are
species functions and natural orbitals which are barely populated, one can assume to have
supplied a large enough basis for the calculation [97-100]. In this sense, a negligibly occupied
lowest natural population A§,(t) [ng, (t)] means that the corresponding species function NSF
[natural orbital] essentially does not contribute to the numerically obtained |¥y/p(t)). Such a
convergence investigation provides in practice a good indicator for the considered basis being
sufficiently large, however it cannot be considered as a strict convergence criterion [356,357].
In summary, the degree of convergence in general depends on the observable of interest, of
course.

2.3.3 Wavefunction Ansatz for Scalar Bosons

We remark that in the case of structureless (scalar) bosons the above outlined ML-MCTDHX
computational package reduces to the Multi-Configuration Time-Dependent Hartree method
for bosons (MCTDHB) [329-332]. The latter has already been applied for a wide set of
nonequilibrium bosonic settings, e.g. see [333-339]. Therefore in order to solve the many-
body Schrédinger equation (ihd; — H) |¥(t)) = 0 of the interacting bosons as an initial value
problem |¥(0)) = |¥y), we rely on MCTDHB.

As already outlined for ML-MCTDHX, the MCTDHB allows for a variationally optimal
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truncation of the Hilbert space as we employ a time-dependent moving basis where the system
can be instantaneously optimally represented by time-dependent permanents. Consequently,
the many-body wavefunction |Ws5(t)) is expanded in terms of the bosonic number states
|n1,m2,...,nar;t), that built upon time-dependent single-particle functions (SPFs) [¢i(t)),
i=1,2,..., M, and time-dependent weights Cy,(t)

(Warp () =Y Cult) [n1,ng, ..., nas; B). (2.31)

In the last expression M denotes the number of SPFs and the summation n is over all
the possible combinations n; such that the total number of bosons IV is conserved. Within
our numerical implementation, the SPFs are expanded on a so-called primitive basis {|k)} of
dimension Mpy,. In all presented contributions [[1-10]] we use as a primitive basis for the SPFs
a sine discrete variable representation which intrinsically introduces hard-wall boundaries at
both ends of the potential.

To determine the time-dependent many-body wavefunction |¥/5(t)) we need to calculate
the equations of motion for the expansion coefficients Cy(t) and the SPFs |¢;(¢)). To obtain
these MCTDB equations of motion [329, 330, 358] we follow a variational principle such as
the Dirac-Frenkel [350,351] R

(0¥ prpli0r — H|W ) = 0. (2.32)

The aforementioned equations consist of a set of M non-linear integrodifferential equations
of motion for the SPFs which are coupled to the % linear equations of motion for
the coefficients Cp(t). Finally, let us note that in the limit in which M = M, the above
expansion is equivalent to a full configuration interaction approach. Moreover, in the case
of M = 1 the many-body wavefunction is given by a single permanent |n; = N;t) and the

method reduces to the time-dependent Gross-Pitaevskii mean-field approximation.

2.4 Many-Body Eigenspectrum of Few-Bosons in a Triple-
Well

A major focus of the present cumulative thesis is to unravel the microscopic processess of few
lattice trapped bosons when exposed to a particular quench protocol. For our investigations
and in sharp contrast to the discrete Bose-Hubbard model we employ a continuum space
Hamiltonian [see for instance Eq. (2.33) below| which enables us to resolve quench-induced
higher-band excitations. For the sake of completeness let us note that the Bose-Hubbard
model remains an adequate approximation for the theoretical description of the quench dy-
namics in deep lattices and for relatively small quench amplitudes when compared to the
lattice band gap. To expose the underlying physical processes that can lead to the emergence
of such many-body excited states [[1-6]] we mainly follow two pathways. First, we invoke
the corresponding many-body eigenspectrum of the system. Such a calculation is, of course,
computationally prohibitive for large systems however it is feasible for few-body ensembles
trapped in a finite lattice. Furthermore, in order to comprehend the microscopic processess
that participate in the quench-induced dynamics we employ the notion of non-interacting
multiband Wannier number states.
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Below we first explicate the formalism of the multiband expansion and categorize the num-
ber states of two respresentative few-body ensembles consisting respectively of three and four
bosons in a triple well. Then we briefly discuss our numerical approach, within MCTDHB, to
obtain the many-body eigenspectrum and finally we showcase the many-body eigenspectrum
of three and four bosons confined in a triple well as a function of the interparticle repulsion.

2.4.1 The Multiband Wannier Number State Basis

The understanding of the spatial localization of states in lattice systems renders the use
of multiband Wannier number states crucial as the latter enables the interpretation of both
intraband and interband processes involving also information about the population of excited-
bands. Generally, such a representation becomes valid when the lattice potential is deep
enough so that the Wannier states between different wells possess a fairly small overlap in
space for not too high energetic excitations. In this way, each localized Wannier function can
be adequately assigned to a certain well and the respective band-mixing is fairly small.

As already mentioned in Section 2.3.3, MCTDHB exploits a wavefunction expansion in
terms of time-dependent variationally optimized SPFs namely Wy p(t) = >, Cn|n(t)). How-
ever, for the analysis of the induced dynamics in lattice systems, it is more intuitive to rely
on a time-independent basis instead of a time-dependent one. To this end, we project the
numerically obtained MCTDHB wavefunction on a time-independent number state basis and
thus make the connection with the multiband Wannier functions. This time-independent
basis is constructed by single-particle Wannier states localized on each lattice site. We pro-
vide as many non-interacting Wannier states as required in order to ensure that during the
dynamics the new basis is complete. To enable the above projection we have developed in
the framework of ML-MCTDHB a fixed basis analysis package in terms of which we use
a time-independent basis for the expansion of the system’s wavefunction. Summarizing, in
order to identify the modes participating in the dynamics we project the numerically ob-
tained many-body correlated MCTDHB wavefunction on a time-independent number state
basis consisting of single-particle Wannier states being localized on each lattice site. This
expansion allows us to study inter- and intraband transitions [[1-8]].

The many-body bosonic wavefunction of a system with N bosons, m-wells and j localized
single particle states [[1-6]] reads

’\I/> = ZC{ni}\nl,nQ,...,nm>, (233)
{ni}

(2)

where |ny, ng, ..., n,,) is the multiband Wannier number state, the element n;, = ngl) ®n,

®
®ngj ) and the occupation of the Wannier orbital n,gk) refers to the number of bosons which
reside at the i-th well and k-th band. Due to the fixed number of bosons NV the total number
of configurations is constrained by > ", Zf\;ll nl()‘) = N. For instance, in a setup with N =4
bosons confined in a triple well (m = 3) which includes j = 3 single-paticle states, the state
\1(0), 1M e1M), 1(0)> indicates that in the left and right wells one boson occupies the Wannier

orbital of the energetically lowest-band while the remaining two bosons are in the middle
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well, residing in the Wannier orbital of the first excited-band. For simplicity, in the following,
we shall omit the zero index when referring to the energetically lowest (i.e. zeroth) band.

Below, we shall calculate the eigenspectrum with respect to the interparticle repulsion for
the characteristic cases of three and four bosons in a triple well. To analyze the corresponding
eigenspectra it is instructive to energetically categorize the involved number states. In this
way, for the three particle case one can realize three different energetic classes of number
states with respect to the interparticle repulsion. Namely, the triples {|3,0,0)+ O} (T'), the
single pairs {|2,1,0)+ O} (SP) and the singles {|1,1,1)+ O} (S), where O stands for all
corresponding permutations. For later convinience we further classify the excited-band ener-
getic classes into single-particle excitation (SE) and higher excited (HE) classes. The former
[latter] class involves states of single [double] occupancy in every site with one excitation to
the first excited-band e.g. {|1,1M, 1)+ 0} {[1 ® 1M, 1,00+ ©} and {11, 2,0)+ O}]. Ac-
cordingly, for the case of four particles in a triple well and regarding the zeroth band states
four distinct energetic classes of number states can be realized. Namely, the single pairs (SP)
{12,1,1)+ O}, double pairs (DP) {|2,0,2)+ O}, triples (T) {|3,1,0)+ O} and quadruples
(Q) {|4,0,0)+ O}

2.4.2 Improved Relaxation Scheme

To obtain the n-th many-body eigenstate we rely on the so-called improved relaxation scheme
implemented within MCTDHB. This numerical scheme can be summarized according to the
following procedure

e Initialize the system with an ansatz set of SPFs {|¢§0)>}.

Diagonalize the Hamiltonian within a basis spanned by the SPFs.

Set the n-th obtained eigenvector as the Cy(0)-vector.

Propagate the SPF's in imaginary time within a finite time interval dr.

Update the SPFs to {\(ﬁgl))}.

Repeat the above-mentioned steps until the energy of the state converges within the
prescribed accuracy.

To explore the dynamics, we propagate the many-body wavefunction (obtained via the
improved relaxation scheme) by utilizing the appropriate Hamiltonian within the MCTDHB
equations of motion.

2.4.3 Eigenspectrum of Three and Four Bosons

The eigenspectrum of a lattice system provides invaluable information about the participat-
ing states for a given set of Hamiltonian parameters. In particular, inspecting the system’s
eigenspectrum several unique properties inherent to the system under consideration can be
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revealed, such as the bandwidth, the band gap and possible avoided or exact crossings be-
tween different many-body eigenstates [362]. Such a knowledge equips us with information
that is necessary in order to understand and analyze the microscopic mechanisms being re-
sponsible e.g. for the corresponding quantum quench dynamics [[4,6]]. Next, let us discuss
the eigenspectrum of three and four bosons trapped in a relatively deep triple well system
for varying interparticle repulsion.

Figure 2.4: (a) Dependence of the lowest 25 eigenenergies E; on the interparticle repulsion
g for three bosons confined in a triple well with a potential depth V{; = 10. The solid boxes
indicate the superfluid to Mott-insulator transition. (b) The same as in (a) but for the case
of four bosons trapped in a triple well. In both panels solid (dashed) lines indicate the parity
even (odd) eigenenergies, while the existing wide (narrow) avoided-crossings possessing a
width 6F > 0.01 (0F < 0.01) are marked by solid (dashed) circles. The eigenenergies of the
eigenstates that do not contribute to any wide avoided-crossing are shown in grey. Finally,
the energy regions E,, E* and the subbands possessing zero, single and more than one excited
states are indicated by the respective bars.

We first focus on the case of three bosons confined in a relatively deep triple well, namely
Vo = 10.0 Er. The corresponding eigenenergy spectrum of the first 25 lowest-lying eigenen-
ergies for increasing interparticle repulsion is depicted in Fig. 2.4 (a). As it can be seen,
close to the non-interacting limit, g ~ 0, the many-body eigenstates are energetically catego-
rized according to their corresponding particle configuration in terms of single-particle bands.
Indeed, the eigenstates of the system are predominantly bunched onto two energy regions de-
noted by F, and E* in Fig. 2.4 (a) respectively. Namely, the eigenstates lying within £, do
not possess any higher-band excitations, while those bunched onto E* refer to states with one
single-particle excitation to the first excited-band. The width of the aforementioned energy
regions defines the so-called bandwidth, and depends on the tunneling coupling between the
different sites. Note that the term tunneling coupling refers to the corresponding inverse
tunneling rate [19,20,93,94]. Furthermore, the distance between E* and Ej is characterized
by the band gap between the ground and the first excited-band of the non-interacting system.
Concerning the decomposition of each eigenstate in terms of spatially localized Wannier num-
ber states [see Eq. (2.33)] it turns out that it is an admixture of all the energetic classes S,
SP and T. The latter is a consequence, of course, of the spatial delocalization of the bosons

36



THEORETICAL FRAMEWORK

within the triple well, and therefore manifests the few-body analogue of the superfluid phase
for small interaction strengths.

For increasing repulsion the energy expectation value of the number states belonging to
the SP and T classes increases. As a consequence, the same holds for the eigenenergies of
the eigenstates to which the aforementioned number states are contributing. In particular,
for 0 < g < 0.5 a multitude of avoided-crossings is observed, see Fig. 2.4 (a), which essen-
tially indicate the tunneling coupling between the S, SP and T number states of the same
parity. This interaction regime corresponds in our few-boson system to the region where the
transition from the superfluid to the Mott-insulator phase occurs. Turning to g > 0.5 the
eigenenergies of the lowest-band become well separated into three subbands according to the
energetic class of their dominant number state [see Fig. 2.4 (a)]. Here, the ground state of
the system is dominated by the S class manifesting in this way the few-body analogue of the
Mott-insulator phase. Moreover, the SP and T class eigenstates are also bunched together
forming the SP and T subbands, while the eigenstates of the T" subband (being the most
sensitive to interparticle repulsion) experience wide (see solid circles) and narrow (see dashed
circles) avoided crossings with the eigenstates possessing a higher-band excitation. Let us
note here in advance, that the wide avoided-crossings are related to the onset of the cradle
mode, described in [[1,2]], and are a consequence of the interaction induced decay of an SP
or T state caused by the scattering of one of the bosons that reside in the same well to the
first excited state of an adjacent site. This process generates the so-called cradle mode which
represents a dipole-like intrawell oscillation in the outer wells of the finite lattice.

A similar behavior to the above is also observed when inspecting the many-body eigen-
spectrum of four bosons confined in a relatively deep triple well, Vj = 10 Eg, for increasing
interaction strength [see Fig. 2.4 (b)]. However, here the number of the involved eigenstates
is higher since there exist more possible particle configurations when compared to the three
boson case. Most importantly, a transition from a supefluid to a Mott insulating state is
prohibited due to the incommensurate filling factor. Fig. 2.4 (b) presents the eigenenergy
spectrum of the first 20 lowest-lying eigenenergies for increasing g. For very weak interactions
the many-body eigenstates are energetically categorized according to their corresponding par-
ticle configuration in terms of single-particle bands. In particular, they majorly reside within
two energetically different regions denoted by F, and E*. The eigenstates within F, do not
possess any higher-band excitations, while those lying in E* correspond to states with one
single-particle excitation to the first excited-band. Remarkably enough, we observe the oc-
curence of an exact crossing between the () class eigenstate with the eigenstates possessing
a single higher-band excitation at g ~ 0.8. Moreover the T' class exhibits exact (avoided)
crossings with states referring to a higher-band excitation at g =~ 2.4 (¢ = 3 and g ~ 4.3).
Let us finally mention in advance that within [[1,2]] the observed interaction quench dynam-
ics is mainly a consequence of these exact and avoided-crossings between the many-body
eigenstates at distinct interparticle repulsions.
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2.5 Single-Shot Simulations in Binary Bosonic Mixtures and
Scalar Bosons

Single-shot experimental measurements of ultracold quantum quantum gases probe the spa-
tial configuration of the atoms which is dictated by sampling the many-body probability
distribution. In particular, an experimental image refers to a convolution of the spatial par-
ticle configuration with a point spread function. This point spread function describes the
response of the imaging system to a point-like absorber (atom). Such single shots images can
be successfully simulated when having the many-body wavefunction at hand as is the case of
operating within ML-MCTDHX.

Quantum mechanically the positions (x1,...,zx) of N particles measured in an ex-
periment are distributed according to the N-particle probability density P(xi,...,xn) =
|V (z1, ... ,a:N)IQ, where Uyrp(x1,...,zN) refers to the many-body wavefunction of the
system. In general, when the probability ¥ /5(x1,...,zxN) is known, single shots can be sim-
ulated by drawing the positions of all particles from P(z1,...,zy), resulting in a vector of
positions (27, ..., zy) that we refer to in the following as a single shot. The main difficulty to
perform the above procedure stems from the fact that the functional form of the many-body
wavefunction is generally not known in many-body dynamics. To sample P(xy,...,xx) one
needs to realize that

P(x1,...,xn) = P(z1)P(x2|21) ... P(xNn|TN_1,...,21). (2.34)

P(x2|xy1), for instance, denotes the conditional probability to detect an atom at position xs
if another one is located at x1. The key point in this procedure is to draw the positions of all
N particles. In this way, we first draw 2 from P(x;), then x5 from P(z3|z}), next x4 from
P(x3|ah, ) and so on. Following the above-mentioned procedure we obtain a histogram of
a single-shot (2], ..., y), which is analogous to an experimental image. Here we provide an
algorithm to simulate single shots for a binary bosonic mixture from the (N4 + Np)-body
ML-MCTDHX wavefunction [see also Eq. (2.25)] obtained by numerically solving the time-
dependent many-body Schrodinger equation (ihdy — H) |¥(t)) = 0. Moreover we show how
this single-shot algorithm can also be used to perform such simulations in a scalar bosonic
ensemble using the corresponding N-body wavefunction ansatz [see Eq. (2.32)].

2.5.1 Single-Shot Procedure

Referring to a two-species bosonic mixture our aim is to mimic the corresponding experi-
mental procedure and simulate single shot images for both species A [namely A% (Z;tm,)]
and species B [i.e. AP(2/|A%(&); tim)] at each instant of the many-body evolution when we
consecutively image at time t = t;,,, first the A and then the B species. To achieve this we
rely on the many-body wavefunction being accessible within the ML-MCTDHX framework.
It is important to remark that for the modelling of the point spread function, being related
to the experimental resolution, we use a Gaussian possessing a width w which is commonly
much smaller than the typical length scale (e.g. in a harmonic trap this is the harmonic
oscillator length) of the system.
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As already mentioned, our single-shot simulation procedure relies on a sampling of the
many-body probability distribution [310,359-361] which is accessible via ML-MCTDHX. For
a two-species bosonic ensemble and when inter and intraspecies correlations are taken into
account, the degree of entanglement between the distinct species is crucial for the image
ordering. Indeed, the role of entanglement between the species is manifested by the Schmidt
decomposition [see Eq. (2.25)] and in particular is incorporated in the Schmidt coefficients
Ai’s. Let us first analyze the situation where first the species A is imaged and then the species
B.

In order to image first the A and then the B species we consecutively annihilate all the
N4 particles. Referring to a certain time instant of the imaging, t¢;,, a random position

(1)

is drawn satisfying the constraint pNA(ac'l) > [; where [; is a random number within the
interval [0, max{pg\l,i (x;tim)}]. Next, we project the (N4 + Np)-body wavefunction to the

(N4 — 1+ Np)-body one, by using the operator %(@A () ®1p). Wa(z}) is the bosonic field
operator that annihilates an A species boson at position 2 and N is a normalization constant.

The above-mentioned process directly affects the Ay coefficinets (entanglement weights) and
thus despite the fact that the B species has not been imaged yet, both pg\l&_l(tim) and
pg\l,l)g (tim) are altered. The latter can be easily shown by carefully inspecting the Schmidt
decomposition. Indeed after the first measurement the form of the many-body wavefunction

reads

B B (1 Z Ai N a1 (Eim) [ T2, 1 (L)) PP (tim))- (2.35)

]\iliANA_1> \IJA(Sb‘l)’\I/A> refers to the (N4 — 1) species wavefunction. The constant NV; =

\/(W?!@L(xl)\lm(xl)|‘llf> denotes the corresponding normalization factor and Ay, 1 =
AilN;/ 32 AiN? are the Schmidt coefficients referring to the (N4 —1+ Np)-body wavefunction.
To obtain a single-shot image we repeat the above-mentioned procedure for N4 — 1 steps.

The resulting distribution of positions (z, ¥5,...,#’y, ;) is convoluted with a point spread
1\2

(i*zi)
function and leads to a single-shot A4 (%) = va 4e 22 for the A species. Here, Z refers

to the spatial coordinates within the image and w is the width of the point spread function. It
is also worth mentioning that before annihilating the last of the N4 particles, the many-body
wavefunction possesses the form

|‘Ij1 1 (tim)) i1 (tim |<I>zl tim )07 (tim)) (2.36)

where |<I>f}1 (tim)) refers to a single-particle wavefunction characterizing the A species. It can
be easily shown that annihilating the last A species particle the many-body wavefunction
becomes

[BONE (t5,)) = ®Z Vi tim) (2122) 1B (tim). (2.37)
E \/)‘J, (tim)| x@leQ

39



THEORETICAL FRAMEWORK

Here <x|<1>ﬁl) is the single-particle orbital of the j-th mode. Evidently, performing this last
step the entanglement between the species is destroyed while the wavefunction of the B
species \\I/]]t]/[BB(tzm» corresponds to the second term of the cross product on the right hand
side of Eq. (2.37). Therefore, |\IIAN433(tm)) obtained after the annihilation of all N4 atoms
is a non-entangled Npg-particle many-body wavefunction and its corresponding single-shot
procedure reduces to the single species case [310,359].

The latter process is well-established and benchmarked in several works that consider
the correlated nonequilibrium quantum dynamics of ultracold scalar bosonic ensembles [310,
359-361]. Let us therefore only briefly outline the underlying process below. Focussing on a
specific time instant of the imaging, t = t;,,,, we first calculate p%}l (x; tim) from the many-
body wavefunction |¥y,) = |¥(tim)). Next we draw a random position z} which obeys
pg\lfj)g (s tim) > lo where Iy is a random number lying within the interval [0, p%é (x; tim)].

Then, one particle located at a position z} is annihilated and p%;_l(:):;tim) is calculated

from |Ux,_1). Subsequently, a new random position = is drawn from pg\l,;_l(:n;tim). In
total, this procedure is repeated for Np — 1 steps and finally we obtain the distribution
of positions (xf, xf ,...,x’](,B_l) which is then convoluted with a point spread function. The

above results in a single-shot AP (2/|. A% (%)), where Z’ denote the spatial coordinates within
the image. We note once more that for the employed point spread function a Gaussian of
width w is used.

Let us emphasize here that the same overall procedure has to be followed in order first to
image the B and then the A species. The latter imaging process results in the corresponding
single-shots AP (z) and A% (/| AP (%)).

In the next section and in particular within the outline of our first scientfic contribu-
tion [[1]] we discuss an application of the single-shots simulations during the nonequilibrium
dynamics of four scalar bosons confined in a triple well. Moreover, within [[9]] we provide
paradigmatic single-shot simulations for the case of a harmonically trapped Bose-Bose mix-
ture subjected to an interspecies interaction quench.
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Chapter 3

Outline of the Scientific
Contributions

In the present chapter, we summarize our scientific contributions published in Refs. [[1-10]].
The basic underlying concept of all contributions is the characterization of the nonequilibrium
dynamics of few-bosons confined in finite optical lattices. The nonequilibrium situation is
induced either by performing a quench [[1-6]] on a parameter of the Hamiltonian or by
considering a time-periodic driving of the optical lattice [[7-8]]. Additionally we investigate
the correlation properties in the quench-induced dynamics of a harmonically confined Bose-
Bose mixture [[9]] and the many-body expansion dynamics of a lattice trapped Bose-Fermi
mixture [[10]]. In all contributions we are aiming to microscopically characterize the quench-
induced processes, reveal their correlated nature and obtain a coupling between the distinct
triggered modes, thus providing a way to control the resulting nonequilibrium dynamics.

3.1 Hamiltonian of Few-Bosons in a Lattice

The many-body Hamiltonian of N identical bosons each of mass M confined in an one-
dimensional m-well optical lattice reads

L
H= Z{ 20 027 me]JrZVI T — x5). (3.1)

1<)

The lattice potential V.,; = Vjsin?(kx) is characterized by its depth Vp and periodicity
[. In this respect k¥ = 27/l denotes the wave vector of the counterpropagating lasers
forming the optical lattice. Within the ultracold regime, the short-range interaction po-
tential Vi(z; — ;) = gd(x; — x;) between particles located at positions x;, can be ade-
quately described by s-wave scattering. The effective one-dimensional coupling strength [363]

g= ]\Z - (1—1¢(1/2)| as/ﬂaL)il, where ¢ denotes the Riemann zeta function at x = 1/2.
The transversal length scale is given by a; = \/h/Mw, , where w, stands for the frequency of
the transversal confinement, while a® denotes the free space s-wave scattering length. The in-

teraction is tunable by a® with the aid of Feshbach resonances [5,6] or by means of w; [7,363].
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In the following we consider only the dynamics of repulsively interacting bosons, implying
that ¢ > 0. To restrict the infinitely extended trapping potential to a finite one with m
wells and length L, we impose hard-wall boundary conditions at the appropriate positions,
Tam = T57.

Below, the many-body Hamiltonian is rescaled in units of the recoil energy Er = h;]\k; .
Then the corresponding length, time, frequency and interaction strength scales are given in
units of k71, w;il = hEE{I, wr and 2ERk~! respectively. For convenience we shall also set

h =M =k =1 so that all quantities below are given in dimensionless units.

3.2 Basic Ground State Properties

Before exploring the dynamics, let us shortly comment on the ground state properties of a
lattice system for different filling factors v = N/m, where N denotes the particle number and
m the number of the wells. In the commensurate case, i.e. v = 1,2, ..., the ground state for
increasing interparticle interaction is known to exhibit the superfluid to Mott-insulator phase
transition [19,20] which has been addressed extensively in the past years, see also Fig. 3.1
(a). However, for a system characterized by an incommensurate filling, v # 1,2, ..., the main
feature is the existence of a delocalized fraction of particles which forbids the occurrence of
a Mott state [see Fig. 3.1 (b)]. Here, one can distinguish two physical situations. The case
v > 1 where on-site interaction effects prevail and the case v < 1 in which the main feature
is the redistribution of the particles over the sites as the interaction strength increases. We
note that such a delocalized phase has been explained in terms of the particle hole states
using a strong coupling expansion [93,94].

Three Bosons in a Triple Well Four Bosons in a Triple Well Five Bosons in Ten Wells
0.6 0.6
(a) —=0 (b) ——— (c) —=0
0.5 ——g=0.05/{ 05 —9=10.05/1 0.06 9=0.05
—g =05 —g=05 —yg=05
0.4 —g=2 0.4 —9g9=2 —g=2

0 0 10 20
€T T

0
X

Figure 3.1: One-body density for the ground state of (a) three and (b) four bosons confined in
a triple well and (c) five bosons in a ten well lattice potential. Different lines refer to distinct
interparticle repulsions (see legends).

Let us first briefly summarize the ground state properties for increasing interactions for
a setup consisting of four atoms in three wells, i.e. one extra particle on a Mott background.
For a more elaborated discussion on the eigenspectrum of this system see Section 2.4.3. The
main characteristic of the initial state is the competition between delocalization and on-site
interaction effects. The single-particle density for the non-interacting case g = 0 is largest in
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the middle site and decreases for the outer ones due to the hard-wall boundary conditions that
render the middle and outer sites non-equivalent [Fig. 3.1 (b)]. Entering the weak interaction
regime we observe a tendency towards a uniform population due to the repulsion of the
bosons. For further increasing repulsion a trend towards the repopulation of the central well
occurs. For strong interparticle repulsion, the state can be interpreted as a fraction N mod
m of extra delocalized particles being on a commensurate background of localized particles.
On the one-body density level the on-site populations are quite similar, which is attributed
to the localized background, while their slight observed discrepancy is caused by the non-
uniform distribution of the extra particle in the first excited-band, preventing the formation
of a perfect insulator phase even for strong repulsion, see Fig. 3.1 (b).

oo | (@) | TR
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Figure 3.2: (a) Evolution of the populations of the first nine natural orbitals for four bosons
confined in a triple well after an interaction quench with amplitude dg = 2.5. (b) Deviation
from unity of the population of the first natural orbital following interaction quenches of
different amplitudes dg (see legend). In all cases the system is initialized in the ground state
of four weakly interacting, g = 0.05, bosons in a triple well. dg = g5 — gin, With g7, gin
referring to the post and pre quench interaction strengths respectively.

Turning to the ground state for systems with filling factor ¥ < 1, the most important
aspect is the spatial redistribution of the atoms as the interaction strength increases. The
non-interacting ground state (g = 0) is the product of the single-particle eigenstates spreading
across the entire lattice, while due to the hard-wall boundary conditions the two central
wells of the potential are slightly more populated. For increasing repulsion within the weak
interaction regime the atoms are pushed to the outer sites which gain and lose population in
the course of increasing g, while the particle number fluctuations are more pronounced for the
wells with a lower population [364]. Summarizing, for v < 1 the one-body density remains
asymmetric even for strong interactions due to the low population, while the delocalized
fraction of particles permits the presence of long-range one particle correlations even in the
strongly repulsive regime [364]. A paradigmatic example of the ground state properties on
the one-body density level for increasing repulsion in such a system is shown in Fig. 3.1 (¢)
for five particles confined in ten wells.
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Figure 3.3: (a) Evolution of the one-body density temporal fluctuations §p™)(z,t) following
an interaction quench with amplitude dg = 2. (b), (¢) Temporal fluctuations of the averaged
images 0A(z,t) = A(xz,t) — (1/T) [ dtA(z,t) over Ngpors = 100 and Nypors = 500 after an
interaction quench with amplitude dg = 2 within the many-body approach. In all cases the
system consists of four bosons confined in a triple well and it is intitialized in its ground state
with g = 0.05.

3.3 Quench Dynamics in Scalar Few-Boson Ensembles

3.3.1 Quench Dynamics from Weak-to-Strong Interactions [[1]]

In [[1]] we investigate the correlated nonequilibrium dynamics of few-bosons confined in one-
dimensional finite lattices subjected to a sudden change in the interaction strength. Focusing
on highly non-perturbative situations by considering weak-to-strong interaction quenches
with respect to the initial state, we drive the system to a regime where the interparticle
interactions dominate in comparison to the kinetic energy. By considering strong quench
amplitudes and examining representative few-body setups for incommensurate filling factors,
our treatment lies beyond the validity of the lowest-band Bose-Hubbard model [19,20] which,
in this regime of interactions, provides at most a qualitative description of the system’s dy-
namics. To support our arguments we show in Fig. 3.2 the contribution of the consecutive
populated natural orbitals [see also Eq. (3.2)] during the nonequilibrium dynamics of four
bosons in a triple well after an interaction quench. Similar investigations, although restricted
to the weak interaction regime, have been performed within the realm of the Bose-Hubbard
model showcasing the dynamics of one-body inter and intra-site correlations [365-368]. Con-
trary to those studies, here, we are mainly interested on the microscopic characterization of
inter and intrawell quench-induced modes as well as on their controllability.

Starting from the weakly interacting ground state of the system we perform a quench
towards the strongly interacting regime. To avoid suppresion of tunneling due to Mott-
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(a) Initial State (b) Cradle Process
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Figure 3.4: Visualization of the cradle process generated by the over-barrier transport. The
system is (a) prepared in a weakly repulsively interacting superfluid ground state which is
(b) then subjected to a sudden interaction quench. A boson initiated in the central well can
overcome the lattice barrier and move to its neighboring well, resulting in a cradle motion
due to the interaction quench.

NN

—
T~
—

H

T~

—

T~
N

insulator phases arising for strong interactions we study setups of incommensurate filling
factors. Following an interaction quench we demonstrate the emergence of excited-band
modes linked to certain interband processes, namely the breathing and the cradle modes, as
well as the rise of the density-wave tunneling mainly corresponding to a lowest-band intraband
phenomenon. To identify the dominant microscopic mechanisms during the dynamics in terms
of a band structure we employ the concept of a multi-band Wannier number state basis. To
inspect the overall response of our system on the one-body level we resort to the temporal
fluctuations of the single-particle density, namely dp(1)(z,t) = pM(z,t) — <p(1)(az)>T with
(P (x))p = fOT dtp™M) (z,t)/T being the time-averaged single-particle density over evolution
time 7', see also Fig. 3.3 (a). A density-wave spatial pattern occurs which evolves in time and
reflects the tunneling dynamics after the quench namely the mode that transfers population
among the middle and the outer wells. More explicitly, this mode refers to an effective
breathing of the “global wavepacket” that reflects the instantaneous density distribution
of the trap. Intuitively, under an interaction quench the bosons tend to repel each other
and the cloud expands and contracts, mimicking this way the breathing dynamics of the
bosons as known in the harmonic trap. Recently [369] this mode has also been examined
in the framework of the Bose-Hubbard model for a quench on the lattice frequency. The
findings of the latter work suggest that such a “global” breathing mode also exists for many-
body systems in optical lattices where instead of our hard-wall boundaries a weak harmonic
confinement imposed to the lattice geometry renders the sites of the optical lattice non-
equivalent. To investigate in more detail the tunneling dynamics we employ the fidelity
spectrum [370, 371] for varying interaction strength. In this spectrum we identify three
different tunneling pathways which refer to single and atom pair tunneling. We remark that
atom-pair tunneling has already been observed for few-atoms confined in a driven double-
well [54,134].

Additionally in the intrawell dynamics two distinct excited modes occur. Namely the
middle well exhibits a breathing mode, due to the lattice symmetry, which can be identified as
an expansion and contraction of the bosonic cloud. For recent investigations on the properties
of the breathing mode as well as its dependence on the particle number and the interaction
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strength we refer the reader to Refs. [372-375]. The second mode we observe, generated in
the outer wells, is the so-called cradle mode, manifested as a “dipole-like” oscillation of the
localized wavepacket. The generation of this mode is accompanied by an initial over-barrier
transport of the particles from the central well to the outer ones due to the release of energy
into the system and the consequent collisions with the respective atoms in the outer sites,
reepresented schematically in Fig. 3.4. During the dynamical process, regions of density dips
(or dark cradles) in the outer sites are accompanied by enhanced breathing dynamics in the
middle site. Each of the above modes possesses different characteristic frequencies. For a
qualitative description of these modes we rely on the intrawell dynamics of dp(z,t) analyzing
in particular the Fourier spectra of representative intrawell observables. More explicitly, the
intrawell assymetry within each of the outer wells and the variation of the center of mass
coordinate for the cases of the cradle and the breathing mode, respectively. In this manner,
we have found representative cradle and breathing mode states which refer to a superposition
of the first two and three single-particle bands respectively. Most importantly, we show that
one can tune the frequency of the energetically highest tunneling branch in resonance with
the frequency of the cradle mode by varying the quench amplitude. In turn, this resonance
is associated with an avoided-crossing in the frequency spectrum of these modes, resulting
in their enhancement so that the system features a dominant beating. This enables us to
control the interwell dynamics by triggering the intrawell dynamics via the quench amplitude
in optical lattices. To complement our study an effective Hamiltonian that describes the
observed spectral properties and the resonant dynamical behaviour is derived, by numerically
identifying the relevant minimal Fock space. Finally, and in order to generalize our findings
for larger systems we investigate a system with a filling factor smaller than unity. Here,
among others, we demonstrate that the cradle and breathing modes can also be observed in
the intrawell dynamics of a setup comprising of ten wells.

Single-Shot Simulations of the Lattice Trapped Few-Boson Interaction Quench
Dynamics: Let us now demonstrate how the correlated nature of the quantum dynamics of
lattice trapped finite bosonic ensembles subjected to an interaction quench can be inferred
by simulating in-situ single-shot measurements [310,359-361]. As discussed in Section 2.5,
the single-shot simulation procedure is based on a sampling of the many-body probability
distribution, being accessible within the MCTDHB framework. Note that for all single-
shot simulations to be presented below, the employed spread function consists of a Gaussian
possessing a width w = 1. However, our observations remain valid also for smaller widths.

We first investigate whether the presence of correlations, and as a consequence the frag-
mentation of the bosonic ensemble, can be deduced by inspecting the time evolution of the
variance of single-shot measurements. The variance of a sample of single-shot measurements
{Ak(:E)}kNi’i"‘S, where  refers to the spatial coordinates within the image, reads

1 Nshots

V(tim) = /daz [Ak(Z; tim) —A(:E;tim)]z, (3.2)

shots =1

with A(Z; tim) = 1/Nshots Z]kvi’i"” Ak (Z; tim). V(t) is shown in Fig. 3.5 for Ngpors = 500 both
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Figure 3.5: Evolution of the variance V(¢) obtained from the simulation of in-situ single-shot
measurements within (a) the many-body approach and (b) the mean-field approximation.
The system is initialized in the weakly interacting, g = 0.05, ground state and to induce the
dynamics we perform an interaction quench of amplitude dg (see legends).

at the mean-field and the many-body level. As it can be seen by inspecting Fig. 3.5 (b),
within the mean-field approximation, V(¢) is mainly constant exhibiting negligible amplitude
fluctuations. On the contrary, when correlations are taken into account V() undergoes large
amplitude oscillations [Fig. 3.5 (a)], resembling in this manner the density-wave tunneling
mode, also identified as the “global” breathing of the entire bosonic cloud [compare Fig. 3.3
(a) and Fig. 3.5 (a)]. In particular for ¢ < 25 the bosons travel towards the outer wells of the
triple well (reflected by the negative §p{!)(z, ) in these regions) and the variance decreases,
while for 25 < ¢t < 50 the bosons tend to bunch in the central well (negative 6p™)(z, 1)
in the middle well) and V increases. This behavior of the variance observed in the many-
body scenario can be explained as follows. In a coherent condensate i.e. nj(t) = 1, where
the mean-field approximation is valid, V(t) is essentially constant during the time evolution
as all the atoms in the corresponding single-shot measurement are selected from the same
single-particle function, see Eq. (2.21). In contrast, when referring to a many-body system
where fragmentation is possible the corresponding many-body state is a superposition of
several mutually orthonormal single-particle functions, see Eq. (2.31). In this way, V(t) is
drastically altered from its mean-field counterpart as the atoms are picked from the above-
mentioned superposition and thus the distribution of the atoms in the cloud depends strongly
on the position of the already imaged atoms. We remark that the above-described behavior
of V(t) persists also for smaller samplings of single-shot measurements, e.g. Ngpors = 200
(not shown here for brevity).

Having established that the correlated character and the density-wave tunneling mode
can be deduced from V(t), we next examine whether the on-site motion including the cradle
and breathing mode can be directly observed by performing an averaging over several single-
shot images. It is important to remark here that due to the diluteness of the considered
bosonic gas (N = 4) the observation of the one-body density dynamics through a single-shot
image is not possible. To properly capture the dynamics of the single-particle density within
a single-shot image a much higher particle number, e.g. N ~ 10* is required. However
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such a calculation is computationally feasible only for the two orbital case in which the
numerical convergence on the many-body level can not be ensured. To directly assign the
few-boson dynamics observed in the temporal fluctuations of the one-body density dp(!) (x, t)
we measure 0A(z,t) = A(x,t) — (1/7) fOT dtA(z,t). Figures 3.3 (b), (c) present §A(x,t) for
different number of single-shot samplings namely Ngpors = 100 and Ngpors = 500 respectively.
As it is evident 6A(z,t) is able to capture the dynamics of both intrawell modes, a result
that becomes even more prominent for increasing number of shots, compare Figs. 3.5 (a), (b)
and (c). We remark here that for larger samplings e.g. Nypos = 1000 the §A(z,t) resembles
almost perfectly dp)(z,t) (results not shown).

Our first study of the nonequilibrium dynamics following a sudden raise of the interparticle
repulsion of initially weakly interacting superfluids revealed the existence of the on-site cradle
and breathing excited modes. Most importantly the occurrence of a resonance between a
tunneling channel and the cradle allowing for a controlability between the inter and intrawell
dynamics has been unveiled. Another remarkable finding was the detection of the cradle
mode, attributed to the over-barrier transport of bosons residing in neighboring wells, caused
by the import of energy into the system. A natural question that arises is whether this
cradle mode can be excited when quenching the system from strong-to-weak interactions
thus exerting energy from the system. An important aspect here is to explore how the initial
ground state configuration, reflected by the filling factor of the system, affects the generation
of the quench-induced excited modes or enables us to resonantly couple them.

3.3.2 Quench Dynamics from Strong-to-Weak Interactions [[2]]

As a next step we proceed to the investigation of the nonequilibrium dynamics of strongly
repulsive bosonic ensembles in one-dimensional finite lattices induced by interaction quenches
and/or a ramp of the lattice potential height [[2]]. Recent theoretical studies of strongly
correlated quantum gases have been devoted, for instance, to the study of transport properties
and the formation or melting of Mott domains [39, 377-379] after a quantum quench. In
contrast, our study [[2]] focusses on the controllable excitation of certain higher-band modes
depending on both the quench protocol and the filling factor, their properties in terms of
the tunable parameters of the Hamiltonian and the characterization of the overall system’s
dynamical response. To this end, we study from a few-body perspective the dynamical effects
resulting from an abrupt or a time-dependent quench, focussing on the few-body collective
excitations and the control of the respective dynamics.

We explore the quantum dynamics of strongly interacting bosons following a quench to
a weakly interacting final state. It is important to remark here that a quench from strong-
to-weak interactions minimizes the unavoidable heating processes [376] that might have been
present in [[1]] especially for large quench amplitudes. Such a quench triggers several normal
modes of the system including distinct lowest-band tunneling pathways, an on-site breath-
ing and a cradle mode. The dominant number state configuration of each mode is identified,
within the concept of multiband Wannier number states, showing the participation of excited-
band contributions. In this manner, conceptual differences concerning the ingredients of each
mode and its emergent excitation process when compared to the case of weak-to-strong in-
teraction quenches [[1]] have been demonstrated. Recall that the local breathing mode refers
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to an expansion and contraction dynamics of the bosons in an individual well. Interestingly
enough, it is observed that the cradle mode can be excited only for setups with filling larger
than unity for a quench from strong-to-weak interactions. Indeed, as argued in [[1]] this mode
refers to a dipole-like oscillation and it is generated via an over-barrier transport. Naturally
for strong interactions such a transport is inherently related to the initial delocalization of
the particles, reflecting in this way the filling factor of the system under consideration. Its
underlying generation mechanism can be summarized as follows. Due to the strong interpar-
ticle repulsion the initial spatial configuration corresponds to one localized boson in each well
and one delocalized (over the three wells) energetically close to the lattice barrier. Then, a
negative change in the interaction strength yields a high probability for the delocalized parti-
cle to overcome the barrier and move to a neighboring well, where it collides with the initially
localized particle, resulting in a cradle process. Therefore for other filling factors this effect
disappears and the consequent dynamics, when quenching from strong-to-weak interactions,
is dominated by the interwell tunneling. This constitutes a major difference in comparison
to a positively interaction quenched superfluid where due to release of energy into the system
we allow for the over-barrier transport independently of the filling factor. Furthermore, by
considering time-dependent quenches, namely different quench rates, or the modulation of
various potential parameters of the Hamiltonian we suggested scenarios to control the cradle
and breathing modes by means of manipulating their frequencies. Inspecting the fidelity
evolution we also studied the system’s dynamical response and its long time evolution with
respect to the quench amplitude, as well as demonstrated the dynamical crossover from a
sudden to an adiabatic parameter change by employing time-dependent variations of the in-
teraction strength. Here, the persistence of the excited modes for finite-ramp rates has been
demonstrated.

To excite the cradle mode in setups characterized by filling smaller than unity we enforce
the spatial delocalization of the atoms by quenching the height of the potential barrier to
lower values. Indeed, ramping-down the optical potential depth drives the system to a region
where the kinetic energy of the atoms dominates in comparison to the potential energy. To
further enhance the dynamical contribution of this mode in systems with filling smaller than
unity we showcase that one needs to rely on a combined quench protocol comprising of a
barrier and a simultaneous interaction quench to smaller values.

Up to now we have analyzed the nonequilibrium dynamics of finite bosonic ensembles
confined in optical lattices following a quench from strong-to-weak interactions and vice
versa. These studies allowed us to characterize on the microscopic level the triggered lowest
and excited-band modes, resonantly couple them by tuning the quench strength and unveil
under what circumstances they can be excited. Evidently, in order to steer the dynamics the
considered quench protocol plays a key role. Therefore, adopting a quench that enables us
to dynamically control the various excited modes of the bosonic system is highly desirable.

3.3.3 Dynamics after Multiple Interaction Quenhes [[3]]

In [[3]] we follow a generalized quench protocol, namely a multiple interaction quench (MIQ)
scenario, consisting of different sequences of single quenches. In particular, the protocol com-
prises of a quench followed by its “inverse” namely by going back to the original interaction
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strength (single pulse). The latter, enables the system to dynamically return to its original
Hamiltonian within certain time intervals. An important question here is to what extent
certain properties induced by the quench persist during the quantum mechanical evolution.
In a recent study [380] the effects of the MIQ protocol in a three-dimensional ultracold Bose
gas have been investigated using the time-dependent Bogoliubov approximation. It has been
demonstrated that the system produces more elementary excitations with increasing number
of MIQs, while the one and two-body correlation functions tend to a constant value for long
evolution times. Here, we aim to dynamically manipulate the quench-induced excited modes
and offer controllable schemes of certain excitation processes.

We study the correlated nonequilibrium quantum dynamics following a multiple inter-
action quench protocol for few-bosonic ensembles confined in one-dimensional finite optical
lattices. Our protocol can be summarized as follows. At ¢ = 0 the interparticle repulsion is
quenched from the initial value g;, to a final one gy, maintaining g¢ (positive half) for time 7
(pulse width). Then, the interaction strength is quenched back, i.e. from g to g;,, maintain-
ing this value g;, (negative half) for time 7. This latter procedure is repeated according to
the number of the pulses n,. The system is prepared within the weak interaction regime and
sequences of interaction quenches to strong interactions and back are performed. We focus
on the intermediate interaction strength regime, where current state of the art analytical
approaches are not applicable. In order to characterize the impact of the multiple pulses we
study the interplay between the quench amplitude and the pulse width during the evolution.
The quenches give rise to a variety of interwell tunneling channels and excite the cradle and
the breathing modes. By systematically investigating the different time intervals of the MIQ
protocol we identify the frequency branch of each process and the time intervals for which it
occurs.

The lowest-band tunneling dynamics consists of three distinct energy channels occuring
in the positive halves of the MIQ. When the system is quenched back only one tunneling
mode survives. This opens the possibility to dynamically manipulate the tunneling dynamics
within the different time intervals of the MIQ protocol. Utilizing, for instance, different pulse
widths we can switch on and off for chosen time intervals certain tunneling modes of the
system. The intrawell excited motion is described by the cradle and the breathing modes
being initiated by the over-barrier transport as a consequence of the quench to stronger in-
teractions. The cradle mode persists during the time evolution since it has already been
initialized during the first pulse. As a consequence the coupling between the cradle mode
and one of the tunneling modes, discussed in [[1]], disappears when g = g;,, and arises only
for g = gy. Therefore, using a MIQ protocol one can switch on and off this mode resonance.
Meanwhile, the breathing mode shows a strong dependence on the instantaneous interatomic
repulsion. Within the positive halves of the MIQ it possesses an interaction-dependent fre-
quency branch, whilst in the corresponding negative halves the latter branch disappears and
two new frequency branches appear which are interaction independent. Therefore, the sys-
tem in the course of the MIQ turns from the dg-dependent to the dg-independent branch
providing additional controllability. Moreover, we inspect the consequent excitation dynam-
ics and analyze its dependence on the quench amplitude focussing on a fixed pulse width and
a varying final interaction strength. We observe that the quench-induced excitation dynamics
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depends almost linearly on the quench amplitude, i.e. for increasing amplitude of the quench
the amount of excitations increase. Regarding the dependence of the excitation dynamics
on the pulse width we unveil a non-linear dependence. The above imply that the interplay
between the quench amplitude and the pulse width yields a tunability of the higher-band
excitation dynamics, indicating a substantial degree of controllability of the system under a
MIQ protocol. Another prominent signature of the impact of the quenches is revealed by
resorting to the evolution of the one-body momentum distribution. It is shown that within
the positive halves of the MIQ protocol a periodic population transfer of lattice momenta
takes place accompanied by a transition to a side peak structure within the negative halves
of the MIQ. This periodic population transfer of lattice momenta constitutes an alternative
signature of the excited energy channels within the positive halves of the MIQ protocol. We
note that similar observations have been made experimentally in a variety of quenched se-
tups [142,172,381]. Finally, the frequency of the above-mentioned periodicity possesses a
power-law dependence on the quench amplitude.

The study of the nonequilibrium dynamics after multiple interaction quenches enabled
us to controllably excite and de-excite certain processes during the time evolution. Another
intriguing question that emerges towards the direction of controllable excitation processes is
to what extent one can gain insights into the largely unexplored scaling of the few-body defect
density, including the formation and melting of Mott domains and the excited to higher-band
fraction participating in the dynamics. To this end, we next examine the nonequilibrium
dynamics of few-boson ensembles confined in finite optical lattices upon dynamically crossing
the superfluid-to-Mott-insulator state, utilizing a linear interaction quench.

3.3.4 Dynamics Following a Linear Interaction Quench in Finite Optical
Lattices of Unit Filling [[4]]

In [[4]] we explore the nonequilibrium quantum dynamics following a linear interaction quench
(LIQ) protocol in repulsively interacting few-boson ensembles confined in one-dimensional
finite optical lattices. We focus on unit filling setups such that the ground state of the
system for increasing interaction strength exhibits a transition from a superfluid to a Mott-
insulator phase. To dynamically probe this transition, quench dynamics of ultracold bosons
confined in optical lattices has been vastly used in order to examine e.g. the Kibble-Zurek
mechanism [124-133], the approach to the adiabatic response limit [39, 377, 378, 382-385],
the formation and melting of Mott domains [39, 377-379] and the growth of interparticle
correlations [105-109]. As finite bosonic systems systems do not serve as a platform to
confirm the Kibble-Zurek scaling hypothesis due to their finite size [386], here, we unravel
the scaling of the few-body defect density including the excited to higher-band fraction which
have been largely ignored in all previous investigations.

We consider few-bosons confined in an optical lattice of unit filling. To realize the few-
body analogue of the superfluid to Mott-insulator phase transition the many-body eigenspec-
trum for varying interparticle repulsion is calculated, revealing the existence of narrow and
wide avoided-crossings between states of the zeroth and the first excited-band. Performing
a LIQ we cross the phase boundary dynamically, with a finite ramp rate, either from weak-
to-strong interactions (positive LIQ) or inverserly (negative LIQ), covering in both cases the

o1



OUTLINE OF THE SCIENTIFIC CONTRIBUTIONS

diabatic-to-nearly-adiabatic crossing regimes. The employed LIQ protocol consists of two
time scales. At ¢t = 0 the interatomic interaction is quenched from the initial value g; to
a final one gy in a linear manner for time ¢ € [0,7] and then it remains a constant at a
value g¢, namely g(t,7) = g; + 593. 09 = g5 — g; denotes the quench amplitude of the LIQ
and g; (gs) is the effective one-dimensional interaction strength before (after) the quench.
The system’s dynamical response caused by the LIQ and in particular its dependence on
several system parameters, such as the height of the potential barrier is subsequently ex-
amined. Overall, the induced dynamical response consists of the lowest-band tunneling and
higher-band excitations.

In particular, when crossing the weak-to-strong interaction regimes we find an enhanced
dynamical response at moderate quench rates rather than in the abrupt or almost adiabatic
regimes. The resulting lowest-band tunneling dynamics comprises of first and second order
transport [54,134]. These modes can be manipulated by tuning either the interaction strength
after the quench or the height of the potential barriers in the optical lattice. Moreover, a
rich interband tunneling dynamics takes place possessing mainly a single excitation to the
first or second excited-band of the finite lattice. We further analyze the excited to higher-
band fraction examining its dependence on the quench ramp rate and barrier height. It
is shown that following a LIQ the excited to higher-band fraction obeys a bi-exponential
decay for decreasing quench rate. This introduces two different time scales in the excitation
dynamics, which are directly related to the diabatic or adiabatic crossing of the transition
respectively and the width of the existing avoided-crossings in the many-body eigenspectrum.
The excited to higher-band fraction follows a more complex scaling for varying height of the
potential barrier. Namely for diabatic quenches it reduces withn increasing barrier, while for
large ramp times it shows a non-linear behavior exhibiting a maximum at a certain height
of the potential barrier. This latter behavior manifests the strong dependence of the excited
to higher-band fraction on the quench rate both for shallow and deep lattices. Additionally,
the higher-band dynamics depends strongly on the postquench state, namely when we tend
to the region of an existing avoided-crossing it is characterized by a non-linear growth, while
for larger quench amplitudes it increases in an almost linear manner.

The overall dynamical response following a LIQ from strong-to-weak interactions is su-
pressed, when compared to the inverse scenario, and it mainly consists of the lowest-band
tunneling dynamics. Here the melting of the Mott-insulator state is observed. In this case
the quench triggers only a few tunneling modes and the excited to higher-band fraction is
negligible, obeying an exponential decay both with varying ramp time and potential height.
As a consequence, the lowest-band approximation can adequately describe the induced dy-
namics. Finally, we made an attempt to generalize our results for both positive and nega-
tive LIQs by considering larger systems, showcasing the robustness of the above-mentioned
scalings, as well as the enhancement of the excited to higher-band fraction for increasing
system size. This latter observation suggests that larger setups of unit filling can be driven
out-of-equilibrium more efficiently which is a manifestation of the Anderson orthogonality
catastrophe [255, 387, 388].

All the above discussed contributions have been devoted to the nonequilibrium dynamics
induced by a quench on the constant effective one-dimensional interaction strength. Recently,
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the advent of optical Feshbach resonances which utilize an optical coupling between bound
and scattering states, enables us to design complex spatial interaction strength distributions
across the atomic sample. Remarkably enough, the intensity and detuning of the participating
optical fields can be rapidly changed and allow even for nanometer scale modulations of the
resulting scattering length [389]. Motivated by these advancements we next investigate the
nonequilibrium dynamics of finite bosonic ensembles which experience a spatially modulated
interaction strength and are confined in finite optical lattices. Such a study allows us to
create peculiar ground state configurations, not accesible in the constant interaction strength
case, and to further steer the resulting out-of-equilibrium dynamics.

3.3.5 Quench Dynamics of Finite Bosonic Ensembles in Optical Lattices
with Spatially Modulated Interactions [[5]]

In [[5]] we study the ground state properties and the nonequilibrium quantum dynamics of
few-bosons experiencing a spatially modulated interaction strength and confined in a finite
lattice potential. Being experimentally accessible via the optical Feshbach resonance tech-
nique, spatially inhomogeneous interaction patterns introduce in the system a periodic struc-
ture which is known as non-linear optical lattice [390-392]. In this context theoretical studies
have recently unveiled, among others, altered properties of the emerging non-linear excita-
tions e.g. see [394-398], the existence of a delocalizing transition of bosons in one-dimensional
optical lattices [401], optimal control schemes to stimulate transitions into excited modes of a
condensate [402] and a particle localization phenomenon at the regions where the scattering
length vanishes [403,404]. However, all the above-mentioned investigations have been per-
formed within the mean-field realm while evidences regarding the occurrence of fragmentation
when considering spatially inhomogeneous interactions in bosonic systems have already been
reported in few-boson ensembles [405,406] showcasing, for instance, resonant interband tun-
neling mechanisms [407,408]. Contrary to the above, in the present investigation we explore,
for the first time, the quench-induced few-boson correlated dynamical response in a combined
linear and non-linear optical lattice. Our major scope is to create certain ground state par-
ticle distributions, identify their correlated nature and provide ways to steer the dynamics
within the same or energetically distinct single-particle bands.

We employ a spatially modulated interaction strength of sinusoidal type, Cint (x, g, a, k1, @)
g [ 1+ a cos®(kyx + ¢) ], which is characterized by its wavevector ki, inhomogeneity am-
plitude a, interaction offset g and a phase ¢. We remark that ¢ # 0 and fixed ki yields an
interaction strength imbalance between all lattice wells, while for varying k; and ¢ = 0 Cjps
is on average the same only for the parity symmetric outer sites. Besides the use of an opti-
cally induced Feshbach resonance [389,409-411], such an interaction profile can be achieved
employing holographic beam shaping techniques, e.g. a digital micromirror device [412]. In
our investigation we focus on setups possessing fillings larger than unity in order to profit
from the competition between delocalization and on-site interaction effects and thus avoid
suppression of tunneling.

For the ground state of the system we show that by varying either the wavevector or the
phase of the interaction, the density distribution can be effectively displaced to regions of
decreasing interaction strength. The inhomogeneity amplitude being of the order of half the
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lattice depth is kept fixed, while the interaction offset is unity. In particular, for small values
of the wavevector the spatially averaged in each well interaction strength is larger within
the central well when compared to the outer ones and becomes equal for increasing spatial
periodicity. This causes a spatial redistribution of the atoms from the outer to the central
wells for increasing wavevectors and the ensemble remains superfluid. A phase shift yields an
interaction imbalance between all lattice wells and enables us to displace the single-particle
density distribution in a preferred direction, achieving Mott-like states.

Following a quench of the wavevector, the dynamics is characterized by enhanced response
regions, located at fractional values of the wavevector, in which bosons at distinct wells are
subjected to different spatially averaged interaction strengths. These enhanced response re-
gions become gradually less transparent for an increasing wavenumber as the interaction
profile tends to a uniform configuration. The quench yields the excitation of a multitude of
tunneling modes consisting of single and two particle transport which can be further ampli-
fied or shifted by adjusting the interaction offset or the inhomogeneity amplitude respectively.
A breathing dynamics of the bosonic cloud also occurs and it is characterized by interband
tunneling processes which possess a single excitation to the second or fourth excited-band.
The corresponding momentum distribution reveals a periodic population transfer of momenta
during the dynamics, while inspecting the one-body coherence function we observe that par-
tially coherent regions occur between the wells that are predominantly populated during the
evolution.

Employing a phase quench an interaction strength imbalance between all lattice wells
is imposed, yielding a directed transport along the finite lattice as it accounts for a spatial
shift of the entire interaction profile. The induced tunneling modes are of single-particle and
atom pair type. Most importantly, a phase quench enables us to discriminate, otherwise,
energetically degenerate tunneling channels. Such a paradigmatic example is the single-
particle lowest-band tunneling from the middle to the left or the right well. For increasing
inhomogeneity amplitudes the quench-induced modes become more discernible, namely their
energy difference is intensified. The above-mentioned directional transport is also reflected
in the one-body momentum distribution where a directed consecutive population of higher
momenta occurs. From a one-body correlation perspective the predominantly populated wells
form a partially incoherent region which is shifted in the preferred tunneling direction. Last
but not least a phase quench yields a noticeable over-barrier transport giving rise to a global
breathing motion of the bosonic cloud and a cradle mode in the outer wells. These modes
refer to single-particle interband processes to the first or second excited-band respectively.

Until now we have analyzed several aspects of the correlated nonequilibrium dynamics
of interaction quenched few-boson ensembles confined in finite optical lattices. Another in-
triguing question that still remains is whether one can achieve to a certain extent an initial
state preparation and consequently obtain a direct control of the many-body evolution. To
investigate this scenario we next unravel the expansion dynamics of finite bosonic ensembles
confined in a composite potential landscape, comprising of a finite lattice and an imposed
harmonic oscillator potential. In contrast to the above studies this investigation will permit
us to gain insights into the competition between the initial localization of the atoms and the
repulsive interaction strength during the many-body dynamics and subsequently infer about
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specific resonant processes.

3.3.6 Quench-induced Resonant Tunneling Mechanisms of Bosons in an
Optical Lattice with Harmonic Confinement [[6]]

In the present contribution [[6]] we study the nonequilibrium dynamics of few-bosons confined
in a one-dimensional optical lattice upon quenching the frequency of an imposed harmonic
trap from strong-to-weak confinement. Besides the static properties of such systems [413-415,
415,416] a recent experimental investigation examined the dependence of the quench-induced
ballistic expansion rate of a bosonic Mott-insulator on the interparticle interaction [145],
while on the theoretical side it has been demonstated [369] that in the limit of low-filling
factors the dynamics is equivalent to that of harmonically trapped bosons with a lattice-
dependent effective mass. Both of the aforementioned effects emerge when the harmonic
confinement is relatively weak compared to the interparticle repulsion. In contrast, here, we
shall examine effects that arise due to the competition between the harmonic confinement
and the interaction strength, thus favoring different spatial configurations. Exploiting this
competition we will achieve a high level of mode controllability by utilizing specific state
preparations.

Investigating the many-body eigenspectrum for a varying trap frequency we reveal the ex-
istence of narrow and wide avoided-crossings between the many-body eigenstates. Focussing
on the case of a strong harmonic confinement the eigenstates become well-separated and are
dominated by a single Wannier number state. Having analyzed the static properties of the
system we turn our attention to the quench-induced dynamics for varying final trap frequency.
Within the non-interacting limit, a pronounced tunneling dynamics occurs only for the case
of a weak final harmonic trapping. Referring to intermediate interactions different response
regimes are observed, depending on the postquenched confinement strength. This behavior is
caused by the multiple avoided-crossings present with varying harmonic oscillator frequency
in the many-body eigenspectrum which can be exploited in order to reveal a rich dynam-
ics after quenching the trap frequency. Indeed, for relatively small quench amplitudes we
observe Rabi oscillations caused by the wide avoided-crossings between the ground and the
first excited states. Turning to intermediate quench amplitudes the narrow avoided-crossings,
which solely involve excited states, can be utilized to selectively couple the initial state to a
desired final state. Here, the dynamics is characterized by multiple frequencies one of which
is particularly slow and can be used to drive the system to a desired final state. Large quench
amplitudes give rise to a multimode dynamical response of small amplitude. In this regime
of quenches the number state with the dominant contribution to the initial state is an eigen-
state of the final system, while the other contributions to the initial state give rise to the
observed multimode dynamics. Moreover, we showcase that the deterministic preparation of
the system in a desired Wannier number state is hindered by the fact that more tunneling
modes are induced by additional contributions to the initial state. As a final attempt, the
dynamics of states lying at stronger interparticle interactions, possessing admixtures of a sin-
gle excitation to the first excited-band which do not couple in the eigenstate spectrum, have
been examined. In the many-body eigenspectrum avoided-crossings appear at higher trap
frequencies and are narrower. The consequent dynamics significantly differs from the case of
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weak interactions, with higher-band effects being more prominent and lowest-band tunneling
being suppressed. In conclusion, we can infer that for increasing quench amplitude the system
exhibits regions of a pronounced dynamical response in the vicinity of wide avoided-crossings
and sharper response peaks closely related to the existing narrow avoided-crossings in the
many-body eigenspectrum. Thus, an appropriate selection of the postquench confinement
enables us to couple the initial state to a desired final one, allowing for a low-frequency and
efficient population transfer between the two eigenstates. Finally, we have shown that the
quench-induced many-body dynamics alters significantly with varying particle number and
interparticle repulsion, as the positions and widths of the avoided-crossings are shifted, giving
rise to further controllability of the dynamics.

3.4 Driven Lattices

A very important ingredient, as outlined above, towards the manipulation of the dynamics is
the proper design of the relevant driving protocol in order to transfer the energy to the desired
final degrees of freedom. As a next step, in the following two works we shall examine the
nonequilibrium dynamics induced by a time-periodic modulation of the finite optical lattice.
Our major scope is to demonstrate the high level of controllability that one can achieve also
in a driven lattice scenario and to characterize the modes participating in the dynamics.

3.4.1 Resonant Quantum Dynamics of Few Ultracold Bosons in Periodi-
cally Driven Finite Lattices [[7]]

In [[7]] we unravel the nonequilibrium quantum dynamics of finite ultracold bosonic ensembles
confined in a periodically driven, and in particular shaken, one-dimensional optical lattice.
Similar recent studies on shaken optical lattices demonstrated the participation of excited
orbitals in the course of the dynamics [198] and even the presence of parametric dynamical
instabilities due to the interplay of the interparticle interactions and the external driving
[199-202]. Our investigation, which has been conducted before Refs. [198-202], showcases
the inescapable necessity to include excited-band states for the accurate description of the
nonequilibrium dynamics, the parametric coupling of the respective excitations and their
microscopic characterization. Most importantly, the occurence of a parametrically induced
resonance is elucidated.

We examine the correlated nonequilibrium quantum dynamics of few-body bosonic en-
sembles subjected to a time-periodic driving of a finite-size optical lattice. The driven optical
lattice is modelled with the sinusoidal function Vi (z,t) = Vpsin?[ko(z — Asinwpt)]. It is
characterized by the barrier depth Vj, a lattice wave-vector kg, the amplitude A and the
frequency wp = 27 /Tp of the driving field. Such a scheme has been implemented in the
experiment of e.g. Ref. [172], where the retroreflecting mirrors that are used to form the
lattice can be moved periodically in space. Alternatively, a frequency difference between the
counterpropagating laser beams can be induced by means of acousto-optical modulators [417]
which renders the lattice time-dependent. We particularly focus on the regimes of large lat-
tice depths and small driving amplitudes in order to limit the degree of induced excitations
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that would otherwise lead to heating processes.

Initializing the few-body system in its weakly or strongly interacting ground state we
examine, in a systematic manner, i.e. covering a wide range of driving frequencies the time
evolution of the system induced by a shaken optical lattice. The driving enforces the bosons
residing in distinct wells to oscillate in-phase and to exhibit a dipole-like intrawell mode. We
showcase that the system’s dynamical evolution is mainly governed by the interwell tunneling
and the intrawell dipole-like mode. The periodically driven dynamics of the system in the
non-interacting regime has been firstly analyzed within the framework of the Floquet theory,
i.e. at the single-particle level, providing an accurate description of the observed processes.
However, for finite particle numbers and interaction strengths such a single-particle descrip-
tion is shown to be inadequate for the explanation of the observed dynamics and a multimode
treatment becomes necessary. The deep optical lattice and the small driving amplitude ren-
der the interwell tunneling weak. However, a quite rich excitation spectrum is observed. We
remark here that such higher-lying excitations, which lead to a coupling between the two en-
ergetically lowest energy bands, have already been exploited for the realization of single- and
two-qubit gates, where the quantum bit is encoded into the localized Wannier functions of the
two lowest energy bands of each lattice site [418]. The local dipole mode is identified from the
intrawell oscillations of bosons in the individual wells. Most importantly, it has been found
that by adjusting the driving frequency the intrawell dynamics experiences a resonant be-
haviour, elucidating that it can be controlled by tuning the driving frequency. This resonantly
driven dynamics is manifested e.g. by the periodic formation of enhanced density oscillations
(giant dipole oscillations) or from the periodic population of additional lattice momenta in the
momentum distribution of the one-body density. The population of the energetically higher
momenta is reminiscent of the parametric amplification of a matter-wave phenomenon [172].
Additionally, utilizing the Floquet theory it has been shown that in the proximity of this
resonance the first two Floquet modes are dominantly contributing. Away from resonance
the dynamics can be described by only the first Floquet mode. To comprehend the enhanced
population of the second Floquet mode in the vicinity of the resonance the corresponding
quasienergy spectrum has been employed, revealing avoided-crossings between the first two
Floquet modes at certain driving frequencies. To identify the frequencies referring to the
intrawell and interwell tunneling dynamics the frequencies associated with the interference
terms between the Floquet modes have been employed, showing pronounced on-site oscilla-
tions and an enhancement of the interwell tunneling mode in the vicinity of the resonance.
Turning to an ensemble consisting of few-bosons we examined the influence of the interatomic
interactions both for the inter- and intrawell generated modes. It has been shown that the
interparticle repulsion affects each of the above-mentioned modes, yielding a destruction of
the interwell tunneling dynamics in the strongly interacting regime and an enhancement of
the excitations namely an increased contribution of energetically higher-band states. To gain
further insights into the intrawell atomic motion we employ the spectrum of the local one-
body density and of the on-site density oscillations. Inspecting these spectra with respect
to the driving frequency we have identified all the relevant dynamical frequencies, such as
those referring to the intrawell oscillations and the emergent tunneling dynamics. Finally, all
the above outlined findings are confirmed for different filling factors, lattice potentials, and
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boundary conditions, showcasing a type of universallity for the observed dynamics.

Collecting the knowledge obtained from all the above contributions we can arrive to the
following two main conclusions. By shaking an optical lattice a tunable on-site dipole mode
and a resonant intrawell dynamics can be realized, while a sudden increase of the interparticle
repulsion in a non-driven lattice gives rise to a rich lowest-band as well as intraband dynamics
which can be further coupled for certain quench amplitudes. Then, a natural question that
arises is how a combination of periodic driving and interaction quenches can be used to steer
the overall dynamics of the system and as a consequence also the coupling of the interwell
and intrawell modes. In this direction within our next scientific contribution we explore the
dynamics of interaction quenched finite bosonic ensembles confined in periodically driven
lattice systems.

3.4.2 Mode Coupling of Interaction Quenched Ultracold Few-Boson En-
sembles in Periodically Driven Lattices [[8]]

In [[8]] we investigate the quantum dynamics of interaction quenched few-boson ensembles
trapped in one-dimensional periodically driven finite optical lattices. Our study provides deep
insights on the activation of certain energy channels, by using distinct driving protocols,
and the microscopic origin of the quench induced nonequilibrium processes. The periodic
modulation consists of a lattice vibration with amplitude é and an angular frequency wp =
27 fp, namely Vi, (z;t) = Vosin? [k, (140 sin(wpt))z]. Vo denotes the lattice depth and k, = 7
the corresponding wavevector, where [ denotes the distance between successive potential
minima. To experimentally realize such a potential acousto-optical modulators [417] can be
employed which induce a frequency difference among the involved counterpropagating laser
beams that form the lattice potential. Focussing on a deep lattice potential and small driving
amplitudes we aim to minimize the degree of excitations that could, otherwise, lead to the
creation of the cradle motion [[1]] or even to heating processes.

Starting from the ground state of a weakly interacting few-boson ensemble, we unravel the
system’s time evolution in the periodically driven finite lattice by performing a simultaneous
interaction quench. We first showcase that in an exclusively driven lattice one can induce
out-of-phase local dipole modes in the outer wells, and an on-site breathing mode in the
central well. Recall that this is in direct contrast to a shaken lattice, where only on-site
in-phase dipole modes are generated [[7]]. To unravel the regime from adiabatic to high
frequency driving we cover a wide range of driving frequencies. It is observed that within the
intermediate frequency regime, which is intractable by current analytical methods, the system
can be driven to a highly nonequilibrium state when compared to the other driving frequency
regions. More importantly, a resonance of the intrawell dynamics takes place, characterized
by an enhanced tunneling dynamics, thus opening a multitude of energetically higher-lying
interwell tunneling pathways. This resonance is mainly of single-particle character and it
survives upon increasing interaction acquiring additional features, the most remarkable of
which being the co-tunneling of an atom pair [54,134]. Within this resonantly driven regime
an intensified loss of coherence occurs, providing this way an independent and potentially
experimetally tractable signature of the resonant dynamics.

To induce a correlated many-body dynamics we employ an interaction quench upon the
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periodically driven lattice for various driving frequencies. In this manner we can trigger
more effectively the interwell as well as the intrawell dynamics and drive the system towards
strongly out-of-equilibrium regimes. Consequently, the tunneling and the on-site breathing
mode are amplified, while in the outer wells the bosons experience an admixture of a dipole
and a breathing component. The latter, in turn leads to oscillations around the minimum of
the well and a simultaneous contraction and expansion dynamics. Our investigation indicates
that the interaction quench can be used to manipulate the tunneling frequency, rendering the
single-particle tunneling dominant even at resonant driving, and to amplify the emergent
intrawell modes yielding also a strong influence on the excitation dynamics.

Next, the dynamics of the periodically driven lattice, i.e. for a fixed driving frequency,
with varying quench amplitude has been studied. It has been shown that the lowest-band
tunneling dynamics contains three channels, the breathing mode possesses two frequency
branches and the aforementioned admixture occuring in the outer lattice wells involves three
branches: one stemming from the breathing motion and two others referring to the dipole
component. Therefore, the combination of different driving protocols can excite distinct
inter- and intrawell modes and manifest various energetically distinct components of a mode.
Remarkably enough, five distinct resonances between the lowest-band tunneling dynamics and
the intrawell dynamics are revealed. In particular, the lowest-band tunneling experiences a
resonance with the breathing component of the central well, two resonances with the breathing
motion of the outer wells and two resonances with the dipole motion of the outer wells. We
show that these resonances can be further manipulated via the frequency of the periodic
driving, allowing for further control of the mode coupling in optical lattices. The observed
resonances between various inter- and intrawell modes demonstrate the richness of the system,
while their dependence e.g. on the driving frequency exposes the tunability of the system.

3.5 Quench Dynamics in Binary Mixtures

In all the above-mentioned scientific contributions we argued about possible coupling schemes
between the distinct modes that are present in the nonequilibrium, quenched or periodically
driven, dynamics of single-component bosonic ensembles and revealed the correlated nature
of these modes. A step forward to advance our understanding on the correlated nature
of the nonequilibrium dynamics is to study multicomponent systems. Indeed multicompo-
nent setups are novel systems, whose behavior is very different with respect to their single-
component counterparts. In this context, quantum correlations posses a distinct role as their
interplay gives rise to novel phases of matter and peculiar dynamical phenomena [203,204].
Possible manifestations of the latter are complex tunneling processes [407,408] or collective
modes [248]. In view of the importance of quantum correlations for various physical systems,
a large part of the corresponding field aims at developing a decisive understanding of the
controllability of the tunneling dynamics by engineering the correlation properties. While
such ambitions have already been highly successful for single-component systems [134-139],
the corresponding investigations in two component setups remains a major challenge for the
field, which calls for novel approaches that are conceptually beyond the single-orbital or
lowest-band approximations. Within the next two works we aim to reveal the correlated
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mechanisms during the interaction quench-induced dynamical phase separation process in
a two-component harmonically trapped Bose-Bose mixture and also expose the correlated
nature of the expansion dynamics of a Bose-Fermi mixture confined in an optical lattice.

3.5.1 Correlation Effects in the Quench-Induced Phase Separation Dynam-
ics of a Two-Species Ultracold Quantum Gas [[9]]

In [[9]] we investigate the quench-induced phase separation dynamics of a harmonically
trapped repulsively interacting binary bosonic ensemble both within and beyond the mean-
field approximation. It is known that binary bosonic mixtures exhibit a second-order phase
transition from a miscible to an immiscible state based on the interaction strength char-
acterizing the system. If the strength of the interspecies interaction exceeds that of the
intraspecies interaction, then energy considerations show that the two species prefer to be in
a phase separated, alias immiscible state [10, 14], otherwise the system resides in the miscible
phase, see also Fig. 3.6. A multitude of recent studies in multicomponent few-boson systems
evinced, for instance, altered phase separation processes [206,219, 223, 246, 247], composite
fermionization [220,248,249], and the dependence of the tunnelling dynamics on the mass
ratio [252,253] or the intra- and interspecies interactions [254]. On the contrary, here, we
focus on the many-body character of the quench-induced dynamical phase separation process.
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Figure 3.6: Ground state one-body densities for a Bose-Bose mixture comprising of Ny =
Np = 50 atoms. The intraspecies interactions correspond to g44 = 1.004 and ggp = 0.9544
and the interspecies interaction strengths are (a) gap = 0.1 and (b) gap = 1.4.

We first initialize our system into the miscible phase fixing the intraspecies interactions
to the experimentally measured values for a binary bosonic ensemble of 8”Rb atoms prepared
in the internal states |F' = 1, mp = —1) and |F = 2, mp = 1) [419], while the interspecies in-
teraction is zero. To realize the miscible-to-immiscible transition the intraspecies interactions
are held fixed and the interspecies repulsion is quenched to larger values that exceed that of
the intraspecies. A filamentation of the one-body density during the dynamics of each of the
two species takes place in both the mean-field and the correlated approach with the filaments
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formed undergoing collective breathing oscillations. The dominant wavenumber associated
with the emerging phase separated state appears to be higher in the mean-field case and it
is found to be in excellent agreement with the analytical predictions available in this limit.
It is shown that increasing the interspecies repulsion accelerates the filamentation process,
gives rise to a larger number of filaments formed and leads to an almost complete phase
separation. Referring to the same interaction strengths and examining few-boson systems we
find that phase separation is absent in the many-body case, while it is still present within
the mean-field framework.

A correlation analysis on both the one- and the two-body level further signifies the phase
separation process as the miscibility-immiscibility threshold is crossed. Indeed, on the one-
body level prominent losses of coherence are observed between filaments residing around the
center of the trap with the longer distant ones lying at the periphery of the bosonic cloud,
verifying the fragmented nature of the system. Remarkably enough, at the two-body level
domain-wall-like structures are revealed, i.e. interfaces that separate the distinct filaments
[420-422] formed, since the inner filaments in both species are found to be anti-correlated
with their respective outer ones. To offer a link with potential experimental realizations of
the above-observed dynamics we utilized, for the first time for binary mixtures, single-shot
simulations. The presence of both the entanglement and the fragmentation are related to the
variance of single-shot images. In particular, it is shown that the growth rate of the variance
resembles the growth rate of the entanglement while the fragmented nature of the binary
system is captured by the deviations in the variance measured in the course of the dynamics
with respect to each of the two species.

Turning to the reverse quench scenario, namely quenching from the immiscible towards the
miscible phase multiple dark-antidark solitary waves, i.e. density humps on top of the bosonic
background, are spontaneously generated at both the mean-field and the many-body level
which are found to decay within the latter framework [309]. Indeed, we showcase that at the
many-body level many decay events increase the production of dark-antidark solitary waves,
with the product of each decay consisting of a slow and a fast dark-antidark structure [309].
This increasement results in multiple collisions and interference events between the involved
matter waves, with most of being lost during evolution. Utilizing the variance of single-shot
measurements we reveal the presence of an enhanced entanglement, since the system in this
case is strongly correlated on the many-body level. Finally, we consider quenches within the
immiscible regime and reveal the one-dimensional analogue of the so-called “ball” and “shell”
structure that appears in higher-dimensional binary systems [423].

3.5.2 Many-Body Expansion Dynamics of a Bose-Fermi Mixture Confined
in an Optical Lattice [[10]]

In our final contribution [[10]] we study the quench-induced expansion dynamics of a mass-
balanced Bose-Fermi mixture confined in an one-dimensional optical lattice with an imposed
harmonic trap upon considering quenches from strong-to-weak confinement. The expansion
dynamics in similar trapped geometries has been investigated mainly for the single component
case revealing, for instance, the dependence of the expansion strength on the interatomic
interactions [145], a lowest-band global breathing mode [369], the occurrence of a resonant
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dynamical response [[6]] and a temperature-dependent long-range order [424-427]. Here we
provide a systematic study of the expansion dynamics for particle imbalanced Bose-Fermi
mixtures with a particular emphasis on how the interspecies correlations, which reflect the
initial phase of the system [428-431], affect the expansion dynamics of the mixture.

Referring to the ground state properties of the system we showcase that by tuning the
ratio between the inter- and intraspecies interaction strengths two distinct ground state con-
figurations can be entered, namely the miscible and immiscible phases. These phases are
characterized by a complete or vanishing overlap of the bosonic and fermionic single-particle
density distributions respectively. Operating within the weak interaction regime, we perform
a quench from strong-to-weak confinement and unravel the resulting dynamical response
within each of the above-mentioned phases for varying final harmonic trap frequency. We
deduce that each individual phase exhibits a characteristic response consisting of an overall
expansion of both atomic clouds and an interwell tunneling dynamics which can be manipu-
lated by adjusting the quench amplitude.

Inspecting the quench-induced dynamics within the immiscible phase we observe the
occurence of a resonant-like response of both components at moderate quench amplitudes in
contrast to what it is expected upon completely releasing the imposed harmonic trap. This
observation is in accordance with the single-component expansion dynamics discussed in [[6]].
A systematic analysis of the Bose-Fermi mixture expansion dynamics shows the existence
of different bosonic response regimes, accompanied by a lesser amount of fermionic ones for
decreasing confinement strength. We find that for varying quench amplitude the bosons either
perform a breathing dynamics or solely expand. Meanwhile, the fermions undergo tunneling
between the nearest neighbor outer wells being located at the edges of the bosonic cloud or
show a delocalized behavior over the entire lattice. Comparing the findings with the mean-
field approximation we are able to identify the many-body characteristics of the expansion
dynamics. Indeed, it is shown that within the single-orbital approximation the tunneling
dynamics of both components cannot be adequately captured. The bosonic expansion is
significantly suppressed and the diffusive character of the fermions is replaced by an expansion
of two almost localized density branches to the outer wells for large quench amplitudes.
The many-body character of the induced expansion is further elucidated by studying the
evolution of the distinct orbitals. The first one resembles the mean-field approximation while
the higher-orbital contributions are responsible for the observed correlated dynamics. Finally,
the one and two-body coherence functions for each species show that during the evolution the
predominantly occupied wells are one-body incoherent and two-body anti-correlated among
each other while within each well a correlated behavior for bosons and an anti-correlated one
for fermions occurs.

Turning to the miscible phase the dynamical response of the Bose-Fermi mixture is greatly
altered when compared to the immiscible one. Here, the bosons majorly perform interwell
tunneling reaching an almost steady state for long evolution times, while the fermions expand
until the edges of the surrounding bosonic cloud where they are partly transmitted and partly
reflected back towards the central wells. Neglecting all correlations the bosonic tunneling
dynamics is found to be enhanced and remains undamped, whilst the fermionic expansion
resembles adequately the many-body case.
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Finally, the dependence of the Bose-Fermi mixture expansion strength on the mass im-
balance between the two components and the potential barrier height has been examined. It
has been shown that for mass imbalanced mixtures the heavy component remains almost un-
perturbed, while upon increasing the height of the potential barrier the expansion dynamics
is suppressed.
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4.1 Quench Dynamics

4.1.1 Interaction Quench Induced Multimode Dynamics of Finite Atomic
Ensembles
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Abstract

The correlated non-equilibrium dynamics of few-boson systems in one-dimensional finite lattices
is investigated. Starting from weak interactions we perform a sudden interaction quench and
employ the numerically exact multi-layer multi-configuration time-dependent Hartree method for
bosons to obtain the resulting quantum dynamics. Focusing on the low-lying modes of the finite
lattice we observe the emergence of density-wave tunneling, breathing and cradle-like processes.
In particular, the tunneling induced by the quench leads to a ‘global’ density-wave oscillation.
The resulting breathing and cradle modes are inherent to the local intrawell dynamics and
connected to excited-band states. Moreover, the interaction quenches couple the density-wave
and the cradle modes allowing for resonance phenomena. These are associated with an avoided-
crossing in the respective frequency spectrum and lead to a beating dynamics for the cradle.
Finally, complementing the numerical studies, an effective Hamiltonian in terms of the relevant

Fock states is derived for the description of the spectral properties and the related resonant

dynamics.

Keywords: interaction quench, non-equilibrium dynamics, higher-band effects, density-wave

tunneling, cradle mode, breathing mode, avoided crossing

(Some figures may appear in colour only in the online journal)

1. Introduction

Ultracold atoms in optical lattices are regarded as an ideal tool
to study properties of quantum many-body systems in a
controllable manner [1-4]. This is experimentally manifested
by handling independently the lattice potential and the
interaction strength between the atoms. The former is
achieved by tuning counter-propagating lasers and the latter
by means of optical, magnetic or confinement-induced Fano-
Feshbach resonances [5—10]. Currently one of the main focus
of many-body physics is to comprehend quantum phase
transitions (QPTs) and to unravel their internal mechanisms.
In this direction, the experimental progress yielded the reali-
zation and explanation of superfluid (SF) to Mott insulating
(MI) states, complementing the theoretical efforts within the
Bose—Hubbard (BH) framework [11, 12]. Furthermore, other
exotic quantum phases like the Bose Glass phase or Mott
shells have been realized in disordered systems [13-16].

0953-4075/14/225303+15$33.00
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These and other QPTs raise new prospects for theory and
experiment, most notably the inescapable necessity of taking
quantum effects into account.

Apart from the experimental efforts in the investigation
of the ground state properties in many-body systems, recently
it became possible, using trapped ultracold atomic gases, to
explore the evolution of isolated strongly correlated systems
[17] after being quenched. In a corresponding experiment, the
system is originally prepared in the ground state ly;) of the

Hamiltonian ﬁi, and then driven out of equilibrium at time
t = 0 by a sudden change of either the trapping frequency or
the interaction strength, yielding a new Hamiltonian ﬁf
evolving the system in time. The resulting non-equilibrium
situation triggers challenging conceptual questions concern-
ing the unitary evolution, such as the not yet fully understood
connection of quantum ergodicity to the integrability of a
system [18, 19]. The experimental applications in this field
includes the realization of a quantum version of Newton’s

© 2014 I0P Publishing Ltd  Printed in the UK
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cradle [20], the quenching of a ferromagnetic spinor con-
densate [21], the light-cone effect in the spreading of corre-
lations [22, 23], as well as the collapse and revival of a BEC
[24]. Also, a recent experiment on quenched atomic SFs
reports the realization of Sakharov oscillations which are
known to emerge from the large-scale correlations in galax-
ies [25].

From another perspective, the inclusion of higher-band
contributions results in an additional orbital degree of free-
dom yielding novel phenomena such as unconventional
condensation [26-28] and anisotropic tunneling. Indeed,
excited-band populations caused by interactions have already
been observed either by sweeping the magnetic field across a
Feshbach resonance [29] or via Raman transitions which
couple directly the zeroth band to the first excited p-band of
the lattice [30]. Other experimental achievements indicate the
observation of a 2D SF in the p-band [31] and the orbital
excitation blockade [32] when exciting atoms to higher
orbitals as well as supersolid quantum phases in cubic lattices
[33, 34]. The aforementioned aspects have led, among others,
to the construction of multiflavor and multiorbital models
[35-38]. Motivated by the previous studies here we investi-
gate the higher-band dynamics of interaction quenched SFs
focussing on the resulting low-lying collective modes, which
are nowadays of great experimental interest.

In the present study, we examine the response of a finite
atomic ensemble confined in one-dimensional (1D) finite
lattices subjected to a sudden change in the interaction
strength. More precisely, we focus on highly non-perturbative
situations by considering weak-to-strong interaction quenches
with respect to the initial state. In this manner, we drive the
system to a regime where the interparticle interactions dom-
inate in comparison to their kinetic energy. For weak inter-
actions, the single-band approximation, namely the BH
model, provides quantitative predictions of the system
dynamics; for strong interactions, however, it yields at most a
qualitative description. In this manner, by considering strong
quench amplitudes and examining representative few-body
setups for incommensurate filling factors, our treatment goes
beyond the validity of the BH model. The numerical method
which we employ in order to study the dynamical properties
of our 1D finite setups is the recently developed multi-layer
multi-configuration time-dependent Hartree method for
Bosons (ML-MCTDHB) [39, 40], based on MCTDHB which
has been developed and applied successfully previously [41—
44]. Both methods are very efficient in treating bosonic sys-
tems both for static properties and in particular their dynamics
(see next section), while they are equivalent for the case of a
single species treated here.

We demonstrate the emergence of higher-band modes,
namely the breathing and the cradle modes as well as the rise
of the density-wave tunneling, following interaction quen-
ches. Especially the observation of the cradle mode which
refers to a localized wave-packet oscillation is arguably one of
our central results. The dynamical properties of incommen-
surable setups are investigated by examining the time-evo-
lution of the corresponding one-body densities and their
respective fluctuations. In addition, we analyze the Fourier

spectra of representative intrawell observables and the varia-
tion of the center of mass coordinate for the cases of the
cradle and breathing modes, respectively. More specifically,
the occurrence of a resonance between the cradle and one of
the tunneling modes, being manifested by an avoided crossing
in the frequency spectrum, is observed here. This opens the
possibility to control the interwell dynamics by triggering the
intrawell dynamics via the quench amplitude in optical lat-
tices. Additionally, the construction of an effective Hamilto-
nian describing the dynamical behaviour is provided and the
minimal Fock space required to produce the cradle process is
derived.

The work is organized as follows. In section 2 we
introduce our setup, explaining also the ML-MCTDHB
method, the quench protocol and the number state repre-
sentation. In section 3 we report on the quench dynamics for
different incommensurate filling factors and demonstrate the
emergent modes that arise due to the interaction quench. We
summarize our findings and give an outlook in section 4.

2. Setup and analysis tools

2.1. The model

Our system consists of N neutral short-range interacting
bosons in a 1D trap. The many-body Hamiltonian reads

N 2
H= ;[ZPM + V(xo] + Y Vilxi—xp, (D)

i<j

where the one-body part of the Hamiltonian contains the 1D
lattice potential V (x;) = W sin®(kx;) which is characterized
by its depth Vj and periodicity /, with k = z/I being the wave
vector of the lasers forming the optical lattice. Furthermore, in
order to restrict the infinite trapping potential V (x;) to a finite
one with m sites and length L, we impose hard wall boundary
conditions at the appropriate positions. On the other hand, we
model the short range two-body interaction potential as
Vine (i — xj) = gp6(x; — x;) with the effective coupling
2/%a

-1
ap .
Val (1 —|£(172)] ﬁai) [10]. The coupling

g1p depends on the 3D s-wave scattering length ag, the
7
@1
potential and the mass M of the atom. From the above
expression it is obvious that we can tune the interaction
strength by the scattering length a( or the frequency of the
confinement w; via Feshbach resonances [8, 9] or confine-
ment induced resonances [45—47] respectively. Additionally,
for reasons of computational convenience we will rescale the
above Hamiltonian in wunits of the recoil energy
Eg = /#%k2/2M by setting 7= M = 1. In this manner, the
81D

rescaled interaction strength can be rewritten as g = o
R

whereas the spatial and temporal coordinates are given in
units of k' and Ex' respectively. Therefore, all quantities
below are in dimensionless units.

strength g, =

oscillator length a; = of the transverse trapping
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In a BH model which we address here for reasons of
comparison, the Hilbert space is truncated with respect to the
localized lowest-band Wannier states which form a complete
set of orthogonal basis functions. This represents an alter-
native and more convenient way for discussing phenomena in
which the spatial localization of states plays an important role.
Our ab initio simulation goes beyond the single-band
approximation and requires higher-band states to describe the
real and site independent (J; = Jj; = J) tunneling strength.
Notice also, that the hard wall boundaries we consider here
imply zero tunnel coupling between the first and the last sites
(in contrast to periodic boundary conditions which result in a
certain coupling for all sites). In our ab initio simulations we
use a sufficiently large lattice depth Vy = 4.5 such that each
well includes two localized single-particle Wannier states, i.e.
the ground and first-excited states, while the higher excited
states are taken into account as delocalized states.

2.2. The computational method : ML-MCTDHB

The ML-MCTDHB constitutes a variational numerically
exact ab initio method for investigating both the stationary
properties and in particular the non-equilibrium quantum
dynamics of bosonic systems covering the weak and strong
correlation regimes. Its multi-layer feature enables us to deal
with multispecies bosonic systems, multidimensional or
mixed dimensional systems in an efficient manner. Also, the
multiconfigurational expansion of the wavefunction in the
ML-MCTDHB method takes into account higher-band effects
which renders this approach unique for the investigation of
systems governed by temporally varying Hamiltonians, where
the system can be excited to higher bands especially during
the dynamics. An important characteristic of the ML-
MCTDHB approach is the representation of the wavefunction
by variationally optimal (time-dependent) single particle
functions (SPFs) and expansion coefficients A; _;,(¢). This
renders the truncation of the Hilbert space optimal when
employing the optimal time-dependent moving basis. Also,
the requirement for convergence demands a sufficient number
of SPFs such that the numerical exactness of the method is
guaranteed. Therefore, the number of SPFs has to be
increased until the quantities of interest acquire the corre-
sponding numerical accuracy. This constitutes a numerically
challenging and time-consuming task especially for strong
interactions where the use of more SPFs to ensure con-
vergence is unavoidable.

Let us elaborate. In a generic mixture system consisting
of N, bosons of species o = 1, 2,..., S the main concept of the
ML-MCTDHB method is to solve the time-dependent
Schrodinger equation

i|¥)=H|¥)
1#(0)) = %), (2)

as an initial value problem by expanding the total wave-
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function in terms of Hartree products
M, M, Mg

Y O) =D Y YA kO 0) S ®). )

h=lip=1 is=1

Here each species state Iy/l.(")) @i=1,2,..,M,;) corresponds to
a system of N, indistinguishable bosons, which in turn can be
expanded in terms of bosonic number states 7 (£))° as follows

‘Wi(g)> _ Zci?ﬁ (t)|ﬁ([) >", 4

i lo

where each 6 boson can occupy m, time-dependent SPFs
Igoj(")). The vector i) = Iny, ny,...,n,, ) contains the occu-
pation number n; of the jth SPF that obeys the constraint
n+ny+ ...+ ny, =N,

Here we focus on the case of a single species in one-
dimension where the ML-MCTDHB is equivalent to
MCTDHB [41-44, 48]. To be self-contained, let us briefly
discuss the ansatz for the many-body wavefunction and the
procedure for the derivation of the equations of motion. The
many-body wavefunction is a linear combination of time-
dependent permanents

¥ (1) = Y.Ci(D)|n1, ng s g 1), (5)

where M is the number of SPFs and the summation is again
over all possible combinations which retain the total number
of bosons. Notice that in the limit in which M approaches the
number of grid points the above expansion becomes exact in
the sense of a full configuration interaction approach. On the
other hand, the permanents in (5) can be expanded in terms of
the creation operators a ]T (7) for the jth orbital ¢, (¢) as follows

1
np !I’lg 'nM'

X (afr)nI (af)n2 ...(a;,,)nM |vac), (6)

which satisfy the standard bosonic commutation relations
[ai (), a; (t)] = §;j, etc. To proceed further, i.e. to determine

N1, Ny ey Mpgs 1) =

the time-dependent wave function |¥), we have to find the
equations of motion for the coefficients Cj (¢) and the orbitals
(which are both time-dependent). For that purpose one can
employ various schemes such as the Lagrangian, McLachlan
[49] or the Dirac—Frenkel [50, 51] variational principle, each
of them leading to the same result. Following the Dirac—
Frenkel variational principle

(6%¥|i0, — H |¥) =0, (7)

we can determine the time evolution of all the coefficients
C; (¢) in the ansatz (5) and the time dependence of the orbitals
lgp;). These appear as a coupled system of ordinary differ-
ential equations for the time-dependent coefficients Cj (¢) and
nonlinear integrodifferential equations for the time-dependent
orbitals ¢ ;(1). The aforementioned equations constitute the
well-known MCTDHB equations of motion [41-44].

Note that for the needs of our implementation we have
used a discrete variable representation for the SPFs (or
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orbitals) lg;), specifically a sin-DVR which intrinsically
introduces hard-wall boundaries at both ends of the potential
(i.e. zero value of the wave function on the first and the last
grid point). For the preparation of our initial state we therefore
relax the bosonic wavefunction in the ground state of the
corresponding m-well setup via imaginary time propagation
in the framework of ML-MCTDHB. Subsequently, we
change abruptly the interaction strength and explore the time
evolution of ¥ (x, x5 ,..,xy; t) using ML-MCTDHB. Finally,
note that in order to justify the convergence of our simula-
tions, e.g. for the triple well, we have used up to 10 SPFs
finally confirming the convergence. Another criterion for
convergence is the population of the natural orbital with the
lowest population which is kept for each case below 0.1%.

2.3. Quantum quench protocol

Our approach to study the non-equilibrium dynamics follows
a so-called quantum quench. According to this the system is
originally prepared at ¢ = 0 in the ground state ly;) of some
initial Hamiltonian H;, = H ({;,), where {;, is a system
parameter associated to the perturbation such as the interac-
tion strength or the height of the barrier. Then for times ¢ > 0
we suddenly quench the parameter { to a final value {; and
examine the subsequent evolution of the system under the
new Hamiltonian Hy = H ({y).

In the general case, the final Hamiltonian assumes the
form Hy = H;, + AH,, where H, is a dimensionless perturbing
operator and A, which possesses the dimensionality of an
energy, is the so-called quench amplitude. In our case the
quench protocol consists of tuning the interaction strength
between the particles which appears in the two-body part
(Vine) of the Hamiltonian (1). Therefore, we assume as the
initial state ly;,) (at ¢ = 0) the ground state of the Hamiltonian
H;, = H(g,) and we explore its dynamical behaviour for
t > 0 subject to the Hamiltonian Hy = H (g7)- Under this
protocol the time evolution of the system according to the
_LH/,t

Schrodinger picture is Iy (1)) = e7#"/! ly,,) while the evolu-

tion of the expectation value of a system operator A obeys

WO IR ly0) = 3 Cre 7 IR, (®)
ff

where If) refers to the eigenstates and E; the respective
eigenvalues of the final Hamiltonian Hy = H (/). Thus, for

our system the new Hamiltonian governing the dynamics can
be written as follows

o)
H(gp) = H(g,) + 223 Vine (i — x,), ©)
8in k<j

with % being the corresponding quench amplitude.

in

2.4. Number state representation

Using ML-MCTDHB we calculate the wavefunction with respect
to a time-dependent basis of SPFs. Therefore the expansion of the
wavefunction in general reads ly (1)) = Yz A7 ()In(7)). On the

analysis side, however, it is preferable to analyze our results in a
time-independent basis and make the connection with the multi-
band Wannier functions. In this respect, we have developed in the
framework of ML-MCTDHB a fixed basis analysis package in
terms of which we use a time-independent basis for the expansion
of the wavefunction, i.e. ly (1)) = X Az (1) | 7).

In addition, in order to interpret our results we will use as
an explanatory tool the concept of a generalized number state
representation with multiband Wannier states. To use this
representation we assume that the lattice potential is deep
enough such that the Wannier functions belonging to different
wells have very small overlap for not too high energetic
excitation. Within this framework we can analyze the inter-
band processes as well as the intraband tunneling. As a spe-
cific example, let us elaborate for the case of a triple well
system the corresponding wavefunction in terms of these
states which encode the allocation of the n bosons among the
individual wells

ly) = ch;1|nL, N, NR),-

n,d

(10)

Here n;, ny, ng are the number of bosons localized in the
left, middle, and right well respectively which satisfy the
condition n; + ny; + ng = n. The summation is over all the
different arrangements of the n bosons in the triple well as
well as the different necessary excited states (index /) that we
must take into account according to their energetical order. In
this manner, we use an expansion in terms of the number
states of the non-interacting bosons, i.e. products of non-
interacting single particle Wannier functions. Finally, it is
important to notice that such an expansion is valid also in the
strong interaction regime but needs then a large number of
excited configurations.

The notion of the generalized number states will be one of
our basic tools for the analysis of the non-equilibrium dynamics.
For illustration, let us analyze in some detail the case of four
bosons in a triple well which will be one of the considered setups
in the following. Here, in terms of the number states we can
realize four different categories. The quadruple mode
{14, 0, 0);, 10, 4, 0);, 10, 0, 4);} that refers to four bosons in
the same well, as well as the triple mode {13, 1, 0);, | 0, 3, 1),,}
11,0, 3);, 11,3, 0), {10,1,3),,]3,0,1);} which implies
that three bosons are localized in the same well and the fourth
resides in one of the remaining wells. In addition, there is the pair
mode that can be separated into two categories: the double pair
mode {12, 2, 0);, 10, 2, 2);, 12, 0, 2);} where the bosons are
divided into two pairs each of them occupying a different well and
the single pair mode {12, 1, 1);, I1, 2, 1);, I1, 1, 2);} which
contains a pair and two separated bosons.

Let us comment on the relation between the different
categories of number states and the eigenstates of the system.
The number states of a particular category with the same
intrawell energetical index i share a similar ‘on-site’ energy
and they will significantly contribute to the same eigenstates.
In this manner, the eigenstates can be also classified with
respect to the dominantly contributing number states, e.g. the
single-pair (SP), the double-pair (DP), the triple (T) and the
quadruple (Q) mode. To be concrete, in the following we will
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use the notation li),.; to characterize the eigenstates, where the
index a refers to the spatial occupation, i.e. the SP (@ = 1),
DP (¢ =2), T (@« = 3) and Q (¢ = 4), the index I denotes the
respective energetical level and i stands for the index within
each group. For instance {li);.o} represent the eigenstates
which are dominated by the set of SP states
{12, 1, 1), 11,2, 1)y, 11, 1, 2)¢}, where the index i take
values from 1 to 3.

Finally, note that for the second system which we consider,
consisting of five bosons in ten wells, the same analysis in terms
of number states is straightforward. More precisely, one
can realize seven different categories of number states. Namely,
the single mode {I1,1,1,1,1,0,..),..}, the SP mode
{12, 1,1, 1, 0,...);,...}, the DP mode {I2, 2, 1, 0,...);,...}, the
first triple mode {13, 1, 1, 0,...);,...}, the second triple mode
{13, 2, 0,...);,...} the quadruple mode {I4, 1, 0,...),,...} and the
fifth mode {I5, 0,...);,...}. Here, each mode can be character-
ized using similar arguments as we did for the case of the
triple-well.

3. Quench dynamics

The main characteristic of a system with incommensurate
filling v is the existence of a delocalized fraction of particles
[52]. Therefore, the most important feature is the absence of a
Mott insulating state since there is a SF fraction on top of a
Mott insulator phase. Below we consider both the case v > 1
where on-site interaction effects prevail and v < 1 in which
the main concern is the redistribution of particles over the
sites as the interaction increases. In the following, we proceed
for each case with a brief discussion of the ground state
properties and then we focus on the quantum dynamics
resulting after an interaction quench.

3.1. Filling factor v > 1

Our initial state is the ground state for a given interaction
strength in the weak-interaction regime. Therefore, let us
briefly summarize the ground state properties for weak
interactions for a setup consisting of four atoms in three wells,
i.e. one extra particle on a Mott background. For this case of
incommensurability we encounter two main aspects: deloca-
lization and on-site interaction effects. The particle density for
the non-interacting case g = 0 is largest in the middle site and
decreases for the outer ones due to the hard-wall boundary
conditions that render the middle and outer sites non-
equivalent. In the low-interaction regime we observe a ten-
dency towards a uniform population for g = 0.2 due to the
repulsion of the bosons. For further increasing repulsion such
as g = 0.8 we note a trend towards the repopulation of the
central well again.

In the following, we study the quench dynamics for ¢ > 0
of the above setup by means of an abrupt change in the
repulsive interaction strength at # = 0. In order to investigate
out-of-equilibrium aspects in our system we first examine the
response of the one-body density. Therefore, we perturb our
system starting from a SF ground state with g, = 0.05 where
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the atoms are bunching in the central well. As a consequence
of the quench the system gains energy. Figures 1(a) and (b)
show the time-evolution of the relative density in the triple
well trap for weak and strong quench amplitudes, namely
6g = 0.8 and 6g = 2.0 respectively. We define the deviation
of the instantaneous density from the average value up to time
T for each grid point x as 8p (x, 1) = p(x, ) — {p(x))r where

the quantity (p(x))r = fo ! dip (x, t)/T refers to the corre-

sponding mean single-particle probability density. Therefore,
(p(x))r refers to the average behaviour of the one-body
density while dp(x, t) is the respective fluctuating part.
According to our simulations the ratio 19p Dl g of the order of

X) )T
1071,

As can be seen in figure 1, at each time instant 5p (x, t)
exhibits a density-wave like spatial pattern. This density wave
also evolves in time, changing between a peak-valley-peak
and a valley-peak-valley pattern, where the peak and valley
refer to a positive and negative relative density in a certain
well, respectively. The evolution of this pattern reflects the
tunneling dynamics under a quench, and will be termed in the
following as density-wave tunneling. Note that the density-
wave tunneling refers exclusively to the mode that transfers
population among the middle and the outer wells. Addition-
ally the inner-well dynamics which can be seen in figure 1(c)
is described by two excited modes: the middle well exhibits a
breathing mode due to the lattice symmetry, while in the left
and right wells we observe the so-called cradle mode, mani-
fested as a ‘dipole-like’ oscillation of the localized wave-
packet. A close comparison of figures 1(a) and (b) reveals a
transition from a multifrequency to a single frequency spec-
trum for weak to strong interaction quenches respectively. In
the following, we will discuss in some detail each of the
aforementioned dynamical modes and their significant role in
the overall non-equilibrium dynamics.

3.1.1. Density-wave tunneling and breathing mode. Let us
first focus on the explanation of the density-wave tunneling as
an effective breathing of the ‘global wavepacket’ described
by the envelope of the density distribution in the triple well.
According to this, we illustrate in figure 2(a) some
intersections of the one-body density for different time
instants and define an envelope function for the triple-well
which is the quadratic function that encloses the
corresponding instantaneous peaks of the density. As we
have already mentioned, the density-wave reflects the
tunneling dynamics of bosons confined in the optical
lattices, which is dominated in the present case by the states
of the lowest-band. In turn, the dynamical tunneling is
constituted by the contraction and expansion of the envelope
in the course of the dynamics induced by the interaction
quench. Intuitively, under an interaction quench the bosons
tend to repel each other and the envelope will expand and
then contract, which mimics the breathing dynamics of the
bosons as known in the harmonic trap. In a recent study [53]
this mode has been examined in the framework of the BH
model for a quench in the lattice frequency. This suggests that
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Figure 1. The fluctuations §p (x, ¢) of the one-body density caused by an abrupt quench of the inter-particle repulsion. The initial state of each
setup is the ground state of N = 4 bosons confined in a triple-well trap with g, = 0.05. The space-time evolutions of the density are depicted
for different quench amplitudes (a) §g = 0.8, (b) 5g = 2.0. In (c) we show an inset of (b) for the first # = 50 time units where we demonstrate
the cradle, breathing and over-barrier modes. Note that the spatial extent of each well is (-3z/2:—7/2), (—z/2: z/2), (x/2: 37/2) for the left,
middle and right wells respectively. The vertical axis represents the spatial extent of the trap whereas the horizontal axis denotes the
propagation time .
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Figure 2. (a) Evolution of the one-body density p (x, ) induced by an abrupt change of the inter-particle repulsion with amplitude g = 2.8.
The initial state is the superfluid ground state of N = 4 bosons with g, = 0.05 confined in a triple-well trap. We observe spatio temporal

oscillations constituting the density waves (see also figure 1). Shown is also the envelope of the one-body density (dashed lines) at different
time instants: # = 1 (blue), r = 10.3 (red), r = 18.8 (light blue) and ¢ = 26.2 (brown). The spectrum of the interwell tunneling modes can be

obtained from the spectrum of the fidelity F (t) = [{y (0)ly (¢))I> which is shown in (b) as a function of the quench amplitude g. Here the
vertical axis refers to normalized frequency units w/Aw, where Aw = 2z/T and T being the respective propagation time.

it also exists for many-body systems in optical lattices where Let us further investigate the properties of the tunneling
instead of our hard-wall boundaries a weak harmonic modes due to their significance for the above-discussed
confinement renders the sites of the optical lattice non- effects. The tunneling properties can be identified in terms of
equivalent. the overlap of the instantaneous wavefunction during the
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Figure 3. The time evolution of the one-body correlation function C;; and the density correlations gl.;z) for a quench from g;, = 0.05 to (a)

gr=10 and (b) gr =42 (see text). For the density correlations we demonstrate the situation of (c) a weak quench §g = 0.6 and (d) a strong

quench g = 4.0.

dynamics and the initial state (see equation (11) below) which
we denote as D (¢) = (y (0)ly (¢)). Then, the quantity that we
are interested in is the probability that the states of the
unperturbed and perturbed system are the same during the
time evolution which can be expressed through the fidelity
F(t) = |D(t)]>. The identification of the interwell tunneling
branches can be achieved via the frequency spectrum of the
fidelity F(w) = % f dtF (1)el” which provides us with the
evolution of the frequencies of the tunneling modes for
different quench amplitudes. Figure 2(b) therefore shows
F (w) with varying quench amplitude where we can identify
three interwell tunneling branches. Note that the lowest one
dominates for strong interaction quenches and this can be
linked to the transition from a multifrequency to a single
frequency behaviour that we have observed above in
figures 1(a) and (b).

Next, in order to obtain a quantitative description of the
multiband behaviour we adapt the number state basis
(section 2.4) where the four different categories consist of:
the Q, the T, the DP and the SP mode. Indeed, let
ly (0)) = .0 C* 'li)ys be the initial wavefunction in terms
of the eigenstates | i),,; of the final Hamiltonian. Then the
fidelity reads

|<W(0) | l//(f)>|2 = Z ‘Cia;l|4
Bl
+ Z |Cia;1‘2 |Cjﬂ;1|2 cos (eia;l _ €jﬂ;’)t,
ijsa.pil

(1)

where the indices a, f# specify the particular groups of number
states introduced in section 2.4 i, j is the internal index within
each group and 7 denotes the band index. For the density-wave
mode that we examine here we have I = 0. Moreover, in the
above expansion the terms of the second sum represent the
different tunneling branches whose Fourier transforms are
shown in figure 2(b). The eigenstate li),.; may belong to one
of the four existing categories of number states with a
corresponding eigenenergy. In particular, the lowest branch in
the Fourier spectrum corresponds to the energy difference Ae
within the energetically lowest states of the SP mode, i.e.
intraband tunneling from the state 11, 2, 1) to | 2, 1, 1) etc.
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The second branch refers to the next energetically closest
different modes. The tunneling process is here from the
energetically lowest state of a SP mode to the energetically
lowest DP mode, e.g. from I1, 2, 1) to 12, 2, 0)¢. Finally the
third branch refers to a tunneling process from a SP mode to a
T mode, e.g. from |2, 1, 1) to 13, 1, 0)9. The remaining
tunneling branches as for instance a transition from a DP mode
to a T mode do in principle exist but they are negligible in
comparison to the above ones due to the respective energy
differences and therefore we can hardly identify them in
figure 2(b). Note that the same spectrum could also be found
from the frequency spectrum of the local density of a certain
well, e.g. from p; (w).

According to the above the tunneling dynamics here is
mainly an intraband phenomenon. To verify this we have also
employed the respective single-band BH model where we
have identified each branch in the weak interaction regime.
Within this framework, we can observe the interwell
tunneling processes but have to restrict ourselves to the weak
interaction regime where the single-band approximation is
valid. On the contrary, we can not observe either of the on-
site breathing or cradle motion (see next section) which
include higher-band contributions and are intrinsically linked
to the intrawell structure.

Another important tool in order to explore the interwell
tunneling is to examine how correlations among different sites
react after an interaction quench. We examine two different
types of correlations, the single particle correlations
Ci(t) = (y| b'b ily) /N and the second order normalized

correlation function (or coherence) gl.;z) () = (nin;)/(n;){n;).

Here, biT (b;) denotes the corresponding creation (annihilation)
operator of a particle located at site i in the lowest-band, while
n; = bf b; is the number operator for the site i. Notice that we
mainly focus on the lowest-band description as the present
tunneling mode is dominated by the lowest-band contribu-
tions, thus filtering out the influence from higher-bands. In
figures 3(a) and (b) we illustrate the time evolution for the
various types of one-body correlations associated with the left
well for different quench amplitudes g = 0.95 and 6g = 4.15
each time starting from the SF regime (g;, = 0.05). The single
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Figure 4. (a) One-body density profiles at different time instants after an interaction quench. The system consists of N =2 bosons confined in
a harmonic trap with g;, = 0.05, while the quench amplitude is g = 2.8. The reshaping of the density indicates the breathing mode while the
oscillatory structure demonstrates the contribution of excited states during the dynamics. On the other hand, in (b) we present the Fourier
spectrum as a function of the quench amplitude for the quantity ¢ (w) referring to the breathing mode. We observe that the breathing

frequency is predominantly constrained to a narrow band. Note that we use normalized frequency units w/Aw, with Aw = 2z/T and T being

the whole propagation time.

particle correlations oscillate even for long time scales which
can be attributed to the finite-size of our system. The diagonal
term Cy, reflects the density oscillations of the left well which
are relatively small. Moreover, we observe the change in the
periods T of the tunneling, that is as we increase the
interaction quench we obtain a decrease of the respective
period denoted by rapid small amplitude oscillations. How-
ever, the non-diagonal terms C; with i # j exhibit a non-
vanishing oscillatory behaviour with an amplitude much larger
than the density oscillations, i.e. Cy;. The latter shows more
frequencies than the density which illustrates the emergence of
more dynamical structures. This indicates that even a weak
tunneling can transport substantial off-site correlations in the
system.

On the other hand, the two-body correlation function gij(.z)
can be used to measure density fluctuations in the system
under consideration. A basic property of this function is that
gij(.z) > 1 refers to bunching whereas gij(.z) < 1 indicates
antibunching. Ensembles with gijqz) =1 are referred to as
fully second order coherent whereas for bunched particles one
can infer that they have the tendency to reside together and
vice versa for the antibunched case. Figures 3(c) and (d)
illustrate various components of the second order correlation
function for different interaction quenches. For the diagonal
terms that refer to the middle well we observe that 8;42134 > 1
for the whole propagation time while for the left (or right)
well we find that gL(i) oscillates around unity. The latter
indicates a dynamical transition from bunching to antibunch-
ing and vice versa which has an impact also on the g/ff/t)/z
component. In particular, for small quenches we can see that
g/f/12134 is almost unchanged during the dynamics while gL(i)
oscillates around unity and spends more time below unity.
This means that for small quenches we can not affect
significantly the initial distribution and two bosons are more
likely to reside in the middle well. Increasing the quench

amplitude we observe that the two components are antic-
orrelated i.e. for the time intervals where gﬁ) is smaller than

unity the corresponding component ngzz/[ for the middle well

is enhanced. Here the reduction of the gL(i) component is more

pronounced than the enhancement of the g[f}& which might
indicate an impact of the initial distribution. The off-diagonal
terms gl(Jz?) , gﬁ} with respect to the left well are always lower
than 1 and anticorrelated. Also, for every time during the
dynamics g3 > g% holds, indicating that it is more likely
for two bosons to be one in the left and one in the middle site
than one in the left and one in the right. On the other hand, the
oscillatory behaviour of gij@ can again be attributed to the
finite size of our system. Concluding this part we can infer
that the one-body and two-body correlations as shown in
figure 3 demonstrate a rich phenomenology in terms of
correlation dynamics. This might pave the way for further
investigations on how a weak density-wave tunneling can
transport significant correlation oscillations.

As the density-wave tunneling has been understood to
lead to the ‘envelope breathing’ with the character of a
breathing mode, let us now turn our attention to the study of
the on-site or local breathing mode. In general, the breathing
mode then refers to a uniform expansion and contraction of
the local wavepacket. For a recent study concerning the
dependence of the breathing mode frequency on the particle
number as well as on the interaction strength see [54], while
for further related and recent investigations we refer the
reader to [55-58]. As we shall discuss briefly here, this local
breathing mode can also be triggered by a quench of the
interaction strength in a harmonic trap. To this end, figure 4(a)
shows snapshots of the one-body density of a system
consisting of two bosons in a single harmonic trap (with
&, = 0.05) after an interaction quench &g = 2.8 which
mimics the dynamics within the middle well of the triple-
well system. Here, we observe the reshaping of the density
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profile for different time instants as well as the formation of
oscillatory structures which indicate the existence of higher-
band effects.

Coming back to the triple well, the local breathing mode
refers to a contraction and expansion dynamics of the
wavepacket in a single well, i.e. intrawell breathing induced
by an interaction quench. In order to quantify the local
breathing frequency in the triple-well setup we define the
coordinate of the center of mass of the respective well

" s (5= 1),

d;
di+l
S dap(x)

X8 = (12)

Here i = R, M, L stands for the right, middle and left well
respectively whereas xéi) refers to the middle point of the
corresponding well. On the other hand, d; are the coordinates
of the edge points of an individual well and p;(x) the
corresponding single-particle densities. From this point of
view the preferable quantity to identify the breathing process
is the variance of the coordinate of the center of mass

var[ x0(1) | = o) = fdd ;) (x = XG). (13)

Therefore, the breathing frequency of the middle well
can be obtained from the spectrum of the second moment
o-,\24 (w) = % / dtcrfl ()€l In figure 4(b) we observe a dominant
frequency, located at  ~ 60Aw (with Aw = 2z/T and T being
the total propagation period) which is approximately two times
the trapping frequency of a harmonic approximation to a single
well. This frequency depends only weakly on the interaction
quench and it is related to the breathing frequency. There occur
additional low frequency branches in figure 4(b) which are
related e.g. to the tunneling dynamics.

3.1.2. The cradle mode induced by the over-barrier
transport. For a qualitative description of the cradle mode
one has to rely on the intrawell dynamics of dp (x, t) for the
left or right well as shown in figure 1. In particular, the
generation of this mode is accompanied by a direct over-
barrier transport as a consequence of the interaction quench.
This results in a cradle mode which represents a dipole-like
oscillation. In the following, let us first illustrate the main
mechanism and then analyze in some detail the cradle mode.

Initially, in terms of its dominating spatial configuration
our system consists of two bosons in the middle well and two
others each of them localized in one of the outer wells. Then
we perform a sudden change in the interaction strength which
raises the energy as mentioned previously. As a consequence
with high probability at least one particle from the central
well gains enough energy to overcome the barrier (over-
barrier transport), and directly moves to the outer wells where
it performs an inelastic collision with the preexisting particle
initially localized in the neighboring site. The two-particle
collision leads to a cradle dynamics and to the dipole-like
density oscillation as visualized in Figure 5. According to our
simulations we observe significant over-barrier transport for
0g > 0.24. This process is most significant for the first few
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periods of the cradle motion as for later times due to inelastic
collisions in the left well the atom looses part of its initial
energy and can predominantly tunnel through the barrier.

Therefore, the cradle mode as a localized wave-packet
oscillation can be produced via a variation in the respective
interaction strength. Moreover as already mentioned, is
reminiscent of the dipole oscillation in the one-body density
evolution while a detailed analysis demonstrates a major
difference between the two. Indeed, the cradle mode which is
of two-body nature possesses two intrinsic frequencies that
refer to the center of mass and the relative frame of the
harmonic oscillator. As we prove in the appendix up to a good
approximation this can be modeled by a coherent state of the
center of mass and relative coordinates. Finally, note that
during the evolution we can identify regions of bright and
dark cradles which are associated with an enhanced or
reduced tunneling of the density from the respective well (see
also figure 1).

Especially, as the cradle mode breaks the local reflection
symmetry of the one-body density in each well, we divide for
a further investigation of this mode (neglecting the breathing
mode) each well into two equal parts left and right of the
center with corresponding integrated densities p, (¢) and
P, (t). Here the index a refers to the corresponding well, i.e.
a =L, M, R for the left, middle and right well respectively.
In the following, we use as a measure of the intrawell
wavepacket asymmetry (referring to the cradle motion) the
quantity Ap, (1) = p, (1) — p,,(t). Furthermore, in order to
investigate the impact of different quenches on the system we
compute the Fourier transformation of the quantity
Ap,(w) = % f dtAp, (1)e" which will provide us with the
evolution of the frequencies of the respective modes for
different quench amplitudes. Figure 6(a) presents the resulting
frequencies from the Ap; (@) versus the respective interaction
quench dg for 110 different quenches from weak-to-strong
interactions, where the amplitude §g varies from 0.04 to 4.5.

Firstly, from figure 6(a) we can identify one dominant
branch which is insensitive to the quench amplitude and its
frequency is that of the cradle mode. This branch corresponds
to the cradle intrawell oscillation and will be referred to in the
following as the cradle branch. A modulation of the frequency
of the cradle motion can be achieved by tuning the barrier
height, i.e. we can reduce its frequency using lower barriers
and vice versa.

Besides the cradle branch, three interwell tunneling
branches show up in the spectrum of Ap, (w) with a relatively
weak amplitude. Among them we can distinguish the
contribution of the highest frequency tunneling branch. The
latter together with the branch of the cradle experience an
avoided-crossing at g ~ 2.8 in the course of which both
amplitudes are enhanced.

For a more detailed analysis of the above observations,
let us assume that initially the state of the system in terms of
the eigenstates of the final Hamiltonian is given by a linear
superposition of the form ly (0)) = 3. ,., C* NliYg.. Then at
an arbitrary time instant ¢ the expectation value of the
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Figure 5. Visualization of the cradle process induced by the over-barrier transport. In this scenario, the system which is (a) initially in a
superfluid ground state is subjected to an abrupt interaction quench. In this manner, a boson initiated in the middle well can overcome the
barrier (b) and move to the neighboring well resulting in a cradle motion (c) due to the quench in the inter-particle repulsion.
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Figure 6. (a) Fourier spectrum as a function of the interaction quench of the intrawell asymmetry Ap; (@) for the left well (see text). The same

spectrum can be obtained for the right well. The frequency units w/Aw are normalized with Aw = 2z/T and T being the respective
propagation period. An avoided crossing takes place between the tunneling and the cradle modes where we observe an enhancement of the
mode amplitudes at least for finite time propagation periods. The full white dots in the tunneling branch correspond to the intraband
frequency Aw; between the states 12, 1, 1)¢ and I3, 0, 1)9, whereas the empty circles in the branch of the cradle mode refer to the frequency
Aw; for the states 12, 1, 1) and |2, 1, 1); describing the cradle-like process (see text). As a consequence we notice the occurence of a beating

(b) for the cradle in the region of the avoided crossing.

intrawell asymmetry operator can be expressed as

R OB A
(wlAp lw)= Z|Ci“"\ Lali | AP | Dai
il
n 22 Re (Cl_a; I*C/ﬁ;l)l;aa | 4D | j)pua
i#]

X cos[(a)i‘“ r_ a)jﬂ;')t].

Here, the first term refers to the average part whereas the
second term demonstrates an oscillatory behaviour. In the
following, we will concentrate on the oscillatory term of this
expectation value which essentially describes the cradle
motion. As also illustrated in the analytical expression for
the cradle mode (see appendix) the dominant oscillation terms
«1{i | Aplj)p; # O are given by the eigenstates li);.o and li).;
within which 12, 1, 1) and 12, 1, 1), significantly contribute
respectively. Consequently, the corresponding oscillation
frequency matches the energy diference between these
eigenstates which is to a good approximation given by the
energy difference (4e¢) between 12, 1, 1)p and 12, 1, 1);.
Meanwhile, 12, 1, 1); also contributes to the eigenstates
li}2.0 and li)3,o of the DP and T modes respectively thus

(14)

10

leading to a non-zero 1.o(i | Ap'lj)23).0 # 0, and therefore to
the observed tunneling branches. The above mechanism is
resonant between 12, 1, 1)g and [2, 1, 1); for a particular
quench amplitude dg.

To verify our statements, let us calculate the number state
energy differences between the aforementioned states and
compare them with the eigenenergy difference in the full
spectrum (figure 6(a)). In this manner we indeed find good
agreement. We illustrate the 5g-dependence of these frequen-
cies in figure 6(a) with the white full dots and open circles on
top of the exact avoided-crossing implying the reliability of
our above statements. Indeed, we observe only very minor
deviations of numerical ML-MCTDHB results and the
description via equation (14). However, the intensities do
differ significantly, see figure 6(a).

In conclusion, the avoided crossing and the accompany-
ing enhancement indicate that the local intrawell dynamics
can couple to the interwell dynamics. In turn, this induces a
resonance between the two dynamical processes which can
enhance the local and long-range dynamics. The fact that the
cradle mode can be coupled with a mode of the interwell
tunneling is remarkable. This gives rise to the possibility of
controlling the ‘global dynamics’ by triggering the ‘local
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dynamics’. Especially, we can tune the characteristic
frequency of the tunneling mode to become resonant with
the corresponding frequency of the cradle mode by means of
tuning the quench amplitude. Increasing further the quench
amplitude we can drive the system again out of resonance.

As a consequence of this avoided crossing the intrawell
asymmetry Ap dynamics features a beating, as shown in
figure 6(b), which corresponds to two dominant frequencies
in the P (@) — p(w) spectrum. Indeed, let
Aw(6g) = E, — Eg be the frequency of the respective
intraband tunneling ( 2, 1, 1) — 13, 0, 1)¢). Assume further
that Aw, (6g) = E, — E, refers to a frequency of a process
that includes a ground and the first excited state of the SP
mode taking into consideration that we refer to one of the
outer wells (left or right) so we need two particles there. In
this manner, there exists a region of critical quench
amplitudes g, which corresponds to the avoided crossing
where Aw(0g,) = Aw,(dg,,) and the system features a
degeneracy between the states | 3, 0, 1)g and 12, 1, 1),.

From the above discussion, one can infer that a
representative wavefunction describing the cradle process in
terms of Fock states for the left well (and similarly for the
right) can in principle be written as

| ) chadle —

Co(dg, 112, 1, 1)

+CGOR, 1, 1) =]2, 1, 1)7, (15)
where the coefficients C, and C; denote the probability
amplitudes for the corresponding state. Note also that the
amplitude of the zeroth state 12, 1, 1) depends on the quench
while the one for the first-excited state | 2, 1, 1); is essentially
constant, i.e. independent of dg.

Taking advantage of the previous description we can
construct an effective Hamiltonian for this process. Thus, if
we denote by {Iﬁo)} the corresponding truncated basis
vectors, the effective Hamiltonian obtained from (1) in this
subspace will be of the form

He = 2650 |7i0) (70| + Z Jigaiio |70 ) {

iig 7io,7io

-

mo

(16)

|9

where Ji, i, = <ﬁ0| Hegr |g) is the effective tunneling
amplitude and €5, = <ﬁo| Hegp ‘ﬁo >

Therefore the representative subspace providing the
mode-coupling within a minimal model consists of the states
12, 1, 1), 13, 0, 1)g, 12, 1, 1). In terms of the corresponding
effective Hamiltonian the respective term for the cradle mode
is 12, 1, 1)1 (2, 1, 11 whereas the term 12, 1, 1)(¢(3, 0, 1I
reflects the tunneling process. Thus from the Hamiltonian (16)
one can realize a three-level system consisting of the states
according to their energetical order: 12,1, 1)y =| 1),
13,0, 1)g =|2), 12, 1, 1); = | 3). In this manner, we take
into account an energy detuning A between the states |12) and
| 3) whereas due to the fact that the level | 1) is weakly
coupled with the other levels we neglect the respective
tunneling amplitudes, i.e. Ji; = Ji3 = 0. Therefore, we can
reduce our problem to a two level system realizing the
Hamiltonian Hegr = Y, _ & 1) (i | + J23 12) (3 [+ h.c. which
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Figure 7. The fluctuations Jp (x, #) of the one-body density for five
atoms in ten wells. Initially we observe the emergence of the over-
barrier transport and subsequently the cradle and the tunneling
modes. The setup is initially prepared in the superfluid ground state
with g;, = 0.05 and is suddenly quenched with §g = 4.0.

is known to exhibit an avoided level crossing and can be
solved analytically.

In the remaining part of this section, we proceed to the
investigation of a system with filling factor v < 1 in order to
generalize our findings. More precisely, among others we
demonstrate that the cradle mode can also be found in the
inner-well dynamics for a setup with ten wells, which reveals
in particular that it is independent of the employed hard-wall
boundaries.

3.2. Filling factor v <1

Let us consider here the case of five bosons in a ten-well finite
lattice. Concerning the ground state analysis with filling factor
v < 1, the most important aspect is the spatial redistribution
of the atoms as the interaction strength increases. The non-
interacting ground state (g= 0) is the product of the single-
particle eigenstates spreading across the entire lattice, while
due to the hard-wall boundary conditions the two central
wells of the potential are slightly more populated. As the
repulsion increases within the weak interaction regime the
atoms are pushed to the outer sites which gain and lose
population in the course of increasing g, while the particle
number fluctuations are more pronounced for the wells with a
lower population [52]. It is also important to notice that in
such a setup the one-body density will not become uniform
even for strong interactions. In addition, the particle number
fluctuations saturate to a relatively high value (for g = 3.5) in
accordance with the existence of the delocalized phase. Also,
in such a case of incommensurability due to the delocalized
fraction of particles the long-range one-particle correlations
do not vanish even for strong interactions.

In the following, we explore the dynamics following a
sudden interaction quench at time t = 0 which is applied to the
ground state in the weak interaction regime, g, = 0.05.
Figure 7 demonstrates the response of the system on the one-
body level namely dp (x, t) after a strong interaction quench
0g = 4.0, from which we can easily identify the emergence of
three modes. Initially we observe an over-barrier transport
and then the cradle and the tunneling modes. The lattice
symmetry (even number of wells) leads to the lack of the local
breathing mode. Concerning the cradle mode, this would be a
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Figure 8. The response of the fluctuating part 6p (x, ) of the one-body density after an abrupt change in the inter-particle repulsion. The setup
consists of five particles in ten wells and the initial state corresponds to interaction strength g;; = 0.05. Shown are Jp (x, t) for (a) a given
time period of the cradle-like process for g = 2.4 and the respective fluctuating one-body density profiles at different time instants for (b) the

second well indicating the ground state of the cradle state and (c) the fourth well demonstrating the first-excited state of the cradle process.
The nodal structure indicates the occupation of excited Wannier states in the respective well whereas the oscillatory behaviour visualizes the

cradle process.

superposition of the states 11, 1,2, 0, 0, 0, 0,...)g + permut
and 11,1,2,0,0,0,0,..); + permut with i # 0, where
permut stands for the spatial permutation of the occupations
inside the ket vector. Here, one can consider the minimal
subspace consisting of the above states with i = 1 in order to
proceed in an effective approach as we did for the case v > 1.

Additionally, in order to visualize the cradle process from
a one-body perspective we demonstrate in figure 8 for a
specific quench §g = 3.4 the density fluctuations p (x, ) for
different time instants. Figure 8(a) illustrates the evolution of
the fluctuations for a specific time interval following up on the
over-barrier transport, where we can observe the cradle pro-
cess in each well. Subsequently, in figures 8(b) and (c) we
show intersections of dp (x, f) focussing on the second and the
fourth wells in order to visualize the higher-band contribu-
tions to the mode. Indeed, in figure 8(b) we observe that the
profile of the fluctuations corresponds to almost localized
wave-packets inside the well which are spatially shifted with
time. This process demonstrates the motion of the cradle and
corresponds to the ground state of this mode. However,
figure 8(c) illustrates the same profile dp (x, ¢) but for a dif-
ferent well, where the appearance of at least one node indi-
cates the occupation of the first excited Wannier state in the
well. This behaviour together with the shift of the wave-
packet indicates the first-excited state of the cradle mode.

Also, in the Fourier spectrum we can find the avoided-
crossing between the cradle and the tunneling frequency
where the critical region of quench amplitudes is
08, = 4.2 — 4.3 with equal cradle frequency as for the triple
well case due to the same barrier height Vj = 4.5. In turn, the
avoided crossing here, if we refer to the third well, can be
explained from the dominant number states | 1, 1, 2, 0,...),
[1,1,2,0,.) for the cradle and |1,1,2,0,..),
11, 0, 3, 0,...)p for the tunneling process. Therefore, we can
conclude that by tuning the interaction quench we can again
realize a resonance between the aforementioned modes.

An important observation is that as we increase the
interaction quench the tunneling process can be altered.
Indeed, this behaviour can be attributed to the fact that the

12

higher the quench amplitude, the larger the energy of the
system becomes. From this point of view we expect a strong
link of the change of the spatial distribution of the atoms in
the lattice and the quench amplitude. The above behaviour is
a main characteristic of setups with filling factor v < 1 where
on-site effects are not manifested. In order to quantify our
arguments concerning the spatial redistribution process we
will rely on an analysis of the one-body reduced density
matrix p"(x, x'; t) of the dynamics provided by ML-
MCTDHB. Its off-diagonal parts can be used as a measure of
the coherence as they indicate off-diagonal long-range order
in an infinite lattice. Although, for our finite setups we cannot
conclude upon true off-diagonal long-range order this term
refers to the appearance of short and long range one-body
correlations. Thus, this quantity can be directly linked to the
tunneling process. In figure 9, we depict the one-body density
matrix for three different quenches namely 6g = 1.4, 2.6, 3.8
at two different time instants f = 7.0 (a), (b), (c) and
t, = 42.8 (e), (), (g) of the propagation in order to indicate
the change in the tunneling process. The off-diagonal con-
tributions fade out with increasing quench amplitude and a
tendency for concentration close to the diagonal is observed at
equal times which implies an alteration of the character of the
tunneling process. In addition, the off-diagonal part cannot
vanish completely even for strong quenches since the parti-
cles always remain delocalized. This is a main characteristic
of incommensurate setups.

Going beyond the above examined finite setups, one can
suggest a generalization for the wavefunction of the cradle
state for a many-body system. Let N be the number of sites
and n the total number of bosons. Then the corresponding
generalized number state would be of the form |n1, Ny ey AN >i
whereas the minimum representative wavefunction for the
cradle that refers to the first well can be written as

|l//>cradle

dl(t)|27 ny ...y nN>0 + dz(t)|27 ny ey nN>17 (17)
where n, + n3+ ... + ny =n—2 with n > 2 and d;, d»

denotes the amplitudes for each contribution in the above
expansion. An additional constraint is that for an even number
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Figure 9. Off-diagonal one-body reduced density matrix p(" (x, x; #,) for five particles in 10 wells for two different time instants #; = 7.0 (a),
(b), (c) and r, = 42.8 (e), (f), (g) during the evolution. Shown are three values of the interaction quench (a), (d) 5g = 1.4, (b), (f) g = 2.6 and
(c), (g) 6g = 3.8. The elimination of the off-diagonal spots for strong quench amplitudes indicates the difference in the tunneling process.

of sites NV this relation holds for all permutations, while for to describe it. On the other hand, the cradle process, as we
odd N the permutation that corresponds to a state with two  have pointed out, exists in almost every site of the lattice and
particles in the middle well indicates the presence of the local  refers to a localized wave-packet oscillation. This mode is a
breathing motion. The extension to cradles in the remaining  consequence of the initial over-barrier transport of the parti-
wells is straightforward. cles from the central well to the outer ones due to the sudden

import of energy into the system and the consequent inelastic

collisions with the respective atoms in the outer sites.
4. Summary and conclusions Therefore, we can describe this process via the coherent states

of the harmonic oscillator refering here to the center of mass
We have explored the influence of sudden interaction quen- and the relative coordinate (see appendix). The aforemen-
ches on small bosonic ensembles in finite 1D multi-well traps.  tioned modes are always accompanied by a tunneling process
In particular, we have mainly focussed on setups with which is mainly a lowest-band phenomenon. During the
incommensurate filling factors in order to avoid the sup-  gynamical process, regions of density dips or dark cradles in

pression of tunneling due to MI phases for strong interactions. (e outer sites are accompanied by enhanced breathing
Starting from the SF regime, we change abruptly the effective

coupling strength from weak to strong interactions. In this
manner, we observe the emergence of tunneling, breathing
and cradle processes. Furthermore for the explanation of the
dynamical behaviour of our system in terms of a band
structure we employ the concept of generalized multi-band
Wannier number states which are meaningful for sufficiently
large barrier heights V;. Although these have been constructed
numerically, such a treatment is valid even in the strong
interaction regime where perturbative methods fail.

The density-wave tunneling has been linked to an
effective breathing of the ‘global wavepacket’ that refers to ~€Xpectation value of the asymmetry operator in order to
the instantaneous density distribution of the trap. The local ~describe the dynamics associated with the avoided-crossing.
breathing mode has been identified as an expansion and In this manner, we have found a representative cradle state
contraction dynamics of bosons in the individual wells. Wwhich is a superposition of the first two bands, as well as the
Moreover, in terms of a number state analysis of the observed number state most responsible for the tunneling mode that
dynamics it is necessary to include higher-band contributions couples with the cradle in the avoided crossing.

dynamics on the middle site. Each of the above modes pos-
sesses different characteristic frequencies. In particular, we
show that one can tune the frequency of the highest branch of
the tunneling mode in resonance with the frequency of the
cradle mode by varying the quench amplitude. In turn, this
resonance is associated with an avoided crossing in the fre-
quency spectrum of these modes resulting in an enhancement
of both of them. In this case, the system features a dominant
beating.

We have computed, the dominant Fock states in the
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There are at least two ways that one might pursue as a
follow-up direction. A first possible extension is to consider
smooth time-dependent interaction quenches in order to
unravel the behaviour of the system in such a non-equilibrium
continuously driven case or to find similarities with the so-
called Kibble—Zurek mechanism [59-64]. A second path in
this direction would be the study of mixtures consisting of
different bosonic species.
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Appendix. Remarks on the cradle state

In this appendix we will briefly discuss the derivation of the
cradle state. This state, as we have already mentioned in the
main text, refers to an oscillation of two wavepackets of
minimal uncertainty in a single well which we model as a
harmonic trap. The creation of the two-particle cradle state in
a single well corresponds to the collision between a particle
injected to the well with another particle which is initially
localized in the minimum of the well. We further model each
particle as a localized one, where the first one is centered in
the trap and the other one is displaced from the minimum by
an amount Xxo. In this manner, taking advantage of the
exactly solvable model of the harmonic oscillator, we
can derive the initial wavefunction of the cradle state. In the
following, we will use the natural units m = 7% = 1. Due
to the harmonic potential approximation we can separate the
motion into the relative X, = (x; — xz)/ J2 and center-of-
mass X, = (x; + xp )/ J2 coordinates. Adopting these coor-
dinates the initial wavefunction reads

12 2

WO(XCs Xr; O) = ( ) e_%(xc_ )
T

X (e“g()‘“ﬂxg)z + e—";(x,—j‘z’)z]'

Thus, the intrawell oscillation can be separated into two parts:
(a) the center-of-mass motion which is an effective one-body
problem and (b) the relative motion that refers to a reduced
two-body problem. Therefore, we can easily show that the
wavefunction of the center-of-mass at any time 7> 0 is
described by

o

+2

[0

(A.1)

v(Xe )= =

which is the well-known coherent state solution of the har-
monic oscillator. This wave-packet oscillates around the
minimum of the potential in a simple harmonic trap without

e—;(Xc—xo cos wt)—i(";’ +Xcx0 sin wt)’

(A2)
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changing its shape while it satisfies the minimum-uncertainty,
i.e. ApAx = 7/2. On the other hand, the corresponding
wavefunction of the relative frame reads

w(Xe 1) = ) Conel>'gpy,, (A3)

where ¢,, are the even eigenstates of the trapping potential

Vix) = %ma)2x2 + g6 (x). These eigenfunctions are known as
the Weber functions. Thus, we can conclude that the cradle
state contains two characteristic frequencies: (a) the frequency
o, = o that refers to the motion of the center-of-mass and (b)
the frequency o, = ws,42 — w2, =~ 2w of the relative frame.
The above comments lead us to the conclusion that the major
difference between the cradle state that we have found here
and the dipole state of a many-body system is that our state
contains the two frequencies @, and @, while the many-body
collective state has just one.

Comparing the analytical results with the exact numerical
ones obtained from the ML-MCTDHB method we conclude
that in our case we observe only the center-of-mass oscillation
in the frequency spectrum. This is a consequence of the fact
that the quantity Ap = p, — p, that we have used to measure
the intrawell asymmetry can describe only the motion of the
center-of-mass.
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The nonequilibrium dynamics following a quench of strongly repulsive bosonic ensembles in one-dimensional
finite lattices is investigated by employing interaction quenches and/or a ramp of the lattice potential. Both
sudden and time-dependent quenches are analyzed in detail. For the case of interaction quenches we address
the transition from the strong repulsive to the weakly interacting regime, suppressing in this manner the heating
of the system. The excitation modes such as the cradle process and the local breathing mode are examined via
local density observables. In particular, the cradle mode is inherently related to the initial delocalization and,
following a negative interaction quench, can be excited only for incommensurate setups with filling larger than
unity. Alternatively, a negative quench of the lattice depth which favors the spatial delocalization is used to access
the cradle mode for setups with filling smaller than unity. Our results shed light on possible schemes to control the
cradle and the breathing modes. Finally, employing the notion of fidelity we study the dynamical response of the
system after a diabatic or adiabatic parameter modulation for short and long evolution times. The evolution of
the system is obtained numerically using the ab initio multilayer multiconfiguration time-dependent Hartree
method for bosons, which permits us to follow nonequilibrium dynamics including the corresponding

investigation of higher-band effects.

DOI: 10.1103/PhysRevA.91.033611

I. INTRODUCTION

The realization of ultracold atomic gases has opened up
exciting possibilities for the study of the nonequilibrium quan-
tum dynamics of many-body systems [1,2]. The high degree
of tunability and the good isolation from the environment
renders ultracold gases a versatile tool to realize systems far
from equilibrium as they remain coherent for sufficiently long
time scales, allowing us to probe them experimentally [3-5].
In particular, the dynamical response of a closed quantum
system can be investigated via a sudden change (i.e., a rapid
perturbation compared to any other characteristic time scale
of the system) of a Hamiltonian parameter called “quantum
quench.” Typically, in such a scenario the many-body system
is initially prepared in a characteristic state which is not an
eigenstate of the perturbed Hamiltonian, and the subsequent
time evolution is explored. In this way, important aspects can
be studied such as the connection between the final and initial
states or the emergence of a steady state [6]. Despite recent
theoretical advances (see Ref. [2] and references therein), our
understanding of strongly correlated quantum gases after a
quench is far from complete and constitutes an appealing
problem of modern quantum physics [7-13].

Inaprevious work [14] following a sudden raise of the inter-
particle repulsion (positive quench) we explored the dynamics
of initially weakly interacting superfluids. As a consequence
a cradle mode generated by the over-barrier transport of
bosons residing in neighboring wells and caused by the import
of energy to the system has been detected. This mode has
further been identified as a two-body intrawell collision which
was dipolelike [15,16]. In addition, a local-breathing mode
reminiscent to the usual breathing mode in a harmonic trap
[17-22] has been observed. The occurrence of a resonance
between a tunneling mode and the cradle giving rise to the
controlabilibity between the inter- and intrawell dynamics
has also been revealed. However, the above scenario can also

1050-2947/2015/91(3)/033611(14)
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give rise to unvoidable heating processes, especially for large
quench amplitudes. To overcome this ambiguity, i.e., minimize
the heating [23], one can start from strong interparticle
repulsion and quench back to weak interactions called negative
interaction quench. A negative quench may lead to a drastically
different dynamical behavior as the filling factor v is expected
to play a crucial role. Here an intriguing aspect would be to
explore how the initial spatial configuration of the system,
reflected by the corresponding filling factor, affects the system
dynamics and as a consequence the generation of the emergent
excited modes. This investigation will permit us to gain a
deeper understanding of the on-site excited modes (especially
the cradle mode), the underlying microscopic mechanisms,
and their controllability in terms of the tunable parameters of
the Hamiltonian.

In this work a systematic ab initio analysis of the
nonequilibrium dynamics of strongly repulsive interacting
bosons in one-dimensional (1D) lattices is carried out. To this
end, we study from a few-body perspective the dynamical
effects resulting from an abrupt quench or time-dependent
modulation of a Hamiltonian parameter, focusing on the few-
body collective excitations and the control of the dynamics.
In particular, we start from strong repulsive interactions and
perform negative quenches either on the interparticle repulsion
or on the optical lattice depth. This permits us to unravel the
transport properties and the emergent excitation modes, i.e.,
the local breathing and the cradle processes. Especially, for the
case of a negative interaction quench we demonstrate that the
cradle mode can be excited only for incommensurate setups
with filling factor v > 1, exploiting the initial delocalization.
On the other hand, for filling v < 1 in order to access this
mode we use as a tool a barrier quench, thereby enforcing the
over-barrier transport, which in turn can generate the cradle
mode. The persistence of the dynamical modes for finite-ramp
rates and long evolution times accessible in recent experiments

©2015 American Physical Society
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is also shown. The concept of fidelity is extensively applied
in order to study the response of the quenched system and
the transition from the diabatic to the adiabatic limit. The
resulting nonperturbative dynamics (large quench) is explored
using the recently developed numerically exact multilayer
multiconfiguration time-dependent Hartree method for bosons
[24,25] (ML-MCTDHB), which reduces in our case of a single
species to MCTDHB [26,27].

This article is organized as follows. In Sec. II we explain
the setup, the basic observables, and the representation of
the wave function. Section III is devoted to a detailed study
of the nonequilibrium quantum dynamics for two different
quench protocols for incommensurable setups. We summarize
and give an outlook in Sec. IV. Our computational method
ML-MCTDHB is described in the Appendix.

II. THEORETICAL FRAMEWORK

We consider N identical bosons of mass m trapped within
an n-site optical lattice along the x direction modeled by
the potential Vi(x) = Vosin2(”l—x) where [ is the distance
between successive potential minima, supplied with hard-
wall boundaries at x = £nl/2. Transversally, the bosonic
system is trapped by a uniform harmonic trapping poten-
tial with energy spacing hw; and oscillator length a; =
JVh/mw, , yielding an effective 1D coupling strength [28]
gip = %(l — %)" for s-wave scattering, ao being
the three-dimensional s-wave scattering length. The many-
body Hamiltonian then reads

N 2 92
—%a—xiﬁvn(x,-wzxfim(xi—x,») (1)

i=1 i<j

H =

with the short-range contact interaction potential Viy(x; —
x;) = g1pd(x; — x;) between bosons located at positions x;,x
represented by a Dirac § function. The interaction strength can
thereby be tuned by varying a( via a Feshbach resonance [28—
31] or by altering the extent a; of the transversal confinement
[28,32,33]. In the following, for reasons of universality as well
as of computational convenience, we shall use dimensionless
units. To this end, the Hamiltonian (1) is rescaled in units
of the recoil energy E, = hzzlﬁz For our simulations we have
used a sufficiently large lattice depth V) = 6.0, which is of the
order of 3.0 to 4.0 Ex (depending on k), such that each well
contains at least two localized single-particle Wannier states.
The spatial and temporal coordinates are given in units of k!
and RE!, respectively.

A quench is performed by varying, abruptly or slowly, a pa-
rameter A of the system (here the interaction strength g; p or the
lattice depth Vj, or generally both) from an initial value Ay =

PHYSICAL REVIEW A 91, 033611 (2015)

yields the fidelity (or Loschmidt echo [34])
Fu(n) = 1£0P, 3)

which provides a time-resolved measure for the effect of the
quench on the system.

Using the ML-MCTDHB method outlined in the Appendix,
we obtain the reduced one-body density matrix

M—1

PV, xs ) = na(galx, 0@ (x' 1) )
a=0

in its (diagonal) spectral representation by natural orbitals
Qo(x,t), where o = 0,1,...,M — 1 and M being the number
of the considered orbitals. The corresponding population
eigenvalues n,(t) € [0, 1] characterize the fragmentation of the
system [35-38]: If there is only one macroscopically occupied
orbital the system is said to be condensed, otherwise it is
fragmented.

To explore the spatially resolved system dynamics we use
the deviation

dp(x,t) = p(x,1) — {p(x))T ()

of the one-body density p(x,t) = pV(x,x;¢) from its time
average (p(x))r = fOT dt p(x,t)/ T over the considered time
of propagation T . In this sense, we treat §p(x,) as the temporal
fluctuation of the density around its “macroscopic” component
along the lattice.

To incorporate the information of excited bands, we further
analyze the dynamics by projecting the many-body wave
function ¥ to the multiband Wannier number state basis as

(W) =Y CnulNi Ny--- Ny, (6)

N,I

where {|N{ N,---N,);} is the multiband Wannier number
state with N =), N;,, and [ indexing the energetic
(excitation) order [14]. This representation proves convenient
for lattice systems when describing intraband and interband
processes where the spatial localization of states plays a
significant role and remains valid in the strong interaction
regime for a sufficient number of supplied single-particle
functions. Table I presents the excitation decomposition (the
occupation of excited levels in each lattice site) of some
number states frequently used in the following analysis.

TABLE 1. Energetic decomposition of some frequently used
number states for n = 3 lattice sites. The index I refers to the
excitation order and is used as a compact notation instead of the
detailed decomposition. Each element N’ in a decomposition refers
to the ith energy level (superscript) of N noninteracting bosons in the
corresponding site.

A(t = 0) to a final value X, according to a given scheme A(?). Index 1 12,1,1), [1,2,1),
The ground state |Wy) of the initial Hamiltonian Hy = H(Ao) -0 20 10 10 1020 10
then evolves into W, (1)) = Uy (1) Wo) = exp(—i Hyt /I 4 =" |1°I®’1' ’10>10) :1.’20’1();
at time ¢ under the A-quenched Hamiltonian. The overlap I B ) 120 11’ 10’) 110 10’ ®’11 10
between the time-evolved states of the system in the presence  ; _ 3 |20' 1 12) |'10 20 11’)
(via U,) and absence (via Uy = e~Ho!/7) of the quench, I—1 ! ®’12:10’10) |12:20:10)

=5 129,12,1°) 19,10 ® 12,1°)

Sfu(@) = (Yo ()| W5.(1)), 2
033611-2
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NEGATIVE-QUENCH-INDUCED EXCITATION DYNAMICS ...

Note that the eigenstates can be ordered with respect to the
single particle excitation and the spatial occupation of the parti-
cles. The eigenstates of the same category form an energetical
band. Following this categorization we label the eigenstates
as |{)q.1, where o and I denote the spatial occupation and
energetical order, respectively [14]. For instance, o« = 1 refers
to a single-pair state, « = 2 to a two-pair state, etc., while
¢ sorts the eigenstates within each category according to the
eigenenergy.

III. QUENCH DYNAMICS

Before exploring the dynamics, some remarks concerning
the ground states in the lattice for different filling factors
v = N/n, where N denotes the particle number and n the
number of the wells, are in order. For the commensurate
case (v = 1,2, ...), concerning the ground state it is known
that for increasing interparticle interaction one can realize the
superfluid to the Mott insulator phase transition [39], which has
been addressed extensively in the past few years. On the other
hand, for a system with an incommensurate fillingv # 1,2, ...
the main feature is the existence of a delocalized fraction of
particles which forbids the occurrence of a Mott state. Here
one can distinguish two physical situations: (1) the case v > 1
where on-site interaction effects prevail and (2) v < 1 in which
the main concern is the redistribution of the particles over the
sites as the interaction increases. This delocalized phase can
also be explained in terms of the particle hole states using a
strong coupling expansion [40,41].

In the present study we consider the quench dynamics for
setups with site occupancy different from unity and therefore
exclude the Mott state physics. We proceed with a short
reference to the ground state and consequently analyze the
dynamical process following each quench protocol.

A. Quench from strong to weak interactions for filling v > 1

In this section, we focus on a system consisting of four
strongly interacting bosons in a triple well, i.e., with filling
v > 1. The initial state before the quench is characterized by
the competition between delocalization and on-site interaction
effects. For strong interparticle repulsion, as we consider here
(g = 5.0), this state can be interpreted as a fraction N mod
n of extra delocalized particles being on a commensurate
background of localized particles. On the one-body level the
on-site populations are quite similar, which can be attributed
to the localized background, while their slight discrepancy
is due to the nonuniform distribution of the extra particle in
the first excited band. The latter prevents the formation of a
perfect insulator phase even for strong repulsion. Our goal is
to investigate the dynamical processes following a negative
quench of the interaction strength, thereby approaching the
weakly interacting regime. For an interaction quench protocol
the final Hamiltonian H; can be constructed as a sum of a part
H,, which provides the prequenched state of the system and
an additional part that denotes the perturbation

J
Hy(gs.V) = Holg:V) + = Y Vil —xp), (D)
m k<j
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where g;, and g are the initial and final interaction strengths,
respectively, and dg = gy — gin is the quench amplitude
focusing here on §g < 0 and |%| ~ 1.

In the following subsections we first proceed with a brief
fragmentation analysis inspired from the perspective of natural
orbitals. Then we explain in some detail the response of the
system and investigate each of the emergent normal modes
consisting of a local breathing mode and a dipolelike cradle
mode. A study for the manipulation of the excited modes and
their presence for the case of a finite ramp is also provided.

1. Dynamical fragmentation

In this subsection, we analyze the role of dynamical
fragmentation, i.e., the occurrence of more than one signif-
icantly occupied quantum states during the evolution, with a
varying quench amplitude. Especially, the fragmentation in the
nonequilibrium dynamics of trapped finite systems is known to
depend strongly on the particle number [37,42], the interaction
strength, and the evolution time. The spectral decomposition
of the one-body reduced density matrix offers a measure of
fragmentation via the populations n,(¢) of the natural orbitals
¢4 (1) [see Eq. (4)]. In particular, a nonfragmented (condensed)
state requires the occupation of n¢(#) to be close to unity [38].

Figure 1(a) shows the evolution of the natural populations of
the three highest occupied natural orbitals for different quench
amplitudes. The population of the first orbital ny(¢) is always
significantly below unity which confirms the fragmentation
process, while the three most occupied natural orbitals add
up to more than 90% of the population. Focusing on the first
orbital we note that the temporal average of the fragmentation
reduces as the quench amplitude increases and vice versa.
Especially, for final interactions close to a noninteracting state
we observe a tendency for a nonfragmented state at least
for certain time periods. This constitutes a major difference
between a negative and a positive interaction quench scenario.
In the latter case the fragmentation process is enhanced for
larger quench amplitudes, which can be attributed to the
consequent raise of the interparticle repulsion during the
process. However, here we face the inverse behavior because in
the initial strongly interacting state the interparticle repulsion
is already significant and tends to be reduced after the quench.
Moreover, the second and third orbitals take on a compensatory
role to the first, e.g., in the time periods where ng(¢) is
enhanced n(¢#) and n,(¢) are reduced. Finally, note that
for smaller quenches the latter populations possess smaller
amplitude oscillations, whereas strong quenches introduce
large amplitude variations of the populations.

Figure 1(b) illustrates the response of the first natural orbital
Po(x,t) at different time instants during the evolution after a
quench to g = 0.05. As can be seen ¢(x,t) exhibits spatial
oscillations in the outer wells and an on-site broadening in the
middle well which accounts for interaction effects. Another
important remark is that the band structure is effectively
reflected by the population of the natural orbitals; i.e., the
orbitals ¢o(x), ¢1(x), and ¢,(x) correspond to the effective
first single-particle band, orbitals ¢3(x), ¢4(x), and ¢s(x) to
the second band, etc. Thus, the lowest orbital ¢y(x,?) follows
quite well the evolution of the quenched one-body density.
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FIG. 1. (Color online) Fragmentation analysis for a system of
four bosons in a triple well with g;, = 5.0. Shown are (a) the time
evolution of the first three occupations ny(¢) (upper panel blue lines),
ny(t) (lower panel red lines), and n,(¢) (lower panel green lines), for
different quench amplitudes §g = —4.9 (dashed lines), §g = —4.0
(thick solid lines), and §g = —2.5 (thin solid lines). (b) Profiles of
the lowest natural orbital ¢,(x,#) for a quench amplitude 6g = —4.95
and different time instants during the evolution #; = 0.9 (blue dashed),
t, = 2.6 (red solid), and 3 = 7.0 (black dashed-dotted).

2. Dynamical response and transport properties

To investigate the dynamical response of the system we use
the above-discussed fidelity F; (¢) [see Eq. (3)]. This quantity is
shown in Fig. 2(a) as a function of the final interaction strength
and the time. We mainly note the appearance of two different
regions as a function of the quench amplitude. The first one
corresponds to quenches from a strong repulsive state with
gin = 5.0 to intermediate interactions where 3.4 < g < 5.0.
Here the overlap during the dynamics is rather large with
minimal percentage up to 85%, and therefore the system is
quite insensitive to the quench. In the second region where the
final state belongs to weak or even to the noninteracting regime,
ie.,0 < gy < 3.4, we observe the formation of an oscillatory
pattern in the fidelity evolution. This pattern indicates the
sensitivity of the system to these type of quenches, meaning
that the system can be driven far from the initial state, while
the minimal overlap for the extreme case of g — 0 can even
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FIG. 2. (Color online) (a) Fidelity evolution following negative
interaction quenches for g;, = 5.0. (b) The frequency spectrum of the
fidelity for g, = 0.6 (blue dashed) and g, = 1.0 (red solid), which
indicates the tunneling modes. The inset shows the dependence of
each tunneling branch with respect to the final interaction strength
after the quench. We incorporate 150 quenches in the range of 0 <
g5 < 5.0. The frequency units are normalized as w/Aw, with Aw =
27/ T and T being the considered evolution time.

be of the order of 20%. The emergence of the above regions is
universal in the system in the sense that it weakly depends on
the height of the barrier. Thus, for an increasing barrier height
the second region (larger quenches) will become narrower
due to the larger potential energy, which inhibits a possible
departure of the system from the initial state.

In order to identify the tunneling modes participating in
the dynamics we use as a measure the spectrum of the
fidelity Fy(w) =1 [dtF(t)e’'. Indeed, Fig. 2(b) shows
F), (w) for different final interactions where we observe two
dominant tunneling peaks. To proceed with a more quantitative
description of the tunneling dynamics we shall expand the
wave function in terms of the number states. To this end,
let |¥(0)) = Zc;a:l C?;I |¢)q.; be the initial wave function in
terms of the eigenstates |¢),.; of the final Hamiltonian [14].
Then the expansion of the fidelity reads

o)=Y |ce + 3 )’
Szl ISR eX:N:H{
X |Cg;1|2cos (e?l‘l - ef;l)t, (8)
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FIG. 3. (Color online) The time evolution of the normalized one-body correlation function gf;) after various negative interaction quenches

for g;, = 5.0. Shown are different components of the correlation function gf_;) with respect to the left well g(LlZ (blue dashed line), g(Ll,)V, (green

1)

thin solid line), and g; » (red thick solid line) for final interactions (a) g = 3.8, (b) g = 1.6, and (c) g, = 0.05.

where the second term contains the separate contributions from
each tunneling branch. The indices «, 8 indicate a particular
set of number states, ¢; is the intrinsic index within each set,
I denotes the respective energetical level, and eg‘l refers to
the eigenfrequency of a particular eigenstate. In particular,
the first peak at frequency w; ~ 3Aw (with Aw = 27/T and
T denotes the propagation time) corresponds to the energy
difference Ae within the energetically lowest states of the
single pair mode. Therefore the process corresponds to an
intraband tunneling, e.g., from the state |1,2,1)y to |2,1,1)y,
etc. However, the second peak located at w; ~ 125Aw refers
to an interband transition between the states |1,2,1), and
[1,2,1), which reflects the initial strongly correlated state.
In the inset we present the §g dependence of the location of
the aforementioned peaks. As can be seen, the two branches
are mainly steady as a function of the interaction quench and
their frequencies are constrained in a narrow band, while their
amplitude (see main figure) reduces significantly for weak
quenches.

In the course of the investigation of the tunneling dy-
namics one fundamental question that has to be addressed
is how correlations propagate [43] in the quenched system.
Here, in order to distinguish genuine interwell correla-
tions from density oscillation effects we explore the re-
sponse of the normalized single particle correlations gf})(t) =
<q/|bib§|w>/\/<\p|bibj|w><q/|bjb§|x1/> [44]. b denotes the
creation operator of a particle at the i th well, while the diagonal

elements gQ ) =1 by definition. An important property of this

1

function is that for gi(}) > 1 (<1) the corresponding detection
probabilities at positions i and j are correlated (anticorrelated),
while the case g}}) =1 is referred to as fully first order
coherent. Figures 3(a)-3(c) illustrate the time evolution for
different components of the one-body correlations for various
negative interaction quenches. As expected the diagonal terms
correspond to a straight line at unity for all quench amplitudes.
The nondiagonal terms gi(}), i # j exhibit a nonvanishing
oscillatory behavior, while for increasing quench amplitude
a substantial built-up of correlations is observed. In particular,

approaching the noninteracting limit g(Ll,)w(t) > 1 for most of

the time, whereas g(Ll,)?(t) oscillates around unity, indicating a
transition from an anticorrelated to a correlated situation.

3. The local breathing mode

The breathing mode can be used in order to measure some
key quantities of a trapped system such as its kinetic and
interaction energy or the coupling strength [17,17-19]. It refers
to an expansion and contraction of the bosonic cloud and can
be excited either via a variation of the interparticle interaction
or a modulation of the frequency of the trapping potential.

In a similar manner, our quenched system exhibits local
breathing oscillations which are most prominent in the
subsystem corresponding to the middle well. To detect the
frequencies of this normal mode we examine the variance of
the coordinate of the center of mass for a particular well.
The center of mass for the ith well is defined as X(Cliw =
Ji dx(xc = x)pi0)/ [} dxpi(x). The index i=R.M,L
corresponds to the right, middle, and left well, respectively,
while x(()') refers to the central point of the corresponding well.
The limits of the wells are denoted by d; and d;, whereas p;(x)
is the respective single particle density. For the identification
of the breathing process we define the operator of the second

moment afl(t) = (¥|(x — X(C';W)ZNJ). The latter serves as a
measure for the instantaneous spreading of the cloud in the ith
well and can also be used experimentally in order to probe the
expansion velocity of a quenched condensate [S]. Then, if we
connect the initial wave function with the eigenstates |{)4.; Of
the final Hamiltonian Hy, we obtain

Uj%4(t) = Z |C?I;I 20{;1 (;ll(x - Xg‘zw)2|§1>a;1

st

+2 Z Re(Cg;I*C?;I)ﬁ;[(QI(x - X(Cl;zw)2|§2>a;1
Oi#8

X COS (a)z;l - w‘;‘;l)t. )

To identify the frequencies of the local breathing mode, Fig. 4
shows the frequency spectrum of the second moment o,%,, (w) =
# [ dtoj,(t)e'", which refers to the middle well, for different
quench amplitudes. Three main peaks can be observed. The
lowest of these three peaks refers to a tunneling mode being
identified from the energy difference within the energetically
lowest states of the single pair mode. The appearance of this
peak in the spectrum is due to the fact that the tunneling can
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FIG. 4. (Color online) Fourier spectrum of the second moment
o} (w) for the local breathing mode for different quench amplitudes.
The initial state corresponds to g;, = 5.0, and the final interactions
are gy = 0.15 (blue dashed), g = 0.8 (red solid), and g, = 1.7
(black dashed-dotted). In the inset we show the dg dependence of
each breathing branch, where we incorporate 150 quenches in the
range of 0 < g < 5.0. Note that the frequency units are normalized
with respect to w/Aw, where Aw =2x/T and T is the respective
propagation time.

induce a change in the width of the local wave packet. The
second and third peaks refer to interband processes and are
related to higher-band transitions. In particular, the second
peak is located at w, ~ 125Aw and refers to a transition from
[1,2,1)0 to |1,2,1),, whereas the third one with frequency
w3 ~ 170Aw corresponds to a transition from [1,2,1)¢ to
[1,2,1)5. To illustrate the dependence of the above three peaks
on the interaction quench we show in the inset the evolution of
the location of each peak with respect to the final interaction
strength g, after the quench. We observe that the branches are
more sensitive for a quench to 2.0 < g, < 4.0, otherwise they
are mainly constant.

4. The cradle mode

This mode refers to a dipolelike oscillation generated via
an over-barrier transport due to the initially delocalized state
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between neighboring wells. In the present case it is induced
by an interaction quench. From a one-body perspective the
cradle mode is demonstrated by the inner well dynamics of
the one-body density fluctuations §p(x,t). Figure 5 shows the
evolution of the system through the relative density after a
sudden negative interaction quench from g;, =5.0 to g, =
0.07. The emergence of the cradle mode in the outer wells
manifested as a dipolelike oscillation and the local breathing
in the central well as a contraction and expansion dynamics is
observed.

The initial spatial configuration due to the strong interparti-
cle interaction corresponds to one localized boson in each well
and one delocalized (over the three wells) energetically close
to the barrier. In turn, the negative change in the interaction
strength yields a high probability for the delocalized particle
to overcome the barrier (over-barrier transport) and move
to a neighboring well, where it performs a collision with
the initially localized particle. This results in the cradlelike
mode inside the respective neighboring site and refers to a
localized wave-packet oscillation [14]. Note that the cradle
is inherently related to the initial delocalization and after a
negative interaction quench of a strongly correlated system
can be excited only for incommensurate systems with filling
factor v > 1. For other fillings it disappears and the consequent
dynamics is dominated by the interwell tunneling.

In the following, in order to quantitatively examine the
inner-well dynamics we proceed with a local density analysis.
For that purpose we divide a particular well from the center into
two equal sections with p, 1(¢) and p, »(¢) being the respective
integrated densities of the left and right parts during the
evolution. The index a = L, M, R stands for the left, middle,
and right well, respectively. In this manner, a measure of
the intrawell asymmetry which captures the cradle motion is
the quantity Ap,(t) = p,.1(t) — pa.2(t). Figure 6(a) shows the
frequency spectrum of the above quantity for the left well, i.e.,
App(w) = % f dt App(t)e'® for various negative interaction
quenches. From the spectrum we can identify two dominant
peaks located at the positions w; ~ 79Aw and w3 ~ 125Aw.
These two frequency branches correspond to the cradle mode.
In addition, we observe a low-frequency peak related to the
interwell tunneling at frequency w; ~ 3Aw. The inset shows
the §g dependence of the above three frequency peaks. The
location of each branch remains essentially independent of

| AARMARAMARAAR
Qi .
A

120 60 180 200

FIG. 5. (Color online) Space-time evolution of the fluctuations §p(x,#) after a sudden negative quench of the interparticle repulsion from
gin = 5.0to gy = 0.07, thereby approaching the noninteracting limit. We observe the cradle mode in the left and right wells, the local breathing

mode in the middle well and the interwell tunneling during the evolution.
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FIG. 6. (Color online) The frequency spectrum of the intrawell asymmetry Ap(w). (a) The final state of the system is obtained after a
sudden negative interaction quench from g;, = 5.0 to g; = 0.1 (blue dashed) and g, = 0.45 (red solid). The inset shows the evolution of each
peak that refers to the cradle as a function of the quench amplitude (we incorporate 150 quenches in the range 0 < g < 5.0). (b) The spectrum
Apy(w) for the same quench amplitude, g = —4.95, and different barrier heights Vy = 5.5 (red solid) and Vy = 3.5 (blue dashed). (c) Sudden
quench to g; = 0.4 and the hard-wall boundaries located at x, = £37/2 (blue dashed), x, = £57/4 (red solid), and x, = £117/8 (black
dashed-dotted). (d) It is illustrated the spectrum of Ap; (@) for an imposed harmonic trap Viam = 0 (blue dashed), Viam = 0.02x? (red solid),
and Viam = 0.05x2 (black dashed-dotted) on top of the lattice. Finally, note that in each case we use normalized frequency units w/Aw, with

Aw =2m/T and T being the respective evolution time.

the strength of the interaction quench, and it is therefore
constrained to a corresponding narrow band.

To gain a deeper understanding of the cradle mode we again
refer to a number state analysis and expand the initial state of
the system in terms of the eigenstates of the final Hamiltonian
as [W(0)) = .4, C¢™'1¢) 4s- Then the expectation value of
the asymmetry operator reads

(WIAGOIW) = ) ]Cg"\zz;a@llAma)a;z

Szl

+2 ) Re(CECEN) 1o (61 AB182) s
O#n

x cos[(@f! —wfl')r]. (10)

Here the terms of the second sum in the above expression
which demonstrate an oscillatory behavior describe the cradle
mode. Therefore, we need to detect the eigenstates (|¢),.;)

of the dominant oscillation terms, i.e., 4./ {{|APIC) g # 0.
A direct numerical analysis indicates that the respective
eigenstates are |£)1.0, |£)1:1, [ )1:2, Whereas the corresponding
significantly contributing number states are |2,1,1)0, |2,1,1),
and |2,1,1)4 due to the fact that the corresponding oscilla-
tion frequency matches the energy difference between these
eigenstates.

Let us now investigate possible control protocols of the
cradle mode via a modulation of its frequency by means
of a varying potential parameter or via an external forcing.
An efficient way to manipulate the frequency is to tune
the height of the potential barriers. In this way, the cradle
frequency can be reduced using a more shallow lattice
(thereby making the excitation of the cradle mode more
easy). Indeed, within the harmonic approximation it can be
easily shown that the effective frequencies for two lattices
with different potential depths Vi, and Vj.,, respectively,
obey weir.1 = (Vo.1/ Vo2)"/*wesr. This situation is illustrated
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in Fig. 6(b) where the frequency spectrum of the inner-well
asymmetry with the same quench amplitude but different
barrier heights Vy = 5.5 (red solid) and V) = 3.5 (blue dashed)
is shown. We observe a negative shift of each frequency peak
for a decreasing lattice depth which confirms our previous
arguments. Alternatively, a similar manipulation of the cradle
frequency can be achieved by comparing lattices with the
same height of the potential barrier but different frequencies.
Then, the respective effective frequencies are related via
wefi1 = (/1) wesr, where [ is the distance between two
successive potential minima.

In a similar manner, one can pose the question how the
cradle mode frequency depends on g;), for fixed g r. According
to our simulations (omitted here for brevity) each peak remains
essentially unchanged, indicating that the system does not
keep any memory from the particular strongly correlated initial
microscopic configuration.

A further question is to ask for the impact of the boundary
conditions. Hence, we assume a fixed height for the barrier but
changing the position of the hard wall boundary conditions.
Then we expect that as the wall is closer to the center of the
right or left well the cradle would be more enhanced because
effectively the frequency of the local harmonic oscillator is
larger and so the period of the cradle reduces. Indeed, Fig. 6(c)
illustrates for the same quench amplitude the Fourier spectrum
of the intrawell asymmetry Ap;(w) imposing the hard-wall
boundaries at different positions, namely, at x, = £37/2 (blue
dashed), x, = 57 /4 (red solid), and x, = +11x/8 (black
dashed-dotted). The frequency peaks of the cradle mode are
shifted by a positive value for a closer to the center hard
wall. As a final attempt we impose a harmonic trap on top
of the triple well, which increases the potential energy of the
edge wells. Then the on-site energy of the Wannier states
at the edges becomes larger than that (of the same degree
of energetical excitation) in the central well. This in turn
renders the initialization of the cradle mode more difficult,
and for strong superimposed harmonic traps its excitation for
a fixed quench amplitude becomes impossible. Accordingly,
Fig. 6(d) shows a scenario with the same quench amplitude but
different superimposed harmonic traps. We observe negative
variations and a reduction of the intensity of each peak
for a stronger harmonic trap, thereby confirming our above
discussion.

In the next subsection we explore the excitation modes
induced by a time-dependent modulation of the interaction
strength and establish their presence also for this case.

5. Finite ramping

The present subsection is devoted to the study of the
dynamics induced by time-dependent interaction quenches
with a finite ramp rate. In particular, we attempt to investigate
quenches with the same amplitude but evolving on different
time scales, in order to gain a further insight into the dynamical
response of the system with relevance to the experimentally
occurring time scales. To this end, let us adopt a time-
dependent quench scenario of the form

g(t;7) = gin + (g5 — gin)tanh(z /7). (11)

PHYSICAL REVIEW A 91, 033611 (2015)
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T

FIG. 7. (Color online) Fidelity evolution for g;, = 5.0 and g =
0.1 as a function of the ramp rate T measured in units of the Heisenberg

time ty (see text). The black dotted line correspond to the situation
withr = 7.

Here g;n, g s are the interaction strength for the initial and final
state respectively, whereas t denotes the finite ramp rate of the
performed quench. Focusing now on a strong nonequilibrium
postquench state with g, = 0.1, Fig. 7 shows the dynamical
crossover, for finite evolution times, from an abrupt to an
adiabatic interaction modulation for increasing ramp rates 7.
To interpret the resulting behavior on a relevant time scale we
define the Heisenberg time 7 ~ 1/A€(5g), where Ae(5g) =
€(gin) — €(gy) refers to the energy difference between the
ground state of the system before and after a sudden interaction
quench. As is shown for times ¢ < 7 (region under the black
dotted line in Fig. 7) the system essentially remains in the
initial ground state of the unperturbed Hamiltonian. On the
other hand, in the region with ¢ > t, which spreads for
decreasing t (thereby approaching the sudden quench), the
system starts to significantly depart from the initial state.
Remarkably enough for 7 < 30ty we observe the appearance
of black lobes (overlap of the order of 40%) during the
evolution, which indicate the persistence of the excitation
modes in this region. For 7 > 30ty we have a transition to
a smoother dynamical departure of the system from the initial
state and as a consequence the elimination of the excitation
modes. In particular, for t > 85ty the Hamiltonian changes
sufficiently slowly, i.e., the system tends to remain in the
instantaneous ground state, and therefore the modulation is
almost adiabatic for the whole evolution time. For a smaller
quench the adiabatic regime can be reached for sufficiently
smaller time scales due to the reduced impact of the quench to
the system. These statements are also valid for a linear quench
protocol of the form g(¢; 1) = gin + (g7 — gin)t/7 fort < 7,
and g(¢;7) = gy fort > 7.

As a next step we study the effect of the time-dependent
interaction quench on the excitation modes, i.e., the breathing
and cradle processes. To give further insight in the overall
nonequilibrium process, Fig. 8 illustrates the evolution of
8p(x,t), for the same relevant interactions as in Fig. 5 where
we considered a sudden quench, implementing now the time-
dependent scenario of Eq. (11) with a finite rate T = 0.87p.
The above-discussed modes still persist but with reduced
intensity, which is larger when the quench is faster.
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FIG. 8. (Color online) The fluctuations dp(x,#) of the one-body density caused by a negative time-dependent quench of the interparticle
repulsion to g = 0.07 (g;, = 5.0) with a finite ramp rate T = 0.87y. For a direct comparison the quench parameters, here, have been chosen
similar with Fig. 5, which refers to the respective sudden quench scenario. We observe that the cradle mode in the left and right wells, the local
breathing mode in the middle well, and the interwell tunneling during the evolution persist.

According to this let us investigate how one can manipulate
the local breathing mode via the quench rate 7. Figure 9(a)
shows the frequency spectrum of the local breathing mode
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FIG. 9. (Color online) (a) Frequency spectrum of the variance
o} (w) for time-dependent quenches of the form of Eq. (11) with final
interaction gy = 0.1 andrates T = Oty (blue dashed), T = 0.8 (red
solid), and T = 3.0ty (black dashed-dotted). The inset shows each
branch of the local breathing mode as a function of the quench rate
7 (we incorporate 160 different rates in the range 0 < 7 < 120). In
(b) we present the spectrum of the intrawell asymmetry Ap; () for
a time-dependent scenario with quench amplitude g = —4.90 and
rates T = Oty (blue dashed), t = 0.8ty (red solid), and T = 3.0y
(black dashed-dotted). The inset demonstrates the dependence of
each branch of the cradle mode as a function of the quench rate 7.
Finally, note that we have used normalized frequency units w/Aw,
with Aw = 27/ T and T being the respective evolution time.

obtained for the same amplitude §g = —4.9 and different
quench rates t. As it can be seen the position of each peak
remains the same but its intensity decreases significantly for
larger rates. To further probe the position of each branch with
respect to the quench rate T we present in the inset the 7
dependence of each peak (without taking into account its
intensity). It is obvious that each branch is quite insensitive to
the interaction quench while in terms of its intensity [Fig. 9(a)],
one can infer that by considering larger rates can gradually
obliterate each frequency branch, i.e., for a faster quench the
spectrum is more rich. Especially, one finds that for 7 > 30ty
this mode can essentially be eliminated, which means that the
intensity of each peak is negligible (in our case <107).

Finally, we study the effect of the finite ramping on
the cradle mode. Figure 9(b) presents the spectrum of the
intrawell asymmetry App(w) for an abrupt quench in the
interparticle repulsion and two different quenches obeying
the above time-dependent law with different rates T but same
final interaction as in the abrupt case. Moreover, in the inset
we demonstrate the evolution of each peak (without taking
into account its intensity) as a function of the ramp rate t. We
observe that for larger rates 7 the location of each frequency
peak remains essentially the same (inset) but the respective
amplitude tends to decrease, while for t > 9.0ty the third
peak that refers to the second excited state in the left well has
already been eliminated. Increasing further the rate v > 30ty
one can eliminate the cradle (intensity < 1073) approaching
the adiabatic region as also shown in Fig. 7.

In the following section we turn to the study of the quench
dynamics induced by a modulation of the optical lattice
depth examining its dynamical response and the consequent
excitation modes.

B. Quench of the optical potential depth for filling v < 1

Here we consider a quench protocol which consists of
a ramp-down of the optical potential depth, thereby driving
the system to a region where the kinetic energy of the atoms
dominates in comparison to the potential energy. As we shall
demonstrate, following this protocol one can excite the cradle
mode also for setups with filling v < 1. The system consists
of five particles in an eight-well setup, but our conclusions
can be easily generalized for arbitrary filling factors. To be
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FIG. 10. (Color online) (a) Fidelity evolution as a function of different sudden negative quenches of the optical lattice depth. The system
consists of five strongly interacting bosons (g = 5.0) in an eight-well potential with V;;, = 8.0. (b) Same but for different quenches of the lattice
depth and a simultaneous interaction quench to g = 0.02. (c) Profiles of the fidelity evolution for different quench amplitudes §V,, = —3.8 (blue
thin solid), 8§V, = —2.5 (red thick solid), 6V, = —0.9 (magenta dashed-dotted), §Vy = —0.2 (black dashed), and a simultaneous interaction
quench to g, = 0.02. In (d) we present profiles of the fidelity following a negative time-dependent quench of the potential depth to Vi,; = 4.0
with different ramp rates v = 0.4ty (blue thin solid), t = 15.0ty (green thick solid), T = 40.0ty (red thin dashed), 7 = 100.0ty (magenta
thick dashed), ¢ = 400.0ty (yellow thin dashed-dotted), and T = 800.0ty (black thick dashed-dotted) and a simultaneous interaction quench

to gy = 0.02.

self-consistent with the previous study we start from a strongly
interacting initial state with g;, = 5.0, while the lattice is
assumed to be initially deep enough with a depth V;.;, = 8.0
to include the first three Wannier energy levels. As usual, in
order to interpret the dynamics induced by the quench we
should be aware of the characteristics of the initial ground
state. For a system with filling v < 1 the one-body density
remains asymmetric even for strong interactions due to the low
population, while the delocalized fraction of particles permits
the presence of long-range one-particle correlations even in
the strongly repulsive regime [45].

Let us firstly analyze the nonequilibrium dynamics induced
by a sudden ramp-down of the optical potential depth at
time ¢ = 0. The final Hamiltonian that governs the dynamics
following the above scenario is given by

N
SV
m@%w=m@wm+v°§Mmm (12)
0sin k=1

with Vi, Vo,r being the initial and final potential depth,
respectively, §Vy = Vo, — Vo < 0 due to the reduction of
the barrier, and V;, being the lattice potential.

To examine the response of the system after the quench we
initially rely on the fidelity F; (#). We consider quenches of the
barrier down to Vj, = 2.0, where the lattice is quite shallow
and includes only the first Wannier energy level while the
others are considered as delocalized. Indeed, Fig. 10(a) shows
in a transparent way the instantaneous fidelity as a function of
the final lattice depth. The rise of two different dynamical
regions is observed. In the first region (5.0 < Vj,; < 8.0)
the overlap is rather large with a minimum of the order of
80%, while in the second region (2.0 < Vj,r < 5.0) it can
even reach 25% during the evolution. As we shall demonstrate
below, the response of the system following this protocol is
drastically different from that obtained through an interaction
quench for fillings v < 1 where the dynamics is dominated
by the interwell tunneling. In particular, one can excite more
on-site dynamical modes and even use a barrier quench on
top of an interaction quench in order to excite the cradle
mode. To indicate the latter and also to trigger more efficiently
the dynamical modes from here on we mainly proceed by
performing a simultaneous barrier and an interaction quench
to weak interactions, i.e., gy = 0.02. Figure 10(b) presents the
fidelity during the dynamics induced by different quenches
of the lattice depth and a simultaneous interaction quench
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FIG. 11. (Color online) (a) The fluctuations dp(x,t) of the one-body density, for an eight-well setup with N = 5, caused by a sudden
negative barrier quench from Vy,;, = 8.0 to V;.; = 4.0 and a simultaneous interaction quench from g;, = 5.0 to g, = 0.02. (b) The intrawell
asymmetry Ap,(¢) for the second well of the eight-well setup for a barrier quench (red solid curve) to Vs = 4.0 and for the combined quench
scenario, i.e., barrier and interaction quench, with final parameters Vy.; = 4.0 and g, = 0.02 (blue dashed curve).

to gy = 0.02. The dynamical response of the system shows
four different regions during the evolution. In the first (white
part) the system is close to the initial state with minimal
percentage up to 80%, while the second (yellow) and the
third (light-red) regions indicate that the system significantly
departs from the initial state with a percentage of the order of
50% and 30%, respectively. The latter regions correspond to
transition states following the combined quench. Finally, in the
fourth section (dark-red) the system is driven to a completely
different state possessing a maximal overlap of the order of
10%. In particular, for a fixed overlap a quadratic response of
the system as a function of the quench amplitude is observed.

To analyze further the response of the system, Fig. 10(c)
illustrates some profiles of the fidelity in the course of
the dynamics for different quenches. The fidelity exhibits a
quadratic decay for short times, while after a characteristic time
7.(8Vp) it oscillates around a constant value Fy(8V;), which
depends on the quench amplitude such that it is larger for a
smaller quench. The observed short-time quadratic behavior
can be easily explained as follows. Let |W,) be the initial
eigenstate of Hy, and |\W(8¢)) the corresponding state after a
short-time interval §z. Then the short-time expansion of the
overlap reads

(Wol W) P =1 = (81/7.)* + O[(31)'], 13)

7l = [(\I/(St)lH]ﬂ\Il(Bt)) — (W(St)|H|W(81))2]Y% is the
quench characteristic time 7.(6V)) or so-called Zeno time
[34,46]. Especially, we observe that the time t.(§Vj) depends
on the quench amplitude; i.e., for smaller quenches it becomes
larger due to the smaller energy difference between the pre-
and postquench states, and the system cannot equilibrate fast.
Furthermore, the rapid small amplitude oscillations during the
decay are a consequence of the quantum interference and
are predominantly due to the overbarrier transport induced
by the quench. Thus, they are also a presignature of the
cradle mode, which is discussed below. The fact that at least
some frequencies of the cradle mode could be indirectly
observed in the fidelity spectrum is not surprising. Indeed,
from the expansion of the fidelity [see Eq. (8)] in terms of
the number states it is obvious that when the contribution of
the excited band states, that refer to the cradle, is significant

the mode should also be observed in the fidelity spectrum.
For smaller quenches these amplitude oscillations fade out,
thereby indicating that the cradle is very weak.

Furthermore, in order to unravel the crossover between
a diabatic and an adiabatic quench, let us consider a time-
dependent scenario of the form V(t;7) = Vy,in + (Vo5 —
Vo.in) tanh(z /7). To obtain the physically relevant time scales,
let us rescale the time ¢ in units of the quench characteristic
time scale T (8Vp) ~ 1/Ae(6Vy), where Ae = e(Vo.in; 8in) —
€(Vo,r; &) is the energy difference between the prequenched
and the postquenched system. Figure 10(d) demonstrates the
fidelity in the course of the dynamics for an interaction
quench to gy =0.02 and the same final potential depth
Vo, = 4.4(V;, = 8.0) for different ramp rates 7. A direct
observation, here, is that the system has a similar quadratic
response (for short times) with respect to the quench, being
accompanied by small amplitude oscillations especially for
fast quenches, 7 < 28ty. This indicates that the characteristics
of the dynamics, such as the excitation modes, remain also for
finite rates. By considering large rates t the switch on of the
energy difference is sufficiently slow, and an eigenstate of the
initial Hamiltonian becomes approximately an eigenstate for
the instantaneous final Hamiltonian. In this manner, we tend
to approach the adiabatic limit and the system equilibrates in a
slower manner while the small amplitude fast oscillations tend
to disappear. Note that for smaller relative quench amplitudes
the adiabatic limit is attained for smaller ramp rates due to the
reduced impact of the quench.

The reduction of the lattice depth allows for an initially
delocalized boson to overcome the barrier if its kinetic energy
dominates with respect to the potential energy. Then it is
possible to perform a collision with a second particle on
the neighboring site and a cradle state can be generated.
Figure 11(a) illustrates from the perspective of the relative
density §p(x,7) the evolution of the system after a negative
change of the lattice depth from Vj,;, = 8.0to Vj,; =4.0anda
simultaneous interaction quench from g;, = 5.0to g, = 0.02.
The dynamics shows the propagation of interwell tunneling
via the population transport along the lattice, following the
evolution of the bright regions. The corresponding propagation
velocity is smaller for a smaller quench of the barrier.
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Furthermore, locally we observe the emergence of the cradle
mode for the inner-well dynamics as a consequence of the
overbarrier transport. However, this mode is hardly visible
in Fig. 11(a) due to the presented long evolution time and
possesses a small amplitude as we shall demonstrate below.

The cradle mode refers to the inner-well oscillations
between at least two bosons in the same well. The dominant
number states for such a process exemplified using the first
well are |2,0,1,1,1,0,...), and |2,0,1,1,1,0,...);, with a
straightforward extension for the remaining wells. To identify
the presence of the cradle mode for the present setup we show
in Fig. 11(b) the intrawell asymmetry [Ap,(?)], for the second
well of the lattice, as a function of time, and two different
quench scenarios, i.e., an instantaneous ramp-down of the
lattice depth (red solid curve) and its combination with a
simultaneous interaction quench to gy = 0.02 (blue dashed
curve). In the latter case the resulting amplitude is larger,
which is due to the simultaneous interaction quench. For an
incommensurate setup with filling v > 1 this amplitude is even
more larger as the initially delocalized particles, energetically
close to the barrier, render the system sensitive even to a small
perturbation.

IV. CONCLUSIONS AND OUTLOOK

We have investigated the quantum dynamics of strongly
interacting bosons following a quench either to a weakly
interacting final state or to a lattice with lowered barriers. The
observed normal modes consist of the interwell tunneling,
a local breathing, and a cradle mode. Each of these modes
have been explained in detail, among others, within the
concept of multiband Wannier number states which capture
the population of excited states. The dominant Fock space
for each mode has been identified showing the inclusion
of higher-band contributions. In this manner, conceptual
differences concerning the ingredients of each mode as well
as the corresponding excitation process in comparison with
the case of positive interaction quenched [14] superfluids have
been demonstrated.

The interwell tunneling refers mainly to a direct population
transport among the individual wells. On the other hand,
the local breathing mode refers to expansion and contraction
dynamics of the bosons in an individual well. The cradle mode
corresponds to a localized wave packet oscillation. For the
interaction quench scenario where we start from a strongly
interacting state and quench back to weak interactions it is
shown that the generation of the cradle mode is due to the initial
delocalization. Therefore it can be observed only for setups
with filling v > 1, while for the case of v < 1 it can be excited
only with the aid of a barrier quench. This is a major difference
in comparison to a positively interaction quenched superfluid
where due to import of energy in the system we allow for the
over-barrier transport independently of the filling factor. The
fidelity function has been employed in order to investigate the
response of the system and its long-time evolution with respect
to the quench amplitude, as well as to show the dynamical
crossover from a sudden to an adiabatic parameter change. By
considering time-dependent quenches, i.e., different quench
rates, or the modulation of various potential parameters of

PHYSICAL REVIEW A 91, 033611 (2015)

the Hamiltonian we proposed scenarios to control the excited
modes by manipulating their frequencies.

Our developed understanding of the excitation modes as
well as the tunneling dynamics may pave the way to a control
of the nonequilibrium dynamics of such strongly correlated
systems. For instance, the finite ramp rate of a time-dependent
quench may allow for the control of the normal modes
or the transport of a definite number of atoms. There are
many ways to proceed in this direction. As an example we
mention the nonequilibrium dynamics of mixtures of different
bosonic species in order to unravel their excitation modes or to
create schemes for selective transport of an individual bosonic
component.
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APPENDIX: THE COMPUTATIONAL METHOD,
ML-MCTDHB

Our analysis has been performed via the multilayer multi-
configuration time-dependent Hartree method for bosons (ML-
MCTDHB) [24,25], which constitutes an ab initio method for
the stationary properties but in particular the nonequilibrium
quantum dynamics of bosonic systems. For a single species it is
identical to MCTDHB, which has been established [26,27,47]
and applied extensively [47-50].

The advantage of the MCTDH-type methods [51] in
comparison to other exact computational methods is the repre-
sentation of the wave function by a set of variationally optimal
time-dependent orbitals. In turn, this implies the truncation
of the total Hilbert space to an optimal one by employing
a time-dependent moving basis in which the system can
be instantaneously optimally represented by time-dependent
Hartree products. The use of time-dependent orbitals is the
key for the numerically exact treatment, i.e., we need a much
smaller set of time-adaptive orbitals in order to achieve the
same level of accuracy compared to the case of a static basis. To
be self-contained let us briefly introduce the basic concepts of
the method and discuss how it can be adapted to our purposes.

The main underlying idea of the MCTDHB method
is to solve the time-dependent Schrodinger equation
(ihd; — H)W(x,t) =0 as an initial value problem. The ex-
pansion of the many-body wave function which is a linear
combination of time-dependent permanents reads

W) = ZCﬁ(t) Iny,na, ...y t), (AD)

where M is the number of orbitals and the summation is over
all possible combinations which retain the total number of
bosons. The permanents in terms of the creation operators
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aj(t) for the jth orbital ;(¢) are given by

|ni,no, ..., npst)

1
= (@) (@) - ()" vac), (A2)
nyng.---Ny.

which satisfy the standard bosonic commutation relations
[ai(t),a;(t)] = §;j, etc. To proceed further, i.e., to determine
the time-dependent wave function |W) we have to find
the equations of motion for the coefficients C;(¢) and the
orbitals (which are both time-dependent). For that purpose
one can employ various schemes such as the Lagrangian,
McLachlan [52], or the Dirac-Frenkel [53,54] variational
principle. Following the Dirac-Frenkel variational principle
(§Wlio, — A |[W) =0 we can determine the time evolution
of all the coefficients Cj(¢) in the ansatz (A1) and the time
dependence for the orbitals |<p j ) In this manner, we end up with
a set of M nonlinear integrodifferential equations of motion
for the orbitals, which are coupled to the % linear
equations of motion for the coefficients. These equations are
the well-known MCTDHB equations of motion [26,27,47,55].

PHYSICAL REVIEW A 91, 033611 (2015)

In terms of our implementation we have used a discrete
variable representation for the orbitals and a sin-DVR which
intrinsically introduces hard-wall boundaries at both ends
of the potential (i.e., zero value of the wave function on
the first and the last grid point). For the preparation of our
initial state we rely on the so-called relaxation method in
terms of which we can obtain the lowest eigenstates of the
corresponding n-well setup. The key idea is to propagate some
initial wave function W(® by the nonunitary e~#* (propagation
in imaginary time). As T — 00, this exponentially damps out
any contribution but that stemming from the ground state
like e~F»7. In turn, we change either the initial interparticle
interaction or the depth of the optical lattice abruptly or in
a time-dependent manner in order to study the evolution of
W(xy,x2,...,xy;1t) in the n-well potential within MCTDHB.
Finally, note that in order to ensure the convergence of our
simulations, e.g., for the triple well, we have used up to
11 single particle functions, thereby observing a systematic
convergence of our results for sufficiently large spatial grids.
Another criterion for ensuring convergence is the population
of the lowest occupied natural orbital, which is kept for each
case below 0.1%.
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Quantum dynamical response of ultracold few-boson ensembles in finite optical lattices
to multiple interaction quenches
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The correlated nonequilibrium quantum dynamics following a multiple interaction quench protocol for few-
bosonic ensembles confined in finite optical lattices is investigated. The quenches give rise to an interwell
tunneling and excite the cradle and a breathing mode. Several tunneling pathways open during the time interval
of increased interactions, while only a few occur when the system is quenched back to its original interaction
strength. The cradle mode, however, persists during and in between the quenches, while the breathing mode
possesses distinct frequencies. The occupation of excited bands is explored in detail revealing a monotonic
behavior with increasing quench amplitude and a nonlinear dependence on the duration of the application of
the quenched interaction strength. Finally, a periodic population transfer between momenta for quenches of
increasing interaction is observed, with a power-law frequency dependence on the quench amplitude. Our results
open the possibility to dynamically manipulate various excited modes of the bosonic system.

DOI: 10.1103/PhysRevA.95.053610

I. INTRODUCTION

Ultracold atoms in optical lattices offer the opportunity to
realize a multitude of systems and to study their quantum
phenomena [ 1-5]. Moreover, recent experimental advances in
optical trapping allow one to control the size and atom number
of these quantum systems, and furthermore include the tunabil-
ity of the atomic interactions via Feshbach resonances [6—8].
A promising research direction in this context is the nonequi-
librium quantum dynamics for finite atomic ensembles. Here,
the most frequently considered setting is a quantum quench
(see Refs. [9-11] and references therein), where one explores
the quantum evolution after a sudden change of an intrinsic
system parameter such as the interaction strength [12-15].
A complicating feature of the nonequilibrium dynamics is the
presence of interactions at a level that often precludes the use of
a perturbative analysis and/or mean-field (MF) approximation.
Specifically, the dynamics beyond the paradigm of linear
response has been a subject of growing theoretical interest
[16-24] triggered by the recent progress in ultracold atom
experiments particularly in one spatial dimension [25-28].

Referring to few-body systems in finite optical lattices, it
has been shown [14,15] that following an interaction quench
several tunneling pathways can be excited as well as collective
behavior such as the cradle or breathing mode are observed.
Furthermore, a sudden raise of the interactions [14] couples
one of the tunneling modes with the cradle mode giving rise
to a resonant behavior. On the other hand, a sudden decrease
of the interparticle repulsion [15] excites the cradle mode only
for setups with a filling larger than unity and no mode coupling
can be observed. From this it is evident that in order to steer
the dynamics the considered quench protocol plays a key role.
Naturally, one can then generalize the underlying protocol to a
multiple interaction quench (MIQ) scenario, which consists of
different sequences of single quenches. A specific case would
be a quench followed by its “inverse,” namely by going back to
the original interaction strength (single pulse). This enables the
system to dynamically return to its original Hamiltonian within
certain time intervals and the question emerges what properties
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induced by the quench persist during the longer time evolution.
Very recently [29], a study of the effects of the MIQ protocol
on the one- and two-body correlation functions of a three-
dimensional ultracold Bose gas has been performed using the
time-dependent Bogoliubov approximation. It has been shown
that the system produces more elementary excitations with
increasing number of MIQs, while the correlation functions
tend to a constant value for long evolution times.

In the present work, we provide a multimode treatment of
few bosons in finite optical lattices in one spatial dimension,
where all correlations are taken into account. Such an approach
is very appropriate in order to extract information on the
resulting many-body dynamics and in order to obtain the
complete excitation spectrum. This will allow us to explore
how the MIQ protocol, reflected by the different temporal
interaction intervals, affects the system dynamics and as a
consequence the persistence of the emergent various collective
modes during the evolution.

Several protocols varying the number of quenches are
hereby investigated. Our focus is on the regime of intermediate
interaction strengths, where current state of the art analytical
approaches are not applicable. The lowest-band tunneling
dynamics involves several channels following a quench of in-
creasing interaction, while only a few persist when the system
is quenched back. Furthermore, the intrawell excited motion is
described by the cradle and the breathing modes being initiated
by the overbarrier transport which is a consequence of the
quench to increased interactions. We find that in the course
of the MIQ the cradle mode persists for all times, while the
breathing mode possesses distinct frequencies depending on
the different time intervals of the MIQ. In contrast to the single
quench scenario [14,15] here by tuning the parameters of the
MIQ we can manipulate both the interwell tunneling and the
intrawell excited modes. Moreover, the higher-band excitation
dynamics is explored in detail. A monotonic increase of the
excited to higher-band fraction for larger quench amplitudes
is observed and a nonlinear dependence on the time interval
of a single quench (pulse width) is revealed. Remarkably, the
interplay between the quench amplitude and the pulse width
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yields a tunability of the higher-band excitation dynamics. This
observation indicates a substantial degree of controllability of
the system under a MIQ protocol, which is an important result
of our work. Moreover, it is shown that in the course of a certain
pulse the presence of increased interactions leads to a periodic
population transfer between different lattice momenta, while
for the time intervals of the initial interaction strength this does
not happen. The frequency of the above-mentioned periodicity
possesses a power-law dependence on the quench amplitude.

This work is organized as follows. In Sec. II we introduce
the quench protocol and the multiband expansion as an analysis
tool. Section III focuses on the detailed investigation of the
impact of the MIQ on the quantum dynamics for filling factors
larger than unity, whereas Sec. IV presents the dynamics for
filling factors smaller than unity. We summarize our findings
and present an outlook in Sec. V. The Appendix describes our
computational method and delineates the convergence of our
numerical results.

II. QUENCH PROTOCOL AND MULTIBAND EXPANSION

We consider N identical bosons each of mass M confined
in an m-well optical lattice. The many-body Hamiltonian reads

N 2

H = ; (2[)_[(4 + Vtr(xi)> + ; Vim(xi - xj7rsnpst)9 (1)
where the one-body part of the Hamiltonian builds upon
the one-dimensional lattice potential V.(x) = Vysin?(kx). The
latter is characterized by its depth Vj and periodicity /, with
k = /1 denoting the wave vector of the counterpropagating
lasers which form the optical lattice. To restrict the infinitely
extended trapping potential Vi;(x) to a finite one with m wells
and length L, we impose hard wall boundary conditions at
the appropriate positions, x,, = :i:%. Furthermore, Vi, (x; —
xj,t,T,np,) = g(t,t,n,)8(x; — x;) corresponds to the contact
interaction potential between particles located at positions {x;}
withi =1,2,...,N.

To trigger the dynamics we employ a MIQ protocol. At
t = 0 the interatomic interaction is quenched from the initial
value gi, to a final amplitude g,, maintaining g, (positive
half) for time t (pulse width). Then, the interaction strength is
quenched back from g to its initial value gj,, maintaining this
value gi, (negative half) for time 7. This procedure is repeated
according to the number of the pulses 7 ,; see Fig. 1 for the
case of three pulses. Therefore, our protocol reads

gt,t,ny) = gn+ (g7 — &in)
ny—1
X Z [O( —2iT)O(2i + DT —1)]. (2)
i=0
Here, each pulse is modeled by a temporal step function de-
pending on the parameters n,, and T which refer to the number
of the considered pulses and the pulse width, respectively.
Moreover, g = g — gin denotes the quench amplitude of
the MIQ. Experimentally, the effective interaction strength in
one dimension can be tuned either via the three-dimensional
scattering length by using a Feshbach resonance [8,30] or
by a change of the corresponding transversal confinement
frequency w, [31-33].
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FIG. 1. Sketch of a triple pulse MIQ protocol, g(t), with pulse
width 7. g, (g5) refer to the pre-(post-) quenched interaction strength
and 6g = gy — gin 1s the pulse or quench amplitude.

For reasons of simplicity we rescale the Hamiltonian (1) in
. . 2 .
units of the recoil energy Ep = % Thus the length, time,

and frequency scales are given in units of k!, w;l = hE,;l,
and wg, respectively. To include three localized single-particle
Wannier states in each well we employ a sufficiently large
lattice depth of Vy = 10.0E%. Finally, for convenience we
set i = M =k = 1. Hence all quantities below are given in
dimensionless units.

To solve the underlying many-body Schrédinger equation
we employ the multiconfiguration time-dependent Hartree
method for bosons (MCTDHB) [34,35]. In contrast to the MF
approximation, within this method we take all correlations
into account and employ a variable number of variationally
optimized time-dependent single-particle functions (see the
Appendix for more details). Below, when comparing with the
MEF approximation we will refer to MCTDHB as the correlated
approach. For the interpretation and analysis of the induced
dynamics it is preferable to rely on a time-independent many-
body basis rather than the time-dependent one used for our
numerical calculations. We therefore project the numerically
obtained wave function on a time-independent number state
basis consisting of single-particle states localized on each
lattice site. Thus the total wave function is expanded in terms of
noninteracting multiband Wannier number states. The Wannier
states between different wells possess a fairly small overlap
for not too high energetic excitation as the employed lattice
potential (Vy = 10.0E%) is deep enough. Then, a many-body
bosonic wave function for a system of N bosons, m wells, and
J localized single-particle states [14,15] reads

(1) =Y Ca(r) i), 3)
i
where [ii) = |®/_on\”, ®/_onl”, ..., ®IZsn®) denotes

the multiband Wannier number state. Each element can be
decomposed as ®§;(l) nl(.x) = nEO) ® nﬁl) -] nl(-]_l), where
ngk) denotes the number of bosons being localized in
the ith well, and Ath band satisfying the closed subspace

. i1 . .
constraint Y i 71—, nf )= N. For instance, in a setup
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with N = 4 bosons confined in a triple well m = 3, which
is our workhorse in the following, which includes A =3
single-particle states, the state [1©,1© @ 1M 1©) indicates
that in every well one boson occupies the zeroth excited
band, but in the middle well there is one extra boson
localized in the first excited band. For this setup we can
identify four different energetic classes of number states.
The single pairs {|2(V,1(2) 1)) 4 )} (SP), the double pairs
{|2(11)72(12)70(13)>+ O} (DP), the triples {|3(11)’ 1(12)7()(13)>_|_ ),
(T), and the quadruples {40,042, 0U))+ O} (Q), where
O stands for all corresponding permutations and I =
(11,1>,13) indicates the order of the degree of excitation.
For our purposes we only consider the corresponding sub-
class with isoenergetic states, e.g., for the double pairs
{|2(11)72(12)70(13)>7 |0(11)’2(I:),2(13))’ |2(11)’0(12),2(13)>}' To charac-
terize the eigenstates in terms of number states we adopt the
compact notation |s),.;, where s denotes the spatial occupation
and « relates to each of the above classes. For instance, {|s) .1}
with I = (1,1,0) represents

{|2(1)’ 1(1)’ 1(0)>’ |2(1)’ 1(0)’ 1(1)>’|1(0)’2(1)’ 1(1)>’
|1(0)7 1(1)72(1)% | 1(1), 1(0)72(1)% | 1(1),2(1)7 1(0)>}

and s runs from 1 to 6.

III. QUENCH DYNAMICS FOR FILLING v > 1

In this section the nonequilibrium dynamics following the
MIQs for a system with filling factor v > 1 is analyzed. The
system is initially prepared in the ground state of four bosons
confined in a triple well with interparticle repulsion gj, = 0.1.
It is thus dominated by the number state |10,2°, 10>. To induce
the dynamics we focus on a double and five pulse quench
protocol [see Eq. (2) for n, =2 or n, =5 and 7 =50 or
T = 25, respectively] and compare with the results for a single
interaction quench.

A. Tunneling dynamics

To investigate the dynamical response we employ the
fidelity evolution F(t;7) = | (¥ (0)|¥(t; 7)) |2, which is the
overlap between the instantaneous and the initial wave function
[36-39]. Following a single quench, see Fig. 2(a), two different
dynamical regions arise in the fidelity evolution. For 0.1 <
gs < 1.0 the system is only weakly perturbed since F'(¢) ~ 1.
For gy > 1.0 the fidelity deviates significantly from unity and
exhibits in time an oscillatory pattern. These oscillations are
amplified with increasing quench amplitude and characterized
both by a higher amplitude and frequency due to the increasing
deposition of energy into the system. For the double pulse
protocol the dynamical response is altered, as compared to
the single quench scenario, and it is characterized by four
distinct temporal regions; see Fig. 2(b). For ¢ < t the same
pattern as for the single quench is, of course, observed as
the two protocols are identical within this time interval,
ie, gt <t)=gs. At t =1 the system is quenched back
to gin and the oscillation of the fidelity almost vanishes.
Then, F(t <t < 2t) = F(t = 1), where the value F(t = 1)
depends strongly on the phase of the oscillation at r = 7 and
therefore on §g. During the positive half of the second pulse
2t <t < 3t an oscillatory pattern is observed, possessing the
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FIG. 2. As a function of the quench amplitude §g are shown the
following: (a),(b) fidelity evolution for a single quench and a double
pulse (n, =2) MIQ, respectively, and (c),(d) the corresponding
fidelity spectra. Parameter values are g;, = 0.1, t = 50, and N = 4.

same frequencies with those occurring during the positive
half of the first pulse. The system is driven further away
from the initial state as more energy is added. Note that the
dominant frequency of the oscillation depends on §g as in the
single quench scenario; see Fig. 2(a). At t = 37t the system
is quenched back to gi, and the oscillatory behavior of the
response again vanishes. Hereafter, F(t > 3t) =~ F(t = 37).
Remarkably enough, for 3.2 < g, < 3.7, the fidelity reduces
significantly after the second pulse to the value F(t > 37) =
0.44 at gy, =3.4. The existence of such strong response
regions for certain combinations of §g and t is caused by
the MIQ scenario and will be addressed below in more detail.

To identify the corresponding tunneling modes that partic-
ipate in the dynamics we inspect the spectrum of the fidelity
[14,15,40] for the single quench [Fig. 2(c)] and the double
pulse [Fig. 2(d)] protocols. Both scenarios excite the same
frequency modes possessing though some differences, caused
by the fact that in the finite time intervals that the system is
quenched back within the double pulse protocol, the response
remains mainly stable. The observed modes triggered by a
single (double-pulsed) quench can be energetically categorized
as follows: (cr1) [(«r})] tunneling within the SP category, («2)
[(er5)] tunneling between the SP and DP categories, and («3)
[(«r)] tunneling between the SP and T categories. The latter
two processes are reminiscent of the atom pair tunneling which
has been experimentally detected in driven optical lattices
[41,42]. To gain more insight into the spectrum of the double
pulse scenario we have splitted the evolution into the different
temporal regions that the protocol imposes, i.e., g = g, or
g = gin- As nearly no oscillations occur in the negative halves
of the double pulse (t < < 27 and ¢ > 37) all tunneling
branches except a; are then suppressed. Note here that, in
principle, for g = gi, all branches possess very small and
nearly equal frequencies which are resolvable in the case of a
large enough t. However, for t < t (positive half of the first
pulse) and 27 < ¢ < 37 (positive half of the second pulse) the
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above-mentioned three modes occur; see also Fig. 2(d). The
latter enables us to dynamically manipulate or even switch
on and off certain tunneling processes due to the presence
or absence of increased interactions. Finally, we remark that
the branches denoted, e.g., by (a4),(as) refer to higher-band
excitations and will be addressed below.

B. Dominant intrawell excitations: The cradle
and the breathing modes

Let us focus on the cradle and the breathing mode
in the following. The cradle mode represents a dipolelike
intrawell oscillation in the outer wells of the finite lattice.
Following an interaction quench it is induced by an overbarrier
transport of a boson initially residing in the central well (for
a detailed description on the generation of this mode, see
[14,15]). It breaks the parity symmetry within the outer wells
and can thus be quantified by the corresponding intrawell
asymmetry of the wave function. For instance, in the left
well App (1) = pr,1(t) — pro(t), where pp 1(¢) and pp »(f)
denote the spatially integrated densities of the left and the
right half of the well. To investigate the frequencies that
characterize the cradle mode and how they are influenced
by the different quench protocols we employ the spectrum
Apr(®) = 1/ [dt ' Apy(t). Previously [14] it has been
shown that following a single interaction quench Apy (),
as a function of the quench amplitude, possesses mainly
two distinct frequency branches [see Fig. 3(a)]. The latter
refer to a tunneling mode [2@,1© 10) = |3 o©@ 10)
[see branch b, in Fig. 3(a)] and an interband overbarrier
process [1©,20 10y — 110 & 1D 1O 1O [see branch b;
in Fig. 3(a)] being identified as the cradle mode. Remarkably,

w (units of wg)

w (units of wg)

1
dg (units of Epk™!)

d¢g (units of Epk™1)

FIG. 3. As a function of the quench amplitude 8g are shown
the following: (a),(b) spectrum of the intrawell asymmetry Ap;(w)
following a single quench and a double pulse (n, =2) MIQ,
respectively. Spectrum of o (w) following (c) a single quench and
(d) a double pulse MIQ protocol. Parameter values are g, = 0.1,
t =50,and N = 4.
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these two modes come into resonance in a certain region of
quench amplitudes [see the dashed rectangle in Fig. 3(a)], and
therefore it is possible to couple the interwell (tunneling) with
the intrawell (cradle) dynamics. However, following a double
pulse, see Fig. 3(b), the aforementioned resonance is hardly
visible as the tunneling mode is less pronounced compared
to the single quench scenario [compare also Figs. 2(c) and
2(d)]. Indeed, the tunneling mode [see branch ) in Fig. 3(b)]
is present only when g(¢) = g, while the cradle mode [see
branch b} in Fig. 3(b)] persists also after we quench back to giy.
The above can be explained as follows: when the interaction
strength is reduced, the bosons do not possess the required
energy to perform a second-order tunneling process, and
therefore the SP to T tunneling mode, see b/z, is absent when
we quench back. On the contrary, the cradle mode persists
also when g(t) = gin, t > 0 as it is an intrawell mode and
has already been initialized previously. Therefore, a tunneling
process is required to initialize the cradle mode but is not a
prerequisite for it to persist. As a consequence the coupling
between the cradle mode and the SP to T tunneling mode
disappears when g = gj, and occurs only for g = gr. Thus,
using a MIQ protocol, one can switch on and off the above
described mode resonance [see also the dashed rectangle in
Fig. 3(b)]. Finally, we note that the energetically lower visible
branch, e.g., by, refers to tunneling within the SP mode [see
also Fig. 2(c)], while the energetically upper branch in both
spectra located