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There are men who struggle for a day and they are good. There are men who struggle for a
year and they are better. There are men who struggle many years, and they are better still.
But there are those who struggle all their lives: These are the indispensable ones.

He who fights, can lose. He who doesn’t fight, has already lost.

Bertolt Brecht.
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Zusammenfassung

Ultrakalte Atome in optischen Gittern bilden eine vielseitige Umgebung für Vielkörper-
probleme mit gut kontrollierbaren Parametern, die es uns erlauben, eine Vielzahl komplexer
Quantensysteme im Labor zu simulieren, auch solche, die keine analytische Behandlung
ermöglichen. Insbesondere die Nicht-Gleichgewichtsdynamik stark korrelierter Vielteilchen-
systeme ist eine der herausforderndsten Probleme der modernen Quantenphysik, mit An-
wendungen die von Thermalisierungsdynamik über Transporteigenschaften bis hin zur Kon-
trolle von Korrelationen und der Dynamik reichen. Das Verständnis von Nichtgleichgewicht-
sphänomenen stark korrelierter Systeme ist eine weitreichende Aufgabe. Einblick in solche
Systeme wird ermöglicht durch die Untersuchung von Systemen mit wenigen Teilchen, die nur
eine kleine Anzahl relevanter Freiheitsgrade besitzen. Dennoch müssen Quantenkorrelationen
zwischen den Teilchen berücksichtigt werden.

Die vorliegende Dissertation trägt zum Verständnis der Nichtgleichgewichtsdynamik stark
korrelierter Quanten-Vielteilchensysteme bei, durch Untersuchung von Systemen mit weni-
gen Bosonen, die einer oder zwei Spezies zugehören und in optischen Gittern gefangen
sind. Die Systeme werden aus dem Gleichgewicht gebracht, entweder durch einen Quench
(plötzliche Änderung) eines Hamilton-Parameters oder durch eine zeitperiodischen Mod-
ulation der äußeren Begrenzung. Im Laufe einiger konsekutiven Untersuchungen zeigen
wir verschiedene Möglichkeiten, die Nichtgleichgewichtsmoden zu koppeln, und enthüllen
ihre korrelierte Natur und mikroskopische Herkunft. Um die Nichtgleichgewichtsdynamik
zu simulieren, nutzen wir eine verfeinerte, hochflexible Ab-initio-Methode zur numerischen
Lösung der zeitabhängigen Mehrkörper-Schrödinger-Gleichung namens ”Multi-Layer Multi-
Configuration Time-Dependent Hartree Method for Atomic Mixtures” (ML-MCTDHX).

Im ersten Teil untersuchen wir in sechs aufeinander folgenden Studien die korrelierte
Nichtgleichgewichtsdynamik von Systemen, bestehend aus wenigen Bosonen, in eindimen-
sionalen endlichen Gittern. Beginnend bei schwachen Wechselwirkungen wird gezeigt, dass
eine abrupte Erhöhung der Interaktionsstärke eine globale Dichtewellentunneldynamik sowie
Intra-Topf-Breathing und Cradle-ähnliche Prozesse in angeregten Bändern generiert. Der
Cradle-Prozess ist ein dipolähnlicher Prozess, der durch den quench-induzierten Transport
über die Barriere erzeugt wird und eines der zentralen Ergebnisse der vorliegenden Disser-
tation darstellt. Die Wechselwirkungs-Quenches koppeln auf bemerkenswerte Art und Weise
die Dichtewellen- und Cradle-Moden, und induzieren Resonanzphänomenen zwischen der
Inter- und Intra-Topf-Dynamik. Wir zeigen weiter, dass die Cradle-Mode inhärent mit der
anfänglichen Delokalisierung verknüpft ist und nach einem Quench von starken zu schwachen
Wechselwirkungen nur für inkommensurable Konfigurationen mit Füllung größer als Eins
angeregt werden kann. Alternativ wird eine plötzliche Verringerung der Gittertiefe einge-
setzt, die die räumliche Delokalisierung begünstigt und die Cradle-Mode für Setups mit
Füllung kleiner als Eins zugänglich macht. Durch Verwendung eines Protokolls mit mehreren
Wechselwirkungs-Quenches beobachten wir den Anstieg von mehreren Tunnelmoden in den
niedrigsten Bändern sowie die Cradle- und Breathing-Mode. Neben der Cradle-Mode sind alle
anderen angeregten Moden in hohem Maße kontrollierbar und besitzen unterschiedliche Fre-
quenzen während und zwischen den Quenches. In der Anregungsdynamik wird ein monotones
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Verhalten mit zunehmender Quenchamplitude und eine nichtlineare Abhängigkeit von der
Dauer der Anwendung der Quench-Wechselwirkungsstärke aufgedeckt. Zusätzlich wird ein
periodischer Populationstransfer zwischen Impulsen für Quenches mit zunehmender Interak-
tion beobachtet, folgend einem Potenzgesetz für die Frequenz in Abhängigkeit von der Quen-
champlitude. Lineare Wechselwirkungs-Quenches von einem suprafluiden zu einem Mott-
Isolator-Zustand regen verschiedene Inter- und Intraband-Tunnelmoden an. Die Konkurrenz
zwischen der Quenchrate und der Interpartikelabstoßung führt zu einer resonanten dynamis-
chen Antwort bei moderaten linearen Quenchzeiten, die in Zusammenhang mit vermiede-
nen Kreuzungen im Vielkörpereigenspektrum steht. Es wird gezeigt, dass die resultierende
Anregungsdynamik der höheren Bänder einem exponentiellen Zerfall unterliegt, der zwei
unterschiedliche Zeitskalen besitzt mit variierender Rampenzeit. Bei der Untersuchung des
Übergangs von flachen zu tiefen Gittern finden wir heraus, dass für einen diabatischen Quench
der Anteil der angeregten Bänder abnimmt, während er im adiabatischen Limes ein nichtlin-
eares Verhalten aufweist mit zunehmender Höhe der Potentialbarriere. Quenches von starken
zu schwachen Wechselwirkungen führen zu einem Zusammenbruch des Mott-Isolators und zu
vernachlässigbaren Anregungen höherer Bänder. Das Ausführen von Quenches des Wellen-
vektor oder der Phase eines räumlich abhängigen Interaktionsprofils löst eine Streuung in
verschiedene Tunnelkanäle und eine reiche Anregungsdynamik aus, die bei höherer Inho-
mogenitätsamplitude verstärkt wird. Besonders wichtig ist dabei, dass der Phasen-Quench
einen gerichteten Transport induziert, der es uns ermöglicht, zwischen ursprünglich ener-
getisch entarteten Tunnelwege zu differenzieren. Anschließend beobachten wir einen peri-
odischen Populationstransfer zwischen verschiedenen Impulsen für Quenches mit zunehmen-
dem Wellenvektor und eine gerichtete Besetzung von höheren Impulsen nach einem Phasen-
Quench. Wenn wir eine zusätzliche harmonische Falle von starker zu schwacher Frequenz
quenchen, stellen wir fest, dass die Konkurrenz zwischen der anfänglichen Lokalisierung und
der abstoßenden Wechselwirkung zu einer resonanten Reaktion des Systems führt, die in
Zusammenhang mit vermiedenen Kreuzungen im Vielkörpereigenspektrum bei variierender
Endfallenfrequenz steht. Darüber hinaus zeigen wir, dass diese vermiedenen Kreuzungen
genutzt werden können, um das System in einem Wunschzustand zu präparieren.

Der zweite Teil umfasst zwei Studien und widmet sich der Analyse der Nicht-Gleichgewichtsdynamik
von ultrakalten bosonischen Ensembles in periodisch getriebenen eindimensionalen optis-
chen Gittern. Für ein geschütteltes Gitter wird eine große Bandbreite von Treibfrequen-
zen abgedeckt und ein resonantes Verhalten der Intrawell-Dynamik aufgedeckt, das mit
einem reichen Intraband-Anregungsspektrum in Zusammenhang steht. Darüber hinaus wird
gezeigt, dass für eine zunehmende Abstoßung eine starke Unterdrückung des Inter-Topf-
Tunnelns und eine verstärkte Anregungsdynamik auftritt. Für ein vibrierendes Gitter führt
ein zusätzlicher Wechselwirkungs-Quench zu Beimischungen verschiedener Anregungen in den
äußeren Töpfen, einem verstärkten Breathing in der Mitte und einer Verstärkung der entste-
henden Tunneldynamik. Das Auftreten von mehrfachen Resonanzen zwischen der Inter- und
Intra-Topf-Dynamik bei unterschiedlichen Quenchamplituden wird aufgezeigt, wobei die Posi-
tion der Resonanzen über die Treibfrequenz abstimmbar ist und somit eine weitere Steuerung
der Modenkopplung in optischen Gittern ermöglicht.

Im dritten und letzten Teil dieser Arbeit wird die Quenchdynamik einer Bose-Bose- und
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einer Bose-Fermi-Mischung aufgeklärt. Unter Verwendung eines Interspezies-Interaktions-
Quenchs überschreiten wir die Mischbarkeits-Unmischbarkeits-Schwelle in einer harmonisch
begrenzten Bose-Bose-Mischung. Wir zeigen, dass eine Erhöhung des Interspezieswechel-
wirkungsstärke zu einer Filamentierung der Dichte jeder Spezies führt, wobei die spon-
tan erzeugten Filamente stark korreliert sind und Domänenwandstrukturen aufweisen. Be-
merkenswerterweise wird die Bildung von mehreren dunkel-antidunkel solitären Wellen beobachtet,
wenn man dem umgekehrten Quench-Protokoll folgt, das heißt, wenn man die Interspezieswech-
selwirkungsstärke verringert. Diese solitären Wellenstrukturen zerfallen in die Vielkörpe-
rumgebung kurz nach ihrer Erzeugung, in scharfem Gegensatz zu den Vorhersagen der Mean-
Field-Approximation. Um unsere Ergebnisse mit möglichen experimentellen Realisierungen
zu verknüpfen, simulieren wir zum ersten Mal für binäre Mischungen Momentaufnahmen,
die zeigen, dass die Wachstumsrate der Varianz einer Stichprobe von Momentaufnahmen
den Grad der Verschränkung, inhärent im System, sondiert. Als nächsten Schritt unter-
suchen wir die Expansionsdynamik einer Bose-Fermi-Mischung mit gleicher Masse, die in
einem eindimensionalen optischen Gitter gefangen ist, indem die verwendete harmonische
Falle von stark zu schwach geschaltet wird. Indem wir die Interspezies-Interaktionsstärke
verändern, realisieren wir die nicht mischbaren und mischbaren korrelierten Grundzustand-
sphasen. Wir zeigen weiter, dass die dynamische Reaktion des Systems entscheidend von der
Anfangsphase abhängt und aus einer Ausdehnung aller Wolken und einer Inter-Topf-Tunnel-
Dynamik besteht. Durch Variieren der Quenchamplitude wird eine Vielzahl von Reaktion-
sregimen im Bezug auf eine feste Phase enthüllt, die innerhalb der nicht mischbaren Phase re-
icher sind und durch unterschiedliche Expansionsstärken und Tunnelkanäle beschrieben wer-
den. Schließlich wird in der Expansionsdynamik ein antikorreliertes Zwei-Körper-Verhalten
zwischen den überwiegend besetzten Töpfen enthüllt.
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Abstract

Ultracold atoms in optical lattices constitute a versatile many-body platform with highly
tunable parameters, allowing us to emulate a multitude of complex quantum systems, in
the laboratory, even those eluding analytical treatment. In particular, the nonequilibrium
dynamics of strongly correlated many-body systems represents one of the most challenging
problems of modern quantum physics, with applications ranging from thermalization dy-
namics and transport properties to the management of correlations and the control of the
dynamics. Understanding nonequilibrium phenomena of strongly correlated systems is a
formidable task. A very promising route to gain insight into such systems is to examine
few-body setups which contain only a few relevant degrees of freedom, yet incorporating the
quantum correlations between the particles.

The present dissertation contributes to the understanding of the nonequilibrium dynamics
of strongly-correlated quantum many-body systems by exploring systems of few-bosons − of
one or two species − trapped in optical lattices. The systems are driven out-of-equilibrium
either by performing a quench of a Hamiltonian parameter or by considering a time-periodic
modulation of the external confinement. In the course of several consecutive works, we show-
case different ways to couple the nonequilibrium modes, while unveiling their correlated na-
ture and microscopic origin. To simulate the nonequilibrium dynamics, a sophisticated, highly
flexible ab-initio method for numerically solving the time-dependent many-body Schrödinger
equation is utilized, namely the Multi-Layer Multi-Configuration Time-Dependent Hartree
Method for Atomic Mixtures (ML-MCTDHX).

Within the first part we study in six consecutive works the correlated nonequilibrium
dynamics of few-boson systems in one-dimensional finite lattices. Starting from weak in-
teractions, it is shown that a sudden increase of the interaction strength generates a global
density-wave tunneling dynamics as well as intrawell breathing and cradle-like excited-band
processes. The cradle process is a dipole-like process generated by the quench-induced over-
barrier transport and it is one of the central results of the present thesis. Remarkably enough,
the interaction quenches couple the density-wave and cradle modes, inducing resonance phe-
nomena between the inter and intrawell dynamics. We further show that the cradle mode is
inherently related to the initial delocalization and, following a quench from strong-to-weak
interactions, can be excited only for incommensurate setups with filling larger than unity.
Alternatively, a sudden ramping down of the lattice depth which favors the spatial delocaliza-
tion is employed to access the cradle mode for setups with filling smaller than unity. Following
a multiple interaction quench protocol, we observe the rise of several lowest-band tunneling
modes as well as the cradle and the breathing mode. Besides the cradle mode, all other excited
modes are highly tunable possessing different frequencies during and in between the quenches.
In the excitation dynamics a monotonic behavior with increasing quench amplitude and a
non-linear dependence on the duration of the application of the quenched interaction strength
is revealed. Additionally, a periodic population transfer between momenta for quenches of
increasing interaction is observed, with a power-law frequency dependence on the quench
amplitude. Linear interaction quenches from a superfluid to a Mott-insulator state excite
various inter- and intraband tunneling modes. The competition between the quench rate and



the interparticle repulsion leads to a resonant dynamical response, at moderate ramp times,
being related to avoided-crossings in the many-body eigenspectrum. The resultant higher-
band excitation dynamics is shown to obey an exponential decay possessing two distinct time
scales with varying ramp time. Inspecting the crossover from shallow to deep lattices we
find that for a diabatic quench the excited-band fraction decreases, while approaching the
adiabatic limit it exhibits a nonlinear behavior for increasing height of the potential bar-
rier. Quenching from strong-to-weak interactions leads to a melting of the Mott-insulator
and negligible higher-band excitations. Performing quenches either on the wavevector or the
phase of a spatially dependent interaction profile triggers various tunneling channels and a
rich excitation dynamics which is amplified for increasing inhomogeneity amplitude. Most
importantly, the phase quench is shown to induce a directional transport enabling us to dis-
cern, otherwise, energetically degenerate tunneling pathways. Finally, a periodic population
transfer between distinct momenta for quenches of increasing wavevector and a directed oc-
cupation of higher momenta following a phase quench is observed. Employing a quench of
an additional harmonic trap from strong-to-weak confinement, we find that the competition
between the initial localization and the repulsive interaction leads to a resonant response of
the system related to avoided-crossings in the many-body eigenspectrum with varying final
trap frequency. Furthermore, we show that these avoided-crossings can be utilized to prepare
the system in a desired state.

The second part comprises two efforts and is devoted to the study of the nonequilibrium
dynamics of finite ultracold bosonic ensembles in periodically driven one-dimensional optical
lattices. For a shaken lattice, a wide range of driving frequencies is covered and a resonant
behavior of the intrawell dynamics is revealed and found to be related to a rich intraband
excitation spectrum. Moreover, it is shown that for increasing repulsion a strong suppression
of the interwell tunneling and an enhanced excitation dynamics occurs. For a vibrating
lattice, an additional interaction quench gives rise to admixtures of different excitations in
the outer wells, an enhanced breathing in the center and an amplification of the emerging
tunneling dynamics. The occurence of multiple resonances between the inter- and intrawell
dynamics at different quench amplitudes is revealed, with the position of the resonances being
tunable via the driving frequency and thus allowing for further control of the mode coupling
in optical lattices.

In the third and final part of this thesis we unravel the quench dynamics of a Bose-
Bose and a Bose-Fermi mixture. Utilizing an interspecies interaction quench we cross the
miscibility-immiscibility threshold in a harmonically confined Bose-Bose mixture. We show
that increasing the interspecies repulsion coefficient results in a filamentation of the density
of each species, with the spontaneously generated filaments being strongly correlated and
exhibiting domain-wall structures. Strikingly, by following the reverse quench protocol, i.e.,
upon decreasing the interspecies interaction strength, the formation of multiple dark-antidark
solitary waves is observed. These solitary wave structures are found to decay into the many-
body environment, soon after their generation in sharp contrast to the predictions of the
mean-field approximation. To relate our findings with possible experimental realizations, we
simulate, for the first time for binary mixtures, single-shot images showcasing that the growth
rate of the variance of a sample of single-shots probes the degree of entanglement inherent
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in the system. As a next step we investigate the expansion dynamics of a mass balanced
Bose-Fermi mixture confined in a one-dimensional optical lattice upon quenching an imposed
harmonic trap from strong-to-weak confinement. Tuning the interspecies interaction strength
we realize the immiscible and miscible correlated ground state phases. We further show that
the system’s dynamical response crucially depends on the initial phase and consists of an
expansion of each cloud and an interwell tunneling dynamics. Varying the quench amplitude
and referring to a fixed phase a multitude of response regimes is unveiled, being richer within
the immiscible phase, which are described by distinct expansion strengths and tunneling
channels. Finally, in the expansion dynamics a two-body anti-correlated behavior between
the predominantly occupied wells is unveiled.
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Outline of this Thesis: Chapter 1 contains a general introduction to the field of trapped
ultracold atoms, with emphasis on the intricate phenomena observed during the nonequi-
librium dynamics of such systems. We provide the scientific context into which the above
contributions are embedded. Additionally we discuss the basic theoretical framework that is
needed to describe the nonequilibrium dynamics in optical lattices. To this end, the Bose-
Hubbard model and the mean-field approximation are outlined while the main focus is given
to the employed correlated many-body methodological approach. The latter method provides
access to beyond Bose-Hubbard phenomena and it is employed in the present thesis to in-
vestigate the few-boson correlated out-of-equilibrium dynamics in finite optical latttices. To
obtain a basic knowledge regarding the modes occuring for increasing interparticle repulsion
in a lattice trapped few-body setup the many-body eigenspectrum of three and four bosons
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Chapter 1

Introduction

The experimental realization of Bose-Einstein condensates (BECs) in ultracold atoms [1–3]
opened a new and highly attractive venue for studying correlated many-body systems in a
controllable fashion within a clean and well-isolated environment. Major steps towards this
level of control include e.g. the ability to precisely adjust both the sign and the strength
of interparticle interactions by means of confinement-induced, optical and magnetic Fano-
Feshbach resonances [4–8], the design of arbitrary potential landscapes or even the possibility
to move the external confinement in a time-periodic manner [9]. Remarkably enough, recent
advances in optical trapping even allow to control the size and atom number of these quantum
systems providing access to few-body physics [10–14]. The above-mentioned characteristics
make systems of ultracold atoms powerful quantum many-body platforms for simulating
a diversity of physical phenomena, in part inspired from condensed matter physics, and
emulating them in the laboratory.

Ultracold atoms in optical lattices constitute particularly appealing setups to assess the
strongly correlated regime of interactions, where the system cannot be described by a simple
mean-field approximation [15–18]. Optical lattices are periodic potentials created by the
formation of a standing wave when a pair of counter-propagating laser beams interfere and are
used to trap the atoms. The most popular theoretical model to describe both the static and
the dynamical properties of such systems is the so-called Bose-Hubbard model [19,20] which
rests upon the restriction of on-site interactions and nearest-neighbor tunneling processes. A
basic feature of this model is the presence of two distinct phases: The Mott-insulator phase,
where a constant number of atoms resides at each lattice site, and the superfluid phase,
characterized by delocalized atoms across the system. In the presence of disorder, a third
phase occurs, called Bose glass [16,21,22]. The quantum phase transition from a superfluid to
a Mott-insulating state has been observed experimentally [23] for bosons in three-dimensional
optical lattices, verifying in this way the predictions of the Bose-Hubbard Hamiltonian [20].
This hallmark experiment triggered a new era of theoretical and experimental investigations
regarding strongly correlated quantum gases. A variety of phases with unique properties and
increasing complexity has been realized with atoms confined in periodic potentials. These
include one- and two-dimensional bosonic Mott phases [24,25], tunable Mott-insulator states
[26], fermionic Mott-insulators [27, 28], the Tonks-Girardeau gas [29, 30], strongly paired
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fermions in lattice potentials [31–34], and unconventional superfluids involving excited-bands
[35–38].

To gain a deeper understanding of the many-body state, a multitude of novel experimental
methods have been further developed to probe the static and dynamical properties of strongly
correlated quantum gases in optical lattices. For instance, in-situ imaging of the atomic
cloud can be employed to detect the density distribution in real space [39, 40], time-of-flight
images give access to the momentum distribution of trapped atoms [41], and density-density
fluctuation measurements provide information about the system’s correlation functions [42–
46]. Another paradigmatic example of recent experimental advances constitutes the so-called
quantum gas microscope which allows for the detection of atoms in lattice systems with single-
site resolution [47–49]. Even dynamical response functions can be obtained, via e.g. Radio-
frequency [50, 51] or Bragg spectroscopy [52, 53]. Moreover, a great variety of unique lattice
geometries has been realized, such as superlattices [54–56], cubic [57], hexagonal [59, 60],
honeycomb [58] and Kagome lattices [61].

Despite the wide success of the Bose-Hubbard Hamiltonian to predict several physical
phenomena which are also experimentally supported, there is a huge class of processess that
lie beyond its applicability. These limitations stem from the inherent restrictions of this
model and refer, for instance, to offsite interaction effects and the occupation of excited-
bands. Apart from the purely theoretical interest in those effects, the aforementioned recent
experimental advancements offer an excellent testbed to study many-particle physics beyond
the lowest-band Bose-Hubbard approximation. Models operating beyond the standard Bose-
Hubbard approximation are known as extended Hubbard models and can be employed to
enter previously inaccesible regimes [62–64]. Indeed, a variety of quantum phases and dynam-
ical phenomena have been based on mechanisms beyond the standard Hubbard model. For
instance, offsite interactions give rise to novel experimentally confirmed correlated quantum
phases such as the charge-density-wave insulator where the onsite occupancy alternates from
site to site [65–73], unconventional superfluids [36, 37, 74] with a complex phase twist of the
order parameter, dimerized insulators [75–79] possessing a unique excitation spectrum, or su-
persolids [67,70,73,80–84] that involve diagonal and off-diagonal long range order. Moreover,
density-induced tunneling processes [85–91] and effects of interaction-induced occupation of
higher orbitals [64, 96] have been observed and found to affect the lattice band structure
causing a significant shift of the superfluid to Mott-insulator phase boundary. Note that
studies of extended Hubbard models have been conducted majorly relying on exact diag-
onalization techniques [92], strong-coupling expansion schemes [93, 94] and the Gutzwiller
approximation [19,95]. In the present dissertation, we use a variational approach, the Multi-
Layer Multi-Configuration Hartree Method for Atomic Mixtures [97–100], which incorporates
the system’s important correlation effects, to demonstrate among others the participation of
beyond Hubbard processes of ultracold atoms trapped in optical lattices.

Besides the above-mentioned plethora of static phases, the nonequilibrium dynamics of
such systems exhibits even more fascinating phenomena. Here, for instance, correlation
induced mechanisms and collective excitations provide further insights into this new and
burgeoning field. Owing to their unique experimental controllability, ultracold atoms in
optical lattices provide an ideal setting for studying out-of-equilibrium quantum many-body

14



INTRODUCTION

dynamics. The most frequently considered way to induce the nonequilibrium dynamics is a
quantum quench [101–104]. Here, a many particle system initially prepared in a quantum
state |Ψ0〉, possessing certain correlation properties, of a Hamiltonian Hi evolves unitarily
in time following the sudden change of an intrinsic system’s parameter (quench protocol) to
a final Hamiltonian Hf . Considering a closed quantum system, the energy after the quench
remains constant and is distributed among the various degrees of freedom during the unitary
evolution. Dynamics generated by a quantum quench is an active field of research since it
poses many fundamental questions such as the development of new correlations [105–111], the
possible thermalization of the system [112–123], the scaling of defect formation when crossing
a phase transition and the associated dynamical universality classes [124–133], as well as the
controllability of the participating modes [134–141], to name only a few. It is the latter field of
quench-induced dynamics that the present thesis mainly aims to address, providing further
insight on the correlated mechanisms that take place in the out-of-equilibrium few-boson
dynamics.

A series of consecutive experimental realizations on quench-induced phenomena evinced,
further, the issue of thermalization [101, 112, 142–144] and the crossover between balistic
and diffussive expansion of atoms in optical lattices [145, 146] depending on the dimen-
sionality and interaction strength. Moreover, peculiar transport phenomena of bosons and
fermions [147–150], scaling properties of the defect density when crossing the superfluid to
Mott-insulator transition [126–128,151], and quench generated excitations [101,152–155] have
been revealed. Among the above studies, and as far as the notion of thermalization is con-
cerned, a prominent example constitutes the collisional dynamics of two one-dimensional
Tonks-Girardeau gases [142]. In this system no sign of thermalization has been observed, a
behavior that is directly related to the integrability of the system. However, indications of
relaxation dynamics have been observed when inspecting the evolution of one-dimensional
condensates after their splitting [143, 144]. In this context of thermalization, a focal point
of theoretical research has been the crossover from integrability to non-integrability and the
consequent thermal or non-thermal behavior in relation to quantum chaos [112,156–158,365].
Its presence implies that simple observables are represented by random matrices in the eigen-
basis of the Hamiltonian and thermalization occurs at the level of individual eigenstates.
Thermalization in nonintegrable systems has also been formulated recently in terms of the
eigenstate thermalization hypothesis [120,159–161].

Despite the huge progress achieved over the past years on the theoretical side, the efficient
simulation of nonequilibrium dynamics is still a challenging task and stresses the importance
of developing novel theoretical approaches. The central problem is that the Hilbert space
of a quantum many-body system grows exponentially with the number of its constituents
and therefore obtaining analytical or numerically exact solutions becomes, in most cases,
impossible already for small systems. Another complicating feature of the nonequilibrium
dynamics is the presence of interactions leading to the appearance of strong interparticle
correlations, at a level that often precludes the use of a perturbative analysis or mean-field
approximations. In this respect, the dynamics beyond the paradigm of linear response the-
ory has been a subject of growing theoretical interest [162–169], triggered also by the recent
progress in ultracold atom experiments mainly focused on one-dimensional settings [10–14].
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A quench protocol inevitably excites the system and a number of defects, including correlated
two-body processes and higher-band excitations, can be formed during the dynamics. For
ultracold bosons confined in optical lattices, this implies the necessity to consider a multiband
treatment [62,63], in order to describe the emergent nonequilibrium correlated dynamics and
to gain information about the higher-band excitation spectrum, inaccessible by the standard
Bose-Hubbard model or mean-field methods. In the present dissertation, we provide a mul-
timode treatment for the nonequilibrium dynamics of few-bosons confined in finite optical
lattices in one spatial dimension, with all correlations taken into account. Among others, we
demonstrate that such an approach is suitable for extracting information from the resulting
many-body dynamics. In particular, we obtain the complete excitation spectrum, character-
ize the emergent various collective modes during the evolution, and provide, when possible,
a scale-free universality of the system’s dynamical response.

Yet another widely used technique to probe and study the out-of-equilibrium dynamics
of ultracold atoms in optical lattices is the time periodic modulation, or driving, of either
their position, e.g. shaken lattices, or their potential depth [9, 170, 171]. These modulations
can be experimentally routinely achieved by controlling the phase or the intensity of the
involved laser beams. In such systems the lattice band structure is modified during the driving
which consequently affects the physical properties of the system, giving rise to a variety of
intriguing effects. For instance, phase modulations have been used to address parametric
amplification of matter waves [172], four-wave mixing [173, 174], coherent band coupling
[175, 176], topological states of matter [177], coherent control of the superfluid to Mott-
insulator phase transition [178], hybridization of the lattice band structure [172, 179], and
even to engineer artificial gauge fields [180–183]. On the other hand, amplitude modulations
of the lattice depth have been employed to probe the excitation spectrum of the system
[24,88,184], the participating nearest-neighbor correlations [185] as well as to realize intriguing
mechanisms such as photon-assisted tunneling [186] and orbital excitation blockade [187].
Furthermore lattice potentials can also be easily accelerated, creating inertial forces for the
atoms in the co-moving reference frame. It has been shown [188–191] that within a time-
averaged effective picture these oscillating forces lead to a renormalization of the tunneling
matrix elements in both amplitude and sign. Representative processes here include Bloch-
oscillations [192–195], Wannier-Stark ladders [196, 197], and Landau-Zener tunneling [195,
197].

As already argued, time-periodic modulations of optical lattices constitute an important
concept towards the manipulation of the atomic motion [9, 171]. For instance, as it has
recently been shown, the dynamics triggered by shaking an optical lattice can lead to an ad-
mixture of excited orbitals [198] or even induce dynamical instabilities caused by the interplay
between the interparticle interactions and the external driving [199–202]. Accordingly, it is
very important to carefully explore and design the relevant driving protocol so as to transfer
the energy to the desired final degrees of freedom [134–139]. In the present dissertation,
we study the dynamics of finite bosonic systems subjected to a shaken [[7]] or a vibrating
[[8]] lattice potential with a particular emphasis on the microscopic characterization of the
dynamical modes, their parametric coupling and thus their dynamical control.

Until now, we provided an overview of some intriguing effects arising in scalar, alias
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single-component, bosonic ensembles. We have mainly focussed in their corresponding non-
equlibrium properties induced either by a quench protocol or a time-periodic driving of the
optical lattice in which they are trapped. Next, we shall turn our attention to the case of
two-component mixtures mainly comprised of bosonic constituents and briefly report some
of the outstanding phenomena observed in this field. Two-component Bose-Einstein conden-
sates [1–3,203–205] consisting e.g. by two alkali metals such as 23Na-87Rb, two isotopes like
85Rb-87Rb, or two hyperfine states of the same alkali metal, provide an ideal platform for
studying intriguing and novel phenomena that cannot be addressed in a single-component
setting. Three scattering lengths characterize the intra- and interspecies interaction between
the atoms, being tunable with the aid of magnetic or optical Feshbach resonances [4–8].
The interplay between the inter- and intraspecies scattering has a direct consequence on
several static properties of the condensate, such as its density profile and correlation prop-
erties. Correlation in interacting mixtures have been extensively studied [36, 206–210], re-
vealing, for instance, altered phase separation regimes [211–214], the formation of quantum
droplets [215–218], modified superfluid-insulator transitions [206, 219], composite fermion-
ization [220], quantum emulsions [221], and spin-charge separation [222]. Moreover, insta-
bilities [223] as well as new phases including paired or counterflow superfluidity [209] and
twisted superfluidity in bi-spinor mixtures [36] have been observed. Additionally, quenching
a binary mixture across the miscible-immiscible phase boundary has been a focal point of the-
oretical studies examining, for instance, the consequent scaling properties of the underlying
correlation functions [224–226].

Besides the aforementioned two-component systems, also Bose-Fermi mixtures have been
experimentally realized with the aid of sympathetic cooling [227–229]. This kind of mixtures
serve as prototypical examples in which the intermingled particles obey different statistics
[1, 2]. Indeed, s-wave interactions among spin-polarized fermions are prevented due to the
Pauli exclusion principle. Such systems can be realized e.g. by a mixture of isotopes of 7Li
and 6Li [230] or 171Yb and 172Yb [231, 232]. The complex interplay of Bose-Bose and Bose-
Fermi interactions led to numerous theoretical studies of Bose-Fermi mixtures regarding,
e.g., their phase separation process [233, 234] stability conditions [223, 235] and collective
excitations [236, 237]. Bose-Fermi mixtures confined in optical lattices unveil a multitude
of intriguing quantum phases including, among others, exotic Mott-insulator and superfluid
phases [238–240], charge-density waves [241,242], supersolid phases [243,244] and polaron-like
quasiparticles [242,245].

The vast majority of the above-mentioned studies has been focused on a mean-field
description, while the role of many-body effects, e.g. in the transition from the misci-
ble to the immiscible phase, is much less understood. Recently, the inclusion of corre-
lations in multi-component few-boson systems revealed altered phase separation processes
[206, 219, 223, 246, 247], composite fermionization [220, 248, 249], or even the crossover be-
tween the two [250, 251]. Furthermore, the dynamical properties of such many-body ultra-
cold mixtures have been studied, including the dependence of the tunnelling dynamics on
the mass ratio [252,253] and the the intra- and interspecies interactions [254], as well as the
emergence of Andersons orthogonality catastrophe upon quenching the interspecies repul-
sion [255]. However, far less emphasis has been placed on the many-body character of the
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quench-induced dynamical phase separation phenomena. Our last two works [[9,10]] aim at
partially addressing this latter apparent gap for both few and larger atomic ensembles. In
particular, we study the dynamical phase separation of a repulsively interacting Bose-Bose
mixture upon quenching the interspecies interaction coefficient across the phase boundary
by intitializing the system either in the phase miscible or the phase immiscible regime [[9]].
Finally, we move to a Bose-Fermi mixture confined in an optical lattice and examine, for the
first time, the correlation effects in the many-body expansion dynamics of such a mixture
residing either within the miscible or immiscible phase [[10]].

Objectives of this thesis

In this cumulative dissertation we theoretically study the zero-temperature nonequilibrium
many-body quantum dynamics of repulsively short-range interacting few atomic ensembles
and mixtures thereof confined in one-dimensional finite lattices. The correlated nonequi-
librium dynamics is induced either by performing a quench on a system’s parameter (e.g.
the interaction strength) or via a periodic driving of the optical lattice. In particular, we
theoretically explore the impact of correlations on the many-body quantum dynamics from
various perspectives. By investigating a series of exemplary driving scenarios we demonstrate
different ways to couple the triggered dynamical modes (such as single-particle or atom-pair
tunneling) and reveal their corresponding correlation properties. Particularly, we mainly

• characterize the dynamical response of the system after the quench or during the peri-
odic driving of the optical lattice;

• design the appropriate quench protocol in order to trigger certain dynamical modes;

• characterize the microscopic properties and reveal the correlated nature of the quench-
induced modes;

• obtain a control of the non-equlibrium dynamics by coupling distinct dynamical modes;

• unveil novel higher-band excitations that participate in the nonequilibrium dynamics;

• provide experimental evidences of the observed dynamics by simulating single-shots
absorption measurements.

We also clarify which processes can be obtained within a mean-field approximation or a
lowest-band Bose-Hubbard model and which of them require the use of more elaborated
methods that include interparticle correlations. These insights are obtained by utilizing the
Multi-Layer Multi-Configuration Time-Dependent Hartree method for bosonic and fermionic
mixtures, an ab-initio variational method designed for the treatment of the nonequilibrium
quantum dynamics of ultracold multi-component systems.
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Chapter 2

Theoretical Framework

2.1 Optical Lattices

Optical lattices are essentially artificial crystals of light generated by interfering optical laser
beams. Atoms illuminated by a laser beam acquire a dipole moment, induced by the electric
field of the laser, which in turn let them interact with the electric field. This interaction alters
the energy of the atomic internal states depending on both the laser frequency and intensity.
To confine the atoms within a periodic spatially dependent potential energy landscape a
spatially dependent intensity is used. Such a periodic potential energy landscape that the
atoms experience as a result of the standing wave pattern generated by the interference of
laser beams is typically called an optical lattice, see Fig. 2.1 (a).

Ultracold atoms confined in optical potentials are reminiscent of solid state materials.
For instance, the optical lattice can be perceived as playing the role of the crystal lattice in
a solid while the atoms mimic the corresponding valence electrons. In that sense, the atoms
are able to move within the lattice (quantum tunneling between the distinct sites) as the
valence electrons move in the periodic energy landscape created by the positively charged
ions in a crystal. Meanwhile, optical lattices possess several advantages with respect to solid
state systems. They are largely free of defects and highly controllable systems by means
of changing the laser properties. For instance the lattice depth can be tuned by changing
the laser intensity, its spacing can be modified by the interference angle between the laser
beams, its geometry is determined by the laser configuration and the entire configuration
can be dynamically moved by changing the polarization of the light. Furthermore, atoms are
much heavier than electrons which means that in order to probe the same physics occuring
e.g. at a temperature of 100 Kelvins in a solid state setup one needs to cool atoms below a
few nanokelvin. The latter requires the use of state-of-the-art cooling techniques which are
nowdays available. In these systems it is possible to follow the dynamics of the atoms on time
scales of the order of ms or even seconds. Finally and in sharp contrast to electrons, being
charged particles and strongly coupled to their environment, atoms are neutral and almost
completely isolated from their environment. Due to the above, ultracold atoms in optical
lattices offer an ideal platform for simulating certain problems of condensed matter physics
and constitute many-body systems exhibiting a diversity of physical phenomena.
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Below, we first briefly outline the basic theory of optical lattices and discuss the single-
particle properties of atoms in a periodic potential. Then, we introduce the so-called Bose-
Hubbard Hamiltonian which is the simplest non trivial model that describes interacting
bosons in an optical lattice.
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Figure 2.1: (a) Two counter propagating laser beams of intensity I and wavenumber λ forming
a lattice potential V (x). (b) Schematic representation of the Wannier functions of the first
two energetically lowest-lying single-particle bands of a triple well.

2.1.1 AC Stark Shift and Dissipative Interaction

Neutral atoms interact with the light in a dissipative and a conservative manner. The con-
servative interaction originates from the interaction of the light field with the induced dipole
moment of the atom resulting in a shift of the potential energy called AC-Stark shift. The
dissipation is caused by the absorption of photons followed by a spontaneous emission event.
Spontaneous emission processes can be neglected only for fairly large detunings providing
a case where the energy shift can be used to create a conservative trapping potential. We
shortly explain both processes below.

Let us consider a two-level atom with internal states |g〉 and |e〉 being energetically sepa-
rated by ~ω0. The atom is further illuminated by a classical monochromatic elecromagnetic
field E(x) = E0(x)eiωt + E∗0(x)e−iωt with amplitude E0(x) and frequency ω. This electro-
magnetic field induces a dipole moment (d̂) to the atom which then interacts with E(x)
as HI = −d̂ · E. Here d̂ =

∑
α,β=g,e 〈α|d̂|β〉 |α〉〈β| with

∑
α |α〉〈α| = 1, 〈α|d̂|α〉 = 0 and

µeg = 〈e|d̂|g〉 6= 0 because the atoms do not have a permanent dipole moment. Then,

d̂ = µeg|e〉〈g|+ µ∗eg|g〉〈e| and the Hamiltonian of the total system reads

Ĥ = ~ω0|e〉〈e| −
(
µeg|e〉〈g|+ µ∗eg|g〉〈e|

) (
E0(x)e−iωt + E∗0(x)e−iωt

)
. (2.1)

This Hamiltonian can be transformed into a time-independent one by performing the rotating
wave approximation which is valid in the limit of small detunings, |δ| ≡ |ω − ω0| � |ω + ω0|.
The rotating frame of the laser is determined by the unitary transformation Û(t) = e−iωσ̂z/2,
where σ̂z = |e〉〈e| − |g〉〈g| is the Pauli matrix, and the Hamiltonian transforms according to

Ĥ → Û †ĤÛ + i~∂Û†∂t Û . Neglecting processes with a rapidly oscillating phase, e±i(ω+ω0) and
considering only the near resonant frequency processes the Hamiltonian is reduced to

Ĥ = −~δ
2
σ̂z −

(
~Ω(x)

2
|e〉〈g|+ ~Ω∗(x)

2
|e〉〈g|

)
, (2.2)
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where Ω(x) = 2E0(x)µeg/~ is the so-called Rabi frequency. Employing second order pertur-
bation theory which is applicable in the limit that the detuning is large compared to the Rabi
frequency i.e. |δ| � Ω we can determine the effect of atom-light interaction on the states |e〉,
|g〉. Then, the energy shift E

(2)
eg reads

E(2)
eg = ±~Ω2(x)

4δ
, (2.3)

where ± refers to the states |g〉 and |e〉 respectively. This latter energy shift is known as
the AC-Stark shift and defines the optical potential that atoms in the state |g〉 experience.
Of course, in the case that the atoms are illuminated by superimposed counter propagating
laser beams which interfere they experience a standing wave pattern resulting from this
interference. The resulting periodic landscape of the energy experienced by the atoms is the
optical lattice potential. The simplest possible lattice geometry is that of a one-dimensional
optical lattice [see Fig. 2.1 (a)]. The latter can be generated by creating a standing wave
interference pattern by the retroreflection of a single laser beam with Rabi frequency Ω0.
This results in a Rabi frequency Ω(x) = 2Ω0 sin(kx) yielding the periodic potential

V (x) =
~Ω2

0

δ
sin2(kx), (2.4)

where k = 2π/λ denotes the magnitude of the laser wavevector and V0 =
~Ω2

0
δ is the lattice

depth. This potential possesses a lattice constant, a = λ/2, determined by V (x+ a) = V (x)
for every x.

Up to now, we have assumed that the excited state possesses an infinite life time since
we neglected its decay due to the spontaneous emission of photons. This latter effect can be
modelled phenomenologically by attributing to the excited state a complex valued energy.
Indeed, when the excited state has a life time 1/Γe, the energy of the perturbed ground state

becomes E
(2)
g = V (x) + iγ(x) where

V (x) ≈ ~
Ω2(x)

4δ
and γ ≈ ~

Ω2(x)Γe

8δ2
. (2.5)

Here V (x) (real part of the energy) corresponds to the optical potential. Most importantly,
the sign of the detuning δ determines the sign of V (x). For δ > 0 (blue detuning) V (x) > 0
resulting in a repulsive potential whose minima correspond to the points with zero light
intensity (atoms are repealed from the high intensity regions). For δ < 0 (red detuning)
V (x) is attractive and its minima correspond to the regions with maximum light intensity
where atoms are likely to reside. We remark here that the cases of blue and red detuning are
also often called as “weak field seekers” and ”strong field seekers” respectively. On the other
hand, γ(x) (imaginary part of the energy) refers to the loss rate of atoms from the ground
state.

2.1.2 Bose-Hubbard Model

The Hubbard model, originally introduced in 1963 by J. Hubbard [256], has been derived
for describing the behaviour of strongly-correlated electrons in solids. It has been used
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to describe a multitude of systems in solid state physics such as short correlation length
superconductors, Josephson arrays and the critical behavior of 4He. More surpisingly, since
more than a decade now, variations of this model are routinely being implemented with
ultracold atoms in optical lattices, allowing for their study in a clean and almost perfectly
isolated (defect-free) environment. In the following, our aim is to briefly outline the derivation
of the Hubbard model for ultracold bosons in optical lattices and discuss its limitations as
well as its possible extensions.

In second quantization, the Hamiltonian for a three-dimensional dilute interacting bosonic
gas confined in an optical lattice potential V (r) reads

H =

∫
drΨ†(r)

(
− ~2

2m
∇+ V (r)

)
Ψ(r) +

1

2

∫
drdr′Ψ†(r)Ψ†(r′)VI(r, r

′)Ψ(r)Ψ(r′), (2.6)

where Ψ†(r), Ψ(r) denote the bosonic creation, annihilation field operators respectively and
m is the bosonic mass. The isotropic short-range pseudopotential VI(r, r

′) modelling s-wave
interactions

VI(r− r′) =
4π~2as
m

δ(r− r′)
∂

∂ |r− r′|
∣∣r− r′

∣∣ . (2.7)

Here as is the s-wave scattering length which characterizes the interparticle interactions
through low-energy elastic collisions between neutral atoms, independently of the actual two-
body potential. Indeed, for ultracold atoms the de Broglie wavelength is much larger than the
effective extension of the interaction potential, implying that the interatomic potential can
be replaced by a pseudopotential. For a non-singular Ψ(r) this pseudopotential is equivalent
to a contact interaction

VI(r− r′) =
4π~2as
m

δ(r− r′) ≡ gδ(r− r′). (2.8)

The above approximation is valid when long-range contributions are negligible. For a more
elaborated discussion about the scattering theory see for instance [257,258]. Note that positive
values of as account for repulsive interactions while negative values for attractive ones.

The natural energy scale of the Hamiltonian of Eq. (2.6) is the recoil energy ER = ~2k2
2m ,

with k = 2π/λ and λ being the wavelength of the optical lattice. The optical lattice potential
is typically V (x, y, z) = V0,x sin2(kxx) + V0,y sin2(kyy) + V0,z sin2(kzz). If V0,x � V0,y = V0,z

then a setup for a one-dimensional optical lattice is obtained, namely excitations to the
y and z directions are highly supressed and the system may be considered as a series of
independent one-dimensional tubes along the x direction. In what follows, we assume that
the above condition is fulfilled and therefore the analysis refers to one spatial dimension.

Within the weakly interacting regime, lattice trapped bosonic atoms are well described by
a Bose-Hubbard Hamiltonian [20]. Let us therefore explain how the Bose-Hubbard Hamilto-
nian is derived from the many-body Hamiltonian of Eq. (2.6) by simply expanding the field
operators onto single-particle Wannier modes [266]. We remind that the field operators Ψ̂(x)
can always be expanded in the basis of Bloch functions φn,κ(x), which are the eigenfunctions
of the single-particle Hamiltonian consisting of only the kinetic term and the lattice potential

Ψ̂(x) =
∑

n,κ

b̂n,κφn,κ(x). (2.9)
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The indices κ, n of the Bloch functions denote the quasi-momentum and the band number
respectively. Intuitively κ might be viewed as a quantum number characteristic of the trans-
lational symmetry of the periodic potential, just as the momentum is a quantum number
characterizing the translational symmetry in free space. Of course in a strict sense κ is not
the same as the momentum, but it turns out that it plays the same fundamental role in the
dynamics within a lattice potential as the momentum does in the absence of the lattice. To
emphasize this similarity κ is called the quasimomentum. For sufficiently deep lattice poten-
tials and at low temperatures the band gap between the lowest and the first excited-band
may be fairly large so that the second and higher-bands will not be populated and therefore
can be disregarded. Within the lowest Bloch band of the optical lattice the field operators
can be expanded into an orthonormal Wannier basis. This basis consists of functions be-
ing localized around the lattice sites. We remark here that Wannier orbitals are a unitary
transformation of the Bloch functions and constitute an equivalent representation to describe
such a periodic system. Moreover, they constitute a more appropriate representation than
the Bloch functions, as the lattice depth (or equivalently the interaction) is increased and the
atoms become progressively more localized at individual lattices sites. The Wannier func-
tions will be denoted in the following as wi(x) ≡ w(x − xi) with xi corresponding to the
minima of the lattice potential and i is the site index. The expansion of the field operator in
terms of this basis is known as the tight-binding approximation and it is justified when the
temperature is sufficiently low and the typical interaction energies are not strong enough to
excite energetically higher-band modes. The corresponding expansion reads

Ψ̂(x) =
∑

i

b̂iwi(x), (2.10)

where b̂i (b̂†i ) refers to the annihilation (creation) operator of a boson localized at the i-

th lattice site and obey the standard canonical commutation relations [b̂i, b̂
†
j ] = δij . For

simplicity in the following we will omit the hat symbol from the operators. Inserting the
above expansion into the Hamiltonian of Eq. (2.6) we obtain the celebrated lowest-band
Bose-Hubbard model

H = −
∑

〈i,j〉

Jijbib
†
j +

U

2

∑

i

[ni(ni − 1)− µni] , (2.11)

where 〈ij〉 indicates that the sum is performed over nearest neighbors. Note that each pair
(i, j) appears twice in the summation ensuring in this way the hermiticity of the first term.

Furthermore, ni = bib
†
i is the boson number operator at site i and µ denotes the chemical

potential being introduced to control the total number of atoms. The corresponding tunneling
matrix elements between adjacent sites read

Jij = −
∫
dxw∗i (x)

[
− ~2

2m

∂2

∂x2
+ V (x)

]
wj(x). (2.12)

Moreover, the strength of the two-body on-site interactions U for a contact potential is given
by

U = g

∫
dx |wi(x)|4 . (2.13)
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Finally we remark here that in the presence of an additional external potential, VM , one more
term has to be included in the Bose-Hubbard Hamiltonian accounting for a potential energy
HM =

∑
i εini with εi =

∫
dxVM (x) |wi(x)|2. This latter term essentially describes an energy

offset for each lattice site and typically is absorbed into a site-dependent chemical potential
µi = µ+ εi.

Super uid Mott Insulator

Atomic

orbitals

increasing

interaction

Figure 2.2: Schematic representation of the transition from (a) a superfluid phase to (b) a
Mott insulating state of three bosons confined in a triple well for increasing interparticle
repulsion. Note that the degree of the on-site excitation is the same for all wells.

The Bose-Hubbard Hamiltonian [Eq. (2.11)] predicts a quantum phase transition from
a superfluid to a Mott-insulator state. This transition has already been observed experi-
mentally for bosons confined in a three-dimensional optical lattice [23]. In particular, the
Bose-Hubbard model exhibits two different quantum phases depending on the ratio between
the tunneling energy and the on-site repulsion energy. A superfluid, compressible, gapless
phase occurs when the tunneling term dominates, J � U , while an incompressible Mott-
insulator ground state exists when the on-site interaction dominates i.e. J � U . For a
schematic representation of these two phases see also Fig. 2.2. The onset of superfluidity
is a consequence of the competition between the kinetic energy, which favors particle delo-
calization, and the interaction energy, which promotes particle localization resulting in small
particle-number fluctuations. Within the superfluid phase the kinetic energy term dominates
the Hamiltonian of Eq. (2.11). Then, quantum correlations can be neglected and the system
can be described by a macroscopic wavefunction. The many-body state is almost a product
over identical single-particle wavefunctions

ΨU=0
SF (x1, . . . , xN ) =

N∏

i=1

φ(xi), (2.14)

where φ(x) obeys the mean-field Gross-Pitaevskii equation (for a detailed description of this
equation see Sec. (2.2)). For increasing interaction the average kinetic energy required for an
atom to tunnel between adjacent lattice sites becomes insufficient to overcome the potential
energy cost. The atoms tend to be localized at individual lattice sites and the particle-number
fluctuations almost vanish. This is the Mott-insulator phase where the ground state of the
system consists of localized atomic wavefunctions with a fixed number of atoms per lattice
site. The corresponding ground state is a product of Fock states

ΨJ=0
MI (x1, . . . , xN ) =

∏

i

|n0〉i, (2.15)
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where n0 denotes the number of bosons per lattice site i in the Mott-insulator state. The
corresponding lowest-lying excitations that conserve the particle number are the so-called
particle-hole excitations being obtained by adding and removing a particle from the system.
This phase is characterized by the existence of an energy gap which is determined by the
energy necessary to create one particle-hole pair. For further details regarding the properties
of the above-mentioned phase transition we refer the interested reader to [19,20]. Here we only
mention that the Bose-Hubbard model and its phase transition has been studied extensively
both analytically and numerically. On the theoretical side many different techniques have
been employed such as mean-field approximations [259–261], renormalization group theories
[20] and strong-coupling expansions [93,94]. On the numerical side, most of the studies have
been conducted with quantum Monte Carlo methods and density matrix renormalization
techniques [15,18,262–265,311].

Figure 2.3: Schematic representation of the basic underlying mechanisms within (a) the
Bose-Hubbard and (b) an extended Bose-Hubbard model. The symbols J , J ′ and Jeff refer
to the intraband within the lowest-band interwell, first excited-band and the corresponding
interband tunneling amplitudes respectively. U denotes the onsite repulsion energy.

2.1.3 Extended Bose-Hubbard Models

As already discussed above, within the Bose-Hubbard model only the energetically lowest
single-particle band is assumed to be occupied since higher excited-bands are energetically
well separated. However, it turns out that such a single band approximation is often insuf-
ficient, e.g. for strong interparticle interactions or shallow lattices, and that contributions
of higher-bands can not be neglected. Taking into account higher-bands is an important
extension of the standard Bose-Hubbard model. For instance, in strongly correlated systems,
the interaction induced coupling between the distinct orbital bands becomes fairly strong
so that higher-bands are mixed with the lowest-band. Due to the dominant contribution of
energetically higher-bands to the total energy, the orbital occupation is determined by on-site
interaction processes. Following a mean-field treatment it can be shown [62,63] that the oc-
cupation of higher orbitals results in a modified on-site wave function of the particles in order
to minimize the on-site interaction energy. The contribution of higher orbitals also alters
the wavefunction overlap between neighboring lattice sites, leading to a modified tunneling
amplitude which becomes occupation dependent.

Let us then formulate a multiorbital Bose-Hubbard model. We first expand the field
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operator Ψ(x) taking explicitly excited-bands into account

Ψ(x) =
∑

i,α

bαi w
α
i (x), (2.16)

where wαi (x) denotes a Wannier function of the band α being localized at site i. bαi , bα†i are
the annihilation, creation operators for a boson located at site i and energy band α. Inserting
Eq. (2.16) into the many-body Hamiltonian [see Eq. (2.6)] we obtain the tunneling matrix
elements

Jαij = −
∫
dxwα∗i (x)

[
− ~2

2m

∂2

∂x2
+ Vext(x)

]
wαj (x). (2.17)

By construction Jαβij = 0 for α 6= β. Furthermore for suficiently deep lattices it is enough to
restrict the hopping to nearest neighbor sites, since the tunneling amplitudes are exponentially
damped with the hopping distance. However, for shallow lattices the inclusion of next nearest
neighbor hoppings might be necessary [114]. The energies in the different orbitals are given
by

εα =

∫
dxwα∗i (x)

[
− ~2

2m

∂2

∂x2
+ Vext(x)

]
wαi (x), (2.18)

while the corresponding interaction integrals by

Uαβγδijkl =

∫
dxdx′wα∗i (x)wβ∗j (x′)V (x− x′)wγk(x)wδl (x). (2.19)

Combining all the above terms we obtain the full multiorbital Bose-Hubbard model described
by the many-body Hamiltonian

H = −
∑

α,i,j

Jαijb
α†
i b

α
j +

∑

α...δ,i...l

Uαβγδijkl b
α†
i b

β†
j b

γ
kb
δ
l +

∑

α,i

(εα − µ)nαi . (2.20)

The full description of lattice and orbital degrees of freedom captured by the multiorbital
Bose-Hubbard model leads to an extremely complex many-particle problem. In addition to
that for very strong interactions such a description might lead to convergence problems [see
[63] and references therein]. It follows from the above that the key point for the description
of a many-body bosonic system trapped in an optical lattice is the implementation of an
effective multiorbital Hubbard model in order to restrict the corresponding computational
costs and also take the important, for the system under consideration, effects into acount.
In this direction extended Hubbard models have been constructed including, for instance,
correlated and occupation dependent tunneling contributions within the lowest-band as well
as correlated tunnelings and occupation of higher-bands. A multitude of such extended
Hubbard models have already been suggested and are also summarized in various reviews
e.g. see [62–64]. As a final remark let us list some of the effects predicted by such models and
also observed in the past decade in many different experiments: i) modifications of on-site
interactions [26,187,267–269], ii) observation of density-induced tunneling [64,85–91,270], iii)
effects of excited-bands [38,271–276], iv) shift of the Mott-insulator transition in a Bose-Fermi
mixture [86,88,277,278] and v) dynamical spin effects [279–281] to name a few.

26



THEORETICAL FRAMEWORK

2.2 Mean-Field Theory and the Gross-Pitaevskii Equation

Within the weakly interacting regime and large particle number limit, quantum fluctuations
can be neglected to a good approximation. In this regime most of the atoms occupy the same
condensate wavefunction [1–3, 282]. This latter assumption essentially reduces the many-
body problem to an effective single-particle one, where all interaction effects solely manifest
themselves in the deformation of the associated single-particle orbital.

As already discussed in Sec. 2.1.2 a sufficiently dilute ultracold atomic gas, composed
by N interacting bosons each of mass m and confined by an external potential Vext(x) is
described by the many-body Hamiltonian of Eq. (2.6). The mean-field approximation is
based on the assumption that only one single-particle state φ(x) is mainly occupied in a
macroscopic way, i.e. its occupation number N0 is of the order of the number of bosons N .
Then, the state of the total system is given by

Ψ(x1, . . . , xN ) =
N∏

i=1

φ(xi), (2.21)

where xi labels the spatial coordinate of the atoms. For simplicitly below we shall use
the notation xi ≡ x. According to the above, within the mean-field realm it makes sense
to consider the following separation of the macroscopic (condensate) contribution from the
bosonic field operator

Ψ(x) = 〈Ψ(x)〉+ δΨ(x), (2.22)

where 〈Ψ(x)〉 ≡ Ψ(x) is known as the macroscopic wavefunction of the condensate, while
δΨ(x) describes its non-condensed part and accounts for quantum and thermal fluctuations
[1,2]. Operating in the low energy limit where V (x−x′) = gδ(x−x′) with g = 4π~2a/m, the
zeroth order theory (i.e. ignoring quantum and thermal fluctuations described by δΨ(x)) for
the underlying bosonic system can be obtained e.g. by means of the Heisenberg equation of
motion i~∂Ψ

∂t = [H,Ψ]. Such a consideration leads to the famous Gross-Pitaevskii equation

i~
∂Ψ(x, t)

∂t
=

[
− ~2

2m

∂2

∂t2
+ Vext(x) + g |Ψ(x, t)|2

]
Ψ(x, t). (2.23)

Here Ψ(x, t) is normalized to the number of atoms, namely N =
∫
dx |Ψ(x, t)|2 and the non-

linearity introduced by the interatomic interactions is characterized by the s-wave scattering
length a with a > 0 (a < 0) for repulsive (attractive) interatomic interactions respectively.
It is worth mentioning that the Gross-Pitaevskii equation can also be obtained by following
a variational procedure, namely by imposing the stationarity condition δS = 0 to the action

S =
∫
dtdx(i~Ψ∗ ∂∂tΨ) +

∫
dtE with E =

∫
dx
[

~2
2m |Ψ|

2 + Vext |Ψ|2 + g
2 |Ψ|

4
]

being the energy

functional. While the Gross-Pitaevskii theory describes a perfect Bose-Einstein condensed
state with all atoms occupying the same single-particle orbital, small deviations can be taken
into account in the large particle limit N � 1 via a perturbative approach known as the
Bogoliubov theory [1,2,283]. Indeed, decomposing the bosonic field operator as in Eq. (2.22),
the Hamiltonian can be expanded up to quadratic order with respect to δΨ assuming that
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this term is small when compared to the condensate orbital. The resulting Hamiltonian is
then diagonalized using the so-called Bogoliubov transformation [see details in [282, 283]]
leading to a non-interacting theory of quasi-particles with a pair-correlated ground state
[284, 285]. This approach can provide valuable information for the breakdown of the mean-
field approximation [286–294]. However, its first basic assumption of small quantum depletion
cannot be systematically checked, while the requirement N � 1 makes this approach not
suitable for studying few-body systems as well as the crossover from few- to many-body
physics.

The Gross-Pitaevskii framework can naturally be generalized to describe a weakly inter-
acting bosonic mixture consisting of species A and B each one being governed by its own
wavefunction ΨA(x, t) and ΨB(x, t) respectively [1–3]. Considerations similar to the ones dis-
cussed in the single component case yield, for instance, the corresponding energy functional
of the mixture of the two condensates. Then, following a variational principle leads to the
coupled Gross-Pitaevskii equations

i~
∂ΨA(x, t)

∂t
=

[
− ~2

2mA

∂2

∂t2
+ V A

ext(x) + gA |ΨA(x, t)|2 + gAB
∣∣ΨB(x, t)2

∣∣
]

ΨA(x, t)

i~
∂ΨB(x, t)

∂t
=

[
− ~2

2mB

∂2

∂t2
+ V B

ext(x) + gB |ΨB(x, t)|2 + gAB
∣∣ΨA(x, t)2

∣∣
]

ΨB(x, t).

(2.24)

Here mA, mB denote the mass of each component subjected to the external potentials V A
ext(x)

and V B
ext(x) respectively. Furthermore, gA = 4π~2aA/mA, gB = 4π~2aB/mB and gAB =

4π~2aAB/mAB refer to the intra and interspecies coupling constants with aA, aB, aAB the
corresponding scattering lengths and 1/mAB = 1/mA + 1/mB.

Concluding, the mean-field Gross-Pitaevskii approximation has been proved very success-
ful in describing phenomena in various areas of physics concerning weakly interacting bosonic
gases and mixtures thereof. For instance, within the Gross-Pitaevskii framework the forma-
tion, interactions and dynamics of various types of excitations in a Bose-Einstein condensate
such as dark [283,295,296], bright [3, 297,298] and dark-bright solitons [299–302] or vortices
(see Refs. [303–308]) have been described. However, alterations on the properties of these
structures have already been reported when correlations are taken into account. Some of
the most prominent examples of such alterations include the decay and splitting of quantum
dark [286–294] and dark-bright solitons [309], interactions between bright solitons embedded
in a many-body environment [334] and the smearing effect of a vortex core [310].

2.3 Many-Body Methodological Approach: ML-MCTDHX

The field of ultracold atoms constitutes nowdays a major challenge for theoretical approaches
due to the enormous variety of relevant scenarios that can be considered involving a broad
range of interaction strengths and particle numbers, the presence of more than a single
species, various trapping potential landscapes and different dimensionalities. Recently, there
are many highly sophisticated computational methods to treat the nonequilibrium quantum
dynamics of many-body systems (see e.g. Ref. [311] and references therein). Here, we are
not aiming at reviewing all these methods but rather mention only a few of them. Well
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celebrated examples of such many-body methods include but are not limited to the exact
diagonalization approach [246, 247, 250, 251, 312], the density matrix renormalization group
methods (DMRG) [313–316], field-theoretical approaches [317–319], the Monte Carlo methods
[320,321] and variational methods [322].

In the following, we focus on a variational approach, namely the Multi-Layer Multi-
Configuration Time-Dependent Hartree method for atomic mixtures (ML-MCTDHX) [97–
100] employed in Refs. [[1-10]]. ML-MCTDHX is a wave packet dynamical approach tailored
to treat finite size systems of bosons and atomic mixtures and it is therefore perfectly suited
for our studies. Moreover, it naturally allows for studying the dynamics as well as the ground
state of an ultracold atom system. This method originates from the quantum chemistry Multi-
Configuration Time-Dependent Hartree method (MCTDH) [323,324] designed for molecular
dynamics. It has recently been applied successfully also to few-boson systems [325–328].
MCTDH has been initially designed for handling distinguishable particles, a fact that limits
its efficiency in simulations of indistinguishable bosonic systems. New methods have been de-
veloped based on MCTDH to conquer this limitation by taking into account the permutation
symmetry of the bosons on the very fundamental level of the working equations, and these
new methods, e.g. MCTDHB [329–332], have been successfully applied to various bosonic
systems [333–339]. To extend the research to macroscopic bosonic and fermionic mixtures
of arbitrary number of species, ML-MCTDHX has been recently developed [97–100]. This
method does not only takes into account the permutation symmetry of the bosons (fermions)
in the working equations, but also utilizes the multilayer scheme for the system wave vector
expansion, a fact that grants the method the flexibility of studying bosonic and fermionic
mixtures of arbitrary species in all spatial dimensions and internal degrees of freedom, e.g.
spin components [340,341].

Next, we explicate the working principles of ML-MCTDHX by providing the wavefunction
ansatz for an atomic mixture and elaborate on the significance of the involved reduced density
matrices. Finally, we provide a short discussion on the convergence of the method. For a more
detailed discussion on this method, however, we refer the interested reader to Refs. [97, 98].

2.3.1 Many-body Wavefunction ansatz for Binary Mixtures

ML-MCTDHX [97–100] is a flexible variational method for solving the time-dependent many-
body Schrödinger equation of atomic mixtures. It relies on expanding the total many-body
wavefunction with respect to a time-dependent and variationally optimized basis. The latter
enables us to capture the important correlation effects using a computationally feasible basis
size. In this way, we can obtain converged results with a reduced number of basis states
compared to expansions relying on a time-independent basis. Finally, its multi-layer ansatz
for the total wavefunction allows us to account for intra and interspecies correlations when
simulating the dynamics of e.g. bipartite systems.

A binary ultracold atomic setup is a bipartite composite system residing in the Hilbert
space HAB = HA ⊗ HB, with Hσ being the Hilbert space of the σ species. To take into
account correlations between the different (inter-) or the same (intra-) species, M distinct
species functions for each species are introduced obeying M ≤ min(dim(HA),dim(HB)). In
this way, the many-body wavefunction ΨMB can be expressed according to the truncated
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Schmidt decomposition [342,343] of rank M

ΨMB(xA,xB; t) =
M∑

k=1

√
λk(t) ΨA

k (xA; t)ΨB
k (xB; t). (2.25)

The Schmidt weights λk(t) in decreasing order are referred to as the natural species popula-
tions of the k-th species function Ψσ

k of the σ species. Note that {Ψσ
k} forms an orthonormal

Nσ-body wavefunction set in a subspace of Hσ. To quantify the presence of interspecies
correlations or entanglement we use the eigenvalues λk of the species reduced density matrix

ρNσ(xσ,x′σ; t) =

∫
dNσ′xσ

′
Ψ∗MB(xσ,xσ

′
; t)ΨMB(x′σ,xσ

′
; t) (2.26)

where xσ = (xσ1 ), · · · , xσNσ−1), and σ 6= σ′. In case that multiple eigenvalues of ρNσ are
macroscopically populated the system is referred to as species entangled or interspecies cor-
related, otherwise it is said to be non-entangled. Evidently [see also Eq. (2.25)], the system
is entangled [342, 344, 345] when at least two distinct λk(t)’s are finite, which implies that
the corresponding many-body state cannot be expressed as a direct product of two states
stemming from HA and HB. Therefore the quantity 1−λ1(t) offers a measure for the degree
of the system’s entanglement. A particular configuration of A species Ψk(x

A; t) is always
accompanied by a particular configuration of B species Ψk(x

B; t) and vice versa. Indeed,
measuring one of the species states e.g. ΨA

k′ collapses the wavefunction of the other species
to ΨB

k′ thus manifesting the presence of bipartite entanglement [342,346,347]. Summarizing,
the above many-body wavefunction ansatz ΨMB constitutes an expansion in terms of differ-
ent interspecies modes of entanglement, where

√
λk(t)Ψ

A
k (xA; t)ΨB

k (xB; t) corresponds to the
k-th entanglement mode.

To include interparticle correlations each of the species functions Ψσ
k(xσ; t) is expanded us-

ing the permanents (determinants) of mσ distinct time-dependent bosonic (fermionic) single-
particle functions (SPFs) ϕ1, . . . , ϕmσ

Ψσ
k(xσ; t) =

∑

n1,...,nmσ∑
ni=N

ck,(n1,...,nmσ )(t)

Nσ !∑

i=1

sign(Pi)ζPi



n1∏

j=1

ϕ1(xj ; t) · · ·
nmσ∏

j=1

ϕmσ(xj ; t)


 .

(2.27)

ζ = 0, 1 refers to the case of bosons and fermions respectively and sign(Pi) denotes the sign
of the corresponding permutation. P is the permutation operator exchanging the particle
configuration within the SPFs. ck,(n1,...,nmσ )(t) are the time-dependent expansion coefficients
of a particular determinant (for fermions) or permanent (for bosons), and ni(t) denotes the
occupation number of the SPF ϕi(x; t). Furthermore, the SPFs are expanded within a time-
independent primitive basis |k〉 of dimension Mpr. For the physical systems presented in this
thesis, within our implementation we use a sine discrete variable representation as a primitive
basis for the SPFs. Following a variational principle, such as the Lagrangian [348], McLachlan
[349] or the the Dirac Frenkel [350, 351], for the generalized ansatz [see Eqs. (2.25), (2.27)]
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yields the ML-MCTDHX equations of motion [97, 98]. For bosonic mixtures, these consist
of a set of M2 ordinary (linear) differential equations of motion for the coefficients λk(t),

coupled to a set of M
[

(NA+mA−1)!
NA!(mA−1)!

+ (NB+mB−1)!
NB !(mB−1)!

]
non-linear integrodifferential equations for

the species functions, and mA+mB non-linear integrodifferential equations for the SPFs. We
note here that e.g. for Bose-Fermi mixtures, the non-linear integro-differential equations for

the species functions are M
[

(NB+mB−1)!
NB !(mB−1)!

+ mF !
NF !(mF−NF )!

]
, where the indices B, F denote the

corresponding bosonic and fermionic component respectively. A detailed derivation of these
equations of motion can be found in [97–100].

The corresponding one-body reduced density matrix of the σ species can be expanded
[see Eq. (2.25)] as

ρ(1),σ(x, x′; t) =

∫
dNσ−1x̄σdNσ′xσ

′
Ψ∗MB(x, x̄σ,xσ

′
; t)ΨMB(x′, x̄σ,xσ

′
; t)

=
M∑

k=1

λk(t) ρ
(1),σ
k (x, x′; t),

(2.28)

where σ 6= σ′, x̄σ = (xσ1 , x
σ
2 , . . . , x

σ
Nσ−1), and

ρ
(1),σ
i (x, x′; t) =

∫
dNσ−1x̄σΨ∗σi (x, x̄σ; t)Ψσ

i (x′, x̄σ; t) (2.29)

denotes the one-body density matrix of the i-th species function. We remark here that
the bosonic (fermionic) subsystem is termed intraspecies correlated if more than one (Nσ)
eigenvalvalue(s) of ρ(1),σ(x, x′) are macroscopically occupied, otherwise it is fully coherent
(Hartree-Fock correlated).

Moreover, the eigenfunctions of the σ-species one-body density matrix, ρ(1),σ(x, x′), are
the so-called σ-species natural orbitals, φσi (x; t). For our purposes, here, we consider them to
be normalized to their corresponding eigenvalues

nσi (t) =

∫
dx |φσi (x; t)|2 . (2.30)

nσi (t) are known as the natural populations and for bosons 1 − nσ1 (t) [1 −∑i n
σ
i (t) with

i = 1, . . . , Nσ for Nσ fermions] serves as a measure of the degree of the σ species inter-
particle correlations [352–355]. Finally, it can be easily shown that in a bosonic [fermionic]
system when nσ1 (t) = Nσ, nσi 6=1(t) = 0 [

∑
i n

σ
i (t) = Nσ, nσi>Nσ(t) = 0] the first [first Nσ]

natural orbital(s) φσ1 (xσ; t) [φσi (xσ; t), i = 1, . . . , Nσ] reduces to the mean-field [Hartree Fock]
wavefunction.

2.3.2 Limiting Cases and Convergence of the Many-Body Simulations

A major challenge for many-body simulations is to achieve a desirable degree of convergence.
To judge the quality of the ML-MCTDHX ansatz one has to carefully examine the trun-
cation order of the total system’s Hilbert space which is indicated by the used numerical
configuration space C = (M ;mA;mB;Mpr). Here, M = MA = MB refers to the number of
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species functions and mA, mB denote the amount of SPFs for each of the species while Mpr

is the size of the employed primitive basis. It is also worth mentioning at this point that ML-
MCTDHX can operate in different approximation orders. As such when choosing mσ = Mpr

and Mσ = (Nσ+mσ−1)!
Nσ !(mσ−1)! , our wavefunction ansatz is of full configuration-interaction type thus

covering the complete system’s Hilbert space. In the other extreme case of neglecting all
correlations by setting M = 1 and mσ = 1 for bosons (mσ = Nσ for fermions), the ML-
MCTDHX equations of motion reduce to coupled Gross-Pitaevskii (Hartree-Fock) equations
of motion, depending on the statistics of the components. In between the above-mentioned
extreme cases, i.e. for not too strong inter and intraspecies correlations, one expects that it
is sufficient to consider only a few species functions and orbitals, a fact that leads to a much
higher efficient representation of the many-body state. Therefore employing ML-MCTDHX,
mσ and M need to be chosen according to the dominant correlations in the system under
consideration such that the many-body expansion becomes efficient, i.e. it involves as few
coefficients as possible, while capturing all relevant correlations.

To infer about the convergence of a many-body simulation, one has to systematically
increase mσ, M and Mpr, namely enlarge the subspace within which ML-MCTDHX finds the
variationally optimal solution, and compare the results for the observables of interest, e.g.
the variance of the density distribution or the total energy of the system. Additionally, in
distinct situations, there are observables which can provide analytical estimations, e.g. the
center of mass variance given that the center of mass motion is decoupled. Such observables,
although limited, can also be employed to judge the convergence of the ML-MCTDHX sim-
ulations [97]. Let us emphasize here that increasing the number of basis functions of the
ML-MCTDHX method implies that the corresponding many-body simulations become com-
putationally costly and at some point prohibitive. An auxiliary indicator for the obtained
numerical accuracy is provided by the population of the lowest occupied species functions
and natural orbitals for each species which should be kept below 1%. Therefore, if there are
species functions and natural orbitals which are barely populated, one can assume to have
supplied a large enough basis for the calculation [97–100]. In this sense, a negligibly occupied
lowest natural population λσM (t) [nσmσ(t)] means that the corresponding species function NSF
[natural orbital] essentially does not contribute to the numerically obtained |ΨMB(t)〉. Such a
convergence investigation provides in practice a good indicator for the considered basis being
sufficiently large, however it cannot be considered as a strict convergence criterion [356,357].
In summary, the degree of convergence in general depends on the observable of interest, of
course.

2.3.3 Wavefunction Ansatz for Scalar Bosons

We remark that in the case of structureless (scalar) bosons the above outlined ML-MCTDHX
computational package reduces to the Multi-Configuration Time-Dependent Hartree method
for bosons (MCTDHB) [329–332]. The latter has already been applied for a wide set of
nonequilibrium bosonic settings, e.g. see [333–339]. Therefore in order to solve the many-
body Schrödinger equation (i~∂t −H) |Ψ(t)〉 = 0 of the interacting bosons as an initial value
problem |Ψ(0)〉 = |Ψ0〉, we rely on MCTDHB.

As already outlined for ML-MCTDHX, the MCTDHB allows for a variationally optimal
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truncation of the Hilbert space as we employ a time-dependent moving basis where the system
can be instantaneously optimally represented by time-dependent permanents. Consequently,
the many-body wavefunction |ΨMB(t)〉 is expanded in terms of the bosonic number states
|n1, n2, ..., nM ; t〉, that built upon time-dependent single-particle functions (SPFs) |φi(t)〉,
i = 1, 2, ...,M , and time-dependent weights Cn(t)

|ΨMB(t)〉 =
∑

n

Cn(t) |n1, n2, ..., nM ; t〉. (2.31)

In the last expression M denotes the number of SPFs and the summation n is over all
the possible combinations ni such that the total number of bosons N is conserved. Within
our numerical implementation, the SPFs are expanded on a so-called primitive basis {|k〉} of
dimension Mpr. In all presented contributions [[1-10]] we use as a primitive basis for the SPFs
a sine discrete variable representation which intrinsically introduces hard-wall boundaries at
both ends of the potential.

To determine the time-dependent many-body wavefunction |ΨMB(t)〉 we need to calculate
the equations of motion for the expansion coefficients Cn(t) and the SPFs |φi(t)〉. To obtain
these MCTDB equations of motion [329, 330, 358] we follow a variational principle such as
the Dirac-Frenkel [350,351]

〈δΨMB|i∂t − Ĥ|ΨMB〉 = 0. (2.32)

The aforementioned equations consist of a set of M non-linear integrodifferential equations
of motion for the SPFs which are coupled to the (N+M−1)!

N !(M−1)! linear equations of motion for

the coefficients Cn(t). Finally, let us note that in the limit in which M = Mpr the above
expansion is equivalent to a full configuration interaction approach. Moreover, in the case
of M = 1 the many-body wavefunction is given by a single permanent |n1 = N ; t〉 and the
method reduces to the time-dependent Gross-Pitaevskii mean-field approximation.

2.4 Many-Body Eigenspectrum of Few-Bosons in a Triple-
Well

A major focus of the present cumulative thesis is to unravel the microscopic processess of few
lattice trapped bosons when exposed to a particular quench protocol. For our investigations
and in sharp contrast to the discrete Bose-Hubbard model we employ a continuum space
Hamiltonian [see for instance Eq. (2.33) below] which enables us to resolve quench-induced
higher-band excitations. For the sake of completeness let us note that the Bose-Hubbard
model remains an adequate approximation for the theoretical description of the quench dy-
namics in deep lattices and for relatively small quench amplitudes when compared to the
lattice band gap. To expose the underlying physical processes that can lead to the emergence
of such many-body excited states [[1-6]] we mainly follow two pathways. First, we invoke
the corresponding many-body eigenspectrum of the system. Such a calculation is, of course,
computationally prohibitive for large systems however it is feasible for few-body ensembles
trapped in a finite lattice. Furthermore, in order to comprehend the microscopic processess
that participate in the quench-induced dynamics we employ the notion of non-interacting
multiband Wannier number states.
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Below we first explicate the formalism of the multiband expansion and categorize the num-
ber states of two respresentative few-body ensembles consisting respectively of three and four
bosons in a triple well. Then we briefly discuss our numerical approach, within MCTDHB, to
obtain the many-body eigenspectrum and finally we showcase the many-body eigenspectrum
of three and four bosons confined in a triple well as a function of the interparticle repulsion.

2.4.1 The Multiband Wannier Number State Basis

The understanding of the spatial localization of states in lattice systems renders the use
of multiband Wannier number states crucial as the latter enables the interpretation of both
intraband and interband processes involving also information about the population of excited-
bands. Generally, such a representation becomes valid when the lattice potential is deep
enough so that the Wannier states between different wells possess a fairly small overlap in
space for not too high energetic excitations. In this way, each localized Wannier function can
be adequately assigned to a certain well and the respective band-mixing is fairly small.

As already mentioned in Section 2.3.3, MCTDHB exploits a wavefunction expansion in
terms of time-dependent variationally optimized SPFs namely ΨMB(t) =

∑
nCn|n(t)〉. How-

ever, for the analysis of the induced dynamics in lattice systems, it is more intuitive to rely
on a time-independent basis instead of a time-dependent one. To this end, we project the
numerically obtained MCTDHB wavefunction on a time-independent number state basis and
thus make the connection with the multiband Wannier functions. This time-independent
basis is constructed by single-particle Wannier states localized on each lattice site. We pro-
vide as many non-interacting Wannier states as required in order to ensure that during the
dynamics the new basis is complete. To enable the above projection we have developed in
the framework of ML-MCTDHB a fixed basis analysis package in terms of which we use
a time-independent basis for the expansion of the system’s wavefunction. Summarizing, in
order to identify the modes participating in the dynamics we project the numerically ob-
tained many-body correlated MCTDHB wavefunction on a time-independent number state
basis consisting of single-particle Wannier states being localized on each lattice site. This
expansion allows us to study inter- and intraband transitions [[1-8]].

The many-body bosonic wavefunction of a system with N bosons, m-wells and j localized
single particle states [[1-6]] reads

|Ψ〉 =
∑

{ni}

C{ni}|n1,n2, ...,nm〉, (2.33)

where |n1,n2, ...,nm〉 is the multiband Wannier number state, the element ni = n
(1)
i ⊗n

(2)
i ⊗

....⊗n(j)
i and the occupation of the Wannier orbital n

(k)
i refers to the number of bosons which

reside at the i-th well and k-th band. Due to the fixed number of bosons N the total number
of configurations is constrained by

∑m
i=1

∑j−1
λ=1 n

(λ)
i = N . For instance, in a setup with N = 4

bosons confined in a triple well (m = 3) which includes j = 3 single-paticle states, the state
|1(0), 1(1)⊗1(1), 1(0)〉 indicates that in the left and right wells one boson occupies the Wannier
orbital of the energetically lowest-band while the remaining two bosons are in the middle
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well, residing in the Wannier orbital of the first excited-band. For simplicity, in the following,
we shall omit the zero index when referring to the energetically lowest (i.e. zeroth) band.

Below, we shall calculate the eigenspectrum with respect to the interparticle repulsion for
the characteristic cases of three and four bosons in a triple well. To analyze the corresponding
eigenspectra it is instructive to energetically categorize the involved number states. In this
way, for the three particle case one can realize three different energetic classes of number
states with respect to the interparticle repulsion. Namely, the triples {|3, 0, 0〉+ �} (T ), the
single pairs {|2, 1, 0〉+ �} (SP ) and the singles {|1, 1, 1〉+ �} (S), where � stands for all
corresponding permutations. For later convinience we further classify the excited-band ener-
getic classes into single-particle excitation (SE) and higher excited (HE) classes. The former
[latter] class involves states of single [double] occupancy in every site with one excitation to
the first excited-band e.g. {|1, 1(1), 1〉+ �} [{|1 ⊗ 1(1), 1, 0〉+ �} and {|1(1), 2, 0〉+ �}]. Ac-
cordingly, for the case of four particles in a triple well and regarding the zeroth band states
four distinct energetic classes of number states can be realized. Namely, the single pairs (SP)
{|2, 1, 1〉+ 	}, double pairs (DP) {|2, 0, 2〉+ 	}, triples (T) {|3, 1, 0〉+ 	} and quadruples
(Q) {|4, 0, 0〉+ 	}.

2.4.2 Improved Relaxation Scheme

To obtain the n-th many-body eigenstate we rely on the so-called improved relaxation scheme
implemented within MCTDHB. This numerical scheme can be summarized according to the
following procedure

• Initialize the system with an ansatz set of SPFs {|φ(0)
i 〉}.

• Diagonalize the Hamiltonian within a basis spanned by the SPFs.

• Set the n-th obtained eigenvector as the Cn(0)-vector.

• Propagate the SPFs in imaginary time within a finite time interval dτ .

• Update the SPFs to {|φ(1)
i 〉}.

• Repeat the above-mentioned steps until the energy of the state converges within the
prescribed accuracy.

To explore the dynamics, we propagate the many-body wavefunction (obtained via the
improved relaxation scheme) by utilizing the appropriate Hamiltonian within the MCTDHB
equations of motion.

2.4.3 Eigenspectrum of Three and Four Bosons

The eigenspectrum of a lattice system provides invaluable information about the participat-
ing states for a given set of Hamiltonian parameters. In particular, inspecting the system’s
eigenspectrum several unique properties inherent to the system under consideration can be

35



THEORETICAL FRAMEWORK

revealed, such as the bandwidth, the band gap and possible avoided or exact crossings be-
tween different many-body eigenstates [362]. Such a knowledge equips us with information
that is necessary in order to understand and analyze the microscopic mechanisms being re-
sponsible e.g. for the corresponding quantum quench dynamics [[4,6]]. Next, let us discuss
the eigenspectrum of three and four bosons trapped in a relatively deep triple well system
for varying interparticle repulsion.
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Figure 2.4: (a) Dependence of the lowest 25 eigenenergies Ei on the interparticle repulsion
g for three bosons confined in a triple well with a potential depth V0 = 10. The solid boxes
indicate the superfluid to Mott-insulator transition. (b) The same as in (a) but for the case
of four bosons trapped in a triple well. In both panels solid (dashed) lines indicate the parity
even (odd) eigenenergies, while the existing wide (narrow) avoided-crossings possessing a
width δE > 0.01 (δE < 0.01) are marked by solid (dashed) circles. The eigenenergies of the
eigenstates that do not contribute to any wide avoided-crossing are shown in grey. Finally,
the energy regions Eg, E

∗ and the subbands possessing zero, single and more than one excited
states are indicated by the respective bars.

We first focus on the case of three bosons confined in a relatively deep triple well, namely
V0 = 10.0 ER. The corresponding eigenenergy spectrum of the first 25 lowest-lying eigenen-
ergies for increasing interparticle repulsion is depicted in Fig. 2.4 (a). As it can be seen,
close to the non-interacting limit, g ' 0, the many-body eigenstates are energetically catego-
rized according to their corresponding particle configuration in terms of single-particle bands.
Indeed, the eigenstates of the system are predominantly bunched onto two energy regions de-
noted by Eg and E∗ in Fig. 2.4 (a) respectively. Namely, the eigenstates lying within Eg do
not possess any higher-band excitations, while those bunched onto E∗ refer to states with one
single-particle excitation to the first excited-band. The width of the aforementioned energy
regions defines the so-called bandwidth, and depends on the tunneling coupling between the
different sites. Note that the term tunneling coupling refers to the corresponding inverse
tunneling rate [19,20,93,94]. Furthermore, the distance between E∗ and Eg is characterized
by the band gap between the ground and the first excited-band of the non-interacting system.
Concerning the decomposition of each eigenstate in terms of spatially localized Wannier num-
ber states [see Eq. (2.33)] it turns out that it is an admixture of all the energetic classes S,
SP and T . The latter is a consequence, of course, of the spatial delocalization of the bosons
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within the triple well, and therefore manifests the few-body analogue of the superfluid phase
for small interaction strengths.

For increasing repulsion the energy expectation value of the number states belonging to
the SP and T classes increases. As a consequence, the same holds for the eigenenergies of
the eigenstates to which the aforementioned number states are contributing. In particular,
for 0 < g . 0.5 a multitude of avoided-crossings is observed, see Fig. 2.4 (a), which essen-
tially indicate the tunneling coupling between the S, SP and T number states of the same
parity. This interaction regime corresponds in our few-boson system to the region where the
transition from the superfluid to the Mott-insulator phase occurs. Turning to g ≥ 0.5 the
eigenenergies of the lowest-band become well separated into three subbands according to the
energetic class of their dominant number state [see Fig. 2.4 (a)]. Here, the ground state of
the system is dominated by the S class manifesting in this way the few-body analogue of the
Mott-insulator phase. Moreover, the SP and T class eigenstates are also bunched together
forming the SP and T subbands, while the eigenstates of the T subband (being the most
sensitive to interparticle repulsion) experience wide (see solid circles) and narrow (see dashed
circles) avoided crossings with the eigenstates possessing a higher-band excitation. Let us
note here in advance, that the wide avoided-crossings are related to the onset of the cradle
mode, described in [[1,2]], and are a consequence of the interaction induced decay of an SP
or T state caused by the scattering of one of the bosons that reside in the same well to the
first excited state of an adjacent site. This process generates the so-called cradle mode which
represents a dipole-like intrawell oscillation in the outer wells of the finite lattice.

A similar behavior to the above is also observed when inspecting the many-body eigen-
spectrum of four bosons confined in a relatively deep triple well, V0 = 10 ER, for increasing
interaction strength [see Fig. 2.4 (b)]. However, here the number of the involved eigenstates
is higher since there exist more possible particle configurations when compared to the three
boson case. Most importantly, a transition from a supefluid to a Mott insulating state is
prohibited due to the incommensurate filling factor. Fig. 2.4 (b) presents the eigenenergy
spectrum of the first 20 lowest-lying eigenenergies for increasing g. For very weak interactions
the many-body eigenstates are energetically categorized according to their corresponding par-
ticle configuration in terms of single-particle bands. In particular, they majorly reside within
two energetically different regions denoted by Eg and E∗. The eigenstates within Eg do not
possess any higher-band excitations, while those lying in E∗ correspond to states with one
single-particle excitation to the first excited-band. Remarkably enough, we observe the oc-
curence of an exact crossing between the Q class eigenstate with the eigenstates possessing
a single higher-band excitation at g ≈ 0.8. Moreover the T class exhibits exact (avoided)
crossings with states referring to a higher-band excitation at g ≈ 2.4 (g ≈ 3 and g ≈ 4.3).
Let us finally mention in advance that within [[1,2]] the observed interaction quench dynam-
ics is mainly a consequence of these exact and avoided-crossings between the many-body
eigenstates at distinct interparticle repulsions.
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2.5 Single-Shot Simulations in Binary Bosonic Mixtures and
Scalar Bosons

Single-shot experimental measurements of ultracold quantum quantum gases probe the spa-
tial configuration of the atoms which is dictated by sampling the many-body probability
distribution. In particular, an experimental image refers to a convolution of the spatial par-
ticle configuration with a point spread function. This point spread function describes the
response of the imaging system to a point-like absorber (atom). Such single shots images can
be successfully simulated when having the many-body wavefunction at hand as is the case of
operating within ML-MCTDHX.

Quantum mechanically the positions (x1, . . . , xN ) of N particles measured in an ex-
periment are distributed according to the N -particle probability density P (x1, . . . , xN ) =
|ΨMB(x1, . . . , xN )|2, where ΨMB(x1, . . . , xN ) refers to the many-body wavefunction of the
system. In general, when the probability ΨMB(x1, . . . , xN ) is known, single shots can be sim-
ulated by drawing the positions of all particles from P (x1, . . . , xN ), resulting in a vector of
positions (x′1, . . . , x

′
N ) that we refer to in the following as a single shot. The main difficulty to

perform the above procedure stems from the fact that the functional form of the many-body
wavefunction is generally not known in many-body dynamics. To sample P (x1, . . . , xN ) one
needs to realize that

P (x1, . . . , xN ) = P (x1)P (x2|x1) . . . P (xN |xN−1, . . . , x1). (2.34)

P (x2|x1), for instance, denotes the conditional probability to detect an atom at position x2

if another one is located at x1. The key point in this procedure is to draw the positions of all
N particles. In this way, we first draw x′1 from P (x1), then x′2 from P (x2|x′1), next x′3 from
P (x3|x′2, x′1) and so on. Following the above-mentioned procedure we obtain a histogram of
a single-shot (x′1, . . . , x

′
N ), which is analogous to an experimental image. Here we provide an

algorithm to simulate single shots for a binary bosonic mixture from the (NA + NB)-body
ML-MCTDHX wavefunction [see also Eq. (2.25)] obtained by numerically solving the time-
dependent many-body Schrödinger equation (i~∂t −H) |Ψ(t)〉 = 0. Moreover we show how
this single-shot algorithm can also be used to perform such simulations in a scalar bosonic
ensemble using the corresponding N -body wavefunction ansatz [see Eq. (2.32)].

2.5.1 Single-Shot Procedure

Referring to a two-species bosonic mixture our aim is to mimic the corresponding experi-
mental procedure and simulate single shot images for both species A [namely AA(x̃; tim)]
and species B [i.e. AB(x̃′|AA(x̃); tim)] at each instant of the many-body evolution when we
consecutively image at time t = tim first the A and then the B species. To achieve this we
rely on the many-body wavefunction being accessible within the ML-MCTDHX framework.
It is important to remark that for the modelling of the point spread function, being related
to the experimental resolution, we use a Gaussian possessing a width w which is commonly
much smaller than the typical length scale (e.g. in a harmonic trap this is the harmonic
oscillator length) of the system.
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As already mentioned, our single-shot simulation procedure relies on a sampling of the
many-body probability distribution [310,359–361] which is accessible via ML-MCTDHX. For
a two-species bosonic ensemble and when inter and intraspecies correlations are taken into
account, the degree of entanglement between the distinct species is crucial for the image
ordering. Indeed, the role of entanglement between the species is manifested by the Schmidt
decomposition [see Eq. (2.25)] and in particular is incorporated in the Schmidt coefficients
λk’s. Let us first analyze the situation where first the species A is imaged and then the species
B.

In order to image first the A and then the B species we consecutively annihilate all the
NA particles. Referring to a certain time instant of the imaging, tim, a random position

is drawn satisfying the constraint ρ
(1)
NA

(x′1) > l1 where l1 is a random number within the

interval [0, max{ρ(1)
NA

(x; tim)}]. Next, we project the (NA + NB)-body wavefunction to the

(NA− 1 +NB)-body one, by using the operator 1
N (Ψ̂A(x′1)⊗ ÎB). Ψ̂A(x′1) is the bosonic field

operator that annihilates an A species boson at position x′1 andN is a normalization constant.
The above-mentioned process directly affects the λk coefficinets (entanglement weights) and

thus despite the fact that the B species has not been imaged yet, both ρ
(1)
NA−1(tim) and

ρ
(1)
NB

(tim) are altered. The latter can be easily shown by carefully inspecting the Schmidt
decomposition. Indeed after the first measurement the form of the many-body wavefunction
reads

|Ψ̃NA−1,NB
MB (tim)〉 =

∑

i

√
λ̃i,NA−1(tim)|Ψ̃A

i,NA−1(tim)〉|ΨB
i (tim)〉. (2.35)

|Ψ̃A
i,NA−1〉 = 1

Ni
Ψ̂A(x′1)|ΨA

i 〉 refers to the (NA − 1) species wavefunction. The constant Ni =√
〈ΨA

i |Ψ̂
†
A(x′1)Ψ̂A(x′1)|ΨA

i 〉 denotes the corresponding normalization factor and λ̃i,NA−1 =

λiNi/
∑

i λiN
2
i are the Schmidt coefficients referring to the (NA−1+NB)-body wavefunction.

To obtain a single-shot image we repeat the above-mentioned procedure for NA − 1 steps.
The resulting distribution of positions (x′1, x′2,...,x′NA−1) is convoluted with a point spread

function and leads to a single-shot AA(x̃) =
∑NA

i=1 e
− (x̃−x′i)

2

2w2 for the A species. Here, x̃ refers
to the spatial coordinates within the image and w is the width of the point spread function. It
is also worth mentioning that before annihilating the last of the NA particles, the many-body
wavefunction possesses the form

|Ψ̃1,NB
MB (tim)〉 =

∑

i

√
λ̃i,1(tim)|ΦA

i,1(tim)〉|ΨB
i (tim)〉, (2.36)

where |ΦA
i,1(tim)〉 refers to a single-particle wavefunction characterizing the A species. It can

be easily shown that annihilating the last A species particle the many-body wavefunction
becomes

|Ψ̃0,NB
MB (tim)〉 = |0〉 ⊗

∑

i

√
λ̃i,1(tim) 〈x|ΦA

i,1〉
∑

j

√
λ̃j,1(tim)| 〈x|ΦA

j,1〉 |2
|ΨB

i (tim)〉. (2.37)
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Here 〈x|ΦA
j,1〉 is the single-particle orbital of the j-th mode. Evidently, performing this last

step the entanglement between the species is destroyed while the wavefunction of the B
species |ΨNB

MB(tim)〉 corresponds to the second term of the cross product on the right hand

side of Eq. (2.37). Therefore, |ΨNB
MB(tim)〉 obtained after the annihilation of all NA atoms

is a non-entangled NB-particle many-body wavefunction and its corresponding single-shot
procedure reduces to the single species case [310,359].

The latter process is well-established and benchmarked in several works that consider
the correlated nonequilibrium quantum dynamics of ultracold scalar bosonic ensembles [310,
359–361]. Let us therefore only briefly outline the underlying process below. Focussing on a

specific time instant of the imaging, t = tim, we first calculate ρ
(1)
NB

(x; tim) from the many-
body wavefunction |ΨNB 〉 ≡ |Ψ(tim)〉. Next we draw a random position x′′1 which obeys

ρ
(1)
NB

(x′′1; tim) > l2 where l2 is a random number lying within the interval [0, ρ
(1)
NB

(x; tim)].

Then, one particle located at a position x′′1 is annihilated and ρ
(1)
NB−1(x; tim) is calculated

from |ΨNB−1〉. Subsequently, a new random position x′′2 is drawn from ρ
(1)
NB−1(x; tim). In

total, this procedure is repeated for NB − 1 steps and finally we obtain the distribution
of positions (x′′1, x′′2,...,x′′NB−1) which is then convoluted with a point spread function. The

above results in a single-shot AB(x̃′|AA(x̃)), where x̃′ denote the spatial coordinates within
the image. We note once more that for the employed point spread function a Gaussian of
width w is used.

Let us emphasize here that the same overall procedure has to be followed in order first to
image the B and then the A species. The latter imaging process results in the corresponding
single-shots AB(x̃) and AA(x̃′|AB(x̃)).

In the next section and in particular within the outline of our first scientfic contribu-
tion [[1]] we discuss an application of the single-shots simulations during the nonequilibrium
dynamics of four scalar bosons confined in a triple well. Moreover, within [[9]] we provide
paradigmatic single-shot simulations for the case of a harmonically trapped Bose-Bose mix-
ture subjected to an interspecies interaction quench.
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Chapter 3

Outline of the Scientific
Contributions

In the present chapter, we summarize our scientific contributions published in Refs. [[1-10]].
The basic underlying concept of all contributions is the characterization of the nonequilibrium
dynamics of few-bosons confined in finite optical lattices. The nonequilibrium situation is
induced either by performing a quench [[1-6]] on a parameter of the Hamiltonian or by
considering a time-periodic driving of the optical lattice [[7-8]]. Additionally we investigate
the correlation properties in the quench-induced dynamics of a harmonically confined Bose-
Bose mixture [[9]] and the many-body expansion dynamics of a lattice trapped Bose-Fermi
mixture [[10]]. In all contributions we are aiming to microscopically characterize the quench-
induced processes, reveal their correlated nature and obtain a coupling between the distinct
triggered modes, thus providing a way to control the resulting nonequilibrium dynamics.

3.1 Hamiltonian of Few-Bosons in a Lattice

The many-body Hamiltonian of N identical bosons each of mass M confined in an one-
dimensional m-well optical lattice reads

H =
N∑

i=1

[
− ~2

2M

∂2

∂x2
i

+ Vext(xi)

]
+
∑

i<j

VI(xi − xj). (3.1)

The lattice potential Vext = V0 sin2(kx) is characterized by its depth V0 and periodicity
l. In this respect k = 2π/l denotes the wave vector of the counterpropagating lasers
forming the optical lattice. Within the ultracold regime, the short-range interaction po-
tential VI(xi − xj) = gδ(xi − xj) between particles located at positions xi, can be ade-
quately described by s-wave scattering. The effective one-dimensional coupling strength [363]

g = 2~2as
Ma2⊥

(
1− |ζ(1/2)| as/

√
2a⊥

)−1
, where ζ denotes the Riemann zeta function at x = 1/2.

The transversal length scale is given by a⊥ =
√
~/Mω⊥, where ω⊥ stands for the frequency of

the transversal confinement, while as denotes the free space s-wave scattering length. The in-
teraction is tunable by as with the aid of Feshbach resonances [5,6] or by means of ω⊥ [7,363].
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In the following we consider only the dynamics of repulsively interacting bosons, implying
that g > 0. To restrict the infinitely extended trapping potential to a finite one with m
wells and length L, we impose hard-wall boundary conditions at the appropriate positions,
x±m = ±mπ

2k .

Below, the many-body Hamiltonian is rescaled in units of the recoil energy ER = ~2k2
2M .

Then the corresponding length, time, frequency and interaction strength scales are given in
units of k−1, ω−1

R = ~E−1
R , ωR and 2ERk

−1 respectively. For convenience we shall also set
~ = M = k = 1 so that all quantities below are given in dimensionless units.

3.2 Basic Ground State Properties

Before exploring the dynamics, let us shortly comment on the ground state properties of a
lattice system for different filling factors ν = N/m, where N denotes the particle number and
m the number of the wells. In the commensurate case, i.e. ν = 1, 2, ..., the ground state for
increasing interparticle interaction is known to exhibit the superfluid to Mott-insulator phase
transition [19, 20] which has been addressed extensively in the past years, see also Fig. 3.1
(a). However, for a system characterized by an incommensurate filling, ν 6= 1, 2, ..., the main
feature is the existence of a delocalized fraction of particles which forbids the occurrence of
a Mott state [see Fig. 3.1 (b)]. Here, one can distinguish two physical situations. The case
ν > 1 where on-site interaction effects prevail and the case ν < 1 in which the main feature
is the redistribution of the particles over the sites as the interaction strength increases. We
note that such a delocalized phase has been explained in terms of the particle hole states
using a strong coupling expansion [93,94].
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Figure 3.1: One-body density for the ground state of (a) three and (b) four bosons confined in
a triple well and (c) five bosons in a ten well lattice potential. Different lines refer to distinct
interparticle repulsions (see legends).

Let us first briefly summarize the ground state properties for increasing interactions for
a setup consisting of four atoms in three wells, i.e. one extra particle on a Mott background.
For a more elaborated discussion on the eigenspectrum of this system see Section 2.4.3. The
main characteristic of the initial state is the competition between delocalization and on-site
interaction effects. The single-particle density for the non-interacting case g = 0 is largest in
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the middle site and decreases for the outer ones due to the hard-wall boundary conditions that
render the middle and outer sites non-equivalent [Fig. 3.1 (b)]. Entering the weak interaction
regime we observe a tendency towards a uniform population due to the repulsion of the
bosons. For further increasing repulsion a trend towards the repopulation of the central well
occurs. For strong interparticle repulsion, the state can be interpreted as a fraction N mod
m of extra delocalized particles being on a commensurate background of localized particles.
On the one-body density level the on-site populations are quite similar, which is attributed
to the localized background, while their slight observed discrepancy is caused by the non-
uniform distribution of the extra particle in the first excited-band, preventing the formation
of a perfect insulator phase even for strong repulsion, see Fig. 3.1 (b).
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Figure 3.2: (a) Evolution of the populations of the first nine natural orbitals for four bosons
confined in a triple well after an interaction quench with amplitude δg = 2.5. (b) Deviation
from unity of the population of the first natural orbital following interaction quenches of
different amplitudes δg (see legend). In all cases the system is initialized in the ground state
of four weakly interacting, g = 0.05, bosons in a triple well. δg = gf − gin with gf , gin
referring to the post and pre quench interaction strengths respectively.

Turning to the ground state for systems with filling factor ν < 1, the most important
aspect is the spatial redistribution of the atoms as the interaction strength increases. The
non-interacting ground state (g = 0) is the product of the single-particle eigenstates spreading
across the entire lattice, while due to the hard-wall boundary conditions the two central
wells of the potential are slightly more populated. For increasing repulsion within the weak
interaction regime the atoms are pushed to the outer sites which gain and lose population in
the course of increasing g, while the particle number fluctuations are more pronounced for the
wells with a lower population [364]. Summarizing, for ν < 1 the one-body density remains
asymmetric even for strong interactions due to the low population, while the delocalized
fraction of particles permits the presence of long-range one particle correlations even in the
strongly repulsive regime [364]. A paradigmatic example of the ground state properties on
the one-body density level for increasing repulsion in such a system is shown in Fig. 3.1 (c)
for five particles confined in ten wells.
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Figure 3.3: (a) Evolution of the one-body density temporal fluctuations δρ(1)(x, t) following
an interaction quench with amplitude δg = 2. (b), (c) Temporal fluctuations of the averaged

images δĀ(x, t) = Ā(x, t) − (1/T )
∫ T

0 dtĀ(x, t) over Nshots = 100 and Nshots = 500 after an
interaction quench with amplitude δg = 2 within the many-body approach. In all cases the
system consists of four bosons confined in a triple well and it is intitialized in its ground state
with g = 0.05.

3.3 Quench Dynamics in Scalar Few-Boson Ensembles

3.3.1 Quench Dynamics from Weak-to-Strong Interactions [[1]]

In [[1]] we investigate the correlated nonequilibrium dynamics of few-bosons confined in one-
dimensional finite lattices subjected to a sudden change in the interaction strength. Focusing
on highly non-perturbative situations by considering weak-to-strong interaction quenches
with respect to the initial state, we drive the system to a regime where the interparticle
interactions dominate in comparison to the kinetic energy. By considering strong quench
amplitudes and examining representative few-body setups for incommensurate filling factors,
our treatment lies beyond the validity of the lowest-band Bose-Hubbard model [19,20] which,
in this regime of interactions, provides at most a qualitative description of the system’s dy-
namics. To support our arguments we show in Fig. 3.2 the contribution of the consecutive
populated natural orbitals [see also Eq. (3.2)] during the nonequilibrium dynamics of four
bosons in a triple well after an interaction quench. Similar investigations, although restricted
to the weak interaction regime, have been performed within the realm of the Bose-Hubbard
model showcasing the dynamics of one-body inter and intra-site correlations [365–368]. Con-
trary to those studies, here, we are mainly interested on the microscopic characterization of
inter and intrawell quench-induced modes as well as on their controllability.

Starting from the weakly interacting ground state of the system we perform a quench
towards the strongly interacting regime. To avoid suppresion of tunneling due to Mott-
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Figure 3.4: Visualization of the cradle process generated by the over-barrier transport. The
system is (a) prepared in a weakly repulsively interacting superfluid ground state which is
(b) then subjected to a sudden interaction quench. A boson initiated in the central well can
overcome the lattice barrier and move to its neighboring well, resulting in a cradle motion
due to the interaction quench.

insulator phases arising for strong interactions we study setups of incommensurate filling
factors. Following an interaction quench we demonstrate the emergence of excited-band
modes linked to certain interband processes, namely the breathing and the cradle modes, as
well as the rise of the density-wave tunneling mainly corresponding to a lowest-band intraband
phenomenon. To identify the dominant microscopic mechanisms during the dynamics in terms
of a band structure we employ the concept of a multi-band Wannier number state basis. To
inspect the overall response of our system on the one-body level we resort to the temporal
fluctuations of the single-particle density, namely δρ(1)(x, t) = ρ(1)(x, t) −

〈
ρ(1)(x)

〉
T

with

〈ρ(1)(x)〉T =
∫ T

0 dtρ(1)(x, t)/T being the time-averaged single-particle density over evolution
time T , see also Fig. 3.3 (a). A density-wave spatial pattern occurs which evolves in time and
reflects the tunneling dynamics after the quench namely the mode that transfers population
among the middle and the outer wells. More explicitly, this mode refers to an effective
breathing of the “global wavepacket” that reflects the instantaneous density distribution
of the trap. Intuitively, under an interaction quench the bosons tend to repel each other
and the cloud expands and contracts, mimicking this way the breathing dynamics of the
bosons as known in the harmonic trap. Recently [369] this mode has also been examined
in the framework of the Bose-Hubbard model for a quench on the lattice frequency. The
findings of the latter work suggest that such a “global” breathing mode also exists for many-
body systems in optical lattices where instead of our hard-wall boundaries a weak harmonic
confinement imposed to the lattice geometry renders the sites of the optical lattice non-
equivalent. To investigate in more detail the tunneling dynamics we employ the fidelity
spectrum [370, 371] for varying interaction strength. In this spectrum we identify three
different tunneling pathways which refer to single and atom pair tunneling. We remark that
atom-pair tunneling has already been observed for few-atoms confined in a driven double-
well [54, 134].

Additionally in the intrawell dynamics two distinct excited modes occur. Namely the
middle well exhibits a breathing mode, due to the lattice symmetry, which can be identified as
an expansion and contraction of the bosonic cloud. For recent investigations on the properties
of the breathing mode as well as its dependence on the particle number and the interaction
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strength we refer the reader to Refs. [372–375]. The second mode we observe, generated in
the outer wells, is the so-called cradle mode, manifested as a “dipole-like” oscillation of the
localized wavepacket. The generation of this mode is accompanied by an initial over-barrier
transport of the particles from the central well to the outer ones due to the release of energy
into the system and the consequent collisions with the respective atoms in the outer sites,
reepresented schematically in Fig. 3.4. During the dynamical process, regions of density dips
(or dark cradles) in the outer sites are accompanied by enhanced breathing dynamics in the
middle site. Each of the above modes possesses different characteristic frequencies. For a
qualitative description of these modes we rely on the intrawell dynamics of δρ(x, t) analyzing
in particular the Fourier spectra of representative intrawell observables. More explicitly, the
intrawell assymetry within each of the outer wells and the variation of the center of mass
coordinate for the cases of the cradle and the breathing mode, respectively. In this manner,
we have found representative cradle and breathing mode states which refer to a superposition
of the first two and three single-particle bands respectively. Most importantly, we show that
one can tune the frequency of the energetically highest tunneling branch in resonance with
the frequency of the cradle mode by varying the quench amplitude. In turn, this resonance
is associated with an avoided-crossing in the frequency spectrum of these modes, resulting
in their enhancement so that the system features a dominant beating. This enables us to
control the interwell dynamics by triggering the intrawell dynamics via the quench amplitude
in optical lattices. To complement our study an effective Hamiltonian that describes the
observed spectral properties and the resonant dynamical behaviour is derived, by numerically
identifying the relevant minimal Fock space. Finally, and in order to generalize our findings
for larger systems we investigate a system with a filling factor smaller than unity. Here,
among others, we demonstrate that the cradle and breathing modes can also be observed in
the intrawell dynamics of a setup comprising of ten wells.

Single-Shot Simulations of the Lattice Trapped Few-Boson Interaction Quench
Dynamics: Let us now demonstrate how the correlated nature of the quantum dynamics of
lattice trapped finite bosonic ensembles subjected to an interaction quench can be inferred
by simulating in-situ single-shot measurements [310, 359–361]. As discussed in Section 2.5,
the single-shot simulation procedure is based on a sampling of the many-body probability
distribution, being accessible within the MCTDHB framework. Note that for all single-
shot simulations to be presented below, the employed spread function consists of a Gaussian
possessing a width w = 1. However, our observations remain valid also for smaller widths.

We first investigate whether the presence of correlations, and as a consequence the frag-
mentation of the bosonic ensemble, can be deduced by inspecting the time evolution of the
variance of single-shot measurements. The variance of a sample of single-shot measurements
{Ak(x̃)}Nshotsk=1 , where x̃ refers to the spatial coordinates within the image, reads

V(tim) =

∫
dx

1

Nshots

Nshots∑

k=1

[
Ak(x̃; tim)− Ā(x̃; tim)

]2
, (3.2)

with Ā(x̃; tim) = 1/Nshots
∑Nshots

k=1 Ak(x̃; tim). V(t) is shown in Fig. 3.5 for Nshots = 500 both
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Figure 3.5: Evolution of the variance V(t) obtained from the simulation of in-situ single-shot
measurements within (a) the many-body approach and (b) the mean-field approximation.
The system is initialized in the weakly interacting, g = 0.05, ground state and to induce the
dynamics we perform an interaction quench of amplitude δg (see legends).

at the mean-field and the many-body level. As it can be seen by inspecting Fig. 3.5 (b),
within the mean-field approximation, V(t) is mainly constant exhibiting negligible amplitude
fluctuations. On the contrary, when correlations are taken into account V(t) undergoes large
amplitude oscillations [Fig. 3.5 (a)], resembling in this manner the density-wave tunneling
mode, also identified as the “global” breathing of the entire bosonic cloud [compare Fig. 3.3
(a) and Fig. 3.5 (a)]. In particular for t < 25 the bosons travel towards the outer wells of the
triple well (reflected by the negative δρ(1)(x, t) in these regions) and the variance decreases,
while for 25 < t < 50 the bosons tend to bunch in the central well (negative δρ(1)(x, t)
in the middle well) and V increases. This behavior of the variance observed in the many-
body scenario can be explained as follows. In a coherent condensate i.e. n1(t) = 1, where
the mean-field approximation is valid, V(t) is essentially constant during the time evolution
as all the atoms in the corresponding single-shot measurement are selected from the same
single-particle function, see Eq. (2.21). In contrast, when referring to a many-body system
where fragmentation is possible the corresponding many-body state is a superposition of
several mutually orthonormal single-particle functions, see Eq. (2.31). In this way, V(t) is
drastically altered from its mean-field counterpart as the atoms are picked from the above-
mentioned superposition and thus the distribution of the atoms in the cloud depends strongly
on the position of the already imaged atoms. We remark that the above-described behavior
of V(t) persists also for smaller samplings of single-shot measurements, e.g. Nshots = 200
(not shown here for brevity).

Having established that the correlated character and the density-wave tunneling mode
can be deduced from V(t), we next examine whether the on-site motion including the cradle
and breathing mode can be directly observed by performing an averaging over several single-
shot images. It is important to remark here that due to the diluteness of the considered
bosonic gas (N = 4) the observation of the one-body density dynamics through a single-shot
image is not possible. To properly capture the dynamics of the single-particle density within
a single-shot image a much higher particle number, e.g. N ∼ 104 is required. However
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such a calculation is computationally feasible only for the two orbital case in which the
numerical convergence on the many-body level can not be ensured. To directly assign the
few-boson dynamics observed in the temporal fluctuations of the one-body density δρ(1)(x, t)

we measure δĀ(x, t) = Ā(x, t) − (1/T )
∫ T

0 dtĀ(x, t). Figures 3.3 (b), (c) present δĀ(x, t) for
different number of single-shot samplings namely Nshots = 100 and Nshots = 500 respectively.
As it is evident δĀ(x, t) is able to capture the dynamics of both intrawell modes, a result
that becomes even more prominent for increasing number of shots, compare Figs. 3.5 (a), (b)
and (c). We remark here that for larger samplings e.g. Nshots = 1000 the δĀ(x, t) resembles
almost perfectly δρ(1)(x, t) (results not shown).

Our first study of the nonequilibrium dynamics following a sudden raise of the interparticle
repulsion of initially weakly interacting superfluids revealed the existence of the on-site cradle
and breathing excited modes. Most importantly the occurrence of a resonance between a
tunneling channel and the cradle allowing for a controlability between the inter and intrawell
dynamics has been unveiled. Another remarkable finding was the detection of the cradle
mode, attributed to the over-barrier transport of bosons residing in neighboring wells, caused
by the import of energy into the system. A natural question that arises is whether this
cradle mode can be excited when quenching the system from strong-to-weak interactions
thus exerting energy from the system. An important aspect here is to explore how the initial
ground state configuration, reflected by the filling factor of the system, affects the generation
of the quench-induced excited modes or enables us to resonantly couple them.

3.3.2 Quench Dynamics from Strong-to-Weak Interactions [[2]]

As a next step we proceed to the investigation of the nonequilibrium dynamics of strongly
repulsive bosonic ensembles in one-dimensional finite lattices induced by interaction quenches
and/or a ramp of the lattice potential height [[2]]. Recent theoretical studies of strongly
correlated quantum gases have been devoted, for instance, to the study of transport properties
and the formation or melting of Mott domains [39, 377–379] after a quantum quench. In
contrast, our study [[2]] focusses on the controllable excitation of certain higher-band modes
depending on both the quench protocol and the filling factor, their properties in terms of
the tunable parameters of the Hamiltonian and the characterization of the overall system’s
dynamical response. To this end, we study from a few-body perspective the dynamical effects
resulting from an abrupt or a time-dependent quench, focussing on the few-body collective
excitations and the control of the respective dynamics.

We explore the quantum dynamics of strongly interacting bosons following a quench to
a weakly interacting final state. It is important to remark here that a quench from strong-
to-weak interactions minimizes the unavoidable heating processes [376] that might have been
present in [[1]] especially for large quench amplitudes. Such a quench triggers several normal
modes of the system including distinct lowest-band tunneling pathways, an on-site breath-
ing and a cradle mode. The dominant number state configuration of each mode is identified,
within the concept of multiband Wannier number states, showing the participation of excited-
band contributions. In this manner, conceptual differences concerning the ingredients of each
mode and its emergent excitation process when compared to the case of weak-to-strong in-
teraction quenches [[1]] have been demonstrated. Recall that the local breathing mode refers
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to an expansion and contraction dynamics of the bosons in an individual well. Interestingly
enough, it is observed that the cradle mode can be excited only for setups with filling larger
than unity for a quench from strong-to-weak interactions. Indeed, as argued in [[1]] this mode
refers to a dipole-like oscillation and it is generated via an over-barrier transport. Naturally
for strong interactions such a transport is inherently related to the initial delocalization of
the particles, reflecting in this way the filling factor of the system under consideration. Its
underlying generation mechanism can be summarized as follows. Due to the strong interpar-
ticle repulsion the initial spatial configuration corresponds to one localized boson in each well
and one delocalized (over the three wells) energetically close to the lattice barrier. Then, a
negative change in the interaction strength yields a high probability for the delocalized parti-
cle to overcome the barrier and move to a neighboring well, where it collides with the initially
localized particle, resulting in a cradle process. Therefore for other filling factors this effect
disappears and the consequent dynamics, when quenching from strong-to-weak interactions,
is dominated by the interwell tunneling. This constitutes a major difference in comparison
to a positively interaction quenched superfluid where due to release of energy into the system
we allow for the over-barrier transport independently of the filling factor. Furthermore, by
considering time-dependent quenches, namely different quench rates, or the modulation of
various potential parameters of the Hamiltonian we suggested scenarios to control the cradle
and breathing modes by means of manipulating their frequencies. Inspecting the fidelity
evolution we also studied the system’s dynamical response and its long time evolution with
respect to the quench amplitude, as well as demonstrated the dynamical crossover from a
sudden to an adiabatic parameter change by employing time-dependent variations of the in-
teraction strength. Here, the persistence of the excited modes for finite-ramp rates has been
demonstrated.

To excite the cradle mode in setups characterized by filling smaller than unity we enforce
the spatial delocalization of the atoms by quenching the height of the potential barrier to
lower values. Indeed, ramping-down the optical potential depth drives the system to a region
where the kinetic energy of the atoms dominates in comparison to the potential energy. To
further enhance the dynamical contribution of this mode in systems with filling smaller than
unity we showcase that one needs to rely on a combined quench protocol comprising of a
barrier and a simultaneous interaction quench to smaller values.

Up to now we have analyzed the nonequilibrium dynamics of finite bosonic ensembles
confined in optical lattices following a quench from strong-to-weak interactions and vice
versa. These studies allowed us to characterize on the microscopic level the triggered lowest
and excited-band modes, resonantly couple them by tuning the quench strength and unveil
under what circumstances they can be excited. Evidently, in order to steer the dynamics the
considered quench protocol plays a key role. Therefore, adopting a quench that enables us
to dynamically control the various excited modes of the bosonic system is highly desirable.

3.3.3 Dynamics after Multiple Interaction Quenhes [[3]]

In [[3]] we follow a generalized quench protocol, namely a multiple interaction quench (MIQ)
scenario, consisting of different sequences of single quenches. In particular, the protocol com-
prises of a quench followed by its “inverse” namely by going back to the original interaction
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strength (single pulse). The latter, enables the system to dynamically return to its original
Hamiltonian within certain time intervals. An important question here is to what extent
certain properties induced by the quench persist during the quantum mechanical evolution.
In a recent study [380] the effects of the MIQ protocol in a three-dimensional ultracold Bose
gas have been investigated using the time-dependent Bogoliubov approximation. It has been
demonstrated that the system produces more elementary excitations with increasing number
of MIQs, while the one and two-body correlation functions tend to a constant value for long
evolution times. Here, we aim to dynamically manipulate the quench-induced excited modes
and offer controllable schemes of certain excitation processes.

We study the correlated nonequilibrium quantum dynamics following a multiple inter-
action quench protocol for few-bosonic ensembles confined in one-dimensional finite optical
lattices. Our protocol can be summarized as follows. At t = 0 the interparticle repulsion is
quenched from the initial value gin to a final one gf , maintaining gf (positive half) for time τ
(pulse width). Then, the interaction strength is quenched back, i.e. from gf to gin, maintain-
ing this value gin (negative half) for time τ . This latter procedure is repeated according to
the number of the pulses np. The system is prepared within the weak interaction regime and
sequences of interaction quenches to strong interactions and back are performed. We focus
on the intermediate interaction strength regime, where current state of the art analytical
approaches are not applicable. In order to characterize the impact of the multiple pulses we
study the interplay between the quench amplitude and the pulse width during the evolution.
The quenches give rise to a variety of interwell tunneling channels and excite the cradle and
the breathing modes. By systematically investigating the different time intervals of the MIQ
protocol we identify the frequency branch of each process and the time intervals for which it
occurs.

The lowest-band tunneling dynamics consists of three distinct energy channels occuring
in the positive halves of the MIQ. When the system is quenched back only one tunneling
mode survives. This opens the possibility to dynamically manipulate the tunneling dynamics
within the different time intervals of the MIQ protocol. Utilizing, for instance, different pulse
widths we can switch on and off for chosen time intervals certain tunneling modes of the
system. The intrawell excited motion is described by the cradle and the breathing modes
being initiated by the over-barrier transport as a consequence of the quench to stronger in-
teractions. The cradle mode persists during the time evolution since it has already been
initialized during the first pulse. As a consequence the coupling between the cradle mode
and one of the tunneling modes, discussed in [[1]], disappears when g = gin and arises only
for g = gf . Therefore, using a MIQ protocol one can switch on and off this mode resonance.
Meanwhile, the breathing mode shows a strong dependence on the instantaneous interatomic
repulsion. Within the positive halves of the MIQ it possesses an interaction-dependent fre-
quency branch, whilst in the corresponding negative halves the latter branch disappears and
two new frequency branches appear which are interaction independent. Therefore, the sys-
tem in the course of the MIQ turns from the δg-dependent to the δg-independent branch
providing additional controllability. Moreover, we inspect the consequent excitation dynam-
ics and analyze its dependence on the quench amplitude focussing on a fixed pulse width and
a varying final interaction strength. We observe that the quench-induced excitation dynamics
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depends almost linearly on the quench amplitude, i.e. for increasing amplitude of the quench
the amount of excitations increase. Regarding the dependence of the excitation dynamics
on the pulse width we unveil a non-linear dependence. The above imply that the interplay
between the quench amplitude and the pulse width yields a tunability of the higher-band
excitation dynamics, indicating a substantial degree of controllability of the system under a
MIQ protocol. Another prominent signature of the impact of the quenches is revealed by
resorting to the evolution of the one-body momentum distribution. It is shown that within
the positive halves of the MIQ protocol a periodic population transfer of lattice momenta
takes place accompanied by a transition to a side peak structure within the negative halves
of the MIQ. This periodic population transfer of lattice momenta constitutes an alternative
signature of the excited energy channels within the positive halves of the MIQ protocol. We
note that similar observations have been made experimentally in a variety of quenched se-
tups [142, 172, 381]. Finally, the frequency of the above-mentioned periodicity possesses a
power-law dependence on the quench amplitude.

The study of the nonequilibrium dynamics after multiple interaction quenches enabled
us to controllably excite and de-excite certain processes during the time evolution. Another
intriguing question that emerges towards the direction of controllable excitation processes is
to what extent one can gain insights into the largely unexplored scaling of the few-body defect
density, including the formation and melting of Mott domains and the excited to higher-band
fraction participating in the dynamics. To this end, we next examine the nonequilibrium
dynamics of few-boson ensembles confined in finite optical lattices upon dynamically crossing
the superfluid-to-Mott-insulator state, utilizing a linear interaction quench.

3.3.4 Dynamics Following a Linear Interaction Quench in Finite Optical
Lattices of Unit Filling [[4]]

In [[4]] we explore the nonequilibrium quantum dynamics following a linear interaction quench
(LIQ) protocol in repulsively interacting few-boson ensembles confined in one-dimensional
finite optical lattices. We focus on unit filling setups such that the ground state of the
system for increasing interaction strength exhibits a transition from a superfluid to a Mott-
insulator phase. To dynamically probe this transition, quench dynamics of ultracold bosons
confined in optical lattices has been vastly used in order to examine e.g. the Kibble-Zurek
mechanism [124–133], the approach to the adiabatic response limit [39, 377, 378, 382–385],
the formation and melting of Mott domains [39, 377–379] and the growth of interparticle
correlations [105–109]. As finite bosonic systems systems do not serve as a platform to
confirm the Kibble-Zurek scaling hypothesis due to their finite size [386], here, we unravel
the scaling of the few-body defect density including the excited to higher-band fraction which
have been largely ignored in all previous investigations.

We consider few-bosons confined in an optical lattice of unit filling. To realize the few-
body analogue of the superfluid to Mott-insulator phase transition the many-body eigenspec-
trum for varying interparticle repulsion is calculated, revealing the existence of narrow and
wide avoided-crossings between states of the zeroth and the first excited-band. Performing
a LIQ we cross the phase boundary dynamically, with a finite ramp rate, either from weak-
to-strong interactions (positive LIQ) or inverserly (negative LIQ), covering in both cases the
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diabatic-to-nearly-adiabatic crossing regimes. The employed LIQ protocol consists of two
time scales. At t = 0 the interatomic interaction is quenched from the initial value gi to
a final one gf in a linear manner for time t ∈ [0, τ ] and then it remains a constant at a
value gf , namely g(t, τ) = gi + δg tτ . δg = gf − gi denotes the quench amplitude of the LIQ
and gi (gf ) is the effective one-dimensional interaction strength before (after) the quench.
The system’s dynamical response caused by the LIQ and in particular its dependence on
several system parameters, such as the height of the potential barrier is subsequently ex-
amined. Overall, the induced dynamical response consists of the lowest-band tunneling and
higher-band excitations.

In particular, when crossing the weak-to-strong interaction regimes we find an enhanced
dynamical response at moderate quench rates rather than in the abrupt or almost adiabatic
regimes. The resulting lowest-band tunneling dynamics comprises of first and second order
transport [54,134]. These modes can be manipulated by tuning either the interaction strength
after the quench or the height of the potential barriers in the optical lattice. Moreover, a
rich interband tunneling dynamics takes place possessing mainly a single excitation to the
first or second excited-band of the finite lattice. We further analyze the excited to higher-
band fraction examining its dependence on the quench ramp rate and barrier height. It
is shown that following a LIQ the excited to higher-band fraction obeys a bi-exponential
decay for decreasing quench rate. This introduces two different time scales in the excitation
dynamics, which are directly related to the diabatic or adiabatic crossing of the transition
respectively and the width of the existing avoided-crossings in the many-body eigenspectrum.
The excited to higher-band fraction follows a more complex scaling for varying height of the
potential barrier. Namely for diabatic quenches it reduces withn increasing barrier, while for
large ramp times it shows a non-linear behavior exhibiting a maximum at a certain height
of the potential barrier. This latter behavior manifests the strong dependence of the excited
to higher-band fraction on the quench rate both for shallow and deep lattices. Additionally,
the higher-band dynamics depends strongly on the postquench state, namely when we tend
to the region of an existing avoided-crossing it is characterized by a non-linear growth, while
for larger quench amplitudes it increases in an almost linear manner.

The overall dynamical response following a LIQ from strong-to-weak interactions is su-
pressed, when compared to the inverse scenario, and it mainly consists of the lowest-band
tunneling dynamics. Here the melting of the Mott-insulator state is observed. In this case
the quench triggers only a few tunneling modes and the excited to higher-band fraction is
negligible, obeying an exponential decay both with varying ramp time and potential height.
As a consequence, the lowest-band approximation can adequately describe the induced dy-
namics. Finally, we made an attempt to generalize our results for both positive and nega-
tive LIQs by considering larger systems, showcasing the robustness of the above-mentioned
scalings, as well as the enhancement of the excited to higher-band fraction for increasing
system size. This latter observation suggests that larger setups of unit filling can be driven
out-of-equilibrium more efficiently which is a manifestation of the Anderson orthogonality
catastrophe [255,387,388].

All the above discussed contributions have been devoted to the nonequilibrium dynamics
induced by a quench on the constant effective one-dimensional interaction strength. Recently,
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the advent of optical Feshbach resonances which utilize an optical coupling between bound
and scattering states, enables us to design complex spatial interaction strength distributions
across the atomic sample. Remarkably enough, the intensity and detuning of the participating
optical fields can be rapidly changed and allow even for nanometer scale modulations of the
resulting scattering length [389]. Motivated by these advancements we next investigate the
nonequilibrium dynamics of finite bosonic ensembles which experience a spatially modulated
interaction strength and are confined in finite optical lattices. Such a study allows us to
create peculiar ground state configurations, not accesible in the constant interaction strength
case, and to further steer the resulting out-of-equilibrium dynamics.

3.3.5 Quench Dynamics of Finite Bosonic Ensembles in Optical Lattices
with Spatially Modulated Interactions [[5]]

In [[5]] we study the ground state properties and the nonequilibrium quantum dynamics of
few-bosons experiencing a spatially modulated interaction strength and confined in a finite
lattice potential. Being experimentally accessible via the optical Feshbach resonance tech-
nique, spatially inhomogeneous interaction patterns introduce in the system a periodic struc-
ture which is known as non-linear optical lattice [390–392]. In this context theoretical studies
have recently unveiled, among others, altered properties of the emerging non-linear excita-
tions e.g. see [394–398], the existence of a delocalizing transition of bosons in one-dimensional
optical lattices [401], optimal control schemes to stimulate transitions into excited modes of a
condensate [402] and a particle localization phenomenon at the regions where the scattering
length vanishes [403, 404]. However, all the above-mentioned investigations have been per-
formed within the mean-field realm while evidences regarding the occurrence of fragmentation
when considering spatially inhomogeneous interactions in bosonic systems have already been
reported in few-boson ensembles [405,406] showcasing, for instance, resonant interband tun-
neling mechanisms [407,408]. Contrary to the above, in the present investigation we explore,
for the first time, the quench-induced few-boson correlated dynamical response in a combined
linear and non-linear optical lattice. Our major scope is to create certain ground state par-
ticle distributions, identify their correlated nature and provide ways to steer the dynamics
within the same or energetically distinct single-particle bands.

We employ a spatially modulated interaction strength of sinusoidal type, Cint (x, g, a, k1, φ) =
g [ 1 + a cos2(k1x + φ) ], which is characterized by its wavevector k1, inhomogeneity am-
plitude a, interaction offset g and a phase φ. We remark that φ 6= 0 and fixed k1 yields an
interaction strength imbalance between all lattice wells, while for varying k1 and φ = 0 Cint
is on average the same only for the parity symmetric outer sites. Besides the use of an opti-
cally induced Feshbach resonance [389, 409–411], such an interaction profile can be achieved
employing holographic beam shaping techniques, e.g. a digital micromirror device [412]. In
our investigation we focus on setups possessing fillings larger than unity in order to profit
from the competition between delocalization and on-site interaction effects and thus avoid
suppression of tunneling.

For the ground state of the system we show that by varying either the wavevector or the
phase of the interaction, the density distribution can be effectively displaced to regions of
decreasing interaction strength. The inhomogeneity amplitude being of the order of half the
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lattice depth is kept fixed, while the interaction offset is unity. In particular, for small values
of the wavevector the spatially averaged in each well interaction strength is larger within
the central well when compared to the outer ones and becomes equal for increasing spatial
periodicity. This causes a spatial redistribution of the atoms from the outer to the central
wells for increasing wavevectors and the ensemble remains superfluid. A phase shift yields an
interaction imbalance between all lattice wells and enables us to displace the single-particle
density distribution in a preferred direction, achieving Mott-like states.

Following a quench of the wavevector, the dynamics is characterized by enhanced response
regions, located at fractional values of the wavevector, in which bosons at distinct wells are
subjected to different spatially averaged interaction strengths. These enhanced response re-
gions become gradually less transparent for an increasing wavenumber as the interaction
profile tends to a uniform configuration. The quench yields the excitation of a multitude of
tunneling modes consisting of single and two particle transport which can be further ampli-
fied or shifted by adjusting the interaction offset or the inhomogeneity amplitude respectively.
A breathing dynamics of the bosonic cloud also occurs and it is characterized by interband
tunneling processes which possess a single excitation to the second or fourth excited-band.
The corresponding momentum distribution reveals a periodic population transfer of momenta
during the dynamics, while inspecting the one-body coherence function we observe that par-
tially coherent regions occur between the wells that are predominantly populated during the
evolution.

Employing a phase quench an interaction strength imbalance between all lattice wells
is imposed, yielding a directed transport along the finite lattice as it accounts for a spatial
shift of the entire interaction profile. The induced tunneling modes are of single-particle and
atom pair type. Most importantly, a phase quench enables us to discriminate, otherwise,
energetically degenerate tunneling channels. Such a paradigmatic example is the single-
particle lowest-band tunneling from the middle to the left or the right well. For increasing
inhomogeneity amplitudes the quench-induced modes become more discernible, namely their
energy difference is intensified. The above-mentioned directional transport is also reflected
in the one-body momentum distribution where a directed consecutive population of higher
momenta occurs. From a one-body correlation perspective the predominantly populated wells
form a partially incoherent region which is shifted in the preferred tunneling direction. Last
but not least a phase quench yields a noticeable over-barrier transport giving rise to a global
breathing motion of the bosonic cloud and a cradle mode in the outer wells. These modes
refer to single-particle interband processes to the first or second excited-band respectively.

Until now we have analyzed several aspects of the correlated nonequilibrium dynamics
of interaction quenched few-boson ensembles confined in finite optical lattices. Another in-
triguing question that still remains is whether one can achieve to a certain extent an initial
state preparation and consequently obtain a direct control of the many-body evolution. To
investigate this scenario we next unravel the expansion dynamics of finite bosonic ensembles
confined in a composite potential landscape, comprising of a finite lattice and an imposed
harmonic oscillator potential. In contrast to the above studies this investigation will permit
us to gain insights into the competition between the initial localization of the atoms and the
repulsive interaction strength during the many-body dynamics and subsequently infer about
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specific resonant processes.

3.3.6 Quench-induced Resonant Tunneling Mechanisms of Bosons in an
Optical Lattice with Harmonic Confinement [[6]]

In the present contribution [[6]] we study the nonequilibrium dynamics of few-bosons confined
in a one-dimensional optical lattice upon quenching the frequency of an imposed harmonic
trap from strong-to-weak confinement. Besides the static properties of such systems [413–415,
415,416] a recent experimental investigation examined the dependence of the quench-induced
ballistic expansion rate of a bosonic Mott-insulator on the interparticle interaction [145],
while on the theoretical side it has been demonstated [369] that in the limit of low-filling
factors the dynamics is equivalent to that of harmonically trapped bosons with a lattice-
dependent effective mass. Both of the aforementioned effects emerge when the harmonic
confinement is relatively weak compared to the interparticle repulsion. In contrast, here, we
shall examine effects that arise due to the competition between the harmonic confinement
and the interaction strength, thus favoring different spatial configurations. Exploiting this
competition we will achieve a high level of mode controllability by utilizing specific state
preparations.

Investigating the many-body eigenspectrum for a varying trap frequency we reveal the ex-
istence of narrow and wide avoided-crossings between the many-body eigenstates. Focussing
on the case of a strong harmonic confinement the eigenstates become well-separated and are
dominated by a single Wannier number state. Having analyzed the static properties of the
system we turn our attention to the quench-induced dynamics for varying final trap frequency.
Within the non-interacting limit, a pronounced tunneling dynamics occurs only for the case
of a weak final harmonic trapping. Referring to intermediate interactions different response
regimes are observed, depending on the postquenched confinement strength. This behavior is
caused by the multiple avoided-crossings present with varying harmonic oscillator frequency
in the many-body eigenspectrum which can be exploited in order to reveal a rich dynam-
ics after quenching the trap frequency. Indeed, for relatively small quench amplitudes we
observe Rabi oscillations caused by the wide avoided-crossings between the ground and the
first excited states. Turning to intermediate quench amplitudes the narrow avoided-crossings,
which solely involve excited states, can be utilized to selectively couple the initial state to a
desired final state. Here, the dynamics is characterized by multiple frequencies one of which
is particularly slow and can be used to drive the system to a desired final state. Large quench
amplitudes give rise to a multimode dynamical response of small amplitude. In this regime
of quenches the number state with the dominant contribution to the initial state is an eigen-
state of the final system, while the other contributions to the initial state give rise to the
observed multimode dynamics. Moreover, we showcase that the deterministic preparation of
the system in a desired Wannier number state is hindered by the fact that more tunneling
modes are induced by additional contributions to the initial state. As a final attempt, the
dynamics of states lying at stronger interparticle interactions, possessing admixtures of a sin-
gle excitation to the first excited-band which do not couple in the eigenstate spectrum, have
been examined. In the many-body eigenspectrum avoided-crossings appear at higher trap
frequencies and are narrower. The consequent dynamics significantly differs from the case of
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weak interactions, with higher-band effects being more prominent and lowest-band tunneling
being suppressed. In conclusion, we can infer that for increasing quench amplitude the system
exhibits regions of a pronounced dynamical response in the vicinity of wide avoided-crossings
and sharper response peaks closely related to the existing narrow avoided-crossings in the
many-body eigenspectrum. Thus, an appropriate selection of the postquench confinement
enables us to couple the initial state to a desired final one, allowing for a low-frequency and
efficient population transfer between the two eigenstates. Finally, we have shown that the
quench-induced many-body dynamics alters significantly with varying particle number and
interparticle repulsion, as the positions and widths of the avoided-crossings are shifted, giving
rise to further controllability of the dynamics.

3.4 Driven Lattices

A very important ingredient, as outlined above, towards the manipulation of the dynamics is
the proper design of the relevant driving protocol in order to transfer the energy to the desired
final degrees of freedom. As a next step, in the following two works we shall examine the
nonequilibrium dynamics induced by a time-periodic modulation of the finite optical lattice.
Our major scope is to demonstrate the high level of controllability that one can achieve also
in a driven lattice scenario and to characterize the modes participating in the dynamics.

3.4.1 Resonant Quantum Dynamics of Few Ultracold Bosons in Periodi-
cally Driven Finite Lattices [[7]]

In [[7]] we unravel the nonequilibrium quantum dynamics of finite ultracold bosonic ensembles
confined in a periodically driven, and in particular shaken, one-dimensional optical lattice.
Similar recent studies on shaken optical lattices demonstrated the participation of excited
orbitals in the course of the dynamics [198] and even the presence of parametric dynamical
instabilities due to the interplay of the interparticle interactions and the external driving
[199–202]. Our investigation, which has been conducted before Refs. [198–202], showcases
the inescapable necessity to include excited-band states for the accurate description of the
nonequilibrium dynamics, the parametric coupling of the respective excitations and their
microscopic characterization. Most importantly, the occurence of a parametrically induced
resonance is elucidated.

We examine the correlated nonequilibrium quantum dynamics of few-body bosonic en-
sembles subjected to a time-periodic driving of a finite-size optical lattice. The driven optical
lattice is modelled with the sinusoidal function Vsh(x, t) = V0sin2[k0(x − A sinωDt)]. It is
characterized by the barrier depth V0, a lattice wave-vector k0, the amplitude A and the
frequency ωD = 2π/TD of the driving field. Such a scheme has been implemented in the
experiment of e.g. Ref. [172], where the retroreflecting mirrors that are used to form the
lattice can be moved periodically in space. Alternatively, a frequency difference between the
counterpropagating laser beams can be induced by means of acousto-optical modulators [417]
which renders the lattice time-dependent. We particularly focus on the regimes of large lat-
tice depths and small driving amplitudes in order to limit the degree of induced excitations
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that would otherwise lead to heating processes.

Initializing the few-body system in its weakly or strongly interacting ground state we
examine, in a systematic manner, i.e. covering a wide range of driving frequencies the time
evolution of the system induced by a shaken optical lattice. The driving enforces the bosons
residing in distinct wells to oscillate in-phase and to exhibit a dipole-like intrawell mode. We
showcase that the system’s dynamical evolution is mainly governed by the interwell tunneling
and the intrawell dipole-like mode. The periodically driven dynamics of the system in the
non-interacting regime has been firstly analyzed within the framework of the Floquet theory,
i.e. at the single-particle level, providing an accurate description of the observed processes.
However, for finite particle numbers and interaction strengths such a single-particle descrip-
tion is shown to be inadequate for the explanation of the observed dynamics and a multimode
treatment becomes necessary. The deep optical lattice and the small driving amplitude ren-
der the interwell tunneling weak. However, a quite rich excitation spectrum is observed. We
remark here that such higher-lying excitations, which lead to a coupling between the two en-
ergetically lowest energy bands, have already been exploited for the realization of single- and
two-qubit gates, where the quantum bit is encoded into the localized Wannier functions of the
two lowest energy bands of each lattice site [418]. The local dipole mode is identified from the
intrawell oscillations of bosons in the individual wells. Most importantly, it has been found
that by adjusting the driving frequency the intrawell dynamics experiences a resonant be-
haviour, elucidating that it can be controlled by tuning the driving frequency. This resonantly
driven dynamics is manifested e.g. by the periodic formation of enhanced density oscillations
(giant dipole oscillations) or from the periodic population of additional lattice momenta in the
momentum distribution of the one-body density. The population of the energetically higher
momenta is reminiscent of the parametric amplification of a matter-wave phenomenon [172].
Additionally, utilizing the Floquet theory it has been shown that in the proximity of this
resonance the first two Floquet modes are dominantly contributing. Away from resonance
the dynamics can be described by only the first Floquet mode. To comprehend the enhanced
population of the second Floquet mode in the vicinity of the resonance the corresponding
quasienergy spectrum has been employed, revealing avoided-crossings between the first two
Floquet modes at certain driving frequencies. To identify the frequencies referring to the
intrawell and interwell tunneling dynamics the frequencies associated with the interference
terms between the Floquet modes have been employed, showing pronounced on-site oscilla-
tions and an enhancement of the interwell tunneling mode in the vicinity of the resonance.
Turning to an ensemble consisting of few-bosons we examined the influence of the interatomic
interactions both for the inter- and intrawell generated modes. It has been shown that the
interparticle repulsion affects each of the above-mentioned modes, yielding a destruction of
the interwell tunneling dynamics in the strongly interacting regime and an enhancement of
the excitations namely an increased contribution of energetically higher-band states. To gain
further insights into the intrawell atomic motion we employ the spectrum of the local one-
body density and of the on-site density oscillations. Inspecting these spectra with respect
to the driving frequency we have identified all the relevant dynamical frequencies, such as
those referring to the intrawell oscillations and the emergent tunneling dynamics. Finally, all
the above outlined findings are confirmed for different filling factors, lattice potentials, and
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boundary conditions, showcasing a type of universallity for the observed dynamics.

Collecting the knowledge obtained from all the above contributions we can arrive to the
following two main conclusions. By shaking an optical lattice a tunable on-site dipole mode
and a resonant intrawell dynamics can be realized, while a sudden increase of the interparticle
repulsion in a non-driven lattice gives rise to a rich lowest-band as well as intraband dynamics
which can be further coupled for certain quench amplitudes. Then, a natural question that
arises is how a combination of periodic driving and interaction quenches can be used to steer
the overall dynamics of the system and as a consequence also the coupling of the interwell
and intrawell modes. In this direction within our next scientific contribution we explore the
dynamics of interaction quenched finite bosonic ensembles confined in periodically driven
lattice systems.

3.4.2 Mode Coupling of Interaction Quenched Ultracold Few-Boson En-
sembles in Periodically Driven Lattices [[8]]

In [[8]] we investigate the quantum dynamics of interaction quenched few-boson ensembles
trapped in one-dimensional periodically driven finite optical lattices. Our study provides deep
insights on the activation of certain energy channels, by using distinct driving protocols,
and the microscopic origin of the quench induced nonequilibrium processes. The periodic
modulation consists of a lattice vibration with amplitude δ and an angular frequency ωD =
2πfD, namely Vbr(x; t) = V0sin2[kx(1+δ sin(ωDt))x]. V0 denotes the lattice depth and kx = π

l
the corresponding wavevector, where l denotes the distance between successive potential
minima. To experimentally realize such a potential acousto-optical modulators [417] can be
employed which induce a frequency difference among the involved counterpropagating laser
beams that form the lattice potential. Focussing on a deep lattice potential and small driving
amplitudes we aim to minimize the degree of excitations that could, otherwise, lead to the
creation of the cradle motion [[1]] or even to heating processes.

Starting from the ground state of a weakly interacting few-boson ensemble, we unravel the
system’s time evolution in the periodically driven finite lattice by performing a simultaneous
interaction quench. We first showcase that in an exclusively driven lattice one can induce
out-of-phase local dipole modes in the outer wells, and an on-site breathing mode in the
central well. Recall that this is in direct contrast to a shaken lattice, where only on-site
in-phase dipole modes are generated [[7]]. To unravel the regime from adiabatic to high
frequency driving we cover a wide range of driving frequencies. It is observed that within the
intermediate frequency regime, which is intractable by current analytical methods, the system
can be driven to a highly nonequilibrium state when compared to the other driving frequency
regions. More importantly, a resonance of the intrawell dynamics takes place, characterized
by an enhanced tunneling dynamics, thus opening a multitude of energetically higher-lying
interwell tunneling pathways. This resonance is mainly of single-particle character and it
survives upon increasing interaction acquiring additional features, the most remarkable of
which being the co-tunneling of an atom pair [54,134]. Within this resonantly driven regime
an intensified loss of coherence occurs, providing this way an independent and potentially
experimetally tractable signature of the resonant dynamics.

To induce a correlated many-body dynamics we employ an interaction quench upon the
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periodically driven lattice for various driving frequencies. In this manner we can trigger
more effectively the interwell as well as the intrawell dynamics and drive the system towards
strongly out-of-equilibrium regimes. Consequently, the tunneling and the on-site breathing
mode are amplified, while in the outer wells the bosons experience an admixture of a dipole
and a breathing component. The latter, in turn leads to oscillations around the minimum of
the well and a simultaneous contraction and expansion dynamics. Our investigation indicates
that the interaction quench can be used to manipulate the tunneling frequency, rendering the
single-particle tunneling dominant even at resonant driving, and to amplify the emergent
intrawell modes yielding also a strong influence on the excitation dynamics.

Next, the dynamics of the periodically driven lattice, i.e. for a fixed driving frequency,
with varying quench amplitude has been studied. It has been shown that the lowest-band
tunneling dynamics contains three channels, the breathing mode possesses two frequency
branches and the aforementioned admixture occuring in the outer lattice wells involves three
branches: one stemming from the breathing motion and two others referring to the dipole
component. Therefore, the combination of different driving protocols can excite distinct
inter- and intrawell modes and manifest various energetically distinct components of a mode.
Remarkably enough, five distinct resonances between the lowest-band tunneling dynamics and
the intrawell dynamics are revealed. In particular, the lowest-band tunneling experiences a
resonance with the breathing component of the central well, two resonances with the breathing
motion of the outer wells and two resonances with the dipole motion of the outer wells. We
show that these resonances can be further manipulated via the frequency of the periodic
driving, allowing for further control of the mode coupling in optical lattices. The observed
resonances between various inter- and intrawell modes demonstrate the richness of the system,
while their dependence e.g. on the driving frequency exposes the tunability of the system.

3.5 Quench Dynamics in Binary Mixtures

In all the above-mentioned scientific contributions we argued about possible coupling schemes
between the distinct modes that are present in the nonequilibrium, quenched or periodically
driven, dynamics of single-component bosonic ensembles and revealed the correlated nature
of these modes. A step forward to advance our understanding on the correlated nature
of the nonequilibrium dynamics is to study multicomponent systems. Indeed multicompo-
nent setups are novel systems, whose behavior is very different with respect to their single-
component counterparts. In this context, quantum correlations posses a distinct role as their
interplay gives rise to novel phases of matter and peculiar dynamical phenomena [203, 204].
Possible manifestations of the latter are complex tunneling processes [407, 408] or collective
modes [248]. In view of the importance of quantum correlations for various physical systems,
a large part of the corresponding field aims at developing a decisive understanding of the
controllability of the tunneling dynamics by engineering the correlation properties. While
such ambitions have already been highly successful for single-component systems [134–139],
the corresponding investigations in two component setups remains a major challenge for the
field, which calls for novel approaches that are conceptually beyond the single-orbital or
lowest-band approximations. Within the next two works we aim to reveal the correlated
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mechanisms during the interaction quench-induced dynamical phase separation process in
a two-component harmonically trapped Bose-Bose mixture and also expose the correlated
nature of the expansion dynamics of a Bose-Fermi mixture confined in an optical lattice.

3.5.1 Correlation Effects in the Quench-Induced Phase Separation Dynam-
ics of a Two-Species Ultracold Quantum Gas [[9]]

In [[9]] we investigate the quench-induced phase separation dynamics of a harmonically
trapped repulsively interacting binary bosonic ensemble both within and beyond the mean-
field approximation. It is known that binary bosonic mixtures exhibit a second-order phase
transition from a miscible to an immiscible state based on the interaction strength char-
acterizing the system. If the strength of the interspecies interaction exceeds that of the
intraspecies interaction, then energy considerations show that the two species prefer to be in
a phase separated, alias immiscible state [10, 14], otherwise the system resides in the miscible
phase, see also Fig. 3.6. A multitude of recent studies in multicomponent few-boson systems
evinced, for instance, altered phase separation processes [206, 219, 223, 246, 247], composite
fermionization [220, 248, 249], and the dependence of the tunnelling dynamics on the mass
ratio [252, 253] or the intra- and interspecies interactions [254]. On the contrary, here, we
focus on the many-body character of the quench-induced dynamical phase separation process.
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Figure 3.6: Ground state one-body densities for a Bose-Bose mixture comprising of NA =
NB = 50 atoms. The intraspecies interactions correspond to gAA = 1.004 and gBB = 0.9544
and the interspecies interaction strengths are (a) gAB = 0.1 and (b) gAB = 1.4.

We first initialize our system into the miscible phase fixing the intraspecies interactions
to the experimentally measured values for a binary bosonic ensemble of 87Rb atoms prepared
in the internal states |F = 1,mF = −1〉 and |F = 2,mF = 1〉 [419], while the interspecies in-
teraction is zero. To realize the miscible-to-immiscible transition the intraspecies interactions
are held fixed and the interspecies repulsion is quenched to larger values that exceed that of
the intraspecies. A filamentation of the one-body density during the dynamics of each of the
two species takes place in both the mean-field and the correlated approach with the filaments
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formed undergoing collective breathing oscillations. The dominant wavenumber associated
with the emerging phase separated state appears to be higher in the mean-field case and it
is found to be in excellent agreement with the analytical predictions available in this limit.
It is shown that increasing the interspecies repulsion accelerates the filamentation process,
gives rise to a larger number of filaments formed and leads to an almost complete phase
separation. Referring to the same interaction strengths and examining few-boson systems we
find that phase separation is absent in the many-body case, while it is still present within
the mean-field framework.

A correlation analysis on both the one- and the two-body level further signifies the phase
separation process as the miscibility-immiscibility threshold is crossed. Indeed, on the one-
body level prominent losses of coherence are observed between filaments residing around the
center of the trap with the longer distant ones lying at the periphery of the bosonic cloud,
verifying the fragmented nature of the system. Remarkably enough, at the two-body level
domain-wall-like structures are revealed, i.e. interfaces that separate the distinct filaments
[420–422] formed, since the inner filaments in both species are found to be anti-correlated
with their respective outer ones. To offer a link with potential experimental realizations of
the above-observed dynamics we utilized, for the first time for binary mixtures, single-shot
simulations. The presence of both the entanglement and the fragmentation are related to the
variance of single-shot images. In particular, it is shown that the growth rate of the variance
resembles the growth rate of the entanglement while the fragmented nature of the binary
system is captured by the deviations in the variance measured in the course of the dynamics
with respect to each of the two species.

Turning to the reverse quench scenario, namely quenching from the immiscible towards the
miscible phase multiple dark-antidark solitary waves, i.e. density humps on top of the bosonic
background, are spontaneously generated at both the mean-field and the many-body level
which are found to decay within the latter framework [309]. Indeed, we showcase that at the
many-body level many decay events increase the production of dark-antidark solitary waves,
with the product of each decay consisting of a slow and a fast dark-antidark structure [309].
This increasement results in multiple collisions and interference events between the involved
matter waves, with most of being lost during evolution. Utilizing the variance of single-shot
measurements we reveal the presence of an enhanced entanglement, since the system in this
case is strongly correlated on the many-body level. Finally, we consider quenches within the
immiscible regime and reveal the one-dimensional analogue of the so-called “ball” and “shell”
structure that appears in higher-dimensional binary systems [423].

3.5.2 Many-Body Expansion Dynamics of a Bose-Fermi Mixture Confined
in an Optical Lattice [[10]]

In our final contribution [[10]] we study the quench-induced expansion dynamics of a mass-
balanced Bose-Fermi mixture confined in an one-dimensional optical lattice with an imposed
harmonic trap upon considering quenches from strong-to-weak confinement. The expansion
dynamics in similar trapped geometries has been investigated mainly for the single component
case revealing, for instance, the dependence of the expansion strength on the interatomic
interactions [145], a lowest-band global breathing mode [369], the occurrence of a resonant
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dynamical response [[6]] and a temperature-dependent long-range order [424–427]. Here we
provide a systematic study of the expansion dynamics for particle imbalanced Bose-Fermi
mixtures with a particular emphasis on how the interspecies correlations, which reflect the
initial phase of the system [428–431], affect the expansion dynamics of the mixture.

Referring to the ground state properties of the system we showcase that by tuning the
ratio between the inter- and intraspecies interaction strengths two distinct ground state con-
figurations can be entered, namely the miscible and immiscible phases. These phases are
characterized by a complete or vanishing overlap of the bosonic and fermionic single-particle
density distributions respectively. Operating within the weak interaction regime, we perform
a quench from strong-to-weak confinement and unravel the resulting dynamical response
within each of the above-mentioned phases for varying final harmonic trap frequency. We
deduce that each individual phase exhibits a characteristic response consisting of an overall
expansion of both atomic clouds and an interwell tunneling dynamics which can be manipu-
lated by adjusting the quench amplitude.

Inspecting the quench-induced dynamics within the immiscible phase we observe the
occurence of a resonant-like response of both components at moderate quench amplitudes in
contrast to what it is expected upon completely releasing the imposed harmonic trap. This
observation is in accordance with the single-component expansion dynamics discussed in [[6]].
A systematic analysis of the Bose-Fermi mixture expansion dynamics shows the existence
of different bosonic response regimes, accompanied by a lesser amount of fermionic ones for
decreasing confinement strength. We find that for varying quench amplitude the bosons either
perform a breathing dynamics or solely expand. Meanwhile, the fermions undergo tunneling
between the nearest neighbor outer wells being located at the edges of the bosonic cloud or
show a delocalized behavior over the entire lattice. Comparing the findings with the mean-
field approximation we are able to identify the many-body characteristics of the expansion
dynamics. Indeed, it is shown that within the single-orbital approximation the tunneling
dynamics of both components cannot be adequately captured. The bosonic expansion is
significantly suppressed and the diffusive character of the fermions is replaced by an expansion
of two almost localized density branches to the outer wells for large quench amplitudes.
The many-body character of the induced expansion is further elucidated by studying the
evolution of the distinct orbitals. The first one resembles the mean-field approximation while
the higher-orbital contributions are responsible for the observed correlated dynamics. Finally,
the one and two-body coherence functions for each species show that during the evolution the
predominantly occupied wells are one-body incoherent and two-body anti-correlated among
each other while within each well a correlated behavior for bosons and an anti-correlated one
for fermions occurs.

Turning to the miscible phase the dynamical response of the Bose-Fermi mixture is greatly
altered when compared to the immiscible one. Here, the bosons majorly perform interwell
tunneling reaching an almost steady state for long evolution times, while the fermions expand
until the edges of the surrounding bosonic cloud where they are partly transmitted and partly
reflected back towards the central wells. Neglecting all correlations the bosonic tunneling
dynamics is found to be enhanced and remains undamped, whilst the fermionic expansion
resembles adequately the many-body case.
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Finally, the dependence of the Bose-Fermi mixture expansion strength on the mass im-
balance between the two components and the potential barrier height has been examined. It
has been shown that for mass imbalanced mixtures the heavy component remains almost un-
perturbed, while upon increasing the height of the potential barrier the expansion dynamics
is suppressed.

63





Chapter 4

Scientific Contributions

65



SCIENTIFIC CONTRIBUTIONS

4.1 Quench Dynamics

4.1.1 Interaction Quench Induced Multimode Dynamics of Finite Atomic
Ensembles
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Abstract
The correlated non-equilibrium dynamics of few-boson systems in one-dimensional finite lattices
is investigated. Starting from weak interactions we perform a sudden interaction quench and
employ the numerically exact multi-layer multi-configuration time-dependent Hartree method for
bosons to obtain the resulting quantum dynamics. Focusing on the low-lying modes of the finite
lattice we observe the emergence of density-wave tunneling, breathing and cradle-like processes.
In particular, the tunneling induced by the quench leads to a ‘global’ density-wave oscillation.
The resulting breathing and cradle modes are inherent to the local intrawell dynamics and
connected to excited-band states. Moreover, the interaction quenches couple the density-wave
and the cradle modes allowing for resonance phenomena. These are associated with an avoided-
crossing in the respective frequency spectrum and lead to a beating dynamics for the cradle.
Finally, complementing the numerical studies, an effective Hamiltonian in terms of the relevant
Fock states is derived for the description of the spectral properties and the related resonant
dynamics.

Keywords: interaction quench, non-equilibrium dynamics, higher-band effects, density-wave
tunneling, cradle mode, breathing mode, avoided crossing

(Some figures may appear in colour only in the online journal)

1. Introduction

Ultracold atoms in optical lattices are regarded as an ideal tool
to study properties of quantum many-body systems in a
controllable manner [1–4]. This is experimentally manifested
by handling independently the lattice potential and the
interaction strength between the atoms. The former is
achieved by tuning counter-propagating lasers and the latter
by means of optical, magnetic or confinement-induced Fano-
Feshbach resonances [5–10]. Currently one of the main focus
of many-body physics is to comprehend quantum phase
transitions (QPTs) and to unravel their internal mechanisms.
In this direction, the experimental progress yielded the reali-
zation and explanation of superfluid (SF) to Mott insulating
(MI) states, complementing the theoretical efforts within the
Bose–Hubbard (BH) framework [11, 12]. Furthermore, other
exotic quantum phases like the Bose Glass phase or Mott
shells have been realized in disordered systems [13–16].

These and other QPTs raise new prospects for theory and
experiment, most notably the inescapable necessity of taking
quantum effects into account.

Apart from the experimental efforts in the investigation
of the ground state properties in many-body systems, recently
it became possible, using trapped ultracold atomic gases, to
explore the evolution of isolated strongly correlated systems
[17] after being quenched. In a corresponding experiment, the
system is originally prepared in the ground state ψ 〉| 0 of the

Hamiltonian Ĥi, and then driven out of equilibrium at time
t = 0 by a sudden change of either the trapping frequency or
the interaction strength, yielding a new Hamiltonian Ĥ f

evolving the system in time. The resulting non-equilibrium
situation triggers challenging conceptual questions concern-
ing the unitary evolution, such as the not yet fully understood
connection of quantum ergodicity to the integrability of a
system [18, 19]. The experimental applications in this field
includes the realization of a quantum version of Newtonʼs
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cradle [20], the quenching of a ferromagnetic spinor con-
densate [21], the light-cone effect in the spreading of corre-
lations [22, 23], as well as the collapse and revival of a BEC
[24]. Also, a recent experiment on quenched atomic SFs
reports the realization of Sakharov oscillations which are
known to emerge from the large-scale correlations in galax-
ies [25].

From another perspective, the inclusion of higher-band
contributions results in an additional orbital degree of free-
dom yielding novel phenomena such as unconventional
condensation [26–28] and anisotropic tunneling. Indeed,
excited-band populations caused by interactions have already
been observed either by sweeping the magnetic field across a
Feshbach resonance [29] or via Raman transitions which
couple directly the zeroth band to the first excited p-band of
the lattice [30]. Other experimental achievements indicate the
observation of a 2D SF in the p-band [31] and the orbital
excitation blockade [32] when exciting atoms to higher
orbitals as well as supersolid quantum phases in cubic lattices
[33, 34]. The aforementioned aspects have led, among others,
to the construction of multiflavor and multiorbital models
[35–38]. Motivated by the previous studies here we investi-
gate the higher-band dynamics of interaction quenched SFs
focussing on the resulting low-lying collective modes, which
are nowadays of great experimental interest.

In the present study, we examine the response of a finite
atomic ensemble confined in one-dimensional (1D) finite
lattices subjected to a sudden change in the interaction
strength. More precisely, we focus on highly non-perturbative
situations by considering weak-to-strong interaction quenches
with respect to the initial state. In this manner, we drive the
system to a regime where the interparticle interactions dom-
inate in comparison to their kinetic energy. For weak inter-
actions, the single-band approximation, namely the BH
model, provides quantitative predictions of the system
dynamics; for strong interactions, however, it yields at most a
qualitative description. In this manner, by considering strong
quench amplitudes and examining representative few-body
setups for incommensurate filling factors, our treatment goes
beyond the validity of the BH model. The numerical method
which we employ in order to study the dynamical properties
of our 1D finite setups is the recently developed multi-layer
multi-configuration time-dependent Hartree method for
Bosons (ML-MCTDHB) [39, 40], based on MCTDHB which
has been developed and applied successfully previously [41–
44]. Both methods are very efficient in treating bosonic sys-
tems both for static properties and in particular their dynamics
(see next section), while they are equivalent for the case of a
single species treated here.

We demonstrate the emergence of higher-band modes,
namely the breathing and the cradle modes as well as the rise
of the density-wave tunneling, following interaction quen-
ches. Especially the observation of the cradle mode which
refers to a localized wave-packet oscillation is arguably one of
our central results. The dynamical properties of incommen-
surable setups are investigated by examining the time-evo-
lution of the corresponding one-body densities and their
respective fluctuations. In addition, we analyze the Fourier

spectra of representative intrawell observables and the varia-
tion of the center of mass coordinate for the cases of the
cradle and breathing modes, respectively. More specifically,
the occurrence of a resonance between the cradle and one of
the tunneling modes, being manifested by an avoided crossing
in the frequency spectrum, is observed here. This opens the
possibility to control the interwell dynamics by triggering the
intrawell dynamics via the quench amplitude in optical lat-
tices. Additionally, the construction of an effective Hamilto-
nian describing the dynamical behaviour is provided and the
minimal Fock space required to produce the cradle process is
derived.

The work is organized as follows. In section 2 we
introduce our setup, explaining also the ML-MCTDHB
method, the quench protocol and the number state repre-
sentation. In section 3 we report on the quench dynamics for
different incommensurate filling factors and demonstrate the
emergent modes that arise due to the interaction quench. We
summarize our findings and give an outlook in section 4.

2. Setup and analysis tools

2.1. The model

Our system consists of N neutral short-range interacting
bosons in a 1D trap. The many-body Hamiltonian reads

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑= + + −

= <
H

p

M
V x V x x

2
( ) ( ), (1)

i

N
i

i

i j

i j

1

2

int

where the one-body part of the Hamiltonian contains the 1D
lattice potential =V x V kx( ) sin ( )i i0

2 which is characterized
by its depth V0 and periodicity l, with π=k l being the wave
vector of the lasers forming the optical lattice. Furthermore, in
order to restrict the infinite trapping potential V x( )i to a finite
one with m sites and length L, we impose hard wall boundary
conditions at the appropriate positions. On the other hand, we
model the short range two-body interaction potential as

δ− = −V x x g x x( ) ( )i j D i jint 1 with the effective coupling

strength ζ= − −
⊥ ⊥

 ( )g 1 (1 2)D
a

Ma

a

a1
2

2

12
0

2
0 [10]. The coupling

g1D depends on the 3D s-wave scattering length a0, the

oscillator length =
ω⊥

⊥
a

M
of the transverse trapping

potential and the mass M of the atom. From the above
expression it is obvious that we can tune the interaction
strength by the scattering length a0 or the frequency of the
confinement ω⊥ via Feshbach resonances [8, 9] or confine-
ment induced resonances [45–47] respectively. Additionally,
for reasons of computational convenience we will rescale the
above Hamiltonian in units of the recoil energy

= E k M2R
2 2 by setting = = M 1. In this manner, the

rescaled interaction strength can be rewritten as =g
g

E
D

R

1 ,

whereas the spatial and temporal coordinates are given in
units of −k 1 and −ER

1 respectively. Therefore, all quantities
below are in dimensionless units.

2
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In a BH model which we address here for reasons of
comparison, the Hilbert space is truncated with respect to the
localized lowest-band Wannier states which form a complete
set of orthogonal basis functions. This represents an alter-
native and more convenient way for discussing phenomena in
which the spatial localization of states plays an important role.
Our ab initio simulation goes beyond the single-band
approximation and requires higher-band states to describe the
real and site independent ( = ≡J J Jij ji

* ) tunneling strength.
Notice also, that the hard wall boundaries we consider here
imply zero tunnel coupling between the first and the last sites
(in contrast to periodic boundary conditions which result in a
certain coupling for all sites). In our ab initio simulations we
use a sufficiently large lattice depth =V 4.50 such that each
well includes two localized single-particle Wannier states, i.e.
the ground and first-excited states, while the higher excited
states are taken into account as delocalized states.

2.2. The computational method : ML-MCTDHB

The ML-MCTDHB constitutes a variational numerically
exact ab initio method for investigating both the stationary
properties and in particular the non-equilibrium quantum
dynamics of bosonic systems covering the weak and strong
correlation regimes. Its multi-layer feature enables us to deal
with multispecies bosonic systems, multidimensional or
mixed dimensional systems in an efficient manner. Also, the
multiconfigurational expansion of the wavefunction in the
ML-MCTDHB method takes into account higher-band effects
which renders this approach unique for the investigation of
systems governed by temporally varying Hamiltonians, where
the system can be excited to higher bands especially during
the dynamics. An important characteristic of the ML-
MCTDHB approach is the representation of the wavefunction
by variationally optimal (time-dependent) single particle
functions (SPFs) and expansion coefficients A t( )i i... S1 . This
renders the truncation of the Hilbert space optimal when
employing the optimal time-dependent moving basis. Also,
the requirement for convergence demands a sufficient number
of SPFs such that the numerical exactness of the method is
guaranteed. Therefore, the number of SPFs has to be
increased until the quantities of interest acquire the corre-
sponding numerical accuracy. This constitutes a numerically
challenging and time-consuming task especially for strong
interactions where the use of more SPFs to ensure con-
vergence is unavoidable.

Let us elaborate. In a generic mixture system consisting
of σN bosons of species σ = S1, 2 ,..., the main concept of the
ML-MCTDHB method is to solve the time-dependent
Schrödinger equation

Ψ Ψ

Ψ Ψ

=
=
i ˙ H

(0) , (2)0

as an initial value problem by expanding the total wave-

function in terms of Hartree products
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Here each species state ψ 〉σ| i
( ) ( = σi M1, 2 ,..., ) corresponds to

a system of σN indistinguishable bosons, which in turn can be
expanded in terms of bosonic number states ⃗ 〉σn t| ( ) as follows

∑ψ = ⃗σ

σ

σ σ

⃗ ∥
⃗C t n t( ) ( ) , (4)i

n

i n
( )

;

where each σ boson can occupy σm time-dependent SPFs
φ 〉σ| j

( ) . The vector ⃗〉 = 〉σn n n n| | , ,..., m1 2 contains the occu-
pation number n j of the jth SPF that obeys the constraint

+ + + = σσn n n N... m1 2 .
Here we focus on the case of a single species in one-

dimension where the ML-MCTDHB is equivalent to
MCTDHB [41–44, 48]. To be self-contained, let us briefly
discuss the ansatz for the many-body wavefunction and the
procedure for the derivation of the equations of motion. The
many-body wavefunction is a linear combination of time-
dependent permanents

∑Ψ =
⃗

⃗t C t n n n t( ) ( ) , ,..., ; , (5)
n

n M1 2

where M is the number of SPFs and the summation is again
over all possible combinations which retain the total number
of bosons. Notice that in the limit in which M approaches the
number of grid points the above expansion becomes exact in
the sense of a full configuration interaction approach. On the
other hand, the permanents in (5) can be expanded in terms of
the creation operators a t( )j

† for the jth orbital φ t( )j as follows

=

× ( ) ( ) ( )

n n n t
n n n

a a a

, ,..., ;
1

! !... !

... vac , (6)

M
M

n n
M

n

1 2
1 2

1
†

2
† † M1 2

which satisfy the standard bosonic commutation relations
⎡⎣ ⎤⎦ δ=a t a t( ), ( )i j ij, etc. To proceed further, i.e. to determine
the time-dependent wave function Ψ〉| , we have to find the
equations of motion for the coefficients ⃗C t( )n and the orbitals
(which are both time-dependent). For that purpose one can
employ various schemes such as the Lagrangian, McLachlan
[49] or the Dirac–Frenkel [50, 51] variational principle, each
of them leading to the same result. Following the Dirac–
Frenkel variational principle

δΨ Ψ∂ − =Hi ˆ 0, (7)t

we can determine the time evolution of all the coefficients

⃗C t( )n in the ansatz (5) and the time dependence of the orbitals
φ 〉| j . These appear as a coupled system of ordinary differ-
ential equations for the time-dependent coefficients ⃗C t( )n and
nonlinear integrodifferential equations for the time-dependent
orbitals ϕ t( )j . The aforementioned equations constitute the
well-known MCTDHB equations of motion [41–44].

Note that for the needs of our implementation we have
used a discrete variable representation for the SPFs (or

3
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orbitals) φ 〉| j , specifically a sin-DVR which intrinsically
introduces hard-wall boundaries at both ends of the potential
(i.e. zero value of the wave function on the first and the last
grid point). For the preparation of our initial state we therefore
relax the bosonic wavefunction in the ground state of the
corresponding m-well setup via imaginary time propagation
in the framework of ML-MCTDHB. Subsequently, we
change abruptly the interaction strength and explore the time
evolution of Ψ x x x t( , ,.., ; )N1 2 using ML-MCTDHB. Finally,
note that in order to justify the convergence of our simula-
tions, e.g. for the triple well, we have used up to 10 SPFs
finally confirming the convergence. Another criterion for
convergence is the population of the natural orbital with the
lowest population which is kept for each case below 0.1%.

2.3. Quantum quench protocol

Our approach to study the non-equilibrium dynamics follows
a so-called quantum quench. According to this the system is
originally prepared at t = 0 in the ground state ψ 〉| 0 of some
initial Hamiltonian ζ=H H ( )in in , where ζin is a system
parameter associated to the perturbation such as the interac-
tion strength or the height of the barrier. Then for times >t 0
we suddenly quench the parameter ζ to a final value ζ f and
examine the subsequent evolution of the system under the
new Hamiltonian ζ=H H ( )f f .

In the general case, the final Hamiltonian assumes the
form λ= +H H Hf in r , where Hr is a dimensionless perturbing
operator and λ, which possesses the dimensionality of an
energy, is the so-called quench amplitude. In our case the
quench protocol consists of tuning the interaction strength
between the particles which appears in the two-body part
(Vint) of the Hamiltonian (1). Therefore, we assume as the
initial state ψ 〉| 0 (at t = 0) the ground state of the Hamiltonian

=H H g( )in in and we explore its dynamical behaviour for
>t 0 subject to the Hamiltonian =H H g( )f f . Under this

protocol the time evolution of the system according to the
Schrödinger picture is ψ ψ〉 = 〉−t| ( ) e |H t

0
i

f while the evolu-

tion of the expectation value of a system operator Â obeys

∑ψ ψ = ′
′

′ − − ′  t t C C f A f( ) A ( ) e , (8)
f f

f f
t

,

i
E f E f

where 〉f| refers to the eigenstates and E f the respective
eigenvalues of the final Hamiltonian =H H g( )f f . Thus, for
our system the new Hamiltonian governing the dynamics can
be written as follows

∑δ= + −
<

H g H g
g

g
V x x( ) ( ) ( ), (9)f in

in k j

k jint

with δg

gin

being the corresponding quench amplitude.

2.4. Number state representation

Using ML-MCTDHB we calculate the wavefunction with respect
to a time-dependent basis of SPFs. Therefore the expansion of the
wavefunction in general reads ψ 〉 = ∑ 〉⃗ ⃗t A t n t| ( ) ( )| ( )n n . On the

analysis side, however, it is preferable to analyze our results in a
time-independent basis and make the connection with the multi-
band Wannier functions. In this respect, we have developed in the
framework of ML-MCTDHB a fixed basis analysis package in
terms of which we use a time-independent basis for the expansion
of the wavefunction, i.e. ψ 〉 = ∑ ⃗⃗͠ ⃗t t m| ( ) A ( )m m .

In addition, in order to interpret our results we will use as
an explanatory tool the concept of a generalized number state
representation with multiband Wannier states. To use this
representation we assume that the lattice potential is deep
enough such that the Wannier functions belonging to different
wells have very small overlap for not too high energetic
excitation. Within this framework we can analyze the inter-
band processes as well as the intraband tunneling. As a spe-
cific example, let us elaborate for the case of a triple well
system the corresponding wavefunction in terms of these
states which encode the allocation of the n bosons among the
individual wells

∑ψ = C n n n, , . (10)
n I

n I L M R I
,

;

Here n n n, ,L M R are the number of bosons localized in the
left, middle, and right well respectively which satisfy the
condition + + =n n n nL M R . The summation is over all the
different arrangements of the n bosons in the triple well as
well as the different necessary excited states (index I) that we
must take into account according to their energetical order. In
this manner, we use an expansion in terms of the number
states of the non-interacting bosons, i.e. products of non-
interacting single particle Wannier functions. Finally, it is
important to notice that such an expansion is valid also in the
strong interaction regime but needs then a large number of
excited configurations.

The notion of the generalized number states will be one of
our basic tools for the analysis of the non-equilibrium dynamics.
For illustration, let us analyze in some detail the case of four
bosons in a triple well which will be one of the considered setups
in the following. Here, in terms of the number states we can
realize four different categories. The quadruple mode

〉 〉 〉{|4, 0, 0 , |0, 4, 0 , |0, 0, 4 }I I I that refers to four bosons in
the same well, as well as the triple mode 〉{|3, 1, 0 , 0, 3, 1 ,}I I

〉|1, 0, 3 , 1, 3, 0 ,I I 〉{|0, 1, 3 , 3, 0, 1 }I I which implies
that three bosons are localized in the same well and the fourth
resides in one of the remaining wells. In addition, there is the pair
mode that can be separated into two categories: the double pair
mode 〉 〉 〉{|2, 2, 0 , |0, 2, 2 , |2, 0, 2 }I I I where the bosons are
divided into two pairs each of them occupying a different well and
the single pair mode 〉 〉 〉{|2, 1, 1 , |1, 2, 1 , |1, 1, 2 }I I I which
contains a pair and two separated bosons.

Let us comment on the relation between the different
categories of number states and the eigenstates of the system.
The number states of a particular category with the same
intrawell energetical index i share a similar ‘on-site’ energy
and they will significantly contribute to the same eigenstates.
In this manner, the eigenstates can be also classified with
respect to the dominantly contributing number states, e.g. the
single-pair (SP), the double-pair (DP), the triple (T) and the
quadruple (Q) mode. To be concrete, in the following we will
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use the notation 〉αi| I; to characterize the eigenstates, where the
index α refers to the spatial occupation, i.e. the SP (α = 1),
DP (α = 2), T (α = 3) and Q (α = 4), the index I denotes the
respective energetical level and i stands for the index within
each group. For instance 〉i{| }1;0 represent the eigenstates
which are dominated by the set of SP states

〉 〉{ 2, 1, 1 , |1, 2, 1 , |1, 1, 2 }0 0 0 , where the index i take
values from 1 to 3.

Finally, note that for the second system which we consider,
consisting of five bosons in ten wells, the same analysis in terms
of number states is straightforward. More precisely, one
can realize seven different categories of number states. Namely,
the single mode 〉{|1, 1, 1, 1, 1, 0 ,... ,...}I , the SP mode

〉{|2, 1, 1, 1, 0 ,... ,...}I , the DP mode 〉{|2, 2, 1, 0 ,... ,...}I , the
first triple mode 〉{|3, 1, 1, 0 ,... ,...}I , the second triple mode

〉{|3, 2, 0 ,... ,...}I the quadruple mode 〉{|4, 1, 0 ,... ,...}I and the
fifth mode 〉{|5, 0 ,... ,...}I . Here, each mode can be character-
ized using similar arguments as we did for the case of the
triple-well.

3. Quench dynamics

The main characteristic of a system with incommensurate
filling ν is the existence of a delocalized fraction of particles
[52]. Therefore, the most important feature is the absence of a
Mott insulating state since there is a SF fraction on top of a
Mott insulator phase. Below we consider both the case ν > 1
where on-site interaction effects prevail and ν < 1 in which
the main concern is the redistribution of particles over the
sites as the interaction increases. In the following, we proceed
for each case with a brief discussion of the ground state
properties and then we focus on the quantum dynamics
resulting after an interaction quench.

3.1. Filling factor ν > 1

Our initial state is the ground state for a given interaction
strength in the weak-interaction regime. Therefore, let us
briefly summarize the ground state properties for weak
interactions for a setup consisting of four atoms in three wells,
i.e. one extra particle on a Mott background. For this case of
incommensurability we encounter two main aspects: deloca-
lization and on-site interaction effects. The particle density for
the non-interacting case g = 0 is largest in the middle site and
decreases for the outer ones due to the hard-wall boundary
conditions that render the middle and outer sites non-
equivalent. In the low-interaction regime we observe a ten-
dency towards a uniform population for ≈g 0.2 due to the
repulsion of the bosons. For further increasing repulsion such
as g = 0.8 we note a trend towards the repopulation of the
central well again.

In the following, we study the quench dynamics for >t 0
of the above setup by means of an abrupt change in the
repulsive interaction strength at t = 0. In order to investigate
out-of-equilibrium aspects in our system we first examine the
response of the one-body density. Therefore, we perturb our
system starting from a SF ground state with =g 0.05in where

the atoms are bunching in the central well. As a consequence
of the quench the system gains energy. Figures 1(a) and (b)
show the time-evolution of the relative density in the triple
well trap for weak and strong quench amplitudes, namely
δ =g 0.8 and δ =g 2.0 respectively. We define the deviation
of the instantaneous density from the average value up to time
T for each grid point x as δρ ρ ρ= −x t x t x( , ) ( , ) ( ) T where

the quantity ∫ρ ρ=x t x t T( ) d ( , )T
T

0
refers to the corre-

sponding mean single-particle probability density. Therefore,
ρ x( ) T refers to the average behaviour of the one-body
density while δρ x t( , ) is the respective fluctuating part.
According to our simulations the ratio δρ

ρ
x t

x

| ( , )|

( ) T
is of the order of

−10 1.
As can be seen in figure 1, at each time instant δρ x t( , )

exhibits a density-wave like spatial pattern. This density wave
also evolves in time, changing between a peak-valley-peak
and a valley-peak-valley pattern, where the peak and valley
refer to a positive and negative relative density in a certain
well, respectively. The evolution of this pattern reflects the
tunneling dynamics under a quench, and will be termed in the
following as density-wave tunneling. Note that the density-
wave tunneling refers exclusively to the mode that transfers
population among the middle and the outer wells. Addition-
ally the inner-well dynamics which can be seen in figure 1(c)
is described by two excited modes: the middle well exhibits a
breathing mode due to the lattice symmetry, while in the left
and right wells we observe the so-called cradle mode, mani-
fested as a ‘dipole-like’ oscillation of the localized wave-
packet. A close comparison of figures 1(a) and (b) reveals a
transition from a multifrequency to a single frequency spec-
trum for weak to strong interaction quenches respectively. In
the following, we will discuss in some detail each of the
aforementioned dynamical modes and their significant role in
the overall non-equilibrium dynamics.

3.1.1. Density-wave tunneling and breathing mode. Let us
first focus on the explanation of the density-wave tunneling as
an effective breathing of the ‘global wavepacket’ described
by the envelope of the density distribution in the triple well.
According to this, we illustrate in figure 2(a) some
intersections of the one-body density for different time
instants and define an envelope function for the triple-well
which is the quadratic function that encloses the
corresponding instantaneous peaks of the density. As we
have already mentioned, the density-wave reflects the
tunneling dynamics of bosons confined in the optical
lattices, which is dominated in the present case by the states
of the lowest-band. In turn, the dynamical tunneling is
constituted by the contraction and expansion of the envelope
in the course of the dynamics induced by the interaction
quench. Intuitively, under an interaction quench the bosons
tend to repel each other and the envelope will expand and
then contract, which mimics the breathing dynamics of the
bosons as known in the harmonic trap. In a recent study [53]
this mode has been examined in the framework of the BH
model for a quench in the lattice frequency. This suggests that
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it also exists for many-body systems in optical lattices where
instead of our hard-wall boundaries a weak harmonic
confinement renders the sites of the optical lattice non-
equivalent.

Let us further investigate the properties of the tunneling
modes due to their significance for the above-discussed
effects. The tunneling properties can be identified in terms of
the overlap of the instantaneous wavefunction during the

Figure 1. The fluctuations δρ x t( , ) of the one-body density caused by an abrupt quench of the inter-particle repulsion. The initial state of each
setup is the ground state of N = 4 bosons confined in a triple-well trap with =g 0.05in . The space-time evolutions of the density are depicted
for different quench amplitudes (a) δ =g 0.8, (b) δ =g 2.0. In (c) we show an inset of (b) for the first t = 50 time units where we demonstrate
the cradle, breathing and over-barrier modes. Note that the spatial extent of each well is (− π3 2:−π 2), (−π 2: π 2), (π 2: π3 2) for the left,
middle and right wells respectively. The vertical axis represents the spatial extent of the trap whereas the horizontal axis denotes the
propagation time t.

Figure 2. (a) Evolution of the one-body density ρ x t( , ) induced by an abrupt change of the inter-particle repulsion with amplitude δ =g 2.8.
The initial state is the superfluid ground state of N = 4 bosons with =g 0.05in confined in a triple-well trap. We observe spatio temporal
oscillations constituting the density waves (see also figure 1). Shown is also the envelope of the one-body density (dashed lines) at different
time instants: t = 1 (blue), t = 10.3 (red), t = 18.8 (light blue) and t = 26.2 (brown). The spectrum of the interwell tunneling modes can be
obtained from the spectrum of the fidelity ψ ψ= 〈 〉F t t( ) | (0)| ( ) |2 which is shown in (b) as a function of the quench amplitude δg. Here the
vertical axis refers to normalized frequency units ω Δω, where Δω π= T2 and T being the respective propagation time.
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dynamics and the initial state (see equation (11) below) which
we denote as ψ ψ=D t t( ) (0)| ( ) . Then, the quantity that we
are interested in is the probability that the states of the
unperturbed and perturbed system are the same during the
time evolution which can be expressed through the fidelity

=F t D t( ) ( ) 2. The identification of the interwell tunneling
branches can be achieved via the frequency spectrum of the
fidelity ∫ω = π

ωF tF t( ) d ( )e t1 i which provides us with the
evolution of the frequencies of the tunneling modes for
different quench amplitudes. Figure 2(b) therefore shows

ωF ( ) with varying quench amplitude where we can identify
three interwell tunneling branches. Note that the lowest one
dominates for strong interaction quenches and this can be
linked to the transition from a multifrequency to a single
frequency behaviour that we have observed above in
figures 1(a) and (b).

Next, in order to obtain a quantitative description of the
multiband behaviour we adapt the number state basis
(section 2.4) where the four different categories consist of:
the Q, the T, the DP and the SP mode. Indeed, let
ψ 〉 = ∑ 〉α

α
αC i| (0) |i I i

I
I; ;

;
; be the initial wavefunction in terms

of the eigenstates αi I; of the final Hamiltonian. Then the
fidelity reads

∑
∑

ψ ψ

ϵ ϵ

=

+ −
α

α

α β

α β α β( )

t C

C C t

(0) ( )

cos , (11)

i I

i
I

i j I

i
I

j
I

i
I

j
I

2

; ;

; 4

, ; , ;

; 2 ; 2 ; ;

where the indices α β, specify the particular groups of number
states introduced in section 2.4 i j, is the internal index within
each group and I denotes the band index. For the density-wave
mode that we examine here we have I = 0. Moreover, in the
above expansion the terms of the second sum represent the
different tunneling branches whose Fourier transforms are
shown in figure 2(b). The eigenstate 〉αi| I; may belong to one
of the four existing categories of number states with a
corresponding eigenenergy. In particular, the lowest branch in
the Fourier spectrum corresponds to the energy difference Δϵ
within the energetically lowest states of the SP mode, i.e.
intraband tunneling from the state 〉|1, 2, 1 0 to 2, 1, 1 0 etc.

The second branch refers to the next energetically closest
different modes. The tunneling process is here from the
energetically lowest state of a SP mode to the energetically
lowest DP mode, e.g. from 〉|1, 2, 1 0 to 〉|2, 2, 0 0. Finally the
third branch refers to a tunneling process from a SP mode to a
T mode, e.g. from 2, 1, 1 0 to 〉|3, 1, 0 0. The remaining
tunneling branches as for instance a transition from a DP mode
to a T mode do in principle exist but they are negligible in
comparison to the above ones due to the respective energy
differences and therefore we can hardly identify them in
figure 2(b). Note that the same spectrum could also be found
from the frequency spectrum of the local density of a certain
well, e.g. from ρ ω( )L .

According to the above the tunneling dynamics here is
mainly an intraband phenomenon. To verify this we have also
employed the respective single-band BH model where we
have identified each branch in the weak interaction regime.
Within this framework, we can observe the interwell
tunneling processes but have to restrict ourselves to the weak
interaction regime where the single-band approximation is
valid. On the contrary, we can not observe either of the on-
site breathing or cradle motion (see next section) which
include higher-band contributions and are intrinsically linked
to the intrawell structure.

Another important tool in order to explore the interwell
tunneling is to examine how correlations among different sites
react after an interaction quench. We examine two different
types of correlations, the single particle correlations

ψ ψ=C t b b N( )ij i j
† and the second order normalized

correlation function (or coherence) = 〈 〉 〈 〉〈 〉g t n n n n( )ij i j i j
(2) .

Here, bi
† (bi) denotes the corresponding creation (annihilation)

operator of a particle located at site i in the lowest-band, while
=n b bi i i

† is the number operator for the site i. Notice that we
mainly focus on the lowest-band description as the present
tunneling mode is dominated by the lowest-band contribu-
tions, thus filtering out the influence from higher-bands. In
figures 3(a) and (b) we illustrate the time evolution for the
various types of one-body correlations associated with the left
well for different quench amplitudes δ =g 0.95 and δ =g 4.15
each time starting from the SF regime ( =g 0.05in ). The single

Figure 3. The time evolution of the one-body correlation function Cij and the density correlations gij
(2) for a quench from =g 0.05in to (a)

=g 1.0f and (b) =g 4.2f (see text). For the density correlations we demonstrate the situation of (c) a weak quench δ =g 0.6 and (d) a strong

quench δ =g 4.0.
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particle correlations oscillate even for long time scales which
can be attributed to the finite-size of our system. The diagonal
term CLL reflects the density oscillations of the left well which
are relatively small. Moreover, we observe the change in the
periods T of the tunneling, that is as we increase the
interaction quench we obtain a decrease of the respective
period denoted by rapid small amplitude oscillations. How-
ever, the non-diagonal terms Cij with ≠i j exhibit a non-
vanishing oscillatory behaviour with an amplitude much larger
than the density oscillations, i.e. CLL. The latter shows more
frequencies than the density which illustrates the emergence of
more dynamical structures. This indicates that even a weak
tunneling can transport substantial off-site correlations in the
system.

On the other hand, the two-body correlation function gij
(2)

can be used to measure density fluctuations in the system
under consideration. A basic property of this function is that

>g 1ij
(2) refers to bunching whereas <g 1ij

(2) indicates

antibunching. Ensembles with =g 1ij
(2) are referred to as

fully second order coherent whereas for bunched particles one
can infer that they have the tendency to reside together and
vice versa for the antibunched case. Figures 3(c) and (d)
illustrate various components of the second order correlation
function for different interaction quenches. For the diagonal
terms that refer to the middle well we observe that >g 1MM

(2)

for the whole propagation time while for the left (or right)
well we find that gLL

(2) oscillates around unity. The latter
indicates a dynamical transition from bunching to antibunch-
ing and vice versa which has an impact also on the gMM

(2)

component. In particular, for small quenches we can see that
gMM

(2) is almost unchanged during the dynamics while gLL
(2)

oscillates around unity and spends more time below unity.
This means that for small quenches we can not affect
significantly the initial distribution and two bosons are more
likely to reside in the middle well. Increasing the quench

amplitude we observe that the two components are antic-
orrelated i.e. for the time intervals where gLL

(2) is smaller than

unity the corresponding component gMM
(2) for the middle well

is enhanced. Here the reduction of the gLL
(2) component is more

pronounced than the enhancement of the gMM
(2) which might

indicate an impact of the initial distribution. The off-diagonal
terms gLR

(2) , gLM
(2) with respect to the left well are always lower

than 1 and anticorrelated. Also, for every time during the
dynamics >g gLM LR

(2) (2) holds, indicating that it is more likely
for two bosons to be one in the left and one in the middle site
than one in the left and one in the right. On the other hand, the
oscillatory behaviour of gij

(2) can again be attributed to the
finite size of our system. Concluding this part we can infer
that the one-body and two-body correlations as shown in
figure 3 demonstrate a rich phenomenology in terms of
correlation dynamics. This might pave the way for further
investigations on how a weak density-wave tunneling can
transport significant correlation oscillations.

As the density-wave tunneling has been understood to
lead to the ‘envelope breathing’ with the character of a
breathing mode, let us now turn our attention to the study of
the on-site or local breathing mode. In general, the breathing
mode then refers to a uniform expansion and contraction of
the local wavepacket. For a recent study concerning the
dependence of the breathing mode frequency on the particle
number as well as on the interaction strength see [54], while
for further related and recent investigations we refer the
reader to [55–58]. As we shall discuss briefly here, this local
breathing mode can also be triggered by a quench of the
interaction strength in a harmonic trap. To this end, figure 4(a)
shows snapshots of the one-body density of a system
consisting of two bosons in a single harmonic trap (with

=g 0.05in ) after an interaction quench δ =g 2.8 which
mimics the dynamics within the middle well of the triple-
well system. Here, we observe the reshaping of the density

Figure 4. (a) One-body density profiles at different time instants after an interaction quench. The system consists of N = 2 bosons confined in
a harmonic trap with =g 0.05in , while the quench amplitude is δ =g 2.8. The reshaping of the density indicates the breathing mode while the
oscillatory structure demonstrates the contribution of excited states during the dynamics. On the other hand, in (b) we present the Fourier
spectrum as a function of the quench amplitude for the quantity σ ω( )M

2 referring to the breathing mode. We observe that the breathing
frequency is predominantly constrained to a narrow band. Note that we use normalized frequency units ω Δω, with Δω π= T2 and T being
the whole propagation time.
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profile for different time instants as well as the formation of
oscillatory structures which indicate the existence of higher-
band effects.

Coming back to the triple well, the local breathing mode
refers to a contraction and expansion dynamics of the
wavepacket in a single well, i.e. intrawell breathing induced
by an interaction quench. In order to quantify the local
breathing frequency in the triple-well setup we define the
coordinate of the center of mass of the respective well

∫
∫

ρ

ρ
=

−+

+

( )
X

x x x x

x x

d ( )

d ( )
. (12)i d

d i
i

d

d
i

cm
( )

0
( )

i

i

i

i

1

1

Here =i R M L, , stands for the right, middle and left well
respectively whereas x i

0
( ) refers to the middle point of the

corresponding well. On the other hand, di are the coordinates
of the edge points of an individual well and ρ x( )i the
corresponding single-particle densities. From this point of
view the preferable quantity to identify the breathing process
is the variance of the coordinate of the center of mass

⎡⎣ ⎤⎦ ∫σ ρ= = −+
( )x t x x x Xvar ( ) d ( ) . (13)i

i
d

d

i
i( )

( )
2

cm
( ) 2

i

i 1

Therefore, the breathing frequency of the middle well
can be obtained from the spectrum of the second moment

∫σ ω σ= π
ωt t( ) d ( )eM M

t2 1 2 i . In figure 4(b) we observe a dominant
frequency, located at ω Δω≈ 60 (with Δω π= T2 and T being
the total propagation period) which is approximately two times
the trapping frequency of a harmonic approximation to a single
well. This frequency depends only weakly on the interaction
quench and it is related to the breathing frequency. There occur
additional low frequency branches in figure 4(b) which are
related e.g. to the tunneling dynamics.

3.1.2. The cradle mode induced by the over-barrier
transport. For a qualitative description of the cradle mode
one has to rely on the intrawell dynamics of δρ x t( , ) for the
left or right well as shown in figure 1. In particular, the
generation of this mode is accompanied by a direct over-
barrier transport as a consequence of the interaction quench.
This results in a cradle mode which represents a dipole-like
oscillation. In the following, let us first illustrate the main
mechanism and then analyze in some detail the cradle mode.

Initially, in terms of its dominating spatial configuration
our system consists of two bosons in the middle well and two
others each of them localized in one of the outer wells. Then
we perform a sudden change in the interaction strength which
raises the energy as mentioned previously. As a consequence
with high probability at least one particle from the central
well gains enough energy to overcome the barrier (over-
barrier transport), and directly moves to the outer wells where
it performs an inelastic collision with the preexisting particle
initially localized in the neighboring site. The two-particle
collision leads to a cradle dynamics and to the dipole-like
density oscillation as visualized in Figure 5. According to our
simulations we observe significant over-barrier transport for
δ >g 0.24. This process is most significant for the first few

periods of the cradle motion as for later times due to inelastic
collisions in the left well the atom looses part of its initial
energy and can predominantly tunnel through the barrier.

Therefore, the cradle mode as a localized wave-packet
oscillation can be produced via a variation in the respective
interaction strength. Moreover as already mentioned, is
reminiscent of the dipole oscillation in the one-body density
evolution while a detailed analysis demonstrates a major
difference between the two. Indeed, the cradle mode which is
of two-body nature possesses two intrinsic frequencies that
refer to the center of mass and the relative frame of the
harmonic oscillator. As we prove in the appendix up to a good
approximation this can be modeled by a coherent state of the
center of mass and relative coordinates. Finally, note that
during the evolution we can identify regions of bright and
dark cradles which are associated with an enhanced or
reduced tunneling of the density from the respective well (see
also figure 1).

Especially, as the cradle mode breaks the local reflection
symmetry of the one-body density in each well, we divide for
a further investigation of this mode (neglecting the breathing
mode) each well into two equal parts left and right of the
center with corresponding integrated densities ρ t( )a,1 and
ρ t( )a,2 . Here the index a refers to the corresponding well, i.e.

=a L M R, , for the left, middle and right well respectively.
In the following, we use as a measure of the intrawell
wavepacket asymmetry (referring to the cradle motion) the
quantity Δρ ρ ρ= −t t t( ) ( ) ( )a a a,1 ,2 . Furthermore, in order to
investigate the impact of different quenches on the system we
compute the Fourier transformation of the quantity

∫Δρ ω Δρ= π
ωt t( ) d ( )ea a

t1 i which will provide us with the
evolution of the frequencies of the respective modes for
different quench amplitudes. Figure 6(a) presents the resulting
frequencies from the Δρ ω( )L versus the respective interaction
quench δg for 110 different quenches from weak-to-strong
interactions, where the amplitude δg varies from 0.04 to 4.5.

Firstly, from figure 6(a) we can identify one dominant
branch which is insensitive to the quench amplitude and its
frequency is that of the cradle mode. This branch corresponds
to the cradle intrawell oscillation and will be referred to in the
following as the cradle branch. A modulation of the frequency
of the cradle motion can be achieved by tuning the barrier
height, i.e. we can reduce its frequency using lower barriers
and vice versa.

Besides the cradle branch, three interwell tunneling
branches show up in the spectrum of Δρ ω( )L with a relatively
weak amplitude. Among them we can distinguish the
contribution of the highest frequency tunneling branch. The
latter together with the branch of the cradle experience an
avoided-crossing at δ ≃g 2.8 in the course of which both
amplitudes are enhanced.

For a more detailed analysis of the above observations,
let us assume that initially the state of the system in terms of
the eigenstates of the final Hamiltonian is given by a linear
superposition of the form ψ 〉 = ∑ 〉α

α
αC i| (0) |i I i

I
I; ;

;
; . Then at

an arbitrary time instant t the expectation value of the
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intrawell asymmetry operator can be expressed as

⎡⎣ ⎤⎦

∑
∑

ψ Δρ ψ Δρ
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ω ω
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× −
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α α
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; ;

Here, the first term refers to the average part whereas the
second term demonstrates an oscillatory behaviour. In the
following, we will concentrate on the oscillatory term of this
expectation value which essentially describes the cradle
motion. As also illustrated in the analytical expression for
the cradle mode (see appendix) the dominant oscillation terms

Δρ 〉 ≠α βi j| 0I I; ; are given by the eigenstates 〉i| 1;0 and 〉i| 1;1

within which 〉|2, 1, 1 0 and 〉|2, 1, 1 1 significantly contribute
respectively. Consequently, the corresponding oscillation
frequency matches the energy diference between these
eigenstates which is to a good approximation given by the
energy difference (Δϵ) between 〉|2, 1, 1 0 and 〉|2, 1, 1 1.
Meanwhile, 〉|2, 1, 1 1 also contributes to the eigenstates
〉i| 2;0 and 〉i| 3;0 of the DP and T modes respectively thus

leading to a non-zero Δρ 〉 ≠i j| 01;0 2(3);0 , and therefore to
the observed tunneling branches. The above mechanism is
resonant between 〉|2, 1, 1 0 and 〉|2, 1, 1 1 for a particular
quench amplitude δg.

To verify our statements, let us calculate the number state
energy differences between the aforementioned states and
compare them with the eigenenergy difference in the full
spectrum (figure 6(a)). In this manner we indeed find good
agreement. We illustrate the δg-dependence of these frequen-
cies in figure 6(a) with the white full dots and open circles on
top of the exact avoided-crossing implying the reliability of
our above statements. Indeed, we observe only very minor
deviations of numerical ML-MCTDHB results and the
description via equation (14). However, the intensities do
differ significantly, see figure 6(a).

In conclusion, the avoided crossing and the accompany-
ing enhancement indicate that the local intrawell dynamics
can couple to the interwell dynamics. In turn, this induces a
resonance between the two dynamical processes which can
enhance the local and long-range dynamics. The fact that the
cradle mode can be coupled with a mode of the interwell
tunneling is remarkable. This gives rise to the possibility of
controlling the ‘global dynamics’ by triggering the ‘local

Figure 5. Visualization of the cradle process induced by the over-barrier transport. In this scenario, the system which is (a) initially in a
superfluid ground state is subjected to an abrupt interaction quench. In this manner, a boson initiated in the middle well can overcome the
barrier (b) and move to the neighboring well resulting in a cradle motion (c) due to the quench in the inter-particle repulsion.

Figure 6. (a) Fourier spectrum as a function of the interaction quench of the intrawell asymmetry Δρ ω( )L for the left well (see text). The same
spectrum can be obtained for the right well. The frequency units ω Δω are normalized with Δω π= T2 and T being the respective
propagation period. An avoided crossing takes place between the tunneling and the cradle modes where we observe an enhancement of the
mode amplitudes at least for finite time propagation periods. The full white dots in the tunneling branch correspond to the intraband
frequency Δω1 between the states 〉|2, 1, 1 0 and 〉|3, 0, 1 0, whereas the empty circles in the branch of the cradle mode refer to the frequency
Δω2 for the states 〉|2, 1, 1 0 and 〉|2, 1, 1 1 describing the cradle-like process (see text). As a consequence we notice the occurence of a beating
(b) for the cradle in the region of the avoided crossing.
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dynamics’. Especially, we can tune the characteristic
frequency of the tunneling mode to become resonant with
the corresponding frequency of the cradle mode by means of
tuning the quench amplitude. Increasing further the quench
amplitude we can drive the system again out of resonance.

As a consequence of this avoided crossing the intrawell
asymmetry Δρ dynamics features a beating, as shown in
figure 6(b), which corresponds to two dominant frequencies
in the ρ ω ρ ω−( ) ( )1 2 spectrum. Indeed, let
Δω δ = −α βg E E( )1 be the frequency of the respective
intraband tunneling ( → 〉2, 1, 1 |3, 0, 10 0). Assume further
that Δω δ = −γ σg E E( )2 refers to a frequency of a process
that includes a ground and the first excited state of the SP
mode taking into consideration that we refer to one of the
outer wells (left or right) so we need two particles there. In
this manner, there exists a region of critical quench
amplitudes δgcr which corresponds to the avoided crossing
where Δω δ Δω δ≈g g( ) ( )1 cr 2 cr and the system features a
degeneracy between the states 3, 0, 1 0 and 〉|2, 1, 1 1.

From the above discussion, one can infer that a
representative wavefunction describing the cradle process in
terms of Fock states for the left well (and similarly for the
right) can in principle be written as

φ δ=
+ ≡
C g t

C t

( , ) 2, 1, 1

( ) 2, 1, 1 2, 1, 1 , (15)

L

L
D

cradle
0 0

1 1

where the coefficients C0 and C1 denote the probability
amplitudes for the corresponding state. Note also that the
amplitude of the zeroth state 〉|2, 1, 1 0 depends on the quench
while the one for the first-excited state 2, 1, 1 1 is essentially
constant, i.e. independent of δg.

Taking advantage of the previous description we can
construct an effective Hamiltonian for this process. Thus, if
we denote by ⃗ 〉{ }n| 0 the corresponding truncated basis
vectors, the effective Hamiltonian obtained from (1) in this
subspace will be of the form

∑ ∑ϵ= ⃗ ⃗ + ⃗ ⃗
⃗

⃗
⃗ ⃗

⃗ ⃗H n n J n m , (16)
n

n

n m

n meff 0 0

,

, 0 0

0

0

0 0

0 0

where = ⃗ ⃗ 〉⃗ ⃗J n H m|n m, 0 eff 00 0 is the effective tunneling

amplitude and ϵ = ⃗ ⃗⃗ n H nn 0 eff 00 .
Therefore the representative subspace providing the

mode-coupling within a minimal model consists of the states
〉 〉 〉|2, 1, 1 , |3, 0, 1 , |2, 1, 10 0 1. In terms of the corresponding

effective Hamiltonian the respective term for the cradle mode
is 〉 〈|2, 1, 1 2, 1, 1|1 0 whereas the term 〉 〈|2, 1, 1 3, 0, 1|0 0

reflects the tunneling process. Thus from the Hamiltonian (16)
one can realize a three-level system consisting of the states
according to their energetical order: 〉 ≡|2, 1, 1 10 ,

〉 ≡|3, 0, 1 20 , 〉 ≡|2, 1, 1 31 . In this manner, we take
into account an energy detuning Δ between the states 〉|2 and
3 whereas due to the fact that the level 1 is weakly
coupled with the other levels we neglect the respective
tunneling amplitudes, i.e. = =J J 012 13 . Therefore, we can
reduce our problem to a two level system realizing the
Hamiltonian ε= ∑ 〉 + 〉=H i i J| |2 3i ieff 1

3
23 + h.c. which

is known to exhibit an avoided level crossing and can be
solved analytically.

In the remaining part of this section, we proceed to the
investigation of a system with filling factor ν < 1 in order to
generalize our findings. More precisely, among others we
demonstrate that the cradle mode can also be found in the
inner-well dynamics for a setup with ten wells, which reveals
in particular that it is independent of the employed hard-wall
boundaries.

3.2. Filling factor ν < 1

Let us consider here the case of five bosons in a ten-well finite
lattice. Concerning the ground state analysis with filling factor
ν < 1, the most important aspect is the spatial redistribution
of the atoms as the interaction strength increases. The non-
interacting ground state (g = 0) is the product of the single-
particle eigenstates spreading across the entire lattice, while
due to the hard-wall boundary conditions the two central
wells of the potential are slightly more populated. As the
repulsion increases within the weak interaction regime the
atoms are pushed to the outer sites which gain and lose
population in the course of increasing g, while the particle
number fluctuations are more pronounced for the wells with a
lower population [52]. It is also important to notice that in
such a setup the one-body density will not become uniform
even for strong interactions. In addition, the particle number
fluctuations saturate to a relatively high value (for ≈g 3.5) in
accordance with the existence of the delocalized phase. Also,
in such a case of incommensurability due to the delocalized
fraction of particles the long-range one-particle correlations
do not vanish even for strong interactions.

In the following, we explore the dynamics following a
sudden interaction quench at time t = 0 which is applied to the
ground state in the weak interaction regime, =g 0.05in .
Figure 7 demonstrates the response of the system on the one-
body level namely δρ x t( , ) after a strong interaction quench
δ =g 4.0, from which we can easily identify the emergence of
three modes. Initially we observe an over-barrier transport
and then the cradle and the tunneling modes. The lattice
symmetry (even number of wells) leads to the lack of the local
breathing mode. Concerning the cradle mode, this would be a

Figure 7. The fluctuations δρ x t( , ) of the one-body density for five
atoms in ten wells. Initially we observe the emergence of the over-
barrier transport and subsequently the cradle and the tunneling
modes. The setup is initially prepared in the superfluid ground state
with =g 0.05in and is suddenly quenched with δ =g 4.0.
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superposition of the states 〉 + permut|1, 1, 2, 0, 0, 0, 0 ,... 0

and 〉 + permut|1, 1, 2, 0, 0, 0, 0 ,... i with ≠i 0, where
permut stands for the spatial permutation of the occupations
inside the ket vector. Here, one can consider the minimal
subspace consisting of the above states with i = 1 in order to
proceed in an effective approach as we did for the case ν > 1.

Additionally, in order to visualize the cradle process from
a one-body perspective we demonstrate in figure 8 for a
specific quench δ =g 3.4 the density fluctuations δρ x t( , ) for
different time instants. Figure 8(a) illustrates the evolution of
the fluctuations for a specific time interval following up on the
over-barrier transport, where we can observe the cradle pro-
cess in each well. Subsequently, in figures 8(b) and (c) we
show intersections of δρ x t( , ) focussing on the second and the
fourth wells in order to visualize the higher-band contribu-
tions to the mode. Indeed, in figure 8(b) we observe that the
profile of the fluctuations corresponds to almost localized
wave-packets inside the well which are spatially shifted with
time. This process demonstrates the motion of the cradle and
corresponds to the ground state of this mode. However,
figure 8(c) illustrates the same profile δρ x t( , ) but for a dif-
ferent well, where the appearance of at least one node indi-
cates the occupation of the first excited Wannier state in the
well. This behaviour together with the shift of the wave-
packet indicates the first-excited state of the cradle mode.

Also, in the Fourier spectrum we can find the avoided-
crossing between the cradle and the tunneling frequency
where the critical region of quench amplitudes is
δ = −g 4.2 4.3cr with equal cradle frequency as for the triple
well case due to the same barrier height =V 4.50 . In turn, the
avoided crossing here, if we refer to the third well, can be
explained from the dominant number states 1, 1, 2, 0 ,... 0,
1, 1, 2, 0 ,... 1 for the cradle and 1, 1, 2, 0 ,... 0,

〉|1, 0, 3, 0 ,... 0 for the tunneling process. Therefore, we can
conclude that by tuning the interaction quench we can again
realize a resonance between the aforementioned modes.

An important observation is that as we increase the
interaction quench the tunneling process can be altered.
Indeed, this behaviour can be attributed to the fact that the

higher the quench amplitude, the larger the energy of the
system becomes. From this point of view we expect a strong
link of the change of the spatial distribution of the atoms in
the lattice and the quench amplitude. The above behaviour is
a main characteristic of setups with filling factor ν < 1 where
on-site effects are not manifested. In order to quantify our
arguments concerning the spatial redistribution process we
will rely on an analysis of the one-body reduced density
matrix ρ ′x x t( , ; )(1) of the dynamics provided by ML-
MCTDHB. Its off-diagonal parts can be used as a measure of
the coherence as they indicate off-diagonal long-range order
in an infinite lattice. Although, for our finite setups we cannot
conclude upon true off-diagonal long-range order this term
refers to the appearance of short and long range one-body
correlations. Thus, this quantity can be directly linked to the
tunneling process. In figure 9, we depict the one-body density
matrix for three different quenches namely δ =g 1.4, 2.6, 3.8
at two different time instants =t 7.01 (a), (b), (c) and

=t 42.82 (e), (f), (g) of the propagation in order to indicate
the change in the tunneling process. The off-diagonal con-
tributions fade out with increasing quench amplitude and a
tendency for concentration close to the diagonal is observed at
equal times which implies an alteration of the character of the
tunneling process. In addition, the off-diagonal part cannot
vanish completely even for strong quenches since the parti-
cles always remain delocalized. This is a main characteristic
of incommensurate setups.

Going beyond the above examined finite setups, one can
suggest a generalization for the wavefunction of the cradle
state for a many-body system. Let N be the number of sites
and n the total number of bosons. Then the corresponding
generalized number state would be of the form n n n, ,..., N i1 2

whereas the minimum representative wavefunction for the
cradle that refers to the first well can be written as

ψ = +d t n n d t n n( ) 2, ,..., ( ) 2, ,..., , (17)N N
cradle

1 2 0 2 2 1

where + + + = −n n n n... 2N2 3 with >n 2 and d1, d2
denotes the amplitudes for each contribution in the above
expansion. An additional constraint is that for an even number

Figure 8. The response of the fluctuating part δρ x t( , ) of the one-body density after an abrupt change in the inter-particle repulsion. The setup
consists of five particles in ten wells and the initial state corresponds to interaction strength =g 0.05in . Shown are δρ x t( , ) for (a) a given
time period of the cradle-like process for δ =g 2.4 and the respective fluctuating one-body density profiles at different time instants for (b) the
second well indicating the ground state of the cradle state and (c) the fourth well demonstrating the first-excited state of the cradle process.
The nodal structure indicates the occupation of excited Wannier states in the respective well whereas the oscillatory behaviour visualizes the
cradle process.
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of sites N this relation holds for all permutations, while for
odd N the permutation that corresponds to a state with two
particles in the middle well indicates the presence of the local
breathing motion. The extension to cradles in the remaining
wells is straightforward.

4. Summary and conclusions

We have explored the influence of sudden interaction quen-
ches on small bosonic ensembles in finite 1D multi-well traps.
In particular, we have mainly focussed on setups with
incommensurate filling factors in order to avoid the sup-
pression of tunneling due to MI phases for strong interactions.
Starting from the SF regime, we change abruptly the effective
coupling strength from weak to strong interactions. In this
manner, we observe the emergence of tunneling, breathing
and cradle processes. Furthermore for the explanation of the
dynamical behaviour of our system in terms of a band
structure we employ the concept of generalized multi-band
Wannier number states which are meaningful for sufficiently
large barrier heightsV0. Although these have been constructed
numerically, such a treatment is valid even in the strong
interaction regime where perturbative methods fail.

The density-wave tunneling has been linked to an
effective breathing of the ‘global wavepacket’ that refers to
the instantaneous density distribution of the trap. The local
breathing mode has been identified as an expansion and
contraction dynamics of bosons in the individual wells.
Moreover, in terms of a number state analysis of the observed
dynamics it is necessary to include higher-band contributions

to describe it. On the other hand, the cradle process, as we
have pointed out, exists in almost every site of the lattice and
refers to a localized wave-packet oscillation. This mode is a
consequence of the initial over-barrier transport of the parti-
cles from the central well to the outer ones due to the sudden
import of energy into the system and the consequent inelastic
collisions with the respective atoms in the outer sites.
Therefore, we can describe this process via the coherent states
of the harmonic oscillator refering here to the center of mass
and the relative coordinate (see appendix). The aforemen-
tioned modes are always accompanied by a tunneling process
which is mainly a lowest-band phenomenon. During the
dynamical process, regions of density dips or dark cradles in
the outer sites are accompanied by enhanced breathing
dynamics on the middle site. Each of the above modes pos-
sesses different characteristic frequencies. In particular, we
show that one can tune the frequency of the highest branch of
the tunneling mode in resonance with the frequency of the
cradle mode by varying the quench amplitude. In turn, this
resonance is associated with an avoided crossing in the fre-
quency spectrum of these modes resulting in an enhancement
of both of them. In this case, the system features a dominant
beating.

We have computed, the dominant Fock states in the
expectation value of the asymmetry operator in order to
describe the dynamics associated with the avoided-crossing.
In this manner, we have found a representative cradle state
which is a superposition of the first two bands, as well as the
number state most responsible for the tunneling mode that
couples with the cradle in the avoided crossing.

Figure 9.Off-diagonal one-body reduced density matrix ρ ′x x t( , ; )(1)
1 for five particles in 10 wells for two different time instants =t 7.01 (a),

(b), (c) and =t 42.82 (e), (f), (g) during the evolution. Shown are three values of the interaction quench (a), (d) δ =g 1.4, (b), (f) δ =g 2.6 and
(c), (g) δ =g 3.8. The elimination of the off-diagonal spots for strong quench amplitudes indicates the difference in the tunneling process.

13

J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 225303 S I Mistakidis et al

80



There are at least two ways that one might pursue as a
follow-up direction. A first possible extension is to consider
smooth time-dependent interaction quenches in order to
unravel the behaviour of the system in such a non-equilibrium
continuously driven case or to find similarities with the so-
called Kibble–Zurek mechanism [59–64]. A second path in
this direction would be the study of mixtures consisting of
different bosonic species.
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Appendix. Remarks on the cradle state

In this appendix we will briefly discuss the derivation of the
cradle state. This state, as we have already mentioned in the
main text, refers to an oscillation of two wavepackets of
minimal uncertainty in a single well which we model as a
harmonic trap. The creation of the two-particle cradle state in
a single well corresponds to the collision between a particle
injected to the well with another particle which is initially
localized in the minimum of the well. We further model each
particle as a localized one, where the first one is centered in
the trap and the other one is displaced from the minimum by
an amount x0. In this manner, taking advantage of the
exactly solvable model of the harmonic oscillator, we
can derive the initial wavefunction of the cradle state. In the
following, we will use the natural units = =m 1. Due
to the harmonic potential approximation we can separate the
motion into the relative = −X x x( ) 2r 1 2 and center-of-
mass = +X x x( ) 2c 1 2 coordinates. Adopting these coor-
dinates the initial wavefunction reads

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

ψ ω
π

=

× +

− −

− + − −

ω

ω ω

( )

( ) ( )

( )X X, ; 0 e

e e . (A.1)

X

X X

0 c r

1 2 x

x x
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0
2

2

2 r
0
2

2

2 r
0
2

2

Thus, the intrawell oscillation can be separated into two parts:
(a) the center-of-mass motion which is an effective one-body
problem and (b) the relative motion that refers to a reduced
two-body problem. Therefore, we can easily show that the
wavefunction of the center-of-mass at any time >t 0 is
described by

ψ
π

= ω ω− − − +ω( ) ( )tX ;
1

e , (A.2)( )X x t X x t
c

cos i sint1
2 c 0 2 c 0

which is the well-known coherent state solution of the har-
monic oscillator. This wave-packet oscillates around the
minimum of the potential in a simple harmonic trap without

changing its shape while it satisfies the minimum-uncertainty,
i.e. Δ Δ = p x 2. On the other hand, the corresponding
wavefunction of the relative frame reads

∑ψ φ= ω( )t CX ; e , (A.3)
n

n
t

nr 2
i

2
n2

where φ n2 are the even eigenstates of the trapping potential

ω δ= +V x m x g x( ) ( )1

2
2 2 . These eigenfunctions are known as

the Weber functions. Thus, we can conclude that the cradle
state contains two characteristic frequencies: (a) the frequency
ω ω=c that refers to the motion of the center-of-mass and (b)
the frequency ω ω ω ω= − ≈+ 2n nr 2 2 2 of the relative frame.
The above comments lead us to the conclusion that the major
difference between the cradle state that we have found here
and the dipole state of a many-body system is that our state
contains the two frequencies ωc and ωr while the many-body
collective state has just one.

Comparing the analytical results with the exact numerical
ones obtained from the ML-MCTDHB method we conclude
that in our case we observe only the center-of-mass oscillation
in the frequency spectrum. This is a consequence of the fact
that the quantity Δρ ρ ρ= −1 2 that we have used to measure
the intrawell asymmetry can describe only the motion of the
center-of-mass.
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The nonequilibrium dynamics following a quench of strongly repulsive bosonic ensembles in one-dimensional
finite lattices is investigated by employing interaction quenches and/or a ramp of the lattice potential. Both
sudden and time-dependent quenches are analyzed in detail. For the case of interaction quenches we address
the transition from the strong repulsive to the weakly interacting regime, suppressing in this manner the heating
of the system. The excitation modes such as the cradle process and the local breathing mode are examined via
local density observables. In particular, the cradle mode is inherently related to the initial delocalization and,
following a negative interaction quench, can be excited only for incommensurate setups with filling larger than
unity. Alternatively, a negative quench of the lattice depth which favors the spatial delocalization is used to access
the cradle mode for setups with filling smaller than unity. Our results shed light on possible schemes to control the
cradle and the breathing modes. Finally, employing the notion of fidelity we study the dynamical response of the
system after a diabatic or adiabatic parameter modulation for short and long evolution times. The evolution of
the system is obtained numerically using the ab initio multilayer multiconfiguration time-dependent Hartree
method for bosons, which permits us to follow nonequilibrium dynamics including the corresponding
investigation of higher-band effects.

DOI: 10.1103/PhysRevA.91.033611 PACS number(s): 03.75.Lm, 67.85.Hj

I. INTRODUCTION

The realization of ultracold atomic gases has opened up
exciting possibilities for the study of the nonequilibrium quan-
tum dynamics of many-body systems [1,2]. The high degree
of tunability and the good isolation from the environment
renders ultracold gases a versatile tool to realize systems far
from equilibrium as they remain coherent for sufficiently long
time scales, allowing us to probe them experimentally [3–5].
In particular, the dynamical response of a closed quantum
system can be investigated via a sudden change (i.e., a rapid
perturbation compared to any other characteristic time scale
of the system) of a Hamiltonian parameter called “quantum
quench.” Typically, in such a scenario the many-body system
is initially prepared in a characteristic state which is not an
eigenstate of the perturbed Hamiltonian, and the subsequent
time evolution is explored. In this way, important aspects can
be studied such as the connection between the final and initial
states or the emergence of a steady state [6]. Despite recent
theoretical advances (see Ref. [2] and references therein), our
understanding of strongly correlated quantum gases after a
quench is far from complete and constitutes an appealing
problem of modern quantum physics [7–13].

In a previous work [14] following a sudden raise of the inter-
particle repulsion (positive quench) we explored the dynamics
of initially weakly interacting superfluids. As a consequence
a cradle mode generated by the over-barrier transport of
bosons residing in neighboring wells and caused by the import
of energy to the system has been detected. This mode has
further been identified as a two-body intrawell collision which
was dipolelike [15,16]. In addition, a local-breathing mode
reminiscent to the usual breathing mode in a harmonic trap
[17–22] has been observed. The occurrence of a resonance
between a tunneling mode and the cradle giving rise to the
controlabilibity between the inter- and intrawell dynamics
has also been revealed. However, the above scenario can also

give rise to unvoidable heating processes, especially for large
quench amplitudes. To overcome this ambiguity, i.e., minimize
the heating [23], one can start from strong interparticle
repulsion and quench back to weak interactions called negative
interaction quench. A negative quench may lead to a drastically
different dynamical behavior as the filling factor ν is expected
to play a crucial role. Here an intriguing aspect would be to
explore how the initial spatial configuration of the system,
reflected by the corresponding filling factor, affects the system
dynamics and as a consequence the generation of the emergent
excited modes. This investigation will permit us to gain a
deeper understanding of the on-site excited modes (especially
the cradle mode), the underlying microscopic mechanisms,
and their controllability in terms of the tunable parameters of
the Hamiltonian.

In this work a systematic ab initio analysis of the
nonequilibrium dynamics of strongly repulsive interacting
bosons in one-dimensional (1D) lattices is carried out. To this
end, we study from a few-body perspective the dynamical
effects resulting from an abrupt quench or time-dependent
modulation of a Hamiltonian parameter, focusing on the few-
body collective excitations and the control of the dynamics.
In particular, we start from strong repulsive interactions and
perform negative quenches either on the interparticle repulsion
or on the optical lattice depth. This permits us to unravel the
transport properties and the emergent excitation modes, i.e.,
the local breathing and the cradle processes. Especially, for the
case of a negative interaction quench we demonstrate that the
cradle mode can be excited only for incommensurate setups
with filling factor ν > 1, exploiting the initial delocalization.
On the other hand, for filling ν < 1 in order to access this
mode we use as a tool a barrier quench, thereby enforcing the
over-barrier transport, which in turn can generate the cradle
mode. The persistence of the dynamical modes for finite-ramp
rates and long evolution times accessible in recent experiments
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is also shown. The concept of fidelity is extensively applied
in order to study the response of the quenched system and
the transition from the diabatic to the adiabatic limit. The
resulting nonperturbative dynamics (large quench) is explored
using the recently developed numerically exact multilayer
multiconfiguration time-dependent Hartree method for bosons
[24,25] (ML-MCTDHB), which reduces in our case of a single
species to MCTDHB [26,27].

This article is organized as follows. In Sec. II we explain
the setup, the basic observables, and the representation of
the wave function. Section III is devoted to a detailed study
of the nonequilibrium quantum dynamics for two different
quench protocols for incommensurable setups. We summarize
and give an outlook in Sec. IV. Our computational method
ML-MCTDHB is described in the Appendix.

II. THEORETICAL FRAMEWORK

We consider N identical bosons of mass m trapped within
an n-site optical lattice along the x direction modeled by
the potential Vtr(x) = V0sin2(πx

l
) where l is the distance

between successive potential minima, supplied with hard-
wall boundaries at x = ±nl/2. Transversally, the bosonic
system is trapped by a uniform harmonic trapping poten-
tial with energy spacing �ω⊥ and oscillator length a⊥ =√

�/mω⊥, yielding an effective 1D coupling strength [28]
g1D = 2�2a0

ma2
⊥

(1 − |ζ (1/2)|a0√
2a⊥

)−1 for s-wave scattering, a0 being
the three-dimensional s-wave scattering length. The many-
body Hamiltonian then reads

H =
N∑

i=1

− �2

2m

∂2

∂x2
i

+ Vtr(xi) +
∑
i<j

Vint(xi − xj ) (1)

with the short-range contact interaction potential Vint(xi −
xj ) = g1Dδ(xi − xj ) between bosons located at positions xi,xj

represented by a Dirac δ function. The interaction strength can
thereby be tuned by varying a0 via a Feshbach resonance [28–
31] or by altering the extent a⊥ of the transversal confinement
[28,32,33]. In the following, for reasons of universality as well
as of computational convenience, we shall use dimensionless
units. To this end, the Hamiltonian (1) is rescaled in units
of the recoil energy Er = �2k2

2m
. For our simulations we have

used a sufficiently large lattice depth V0 = 6.0, which is of the
order of 3.0 to 4.0 ER (depending on k), such that each well
contains at least two localized single-particle Wannier states.
The spatial and temporal coordinates are given in units of k−1

and �E−1
r , respectively.

A quench is performed by varying, abruptly or slowly, a pa-
rameter λ of the system (here the interaction strength g1D or the
lattice depth V0, or generally both) from an initial value λ0 =
λ(t = 0) to a final value λq according to a given scheme λ(t).
The ground state |	0〉 of the initial Hamiltonian H0 = H (λ0)
then evolves into |	λ(t)〉 = Uλ(t)|	0〉 = exp(−iHλt/�)|	0〉
at time t under the λ-quenched Hamiltonian. The overlap
between the time-evolved states of the system in the presence
(via Uλ) and absence (via U0 = e−iH0t/�) of the quench,

fλ(t) = 〈	0(t)|	λ(t)〉, (2)

yields the fidelity (or Loschmidt echo [34])

Fλ(t) = |fλ(t)|2, (3)

which provides a time-resolved measure for the effect of the
quench on the system.

Using the ML-MCTDHB method outlined in the Appendix,
we obtain the reduced one-body density matrix

ρ(1)(x,x ′; t) =
M−1∑
a=0

na(t)ϕα(x,t)ϕ∗
a (x ′,t) (4)

in its (diagonal) spectral representation by natural orbitals
ϕα(x,t), where α = 0,1, . . . ,M − 1 and M being the number
of the considered orbitals. The corresponding population
eigenvalues na(t) ∈ [0,1] characterize the fragmentation of the
system [35–38]: If there is only one macroscopically occupied
orbital the system is said to be condensed, otherwise it is
fragmented.

To explore the spatially resolved system dynamics we use
the deviation

δρ(x,t) = ρ(x,t) − 〈ρ(x)〉T (5)

of the one-body density ρ(x,t) ≡ ρ(1)(x,x; t) from its time
average 〈ρ(x)〉T = ∫ T

0 dt ρ(x,t)/T over the considered time
of propagation T . In this sense, we treat δρ(x,t) as the temporal
fluctuation of the density around its “macroscopic” component
along the lattice.

To incorporate the information of excited bands, we further
analyze the dynamics by projecting the many-body wave
function 	 to the multiband Wannier number state basis as

|	〉 =
∑
N,I

CN ;I |N1 N2 · · · Nn〉I , (6)

where {|N1 N2 · · · Nn〉I } is the multiband Wannier number
state with N = ∑

i Ni , and I indexing the energetic
(excitation) order [14]. This representation proves convenient
for lattice systems when describing intraband and interband
processes where the spatial localization of states plays a
significant role and remains valid in the strong interaction
regime for a sufficient number of supplied single-particle
functions. Table I presents the excitation decomposition (the
occupation of excited levels in each lattice site) of some
number states frequently used in the following analysis.

TABLE I. Energetic decomposition of some frequently used
number states for n = 3 lattice sites. The index I refers to the
excitation order and is used as a compact notation instead of the
detailed decomposition. Each element Ni in a decomposition refers
to the ith energy level (superscript) of N noninteracting bosons in the
corresponding site.

Index I |2,1,1〉I |1,2,1〉I

I = 0 |20,10,10〉 |10,20,10〉
I = 1 |10 ⊗ 11,10,10〉 |11,20,10〉
I = 2 |20,11,10〉 |10,10 ⊗ 11,10〉
I = 3 |20,10,12〉 |10,20,11〉
I = 4 |11 ⊗ 12,10,10〉 |12,20,10〉
I = 5 |20,12,10〉 |10,10 ⊗ 12,10〉
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Note that the eigenstates can be ordered with respect to the
single particle excitation and the spatial occupation of the parti-
cles. The eigenstates of the same category form an energetical
band. Following this categorization we label the eigenstates
as |ζ 〉α;I , where α and I denote the spatial occupation and
energetical order, respectively [14]. For instance, α = 1 refers
to a single-pair state, α = 2 to a two-pair state, etc., while
ζ sorts the eigenstates within each category according to the
eigenenergy.

III. QUENCH DYNAMICS

Before exploring the dynamics, some remarks concerning
the ground states in the lattice for different filling factors
ν = N/n, where N denotes the particle number and n the
number of the wells, are in order. For the commensurate
case (ν = 1,2, . . .), concerning the ground state it is known
that for increasing interparticle interaction one can realize the
superfluid to the Mott insulator phase transition [39], which has
been addressed extensively in the past few years. On the other
hand, for a system with an incommensurate filling ν �= 1,2, . . .

the main feature is the existence of a delocalized fraction of
particles which forbids the occurrence of a Mott state. Here
one can distinguish two physical situations: (1) the case ν > 1
where on-site interaction effects prevail and (2) ν < 1 in which
the main concern is the redistribution of the particles over the
sites as the interaction increases. This delocalized phase can
also be explained in terms of the particle hole states using a
strong coupling expansion [40,41].

In the present study we consider the quench dynamics for
setups with site occupancy different from unity and therefore
exclude the Mott state physics. We proceed with a short
reference to the ground state and consequently analyze the
dynamical process following each quench protocol.

A. Quench from strong to weak interactions for filling ν > 1

In this section, we focus on a system consisting of four
strongly interacting bosons in a triple well, i.e., with filling
ν > 1. The initial state before the quench is characterized by
the competition between delocalization and on-site interaction
effects. For strong interparticle repulsion, as we consider here
(g = 5.0), this state can be interpreted as a fraction N mod
n of extra delocalized particles being on a commensurate
background of localized particles. On the one-body level the
on-site populations are quite similar, which can be attributed
to the localized background, while their slight discrepancy
is due to the nonuniform distribution of the extra particle in
the first excited band. The latter prevents the formation of a
perfect insulator phase even for strong repulsion. Our goal is
to investigate the dynamical processes following a negative
quench of the interaction strength, thereby approaching the
weakly interacting regime. For an interaction quench protocol
the final Hamiltonian Hf can be constructed as a sum of a part
H0, which provides the prequenched state of the system and
an additional part that denotes the perturbation

Hf (gf ,V ) = H0(gin,V ) + δg

gin

∑
k<j

Vint (xk − xj ), (7)

where gin and gf are the initial and final interaction strengths,
respectively, and δg = gf − gin is the quench amplitude
focusing here on δg < 0 and | δg

gin
| ∼ 1.

In the following subsections we first proceed with a brief
fragmentation analysis inspired from the perspective of natural
orbitals. Then we explain in some detail the response of the
system and investigate each of the emergent normal modes
consisting of a local breathing mode and a dipolelike cradle
mode. A study for the manipulation of the excited modes and
their presence for the case of a finite ramp is also provided.

1. Dynamical fragmentation

In this subsection, we analyze the role of dynamical
fragmentation, i.e., the occurrence of more than one signif-
icantly occupied quantum states during the evolution, with a
varying quench amplitude. Especially, the fragmentation in the
nonequilibrium dynamics of trapped finite systems is known to
depend strongly on the particle number [37,42], the interaction
strength, and the evolution time. The spectral decomposition
of the one-body reduced density matrix offers a measure of
fragmentation via the populations na(t) of the natural orbitals
φa(t) [see Eq. (4)]. In particular, a nonfragmented (condensed)
state requires the occupation of n0(t) to be close to unity [38].

Figure 1(a) shows the evolution of the natural populations of
the three highest occupied natural orbitals for different quench
amplitudes. The population of the first orbital n0(t) is always
significantly below unity which confirms the fragmentation
process, while the three most occupied natural orbitals add
up to more than 90% of the population. Focusing on the first
orbital we note that the temporal average of the fragmentation
reduces as the quench amplitude increases and vice versa.
Especially, for final interactions close to a noninteracting state
we observe a tendency for a nonfragmented state at least
for certain time periods. This constitutes a major difference
between a negative and a positive interaction quench scenario.
In the latter case the fragmentation process is enhanced for
larger quench amplitudes, which can be attributed to the
consequent raise of the interparticle repulsion during the
process. However, here we face the inverse behavior because in
the initial strongly interacting state the interparticle repulsion
is already significant and tends to be reduced after the quench.
Moreover, the second and third orbitals take on a compensatory
role to the first, e.g., in the time periods where n0(t) is
enhanced n1(t) and n2(t) are reduced. Finally, note that
for smaller quenches the latter populations possess smaller
amplitude oscillations, whereas strong quenches introduce
large amplitude variations of the populations.

Figure 1(b) illustrates the response of the first natural orbital
φ0(x,t) at different time instants during the evolution after a
quench to gf = 0.05. As can be seen φ0(x,t) exhibits spatial
oscillations in the outer wells and an on-site broadening in the
middle well which accounts for interaction effects. Another
important remark is that the band structure is effectively
reflected by the population of the natural orbitals; i.e., the
orbitals φ0(x), φ1(x), and φ2(x) correspond to the effective
first single-particle band, orbitals φ3(x), φ4(x), and φ5(x) to
the second band, etc. Thus, the lowest orbital φ0(x,t) follows
quite well the evolution of the quenched one-body density.
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FIG. 1. (Color online) Fragmentation analysis for a system of
four bosons in a triple well with gin = 5.0. Shown are (a) the time
evolution of the first three occupations n0(t) (upper panel blue lines),
n1(t) (lower panel red lines), and n2(t) (lower panel green lines), for
different quench amplitudes δg = −4.9 (dashed lines), δg = −4.0
(thick solid lines), and δg = −2.5 (thin solid lines). (b) Profiles of
the lowest natural orbital φ0(x,t) for a quench amplitude δg = −4.95
and different time instants during the evolution t1 = 0.9 (blue dashed),
t2 = 2.6 (red solid), and t3 = 7.0 (black dashed-dotted).

2. Dynamical response and transport properties

To investigate the dynamical response of the system we use
the above-discussed fidelity Fλ(t) [see Eq. (3)]. This quantity is
shown in Fig. 2(a) as a function of the final interaction strength
and the time. We mainly note the appearance of two different
regions as a function of the quench amplitude. The first one
corresponds to quenches from a strong repulsive state with
gin = 5.0 to intermediate interactions where 3.4 < gf < 5.0.
Here the overlap during the dynamics is rather large with
minimal percentage up to 85%, and therefore the system is
quite insensitive to the quench. In the second region where the
final state belongs to weak or even to the noninteracting regime,
i.e., 0 < gf < 3.4, we observe the formation of an oscillatory
pattern in the fidelity evolution. This pattern indicates the
sensitivity of the system to these type of quenches, meaning
that the system can be driven far from the initial state, while
the minimal overlap for the extreme case of gf → 0 can even
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FIG. 2. (Color online) (a) Fidelity evolution following negative
interaction quenches for gin = 5.0. (b) The frequency spectrum of the
fidelity for gf = 0.6 (blue dashed) and gf = 1.0 (red solid), which
indicates the tunneling modes. The inset shows the dependence of
each tunneling branch with respect to the final interaction strength
after the quench. We incorporate 150 quenches in the range of 0 <

gf < 5.0. The frequency units are normalized as ω/�ω, with �ω =
2π/T and T being the considered evolution time.

be of the order of 20%. The emergence of the above regions is
universal in the system in the sense that it weakly depends on
the height of the barrier. Thus, for an increasing barrier height
the second region (larger quenches) will become narrower
due to the larger potential energy, which inhibits a possible
departure of the system from the initial state.

In order to identify the tunneling modes participating in
the dynamics we use as a measure the spectrum of the
fidelity Fλ(ω) = 1

π

∫
dtFλ(t)eiωt . Indeed, Fig. 2(b) shows

Fλ(ω) for different final interactions where we observe two
dominant tunneling peaks. To proceed with a more quantitative
description of the tunneling dynamics we shall expand the
wave function in terms of the number states. To this end,
let |	(0)〉 = ∑

ζ ;α;I C
α;I
ζ |ζ 〉α;I be the initial wave function in

terms of the eigenstates |ζ 〉α;I of the final Hamiltonian [14].
Then the expansion of the fidelity reads

|〈	(0)|	(t)〉|2 =
∑
ζ1;α;I

∣∣Cα;I
ζ1

∣∣4 +
∑

ζ1,ζ2;α,β;I

∣∣Cα;I
ζ1

∣∣2

× ∣∣Cβ;I
ζ2

∣∣2
cos

(
ε

α;I
ζ1

− ε
β;I
ζ2

)
t, (8)
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FIG. 3. (Color online) The time evolution of the normalized one-body correlation function g
(1)
ij after various negative interaction quenches

for gin = 5.0. Shown are different components of the correlation function g
(1)
ij with respect to the left well g

(1)
LL (blue dashed line), g

(1)
LM (green

thin solid line), and g
(1)
LR (red thick solid line) for final interactions (a) gf = 3.8, (b) gf = 1.6, and (c) gf = 0.05.

where the second term contains the separate contributions from
each tunneling branch. The indices α, β indicate a particular
set of number states, ζi is the intrinsic index within each set,
I denotes the respective energetical level, and ε

α;I
ζi

refers to
the eigenfrequency of a particular eigenstate. In particular,
the first peak at frequency ω1 ≈ 3�ω (with �ω = 2π/T and
T denotes the propagation time) corresponds to the energy
difference �ε within the energetically lowest states of the
single pair mode. Therefore the process corresponds to an
intraband tunneling, e.g., from the state |1,2,1〉0 to |2,1,1〉0,
etc. However, the second peak located at ω2 ≈ 125�ω refers
to an interband transition between the states |1,2,1〉2 and
|1,2,1〉0, which reflects the initial strongly correlated state.
In the inset we present the δg dependence of the location of
the aforementioned peaks. As can be seen, the two branches
are mainly steady as a function of the interaction quench and
their frequencies are constrained in a narrow band, while their
amplitude (see main figure) reduces significantly for weak
quenches.

In the course of the investigation of the tunneling dy-
namics one fundamental question that has to be addressed
is how correlations propagate [43] in the quenched system.
Here, in order to distinguish genuine interwell correla-
tions from density oscillation effects we explore the re-
sponse of the normalized single particle correlations g

(1)
ij (t) =

〈	|bib
†
j |	〉/

√
〈	|bib

†
i |	〉〈	|bjb

†
j |	〉 [44]. b

†
i denotes the

creation operator of a particle at the ith well, while the diagonal
elements g

(1)
ii = 1 by definition. An important property of this

function is that for g
(1)
ij > 1 (<1) the corresponding detection

probabilities at positions i and j are correlated (anticorrelated),
while the case g

(1)
ij = 1 is referred to as fully first order

coherent. Figures 3(a)–3(c) illustrate the time evolution for
different components of the one-body correlations for various
negative interaction quenches. As expected the diagonal terms
correspond to a straight line at unity for all quench amplitudes.
The nondiagonal terms g

(1)
ij , i �= j exhibit a nonvanishing

oscillatory behavior, while for increasing quench amplitude
a substantial built-up of correlations is observed. In particular,
approaching the noninteracting limit g

(1)
LM (t) > 1 for most of

the time, whereas g
(1)
LR(t) oscillates around unity, indicating a

transition from an anticorrelated to a correlated situation.

3. The local breathing mode

The breathing mode can be used in order to measure some
key quantities of a trapped system such as its kinetic and
interaction energy or the coupling strength [17,17–19]. It refers
to an expansion and contraction of the bosonic cloud and can
be excited either via a variation of the interparticle interaction
or a modulation of the frequency of the trapping potential.

In a similar manner, our quenched system exhibits local
breathing oscillations which are most prominent in the
subsystem corresponding to the middle well. To detect the
frequencies of this normal mode we examine the variance of
the coordinate of the center of mass for a particular well.
The center of mass for the ith well is defined as X

(i)
CM =∫ d ′

i

di
dx(x − x

(i)
0 )ρi(x)/

∫ d ′
i

di
dxρi(x). The index i = R,M,L

corresponds to the right, middle, and left well, respectively,
while x

(i)
0 refers to the central point of the corresponding well.

The limits of the wells are denoted by di and d ′
i , whereas ρi(x)

is the respective single particle density. For the identification
of the breathing process we define the operator of the second

moment σ 2
M (t) = 〈	|(x − X

(i)
CM )

2|	〉. The latter serves as a
measure for the instantaneous spreading of the cloud in the ith
well and can also be used experimentally in order to probe the
expansion velocity of a quenched condensate [5]. Then, if we
connect the initial wave function with the eigenstates |ζ 〉α;I of
the final Hamiltonian Hf , we obtain

σ 2
M (t) =

∑
α;ζ1;I

∣∣Ca;I
ζ1

∣∣2
α;I 〈ζ1|

(
x − X

(i)
CM

)2|ζ1〉α;I

+ 2
∑
ζ1 �=ζ2

Re
(
C

β;I∗
ζ1

C
α;I
ζ2

)
β;I 〈ζ1|

(
x − X

(i)
CM

)2|ζ2〉α;I

× cos
(
ω

β;I
ζ1

− ω
α;I
ζ2

)
t. (9)

To identify the frequencies of the local breathing mode, Fig. 4
shows the frequency spectrum of the second moment σ 2

M (ω) =
1
π

∫
dtσ 2

M (t)eiωt , which refers to the middle well, for different
quench amplitudes. Three main peaks can be observed. The
lowest of these three peaks refers to a tunneling mode being
identified from the energy difference within the energetically
lowest states of the single pair mode. The appearance of this
peak in the spectrum is due to the fact that the tunneling can
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FIG. 4. (Color online) Fourier spectrum of the second moment
σ 2

M (ω) for the local breathing mode for different quench amplitudes.
The initial state corresponds to gin = 5.0, and the final interactions
are gf = 0.15 (blue dashed), gf = 0.8 (red solid), and gf = 1.7
(black dashed-dotted). In the inset we show the δg dependence of
each breathing branch, where we incorporate 150 quenches in the
range of 0 < gf < 5.0. Note that the frequency units are normalized
with respect to ω/�ω, where �ω = 2π/T and T is the respective
propagation time.

induce a change in the width of the local wave packet. The
second and third peaks refer to interband processes and are
related to higher-band transitions. In particular, the second
peak is located at ω2 ≈ 125�ω and refers to a transition from
|1,2,1〉0 to |1,2,1〉2, whereas the third one with frequency
ω3 ≈ 170�ω corresponds to a transition from |1,2,1〉0 to
|1,2,1〉5. To illustrate the dependence of the above three peaks
on the interaction quench we show in the inset the evolution of
the location of each peak with respect to the final interaction
strength gf after the quench. We observe that the branches are
more sensitive for a quench to 2.0 < gf < 4.0, otherwise they
are mainly constant.

4. The cradle mode

This mode refers to a dipolelike oscillation generated via
an over-barrier transport due to the initially delocalized state

between neighboring wells. In the present case it is induced
by an interaction quench. From a one-body perspective the
cradle mode is demonstrated by the inner well dynamics of
the one-body density fluctuations δρ(x,t). Figure 5 shows the
evolution of the system through the relative density after a
sudden negative interaction quench from gin = 5.0 to gf =
0.07. The emergence of the cradle mode in the outer wells
manifested as a dipolelike oscillation and the local breathing
in the central well as a contraction and expansion dynamics is
observed.

The initial spatial configuration due to the strong interparti-
cle interaction corresponds to one localized boson in each well
and one delocalized (over the three wells) energetically close
to the barrier. In turn, the negative change in the interaction
strength yields a high probability for the delocalized particle
to overcome the barrier (over-barrier transport) and move
to a neighboring well, where it performs a collision with
the initially localized particle. This results in the cradlelike
mode inside the respective neighboring site and refers to a
localized wave-packet oscillation [14]. Note that the cradle
is inherently related to the initial delocalization and after a
negative interaction quench of a strongly correlated system
can be excited only for incommensurate systems with filling
factor ν > 1. For other fillings it disappears and the consequent
dynamics is dominated by the interwell tunneling.

In the following, in order to quantitatively examine the
inner-well dynamics we proceed with a local density analysis.
For that purpose we divide a particular well from the center into
two equal sections with ρa,1(t) and ρa,2(t) being the respective
integrated densities of the left and right parts during the
evolution. The index a = L,M,R stands for the left, middle,
and right well, respectively. In this manner, a measure of
the intrawell asymmetry which captures the cradle motion is
the quantity �ρa(t) = ρa,1(t) − ρa,2(t). Figure 6(a) shows the
frequency spectrum of the above quantity for the left well, i.e.,
�ρL(ω) = 1

π

∫
dt�ρL(t)eiωt for various negative interaction

quenches. From the spectrum we can identify two dominant
peaks located at the positions ω2 ≈ 79�ω and ω3 ≈ 125�ω.
These two frequency branches correspond to the cradle mode.
In addition, we observe a low-frequency peak related to the
interwell tunneling at frequency ω1 ≈ 3�ω. The inset shows
the δg dependence of the above three frequency peaks. The
location of each branch remains essentially independent of
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FIG. 5. (Color online) Space-time evolution of the fluctuations δρ(x,t) after a sudden negative quench of the interparticle repulsion from
gin = 5.0 to gf = 0.07, thereby approaching the noninteracting limit. We observe the cradle mode in the left and right wells, the local breathing
mode in the middle well and the interwell tunneling during the evolution.
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FIG. 6. (Color online) The frequency spectrum of the intrawell asymmetry �ρL(ω). (a) The final state of the system is obtained after a
sudden negative interaction quench from gin = 5.0 to gf = 0.1 (blue dashed) and gf = 0.45 (red solid). The inset shows the evolution of each
peak that refers to the cradle as a function of the quench amplitude (we incorporate 150 quenches in the range 0 < gf < 5.0). (b) The spectrum
�ρL(ω) for the same quench amplitude, δg = −4.95, and different barrier heights V0 = 5.5 (red solid) and V0 = 3.5 (blue dashed). (c) Sudden
quench to gf = 0.4 and the hard-wall boundaries located at xσ = ±3π/2 (blue dashed), xσ = ±5π/4 (red solid), and xσ = ±11π/8 (black
dashed-dotted). (d) It is illustrated the spectrum of �ρL(ω) for an imposed harmonic trap Vharm = 0 (blue dashed), Vharm = 0.02x2 (red solid),
and Vharm = 0.05x2 (black dashed-dotted) on top of the lattice. Finally, note that in each case we use normalized frequency units ω/�ω, with
�ω = 2π/T and T being the respective evolution time.

the strength of the interaction quench, and it is therefore
constrained to a corresponding narrow band.

To gain a deeper understanding of the cradle mode we again
refer to a number state analysis and expand the initial state of
the system in terms of the eigenstates of the final Hamiltonian
as |	(0)〉 = ∑

ζ ;α;I C
α;I
ζ |ζ 〉α;I . Then the expectation value of

the asymmetry operator reads

〈	|�ρ̂(t)|	〉 =
∑
ζ1;α;I

∣∣Cα;I
ζ1

∣∣2
I ;α〈ζ1|�ρ̂|ζ1〉α;I

+ 2
∑
ζ1 �=ζ2

Re
(
C

α;I∗
ζ1

C
β;I
ζ2

)
I ;α〈ζ1|�ρ̂ |ζ2〉β;I

× cos
[(

ω
α;I
ζ1

− ω
β;I
ζ2

)
t
]
. (10)

Here the terms of the second sum in the above expression
which demonstrate an oscillatory behavior describe the cradle
mode. Therefore, we need to detect the eigenstates (|ζ 〉α;I )

of the dominant oscillation terms, i.e., α;I 〈ζ |�ρ̂|ζ 〉β;I �= 0.
A direct numerical analysis indicates that the respective
eigenstates are |ζ 〉1;0, |ζ 〉1;1, |ζ 〉1;2, whereas the corresponding
significantly contributing number states are |2,1,1〉0, |2,1,1〉1,
and |2,1,1〉4 due to the fact that the corresponding oscilla-
tion frequency matches the energy difference between these
eigenstates.

Let us now investigate possible control protocols of the
cradle mode via a modulation of its frequency by means
of a varying potential parameter or via an external forcing.
An efficient way to manipulate the frequency is to tune
the height of the potential barriers. In this way, the cradle
frequency can be reduced using a more shallow lattice
(thereby making the excitation of the cradle mode more
easy). Indeed, within the harmonic approximation it can be
easily shown that the effective frequencies for two lattices
with different potential depths V0;1 and V0;2, respectively,
obey ωeff;1 = (V0;1/V0;2)1/4ωeff;2. This situation is illustrated
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in Fig. 6(b) where the frequency spectrum of the inner-well
asymmetry with the same quench amplitude but different
barrier heights V0 = 5.5 (red solid) and V0 = 3.5 (blue dashed)
is shown. We observe a negative shift of each frequency peak
for a decreasing lattice depth which confirms our previous
arguments. Alternatively, a similar manipulation of the cradle
frequency can be achieved by comparing lattices with the
same height of the potential barrier but different frequencies.
Then, the respective effective frequencies are related via
ωeff;1 = (l2/l1)1/2ωeff;2, where l is the distance between two
successive potential minima.

In a similar manner, one can pose the question how the
cradle mode frequency depends on gin for fixed gf . According
to our simulations (omitted here for brevity) each peak remains
essentially unchanged, indicating that the system does not
keep any memory from the particular strongly correlated initial
microscopic configuration.

A further question is to ask for the impact of the boundary
conditions. Hence, we assume a fixed height for the barrier but
changing the position of the hard wall boundary conditions.
Then we expect that as the wall is closer to the center of the
right or left well the cradle would be more enhanced because
effectively the frequency of the local harmonic oscillator is
larger and so the period of the cradle reduces. Indeed, Fig. 6(c)
illustrates for the same quench amplitude the Fourier spectrum
of the intrawell asymmetry �ρL(ω) imposing the hard-wall
boundaries at different positions, namely, at xσ = ±3π/2 (blue
dashed), xσ = ±5π/4 (red solid), and xσ = ±11π/8 (black
dashed-dotted). The frequency peaks of the cradle mode are
shifted by a positive value for a closer to the center hard
wall. As a final attempt we impose a harmonic trap on top
of the triple well, which increases the potential energy of the
edge wells. Then the on-site energy of the Wannier states
at the edges becomes larger than that (of the same degree
of energetical excitation) in the central well. This in turn
renders the initialization of the cradle mode more difficult,
and for strong superimposed harmonic traps its excitation for
a fixed quench amplitude becomes impossible. Accordingly,
Fig. 6(d) shows a scenario with the same quench amplitude but
different superimposed harmonic traps. We observe negative
variations and a reduction of the intensity of each peak
for a stronger harmonic trap, thereby confirming our above
discussion.

In the next subsection we explore the excitation modes
induced by a time-dependent modulation of the interaction
strength and establish their presence also for this case.

5. Finite ramping

The present subsection is devoted to the study of the
dynamics induced by time-dependent interaction quenches
with a finite ramp rate. In particular, we attempt to investigate
quenches with the same amplitude but evolving on different
time scales, in order to gain a further insight into the dynamical
response of the system with relevance to the experimentally
occurring time scales. To this end, let us adopt a time-
dependent quench scenario of the form

g(t ; τ ) = gin + (gf − gin) tanh(t/τ ). (11)
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FIG. 7. (Color online) Fidelity evolution for gin = 5.0 and gf =
0.1 as a function of the ramp rate τ measured in units of the Heisenberg
time τH (see text). The black dotted line correspond to the situation
with t = τ .

Here gin, gf are the interaction strength for the initial and final
state respectively, whereas τ denotes the finite ramp rate of the
performed quench. Focusing now on a strong nonequilibrium
postquench state with gf = 0.1, Fig. 7 shows the dynamical
crossover, for finite evolution times, from an abrupt to an
adiabatic interaction modulation for increasing ramp rates τ .
To interpret the resulting behavior on a relevant time scale we
define the Heisenberg time τH ∼ 1/�ε(δg), where �ε(δg) =
ε(gin) − ε(gf ) refers to the energy difference between the
ground state of the system before and after a sudden interaction
quench. As is shown for times t < τ (region under the black
dotted line in Fig. 7) the system essentially remains in the
initial ground state of the unperturbed Hamiltonian. On the
other hand, in the region with t > τ , which spreads for
decreasing τ (thereby approaching the sudden quench), the
system starts to significantly depart from the initial state.
Remarkably enough for τ < 30τH we observe the appearance
of black lobes (overlap of the order of 40%) during the
evolution, which indicate the persistence of the excitation
modes in this region. For τ > 30τH we have a transition to
a smoother dynamical departure of the system from the initial
state and as a consequence the elimination of the excitation
modes. In particular, for τ > 85τH the Hamiltonian changes
sufficiently slowly, i.e., the system tends to remain in the
instantaneous ground state, and therefore the modulation is
almost adiabatic for the whole evolution time. For a smaller
quench the adiabatic regime can be reached for sufficiently
smaller time scales due to the reduced impact of the quench to
the system. These statements are also valid for a linear quench
protocol of the form g(t ; τ ) = gin + (gf − gin)t/τ for t � τ ,
and g(t ; τ ) = gf for t > τ .

As a next step we study the effect of the time-dependent
interaction quench on the excitation modes, i.e., the breathing
and cradle processes. To give further insight in the overall
nonequilibrium process, Fig. 8 illustrates the evolution of
δρ(x,t), for the same relevant interactions as in Fig. 5 where
we considered a sudden quench, implementing now the time-
dependent scenario of Eq. (11) with a finite rate τ = 0.8τH .
The above-discussed modes still persist but with reduced
intensity, which is larger when the quench is faster.
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FIG. 8. (Color online) The fluctuations δρ(x,t) of the one-body density caused by a negative time-dependent quench of the interparticle
repulsion to gf = 0.07 (gin = 5.0) with a finite ramp rate τ = 0.8τH . For a direct comparison the quench parameters, here, have been chosen
similar with Fig. 5, which refers to the respective sudden quench scenario. We observe that the cradle mode in the left and right wells, the local
breathing mode in the middle well, and the interwell tunneling during the evolution persist.

According to this let us investigate how one can manipulate
the local breathing mode via the quench rate τ . Figure 9(a)
shows the frequency spectrum of the local breathing mode
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FIG. 9. (Color online) (a) Frequency spectrum of the variance
σ 2

M (ω) for time-dependent quenches of the form of Eq. (11) with final
interaction gf = 0.1 and rates τ = 0τH (blue dashed), τ = 0.8τH (red
solid), and τ = 3.0τH (black dashed-dotted). The inset shows each
branch of the local breathing mode as a function of the quench rate
τ (we incorporate 160 different rates in the range 0 < τ < 120). In
(b) we present the spectrum of the intrawell asymmetry �ρL(ω) for
a time-dependent scenario with quench amplitude δg = −4.90 and
rates τ = 0τH (blue dashed), τ = 0.8τH (red solid), and τ = 3.0τH

(black dashed-dotted). The inset demonstrates the dependence of
each branch of the cradle mode as a function of the quench rate τ .
Finally, note that we have used normalized frequency units ω/�ω,
with �ω = 2π/T and T being the respective evolution time.

obtained for the same amplitude δg = −4.9 and different
quench rates τ . As it can be seen the position of each peak
remains the same but its intensity decreases significantly for
larger rates. To further probe the position of each branch with
respect to the quench rate τ we present in the inset the τ

dependence of each peak (without taking into account its
intensity). It is obvious that each branch is quite insensitive to
the interaction quench while in terms of its intensity [Fig. 9(a)],
one can infer that by considering larger rates can gradually
obliterate each frequency branch, i.e., for a faster quench the
spectrum is more rich. Especially, one finds that for τ > 30τH

this mode can essentially be eliminated, which means that the
intensity of each peak is negligible (in our case �10−5).

Finally, we study the effect of the finite ramping on
the cradle mode. Figure 9(b) presents the spectrum of the
intrawell asymmetry �ρL(ω) for an abrupt quench in the
interparticle repulsion and two different quenches obeying
the above time-dependent law with different rates τ but same
final interaction as in the abrupt case. Moreover, in the inset
we demonstrate the evolution of each peak (without taking
into account its intensity) as a function of the ramp rate τ . We
observe that for larger rates τ the location of each frequency
peak remains essentially the same (inset) but the respective
amplitude tends to decrease, while for τ > 9.0τH the third
peak that refers to the second excited state in the left well has
already been eliminated. Increasing further the rate τ > 30τH

one can eliminate the cradle (intensity � 10−5) approaching
the adiabatic region as also shown in Fig. 7.

In the following section we turn to the study of the quench
dynamics induced by a modulation of the optical lattice
depth examining its dynamical response and the consequent
excitation modes.

B. Quench of the optical potential depth for filling ν < 1

Here we consider a quench protocol which consists of
a ramp-down of the optical potential depth, thereby driving
the system to a region where the kinetic energy of the atoms
dominates in comparison to the potential energy. As we shall
demonstrate, following this protocol one can excite the cradle
mode also for setups with filling ν < 1. The system consists
of five particles in an eight-well setup, but our conclusions
can be easily generalized for arbitrary filling factors. To be
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FIG. 10. (Color online) (a) Fidelity evolution as a function of different sudden negative quenches of the optical lattice depth. The system
consists of five strongly interacting bosons (g = 5.0) in an eight-well potential with V0;in = 8.0. (b) Same but for different quenches of the lattice
depth and a simultaneous interaction quench to gf = 0.02. (c) Profiles of the fidelity evolution for different quench amplitudes δV0 = −3.8 (blue
thin solid), δV0 = −2.5 (red thick solid), δV0 = −0.9 (magenta dashed-dotted), δV0 = −0.2 (black dashed), and a simultaneous interaction
quench to gf = 0.02. In (d) we present profiles of the fidelity following a negative time-dependent quench of the potential depth to V0;f = 4.0
with different ramp rates τ = 0.4τH (blue thin solid), τ = 15.0τH (green thick solid), τ = 40.0τH (red thin dashed), τ = 100.0τH (magenta
thick dashed), τ = 400.0τH (yellow thin dashed-dotted), and τ = 800.0τH (black thick dashed-dotted) and a simultaneous interaction quench
to gf = 0.02.

self-consistent with the previous study we start from a strongly
interacting initial state with gin = 5.0, while the lattice is
assumed to be initially deep enough with a depth V0;in = 8.0
to include the first three Wannier energy levels. As usual, in
order to interpret the dynamics induced by the quench we
should be aware of the characteristics of the initial ground
state. For a system with filling ν < 1 the one-body density
remains asymmetric even for strong interactions due to the low
population, while the delocalized fraction of particles permits
the presence of long-range one-particle correlations even in
the strongly repulsive regime [45].

Let us firstly analyze the nonequilibrium dynamics induced
by a sudden ramp-down of the optical potential depth at
time t = 0. The final Hamiltonian that governs the dynamics
following the above scenario is given by

Hf (g,V0;f ) = H0(g,V0;in) + δV0

V0;in

N∑
k=1

Vtr (xk), (12)

with V0;in, V0;f being the initial and final potential depth,
respectively, δV0 = V0;f − V0;in < 0 due to the reduction of
the barrier, and Vtr being the lattice potential.

To examine the response of the system after the quench we
initially rely on the fidelity Fλ(t). We consider quenches of the
barrier down to V0;f = 2.0, where the lattice is quite shallow
and includes only the first Wannier energy level while the
others are considered as delocalized. Indeed, Fig. 10(a) shows
in a transparent way the instantaneous fidelity as a function of
the final lattice depth. The rise of two different dynamical
regions is observed. In the first region (5.0 < V0;f < 8.0)
the overlap is rather large with a minimum of the order of
80%, while in the second region (2.0 < V0;f < 5.0) it can
even reach 25% during the evolution. As we shall demonstrate
below, the response of the system following this protocol is
drastically different from that obtained through an interaction
quench for fillings ν < 1 where the dynamics is dominated
by the interwell tunneling. In particular, one can excite more
on-site dynamical modes and even use a barrier quench on
top of an interaction quench in order to excite the cradle
mode. To indicate the latter and also to trigger more efficiently
the dynamical modes from here on we mainly proceed by
performing a simultaneous barrier and an interaction quench
to weak interactions, i.e., gf = 0.02. Figure 10(b) presents the
fidelity during the dynamics induced by different quenches
of the lattice depth and a simultaneous interaction quench
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FIG. 11. (Color online) (a) The fluctuations δρ(x,t) of the one-body density, for an eight-well setup with N = 5, caused by a sudden
negative barrier quench from V0;in = 8.0 to V0;f = 4.0 and a simultaneous interaction quench from gin = 5.0 to gf = 0.02. (b) The intrawell
asymmetry �ρ2(t) for the second well of the eight-well setup for a barrier quench (red solid curve) to V0;f = 4.0 and for the combined quench
scenario, i.e., barrier and interaction quench, with final parameters V0;f = 4.0 and gf = 0.02 (blue dashed curve).

to gf = 0.02. The dynamical response of the system shows
four different regions during the evolution. In the first (white
part) the system is close to the initial state with minimal
percentage up to 80%, while the second (yellow) and the
third (light-red) regions indicate that the system significantly
departs from the initial state with a percentage of the order of
50% and 30%, respectively. The latter regions correspond to
transition states following the combined quench. Finally, in the
fourth section (dark-red) the system is driven to a completely
different state possessing a maximal overlap of the order of
10%. In particular, for a fixed overlap a quadratic response of
the system as a function of the quench amplitude is observed.

To analyze further the response of the system, Fig. 10(c)
illustrates some profiles of the fidelity in the course of
the dynamics for different quenches. The fidelity exhibits a
quadratic decay for short times, while after a characteristic time
τc(δV0) it oscillates around a constant value F0(δV0), which
depends on the quench amplitude such that it is larger for a
smaller quench. The observed short-time quadratic behavior
can be easily explained as follows. Let |	0〉 be the initial
eigenstate of H0, and |	(δt)〉 the corresponding state after a
short-time interval δt . Then the short-time expansion of the
overlap reads

|〈	0|	(δt)〉|2 = 1 − (δt/τc)2 + O[(δt)4], (13)

τ−1
c = [〈	(δt)|H 2

f |	(δt)〉 − 〈	(δt)|Hf |	(δt)〉2]1/2 is the
quench characteristic time τc(δV0) or so-called Zeno time
[34,46]. Especially, we observe that the time τc(δV0) depends
on the quench amplitude; i.e., for smaller quenches it becomes
larger due to the smaller energy difference between the pre-
and postquench states, and the system cannot equilibrate fast.
Furthermore, the rapid small amplitude oscillations during the
decay are a consequence of the quantum interference and
are predominantly due to the overbarrier transport induced
by the quench. Thus, they are also a presignature of the
cradle mode, which is discussed below. The fact that at least
some frequencies of the cradle mode could be indirectly
observed in the fidelity spectrum is not surprising. Indeed,
from the expansion of the fidelity [see Eq. (8)] in terms of
the number states it is obvious that when the contribution of
the excited band states, that refer to the cradle, is significant

the mode should also be observed in the fidelity spectrum.
For smaller quenches these amplitude oscillations fade out,
thereby indicating that the cradle is very weak.

Furthermore, in order to unravel the crossover between
a diabatic and an adiabatic quench, let us consider a time-
dependent scenario of the form V (t ; τ ) = V0;in + (V0;f −
V0;in) tanh(t/τ ). To obtain the physically relevant time scales,
let us rescale the time t in units of the quench characteristic
time scale τH (δV0) ∼ 1/�ε(δV0), where �ε = ε(V0;in; gin) −
ε(V0;f ; gf ) is the energy difference between the prequenched
and the postquenched system. Figure 10(d) demonstrates the
fidelity in the course of the dynamics for an interaction
quench to gf = 0.02 and the same final potential depth
V0;f = 4.4(Vin = 8.0) for different ramp rates τ . A direct
observation, here, is that the system has a similar quadratic
response (for short times) with respect to the quench, being
accompanied by small amplitude oscillations especially for
fast quenches, τ < 28τH . This indicates that the characteristics
of the dynamics, such as the excitation modes, remain also for
finite rates. By considering large rates τ the switch on of the
energy difference is sufficiently slow, and an eigenstate of the
initial Hamiltonian becomes approximately an eigenstate for
the instantaneous final Hamiltonian. In this manner, we tend
to approach the adiabatic limit and the system equilibrates in a
slower manner while the small amplitude fast oscillations tend
to disappear. Note that for smaller relative quench amplitudes
the adiabatic limit is attained for smaller ramp rates due to the
reduced impact of the quench.

The reduction of the lattice depth allows for an initially
delocalized boson to overcome the barrier if its kinetic energy
dominates with respect to the potential energy. Then it is
possible to perform a collision with a second particle on
the neighboring site and a cradle state can be generated.
Figure 11(a) illustrates from the perspective of the relative
density δρ(x,t) the evolution of the system after a negative
change of the lattice depth from V0;in = 8.0 to V0;f = 4.0 and a
simultaneous interaction quench from gin = 5.0 to gf = 0.02.
The dynamics shows the propagation of interwell tunneling
via the population transport along the lattice, following the
evolution of the bright regions. The corresponding propagation
velocity is smaller for a smaller quench of the barrier.
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Furthermore, locally we observe the emergence of the cradle
mode for the inner-well dynamics as a consequence of the
overbarrier transport. However, this mode is hardly visible
in Fig. 11(a) due to the presented long evolution time and
possesses a small amplitude as we shall demonstrate below.

The cradle mode refers to the inner-well oscillations
between at least two bosons in the same well. The dominant
number states for such a process exemplified using the first
well are |2,0,1,1,1,0, . . .〉0 and |2,0,1,1,1,0, . . .〉1, with a
straightforward extension for the remaining wells. To identify
the presence of the cradle mode for the present setup we show
in Fig. 11(b) the intrawell asymmetry [�ρα(t)], for the second
well of the lattice, as a function of time, and two different
quench scenarios, i.e., an instantaneous ramp-down of the
lattice depth (red solid curve) and its combination with a
simultaneous interaction quench to gf = 0.02 (blue dashed
curve). In the latter case the resulting amplitude is larger,
which is due to the simultaneous interaction quench. For an
incommensurate setup with filling ν > 1 this amplitude is even
more larger as the initially delocalized particles, energetically
close to the barrier, render the system sensitive even to a small
perturbation.

IV. CONCLUSIONS AND OUTLOOK

We have investigated the quantum dynamics of strongly
interacting bosons following a quench either to a weakly
interacting final state or to a lattice with lowered barriers. The
observed normal modes consist of the interwell tunneling,
a local breathing, and a cradle mode. Each of these modes
have been explained in detail, among others, within the
concept of multiband Wannier number states which capture
the population of excited states. The dominant Fock space
for each mode has been identified showing the inclusion
of higher-band contributions. In this manner, conceptual
differences concerning the ingredients of each mode as well
as the corresponding excitation process in comparison with
the case of positive interaction quenched [14] superfluids have
been demonstrated.

The interwell tunneling refers mainly to a direct population
transport among the individual wells. On the other hand,
the local breathing mode refers to expansion and contraction
dynamics of the bosons in an individual well. The cradle mode
corresponds to a localized wave packet oscillation. For the
interaction quench scenario where we start from a strongly
interacting state and quench back to weak interactions it is
shown that the generation of the cradle mode is due to the initial
delocalization. Therefore it can be observed only for setups
with filling ν > 1, while for the case of ν � 1 it can be excited
only with the aid of a barrier quench. This is a major difference
in comparison to a positively interaction quenched superfluid
where due to import of energy in the system we allow for the
over-barrier transport independently of the filling factor. The
fidelity function has been employed in order to investigate the
response of the system and its long-time evolution with respect
to the quench amplitude, as well as to show the dynamical
crossover from a sudden to an adiabatic parameter change. By
considering time-dependent quenches, i.e., different quench
rates, or the modulation of various potential parameters of

the Hamiltonian we proposed scenarios to control the excited
modes by manipulating their frequencies.

Our developed understanding of the excitation modes as
well as the tunneling dynamics may pave the way to a control
of the nonequilibrium dynamics of such strongly correlated
systems. For instance, the finite ramp rate of a time-dependent
quench may allow for the control of the normal modes
or the transport of a definite number of atoms. There are
many ways to proceed in this direction. As an example we
mention the nonequilibrium dynamics of mixtures of different
bosonic species in order to unravel their excitation modes or to
create schemes for selective transport of an individual bosonic
component.
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APPENDIX: THE COMPUTATIONAL METHOD,
ML-MCTDHB

Our analysis has been performed via the multilayer multi-
configuration time-dependent Hartree method for bosons (ML-
MCTDHB) [24,25], which constitutes an ab initio method for
the stationary properties but in particular the nonequilibrium
quantum dynamics of bosonic systems. For a single species it is
identical to MCTDHB, which has been established [26,27,47]
and applied extensively [47–50].

The advantage of the MCTDH-type methods [51] in
comparison to other exact computational methods is the repre-
sentation of the wave function by a set of variationally optimal
time-dependent orbitals. In turn, this implies the truncation
of the total Hilbert space to an optimal one by employing
a time-dependent moving basis in which the system can
be instantaneously optimally represented by time-dependent
Hartree products. The use of time-dependent orbitals is the
key for the numerically exact treatment, i.e., we need a much
smaller set of time-adaptive orbitals in order to achieve the
same level of accuracy compared to the case of a static basis. To
be self-contained let us briefly introduce the basic concepts of
the method and discuss how it can be adapted to our purposes.

The main underlying idea of the MCTDHB method
is to solve the time-dependent Schrödinger equation
(i�∂t − H ) 	(x,t) = 0 as an initial value problem. The ex-
pansion of the many-body wave function which is a linear
combination of time-dependent permanents reads

|	(t)〉 =
∑

�n
C�n(t) |n1,n2, . . . ,nM ; t〉, (A1)

where M is the number of orbitals and the summation is over
all possible combinations which retain the total number of
bosons. The permanents in terms of the creation operators
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a
†
j (t) for the j th orbital ϕj (t) are given by

|n1,n2, . . . ,nM ; t〉
= 1√

n1!n2! · · · nM !
(a†

1)n1 (a†
2)n2 · · · (a†

M )nM |vac〉, (A2)

which satisfy the standard bosonic commutation relations
[ai(t),aj (t)] = δij , etc. To proceed further, i.e., to determine
the time-dependent wave function |	〉 we have to find
the equations of motion for the coefficients C�n(t) and the
orbitals (which are both time-dependent). For that purpose
one can employ various schemes such as the Lagrangian,
McLachlan [52], or the Dirac-Frenkel [53,54] variational
principle. Following the Dirac-Frenkel variational principle
〈δ	|i∂t − Ĥ |	〉 = 0 we can determine the time evolution
of all the coefficients C�n(t) in the ansatz (A1) and the time
dependence for the orbitals

∣∣ϕj

〉
. In this manner, we end up with

a set of M nonlinear integrodifferential equations of motion
for the orbitals, which are coupled to the (N+M−1)!

N!(M−1)! linear
equations of motion for the coefficients. These equations are
the well-known MCTDHB equations of motion [26,27,47,55].

In terms of our implementation we have used a discrete
variable representation for the orbitals and a sin-DVR which
intrinsically introduces hard-wall boundaries at both ends
of the potential (i.e., zero value of the wave function on
the first and the last grid point). For the preparation of our
initial state we rely on the so-called relaxation method in
terms of which we can obtain the lowest eigenstates of the
corresponding n-well setup. The key idea is to propagate some
initial wave function 	(0) by the nonunitary e−Hτ (propagation
in imaginary time). As τ → ∞, this exponentially damps out
any contribution but that stemming from the ground state
like e−Emτ . In turn, we change either the initial interparticle
interaction or the depth of the optical lattice abruptly or in
a time-dependent manner in order to study the evolution of
	(x1,x2, . . . ,xN ; t) in the n-well potential within MCTDHB.
Finally, note that in order to ensure the convergence of our
simulations, e.g., for the triple well, we have used up to
11 single particle functions, thereby observing a systematic
convergence of our results for sufficiently large spatial grids.
Another criterion for ensuring convergence is the population
of the lowest occupied natural orbital, which is kept for each
case below 0.1%.
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T. W. Hänsch, Phys. Rev. Lett. 75, 4583 (1995).

[4] C. L. Hung, X. Zhang, L. C. Ha, S. K. Tung, N. Gemelke, and
C. Chin, New J. Phys. 13, 075019 (2011).

[5] J. P. Ronzheimer, M. Schreiber, S. Braun, S. S. Hodgman,
S. Langer, I. P. McCulloch, F. Heidrich-Meisner, I. Bloch, and
U. Schneider, Phys. Rev. Lett. 110, 205301 (2013).

[6] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London) 452,
854 (2008).

[7] M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauß, T.
Fukuhara, C. Gross, I. Bloch, C. Kollath, and S. Kuhr, Nature
(London) 481, 484 (2012).

[8] S. S. Natu and E. J. Mueller, Phys. Rev. A 87, 053607 (2013).
[9] E. Altman and A. Auerbach, Phys. Rev. Lett. 89, 250404 (2002).

[10] D. Chen, M. White, C. Borries, and B. DeMarco, Phys. Rev.
Lett. 106, 235304 (2011).

[11] H. Elmar, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner,
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[51] M. H. Beck, A. Jäckle, G. A. Worth, and H.-D. Meyer, Phys.

Rep. 324, 1 (2000).
[52] A. D. McLachlan, Mol. Phys. 8, 39 (1964).
[53] J. Frenkel, in Wave Mechanics 1st ed. (Clarendon Press, Oxford,

1934), pp. 423–428.
[54] P. A. M. Dirac, Proc. Cambridge Philos. Soc. 26, 376 (1930).
[55] J. Broeckhove, L. Lathouwers, E. Kesteloot, and P. Van Leuven,

Chem. Phys. Lett. 149, 547 (1988).

033611-14

97



SCIENTIFIC CONTRIBUTIONS

4.1.3 Quantum Dynamical Response of Ultracold Few-Boson Ensembles
in Finite Optical Lattices to Multiple Interaction Quenches

98



PHYSICAL REVIEW A 95, 053610 (2017)

Quantum dynamical response of ultracold few-boson ensembles in finite optical lattices
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The correlated nonequilibrium quantum dynamics following a multiple interaction quench protocol for few-
bosonic ensembles confined in finite optical lattices is investigated. The quenches give rise to an interwell
tunneling and excite the cradle and a breathing mode. Several tunneling pathways open during the time interval
of increased interactions, while only a few occur when the system is quenched back to its original interaction
strength. The cradle mode, however, persists during and in between the quenches, while the breathing mode
possesses distinct frequencies. The occupation of excited bands is explored in detail revealing a monotonic
behavior with increasing quench amplitude and a nonlinear dependence on the duration of the application of
the quenched interaction strength. Finally, a periodic population transfer between momenta for quenches of
increasing interaction is observed, with a power-law frequency dependence on the quench amplitude. Our results
open the possibility to dynamically manipulate various excited modes of the bosonic system.

DOI: 10.1103/PhysRevA.95.053610

I. INTRODUCTION

Ultracold atoms in optical lattices offer the opportunity to
realize a multitude of systems and to study their quantum
phenomena [1–5]. Moreover, recent experimental advances in
optical trapping allow one to control the size and atom number
of these quantum systems, and furthermore include the tunabil-
ity of the atomic interactions via Feshbach resonances [6–8].
A promising research direction in this context is the nonequi-
librium quantum dynamics for finite atomic ensembles. Here,
the most frequently considered setting is a quantum quench
(see Refs. [9–11] and references therein), where one explores
the quantum evolution after a sudden change of an intrinsic
system parameter such as the interaction strength [12–15].
A complicating feature of the nonequilibrium dynamics is the
presence of interactions at a level that often precludes the use of
a perturbative analysis and/or mean-field (MF) approximation.
Specifically, the dynamics beyond the paradigm of linear
response has been a subject of growing theoretical interest
[16–24] triggered by the recent progress in ultracold atom
experiments particularly in one spatial dimension [25–28].

Referring to few-body systems in finite optical lattices, it
has been shown [14,15] that following an interaction quench
several tunneling pathways can be excited as well as collective
behavior such as the cradle or breathing mode are observed.
Furthermore, a sudden raise of the interactions [14] couples
one of the tunneling modes with the cradle mode giving rise
to a resonant behavior. On the other hand, a sudden decrease
of the interparticle repulsion [15] excites the cradle mode only
for setups with a filling larger than unity and no mode coupling
can be observed. From this it is evident that in order to steer
the dynamics the considered quench protocol plays a key role.
Naturally, one can then generalize the underlying protocol to a
multiple interaction quench (MIQ) scenario, which consists of
different sequences of single quenches. A specific case would
be a quench followed by its “inverse,” namely by going back to
the original interaction strength (single pulse). This enables the
system to dynamically return to its original Hamiltonian within
certain time intervals and the question emerges what properties

induced by the quench persist during the longer time evolution.
Very recently [29], a study of the effects of the MIQ protocol
on the one- and two-body correlation functions of a three-
dimensional ultracold Bose gas has been performed using the
time-dependent Bogoliubov approximation. It has been shown
that the system produces more elementary excitations with
increasing number of MIQs, while the correlation functions
tend to a constant value for long evolution times.

In the present work, we provide a multimode treatment of
few bosons in finite optical lattices in one spatial dimension,
where all correlations are taken into account. Such an approach
is very appropriate in order to extract information on the
resulting many-body dynamics and in order to obtain the
complete excitation spectrum. This will allow us to explore
how the MIQ protocol, reflected by the different temporal
interaction intervals, affects the system dynamics and as a
consequence the persistence of the emergent various collective
modes during the evolution.

Several protocols varying the number of quenches are
hereby investigated. Our focus is on the regime of intermediate
interaction strengths, where current state of the art analytical
approaches are not applicable. The lowest-band tunneling
dynamics involves several channels following a quench of in-
creasing interaction, while only a few persist when the system
is quenched back. Furthermore, the intrawell excited motion is
described by the cradle and the breathing modes being initiated
by the overbarrier transport which is a consequence of the
quench to increased interactions. We find that in the course
of the MIQ the cradle mode persists for all times, while the
breathing mode possesses distinct frequencies depending on
the different time intervals of the MIQ. In contrast to the single
quench scenario [14,15] here by tuning the parameters of the
MIQ we can manipulate both the interwell tunneling and the
intrawell excited modes. Moreover, the higher-band excitation
dynamics is explored in detail. A monotonic increase of the
excited to higher-band fraction for larger quench amplitudes
is observed and a nonlinear dependence on the time interval
of a single quench (pulse width) is revealed. Remarkably, the
interplay between the quench amplitude and the pulse width
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yields a tunability of the higher-band excitation dynamics. This
observation indicates a substantial degree of controllability of
the system under a MIQ protocol, which is an important result
of our work. Moreover, it is shown that in the course of a certain
pulse the presence of increased interactions leads to a periodic
population transfer between different lattice momenta, while
for the time intervals of the initial interaction strength this does
not happen. The frequency of the above-mentioned periodicity
possesses a power-law dependence on the quench amplitude.

This work is organized as follows. In Sec. II we introduce
the quench protocol and the multiband expansion as an analysis
tool. Section III focuses on the detailed investigation of the
impact of the MIQ on the quantum dynamics for filling factors
larger than unity, whereas Sec. IV presents the dynamics for
filling factors smaller than unity. We summarize our findings
and present an outlook in Sec. V. The Appendix describes our
computational method and delineates the convergence of our
numerical results.

II. QUENCH PROTOCOL AND MULTIBAND EXPANSION

We consider N identical bosons each of mass M confined
in an m-well optical lattice. The many-body Hamiltonian reads

H =
N∑

i=1

(
p2

i

2M
+ Vtr(xi)

)
+

∑
i<j

Vint(xi − xj ,τ,np,t), (1)

where the one-body part of the Hamiltonian builds upon
the one-dimensional lattice potential Vtr(x) = V0sin2(kx). The
latter is characterized by its depth V0 and periodicity l, with
k = π/l denoting the wave vector of the counterpropagating
lasers which form the optical lattice. To restrict the infinitely
extended trapping potential Vtr(x) to a finite one with m wells
and length L, we impose hard wall boundary conditions at
the appropriate positions, xm = ±mπ

2k
. Furthermore, Vint(xi −

xj ,t,τ,np) = g(t,τ,np)δ(xi − xj ) corresponds to the contact
interaction potential between particles located at positions {xi}
with i = 1,2, . . . ,N .

To trigger the dynamics we employ a MIQ protocol. At
t = 0 the interatomic interaction is quenched from the initial
value gin to a final amplitude gf , maintaining gf (positive
half) for time τ (pulse width). Then, the interaction strength is
quenched back from gf to its initial value gin, maintaining this
value gin (negative half) for time τ . This procedure is repeated
according to the number of the pulses np; see Fig. 1 for the
case of three pulses. Therefore, our protocol reads

g(t,τ,np) = gin + (gf − gin)

×
np−1∑
i=0

[�(t − 2iτ )�((2i + 1)τ − t)]. (2)

Here, each pulse is modeled by a temporal step function de-
pending on the parameters np and τ which refer to the number
of the considered pulses and the pulse width, respectively.
Moreover, δg = gf − gin denotes the quench amplitude of
the MIQ. Experimentally, the effective interaction strength in
one dimension can be tuned either via the three-dimensional
scattering length by using a Feshbach resonance [8,30] or
by a change of the corresponding transversal confinement
frequency ω⊥ [31–33].

FIG. 1. Sketch of a triple pulse MIQ protocol, g(t), with pulse
width τ . gin (gf ) refer to the pre-(post-) quenched interaction strength
and δg = gf − gin is the pulse or quench amplitude.

For reasons of simplicity we rescale the Hamiltonian (1) in
units of the recoil energy ER = h̄2k2

2M
. Thus the length, time,

and frequency scales are given in units of k−1, ω−1
R = h̄E−1

R ,
and ωR , respectively. To include three localized single-particle
Wannier states in each well we employ a sufficiently large
lattice depth of V0 = 10.0ER . Finally, for convenience we
set h̄ = M = k = 1. Hence all quantities below are given in
dimensionless units.

To solve the underlying many-body Schrödinger equation
we employ the multiconfiguration time-dependent Hartree
method for bosons (MCTDHB) [34,35]. In contrast to the MF
approximation, within this method we take all correlations
into account and employ a variable number of variationally
optimized time-dependent single-particle functions (see the
Appendix for more details). Below, when comparing with the
MF approximation we will refer to MCTDHB as the correlated
approach. For the interpretation and analysis of the induced
dynamics it is preferable to rely on a time-independent many-
body basis rather than the time-dependent one used for our
numerical calculations. We therefore project the numerically
obtained wave function on a time-independent number state
basis consisting of single-particle states localized on each
lattice site. Thus the total wave function is expanded in terms of
noninteracting multiband Wannier number states. The Wannier
states between different wells possess a fairly small overlap
for not too high energetic excitation as the employed lattice
potential (V0 = 10.0ER) is deep enough. Then, a many-body
bosonic wave function for a system of N bosons, m wells, and
j localized single-particle states [14,15] reads

|�(t)〉 =
∑

�n
C�n(t) |�n〉 , (3)

where |�n〉 ≡ |⊗j−1
λ=0 n

(λ)
1 ,

⊗j−1
λ=0 n

(λ)
2 , . . . ,

⊗j−1
λ=0 n(λ)

m 〉 denotes
the multiband Wannier number state. Each element can be
decomposed as

⊗j−1
λ=0 n

(λ)
i = n

(0)
i ⊗ n

(1)
i ⊗ · · · ⊗ n

(j−1)
i , where

n
(λ)
i denotes the number of bosons being localized in

the ith well, and λth band satisfying the closed subspace
constraint

∑m
i=1

∑j−1
λ=0 n

(λ)
i = N . For instance, in a setup
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with N = 4 bosons confined in a triple well m = 3, which
is our workhorse in the following, which includes λ = 3
single-particle states, the state |1(0),1(0) ⊗ 1(1),1(0)〉 indicates
that in every well one boson occupies the zeroth excited
band, but in the middle well there is one extra boson
localized in the first excited band. For this setup we can
identify four different energetic classes of number states.
The single pairs {|2(I1),1(I2),1(I3)〉+ �} (SP), the double pairs
{|2(I1),2(I2),0(I3)〉+ �} (DP), the triples {|3(I1),1(I2),0(I3)〉+ �}
(T), and the quadruples {|4(I1),0(I2),0(I3)〉+ �} (Q), where
� stands for all corresponding permutations and I =
(I1,I2,I3) indicates the order of the degree of excitation.
For our purposes we only consider the corresponding sub-
class with isoenergetic states, e.g., for the double pairs
{|2(I1),2(I2),0(I3)〉,|0(I1),2(I2),2(I3)〉,|2(I1),0(I2),2(I3)〉}. To charac-
terize the eigenstates in terms of number states we adopt the
compact notation |s〉α;I, where s denotes the spatial occupation
and α relates to each of the above classes. For instance, {|s〉1;I}
with I = (1,1,0) represents

{|2(1),1(1),1(0)〉,|2(1),1(0),1(1)〉,|1(0),2(1),1(1)〉,
|1(0),1(1),2(1)〉,|1(1),1(0),2(1)〉,|1(1),2(1),1(0)〉}

and s runs from 1 to 6.

III. QUENCH DYNAMICS FOR FILLING ν > 1

In this section the nonequilibrium dynamics following the
MIQs for a system with filling factor ν > 1 is analyzed. The
system is initially prepared in the ground state of four bosons
confined in a triple well with interparticle repulsion gin = 0.1.
It is thus dominated by the number state |10,20,10〉. To induce
the dynamics we focus on a double and five pulse quench
protocol [see Eq. (2) for np = 2 or np = 5 and τ = 50 or
τ = 25, respectively] and compare with the results for a single
interaction quench.

A. Tunneling dynamics

To investigate the dynamical response we employ the
fidelity evolution F (t ; τ ) = | 〈�(0)|�(t ; τ )〉 |2, which is the
overlap between the instantaneous and the initial wave function
[36–39]. Following a single quench, see Fig. 2(a), two different
dynamical regions arise in the fidelity evolution. For 0.1 �
gf � 1.0 the system is only weakly perturbed since F (t) ≈ 1.
For gf � 1.0 the fidelity deviates significantly from unity and
exhibits in time an oscillatory pattern. These oscillations are
amplified with increasing quench amplitude and characterized
both by a higher amplitude and frequency due to the increasing
deposition of energy into the system. For the double pulse
protocol the dynamical response is altered, as compared to
the single quench scenario, and it is characterized by four
distinct temporal regions; see Fig. 2(b). For t < τ the same
pattern as for the single quench is, of course, observed as
the two protocols are identical within this time interval,
i.e., g(t < τ ) = gf . At t = τ the system is quenched back
to gin and the oscillation of the fidelity almost vanishes.
Then, F (τ < t < 2τ ) ≈ F (t = τ ), where the value F (t = τ )
depends strongly on the phase of the oscillation at t = τ and
therefore on δg. During the positive half of the second pulse
2τ < t < 3τ an oscillatory pattern is observed, possessing the
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FIG. 2. As a function of the quench amplitude δg are shown the
following: (a),(b) fidelity evolution for a single quench and a double
pulse (np = 2) MIQ, respectively, and (c),(d) the corresponding
fidelity spectra. Parameter values are gin = 0.1, τ = 50, and N = 4.

same frequencies with those occurring during the positive
half of the first pulse. The system is driven further away
from the initial state as more energy is added. Note that the
dominant frequency of the oscillation depends on δg as in the
single quench scenario; see Fig. 2(a). At t = 3τ the system
is quenched back to gin and the oscillatory behavior of the
response again vanishes. Hereafter, F (t > 3τ ) ≈ F (t = 3τ ).
Remarkably enough, for 3.2 � gf � 3.7, the fidelity reduces
significantly after the second pulse to the value F (t > 3τ ) =
0.44 at gf = 3.4. The existence of such strong response
regions for certain combinations of δg and τ is caused by
the MIQ scenario and will be addressed below in more detail.

To identify the corresponding tunneling modes that partic-
ipate in the dynamics we inspect the spectrum of the fidelity
[14,15,40] for the single quench [Fig. 2(c)] and the double
pulse [Fig. 2(d)] protocols. Both scenarios excite the same
frequency modes possessing though some differences, caused
by the fact that in the finite time intervals that the system is
quenched back within the double pulse protocol, the response
remains mainly stable. The observed modes triggered by a
single (double-pulsed) quench can be energetically categorized
as follows: (α1) [(α′

1)] tunneling within the SP category, (α2)
[(α′

2)] tunneling between the SP and DP categories, and (α3)
[(α′

3)] tunneling between the SP and T categories. The latter
two processes are reminiscent of the atom pair tunneling which
has been experimentally detected in driven optical lattices
[41,42]. To gain more insight into the spectrum of the double
pulse scenario we have splitted the evolution into the different
temporal regions that the protocol imposes, i.e., g = gf or
g = gin. As nearly no oscillations occur in the negative halves
of the double pulse (τ < t < 2τ and t > 3τ ) all tunneling
branches except a1 are then suppressed. Note here that, in
principle, for g = gin all branches possess very small and
nearly equal frequencies which are resolvable in the case of a
large enough τ . However, for t < τ (positive half of the first
pulse) and 2τ < t < 3τ (positive half of the second pulse) the
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above-mentioned three modes occur; see also Fig. 2(d). The
latter enables us to dynamically manipulate or even switch
on and off certain tunneling processes due to the presence
or absence of increased interactions. Finally, we remark that
the branches denoted, e.g., by (α4),(α5) refer to higher-band
excitations and will be addressed below.

B. Dominant intrawell excitations: The cradle
and the breathing modes

Let us focus on the cradle and the breathing mode
in the following. The cradle mode represents a dipolelike
intrawell oscillation in the outer wells of the finite lattice.
Following an interaction quench it is induced by an overbarrier
transport of a boson initially residing in the central well (for
a detailed description on the generation of this mode, see
[14,15]). It breaks the parity symmetry within the outer wells
and can thus be quantified by the corresponding intrawell
asymmetry of the wave function. For instance, in the left
well �ρL(t) = ρL,1(t) − ρL,2(t), where ρL,1(t) and ρL,2(t)
denote the spatially integrated densities of the left and the
right half of the well. To investigate the frequencies that
characterize the cradle mode and how they are influenced
by the different quench protocols we employ the spectrum
�ρL(ω) = 1/π

∫
dt eiωt�ρL(t). Previously [14] it has been

shown that following a single interaction quench �ρL(ω),
as a function of the quench amplitude, possesses mainly
two distinct frequency branches [see Fig. 3(a)]. The latter
refer to a tunneling mode |2(0),1(0),1(0)〉 � |3(0),0(0),1(0)〉
[see branch b2 in Fig. 3(a)] and an interband overbarrier
process |1(0),2(0),1(0)〉 � |1(0) ⊗ 1(1),1(0),1(0)〉 [see branch b3

in Fig. 3(a)] being identified as the cradle mode. Remarkably,

ω
(u
n
it
s
o
f
ω
R
)

2

4

6

ω
(u
n
it
s
o
f
ω
R
)

δg (units of ERk
−1)

1  2  3  4  5  

2

4

6

δg (units of ERk
−1)

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3
0

1

2

3

4
x 10

(a) (b)

(d)(c)

(b4)

(b3)

(b1)

(b4)

(b3)

(b1)

(c1)(c1)

(c2)
(c2)

(c2)

(c3)

(b2) (b2)

FIG. 3. As a function of the quench amplitude δg are shown
the following: (a),(b) spectrum of the intrawell asymmetry �ρL(ω)
following a single quench and a double pulse (np = 2) MIQ,
respectively. Spectrum of σ 2

M (ω) following (c) a single quench and
(d) a double pulse MIQ protocol. Parameter values are gin = 0.1,

τ = 50, and N = 4.

these two modes come into resonance in a certain region of
quench amplitudes [see the dashed rectangle in Fig. 3(a)], and
therefore it is possible to couple the interwell (tunneling) with
the intrawell (cradle) dynamics. However, following a double
pulse, see Fig. 3(b), the aforementioned resonance is hardly
visible as the tunneling mode is less pronounced compared
to the single quench scenario [compare also Figs. 2(c) and
2(d)]. Indeed, the tunneling mode [see branch b′

2 in Fig. 3(b)]
is present only when g(t) = gf , while the cradle mode [see
branch b′

3 in Fig. 3(b)] persists also after we quench back to gin.
The above can be explained as follows: when the interaction
strength is reduced, the bosons do not possess the required
energy to perform a second-order tunneling process, and
therefore the SP to T tunneling mode, see b′

2, is absent when
we quench back. On the contrary, the cradle mode persists
also when g(t) = gin, t > 0 as it is an intrawell mode and
has already been initialized previously. Therefore, a tunneling
process is required to initialize the cradle mode but is not a
prerequisite for it to persist. As a consequence the coupling
between the cradle mode and the SP to T tunneling mode
disappears when g = gin and occurs only for g = gf . Thus,
using a MIQ protocol, one can switch on and off the above
described mode resonance [see also the dashed rectangle in
Fig. 3(b)]. Finally, we note that the energetically lower visible
branch, e.g., b1, refers to tunneling within the SP mode [see
also Fig. 2(c)], while the energetically upper branch in both
spectra located at ω ≈ 3.5 belongs to the breathing mode and
is explained below in detail.

The breathing mode refers to an expansion and contrac-
tion of the bosonic cloud and can be excited by varying
the interaction strength or the frequency of the trapping
potential [43–45]. Here, due to the lattice symmetry it is
expected [14,15] to be more prone in the central well.
To identify the breathing mode we employ the second
moment σ 2

M (t) = 〈�(t)| P̂M (x − X(M)
c.m.)

2P̂M |�(t)〉 within the
spatial region of the middle well (denoted by the index M).
Here, the operator P̂M = ∫ π/2

−π/2 dx |x〉 〈x| projects onto the

spatial region of the middle well and X(M)
c.m. = ∫ π/2

−π/2 dx(x −
xM

0 )ρM (x)/
∫ π/2
−π/2 dx ρM (x), xM

0 , and ρM (x) refer to the cen-
ter of mass, the center position, and the single-particle
density of the middle well, respectively. To investigate
the frequency spectrum of the breathing mode we employ
σ 2

M (ω) = 1/π
∫

dt eiωtσ 2
M (t) [46–48]. For a single interaction

quench, it has been shown [14] that σ 2
M (ω) possesses two

distinct frequency branches, shown in Fig. 3(c). The upper
branch (denoted as c2) refers to the second-order process
|10,10,10 ⊗ 12〉 � |10,20,10〉 � |10 ⊗ 12,10,10〉, which indi-
cates the presence of a global interwell breathing mode induced
by the overbarrier transport. The fact that the breathing mode is
also visible in the intrawell asymmetry spectrum [see Fig. 3(a)]
of the left (right) well is another indication that it is indeed a
global mode. The lower branch (denoted as c1) corresponds to
the interwell tunneling mode |10,20,10〉 � |20,10,10〉. Both of
the above branches weakly depend on the quench amplitude
δg. Turning to the double pulse [Fig. 3(d)], the above two
branches now indicated by c′

1 and c′
2 persist but also two

additional and gf -independent branches marked by c′′
2 and c3

appear above c′
2. Note here that ωc′′

2
= limgf →gin ωc′

2
showing

053610-4

102



QUANTUM DYNAMICAL RESPONSE OF ULTRACOLD FEW- . . . PHYSICAL REVIEW A 95, 053610 (2017)

that these branches stem from the same eigenfrequencies,
while the branch c′

3 refers to an admixture of higher-band
states. Importantly, the gf -independent branches exist only
during the time intervals of gin, i.e., for τ < t < 2τ and
t > 3τ , whereas the gf dependence occurs only during the
positive halves of the MIQ, i.e., for g = gf . To conclude,
the double pulse MIQ protocol gives rise to two additional
gf -independent branches of breathing dynamics. The latter
suggests that by tuning the intrinsic parameters of the MIQ
protocol one can steer the induced breathing dynamics.

C. Excitation dynamics

To gain a deeper understanding of the excitation dynamics,
we investigate in the following the occupation of higher-band
states during the time evolution. We consider the probability
to find N0 < N bosons in the λth band

P
(λ)
N0

(t ; τ ) =
∑

�n∈N (λ)
N0

|〈�n|�(t ; τ )〉|2, (4)

where the notation �n ∈ N (λ)
N0

denotes that the sum is per-

formed over the configurations N (λ)
N0

≡ {�n :
∑3

i=1

∑j−1
λ=0 n

(λ)
i =

4 and
∑3

i=1 n
(λ)
i = N0} that belong to the Hilbert space

consisting of four particles from which N0 reside in the λth
band.

The case of λ = 0 and N0 = N = 4 refers to the probability
to find all four bosons within the ground band, i.e., the ener-
getically lowest band. Then, the above excitation probability
reduces to P

(0)
N (t ; τ ) = ∑

�n∈N (0)
N

| 〈�n|�(t ; τ )〉 |2. To investigate
the impact of the quench amplitude δg we show in Fig. 4(a)
P

(0)
N (t ; τ ) following a five pulse MIQ protocol [see Eq. (2) for

np = 5 and τ = 25]. We observe that for gf � 1 the occupa-
tions P

(0)
N (t ; τ = 25) are approximately unity and thus within

this regime only to a minor degree excitations occur. However,
for gf > 1.0 an oscillatory pattern in time is formed [see also
Fig. 2(c)], indicating the consecutive formation of higher-band
excitations. In particular, within a positive half of the MIQ,
i.e., �τ < t < (� + 1)τ, � = 0,2,4,6,8, large amplitude oscil-
lations of P

(0)
N (t ; τ = 25) occur, while in the negative halves

of the MIQ, i.e., �τ < t < (� + 1)τ, � = 1,3,5,7 and t > 9τ ,
the oscillatory behavior of P

(0)
N (t ; τ = 25) almost vanishes

thereby forming an excitation plateau; see also Fig. 4(a1) which
presents P

(0)
N (2τ < t < 4τ ). In addition, focusing on t > 9τ a

nearly linear decrease of P
(0)
N (t > 9τ ; τ = 25) with increasing

δg is observed. This can be attributed to the fact that by
using higher quench amplitudes we import more energy to the
system and thus more excitations can be formed, though some
small deviations from this tendency exist, for instance, we
find a slightly lower P

(0)
N (t ; τ ) for gf = 3.8 than for gf = 3.9

[hardly visible in Fig. 4(a)]. To demonstrate the necessity of
correlations for the description of the excitation dynamics we
perform a comparison with the MF approximation. Figure 4(b)
presents P

(0)
N (t ; τ = 25) within the MF approximation for

varying δg. A similar qualitative overall behavior compared
to the above analysis is observed. For gf < 1 the occupations
P

(0)
N (t ; τ = 25) ≈ 1, while for gf � 1, P

(0)
N (t ; τ = 25) form

oscillatory patterns within the positive halves of the MIQ
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FIG. 4. Time evolution of the probability P
(0)
N (t ; τ = 25) to find

all four bosons within the ground band with respect to the quench
amplitude δg following a five pulse (np = 5) MIQ protocol. (a),(b)
P

(0)
N (t ; τ = 25) for varying δg including correlations and for the MF

approximation, respectively. The insets (a1),(b1) show P
(0)
N (t ; τ = 25)

of (a),(b), respectively, only within the second pulse. (c) Profiles of
P

(0)
N (t ; τ = 25) for different δg (see legend). For better visibility of

the oscillatory behavior during the positive half of the second pulse
we show in the inset P

(0)
N (45 < t < 80; τ = 25). The system consists

of four initially weakly interacting, gin = 0.1, bosons confined in a
triple well.

and remain steady in the negative halves of the MIQ [see
also Fig. 4(b1)]. However, P

(0)
N (t ; τ = 25) is always lower

when compared to the correlated approach; see Figs. 4(a)
and 4(b) and in particular Figs. 4(a1) and 4(b1), which show
P

(0)
N (t ; τ ) during the second pulse. Obviously, the oscillation

amplitudes during the positive halves of the MIQ as well
as the values of P

(0)
N (t ; τ ) for g = gin are larger within the

MF approximation than the correlated approach. In addition,
the linear dependence of P

(0)
N (t > 9τ ; τ = 25) is lost within

the MF approximation and therefore we cannot observe an
overall tendency of the excitation probability with increasing
interparticle repulsion. To explicitly demonstrate the excitation
process we show in Fig. 4(c) various profiles of P

(0)
N (t,τ ),

taken from Fig. 4(a), for different δg. For very short times
P

(0)
N (t,τ ) drops to a lower value and subsequently oscillates

with an amplitude smaller than the initial decrease exhibiting
multiple frequencies. Note that both the initial decrease as
well as the amplitude and the oscillation frequency depend on
δg; see also branch c′

2 in Fig. 3(d). During the positive halves
of the MIQ, i.e., �τ < t < (� + 1)τ, � = 0,2,4,6,8, P

(0)
N (t ; τ )

oscillates with a decreasing amplitude (particularly for larger
δg), but P̄ (0)

N (τ ) = 1/T
∫ (�+1)τ
�τ

dt P
(0)
N (t ; τ ) increases [e.g., see

the dashed red line in the inset of Fig. 4(c)]. To gain more
insight into the oscillation frequencies during the positive half
of the MIQ protocol, we calculate the spectrum P

(0)
N (ω) =
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corresponding profiles of P

(0)
N (t ; τ ) for different values of τ (see

legend). (c),(d) The same as above but for δg = 2.9. The insets
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consists of four initially weakly interacting gin = 0.1 bosons in a
triple well.

1/π
∫ T

0 dt P
(0)
N (t)eiωt . The latter shows two dominant branches

from which the first one matches the frequency of the cradle
mode [see branch b′

3 in Fig. 3(b)] and the other one corresponds
to the frequency of the weakly δg-dependent breathing mode
[see branch c′

2 in Fig. 3(d)]. At the end of the positive half,
the amplitude of the above-mentioned oscillation suddenly
decreases and P

(0)
N (t ; τ ) remains almost steady exhibiting only

tiny oscillations (excitation plateaus). We again remark that the
value of P

(0)
N (t ; τ ) in a negative half of a certain pulse, where

the excitation plateaus appear, strongly depends on the phase
of the oscillation at t = �τ, � = 1,3, . . . ,9 (see also below).

Next, we focus on the impact of the pulse width τ on the ex-
citation dynamics. Fig. 5(a) shows P

(0)
N (t ; τ ) for varying pulse

width and employing a five pulse MIQ protocol with gf = 1.0.
Overall, we observe that P (0)

N (t ; τ ) for fixed τ exhibits a similar
oscillatory pattern as before within the positive halves of the
MIQ and the formation of the excitation plateaus within the
negative halves of the MIQ, see also Fig. 5(a1). Also, P (0)

N (t ; τ )
decreases with each additional pulse and remains almost steady
after the last pulse. To illustrate the latter behavior, several
profiles of P

(0)
N (t ; τ ) are shown in Fig. 5(b). In contrast to

the approximately linear δg-dependence of P
(0)
N (t > 9τ ; τ ),

we observe here that the fraction 1 − P
(0)
N (t ; τ ) of excitations

depends on the pulse width in a non-linear manner, i.e.
increasing τ does not necessarily lead to a smaller P

(0)
N (t >

9τ ; τ ). For instance, P
(0)
N (t > 9τ,τ = 2.0) ≈ 0.89, P

(0)
N (t >

9τ,τ = 8.5) ≈ 0.68 whereas P
(0)
N (t > 9τ ; τ = 10.0) ≈ 0.73

[see Fig. 5(b)]. It is also important to note that while δg is the
same for all pulses, the corresponding oscillation amplitude
of P

(0)
N (t ; τ ) during a certain positive half of the MIQ is not

fixed, indicating that it is not only affected by the quench
amplitude but also depends on the pulse width. To further
elaborate on the effects of the combination of δg and τ ,
Fig. 5(c) shows P

(0)
N (t ; τ ) for gf = 2.9 and varying τ . As

the quench amplitude is increased the system produces more
excitations and after the pulses P̄

(0)
N (τ ) is much lower than in

the case of gf = 1.0 [compare Figs. 5(a1) and 5(c1)]. Overall,
P

(0)
N (t ; τ ) behaves similar as in the case of gf = 1.0, see also

the corresponding profiles in Fig. 5(d), and the non-linear
dependence on the pulse width is again present. The oscillation
amplitudes of P

(0)
N (t ; τ ) within the positive halves of the MIQ

protocol are larger as compared to the case of gf = 1.0.
This δg-dependence of the oscillation amplitude has been
observed also for other quench amplitudes (results not shown
here). Finally, P

(0)
N (t > 9τ ; τ ) remains almost steady, while a

larger δg leads in general to a lower P
(0)
N (t > 9τ ; τ ). However,

exceptions do in principle exist indicating the significance of
the optimal combination of δg and τ .

To gain a deeper understanding of the underlying excitation
processes during the evolution we explore the probability of
finding N0 < N bosons within the λ-th band, see Eq. (4).
For instance, P (λ)

N0
(t ; τ ) = ∑

�n∈N (λ)
N0

| 〈�n|�(t ; τ )〉 |2, for λ = 1,2

represent the probability to find N0 bosons within the first or
second excited band respectively. More precisely, below, we
investigate the probability to have one or two bosons in the
first, second or third excited band as higher-lying states are not
significantly occupied in our system. First we shall study the
effect of δg on the different excitation processes by considering
a five pulse MIQ protocol with fixed pulse width τ = 25 and
varying δg. Figs. 6(a)–6(c) show the probability to find one
or two bosons in the first, second or third excited band. For
all shown cases, the same overall excitation pattern [e.g. see
P

(0)
N (t ; τ ) in Fig. 4(c)] is observed. Within a positive half of the

MIQ P
(λ)
N0

(t) oscillates, while in the negative halves of the MIQ
it remains almost steady (excitation plateaus) possessing only
tiny amplitude oscillations. Each pulse increases the value
of P

(λ)
N0

(t) and larger values of δg lead to larger excitation
probabilities as more energy is added to the system. Overall,
we observe that a single-particle excitation to the second
excited band P

(2)
1 (t ; τ ), which refers to the breathing mode,

possesses the main contribution. However, for increasing δg

also other and mainly higher excitation processes start to play
a role and contribute significantly to the dynamics as shown in
Figs. 6(b) and 6(c). These higher order excitations correspond
to single and two-particle excitations in the first, second and
third excited band possessing comparable amplitudes. Note
that excitations higher than a two-particle excitation to the
third excited band are negligible.

Next, let us inspect the role of τ on P
(λ)
N0

(t ; τ ) em-
ploying the five pulse MIQ protocol with gf = 4.0. For
τ = 2.0, see Fig. 6(d), we observe a competition be-
tween P

(2)
1 (t ; τ ), P (1)

2 (t ; τ ) and P
(3)
1 (t ; τ ) possessing also

the highest contributions after the pulses, namely P
(2)
1 (t >

9τ ) ≈ 0.28, P
(1)
2 (t > 9τ ) ≈ 0.23 and P

(3)
1 (t > 9τ ) ≈ 0.18
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FIG. 6. Time evolution of the probability to find one or two bosons in higher bands (see legend) following a five pulse MIQ protocol
with fixed pulse width τ = 25.0 and varying amplitude (a) δg = 1.0, (b) δg = 2.5, and (c) δg = 4.0. (d),(e),(f) The same as above but for
fixed quench amplitude δg = 4.0 and varying pulse width (d) τ = 2, (e) τ = 8.5, and (f) τ = 10. The system consists of four bosons initially
prepared in the ground state with gin = 0.1 of a triple well.

respectively. P
(2)
2 (t ; τ ) is to a lesser extent contributing with

an amplitude P
(2)
2 (t > 9τ ) � 0.1. All the other excitations are

significantly below P
(2)
2 (t ; τ ). The final state after the last

pulse, t > 9τ , exhibits many different excited modes. For
τ = 8.5, see Fig. 6(e), P (2)

1 (t ; τ ) clearly possesses the dominant
contribution after the last pulse with P

(2)
1 (t > 9τ ) ≈ 0.42. In

addition, P (2)
2 (t ; τ ) and P

(3)
1 (t ; τ ) are significantly smaller with

comparable contributions around 0.1. All the remaining states
are negligible and their contributions are below 0.1. Therefore,
the parameter values τ = 8.5 and gf = 4.0 appear to be a good
combination in order to achieve a single-particle excitation to
the second excited band. For τ = 10.0, see Fig. 6(f), P (1)

1 (t ; τ )
that mainly refers to the cradle mode and P

(2)
1 (t ; τ ) are the

dominant contributions with P
(1)
1 (t > 9τ ) ≈ 0.22 and P

(2)
1 (t >

9τ ) ≈ 0.25, respectively. A less dominant interplay is observed
for the states P

(2)
2 (t ; τ ) and P

(3)
1 (t ; τ ) which fluctuate around

0.15. The remaining excitation processes, e.g., P
(1)
2 (t ; τ ),

contribute below 0.05. In this case we observe that the final
state includes single-particle excitations to the first, second,
and third excited bands as well as a two-particle excitation
to the second band. Other excitation processes are distributed
below 0.05 and do not contribute essentially to the final state.
The above discussion suggests that for a fixed δg (pulse
width τ ) different excited states can be targeted by employing
different pulse widths τ (quench amplitudes δg). Therefore,

one can achieve a particular band occupation by choosing a
specific combination of τ and δg. We remark that this picture is
confirmed by employing different combinations of the number
of pulses, pulse widths, and final interaction strengths.

To demonstrate the applicability of our results for larger
systems, in the following section we proceed to the investiga-
tion of a system with filling factor ν < 1. In particular, we shall
show that the character of the excitation dynamics induced by
a MIQ exhibits similar characteristics to the triple well case.

IV. DYNAMICS FOR FILLINGS ν < 1

Let us now focus on a setup of three bosons confined in a
lattice potential consisting of eight wells. For the ground state
with filling factor ν < 1 a spatial redistribution of the atoms
occurs with increasing interaction strength, i.e., the atoms are
pushed from the central to the outer wells [49]. Here, the initial
state is the ground state for g = 0.1, where the particles are pre-
dominantly localized in the center of the multiwell trap. Then,
the ground state is dominated by Wannier number states of the
form |0,0,0,1,2,0,0,0〉, |0,0,0,1,1,1,0,0〉, |0,0,0,0,3,0,0,0〉
and their corresponding parity symmetric states, e.g.,
|0,0,0,2,1,0,0,0〉, due to the underlying spatial symmetry of
the system.

To induce the dynamics a five pulse MIQ protocol with
τ = 50 is applied for t > 0. Figure 7(a) presents the fidelity
evolution F (t ; τ ) for varying quench amplitude δg. The overall
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FIG. 7. (a) Fidelity evolution with varying δg, employing a five
pulse np = 5 MIQ protocol with τ = 50. The inset (a1) depicts
F (t ; τ = 50) of (a) only within the duration of the second pulse.
(b) The same as in (a) but with varying pulse width τ and δg = 2.9.
The inset (b1) shows F (80 < t < 250; τ ) of (b). The system consists
of three bosons confined in an eight well potential.

dynamical behavior is similar to the triple well case (see
Sec. III). Indeed, during the positive halves of the MIQ
the system is driven far from its initial ground state, while
when it is quenched back it tends to a steady state. Each
additional pulse drives the system further away from its initial
state. To visualize better the response of the system during a
certain pulse Fig. 7(a1) illustrates F (2τ < t < 4τ ; τ = 50),
i.e., during the second pulse as a function of δg. The fidelity
shows an oscillatory pattern during the positive half and
an almost fixed value in the corresponding negative half.
Note here that the oscillatory pattern of F (t ; τ ) possesses
multiple frequencies which mainly correspond to the different
tunneling modes triggered by the MIQ. These frequencies
become larger for increasing δg. Let us next examine the
impact of the pulse width τ on the response of the system,
namely we consider a five pulse MIQ with fixed gf = 2.9 and
vary the pulse width; see Fig. 7(b). The dynamical response
of the system resembles that for the triple well case (see
Sec. III). It exhibits an oscillatory pattern within the positive
halves of the MIQ protocol, tends to a steady state when
g(t) = gin, and increases with each additional pulse. The above
description is illustrated in a transparent way in Fig. 7(b1)
where F (80 < t < 250; τ ) is shown. Note here that F (t ; τ )
exhibits multiple frequencies during the evolution that refer to
the induced tunneling dynamics. Finally, F (t > 9τ ; τ ) shows
a nonlinear dependence on τ .

To understand whether signatures of parametric amplifica-
tion of matter waves can be observed during the evolution we
inspect the momentum distribution

n(k,t) = 1

2π

∫∫
dx dx ′ρ1(x,x ′,t)e−ik(x−x ′)t , (5)

where ρ1(x,x ′,t) denotes the one-body reduced density matrix,
which is obtained by tracing out all the bosons but one in
the N -body wave function. We remark that the momentum
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FIG. 8. Momentum distribution as a function of time for (a)
δg = 1.0 and (b) δg = 2.9. (c) The same as (a) but within the MF
approximation. The horizontal axis represents the lattice momenta
in units of the inverse lattice vector k0 = π/l. The system consists
of an eight well lattice potential with five bosons being subjected to
a five pulse (np = 5) MIQ characterized by τ = 25. (d) Dominant
oscillation frequency ω1 that appears in the momentum distribution
for varying quench amplitude δg. Different curves correspond to
different initial conditions, approximations, and system size (see
legend).

distribution can be observed experimentally as it is acces-
sible via time-of-flight measurements [3,50,51]. Figure 8(a)
presents the time evolution of the momentum distribution
for an eight well lattice potential with five bosons that are
subjected to a MIQ of small quench amplitude and pulse
width, namely δg = 1.0 and τ = 25. As shown, employing
a MIQ protocol the momentum distribution exhibits in time a
periodically modulated pattern when g = gf ; e.g., see Fig. 8(a)
for 0 < t < 25. Indeed, within the positive half of the MIQ
n(k,t) oscillates with frequency ω1 between the momenta
k0 = 0, ± k0/2 ≈ ±1.57, i.e., it is gradually transformed
from a side peak structure (peaks at k0 = 0, ± k0/2) to a broad
maximum around k0 = 0. On the contrary, in the negative
halves of the MIQ [�τ < t < (� + 1)τ, � = 1,3,5,7,9] as well
as after the last pulse t > 10τ this side peak structure is
preserved. Note here that the frequency ω1 does not depend
on the considered pulse width. However, one can tune the
time intervals of the periodic modulation by considering
pulses with different τ ’s. The observed periodic population
transfer between the k0 = 0, ± k0/2 momenta is reminiscent
of the parametric amplification of matter waves. Similar
observations have been made experimentally in different
setups in Refs. [26,50,52]. This might pave the way for a more
elaborate study of this process in the future, also for higher
particle numbers and lattice potentials, but it is clearly beyond
the scope of this work. We remark here that in the case of a
single interaction quench only the above-mentioned periodic
modulation within the positive half of the MIQ protocol can
be achieved. Furthermore, the momentum distribution for
a stronger interparticle repulsion, i.e., gf = 2.9, shown in
Fig. 8(b), exhibits a similar structure as above but with an
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increasing frequency within the positive halves of the MIQ.
However, for large evolution times this behavior is blurred
as an effect of the strong interaction which decreases the
degree of coherence. Comparing with the MF calculation,
shown in Fig. 8(c), we observe that the periodic modulation
of the populated lattice momenta within the positive halves
of the MIQ is essentially lost and no clear signature of
the effect of a pulse can be seen in n(k,t). However, the
activation of the additional lattice momenta is present but
not in a systematic manner. This indicates the inescapable
necessity of taking into account correlations for the description
of the out-of-equilibrium dynamics. We remark here that
in the case of larger filling factors where the presence of
interparticle correlations is more dominant the failure of the
MF approximation to capture certain features of the dynamics
is even more prominent (results not shown here for brevity).
Summarizing, the coherent MIQ dynamics leads to a periodic
population transfer between different lattice momenta within
a positive half of the MIQ and a side peak structure when the
system is quenched back.

To shed further light on the possible control of the dynamics
we finally examine the dependence of the frequency ω1 of
the periodic modulation during a positive half of the MIQ
on several system parameters. Figure 8(d) presents ω1 with
varying quench amplitude δg. As shown, ω1 depends strongly
on the interparticle repulsion and in particular for increasing
δg it possesses a power-law behavior, namely

ω1(gf ; N,gin) = αgb
f + c, (6)

where α, b, c are positive constants. This is also in line with
our previous observations on the evolution of the momentum
distribution; see Figs. 8(a) and 8(b). Although the periodic
modulation of lattice momenta within the positive halves of
the MIQ protocol is essentially lost within the corresponding
MF approximation we also present the dominant frequency of
n(k,t) as a function of δg in Fig. 8(d). The obtained frequency
dependence retains the above-mentioned power-law behavior
but the corresponding frequencies for fixed δg are smaller even
for low quench amplitudes. The latter is another manifestation
of the failure of the single orbital approximation to accurately
describe the induced dynamics. An additional intriguing
question is whether ω1 depends on the initial interparticle
repulsion and therefore possesses a many-body nature. Starting
from a broader initial wave packet, i.e., gin = 0 shown in the
same figure, ω1 is lower especially for 1.5 < gf < 5, where
the system is significantly perturbed from its initial state [see
also F̄ (τ ) = 1/T

∫ T

0 dt F (t ; τ ) < 0.8 in Fig. 7(a)]. To show
that the general trend of ω1 is valid also for other system sizes,
Fig. 8(d) illustrates the obtained δg dependence for four bosons
confined in a triple well considering the same values for the
initial system parameters [see also Fig. 4(a)]. Indeed, a similar
functional form is observed, while the frequencies ω1 for the
same δg are reduced when compared to the eight well case.

V. CONCLUSIONS AND OUTLOOK

We have explored the nonequilibrium quantum dynamics of
multiply interaction quenched few boson ensembles confined
in a finite optical lattice. Initially the system is within the weak
interaction regime and sequences of interaction quenches to

strong interactions and back are performed. To characterize
the impact of the multiple pulses we study the interplay
between the quench amplitude and the pulse width during
the evolution. A variety of lowest-band interwell tunneling
modes, a cradle mode, and different breathing modes are
excited. Focusing on the different time intervals of the MIQ
protocol we identify the frequency branch of each process and
the time intervals for which they exist. To further illustrate
the peculiarity of a MIQ protocol we compare with the single
quench scenario. We have analyzed the dynamical behavior by
applying multiband Wannier number states and identified for
each of the above-mentioned processes the transitions between
the dominant number states.

The lowest-band interwell tunneling dynamics consists of
three different energy channels which exist in the positive
halves of the MIQ. When the system is quenched back only
one tunneling mode survives. This raises the possibility to
manipulate the tunneling dynamics within the different time
intervals of the MIQ protocol. For instance, using different
pulse widths we can switch on and off for chosen time intervals
certain tunneling modes of the system.

We then turned to the excited modes, i.e., the cradle and the
breathing modes. The cradle mode “ignores” the multipulse
nature of the quench protocol and persists during the time
evolution. However, the breathing mode shows a strong de-
pendence on the instantaneous interatomic repulsion. Indeed,
within the positive halves of the MIQ it possesses an interaction
dependent frequency branch. However, in the negative halves
of the MIQ the latter branch disappears and two new frequency
branches appear which are interaction independent. As a result
the system turns from the δg-dependent to the δg-independent
branch providing further controllability. Furthermore, the
excitation dynamics is investigated in detail. To analyze the
dependence on the quench amplitude we focus on a fixed
pulse width and vary the final interaction strength. It is shown
that the excitation dynamics possesses a linear dependence
on the quench amplitude, i.e., for increasing amplitude of
the quench the amount of excitations as seen in the fidelity
increase. For the dependence of the excitation dynamics on
the pulse width we observe a nonlinear dependence, i.e.,
there is no monotonic behavior of the produced excitations
with varying pulse width. The latter implies that in order to
control the excitation dynamics one has to use an optimal
combination of the quench amplitude and the pulse width.
Another prominent signature of the impact of the quenches is
revealed by inspecting the momentum distribution. A periodic
population transfer of lattice momenta within the positive
halves of the MIQ protocol and a transition to a side peak
structure in the negative halves of the MIQ are observed. This
periodic population transfer of lattice momenta constitutes an
independent signature of the excited energy channels within
the positive halves of the MIQ protocol, allowing one to study
it from another perspective and to potentially measure it in
corresponding experiments.

Let us comment on a possible experimental realization
of our setup. In a corresponding experiment weakly in-
teracting bosons should be trapped in a one-dimensional
optical superlattice being formed by two retroreflected laser
beams. To form each supercell of the superlattice the first
beam possesses a large wave number and intensity when
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compared to the second beam which forms each cell of the
supercell. The above-mentioned wave numbers should be
commensurate. Then, the potential landscape of each supercell
is similar to the one considered in the present study. Such
an experimental implementation may be achieved either by
the use of holographic masks [53] or by the modulation
of the wave number [54]. The interatomic repulsion can be
tuned with the aid of a magnetic Feshbach resonance. The
corresponding dynamical properties can then be probed with
the recently developed single-site resolved imaging techniques
(quantum microscope) [55–57]. We also remark that double
occupancies can also be identified via Feshbach molecule
formation [58–60], while triple occupancies can be measured
by inducing three-body recombination [61–63].

Finally, we provide an outlook onto possible future investi-
gations. The achieved understanding of the nonequilibrium
dynamics induced by multiple pulses of the interatomic
repulsion may inspire similar investigations in other more
complicated systems. A possible direction would be to apply
our protocol to repulsively interacting dipolar systems and/or
to include modulations of the lattice geometry. Certainly
for larger particle numbers and sizes the question whether
thermalization [64,65] occurs for long evolution times after
the system has been quenched to its initial Hamiltonian is an
intriguing one.
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APPENDIX: COMPUTATIONAL METHOD MCTDHB

To solve the time-dependent many-body Schrödinger equa-
tion (ih̄∂t − H )�(x,t) = 0 we apply the multiconfiguration
time-dependent Hartree method for bosons [34,35,66] (MCT-
DHB). This method has been used extensively in the literature
to explore the bosonic quantum dynamics; see for instance
[66–71]. The key idea of MCTDHB is to exploit time-
dependently variationally optimized single-particle functions
(SPFs) to form many-body states and thus to achieve an
optimal truncation of the Hilbert space. The ansatz for the
many-body wave function is taken as a linear combination
of time-dependent permanents |�n(t)〉 with time-dependent
weights A�n(t). Each time-dependent permanent |�n(t)〉 cor-
responds to a certain configuration of bosons that occupy
M variationally optimized SPFs |φj (t)〉. In turn, the SPFs
are expanded using a primitive time-independent basis {|χ〉}
of dimension Mpr. The time evolution of the N -body wave
function for the Hamiltonian under consideration reduces to
the determination of the A-vector coefficients and the SPFs
which obey the variationally obtained MCTDHB equations of
motion [34,35,66]. We also remark that in the limiting case
of M = 1, MCTDHB reduces to the time-dependent Gross
Pitaevski equation.

For our implementation we have used a sine discrete
variable representation as a primitive basis for the SPFs. To
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FIG. 9. F (t ; τ = 25) for a varying number of SPFs (see legend)
following a five pulse (np = 5) MIQ with (a) δg = 1 and (b) δg = 3.0.
For better visibility of the evolution within the positive halves of the
MIQ protocol, we show in the insets F (t ; τ = 25) only during the
third pulse.

prepare the system in the ground state of the Hamiltonian
H , we rely on the relaxation method. The key idea is
to iteratively propagate some initial ansatz wave function
|�(0)〉 in imaginary time. This exponentially damps out all
contributions but the one stemming from the ground state like
∼e−(Em−E0)τ and therefore the system relaxes to the ground
state (within the prescribed accuracy) after a finite time.
To study the dynamics, we propagate the wave function by
utilizing the appropriate Hamiltonian within the MCTDHB
equations of motion. Finally, let us remark that for our im-
plementation we employed the multilayer multiconfiguration
Hartree method for bosons [72,73] (ML-MCTDHB), which
reduces to MCTDHB for the case of a single bosonic species
as considered here.

To maintain the accurate performance of the numerical inte-
gration of the MCTDHB equations of motion we ensured that
|〈�(t)|�(t)〉 − 1| < 10−8 and |〈ϕi(t)|ϕj (t)〉 − δij | < 10−9 for
the total wave function and the SPFs, respectively. To conclude
about the convergence of our simulations, we increase the
number of SPFs and primitive basis states, thus observing a
systematic convergence of our results. In particular, we have
used Mpr = 300, M = 9 (Mpr = 600, M = 8) for the triple
well (eight wells). To be more concrete, in the following
we shall briefly demonstrate the convergence procedure for
the triple well simulations with increasing number of SPFs.
Figures 9(a) and 9(b) present F (t ; τ = 25) for different number
of SPFs following a five pulse MIQ with small (δg = 1)
and large (δg = 3) quench amplitudes, respectively. In both
cases a systematic convergence of the fidelity evolution (for
M > 8) is observed for an increasing number of SPFs. Indeed
for small quench amplitudes, see Fig. 9(a), the maximum
deviation observed in the fidelity evolution between the 9 and
12 orbital cases is of the order of 3% for large evolution times
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t > 225, that is, after the fifth pulse. As expected, the case of a
larger quench amplitude, presented in Fig. 9(b), shows a more
demanding convergence behavior. However, also in this case
a decreasing relative error between different approximations
for increasing M is illustrated. For instance, the maximum
deviation observed in the fidelity evolution calculated using
9 and 12 SPFs, respectively, is of the order of 8% for large
evolution times (t > 200). Summarizing, it is important to
comment that in both of the above-mentioned cases even
the calculation with 6 SPFs is not able to quantitatively

predict the dynamics. For better visibility of the relative
error between different approximations within a positive
half of the MIQ protocol, we show in the corresponding
insets of Fig. 9 the dynamics during the positive half of the
third pulse. Note here that the same analysis has also been
performed for the dynamics in the eight well potential (omitted
here for brevity) showing a very similar behavior. Another
indicator of convergence is the population of the lowest
occupied natural orbital, which is kept below 0.01% for all of
our simulations.
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a b s t r a c t

The nonequilibrium ultracold bosonic quantum dynamics in finite optical lattices of unit filling following
a linear interaction quench from a superfluid to a Mott insulator state and vice versa is investigated. The
resulting dynamical response consists of various inter and intraband tunneling modes. We find that the
competition between the quench rate and the interparticle repulsion leads to a resonant dynamical
response, at moderate ramp times, being related to avoided crossings in the many-body eigenspectrum
with varying interaction strength. Crossing the regime of weak to strong interactions several transport
pathways are excited. The higher-band excitation dynamics is shown to obey an exponential decay pos-
sessing two distinct time scales with varying ramp time. Studying the crossover from shallow to deep lat-
tices we find that for a diabatic quench the excited band fraction decreases, while approaching the
adiabatic limit it exhibits a non-linear behavior for increasing height of the potential barrier. The inverse
ramping process from strong to weak interactions leads to a melting of the Mott insulator and possesses
negligible higher-band excitations which follow an exponential decay for decreasing quench rate. Finally,
independently of the direction that the phase boundary is crossed, we observe a significant enhancement
of the excited to higher-band fraction for increasing system size.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

During the past two decades, ultracold atoms in optical lattices
emerged as a versatile system to investigate many-body (MB) phe-
nomena [1–4]. A prominent example is the experimental observa-
tion of the superfluid (SF) to Mott insulator (MI) quantum phase
transition [5,6] which, among others, demonstrated a pure realiza-
tion of the Bose-Hubbard model [7,8]. Moreover, lattice systems
constitute ideal candidates for studying nonequilibrium quantum
phase transitions [9–14], where a number of defects, induced by
time-dependent quenches [15,16], appear in the time evolving
state. The Kibble-Zurek mechanism of such defect formation
[15,17–20], originally addressed in the context of classical phase
transitions [21,22], has been tested in different ultracold MB set-
tings [23–28] and refers to the rate of topological defect formation
induced by quenches across phase transitions.

Quench dynamics of ultracold bosons confined in an optical lat-
tice covering the MI-SF transition in both directions has been
vastly used to examine both the Kibble-Zurek mechanism
[19,25,26,29–32] and the approach to the adiabatic response limit

[29,33–43,45]. Referring to the Kibble-Zurek mechanism, recent
studies [30,31] of a linear quench across the MI-SF and back in
the one-dimensional Bose-Hubbard model demonstrated that the
excitation density and the correlation length satisfy the Kibble-
Zurek scaling for limited ranges of quench rates. On the other hand
and focussing on the slow quench dynamics across the MI-SF tran-
sition many recent works evinced the formation and melting of
Mott domains [34,37–40], the growth of interparticle correlations
[32,41–44] and the consequent equilibration process [16,35,45].

Despite the enormous theoretical and experimental efforts in
this field, the response of such systems subjected to abrupt or
quasi-adiabatic quenches has not been completely understood
and deserves further investigation. In particular, a nonadiabatic
quench inevitably excites the system, and a number of defects
including higher-band excitations can be formed during the
dynamics. The latter implies the necessity to consider a multiband
treatment [46] of the nonequilibrium correlated dynamics and to
obtain information about the higher-band excitation spectrum
[47–52] being inaccessible by the lowest Bose-Hubbard model or
mean-field (MF) methods. Promising candidates for such investiga-
tions constitute few-body systems [53,54] being accessible by
current state of the art experiments [55–58]. In this context, it is
possible to track the microscopic quantum mechanisms [59–62]

https://doi.org/10.1016/j.chemphys.2017.11.022
0301-0104/� 2017 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: smistaki@physnet.uni-hamburg.de (S.I. Mistakidis).

Chemical Physics 509 (2018) 106–115

Contents lists available at ScienceDirect

Chemical Physics

journal homepage: www.elsevier .com/locate /chemphys

112



consisting of intraband and interband tunneling, namely tunneling
within the same or between energetically different single-particle
bands respectively, and to avoid finite temperature effects. Such
few-body systems do not serve as a platform to confirm the Kib-
ble-Zurek scaling hypothesis due to their finite size [43]. However,
they provide useful insights into the largely unexplored scaling of
few-body defect density including the formation and melting of
Mott domains and the excited to higher-band fraction participating
in the dynamics.

In the present work we consider few bosons confined in an opti-
cal lattice of unit filling. Thereby, the ground state for increasing
interaction strength experiences the few-body analogue of the SF
to MI transition. We first analyze the MB eigenspectrum for vary-
ing interparticle repulsion, revealing the existence of narrow and
wide avoided crossings between states of the zeroth and first
excited band. Then, we apply a linear interaction quench (LIQ) pro-
tocol either from weak to strong interactions (positive LIQ) or
inverserly (negative LIQ) covering in both cases the diabatic to
nearly adiabatic crossing regimes. As a consequence we observe
a dynamical response consisting of the lowest band tunneling
and higher-band excitations. Overall, we find an enhanced dynam-
ical response at moderate quench rates rather than in the abrupt or
almost adiabatic regimes. The lowest band dynamics consists of
first and second order tunneling [63–65]. These modes can be fur-
ther manipulated by tuning either the interaction strength after
the quench (postquench interaction) or the height of the potential
barriers in the optical lattice. Furthermore, we show that following
a positive LIQ the excited to higher-band fraction obeys a bi-expo-
nential decay for varying ramp time. The latter decay law possesses
two time scales being related to the width of the existing avoided
crossings in the eigenspectrum. However, the interband tunneling
[66,67], with varying height of the potential barrier exhibits a more
complex behavior. For diabatic quenches it decreases, while for
smaller quench rates it scales non-linearly possessing a maximum
at a certain height of the potential barrier. The latter behavior man-
ifests the strong dependence of the excited to higher-band fraction
on the quench rate. Moreover, the excited fraction for a varying
postquench interaction strength features different scaling laws.
Approaching the region of the corresponding avoided crossing it
exhibits a non-linear growth, while for stronger interactions it
increases almost linearly. On the contrary, for a negative LIQ we
observe the melting of the MI. Here, the lowest band transport
(intraband tunneling) is reduced when compared to the inverse
scenario, while the excited fraction is negligible obeying an expo-
nential decay both with varying ramp time and potential height.
Finally, for both positive and negative LIQs the higher-band frac-
tion is significantly enhanced for increasing system size.

This work is organized as follows. In Section 2 we introduce our
setup and outline the multiband expansion being used for a micro-
scopic analysis of the dynamics. Section 3 presents the resulting
dynamics induced by a LIQ connecting the weakly to strongly cor-
related regimes and back in a triple well of unit filling. To extend
our findings in Section 4 we discuss the LIQ dynamics for larger lat-
tice systems of unit filling. We summarize and discuss future per-
spectives in Section 5. Appendix A describes our computational
methodology.

2. Setup and analysis tools

The Hamiltonian of N identical bosons each of mass M confined
in a one-dimensional m-well optical lattice employing a LIQ proto-
col reads

H ¼
XN
i¼1

p2
i

2M
þ V0sin

2ðkxiÞ
� �

þ gðt; sÞ
X
i<j

dðxi � xjÞ: ð1Þ

The lattice potential is characterized by its depth V0 and period-
icity l, with k ¼ 2p=l being the wave vector of the counterpropagat-
ing lasers forming the optical lattice. To restrict the infinitely
extended trapping potential to a finite one withmwells and length
L, we impose hard wall boundary conditions at the appropriate
positions, xm ¼ �mp

2k .
Within the ultracold regime, the short-range interaction poten-

tial between particles located at positions xi, can be adequately
described by s-wave scattering. To trigger the dynamics we follow
a LIQ protocol. At t ¼ 0 the interatomic interaction is quenched
from the initial value gi to a final one gf in a linear manner for time
t 2 ½0; s� and then it remains a constant gf . Therefore, our protocol
reads

gðt; sÞ ¼ gi þ dg
t
s
: ð2Þ

Here, dg ¼ gf � gi denotes the quench amplitude of the linear
quench, while gi ðgf Þ is the effective one-dimensional interaction
strength before (after) the quench. The effective one-dimensional

interaction strength [68] is given by g1D ¼ 2�h2a0
Ma2?

1� fð1=2Þj ja0=
ffiffiffi
2

p
a?

� ��1
. Here a? ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=Mx?

p
is the transverse har-

monic oscillator length with x? the frequency of the two-dimen-
sional confinement and a0 denotes the free space 3D s-wave
scattering length. Experimentally, the effective interaction strength
can be tuned either via a0 with the aid of Feshbach resonances
[69,70] or via the corresponding transversal confinement frequency
x? [68,71,72].

In the following, the Hamiltonian (1) is rescaled in units of the

recoil energy ER ¼ �h2k2

2M . Then, the corresponding length, time and

interaction strength scales are given in units of k�1
;x�1

R ¼ �hE�1
R

and ERk
�1, respectively.

To simulate the nonequilibrium dynamics we employ the
Multi-Configuration Time-Dependent Hartree method for Bosons
(MCTDHB) [73,74] which exploits an expansion in terms of time-
dependent variationally optimized single-particle functions (see
Appendix A for more details). In contrast to the MF approximation,
within this approach we account for the system’s interparticle cor-
relations and hence we will refer to MCTDHB simply as the MB
approach. However, for the analysis of the induced dynamics in lat-
tice systems, it is more intuitive to rely on a time-independent MB
basis instead of a time-dependent one. Here, we project the
numerically obtained wavefunction on a time-independent num-
ber state basis being constructed by the single-particle Wannier
states localized on each lattice site. The MB bosonic wavefunction
of a system with N bosons, m-wells and j localized single particle
states [59,60] reads

Wj i ¼
X
fn!ig

Cfn!ig
n
!

1; n
!

2; . . . ; n
!

m

��� E
; ðÞ ð3Þ

where j~n1;~n2; . . . ;~nmi is the multiband Wannier number state, the

element ~ni ¼ jnð1Þ
i i � jnð2Þ

i i � . . . :� jnðjÞ
i i and the Wannier orbital

jnðkÞ
i i refers to the number of bosons which reside at the i-th well

and k-th band. For instance, in a setup with N ¼ 3 bosons confined
in a triple well i.e. m ¼ 3, which includes k ¼ 3 single-particle
states, the state j1ð0Þ;1ð1Þ;1ð0Þi indicates that in the left and right
wells one boson occupies the Wannier orbital of the zeroth excited
band while in the middle well there is one boson in the Wannier
orbital of the first excited band. Below, when we refer to a boson
that resides within the zeroth (ground) band we shall omit the zero
index. Here, one can realize three different energetic classes of
number states with respect to the interparticle repulsion. Namely,
the triples fj3;0;0i þ�g (T), the single pairs fj2;1;0i þ�g (SP)
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and the singles fj1;1;1i þ�g (S), where � stands for all corre-
sponding permutations. For later convenience, on the analysis part,
we further classify the excited band energetic classes into single-
particle excitation (SE) and higher excited (HE) classes. The former
[latter] class involves states of single [double] occupancy in every
site with one excitation to the first excited band e.g.

fj1;1ð1Þ;1i þ�g [fj1� 1ð1Þ;1;0i þ�g and fj1ð1Þ;2;0i þ�g].
Moreover, according to the above expansion the time averaged

probability for bosons to lie in a higher single-particle band reads

PexcðsÞ ¼ 1� 1
T

Z T

0
dtP0ðt; sÞ: ð4Þ

Here, P0ðt; sÞ ¼
P

fnigj n1;n2;n3jWðtÞh ij2; i ¼ 1;2;3 denotes the
probability for all particles to reside within the zeroth band, while
T refers to the considered finite evolution time where PexcðsÞ has
converged to a certain value. The above probability amplitude will
be a main tool for the investigation of the scaling of the excited to
higher-band fraction with respect to s.

3. LIQ dynamics in a triple well of unit filling

To analyze the LIQ induced dynamics of our system, it is
instructive first to demonstrate the dependence of the eigenstates
on the interparticle repulsion. Thus, we first investigate the eigen-
spectra of the system with varying interaction strength [Sec-
tion 3.1], which are subsequently related to the LIQ dynamics
[Sections 3.2 and 3.3].

3.1. Eigenspectra

In contrast to the discrete Bose-Hubbard model, here we
employ a continuum space Hamiltonian [see Eq. (1)], which allows
us to resolve quench induced higher-band excitations [75]. For
completeness we note that the Bose-Hubbard model is adequate
for the theoretical description of the quench dynamics in deep lat-
tices (i.e. large V0) and for relatively small quench amplitudes
when compared to the band gap. To expose the underlying physi-
cal processes that lead to the emergence of such MB excited states
[49–52] we examine, below, the eigenenergies of three particles
confined in a triple well potential as a function of the interaction
strength g.

First we focus on the case of a relatively shallow triple well,
namely V0 ¼ 4:0, see Fig. 1(a). For very small interactions, g ’ 0,
the MB eigenstates are energetically categorized according to their
corresponding particle configuration in terms of single-particle
bands. For instance, Fig. 1(a) shows that the eigenstates of the sys-
tem are predominantly bunched onto two energy regions denoted
by Eg and E� respectively. The eigenstates lying within Eg possess
zero higher-band excitations, while those bunched onto E� refer
to states with one single-particle excitation to the first excited
band. The width of the aforementioned energy regions (band-
width) depends on the tunneling coupling between the different
sites. Note here that the term tunneling coupling refers to the cor-
responding inverse tunneling rate [7,8]. The distance between E�

and Eg (band gap) is characterized by the band gap between the
ground and the first excited band of the non-interacting system.
Regarding the decomposition of each eigenstate in terms of (local-
ized) Wannier number states [see Eq. (3)] it turns out that it is an
admixture of all the energetic classes S; SP and T. The latter indi-
cates the spatial delocalization of the bosons within the triple well,
and therefore manifests the few-body analogue of the SF phase for
low interactions.

For increasing interaction strength the energy expectation value
of the number states belonging to the SP and T classes increases
strongly. The same holds for the eigenenergies of the eigenstates

to which the aforementioned number states are contributing. For
0 < g/0:5 several avoided crossings are observed, see Fig. 1 ða1Þ.
These avoided crossings manisfest the tunneling coupling between
the S; SP and T number states of the same parity [66,75]. The afore-
mentioned interaction regime corresponds in our few-body system
to the region where the transition from the SF to the MI phase
takes place. For g P 0:5 the eigenenergies of the lowest band
become well separated into three subbands according to the ener-
getic class of their dominant number state, see Fig. 1(a). The
ground state of the system is dominated by the S class manifesting
the few-body analogue of the MI phase. The SP and T class domi-
nated eigenstates are also bunched together forming the SP and T
subbands. Moreover, the eigenstates of the T subband (being the
most sensitive to interparticle repulsion) experience wide (see
solid circles) and narrow (see dashed circles) [76] avoided cross-
ings with the eigenstates possessing a higher-band excitation.
The wide avoided crossings are related to the onset of the cradle
mode [59,60] and are a consequence of the interaction induced
decay of an SP or T state caused by the scattering of one of the
bosons that reside in the same well to the first excited state of
an adjacent site [77]. This latter process gives rise to the so-called
cradle mode which represents a dipole-like intrawell oscillation in
the outer wells of the finite lattice (for a detailed description on the
generation and properties of this mode see [59,60]).

The same overall behavior can be observed for deeper lattices,
see for instance in Fig. 1(b) the case of V0 ¼ 10. As shown, the dif-
ferences between shallow and deep lattices are mainly quantita-
tive [78]. The bandwidth of each subband decreases as a
consequence of the reduced tunneling coupling, while the corre-
sponding subband energy gap increases. Most importantly, the
transition from the SF to the MI state is realized for smaller inter-
actions when compared to the case of V0 ¼ 4 [see in particular
Fig. 1 ða1Þ and ðb1Þ]. Moreover, as a consequence of the increased
band gap, the positions of the avoided crossings related to the cra-
dle mode (see solid circles in Fig. 1) occur at larger interparticle

Fig. 1. Dependence of the lowest 25 eigenenergies Ei on the interaction strength g.
The system consists of three bosons confined in a triple well with potential depth
(a) V0 ¼ 4 and (b) V0 ¼ 10. Solid (dashed) lines represent parity even (odd) Ei ’s.
Wide (narrow) avoided crossings possessing a width dE > 0:01 ðdE < 0:01Þ are
denoted by solid (dashed) circles. The eigenenergies of the eigenstates that do not
contribute to any wide avoided crossing are shown in grey. The energy regions Eg ; E

�

and the subbands S; SP; T; SE and HE are marked by the respective bars. The grey
scaled interaction interval gC in (a) denotes the region of avoided crossings between
the SE and T as well as the T and HE classes for the case of a shallow lattice V0 ¼ 4.
The solid boxes indicate the SF to MI transition. For better visibility of the avoided
crossings in the vicinity of g ¼ 0 (see solid boxes), ða1Þ and ðb1Þ provide the lowest
10 eigenenergies of (a) and (b) respectively.
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repulsions g. Concluding, all differences in the eigenspectrum
caused by V0 can be traced back to the increased intrawell localiza-
tion of the particles for deeper lattices.

In the following sections, we study the dynamical response
induced by a LIQ from gi ¼ 0 to gf ¼ 2 and back. The choice of
gi ¼ 0 ensures that the initial state within a positive LIQ consists
of an admixture of all energetic classes, while due to the post-
quench interaction, gf ¼ 2, the system remains adequately detuned
from the cradle mode even in the fully diabatic (i.e. abrupt) limit.
Moreover, following a negative LIQ from gi ¼ 2 to gf ¼ 0 the sys-
tem initially resides in a MI state and finally in an admixture of
several lowest band states. Taking advantage of the above pre-
sented eigenspectra, we expect that the higher-band dynamics
strongly depends on the ramping rate of the SF to MI transition
resulting in a different population of the T class (eigen) states.

3.2. Quench dynamics from SF to MI phase

Let us first focus on the positive LIQ dynamics to strong interac-
tions, namely from gi ¼ 0 to gf ¼ 2, of a system consisting of three
initially non-interacting bosons confined in a triple well. The initial
MB state is an admixture of the available lowest band number
states [see also Fig. 1(a)], where the main contribution stems from
the SP category due to the hard wall boundary conditions. To gain
an overview of the system’s dynamical response induced by the

LIQ we employ the fidelity Fðt; sÞ ¼ Wsð0Þh jWsðtÞij j2, being the
overlap between the time evolved and the initial (ground) state
[79–81]. Fig. 2(a) presents Fðt; sÞ for a shallow lattice ðV0 ¼ 4Þ with
varying ramp time s. As it can be seen, Fðt; sÞ performs oscillations
in time with multiple frequencies, while for increasing ramp time
the system significantly departs from its initial state [i.e. Fðt; sÞ
overall decreases]. Interestingly enough, for intermediate s’s the
fidelity fluctuates more prominently, see e.g. 15 < s < 35, indicat-

ing an enhanced dynamical response. The same overall response is
observed for deeper lattices, see for instance Fig. 2(d), but the cor-
responding signatures of enhanced response for larger s’s become
more faint due to the increased energy gap in the respective MB
eigenspectra [see also Fig. 1]. To further elaborate on the overall
response of the system induced by the LIQ we show in Fig. 2(b)
the time averaged fidelity of Fig. 2(a) for different ramp times,

namely FðsÞ ¼ 1
T�s

R T
s dtFðtÞ, where T ¼ 500. We observe that for

increasing s; FðsÞ mainly decreases possessing also some small
amplitude deformations displayed as dips in FðsÞ. This overall
decrease of FðsÞ implies that the system departs more prominently
from its initial state for increasing s and it is a manifestation of the
Landau–Zener mechanism [19,82,83]. Namely, the more adiabati-
cally we drive the system it departs stronger from its initial state.
Finally, it is observed that for large enough s, namely s > 70; F
tends to a constant value which indicates a tendency to approach
the adiabatic ramping rate. The small amplitude deformations in
FðsÞ refer to different resonant response regions at specific inter-
vals of s. These strong response regions indicate that the specific
combination of s’s and quench amplitude are more efficient to
cross the existing avoided crossings [see Fig. 1] and as a conse-
quence to depart from the initial state. This latter behavior is
already imprinted in Fðt; sÞ at the final instant of the ramping, i.e.
t ¼ s. Indeed, within the s intervals that FðsÞ exhibits dips (humps)
the system departs significantly (negligibly) from its initial state at
time t ¼ s, see also Fig. 2(a). A careful inspection of the eigenspec-
tra, shown in Fig. 1(a), indicates that for smaller V0’s the gap
between the different energetic subbands reduces and therefore
the corresponding tunneling processes can be more pronounced.
The latter suggests that for shallower [deeper] lattices the system
is perturbed more efficiently [inefficiently] resulting in an
enhanced [reduced] dynamical response. To examine in more
detail the dynamical response, induced by the LIQ, weemploy the
normalized variance of the fidelity

KðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
r2

F ðsÞ
q
FðsÞ ; ð5Þ

where r2
F ðtÞ ¼ 1

T�s
R T
s dt½Fðt; sÞ � FðsÞ�2 denotes the temporally inte-

grated variance of the fidelity. KðsÞ serves as a measure for the
mean fidelity variation from its mean value and it is bounded to
take values within the interval [0,1]. Then, when KðsÞ ! 1
[KðsÞ ! 0] the system possesses the maximum [minimum] fluctua-
tion from its mean final state. Clearly, within the ramping intervals
s 2 ð5;10Þ; ð15;35Þ the system can be driven away from its initial
state in the most prominent manner [KðsÞ increases] and therefore
the dynamical response is maximized (see also below).

To identify the participating tunneling modes induced by the
positive LIQ, we inspect the fidelity spectrum [61,62], see Fig. 2
(e). As shown the LIQ triggers five distinct tunneling modes onto
the system. The first four modes located at
x1;2;3;4 � 0:2;1;1:8;2:9 for V0 ¼ 10; gf ¼ 2 refer to intraband tun-
neling within the SP class, SP ! S; SP ! T , and T ! S categories
respectively. The mode at x5 � 3:75 indicates interband interac-
tion assisted tunneling between the S and HE states. Note here that
the SP ! S, and T ! S lowest band modes refer to second order
tunneling [63–65], while the others denote single-particle trans-
port. The positions of these frequency branches remain insensitive
to varying s, see the inset in Fig. 2(e). It is also worth mentioning at
this point that the dominant dynamical modes SP ! S and SP ! T
are responsible for the maximized dynamical response [see Fig. 2
(c)] within the ramping intervals s 2 ð5;10Þ and (15,35) respec-
tively. To highlight the correlated MB character of the above men-
tioned tunneling processes we also show the corresponding fidelity

Fig. 2. Fidelity evolution for varying ramp time s after a LIQ from gi ¼ 0 to gf ¼ 2.
Shown are the cases of (a) a shallow V0 ¼ 4 and (d) a deep V0 ¼ 10 triple well. (b)
Mean fidelity FðsÞ and (c) normalized variance of the fidelity KðsÞ in the case of a
shallow lattice for varying s. (e) Spectrum of the fidelity FðxÞ, following a LIQ with
s ¼ 8 for different barrier heights, initial and final interactions within the MB
approach or the MF approximation (see legend). Inset: FðxÞ following a LIQ from
gi ¼ 0 to gf ¼ 2 for varying ramp time s. The system consists of three initially non or
weakly interacting bosons (see legend) confined in a triple well.
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spectrum calculated within the MF approximation. Here, we
observe that the system features only the first two tunneling
modes, namely transport within the SP and SP ! S categories.
These mode frequencies are also positively shifted namely
x0

1;2 � 0:65;1:35 when compared to the MB approach. As a next
step, let us demonstrate possible control protocols of the tunneling
dynamics. An efficient way to manipulate the transport frequency
is to tune the height of the potential barriers. Then, the tunneling
frequency can be enhanced by using a shallow lattice as the corre-
sponding energy gaps between the different subbands become
smaller [compare Fig. 1(a), (b)], thereby making each tunneling
process more favorable. Indeed, as shown in Fig. 2(e) the single-
particle tunneling modes for V0 ¼ 4 are located at larger frequen-
cies x00

1;2 � 0:6;1:2 when compared to V0 ¼ 10 with the former
being the most energetically favorable as it possesses the highest
amplitude. On the other hand, the two particle transport modes,
namely SP ! S and S ! T, are negatively shifted with respect to
their corresponding frequencies for V0 ¼ 10. The latter is a conse-
quence of the decreasing subband energy gap occuring for shal-
lower lattices, see also Fig. 1. Alternatively, a similar
manipulation of the tunneling frequency can be achieved by tuning
the postquenched state, by e.g. the value of gf . We observe that for
smaller (larger) gf ’s the corresponding tunneling branches are neg-
atively (positively) shifted when compared to gf ¼ 2 and V0 ¼ 10
[see Fig. 2(e)]. It is important to note here that the frequency peaks
located at x000

2 � 0:6;1:1 refer to tunneling between energetically
different SP states and the S class. Summarizing, it has been shown
that by tuning either the height of the potential barrier or the post-
quenched state via gf we can manipulate the location and the
intensity of the tunneling frequency branches.

Next we investigate the excitation dynamics, and in particular
the time averaged probability of finding at least one boson within
a single-particle state of a higher-band [see also Eq. (4)]. Fig. 3(a)
presents PexcðsÞ for varying s. As it is evident and further confirmed
by a direct numerical fit, the mean excitation probability obeys the
bi-exponential law

PexcðsÞ ¼ Ae�s=s1 þ Be�s=s2 ; ð6Þ

where A; B are positive constants. Here, the two time scales intro-
duced by the positive constants s1; s2 of the bi-exponential are nec-
essary in order to describe accurately the mean excitation dynamics
covering the sudden to adiabatic interaction quench regimes. The
existence of these two time scales can be explained by the behavior
of the number states that contribute to the MB state at each ramp-
ing interval. For convenience let us refer to the ramping time at the
border between diabatic and moderate to nearly adiabatic ramping
as sa [see also Fig. 3(a)]. Then, following the LIQ for s < sa where
PexcðsÞ exhibits a rapid decay, the avoided crossing located at
g ¼ 0 in the eigenspectra is crossed diabatically and the MB state
after the quench consists of a superposition of all lowest band num-
ber state classes. However for s > sa, where PexcðsÞ features a slow
decay, the crossing at g ¼ 0 is traversed in a more adiabatic manner
and the system after the quench is again in a superposition of the
above mentioned states but now the state j1;1;1i possesses the
main contribution. Alternatively, the above description can be
explained by the fact that the SP and T categories for varying s exhi-
bit different scalings. Indeed, for s� sa the population of the SP
increases while the T slowly decreases for increasing s. However,
for sP sa both categories decay in favor of the S state. Having
described the mechanism behind this bi-exponential decay of
PexcðsÞ let us demonstrate whether this law is robust also within
the MF approximation or upon varying the initial state of the sys-
tem. As it can be seen in Fig. 3(a) PexcðsÞ exhibits the same bi-expo-
nential law also within the MF approximation but the predicted

amount of excitations is lesser when compared to the MB approach.
Therefore, we can infer that the MF approximation predicts the
qualitative decay of excitations but fails to capture the quantitative
amount of excitations. Turning again to the MB approach, we
observe that by initializing the system in a weakly interacting state
PexcðsÞ shows the same decay law but fewer excitations are pro-
duced than starting from gi ¼ 0. This can be explained by the fact
that the population of the T category in the initial state is strongly
suppressed for increasing gi. Additionally, Fig. 3(a) shows PexcðsÞ
for a shallower lattice. PexcðsÞ again exhibits a bi-exponential decay
but most importantly it is observed that at s � 19 the curves
forV0 ¼ 10 and V0 ¼ 4 cross each other. As a consequence for
s < 19 [s > 19] PexcðsÞ is larger [smaller] for the shallower lattice.
The above-mentioned crossing between the PexcðsÞ for different
heights of the potential barriers serves as a starting-point for inves-
tigating in the following the behavior of the mean excitation prob-
ability for varying V0 and fixed s, see Fig. 3(b). A compatible double

Gaussian fit PexcðV0Þ ¼ A1e
� V0�C1

C2

� �2

þ B1e
� V0�D1

D2

� �2

(where
A1;B1; C1;C2;D1;D2 refer to positive constants) is provided as a
guide to the eye. As it can be seen, the scaling of PexcðV0Þ depends
strongly on the considered ramping time s. Indeed, proximally to
the diabatic limit, e.g. see s =1, PexcðV0Þ decreases for increasing
V0. Interestingly enough, for larger s, e.g. see s =25, PexcðV0Þ exhibits
a completely different behavior. Initially it increases for increasing
V0 until it reaches a maximum value and then decreases for larger
V0. For instance, at s ¼ 25 PexcðV0Þ increases until V0 � 6 where it
exhibits a maximum and then decreases for V0 > 6. We also remark
here that the maximum of PexcðV0Þ is displaced for varying s, e.g. for
s ¼ 10 is located at V0 � 5:5 while for s ¼ 50 is at V0 � 8. The above
described alternating behavior of PexcðV0Þ for the different s regions

Fig. 3. Mean excitation probability of at least one boson to reside in an excited band
for varying (a) ramp time s of the LIQ, (b) barrier height V0 and (c) postquench
interaction strength gf . In all cases we consider a LIQ from an initially non to a final
strongly correlated state unless stated otherwise (see legends). Different curves
correspond to different parameter values (see legend), while the lines belong to a
numerical fitting and provide a guide to the eye. The time-scale sa denotes the
border between diabatic and moderate ramping for V0 ¼ 10. The grey scaled
interaction interval in (c) denoted by gC refers to the region of avoided crossings
when V0 ¼ 4 between the SE and T as well as the T and HE categories, see also Fig. 1
(a).
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can be traced back to the previously observed crossing of PexcðsÞ for
different V0, shown in Fig. 3(a) at s ¼ 19. Indeed, for s < 19 ðs > 19Þ
PexcðsÞ decreases (increases) for increasing V0, i.e.
Pexcðs 19;V0 ¼ 4Þh iPexcðsh19;V0 ¼ 10Þ. This is due to the fact that
the fast (slow) decay process described by s1 ðs2Þ being related to
the T ! SP ðSP ! SÞ mode is stronger (weaker) for increasing V0,
see also Fig. 3(a). Comparing PexcðV0Þ for a fixed V0 and varying s,
we observe that PexcðV0Þ decreases in a uniform manner for increas-
ing s, a result that is in accordance with our previous observations
for the PexcðsÞ bi-exponential decay, see Fig. 3(a). However, for dee-
per lattices ðV0 > 12Þ the decrease of PexcðV0Þ almost halts after a
certain s0 (mainly s0 > 10Þ.

Finally, we study the impact of the postquench interaction
strength on the higher-band excited fraction, see Fig. 3(c). Pexcðgf Þ
exhibits two distinct response regions with respect to gf . These
regions are classified by the location gC of the existing avoided
crossings between the SE and T as well as T and HE categories in
the corresponding MB eigenspectrum, see the grey scaled area
which incorporate the solid elipses in Fig. 1(a). Indeed, when gf

approaches gC Pexcðgf Þ exhibits a non-linear growth as shown in
the grey scaled interaction interval of Fig. 3(c), while for gf > gC

it increases in a linear manner. Overall, Pexcðgf Þ grows for larger
gf ’s as we import more energy to the system and thus excite more

higher-band states. On the contrary, Pexcðgf Þ reduces for larger s’s
because for more adiabatic LIQs the effect of the existing avoided
crossings is smeared out.

In the next subsection we examine the negative LIQ dynamics,
within the triple well system, from the MI to the SF correlated
regimes. In particular, we shall elaborate in detail how such a neg-
ative LIQ alters the overall response of the system consisting of
inter and intraband tunneling dynamics.

3.3. Quench dynamics from MI to SF phase

The system is initialized within the strongly correlated regime,
gi ¼ 2, and therefore the ground state corresponds to the spatial
contribution j1;1;1i. To induce the dynamics we perform a nega-
tive LIQ to a weakly or non-interacting state and examine the
dynamical response of the system. Fig. 4(a) presents Fðt; sÞ in a
shallow triple well, V0 ¼ 4, for varying ramp time s and gf ¼ 0.
As in the positive LIQ scenario FðtÞ exhibits oscillations during
the evolution possessing here, however, only a few small value fre-
quencies. The fact that Fðt; sÞ < 1 indicates the melting of the MI
phase [34]. The MB state after the quench consists of a superposi-
tion of the S; SP and T classes, see also Fig. 1(a). To justify the latter,
we resort to the probability of specific number states that belong to
the above classes. Indeed, Fig. 4(c), (d) and (e) present

P1ðtÞ¼ j 1;1;1jWðtÞh ij2;P2ðtÞ¼ j 1;2;0jWðtÞh ij2 ¼ j 0;2;1jWðtÞh ij2 and

P3ðtÞ ¼ j 0;3;0jWðtÞh ij2 respectively. We observe that for diabatic
LIQs the three modes are almost equally populated, while for large
s’s the SP mainly contributes to the dynamics and the other states
possess a decaying amplitude in time. The reduced amplitude of
j1;1;1i for larger s indicates that the system is significantly per-
turbed for proximally adiabatic LIQs. To further elaborate on the
system’s dynamical response, Fig. 4(f) illustrates the corresponding
normalized variance of the fidelity KðsÞ for varying s. We observe
an almost monotonic decrease of KðsÞ for increasing s, especially
for s > 10, suggesting that the dynamical response is enhanced
in the abrupt limit and reduces when the adiabatic limit is
approached. The same overall response is also observed for a dee-
per triple well, see Fig. 4(b). However, the corresponding decaying
response for increasing s is more faint due to the increased energy
gap between the MB eigenstates, see also Fig. 1.

To investigate the tunneling dynamics we rely on the fidelity
spectrum, see Fig. 4(g). It is observed that, in the case of a deep lat-
tice ðV0 ¼ 10Þ, following a LIQ to g ¼ 0 only the S ! SP tunneling
mode is excited which is located at x � 0:1. Employing the corre-
sponding MF approximation this tunneling mode hardly survives
with frequency x0 ¼ 0:001 [hardly visible in Fig. 4(g)]. Turning
again to the MB correlated approach, we investigate the influence
on the tunneling dynamics of the postquench state and the depen-
dence on the potential barrier. Examining first the situation of a
weakly correlated postquench state, namely gf ¼ 0:05, we observe
that two lowest band tunneling modes exist. The first mode located
at x1 � 0:02 refers to the transport S ! SP and the second at
x2 � 0:11 to tunneling S ! T . On the other hand, following a LIQ
in a shallow lattice to a non-interacting final statemainly three tun-
neling modes are triggered. The first located at x0

1 ¼ 0:2 refers to
transport S ! SP, while the remaining two possess frequencies
x0

2 ¼ 0:35 and x00
2 ¼ 0:45 which correspond to tunneling between

the S and different states belonging to the T class. Note that higher
frequency peaks, e.g. atx3 � 0:62, refer to higher order lowest band
transitions, for instance SP ! T , and possess reduced amplitudes.

To complement our study, let us explore the mean amount of
higher-band excitations induced by a negative LIQ. As in the previ-
ous section we examine the impact of the mean excitation dynam-
ics as a function of the ramping time s [see Fig. 5(a)] or the height
of the potential barrier V0 [see Fig. 5(b)]. Here, we observe that the
mean excitation dynamics for varying ramp time obeys an expo-
nential decay

PexcðsÞ ¼ A3e�s=s3 ; ð7Þ

where A3; s3 correspond to positive constants, and s3 characterizes
the rate of the decay. As shown the amount of produced excitations
is negligible for all ramp times, see Fig. 5(a). It reduces for a LIQ to a

Fig. 4. Fidelity evolution for varying ramp time s after a LIQ from gi ¼ 2 to gf ¼ 0.
Shown are the cases of (a) a shallow V0 ¼ 4 and (b) a deep V0 ¼ 10 triple well.
Probabilities of specific number state configurations during the evolution, namely
(c) P1ðtÞ ¼ j < 1;1;1jWðtÞ > j2, (d) P2ðtÞ ¼ j < 1;2;0jWðtÞ > j2 ¼ j < 0;2;1jWðtÞ > j2
and (e) P3ðtÞ ¼ j < 0;3;0jWðtÞ > j2. (f) Normalized variance of the fidelity KðsÞ in the
case of a shallow lattice for varying ramp time s. (g) Spectrum of the fidelity
following a LIQ with s ¼ 8 for different barrier heights, initial and final interactions
within the MB approach or the MF approximation (see legend). The system consists
of three initially strongly interacting bosons (see legend) confined in a triple well.
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weakly correlated instead of the non-interacting state [see the inset
of Fig. 5(a)] and it is enhanced for shallower lattices. Finally, the cor-
responding MF approximation shows the same qualitative behavior
but quantitatively fails to predict the correct amount of excitations.
In addition, we find that the mean excitation dynamics follows
again an exponential decay with respect to the barrier height,
namely

PexcðV0Þ ¼ A4e�V0=V1 ; ð8Þ

where A4;V1 refer to positive constants and V1 is the inverse rate of
the decay. As it can be deduced from Fig. 5(b) again the produced
amount of excitations is negligible and reduces even further when
a larger ramp time is considered. Finally, let us examine the depen-
dence of the excited to higher-band fraction on the postquench
state for fixed ramping rate, shown in the inset of Fig. 5(b). We
observe that the population of excited states is overall negligible,
and in particular it is greatly reduced when we enter the SF regime
namely gf < 0:5 as well as in the case of deep optical lattices. Con-
cluding, we can infer that the excitation dynamics following a LIQ
from a MI-like to a weakly or even non-interacting final state is neg-
ligible. Therefore the lowest band approximation provides an ade-
quate description of the system’s dynamics.

To demonstrate the robustness of our results for larger optical
lattices, in the following section, we proceed to the investigation
of unit filling systems which contain higher number of bosons con-
fined in multiwell traps. In particular, we show that the dynamical
response induced by a LIQ exhibits similar characteristics to the
triple well case.

4. LIQ Dynamics in extensive unit filling lattice systems

Let us now investigate the dynamical response for larger unit fill-
ing setups. Here, we mainly focus on a five well optical lattice and

consider a LIQ from a SF to aMI-like state and vice versa. Concerning
the initial state of the system in the SF phase it consists of an admix-
ture of the Wannier number states j0;1;3;1;0i; j0;2;3;0;0i;
j0;2;2;1; 0i; j1;1;2;1;0i; j1;1;1;1;1i, while in the MI phase the
dominant contribution stems from the j1;1;1;1;1i state. Note also
that due to the underlying spatial symmetry of the system all the
corresponding parity symmetric states contribute as well.

To trigger the dynamics we employ either a positive or a nega-
tive LIQ protocol. Fig. 6(a) shows Fðt; sÞ following a positive LIQ for
varying s. As in the triple well case, we observe that Fðt; sÞ exhibits
an oscillatory behavior in time possessing also multiple frequen-
cies which mainly correspond to lowest band transport and a
few interband tunneling modes. The amplitude of the Fðt; sÞ oscil-
lation becomes larger for increasing s when referring to a fixed
time instant t. This indicates that the system maximally departs
from its initial state in the proximity of an adiabatic LIQ. Then by
exploiting s we can adjust the sweeping rate of the avoided cross-
ings in the corresponding MB eigespectrum (not shown here for
brevity) and thus control the population of the resulting excita-
tions. Interestingly enough and in contrast to the triple well system
here Fðt > s; sÞ < 0:3, suggesting that larger unit filling setups can
be driven out-of-equilibrium in a more efficient manner which is a
manifestation of the Anderson orthogonality catastrophe
[84,85,81]. As a consequence more modes can be triggered point-
ing also to the opportunity for enhanced interband tunneling
(see below). To demonstrate the MB character of the dynamics
we next present Fðt; sÞ employing the corresponding MF approxi-
mation, see Fig. 6(b). Despite the overall tendency for enhanced
dynamical response for increasing s; Fðt; sÞ differs significantly
from the MB approach. Indeed, a reduced number of modes is par-
ticipating most of which refer to single-particle transport while
0:35 < Fðt > s; sÞ < 0:8 in direct contrast to Fig. 6(a). The existing

Fig. 6. Fidelity evolution for varying ramp time s after a positive LIQ from gi ¼ 0 to
gf ¼ 2 within (a) the MB approach and (b) the MF approximation. (c), (d) The same
as (a), (b) but following a negative LIQ from gi ¼ 2 to gf ¼ 0. The system consists of
five initially (a), (b) non and (c), (d) strongly interacting bosons confined in five
wells. PexcðsÞ for varying ramp time s of the (e) positive and (f) negative LIQ. (g), (h)
The same as (e), (f) but for varying barrier height V0. Different curves correspond to
different parameter values (see legends), while the lines stem from a numerical
fitting and provide a guide to the eye. The legend shown in (f) [(h)] is the same also
for (e) [(g)].

Fig. 5. Mean excitation probability of at least one boson to reside in an excited band
for varying (a) ramp time s of the LIQ (see a magnified version in the inset), (b)
barrier height V0 and in the inset of (b) postquench interaction strength gf with
gi ¼ 3. In all cases we consider a LIQ from an initially strongly to a final non
correlated state unless stated otherwise (see legends). Different curves correspond
to different parameter values (see legend), while the lines stem from a numerical
fitting and provide a guide to the eye.
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modes possess positive shifted frequencies, when compared to the
MB approach.

Next we examine the dynamical response induced by a negative
LIQ, namely the MI melting, employing again Fðt; sÞ, see Fig. 6(c).
We observe that Fðt; sÞ performs oscillations of both large ampli-
tude and period, while for larger s’s the system becomes more per-
turbed [hardly visible in Fig. 6(c)]. After the LIQ the MB state
consists of a superposition of several lowest band number states
among which the states of double occupancy, e.g. j0;2;2;1;0i, pos-
sess the main contribution and become dominant as we tend to an
adiabatic ramping. The above result is in agreement with the neg-
ative LIQ dynamics of the triple well, however here Fðt; sÞ performs
oscillations of both larger amplitude and period. Within the corre-
sponding MF approximation, see Fig. 6(d), Fðt; sÞ shows the same
overall qualitative decrease for larger s’s but quantitatively the
dynamical response is altered significantly. For instance, Fðt; sÞ
and its oscillation frequencies are larger when compared to the
MB approach.

Turning to the investigation of the induced interband tunneling
we employ the mean excitation probability Pexcðt; sÞ for varying s.
Following a positive [negative] LIQ PexcðsÞ obeys a bi-exponential
[an exponential] decay law, see Fig. 6(e) [Fig. 6(f)] similar to the tri-
ple well case. Note also that, as before, following a negative LIQ
PexcðsÞ is negligible. Additionally, PexcðsÞ is enhanced for larger unit
filling setups, while the MF approximation predicts a smaller
(enhanced) amount of excitations for positive (negative) LIQs. Fol-
lowing a positive LIQ there is a crossing point (here at s ¼ 8Þ
between PexcðsÞ’s, as in the triple well case, that refer to different
V0’s. This behavior of PexcðsÞ seems to be quite robust in different
setups and suggests the existence of two excitation time scales
concerning the ramping rate and V0. Namely, within a positive dia-
batic (adiabatic) LIQ the excited to higher-band fraction is larger
(smaller) for shallower lattices. To complement our study on the
excitation dynamics we investigate PexcðV0Þ for varying V0 both
for a positive LIQ, see Fig. 6(g), as well as a negative LIQ, see
Fig. 6(h). We observe that within a positive LIQ scenario PexcðV0Þ
strongly depends on s. In agreement to the triple well case,
PexcðV0Þ decreases for small s [e.g. see s ¼ 1 in Fig. 6(g)], while
for larger rampings PexcðV0Þ shows a maximum at a specific region
of V0 [e.g. see s ¼ 10 in Fig. 6(g)]. However, for a negative LIQ
PexcðV0Þ follows an exponential decay with respect to V0. Overall,
in both positive and negative LIQs the excited to higher-band mean
fraction increases for a more diabatic ramping and also for larger
systems of unit filling. Finally, let us note that for the five well sys-
tem PexcðV0Þ is not negligible suggesting that for more extensive
unit filling lattices the occupation of higher-band states might be
unavoidable even in the course of the negative LIQ dynamics.

5. Conclusions and outlook

We have explored the nonequilibrium quantum dynamics fol-
lowing a linear interaction quench protocol in repulsively interact-
ing few boson ensembles confined in finite optical lattices. The
focus has been on unit filling such that the ground state of the sys-
tem for increasing interaction strength exhibits the transition from
a SF to a MI phase. To realize this transition and obtain the interac-
tion dependence of the occupation of the number states, we first
calculate the many-body eigenspectrum for varying interparticle
repulsion. Here, the existence of multiple avoided crossings before
and after the transition is elucidated. To induce the dynamics we
perform a LIQ and cross dynamically, with a finite ramp rate, the
aforementioned transition from both directions. Subsequently,
we explore the dynamical response caused by the LIQ and in par-
ticular examine its dependence on several system parameters, such

as the height of the potential barrier. It is important to note here
that within our multiband treatment the dynamical response con-
sists of both the lowest band tunneling and the excited to higher-
bands fraction.

Crossing the weak to strong interaction regimes yields the exci-
tation of several lowest band tunneling pathways consisting of sin-
gle and two particle transport. Furthermore, a rich interband
tunneling dynamics is observed possessing mainly a single excita-
tion to the first or second excited band. Analyzing in more detail
the excited to higher-band fraction we examine its dependence
on the quench ramp rate and barrier height. We find that it exhi-
bits a bi-exponential decay for decreasing quench rate. This decay
law introduces two different time scales in the excitation dynam-
ics, which are directly related to the diabatic or adiabatic crossing
of the transition respectively and can be further explained by the
behavior of the participating number states. Furthermore, the
excited fraction follows a more complex scaling for varying height
of the potential barrier. For diabatic quenches it reduces, while for
larger ramp times it exhibits a non-linear behavior. The latter can
be explained by exploiting the dependence on the ramp time of the
excited fraction for shallow and deep lattices. Finally, the higher-
band dynamics strongly depends on the postquench state, namely
when we tend to the region of an existing avoided crossing it is
described by a non-linear growth, while for larger quench ampli-
tudes it increases in an almost linear manner.

In constrast to the above, the dynamical response following a
LIQ from strong to weak interactions is reduced and mainly com-
prises of the lowest band tunneling dynamics. Indeed, in this case
following the quench we can excite only a few tunneling modes,
while the excited to higher-band fraction is negligible and obeys
an exponential decay for varying ramp time. Here, the lowest band
approximation seems to describe the induced dynamics accurately.
Finally, we made an attempt to generalize our results by consider-
ing larger systems, e.g. a five well setup, and showing the robust-
ness of the above mentioned scalings as well as the
enhancement of the excited to higher-band fraction.

Finally, let us comment on possible future extensions of our
work. An interesting alternative of the present work would be to
investigate the dynamical response induced by a LIQ in repulsively
interacting dipolar bosons [86] upon crossing the corresponding SF
to supersolid transition point. Certainly, the study of bosonic or fer-
mionic spinor ensembles confined in an optical lattice is an intrigu-
ing perspective. Here, the inclusion of the spin degree of freedom
enriches the phase diagram [1,87,88] and as a consequence it
might alter significantly the dynamical response.
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Appendix A. The computational approach: MCTDHB

To solve the many-body (MB) Schrödinger equation
i�h@t � Hð ÞjWðtÞi ¼ 0 of the interacting bosons as an initial value
problem jWð0Þi ¼ jW0i, we rely on the Multi-Configuration Time-
Dependent Hartree method for Bosons (MCTDHB) [73,74,89]. The
latter has already been applied for a wide set of nonequilibrium
bosonic settings, e.g. see [59–62,75,89–93]. This method allows
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for a variationally optimal truncation of the Hilbert space as we
employ a time-dependent moving basis where the system can be
instantaneously optimally represented by time-dependent perma-
nents. The MB wavefunction is expanded in terms of the bosonic
number states jn1;n2; . . . ;nM; ti, that built upon time-dependent
single-particle functions (SPFs) j/iðtÞi; i ¼ 1;2; . . . ;M, and time-
dependent weights C~nðtÞ

WðtÞj i ¼
X
n
!

C
n
!ðtÞ n1;n2; . . . ;nM; tj i: ðA1Þ

Here M is the number of SPFs and the summation ~n is over all
the possible combinations ni such that the total number of bosons
N is conserved. Note that in the limit in which M approaches the
number of grid points the above expansion is equivalent to a full
configuration interaction approach. Furthermore, in the case of
M ¼ 1 the MB wavefunction is given by a single permanent
jn1 ¼ N; ti and the method reduces to the time-dependent Gross
Pitaevskii mean-field approximation.

To determine the time-dependent wave function jWðtÞi we cal-
culate the equations of motion for the coefficients C~nðtÞ and the
SPFs j/iðtÞi. Following the Dirac-Frenkel [94,95] variational princi-

ple, dWji@t � bHjW
D E

¼ 0, we obtain the well-known MCTDHB

equations of motion [73,74,89]. These equations consist of a set
ofM non-linear integrodifferential equations of motion for the SPFs
being coupled to the ðNþM�1Þ!

N!ðM�1Þ! linear equations of motion for the

coefficients C~nðtÞ. Finally, let us remark that in terms of our imple-
mentation we use an extended version of MCTDHB being referred
to in the literature as the Multi-Layer Multi-Configuration Time-
Dependent Hartree method for bosonic and fermionic Mixtures
(ML-MCTDHX) [96–98]. This computational package is particularly
suitable for treating systems consisting of different bosonic, fer-
mionic species, while for the case of a single bosonic species it
reduces to MCTDHB.

For the numerical implementation, the SPFs are expanded
within a so-called primitive basis jkif g of dimensionMp. As a prim-
itive basis for the SPFs we have used a sine discrete variable repre-
sentation, which intrinsically introduces hard-wall boundaries at
both ends of the potential. To obtain the n-th MB eigenstate we
rely on the so-called improved relaxation scheme, being summa-
rized as follows. First, we initialize the system with an ansatz set

of SPFs j/ð0Þ
i i

n o
, diagonalize the Hamiltonian within a basis

spanned by the SPFs and set the n-th obtained eigenvector as the

Cð0Þ
~n -vector. Then, we propagate the SPFs in imaginary time within

a finite time interval ds, update the SPFs to j/ð1Þ
i i

n o
and repeat the

above steps until the energy of the state converges within the pre-
scribed accuracy. In turn, we perform a time-dependent quench on
the strength of the interparticle repulsion and study the evolution
of jWðtÞi in the m-well potential by utilizing the appropriate
Hamiltonian within the MCTDHB equations of motion.

To track the numerical error and guarantee the accurate perfor-
mance of the numerical integration for the MCTDHB equations of
motion we impose the following overlap criteria

j WjWh i � 1j < 10�9 and j uijuj

D E
� dijj < 10�10 for the total wave-

function and the SPFs respectively. The dimension of the used
primitive basis consists of 300 spatial grid points in the case of a
triple well and 500 spatial grid points for the five well potential.
Furthermore, to ensure the convergence of our simulations we
have used up to 9 (10) optimized single particle functions for the
triple (five) well, thereby observing a systematic convergence of
our results. An auxiliary indicator for convergence is provided by
the population of the lowest occupied natural orbital kept always
below 0.1%.
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The nonequilibrium quantum dynamics of few boson ensembles which experience a spatially mod-
ulated interaction strength and are confined in finite optical lattices is investigated. Performing
quenches either on the wavevector or the phase of the interaction profile an enhanced imbalance of
the interatomic repulsion between distinct spatial regions of the lattice is induced. Following both
quench protocols triggers various tunneling channels and a rich excitation dynamics consisting of a
breathing and a cradle mode. All modes are shown to be amplified for increasing inhomogeneity
amplitude of the interaction strength. Especially the phase quench induces a directional transport
enabling us to discern energetically, otherwise, degenerate tunneling pathways. Moreover, a periodic
population transfer between distinct momenta for quenches of increasing wavevector is observed,
while a directed occupation of higher momenta can be achieved following a phase quench. Finally,
during the evolution regions of partial coherence are revealed between the predominantly occupied
wells.

I. INTRODUCTION

Ultracold atoms in optical lattices have emerged as
powerful quantum many-body platforms with highly tun-
able parameters enabling us to emulate in the laboratory
a multitude of complex systems [1–3]. Due to the re-
markable experimental progress it is nowadays possible
to create arbitrarily shaped potential landscapes [4], and
to realize besides many-body also highly controllable few-
body systems [5–8]. Moreover the advent of magnetic
[9, 10] and optical Feshbach resonances [11–17] offer the
possibility of tuning the elastic interatomic interaction
strength with unprecedented level of accuracy. In partic-
ular optical Feshbach resonances, utilizing optical cou-
pling between bound and scattering states, provide the
flexibility to design complex spatial interaction strength
distributions across the atomic sample. The correspond-
ing intensity and detuning of the participating optical
fields can be rapidly changed and allow even for nanome-
ter scale modulations of the resulting scattering length
[15].

Spatially inhomogeneous interaction patterns intro-
duce in the system a periodic structure which is known
as nonlinear optical lattice [18–21]. This concept rein-
vogorated the theoretical interest of diverse topics rang-
ing from the simulation of sonic black holes [22, 23] to
altered properties of the emerging nonlinear excitations
[21, 24]. In this latter context a plethora of new phe-
nomena have been revealed such as emission of solitons or
trains thereof [25, 26], Bloch oscillations of solitary waves
[27–29], adiabatic compression [29, 30] and dynamical
trapping [31] of matter waves to name a few. Moreover,
the existence of a delocalizing transition of bosons in one-
dimensional optical lattices [32], optimal control schemes
to stimulate transitions into excited modes of a conden-
sate [33], a particle localization phenomenon at the re-

gions where the scattering length vanishes [34, 35] and
the emergence of Faraday waves [36] have been demon-
strated.

The above-mentioned investigations have been per-
formed within the mean-field realm resting under the
premise of a macroscopic wavefunction which is com-
posed of a single orbital. Meanwhile there is evidence
that when considering spatially inhomogeneous interac-
tions in bosonic systems fragmentation, namely the oc-
cupation of more than a single-particle state, occurs
[37, 38]. In this context and referring to few boson ensem-
bles confined in optical lattices different resonant inter-
band tunneling mechanisms [39, 40] have been unveiled.
Independently and following a linear or a sudden homo-
geneous interaction quench in lattice trapped few boson
systems it has been shown that the quench inevitably
leads to the population of higher lying band states [41],
it generates collective modes such as the breathing and
the cradle processes [42, 43] and couples the lowest and
excited band states [42, 44, 45]. For a lattice setting the
spatial interaction pattern (nonlinear lattice) can give
rise to a preferred interaction imbalance of the bosons
between the distinct lattice sites and therefore particular
particle configurations can be formed [46]. In this context
it is particularly interesting to examine whether a certain
particle distribution can be displaced in a controlled way
upon an interaction quench leading to a steered tunnel-
ing within the same or energetically different bands and
collective modes such as e.g. the cradle mode, during the
evolution. To address this question in the present work
we employ the Multi-Configurational Time-Dependent
Hatree method for Bosons (MCTDHB) [47, 48] being a
multimode treatment which enables us to capture the
important correlation effects and account for several en-
ergetically distinct single-particle bands [49]. In this way
we investigate, for the first time, the quench induced few
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boson correlated dynamical response in a combined linear
and nonlinear optical lattice. Our spatially modulated
interaction strength is of sinusoidal type being charac-
terized by its wavevector, inhomogeneity amplitude, in-
teraction offset and a phase.

Regarding the ground state of the system we show that
by tuning either the wavevector or the phase, the den-
sity distribution can be effectively displaced to regions
of decreasing interaction strength. In particular, for dis-
tinct wavevectors the ensemble remains superfluid while
a phase shift leads to a displacement of the particles in a
preferred direction enabling for the existence of Mott-like
states. The corresponding system’s dynamical response
upon quenching either the wavevector or the phase of the
spatial interaction strength is enhanced for quenches that
yield a non-negligible interaction imbalance of bosons lo-
cated in different wells. Both quench scenarios yield the
excitation of a multitude of lowest band interwell tun-
neling modes composed of single-particle and atom pair
[50–52] transport. The manipulation of these modes by
adjusting the interaction offset or the inhomogeneity am-
plitude will also be analyzed and discussed. Importantly,
by performing a phase quench a directed tunneling along
the finite lattice is achieved. The latter allows to discrim-
inate between the parity symmetric tunneling modes, e.g.
single-particle lowest band tunneling from the middle to
the left or the right well, which would be otherwise en-
ergetically equal. Besides the lowest band tunneling dy-
namics both quenches give rise to an over-barrier trans-
port (being significantly increased when following a phase
quench) which in turn generates a cradle mode in the
outer wells and a global breathing motion of the bosonic
cloud. These modes are related to single-particle inter-
band processes [41, 53] to the first, second and fourth
excited band respectively, and are found to be enhanced
for increasing inhomogeneity magnitude. Inspecting the
one-body momentum distribution a periodic (consecu-
tive) population transfer to higher momenta during the
dynamics occurs when quenching the wavevector (phase)
of the spatially inhomogeneous interaction profile. Fi-
nally the one-body coherence function reveals a partial
coherence between the predominantly occupied wells dur-
ing the evolution.

This work is structured as follows. In Sec. II we
introduce the employed spatially-dependent interaction
strength and the multiband expansion which we use
for the interpretation of the quench induced dynamics.
Sec. III presents briefly the ground state properties of
a system composed of four inhomogeneously interacting
bosons in a triple well. Then, we focus on the resulting
dynamics caused by a quench of the wavevector (Sec. IV)
or the phase (Sec. V) of the spatial interaction strength.
In Sec. VI we discuss the quench induced dynamics for
a five well lattice system of filling larger than unity. We
provide an outlook and discuss future perspectives in Sec.
VII. Finally, Appendix A describes our computational
methodology.

II. SETUP AND MULTIBAND EXPANSION

The many-body Hamiltonian of N identical bosons
possessing mass M and confined in a one-dimensional
m-well optical lattice reads

H =
N∑

i=1

(
p2i
2M

+ V0sin
2(k0xi))

+
∑

i<j

Vint(xi − xj , g, a, k1, φ).

(1)

The external potential is characterized by its barrier
depth V0 and wavevector k0 = π/l, where l denotes the
distance between successive potential minima. In a corre-
sponding experimental setup k0 is the wavevector of the
counterpropagating laser beams that form the confining
optical lattice.
The interatomic interaction is modelled by a

spatially-dependent short-ranged contact pseudopoten-
tial Vint (xi − xj , g, a, k1, φ) = Cint (g, a, k1, φ, xi)δ(xi −
xj) between particles located at positions xi, i =
1, 2, ...N . The effective one-dimensional spatially-
dependent interaction strength reads

Cint (x, g, a, k1, φ) = g [ 1 + a cos2(k1x+ φ) ], (2)

where g refers to an average interaction offset. k1 de-
notes the wavevector of the periodic modulation, a is
the amplitude of the inherent inhomogeneity and φ is
a constant phase shift. Note that φ 6= 0 and fixed k1
yields an interaction strength imbalance between all lat-
tice wells, while for varying k1 and φ = 0 Cint is on aver-
age the same only for the parity symmetric, with respect
to the center (x = 0), outer sites. Due to periodicity φ
takes values within the interval [0, π/2]. Several inter-
action profiles of Eq. (2) for varying wavevector k1 or
phase φ are presented in Fig. 1 together with the un-
derlying triple well potential V0sin

2(k0x). Experimen-
tally such a spatially modulated interaction profile can
be achieved with the aid of optically induced Feshbach
resonances [11, 12, 17, 54], e.g. by a laser field tuned
near a photoassociation transition. Alternatively a tech-
nique of holographic beam shaping can be used, e.g. a
digital micromirror device [55], to engineer wavefronts of
arbitrary phase, amplitude and wavelength [56, 57].
For simplicity, the Hamiltonian is rescaled in units of

the recoil energy ER =
~2k2

0

2M . Thus the frequency, spatial

and temporal scales are given in units of ωR, k
−1
0 and

~E−1
R respectively. In addition we set ~ = M = k0 =

1. The confinement of the bosons in the m-well system
is ensured by the use of hard-wall boundary conditions
at xm = ±mπ

2k0
. Finally, the lattice depth is fixed to

V0 = 6ER including this way two localized single-particle
Wannier states per lattice site.
To examine the static properties and the quench in-

duced dynamics upon varying the wavevector k1 or the
phase φ of Cint we employ MCTDHB [47, 48]. In contrast
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Figure 1. Different configurations of the spatially-dependent
interaction strength Cint(x, g, a, k1, φ) in a triple well poten-
tial V0sin

2(k0x) for k0 = 1, V0 = 6 (see legend).

to the mean-field approximation, within this approach
we exploit an expansion in terms of many variationally
optimized time-dependent single-particle functions (for
more details, see also Appendix A). The latter allows for
the investigation of the emergent interparticle correla-
tions revealing the many-body properties of the system.
To identify the modes participating in the dynamics we
project the numerically obtained many-body correlated
MCTDHB wavefunction on a time-independent number
state basis consisting of single-particle Wannier states be-
ing localized on each lattice site. Such an expansion offers
the possibility to study inter- and intraband transitions
[42]. The many-body bosonic wavefunction of N bosons
in anm-well potential which includes j localized Wannier
states reads

|Ψ(t)〉 =
∑

~n

C~n(t)|~n〉. (3)

The multiband Wannier number state |~n〉 = | ⊗j−1
λ=0

n
(λ)
1 , ...,⊗j−1

λ=0n
(λ)
m 〉 while the Wannier occupation num-

ber n
(λ)
i indicates the number of bosons that reside

in the Wannier orbital |n(λ)
i 〉 of the i-th well and λ-

th energy band. Due to the fixed number of bosons
N the total number of configurations is constrained by∑m

i=1

∑j−1
λ=1 n

(λ)
i = N . For a setup of N = 4 bosons con-

fined in a triple well m = 3, which will be our workhorse
in the following, e.g. the state |1(0), 1(1) ⊗ 1(1), 1(0)〉 indi-
cates that in the left and right wells one boson occupies
the Wannier orbital of the energetically lowest band while
the remaining two atoms are in the middle well, residing
in the Wannier orbital of the first excited band. For sim-
plicity, below, we shall omit the zero index when referring
to the energetically lowest (zeroth) band.
We note that in the case of a homogeneous contact in-

teraction and regarding the zeroth band states one can
realize four distinct energetic classes of number states.
Namely, the single pairs (SP) {|2, 1, 1〉+ 	}, double
pairs (DP) {|2, 0, 2〉+ 	}, triples (T) {|3, 1, 0〉+ 	} and

quadruples (Q) {|4, 0, 0〉+ 	}, where 	 denotes all cor-
responding permutations. However, in the presence of a
spatially inhomogeneous interaction, each energy class is
further energetically splitted depending on the combina-
tion of the corresponding occupation number ni and the
spatially averaged interaction strength in the i-th well.
Here we distinguish two cases. For varying k1 and φ = 0
each energy class splits into a subclass containing the
states with the lowest occupancy in the middle well and
another one which includes all the other states of the
original energy class. As an example the SP class sepa-
rates into the {|2, 1, 1〉, |1, 1, 2〉} and {|1, 2, 1〉} subclasses.
Moreover, since the phase shift φ yields distinct Cint in
each well all states of a certain class become energetically
individual.

III. GROUND STATE PROPERTIES

Before investigating the dynamics, let us elaborate
on the ground state properties of a system with filling
ν = N/m > 1 (here N = 4 and m = 3) under the in-
fluence of the spatially-dependent interaction profile [see
Eq. (2)]. Referring to the case of a homogeneous contact
interaction the ground state characteristics of a lattice
setup depends strongly on the system’s filling factor. For
commensurate fillings (ν = 1, 2, ...) and increasing inter-
atomic repulsion one can realize the superfluid to Mott
insulator phase transition [58, 59], while for incommen-
surate fillings (ν 6= 1, 2, ...) the delocalized fraction of
particles forbids the occurrence of a Mott state due to
prevailing on-site interaction effects. On the other hand,
spatially varying interactions can influence mainly sys-
tems consisting of sufficiently overlapping atoms (namely
ν ≥ 1) as the emergent on-site interactions effects can be
highly exploited in this case. In the following we explore
the ground state properties for N = 4 bosons in a triple
well either for varying wavevector k1 or phase φ but for
fixed interaction offset, g = 1, and inhomogeneity ampli-
tude a = 2.
We first inspect the dependence of the ground state

configuration on the wavevector k1 of the interaction
strength Cint for φ = 0. The one-body reduced den-
sity matrix ρ(1)(x, x′) = 〈x|ρ̂(1)|x′〉 is obtained by tracing
out all bosons but one in the N -body density operator
ρ̂(N) = |Ψ〉〈Ψ| of the N -body system. Fig. 2 (a) shows
the one-body density ρ(1)(x) = ρ(1)(x, x′ = x) for differ-
ent spatial periodicities k1 = 0, 0.5, 0.75 and 1 of Cint.
The various k1 values lead to distinct spatially averaged
interaction strengths for the central and the outer wells.
For k1 = 1 the bosons residing in each well are subject
to the same average interaction strength, see also Fig. 1.
A slightly increased particle density in the middle well
when compared to the outer ones is observed due to the
hard-wall boundary conditions. This situation resembles
a homogeneously interacting system i.e. k1 = 0 with
Cint = g + a, see Fig. 2 (a). On the contrary, k1 = 0.5
yields a spatially varying interaction strength exhibiting
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a peak within the central well [see Fig. 1] which forces the
ensemble to preferably populate the outer wells. Other
values of k1 yield an intermediate behavior of the particle
density, e.g. see ρ(1)(x) for k1 = 0.75 in Fig. 2 (a).

To cast light on the non-local properties of the system’s
ground state from a one-particle perspective we employ
the first order coherence function [60, 61] g(1)(x, x′) =

ρ(1)(x, x′)/
√
ρ(1)(x)ρ(1)(x′). Here ρ(1)(x, x′) is the one-

body reduced density matrix and |g(1)(x, x′)| takes values
within the interval [0, 1]. Two distinct spatial regions D,
D′, with D ∩ D′ = ∅, where |g(1)(x, x′; t)| = 0, x ∈ D,
x′ ∈ D′ (|g(1)(x, x′; t)| = 1, x ∈ D, x′ ∈ D′) are said
to be fully incoherent (coherent). For bosonic ensem-
bles in optical lattices it is known that if within a well
|g(1)(x, x′; t)| = 1 (diagonal elements) while between dif-
ferent wells 0 ≪ |g(1)(x, x′; t)| ≤ 1 [|g(1)(x, x′; t)| = 0]
(off-diagonals) the appearance of superfluid-like [Mott-
like] one-body correlations are indicated. In this sense
the above-described ground state single-particle density
distributions caused by Cint for k1 = 1 and k1 = 0.5
possess superfluid-like one-body correlations, see Figs. 2
(c) and (d) respectively. Therefore we can infer that the
ensemble under the influence of different spatial period-
icities k1 with all the other parameters of Cint kept fixed
exhibits a superfluid behavior, being an anticipated re-
sult since ν > 1. Moreover, the difference with respect to
the magnitude of the off-diagonal |g(1)|2 elements reflects
essentially the particular density imbalance between the
different wells induced by k1, see also Fig. 2 (a). Namely,
the most occupied wells with the larger spatially inte-
grated density exhibit stronger coherence losses with the
lower populated ones than the latter among each other.

To infer about the effect that finite phase terms have
on the ground state properties of the system we consider
in the following the case φ 6= 0. As it can be easily seen
from Eq. (2) a phase φ > 0 accounts for a spatial shift of
the interaction profile Cint yielding an imbalance of the
interparticle repulsion between all lattice wells. With
the aid of such spatially-dependent interaction strengths
a directed shift of the single-particle density distribution
can be achieved. For instance, the choice k1 = 0.2 and
φ = π/4 corresponds to a spatial interaction strength
with a minimum (maximum) in the vicinity of the right
(left) well [see also Fig. 1]. As a result two atoms mainly
populate the right well and one resides in each of the left
and middle wells, see Fig. 2 (b). Therefore an important
contribution to the ground state configuration stems from
the number state |1, 1, 2〉. Moreover, setting k1 = 0.2 and
φ = π/2 yields a Cint which is minimized around the
middle well and maximized in each of the outer wells.
Then, a bunching of the atoms is observed in the central
lattice region and the one-body density is described by
the state |1, 2, 1〉, see Fig. 2 (b). Summarizing, the low
values of Cint in the neighborhood of either the middle
(φ = π/2) or the right (φ = π/4) well gives rise to double
occupation in these wells of the lattice and to a single
occupation in the other wells. The possibility to create
such almost localized single-particle density distributions

by tuning the phase φ of the interaction profile Cint en-
ables us to emulate spatially inhomogeneous Mott insu-
lator like states. The latter can be firstly confirmed by
employing the corresponding one-body coherence func-
tion |g(1)(x, x′)|, shown in Figs. 2 (e) and (f). Indeed,
|g(1)(x, x′)| exhibits almost vanishing off-diagonal contri-
butions which suggest the emergence of Mott-like cor-
relations. To further ensure the existence of the Mott
insulator like state we rely on the two-body coherence
function g(2)(x1, x2) = ρ(2)(x1, x2)/ρ

(1)(x1)ρ
(1)(x2) [62].

The two-body density ρ(2)(x1, x2) = 〈x1x2|ρ̂(2)|x1x2〉 is
obtained by a partial trace over all but two bosons of the
N -body density operator. A many-body state charac-
terized by |g(2)(x1, x2)| = 1 is termed fully second order
coherent or uncorrelated, while if |g(2)(x1, x2)| takes val-
ues larger (smaller) than unity it is referred to as corre-
lated (anti-correlated). Fig. 2 (e1) presents |g(2)(x1, x2)|
for k1 = 0.2 and φ = π/4. An anti-correlated (corre-
lated) behavior occurs in the left and central (right, see
in particular the substructures where |g(2)(x1, x1)| > 1)
well, while all the off-diagonal elements are correlated.
This indicates that two particles reside in the right well
and only one in each of the remaining wells, confirming
once more the existence of the Mott-like state |1, 1, 2〉.
The same behavior, in terms of |g(2)(x1, x2)|, is observed
for Cint with k1 = 0.2 and φ = π/2 but this time
|g(2)(x1, x2)| > 1(< 1) in the middle (outer) well [Fig.
2 (f1)] resulting in the Mott-like state |1, 2, 1〉. Note that
particle localization within regions of a vanishing scat-
tering length has already been reported for inhomoge-
neously interacting bosons in a box potential [34].

Concluding, a spatially-dependent interaction strength
enables for the emergence of Mott-like correlations (be-
sides the inherent superfluid character due to ν > 1) or
even the possibility to shift the particles to a preferred
direction. Taking advantage of the different spatial in-
teraction profiles offers the opportunity to prepare cer-
tain ground state configurations. For instance, concern-
ing larger lattice systems a sequence of inhomogeneous
Mott-like states such as a double occupation for every
second well can be achieved.

IV. DYNAMICS FOLLOWING A QUENCH OF
THE PERIOD OF THE INTERACTION

STRENGTH

In the present section the nonequilibrium dynamics
upon a sudden change of the wavevector k1 of the
spatially-dependent interaction strength Cint is exam-
ined. The system consists of four bosons confined in a
triple well and it is initialized in the ground state with
spatial interaction strength Cint characterized by the pa-
rameters g = 1, k1 = 0, a = 2 and φ = 0. The initial
many-body state is an admixture of the number states
|1, 2, 1〉, |1, 1, 2〉, |2, 1, 1〉, and |1, 3, 0〉, |0, 3, 1〉 with the
|1, 2, 1〉, |1, 3, 0〉 and |0, 3, 1〉 possessing the dominant con-
tribution due to the hard-wall boundary conditions.
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Figure 2. One-body density ρ(1)(x) for either varying (a) wavevector k1 or (b) phase φ of the spatial interaction strength Cint

(see legends). The remaining parameters that characterize Cint are g = 1 and a = 2. (c)-(f) The corresponding first order

coherence |g(1)(x, x′)| for the selected ground states shown in (a) and (b) (see legends). (e1), (f1) The two-body coherence

function |g(2)(x1, x2)| for the ground state configurations illustrated in (e) and (f) respectively. The system consists of four
bosons confined in a triple well.

A. Tunneling properties

To infer about the system’s dynamical response upon
quenching k1 we first rely on the fidelity evolution
F (t; k1) = |〈Ψ(0)|Ψ(t; k1)〉|2 which provides the overlap
between the initial (ground) and the time-evolving wave-
function [63–65]. Fig. 3 (a) illustrates F (t; k1) for vary-
ing wavevector k1. The dynamics is characterized by en-
hanced response regions (F (t; k1) ≪ 1) centered around
k1 = d/2 with d = 1, 3, 5, 7 denoted by I, II, III and
IV respectively in Fig. 3 (a) and regions of low response
(F (t; k1) ≈ 1) located around integer values of k1. In
the former case bosons in different wells are subject to
distinct spatially averaged interaction strengths, while in
the latter case all wells share on average the same inter-
action strength [see also Eq. (2) and Fig. 1]. Within the
enhanced response regions F (t; k1) exhibits an oscillatory
behavior in time which gradually transforms from a mul-
tifrequency pattern for small k1 values (e.g. region I) to a
single frequency one for increasing k1 (e.g. see region III
and the discussion below). In addition, with increasing
k1 the enhanced response regions gradually loose ampli-
tude [e.g. F (t; k1 ≈ 3.5) ≈ 0.9] due to the fact that the
averaged spatially-dependent interaction strength tends
to a homogeneous configuration.

To assign the tunneling modes triggered by a quench
of k1 we employ the fidelity spectrum F (ω; k1) =
Re

{
1
π

∫
dt F (t; k1)e

iωt
}

[44, 45], see Fig. 3 (b). As
can be observed, tunneling occurs only within the en-
hanced response regions and the number of participat-
ing modes strongly depends on the magnitude of k1.
Within the I region (k1 ≈ 0.5) five distinct tunneling
modes appear indicated by the frequency branches α1-

α5 in Fig. 3 (b). The aforementioned modes can be
energetically categorized as follows. The most dominant
process (see branch α1) refers to single-particle tunneling
e.g. |1, 2, 1〉 ⇌ |1, 1, 2〉. Interestingly enough the second
order tunneling mode |1, 2, 1〉 ⇌ |2, 0, 2〉 (see branch α2)
occurs at smaller frequencies (for an explanation see the
discussion below). Moreover, the frequency branches α3

and α4 correspond to transitions between the SP and
T modes and in particular to e.g. |1, 1, 2〉 ⇌ |1, 0, 3〉
(single-particle tunneling) and |0, 3, 1〉 ⇌ |1, 1, 2〉 (atom
pair tunneling [50–52]) respectively. Finally, the highest
frequency mode α5 refers to an interband transition and
will be addressed in the next subsection. Turning to re-
gion II we observe the occurrence of the same tunneling
modes as in I but overall shifted to smaller frequencies
while the interband mode α5 dissapears. More impor-
tantly, the second order tunneling mode indicated by α2

(α4) possesses here a notably higher (reduced) frequency
when compared to region I being also larger (smaller)
than the α1 (α3) [see also the discussion below]. Inspect-
ing the response regions III and IV we deduce that only
the single atom tunneling mode α1 survives, being how-
ever significantly weakened due to the almost homoge-
neous interaction strengths (Cint) that are formed for
these wavevectors. To examine the robustness of the
above-mentioned tunneling modes in the case of a smaller
interaction offset g, we present in the inset (b1) F (ω; k1)
for g = 0.1. As shown, due to the weak interaction offset
only the single-particle tunneling mode α1 survives pos-
sessing an overall smaller frequency when compared to
the g = 1 case.

To obtain a basic understanding on the existence of
the tunneling modes induced by the quench, we employ
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a crude measure for the spatially averaged interaction
energy [see Eq. (4) below] of a particular single-particle
density distribution. As already mentioned in Sec. III
different spatial configurations (symmetric around x = 0)
of the interaction strength with respect to k1 cause only
parity symmetric (with respect to the central well) num-
ber states to be energetically equal. Focussing exclu-
sively on the lowest band interwell tunneling, we roughly
approximate the spatially averaged interaction energy of
a particular particle configuration characterized by the
number state |~n〉 = |n1, n2, n3〉 as

Ēint
|~n〉 (g, a, k1, φ) =
m∑

i=1

ni(ni − 1)

2(di − d′i)
2

∫ d′
i

di

dx Cint(x; g, a, k1, φ).
(4)

ni refers to the number of bosons located at the i-th well,
di, d

′
i denote the edges of the i-th well and N is the total

number of bosons. Then, the spatially averaged interac-
tion energy difference of the different Fock states (modes)
is approximately determined by ∆Ēint = Ēint

|~n〉 − Ēint
|~n′〉.

For the tunneling modes participating in our system,
the corresponding spatially averaged energy differences,
∆Ēint are illustrated in Fig. 3 (c). Referring to the
different modes ∆Ēint(k1) schematically resembles the
energetic order of the frequency branches depicted in
Fig. 3 (b) but does not provide any quantitative val-
ues as within our approximation we do not take into ac-
count the explicit form of the corrresponding Wannier
function. Moreover using ∆Ēint(k1) the appearence of
weak and strong response regions can be explained only
in some limited cases. Indeed, for integer values of k1
Cint is on average the same for each well, i.e. the repul-
sion of the atoms within each well is alike, and therefore
∆Ēint(k1 = n ∈ N) → 0 for the states |1, 2, 1〉, |2, 1, 1〉
and |1, 1, 2〉. As a consequence the single-particle tun-
neling mode α1 is supressed during the dynamics. How-
ever, the absence of higher order tunneling processes such
as α2-α5 for k = n ∈ N can not be understood utiliz-
ing ∆Ēint [see Fig. 3 (c)]. On the contrary ∆Ēint for
k = (n+ 1)/2 with n ∈ N captures qualitatively at least
the behavior of the observed frequency spectra see e.g.
the exchange of the α1 (α3) and α2 (α4) modes which
is energetically favored. In addition, for these k1 values
an interaction imbalance between the middle and outer
wells (e.g. for k1 = 0.5 an interaction peak appears in the
middle well) takes place giving rise to several tunneling
modes.
An effective way to manipulate the tunneling frequen-

cies (within the regions I-IV ) is to tune the spatial inter-
action strength by means of the inhomogeneity param-
eter a or the interaction offset g. F (ω; k1) for a = 5
and g = 1, φ = 0 is shown in Fig. 3 (d). Besides α4,
all the previously observed tunneling modes (α1-α3 and
α5) appear in the fidelity spectrum but are found to be
shifted to larger frequencies. The absence of the α4 mode
is caused by the fact that for increasing a the |1, 3, 0〉
contribution in the ground state becomes negligible and

therefore the corresponding tunneling process α4 is su-
pressed. The observed shift of the branches α1-α3 and
α5 can also be understood in terms of ∆Ēint(a, k1) which
acquires larger values for increasing a and fixed k1 as
shown in Fig. 3 (c) for the frequency branch α1. Finally,
we investigate the influence of the interaction offset g on
the quench induced tunneling modes, see Fig. 3 (e) for
fixed k1 = 0.5, a = 1 and φ = 0. All five interaction de-
pendent modes (α1-α5) occur but importantly here only
the single-particle mode α1 survives for small g < 0.5 as
well as for strong g > 3 interaction offsets. The latter in-
dicates a suppression of the interwell tunneling dynamics
which is highly altered in the strongly interacting regime
[66, 67]. Summarizing, a quench of the wavevector of the
spatially-dependent interaction strength induces a multi-
tude of tunneling modes which can be further amplified,
diminished or shifted by adjusting individually parame-
ters of the interaction profile.
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Figure 3. (a) Fidelity evolution F (t; k1) for varying wavevec-
tor k1 of the spatially-dependent interaction strength Cint for
g = 1, a = 2, φ = 0 and (b) the corresponding spectrum
F (ω;k1). Inset (b1) presents F (ω;k1) for g = 0.1 while all
other system parameters are the same as in (a). (c) Average
interaction energy difference ∆Ēint [see also Eq. (4)] for the
tunneling branches shown in (b) that correspond to different
number state transitions. (d) F (ω; k1) for a = 5, g = 1, φ = 0
and varying k1. (e) F (ω; g) for k1 = 0.5, a = 2, φ = 0 and
varying interaction offset g. In all cases the system is initially
prepared in the corresponding ground state of four bosons in
a triple well.
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B. Breathing dynamics

Having discussed in detail the lowest band tunnel-
ing dynamics trigerred by quenching the wavevector of
Cint, we next investigate the corresponding excitation to
higher band (interband) processes. The dominant mode
here, that contains admixtures of excited band states cor-
responds to a breathing mode. The latter refers to an ex-
pansion and contraction of the atomic cloud [68, 69] and
due to the lattice symmetry (parity symmetry with re-
spect to x = 0) it is expected to be more prone within the
central well [42, 43]. To track this mode we measure the
position variance in the middle well (denoted by the index

M) σ2
M (t) = 〈Ψ(t)|x̂2

M |Ψ(t)〉−〈Ψ(t)|x̂M |Ψ(t)〉2. The one-
body operators correspond to x̂M =

∫ π/2

−π/2
dxxΨ̂†(x)Ψ̂(x)

and x̂2
M =

∫ π/2

−π/2
dxx2Ψ̂†(x)Ψ̂(x) where Ψ̂(x) [Ψ̂†(x)]

is the field operator that annihilates [creates] a bo-
son at position x. To quantify the frequency spec-
trum of the breathing mode we inspect σ2

M (ω; k1) =
Re

{
1/π

∫
dt σ2

M (t)eiωt
}
with varying wavevector in Fig.

4. Three distinct k1-dependent frequency branches can
be observed. The energetically lowest branch β1 is
linked to the most dominant interwell tunneling mode
|1, 2, 1〉 ⇌ |1, 1, 2〉 [see also Fig. 3 (b)]. The appearance
of this mode in the spectrum is attributed to the fact
that the tunneling can induce a change in the width of
the local wavepacket. The branch β2 refers to the inter-
band process |1 ⊗ 1(2), 1, 1〉 ⇌ |1, 2, 1〉 ⇌ |1, 1, 1 ⊗ 1(2)〉
which indicates the occurence of a global interwell breath-
ing mode induced by the over-barrier transport (i.e. the
probability for a single-particle to possess enough energy
to overcome the lattice barrier). It fluctuates around
ω ≈ 3.5 as k1 is increased exhibiting maxima and min-
ima within the enhanced and weak response areas re-
spectively. Finally, the branch β3 indicates the partic-
ipation of even energetically higher excitation processes
such as |1, 2, 1〉 ⇌ |1, 1, 1 ⊗ 1(4)〉. It is located around
ω ≈ 5.6 showing a k1-dependent behavior similar to β2.
The underlying process that triggers the aforementioned
global breathing mode can be summarized as follows.
Following a quench on the wavevector of Cint the inter-
action imbalance between the central and outer wells be-
comes more pronounced leading to an over-barrier trans-
port of one boson from the middle to the outer wells.
Then, this boson performs a collision with the preexist-
ing atom and a subsequent single excitation to the second
energy band takes place, inducing this way the breath-
ing mode. It is important to note at this point that
the breathing mode can be excited more efficiently upon
quenching the wavevector of a spatially-dependent inter-
action strength as compared to a homogeneous interac-
tion quench [42, 43]. In this latter case the contribution of
states higher than the second band is almost absent and
can be triggered only for very strong interaction strength
quenches i.e. g > 3.5 [45]. However even in this case the
breathing frequency is mainly insensitive to the interac-
tion quench amplitude. To further study the dependence

of the breathing mode on the interaction offset g of Cint,
we present in the inset of Fig. 4 σ2

M (ω) for g = 0.1 (the
other parameters of Cint are the same as before). As
shown all excited states disappear and only the lowest
band tunneling mode persists, since such a small offset is
insufficient to induce over-barrier transport.
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Figure 4. Spectrum of the variance σ2
M (ω;k1) for increasing

wavevector k1 of Cint with g = 1, a = 2 and φ = 0. The
inset shows σ2

M (ω;k1) for the interaction offset g = 0.1 and
varying wavevector k1. The remaining system parameters are
the same as above. In both cases the system is initialized in
the ground state of four bosons confined in a triple well.

V. QUENCH OF THE PHASE OF THE
INTERACTION STRENGTH

Let us now examine the dynamics upon a sudden
change of the phase φ of the spatially-dependent inter-
action strength Cint. Following this quench protocol an
interaction imbalance between all wells of the lattice is
induced resulting in a directed tunneling dynamics (see
also below). The system (four bosons in a triple well)
is initially prepared in the ground state with Cint char-
acterized by g = 1, k1 = 0.2, a = 2 and φ = 0. Then
the spatially averaged in each well Cint possesses a max-
imum value around the central well and resembles an
almost linear gradient. We remark here that for larger
k1 values being comparable to the lattice wavevector k0
a phase quench does not produce a substantial dynam-
ical response. The dominant contribution in the initial
many-body state stems from the number state |1, 2, 1〉.

A. Tunneling dynamics

To examine the response of the system induced by a
quench of the phase φ of the interaction strength Cint we
invoke the fidelity evolution F (t;φ) = |〈Ψ(0)|Ψ(t;φ)〉|2,
see Fig. 5 (a). Due to the underlying periodicity of Cint

[see also Eq. (2)] we restrict our study to the phase in-
terval [0, π/2]. Recall here that for φ = 0 (φ = π/4) the
spatially averaged in each well interaction strength ex-
hibits a maximum around the central (left) well, while at
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φ = π/2 we encounter a corresponding minimum in the
middle well [see also Fig. 1]. The system is significantly
perturbed i.e. F (t;φ) 6= 1 (unperturbed, F (t;φ) ≈ 1)
for π/16 < φ < π/2 (φ < π/16) where the quench
induced spatial interaction imbalance becomes signifi-
cant (negligible). The underlying interaction imbalance
is strongest within the range π/8 ≤ φ ≤ 3π/8 (maxi-
mized at φ = π/4) and as a consequence the system is
strongly driven out-of-equilibrium. F (t;φ) exhibits oscil-
lations which possess the largest amplitude in the vicinity
of φ ≈ π/4.

To identify the participating modes triggered by the
phase quench in Cint we inspect the fidelity spectrum
F (ω;φ) shown in Fig. 5 (b). Three distinct tunnel-
ing pathways occur in the spectrum, denoted by γ1, γ2
and γ3, which can be linked to first and second order
transport. In particular, the two lowest-lying phase-
dependent frequency branches refer to the first order
processes |1, 2, 1〉 ⇌ |1, 1, 2〉 (γ1) and |1, 2, 1〉 ⇌ |2, 1, 1〉
(γ2) respectively. The above-mentioned tunneling pro-
cesses that would otherwise (for Cint with φ = 0) be
energetically equal are well separated here as a conse-
quence of the employed quench protocol. Indeed quench-
ing the phase of Cint the prevailing interatomic interac-
tion is shifted from the middle to the left well. There-
fore the atoms initially located at the left site experi-
ence increasing repulsion after the quench rendering the
single-particle tunneling from the middle to the right well
energetically favorable (branch γ1). In this way a di-
rected tunneling process can be achieved. Another in-
teresting observation here is that the frequencies of the
tunneling modes γ1 and γ2 start to merge into a sin-
gle one for 3π/8 < φ < π/2 as the corresponding spa-
tially averaged interaction strength in the left and right
wells becomes comparable within this phase interval. Fi-
nally, we encounter the second order tunneling process
|1, 2, 1〉 ⇌ |2, 0, 2〉 (indicated by the branch γ3) which is
more pronounced for π/4 < φ < π/2 where the inter-
action imbalance is most pronounced when compared to
the 0 < φ < π/4 phase interval.

In an attempt to steer the above-mentioned tunneling
modes or even trigger higher-lying ones we present in Fig.
5 (c) F (ω;φ) for a larger inhomogeneity amplitude a = 5.
The resulting lowest band tunneling modes (γ′

1, γ
′
2 and

γ′
3) are the same as before but they are located at higher

frequencies, they become stronger and the frequency gap
between each two is more pronounced when compared to
the case of a = 2. In addition we observe the existence
of the higher lying frequency branch γ′

4 which refers to
the interband transition |1, 2, 1〉 ⇌ |1, 1, 1 ⊗ 1(2)〉. This
mode located in the vicinity of φ = π/2 is caused by
the enhanced over-barrier transport occuring for these
quench amplitudes. Note that such an interband tran-
sition is also inherently related to the considered large
interaction inhomogeneity being, in general, supressed
for smaller inhomogeneities, see for instance Fig. 5 (b).
In the following subsection, we explicitly address how to
excite such higher band states for varying inhomogeneity

a.
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Figure 5. Fidelity evolution F (t;φ) for a varying phase φ of
the interaction strength Cint with a = 2, g = 1 and k1 = 0.2.
The corresponding spectra F (ω;φ) for inhomogeneity (b) a =
2 and (c) a = 5. (d) Spectrum of the intrawell asymmetry
∆ρR(ω) and the variance σ2

M (ω) [inset (d1)] for increasing
inhomogeneity a. The spatially-dependent interaction profile
Cint is characterized by g = 1, φ = π/8 and k1 = 0.2. In all
cases the system is initially prepared in the ground state of
four bosons in a triple well.

B. Excitation processes

Having discussed in detail the tunneling mechanisms
upon a phase quench, we next investigate the possibil-
ity of triggering interband transitions. As already men-
tioned above the phase quench shifts the interaction pro-
file Cint in space. Here Cint initially (φ = 0) exhibits
a maximum in the central well and after quenching φ
this maximum moves to the left well thus inducing the
aforementioned tunneling dynamics. In addition the sud-
den change of φ yields a high probability for the delocal-
ized particle to overcome the lattice barrier (over-barrier
transport) and move to the neighboring well in which
the minimum of the postquench Cint occurs. The re-
sulting over-barrier transport is consequently responsible
for mainly two higher band excited modes, namely the
global breathing [42, 70, 71] and the local cradle [42, 43]
modes. It is important to mention here that the cra-
dle mode occurs also upon a wavevector quench but it
is greatly supressed when compared to the phase quench

130



9

scenario. In this latter case the interaction imbalance
between individual wells is stronger resulting in an en-
hanced over-barrier transport and thus a prone cradle
process. The cradle mode represents a dipole-like in-
trawell oscillation in the outer wells of the finite lattice
(for more details on the generation and properties of this
mode see [42, 43]). Since the parity symmetry within the
outer well where it takes place is broken, it can be quan-
tified by the corresponding intrawell asymmetry of the
wavefunction. Since here we are interested in the right
well dynamics the aforementioned asymmetry is defined
as ∆ρR(t) = ρR,1(t) − ρR,2(t), where ρR,1(t) and ρR,2(t)
denote the spatially integrated densities of the left and
the right half sector of the well. To trace this mode we
rely on ∆ρR(ω). Finally, the global breathing mode refers
to the contraction and expansion of the entire bosonic
cloud being induced by the over-barrier transport. Due
to the lattice symmetry [see also Sec. IVB] the global
breathing mode is expected to be more prone in the cen-
tral well and therefore σ2

M (ω) provides an adequate mea-
sure for this mode.

As both of the above described modes are initialized by
the over-barrier transport which in turn depends on the
inhomogeneity a it would be instructive to study how
they are affected by adjusting a. Let us therefore in-
spect them by focussing on a specific phase quench from
φ = 0 to φ = π/8 and considering fixed k1 = 0.2 and
g = 1 for varying a. Fig. 5 (d) presents ∆ρR(ω; a) and
σ2
M (ω; a) [see the inset (d1)] for increasing a. Regarding

the cradle mode (see branch δ2), it can be linked to the
interband transition |1, 2, 1〉 ⇌ |1, 1, 1 ⊗ 1(1)〉 and it is
greatly affected by the considered inhomogeneity ampli-
tude a. This latter behavior is expected as an increasing
a triggers all the more the over-barrier transport. In par-
ticular, its characteristic frequency (branch δ2) increases
for larger inhomogeneity amplitudes a. The observed
energetically lowest branch δ1 corresponds to the tun-
neling process |1, 2, 1〉 ⇌ |1, 1, 2〉 which is only weakly
a-dependent. On the other hand, the global breathing
mode [see branch δ3 in the σ2

M (ω; a)] refers to the in-

terband tunneling |1, 2, 1〉 ⇌ |1, 1, 1 ⊗ 1(2)〉 and it in-
creases almost linearly for varying a due to the conse-
quent enhanced interaction imbalance between the adja-
cent wells. Summarizing, by tuning the inhomogeneity
of the spatially-dependent interaction strength we can
manipulate the frequencies of both excited higher band
modes.

To generalize our findings, below, we demonstrate that
the main characteristics of the dynamical response upon
quenching either the wavevector or the phase of the
spatially-dependent interaction strength remain robust
also in the case of a five well lattice with filling ν > 1. It
is important to remark here that for fillings ν < 1 a cor-
responding quench of the spatial interaction profile does
not alter significantly the initial (ground) state of the
system (results not shown due to brevity) as the overlap
between the individual bosons is weak.

VI. QUENCH DYNAMICS IN A FIVE WELL
OPTICAL LATTICE

Let us consider six bosons confined in a five well fi-
nite optical lattice. The system is initially prepared in
its ground state where the corresponding spatial interac-
tion strength [see also Eq. (2)] is characterized by g = 1,
φ = 0, a = 2, k1 = 0 [a = 3, k1 = 0.05] for the wavevec-
tor [phase] quench. Then, the initial state is an admix-
ture of the available lowest band states from which the
main contribution stems from the Wannier number states
|1, 1, 2, 1, 1〉, |1, 2, 1, 1, 1〉 and |1, 1, 1, 2, 1〉.
To induce the dynamics we perform a quench either

on the wavevector k1 or the phase φ of the initial in-
teraction strength. Fig. 6 (a) presents F (t; k1) follow-
ing a wavevector quench. As in the triple well case,
the dynamics exhibits enhanced [weak] response regions
namely F (t; k1) ≪ 1 [F (t; k1) ≈ 1] in the neighborhood
of k1 = d/2 with d = 1, 3, ... [k1 = n ∈ N] due to
the large [small] quench induced interaction imbalance
of bosons residing in the different wells. However, the
enhanced response areas appear to be wider with respect
to k1 when compared to the triple well case. Moreover,
in these strong response regions F (t; k1) undergoes oscil-
lations in time possessing a multitude of frequencies and
large amplitudes for small k1’s which tend to a single fre-
quency oscillation of small amplitude for increasing k1.
This latter behavior is again (as in the case of the triple
well) caused by the tendency of Cint to an almost spa-
tially homogeneous interaction strength on average for
large k1’s. Focussing on a phase quench, see Fig. 6 (b),
the obtained response resembles the triple well case [com-
pare Fig. 6 (b) with Fig. 5 (a)]. Indeed, the system is
driven far away from its initial state i.e. F (t;φ) 6= 1
exhibiting an oscillatory behavior for π/16 < φ < π/2
where the quench induced spatial interaction imbalance
between distinct lattice regions becomes significant. This
interaction imbalance is maximum at φ = π/4 for which
the oscillations of F (t;φ) possess the largest amplitude.
In both quench scenarios, tunneling and over-barrier

transport between the distinct wells of the finite lat-
tice can be observed. To visualize the spatially resolved
system dynamics we invoke δρ(1)(x, t) = ρ(1)(x, t) −
〈ρ(1)(x)〉T , being the deviation of the one-body den-

sity from its time average 〈ρ(1)(x)〉T =
∫ T

0 ρ(1)(x, t)/T
over the considered propagation time T . In this sense,
δρ(1)(x, t) encompasses the temporal fluctuations of the
one-body density around its mean along the finite lattice
[42, 43]. Figs. 6 (c), (d) present δρ(1)(x, t) following a
quench of the wavevector, from k1 = 0 to k1 = 0.75, and
the phase, from φ = 0 to φ = π/4, respectively. Regard-
ing the wavevector quench, see Fig. 6 (c), we observe that
predominantly a tunneling dynamics takes place which
refers to the transfer of population from the middle to
the outer wells. Moreover, the inner well dynamics is
mainly described by two excited modes. Specifically, the
middle well exhibits a breathing like mode due to the lat-
tice symmetry, while in the outer wells the cradle mode
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Figure 6. Fidelity evolution following a quench of (a) the wavevector k1 and (b) the phase φ of the spatial interaction strength

Cint. One-body density fluctutations δρ(1)(x, t) for (c) a wavevector quench from k1 = 0 to k1 = 0.75 and (d) a phase quench
from φ = 0 to φ = π/4. One-body coherence for distinct time instants (see legend) (e)-(f) [(i)-(l)] after a sudden change of the
magnitude of the wavevector [phase] as in (c) [(d)]. (m)-(p) Momentum distribution of the one-body density matrix during the
evolution. (m), (n) [(o), (p)] correspond to quenches from k1 = 0 [φ = 0] to k1 = 0.75 and k1 = 0.5 [φ = π/4 and φ = π/8]
respectively. The horizontal axis represents the momenta in units of the inverse lattice vector k0 = π/l. For all cases referring
to wavevector [phase] quenches the remaining system parameters correspond to g = 1, a = 2 and φ = 0 [a = 3, k1 = 0.05]. The
setup consists of six bosons confined in a five well lattice. The ellipses, circles and rectangles in (c), (d) indicate the cradle,
breathing and over-barrier transport respectively.

is manifested as a dipole-like oscillation of the localized
wavepacket which is generated by a direct over-barrier
transport as a consequence of the quench. Turning to
the phase quench scenario, illustrated in Fig. 6 (d), a
directed population transfer from the middle well to the
right side of the lattice located at 0 < x < 7.8 (tunneling
mode) and back occurs. Additionally, the induction of
over-barrier transport caused by the quench gives rise to
the cradle mode within the right side wells.

To provide a link between the quench induced tunnel-
ing dynamics and the coherence properties of the system
we study |g(1)(x, x′; t)| at distinct time instants during
the evolution [61, 62]. As already mentioned in Sec.
III, |g(1)(x, x′; t)| is bound to the range [0, 1] and mea-
sures the proximity of the many-body state to a product
mean-field state for a fixed set of coordinates x, x′. Figs.
6 (e)-(h) present |g(1)(x, x′; t)| for distinct time instants
following a wavevector quench from k1 = 0 to k1 = 0.75.
Initially, t = 0, all bosons reside in the three central wells
[see also Fig. 6 (c)] which are partially incoherent with
each other, e.g. |g(1)(x = 2, x′ = −4; t)| ≈ 0.6 as de-
picted in Fig. 6 (e). During evolution, an atomic portion

gradually tunnels to the edge wells with the remaining
atoms residing in the central well resulting in a low pop-
ulation of its nearest neighbors (−4.7 < x < −1.57 and
1.57 < x < 4.7) ones, see for instance Fig. 6 (c) at
t = 15. These most outer populated wells appear to
be partly incoherent [Fig. 6 (f)] with each other (e.g.
|g(1)(x = 6, x′ = −6; t = 15)| ≈ 0.3) as well as with the
central well (|g(1)(x = 0, x′ = −6; t = 15)| ≈ 0.5). A
revival of the tunneling process with population trans-
fer from the central to the proximal to it outer wells
occurs at later evolution times, e.g. at t = 30 [Fig. 6
(g)]. In turn, a partial coherence between these wells
[e.g. |g(1)(x = 4, x′ = −4; t = 30)| ≈ 0.6 in Fig. 6 (g)] is
observed. Then the atoms move again to the most outer
wells, e.g. at t = 45, where the system’s coherence prop-
erties [Fig. 6 (h)] are similar to t = 15. Next, we focus
on the coherence properties upon quenching the phase of
Cint, shown in Figs. 6 (i)-(l). The initial (t = 0) partially
incoherent region consists of the three middle wells [Fig.
6 (i)]. Then, it shifts across the diagonal of |g(1)(x, x′; t)|
[at t = 10, see Fig. 6 (j)] including the two outer right
(1.57 < x < 7.8) and the central well. Finally, it turns
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back [at t = 40, see Fig. 6 (l)] occupying the middle and
its nearest neighbor (1.57 < x < 4.7) right well. As be-
fore, this behavior resembles the corresponding tunneling
dynamics, see Fig. 6 (d). Concluding from the above, we
can infer that quenching the spatial interaction strength
it is possible to induce either site selective partial coher-
ence or even completely shift certain partially incoherent
regions following the tunneling dynamics. Such a site se-
lective coherence has been recently demonstrated for the
ground state of a many-body bosonic ensemble trapped
in a tilted triple well [72].

Finally, we inspect whether a certain multitude of mo-
menta is populated during the dynamics as a consequence
of the employed quench protocol. To achieve the latter we
rely on, the experimentally accessible via time-of-flight
measurements [4, 73, 74], one-body momentum distribu-
tion

n(k, t) =
1

2π

∫ ∫
dxdx′ρ(1)(x, x′, t)e−ik(x−x′)t. (5)

ρ(1)(x, x′; t) is the one-body reduced density matrix
which is obtained by tracing out all the bosons but one
in the N -body density matrix. The time evolution of the
momentum distribution for six bosons confined in a five
well lattice potential after a quench of the wavevector of
Cint from k1 = 0 to k1 = 0.75 and k1 = 0.5 is depicted
in Figs. 6 (m), (n) respectively. As it can be seen, under
this quench protocol n(k, t) features in time a periodi-
cally modulated pattern in which distinct momenta are
populated. In particular, n(k, t) forms a gradually trans-
formed in time broad Gaussian like distribution centered
around k0 = 0 with edges either at ±k0/2 = 1.57 or
±3k0/2 = 4.71 where in both cases all momenta in be-
tween are activated. The oscillation frequency between
the above-mentioned momentum structures changes with
respect to the quench amplitude, e.g. it is larger at
k1 = 0.5 than k1 = 0.75, reflecting this way the sys-
tem’s dynamical response [see also Fig. 6 (a)] and more
specifically the tunneling dynamics. We remark here that
similar periodically modulated patterns in the momen-
tum distribution during the evolution take place when
considering multiple interaction quench sequences in few
boson homogeneously interacting ensembles trapped in
an optical lattice [45]. Following a sudden change of the
phase of Cint, see Figs. 6 (o), (m) for a quench from
φ = 0 to φ = π/4 and φ = π/8 respectively, n(k, t) shows
a completely different behavior. Due to the phase shift of
the interaction strength a tendency for directed tunnel-
ing to the right side of the lattice (0 < x < 7.8) occurs,
see also Fig. 6 (d). The latter essentially guides first
the consecutive population of k0 = 0, k0/2 = 1.57 and
k0 = 3.14 and subsequently of the exactly opposite mo-
menta. This process repeats during the evolution. The
different quench amplitudes impact mainly the speed of
the alternating activation of momenta and to a lesser ex-
tent the magnitude of their population, compare Figs. 6
(o) and (m).

VII. CONCLUSIONS

We have investigated the ground state properties and
in particular the nonequilibrium quantum dynamics of
few boson ensembles experiencing a spatially modulated
interaction strength and confined in a finite lattice po-
tential. To profit from the competition between delocal-
ization and on-site interaction effects we focus on setups
possessing fillings larger than unity, thus also avoiding
suppression of tunneling. The employed spatial interac-
tion strength is of sinusoidal type and it is characterized
by its modulation wavevector, inhomogeneity amplitude,
interaction offset and phase.
Before delving into the dynamics, we trace the im-

pact of the wavevector and the phase individually on
the ground state properties of the system. The inho-
mogeneity amplitude in most cases is kept fixed being
of the order of half the lattice depth, while the interac-
tion offset is unity. For small values of the wavevector
the spatially in each well averaged interaction strength is
larger within the central well when compared to the outer
ones, while it becomes the same for incrementing spatial
periodicity. This behavior causes a spatial redistribution
of the atoms from the outer to the central wells for in-
creasing wavevectors. In all cases, the ensemble remains
superfluid. On the other hand, phase shifts yield an in-
teraction imbalance between all lattice wells and enables
us to displace the single-particle density distribution in
a preferred direction achieving Mott-like states.
Next, we analyze the system’s dynamical response

upon quenching either the wavevector or the phase of
the spatial interaction strength. Following a sudden
change of the wavevector the dynamics is character-
ized by enhanced response regions, located at fractional
values of the wavevector, in which bosons at distinct
wells are subjected to different spatially averaged inter-
action strengths. For incrementing wavenumbers these
enhanced response regions become gradually less trans-
parent as the respective interaction profile tends to a ho-
mogeneous configuration. The quench on the wavevector
of the spatially-dependent interaction strength yields the
excitation of a multitude of tunneling modes consisting
of single and two particle transport. These modes can be
further amplified or shifted by adjusting the interaction
offset or the inhomogeneity amplitude respectively. A
quench induced breathing dynamics is also observed char-
acterized by interband tunneling processes which possess
mainly a single excitation to the second or fourth excited
band. Inspecting the momentum distribution we show
that a periodic population transfer of momenta during
the dynamics takes place, while the one-body coherence
function reveals that partially coherent regions occur be-
tween the wells that are predominantly populated during
the evolution.

The phase quench imposes an interaction strength im-
balance between all wells yielding a directed transport
along the finite lattice as it accounts for a spatial shift
of the entire interaction profile. The induced transport
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consists of single-particle and atom pair tunneling. More
importantly and in contrast to the wavevector quench, a
phase quench allows for the discrimination of the tunnel-
ing modes which would be otherwise energetically equal.
A characteristic process of the latter type corresponds for
instance to single-particle lowest band tunneling from the
middle to the left or the right well. For larger inhomo-
geneity amplitudes these modes become more discernible
as a function of the phase parameter, namely their energy
difference is intensified, while for increasing interaction
offset their supression is observed. The directional trans-
port is also reflected in the evolution of the one-body mo-
mentum distribution and the coherence function. In the
former case a directed consecutive population of higher
momenta occurs, while in the latter case the predomi-
nantly populated wells form a partially incoherent region
which is shifted in the preferred tunneling direction. Be-
sides the above described tunneling dynamics, the phase
quench yields a noticeable over-barrier transport which
in turn induces a global breathing motion of the entire
bosonic cloud and a cradle mode in the outer wells. Both
modes are related to single-particle interband processes
to the first or second excited band respectively, and are
found to be enhanced for incrementing inhomogeneity
amplitude.
There are several directions that one might pursue as

possible extensions of the present work. An intriguing
prospect would be to study the periodically driven dy-
namics upon shaking the optical lattice and investigate
how the properties of the corresponding parametrically
induced resonances are altered when compared to the ho-
mogeneously interacting case [75]. Another possible path
is to explore the nonequilibrium dynamics of bosonic bi-
nary mixtures experiencing such spatially dependent in-
teractions. Here it is interesting to unravel whether a
phase separation process can be achieved after quench-
ing the wavevector of the interaction profile and even
analyze the triggered excitation modes.

APPENDIX: THE COMPUTATIONAL
QUANTUM DYNAMICS APPROACH MCTDHB

To simulate the nonequilibrium dynamics and cal-
culate the stationary properties of the spatially in-
teracting bosons we solve the many-body Schrödinger
equation (i~∂t − H) |Ψ(t)〉 = 0, by employing the
Multi-Configuration Time-Dependent Hartree method
for Bosons (MCTDHB) [47, 48, 76]. This method
has been applied extensively in several nonequilibrium
bosonic settings, see e.g. [42–45, 70, 75–79]. We remark
that within our implementation we use the Multi-Layer
Multi-Configuration Time-Dependent Hartree method
for bosonic and fermionic Mixtures (ML-MCTDHX)
[80, 81]. The latter consists an extended version of the
MCTDHB and is particularly suitable for treating multi-
component ultracold systems, while for the case of a sin-
gle bosonic species it reduces to MCTDHB. MCTDHB is

based on the usage of a time-dependent (t-d) and vari-
ationally optimized many-body basis set, which enables
for the optimal truncation of the total Hilbert space. The
expansion of the many-body wavefunction relies on a lin-
ear combination of t-d permanents |~n〉 and t-d weights
A~n(t)

|Ψ(t)〉 =
∑

~n

A~n(t) |~n〉. (6)

The bosonic number states |~n〉 = |n1, n2, ..., nM ; t〉, built
upon t-d single-particle functions (SPFs) |φi(t)〉, i =
1, 2, ...,M , with M being the number of the considered
SPFs. The summation ~n is taken over all the possible
combinations ni such that the total number of bosons N
is conserved. Moreover, the SPFs are expanded within a
time-independent primitive basis {|k〉} of dimensionMpr.
Within our implementation a sine discrete variable repre-
sentation has been used as a primitive basis for the SPFs.
We remark here that in the case ofM = 1 the many-body
wavefunction is given by a single permanent |n1 = N ; t〉
and the method reduces to the t-d Gross Pitaevskii mean-
field approximation.

0 50 100 150 200
0

0.5

1

0

0.5

1

Figure 7. F (t) for different number of SPFs (see legend) fol-
lowing a quench on (a) the phase φ from φ = 0 to φ = π/4
and (b) the wavevector k1 from k1 = 0 to k1 = 0.5.

To obtain the t-d N -body wavefunction |Ψ(t)〉 under

the influence of the Hamiltonian Ĥ we determine the
equations of motion [47, 48, 76] for the coefficients A~n(t)
and the SPFs |φi(t)〉 following e.g. the Dirac-Frenkel

[82, 83] variational principle, 〈δΨ|i∂t − Ĥ |Ψ〉 = 0. These

equations consist of (N+M−1)!
N !(M−1)! linear equations of motion

for A~n(t) being coupled to theM non-linear integrodiffer-
ential equations of motion for the SPFs. To prepare the
system in the ground state of the Hamiltonian Ĥ we uti-
lize the so-called improved relaxation scheme [70], which
is briefly outlined below. Namely, we employ a certain

number of SPFs {|φ(0)
i 〉} and diagonalize the Hamiltonian

within the basis spanned by the SPFs. Setting the n-th

obtained eigenvector as the A
(0)
~n -vector we propagate the

SPFs in imaginary time within a finite time interval dτ

134



13

and update the SPFs to {|φ(1)
i 〉}. The above-mentioned

steps are repeated until the energy of the state converges
within the prescribed accuracy.
To accurately perform the numerical integration of

the MCTDHB equations of motion the overlap criteria
|〈Ψ|Ψ〉 − 1| < 10−9 for the total wavefunction and the
SPFs |〈ϕi|ϕj〉 − δij | < 10−10 are imposed. Moreover,
we increase the number of variationally optimized SPFs
and primitive basis states observing a systematic conver-
gence of our results. For instance, we have used M = 9,
Mpr = 300 for the triple well and M = 10, Mpr = 400 for
the five well respectively. Let us next briefly demonstrate
the convergence behaviour of our triple-well simulations
for an increasing number of SPFs. To achieve the latter
we employ the extensively used, here, fidelity evolution
upon quenching either the wavevector or the phase of
the spatially-dependent interaction strength Cint. Fig.
7 presents F (t) for a sudden phase shift from φ = 0 to
φ = π/4 [see Fig. 7 (a)] and a wavevector quench from
k1 = 0 to k1 = 0.5 [see Fig. 7 (b)] for different number of
SPFs. For reasons of completeness we remark that these
quench amplitudes refer to enhanced response regions of
the respective quench protocol. In both cases a system-

atic convergence of F (t) is showcased for an increasing
number of SPFs and in particular for M > 8. Indeed
following a phase quench, see Fig. 7 (a), the maximum
deviation observed in F (t) between the 9 and 12 SPF
cases is of the order of 8%. Turning to the wavevector
quench, presented in Fig. 7 (b), an admittedly better de-
gree of convergence is observed throughout the evolution
as the relative difference of F (t) between 9 and 12 SPFs
lies below 5% and becomes at most 9% for long prop-
agation times t > 160. An auxilliary indicator for the
obtained numerical accuracy is provided by the popula-
tion of the lowest occupied natural orbital which is kept
below 0.1% (not shown here for brevity).
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Phys. Rev. A 82, 043619 (2010).
[40] B. Chatterjee, I. Brouzos, L. Cao, and P. Schmelcher, J.

Phys. B: At. Mol. Opt. Phys. 46, 085304 (2013).
[41] S. I. Mistakidis, G. M. Koutentakis, and P. Schmelcher,

Chem. Phys. (2018).
[42] S. I. Mistakidis, L. Cao and P. Schmelcher, J. Phys. B:

At., Mol. Opt. Phys. 47, 225303 (2014).
[43] S. I. Mistakidis, L. Cao and P. Schmelcher, Phys. Rev. A

91, 033611 (2015).
[44] S. I. Mistakidis, and P. Schmelcher, Phys. Rev. A 95,

013625 (2017).
[45] J. Neuhaus-Steinmetz, S. I. Mistakidis, and P.

Schmelcher, Phys. Rev. A 95, 053610 (2017).
[46] H. Gimperlein, S. Wessel, J. Schmiedmayer, and L. San-

tos, Phys. Rev. Lett. 95, 170401 (2005).
[47] O. E. Alon, A. I. Streltsov and L. S. Cederbaum, J.

Chem. Phys. 127, 154103 (2007).
[48] O. E. Alon, A. I. Streltsov and L. S. Cederbaum, Phys.

Rev. A 77, 033613 (2008).
[49] O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.S.

Lühmann, B. A. Malomed, T. Sowiński, J. Zakrzewski,
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[53] L. Cao, I. Brouzos, S. Zöllner, and P. Schmelcher, New
J. Phys. 13, 033032 (2011).

[54] H. Sakaguchi, and B.A. Malomed, Phys. Rev. E, 72,
046610 (2005).

[55] P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai,
M. Rispoli, R. Islam, and M. Greiner, Opt. Express 24,
13881 (2016).

[56] S. A. Goorden, J. Bertolotti, and A. P. Mosk, Opt. Ex-
press, 22, 17999 (2014).

[57] A. T. Papageorge, A. J. Kollár, and B. L. Lev, Opt.
Express, 24, 11447 (2016).

[58] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and
P. Zoller, Phys. Rev. Lett. 81, 3108 (1998).

[59] M. J. Mark, E. Haller, K. Lauber, J. G. Danzl, A. J.
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The nonequilibrium dynamics of small boson ensembles in a one-dimensional optical lattice is explored upon
a sudden quench of an additional harmonic trap from strong to weak confinement. We find that the competition
between the initial localization and the repulsive interaction leads to a resonant response of the system for
intermediate quench amplitudes, corresponding to avoided crossings in the many-body eigenspectrum with
varying final trap frequency. In particular, we show that these avoided crossings can be utilized to prepare the
system in a desired state. The dynamical response is shown to depend on both the interaction strength as well as
the number of atoms manifesting the many-body nature of the tunneling dynamics.

DOI: 10.1103/PhysRevA.95.013617

I. INTRODUCTION

Recent experimental advances in ultracold atomic gases
have provided novel ways to examine the static properties
and the nonequilibrium dynamics of correlated many-body
systems [1–5]. In particular, optical lattice potentials are a
prominent feature of ultracold experiments, as they allow
for the study of the correlated tunneling dynamics and its
dependence on the interparticle interaction [5–9]. Systems
consisting of small ensembles of atoms offer the opportunity,
both theoretically [8,9] and experimentally [10,11], to identify
and track microscopic (quantum) mechanisms due to their
finite size and the absence of finite temperature effects. On the
other hand, quantum quenches [8,9,12–17] enable us to study
the dependence of the dynamical response on the perturba-
tion amplitude applied to an equilibrium system. Therefore,
quenched finite systems in combination with the appropriate
lattice geometries can lead to new quantum effects, especially
when the translational invariance of the lattice is broken.

A well-studied model that breaks the translational invari-
ance consists of a lattice potential with an imposed harmonic
trap [5,18–23]. Concerning the dynamics, the ballistic ex-
pansion rate of a bosonic Mott insulator trapped in such a
composite trap after a quench of the trap frequency to a
lower value has been shown to depend on the interparticle
interaction [5]. Furthermore, it has been demonstrated [18] that
in the limit of low filling factors the dynamics is equivalent to
harmonically trapped bosons with a lattice-dependent effective
mass. Both of the above-mentioned effects emerge when the
harmonic confinement is relatively weak compared to the
interparticle repulsion. However, a so far largely unexplored
theme is the competition between the harmonic confinement
and the interaction strength, which favors different spatial
configurations. An intriguing question would therefore be
whether this competition can be exploited to obtain a high
level of controllability of such a system and, as a consequence,
whether the out-of-equilibrium dynamics can be utilized to
achieve specific state preparations.

In the present work we consider a small ensemble of
bosons confined in an optical lattice subjected to an additional
strong harmonic confinement and investigate the dynamics
induced by a quench from strong to weak confinement. We

first analyze the many-body eigenspectrum for varying trap
frequency, revealing the existence of narrow and wide avoided
crossings between the many-body eigenstates. The dynamics
of the interacting bosons shows distinct regions of weak
and strong dynamical response. In particular, for increasing
quench amplitude the system exhibits regions of a pronounced
response in the vicinity of wide avoided crossings and sharper
response peaks being a consequence of the corresponding
narrow avoided crossings. Finally, it is shown that we can
achieve specific state preparation by utilizing the narrow
avoided crossings. Appropriately selecting the postquench
trap frequency it is possible to couple the initial state to a
desired final one, allowing for a low-frequency and efficient
population transfer between the two eigenstates. Finally, the
quench-induced many-body dynamics changes significantly
with varying particle number and interparticle repulsion, as
the positions and widths of the avoided crossings are shifted,
giving rise to further variability and controllability of the
dynamics. The results presented in this work are obtained
by employing the multiconfiguration time-dependent Hartree
method for bosons (MCTDHB) [24,25].

The structure of the paper is as follows. In Sec. II we provide
the underlying theoretical framework of our work. Section III
presents our triple-well results, both for the static case and
for the quench-induced dynamics. In Sec. IV we present the
generalization of our results for multiwell traps and, finally, in
Sec. V we summarize and give an outlook. Appendix describes
our computational method.

II. THEORETICAL FRAMEWORK

In the present section we shall briefly discuss our theoretical
framework. First, we introduce the many-body Hamiltonian
(see Sec. II A) of our system. Then, the wave function rep-
resentation in terms of a time-independent number state basis
(Sec. II B) is outlined. Finally, the basic observables (Sec. II C)
used for the interpretation of the dynamics are explained.

A. Hamiltonian

The many-body Hamiltonian of N bosons trapped in a one-
dimensional (1D) lattice potential with an imposed harmonic

2469-9926/2017/95(1)/013617(13) 013617-1 ©2017 American Physical Society
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trap reads

H =
N∑

i=1

(
− �2

2m

∂2

∂x2
i

+ V0 sin2(kxi) + mω2

2
x2

i

)

+ g

N∑
i=1

N∑
j=i+1

δ(xi − xj ), (1)

where xi denotes the position of the ith particle. The
optical lattice potential is characterized by its depth V0 and
the corresponding wave number k. The imposed harmonic
trap (parallel to lattice axis) depends on its frequency ω

and confines the particles around the origin x = 0. The
effective 1D coupling strength of the contact interaction

g = 2�2α

ma2
⊥

(1 − |ζ (1/2)|α√
2a⊥

)
−1

[26] can be manipulated via the

transverse harmonic oscillator length a⊥ =
√

�
Mω⊥

(belonging
to the strongly confined dimensions) [27,28] or by the 3D
s-wave scattering length α via a Feshbach resonance [29,30].

To induce the dynamics we utilize the following scheme:
The system is initially prepared in the ground state of the
many-body Hamiltonian [see Eq. (1)]. Then, at t = 0 we
instantaneously change the trap frequency ω to a lower value
and let the system evolve under the new Hamiltonian.

Throughout this work we shall employ the recoil energy
ER = �2k2/(2m), the inverse wave vector k−1 and the bosonic
mass m as the units of the energy, length, and mass,
respectively. Hard-wall boundary conditions are imposed at
x± = ±Sπ/2k−1, where S denotes the number of lattice sites.
The depth of the lattice is fixed to V0 = 9ER, thus including
three localized single-particle states.

B. Number state expansion

Using MCTDHB we calculate the many-body wave func-
tion |�(t)〉 with respect to a time-dependent basis consisting of
variationally optimized single-particle functions (SPFs), (for
more information see Appendix and Refs. [24,25]). However,
for the analysis of our results it is preferable to project the
numerically obtained |�(t)〉 in a time-independent number
state basis of single-particle states localized on each lattice
site. These localized states are constructed using the subset
of delocalized eigenstates with b nodes for each lattice site,
i.e., |ψ (b)

i 〉g=0, i ∈ {1, . . . ,S}. In the absence of a harmonic
confinement this subset of eigenstates belong to the bth
Bloch band of the system. To obtain a set of localized states
we diagonalize the band-projected position operator X̂(b) =
P̂ (b)x̂P̂ (b), where the operator P̂ (b) = ∑S

k=1 |ψ (b)
i 〉g=0〈ψ (b)

i |g=0
projects onto the band b [31–33]. In the following, we refer to
the eigenstates |φ(b)

s 〉, s ∈ {1, . . . ,S} of X̂(b) as the single-band
Wannier states of the deformed lattice. The corresponding
N -body number state basis reads∣∣∣∣∣∣

⊗
b1

n
(b1)
1 , . . . ,

⊗
bS

n
(bS )
S

〉
=

N!∑
i=1

P̂i

( ⊗N
j=1

∣∣φ(bj )
sj

〉)
√

N !
∏

b,s n
(b)
s !

, (2)

where the operator P̂i performs the ith permutation of N

elements and n(b)
s refers to the number occupation of the

Wannier state |φ(b)
s 〉. To simplify the notation we shall make the

following assumptions. We omit the superscript if no Wannier
state or only the Wannier states belonging to the zeroth
band are occupied, and decompose the occupation number as
n(b1) ⊗ n(b2) ⊗ · · · if more than a single Wannier state localized
in a certain well is occupied. For instance, |1(0),1(0) ⊗ 1(1),1(2)〉
refers to the four-particle state of the triple-well where the
ground states of the left and the middle well, the first excited
state of the middle well, as well as the second excited
state of the right well are each occupied by one boson. For
later convenience we also denote by |�n〉S (|�n〉A) the parity
symmetric (antisymmetric) combination of the states |�n〉 =
| ⊗ n1,

⊗
n2, . . . ,

⊗
nS〉 and | ⊗ nS,

⊗
nS−1 . . . ,

⊗
n1〉.

In the presence of a harmonic confinement, the Wannier
number states are not uniquely ordered with respect to their
energy expectation value, as argued in the following. Indeed,
let us consider a system of four bosons in a triple well.
For strong harmonic confinement and g = 0 there are five
number state subsets: h0 = {|0,4,0〉}, h1 = {|1,3,0〉S,A}, h2 =
{|2,2,0〉S,A,|1,2,1〉}, h3 = {|3,1,0〉S,A,|2,1,1〉S,A}, and h4 =
{|4,0,0〉S,A,|3,0,1〉S,A,|2,0,2〉} ordered in increasing energy.
On the other hand, for an interacting gas with vanishing
harmonic confinement there are four subsets of number
states energetically ordered by the multiplicity of bosons
that reside in each well: single pairs iSP = {|2,1,1〉, �},
double pairs iDP = {|2,2,0〉, �}, triplets iT = {|3,1,0〉, �},
and quadruplets iQ = {|4,0,0〉, �}, where � stands for site
permutations. Note that, for interaction energies of the order of
the band gap, also higher band excitations must be considered.

From the above example it becomes evident that a reorder-
ing of the number states in energy takes place as the system
passes from the one limiting case to the other. For instance,
the state |0,4,0〉 belonging to the classes h0 and iQ, is the most
favorable state for strong confinement but, at the same time,
the most unfavorable for strong interactions. As we shall see,
this corresponding reordering process is the main reason for
the resonant dynamics in the quenched system.

C. Observables

Let us now briefly introduce a few basic observables to
be utilized in the following analysis, which are based on the
one-body density ρ(1)(x; t). To quantify the time evolution of
interwell and intrawell modes we use the average position of
the bosons in a spatial region D, D = {x ∈ (xi,xf )}

〈x〉D(t) = 〈�(t)|x̂D|�(t)〉 = 1

ND

∫ xf

xi

dxxρ(1)(x; t), (3)

where ND = ∫ xf

xi
dxρ(1)(x; t) is the particle number within D,

x̂D = ∫ xf

xi
dxx�̂†(x)�̂(x) refers to a one-body operator, and

�̂(x) is the field operator. This quantity offers a measure for
the collective displacement of the atoms (see Ref. [34] for the
dipole mode) within a prescribed region of the lattice.

Further, we introduce the position variance in a spatial
region D

σ 2
x,D(t) = 〈�(t)|x̂2

D|�(t)〉 − 〈�(t)|x̂D|�(t)〉2

= 1

ND

∫ xf

xi

dxx2ρ(1)(x; t) − 〈x〉2
D(t), (4)
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which measures the expansion and contraction of the
atomic cloud (see Ref. [35] for the breathing mode) within
D. Note the appearance of the one-body operator x̂2

D =∫ xf

xi
dxx2�̂†(x)�̂(x). The position variance over the whole

lattice σ 2
x,L(t) quantifies a global breathing mode, composed

of intersite tunneling and intrasite breathing and dipole
modes, which contribute altogether to the total contraction and
expansion of the atomic cloud. σ 2

x,L(t) thus offers a measure
for the net dynamical response of the system.

To measure the impact of the quench we also define the
time-averaged position variance

σ 2
x,L − σ 2

x,L(0) ≡ 1

T

∫ T

0
dt

[
σ 2

x,L(t) − σ 2
x,L(0)

]
=

T →∞

∑
i>j

Re
(
c∗
i ω〈�i |x̂2

L|�j 〉ωcj

)
, (5)

which describes how far the system is in average from its initial
state. Here, |�i〉ω is the ith excited stationary eigenstate of
the postquench Hamiltonian and |�〉 = ∑

i ci |�i〉ω holds. We
have also used the parity symmetry, which implies 〈x〉L(t) =
〈x〉L(0) = 0 (since the initial state is the ground state of the
Hamiltonian before the quench). Finally, the temporal variance
of the position variance


T

{
σ 2

x,L

} ≡ 1

T

∫ T

0
dt

(
σ 2

x,L(t) − σ 2
x,L

)2

=
T →∞

1

2

∑
i>j

∣∣c∗
i ω〈�i |x̂2

L|�j 〉ωcj

∣∣2
(6)

quantifies how much the state fluctuates around its average
configuration during the evolution. 
T {σ 2

x,L} thus measures
the intensity of the dynamical processes and of defect
formations following a quench. The theoretical limit T → ∞
is replaced in practice by a finite evolution time T where σ 2

x,L

and 
T {σ 2
x,L} have converged.

III. QUENCH DYNAMICS WITHIN A TRIPLE WELL

As a prototype system exhibiting characteristic quench-
induced dynamics, we use a system of four harmonically
trapped bosons in a triple-well potential. We first investigate
the eigenspectra of the system with varying trap frequency
(Sec. III A), which are subsequently related to the dynamics
induced by the quench (Sec. III B).

A. Eigenspectra

The eigenstate spectrum of the Hamiltonian of Eq. (1)
depends on both the trap frequency ω and the interaction
strength g (see also Sec. II B). To interpret the dynamics caused
by a quench of the frequency ω of the imposed harmonic trap
we analyze how the eigenstate spectrum depends on ω.

Figure 1(a) shows the ω dependence of the eigenenergies
for g = 1ERk−1. For later convenience we denote each of the
even-parity eigenstates as |�i〉, where i ∈ {0, . . . ,8} refers to
their energetical order for a given ω. In the following, we focus
on the even-parity part of the spectrum |�i〉 [see Fig. 1(a)],
which contains the ground state |�0〉. At ω = 0 the number
states within each class (iX, X = SP,DP,T ,Q) are very close

(a)

(b)

FIG. 1. Dependence of the eigenenergies of the Hamiltonian
of Eq. (1) on the trap frequency ω2 for a system consisting of
N = 4 bosons trapped in a triple well with additional harmonic
confinement. The lowest (a) 15 eigenenergies for g = 1ERk−1 and
(b) 20 eigenenergies for g = 4ERk−1 are shown. Solid (dashed) lines
represent even (odd) parity eigenstates. Very narrow crossings (width
smaller than 4 × 10−3E2

R�−2) are denoted by dotted boxes, narrow
avoided crossings are indicated by dashed boxes and wide avoided
crossings are denoted by solid boxes. αi , i = 1, . . . ,6 indicate the
position of each avoided crossing (see legend). The dominant number
state contribution of each eigenstate at ω = 0 is indicated on the
left-hand side of each figure.

in energy, their minor energetical difference being caused by
the respective avoided crossings (and the boundary conditions
of the triple well), and thus the eigenstates are a superposition
of the corresponding Wannier number states. In particular,
each of the eigenstates possesses a dominant contribution from
a particular Wannier number state of class iX [presented on
the left-hand side of Fig. 1(a)]. For ω > 0, the eigenenergies
increase linearly (proportional to the number of bosons in
the side wells) with ω2. The population of the dominant
contribution of each eigenstate increases with ω2 (at the
expense of the contribution of other number states that belong
to the same class) up to the point of complete dominance
and therefore saturation. This behavior with increasing ω2

occurs unless we encounter an avoided crossing with another
eigenstate. Indeed, as it can be seen in Fig. 1(a) at such
avoided crossings (being denoted by C ∈ {αi}, i = 1, . . . ,6)
the two involved eigenstates exchange their character and
therefore corresponding dominant Wannier number states.
Indicative of this process is the fact that for ω2 > ω2

C the
linear ω2 dependence of the eigenstates is restored and the
corresponding slopes have been exchanged. Moreover, the
avoided crossings α6 and α5 due to their proximity exhibit a
slightly different behavior being referred to in the following as
a composite avoided crossing {α6α5}. We note that the avoided
crossings, which involve the ground state |�0〉 are much wider
(wide avoided crossings) compared to those involving excited
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states (narrow avoided crossings). Despite the appearance of
the above-mentioned avoided crossings there are also very
narrow avoided crossings possessing a corresponding width
smaller than 4 × 10−3E2

R�−2.
To interpret the eigenspectrum we employ the cor-

responding (three-site, lowest-band) Bose-Hubbard model
(BHM) [36,37]

ĤBHM = −J (â†
1â2 + a

†
2â3 + H.c.) +

3∑
i=1

[ε(i − 2)2 + e0]n̂i

+ U

2

3∑
i=1

n̂i(n̂i − 1), (7)

where âi (â†
i ) denotes the annihilation (creation) operator that

annihilates (creates) a particle in the state |φ(0)
i 〉 (e.g., i = 1

refers to the leftmost well) and n̂i = â
†
i âi corresponds to the

particle number operator. The Hubbard parameters J , U , ε,
and e0 refer to the intersite hopping, intrasite interaction, site
offset energy, and the zero point energy of the ensemble,
respectively. We remark that all of the presented results are
obtained within the MCTDHB framework for the continuum
space Hamiltonian of Eq. (1) and we only refer to discrete
models [BHM, see Eq. (7)], to interpret and compare our
findings.

The classification in terms of the interparticle interaction
(iX) provides information on the energy expectation value of
the corresponding states for a vanishing harmonic confine-
ment. Furthermore, the classification in terms of strong har-
monic confinement provides information on how the energy of
each Wannier number state depends on the trap frequency, i.e.,
E{hd}(ω) = E{hd}|ω=0 + dε (ε ∝ ω2). For instance, at J = 0
all the crossings become exact [since all individual ni are con-
served, see Eq. (7)] and we can evaluate the expected position
for each one, e.g., the states |1,2,1〉 and |1,3,0〉S are expected
to cross at ε = 4U . For J �= 0 these exact crossings become
avoided and their widths can be approximated by the coupling
between the involved states, e.g., 〈1,2,1|ĤBHM|1,3,0〉S =
−√

3/2J , [see the wide avoided crossing in Fig. 1(a) at
ω2 = ω2

α3
]. Narrow avoided crossings emerge from higher

order transitions yielding a nonlinear coupling in J , e.g.,
although 〈0,4,0|ĤBHM|1,2,1〉 = 0 these states are coupled by
the higher-order transition |0,4,0〉 J�|1,3,0〉S J�|1,2,1〉 leading
to a coupling ∝ J 2. Here, the hopping J � U , and therefore
the corresponding avoided crossing observed at ω2 = ω2

α2
[see

Fig. 1(a)] is much narrower. On the other hand, the composite
avoided crossing {α6α5} can be interpreted as follows: At
ω2

α6
a comparatively narrow avoided crossing between the

eigenstates |�1〉 and |�2〉 takes place (exchange between
the Wannier number states |2,1,1〉S and |2,2,0〉S). A wide
avoided crossing involving the eigenstates |�1〉 and |�3〉
follows at ω2

α6
� ω2 � ω2

α5
(exchange between the Wannier

number states |1,3,0〉S , |2,1,1〉S). Finally, at ω2
α5

a second
narrow avoided crossing takes place between the eigenstates
|�2〉 and |�3〉 (exchange between the number states |2,1,1〉S
and |2,2,0〉S). This behavior stems from the fact that all
these three states are degenerate for J = 0, ε = U , while
for finite J the coupling between |2,1,1〉S and |1,3,0〉S can

be neglected. To connect our Hamiltonian [Eq. (1)] with
the employed BHM [see Eq. (7)] we mention here that the
studied case of V0 = 9ER and g = 1ERk−1 corresponds to
the BHM Hamiltonian with parameters U ∼ 0.13ER, J ∼
1.5 × 10−2ER, yielding a ratio U/J ∼ 8.5. The offset induced
by the imposed harmonic oscillator potential corresponds to
ε/ω2 ∼ 0.55�2/ER. Finally, it can be shown that the energy of
the |0,4,0〉 state depends on the trap frequency as ∼1 + ω2

4V0
,

related to the zero point energy e0 [see Eq. (7)].
For larger interaction strength, the many-body states, as

shown in Fig. 1(b), become energetically higher due to the
higher interaction energy among the bosons. Note that a certain
number of states with higher band excitations possess lower
energies from states of the lowest band, e.g., the state |0,4,0〉
does not participate in the lowest twenty eigenstates of the
Hamiltonian with g = 4ERk−1 [see Fig. 1(b)]. Indeed, for
g = 4ERk−1 the BHM can still be applied since: (i) there
is no coupling to higher band excitations via hopping terms of
the form −J

b,b′
ij a

†(b)
i a

(b′)
j = 0 due to the orthogonality of the

single-particle Bloch states that belong to different bands, and
(ii) in the interaction part of the Hamiltonian, intraband on-
site interaction terms due to U

b,b,b,b′
i,i,i,i a

†(b)
i a

†(b)
i a

(b)
i a

(b′)
i , where

|b − b′| = 2j + 1, j ∈ N vanish because of parity symmetry
within the corresponding well [38]. This manifests itself in
Fig. 1(b) by the absence of avoided crossings between states
with higher band excitations (first excited band) and states
with all particles in the zeroth band (see, for instance, the
very narrow avoided crossing at ω2 = 0.25E2

R�−2 involving
the states |�7〉 and |�8〉). The energies of the latter possess a
similar dependence on the frequency ω2 as for g = 1ERk−1 but
the position in terms of ω2 of the avoided crossings between
these states [see Fig. 1(a)] has increased approximately three
times the original value for g = 1ERk−1. The dependence
of the eigenenergies involving higher band excitations is
linear in ω2 with the proportionality factor ε(1) = ε, see for
instance |�0〉 and |�8〉 within the frequency interval ω2 ∈
[0.1,0.25E2

R�−2]. Furthermore, the states with higher band
excitations show both narrow and wide avoided crossings, e.g.,
see the narrow avoided crossing at ω2 = 0.02E2

R�−2 involving
the states |�8〉 and |�9〉 and the wide avoided crossing at
ω2 ∈ [0.02,0.16E2

R�−2] between the states |�8〉 and |�10〉. The
narrow avoided crossings refer to intraband tunneling within
the ground band while the wide avoided crossings are related
to interband tunneling within the first excited band. Finally,
let us also note that the narrow avoided crossings between
(the parity symmetric) states with higher band excitations
comprise a composite avoided crossing [see the dashed boxes
at ω2 ∼ 0.02E2

R�−2 and ω2 ∼ 0.16E2
R�−2 in Fig. 1(b)] similar

to the {α6α5} avoided crossing observed for the ground band
[see Fig. 1(a)].

Non-negligible widths of avoided crossings between states
of the ground band and those having a contribution from the
first excited band can in principle be achieved by shifting the
center of the harmonic trap. This is equivalent to a lattice
tilt [39] where the parity symmetry of the system is broken
and states of different parity become coupled. According
to Figs. 1(a), 1(b) the states with different parity, e.g., |�n〉S
and |�n〉A are near degenerate, except for the case of avoided
crossings, and consequently we expect that the spectrum is
slightly altered for the case of broken parity symmetry.
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(b) (f)

(d) (h)

(a) (e)

(c) (g)

FIG. 2. (a), (c), (e), (g) Time evolution of σ 2
x,L(t) and (b), (d), (f), (h) the corresponding spectra σ 2

x,L(ωFourier), as a function of the trap
frequency ω2 after the quench. The system parameters used in each case correspond to (a), (b) g = 0ERk−1, ω2

i = 0.8E2
R�−2 (initial trap

frequency), (c), (d) g = 1ERk−1, ω2
i = 0.8E2

R�−2, (e), (f) g = 1ERk−1, ω2
i = 0.58E2

R�−2, and (g), (h) g = 4ERk−1, ω2
i = 0.8E2

R�−2. αi ,
i = 1, . . . ,6 denote the positions of the corresponding avoided crossings (see also Fig. 1). Note that on top of each of the (a), (c), (e), (h)
subfigures regions I , II , III , TC with C ∈ {αi}, are presented. In (d), (f) the branches are organized by solid boxes denoted in Table I as
segment αi,j , where the index j = 1,2,3 introduces an energetically increasing order.

B. Quench-induced dynamics

After having examined the basic properties of the eigenstate
spectrum we proceed by investigating the many-body dynam-
ics when the system is subjected to an abrupt quench of the
trap frequency ω to lower values.

For a strongly confined system initialized in the noninter-
acting ground state (|�〉 ∼ ∏ |φ(0)

c 〉, c stands for the middle
well) the dynamical response of the system (for varying final
trap frequency ω) is shown in Fig. 2(a) via σ 2

x,L(t) [see Eq. (4)].
This response can be described by the two single-particle

states, i.e., by |φ(0)
c 〉 and the symmetric state 1√

2
(|φ(0)

r 〉 + |φ(0)
� 〉)

(l, r stand for the left and right wells respectively). For
ω2 > 0.08E2

R�−2 we have σ 2
x,L(t) ≈ σ 2

x,L(0) showing that the
system is unaffected by the quench and all the particles remain
essentially localized in the center well (∼|φ(0)

c 〉). Only for
quenches to very low trapping frequencies ω2 < 0.08E2

R�−2,
see in Fig. 2(a) the particles diffuse to the outer wells and
as a consequence the variance fluctuates significantly with
time. The spectrum of the variance σ 2

x,L(ωFourier), presented in
Fig. 2(b), is dominated by a single frequency for all quenches,
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TABLE I. Energy differences and the corresponding main tunneling processes for each branch that appear in the spectra of Fig. 2(d), 2(f).
Each avoided crossing is denoted by αi,i = 1, . . . ,6, while 0 refers to the avoided crossings located at ω = 0. The branches are categorized
into segments being denoted by a second subscript index j , i.e., αi,j ,j = 1,2,3. The energy difference of a given branch is denoted by
Ekm ≡ Ek − Em followed by the corresponding main tunneling processes and the respective frequency domains.

{α6α5} α3 α2

{α6α5}1

E21 |1,3,0〉S � |2,2,0〉S ω2 > ω2
α5|2,1,1〉S � |2,2,0〉S ω2 < ω2
α5

E32 |2,1,1〉S � |2,2,0〉S ω2 > ω2
α6|1,3,0〉S � |2,2,0〉S ω2 < ω2
α6

E31 |1,3,0〉S � |2,2,0〉S ω2 ∈ (ω2
α6

,ω2
α5

)

α3,1
E32 |2,2,0〉S � |0,4,0〉 ω2 ≈ ω2

α3

E10 |1,3,0〉S � |1,2,1〉 ω2 ≈ ω2
α3

α2,1E21 |1,2,1〉 � |0,4,0〉 ω2 ≈ ω2
α2

{α6α5}2

E10 |1,3,0〉S � |1,2,1〉 ω2 > ω2
α6|2,1,1〉S � |1,2,1〉 ω2 < ω2
α6

E20 |2,1,1〉S � |1,2,1〉 ω2 ∈ (ω2
α6

,ω2
α5

)
|2,2,0〉S � |1,2,1〉 ω2 /∈ (ω2

α6
,ω2

α5
)

E30 |2,1,1〉S � |1,2,1〉 ω2 > ω2
α5|1,3,0〉S � |1,2,1〉 ω2 < ω2
α5

α3,2

E21 |2,2,0〉S � |1,3,0〉S ω2 < ω2
α3|0,4,0〉 � |1,2,1〉 ω2 > ω2
α3

E31 |1,3,0〉S � |0,4,0〉 ω2 < ω2
α3

α2,2

E10 |1,3,0〉S � |0,4,0〉 ω2 > ω2
α2|1,3,0〉S � |1,2,1〉 ω2 < ω2
α2

E20 |1,3,0〉S � |1,2,1〉 ω2 > ω2
α2|1,3,0〉S � |0,4,0〉 ω2 < ω2
α2

{α6α5}3

E43 |1,3,0〉S � |0,4,0〉 ω2 < ω2
α5

E42 |1,3,0〉S � |0,4,0〉 ω2 ∈ (ω2
α6

,ω2
α5

)
E41 |1,3,0〉S � |0,4,0〉 ω2 > ω2

α6

α3,3

E20 |1,3,0〉S � |0,4,0〉 ω2 > ω2
α3|2,2,0〉S � |1,2,1〉 ω2 < ω2
α3

E30 |1,2,1〉 � |0,4,0〉 ω2 < ω2
α3

α4 α1 0

α4,1 E43 |2,1,1〉S � |0,4,0〉 ω2 ≈ ω2
α4

α1,1 E10 |1,3,0〉S � |0,4,0〉 ω2 ≈ ω2
α1

01,1
E10 |2,1,1〉S � |1,2,1〉 ω ≈ 0
E23 |2,2,0〉S � |2,0,2〉 ω ≈ 0

and this frequency corresponds to the Rabi frequency involving
the energy difference between the two aforementioned states.

Figure 2(c) presents σ 2
x,L(t) as a function of ω2 for

intermediate interactions g = 1ERk−1. Here, the ground state
is dominated by the |0,4,0〉 number state for the initial trap
frequency ω2

i = 0.8 [see Fig. 1(a)]. Regions of qualitatively
different dynamical response with varying final trap frequency
ω2 are manifest, denoted as I , II , III , and TC in Fig. 2(c),
thereby showing also a prominent difference from the g = 0
case [see Fig. 2(a)]. Within the region denoted as type I (ω2 >

ω2
α2

) σ 2
x,L(t) fluctuates prominently with time, indicating the

presence of the global breathing mode. Here the fluctuations
of σ 2

x,L(t) are still characterized by a single frequency [see
Fig. 2(d)], and correspond to the Rabi oscillation region
studied also in Ref. [18]. The regions of type TC (associated
with a corresponding avoided crossing C) are characterized
by a small frequency and high-amplitude response during
the evolution. Regions of type II appear in between the
regions of type TC , e.g., ω2

α3
< ω2 < ω2

α2
. Here, the variance

σ 2
x,L(t) evolves with a multitude of frequencies while its

amplitude is diminished compared to the case of regions I

and T . Finally, within the region II a region III (linked to
the composite avoided crossing {α6α5}) of relatively strong
response emerges.

To gain more insight into the existence of the regions II ,
III , and TC , we employ σ 2

x,L(ωFourier) shown in Fig. 2(d). The
connection of each of the branches observed in Fig. 2(d) to the
related eigenenergy differences is presented in detail in Table I.
We remark that only branches involving the state |0,4,0〉 (being
the dominant Wannier number state contribution of the initial
state) are contributing significantly. The region I is formed
due to the avoided crossing α1 [see Fig. 1(a)] and the bosons
perform Rabi tunneling oscillations between the number states

|0,4,0〉 and |1,3,0〉S (see segment α1,1 in Table I). Turning
to the region Tα2 we observe that the dynamical response of
the system is dominated by the low-frequency second-order
tunneling process |1,2,1〉 � |0,4,0〉 (see segment α2,1 in
Table I). The formation of regions II (ω2

α3
� ω2 � ω2

α2
) is

caused by the fact that the tunneling modes |1,2,1〉 � |0,4,0〉,
|1,3,0〉S � |1,2,1〉, and |1,3,0〉S � |0,4,0〉 (see segments
α2,1 and α2,2 in Table I) possess a similar amplitude [see also
Fig. 2(d)] and the interference of these modes is destructive
(on average) resulting in a weakened dynamical response. At
Tα3 (ω2 = ω2

α3
) a low-frequency second-order tunneling mode

|2,2,0〉S � |0,4,0〉 (see segment α3,1 in Table I) is observed.
For larger quenches, i.e., ω2 < ω2

α3
, the eigenstate dominated

by |0,4,0〉 does not couple with the remaining states of the
eigenspectrum [see also Fig. 1(a)]. Then, most of the processes
appearing within this trap frequency regime are associated with
the small |1,3,0〉S contribution to the initial state. The above
give rise to the region II which encompasses the Tα4 and III

regions. The Tα4 region is dominated by a low-frequency mode
being the third-order process |2,1,1〉S � |0,4,0〉 (see segment
α4,1). Note that even for very low detuning (ω2 �= ω2

α4
) from the

crossing α4, this third-order process vanishes because: (i) the
width of the avoided crossing α4 is extremely narrow and (ii)
the state |2,1,1〉S has no contribution to the initial state. Finally,
within the region III that appears near the crossing {α6α5}
[see Figs. 2(c), 2(d)] the relevant low-frequency tunneling
processes are |2,1,1〉S � |2,2,0〉S and |1,3,0〉S � |2,2,0〉S
(see segment {α6α5}1 in the appropriate regions and also
Table I). Here, the prominent dynamics of the state |1,3,0〉S
gives rise to a slightly increased response of the system in
comparison to region II .

To examine the case of the composite avoided crossing
{α6α5} we initialize the system to the ground state |�0〉
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(g = 1ERk−1 and ω2
i = 0.560E2

R�−2) being dominated by the
Wannier number state |1,3,0〉S . Figure 2(e) shows σ 2

x,L(t) for
different final trapping frequencies ω. For ω2 > ω2

α4
the system

undergoes Rabi oscillations of varying amplitude [region I

in Fig. 2(e)]. As the quench amplitude increases the system
transits smoothly via the region II where the amplitude of
the Rabi oscillations decreases to the region T{α6α5} where the
response of the system is prominent. Note here that the region
T{α6α5} is broader than the previously mentioned regions of
type TC . Finally, for ω2 < ω2

α6
(region II ) the response of the

system becomes multimode and the fluctuations of σ 2
x,L(t) are

diminished.
To identify the corresponding microscopic processes,

Fig. 2(f) presents σ 2
x,L(ωFourier). The region I is dominated

by the tunneling mode |1,3,0〉S � |1,2,1〉 (see segment α3,1)
and it is related to the wide avoided crossing α3 [see solid
boxes in Fig. 1(a)]. As the quench amplitude increases the
region II appears for similar reasons as in the case of ωi = 0.8
and ω2 ∈ (ωα3 ,ωα2 ). Within the region T{α6α5} the behavior of
the system can be summarized as follows. For ω2 > ω2

α5
, the

process |1,3,0〉S � |2,2,0〉S dominates the dynamics, while
at ω2 ≈ ω2

α5
the additional mode |2,1,1〉S � |2,2,0〉S appears.

Next, at ω2
α6

� ω2 � ω2
α5

the latter mode possesses two distinct
frequencies, while the process |1,3,0〉S � |2,2,0〉S possesses a
higher frequency than in the case of ω2 > ω2

α5
. Finally, at ω2 ≈

ω2
α5

the low-amplitude mode |2,1,1〉S � |2,2,0〉S corresponds
to a single frequency and the process |1,3,0〉S � |2,2,0〉S
dominates the dynamics. Concluding, the response of the
system at T{α6α5} depends strongly on the postquench trap
frequency. For ω2 < ω2

α6
a region II appears similarly to the

case of ωi = 0.8 and ω2 < ωα3 . For ω ≈ 0 two additional
branches of low frequency appear, which correspond to the
avoided crossings between |1,2,1〉 and |2,1,1〉S and between
|2,2,0〉 and |2,0,2〉S (see segment 01,1). These modes do not
involve the major contribution to the initial state |1,3,0〉S and
consequently possess very small amplitude (region III ).

For higher interactions (here g = 4ERk−1), the dynamical
response of the system, shown in Fig. 2(g) via σ 2

x,L(t), after a
quench on ω (ω2

i = 0.8E2
R�−2) shows a qualitatively different

behavior from the case of intermediate interactions. The initial
state is dominated by |1,2,1〉 and possesses significant contri-
butions from higher band excitations, e.g., |1,1(0) ⊗ 1(2),1〉
and |1,2(1),1〉 [40]. The system is essentially unperturbed
for ω2 > 0.16E2

R�−2 and the evolution is characterized by
multiple frequencies (see region II ). Remarkably enough even
for small quench amplitudes regions of Rabi oscillations [see
Figs. 2(a), 2(c), 2(e)] are absent. Only for quenches to ω ≈ 0,
a prominent response is observed [region T0 in Fig. 2(g)].
Figure 2(h) presents σ 2

x,L(ωFourier) where we observe (in con-
trast to the case of intermediate interactions) the appearance
of only a few branches. The most dominant branch (denoted
as b1) refers to the tunneling mode |1,2,1〉 � |2,1,1〉S while
the second branch (denoted as b2) corresponds to the process
|1,2,1〉 � |1,3,0〉S . These tunneling modes appear due to
the avoided crossing at ω = 0 [see Fig. 1(b)]. Finally, the
third branch (denoted as b3) corresponds to the dipole mode
|1,2,1〉 � |1(1),2,1〉S . This dipole mode is induced by the
minor shift of the side well caused by the quench and it is
of single particle nature [41]. We remark here that in the case

of strong interactions the tunneling dynamics is suppressed
allowing the dipole mode to possess a prominent role in the
course of the evolution (see branch b3).

A natural next step is to investigate whether abrupt
quenches can be used for state preparation. To achieve
this goal let us examine the occupation of specific number
states, i.e., N{|�n〉}(t) = |〈�n|�(t)〉|2 during the evolution within
the above-mentioned dynamical regions (see also Fig. 2).
Figures 3(a)–3(d) show the dynamics of a system initialized in
the ground state (ω2

i = 0.8E2
R�−2, g = 1ERk−1) dominated

by the number state |0,4,0〉 while in Figs. 3(e), 3(f) we
consider the case (ω2

i = 0.56E2
R�−2, g = 1ERk−1) in which

the |1,3,0〉S possesses the dominant contribution to the ground
state. Figure 3(a) shows N{|�n〉}(t) for a quench within the
region I and near the avoided crossing α1. A population
transfer from the number state |0,4,0〉 to |1,3,0〉S (see segment
α1,1 in Table I) following Rabi oscillations is observed.
Additional contributions stemming mainly from the state
|2,2,0〉S are negligible. On the other hand, Fig. 3(b) presents
N{|�n〉}(t) for a quench within the region Tα2 . The domi-
nant tunneling process corresponds to |0,4,0〉 � |1,2,1〉 (see
segment α2,1), while the additional high-frequency tunneling
modes |1,3,0〉S � |0,4,0〉, |1,3,0〉S � |1,2,1〉 coexist. As
a consequence |1,3,0〉S possesses a significant occupation
during the dynamics. Figure 3(c) shows N{|�n〉}(t) for a quench
within the region Tα3 . The main population transfer takes
place between the number states |0,4,0〉 and |2,2,0〉S (see
segment α3,1). The influence of additional contributions to the
initial state is smaller because: (i) the frequency of the main
tunneling mode |0,4,0〉 � |2,2,0〉S is much lower than the
frequency of the tunneling modes that couple the dominant
state |0,4,0〉 with |1,3,0〉S and |1,2,1〉 and (ii) the tunneling
mode |1,3,0〉S � |1,2,1〉 (see segment α3,1) is pronounced
due to the wide avoided crossing α3. Figure 3(d) presents
N{|�n〉}(t) for a quench within the region Tα4 . We observe that
the main population transfer takes place between the number
states |0,4,0〉 and |2,1,1〉S . The frequency of the corresponding
tunneling mode (see segment α4,1) is much lower compared
to the other cases shown in Fig. 3 and also compared to the
remaining tunneling processes, e.g., |1,3,0〉S � |2,2,0〉S , that
appear in Fig. 3(d). Figure 3(e) shows N{|�n〉}(t) for a system
initialized at ω2

i = 0.56E2
R�−2 and following a quench within

the region Tα3 . In this case, Rabi oscillations between the num-
ber states |1,3,0〉S and |1,2,1〉 (see segment α3,1) are observed.
Finally, Fig. 3(f) illustrates N{|�n〉}(t) (same initial state) for a
quench within the region T{α6α5}. Here, there are three dominant
states, namely |1,3,0〉S , |2,2,0〉S , and |2,1,1〉S , which are
coupled via the tunneling modes |1,3,0〉S � |2,2,0〉S and
|2,2,0〉S � |2,1,1〉S (see segment {α6α5}1). The total state of
the system |�(t)〉 is dominated within different time intervals
by each of the above-mentioned number states. Concluding
from the above, we note that it is possible to employ an abrupt
quench of the trap frequency and achieve state preparation
to one of the number states |1,3,0〉S , |1,2,1〉, |2,2,0〉S , and
|2,1,1〉S , with an adequate population |〈�n|�(t)〉|2 � 0.6 (see
the vertical dashed lines in Fig. 3) by choosing properly the
total evolution time. This implies that multimode evolution
can be used for state preparation, as long as, the frequency
of the desired transition is much lower than the competing
population transfer processes during the dynamics.
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(a) (d)

(b) (e)

(c) (f)

FIG. 3. Evolution of the dominant number state populations [see the legend above (a)] for N = 4 interacting bosons (g = 1ERk−1) confined
in a triple well with additional harmonic confinement (ω2

i = 0.8E2
R�−2). The dynamics is induced via a quench of the trap frequency to (a)

ω2 = 0.745E2
R�−2 (region I ), (b) ω2 = 0.58E2

R�−2 (region Tα2 ), (c) ω2 = 0.48E2
R�−2 (region Tα3 ), and (d) ω2 = 0.385E2

R�−2 (region Tα4 ).
Note that the scaling of the time axis in (d) is different from the other cases and appears on top of the figure. The evolution of the number state
populations is also shown for a quench from ω2

i = 0.56E2
R�−2 to (e) ω2 = 0.48E2

R�−2 (region I ) and (f ) ω2 = 0.265E2
R�−2 (region T{α6α5}).

For the identification of the different regions see Fig. 2.

To examine the dependence of the intensity of the dy-
namical processes on the quench amplitude, we employ

T {σ 2

x,L} [see Eq. (II C)] being a measure of the time-averaged
dynamical response, which depends solely on the parameters
of the system. Figure 4 presents 
T {σ 2

x,L} as a function of
the postquench trap frequency ω2 for different values of the
relevant physical parameters.

Figure 4(a) exhibits 
T {σ 2
x,L} with varying quench ampli-

tude for different interaction strengths g. In the noninteracting
case [see also Fig. 2(a)] the mean response of the system
after a quench of the trap frequency is close to zero for a
wide range of final trapping frequencies (ω2 > 0.08E2

R�−2).
However, for large quench amplitudes (ω2 < 0.08E2

R�−2) the
mean response increases strongly as the state |φ(0)

c 〉 couples
to the state (|φ(0)

� 〉 + |φ(0)
r 〉)/√2. For the case of intermediate

interactions (g = 1ERk−1) and initial trap frequency ω2
i =

0.8E2
R�−2 [see also Fig. 2(c)] we observe, as expected, that the

different regions of dynamical response (i.e., I , II , III , TC)
yield a distinct averaged response. In particular, for quenches
within the region I the mean response of the system increases
until it reaches its maximum value at ω2

α1
. For ω2 < ω2

α1
the

mean response of the system decreases. The Tα2 region appears
as a peak in 
T {σ 2

x,L} because the interwell tunneling mode
|0,4,0〉 � |1,2,1〉 becomes resonant. For ω2

α3
< ω2 < ω2

α2
the

first region of type II appears and 
T {σ 2
x,L} exhibits a local

minimum. As ω2 ∼ ω2
α3

the mean response increases (at the
Tα3 region) exhibiting a narrow peak followed by a region
II where the response is minimized. This process is repeated

for ω2 ∼ ω2
α4

within the region Tα4 . The response peak at Tα4

is much narrower compared to the peaks in regions Tα3 and
Tα2 since the resonant tunneling process |0,4,0〉 � |2,1,1〉S is
of third order. Furthermore, the mean response of the system
remains small for ω2 < ω2

α4
, with the only remarkable feature

being the slightly increased response observed in region III .
For g = 1ERk−1 and ω2

i = 0.56E2
R�−2 [see also Fig. 2(e)]

a different overall dynamical response is observed. The region
of type I exhibits a similar behavior as for ω2

i = 0.8E2
R�−2

but in this case the region II follows the region I for
decreasing ω2 without the appearance of a T region. For
ω2 ≈ ω2

α5
, an increase in the mean response is observed as

the system approaches the T{α6α5} region. In contrast to the
other TC regions the T{α6α5} covers a wide range of trapping
frequencies ω2 and exhibits a response peak at ω2 = ω2

α5
due

to the tunneling mode |1,3,0〉S � |2,2,0〉S (see wide part of
the crossing {α6α5}). Finally, for larger quench amplitudes the
response is minimized and increases slightly only at ω = 0
within the region III . For high interactions (g = 4ERk−1)
and initial trap frequency ω2

i = 0.8E2
R�−2 the dynamical

response of the system is completely different from the case
of intermediate interactions. The initial state of the system is
dominated by |1,2,1〉 (which is also the main contribution to
the ground state for ω2 < ω2

i ). The system remains essentially
unperturbed except for quenches in the proximity of ω ≈ 0
where an increasing response is observed due to the existence
of the tunneling mode |1,2,1〉 � |2,1,1〉S (see T0 region).

Figure 4(b) presents a comparison of 
T {σ 2
x,L} obtained

within the mean-field approximation and the corresponding
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(a)

(b)

(c)

FIG. 4. 
T {σx,L} as a function of the postquench frequency ω2.
Comparison between (a) different interaction strengths g (see legend),
(b) the mean-field (MF) and MCTDHB results (see legend), and (c)
different particle numbers N = 6,8 (see legend) for g = 0.5ERk−1.
The symbol ∗ denotes that the system is initialized in the ground
state for ω2

i,∗ = 0.56E2
R�−2 instead of ω2

i = 0.8E2
R�−2 being used

otherwise.

MCTDHB result, i.e., taking into account the correlations. As
it is clearly visible the two dynamical responses differ signifi-
cantly. In particular, for intermediate interactions (g = 1), the
mean-field response of the system possesses a higher ampli-
tude in comparison to the correlated case and continues to in-
crease also beyond the regions TC . Only for ω2 < ω2

α3
it finally

decreases almost abruptly to a small but finite value (which is
still larger than the corresponding MCTDHB value). A similar
behavior is observed for higher interaction strengths. Here, the
mean-field approach overestimates even more the dynamical
response of the system as a consequence of the increased
interparticle repulsion. We conclude that the multiple resonant
behavior obtained within the correlated approach can not be
captured by the mean-field approximation and consequently
correlations between particles are crucial for the dynamics.

Obviously, the behavior of the system depends strongly
on the particle number, since for different values of the
latter the eigenstates and spectrum change overall. Figure 4(c)

presents 
T {σ 2
x,L} for the particle numbers N = 6,8 and g =

0.5ERk−1. Both cases show a qualitatively similar response to
the N = 4 case presented in Fig. 4(a). Indeed, high response
peaks appear also here, indicating the existence of avoided
crossings in the corresponding many-body spectrum. The
overall response (see, e.g., the response peaks) is altered with
the number of particles, manifesting the many-body nature of
the induced dynamics.

To verify the applicability of our results for larger systems,
in the following section, we shall consider multiwell setups
consisting of a finite optical lattice and additional harmonic
confinement. Then, we shall demonstrate that the character of
the diffusion dynamics induced by a quench of the frequency
of the imposed harmonic trap shows similar characteristics to
the triple-well case.

IV. DYNAMICS IN MULTIWELL TRAPS

Let us consider four bosons confined in a seven-well
lattice with additional harmonic confinement. The system is
initially prepared in the ground state for g = 1ERk−1 and ω2

i =
0.56E2

Rk−2, where all the particles are mainly localized in the
center of the trap. The initial state is dominated by Wannier
number states of the form |0,0,1,3,0,0,0〉S . Figure 5(a) shows
the dynamics of the ensemble after a quench of the trap
frequency to zero. We observe that even in this extreme case
the atoms remain essentially localized within the region of the
triple well. In particular, a small portion of the particle density
tunnels away from the central well and reaches the edge of the
triple-well region (where the boson gas is mainly localized) at
t ∼ 100�E−1

R and subsequently expands ballistically beyond
the three core sites [see Fig. 5(a)].

To explore the mean dynamical response of the system
Fig. 5(b) illustrates 
T {σ 2

x,3} (where 3 stands for the integra-
tion over the three core sites) for varying final trap frequency.
To perform a direct comparison with the case of the triple
well we also show the mean response of the latter with equal
system parameters. A similar behavior between the two cases
is observed. However, we observe two deviations. First, the
corresponding response peaks are slightly shifted to a lower
value of ω2. This effect can be explained by the artificial
energy offset that the hard-wall boundary conditions introduce
to the side wells with respect to the middle well. Indeed, this
energy offset is reduced in the seven-well case. Second, an
increase of 
T {σ 2

x,3} for ω → 0 is observed (see region II ).
This is due to the portion of atoms that expand beyond the
triple-well region (the dominant tunneling mode corresponds
to |0,0,2,1,1,0,0〉S � |0,1,1,1,1,0,0〉S). Indeed, as can be
seen from Fig. 5(a) the unbound atomic density expands, then
scatters at the hard-wall boundaries and finally reenters the
triple well. This process enhances the amplitude of σ 2

x,3 and as
a consequence the corresponding temporal variance.

To investigate the dynamical response Fig. 5(c) presents
σ 2

x,L(t) for different final trap frequencies. It is shown that
for a quench to ω2 = 0 the portion of the density, which is
unbound to the triple-well region expands ballistically. Indeed,
σ 2

x,L(t) after some critical value [σ 2
x,L(t0 = 100) ≈ 5k−2]

becomes linear for a finite time interval (100 < t < 300�E−1
R ).

Furthermore, for quenches within the region of a response
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(a)

(b) (c)

(d)

FIG. 5. (a)
√

ρ(1)(x; t) for N = 4 interacting bosons (g =
1ERk−1) confined in a seven-well lattice with additional harmonic
confinement. The initial trap frequency is ω2

i = 0.56E2
R�−2 and we

quench to ω = 0. (b) 
T {σ 2
x,3w} with respect to the postquench ω2

for the triple well and the seven well setup (see legend) with the same
parameter values, i.e., ω2

i = 0.56E2
R�−2 and g = 1ERk−1. (c) σ 2

x,L(t)
for varying final trap frequency (see legend) for the seven-well setup.
(d) Evolution of the density fraction within the triple-well region
(N3w/N ) for a fifteen-well with an imposed harmonic trap. The
system is initialized in the ground state with N = 5, g = 1ERk−1

for varying initial trap frequency, ω2
i (see legend), and the dynamics

is induced by a quench to ω2 = 0.016E2
R�−2.

peak [e.g., see region Tα5 at ω2 ∼ 0.25E2
R�−2 in Fig. 1(a)]

or Rabi oscillations (e.g., see region I at ω2 ∼ 0.40E2
R�−2)

the amplitude of σ 2
x,L(t) is smaller than the critical one, thus

showing the absence of a ballistically expanding fragment.
To further characterize the expansion dynamics we consider

N = 5 bosons confined in a fifteen-well lattice potential with
an imposed harmonic trap. The dynamics, shown in Fig. 5(d),
is induced by a quench of the trap frequency and in particular
we study quenches that refer to the same final trap frequency
(ω2 = 0.016E2

R�−2) but a different initial one. To compare the
expansion dynamics we measure the fraction of the particle
density within the three core sites during the dynamics, i.e.,
N3w(t)/N = 1

N

∫ 3π/2
−3π/2 dxρ(1)(x; t). Figure 5(d) shows that the

above fragment of the particle density gets suppressed with
increasing initial trap frequency. This indicates that an initially
strongly confined bosonic ensemble remains after a quench
of the trap frequency confined near the sites it was initially
trapped into, which is a manifestation of the well-known self-
trapping effect [42–44].

V. CONCLUSIONS AND OUTLOOK

We have investigated the eigenspectra and in particular the
out-of-equilibrium quantum dynamics for a small ensemble
of bosons confined in a lattice potential with an imposed
harmonic trap. We hereby focus on the case of a strong
harmonic confinement where the eigenstates become well
separated and are dominated by a single Wannier number state.

In the noninteracting case, a significant tunneling dynamics
is observed only for the case of a small final harmonic trapping.
For intermediate interactions multiple avoided crossings with
varying ω appear in the eigenspectrum, which can be exploited
to reveal a rich dynamics after quenching the trap frequency.
For relatively small quench amplitudes we observe Rabi
oscillations caused by the wide avoided crossings between
the ground and the first excited states. However, by using
intermediate quench amplitudes we can utilize narrow avoided
crossings involving solely excited states to selectively couple
the initial state to a desired final state. The induced dynamics
is characterized by multiple frequencies, one of which is par-
ticularly slow and can be used to drive the system to a desired
final state. For large quench amplitudes a multimode and
low-amplitude dynamical response is realized. In this case the
number state with the dominant contribution to the initial state
is an eigenstate of the final system (low-amplitude dynamical
response), while the remaining contributions to the initial
state give rise to the observed multimode dynamics. The
deterministic preparation of the system in a desired Wannier
number state is hindered by the fact that more tunneling modes
are induced from additional contributions to the initial state.
The case of stronger interparticle interactions with admixtures
of a single excitation to the first excited band that do not couple
in the eigenstate spectrum have been explored. The avoided
crossings appear at higher trap frequencies and are narrower.
The dynamics is different from the case of weak interactions,
with higher band effects being more prominent and interwell
tunneling being suppressed.

Let us comment on possible experimental implementations
of our setup. In a corresponding ultracold gas experiment
strongly interacting bosons are trapped in a one-dimensional
superlattice. This superlattice can be formed by two retrore-
flected laser beams from which the first one possesses a
large wave number and intensity (forming each supercell)
compared to the second (forming each cell of the supercell).
The above-mentioned wave numbers should be commensurate.
In this way, the potential landscape near the center of each
supercell is similar to the one considered in the present study.
Such a system may be implemented either by the use of
holographic masks [45] or by the modulation of the wave
number, e.g., using accordion lattices [46]. The trap frequency
and the barrier height can be manipulated independently
via the intensity of the lattice beams, and, finally, the
interparticle interaction can be modulated via a magnetic
Feshbach resonance. The corresponding static and dynamical
properties of this state can then be measured with the recently
developed single-site resolved imaging techniques [45,47–49].
A experimental alternative would be to prepare 2N fermionic
6Li atoms in a microtrap [10], condense them into N Li2
bosonic Feshbach molecules [50] and create a multiwell trap
by switching on further microtraps [11].
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The above-mentioned findings suggest that bosonic systems
confined in a lattice potential with a superimposed harmonic
trap can be used for state preparation in the limit of strong
harmonic confinement. A natural continuation of the present
work is to consider time-dependent quench protocols, such
as linear quenches or pulsed sequences consisting of abrupt
quenches, that may yield a substantial improvement on the
state preparation, e.g., by exploiting the Landau-Zener mecha-
nism [51–53]. Another prospect is to study the case where the
parity symmetry is broken by a shift of the harmonic oscillator
relative to the lattice. In this case states of opposite parity cou-
ple and one can induce transitions between states of the zeroth
band and states in the first excited band. In this context novel
kinds of dynamics such as Bloch-like oscillations [54–56] and
the cradle mode [8,9] can be imprinted to the system. Finally,
another interesting perspective is the study of nonintegrability
since the many-body spectrum of the considered system shows
a plethora of avoided crossings even in the few-body case. The
latter might be a precursor of the advent of thermalization [57]
for larger particle numbers and system sizes.
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APPENDIX: COMPUTATIONAL METHOD: MCTDHB

Our approach to solve the many-body Schrödinger equation
(i�∂t − H )�(x,t) = 0 relies on the multiconfiguration time-
dependent Hartree method for bosons [24,25] (MCTDHB).
MCTDHB has been applied extensively in the literature for
the treatment of single species structureless bosons (see,
e.g., Refs. [58–60]). The key idea of MCTDHB lies on the
usage of a time-dependent (t-d) and variationally optimized
many-body basis set, which allows for the optimal truncation
of the total Hilbert space. The ansatz for the many-body wave
function is taken as a linear combination of t-d permanents
|�n(t)〉, with time-dependent weights A�n(t). Each t-d permanent
is expanded in terms of M t-d variationally optimized
single-particle functions (SPFs) |φj (t)〉. For the numerical
implementation the SPFs are expanded within a primitive basis
{|k〉} of dimension Mp. The time-evolution of the N -body
wave function under the effect of the Hamiltonian Ĥ reduces
to the determination of the A-vector coefficients and the SPFs,
which in turn follow the variationally obtained equations of
motion [24,25]. Let us note here that in the limiting case
of M = 1, the method reduces to the t-d Gross-Pitaevski
equation, while for the case of M = Mp, the method is
equivalent to a full configuration interaction approach to the
Schrödinger equation within the basis {|k〉}.

For our implementation we have used a sine discrete
variable representation (sin-DVR) as a primitive basis for
the SPFs. A sin-DVR intrinsically introduces hard-wall

boundaries at both ends of the potential. To obtain the nth
many-body eigenstate we rely on the so-called improved
relaxation scheme. This scheme can be summarized as follows:
(i) initialize the system with an ansatz set of SPFs {|φ(0)

i 〉}; (ii)
diagonalize the Hamiltonian within a basis spanned by the
SPFs; (iii) set the nth obtained eigenvector as the A(0) vector;
(iv) propagate the SPFs in imaginary time within a finite time
interval dτ ; (v) update the SPFs to {|φ(1)

i 〉}; and (vi) repeat
steps (ii)–(v) until the energy of the state converges within the
prescribed accuracy. To study the dynamics, we propagate the
wave function by utilizing the appropriate Hamiltonian within
the MCTDHB equations of motion. Finally, let us remark that
our implementation has been performed by employing the mul-
tilayer multiconfiguration Hartree method for bosons [61,62]
(ML-MCTDHB), which reduces to MCTDHB for the case of
a single bosonic species as considered here.

To verify the numerical convergence of our simulations, we
impose the following overlap criteria: (i) |〈�|�〉 − 1| < 10−8

and (ii) |〈ϕi |ϕj 〉 − δij | < 10−9 for the total wave function and
the SPFs respectively. Furthermore, we increase the number
of SPFs and primitive basis states observing a systematic
convergence of our results. For instance, we have used Mp =
300, M = 9 for the triple well, Mp = 560, M = 7 for the
seven well and Mp = 600, M = 6 for the fifteen well. In
the following, we shall briefly demonstrate the convergence
behavior concerning our triple-well simulations either with an
increasing number of SPFs M (and fixed number of Mp = 300
grid points) or for a varying number of grid points Mp and a
fixed number of SPFs, M = 9. In particular, the fulfillment of
the above two conditions is presented below for two different
quenches, namely from ω2

i = 0.80E2
R�−2 to ω2 = 0.40E2

R�−2,
g = 1ERk−1 and from ω2

i = 0.80E2
R�−2 to ω2 = 0.464E2

R�−2

and g = 1ERk−1. For reasons of completeness, note that the
first of the aforementioned quenches [see Figs. 6(a), 6(b)]
lie within the region II (low dynamical response), and the
second [see Figs. 6(c), 6(d)] in the region Tα3 (resonant dy-
namical response). Employing the time-evolution of our main
observable, i.e., the position variance σ 2

x,L(t) [see Eq. (4)], we
show [see Figs. 6(a), 6(c)] that it does not alter significantly for
varying number of grid points. In particular, even in the case of
Mp = 200 the corresponding differences from the results with
Mp = 300 [e.g., presented also in Fig. 2(d)] are negligible.
Remarkably enough, the maximum deviation observed in
σ 2

x,L(t), for a quench lying within the region Tα3 [see Fig. 6(c)],
calculated using 250 and 300 grid points respectively, is of the
order of 2.0% for long evolution times (t > 250). In addition,
we also present for the same quench amplitudes as above,
the long time propagation of σ 2

x,L(t) for different numbers
of SPFs [see Figs. 1(b), 1(d)]. It is observed that in the
case of M = 3 and M = 6 strong deviations from the case
with M = 9 occur, while the cases M = 9 and M = 12 are
almost indistinguishable. For instance, the maximum deviation
observed in σ 2

x,L(t), for a quench lying in the region Tα3 [see
Fig. 6(c)], calculated using nine and twelve SPFs respectively,
is of the order of 5.0% for long evolution times (t > 200). We
remark that the same analysis has also been performed for the
seven- and fifteen-well case (omitted here for brevity) showing
a similar behavior. An additional criterion for ensuring the
convergence of our simulations is the population of the lowest
occupied SPF, which is kept below 0.01%.
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FIG. 6. σ 2
x,L(t) for a quench from ω2

i = 0.80E2
R�−2 to ω2 = 0.40E2

R�−2 and g = 1ERk−1 for (a) different number of grid points Mp and
M = 9 SPFs, (b) different number of SPFs M and Mp = 300 grid points. (c), (d) The same as (a), (b) but for a quench from ω2

i = 0.80E2
R�−2

to ω2 = 0.464E2
R�−2.
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Abstract
The out-of-equilibrium dynamics of finite ultracold bosonic ensembles in periodically driven
one-dimensional optical lattices is investigated. Our study reveals that the driving enforces
the bosons in different wells to oscillate in-phase and to exhibit a dipole-like mode. A wide
range from weak-to-strong driving frequencies is covered and a resonance-like behavior
of the intra-well dynamics is discussed. In the proximity of the resonance a rich intraband
excitation spectrum is observed. The single particle excitation mechanisms are studied in the
framework of Floquet theory elucidating the role of the driving frequency. The impact of the
interatomic repulsive interactions is examined in detail yielding a strong influence on the
tunneling period and the excitation probabilities. Finally, the dependence of the resonance
upon a variation of the tunable parameters of the optical lattice is examined. Our analysis is
based on the ab initio multi-configuration time-dependent Hartree method for bosons.

Keywords: ultracold atoms, periodic driving, nonequilibrium quantum dynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

Ultracold atomic quantum gases in optical lattices have
reached an unprecedented degree of control providing direct
experimental access to a plethora of non-equilibrium phe-
nomena [1–4]. This control includes the modulation of the
interparticle interactions via confinement-induced, magnetic
and optical Feshbach resonances [5–10], the design of arbi-
trarily shaped optical traps with variable lattice depths, and
the ability to move time-periodically or even accelerate the
entire lattice structure. This level of control and accuracy over
the system parameters has opened the possibility to simulate
and study quantum many-body phenomena in part inspired
from condensed matter physics [11]. For instance, when
accelerating an optical lattice, representative processes are
Bloch-oscillations [12–16], Wannier–Stark ladders [17, 18],
Landau–Zener tunneling [16, 18] and photon assisted

tunneling [19], to name only a few. A promising technique is
the lattice shaking which has been used in order to address,
forexample,the coherent control of the superfluid to Mott
insulator phase transition [20], parametric amplification of
matter waves [21], four-wave mixing [22, 23], topological
states of matter [24], hybridized band structure [21, 25], and
even the engineering of artificial gauge fields [26]. More
recently it has been shown [27, 28] that one can use lattice
shaking to probe coherent band coupling and realize the
formation of ferromagnetic domains. Moreover, the dynamics
induced by shaking an optical lattice can lead to an admixture
of excited orbitals [29] and constitutes an emergent branch of
modern quantum physics.

A substantial part of the previous studies has been pri-
marily focused on the renormalization of the physics due to
driving, the mean-field approach [14] for weak interactions,
where the Gross–Pitaevskii equation is still valid, and a linear
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response treatment [30]. However, a relatively large mod-
ulation of the strength or of the frequency of the driving as
well as strong interactions calls for alternative methods which
can take into account higher-orbitals. Indeed, the inclusion of
higher-band contributions introduces new degrees of freedom
and as a result additional physical processes come into play.
Hereby, a sinusoidal shaking of the optical lattice is a natural
starting point which induces an in-phase dipole mode on each
site. An interesting and so far largely unexplored direction is
the study of the interplay between higher bands for the intra-
well mode and the inter-well tunneling dynamics with respect
to the driving frequency, and the investigation of the effect of
the interatomic interactions in the overall process. In this way,
it is natural to start with the investigation of the few body
analogue in order to achieve a more comprehensive under-
standing of the microscopic properties of the strongly driven
interacting system. Although the major part of the presented
results is devoted to the case of four bosons in a triple-well
setup, we provide strong evidence that our findings are still
applicable for larger lattice systems and larger particle
numbers.

Motivated by the recent experimental progress [26, 27]
we investigate in the present work the effects that a periodi-
cally driven one-dimensional optical lattice can introduce in a
small ensemble of ultracold bosons. The dynamical response
of the system for a wide range of driving frequencies is stu-
died by means of the concept of fidelity or autocorrelation
function. Even though we consider a scenario with a deep
lattice such that the tunneling modes have a minor influence
on the overall dynamics, a quite rich excitation spectrum is
found. We note that such intra-band excitations, which lead to
a coupling between the two lowest energy bands, have been
exploited in order to realize single- and two-qubit gates,
where the quantum bit has been encoded in the localized
Wannier functions of the two lowest energy bands of each
lattice site [31]. In order to analyze the intra-well dynamics
we employ the one-body reduced density matrix. The Fourier
spectrum of the local one-body density as well as of the on-
site density oscillations are employed in order to obtain
insights into the excited intra-well modes. We find a resonant
behavior of the dipole mode indicating that the intra-well
dynamics can be controlled by adjusting the driving fre-
quency. Moreover, the magnification of the intra-well gen-
erated mode at resonance is also manifested in the population
of additional lattice momenta. Our investigation of the reso-
nances is supported by a Floquet analysis for the effective
single-particle degree of freedom. This allows us to further
explore the on-site dynamics and the inter-well tunneling that
occur due to the driving. Including interatomic interactions
for larger atom numbers, we analyze similarities and differ-
ences with respect to the single-particle description. The
above outlined findings are confirmed for different filling
factors, lattice potentials, and boundary conditions. To solve
the underlying many-body Schrödinger equation we apply the
ab initio multiconfiguration time-dependent Hartree method
for bosons (MCTDHB) [32, 33] which is especially designed
to treat the driven out-of-equilibrium quantum dynamics of
interacting bosons.

This article is organized as follows. In section 2 we
introduce our setup and the multi-band expansion. Section 3
contains the driven quantum dynamics first from a single-
particle perspective, by performing a Floquet analysis, and
second by inspecting the dynamics of a small bosonic
ensemble including repulsive interactions. We summarize our
findings and provide an outlook in section 4. The appendix
briefly outlines our computational method.

2. Hamiltonian and multi-band expansion

This section is devoted to a brief presentation of the theore-
tical framework of our study. In particular, we shall briefly
discuss the driven optical lattice, the underlying many-body
Hamiltonian, and the concept of multi-band expansion. The
latter will be a useful tool in order to understand the excita-
tions involved in the dynamics.

2.1. Modeling the periodically-driven potential

The periodic driving of an optical lattice can be accomplished
in two different ways. Retroreflecting mirrors that are used to
form the lattice can be moved periodically in space or,
alternatively, a frequency difference between counter-
propagating laser beams can be induced by means of acousto-
optical modulators [27] which renders the lattice time-
dependent. Here, we model the driven optical lattice with a
sinusoidal function of the form

w= -⎡⎣ ⎤⎦V x t V k x A t, sin sin . 1sh 0
2

0 D( )( ) ( )
Such a potential has been implemented in the experimentin
[21]. It is characterized by the barrier depth V0, a lattice wave-
vector = pk ,

l0 where l denotes the distance between
successive potential minima, the amplitude A and the
frequency ωD = 2π/TD of the driving field. In an experiment
k0 is the wave vector of the laser beams which form the
optical lattice, while its depth V0 can be tuned by adjusting the
laser’s intensity.

2.2. The Hamiltonian

The Hamiltonian of N identical ultracold bosons of mass M
confined in a driven one-dimensional m-well optical lattice
reads

å å= -
¶
¶

+ + -
= <

H
M x

V x t V x x
2

, , 2
i

N

i
i

i j
i j

1

2 2

2 sh int( ) ( ) ( )

where d- = -V x x g x xi j i jint 1D( ) ( ) denotes the short-range
contact interaction potential between particles located at
position xi, i = 1, 2,K, N. In the ultracold regime the
interaction is well described by s-wave scattering whose
effectiveone-dimensional coupling strength [5] is given by

= - z -

^ ^
g 1 .a

Ma

a

a1D
2 1 2

2

12
0

2
0( )∣ ( ) ∣ Here =

w^
^

a
M

is the

transverse harmonic oscillator length with ŵ the frequency
of the two-dimensional confinement, while a0 denotes the free
spacethree-dimensional s-wave scattering length. In this way,
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the interaction strength can be tuned either via a0 with the aid
of Feshbach resonances [9, 10], or via the transversal
confinement frequency ŵ [34, 35].

For the sake of simplicity and computational con-
venience, we rescale the Hamiltonian (2) in units of the recoil

energy =E .k

MR 2

2
0
2

Then, the corresponding length, time and

frequency scales are given in units of k0
−1, w =- -ER

1
R

1 and
ωR respectively. In our simulations we have used a suffi-
ciently large lattice depth with values ranging from V0 = 4.5
ER to 8.0 ER such that each well includes three localized
single-particle Wannier states. In particular, due to the deep
optical lattice and small driving amplitudes (in comparison to
the lattice constant) mainly used in our simulations highly
energetic excitations above the barrier are excluded and as a
consequence heating processes can be minimized. The con-
finement of the bosons in the m-well system is imposed by the
use of hard-wall boundary conditions at positions = s

px ,m

k2 0

where the potential is maximum. In addition, we set also
 = = =M k 10 and the coupling strength becomes =g ,

g

E
1D

R

while A represents the dimensionless driving amplitude. The
rescaled shaken triple well is given by =V x t V, sinish 0

2( )
w-x A tsini D( ) with the hard wall boundaries located at

xσ = ±3π/2.

2.3. The multi-band expansion

The understanding of the spatial localization of states in lat-
tice systems makes the use of multi-band Wannier number
states crucial as it includes the information of excited bands
and allows us to interpret both intraband and interband pro-
cesses. In general, this representation is valid when the lattice
potential is deep enough such that the Wannier states between
different wells have a very small overlap for not too high
energetic excitation. In the present case where the potential is
periodically driven, the above description can still be used as
long as the driving amplitude is small enough in comparison
to the lattice constant l, i.e. A l. In this way, each localized
Wannier function can be still adapted and assigned to a cer-
tain well and the respective band-mixing is fairly small. For
large displacements one should use a time-dependent Wan-
nier basis in order to ensure that the corresponding on-site
Wannier states are well-adapted to each well during the
driving.

To introduce the formalism, let us consider a system
consisting of N bosons, m-wells and k localized single particle
bands [36, 37]. Then, the expansion of the many-body
bosonic wavefunction in terms of the number states of non-
interacting bosons reads

åYñ = ¼C N N N, , , , 3
N

N m
I

I I
,

; 1 2

i

i∣ ( )
{ } { }

where ¼N N N, , , m I1 2 is the multiband Wannier number state
and the element Ni denotes the number of bosons being
localized in the ith well satisfying the constraintå == N N.

i

m
i1

The summation is performed over the different configurations
of the N bosons according to their energetical order
denoted by the index I. In particular, the index I corresponds

to a high dimensional quantity I = (I1, I2, K, Im) which
contains m elements each of them being a k-component
vector. More precisely, the qth element can be written as

= ¼I I II , , ,q q q q
k1 2( )( ) ( ) ( ) , where Iq

k( ) refers to the number of
bosons located at the qth well and kth band, satisfying the
constraint å å == = I N.q

m
i
k

q
i

1 1
( ) Within the above notation one

can investigate, among others, the probability of N0 < N
bosons to be in an excited band or to find a specific number
state configuration. Indeed, suppose the case of N0 < N bosons
excited in the ith band while the rest N − N0 lie in lower bands.
Then, it must hold = = = =I I I... 0j j

m
j

1 2
( ) ( ) ( ) for every j > i,

while + + + =I I I N...i i
m

i
1 2 0
( ) ( ) ( ) and + + =I I... m

j
1

1 1( )( )
-N N0 for every j1 < i.
Let us consider an example of a system with four bosons

(N= 4) confined in a triple well (m= 3) which includes three
bands (k= 3). Then, for instance, the state ñ1, 2, 1 I∣ with
=I I I I, , ,L M R( ) and = = =I I I0, 1, 0 , 0, 1, 1L R M( ) ( )

denotes a state for which in the left (right) well one boson
occupies the first excited band, whereas in the middle well
one boson is localized in the first excited and one in the
second excited band. As a final attempt, here, we make a link
between the ground state and its dominant spatial configura-
tion in terms of the aforementioned multiband expansion. To
do that, let us choose again a system consisting of four bosons
in a triple well as it will be used extensively in the following.
It is known that, in general, the ground state configuration
depends on the interaction strength, while for the present
system, i.e. N = 4 and m = 3, the on-site interaction effects
will always be prominent. For the non-interacting case (g= 0)
the dominant spatial configuration of the system is ñ1, 2, 1 ,I∣
with IL = IR = (1, 0, 0) and IM = (2, 0, 0) due to the hard-wall
boundaries which render the middle and outer sites non-
equivalent. In the course of increasing interaction a tendency
towards a uniform population of each site, e.g. for g = 0.2,
due to the repulsion of the bosons is observed. In this region
the system is described by a superposition of lowest-band
states which are predominantly of single-pair occupancy, e.g.

ñ ñ1, 2, 1 , 2,1,1 ,I I∣ ∣ and double-pair occupancy, e.g. ñ2, 2, 0 .I∣
For further increasing repulsion, e.g. g = 0.4, a trend towards
the repopulation of the central well is noted. As we enter the
strong interaction regime, e.g. g = 1.5, the state consists of a
particle in the first excited-band being on a commensurate
background of localized particles which lie in the zeroth band
and the dominant ground state configuration is ñ1, 2, 1 ,I∣ with
IL = IR = (1, 0, 0) and IM = (1, 1, 0). Finally, for strong
interparticle repulsion, e.g. g = 3, the contribution from the
higher-band states becomes more prominent and the corre-
sponding ground state configuration is characterized by an
admixture of zeroth- and excited-band states.

3. Driven quantum dynamics

This section is devoted to a detailed analysis of the bosonic
dynamics in a driven optical lattice. At the beginning, a
general overview of the effect of the driving on the finite
bosonic ensemble with respect to the driving frequency is

3
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given. Subsequently, a Floquet analysis is employed in order
to investigate the underlying single-particle physics. Finally,
we focus on specific interaction effects.

3.1. Dynamical response

Let us explore the dynamical response or sensitivity of the
system with respect to the driving frequency ωD. In order to
investigate the stability of the system against the perturbations
induced by the shaking (see equation (1)), we first analyse the
fidelity [38] between the initial state and the state evolved at
time t: = áY Y ñwF t t0 ,2

D ( ) ∣ ( )∣ ( ) ∣ where the dependence on
ωD is implicit in the time evolved state Ψ(t). Here we will
consider a system of four bosons in a triple-well with g = 0.1,
whose ground state (i.e. the initial state Ψ(0)) corresponds to a
superfluid state, as the filling factor is not commensurable and
we do not encounter the formation of a Mott insulating state.
In terms of its dominant spatial configuration our system
initially consists (see also section 2.3 ) of two bosons in the
middle well and two others each of them localized in one of
the outer wells, i.e. the state ñ1, 2, 1 ,I∣ with IL = IR = (1, 0, 0)
and IM = (2, 0, 0) has the most prominent contribution.
Figure 1(a) shows wF tD ( ) as a function of the driving fre-
quency ωD. The dynamicsare characterized by three main
regions with respect to ωD, where the system is driven far
from the initial state, while for the remaining frequency

regions (red sections in figure 1(a)) the evolved state is
essentially unperturbed by the driving. In the first region,
between 4.0 < ωD < 5.5, the minimal overlap in the course of
the dynamics drops down to 0.1, whereas in the second
(7.0 < ωD < 8.0) and third (10.0 < ωD < 15.0) regions the
system maximally departs from the initial state with a per-
centage on the order of 50% and 65%, respectively. The
emergence of these dynamical regions strongly depends on
the parameters of the optical lattice. For instance, for smaller
lattice depths the aforementioned regions will be wider,
because of the smaller potential energy, which favors a pos-
sible deviation of the system from the initial state.

Let us inspect the time evolution of the total energy
= áY Y ñE t t H t t .( ) ( )∣ ˆ ( )∣ ( ) Figure 1(b) shows E(t) for various

driving frequencies ωD. For driving frequencies where wF
D
;

1 (e.g. w Î 1, 3 ,D { } see also figure 1(a)) the dependence of
the energy on the driving frequency is weak and it is essen-
tially constant during the time evolution. On the other hand,
for the regions where w F 1,D

E(t) increases initially and it
shows an oscillatory behavior. In particular, for ωD = 4.5 the
total energy exhibits an oscillatory (almost periodic) pattern
which can also be observed in the corresponding fidelity
evolution. This driving frequency will be referred to in the
following as critical and denoted by ωD

c , that is, the driving
frequency for which wÎ F tmint T0, D ( )[ ] is minimal. Indeed, as
we shall see below, the most interesting dynamics of the
system takes place close to this frequency.

Finally, let us inspect the response of the system to
the driving from a one-body perspective via the single-
particle density òr = Y ¼x t x x x x x t, d ... d , , , ; .N N1 2 2

2( ) ( )
Figure 2 illustrates the evolution of the one-body density for
different driving frequencies ωD, but with the same amplitude
A. The driving leads to oscillations of the particles densities in
every site. As can be observed by having a glance
at figure 2(a), the one-body density shows a weak response
for driving frequencies away from the critical region
w Î 4, 5.5 ,D [ ] while for w w= c

D D (see figure 2(b)) we
observe the periodic formation of enhanced density oscilla-
tions being accompanied by a broadening of each intra-well
ensemble. The peculiar behavior of the bosonic ensemble
observed for w w= c

D D is characterized by three processes and
time scales: (i) the internal fast oscillations of the density; (ii)
the large amplitude oscillations of the density in each well of
period ∼14; (iii) the tunneling between the wells with a
period of about 200. All these features will be analyzed in
detail in the following subsections both at the single particle
and many-body level.

3.2. Single particle dynamics

Here we investigate to what extent the previously presented
results can be understood in the limit of zero interaction
among the particles by means of Floquet theory. Specifically,
we are interested in two distinct features of the dynamics
observed in figure 2(b): first, the on-site dynamics and,
especially, its resonance-like dependence on the driving fre-
quency ωD, and second, the inter-well tunneling dynamics
whichare enhanced at certain values of ωD.

Figure 1. (a) Time evolution of the fidelity wF tD ( ) as a function of the
driving frequency ωD (measured in units of ωR). (b) Time evolution
of the expectation value of the Hamiltonian (2) (measured in units of
the recoil energy ER) for various driving frequencies ωD = 0.4 (green
thin dashed line), ωD = 4.0 (black thick solid line), ωD = 4.5 (red
thick dashed line), w = 5.25D (magenta thick dashed–dotted line),
ωD = 11.0 (blue thin dashed–dotted line), and ωD = 13.375 (light-
blue thin solid line). The driving amplitude is A = 0.05, while the
initial state corresponds to the ground state of four weakly
interacting bosons with g = 0.1 confined in a triple-well. Time unit is
w- .R
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3.2.1. Floquet theory. To be self-contained, we start by
summing up the main notions of Floquet theory. Because of
the temporal periodicity of the single particle Hamiltonian
employed throughout this work (equation (2) with g= 0 and
N= 1), every solution of the time-dependent Schrödinger
equation (TDSE) takes the form of a Floquet mode (FM)
Ψα(x, t) which in turn can be written as: Y =a x t,( )
 Fa- a x te ,ti ( ) with the real quasi energy (QE)  Îa
 w w- +2, 2D D[ ] and with F = F +a ax t x t T, , D( ) ( )

respecting the temporal periodicity of the Hamiltonian [39].
The FMs are eigenvectors of the time evolution operator over
one driving period

 + Y = Ya a
- aU T t t x t x t, , e , . 4T

D 0 0 0
i

0D( ) ( ) ( ) ( )
This property is of particular interest as it allows for a
stroboscopic time evolution of an arbitrary initial state Ψ(x, t0)
once the FMs of a system are known. To show this, we
exploit the fact that the FMs constitute an orthonormal basis
for the solution space of the TDSE [40] and expand Ψ(x, t0) at
the initial time t = t0 as

åY = Y
a

a ax t C t x t, , 50 0 0( ) ( ) ( ) ( )

with the corresponding coefficients aC t .0( ) By applying the
one period evolution operator U(TD + t0, t0) on both sides of
equation (5) for m times and by virtue of equation (4), we
readily obtain the stroboscopic time evolution of Ψ(x, t0) as

 åY + = Y
a

a a
- ax t mT C t x t, e , . 6mT

0 0
i

0D( ) ( ) ( ) ( )

Numerically, we obtain the FMs for a given initial time t0 by
calculating the eigenvectors of the one period evolution
operator U(TD + t0, t0) (see equation (4)). We refer the
interested reader to [41] for a detailed description of the
employed computational scheme.

Finally, let us note that equation (6) already reveals some
interesting features of the time evolution in periodically
driven systems as we shall see in the following. Imagine that
only a single FM, say Ψ0(x, t), is populated. The stroboscopic
evolution of the probability density is thus given as
Y = Yax mT C x, , 0 .D

2
0

2 2∣ ( )∣ ∣ ∣ ∣ ( )∣ Hence, Y x t, 2∣ ( )∣ is again
periodic with period TD and the only time dependence arises
from the explicit time dependence of the FM, which is
commonly referred to as ‘micro-motion’. This situation
changes if the initial state populates multiple FMs. In this
case one encounters interference terms in Y x mT, D

2∣ ( )∣
between the different FMs in the form of   ~ -a be .m Ti D( )
Thus, the quasi energies òα in periodically driven systems
play a comparable role in the time evolution as the energy
eigenvalues do in time-independent setups.

3.2.2. On-site dynamics in the single well. To begin with, we
shall investigate the observed on-site dynamics (see
figure 2(b)), and in particular their dependence on the
driving frequency w .D To this end, we simplify the setup
studied in section 3.1 to just a single well of the lattice
potential. Hence, the potential is given by =V x t V,sh 0( )

w-x A tsin sin2
D( ( )) for p pÎ - +x ,( ] and we impose

periodic boundary conditions at x = ±π in order to mimic
the situation in an extended lattice. We choose as initial state
Ψ(x, 0) the single particle density as shown in figure 2(b) at
t = 0 within the central potential well. The time evolution is
then obtained by expanding Ψ(x, 0) in terms of the FMs of the
system and by making use of equation (6). As a result, we
find that we can reproduce some of the main features of the
on-site dynamics shown in figures 2(a) and (b), namely, we
observe resonantly enhanced on-site oscillations in an interval
of the driving frequencies around ωD ≈ 4.5. Following the
discussion in [42], further insight into this effect can be

Figure 2. Time evolution of the one-body density ρ1 (x, t) in a triple-well potential for different driving frequencies: (a) ωD = 2.0 (top panel)
and (b) ωD = 4.5 (lower panel). The driving amplitude is fixed to the value A = 0.05, while the initial state corresponds to the ground state of
four weakly interacting bosons with g = 0.1. The spatial extent of the lattice is expressed in units of -k ,0

1 while the time units are rescaled in
terms of the driving period TD.
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obtained by studying the population of the FMs by the initial
state as a function of ωD. We therefore sort the FMs Ψα

according to their overlap with the initial state and label the
mode with the largest overlap as Ψ0, the mode with the

second largest overlap as Ψ1, etc. In figure 3(a) the
coefficients of the two most populated FMs, C0

2∣ ∣ and C1
2∣ ∣

are shown as a function of the driving frequency. Apparently,
both at small frequencies w 4D( ) and at large ones
( w 5.5D ) only a single FM is notably populated, while
C0

2∣ ∣ and C1
2∣ ∣ become comparable at distinct driving

frequencies (e.g. at ωD ≈ 5). According to our discussion
above, in cases when C0

2∣ ∣ is close to one, and thus only a
single FM is populated, the stroboscopic time evolution, as
given by equation (6), becomes, to a good approximation,
time periodic with the period of the driving TD. Note that this
agrees with the observation of figure 2(a), that away from the
resonance frequencies, the single particle density merely
performs oscillations whose period matches TD. This
corresponds precisely to the previously described micro-
motion arising from the explicit time dependence of the FM
Ψ0(x, t).

On resonance, when »C C ,0
2

1
2∣ ∣ ∣ ∣ the evolution of

Y x, 0 2∣ ( )∣ includes, besides the micro-motion, an interference
term between Ψ0 and Ψ1, whose period is dictated by the
corresponding quasi energies and is given by:

  w= -T T .osc D D 1 0( ) Indeed, we find that this term is
responsible for the observed on-site mode with a period of
∼14 lattice oscillations (compare figure 2(b)). Up to now,
however, it is not yet clear why Ψ1 is resonantly populated at
certain frequencies. In order to provide an answer to this
question we follow the argumentation in [42] and consider the
dependence of the QE spectrum on the driving frequency ωD

as shown in figure 3(b). Highlighted are the two most
populated modes at each ωD (blue and red dots) revealing
avoided crossings of these two modes at the frequencies
where a resonant enhancement of C1

2∣ ∣ was observed in
figure 2(b). Hence, at these values of ωD the FMs Ψ0 and Ψ1

are resonantly coupled by the driving which results in an
increase of C1

2∣ ∣ and ultimately to the section in3.1 describing
on-site dynamics.

In the following we provide insight into the question why
we observe Floquet resonances at driving frequencies around
ωD ∼ 4.5. Let us start by noting that, by means of appropriate
unitary transformations, the single particle Hamiltonian with a
potential as given in equation (1) can be recast into the form:


w= -

¶
¶

+ +H
m x

V k x V t x
2

sin sin , 7
2 2

2 0
2

0 D D( )˜ ( ) ( )

where the amplitude of the oscillating term is given by
VD = mAωD

2 . That is, the transformed Hamiltonian takes the
form of a static lattice plus a time-dependent perturbation
whose strength is determinded by VD. For the used parameters
of m = 1 and A = 0.05 and for the range of considered
frequencies of  w3 6D we get that the amplitude VD of
the time-dependent term is of order one. Hence, it can be seen
as a small perturbation compared to the static term of strength
V0 = 15 and we can expect that the QEs of the driven lattice
setup can be estimated by the actual energies of the undriven
lattice. Resonances would then be expected whenever the
energy difference between two notably populated eigenstates
of the static system matches an integer multiple of w .D In
fact we find that the energies of the three energetically lowest

Figure 3.On-site dynamics for a single particle. (a) Populations C0
2∣ ∣

and C1
2∣ ∣ of the two most populated FMs. (b) QE spectrum as a

function of the driving frequency ωD (measured in units of ωR).
Highlighted are the most (red) and second most (blue) populated
FMs. The rectangular area indicates the narrow avoided crossings,
while the circle highlights the area where a broad avoided crossing
among the FMs appears with respect to the driving frequency. (c) In
black is again the QE spectrum (same as in (b)). Additionally, we
show the most (red) and second most (blue) populated states of the
static, i.e. undriven, lattice. For comparison, we depict again the
black rectangle at the same position as in (b). (d) Frequencies ωαβ of
the on-site dynamics as a function of the driving frequency (see main
text). (e) Same as (d), but in the triple well setup (shown is only the
extract of small frequencies w wab  D which corresponds to
tunneling dynamics). In all panels A = 0.05.
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states of even parity are given by E0 ≈ 2.6, E1 ≈ 11.6 and
E2 = 16.9. Naïvely, we expect driving induced resonances
whenever the ground state is resonantly coupled to one of the
excited states. Indeed we find E1 − E0 ≈ 2 × 4.5 and E2 − E0

≈ 3 × 4.8 . Thus, following this line of argument, at driving
frequencies of approximately ωD = 4.5 the ground state of the
unperturbed lattice is coupled via a 2 (3) photon process to the
first (second) excited states. In order to justify this simplified
picture we show the energies E0 and E1 on top of the QE
spectrum of the driven lattice (see figure 3(c)). Away from
any resonances, both energies are almost identical to the QEs
of the corresponding Floquet states, so, for example,the red
line is practically on top of an underlying black line. Closer to
the resonance region, we see of course deviations of the QEs
from the mere energies of the undriven lattice as the different
states are coupled by the driving.

Finally, figure 3(d) provides an overview over the
possibly observed frequencies in the on-site dynamics at
various driving frequencies. Shown are the frequencies
associatedwith all possible interference terms between the
FMs weighted by their overlap with the initial state. More
precisely, we calculate   w = -ab a b( ) for all pairs of
FMs at a given driving frequency and determine the color
coding by computing the product *a bC C .∣ ∣ Hence, the
frequency ωαβ appears in figure 3(d) only when both of the
corresponding FMs Ψα and Ψβ have appreciable overlap with
the initial state. In agreement with the discussion concerning
figure 3(b) we observe pronounced on-site oscillations only
within an interval of driving frequencies  w4.0 5.5.D In
particular, the two narrow avoided crossings around w » 4.5c

D
(see the rectangular in figure 3(b)) yield low frequency on-site
dynamics, whereas the comparably broad avoided crossing at
ωD ≈ 5 (see the circle in figure 3(b)) results in a much faster
on-site oscillation.

3.2.3. Tunneling dynamics in the triple well. Besides the on-
site dynamics, figure 2(b) revealed a pronounced tunneling
between the lattice sites at certain driving frequencies.
Similar to the previous section, we analyze this effect in the
following by applying Floquet theory for the single particle
dynamics. We choose the same setup as before, that is,

w= -V x t V x A t, sin sin ,sh 0
2

D( ) ( ( )) with the same initial
state, i.e. essentially a Gaussian centered around the potential
well at x = 0, but with the difference that the periodic
boundary conditions are imposed at x = ±2π (instead of at
x = ±π as we did before). In this way we allow for tunneling
of the wave packet into the two neighboring lattice sites. As
for the on-site dynamics, we provide an overview over the
observable frequencies in the temporal evolution in
figure 3(e) (in close analogy to figure 3(d)). Note that, since
the tunneling dynamics observed in section 3.1 occurs on
much longer timescales as compared to the on-site dynamics,
we only show the extract of the regime of small frequencies,
i.e. w wab  .D Furthermore, because no on-site dynamics
occur with timescales matching the extremely small
frequencies of 0.02, all the frequencies depicted in
figure 3(e) are indeed associated with an inter-well
tunneling mode. In accordance with the observation made

in the many-particle simulations (see figure 2(b)) we observe
a strong increase of the frequencies associated with the
tunneling dynamics in the range of driving frequencies of
 w4 5.5.D Away from this resonance, for example at

ωD = 2.5, the only notable tunneling mode corresponds to an
interference term of two FMs which oscillates with a period
of Tosc/TD ≈ 3300 and could therefore not be observed in the
simulations performed in section 3.1. Within the regime of
resonant driving, e.g. at ωD = 4.5, the frequency of the
tunneling mode is increased strongly and the associated
oscillation period becomes Tosc/TD ≈ 200 matching the
observed tunneling mode in the weakly interacting regime
(see figure 2(b)).

3.3. Interband tunneling and excitation processes

In the previous section we have shown that most of the fea-
tures of the (effective) single-particle dynamics of figure 2 can
be explained via a non-interacting Floquet theory. As we shall
see now, however, the full dynamics presents a rich excitation
spectrum ascribable to the particles interaction, especially in
the strong interaction regime. Thus, we investigate the tun-
neling and excitation probabilities of the dominant particle
configurations, for different driving frequencies ωD, by means
of the multiband expansion introduced in section 2.3. More
precisely, we compute and analyze the probabilities, during
the dynamics, defined as

= YC N N N t, , . 8N I I;
2

1 2 3
2

i ( ) ( ){ }
The case =I 0m

k( ) ∀ k > 1 refers to the lowest-band inter-well
tunneling dynamics. The initial state of the system corre-
sponds to the ground state of four weakly interacting bosons
with g = 0.1 in a triple well, while the dominant number state
configuration (see also section 2.3) is ñ1, 2, 1 I∣ with
IL = IR = (1, 0, 0) and IM = (2, 0, 0). In this way, a
lowest-band tunneling process can take place among the
initial state and: (a) another state of single-pair occupancy,
e.g. ñ2,1,1 I∣ (IL = (2, 0, 0) and IM = IR = (1, 0, 0)); (b) a state
with double-pair occupancy, e.g. ñ2, 2, 0 I∣ (IL = IM = (2, 0,
0) and IR = (0, 0, 0)); (c) a state with triple occupancy, e.g.

ñ3, 1, 0 I∣ (IL = (3, 0, 0,) IM = (1, 0, 0), IR = (0, 0, 0)); or (d) a
state with quartic occupancy, e.g. ñ4, 0, 0 I∣ (IL = (4, 0, 0) and
IM = IR = (0, 0, 0)). However, from the system preferred
tunneling processes form a hierarchy according to the
energetical difference between the initial and final state. For
instance, a tunneling process to another state of single-pair
occupancy will be more preferable than to a state of double-
pair occupancy, etc. Figure 4(a) shows the tunneling
probability to the energetically closest number state, which is

ñ2, 1, 1 I∣ (or ñ1, 1, 2 I∣ ) with IL = (2, 0, 0) and IM = IR = (1,
0, 0) (or IL = IM = (1, 0, 0) and IR = (2, 0, 0)), i.e.

= á Y ñD t2, 1, 1N I I;
2 2

i
∣ ∣ ∣ ∣ ( ) ∣{ } with IL = (2, 0, 0) and
IM = IR = (1, 0, 0), for various driving frequencies. As is
shown, for w w< c

D D this tunneling mode has a small
amplitude and it is quite insensitive to ωD as intuitively
expected from the fact that the evolved-state is essentially
unperturbed by the driving (see also figure 1(a)). For
w w» ,c

D D however, the amplitude of the oscillations is
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significantly larger indicating an enhancement of the tunnel-
ing (see also figures 2(b) and 3(e)), whereas when w F 1D

and w w> c
D D (ωD = 11.0 curve in figure 4(a)) the oscillations

occur with a larger period. The fact that it oscillates with a
larger time period can be traced back to the behavior of the
fidelity at ωD = 11. Indeed, for short times (ωD = 11.0) the
system stays in the initial ground state and after some time the
fidelity starts to decrease, differently from the situation at
ωD = 4.5, where the system deviates from the initial state on
much shorter time scales. Concerning the remaining tunneling
modes, i.e. tunneling to higher energetical states that belong
to the lowest-band (see discussion above), they are negligible
as they provide a very small contribution even for ωD = ωD

c .
The latter has already been seen in the last subsection, but it
can also be shown with the use of the multi-band analysis. On
the other hand, figure 4(b) presents again the tunneling
probability D N I;

2
i

∣ ∣{ } for the energetically closest lowest-band
states (i.e. the same as figure 4(a)) when the driving frequency
is at resonance for different interaction strengths g. For weak
to intermediate interactions the tunneling amplitude decreases
and for strong interactions, e.g. g = 2.0, a destruction of the
tunneling is observed for long time scales.

Now, let us consider the excitation dynamics. In this case
it holds ¹I 0m

k( ) for k > 1. To this aim, we have analyzed the
probability of finding all the four bosons in the zeroth-band.
The latter can be expressed via equation (8) as

å å= Y =B N N N t C, , ,N NI I I I I;
2

1 2 3
2

;
2

i i
∣ ∣ ∣ ∣ ( ) ∣ ∣ ∣{ } { } where
the summation is performed over the excitation indices
= I I II , ,L M R( ) which, in terms of the multiband expansion,

obey the constraints + + =I I I NL
1

M
1

R
1( ) ( ) ( ) and = =I Ij j

L M
( ) ( )

=I 0j
R
( ) for all j > 1. In particular, figure 5(a) shows the
probability B N I;

2
i

∣ ∣{ } for all the bosons to reside in the zeroth-
band for various driving frequencies ωD and a fixed amplitude

A = 0.05 during the time evolution. At the critical driving
frequency a complete depopulation of the zeroth-band at
some specific time intervals is observed. In particular, this
probability exhibits revivals, which are connected with the
enhancement of the (amplitude) oscillations of the single-
particle density (see also figure 2(b)). On the other hand, for
driving frequencies different from the critical frequency the
respective probabilityof all the bosons occupying the zeroth-
band is rather large and is indeed dominant. However con-
tributions from excited configurations cannot be neglected,
especially in the regions 7.0< ωD< 8.0 and 10.0< ωD< 15.0,
where the system significantly departs from the initial state (see
also figures 1(a) and 5(a) red dashed line). Furthermore,
figure 5(b) presents the probability, at the critical driving fre-
quency,of obtaining a state of N 40 particles in the first-
excited band and the remaining to be in the zeroth-band. The
latter can be expressed as å=Q CN NI I I;

2
;

2
i i

∣ ∣ ∣ ∣{ } { } , where the
summation index = I I II , ,L M R( ) obeys the constraints

+ + = -I I I N N ,L
1

M
1

R
1

0
( ) ( ) ( ) = = =I I I NL

2
M

2
R

2
0

( ) ( ) ( ) and
+ + =I I I 0j j j

L M R
( ) ( ) ( ) for all j > 2. Indeed, the interplay
between the four possible excitation scenarios from the zeroth
to the first excited-band (i.e. one-particle excitation, two-par-
ticle excitation, etc) in the course of the dynamics is illustrated
in a transparent way. It is observed that the complete
depopulation of the zeroth-band is mainly accompanied by the
excitation of three or all the four bosons in the first-excited
band. For long evolution times, the zeroth-band possesses a
low population and states with one or two bosons in the first
excited-band are mainly populated. The states with the most
significant contribution are of the type ñ1, 2, 1 I∣ with

= =I I 0, 1, 0L R ( ) and IM = (0, 2, 0) or IM = (1, 1, 0). We
note that a small contribution comes from the state ñ1, 2, 1 I∣
with = =I I 0, 1, 0L R ( ) and IM= (0, 1, 1). This clearly shows

Figure 4. (a) Tunneling probability (see main text) = á Y ñD t2, 1, 1N I I;
2 2

i∣ ∣ ∣ ∣ ( ) ∣{ } with IL = (2, 0, 0) and IR = IM = (1, 0, 0) as a function of
time for different driving frequencies ωD = 0.5 (blue solid line), ωD = 4.5 (red dashed line) and ωD = 11.0 (black dashed–dotted line). The
most significant contribution of the interband tunneling mode is between the state ñ2, 1, 1 I∣ (with IL = (2, 0, 0) and IR = IM = (1, 0, 0)) and
the initial ñ1, 2, 1 I∣ (with IM = (2, 0, 0) and IR = IL = (1, 0, 0)). (b) Inter-well tunneling probability D N I;

2
i∣ ∣{ } at resonance for different values

of the interatomic interaction g = 0.1 (black dashed–dotted line), g = 0.5 (blue solid line) and g = 2.0 (red dashed line).In all panels
A = 0.05. The time evolution is expressed in units of w- .R

1
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that the most prominent excitation process in our system ori-
ginates from the energy difference between each of the above
states and ñ1, 2, 1 I∣ with IL = IR = (1, 0, 0) and IM = (2, 0, 0),
namely the (initial) ground state configuration.

Finally, in order to explore the impact of the interactions
on the dynamics, figure 5(c) shows the probability B N I;

2
i

∣ ∣{ }
for long evolution timesof all the bosons being in the zeroth-
band for different interparticle repulsion at the driving fre-
quency w w= .c

D D For the non-interacting case the population
of the zeroth-band shows revivals even for long time scales,
while, as the interaction strength is turned on, the corre-
sponding probability presents a decaying envelope. This
envelope behavior is a pure effect of the interactions and
reflects also the initial ground state configuration (see the
discussion in section 2.3) which strongly depends on the
interparticle interactions. As can be seen for increasing
repulsion between the particles the probability of the system
remaining in the zeroth-band, in the course of the dynamics,
decays on increasingly shorter time scales and the system is
dominated by different types of excitations, as expected
intuitively.

3.4. Characteristics of the resonant behavior

To characterize the overall process with respect to the driving
frequency, we compute the spectrum of the local one-body

density

òr w
p

r=a a
wt t

1
d e , 9

T
t

0

i( ) ( ) ( )

where òr r=a

¢

a

a
t x x td ,

d

d

1( ) ( ) denotes the spatially over a

single well integrated single-particle density at every time
instant t. The index α = L, M, R corresponds to the left,
middle or right well respectively, whereas the limits of the
wells are denoted by dα, ¢ad . Note that in the present case all
the components of r wa ,( ) i.e. ρL(ω), ρM(ω) and ρR(ω), are
equivalent due to the considered large lattice depths and the
employed driving scheme which enforces the bosons among
different wells to oscillate in-phase. Figure 6 shows the above
spectrum, where five dominant branches (denoted as (1)–(5)
in the figure) can be observed. The lowest branch denoted as
(1) in figure 6 (in the range w Î 0, 0.02[ ]) refers to the
intraband tunneling being restricted to the energetically
closest number states, e.g. from ñ1, 2, 1 I∣ (IM = (2, 0, 0),
IL = IR = (1, 0, 0)) to ñ2, 1, 1 I∣ (IL = (2, 0, 0), IM = IR = (1,
0, 0)). This branch is hardly visible in figure 6 due to the
presented wide range of frequencies that have been taken into
account in order to visualize all the dynamical frequencies of
the system. In addition, the next lowest branch (denoted as
(2)) at w Î 4, 5D [ ] and w Î 0.05, 1[ ] corresponds to the large
amplitude density oscillations (see also figure 2(b)). These

Figure 5. (a) Probability B N I;
2

i∣ ∣{ } (see main text) of all bosons being in the zeroth-band during the evolution for different driving frequencies
ωD = 2.0 (blue solid line), ωD = 4.5 (black dashed line), ωD = 10.25 (red dotted line) and ωD = 11.75 (green dashed–dotted line). (b)
Comparison of different excitation scenarios at ωD = 4.375. The black dashed–dotted line refers to the probabilityof all the bosons being in
the zeroth-band while the blue dotted, red dashed, light-blue thick solid and magenta thin solid line refer to the probabilityof having one,
two, three or four bosons, respectively, in the first-excited band. (c) Probability B N I;

2
i∣ ∣{ } of all the bosons being in the zeroth-band for

w w= ,c
D D but with different interparticle repulsion g = 0 (black dashed–dotted), g = 0.1 (blue dotted line), g = 0.5 (red dashed–dotted line)

and g = 2.0 (light-blue solid line). In all panels A = 0.05. The time evolution is expressed in units of w- .R
1
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mode frequencies have already been predicted via the Floquet
analysis in section 3.2 (see figures 3(d) and (e)). To
investigate in some detail the intra-well wavepacket dynamics
the quantity r r rD = -a a at t t,1 ,2( ) ( ) ( ) is employed. Here,
each well is divided from the center into two equal parts,
namely left and right, with ρα,1(t), ρα,2(t) being the
corresponding integrated densities at time t. The index
α = L, M, R stands for the left, middle and right well,
respectively. To determine the frequencies of this mode we
calculate the spectrum òr w rD = D

p
wt td e .tL

1
L

i( ) ( ) The
inset of figure 6 presents the corresponding spectrum, thus
showing the emergent frequencies of the intra-well oscilla-
tions as a function of the driving frequency ωD. We observe
that the spectrum ΔρL(ω) follows the evolution of the upper
three branches (denoted by (3)–(5)) of the spectrum of ρL(ω),
whereas in the region of the resonance the intra-well
oscillation measured via ΔρL(t) features a beating dynamics,
as expected. Hence, away from the region around the critical
driving frequency the generated dipole mode possesses three
different frequencies, while close to ωD

c the intra-well
dynamics come into a resonance. Therefore, one can induce
this resonant intra-well dynamics by adjusting the driving
frequency. Finally, let us comment on the existence of some
higher frequency components, e.g. branch (6) in figure 6,
which correspond to very fast intrawell oscillations (i.e.
w w D) and possess a low amplitude (in comparison to the
previous branches (1)–(5)).

In turn, we shall visualize the above mentioned resonance
and inspect how it depends on the lattice parameters. To
this aim, the minimal occupancy, during the evolution
time T, of the zeroth-band å=Î ÎP tmin mint T t T I I0, 0 0,( ) ∣[ ] [ ]

YN N N t, , ,1 2 3
2∣ ( ) ∣ with the energetical indices +IL

1( )

+ =I I NM
1

R
1( ) ( ) and = = =I I I 0j j j

L M R
( ) ( ) ( ) for every j > 1 is

used. Employing the above quantity one can show that far
from resonance there are regions with non-negligible excita-
tions, i.e. <Î Pmin 1t T0, 0[ ] (e.g. at ωD = 11.0; see also
figure 1(a)) as well as regions where »Î Pmin 1t T0, 0[ ] (e.g.
ωD = 2.0 in figure 1(a)). Now let us analyze the dependence

of Î Pmint T0, 0[ ] on the driving frequency around ωD
c . Firstly

we study the dependence of the resonance on the driving
amplitude. In figure 7(a) we show for an increasing driving
amplitude the minimum of Î Pmint T0, 0[ ] as a function of the
frequency ωD which broadens and eventually reaches zero,
meaning that the zeroth-band has been completely depopu-
lated (see also figure 5(a)). On the other hand, for small
amplitudes the value of the minimum of Î Pmint T0, 0[ ] is non-
zero and in the limit A 0 its dependence on the driving
frequency disappears. Instead, in figure 7(b) we show how the
minimal population of the zeroth-band ( Î Pmint T0, 0[ ] ) varies as
a function of the lattice depth. For an increasing lattice depth
it is known that the energy gaps among the different energy
levels become larger. This phenomenon can intuitively be
understood in terms of a tight-binding approximation. For
simplicity let us assume only a nearest neighbor coupling

òµ + +
⎡⎣ ⎤⎦J xW x V x W xd sins

p

m s2 0
2

1
2( ) ( ) ( ) between the sites s

and s + 1, where Ws(x) are the on-site localized Wannier
states. Then, within this approximation, which is valid for a
relatively deep potential, the resulting eigenvalues are

= - p
-

-
+

E E J2 cosk
k

N1 0
on site

1( ) (k = 1, 2, K, N), where
-E0

on site are the on-site energies. Thus, the resonance can be
tuned at will, i.e. for a decreasing lattice depth the ωD

c is
negatively shifted, as is confirmed by the numerical results of
figure 7(b). Finally, let us comment on the dependence of the
position of the resonance on the interparticle interaction
strength g. Indeed, in order to investigate whether there is
such a dependence, various interaction strengths (for the same
particle number N= 4), e.g. g = 0.1, g = 1.0 and g = 3.0,
have been considered (omitted here for brevity) and it was
found that the position of the resonance is essentially
unaffected.

In the following, let us inspect the momentum distribu-
tion with varying driving frequencies with the aim of
understanding whether signatures of a parametric amplifica-
tion of matter-waves can be observed. The momentum dis-
tribution is a routinely employed observable in atomic
quantum gas experiments as it is accessible via time-of-flight
measurements [4]. This quantity can be calculated as the

Figure 6. Local one-body density spectrum r wL ( ) (for the left well)
as a function of the driving frequency ωD (measured in units of ωR).
The driving amplitude has been chosen A = 0.05. Inset: the spectrum
of the intra-well oscillations calculated via rD tL ( ) (see also
main text).

Figure 7. (a) Profile of the resonance for various driving amplitudes
A = 0.01 (blue solid line), A = 0.05 (black dashed–dotted line) and
A = 0.1 (red dashed line) obtained from the Î P tmint T0, 0 ( )[ ] and T
being some fixed long evolution time as a function of the driving
frequency. (b) Same as (a) with A = 0.05, but for different barrier
heights V0 = 9.0 (red solid line) and V0 = 12.0 (blue dashed line).
The system consists of four bosons confined in a triple-well with
interparticle interaction g = 0.1.
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Fourier transformation of the one-body reduced density
matrix as

ò òp
r= ¢ ¢ - - ¢n k t x x x x t,

1

2
d d , ; e . 10k x x

1
i( ) ( ) ( )( )

Here ρ1(x, x′; t) denotes the one-body reduced density matrix,
being obtained by tracing out all the bosons but one in the
density of the N-body system. The panels (a)–(c) of figure 8
present the time evolution of the momentum distribution for
different driving frequencies before, on, and after the
resonance. As can be noted, exactly at the resonance the
momentum distribution exhibits a special pattern, that is,
some additional lattice momenta are periodically activated
during the dynamics. In particular, it is observed that the
modes   1.57,k

2
0 ±k0 ; ±3.14,   4.713k3

2
0 are

populated, whereas out of resonance only the ±k0 modes are
significantly populated. The population of the ±k0/2, ±3k0/2
modes at ωD = ωD

c is reminiscent of the parametric
amplification of matter-wave phenomenon, as observed
experimentally in [21]. However, an exact correspondence
with [21] cannot be made due to the very different setup of
our system, i.e. its finite size and the hard wall boundaries. A
detailed study of this process, also for higher particle numbers
and lattice potentials, would be desirable, but it is clearly
beyond the scope of this work. Furthermore, figure 8(d)
shows the momentum distribution at resonance, but for a
strong interparticle repulsion g = 2.0. The expected periodic
pattern for large evolution times is blurred as an effect of the
strong interaction which decreases the degree of coherence.

Finally, in order to demonstrate that our findings are of
general character we investigate a larger lattice system with a
filling factor smaller than unity. Specifically, the case of five
bosons in a twelve-well finite lattice has been considered.
Concerning the ground state with filling factor ν < 1, the most
important aspect is the spatial redistribution of the atoms as
the interaction strength increases. Indeed, as the repulsion

increases from the non-interacting to the weak interaction
regime the atoms are pushed from the central to the outer sites
which gain and lose population in the course of increasing g.

In the following, the shaking dynamics applied at t = 0 to
the ground state of the five bosons which are trapped in the
twelve-well potential in the weak interaction regime (g = 0.1)
is explored. The emergent non-equilibrium behavior shows
similar characteristics as in the previous setup with filling
ν > 1, i.e. the occurrence of an intrawell dipole and an
interwell tunneling mode. Interestingly, at the same frequency
w w= = 4.5c

D D a resonance of the intra-well dynamics is
observed. Figure 9 presents the one-body density evolution
exactly at the critical point ωD

c . As in the case for setups with
filling ν > 1, the formation of enhanced density oscillations at
each site is observed, which is in relation to the time periods
where the zeroth-band is completely depopulated during the
evolution. Employing a corresponding number state analysis
the significant contribution of two kinds of number states
has been confirmed: (a) either + + = -I I N 1,1

1
12

1( ) ( )

= = =I I 01
3

12
3( ) ( ) and one with =I 1k

2( ) for k = 1,K,12 or
(b) + + = -I I N 1,1

1
12

1( ) ( ) = = =I I 01
2

12
2( ) ( ) and a

certain =I 1k
3( ) for k = 1, K, 12. Notice that the same kind of

number states have been found to contribute significantly also
in the dynamics of four bosons in the triple-well. The above
mentioned observations suggest a generalization of the
observed phenomena to larger systems as well. Indeed, the
same shaken scheme has been tested in different systems
(omitted here for brevity), e.g. ten bosons in a triple-well, six
bosons in five wells, etc, confirming that the above observed
resonant-like behavior of the bosonic ensemble occurs in each
setup.

4. Conclusions and outlook

The correlated non-equilibrium quantum dynamics of few-
body bosonic ensembles induced by the driving of a finite-
size optical lattice has been investigated. Our work focuses
particularly on the regimes of large lattice depths and small
driving amplitudes. This choice has been made in order to
limit the degree of excitations that would otherwise lead to
heating processes. Starting from the ground state of a weak or
strongly interacting small ensemble, we have examined in
detail the time evolution of the system induced by periodi-
cally driving the optical lattice. We find that the dynamical
evolution of the system is governed by two main modes: the
inter-well tunneling and the intra-well dipole-like mode. The
dynamical behavior of the system in the non-interacting
regime has been firstly analyzed via Floquet theory, that is, at
the single-particle level, providing an accurate interpretation
of the observed processes. For large particle numbers and
large interaction strengths, however, such a single-particle
description was notsufficient anymore to provide an
exhaustive explanation of the observed dynamics, and a
multi-band Wannier number state expansion has been
employed.

Figure 8. Momentum distribution of the one-body density as a
function of time (measured in units of w-

R
1) for g = 0.1 and different

driving frequencies (a) before the critical frequency ωD = 2.0, (b) at
the critical frequency w w= = 4.5c

D D and (c) at ωD = 8.0. (d) The
case of strong interparticle repulsion for g = 2.0 and w w= .c

D D The
horizontal axis represents the lattice momenta in units of the inverse
lattice vector k0 = π/l. In all panels A = 0.05.
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The inter-well tunneling mode is weak as a consequence
of the deep optical lattice and the small driving amplitude. On
the other hand, the local dipole mode has been identified from
the intra-well oscillations of bosons in the individual wells.
Remarkably enough, it has been found that by tuning the
driving frequency the intra-well dynamics experiences a
resonant-like behavior. This is manifested, for example,by
the enhanced oscillations in the one-body density evolution or
from the periodic population of additional lattice momenta in
the momentum distribution of the one-body density. Addi-
tionally, on a single-particle level in terms of Floquet theory,
it has been shown that in the proximity of the resonance the
first two FMs possess the main contribution, while away from
resonance the dynamics can be described with the inclusion of
the first FM. To explain the enhanced population of the
second FM at resonance the corresponding quasienergy
spectrum has been employed, revealing avoided-crossings
between the first two FMs at certain driving frequencies. To
obtain the frequencies which refer to the on-site and tunneling
dynamics, the corresponding frequencies associated with the
interference terms between the FMs have been employed
showing pronounced on-site oscillations and an enhancement
of the inter-well tunneling mode in the vicinity of the reso-
nance. Considering an ensemble of few-bosons we examined
the influence of the interatomic interactions both for the inter-
and intra-well generated modes. Indeed, it has been found that
the repulsion affects each of the aforementioned modes,
yielding a destruction of the inter-well tunneling for strong
interactions and an enhancement of the excitations (i.e. the
contribution of higher-band states). Moreover, in the spec-
trum of the local one-body density with respect to the driving
frequency all the relative dynamical frequencies, e.g. on-site
oscillations and tunneling period have been identified.
Finally, the occurrence of the above resonance seems to be
universal in a periodically driven lattice as it is independent of
the filling factor, the boundary conditions or the interparticle
repulsion.

We would like to underline the fact that, contrary to
related studies based, forexample, on effective model
Hamiltonians or lattice calculations with tensor network
methods, our many-body analysis based on the ab initio
MCTDHB method has the advantageof providing the

complete system wavefunction in space and time. Thus, it
enables us to accurately identify the involved intra- and inter-
well band excitations.

Let us comment on possible future investigations.
Although in the present work we did not employ the multi-
layer structure of the multi-layer multiconfiguration time-
dependent Hartree method for bosons (ML-MCTDHB)
method, our ab initio approach is well suited to describe the
dynamics of multi bosonic species. Given this, a first natural
extension would be to study the driven dynamics of mixtures
consisting of different bosonic species in order to unravel the
induced excitation modes or to devise schemes for selective
transport of an individual bosonic component. In relation to
the present study, it would be interesting to simulate the
parametrical amplification of matter-waves with interesting
applications, like the generation of four-wave mixing,
entanglement production, but also for fundamental tests of
quantum mechanics with massive particles like the Hong–
Ou–Mandel experiment, as recently performed with a Bose–
Einstein condensate [23].
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Appendix. The computational method: ML-MCTDHB
and MCTDHB

Our computational approach to solve the many-body Schrö-
dinger equation of the interacting bosons relies on the ML-
MCTDHB [43, 44] which constitutes an ab initio method for
the calculation of stationary properties and in particular the
non-equilibrium quantum dynamics of bosonic systems of

Figure 9. Time evolution of the one-body density ρ1 (x, t) in a twelve-well potential for ωD = 4.5. The driving amplitude is fixed to the value
A= 0.05, while the initial state corresponds to the ground state of five weakly interacting bosons with g = 0.1. The spatial extent of the lattice
is expressed in units of -k ,0

1 while the time units are rescaled in terms of the driving period TD.
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different species. For a single species it reduces to MCTDHB
which has been established in [32, 33, 45] and applied
extensively [45–48]. The wavefunction is represented by a set
of variationally optimized time-dependent orbitals which
implies an optimal truncation of the Hilbert space by
employing a time-dependent moving basis where the system
can be instantaneously optimally represented by the corre-
sponding time-dependent permanents. To be self contained let
us briefly introduce the basic concepts of the method and
discuss the main ingredients of our implementation.

Within the MCTDHB method the TDSE  ¶ - YHi t( )
=x t, 0( ) is solved as an initial value problem Y ñ = Y0 .0∣ ( )

The many-body wavefunction which is expanded in terms of
the bosonic number states ¼n n n t, , , ; ,M1 2 based on time-
dependent single-particle functions (SPFs) f t ,i ( ) i = 1, 2,K,
M, reads

åY ñ = ¼


t C t n n n t, , , ; . A1
n

n M1 2∣ ( ) ( ) ( )

HereM is the number of SPFs and the summation

n is over all

the possible particle combinations ni such that the total
number of bosons is conserved and equal to N. To determine
the time-dependent wave function Y ñt∣ ( ) we need the
equations of motion for the coefficients C tn ( ) and of the SPFs
f t .i ( ) Following the Dirac–Frenkel [49, 50] variational

principle, i.e. dá Y ¶ - Yñ =Hi 0t∣ ˆ ∣ we end up with the well-
known MCTDHB equations of motion [32, 33, 45, 51]
consisting of a set of M nonlinear integro-differential
equations of motion for the orbitals which are coupled to the

+ -
-

N M

N M

1

1

( ) !
! ( ) ! linear equations of motion for the coefficients.

For our numerical implementation a discrete variable
representation (DVR) for the SPFs and a sin-DVR, which
intrinsically introduces hard-wall boundaries at both edges of
the potential, has been employed. The preparation of the
initial state has been performed by using the so-called
relaxation method in terms of which one obtains the lowest
eigenstates of the corresponding m-well setup. The key idea is
to propagate some trial wave function Y x0 ( )( ) by the non-
unitary operator t-e .H This is equivalent to an imaginary time
propagation and for t  ¥, the propagation converges to the
ground state, as all other contributions (i.e. t-e En ) are expo-
nentially suppressed. In turn, we periodically drive the optical
lattice and study the evolution of Ψ (x1, x2,.., xN; t) in the m-
well potential within MCTDHB. To ensure the convergence
of our simulations we have used up to nine single particle
functions thereby observing a systematic convergence of our
results for sufficiently large spatial grids. An additional cri-
terion that confirms the achieved convergence is the popula-
tion of the lowest occupied natural orbital kept in each case
below 0.1%.
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The out-of-equilibrium dynamics of interaction quenched finite ultracold bosonic ensembles in periodically
driven one-dimensional optical lattices is investigated. It is shown that periodic driving enforces the bosons
in the outer wells of the finite lattice to exhibit out-of-phase dipolelike modes, while in the central well the
atomic cloud experiences a local breathing mode. The dynamical behavior is investigated with varying driving
frequencies, revealing resonantlike behavior of the intrawell dynamics. An interaction quench in the periodically
driven lattice gives rise to admixtures of different excitations in the outer wells, enhanced breathing in the center,
and amplification of the tunneling dynamics. We then observe multiple resonances between the inter- and the
intrawell dynamics at different quench amplitudes, with the position of the resonances being tunable via the
driving frequency. Our results pave the way for future investigations of the use of combined driving protocols in
order to excite different inter- and intrawell modes and to subsequently control them.

DOI: 10.1103/PhysRevA.95.013625

I. INTRODUCTION

Ultracold atoms in optical lattices offer an ideal platform
for simulating certain problems of condensed matter physics
and constitute many-body systems exhibiting a diversity of
physical phenomena. In particular, the understanding of the
nonequilibrium dynamics of strongly correlated many-body
systems in optical lattices is currently one of the most challeng-
ing problems for both theory and experiment. This dynamics is
typically triggered by an external periodic driving [1–4] or an
instantaneous change (quench) of a Hamiltonian parameter [5].
Remarkable dynamical phenomena employing periodic driv-
ing [1,2] of the optical lattice include Bloch oscillations [6–8],
realization of the superfluid–to–Mott insulator phase transi-
tion [9], topological states of matter [10], artificial gauge
fields [11], realization of ferromagnetic domains [12,13], and
even applications to quantum computation [14]. On the other
hand, quench dynamics enables us to explore, among others,
the light-cone effect in the spreading of correlations [15,16],
the Kibble-Zurek mechanism [17,18], and the question of
thermalization [19,20]. Driving or quenches can also be used
in order to generate energetically low-lying collective modes,
such as the dipole [21,22] or the breathing [23–27] mode. In
general, a sudden displacement or a periodic shaking of the
external trap induces a dipole oscillation of the atomic cloud,
while a quench of the frequency of the trap excites a breathing
mode of the cloud. These modes constitute a main probe both
for theoretical investigations, to understand and interpret the
nonequilibrium dynamics, and for experiments, as they can be
used in order to measure key quantities of trapped many-body
systems [23].

Recently, increasing effort has been devoted to controlling
the atomic motion in optical lattices by subjecting them
to time-periodic external driving [28–31] and investigating
the optimal driving protocol [32–34]. In this direction, it
is important to carefully explore and design the relevant
driving protocol to transfer the energy to the desired final
degrees of freedom. To trigger or even control a certain
type of (collective) modes of the dynamics, widely used
techniques in the literature constitute either periodic driving

of the lattice potential, e.g., a lattice shaking, or a quench of
a parameter of the system, e.g., a lattice amplitude quench
or an interaction quench. In the former case a tunable local
dipole mode and a resonant intrawell dynamics were recently
explored by shaking an optical lattice [35]. On the other
hand, in the latter case it has been shown [36] that a sudden
increase in the interparticle repulsion in a nondriven lattice
induces a rich interwell as well as intrawell dynamics which
can be coupled and consequently mixed for certain quench
amplitudes. However, for decreasing repulsive forces [37]
the accessible interwell tunneling channels are far fewer
compared to the excited intrawell modes, and in particular, no
resonant dynamics can be observed. From the above analysis
it becomes evident that a crucial ingredient for the design and
further control of the dynamics is the choice of the driving
protocol of the system: By using different driving schemes,
different types of excited modes are induced, i.e., different
energetical channels can be triggered. In this direction, an
intriguing question is how a combination of periodic driving
and interaction quenches can be used to steer the dynamics
of the system and, as a consequence, the coupling of the
interwell and intrawell modes. Such an investigation will,
among other things, permit us to gain a deeper understanding
of the underlying microscopic mechanisms and will allow us
to activate certain energy channels by using specific driving
protocols for control of the different processes.

In the spirit of the above-posed question we investigate
in the present work the quantum dynamics of interaction
quenched few-boson ensembles trapped in periodically driven
finite optical lattices. Concerning the periodic driving, vibra-
tion of the optical lattice is employed. This scheme, in contrast
to shaking, induces out-of-phase dipole modes among the
outer wells and a local breathing mode in the central well
of the finite lattice. We cover the dynamics of the periodically
driven lattice with varying driving frequencies in the complete
range from adiabatic to high-frequency driving. In particular,
we observe for the intermediate-driving-frequency regime,
being intractable by current state of the art analytical meth-
ods [1,2], resonantlike behavior of the intrawell dynamics.
This resonance is accompanied by a rich excitation spectrum
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and an enhanced interwell tunneling compared to adiabatic
or high-intensity driving and it is mainly of single-particle
character. Indeed, it survives upon increasing interaction,
obtaining faint additional features, the most remarkable being
the cotunneling of an atom pair [31,38]. To induce a correlated
many-body dynamics we employ an interaction quench on
top of the driven lattice, thus opening energetically higher
inter-well and intrawell channels. As a consequence, the
interwell tunneling is amplified even for adiabatic driving,
and admixtures of excitations possessing breathinglike and
dipolelike components are generated. Remarkably enough, as
a function of the quench amplitude, the system experiences
multiple resonances between the inter- and the intrawell
dynamics. This observation indicates the high degree of
controllability of the system, especially for the excited modes
under such a combination of driving protocols, and it is
arguably one of our central results. To the best of our
knowledge, this multifold mode coupling behavior unraveled
with a composite driving protocol has not been reported before.
Moreover, the position of the above-mentioned resonances
is tunable via the driving frequency, allowing for further
control of the mode coupling in optical lattices. Finally, the
realization of intensified loss of coherence caused either by
the resonant driving or by a quench on top of the driving is
an additional indicator of the observed phenomena. To obtain
a comprehensive understanding of the microscopic properties
of the strongly driven and interacting system, we focus on the
few-body dynamics in small lattices (specifically, four bosons
in a triple-well setup). However, we provide strong evidence
that our findings apply equally to larger lattice systems and
particle numbers. All calculations to solve the underlying
many-body Schrödinger equation are performed by employing
the multiconfiguration time-dependent Hartree method for
bosons (MCTDHB) [39,40], which is especially designed to
treat the out-of-equilibrium quantum dynamics of interacting
bosons under time-dependent modulations.

This work is organized as follows. In Sec. II we explain
our setup and introduce the multiband expansion and the basic
observables that we use in order to interpret the dynamics.
Section III presents the effects resulting from an interaction
quench of a driven triple well for filling factors larger than
unity. Section IV presents the dynamics for filling factors
smaller than unity. We summarize our findings and give an
outlook in Sec. V. In Appendix A the nonequilibrium dynamics
induced by a driven harmonic oscillator and simultaneously
an interaction quenched bosonic cloud is briefly outlined.
Appendix B briefly comments on the resonant response of
the driven lattice, and finally, Appendix C describes our
computational method.

II. SETUP AND ANALYSIS TOOLS

In the present section we briefly report on our theoretical
framework. First, we introduce the protocol of the driven
optical lattice and the many-body Hamiltonian. Second,
the wave-function representation in terms of a multiband
expansion and some basic observables for the understanding
of the inter- and intrawell modes of the dynamics are
introduced.

A. Setup and Hamiltonian

To model a lattice vibration, with amplitude δ and angular
frequency ωD = 2πfD , a spatiotemporal sinusoidal modula-
tion is used to generate a lattice potential of the form

Vbr(x; t) = V0sin2[kx(1 + δ sin(ωDt))x], (1)

with lattice depth V0 and wave vector kx = π
l
, where l

denotes the distance between successive potential minima.
Such a potential can be realized, e.g., via acousto-optical
modulators [12], which induce a frequency difference among
counterpropagating laser beams. The Hamiltonian of N identi-
cal bosons of mass M following an interaction quench protocol
upon the driven one-dimensional (1D) lattice reads

H (x; t) =
N∑

i=1

p2
i

2M
+ Vbr(xi ; t) + g

(f )
1D

∑
i<j

δ(xi − xj ), (2)

where g
(f )
1D = δg + g

(in)
1D , with g

(in)
1D and g

(f )
1D being the initial

and final interaction strengths, respectively, and δg denotes
the corresponding perturbation. The short-range interaction
potential between particles located at positions xi is modeled
by a Dirac delta function. The interaction is well described by
s-wave scattering and the effective 1D coupling strength [41]

becomes g1D = 2�2a0

Ma2
⊥

(1 − |ζ (1/2)|a0√
2a⊥

)
−1

. The transversal

length scale is a⊥ =
√

�
Mω⊥

, with ω⊥ the frequency of the

confinement, while a0 denotes the 3D s-wave scattering
length. The interaction strength can be tuned either via a0 with
the aid of Feshbach resonances [42,43] or via the transversal
confinement frequency ω⊥ [44–46].

In the following, for reasons of universality, Hamiltonian

(2) is rescaled in units of the recoil energy ER = �2k2
x

2M
. Then

the corresponding length, time, and frequency scales are given
in units of k−1

x , ω−1
R = �E−1

R , and ωR , respectively. For our
simulations we have used a sufficiently large lattice depth,
of the order of V0 = 10.0ER , such that each well includes
three localized single-particle Wannier states. The confinement
of the bosons in the m-well system is imposed by the use
of hard-wall boundary conditions at the appropriate position
xσ = ±mπ

2kx
. Finally, for computational convenience we set � =

M = kx = 1 and therefore all quantities below are given in
dimensionless units.

B. Wave-function representation and basic observables

To understand the microscopic properties and analyze the
dynamics, the notion of noninteracting multiband Wannier
number states is employed. The presently used lattice potential
is deep enough for the Wannier states between different wells
to have a very small overlap for not too high energetic
excitation. In the case of a periodically driven potential the
above description can still be valid if the driving amplitude is
low enough in comparison to the lattice constant l, i.e., δ � l,
such that each localized Wannier function is assigned to a
certain well and the respective band mixing is fairly small.
For δ � l the use of a time-dependent Wannier basis is more
adequate. Summarizing, for a system with N bosons, m wells,
and j localized single-particle states [36,37] the expansion of
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the many-body bosonic wave function reads

|�〉 =
∑

{Ni },{Ii }
C{Ni };{Ii }

∣∣N (I1)
1 ,N

(I2)
2 , . . . ,N (Im)

m

〉
, (3)

where |N (I1)
1 ,N

(I2)
2 , . . . ,N (Im)

m 〉 is the multiband Wannier num-
ber state, the element N

(Ii )
i = |n(1)

i 〉 ⊗ |n(2)
i 〉 ⊗ . . . ⊗ |n(j )

i 〉 de-
notes the number of bosons being localized in the ith well, and
Ii indexes the corresponding energetic excitation order. In par-
ticular, |n(k)

i 〉 refers to the number of bosons which reside at the
ith well and kth band, satisfying the closed subspace constraint∑m

i=1

∑j

k=1 n
(k)
i = N . For instance, in a setup with N = 4

bosons confined in a triple well, i.e., m = 3, which includes
k = 3 single-particle states, the state |1(0) ⊗ 1(1),1(0),1(0)〉 indi-
cates that in every well one boson occupies the zeroth excited
band, but in the left well there is one extra boson localized
in the first excited band. For this setup it is also important
to note that one can realize four energetic classes of number
states, namely, the quadruple mode {|4(I1),0(I2),0(I3)〉+ �} (Q),
the triple mode {|3(I1),1(I2),0(I3)〉+ �} (T), the double-pair
mode {|2(I1),2(I2),0(I3)〉+ �} (DP), and the single-pair mode
{|2(I1),1(I2),1(I3)〉+ �} (SP), where � stands for all correspond-
ing permutations. It is important to note that, for later con-
venience, we consider only the corresponding subclass with
isoenergetic states and not all members, which would also in-
clude energetically unequal number states, e.g., for the single-
pair mode {|2(I1),1(I2),1(I3)〉,|1(I1),2(I2),1(I3)〉,|1(I1),1(I2),2(I3)〉}.
Also, in the present consideration for a given set of excitation
indices I = (I1,I2,I3), the above-mentioned class of number
states we are focusing on has similar on-site energies and will
contribute significantly to the same eigenstates. Indexing each
such class by α, we adopt the more compact notation |q〉α;I
for characterization of the eigenstates in terms of number
states, where the index q refers to the spatial occupation.
For instance, {|q〉3;I} with I = (1,0,0) represent the eigen-
states which are dominated by the set of triple-pair states
{|3(1),1(0),0(0)〉, |0(0),3(1),1(0)〉, |1(0),0(0),3(1)〉, |1(0),3(1),0(0)〉,
|0(0),1(0),3(1)〉, |3(1),0(0),1(0)〉}, and the index q runs from 1
to 6.

Below, a few basic observables which refer to the inter- and
intrawell generated modes are introduced and their expansion
in terms of the multiband number state basis is given. Note
that henceforth we denote by |�(0)〉 = ∑

q;α;I C
q

α;I|q〉α;I the
initial wave function in terms of the eigenstates |q〉α;I of the
final Hamiltonian. A time-resolved measure for the impact of
the external driving on the system is provided via the fidelity
F{λi }(t) = |〈�(0)|�{λi }(t)〉|2, which is the overlap between
the time evolved and the initial (ground) state. Note the
dependence of the fidelity on the set of parameters {λi}, e.g.,
the driving frequency ωD , the interaction strength g, and the
particle number N . The expansion of the fidelity reads

F{λi }(t) =
∑
q1;α;I

∣∣Cq1
α;I

∣∣4 +
∑

q1,q2;α,β;I

∣∣Cq1
α;I

∣∣2

× ∣∣Cq2
β;I

∣∣2
cos

(
ε

q1
α;I − ε

q2
β;I

)
t. (4)

The second term on the right-hand side of the above expression
contains the energy difference between two distinct number
states and therefore offers to be a measure of the tunneling
process. The indices α and β indicate a particular number-

state group [36], qi is the intrinsic index within each group, I
corresponds to the respective energetic level, and ε refers to
the corresponding on-site energy of a particular number state
and energetic level.

For investigation of the intrawell dynamics it is appropriate
to employ a local density analysis. To measure the instanta-
neous spreading of the cloud in the ith well we define the oper-

ator of the second moment σ 2
i (t) = 〈�|(x − R

(i)
CM)

2|�〉 [49].

Here R
(i)
CM = ∫ d ′

i

di
dx(x − x

(i)
0 )ρi(x)/

∫ d ′
i

di
dxρi(x) refers to the

coordinate of the center of mass [47,48], x
(i)
0 denotes the

central point of the ith well under investigation, and di

and d ′
i correspond to the instantaneous limits of the wells,

whereas ρi(x) is the respective single-particle density. Then
the expansion of the second moment for the middle well in
terms of the eigenstates of the final Hamiltonian reads

σ 2
M (t) =

∑
α;q1;I

∣∣Cq1
a;I

∣∣2
α;I〈q1|

(
x − R

(i)
CM

)2|q1〉α;I

+ 2
∑
q1 
=q2

Re
(
C

∗q1
β;I C

q2
α;I

)
β;I〈q1|

(
x − R

(i)
CM

)2|q2〉α;I

× cos
(
ω

q1
β;I − ω

q2
α;I

)
t. (5)

Finally, as a measure of the dipole motion the intrawell
asymmetry 
ρa(t) = ρa,1(t) − ρa,2(t) is introduced. Here, a
particular well a (in a triple well a = L,M,R stands for the left,
middle, and right wells, respectively) is divided from the center
point into two equal sections, with ρa,1(t) and ρa,2(t) being the
respective integrated densities of the left and right parts during
the evolution. The expectation value of the asymmetry operator
is expressed as

〈�|
ρ(t)|�〉 =
∑
q1;α;I

∣∣Cq1
α;I

∣∣2
I;α〈q1|
ρ|q1〉α;I

+ 2
∑
q1 
=q2

Re
(
C

∗q1
α;I C

q2
β;I

)
I;α〈q1|
ρ|q2〉β;I

× cos
[(

ω
q1
α;I − ω

q2
β;I

)
t
]
. (6)

C. First-order coherence

The spectral representation of the reduced one-body density
matrix [50–52] reads

ρ1(x,x ′; t) =
M∑

α=1

nα(t)ϕα(x,t)ϕ∗
α(x ′,t), (7)

where ϕα(x,t) are the so-called natural orbitals and M corre-
sponds to the considered number of orbitals. The population
eigenvalues nα(t) ∈ [0,1] characterize the fragmentation of the
system [53–55,57]: For only one macroscopically occupied
orbital the system is said to be condensed; otherwise it is
fragmented.

To quantify the degree of first-order coherence during
the dynamics, the normalized spatial first-order correlation
function g(1)(x,x ′; t) is defined:

g(1)(x,x ′; t) = ρ1(x,x ′; t)√
ρ1(x; t)ρ1(x ′; t)

. (8)
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It is known that for |g(1)(x,x ′; t)|2 < 1 the corresponding
visibility of interference fringes in an interference experiment
is less than 100% and this case is referred to as loss of
coherence. On the contrary, when |g(1)(x,x ′; t)|2 = 1 the fringe
visibility of the interference pattern is maximal and is referred
to as full coherence. The above quantity depends strongly on
the various parameters of the Hamiltonian, and an investigation
of the aforementioned dependence is reported in Sec. IV.

III. INTERACTION QUENCH DYNAMICS ON A DRIVEN
LATTICE FOR FILLING FACTOR ν > 1

To analyze the dynamics of our system, it is instructive
first to comment on the relation between the ground state
and its dominant interaction-dependent spatial configuration
employing the multiband expansion. Let us consider a setup
with four bosons in a triple well (which is our workhorse).
Within the weak-interaction regime 0 < g < 0.1 the dominant
spatial configuration of the system is |1(0),2(0),1(0)〉, while
states of double-pair occupancy, e.g., |2(0),2(0),0(0)〉, and
triple-pair occupancy, e.g., |1(0),3(0),0(0)〉, possess a small
contribution. In the intermediate-interaction regime 0.1 < g <

1.0 the system is described by a superposition of the lowest
band states, which are predominantly of single-pair occupancy,
e.g., |1(0),2(0),1(0)〉, |2(0),1(0),1(0)〉, and double-pair occupancy,
e.g., |2(0),2(0),0(0)〉, while energetically higher states than the
first excited band start to be occupied. For further increasing
repulsion, e.g., 1.0 < g < 5.0, the excited states gain more
population and the corresponding ground-state configuration is
characterized by an admixture of ground-band (predominantly
of single-pair occupancy) and excited-band (to the first and
even to the second band) states.

In the following, we investigate the effect of an interaction
quench upon a periodically driven finite lattice. Note that
we consider interaction quenches imposed at t = 0 or after
a short transient time. The resulting dynamics is qualitatively
the same. We refer, for brevity, to the effect of an interaction
quench performed at t = 0, i.e., when the periodic driving also
starts. To be more specific, below we first explore the effect
of an interaction quench for various driving frequencies and
compare the induced dynamics with an unquenched system.
Subsequently, the dynamics for a fixed driving frequency with
varying quench amplitudes is investigated. We remark that
in each case we consider quench amplitudes for which the
induced above-barrier transport is suppressed.

A. Case I: Interaction quench dynamics for different
driving frequencies

We explore the effect of an interaction quench on top of
a periodically driven triple-well potential with four bosons in
the weak-interaction regime (g = 0.05), where the dominant
spatial configuration of the ground state corresponds to states
of single-pair occupancy, e.g., |1(0),2(0),1(0)〉. To demonstrate
the difference between the dynamics of the quenched and that
of the unquenched bosonic ensemble let us first investigate
the response of an explicitly driven system, i.e., with δg = 0.
Figure 1(a) shows F{ωD}(t) (see also Sec. II B) with varying
ωD . It is observed that for 0 < ωD < 1.5 (nearly adiabatic
driving) or very intense driving ωD > 12.0 the system remains

essentially unperturbed. In between, an interesting stripe
pattern occurs. To be self-contained, in the following, let us
classify the frequency intervals


ωD1 ≡ [2.0,6.0] and 
ωD2 ≡ [7.0,11.0], (9)

where the time-evolved state of the periodically driven system
deviates significantly from the initial (ground) state. Indeed,
for ωD ∈ 
ωD1 ≡ [2.0,6.0] the minimal overlap during the
dynamics drops down to 0.1, whereas for ωD ∈ 
ωD2 ≡
[7.0,11.0] the system maximally departs from the initial state
by a percentage of the order of 30%. To probe the effect of the
interactions and of the driving frequency on the overall dynam-
ics, the inset in Fig. 1(a) illustrates F̄{ωD} = ∫ T

0 dtF{ωD}(t)/T

(T denotes the considered evolution time) at ωD = 1.5 and
at ωD = 2.75 ∈ 
ωD1 for different initial interactions and
particle number. Focusing on the same driving frequency
ωD and a large interparticle interaction we observe that the
mean response of the system decreases as a function of the
particle number and therefore the system can be driven more
efficiently out of equilibrium. The same observation holds for
a fixed interaction strength and particle number but a driving
frequency below and in the region 
ωD1 , e.g., for N = 4, g =
3, F̄{ωD=1.5} = 0.9405, while F̄{ωD=2.75} = 0.1202. Let us now
inspect how an interaction quench distorts the fidelity evolu-
tion. Figure 1(b) shows F{ωD,δg}(t) for δg = 2.0 (performed at
t = 0, i.e., simultaneously with the driving) with varying ωD .
It is observed that the combination of driving and interaction
quench brings the system significantly out of equilibrium for
every driving frequency. To understand the effect of the quench
on the system let us compare Fig. 1(b) with Fig. 1(a) for
the fidelity evolution of the driven but unquenched system.
Indeed, an interaction quench introduces more energy into the
system, and as a consequence the final evolving state deviates
significantly from the initial one even in the region of adiabatic
driving, e.g., ωD = 0.5, or high-frequency driving, e.g., ωD =
14.0, as shown in Fig. 1(b). For instance, F̄{ωD=1.0,δg=0} = 0.98
and F̄{ωD=1.0,δg=2.0} = 0.81, while F̄{ωD=14.0,δg=0} = 0.92 and
F̄{ωD=14.0,δg=2.0} = 0.78. Finally, as an estimate we report that
according to our simulations the deviation of F̄ between the
unquenched and the quenched system ranges from 12% to
70%.

To analyze the role of dynamical fragmentation [55,56]
[see Eq. (7)], Fig. 1(c) shows the deviation from unity, λ(t) =
1 − n1(t), during the evolution of the first natural population
for different driving frequencies ωD and no quench. Note here
that even λ(0) 
= 0, i.e., as a result of the finite repulsion
the initial state possesses a small degree of fragmentation.
As shown, λ(t) is always significantly above 0, confirming
the fragmentation process. Focusing on different ωD’s we
note that the temporal average of the fragmentation, i.e.,
λ̄ = ∫

dtλ(t)/T , increases if ωD ∈ 
ωD1 ∪ 
ωD2 , while for
the regions where F{ωD} � 1 it decreases but never tends to
a perfectly condensed state. Note also that for ωD 
∈ 
ωD1 ∪

ωD2 , λ(t) possesses low-amplitude oscillations, whereas for
ωD ∈ 
ωD1 ∪ 
ωD2 the external driving introduces high-
amplitude variations in λ(t). As expected the interparticle
repulsion supports the fragmentation process [see λ(t) for
ωD = 3.0, g = 1.0 and δg = 0.0 in Fig. 1(c)]. The effect
of an interaction quench on the fragmentation process is
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FIG. 1. (a) Time evolution of the fidelity F{ωD }(t) as a function of the driving frequency ωD . The driving amplitude is δ = 0.03 and the
initial state corresponds to the ground state of four weakly interacting bosons with g = 0.05 confined in a triple well. Inset: Mean response
F̄{ωD } at ωD = 0.75 and at ωD = 2.75 for different interparticle repulsions, g = 0.5 and g = 3.0, as a function of the particle number N (see
legend). (b) Same as (a), but for a fixed interaction quench, with amplitude δg = 2.0, on top of the driven triple well. (c) Deviation from unity
of the first natural occupation number, i.e., λ(t) = 1 − n1(t), during the evolution for different driving frequencies ωD (see legend). The effect
of a stronger interparticle repulsion for g = 1.0 at ωD = 3.0 in the fragmentation process is also shown. (d) The same as (c), but for a fixed
interaction quench, δg = 2.0, upon the driving.

shown in Fig. 1(d) employing λ(t) for δg = 2.0 and the
same driving frequencies as in Fig. 1(c). A tendency toward
a higher fragmented state for every ωD , at least for certain
time periods, is manifest. Comparing λ(t) for ωD below

ωD1 , in the unquenched case, we observe that the interaction
quench introduces high-amplitude variations, while for ωD ∈

ωD1 ∪ 
ωD2 , λ(t) shows a monotonic increase towards a
fully fragmented state. Thus, in conclusion, the fragmentation
process under an interaction quench is enhanced, which is
attributed to the consequent rise in the interparticle repulsion.

To identify the effect of an interaction quench on the
one-body level, Fig. 2 compares ρ1(x,t) without and with an
interaction quench on top of the periodically driven triple well
for ωD = 0.75 and amplitude δ = 0.03. Without quench, the
one-body density [see Fig. 2(a)] shows a weak response, a
local dipole mode in the outer wells, and a local breathing
mode [hardly visible in Fig. 2(a) due to weak driving] in the
central well due to the combination of the parity of the lattice
(odd number of sites) and the driving scheme. The dynamics
in the central well shows a compression and decompression,
while the outer wells are shaken (for a lattice with an even

number of sites the generated intrawell mode will be solely
a local dipole mode). As shown, by performing a quench
[see Fig. 2(b)] at δg = 2.0, the breathinglike mode in the
central well is enhanced, while in the outer wells the cloud
exhibits admixtures of excitations consisting of a dipole and
a breathing component. Focusing on the dynamics of the left
well it is obvious that the atomic cloud oscillates inside the
well with a varying amplitude, i.e., it performs an oscillation
with a simultaneous compression and decompression. Finally,
the interwell tunneling mode, which is manifested as a
direct population transport from the middle to the outer
wells and accompanies the whole process, is amplified. To
illustrate explicitly the evolution of the atomic cloud in each
well we follow the ρ1(x,t) = 0.25 of the local density, shown
as the thick white line on top of the density. It is shown that in
the central well the cloud compresses and decompresses during
the evolution, while in the outer wells the cloud oscillates, also
changing its width (in Appendix A, this mode is generated in
a harmonic trap for a deeper understanding).

To obtain a quantitative understanding of the interwell tun-
neling dynamics, let us investigate the spectrum of the fidelity,
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FIG. 2. Time evolution of the one-body density ρ1(x,t) caused
by a periodically driven triple well with (a) ωD = 0.75 and (b) a
simultaneous interaction quench with amplitude δg = 2.0. White
contours, at ρ1(x,t) = 0.25, are plotted on top in order to facilitate
a comparison of the atomic motion between the unquenched (a) and
the quenched (b) systems. The driving amplitude is fixed at the value
δ = 0.03 and the initial state corresponds to the ground state of four
weakly interacting bosons with g = 0.05.

i.e., F{ωD,δg}(ω) = 1
π

∫
dtF{ωD,δg}(t)eiωt [see also Eq. (4)]. Fig-

ure 3(a) shows the tunneling spectrum of both the unquenched
(see black line) and the quenched (see red line) systems with
respect to the driving frequency. Indeed, employing Eq. (4)
we obtain that for the unquenched system the dominant
tunneling process for every ωD corresponds to tunneling within
the SP mode [e.g., between state |2(0),1(0),1(0)〉 and state
|1(0),2(0),1(0)〉]. It is important here to note that for ωD ∈ 
ωD1

additional tunneling modes from the SP to the DP mode [e.g.,
from |1(0),2(0),1(0)〉 to |2(0),2(0),0(0)〉] and from the SP to the T
mode [e.g., from |1(0),2(0),1(0)〉 to |3(0),1(0),0(0)〉] can be gen-
erated. To illustrate this fact we depict in the inset in Fig. 3(a)
the probabilities A1(t) = |〈2(0),1(0),1(0)|�(t)〉|2, A2(t) =
|〈2(0),2(0),0(0)|�(t)〉|2, and A3(t) = |〈3(0),1(0),0(0)|�(t)〉|2 at
ωD = 2.75. It is shown that A2(t) and A3(t), although
suppressed in comparison to A1(t), possess significant pop-
ulations. We remark here that a similar tunneling procedure
corresponding to atom-pair tunneling has been observed for
few atoms confined in a driven double well in Ref. [31].
However, for the quenched system the tunneling takes place
only within the SP mode, while the remaining tunneling
modes are supressed, due to the quench, even for ωD ∈ 
ωD1 .
To illustrate the effect on the tunneling dynamics of an
interaction quench upon the driven lattice, Fig. 3(b) shows the
probability A1(t) for both the unquenched and the quenched
system for various driving frequencies. As shown the effect
of the quench depends on the driving frequency. Indeed, for
ωD � min(
ωD1) the quench decreases the frequency of the
tunneling branch [see the open red circles in Fig. 3(a), which
correspond to the interaction quenched fidelity spectrum]
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FIG. 3. (a) Spectrum of the fidelity F{ωD }(ω) as a function of the
driving frequency ωD . Black dots correspond to F{ωD,δg=0.0}(ω), i.e., to
the unquenched system, while open red circles refer to F{ωD,δg=2.0}(ω),
i.e., to the case of a simultaneous interaction quench with amplitude
δg = 2.0 on top of the driving. Inset (a1): Tunneling probabili-
ties A1(t), A2(t), and A3(t) (see text and legend) at ωD = 2.75.
(b) Comparison of the single-particle tunneling probabilities A1(t)
in a periodically driven triple well without and with a simultaneous
interaction quench for various driving frequencies ωD (see legend).
The driving amplitude is fixed at the value δ = 0.03 and the initial
state corresponds to the ground state of four weakly interacting bosons
with g = 0.05.

and leads to a significant enhancement of the amplitude of
this tunneling branch [e.g., see the blue and black lines in
Fig. 3(b)]. The latter is a consequence of the fact that the
interaction quench injects energy into the system. However,
for ωD > max(
ωD1) the tunneling branch is quite insensitive
to the quench because both the frequency and the amplitude
of the tunneling probability are slightly higher [see Figs. 3(a)
and 3(b)].

To determine the frequencies of the local dipole mode
in the outer wells we calculate the spectrum 
ρL(ω) =
1
π

∫
dt
ρL(t)eiωt . The analysis of the corresponding breathing

component is performed in the next subsection, where we
examine in more detail the effects of the quench dynamics.
Figure 4(a) presents 
ρL(ω), where two emergent frequency
branches [denoted (a1) and (a2) in the spectrum] of the
intrawell oscillations are visible. It is observed that for driving
frequencies ωD ∈ [0,0.5] the intrawell dipole mode possesses
two distinct frequencies which come into resonance in the
region ωD ∈ [2,3] and then, for ωD > 3.0, are again well
separated. To gain insight into the impact of an interaction
quench, performed on top of the driving, on the intrawell
density oscillations, Fig. 4(b) shows 
ρL(t) at resonance
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FIG. 4. (a) Spectrum of the intrawell asymmetry for the left well 
ρL(ω) in a driven triple well, with respect to the driving frequency
ωD . The white rectangle indicates the region of resonance. (b) Intrawell asymmetry evolution 
ρL(t) at resonance (ωD = 2.875) employing
different interaction quenches (see legend). (c) Excitation probability |B{Ni };{Ii }|2 (see text) during the evolution for different driving frequencies
ωD . (d) The same as (c), at ωD = 2.75, for different quenches on the interparticle repulsion (see legend). The driving amplitude is fixed at the
value δ = 0.03, while the initial state corresponds to the ground state of four weakly interacting bosons with g = 0.05.

(ωD = 2.875) for different quench amplitudes, namely, at
δg = 0.0, 1.0, and 2.0. As expected (resonance) 
ρL(t)
features a beating dynamics but with an increasingly decaying
envelope with increasing quench amplitude, which is a direct
effect of the interactions. A similar dephasing behavior
holds for the other ωD’s, where 
ρL(t) does not exhibit
a beating pattern. Concerning the width of the resonant
region different amplitudes of the interaction quench lead to
a slight broadening of the resonant region. According to our
calculations for the case with δg = 0 the resonant frequency
region corresponds to ωD ∈ [2,3], while for δg = 1.0 and
δg = 2.0 the corresponding regions are ωD ∈ [1.8,3.2] and
ωD ∈ [1.5,3.5], respectively. Summarizing, one can induce
this resonant intrawell dynamics by adjusting the driving
frequency and by applying an interaction quench to increase
the width of the resonance and manipulate the amplitude of
the intrawell oscillations.

From another perspective the above-mentioned resonant
behavior can be illustrated by employing the occupation of the
zeroth band of the triple well during evolution. The probability

of finding all four bosons within the zeroth band (employing
the multiband expansion) reads

∣∣B{Ni };{Ii }(t)
∣∣2 =

∑
{Ii }

∣∣〈N (I1)
1 ,N

(I2)
2 ,N

(I3)
3

∣∣�(t)
〉∣∣2

, (10)

where the summation is performed over the excitation
indices with the imposed constraints

∑3
i=1 n

(1)
i = N and∑3

i=1

∑3
j=2 n

(j )
i = 0 [see also Eq. (3)]. Figure 4(c) shows

the probability |B{Ni };{Ii }(t)|2 of all the bosons residing in the
zeroth band for various driving frequencies ωD and a fixed
amplitude δ = 0.03. At resonance a complete depopulation of
the zeroth band at some specific time intervals is observed.
To be more precise, this probability exhibits a revival-like
behavior on short time scales and decays as time evolves [see,
in particular, the dashed black curve in Fig. 4(c)]. The local
minima of |B{Ni };{Ii }(t)|2 are connected to the enhancement
of the amplitude of the oscillations of the single-particle
density (see also Appendix B). On the other hand, for driving
frequencies away from 
ωD1 the respective probability that
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FIG. 5. Time evolution of the fidelity F{ωD,δg}(t) in a periodically
driven triple well with (a) ωD = 0.75 and (b) ωD = 2.75 as a function
of the quench amplitude. The driving amplitude is δ = 0.03, while the
initial state corresponds to the ground state of four weakly interacting
bosons with g = 0.05.

all the bosons will occupy the zeroth band is rather high
and is indeed dominant. However, significant contributions,
e.g., at ωD = 5.25 or ωD = 9.25 [see Fig. 4(c)] from excited
configurations cannot be neglected, especially in the regions

ωD1 and 
ωD2 , where the system departs from the initial
state [see also Fig. 1(a)] in a prominent way. Finally, in order
to explore the impact of the interaction quench at resonance,
Fig. 4(d) shows |B{Ni };{Ii }(t)|2 for different quench amplitudes
at ωD = 2.75. It is observed that for larger interaction
quenches, this probability exhibits a more strongly decaying
envelope, which is a pure effect of the interactions. As shown,
for increasing quench amplitude the probability that the system
will remain in the zeroth band, in the course of the dynamics,
decays on increasingly shorter time scales and the system is
dominated by different types of excitations, e.g., two, three, or
four particles distributed in the first and second excited bands,
as expected intuitively.

B. Case II: Periodically driven dynamics for different
interaction quench amplitudes

In the following, we examine the impact of the quench
amplitude δg, focusing on two driving frequency regions, i.e.,
for an almost-adiabatic periodic driving and in the vicinity of
the resonance [see also Fig. 1(a)]. To obtain an overview of
the dynamical response, Figs. 5(a) and 5(b) show the fidelity
evolution with respect to δg, for fixed driving frequencies
ωD = 0.75 and ωD = 2.75, respectively. As expected, for
higher quench amplitudes the time-evolved final state deviates
from the initial (ground) state in a prominent way. For
instance, F̄{ωD=0.75,δg=0} = 0.95 and F̄{ωD=0.75,δg=4.0} = 0.6,
while F̄{ωD=2.75,δg=0} = 0.7 and F̄{ωD=2.75,δg=4.0} = 0.4. Next,
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FIG. 6. The following are shown as a function of the quench
amplitude δg: the fidelity spectrum F{ωD,δg}(ω) for (a) ωD = 0.75 and
(b) ωD = 2.75; the spectrum of the local-breathing mode [σ 2

M (ω)] for
the middle well of a periodically driven triple well with (c) ωD =
0.75 and (d) ωD = 2.75; and the spectrum of the local-dipole mode
[
ρL(ω)] for the left well of a driven triple well with (e) ωD = 0.75
and (f) ωD = 2.75. Solid and dashed ellipses indicate the positions
of the resonances between the tunneling and the breathing or dipole
branches (see text). The driving amplitude is δ = 0.03, while the
initial state corresponds to the ground state of four weakly interacting
bosons with g = 0.05.

let us proceed with a more detailed analysis in order to probe
the effect of an interaction quench on the interwell tunneling
dynamics and the intrawell excited modes.

To examine the tunneling dynamics, Fig. 6(a) presents the
fidelity spectrum F{δg}(ω) = 1

π

∫
dtF{δg}(t) as a function of

the quench amplitude. Three interwell tunneling branches
(a′

1 − a′
3) can be identified. The lowest branch (a′

1), which
dominates for strong quench amplitudes, refers to the energy
difference 
ε within the energetically lowest-band states of
the SP mode, e.g., from the initial state |1(0),2(0),1(0)〉 to a
final state |2(0),1(0),1(0)〉. The second branch (a′

2) corresponds
to tunneling between the SP and the DP modes, e.g., from
|1(0),2(0),1(0)〉 to |2(0),2(0),0(0)〉. The third branch (a′

3) refers
to a tunneling process among the SP and T modes, e.g.,
from |1(0),2(0),1(0)〉 to |3(0),1(0),0(0)〉. The remaining inter-
well tunneling branches, which correspond to transitions of
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energetically higher different modes, are negligible in com-
parison to the aforementioned, and therefore we can hardly
identify them in Fig. 6(a). To probe the effect of the driving
frequency on the tunneling spectrum, Fig. 6(b) shows F{δg}(ω)
at ωD = 2.75 (i.e., at resonance of an explicitly driven triple
well) with varying quench amplitude. The three observed
tunneling branches (b′

1 − b′
3) refer to the same transitions, i.e.,

between the same number states as addressed above, but they
are slightly shifted to higher frequencies as a consequence of
the higher driving frequency. The remaining branches, e.g., a′

4
and b′

4, that are visible in the spectrum, which show more
prominent deviations for the different driving frequencies,
correspond to other modes and interband transitions and are
explained below.

To identify the frequencies of the local breathing mode
we resort to the second moment σ 2

i (ω) = 1
π

∫
dtσ 2

i (t)eiωt for
each well [see Sec. II B and Eq. (5)]. Focusing on the left well,
which possesses a breathing component [see also Fig. 2(b)]
we calculate the frequency spectrum of σ 2

L(ω), which matches
the branch a′

4 in the fidelity spectrum [see Fig. 6(a)]. Most
importantly this frequency branch resonates with two distinct
tunneling branches at different quench amplitudes, namely,
at δg ≈ 1.0 with branch a′

3 [see the ellipse in Fig. 6(a)] and
at δg ≈ 2.8 with branch a′

2 [see the dashed ellipse in Fig. 6(a)]
of the tunneling. Turning to the middle well, Fig. 6(c) presents
σ 2

M (ω), thus showing two main peaks (a′′
1 -a′′

2 ) with respect to
the quench amplitude. The lowest of these peaks refers to a
tunneling mode [see also Fig. 6(a)] identified from the energy
difference within the energetically lowest states of the SP
mode. The appearance of this peak in the spectrum is due
to the fact that the tunneling can induce a modulation of the
width of the local wave packet. The second peak, located at
ω2 ≈ 4.5, refers to an interband process, i.e., to a transition
from |1(0),2(0),1(0)〉 to |1(0),1(0) ⊗ 1(2),1(0)〉. Inspecting now
more carefully the fidelity spectrum in Fig. 6(a) we observe
that the latter breathing frequency branch a′′

2 [denoted a′
5 in

Fig. 6(a)] comes into resonance with the highest-tunneling-
frequency branch (a′

3) at high quench amplitudes δg ≈ 5.2.
However, this tunneling branch is not visible in Fig. 6(c)
due to its low amplitude in comparison to the breathing (a′′

2 )
branch. To comment on the dependence of the breathing
peak (a′′

2 ) on the interaction quench we observe that it is
more sensitive to δg for 0.0 < gf < 2.5; otherwise it is
approximately constant. To probe the effect of the driving
frequency on the breathing branch of the middle well, Fig. 6(d)
illustrates the spectrum of σ 2

M (ω) with respect to a varying δg

for ωD = 2.75. The respective breathing branches, denoted b′′
1

and b′′
2 in the figure, are slightly disturbed in comparison to

the case with ωD = 0.75. Concerning the first one, we have
commented on its deviation in our discussion of Figs. 6(a)
and 6(b). Focusing now on the highest-frequency branch of the
breathing a significant alteration is observed: for low quench
amplitudes, 0.0 < δg < 0.8, it possesses a single frequency,
while for δg > 0.8 the branch splits into two, with slightly
different frequencies. The first is near the corresponding
frequency for ωD = 0.75 but slightly larger, while the second
is larger than both. Finally, let us quantitatively examine
the dipole component in the outer wells by employing the
frequency spectrum 
ρL(ω) = 1

π

∫
dt
ρL(t)eiωt for various

quench amplitudes. Figure 6(e) shows 
ρL(ω), where we

can identify three dominant peaks (denoted a′′′
1 − a′′′

3 ), which
are located at ω′′′

1 ≈ 1.2, ω′′′
3 ≈ 2.5, while ω′′′

2 is quench
dependent. The steady frequency branches (a′′′

1 and a′′′
3 )

correspond to the dipole mode and refer to interband tran-
sitions, e.g., from |1(0),2(0),1(0)〉 to |1(0) ⊗ 1(1),1(0),1(0)〉 or
to |1(0) ⊗ 1(2),1(0),1(0)〉, respectively. On the other hand, the
quench-dependent frequency peak (a′′′

2 ) is related to the third
interwell tunneling mode [denoted a′

3 in Fig. 6(a)]. As shown in
Fig. 6(e) the latter branch a′′′

2 experiences two resonances with
each dipole branch at different quench amplitudes, namely,
at δg ≈ 0.7 with the lowest-frequency dipole branch (a′′′

1 )
and at δg ≈ 3.0 with the higher-frequency dipole branch a′′′

3 .
Moreover, upon examining the fidelity spectrum once again
[Fig. 6(a)] more carefully, it is observed that the highest-
frequency dipole branch experiences a resonance with the
second interwell tunneling mode (a′

2) at δg ≈ 5.0. In order to
reach a conclusion on the dependence of the dipole branches
on the driving frequency we show in Fig. 6(f) the 
ρL(ω) at
ωD = 2.75. As shown the lower-frequency dipole branch (a′′′

1 )
is strongly dependent on the driving frequency [see branch
b′′′

1 in Fig. 6(f)], while the higher-frequency branch (a′′′
3 ) is

essentially unaffected. Most importantly, the aforementioned
resonant behavior still exists for ωD = 2.75 but in this case
two more resonances appear in the spectrum [see Fig. 6(b)]
due to a shift of the lowest-frequency dipole branch. These
resonances are located at δg ≈ 2.1 and δg ≈ 4.0 and refer to
a coupling among the second (b′

2) and third (b′
3) tunneling

branches with the lowest-frequency dipole branch.
In the next section, we proceed to the investigation of a

system with filling ν < 1 in order to generalize our findings.
In particular, by considering a setup with 11 wells and five
particles we demonstrate that the above-discussed resonant
behavior for the intrawell dynamics induced by an explicitly
driven potential is present also here. Subsequently, we explore
the impact of an interaction quench.

IV. QUENCH DYNAMICS IN THE DRIVEN LATTICE FOR
FILLING FACTOR ν < 1

Here we concentrate on a larger lattice system characterized
by a filling factor smaller than unity, namely, we consider
the case of five bosons trapped in an 11-well potential. To
understand and interpret the dynamics let us first briefly
comment on the ground-state properties of the system. An
important property of the ground state is the spatial redistri-
bution of the atoms as the interparticle repulsion increases.
The noninteracting ground state (g = 0) is the product of the
single-particle eigenstates spreading across the entire lattice,
while the presence of the hard-wall boundaries renders the
neighborhood of the central well of the potential slightly
more populated. Increasing the repulsion within the weak-
interaction regime the atoms are pushed to the outer sites,
which gain and lose population in the course of increasing
g [58].

In the following, let us first focus on the driven bosonic
dynamics induced, at t = 0, by a vibrating 11-well potential
to the ground state of five repulsively interacting bosons with
g = 0.05. Figures 7(a) and 7(b) demonstrate the response
of the system at the one-body level for different driving
frequencies ωD , but the same driving amplitude δ = 0.03.
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FIG. 7. Time evolution of the one-body density ρ1(x,t) in a periodically driven 11-well potential for different driving frequencies:
(a) ωD = 1.25 and (b) ωD = 2.875. The driving amplitude is fixed at the value δ = 0.03, while the initial state corresponds to the ground state
of five weakly interacting bosons with g = 0.05. (c) Probability of finding all the bosons in the central well [PM (t)] during the evolution for
different driving frequencies ωD (see legend). (d) The same as (c), but for ωD = 0.75 and different quench amplitudes δg (see legend).

The overall out-of-equilibrium behavior shows characteristics
to those in the case of the triple well, i.e., the occurrence
of out-of-phase dipolelike modes among the outer wells of
the lattice, a local-breathing mode in the central well, and
an interwell tunneling mode accompanying the dynamics.
In addition, a transition from nonresonant [Fig. 7(a)] to a
resonant intrawell dynamics [Fig. 7(b)] upon adjusting ωD

is observed at the same frequency, ωD = 2.875, as in the
triple-well case. This resonant behavior is again manifested
[Fig. 7(b)] in the one-body density evolution as the formation
of enhanced density oscillations at each site, being further

related to a gradual depopulation of the zeroth band during
evolution. In terms of the significant contributing number
states we can infer that out of resonance the dynamics can
well be described by the set of lowest-band states (with a small
contribution from the excited-band states), while at resonance
the inclusion of number states which obey the constraints∑11

i=1 n
(1)
i = N − 1, n

(3)
i = 0, and n

(2)
i = 1 for k = 1, . . . ,11

is necessary. Contributions from excited states to the second
band, i.e.,

∑11
i=1 n

(1)
i = N − 1, n

(2)
i = 0, and n

(3)
i = 1 for

k = 1, . . . ,11 also exist, but they are negligible in comparison
to the excitations of the first excited band.
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Another important observation here is that upon tuning
the driving frequency ωD close to resonance the tunneling
dynamics is modified. To explicate the latter, we employ,
as a measure of the interwell tunneling, the spatially inte-
grated middle-well density PM (t) = ∫ π/2

−π/2 dxρ1(x,t), shown
in Fig. 7(c) for different driving frequencies, namely, before,
exactly at, and after the resonance. Approaching ωD = 2.875
from below, diffusion to the outer wells is observed. In
the region of ωD = 2.875 the tunneling dynamics is slowed
down, i.e., the occupation of the middle well fluctuates
around a mean value. For ωD > 2.875 the tunneling process
is modified and a tendency for the particles to concentrate
in the central well is observed. Employing a corresponding
number-state analysis we can infer that for ωD > 2.875, states
with a higher occupancy in the central well gain prominence.
The same behavior of the tunneling dynamics (before and
after the resonance) is also observed in the triple-well case.
Furthermore, let us inspect the influence of an interaction
quench on top of the driven lattice. As expected intuitively,
with increasing interaction quench the tunneling process
decreases. Figure 7(d) shows PM (t) for different interaction
quench amplitudes on top of the periodically driven lattice
with ωD = 0.75 (i.e., away from resonance). It is observed
that PM (t) becomes steady for increasingly longer times as we
increase δg, thus indicating a decrease in the corresponding
interwell tunneling dynamics. Finally, note that due to the
low filling the admixing modes, induced after an interaction
quench on the periodically driven lattice, in the outer wells are
hardly visible and therefore not shown here.

Let us further investigate the signature of the resonant
regions as well as the effect of the interaction quench on top
of the periodically driven lattice by exploring the first-order
correlation function [see Eq. (8)], in coordinate space, which
quantifies the degree of spatial coherence of the interacting sys-
tem [51]. It is important to stress that, within the single-orbital
Gross-Pitaevskii theory, the quantum wave packet remains
coherent at all times, in contrast to a many-body calculation,
where it exhibits prominent time-varying structures which
in turn indicate the rise of fragmentation in the system as
the correlations between particles increase. From this point
of view we expect a strong influence on the change in the
spatial distribution of the atoms in the lattice either due to
the resonant driving or as a consequence of the interaction
quench. Focusing on low driving frequencies (ωD = 0.75)
within the weakly interacting regime (g = 0.05) we observe
spread of the coherence [Figs. 8(a)–8(d)] through the lattice
sites as time evolves. The diagonal elements are always
perfectly coherent and their first neighbors remain close to
unity throughout the time evolution. The off-diagonal elements
are partially coherent and oscillate around the value 0.5,
while for comparatively long evolution times a site-selective,
off-diagonal, long-range order appears [see Fig. 8(d)]. Turning
our attention to the resonant driving [see Figs. 8(e)–8(h)] a
different behavior throughout the time evolution is observed:
On short time scales, only the diagonal elements remain
coherent and the off-diagonal is partially coherent. As time
evolves, a substantial loss of coherence is observed even on the
diagonal, while the off-diagonal elements exhibit a much more
prominent and complex structure. A direct comparison at equal
times of the correlation functions for nonresonant and resonant
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FIG. 8. One-body coherence function at different instants in
time (t1 = 1.0, t2 = 56.0, t3 = 123.0, and t4 = 193.0) during the
evolution caused by a periodically driven 11-well potential with
(a)–(d) ωD = 0.75 and (e)–(h) ωD = 3.0. (i)–(l) Evolution of the
one-body coherence in a periodically driven potential with ωD = 0.75
and a simultaneous interaction quench with amplitude δg = 1.0. The
driving amplitude is fixed at the value δ = 0.03 and the initial state
corresponds to the ground state of five weakly interacting bosons with
g = 0.05.

driving shows that resonant driving and loss of coherence go
hand in hand. On the other hand, by performing an interaction
quench on top of the driving, the coherence [see Figs. 8(i)–8(l)]
is unity along the diagonal, while for sufficiently long evolution
times it tends to vanish away from the diagonal. Finally,
note that the off-diagonal contributions tend to fade out (but
never vanish completely, even for stronger quenches, since the
particles always remain delocalized) with increasing quench
amplitude and a tendency toward concentration close to the
diagonal is observed at equal times. This indicates that the
strength of the interaction between particles strongly affects
the correlations; the stronger the interparticle repulsion, the
stronger the loss of coherence. As a concluding remark we can
infer that either the resonant driving or a quench on top of the
driving entails an intensified loss of coherence.

V. CONCLUSIONS AND OUTLOOK

In the present work, the few-body correlated nonequilib-
rium quantum dynamics of an interaction quenched bosonic
cloud in an external periodically driven finite-size optical
lattice has been investigated. The effect of an interaction
quench on top of the driven lattice has been analyzed. We
focus on large lattice depths and low driving amplitudes in
order to limit the degree of excitations that could lead to the
creation of cradle motion [37] or even to heating processes.
Starting from the ground state of a weakly interacting small
atomic ensemble, we examine in detail the time evolution of the
system in a periodically driven optical lattice by a simultaneous
interaction quench.

It has been shown that for the case of the periodically driven
lattice one can induce out-of-phase local dipole modes in the
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outer wells, while a local breathing mode can be generated
in the central well. This is in direct contrast with the shaken
lattice, where only in-phase dipole modes are excited. A wide
range of driving frequencies has been considered in order to
unravel the range from adiabatic to high-frequency driving.
We observe that within the intermediate-frequency regimes,
being intractable by current analytical methods, the system
can be driven to a far out-of-equilibrium state compared to
other driving-frequency regions. In particular, resonance of the
intrawell dynamics occurs with enhanced tunneling dynamics,
thus opening energetically higher-lying interwell tunneling
channels. A prominent signature of the resonant regions as well
as the effect of the interaction is provided via the study of the
time dependence of the first-order coherence, where intensified
loss of coherence is observed. This loss of coherence consti-
tutes an independent signature of the resonant regions, allow-
ing us to study it from another perspective and, potentially, to
measure it in experiments. Following an interaction quench on
top of the periodically driven lattice for various driving fre-
quencies, we can trigger more effectively the interwell as well
as the intrawell dynamics and steer the system towards strongly
out-of-equilibrium regimes. Here, the tunneling as well as the
local breathing mode in the middle well is amplified, while
in the outer wells the atomic cloud experiences an admixture
of a dipole and a breathing component. This admixture leads
to simultaneous oscillations around the minimum of the well
as well as a contraction and expansion in the course of the
dynamics. Our analysis shows that one can use the interaction
quench to manipulate the tunneling frequency, rendering
single-particle tunneling dominant even at resonance. Con-
cerning the on-site modes it is shown that an interaction quench
can be used in order to manipulate their amplitude oscillations,
yielding also a strong influence on the excitation dynamics.

Subsequently, the dynamics of the periodically driven
lattice (i.e., for a fixed driving frequency) as a function
of the quench amplitude has been studied. In particular,
the tunneling contains three modes, the breathing possesses
two frequency branches, and the corresponding admixture
three branches: one from the breathing component and two
which refer to the dipole component. Furthermore, five
resonances between the interwell tunneling dynamics and
the intrawell dynamics have been revealed. The interwell
tunneling experiences a resonance with the breathing com-
ponent of the central well, two resonances with the breathing
component of the outer wells, and two resonances with the
dipole component of the outer wells. These resonances can
further be manipulated via the frequency of the periodic
driving. As a result, the combination of different driving
protocols can excite different inter- and intrawell modes as
well as manifest various energetically higher components of
a mode. Most importantly, the observed resonances between
different inter- and intrawell modes demonstrate the richness
of the system, while their dependence on various system
parameters, e.g., the driving frequency, shows the tunability
of the system. The above-mentioned realization of multiple
resonances constitutes arguably one of the central results of
our investigation, which, to the best of our knowledge, has
never been reported in such a setting.

Finally, let us comment on possible future extensions of
the present work. Our analysis reveals that a combination of

different driving protocols can induce admixtures of excited
modes which, in the present case, correspond to admixtures of
dipolelike and breathinglike modes. In this direction, it would
be a natural next step to find the optimal pulse of the interaction
quench protocol in order to induce a perfectly shaped squeezed
state. Also, the understanding and prediction of the long-time
dynamics imposing an interaction quench on a driven lattice
at different transient times is certainly of interest.
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APPENDIX A: HARMONIC OSCILLATOR—ADMIXTURES
OF DIPOLELIKE AND BREATHINGLIKE MODES

In the present Appendix we briefly demonstrate the creation
of admixtures of excitations consisting of a dipole and a
breathing component in the dynamics of a bosonic ensemble
confined in a 1D harmonic oscillator. Let us first comment on
the creation of each of the above excited modes separately. It
is well known that a quench of the frequency of the harmonic
oscillator or of the interatomic repulsive interaction induces a
breathing-mode oscillation of the atomic cloud. On the other
hand, a sudden displacement or a periodic driving, e.g., shak-
ing, of the harmonic oscillator can induce a dipole mode in the
atomic cloud. However, a combination of the above techniques
can induce more complicated modes in the dynamics [59] and
requires computational methods which can take into account
higher orbitals, i.e., correlations. Here, we aim at illuminating
this scenario by examining the evolution of an atomic cloud
consisting of six bosons initially (t < 0) prepared in the ground
state of a harmonic oscillator potential. Subsequently (t > 0)
the cloud is subjected to a periodic driving and a simultaneous
quench of the interatomic repulsive interaction. Thus, the
Hamiltonian that governs the dynamics reads

H =
N∑

i=1

(
p2

i

2M
+ VD(xi ; t)

)
+ gf

∑
i<j

δ(xi − xj ), (A1)

where the periodic driving of the harmonic oscillator
is modeled via the time-dependent potential VD(x; t) =
ω2

2 (x − A sin(ωDt))2 and δg = gf − gin denotes the quench
amplitude. Figure 9(a) illustrates the dynamics of the atomic
cloud on the single-particle level by employing the one-body
density. It is observed that the cloud not only oscillates
inside the external trap but also changes its shape during the
oscillation. This is a clear signature that the induced mode is
different from a pure dipole mode or a pure breathing mode
but it is an admixture of the above-mentioned excitations. To
indicate this fact explicitly we illustrate in Fig. 9(b) the profiles
of the one-body density at certain instants in time during the
evolution. The cloud compresses and decompresses (caused
by the interaction quench) during its oscillation (caused by
the driven oscillator) inside the external harmonic trap. On
the contrary, a cloud which is only subjected to the above
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FIG. 9. (a) Time evolution of the one-body density ρ1(x,t)
caused by a periodically driven harmonic trap with ωD = 0.25 and
a simultaneous interaction quench with amplitude δg = 1.6. The
driving amplitude is fixed toat the value A = 0.6, while the initial state
corresponds to the ground state of six weakly interacting bosons with
g = 0.05. We also illustrate the one-body density profiles at certain
instants in time (see legend) during the evolution of the periodically
driven oscillator with (b) δg = 1.6 and (c) δg = 0.

external driving [see Fig. 9(c)] performs the well-known
dipole oscillation and the wave packet exhibits oscillations
with a constant width and amplitude.

APPENDIX B: REMARKS ON THE RESONANT
INTRAWELL DYNAMICS OF THE DRIVEN LATTICE

In the present Appendix we briefly comment on the
characteristics of the resonant dynamics of the driven lattice
from a one-body perspective. Indeed, Fig. 10(a) presents
ρ1(x,t) at ωD = 2.75. The overall dynamics exhibits enhanced
density modulations being manifest as internal fast oscillations
and high-amplitude oscillations in each well of period ∼20.
The interwell tunneling is also enhanced in comparison to that
at small ωD’s [see Fig. 2(a)]. A similar intrawell resonant
behavior was observed in Ref. [35], where enhanced and
in-phase oscillating dipoles were revealed. On the contrary,
here, we observe enhanced and out-of-phase oscillating dipole
modes as well as an amplified breathing mode in the center.
Thus, exploiting the presently used driving scheme we have
the possibility of opening an additional energetic channel. To
quantify that the driven lattice induced dynamical features are
independent of the interaction strength g or the particle number
N , we calculate the deviation of the local density oscilla-
tion from its mean value, i.e., � = ∫ T

0 dt |
ρα(t) − 
ρα|/T ,

where 
ρα = ∫ T

0 dt
ρα(t)/T denotes the mean oscillation
amplitude over the considered propagation time T and 
ρα(t)
refers to the intrawell wave-packet asymmetry. Figure 10(b)
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FIG. 10. (a) Time evolution of the one-body density ρ1(x,t) in a
triple well for ωD = 2.75. The driving amplitude is fixed at the value
δ = 0.03, while the initial state corresponds to the ground state of
four weakly interacting bosons with g = 0.05. (b) Mean oscillation
amplitude � of the left well for N = 4 bosons as a function of
the driving frequency ωD for different interparticle repulsions (see
legend). (c) The same as (b), but for fixed interaction g = 0.2 and
different particle numbers (see legend).

shows the mean amplitude of the intrawell oscillation for the
left well as a function of the driving frequency ωD for different
interaction strengths g but the same particle number. The mean
amplitude with a varying ωD increases up to ωD = 2.875,
where it exhibits a peak (position of the resonance) and
then decreases again, exhibiting several smaller peaks at
frequencies where the system is driven far from equilibrium
[see also Fig. 1(a)]. Comparing the dynamics for different
interactions it is observed that the ensemble exhibits the same
overall behavior but the mean oscillation amplitude is slightly
higher (for higher interactions), especially in the region of the
central peak. This is a direct interaction effect, since the system
possesses more energy. On the other hand, in order to investi-
gate whether the above results are independent of the particle
number the same quantity (�) is shown in Fig. 10(c) for
varying particle numbers, namely, N = 4 and 8. The mean am-
plitude presents the same overall behavior with respect to the
driving frequency ωD but it is also slightly larger for increasing
particle number, with a maximal deviation of the order of 30%.

APPENDIX C: THE COMPUTATIONAL
APPROACH—MULTICONFIGURATION

TIME-DEPENDENT HARTREE METHOD FOR BOSONS

To solve the many-body Schrödinger equation
(i�∂t − H )�(x,t) = 0 of the interacting bosons as an
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initial value problem |�(0)〉 = |�0〉, we employ the
MCTDHB [39,40,60]. The latter constitutes an efficient and
accurate method for both the stationary properties and the
nonequilibrium quantum dynamics of systems consisting of
a single bosonic species and has already been applied for a
wide set of problems (see, e.g., [60–63]). The wave function is
represented by a set of variationally optimized time-dependent
orbitals, which implies an optimal truncation of the Hilbert
space by employing a time-dependent moving basis where
the system can be instantaneously optimally represented
by time-dependent permanents. Thus, the many-body
wave function, which is expanded in terms of the bosonic
number states |n1,n2, . . . ,nM ; t〉, based on time-dependent
single-particle functions (SPFs) |φi(t)〉, i = 1,2, . . . ,M , reads

|�(t)〉 =
∑

�n
C�n(t)|n1,n2, . . . ,nM ; t〉. (C1)

Here M is the number of SPFs and the summation �n is over
all the possible combinations ni such that the total number
of bosons N is conserved. Note that in the limit in which M

approaches the number of grid points the above expansion
is equivalent to a full configuration interaction approach.
However, in the case of M = 1 the many-body wave function
is given by a single permanent |n1 = N ; t〉 and the method
reduces to the time-dependent Gross-Pitevskii equation. To
determine the time-dependent wave function |�(t)〉 we need
the equations of motion for the coefficients C�n(t) and the SPFs
|φi(t)〉. Following, e.g., the Dirac-Frenkel [64,65] variational
principle, i.e., 〈δ�|i∂t − Ĥ |�〉 = 0, we end up with the well-
known MCTDHB equations of motion [39,40,60], consisting
of a set of M nonlinear integrodifferential equations of motion
for the orbitals which are coupled to the (N+M−1)!

N!(M−1)! linear equa-
tions of motion for the coefficients. Finally, let us remark that in
terms of our implementation we use an extended version of the
MCTDHB referred to in the literature as the multilayer multi-
configuration time-dependent Hartree method for bosons (ML-
MCTDHB) [66,67]. This package is particularly suitable for
treating systems consisting of different bosonic species, while
for the case of a single species it reduces to the MCTDHB.

For our numerical implementation a discrete variable
representation for the SPFs and a sine–discrete variable repre-
sentation, which intrinsically introduces hard-wall boundaries
at both edges of the potential, have been employed. The
preparation of the initial state has been performed by using
the so-called relaxation method in terms of which one obtains
the lowest eigenstates of the corresponding m-well setup. The
key idea is to propagate some trial wave function �(0)(x) by the
nonunitary operator e−Hτ . This is equivalent to an imaginary
time propagation, and for τ → ∞ the propagation converges
to the ground state, as all other contributions (i.e., e−Enτ ) are
exponentially suppressed. In turn, we periodically drive the op-
tical lattice and perform a quench of the strength of the interpar-
ticle repulsion and study the evolution of �(x1,x2, . . . ,xN ; t)
in the m-well potential within the MCTDHB.

Within our simulations the overlap criteria |〈�|�〉 − 1| <

10−9 and |〈ϕi |ϕj 〉 − δij | < 10−10 are fulfilled for the total wave
function and the SPFs, respectively. Furthermore, to ensure
the convergence of our simulations we have used up to 12 (11)
optimized SPFs for the triple (11) well, thereby observing
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FIG. 11. Fidelity evolution FωD
(t) of a periodically driven triple

well with (a) ωD = 2.5 and (b) ωD = 7.5 with an increasing number
of SPFs (see legend). (c), (d) FωD

(t) for various SPFs (see legend)
with a simultaneous interaction quench of amplitude (c) δg = 0.5 and
(d) δg = 2.0 on top of the periodically driven triple well with ωD =
0.75.

a systematic convergence of our results for sufficiently large
spatial grids. In particular, we have used 350 spatial grid points
in the case of the triple well and 800 spatial grid points for the
11-well potential. In the following, let us briefly demonstrate
the convergence procedure concerning our simulations either
with an increasing number of SPFs (and a fixed number of
350 grid points) or with a varying number of grid points and
a fixed number of SPFs, M = 12. Figure 11 shows the fidelity
evolution for different numbers of SPFs, namely, M = 8,
10, and 12, for the driven triple well at driving frequencies
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FIG. 12. Fidelity evolution FωD
(t) of a periodically driven triple

well with (a) ωD = 2.5 and (b) ωD = 7.5 with an increasing number
of grid sizes (see legend). (c), (d) FωD

(t) for various grid sizes (see
legend) with a simultaneous interaction quench of amplitude (c) δg =
0.5 and (d) δg = 2.0 on top of the periodically driven triple well with
ωD = 0.75.
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ωD = 2.5, ωD = 7.5 [see Figs. 11(a) and 11(b), respectively],
and FωD

(t) by employing simultaneous interaction quenches
with amplitudes δg = 0.5, δg = 2.0 on top of the driving,
ωD = 0.75 [see Figs. 11(c) and 11(d), respectively]. A sys-
tematic convergence of the fidelity evolution (for M > 8) is
observed for increasing numbers of SPFs. For instance, the
maximum deviation (at ωD = 2.5) observed in the fidelity
evolution [see Fig. 11(a)] calculated using 8 and 12 SPFs,
respectively, is of the order of 0.3% at large evolution times
(t > 200). Furthermore, in order to show the convergence
with an increasing number of grid points Fig. 12 presents
the fidelity evolution of the driven triple well at ωD = 2.5
and ωD = 7.5 [see Figs. 12(a) and 12(b), respectively] and by

performing interaction quenches with δg = 0.5 and δg = 2.0
on top of the driven triple well, ωD = 0.75 [see Figs. 12(c)
and 12(d), respectively]. Again, we observe convergence for
an increasing number of grid points (especially for grid sizes
that contain more than 300 spatial grid points). For instance,
the maximum deviation (at ωD = 2.5) observed in the fidelity
evolution [see Fig. 12(a)] calculated using 300 and 350 grid
points, respectively (and 12 SPFs), is of the order of 0.1%
at large evolution times (t > 250). The same analysis was
also performed for the 11-well case (omitted here for brevity)
showing the same behavior. Another criterion that confirms the
achieved convergence is the population of the lowest-occupied
natural orbital, kept in each case below 0.1%.
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Abstract
Weexplore the quench dynamics of a binary Bose–Einstein condensate crossing themiscibility–
immiscibility threshold and vice versa, bothwithin and in particular beyond themean-field
approximation. Increasing the interspecies repulsion leads to thefilamentation of the density of each
species, involving shorter wavenumbers and longer spatial scales in themany-body (MB) approach.
Thesefilaments appear to be strongly correlated and exhibit domain-wall structures. Following the
reverse quench processmultiple dark–antidark solitary waves are spontaneously generated and
subsequently found to decay in theMB scenario.We simulate single-shot images to connect our
findings to possible experimental realizations. Finally, the growth rate of the variance of a sample of
single-shots probes the degree of entanglement inherent in the system.

1. Introduction

The realmof atomic Bose–Einstein condensates (BECs) has offered over the past two decades a fertile testbed for
the examination of phenomena involving the role of nonlinearity inwave dynamics and phase transitions [1–6].
Phase separation dynamics in the case ofmulti-component BECs has held a prominent role among the relevant
studies and is a topic that by nowhas been summarized in various reviews [1, 2, 4, 7]. Nevertheless, themajority
of the relevant studies has focused on amean-field (MF) description, while the role ofmany-body (MB) effects in
such transitions ismuch less understood.

Since the earlydays of the experimental realization of BECs, experimental achievements includebinary
mixtures of e.g. twohyperfine states of 23Na [8] andof87Rb [9]. Progress of the experimental control over the
relevantmulti-component settings enableddetailed observations of phase separationphenomena and related
dynamicalmanifestations [10–18]. In recent years, external couplingfields have beenutilized to control andmodify
the thresholds formixing–demixing dynamics in pseudo-spinor (two-component) [19, 20] and even in spinor
systems [21].Moreover, the quenchdynamics across the phase separation transitionhas been a focal point of studies
examining the scaling properties of suitable correlation functions and associateduniversality properties [22–24].

More recently the inclusion of correlations inmulti-component few boson systems enabled amicroscopic
characterization of their static properties. A variety of novel features have been realized in these settings such as
altered phase separation processes [25–28], composite fermionization [29–31], or even the crossover between
the two [32, 33]. Also the dynamical properties of suchMBultracoldmixtures have been studied including,
among others, the dependence of the tunneling dynamics on themass ratio [34, 35] or the intra- and interspecies
interactions [36], as well as the emergence of Andersonʼs orthogonality catastrophe upon quenching the
interspecies repulsion [37]. On the other hand, far less emphasis has been placed on theMB character of the
quench-induced phase separation phenomenology. It is the latter apparent gap in the literature that the present
work aims at addressing for both few-particle and larger bosonic ensembles.
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To incorporate the quantumfluctuations due to correlations [38–41] emergingwhen quenching the binary
BEC system,we bring to bear themulti-layermulti-configuration time-dependentHartreemethod for bosons
(ML-MCTDHB) [42, 43] designed for simulating the quantumdynamics of bosonicmixtures.We explore
different scenarios, emphasizing the case where the interspecies interaction is quenched from themiscible to the
immiscible regime (positive quench) or vice versa (negative quench).Wefind significant variations in theMB
scenario in comparison to theMFone. In the positive quench scenario the unstable dynamics leads to the
filamentation of the density of each species and the dominant wavenumber associatedwith the emerging phase
separated state appears to generically be higher in theMF case. The one- and the two-body correlation functions
indicate the presence of correlations between thefilaments of the same or different species signaling the presence
of fragmentation and entanglement respectively. In particular, strong one-body correlations appear between
non-parity symmetric (with respect to the trap center)filaments formed indicating their tendency of
localization. Thesefilaments are found to be strongly anti-correlated at the two-body level indicating a negligible
probability offinding two bosons of the same species one residing in an outer and one in an inner filament.More
importantly, combining the behavior of one- and two-body correlations supports the formation of domain-
walls i.e. interfaces that separate these distinct filaments [44–46].

In sharp contrast to the above dynamicalmanifestation of the phase separation, in the negative quench
scenariomultiple dark–antidark (DAD), i.e. density humps on top of the BECbackground, solitary waves
[47, 48] are spontaneously generated bothwithin and beyond theMF approximation. At theMB levelmany
decay events, at the early stages of the dynamics, increase the production ofDAD solitarywaves with the product
of each decay being a slow and a fastDAD structure [49]. The latter increase results inmultiple collisions and
interference events between thesematter waves, andmost of them are lost during evolution. Furthermore, in
both the positive and the negative quench scenarios, single-shot simulations, utilized here for the first time for
binarymixtures, offer a link to potential experimental realizations of the above-observed dynamics. In
particular, the growth rate of the variance of single-shots resembles the growth rate of the entanglement inherent
in the system. Additionally, deviations between the variances of the two species reveal the fragmented nature of
the binary system. Last, but not least the case of quencheswithin the immiscible regime, are explored showcasing
the one-dimensional (1D) analog of the so-called ‘ball’ and ‘shell’ structure appearing in higher-dimensional
binary BECs [12].

Our presentation is structured as follows. In section 2, we provide the details of the binary setup and the
correspondingMB ansatz, briefly addressing theML-MCTDHB approach. In section 3we examine the different
quench scenarios focusing on themiscible to immiscible quench aswell as the reverse quench dynamics.
Section 4 provides a summary of ourfindings and a number of proposed directions for future study. In
appendix Awe present the details of the single-shot procedure, and in appendix Bwe showhow the quench-
induced phase separation dynamics is altered for small particle numbers. Finally, in appendix Cwe address the
convergence of theML-MCTDHB results.

2. Setup andMBansatz

To explore the correlated out-of-equilibriumquantumdynamics in a relevant experimental setting, we consider
a binary bosonic gas trapped in a 1Dharmonic oscillator potential. TheMBHamiltonian consisting ofNA,NB

bosonswithmassesmA,mB for the speciesA,B respectively, reads
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In the s-wave scattering limit [1] both the intra and interspecies interactions aremodeled by a contact potential,
where the effective coupling constants are denoted by gAA, gBB, and gAB respectively. Experimentally ss¢g can be
tuned either via the three-dimensional scattering lengthwith the aid of Feshbach resonances [50, 51] or via the
corresponding transversal confinement frequency and the resulting confinement-induced resonances [52, 53].
Moreover, here we assume that both species possess the samemass, i.e.mA=mB=m, and are confined in the
same external potential, i.e. wA = wB=Ω. Throughout this work the trapping frequency isfixed to

pW = » ´0.1 2 20Hz assuming a transversal confinement w p= ´^ 2 200 Hz. Furthermore, we fix the
intraspecies interactions to =g 1.004AA and =g 0.9544BB , which are the values for a binary BECof 87Rb atoms
prepared in the internal states = = - ñ∣F m1, 1F and = = ñ∣F m2, 1F [15], while gAB is left to arbitrarily vary
upon a quench taking valueswithin the interval = [ ]g 0, 2AB .We remark that in the following theHamiltonian
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of equation (1) is rescaled in harmonic oscillator units, = W˜ ( )H H . Then the corresponding length, energy,

time, and interaction strength are given in units of  W( )/ m0.1 , W, W -( )/0.1 1, and = Wss ss
¢ ¢ ¢ /g g m 103 ,

respectively.
Within theMF approximation all particle correlations are neglected. Such a simplification allows for

expressing theMBwavefunction of a binary system as a product state of the respectiveMFwavefunctions
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where = ¼s s s
s

 ( )x x x, , N1 denote the spatial s = A B, species coordinates, sN is the number ofσ species atoms
and fs s( )x t;i refers to the time-evolvedwavefunction for theσ species within theMF approximation.
Employing a variational principle, e.g. theDirac–Frenkel one [54, 55], for the ansatz of equation (2)we obtain
the corresponding equations ofmotion in the formof thewell-studied systemof coupledGross–Pitaevskii
equations [1, 2].

The binary BEC is a bipartite composite system residing in theHilbert space  = ÄAB A B, withs

being theHilbert space of theσ species. To incorporate correlations between the different (inter-) or the same
(intra-) species,M distinct species functions for each species are introduced obeying

  ( ( ) ( ))M min dim , dimA B . Then theMBwavefunction YMB can be expressed according to the truncated
Schmidt decomposition [56] of rankM

å lY = Y Y
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1

The Schmidt weights l ( )tk in decreasing order are referred to as the natural species populations of the kth
species function Ys

k of theσ species.We remark that Ys{ }k forms an orthonormal sN -bodywavefunction set in a
subspace ofs. To quantify the presence of interspecies correlations or entanglement we use the eigenvalues lk

of the species reduced densitymatrix *òr ¢ = Y Y ¢s s s s s s s¢ ¢ ¢s s¢
     ( ) ( ) ( )x x t x x x t x x t, ; d , ; , ;N N

MB MB , where

=s s s
-s

 ( ) )x x x, , N1 1 , and s s¹ ¢.When only one (multiple) eigenvalue(s) of r sN is (are)macroscopic the
system is referred to as non-entangled (species entangled or interspecies correlated). It is also evident from
equation (3) that the system is entangled5 [57]when at least two distinct l ( )tk arefinite, further implying that the
MB state cannot be expressed as a direct product of two states stemming fromA andB. In thismanner,

l- ( )t1 1 offers ameasure for the degree of the systemʼs entanglement.Moreover, a particular configuration of
A species Y

( )x t;k
A is accompanied by a particular configuration ofB species Y

( )x t;k
B and vice versa. Indeed,

measuring one of the species states e.g. Y ¢k
A collapses thewavefunction of the other species to Y ¢k

B thus
manifesting the bipartite entanglement [58, 59]. Concluding, the aboveMBwavefunction ansatz YMB

constitutes an expansion in terms of different interspeciesmodes of entanglement, where
l Y Y

 ( ) ( ) ( )t x t x t; ;k k
A A

k
B B corresponds to the kth entanglementmode.

To include interparticle correlationswe further expand each of the species functions Ys s( )x t;k using the
permanents of sm distinct time-dependent single particle functions (SPFs)namelyj j¼ s, , m1
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Here, ¼ s ( )( )c tk n n, , , m1
are the time-dependent expansion coefficients of a particular permanent,  is the

permutation operator exchanging the particle configurationwithin the SPFs, and ( )n ti denotes the occupation
number of the SPFj

( )x t;i . Following theDirac–Frenkel [54, 55] variational principle for the generalized ansatz
(see equations (3), (4)) yields theML-MCTDHBequations ofmotion6 [42, 43]. These consist of a set ofM2

ordinary (linear) differential equations ofmotion for the coefficients l ( )tk , coupled to a set of

++ -
-

+ -
-
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!( )!M N m

N m

N m
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1

1

1

1
A

A

A
A

B
B

B
B nonlinear integrodifferential equations for the species functions, andmA+mB

nonlinear integrodifferential equations for the SPFs.
According to the aboveMB expansion, the one-body reduced densitymatrix ofσ species can be expanded in

differentmodes (see equation (3))

5
Commonly usedmeasures to quantify bipartite entanglement are the von-Neumann entropy, l lY = -å[ ( )] ( ) ( ( ))S t t tlogk k kMB , and the

concurrence l lY = å <[ ( )] ( ) ( )D t t t2 i j i jMB . Here, r l= å Y ñáYs s s( ) ( )∣ ( ) ( )∣t t t tk k k k refers to theN-body densitymatrix and Ys( )tk

denotes the kth species function of theσ species. Note that bothmeasures vanish in the non-entangled case.
6
The generalML-MCTDHB ansatz for a bosonicmixture consisting of an arbitrary number of components has been introduced in [42].

Here, we utilize the Schmidt decomposition that holds for binarymixtures.
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1 , 1 denotes
the one-body densitymatrix of the ith species function. Note here that the system is termed intraspecies
correlated or fragmented ifmultiple eigenvalues of r ¢s ( )( ) x x,1 , aremacroscopically occupied, otherwise is said
to be fully coherent or condensed.

The eigenfunctions of the one-body densitymatrix r ¢s ( )( ) x x,1 , are the so-called natural orbitals fs ( )x t;i .
Herewe consider them to be normalized to their corresponding eigenvalues, sni (natural populations)

ò f=s s( ) ∣ ( )∣ ( )n t x x td ; . 6i i
2

It can be shown thatwhen Y  Y
   ( ) ( )x x t x x t, ; , ;A B A B

MB MF the corresponding natural populations obey
=s s( )n t N1 , =s

¹ ( )n t 0i 1 and then thefirst natural orbital fs s( )x t;1 reduces to theMFwavefunction fs s( )x t; .
Therefore, - s ( )n t1 1 serves as ameasure of the degree of theσ species fragmentation [60, 61].

3. Interaction quench dynamics

In the following the quench-induced phase separation dynamics of a binary repulsively interacting BEC is
investigated bothwithin and beyond theMF approximation. In particular, interspecies interaction quenches are
performed from themiscible to the immiscible regime of interactions and vice versa. Recall [62] that species
separation in the absence of a trap occurs for g g g

AB AA BB
2 , while the two species overlapwhen the above

inequality is not fulfilled [15]. It is relevant to note, however, that for sufficiently strong trapping—a scenario not
considered here—, the above condition is suitablymodified [63]. In that case, the gABneeded to induce
immiscibility can become substantially larger, as it needs to overcome the restoring, and hence implicitly
miscibility favoring, effect of the trap.

First we find the ground state of the system in both theMF and theMB case forfixed intra and interspecies
interactions namely =g 1.004AA , =g 0.9544BB , and =g 0AB . To initialize the dynamics we then abruptly vary
the interspecies coefficient within the interval = [ ]g 0, 2AB , in the dimensionless units adopted herein. Notice
that e.g. =g 0AB corresponds to two decoupled overlapping BECs formed around the center of the harmonic
trap.With the above choice of parameters the critical point, i.e. themiscibility–immiscibility threshold, in the
absence of the trap, is »g 0.9789AB . The number of particles in each species is fixed to = = =N N N 2 50A B ,
withN being the total number of particles of the system.Dynamical phase separation for smaller bosonic
ensembles is addressed in appendix B.

3.1.Quench dynamics to the immiscible regime
As afirst step an interaction quench of an initially species uncorrelated (since =g 0AB )mixture towards the
immiscible regimewith =g 1.2AB is performed, driving the system abruptly out-of-equilibrium and letting it
dynamically evolve. As shown infigure 1, the initial ground state quickly becomes deformed and breaks into
multiplefilaments within theMF approach, depicted infigures 1(a1) and (a2), as well as in theMB case shown in
figures 1(b1) and (b2). The dramatic phase separation observed between the two species, and depicted for t=60
in the density profiles offigures 2(a1), (a2), results in a different number offilaments formed, the latter being
greater within theMF approximation. This suggests that thewavenumber associatedwith the emergence and
growth of thesefilaments is larger in theMF regime.Notice that in both cases the filaments of the two species
locate alternately while the total density does not change dramatically after the filament formation. Additionally
here, thefirst species is found to be expelled further off of the trap center when compared to the second species
since this configuration is energetically preferable by virtue of >g gAA BB. Besides thefilamentation of its density,
each species performs collective oscillations that result in an expansion and contraction of the bosonic cloud.
Namely a breathingmode [30, 64] possessing a frequency w p= » º WT2 0.2 2br . Finally we remark that for
a stronger post-quench repulsion, gAB, an increased number offilaments is observed and amore dramatic phase
separation takes place, occurringmuch faster when compared to smaller gAB values.

In all cases, the dominant wavenumber associatedwith the above-observed unstable dynamics when
entering the phase separated regime, is found to be higher in theMF approachwhen compared to theMB
scenario. To quantify the distinct features of themanifestation of the phase separation dynamics within the two
approaches we start by considering the stability properties of a homogeneous binary systemof length L.Within
theMF approximation the spectrumof quasi-particle excitations consists of two branches W, that in the case of
equalmasses between the bosons read [65]
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where =n N L2 denotes the linear atomdensity [66]. It turns out that if >g g g
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2 , i.e. in the immiscible

regime of interactions, W- becomes imaginary and gives rise to longwavelengthmodes that grow exponentially
in time rendering the homogeneous binary systemunstable [67]. For <g g g

AB AA BB
2 both branches W

2 of
equation (7) remain positive implying that the binary system is stable within thismiscible regime. The two
species remain thenmutually overlapped and undergo a breathing dynamics. Turning to >g g g

AB AA BB
2 , the

most unstable =k kmax modes, corresponding to W-{ ( )}max Im , are presented in figure 1(c1) for varying gAB.
For the numerical identification of kmax we calculate the spectrum, r w˜ ( )( ) k;1 , of the binary system in both the
MF and theMB level. Among themodes that appear in this spectrum, we identify as the fastest growing one the
mode thatmaximizes the growth rate w w= max. As is evident infigure 1(c1), our numericalfindings are in very
good agreement with the analytical predictions within theMF approximation (except for very small values of
gAB). Note here, that we have checked the validity of our calculations for different trapping frequencies within
the local density approximation (see discussion below). The unstablemodes identifiedwithin theMB approach
involve considerably shorter kmax valueswhich result in longer spatial scales for the filament formation (and thus
consist of fewer filaments formed). For example thewavelength obtained in theMF case depicted infigure 1(c1)
for =g 1.2AB is l p= »k2 5.76MF max ( »k 1.09max )while at theMB level we get the value l » 8.73MB

( »k 0.72max ). The observed difference of kmax between theMF andMB evolution can be attributed to the
participation of additionalMB excitationswhich lie beyond the linear response theory as demonstrated, e.g., in
[68] for single component setups.

Additionally, having identified thewavenumber associatedwith the fastest growth, we can also infer the
time at which thefilament formation occurs.We have estimated this time, namely =t tF , by identifying the
time at which the amplitude of this wavenumber, =k kmax, starts to grow. The formation time, tF, is illustrated
infigure 1(c2) for increasing gAB and isfitted by a bi-exponential function. It is evident that close to the

Figure 1. (a1), (a2) [(b1), (b2)] r ( )( ) x t;1 following an interaction quenchof a binarymixturewhich is initially species uncorrelated,
=g 0AB , to the immiscible phasewith =g 1.2AB for speciesA andB respectively, obtained via theMF [MB], i.e. 1–(1, 1) [15–(3, 3)],

approach. (c1)Unstablewavenumber (see also text) kmax as a function of gAB, and the corresponding (c2) estimated time, tF, for the
filament formation (see legend). Note that solid lines in (c1) [(c2)] correspond to a power-law [bi-exponential]fittingwhich is used as a
guide to the eye. (c3)Temporal evolutionof the overlap integral calculated in theMFand theMBapproachupon abruptly switchingon
the interspecies repulsion to =g 1.2AB . Both speciesA andB contain = =N N 50A B atomswhile the trapping frequency is W = 0.1.

Figure 2. (a1), (a2)Profile snapshots of the one-body density of each speciesA andB, and the density of their sum after thefilament
formationwithin theMF and theMB case respectively (see legend). (a3), (a4)Characteristic examples of in situ single-shot images at
theMB level (see legend), and the corresponding averaged density (a5) over =N 1000shots . Other parameters used are the same as in
figure 1.

5

New J. Phys. 20 (2018) 043052 S IMistakidis et al

190



miscibility–immiscibility threshold ( »g 1AB ) both approaches coincide, while deviations between the two
become apparent as we increase the interspecies interactions. Note also that decreasing the trapping strength
towards the homogeneous case alters the time scale at which the instabilitymanifests itself, themore, the closest
we are to the above threshold.

To quantify the degree of phase separationwe evaluate the overlap integral [69, 70]

ò

ò ò

r r

r r
L =

⎡⎣ ⎤⎦
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where, L =( )t 1 L =[ ( ) ]t 0 denotes complete [zero] overlap of the two species upon abruptly driving the system
out-of-equilibrium. As depicted infigure 1(c3) the transition to immiscibility is signaled at slightly earlier times
in theMB approachwith the overlap between the two species being about 50% on average, while being almost
60% on average within theMF approximation.Moreover, the abrupt quench protocol entails rapid oscillations
in theMF casewhen compared to the smoother drop down towards immiscibility observed in theMB scenario.
It is worthmentioning at this point, that the same overall phenomenology is observed even upon linearly
quenching the systembetween the same initial and final gAB values (results not shownhere for brevity). The key
outcome in this case is that the filamentation process is signaled at times proportional to the ramping time used
resulting to a larger L( )t when compared to the abrupt quench protocol.

3.2. Single-shot simulations
As a next stepwe elaborate on how theMB character of the dynamics can be inferred by performing in situ
single-shot absorptionmeasurements [71]. Suchmeasurements probe the spatial configuration of the atoms
which is dictated by theMBprobability distribution. An experimental image refers to a convolution of the spatial
particle configurationwith a point spread function. The latter describes the response of the imaging system to a
point-like absorber (atom). Relying on theMBwavefunction being available withinML-MCTDHBwemimic
the above-mentioned experimental procedure and simulate such single-shot images for both speciesA [namely
 ( ˜ )x t;A

im ] and speciesB [i.e. ¢( ˜ ∣ ( ˜) )x x t;B A
im ] at each instant of the evolution (formore details see

appendix A)whenwe consecutively imagefirst theA and then theB species.We remark that the employed point
spread function (being related to the experimental resolution), consists of aGaussian possessing a
width = »w l1 3.2.

Figures 2(a3), (a4) illustrate thefirst and the second simulated in situ single-shot images at =t 60im for both
species, namely =( ˜ )x t; 60A

im , and ¢ =( ˜ ∣ ( ˜) )x x t; 60B A
im . It is evident that inboth shots the two species

exhibit a phase separatedbehavior resembling thisway theoverall tendencyobserved in the one-body density (see
alsofigure 2(a2)).However, a direct observation of the one-body density in a single-shot image is not possible due to
the small particle number of the considered binary bosonic gas, = =N N 50A B , aswell as the presence ofmultiple
orbitals in the system.TheMBstate builds upon a superpositionofmultiple orbitals (see equations (4) and (5)) and
therefore imaging an atomalters theMB state of the remaining atoms andhence their one-bodydensity. This is in
direct contrast to aMFproduct state, composed froma singlemacroscopic orbital,where the imaging of an atom
does not affect the distributionof the rest (see also thediscussionbelow for the corresponding variance). Note also
here that the above-mentioned single-shot images are reminiscent of the experimental images obtained in a two-
dimensional (2D) geometrywhen examining thephase separation process [13]. To reproduce the one-body
density of the systemoneneeds to rely on an averageof several single-shot images. Indeed,figure 2(a5) showswithin
theMBapproach theobtained average, r s¯ ( )1 , , over =N 1000shots images for both species, namely =( )A x t;A

im

å = ( ) ( )/N A x t1 ;shots k
N

k
A

1 im
shots and å=

=
¢ ¢   ( ∣ ( ) ) ( ) ( ∣ ( ) )/A x A x t N A x A x t; 1 ;B A

k

N
k
B A

im shots 1 im
shots respectively. As

expected, a direct comparisonof this averaging and the actual one-body density obtainedwithin theMBapproach
(seefigures 2(a2) and (a5)) reveals that they are almost identical. Finally, let us remarkhere that similar observations
can bemadewhenperforming the single-shot procedure initially for theB and then for theA species.

Let us now investigate whether the presence of correlations can be deduced from the time evolution of the
variance ( )t of a sample of single-shotmeasurements [72–74]. As before, wemainly focus on the scenario
where the imaging is performed first on theA and then on theB species, but the same results can be obtained for
the reverse consecutive imaging process. The variance of a set of single-shotmeasurements  ={ ( ˜)}xk

A
k
N

1
shots

concerning theA species reads

  ò å= -
=

( ) ˜ [ ( ˜ ) ¯ ( ˜ )] ( )t x
N

x t x td
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im im
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In the samemanner, one defines the variance of a set of single-shots  ¢ ={ ( ˜ ∣ ( ˜))}x xk
B A

k
N

1
shots referring to theB

species

6

New J. Phys. 20 (2018) 043052 S IMistakidis et al

191



    ò å= ¢ ´ ¢ - ¢
=

( ) ˜ [ ( ˜ ∣ ( ˜) ) ¯ ( ˜ ∣ ( ˜) )] ( )t x
N

x x t x x td
1

; ; . 10B

k

N

k
B

k
A

k
B

k
A

im
shots 1

im im
2

shots

Figures 3(a1), (a2)present both  ( )tA and  ( )tB withw=1, and =N 1000shots at theMFand theMB level
respectively. As it can be seen, at theMFapproximation  ( )tA

MF and  ( )tB
MF remain almost constant exhibiting

small amplitude oscillationswhich essentially resemble thebreathingmotion that both species feature.However,
when inter and intraspecies correlations are taken into account  ( )tA

MB and  ( )tB
MB showa completely different

behavior. Inparticular, an increasing tendency is observed at the initial stages of theunstable dynamics,while after
thefilament formation ( »t 27F ), s ( )tMB undergoes large amplitude oscillations reflecting the global breathing of
eachbosonic cloud.More importantly, the aforementioned increasing tendency of the variance resembles the
growth rate of the entanglement, (see l- ( )t1 1 infigure 3(b1)) and the corresponding discussion below.The
above resemblance canbe explained as follows. In a perfect condensate, i.e.l =( )t 11 and =s ( )n t 11 , s ( )tMF is
almost constant during thedynamics as all the atoms in the corresponding single-shotmeasurement are picked
from the sameSPFjs ( )t (see also equation (2)). The only relevant information that is imprinted in s ( )tMF

concerns the globalmotion, here thebreathingmode, of the entire cloud. It is alsoworthmentioning here that
 »( ) ( )t tA B

MF MF during theMFevolution, testifying the absenceof both inter and intraspecies correlations. The
observed negligible differences between  ( )tA

MF , and  ( )tB
MF (hardly visible infigure 3(a1)) are caused by the slight

deviations in themagnitude of thebreathingmotion that each species undergoes.
On the contrary, for aMB systemwhere entanglement and fragmentation are present due to the inclusion of

inter and intraspecies correlations, the correspondingMB state consists of an admixture of variousmutually
orthonormal species functions Y ( )tk

A and Y ( )tk
B respectively, = ¼k 1, 2, , 15 (see equation (3)) each of them

building upon differentmutually orthonormal SPFsj ( )ti
A andj ( )ti

B respectively, =i 1, 2, 3 (see also
equation (4)). In this way, the corresponding single-shot variance is drastically altered from itsMF counterpart
as the atoms are picked from the above-mentioned superposition and thus their distribution in the cloud
depends strongly on the position of the already imaged atoms [71, 72, 75], see also appendix A. To fairly discern
between the impact of the inter and intraspecies correlations on the variancewefirst inspect s( )t when
neglecting the entanglement between the species (this approachwill be referred in the following as speciesMF
approximation (SMF)). Namely we calculate s ( )tSMF assuming that the sN -body state of each species is
described by only one species function (Y = Y( ) ( )t tk

A
k
B = 0 for ¹k 1) that builds upon distinct SPFsj ( )ti

A and

j ( )ti
B , =i 1, 2, 3. As shown infigure 3(a2) during thefilamentation process s ( )tSMF increases slightly and

 »( ) ( )t tA B
SMF SMF while at later time instants  <( ) ( )t tA B

SMF SMF . This latter deviation is attributed to the
different degree of fragmentation ( - s ( )n t1 1 , see e.g. figure 3(b1)) that each species possesses after the
filamentation process >t 27. Having identified that the presence of fragmentation essentially causes a slight
increase on the single-shot variance andmore importantly gives rise to deviations between the s ( )tSMF ʼs of the
two species we can elaborate on the impact of the entanglement when also interspecies correlations are taken
into account. In theMB case s ( )tMB shows a remarkable increasing tendency during the filamentation process
highlighting this way the presence of entanglement in the system. Indeed, the increase of entanglement (evident
in l- s ( )t1 1 ) and consequently of the variance can be attributed to the build up of higher-order superpositions
during the filamentation process. Since the absorption imaging destroys the entanglement between the species,
we expect that the single-shot images heavily depend on the first few imaged atoms giving rise to pronounced

Figure 3.Temporal evolution of the variance, ( )t , obtained via in situ single-shotmeasurements in (a1) theMF, (a2) the SMF (see text
for the relevant explanation) and theMB case respectively (see legends). (b1)Deviation fromunity of thefirst natural species
population and thefirst natural population of theσ-species respectively (see legend). (b2)Evolution of the natural species populations,
l ( )ti with = ¼i 1, ,15. Insets illustrate snapshots, at t=36 (top panels), and t=55 (bottompanels), during propagation of thefirst
threemodes of entanglement, r s( )

k
1 , ( =k 1, 2, 3) for the s = A B, species. (b3), (b4)Temporal evolution of the natural populations

( )n ti for speciesA andB respectively. In all cases the system is quenched from =g 0AB to =g 1.2AB , while other parameters used are
the same as infigure 1.
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s ( )tMB .We further remark that this increasing tendency of the variance becomesmore pronounced (reduced)
for larger (smaller) quench values (results not included for brevity).Moreover, during the filamentation process
 »( ) ( )t tA B

MB MB but after their formation  <( ) ( )t tA B
MB MB . This latter deviation can be attributed to the

different degree of fragmentation that builds up during evolution in each of the two species (compare - s ( )n t1 1

for t 40 illustrated infigure 3(b1)).Wefinally note that the above-described overall increasing behavior of
 ( )tA

MB and  ( )tB
MB is robust also for smaller samplings of single-shotmeasurements, e.g. =N 100shots , or

different widths, e.g. =w 0.5, (results not shownhere for brevity).

3.3. Correlation dynamics
Thedegree of entanglement is encoded in the species functions of the binary system, i.e. Ys s( )x t;k , with s = A B, ,
beingweighted by thel ( )tk coefficients.We remind the reader that ifl =( )t 11 andl =( )t 0i ( = ¼i k2, , ) then
the non-entangled limit is reachedwhile ifl ¹( )t 0k themoremodes are occupied themore strongly entangled the
binary system (see footnote 4). In particular, by considering the evolutionof the natural occupationsl ( )tk , depicted
infigure 3(b2) it is observed that from the beginning of the quench-induceddynamics the occupationof the initial
singlemode (non-entangled)wavefunction reduces rapidly andhigher-lyingmodes become spontaneously
populated.Notice that before thefilament formation, e.g. at »t 13,l » 0.371 andl l» » 0.122 3 , while after the
breaking ( »t 27) the amplitude of the higher-lyingmodes drops below0.1 and remains in this ballpark till the end
of thepropagation.The insets depict selected time instants during the phase separationprocess of thefirst three
modes of entanglement: namely, just after the breaking (upper insets infigure 3(b2)) and the consequent
filamentationof theMBwavefunction, and for larger propagation times (lower insets infigure 3(b2)) corresponding
to L »( )t 0.5 during evolution (see alsofigure 1(c3)). In all cases the leading ordermodeweighted byl1, and the
first twoof the higher-lyingmodes that are predominantly occupied,weighted byl2 andl3 respectively, are shown
for both theA andB species. As it is evident, the dominantmode clearly captures all thefilaments formed for both
species. The secondmode for speciesAbuilds a humpat the locationcentered around the density dipof thefirst
mode,while it also follows the outerfilaments formed, and the corresponding thirdmodemostly supports the inner
filaments. As far as theB species is concerned the above-observedphenomenology is somewhat reversed.Notice
that, the secondmodemostly follows the outerfilaments, and the thirdmode is found tobe predominantly
associatedwith thefilaments developed closer to the trap center.

To further elaborate on theMBnature of the observed quench dynamics we next examine the population of
the natural orbitals shown infigures 3(b3), (b4). The occupations of the three natural orbitals used for each of the
two species are significant from the early stages of the dynamics, with the two lower-lying orbitals being
monotonically ordered, acquiring lower populations during evolution.

As alreadydiscussed in section 2 the non-negligible populationof bothlk and
snk ( >k 1) signifies the presence

of inter- and intraspecies correlations respectively. To identify thedegree of intraspecies correlations at the one-body
level during the quenchdynamics,we employ the normalized spatialfirst order correlation function [76, 77]

r

r r
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This quantitymeasures essentially the proximity of theMB state to aMF (product) state for afixed set of
coordinates x, ¢x . r ¢s ( )( ) x x t, ;1 , is the one-body reduced densitymatrix of theσ species (see also equation (5))
and r rº ¢ =s s( ) ( )( ) ( )x t x x x t; , ;1 , 1 , . Furthermore, ¢s∣ ( )∣( )g x x t, ;1 , takes values within the range [ ]0, 1 . Note
that, two different spatial regionsR, ¢R , with Ç ¢ = ÆR R , exhibiting ¢ =s∣ ( )∣( )g x x t, ; 01 , , Îx R, ¢ Î ¢x R
( ¢ =s∣ ( )∣( )g x x t, ; 11 , , Îx R, ¢ Î ¢x R ) are referred to as fully incoherent (coherent). The absence of one-body
correlations in the condensate is indicated by ¢ =s∣ ( )∣( )g x x t, ; 11 , for every x, ¢x while the case that at least two
distinct spatial regions are partially incoherent i.e. ¢ <s∣ ( )∣( )g x x t, ; 11 , signifies the emergence of correlations.

Figures 4(a1)–(a4) and [(b1)–(b4)] present ¢∣ ( )∣( )g x x t, ;A1 , ¢[∣ ( )∣]( )g x x t, ;B1 , for different time instants
during the dynamics, namely before and after the filamentation process. At initial time instants (see figures 4(a1),
(a2) and (b1), (b2))where the density deformation sets in, one-body correlations begin to develop. For instance

¢ »s∣ ( )∣( )g x x t, ; 0.51 , between the central and the outer BEC regions (inwhich thefilaments are formed later
on, see e.g. at »x 0, ¢ »x 15 at t=12), while ¢ »s∣ ( )∣( )g x x t, ; 0.81 , among the outer regions ( = - ¢ »x x 15
at t=12). An augmented character of ¢s∣ ( )∣( )g x x t, ;1 , for increasing distances (e.g. forfixed »x 0, towards
¢ »x 25 at t= 7) is also observed. For later evolution times, i.e. after the filamentation process, a significant build

up of one-body correlations occurs for both species. Referring to ¢∣ ( )∣( )g x x t, ;A1 , , see figures 4(a3), (a4), we
observe that eachfilament is perfectly coherent with itself (see the diagonal elements), while a small amount of
correlations occurs between the inner filaments ( » ¢ » - = »∣ ( )∣( )g x x t6, 6; 33 0.9A1 , ) or the outer ones
( » ¢ » - = »∣ ( )∣( )g x x t14, 14; 33 0.8A1 , ).More importantly, strong correlations appear between
neighboring inner and outerfilaments aswell as among an inner (outer)filament and its long distance outer
(inner) one ( ¢ »∣ ( )∣( )g x x t, ; 0.5A1 , ) signaling their independent nature. Finally, significant losses of coherence

8

New J. Phys. 20 (2018) 043052 S IMistakidis et al

193



are observed between the inner (outer)filaments and the central dip.Turning to ¢∣ ( )∣( )g x x t, ;B1 , , seefigures 4(b3),
(b4), it is evident that strong correlations appear among each outer and the centralfilaments (see e.g. »x 10,
¢ »x 0 at t=33) aswell as between theouter ones ( = - ¢ »x x 10 at t=33). This latter behavior ismanifested

by the almost vanishing off-diagonal elements of ¢∣ ( )∣( )g x x t, ;B1 , after thefilamentationprocess, indicating a
tendency of localization of eachfilament formed.

Havingdiscussed indetail the significanceof one-body intraspecies correlations,wenext quantify the degree of
secondorder intra- and interspecies correlations by inspecting the normalized two-body correlation function [77]
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1

,
2 1 2 MB is the diagonal two-body reduced density

matrix referring to the probability ofmeasuring two particles located at positions x1, x2 at time t. Y s( )† xi
,

Ys[ ( )]xi is the bosonic field operator that creates (annihilates) aσ species boson at position xi. Regarding the
same (different) species, i.e. s s= ¢ (s s¹ ¢), ss¢∣ ( )∣( )g x x t, ;2 ,

1 2 accounts for the intraspecies (interspecies) two-
body correlations and is also experimentally accessible via in situ density density fluctuationmeasurements
[78–80].We remark here that a perfectly condensedMB state leads to =ss¢∣ ( )∣( )g x x t, ; 12 ,

1 2 and it is termed
fully second order coherent or uncorrelated. However, if ss¢∣ ( )∣( )g x x t, ;2 ,

1 2 takes values smaller (larger) than
unity the state is referred to as anti-correlated (correlated).

Let usfirst comment on the intraspecies two-body correlated character of the dynamics. Focusing on
∣ ( )∣( )g x x t, ;AA2 ,

1 2 we observe a consecutive formation of two-body correlations during the dynamics, see
figures 4(c1)–(c4). Besides a bunching tendency (smaller for the innerfilaments) of two bosons to lie within each
filament (see the diagonal elements), a correlated behavior is observed among two parity symmetric outer ones
(see e.g. = - =x x 141 2 at t=33). In addition, an outer filament is anti-correlated bothwith an inner one
( »x 141 , »x 62 at t=33) aswell as with the central dip ( »x 141 , »x 02 ). Combining this latter behavior with
the above suppression of ¢∣ ( )∣( )g x x t, ;A1 , between thefilaments, implies the formation of domain-wall-like
structures between the area of central filaments and an outer one. Another interesting observation here is
that the region between neighboring inner and outerfilaments (e.g. »x 161 at t=33) is strongly correlated

Figure 4. (a1)–(a4) [(b1)–(b4)]One-body normalized correlation function ¢∣ ( )∣( )g x x t, ;A1 , ¢[∣ ( )∣]( )g x x t, ;B1 , shown for different time
instants during the evolution. (c1)–(c4) [(d1)–(d4)] Snapshots of the two-body correlation function ¢∣ ( )∣( )g x x t, ;A2 ,

1 2

¢[∣ ( )∣]( )g x x t, ;B2 ,
1 2 of theA [B] species. (e1)–(e4) Interspecies two-body correlation function ¢∣ ( )∣( ) ( )g x x t, ;A B2 , ,

1 2 . In all cases the same
selected time instants during propagation are illustrated (see legends). The remaining parameter values are the same as infigure 1.
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(anti-correlated)with its parity symmetric one. Similar observations can also bemade for the ∣ ( )∣( )g x x t, ;BB2 ,
1 2 ,

see figures 4(d1)–(d4). Evidently, it is preferable for two bosons to residewithin eachfilament (see the diagonals)
or one in each of the outerfilaments (e.g. = - »x x 101 2 , t=33). The central filament is anti-correlatedwith
the outer ones throughout the dynamics and since ¢ ∣ ( )∣( )g x x t, ; 0BB1 , in the same region, the formation of a
domain-wall-like structure between a central and an outer filament can be inferred.

As a next stepwe inspect the interspecies correlation dynamics via ∣ ( )∣( )g x x t, ;AB2 ,
1 2 , see figures 4(e1)–(e4).

Here, an outerA speciesfilament ( »x 141 at t=33) is anti-correlated (correlated)with the corresponding B
species outer located at »x 102 (central at =x 02 ). However, an innerA speciesfilament ( »x 51 at t=33) is
correlated (anti-correlated)with the respectiveB species outer (central) one.Moreover, we find that the central
dip of theA species exhibits a correlated (anti-correlated) behavior with the outer (central)B species filaments.
Summarizing the outcome of ∣ ( )∣( )g x x t, ;AB2 ,

1 2 is two-fold. The fact ¹∣ ( )∣( )g x x t, ; 1AB2 ,
1 2 indicates the

entangled character of theMBbinary system. Additionally, the presence of anti-correlations between the inner
and outerfilaments ofA andB species respectively (or vice versa) supports the phase separation process being
imprinted as domain-walls at the two-body level.

3.4. Reverse quench dynamics
Up to nowwe explored cases which involve transitions from themiscible to the immiscible phase, by initializing
the dynamics from the species uncorrelated ( =g 0AB ) case and abruptly switching on the interspecies repulsion.
Our aimhere, is to consider the reverse process, namely initialize the system from a species correlated ground
state with =g 1.4AB , i.e. deep in the immiscible regime of interactions, and suddenly reduce gAB. A characteristic
example of an immiscible to immiscible transitionwith post-quench value =g 1.0AB is realized infigures 5
(a1)–(a4). Notice that the phase separated species remain as such at all timeswith speciesA forming two humps
symmetrically placed around the center of the trap. Closer inspection of the central almost zero density region,
suggests that two hardly visible density dips are spontaneously formed in the regions indicated by dashed
rectangles infigures 5(a1) and (a3) for theMF and theMB case respectively. These density dips interact with the
density peaks created in this species right at their phase boundary, and via this interactionmultiple interference
fringes can be seen around the center of the trap in both approaches. It is these events which aremore
pronounced in theMF than in theMB approach, that result in the differencesmeasured in the overlap between
the two species. In particular as shown infigure 6(b), L »( )t 0.35MF on average, while L ( )t 0.05MB during
evolution, which is significantly smaller. The location of these dips is also the location of a ‘giant’ density hump
formed in speciesB. It is alsoworthmentioning at this point that the evolved phase separated state formed here,
consists the 1D analog of the so-called ‘ball’ and ‘shell’ state that forms in higher-dimensional binary BECs [12].

However a farmore rich dynamical behavior of the binary system is observedwhen the two immiscible
species are abruptly quenched towards themiscible regime, with the post-quench value =g 0.5AB . Such a
situation is illustrated infigures 5(b1), (b2) [(b3), (b4)]within theMF [MB] approach. The quench dynamics leads
to the formation ofmultiple DAD solitary waves [47, 48] both in theMF and in theMB approach. In the former
case, theDAD structures are directly discernible and can be seen to interact and performoscillations, splitting
and recombiningwithin the parabolic trap, in away reminiscent of the one-component dark solitons in the
experiments of [81, 82]. To verify the nature of these structures we further depict as an inset infigure 5(b1) the
spatio-temporal evolution of the phase, where the phase jumps corresponding to the location of each dark
soliton shown in the density can be easily seen. In contrast to that, in theMB scenario the dynamical evolution of
theseDAD structures is less transparent, since the system in this case is strongly correlated and the background
atwhich the solitons are formed is highly excited. Recall that dark-bright states are prone to decay in the
presence of quantumfluctuations [49] into faster (traveling towards the periphery of the cloud) and slower
(remaining closer to the trap center) solitary waves. A similar dynamical phenomenology is also observed here

Figure 5. (a1), (a2) [(a3), (a4)]Quenched r ( )( ) x t;A1 , , and r ( )( ) x t;B1 , for an immiscible ( =g 1.4AB ) to an immiscible ( =g 1.0AB )
transition, within theMF [MB] approach. (b1), (b2) [(b3), (b4)]The same as the above but for an immiscible ( =g 1.4AB ) to amiscible
( =g 0.5AB ) transition. The inset in (b1) shows the corresponding evolution of the phase f[ ( )]( x targ ;A

i
A in theMF case. Other

parameters used are the same as infigure 1.
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for the above-mentionedDAD states. Indeed, at the early stages of the dynamics several decay events occur. Two
case examples of such a decay aremarkedwith circles infigures 5(b3), (b4) corresponding to an initially fast and
an initially slowDADpair respectively. This way in theMB case the number of the solitary waves formed
increases when compared to the initial stages of the dynamics and thusmultiple collision events occur during
propagation.We can clearly distinguish a collision event closer to the trap center at »t 27F

MB which results to a
merger. On the other hand, the corresponding fastmovingDAD states reach at different times the periphery of
the cloud and thusmultiple collision events occur at different times during evolution. A case example of such a
collision is indicatedwith arrows infigures 5(b3), (b4).

To expose themulti-orbital nature of the abovedynamics, both theone-bodydensity aswell as thedifferent
orbital contributions are depicted infigures 6(a1)–(a6) at initial (t=15), intermediate (t=27) and larger
evolution times (t=40). Notice that at initial times the two species are still phase separated,while thefirst orbital
predominantly describes theMBdynamics of the system.Here, we can easilymeasure the number ofDADsolitary
waves that are initially formed, illustratedwith two-directional arrows infigures 6(a1) and (a4), by observing that
eachdensity dip created in speciesA,figure 6(a1), isfilled by a density hump (on topof the BECbackground)
developed in speciesB,figure 6(a4), and vice versa. Furthermore, it is found that consecutive orbitalswithin the
same species also follow the above-describedphenomenologywith a clearly visible domain-wall [4, 44] formed
between the second and the third orbital of speciesB (see arrows in green infigures 6(a4)–(a6)). For intermediate
times themerging of themost inner solitary states discussed above is indicatedwith circles infigures 6(a2), (a5).
Notice the pronounced density hump that occurs in speciesB around the center of the trap, being supported by all
three orbitals developed in this species. Additionally, also the fasterDADsolitarywaves aremonitored in this time
slice, where again it is observed that these states are supported by all orbitals used in eachof the two species being
markedwith dashed rectangles.However, at larger propagation times and sincewe ‘kicked’ the system towards
miscibility,multiple interference eventsmore pronounced in speciesB, result to a dephasing of thesematterwave
patterns andmost of these states are lost as can be seen infigures 6(a3), (a6), rendering the two speciesmostly
overlapped.Notice the increasing tendency towardsmiscibilitywith the overlap integral (see againherefigure 6(b)
for =g 0.5AB ) reaching itsmaximumvalue, L »( )t 60 0.95MB , at large propagation times, when compared to
theMFapproximation. In the latter case, L »( )t 0.85MF is reached from the early stages of the dynamics
remaining onaverage almost the same as time progresses.

To conclude our investigation, let us also briefly comment on themanifestation of theMB correlated
character of the quench-induced dynamics with the aid of in situ single-shotmeasurements. Figures 7(a), (b)
present thefirst and the second simulated in situ single-shot images at =t 15im for both species, with theDAD
structures being clearly imprinted in both shots. Notice that the two species are almost completely overlapped
resembling the overall tendency observed in the averaged, over =N 1000shots , one-body density illustrated in
figure 7(c). By inspecting the corresponding variances (see also equations (9) and (10)) during the evolution
shown infigure 7(d), we observe thatwithin theMF  ( )tA

MF and  ( )tB
MF exhibit a small amplitude oscillatory

behavior reflecting the global breathingmotion of each cloud. Interestingly enough the oscillation amplitudes of
 ( )tA

MF and  ( )tB
MF differ further, due to the difference in themagnitude of the breathing that each species

undergoes (see alsofigures 5(b1), (b2)). In sharp contrast to the above, the variances within theMB approach
differ drastically from theirMF counterparts. Indeed, both  ( )tA

MB and  ( )tB
MB show an overall increasing

tendency indicating, as in the positive quench scenario, the presence of entanglement (see also the
corresponding discussion in section 3.2).  ( )tA

MB and  ( )tB
MB deviate significantly as a result of the strong

intraspecies correlations.We should bear inmind that the initial pre-quenched state is both strongly fragmented
and entangled on theMB level. Therefore, in this strongly correlated scenario both fragmentation aswell as
entanglement are greatlymanifested in the evolution of the variance of a set of single-shotmeasurements.

Figure 6. (a1)–(a6)Profile snapshots of the one-body density of each speciesA andB, as well as of the three natural orbitals used for
each species for the negative quench scenario (see legend).We also note that the second and the third natural orbitals of speciesB are
multiplied by a factor of 8 to provide better visibility. (b)Temporal evolution of the overlap integral calculated in both approaches and
for both transitions depicted infigure 5 (see legend). Other parameters used are the same as infigure 1.
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4. Conclusions

In the present workwe explored the quench-induced phase separation dynamics of an inhomogeneous
repulsively interacting binary BECbothwithin and beyond theMF approximation includingmultiple orbitals.
To achieve such amiscible to immiscible transition (positive quench case) the intraspecies interactions are held
fixed and the system is abruptly driven out-of-equilibriumby switching on the interspecies repulsion.Quench
dynamics leads to the filamentation of the density of each of the two species and also in both approaches (MFand
MB)while thefilaments formed perform collective oscillations of the breathing-type. Thewavenumbers
associatedwith the observed growth are identified to be shorter in theMB case for all gAB values that we have
checked, whilst our numerical findings at theMF level are in very good agreementwith the analytical predictions
available in this limit, as regards the instability growth rate. It is found that increasing the interspecies repulsion,
not only accelerates the filamentation process but also increases the number offilaments formed in both
approaches, occurring faster on theMB level. Additionally, stronger interspecies repulsion leads to almost
complete phase separation beingmore pronounced in theMB scenario.We further note, that upon fixing the
interspecies repulsionwhile decreasing significantly the system size (few boson case) phase separation is absent
in theMB casewhile still present at theMF limit.

Detailed correlation analysis at the one- and the two-body level bear the signature of the phase separation
process as themiscibility–immiscibility threshold is crossed.On the one-body level significant losses of
coherence are observed, verifying the fragmented nature of the system, between filaments residing around the
center of the trapwith the longer distant ones lying at the periphery of the bosonic cloud. At the two-body level
domain-wall-like structures are revealed, since the innerfilaments in both species are found to be anti-correlated
with their respective outer ones. These domain-walls support the fact that for smaller interspecies interactions,
butwell inside the immiscible regime, we never observe perfect demixing of the two species. Furthermore, and
evenmore importantly, the presence of both entanglement and fragmentation are related to the variance of
single-shot images, that are utilized for thefirst time in the current effort for binary systems, offering a direct way
for the experimental realization of the observed dynamics. In particular, it is found that the growth rate of the
variance resembles the growth rate of the entanglement. The fragmentation of the binary system is captured by
the deviations in the variancemeasured in the course of the dynamics with respect to each of the two species.

Interestingly enough, when considering the reverse (negative) quench scenario, namely quenching from the
immiscible towards themiscible regimemultiple DAD solitary waves are spontaneously generated in both
approaches and they are found to decay in theMB case [49]. The evolution of the variance of single-shot
measurements reveals enhanced entanglement, since the system in this case is strongly correlated on theMB
level. Finally, for transitions inside the immiscible regimewe retrieve the 1D analog of the so-called ‘ball’ and
‘shell’ structure that appears in higher-dimensional binary BECs [12, 83].

There aremultiple directions that are of interest for futurework along the lines of the current effort. A
systematic study of the dynamical phase separation process following a time-dependent protocol (e.g. a linear
quench) presents one of themajor computational challenges for further study. In particular, in such a scenario
one can explore the domain formation crossing the critical point with different velocities and thus testing the
Kibble–Zurekmechanism [66] in the presence of quantumfluctuations. However, to examine the latter, amajor
challenge that it is imperative to overcome is that of considering low atomnumbers, in order to explore the
associated thermodynamic limit, avoiding the potential influence offinite size effects. Another straight forward
direction is to consider the corresponding already experimentally realized [13] 2D setting, and examine how the
MFproperties are altered in the presence of quantum fluctuations. Also of great interest would be to consider the
quench dynamics of spinor BECs, for which phase separation processes are of ongoing interest at theMF limit
[84] and also investigate the relevantMB aspects.

Figure 7. (a), (b)Characteristic examples of in situ single-shot images at theMB level (see legend), and the corresponding averaged
density (c) over =N 1000shots . (d)Temporal evolution of the variance, ( )t , obtained via in situ single-shotmeasurements in both
approaches (see legend). Other parameters used are the same as infigure 1.
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AppendixA. Single-shotmeasurements in binary bosonicmixtures

As in the single component case, the single-shot simulation procedure relies on a sampling of theMBprobability
distribution [71, 72, 75]. The latter is available within theML-MCTDHB framework. However, in a two species
BEC andwhen inter and intraspecies correlations are taken into account, the entire single-shot procedure is
significantly alteredwhen compared to the single component case.Here, the role of entanglement between the
speciesmanifested by the Schmidt decomposition (see equation (3)) and in particular the Schmidt coefficients
lkʼs play a crucial role concerning the image ordering.

For instance, to imagefirst theA and then theB species we consecutively annihilate all theNA particles.
Focusing first on a certain imaging time instant, tim, a randomposition is drawn according to the constraint
r ¢ >( )( ) x lN

1
1 1

A
where l1 refers to a randomnumberwithin the interval [0, r{ ( )}( ) x tmax ;N

1
im

A
]. Thenwe project the

(NA+NB)-bodywavefunction to the ( - +N N1A B)-body one, by employing the operator


Y ¢ Ä( ˆ ( ) ˆ )xA B
1

1 ,

where Y ¢ˆ ( )xA 1 denotes the bosonic field operator that annihilates anA species boson at position ¢x1 and  is the
normalization constant. The latter process directly affects the lkʼs (entanglement weights) and thus despite the
fact that theB species has not been imaged yet, both r - ( )( ) tN 1

1
im

A
and r ( )( ) tN

1
im

B
change. This can be easily

understood by employing oncemore the Schmidt decomposition. Indeed after this firstmeasurement theMB
wavefunction reads

å lY ñ = Y ñ Y ñ-
- -∣ ˜ ( ) ˜ ( ) ∣ ˜ ( ) ∣ ( ) ( )t t t t , A1

N N

i
i N i N

A
i
B

MB
1,

im , 1 im , 1 im im
A B

A A

where Y ñ = Y ¢ Y ñ-∣ ˜ ˆ ( )∣xi N
A

N A i
A

, 1
1

1A i
is the -N 1A species wavefunction. = áY Y ¢ Y ¢ Y ñ∣ ˆ ( ) ˆ ( )∣†

N x xi i
A

A A i
A

1 1 denotes

the normalization factor and l l l= å-˜ N Ni N i i i i i, 1
2

A
are the Schmidt coefficients that refer to the

( - +N N1A B)-bodywavefunction. The above-mentioned procedure is repeated for -N 1A steps and the
resulting distribution of positions ( ¢x 1, ¢x 2,K, ¢ -x N 1A

) is convolutedwith a point spread function leading to a

single-shot = å =
-

- ¢( ˜) ( ˜ )
x eA

i
N

1
A

x xi

w

2

2 2 for theA species. Here x̃ refers to the spatial coordinates within the image and
w is thewidth of the point spread function. It is worthmentioning also at this point that before annihilating the
last of theNA particles, theMBwavefunction has the form

å lY ñ = F ñ Y ñ∣ ˜ ( ) ˜ ( ) ∣ ( ) ∣ ( ) ( )t t t t , A2
N

i
i i

A
i
B

MB
1,

im ,1 im ,1 im im
B

where F ñ∣ ( )ti
A
,1 im denotes a single particle wavefunction characterizing theA species. Then, it can be easily shown

that annihilating the lastA species particle theMBwavefunction reads

å
å

l

l
Y ñ = ñ Ä

á F ñ

á F ñ
Y ñ∣ ˜ ( ) ∣ ˜ ( ) ∣

˜ ( )∣ ∣ ∣
∣ ( ) ( )t

t x

t x
t0 , A3

N

i

i i
A

j j j
A

i
B

MB
0,

im
,1 im ,1

,1 im ,1
2

im
B

where á F ñ∣x j
A
,1 is the single particle orbital of the jthmode. After this last step the entanglement between the

species has been destroyed and thewavefunction of theB species Y ñ∣ ( )tN
MB im

B corresponds to the second termof
the cross product on the right hand side of equation (A3). In this way, it becomes evident that Y ñ∣ ( )tN

MB im
B

obtained after the annihilation of allNA atoms is a non-entangledNB-particleMBwavefunction and its
corresponding single-shot procedure is the same as in the single species case [71]. The latter is well-established
(for details see [71, 72]) and therefore it is only briefly outlined below. Referring to =t tim wefirst calculate
r ( )( ) x t;N

1
im

B
from theMBwavefunction Y ñ º Y ñ∣ ∣ ( )tN imB

. Then, a randomposition x1 is drawn obeying

r  >( )( ) x t l;N
1

1 im 2
B

where l2 is a randomnumber in the interval [0, r ( )( ) x t;N
1

im
B

]. Next, one particle located at a

position x1 is annihilated and r - ( )( ) x t;N 1
1

im
B

is calculated from Y ñ-∣ N 1B
. To proceed, a new randomposition x2 is

drawn from r - ( )( ) x t;N 1
1

im
B

. Following this procedure for -N 1B steps we obtain the distribution of positions

( ¢¢x 1, ¢¢x 2,K, ¢¢ -x N 1B
)which is then convolvedwith a point spread function resulting in a single-

shot ¢( ˜ ∣ ( ˜))x xB A .
We remark here that the same overall procedure can be followed in order first to image theB and then theA

species. Such an imaging process results in the corresponding single-shots ( ˜)xB and  ¢( ˜ ∣ ( ˜))x xA B .
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Appendix B. Fewboson case

Here, we explore the dependence of amiscible-immiscible transition, from =g 0AB to =g 1.2AB , on the total
number of atoms,N, of the binary system. Initially we consider a binary system consisting ofN=40 atoms,
which is almost half the total number of particles considered in themain text (N=100), and as a next step a
mixturewithN=10 bosons, i.e. an order ofmagnitude smaller cloud, is studied. Ourfindings are summarized
infigure B1. At theMF level depicted infigures B1(a), (b) and (e), (f) forN=10 andN=40 respectively, we
find that the number of filaments formed depends on the number of atoms present in the system and for larger
particle numbersmore filaments are formed. In sharp contrast to the above dynamics, for small particle
numbers, i.e.N=10, phase separation is not observed in theMB approach (while it is transparent at theMF
level in the formof a ball and shell configuration); instead an enhancedmiscibility region is evident infigures
B1(c), (d). Alterations of themiscibility–immiscibility threshold due to the presence of quantumpressure effects
in confinedBECs have been reported in [63, 85, 86] but at theMF level. Remarkably here, and also in contrast to
theMF approximation four, instead of two, almost equally populated filaments are dynamically formed in both
theA and theB species shown respectively infigures B1(c) and (d), but the two species remain overlapping at all
times. Additionally, the interparticle repulsion between the species leads to breathing-type oscillations of the
particle densities.

As the number of particles is increased, namely forN=40, the one-body density evolution of theA species
shown infigures B1(e), (g) for theMF and theMB scenario respectively also differ. In particular, while in both
approaches fourfilaments are formed, they are found to be significantly broader in theMB case. This broadening
togetherwith the breathing that the cloud undergoes, leads to a collision of the innerfilaments in a periodic
manner, beingmore pronounced in theMB casewhen compared to the singlemerging, and repulsion observed
at around »t 70 in theMF approach offigure B1(e).Moreover, the disparity between the two approaches
becomes rather transparent when further inspecting the spatio-temporal evolution of the density of speciesB
illustrated infigures B1(f), (h) for theMF and theMB case respectively. Interestingly here, in theMB scenario
only twofilaments are formed located alternately in regions that correspond to density dips of speciesA,
restoring the phase separation process absent for smaller particle numbers. However, the central filament
created in theMF approach (see for comparison figure B1(f)) is clearly absent in theMB case, resulting in this
way in a larger overlap between the two gases at theMB level.

AppendixC. Remarks on convergence

Let usfirst briefly comment on themain features of our computationalmethodology,ML-MCTDHB, and then
showcase the convergence of our results.ML-MCTDHB [42, 43] constitutes aflexible variationalmethod for
solving the time-dependentMB Schrödinger equation of bosonicmixtures. It relies on expanding the totalMB
wavefunctionwith respect to a time-dependent and variationally optimized basis, which enables us to capture
the important correlation effects using a computationally feasible basis size. Finally, itsmulti-layer ansatz for the
total wavefunction allows us to account for intra- and interspecies correlations when simulating the dynamics of
bipartite systems. For our simulations, we use a primitive basis consisting of a sine discrete variable
representation containing 800 grid points. To perform the simulations into afinite spatial region, we impose
hard-wall boundary conditions at the positions = x 50. Note that the Thomas-Fermi radius of each bosonic
cloud is of the order of 20 andwe never observe appreciable densities beyond = x 30. Therefore the location
of the imposed boundary conditions is inconsequential for our simulations. The truncation of the total systemʼs

Figure B1. (a), (b) [(c), (d)]Quenched r ( )( ) x t;A1 , , and r ( )( ) x t;B1 , from themiscible ( =g 0AB ) to the immiscible phase ( =g 1.2AB )
obtainedwithin theMF [MB] approach for = =N N 5A B atoms. (e), (f) [(g), (h)]The same as the above but for = =N N 20A B atoms.
Other parameters used are the same as infigure 1.
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Hilbert space, namely the order of the considered approximation, is indicated by the used numerical
configuration space = ( )C M m m; ;A B . Here, = =M M MA B refers to the number of species functions andmA,
mB denote the amount of SPFs for each of the species. In the limit = = =M m m 1A B theML-MCTDHB
expansion reduces to theMF ansatz. Finally, in order to guarantee the accurate performance of the numerical
integration for theML-MCTDHBequations ofmotion the following overlap criteria áY Yñ - < -∣ ∣ ∣1 10 10 and
j j dá ñ - < -∣ ∣ ∣ 10i j ij

10 have been imposed for the total wavefunction and the SPFs respectively.
Next, we demonstrate the order of convergence of our results and thus the level of ourMB truncation

scheme. To show that ourMB results (more specifically the quantities and observables considered here) are
numerically converged, we inspect for theσ species the overlap dD = -s s

¢ ¢( ) ( )t t1CC CC between the one-body
densities r s ( )( ) x t,i

1 , , where = ¢i C C, , obtainedwithin the different numerical configurations

= ( )C M m m; ;A B and ¢ = ¢ ¢ ¢( )C M m m; ;A B

òd r r= -s

s

s s
¢ ¢( ) ( ( ) ( )) ( )( ) ( )t

N
x x t x t

1
d , , . C1CC

R
C C
1 , 1 ,

sN denotes the number ofσ species bosons and = -[ ]R 30, 30 corresponds to the spatially integrated domain
inwhich there isfinite density. In this way, we track the relative error between the different approximationsC, ¢C
and infer about convergence whenDs

¢( )tCC becomes to a certain degree insensitive upon increasing either the
number of species functionsM or the SPFsmA,mB.D

s
¢CC is boundedwithin the interval [ ]0, 1 , where in the case

ofD =s
¢ 1CC D =s

¢[ ]0CC the two densities completely overlap [phase separate] and therefore theC, ¢C
approximations yield the same [deviating] results. Figures C1(a), (b)presentD ¢( )tCC

A andD ¢( )tCC
B respectively,

for = =N N 50A B and post-quench interspecies interaction =g 1.2AB . Here, we keep always = ( )C 15; 3; 3
fixed and examine the convergence upon varying either ¢M or ¢mA , ¢mB . As it can be seen, upon increasing the
number of species functions fromM=15 toM=20, i.e. = ( )C 15; 3; 3 and ¢ = ( )C 20; 3; 3 ,D ¢( )tCC

A

D ¢[ ( )]tCC
B exhibits negligible deviations being smaller than 1% throughout the dynamics. Therefore convergence

is guaranteedwith respect toM. However, for increasing number of SPFsDs
¢( )tCC ismore sensitive. Indeed, by

considering ¢ = ( )C 25; 4; 3 corresponding to a total number of coefficients 625 025 [instead of 44 805 that refer
to the = ( )]C 15; 3; 3 the deviation obtained fromD ¢( )tCC

A D ¢[ ( )]tCC
B reaches amaximumvalue of the order of

8% at large propagation times.We should note here that further increase of the number of SPFs is
computationally prohibitive for this number of particles as the considered number of configurations becomes
significantly larger. The same observations can also be obtained fromDs

¢( )tCC of amixture consisting of
= =N N 20A B bosons, seefigures C1(c), (d), when considering = ( )C 20; 4; 4 . For completeness we note that

fragmentation becomes enhanced all themore as the particle number is reduced. To conclude upon convergence
concerning the species functionswe showD ¢( )tCC

A D ¢[ ( )]tCC
B infigures C1(c) [(d)]. It is observed thatD ¢( )tCC

A

D ¢[ ( )]tCC
A between = ( )C 20; 4; 4 and ¢ = ( )C 25; 4; 4 testifies negligible deviationswhich become atmost

2.2% at long evolution times. In the samemanner, convergence occurs for a varying number of SPFs in both
species. For instance,D ¢( )tCC

A D ¢[ ( )]tCC
B between ¢ = ( )C 20; 3; 3 and = ( )C 20; 4; 4 shows amaximum

deviation of the order of 7% for large evolution times. Similar observations can be deduced also for the case of
even smaller particle numbers, and the reverse quench scenario (not included here for brevity reasons). To
summarize, according to the above systematic investigations, the considered orbital configurations provide
adequate approximations for the description of the non-equilibrium correlated dynamics.

ORCID iDs

PGKevrekidis https://orcid.org/0000-0002-7714-3689

FigureC1. Evolution of the relative overlap of the one-body densities Ds
¢( )tCC between different numerical configurationsC and ¢C

(see legends) for the (a) s = A and (b) s = B species in the case of = =N N 50A B bosons. (c), (d)The same as (a) and (b) but for
= =N N 20A B .
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We unravel the correlated nonequilibrium dynamics of a mass balanced Bose-Fermi mixture in a one-
dimensional optical lattice upon quenching an imposed harmonic trap from strong to weak confinement. Regarding
the system’s ground state, the competition between the inter- and intraspecies interaction strength gives rise to
the immiscible and miscible phases characterized by negligible and complete overlap of the constituting atomic
clouds, respectively. The resulting dynamical response depends strongly on the initial phase and consists of an
expansion of each cloud and an interwell tunneling dynamics. For varying quench amplitude and referring to a
fixed phase, a multitude of response regimes is unveiled, being richer within the immiscible phase, which are
described by distinct expansion strengths and tunneling channels.

DOI: 10.1103/PhysRevA.97.053626

I. INTRODUCTION

Recent experimental advances in ultracold atomic gases of-
fer the opportunity to realize mixtures of bosons and fermions
with the aid of sympathetic cooling [1–5]. These mixtures serve
as prototypical examples in which the interacting particles obey
different statistics [6,7]. For instance and in sharp contrast to
bosons, s-wave interactions among spin-polarized fermions
are prevented due to the Pauli exclusion principle. The complex
interplay of Bose-Bose and Bose-Fermi interactions led to
numerous theoretical studies of Bose-Fermi (BF) mixtures
such as their phase separation process [8,9], stability conditions
[10,11], and collective excitations [12,13].

Moreover, BF mixtures confined in optical lattices unveiled
a variety of intriguing quantum phases including, among
others, exotic Mott-insulator and superfluid phases [14–17],
charge-density waves [17,18], supersolid phases [19,20], and
polaronlike quasiparticles [18,21]. A commonly used model
to describe the properties of such mixtures, e.g., pairing of
fermions with bosons or bosonic holes for attractive and
repulsive interspecies interactions, respectively [17,22], is
the lowest-band BF Hubbard model [23,24]. A celebrated
problem that has been intensively studied concerns the effect
of the fermions on the mobility of the bosons. Heavier or
lighter fermions mediate long-range interactions between the
bosons or act as impurities, inducing a shift of the bosonic
superfluid-to-Mott transition [25] caused by the contribution of
energetically higher than the lowest-band states. This behavior
indicated that more involved approximations than the lowest-
band BF Hubbard model need to be considered for an adequate
explanation of the superfluid-to-Mott transition [26–28].

Despite the importance of the system’s static properties,
a particularly interesting but largely unexplored research di-
rection in BF mixtures is to investigate their nonequilibrium
quantum dynamics by employing a quantum quench [29,30].
Referring to lattice systems, the simplest scenario to explore
is the expansion dynamics of the trapped atomic cloud after
quenching the frequency of an imposed harmonic oscillator.

Such studies have already been performed mainly for bosonic
ensembles unraveling the dependence of the expansion on
the interatomic interactions. For instance, it has been shown
that the expansion is enhanced for noninteracting or hard-
core bosons [31], while for low filling systems, a global
breathing mode is induced [32]. Detailing the dynamics on the
microscopic level, a resonant dynamical response has been re-
vealed which is related to avoided crossings in the many-body
(MB) eigenspectrum [33]. A peculiar phenomenon, called
quasicondensation, arises during the expansion of hard-core
bosons enforcing a temperature-dependent long-range order
in the system [34–38]. Moreover, the expansion velocities of
fermionic and bosonic Mott insulators have been found to be
the same irrespectively of the interaction strength [39]. How-
ever, a systematic study of the expansion dynamics in particle-
imbalanced BF mixtures still lacks. In such a scenario, it would
be particularly interesting to examine how interspecies corre-
lations, which reflect the initial phase of the system [40–44],
modify the expansion dynamics of the mixture. Another
intriguing prospect is to investigate, when residing within
a specific phase, whether different response regimes can be
triggered upon varying the quench amplitude. To address these
intriguing questions, we employ the multilayer multiconfigu-
rational time-dependent Hartree method for atomic mixtures
(ML-MCTDHX) [45,46], which is a multiorbital treatment
that enables us to capture the important inter- and intraspecies
correlation effects.

We investigate a BF mixture confined in a one-dimensional
optical lattice with an imposed harmonic trap. Operating
within the weak-interaction regime, we show that the interplay
of the intra- and interspecies interactions leads to different
ground-state phases regarding the degree of miscibility in the
mixture, namely, to the miscible and the immiscible phases
where the bosonic and the fermionic single-particle densities
are completely and zero overlapping, respectively. To trigger
the dynamics, the BF mixture is initialized within a certain
phase and a quench from strong to weak confinement is
performed. Each individual phase exhibits a characteristic
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response composed of an overall expansion of both atomic
clouds and an interwell tunneling dynamics. Referring to the
immiscible phase, a resonantlike response of both components
occurs at moderate quench amplitudes, which is reminiscent
of the single-component case [33]. A variety of distinct re-
sponse regimes is realized for decreasing confinement strength.
Bosons perform a breathing dynamics or solely expand, while
fermions tunnel between the outer wells, located at the edges of
the bosonic cloud, or exhibit a delocalized behavior over the
entire lattice. To gain further insight into the MB expansion
dynamics, the contribution of the higher-lying orbitals is
analyzed and their crucial role in the course of the evolution
is showcased. Inspecting the dynamics of each species on
both the one- and the two-body level, we observe that during
the evolution, the predominantly occupied wells are one-body
incoherent and mainly two-body anticorrelated with each
other; while within each well, a correlated behavior, for bosons,
and an anticorrelated one, for fermions, occurs. Furthermore,
it is shown that the immiscible phase gives rise to a richer
response when compared to the miscible phase for varying
quench amplitude. Finally, it is found that for increasing height
of the potential barrier, the expansion dynamics of the BF
mixture is suppressed, while for mass imbalanced mixtures,
the heavier component is essentially unperturbed.

This work is organized as follows. In Sec. II, we intro-
duce our setup, the employed MB wave-function ansatz, and
the basic observables of interest. Section III presents the
ground-state properties of our system. In Secs. IV and V,
we focus on the quench-induced expansion dynamics of the
BF mixture within the immiscible and the miscible correlated
phases, respectively. We summarize our findings and present
an outlook in Sec. VI. Appendix A presents the correlation
dynamics during the expansion of the BF mixture within the
immiscible phase, and in Appendix B we show the impact
of several system parameters on the expansion dynamics.
Appendix C contains a discussion regarding the convergence
of our numerical ML-MCTDHX simulations.

II. THEORETICAL FRAMEWORK

A. Setup and many-body ansatz

We consider a BF mixture consisting of NF spin-polarized
fermions and NB bosons each of mass M . This system can be to
a good approximation realized by considering, e.g., a mixture
of isotopes of 7Li and 6Li [47] or 171Yb and 172Yb [48,49]. The
mixture is confined in a one-dimensional optical lattice with an
imposed harmonic confinement of frequency ω, and the MB
Hamiltonian reads

H =
NF +NB∑

i=1

[
− h̄2

2M

∂2

∂x2
i

+ M

2
ω2x2

i + V0 sin2(kxi)

]

+ gFB

NF∑
i=1

NB∑
j=1

δ
(
xF

i − xB
j

)+gBB

∑
1�i�j�NB

δ
(
xB

i − xB
j

)
.

(1)

The lattice potential is characterized by its depth V0 and
periodicity l = π (with k = π/l). Within the ultracold
s-wave scattering limit, the inter- and intraspecies interac-

tions are adequately modeled by contact interactions scaling
with the effective one-dimensional coupling strength gσσ ′ ,
where σ,σ ′ = B,F for bosons or fermions, respectively.
The effective one-dimensional coupling strength [50] g1D

σσ ′ =
2h̄2as

σσ ′
μa2

⊥
[1 − |ζ (1/2)|as

σσ ′/
√

2a⊥]
−1

, where ζ denotes the Rie-
mann zeta function and μ is the corresponding reduced mass.
The transversal length scale is a⊥ = √

h̄/μω⊥, and ω⊥ is the
frequency of the transversal confinement, while as

σσ ′ denotes
the free-space s-wave scattering length within or between the
two species. gσσ ′ is tunable by as

σσ ′ via Feshbach resonances
[51,52] or by means of ω⊥ [50,53]. S-wave scattering is
prohibited for spinless fermions due to their antisymmetry
[6,7] and thus they are considered to be noninteracting among
each other. The MB Hamiltonian is rescaled in units of the
recoil energy ER = h̄2k2

2M
. Then, the corresponding length, time,

frequency, and interaction strength scales are given in units of
k−1, ω−1

R = h̄E−1
R , ωR , and 2ERk−1, respectively. To limit the

spatial extension of our system, we impose hard-wall boundary
conditions at x± = ± 19

2 π . For convenience, we also shall set
h̄ = M = k = 1 and therefore all quantities below are given
in dimensionless units.

Our system is initially prepared in the ground state of the
MB Hamiltonian where the harmonic trap frequency is ω =
0.1 and the lattice depth V0 = 3. Due to the imposed harmonic
trap, initially the mixture experiences a localization tendency
towards the central wells which is stronger for decreasing gBB .
To induce the dynamics, we instantaneously change at t = 0
the trapping frequency ω to lower values and let the system
evolve in time. Note that reducing ω predominantly favors
the tunneling of both components to the outer wells as the
corresponding energy offset between distinct wells becomes
smaller. In this way, after the quench, the mixture is prone to
expand.

To solve the underlying MB Schrödinger equation, we
employ ML-MCTDHX [45,46]. The latter, in contrast to the
mean-field (MF) approximation, relies on expanding the MB
wave function in a time-dependent and variationally optimized
basis, enabling us to take into account inter- and intraspecies
correlations. To include interspecies correlations, we first intro-
duce M distinct species functions for each component, namely,
�σ

k (�xσ ; t), where �xσ = (xσ
1 , . . . ,xσ

Nσ
) denote the spatial (σ =

F,B)-species coordinates and Nσ is the number of σ -species
atoms. Then, the MB wave function �MB can be expressed
according to the truncated Schmidt decomposition [54] of
rank M ,

�MB(�xF ,�xB ; t) =
M∑

k=1

√
λk(t)�F

k (�xF ; t)�B
k (�xB ; t), (2)

where the Schmidt coefficients λk(t) are referred to as the
natural species populations of the kth species function. The
system is entangled [55] or interspecies correlated when at
least two distinct λk(t) are nonzero and therefore the MB state
cannot be expressed as a direct product of two states. In this en-
tangled case, a particular fermionic configuration �F

k (�xF ; t) is
accompanied by a particular bosonic configuration �B

k (�xB ; t),
and vice versa. As a consequence, measuring one of the species
states, e.g., �F

k′ , collapses the wave function of the other species
to �B

k′ , thus manifesting the bipartite entanglement [56,57].
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Moreover, in order to account for interparticle correlations,
each of the species functions �σ

k (�xσ ; t) is expanded using the
determinants or permanents of mσ distinct time-dependent
fermionic or bosonic single-particle functions (SPFs),
ϕ1, . . . ,ϕmσ , respectively,

�σ
k (�xσ ; t) =

∑
n1, . . . ,nmσ∑

ni = N

ck,(n1,...,nmσ )(t)
Nσ !∑
i=1

sign(Pi)
ζPi

×
⎡
⎣ n1∏

j=1

ϕ1(xj ; t) · · ·
nmσ∏
j=1

ϕmσ (xj ; t)

⎤
⎦. (3)

Here, ζ = 0,1 for the case of bosons and fermions, respec-
tively, and sign(Pi) denotes the sign of the corresponding
permutation. P is the permutation operator exchanging the
particle configuration within the SPFs. ck,(n1,...,nmσ )(t) are the
time-dependent expansion coefficients of a particular determi-
nant for fermions or permanent for bosons, and ni(t) denotes
the occupation number of the SPF ϕi(�x; t). Note that the
bosonic subsystem is termed intraspecies correlated if more
than one eigenvalue is substantially occupied, otherwise it is
said to be fully coherent [58,59]. In the same manner, the
fermionic species possesses beyond Hartree-Fock intraspecies
correlations if more than NF eigenvalues occur. Employing the
Dirac-Frenkel variational principle [60,61] for the MB ansatz
[see Eqs. (2) and (3)] yields the ML-MCTDHX equations of
motion [45]. These consist of M2 linear differential equations
of motion for the coefficients λi(t), which are coupled to a set
of

(
M[NB+mB−1

mB−1

)+(
mF

NF ]

)
nonlinear integrodifferential equations

for the species functions and mF + mB integrodifferential
equations for the SPFs. Finally, it is also worth mentioning that
ML-MCTDHX can operate in different approximation orders,
e.g., it reduces to the MF Gross-Pitaevskii equation in the case
of M = mF = mB = 1.

B. Observables of interest

Let us next briefly introduce the main observables that will
be used for the interpretation of the expansion dynamics on
both the one- and two-body level. To measure the collective
expansion and contraction dynamics [31,33] of the σ -species
atomic cloud, we rely on the position variance,

�2
x,σ (t) = 〈�MB(t)| x̂2

σ |�MB(t)〉 − 〈�MB(t)| x̂σ |�MB(t)〉2 .

(4)

Here, x̂σ = ∫
D

dxxσ �̂†
σ (x)�̂σ (x) and x̂2

σ = ∫
D

dxx2
σ �̂†

σ (x)
�̂σ (x) are one-body operators, with �̂σ (x) denoting the σ -
species field operator, and D is the spatial extent of the
lattice. We remark that the aforementioned position variance,
evaluated over the entire lattice, essentially quantifies a global
breathing mode composed of interwell tunneling and intrawell
breathing modes, offering in this way a measure for the
system’s dynamical response.

To elaborate on the intensity of the resulting dynamical
response for the σ species, we define the time-averaged

position variance,

�̄2
x,σ = 1

T

∫ T

0

[
�2

x,σ (t) − �2
x,σ (0)

]
, (5)

which describes the mean deviation of the system from its
initial (ground) state. �2

x,σ (0) refers to the position variance
of the σ species for the initial state at t = 0, while T is the
considered finite evolution time in which �̄2

x,σ has converged
to a certain value.

The one-body reduced density matrix of the σ

species, ρ(1),σ (x,x ′; t) = 〈�MB(t)| �†
σ (x ′)�σ (x) |�MB(t)〉,

provides the probability to find a σ -species particle
simultaneously at positions x and x ′ at a certain time instant
t , while ρ(1),σ (x; t) ≡ ρ(1),σ (x,x ′ = x; t) is the σ -species
single-particle density [62]. The eigenfunctions of the
σ -species one-body density matrix, ρ(1),σ (x,x ′), are the
so-called σ -species natural orbitals, φσ

i (x; t), which are
normalized to their corresponding eigenvalues,

nσ
i (t) =

∫
dx

∣∣φσ
i (x; t)

∣∣2
. (6)

nσ
i (t) are known as the natural populations of

the σ species [58,59]. Finally, the diagonal two-
body reduced density matrix ρ(2),σσ ′

(x,x ′; t) =
〈�MB(t)| �†

σ ′(x ′)�†
σ (x)�σ (x)�σ ′(x ′) |�MB(t)〉 refers to

the probability of finding two atoms located at positions x and
x ′ at time t .

III. INITIAL-STATE CHARACTERIZATION

Depending on the ratio between the interspecies (gFB) and
intraspecies (gBB) interaction strength, the BF mixture forms
two phases characterized by the miscibility of the bosonic
and fermionic clouds [8,63–65]. Here, we typically restrict
ourselves to weak inter- and intraspecies interactions and con-
sider a BF mixture consisting of NB = 20 bosons and NF = 2
spin-polarized fermions confined in a 19-well optical lattice.
Tuning gFB

gBB
, we identify different ground-state configurations,

namely, the miscible and the immiscible correlated phases
(see below). We remark that by operating within the afore-
mentioned weak-interaction regime and besides realizing the
above phases, we showcase that the inclusion of correlations
is of substantial importance in order to accurately describe the
expansion dynamics of the BF mixture. Effects of stronger
interaction strengths, such as the Tonks-Girardeau regime,
might be of great importance but lie beyond our scope.

For gBB > gFB and for gBB = 1.0 and gFB = 0.05, we
realize the miscible phase where the single-particle densities
of bosons and fermions are overlapping; see Fig. 1(a). In
particular, the bosonic and fermionic single-particle densities
in the three central wells overlap completely, while the outer
wells are mainly populated by bosons. The broadening of
the bosonic one-body density distribution is anticipated due
to the strong gBB . The aforementioned miscibility character
of ρ(1),σ (x), favoring certain spatial regions, leads to the
characterization of the phase as miscible. On the two-body
level, the corresponding ρ(2),BB (x,x ′) [see inset (a1) of Fig. 1]
demonstrates that two bosons are likely to populate most of
the available wells, while two fermions [see ρ(2),FF (x,x ′) in
the inset (a2) of Fig. 1] cannot reside in the same well but
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FIG. 1. Fermionic (red line) and bosonic (blue line) ground-
state one-body densities for (a) gBB = 1.0, gFB = 0.05 (miscible
phase) and (b) gBB = 0.05, gFB = 0.2 (immiscible phase). Insets
(a1) and (a2) show the two-body reduced density matrix of the
bosons and fermions, respectively, for the miscible phase. Insets
(b1) and (b2) show the same quantities as (a1) and (b2), but for the
immiscible phase. Insets (a3) and (b3) depict the interspecies two-
particle reduced density matrix in the miscible and immiscible regime,
respectively.

are rather delocalized over the three central wells. Finally, the
elongated shape of ρ(2),FB (x,x ′) [see inset (a3) of Fig. 1] further
indicates the miscibility of the two components within the three
central wells and their vanishing overlap in the outer lattice
wells.

Turning to the regime of gFB > gBB , namely, for gBB =
0.05 and gFB = 0.2, we enter the immiscible phase charac-
terized by almost perfectly separated fermionic and bosonic
single-particle densities; see Fig. 1(b). As shown, ρ(1),B (x) 	=
0 for the three central wells (i.e., x ∈ [−3π/2,3π/2]) and
therefore one boson is delocalized in this region. However,
ρ(1),F (x) 	= 0 only for the nearest neighbors of the three central
wells, namely, x ∈ [3π/2,5π/2] and x ∈ [−5π/2, − 3π/2].
The latter indicates that each fermion is localized in one of these
neighboring wells. The above observations are also supported
by the intraspecies two-body reduced density matrices [44].
Indeed, ρ(2),BB (x,x ′) 	= 0 [see inset (b1) of Fig. 1] for the
three central wells, implying that it is likely for two bosons to
reside within this spatial region. However, ρ(2),FF (x,x ′) 	= 0
[see inset (b2) of Fig. 1] only for the antidiagonal elements
that refer to the nearest neighbors (−5π/2 < x < −3π/2 and
3π/2 < x < 5π/2) of the three central wells. Therefore, each
fermion populates only one of these wells. The diagonals of
ρ(2),FB (x,x) depicted in the inset (b3) of Fig. 1 are almost
zero, reflecting in this way the phase-separated character of
the state.

(a1)

(b1) (b2)

(a2)

(a3)

(a4)

FIG. 2. (a) Bosonic and (b) fermionic mean variance �̄2
x,σ in the

immiscible phase for varying postquench harmonic trap frequency
ωf . (a1)–(a4) Position variance �x,B (t) as a function of time within
the characteristic four different bosonic response regimes. (b1),(b2)
�x,F (t) within the characteristic two distinct fermionic response
regimes. Initially the system is in the ground state of NB = 20
bosons and NF = 2 fermions with gBB = 0.05, gFB = 0.2, which
are confined in a 19-well lattice potential with an imposed harmonic
trap of frequency ω = 0.1.

IV. QUENCH DYNAMICS IN THE IMMISCIBLE PHASE

Focusing on the immiscible phase, we study the expansion
dynamics induced by a quench of the harmonic-oscillator
frequency to smaller values. To gain an overview of the
system’s mean dynamical response, we resort to the σ -species
time-averaged position variance �̄2

x,σ [see also Eq. (5)], which
essentially measures the expansion strength of the atomic
cloud. Figures 2(a) and 2(b) present �̄2

x,B and �̄2
x,F , respec-

tively, with varying final trap frequency ωf . It is observed that
the expansion strength strongly depends on ωf and exhibits
a maximum value in the vicinity of ωf = 0.0175. Therefore,
both the bosonic and the fermionic cloud do not show their
strongest expansion when completely releasing the harmonic
trap, i.e., at ωf = 0, but rather at moderate quench ampli-
tudes. For either ωf < 0.0175 or ωf > 0.0175, an essentially
monotonic decrease of �̄2

x,σ occurs (see also below for a more
detailed description of the dynamics). Alterations of the overall
dynamical response can be achieved by tuning the height of
the potential barrier or the mass ratio of the two species (see
Appendix B). The above-mentioned resonantlike behavior is
reminiscent of the expansion dynamics of single-component
bosons trapped in a composite lattice and subjected to a quench
of the imposed harmonic trap from strong to weak confinement
[33]. In this latter case, a resonant response of the system for
intermediate quench amplitudes occurs and it is related to the
avoided crossings in the MB eigenspectrum with varying ωf .
The occurrence of the resonantlike response of the BF mixture
suggests that also in the present case, such avoided crossings
could be responsible for the appearance of the maximum at
ωf = 0.0175. However, due to the large particle numbers
considered herein, a direct calculation of the corresponding
MB eigenspectrum is not possible.

To elaborate in more detail on the characteristics of the
dynamical response, we invoke the position variance �2

x,σ (t)
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FIG. 3. The one-body density evolution within the MF approach is presented in (a1) bosons and (a2) fermions after a quench to ωf = 0.0475.
(b1),(b2) and (d1),(d2) present the same quantities as above, but for a quench to ωf = 0.0175 and ωf = 0.0, respectively. One-body density
evolution within the MB approach for (a3) bosons and (a4) fermions after a quench to ωf = 0.0475. (b3), (b4) and (c3), (c4) present the same
quantities as (a3) and (a4), but for a quench to ωf = 0.0175 and ωf = 0.0, respectively. (d1)–(d3) The one-body density, in the course of the
dynamics, of the first, second, resummed third, and fourth bosonic orbitals of (c3). (d4)–(d6) The resummed one-body density evolution of the
first and second, third and fourth, and fifth to eighth fermionic orbitals of (c4). The system is initialized in the ground state of NB = 20 bosons
and NF = 2 fermions with gBB = 0.05, gFB = 0.2 and is confined in a 19-well lattice potential with an imposed harmonic trap of frequency
ω = 0.1.

[see Eq. (4)] and the single-particle density ρ(1),σ (x,t) of the
σ species during the evolution [31]. Recall that by quenching
the harmonic-oscillator frequency to lower values, we mainly
trigger the tunneling dynamics towards the outer lattice wells as
their corresponding energy offset is reduced. Focusing on the
bosonic species, we can identify four distinct response regimes,
each one exhibiting a characteristic expansion; see Figs. 2(a1)–
2(a4). Within the first regime located at 0.0775 � ωf � 0.1,
the bosonic cloud undergoes a regular periodic expansion
and contraction dynamics [see the oscillatory behavior of
�2

x,B(t) in Fig. 2(a1)], which is identified as a global breathing
mode [32,33]. The oscillation amplitude (frequency) of�2

x,B (t)
increases (decreases) for smaller ωf ’s lying within this region.
In the second response regime (0.0525 � ωf < 0.0755), the
cloud initially expands within a short evolution time (t < 50)
and then performs irregular oscillations possessing multiple
frequencies [Figs. 2(a2) and 3(a3)]. The third response regime
(0.015 � ωf � 0.05) is characterized by an initial expansion
of the bosons until a maximum value is reached. Then the

ensemble undergoes a contraction and followup expansion
[Figs. 2(a3) and 3(b3)]. For ωf < 0.015, defining the fourth
regime, the atoms strictly expand in an approximately linear
manner [Figs. 2(a4) and 3(c4)], reaching a maximum value
at very long evolution times t > 600 (not shown here). Their
expansion velocity and amplitude are significantly reduced
when compared to the third response regime, resulting in this
way in the smaller expansion strength shown in Fig. 2(a).

Turning to the fermionic subsystem, we can realize two
different response regimes; see Figs. 2(b1) and 2(b2). The
first occurs within the same range of ωf ’s as the correspond-
ing bosonic one and �2

x,F (t) performs regular oscillations
[Fig. 2(b1)]. The second one appears for ωf < 0.0775, thus
covering the range of quench amplitudes that leads to the
second, third, and fourth bosonic response regimes. Here,
�2

x,F (t) increases monotonically for a short evolution time,
reaching a maximum around which it oscillates with a small
amplitude. To further visualize the dynamics of the mixture,
we inspect ρ(1),F (x,t). It is observed that for ωf > 0.03, the
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FIG. 4. (a) Bosonic and (b) fermionic mean variance �̄2
x,σ of a BF mixture in the miscible phase for varying postquench harmonic trap

frequency ωf . Evolution of the one-body density within the MF approach for the constituting (c1) bosons and (c2) fermions following a quench
to ωf = 0.0675. (d1),(d2) The same as above, but for ωf = 0.025. One-body density evolution within the MB approach for the (c3) bosons and
(c4) fermions following a quench to ωf = 0.0675. (d3),(d4) The same as above, but for ωf = 0.025. The system is initialized in the ground
state of NB = 20 bosons and NF = 2 fermions with gBB = 1, gFB = 0.05, which is confined in a 19-well lattice potential with an imposed
harmonic trap of frequency ω = 0.1.

bosons mainly bunch within the three central wells, forming
a material barrier [66,67] that prevents the fermions from
tunneling into the inner central wells; see, e.g., Fig. 3(a4).
Then the fermions perform tunneling oscillations between the
two outer nearest-neighboring wells located at −9π/2 < x <

−5π/2 and 5π/2 < x < 9π/2. On the contrary, for ωf <

0.03, the bosons undergo a strong expansion over the whole
extent of the lattice, thus allowing the fermions to diffuse via
tunneling [Figs. 3(b4) and 3(c4)].

Identification of the many-body characteristics

To infer about the MB nature of the above-mentioned
response regimes, we perform a comparison with the cor-
responding quench-induced dynamics obtained within the
MF (single-orbital) approximation. In the latter case, �̄2

x,B

for varying ωf [see Fig. 2(a)] shows a qualitatively similar
behavior to the MB case. However, the MF result predicts a
displaced response maximum to larger values of ωf and the
existence of a secondary maximum at ωf = 0.0075, which is
suppressed in the presence of correlations. Comparing �̄2

x,B in
the MB and the single-orbital approximation, we can deduce
that for large quench amplitudes (ωf < 0.02), the expansion
strength is strongly suppressed in the latter case. Moreover, the
third and fourth bosonic response regimes identified within

the MB approach are greatly altered in the MF realm. For
instance, the slow monotonic expansion of the cloud in the
fourth regime [see, e.g., ρ(1),B (x,t) in Fig. 3(c3)] is substituted
by regular tunneling oscillations of the bosons in the five central
wells [Fig. 3(c1)]. Moreover, MF fails to adequately capture the
tunneling dynamics. This latter observation is clearly imprinted
in the one-body density evolution presented, e.g., in Figs. 3(b1)
and 3(b3). Additionally here, significant deviations that are
not resolvable by inspecting �̄2

x,B between the two approaches
are also present; compare, for instance, Figs. 3(a1) and 3(a3).
A careful inspection of ρ(1),B (x,t) reveals that in the MB
scenario for ωf < 0.0325, a diffusive tendency of the bosons
over the entire lattice takes place for long evolution times; see
Figs. 3(b3) and 3(c3).

Turning to the fermionic component, and in contrast to
the bosonic case, the expansion strength �̄2

x,F is enhanced in
the MF approximation [Fig. 2(b)] when compared to the MB
scenario for large quench amplitudes, namely, ωf < 0.025.
This increase of �̄2

x,F can be attributed to the suppression
of the tunneling processes towards the inner central wells
and a dominant outward spreading; see, e.g., Fig. 3(b3). For
ωf < 0.025, the MB approach predicts a strong delocalization
of the two fermions over the entire lattice for large evolution
times (t > 250) with almost all tunneling processes being
damped [see, e.g., Figs. 3(b4) and 3(c4)]. This result is in
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direct contrast to what is observed in the MF case. Here, the
fermions show an expansion that is characterized by two almost
localized density branches that mainly tunnel to the outer wells
[Fig. 3(b2)] while being almost localized close to the central
wells at all times for ωf = 0 [Fig. 3(c2)]. A further discussion
regarding the correlation dynamics of the BF mixture on both
the one- and two-body level is provided in Appendix A.

To gain a deeper understanding of the underlying micro-
scopic properties of the MB dynamics, we next inspect the
single-particle density evolution of the participating orbitals
|φσ

i (x,t)|2 after quenching to ωf = 0. Figures 3(d1)–3(d3)
present the corresponding single-particle densities of all four
bosonic orbitals. The first and predominantly contributing
orbital [Fig. 3(d1)] shows almost no expansion and a sup-
pressed tunneling dynamics within the five middle wells.
The latter behavior resembles, to a certain extent, the single-
particle density evolution within the MF approach; see also
Fig. 3(c1). On the other hand, the second [Fig. 3(d2)] as well
as the resummation of the third and fourth [Fig. 3(d3)] orbital
densities indicate an expansion of the bosonic cloud over the
entire lattice. Therefore, these contributions are responsible
for the above-described broader one-body density distribution
of the bosons along the lattice in the MB (compared to MF)
case.

To also analyze the fermionic motion, we next examine
the single-particle densities of the eight fermionic orbitals; see
Figs. 3(d4)–3(d6). Recall here that due to the Pauli exclusion
principle, each orbital can be occupied by only one fermion
and therefore the corresponding MF approximation requires
the utilization of two orbitals. The resummed density of the first
two fermionic orbitals [Fig. 3(d4)] for t < 120 presents the evo-
lution of two almost localized single-particle density branches
located at x → [3π/2,5π/2] and x → [−5π/2, − 3π/2], re-
spectively. Notice here the resemblance to the corresponding
MF density [Fig. 3(c2)] for t < 120. However, for longer
evolution times, these density branches move towards the inner
central lattice wells. In contrast to the above, the resummed
single-particle densities of every two consecutively occupied
orbitals [Figs. 3(d5) and 3(d6)] exhibit a delocalization along
the system. Therefore, the diffusive behavior of the fermions
during the MB expansion is mainly caused by the presence of
these higher-lying orbitals.

V. QUENCH DYNAMICS IN THE MISCIBLE PHASE

To identify the impact of the initial phase on the expansion
dynamics, we next examine the response of a BF mixture,
which initially resides within the miscible phase (with gBB = 1
and gFB = 0.05; see also Sec. III), following a quench of
the imposed harmonic trap from strong to weak confinement
ωf . The corresponding expansion strength of the σ -species
cloud measured via �̄2

x,σ for varying ωf is presented in
Figs. 4(a) and 4(b). �̄2

x,B increases within the interval 0.065 <

ωf < 0.1 for decreasing ωf and then exhibits a decreasing
behavior up to ωf = 0.0625, below which it shows a slightly
increasing tendency up to ωf = 0. To visualize the emergent
bosonic response, we resort to the one-body density evolution
ρ(1),B (x,t). The dynamical expansion of the bosonic cloud is
mainly suppressed for almost every ωf [e.g., see, Fig. 4(d3)],
except for 0.065 < ωf < 0.072, a region in which it becomes

non-negligible [Fig. 4(c2)]. Instead of an expansion, the bosons
tunnel between the initially (at t = 0) occupied wells and reach
an almost steady-state configuration for long evolution times
[Figs. 4(c2) and 4(d3)]. Despite the aforementioned triggered
tunneling modes, the bosonic density reveals a maximal
occupation of the three central wells during the dynamics
[Figs. 4(c2) and 4(d3)]. To identify the effect of correlations
on the bosonic expansion, we compare these findings to the
MF approximation. The mean expansion strength �̄2

x,B is
similar to what MB theory predicts, but overall shifted to larger
values [Fig. 4(a)]. This shift is caused by the absence of the
density bunching [e.g., see Figs. 4(c1) and 4(d1)] within the
three middle wells that occurs in the MB scenario, leading
in turn to the smaller �̄2

x,B observed. Notice also here the
highly fluctuating behavior of �̄2

x,B around ωf = 0.06, which
suggests the presence of several response resonances that are
absent in the MB case. Furthermore, in the MF dynamics, an
enhanced interwell tunneling is observed when compared to
the MB case that remains robust during the evolution [see
Figs. 4(c1), 4(c2) and 4(d1), 4(d3)].

In contrast to bosons, a dramatic (slight) increase of the
fermionic mean variance �̄2

x,F occurs for ωf < 0.04 (0.04 <

ωf < 0.1) [Fig. 4(b)]. This latter behavior of �̄2
x,F essentially

designates the fermionic expansion strength for distinct ωf ’s,
which can be better traced in ρ(1),F (x,t); see Figs. 4(c4) and
4(d4). Indeed, for small quench amplitudes, i.e., 0.04 < ωf <

0.1, the fermions expand only slightly [Fig. 4(c4)]. However,
for ωf > 0.04, they strongly expand, reaching the edges of
the surrounding bosonic cloud [Fig. 4(d3)] where they are
partly transmitted and partly reflected moving back towards the
central wells [Fig. 4(d4)]. The same overall phenomenology
also holds for the MF case as is evident by inspecting both
�̄2

x,F [Fig. 4(b)] and ρ(1),F (x,t) [compare Figs. 4(c2), 4(c4)
and 4(d2), 4(d4)]. This similarity can be attributed to the weak
interspecies interactions, gFB = 0.05, which in turn result in
reduced interspecies correlations within this miscible regime
of interactions.

VI. CONCLUSIONS

We have investigated the ground-state properties and, in
particular, the many-body expansion dynamics of a weakly
interacting BF mixture confined in a one-dimensional optical
lattice with a superimposed harmonic trap. Tuning the ratio
between the inter- and intraspecies interaction strengths, we
have realized distinct ground-state configurations, namely, the
miscible and immiscible phases. These phases are mainly
characterized by a complete or strongly suppressed overlap of
the bosonic and fermionic single-particle density distributions,
respectively.

To induce the dynamics, we perform a quench from strong
to weak confinement and examine the resulting dynamical
response within each of the above-mentioned phases for
varying final harmonic trap frequencies. It is observed that
each phase exhibits a characteristic response composed of
an overall expansion of both atomic clouds and an interwell
tunneling dynamics, which can be further manipulated by
adjusting the quench amplitude. Focusing on the immiscible
phase, a resonantlike response of both components occurs at
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moderate quench amplitudes, in contrast to what is expected
upon completely switching off the imposed harmonic trap.
A careful inspection of the BF mixture expansion dynamics
reveals the existence of different bosonic response regimes ac-
companied by a lesser amount of fermionic ones for decreasing
confinement strength. In particular, we find that for varying
quench amplitude, the bosons either perform a breathing
dynamics or solely expand, while the fermions tunnel between
the nearest-neighbor outer wells that are located at the edges of
the bosonic cloud or show a delocalized behavior over the entire
lattice, respectively. To identify the many-body characteristics
of the expansion dynamics, we compare our findings to the
mean-field approximation, where all particle correlations are
neglected. Here, it is shown that in the absence of correlations,
the tunneling dynamics of both components cannot be ade-
quately captured, the bosonic expansion is suppressed, and the
diffusive character of the fermions is replaced by an expansion
of two almost localized density branches to the outer wells for
large quench amplitudes. These deviations are further eluci-
dated by studying the evolution of the distinct orbitals used,
where the first one resembles the mean-field approximation
and the higher-orbital contributions are responsible for the
observed correlated dynamics. Finally, investigating the one-
and two-body coherences for each species, we observe that
during the evolution, the predominantly occupied wells are
one-body incoherent and two-body anticorrelated among each
other, while within each well a correlated behavior for bosons
and an anticorrelated one for fermions occurs.

Within the miscible phase, the dynamical response of
the BF mixture is greatly altered. The bosonic expansion is
significantly suppressed when compared to the immiscible
phase and the bosons perform interwell tunneling, reaching
an almost steady state for long evolution times. The fermions,
on the other hand, expand. When reaching the edges of the
surrounding bosonic cloud, they are partly transmitted and
partly reflected back towards the central wells. Neglecting
correlations, the bosonic tunneling dynamics is found to be
enhanced and remains undamped during the evolution, in
contrast to the many-body approach, while the fermionic
expansion adequately resembles the many-body case.

As a final attempt, we have examined the dependence of the
BF mixture expansion strength on the potential barrier height
and the mass imbalance between the two components. We find
that upon increasing the height of the potential barrier, the
expansion dynamics is suppressed, while for mass imbalanced
mixtures, the heavy (bosonic) component remains essentially
unperturbed.

There are several interesting directions that one might
pursue in future studies. A straightforward one would be to
explore the dynamics of the BF mixture setup, but now induced
by a quench from strong to weak confinement only for the
fermionic ensemble, thus leaving the bosons unaffected. In this
setting, the bosonic system may act as a filter which completely
or partly absorbs the momentum of the expanded fermions
depending on the quench amplitude. Yet another intriguing
prospect is to examine the dynamics of a dipolar BF mixture
under the quench protocol considered herein, and investigate
the distinct response regimes that appear for varying quench
amplitude or initial phase so as to explore the possibility to
induce a ballistic expansion.
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APPENDIX A: CORRELATION DYNAMICS
IN THE IMMISCIBLE PHASE

To further elaborate on the MB nature of the expansion
dynamics of the BF mixture within the immiscible phase, we
study the emergent correlation properties of the system on
both the one- and two-body level. To estimate the degree of
spatial first-order coherence during the expansion dynamics,
we employ [68]

g(1),σ (x,x ′; t) = ρ(1),σ (x,x ′; t)√
ρ(1),σ (x; t)ρ(1),σ (x ′; t)

, (A1)

where ρ(1),σ (x,x ′; t) = 〈�MB(t)| �†
σ (x ′)�σ (x) |�MB(t)〉 is

the one-body reduced density matrix of the σ species.
|g(1),σ (x,x ′; t)|2 takes values within the range [0,1], while a
spatial region with |g(1),σ (x,x ′; t)|2 = 0 [|g(1),σ (x,x ′; t)|2 = 1]
is referred to as fully incoherent (coherent).

Figures 5(a1)–5(a4) and 5(c1)–5(c4) present g(1),B(x,x ′; t)
andg(1),F (x,x ′; t), respectively, for distinct time instants during
evolution after quenching the system to ωf = 0. Referring
to the bosonic component, we observe that at t = 0 (ground
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FIG. 5. (a1)–(a4) One-body coherence function g(1),B (x,x ′; t)
shown for different time instants (see legends) during the expansion
dynamics within the immiscible phase (gBB = 0.05, gFB = 0.2).
(c1)–(c4) The same as above, but for g(1),F (x,x ′; t). (b1)–(b4) Snap-
shots of the corresponding two-body bosonic coherence function
g(2),BB (x1,x

′
2; t). (d1)–(d4) The same as before, but for g(2),FF (x1,x

′
2; t)

of the fermionic component. The BF mixture consists of NB = 20
bosons and NF = 2 fermions confined in a 19-well optical lattice
with an imposed harmonic trap with initial frequency ω = 0.1.
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state), the ensemble is almost perfectly one-body coherent
as g(1),B(x,x ′; t) ≈ 1 everywhere [Fig. 5(a1)]. However, upon
quenching, this situation changes drastically and a substantial
loss of coherence in the off-diagonal elements of g(1),B(x,x ′; t)
occurs throughout the dynamics; see Figs. 5(a2)–5(a4). The
latter implies that the quench operation and loss of coherence
go hand in hand. In particular, we can identify three different
spatial regions [see, for instance, Fig. 5(a3)] in which the
coherence is mainly preserved. The first one contains the
three central wells (x,x ′ ∈ [−3π/2,3π/2]), while the other
two regions, not fixed throughout the dynamics, lie in the outer
wells (e.g., at t = 120, they are located at x,x ′ ∈ [3π/2,9π/2]
and x,x ′ ∈ [−3π/2, − 9π/2], respectively). Furthermore, the
aforementioned regions coincide with the areas where the
different orbital densities contribute significantly to the MB
density [Figs. 3(d1)–3(d3)]. Indeed, as time evolves, the first
region exhibits a contraction [Fig. 5(a3)] and an expansion
[Fig. 5(a4)], resembling the tunneling oscillations in the first
orbital [Fig. 3(d1)]. The second and third regions travel towards
the outer wells [Fig. 5(a4)] in the course of the dynamics,
reflecting the expansion of the second, third, and fourth orbital
densities [Figs. 3(d2) and 3(d3)]. Finally, a significant loss of
coherence takes place [g(1),B(x,x ′; t) ≈ 0.2] between each two
of the above-mentioned regions.

To infer about the degree of spatial second-order coherence,
we study the normalized two-body correlation function [62],

g(2),σσ ′
(x,x ′; t) = ρ(2),σσ ′

(x,x ′; t)
ρ(1),σ (x; t)ρ(1),σ ′ (x ′; t)

, (A2)

where ρ(2),σσ ′
(x,x ′; t) = 〈�MB(t)| �†

σ ′(x ′)�†
σ (x)�σ (x)�σ ′

(x ′) |�MB(t)〉 is the diagonal two-body reduced density
matrix. When referring to the same (different) species, i.e.,
σ = σ ′ (σ 	= σ ′), g(2),σσ ′

(x,x ′; t) accounts for the intraspecies
(interspecies) two-body correlations. A perfectly condensed
MB state corresponds to g(2),σσ ′

(x,x ′; t) = 1 and is termed
fully second-order coherent or uncorrelated. However, if
g(2),σσ ′

(x,x ′; t) takes values larger (smaller) than unity, the
state is said to be correlated (anticorrelated) [62,69].

In Figs. 5(b1)–5(b4) and 5(d1)–5(d4), we show g(2),BB

(x,x ′; t) and g(2),FF (x,x ′; t) for different evolution times when
quenching the system to ωf = 0. The bosonic subsystem is
initially (t = 0) mainly characterized by weak two-body anti-
correlations, i.e., g(2),BB(x,x ′; t) < 1 [Fig. 5(b1)]. The quench
gives rise to new correlation structures; see Figs. 5(b2)–5(b4).
For instance, a bunching tendency occurs in the diagonal
elements, i.e., g(2),BB(x,x ′; t) > 1, indicating that it is probable
for two bosons to reside within the same well during the
dynamics. Most importantly, we observe that each of the
above-described second and third regions of almost perfect
one-body coherence (e.g., see, x,x ′ ∈ [3π/2,9π/2] and x,x ′ ∈
[−3π/2, − 9π/2], respectively, at t = 120) are two-body
correlated, while they are mainly anticorrelated between each
other [e.g., see Fig. 5(b3)]. Overall, the off-diagonal elements
of the g(2),BB (x,x ′; t) tend to values smaller than unity, indi-
cating long-range anticorrelations in the system. Comparing
g(1),B(x,x ′; t) and g(2),BB(x,x ′; t), we can infer that when
g(2),BB(x,x ′; t) > 1 [g(2),BB(x,x ′; t) < 1], the corresponding
g(1),B(x,x ′; t) ≈ 1 [g(1),B(x,x ′; t) � 0.5].

0

100

200

Fermions

V0 = 1
V0 = 3
V0 = 6

Σ̄
2 x
,σ
(u
n
it
s
of

k
−2
)

0

100

200

Bosons

V0 = 1

V0 = 3

V0 = 6

ωf (units of ωR)

0 0.02 0.04 0.06 0.08

Σ̄
2 x
,σ
(u
n
it
s
of

k
−2
)

0

50

100

MB = MF

MB = 2MF

ωf (units of ωR)

0 0.02 0.04 0.06 0.08
0

100

200

300

MB = MF

MB = 2MF

(a2)(a1)

(b1) (b2)

FIG. 6. (a1),(b1) Bosonic and (a2),(b2) fermionic mean variance
�̄2

x,σ corresponding to different system parameters for varying
postquench frequency ωf . �̄2

x,σ (ωf ) for (a1),(a2) distinct potential
barrier heights V0 in units of ER , and for (b1),(b2) different mass ratios
of the individual components. In all cases, the BF mixture consists
of NB = 20 bosons, NF = 2 fermions, and is confined in a 19-well
potential with an imposed harmonic trap of initial frequency ω = 0.1.
The system is initialized in its ground state with gBB = 0.05 and
gFB = 0.2.

In contrast to the bosons, initially (t = 0) each fermion
is localized either in the left (−20 < x < 0) or in the
right (0 < x < 20) part of the lattice [see, also, Fig. 1(c)].
Indeed, g(1),F (x,x ′; t) ≈ 1 and g(2),FF (x,x ′; t = 0) < 1
[g(1),F (x,x ′; t = 0) = 0 and g(2),FF (x,x ′; t = 0) ≈ 1] within
(between) the left and right part; see Figs. 5(c1) and 5(d1),
respectively. For later times (t > 0), a significant loss
of one-body coherence takes place manifested by the
almost zero off-diagonal elements in g(1),F (x,x ′; t) ≈ 0
throughout the evolution [Figs. 5(c2)–5(c4)]. On the two-body
level, we observe the rise of long-range correlations
between the parity symmetric expanded parts, e.g.,
g(2),FF (x = 7π/2,x ′ = −7π/2; t) ≈ 1.3 in Figs. 5(d2)
and 5(d3), which transform into anticorrelations for long
propagation times [Fig. 5(d4)]. Finally, an anticorrelated
behavior occurs within the same part (i.e., right with
x,x ′ ∈ [0,6π ] or left with x,x ′ ∈ [−6π,0] in Fig. 5) of
the lattice throughout the evolution; see, for instance,
g(2),FF (x = 2π,x ′ = 2π ; t) in Figs. 5(d2)–5(d4).

APPENDIX B: CONTROL OF THE
EXPANSION DYNAMICS

Having analyzed in detail the expansion dynamics of the BF
mixture within the immiscible and miscible correlated phases,
let us discuss how the overall dynamics can be altered by
adjusting certain initial system parameters.

First we study the effect of the potential barrier height V0

on the expansion dynamics of an ensemble that resides in the
immiscible phase; see Figs. 6(a1) and 6(a2). As can be seen, the
corresponding expansion strength measured via �̄2

x,σ for both
fermions and bosons becomes larger for smaller V0 values.
The latter is a consequence of the fact that interwell as well
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as overbarrier tunneling is more favorable for reduced barrier
heights [70–74]. Note also here that the resonant expansion
located at moderate quench amplitudes (see ωf = 0.0175)
occurs only for V0 = 3. In contrast, for V0 = 6, �̄2

x,σ is almost
constant for all ωf , indicating a negligible response, while
at V0 = 1, �̄2

x,σ exhibits an almost monotonic increase for
decreasing ωf . This observation suggests that for fixed ωf

as well as inter- and intraspecies interactions, the expansion
strength can be manipulated by tuning the potential barrier
height.

Another way to control the expansion dynamics is to
consider a mass imbalanced BF mixture that is experimentally
realizable by using, e.g., isotopes of 40K and 89Rb [52,75],
which possess approximately a mass ratio of 1:2. The sys-
tem is in this case initialized in the ground state of the
lattice with gFB = 0.2 and gBB = 0.05. Therefore, it resides
in the immiscible phase (see also Sec. III) where the two
components are phase separated. The degree of this phase
separation increases for larger bosonic masses (results not
shown here). Comparing a mass balanced (MB = MF ) with
a mass imbalanced (MB = 2MF ) system, we observe that the
bosonic mass strongly influences both the fermionic and the
bosonic dynamics; see Figs. 6(b1) and 6(b2). For MB = 2MF ,
the bosons are essentially unperturbed for all ωf , while the
fermionic expansion becomes significant for small ωf . The
enhancement of �̄2

x,F can be explained as follows. First,
the tunneling probability to the inner wells is suppressed due to
the constantly high bosonic one-body density within the three
central wells, which essentially forms an additional material
barrier [66,67]. Furthermore, the fermionic cloud can expand
ballistically, as the interspecies scattering processes in the outer
wells are negligible since the bosonic distribution in these wells
is nearly zero.

In summary, we can infer that the fermions exhibit a more
pronounced expansion as compared to the bosons. This can
be attributed to the fact that the fermions are noninteracting
and, as such, they are exposed to less scattering processes
when compared to bosons [31]. Moreover, tuning several of
the system’s parameters allows for a control of the system’s
expansion dynamics in a systematic fashion.

APPENDIX C: CONVERGENCE
OF MANY-BODY SIMULATIONS

In this appendix, we provide a brief overview of our
numerical methodology and elaborate on the convergence
of our results. ML-MCTDHX [45] is a variational method
for solving the time-dependent MB Schrödinger equation
of Bose-Bose [65,76], Fermi-Fermi [77,78], and Bose-Fermi
mixtures. The MB wave function is expanded with respect
to a time-dependent variationally optimized MB basis, which
enables us to capture the important correlation effects using
a computationally feasible basis size. In this way, we are
able to more efficiently span the relevant, for the system
under consideration, subspace of the Hilbert space at each
time instant with a reduced number of basis states when
compared to expansions relying on a time-independent basis.
Finally, the multilayer ansatz for the total wave function allows
us to account for intra- and interspecies correlations when
simulating the dynamics of bipartite systems.
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FIG. 7. Evolution of the (a) fermionic and (b) bosonic variance
�2

x,σ (t) within the immiscible phase (gFB = 0.2 and gBB = 0.05)
for different numerical configurations (M; mF ; mB ) (see legend)
following a quench to ωf = 0.175.

Within our simulations, we employ a primitive basis con-
sisting of a sine discrete variable representation including
475 grid points. The Hilbert space truncation, i.e., the order
of the used approximation, is indicated by the considered
numerical configuration space C = (M; mF ; mB). Here, M =
MF = MB (mF , mB) denote the number of species (single-
particle) functions for each of the species. To maintain the
accurate performance of the numerical integration for the
ML-MCTDHX equations of motion, we further ensured that
|〈�|�〉 − 1| < 10−10 and |〈ϕi |ϕj 〉 − δij | < 10−10 for the total
wave function and the single-particle functions, respectively.

Next, let us comment on the convergence of our results upon
varying the numerical configuration space C = (M; mF ; mB).
To conclude about the reliability of our simulations, we
increase the number of species functions and single-particle
functions, thus observing a systematic convergence of our
results. We remark that all MB calculations presented in the
main text rely on the configuration C = (10; 8; 4). To be more
concrete, in the following, we demonstrate the convergence
procedure for the position variance �2

x,σ (t) of the σ species
within the immiscible phase (gFB = 0.2 and gBB = 0.05)
for a varying number of species or single-particle functions.
Figure 7(a) [Fig. 7(b)] presents �2

x,F (t) [�2
x,B(t)] following

a quench of the imposed harmonic-oscillator frequency from
ω = 0.1 to ωf = 0.0175. For reasons of completeness, we
remark that this quench amplitude refers to a strong response
region of the system; see, also, Fig. 2. Regarding the number
of the used species functions M , we observe an adequate
convergence of both the fermionic and bosonic variance. In
particular, comparing the C = (10; 8; 3) and C = (15; 8; 3) ap-
proximations, �2

x,F (t) shows a maximal deviation of the order
of 10% for large propagation times t > 250, while �2

x,B (t)
is almost insensitive as the corresponding relative difference
is less than 1.5% throughout the evolution. Increasing the
number of the fermionic single-particle functions mF , the
maximum deviation observed in �2

x,F (t) [�2
x,B(t)] between

the C = (15; 8; 3) and C = (15; 10; 3) approximations is of
the order of 4% [<1%]. Turning to the number of bosonic
single-particle functions mB , the relative difference in �2

x,F (t)
[�2

x,B(t)] between the configurations C = (10; 8; 3) and

053626-10

213



MANY-BODY EXPANSION DYNAMICS OF A BOSE-FERMI … PHYSICAL REVIEW A 97, 053626 (2018)

C = (10; 8; 4) becomes, at most, 11% [4%] for large evolution
times t > 230. Finally, we remark that the same analysis has
been performed for the convergence within the miscible regime

(gBB = 1.0, gFB = 0.05) for increasing both the number of
species M as well as the single-particle functions mF and mB

(not shown here).
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Chapter 5

Conclusions and Outlook

In this cumulative dissertation, we have discussed the zero-temperature nonequilibrium quan-
tum dynamics of few repulsively interacting ultracold bosons and mixtures thereof confined
in one-dimensional finite lattices. The nonequilibrium situation has been induced either by
performing a quench on a Hamiltonian parameter or utilizing a time-periodic modulation of
the lattice potential. Focal point of our research has been the characterization of the sys-
tem’s dynamical response including the microscopic mechanisms and correlated origin of the
nonequilibrium modes and most importantly their coupling by tuning an appropriate param-
eter of the employed quench protocol. In this final chapter, an outline of our key findings is
provided along with a multitude of interesting directions that could be consecutively pursued
in future studies.

Quench Dynamics in Scalar Few-Boson Ensembles:

Regarding the quench dynamics in few scalar bosonic ensembles confined in optical lat-
tices the main focus has been the study of different interaction quench protocols aiming in
generating and subsequently characterize and manipulate the desired nonequilibrium modes.
A major scope was to obtain a certain degree of control of the dynamics. As a first attempt
in [[1]] we investigated the correlated nonequilibrium dynamics of few lattice trapped bosons
of incommensurate filling upon considering a sudden raise of the interaction strength. Our
investigations incorporated highly non-perturbative scenaria, by means of driving the system
to a regime dominated by interparticle interactions instead of kinetic energies. In particular,
by considering weak-to-strong interaction quenches enabled us to identify the existence of
excited-band modes linked to certain interband processes, namely the well-known breathing
mode and the so-called cradle mode with the latter being reported for the first time in the
literature. Finally, we revealed the presence of a density-wave tunneling mainly referring to
a lowest-band dynamical phenomenon. This density-wave spatial pattern probes the lowest-
band tunneling dynamics after the quench comprising of single and atom pair tunneling and
can be seen as an effective breathing of the “global wavepacket” reflecting the instantaneous
density distribution of the trap. Referring to the intrawell dynamics, we were able besides
identifying the aforementioned modes to further characterize and control them. In particular,
in the middle well the on-site breathing mode corresponds to the expansion and contraction
of the bosonic cloud, while in the outer wells the so-called cradle mode manifests itself as
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a “dipole-like” oscillation of the localized wavepacket. Its generation is accompanied by an
initial over-barrier transport of the particles from the central well to the outer ones due to
the import of energy into the system and the consequent collisions with the respective atoms
in the outer sites. Strikingly enough, we were able to tune the frequency of the energetically
highest tunneling branch in resonance with the frequency of the cradle mode, a mechanism
that was triggered by varying the quench amplitude and thus enabling us to concretely control
the system. A first possible extension of our work is to consider the interaction quench dy-
namics of few-bosons confined in a two-dimensional finite optical lattice. In such a setting it
would be interesting to examine under what circumstances the cradle mode can be generated
and consequently whether it can be coupled to the quench-induced tunneling mode [432–434].
A second path is to study the interaction quench dynamics of binary bosonic mixtures con-
fined in an one-dimensional optical lattice [223, 442, 443]. Here one can perform interspecies
interaction quenches and cross dynamically the miscibility-immiscibility threshold in a two-
directional manner unraveling the emergent defect formation and further characterizing its
correlated nature.

After revealing the existence of the cradle mode, a natural next step examined in [[2]]
was whether this mode could be excited when quenching the system from strong-to-weak
interactions thus exerting energy from the system. An intriguing question here was to explore
how the initial ground state configuration, reflected by the filling factor of the system, affects
the generation of the quench-induced excited modes or enables us to resonantly couple them.
We found that the quench triggers several modes of the system consisting of distinct lowest-
band tunneling channels, an on-site breathing and a cradle mode. Conceptual differences
concerning the ingredients of each mode and its excitation process when compared to the
case of weak-to-strong interaction quenches [[1]] have been demonstrated. Most importantly,
it is observed that the cradle mode can be excited only for setups with filling larger than unity
following a quench from strong-to-weak interactions. Indeed, due to the strong interparticle
repulsion the initial spatial configuration corresponds to one localized boson in each well
and one delocalized over the lattice, lying energetically close to the lattice barrier. As a
consequence, a sudden decrease of the interaction strength yields a high probability for the
delocalized particle to overcome the lattice barrier and move to a neighboring well initializing
a cradle process. To excite the cradle mode in setups characterized by filling smaller than
unity we enforced the spatial delocalization of the atoms by quenching the height of the
potential barrier to lower values, thus driving the system to a region where the kinetic energy
of the atoms dominates in comparison to the potential energy. Finally, by considering time-
dependent quenches or the modulation of various potential parameters of the Hamiltonian
we demonstrated different ways to control the cradle and breathing modes by means of
manipulating their frequencies. Our developed understanding on the properties of the quench-
induced excitation modes paves the way for developing certain controlling schemes for the
nonequilibrium dynamics of such strongly correlated systems. For instance one can investigate
the nonequilibrium dynamics of mixtures consisting of different bosonic species in order to
selectively transport an individual bosonic component [435,436]. Another interesting prospect
is to study the interaction quench dynamics of few dipolar bosons confined in one-dimensional
optical lattices and identify the microscopic origin of the induced excitation modes [444,445].
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To dynamically manipulate the quench-induced excited modes in [[3]] we followed a gen-
eralized interaction quench protocol, namely a multiple interaction quench (MIQ), consisting
of different sequences of single quenches. The latter, allows the system to dynamically return
to its original Hamiltonian within certain time intervals. To characterize the effect of the
multiple pulses we studied the interplay between the quench amplitude and the pulse width
during the evolution. The quenches excite several interwell tunneling modes and the cradle
as well as a breathing mode. We showed that the lowest-band tunneling dynamics consists of
three distinct energy channels occuring in the time intervals of increased interaction, whilst
for decreasing interaction only one tunneling mode survives. The latter opens the possibility
to dynamically manipulate the tunneling dynamics within the different time intervals of the
MIQ protocol. Furthermore, the intrawell cradle motion persists during the time evolution
as it has already been initialized during the first pulse and therefore the coupling between
the cradle mode and one of the tunneling modes, discussed in [[1]] occurs only for the time
intervals of increased interactions. The breathing mode exhibited a strong dependence on the
instantaneous interatomic repulsion, namely for increasing interactions it possesses an inter-
action dependent frequency branch otherwise this branch disappears and two new interaction
independent frequency branches occur. Moreover, the quench-induced excitation dynamics
exhibits an almost linear dependence on the quench amplitude, i.e. for increasing amplitude
of the quench the amount of excitations increase monotonically, while on the pulse width it
possesses a non-linear dependence. A prominent signature of the impact of the quenches is
revealed by resorting to the evolution of the one-body momentum distribution where a peri-
odic population transfer of lattice momenta is observed. A possible future direction would be
to apply our protocol to repulsively interacting dipolar systems [438–441] or consider similar
modulations of the one-dimensional lattice geometry. Also referring to systems consisting of
larger particle numbers and sizes the question whether thermalization [112, 143, 144] occurs
for long evolution times after the system has been quenched to its initial Hamiltonian is an
intriguing one.

To provide insights into the largely unexplored scaling of few-body defect density in [[4]] we
explored the nonequilibrium quantum dynamics following a linear interaction quench (LIQ)
protocol in repulsively interacting few-boson ensembles confined in one-dimensional finite op-
tical lattices. We have particularly focussed on unit filling setups such that the ground state
of the system for increasing interaction strength exhibits the few-body analogue of the super-
fluid to a Mott-insulator phase. Inspecting the corresponding many-body eigenspectrum for
varying interparticle repulsion we revealed the existence of narrow and wide avoided-crossings
between states of the zeroth and first excited-band. Then we performed a LIQ to dynamically
cross the phase boundary, with a finite ramp rate, either from weak-to-strong interactions
or inverserly, covering in both cases the diabatic to nearly adiabatic crossing regimes. When
crossing the weak-to-strong interaction regimes we found an enhanced dynamical response at
moderate quench rates rather than in the abrupt or almost adiabatic regimes. The resulting
lowest-band tunneling dynamics consists of first and second order transport and it can be
manipulated by tuning either the interaction strength after the quench or the height of the
potential barriers in the optical lattice. Furthermore, a rich interband tunneling dynamics
has been identified possessing mainly a single excitation to the first or second excited-band
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of the finite lattice. It has also been shown that following a LIQ the excited to higher-band
fraction obeys a bi-exponential decay for decreasing quench rate, being directly related to the
diabatic or adiabatic crossing of the transition. For varying height of the potential barrier, the
excited to higher-band fraction follows a more complex scaling, namely for diabatic quenches
it reduces while for larger ramp times it exhibits a non-linear behavior showing a maximum
at a certain height of the potential barrier. Additionally, the higher-band dynamics depends
strongly on the postquench state, i.e. when approaching the region of an existing avoided-
crossing it exhibits a non-linear growth, while for larger quench amplitudes it increases in
an almost linear manner. In contrast to the above, following a LIQ from strong-to-weak
interactions the overall dynamical response is reduced and mainly consists of the lowest-band
tunneling dynamics. The quench triggers only a few tunneling modes and the excited to
higher-band fraction is negligible obeying an exponential decay both with varying ramp time
and potential height. Finally, we demonstrated that larger unit filling setups can be driven
out-of-equilibrium more efficiently which is a manifestation of the Anderson orthogonality
catastrophe. An interesting future research direction would be to investigate the dynami-
cal response induced by a LIQ in repulsively interacting dipolar bosons upon crossing the
corresponding superfluid to supersolid transition point [438, 444, 445]. Moreover, the study
of bosonic or fermionic spinor ensembles confined in an optical lattice consists an intriguing
perspective as the inclusion of the spin degree of freedom enriches the phase diagram and a
significantly altered dynamical response is expected to occur [18,446,447].

Next, we have studied [[5]] the nonequilibrium quantum dynamics of few-bosons experi-
encing a spatially modulated interaction strength and confined in a finite lattice potential. In
particular, we utilized a spatially modulated interaction strength of sinusoidal type which is
characterized by its wavevector, inhomogeneity amplitude, interaction offset and a phase. To
exploit the competition between delocalization and on-site interaction effects we focussed on
setups possessing fillings larger than unity. Regarding the ground state properties of the sys-
tem we showed that by tuning either the wavevector or the phase, the density distribution can
be effectively displaced to regions of decreasing interaction strength, enabling in particular
the existence of Mott-like states after a phase shift of the interaction profile. The dynamics
after a quench of the wavevector is characterized by enhanced response regions, located at
fractional values of the wavevector, where bosons at different wells are subjected to different
spatially averaged interaction strengths. The quench yields the excitation of a multitude of
tunneling modes consisting of single and two particle transport which can be manipulated
by adjusting the interaction offset or the inhomogeneity amplitude. A breathing dynamics of
the bosonic cloud also occurs being associated with interband tunneling processes. Inspect-
ing the momentum distribution reveals a periodic population transfer of momenta during
the dynamics, while in the one-body coherence function we observe that partially coherent
regions occur between the wells that are predominantly populated during the evolution. On
the other hand, a phase quench of the interaction profile yields a directed transport along the
finite lattice. The emergent tunneling modes are of single-particle and atom pair character.
Most importantly, a phase quench enables us to discriminate eneregetically, otherwise, degen-
erate tunneling channels, while for increasing inhomogeneity amplitudes the quench-induced
modes become more discernible. This directional transport is also reflected in the one-body
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momentum distribution where a directed consecutive population of higher momenta occurs,
and in the one-body correlation function where the predominantly populated wells form a
partially incoherent region which is shifted in the preferred tunneling direction. Finally, we
showed that a phase quench yields a non-negligible over-barrier transport generating a global
breathing motion and a cradle mode in the outer wells. These modes refer to single-particle
interband processes to the first or second excited-band respectively. An intriguing prospect
of the present work would be to examine the periodically driven dynamics upon shaking the
optical lattice and subsequently investigate how the properties of the corresponding para-
metrically induced resonances are altered when compared to the homogeneously interacting
case [[7]]. Another possible extension is to explore the nonequilibrium dynamics of bosonic
binary mixtures experiencing such spatially dependent interactions and unravel whether a
phase separation process can be achieved after quenching the wavevector of the interaction
profile [211,212,448,449].

To achieve an initial state preparation and consequently obtain a direct control of the
many-body evolution in [[6]] we examined the nonequilibrium dynamics of finite bosonic
ensembles confined in a one-dimensional optical lattice upon quenching the frequency of
an imposed harmonic trap from strong-to-weak confinement. Calculating the many-body
eigenspectrum for varying trap frequency we revealed the existence of narrow and wide
avoided-crossings between the many-body eigenstates. Inspecting the quench-induced dy-
namics for varying final trap frequency we deduced the following. In the non-interacting
limit, a pronounced tunneling dynamics occurs only for the case of a small final harmonic
trapping frequency. For intermediate interactions different response regimes depending on
the postquenched confinement are observed and their occurence is directly related to the
multiple avoided-crossings in the many-body eigenspectrum. More importantly, for interme-
diate quench amplitudes the narrow avoided-crossings, solely involving excited states, can
be utilized to selectively couple the initial state to a desired final state. For large quench
amplitudes a multimode dynamical response of small amplitude occurs. Furthermore, we
showcase the deterministic preparation of the system in a desired Wannier number state.
Finally, for strong interactions the dynamics significantly differs from the case of weak in-
teractions, with higher-band effects being more prominent and lowest-band tunneling being
suppressed. This latter behavior is caused by the fact that in the many-body eigenspectrum
avoided-crossings exist at higher trapping frequencies and are narrower. Concluding we can
infer that an appropriate selection of the postquench confinement enables us to couple the
initial state to a desired final one, thus allowing for a low-frequency and efficient population
transfer between the two eigenstates. Our findings suggest that bosonic systems confined in a
composite potential landscape consisting of a lattice potential and an imposed harmonic trap
can be used for state preparation. Then, a natural next step is to consider time-dependent
quench protocols, e.g. linear quenches, that may yield a substantial improvement on the
state preparation by exploiting the Landau-Zener mechanism [450–452]. Another interest-
ing prospect is to consider the case where the parity symmetry is broken by a shift of the
harmonic oscillator relative to the lattice. Here, the states of opposite parity can potentially
couple and one can induce transitions between states of the zeroth band and states in the first
excited-band revealing, for instance, Bloch oscillations [193–195] or the cradle mode [[1-3]].
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Driven Lattices

Another intriguing prospect towards the control of the nonequilibrium dynamics is to
consider a time-periodic modulation of the finite optical lattice. In [[7]] we study the nonequi-
librium quantum dynamics of finite ultracold bosonic ensembles confined in a shaken one-
dimensional optical lattice which is modelled with the sinusoidal function. We focus on large
lattice depths and small driving amplitudes in order to limit the degree of induced excita-
tions that would otherwise lead to heating processes. The system is prepared in its weakly
or strongly interacting ground state and then it is shaken. We cover a wide range of driv-
ing frequencies from adiabatic to highly intense driving. The system’s dynamical evolution
is mainly governed by the interwell tunneling and the intrawell dipole-like mode associated
with a rich excitation spectrum. Remarkably enough, it has been shown that by adjusting
the driving frequency the intrawell dynamics experiences a resonant behaviour, elucidating
that it can be controlled by tuning the driving frequency. The resonantly driven dynamics
is identified e.g. by the periodic formation of enhanced density oscillations (giant dipole os-
cillations) or from the periodic population of additional lattice momenta in the momentum
distribution of the one-body density. Utilizing Floquet theory it has been found that in the
proximity of this resonance the first two Floquet modes are dominantly contributing, while
away from resonance the dynamics is described by only the first Floquet mode. To explain
the enhanced population of the second Floquet mode in the vicinity of the resonance the
quasienergy spectrum has been calculated, revealing avoided-crossings between the first two
Floquet modes at certain driving frequencies. However, for finite particle numbers and inter-
action strengths such a single-particle description has been proved to be inadequate for the
description of the observed dynamics and a multimode treatment is necessary. It has been
shown that the interparticle repulsion significantly affects the dynamics, yielding a destruc-
tion of the interwell tunneling in the strongly interacting regime and an enhanced amount of
higher-band excitations. Inspecting the spectrum of the one-body density for varying driving
frequency we have identified all the involved dynamical frequencies, such as those referring to
the intrawell oscillations and the emergent tunneling dynamics. A first natural extension of
our work is to study the driven dynamics of binary bosonic mixtures in order to unravel the
induced excitation modes within the miscible and immiscible phases [211,212,448,449] or to
device schemes for selective transport of an individual bosonic component [435,436]. Further-
more, it would be very interesting to simulate the parametric amplification of matter-waves
with applications ranging from the generation of four-wave mixing [172–174] to controllable
entanglement production.

A step forward to deepen our understanding on the control of the nonequilibrium dy-
namics is to unravel how a combination of periodic driving and an interaction quench can
be used to further steer the dynamics and as a consequence the coupling of the interwell
and intrawell modes. These inquiries lead us to our next scientific contribution [[8]] where
we investigated the quantum dynamics of interaction quenched few-boson ensembles trapped
in one-dimensional periodically driven, vibrating, finite optical lattices. To limit the degree
of the induced excitations we employ a deep lattice potential and small driving amplitudes.
Starting from the ground state of a weakly interacting few-boson ensemble, we first examined
the system’s time evolution in the periodically driven finite lattice. To unravel the range from
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adiabatic to high frequency driving we cover a wide range of driving frequencies. Our driving
scheme induces out-of-phase local dipole modes in the outer wells, and an on-site breathing
mode in the central well. Recall that this is in direct contrast with a shaken lattice, where
only on-site in-phase dipole modes are generated. It is observed that within the interme-
diate frequency regime, the system can be driven to a highly nonequilibrium state where a
resonance of the intrawell dynamics takes place. The tunneling dynamics within this regime
possesses mainly a single-particle character and it survives upon increasing interaction ob-
taining additional features the most remarkable of which being the co-tunneling of an atom
pair [54,134]. Additionally, within this resonantly driven regime an intensified loss of coher-
ence occurs. To induce a correlated many-body dynamics we then employed an interaction
quench upon the periodically driven lattice. In this manner we were able to amplify the tun-
neling and the on-site breathing mode, while in the outer lattice wells the bosons experienced
an admixture of a dipole and a breathing motion. Finally, the dynamics of the periodically
driven lattice for a fixed driving frequency and varying quench amplitude has been studied.
It has been shown that the combination of different driving protocols can excite different
inter- and intrawell modes and manifest various energetically higher components of a mode.
Remarkably enough, a multitude of distinct resonances between the lowest-band tunneling
dynamics and the intrawell dynamics is revealed. It has been further shown that these res-
onances can be manipulated via the frequency of the periodic driving, allowing for further
control of the mode coupling in optical lattices. Our findings reveal that a combination of
different driving protocols can induce admixtures of excited modes which in the present case
corespond to admixtures of dipole-like and breathing-like modes. In the same spirit it would
be interesting to find the optimal pulse of the interaction quench protocol in order to induce
a perfectly shaped squeezed state [138–141]. Finally, the understanding of the long-time dy-
namics imposing the interaction quench on the driven lattice at different transient times is
certainly of interest [112,437].

Quench Dynamics in Binary Mixtures

Having established a basic understanding of the nonequilibrium dynamics of single-component
bosonic ensembles we proceed to our last two scientific contributions in which we investigate
the correlation effects in the quench dynamics of multicomponent systems. In this context,
quantum correlations posses a crucial role as their interplay gives rise to novel phases of mat-
ter and peculiar dynamical phenomena [203–205]. In particular, within [[9]] we examined the
quench-induced phase separation dynamics of a harmonically trapped repulsively interacting
binary bosonic ensemble both within and beyond the mean-field approximation. The system
is initially prepared into the miscible phase. To realize the miscible to immiscible transition
the intraspecies interactions are held fixed and the interspecies repulsion is quenched to a
finite value. A filamentation of the one-body density during the dynamics of each of the two
species takes place. The dominant wavenumber associated with the emerging phase separated
state appears to be higher in the mean-field case. Examining the corresponding few-boson
systems we found that the phase separation is absent in the many-body case while it is still
present within the mean-field approximation. On the one-body level prominent losses of co-
herence have been observed, verifying the fragmented nature of the system, between filaments
residing around the center of the trap with the longer distant ones, lying at the periphery of

223



CONCLUSIONS AND OUTLOOK

the bosonic cloud. Most importantly, at the two-body level domain-wall-like structures are
revealed, since the inner filaments in both species are found to be anti-correlated with their
respective outer ones. A direct link with potential experimental realizations of the dynam-
ics has been also provided by utilizing, for the first time for binary mixtures, single-shots
simulations. Here, the presence of both the entanglement and the fragmentation has been
related to the dynamical evolution of the variance of single-shot images. In particular, it has
been observed that the growth rate of the variance resembles the growth rate of the entan-
glement, while the fragmented nature of the binary system is captured by the deviations in
the variance with respect to each of the two species. Following the reverse quench scenario,
namely quenching from the immiscible towards the miscible phase multiple dark-antidark
solitary waves are spontaneously generated and they are found to decay within the many-
body approach [309,310]. Employing the variance of single-shot measurements we showcased
the presence of a significant degree of entanglement. Finally quenches within the immisci-
ble regime have been investigated revealing the one-dimensional analogue of the so-called
“ball” and “shell” structure that appears in higher-dimensional binary systems [226, 423].
A natural next step would be to unravel the dynamical phase separation process following
a time-dependent protocol, e.g. a linear quench, in order to explore the domain formation
crossing the critical point with different velocities and thus testing the Kibble-Zurek mech-
anism [453, 454] in the presence of quantum fluctuations. Another interesting prospect is
to consider the corresponding already experimentally realized [211] two-dimensional setting,
and examine how the mean-field properties are altered in the presence of quantum fluctua-
tions. Additionally, of great interest would be to investigate the quench dynamics of spinor
bosons, for which phase separation processes are of ongoing interest even at the mean-field
limit [455]. Last but not least a very intriguing future direction is to examine the out-of-
equilibrium dynamics of highly particle imbalanced mixtures and subsequently investigate
the dynamical formation of the so-called Bose polarons [456–466] e.g. by quenching the
interspecies repulsion.

Within our final work [[10]] we examined the quench-induced expansion dynamics of a
particle imbalanced Bose-Fermi mixture confined in an one-dimensional optical lattice with
an imposed harmonic trap upon considering quenches from strong-to-weak confinement. In-
specting the ground state properties of the system we revealed that by tuning the inter- and
intraspecies interaction strengths two distinct ground state configurations can be realized,
namely the miscible and immiscible phases being characterized by a complete or vanishing
overlap of the bosonic and fermionic single-particle density distributions respectively. Re-
siding within the weak interaction regime, we performed a quench from strong-to-weak con-
finement and examined the resulting dynamical response within each of the above-mentioned
phases for varying final harmonic trap frequency. Within the immiscible phase the dynami-
cal response of both components exhibits a resonant-like response at moderate quench am-
plitudes. This observation is in accordance with the single-component expansion dynamics
discussed in [[6]]. For decreasing confinement different bosonic response regimes occur and
accompanied by a lesser amount of fermionic ones. We found that the bosons either per-
form a breathing dynamics or solely expand, while the fermions tunnel between the nearest
neighbor outer wells being located at the edges of the bosonic cloud or show a delocalized
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behavior over the entire lattice. It has been further shown that within the single-orbital
approximation the tunneling dynamics of both components cannot be adequately captured.
Performing a correlation analysis on both the one- and two-body level for each species we
have seen that during the evolution the predominantly occupied wells are one-body inco-
herent and two-body anti-correlated among each other, while within each well a correlated
behavior for bosons and an anti-correlated one for fermions occurs. On the other hand, the
dynamical response within the miscible phase of the Bose-Fermi mixture is greatly altered
when compared to the immiscible one. The bosons perform interwell tunneling reaching an
almost steady state for long evolution times, while the fermions expand until the edges of
the surrounding bosonic cloud where they are partly transmitted and partly reflected back
towards the central wells. Finally, the dependence of the expansion dynamics on the mass im-
balance between the two components and the potential barrier height has been examined. We
found that for mass imbalanced mixtures the heavy component remains almost unperturbed,
while upon increasing the height of the potential barrier the expansion dynamics becomes
suppressed. A straightforward extension of the present work is to explore the dynamics of
the Bose-Fermi mixture which is induced by a quench from strong-to-weak confinement only
for the fermionic ensemble thus letting the bosons unaffected. Here, the bosonic system may
act as a filter which absorbs completely or partly the momentum of the expanded fermions
depending on the quench amplitude. Another intriguing prospect is to examine the dynamics
of a dipolar Bose-Fermi mixture [438–441] under the quench protocol considered herein, and
reveal the different response regimes which appear for varying quench amplitude or initial
phase so as to explore the possibility to induce a ballistic expansion.
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fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice,
Nature 444, 733 (2006).

230



BIBLIOGRAPHY

[44] C.L. Hung, X. Zhang, L.C. Ha, S.K. Tung, N. Gemelke, and C. Chin, Extracting density-
density correlations from in situ images of atomic quantum gases, New J. Phys. 13, 075019
(2011).

[45] M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauß, C. Gross, L. Mazza,
M.C. Banuls, L. Pollet, I. Bloch, and S. Kuhr, Observation of correlated particle-hole
pairs and string order in low-dimensional Mott insulators, Science 334, 200 (2011).

[46] M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauß, T. Fukuhara, C. Gross,
I. Bloch, C. Kollath, and S. Kuhr, Light-cone-like spreading of correlations in a quantum
many-body system, Nature 481, 484 (2012).
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Sowiński, and J. Zakrzewski, Non-standard Hubbard models in optical lattices: a review,
Rep. Prog. Phys. 78, 066001 (2015).

[63] M.  La̧cki, D. Delande, and J. Zakrzewski, Dynamics of cold bosons in optical lattices:
effects of higher Bloch bands, New J. Phys. 15, 013062 (2013).

[64] O. Jürgensen, Extended Hubbard models for ultracold atoms in optical lattices, (2015).

[65] T.D. Kühner, and H. Monien, Phases of the one-dimensional Bose-Hubbard model, Phys.
Rev. B 58, R14741 (1998).

[66] T.D. Kühner, S.R. White, and H. Monien, One-dimensional Bose-Hubbard model with
nearest-neighbor interaction, Phys. Rev. B 61, 12474 (2000).

[67] P. Sengupta, L.P. Pryadko, F. Alet, M. Troyer, and G. Schmid, Supersolids versus phase
separation in two-dimensional lattice bosons, Phys. Rev. Lett. 94, 207202 (2005).

[68] S. Wessel, Phase diagram of interacting bosons on the honeycomb lattice, Phys. Rev. B
75, 174301 (2007).

[69] J.Y. Gan, Y.C. Wen, J. Ye, T. Li, S.J. Yang, and Y. Yu, Extended Bose-Hubbard model
on a honeycomb lattice, Phys. Rev. B 75, 214509 (2007).

[70] K.K. Ng, Y.C. Chen, and Y.C. Tzeng, Quarter-filled supersolid and solid phases in the
extended Bose-Hubbard model, J. Phys.: Cond. Matt. 22, 185601 (2010).

[71] J.M. Kurdestany, R.V. Pai, and R. Pandit, The inhomogeneous extended Bose-Hubbard
model: A mean-field theory, Annalen der Physik 524, 234 (2012).

232



BIBLIOGRAPHY

[72] M. Maik, P. Hauke, O. Dutta, M. Lewenstein, and J. Zakrzewski, Density-dependent
tunneling in the extended Bose-Hubbard model, New J. Phys. 15, 113041 (2013).

[73] O. Jürgensen, K. Sengstock, and D.S. Lühmann, Twisted complex superfluids in optical
lattices, Sc. Rep. 5, 12912 (2015).

[74] L. Cao, S. Krönke, J. Stockhofe, J. Simonet, K. Sengstock, D.S. Lühmann, and P.
Schmelcher, Beyond-mean-field study of a binary bosonic mixture in a state-dependent
honeycomb lattice, Phys. Rev. A 91, 043639 (2015).

[75] P. Buonsante, V. Penna, and A. Vezzani, Fractional-filling loophole insulator domains
for ultracold bosons in optical superlattices, Phys. Rev. A 70, 061603 (2004).

[76] P. Buonsante, and A. Vezzani, Cell strong-coupling perturbative approach to the phase
diagram of ultracold bosons in optical superlattices, Phys. Rev. A 72, 013614 (2005).

[77] I. Danshita, J.E. Williams, C.S. de Melo, and C.W. Clark, Quantum phases of bosons
in double-well optical lattices, Phys. Rev. A 76, 043606 (2007).

[78] D. Muth, A. Mering, and M. Fleischhauer, Ultracold bosons in disordered superlattices:
Mott insulators induced by tunneling, Phys. Rev. A 77, 043618 (2008).

[79] O. Jürgensen, J. Heinze, and D.S. Lühmann, Large-amplitude superexchange of high-
spin fermions in optical lattices, New J. Phys. 15, 113017 (2013).

[80] J.Y. Gan, Y.C. Wen, and Y. Yu, Supersolidity and phase diagram of soft-core bosons
on a triangular lattice, Phys. Rev. B 75, 094501 (2007).

[81] A.J. Leggett, Can a solid be “superfluid”?, Phys. Rev. Lett. 25, 1543 (1970).

[82] T. Leggett, Superfluidity in a Crystal?, Science 305, 1921 (2004).

[83] G.G. Batrouni, and R.T. Scalettar, Phase separation in supersolids, Phys. Rev. Lett.
84, 1599 (2000).

[84] N. Prokof’ev, What makes a crystal supersolid?, Adv. Phys. 56, 381 (2007).

[85] D.S. Lühmann, O. Jürgensen, and K. Sengstock, Multi-orbital and density-induced tun-
neling of bosons in optical lattices, New J. Phys. 14, 033021 (2012).
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[169] J. Kinnunen, and P. Törmä, Beyond linear response spectroscopy of ultracold Fermi
gases, Phys. Rev. Lett. 96, 070402 (2006).

[170] N. Goldman, and J. Dalibard, Periodically driven quantum systems: effective Hamil-
tonians and engineered gauge fields, Phys. Rev. X 4, 031027 (2014).

[171] N. Goldman, J. Dalibard, M. Aidelsburger, and N.R. Cooper, Periodically driven quan-
tum matter: The case of resonant modulations, Phys. Rev. A 91, 033632 (2015).

[172] N. Gemelke, E. Sarajlic, Y. Bidel, S. Hong, and S. Chu, Parametric amplification
of matter waves in periodically translated optical lattices, Phys. Rev. Lett. 95, 170404
(2005).

[173] K.M. Hilligsøe, and K. Mølmer, Phase-matched four wave mixing and quantum beam
splitting of matter waves in a periodic potential, Phys. Rev. A 71, 041602 (2005).

[174] R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, D. Boiron, and C.I. Westbrook, Atomic
Hong-Ou-Mandel experiment, Nature 520, 66 (2015).

[175] C.V. Parker, L.C. Ha, and C. Chin, Direct observation of effective ferromagnetic do-
mains of cold atoms in a shaken optical lattice, Nature Phys. 9, 769 (2013).

[176] S. Choudhury, and E.J. Mueller, Stability of a Floquet Bose-Einstein condensate in a
one-dimensional optical lattice, Phys. Rev. A 90, 013621 (2014).

[177] W. Zheng, and H. Zhai, Floquet topological states in shaking optical lattices, Phys.
Rev. A 89, 061603 (2014).

[178] A. Eckardt, C. Weiss, and M. Holthaus, Superfluid-insulator transition in a periodically
driven optical lattice, Phys. Rev. Lett. 95, 260404 (2005).

239



BIBLIOGRAPHY

[179] H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, and E. Arimondo,
Dynamical control of matter-wave tunneling in periodic potentials, Phys. Rev. Lett. 99,
220403 (2007).
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