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Abstract
The intriguing physics discovered with the famous quantum Hall effect was the first sign of
what was later unraveled to be a whole, yet unknown class of phases of quantum matter.
The study of these so-called topological quantum phases has become a deeply relevant
topic for state of the art research bridging various disciplines of physics such as condensed
matter physics, ultra cold atoms, trapped ions, and quantum computing.

As part of this work, two experiments on quantum many body systems in the vicinity
of a topological phase transition were conducted. This thesis reports on their realization,
results, and interpretation. In the first experiment the Berry curvature of a Floquet Bloch
band is reconstructed with a high resolution in the Brillouin zone. The second experiment
reports on the observation of dynamical vortices in nonequilibrium states after a quench
into a topological system.

For both experiments ultracold atoms were employed as a platform to precisely engi-
neer Hamiltonians with the desired geometrical and topological properties. For that we
implemented a hexagonal optical lattice that provides a freely tunable offset between odd
and even sites. Furthermore, the absolute lattice position can be dynamically controlled.
This enables us to periodically drive the atomic ensemble and thereby create effective
Floquet Hamiltonians, that have fundamentally different properties from the static system,
including nontrivial topology, which requires the breaking of time reversal symmetry. The
lowest two bands in the band structure of the considered systems form a family of s-bands,
that is well separated from the rest of the spectrum. We study the non-interacting states in
these bands at a filled lower band, and explore the phase diagram spanned by the Floquet
driving frequency and modulation depth, with focus on the regime of near resonant driving,
where the system undergoes a transition to a topological insulator.

In the first experiment we reconstructed the Berry curvature distribution within the first
Brillouin zone of the described system via a complete state tomography measurement. The
Berry curvature is a central geometric property of quantum systems subjected to adiabatic
changes. The integral of the Berry curvature over the Brillouin zone yields the Chern index,
which serves as a topological order parameter. The measurement of the Berry curvature is
highly relevant because it opens the path towards a deeper understanding of the underlying
geometric properties that lead to topological effects. Prior to this experiment the Berry
curvature has not been measured for lattice periodic systems. The observables for the
measurement are atomic density oscillations after time of flight expansion, caused by the
dynamics following a quench into a system with flat bands. Similarly to a Rabi oscillation
measurement, the observed oscillations fully characterize the respective quasimomentum
eigenstate. In this thesis the experimental techniques and the acquired data that shows a



significant Berry curvature for a parameter regime close to the expected phase transition
is presented.

The second part of this thesis reports on the observation of the creation, movement,
and annihilation of dynamical vortex pairs in a highly excited state, during its evolution
in a Floquet-Bloch system of the previously described type. The dynamics of the vortices
constitute a link between the characteristics of nonequlibrium dynamics and the topological
phase of the underlying system. From the trace of the vortices in quasimomentum space
it is possible to determine the Chern number and thereby the topological phase of the
system. In our system the mere emergence of the vortices signals the proximity in system
parameter space to the phase transition. We further identify the number of vortices as a
topological order parameter for a dynamical phase transition. While ordinary quantum
phase transitions are defined for equilibrium systems and occur at a critical value of
a adiabatic control parameter, like e.g. the magnitude of the applied magnetic field, a
dynamical phase transition is defined for nonequilibrium states and appears under the
evolution of the state at critical times. The measurements presented here extend the ones
in the first part of the thesis. Here, instead of preparing an eigenstate of the system, a
highly excited state is prepared by an initial quench from a topological trivial system
into a nontrivial system. We reconstruct the state for a series of evolution times via a
complete state tomography. In the acquired phase data the dynamics of the vortices can
clearly be seen, and the parameter regime for their emergence coincides with our numerical
simulation of the system.

In addition to these experiments, this thesis reports on a fiber phase lock, that has
been developed as part of this work. The fiber phase lock is an optical and electronic
setup that allows suppressing the phase noise, which a laser beam picks up upon passage
through an optical fiber. For optical lattices this noise is transduced into the domain of
the lattice position or the lattice structure. The presented solution employs a local end,
heterodyne measurement of the picked up phase as an error signal for a digital feedback
loop, that actuates on the phase via an acousto-optic modulator that is driven by a direct
digital synthesis signal. The digital controller has been implemented on the platform of an
embedded system with real time capabilities.



Zusammenfassung
Die faszinierende Physik die im Zusammenhang mit dem Quanten-Hall-Effekt entdeckt
wurde, war ein erstes Zeichen für das was sich später als eine vollständige neue Kategorie von
Quanten-Materie-Phasen herausstellte. Die Erforschung dieser sogenannten topologischen
Quantenphasen hat sich zu einem höchst relevanten Themengebiet der aktuellen Forschung
in verschiedenen Bereichen der Physik entwickelt, von Festkörperphysik über ultrakalte
Atome, gefangene Ionen hin zu Quantencomputern.

Im Rahmen dieser Arbeit wurden zwei Experimente an Quanten-Vielteilchen-Systemen
nahe topologischer Phasenübergänge durchgeführt. Diese Dissertation berichtet von der
Umsetzung dieser Experimente, deren Ergbnissen und Interpretation. In dem ersten
Experiment wird die Berry-Krümmung eines Floquet-Bloch-Bandes mit hoher Auflösung in
der Brillouin-Zone rekonstruiert. Das zweite Experiment zeigt die Beobachtung dynamischer
Vortices in Nichtgleichgewichtszuständen nach der Projektion in ein topologisches System.

Für beide Experimente dienten ultrakalte Atome als Plattform um kontrolliert Hamilton-
Operatoren mit den gewünschten geometrischen und topologischen Eigenschaften zu kon-
struieren. Um dies zu erreichen errichteten wir ein hexagonales optisches Gitter mit einer
frei einstellbaren Gittertiefendifferenz zwischen geraden und ungeraden Minima. Zusätzlich
kann die absolute Gitterposition dynamisch kontrolliert werden. Damit ist es uns möglich
das Atom-Ensemble periodisch zu treiben und so effektive Floquet-Hamilton-Operatoren
zu schaffen, welche sich in ihren Eigenschaften fundamental von dem statischen System
unterscheiden, u. a. durch ihre nicht-triviale Topologie, welche das Brechen der Zeitum-
kehrinvarianz erfordert. Die untersten zwei Bänder in der Bandstruktur des betrachteten
Systems bilden eine Familie von s-Bändern die von dem Rest des Spektrums separiert
ist. Wir untersuchen nichtwechselwirkende fermionische Zustände in diesen Bändern bei
einem gefüllten unteren Band und erkunden das Phasendiagramm das durch die Floquet-
Antriebsfrequenz und Modulationstiefe aufgespannt wird. Dabei liegt der Fokus im Bereich
des nahresonanten getriebenen Systems in dem der Phasenübergang zur topologischen
Isolatorphase stattfindet.

Im ersten Experiment rekonstruierten wir die Berry-Krümmungs-Verteilung inner-
halb der ersten Brillouin-Zone des beschriebenen Systems mittels einer vollständigen
Zustands-Tomographie-Messung. Die Berry-Krümmung is eine zentrale geometrische Ei-
genschaft von Quantensystemen mit adiabatisch variierenden Parametern. Das Integral der
Berry-Krümmung über die Brillouin Zone ist der Chern Index, welcher als topologischer
Ordnungsparameter dient. Die Messung der Berry Krümmungs ist höchst relevant, weil
sie den Weg zu einem tiefereren Verständnis der den topologischen Effekte zugrundeliegen-
den geometrischen Eigenschaften ebnet. Vor den hier vorgestellten Messungen wurde die



Berry-Krümmung noch nicht für gitterperiodische Systeme gemessen. Die Observablen
der Messung sind die Oszillationen der atomaren Dichte nach time-of-flight Expansion,
die durch die Projektion in flache Bänder hervorgerufen werden. Ähnlich zu einer Rabi-
Oszillations-Messung, charakterisieren die beobachteten Oszillationen den zugehörigen
Gitterimpuls-Eigenzustand vollständig. In dieser Arbeit werden die experimentelle Vorge-
hensweise und die erlangten Daten präsentiert, welche eine signifikante Berry-Krümmung
in dem erwarteten Parameterregime nahe des Phasenübergangs zeigen.

Der zweite Teil dieser Arbeit berichtet von der Beobachtung der Erzeugung, Bewe-
gung und Vernichtung von dynamischen Vortex-Paaren in einem hochangeregten Zustand
während seiner Entwicklung in einem Floquet-Bloch-Systems des zuvor beschriebenen
Typs. Die Dynamik der Vortices stellt eine Verbindung zwischen dem Feld der Nicht-
gleichgewichtsdynamik und der topologischen Phase des zugrundeliegenden Systems her.
Von der Trajektorie der Vortices im Quasiimpulsraum ist es möglich die Chern-Zahl und
damit die topoplogische Phase des Systems zu bestimmen. In dem von uns untersuchten
System signalisiert das bloße Erscheinen der Vortices die Nähe im Systemparameterraum
zu einem Phasenübergang. Desweiteren identifizieren wir die Anzahl der Vortices als
einen topologischen Ordnungsparameter für einen dynamischen Phasenübergang. Während
gewöhnliche Quantenphasenübergänge für Gleichgewichtssysteme definiert sind und beim
adiabatischen Erreichen eines kritischen Wertes eines Kontrolparameters auftreten, wie
zum Beispiel der Stärke des angelegten Magnetfeldes, ist der dynamische Phasenübergang
für Nichtgleichgewichtszustände definiert und tritt bei der Entwicklung des Zustandes
zu kritischen Zeiten auf. Die hier vorgestellen Messungen ähneln denen des erstens Teils
dieser Arbeit, mit dem Unterschied, dass nicht Eigenzustände des zu untersuchenden
Systems präpariert werden, sondern hoch angeregte Zustände, welche durch die Projektion
von einem topologisch trivialen Systems in ein nicht triviales präpariert werden. Wir
rekonstruieren den gesamten Zustand für eine Serie von Entwicklungszeiten mithilfe der
vorgestellten vollständigen Zustandstomographie. In den aufgezeichneten Phasenprofilen
ist die Dynamik der Vortices deutlich erkennbar, und das Parameterregime ihres Auftretens
stimmt mit unseren numerischen Simulationen überein.

Zusätzlich zu diesen Experimenten berichtet diese Dissertationsschrift von einer sog.
Faser-Phasen-Regelung, die im Rahmen dieser Arbeit entwickelt wurde. Die Faser-Phasen-
Regelung ist ein optischer und elektronischer Aufbau, der es erlaubt das Phasenrauschen,
das ein Laserstrahl bei dem Durchlaufen einer optischen Faser erleidet, zu unterdrücken.
Die vorgestellte Lösung verwendet eine Laser-seitige AC-Messung der aufgesammelten
Phase als ein Fehlersignal für eine digitale Feedback-Regelung, die per direkter digitaler
Signalsynthese (DDS) einen akusto-optischen Modulator treibt. Der digitale Kontroller
wurde auf der Basis eines embedded systems mit Echtzeitfähigkeit umgesetzt.
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1 Introduction
Topology and differential geometry are two closely related mathematical disciplines that
form the foundation for the description of a wide range of advanced physical phenomena,
in a similar manner as e.g. function analysis forms the foundation to Newton mechanics.
Famous examples among those geometric or topological phenomena from the realm of
classical physics are, among others, the rotation of the swinging plane of the Foucault
pendulum [1] and the curved spacetime as the central concept of the special [2] and
general [3] theory of relativity. Also for Quantum mechanics topology and geometry have
become an important foundation, as for example for the description of the Aharanov-
Bohm effect (ABE) [4] and the famous quantum Hall effect (QHE) [5, 6] which represents
the embarquement of the field of condensed matter physics into a paradigm change by
defining the new class of topological quantum phases of matter [7, 8]. But the journey into
unraveling the mysteries of topological states of matter has not finished yet, and it forms a
highly active field of current research (e.g. reviews [9–11]). This strong interest might be
motivated by the high applicability of topological materials in technology development and
other fields of research. The prime example for a field of applications is the development of
quantum computers, which are a promising candidate for the next technological revolution.
Probably the biggest hurdle [12] to be overcome in the quest for constructing a potent
quantum computer is the problem of the fragility of the quantum states that encode the
information on such a system, also known as QuBits. Here, the combination of a so-
called topological insulator with a superconductor may allow the creation of topologically
protected quantum states [13], that overcome the short-lived coherence of the QuBits.

Differential geometry as a field of mathematics can be depicted, in a simplified way, as
the study of structures1 attached to curved surfaces2. A visual example is the angle sum
of a triangle on a sphere: imagine drawing a line from the north pole down to the equator,
then following it for a quarter rotation before closing the line again at the north pole. At
each corner the sides enclose a right angle and therefore make up an angle sum of 270°,
breaking the rule of the 180° angle sum for triangles on a flat surface. The reason for this
mismatch is of course the curvature of the sphere. For more irregular shaped surfaces, the
angle sum will generally be dependent on the position of the triangle on the surface.

While differential geometry is concerned with such local quantities of curved spaces, the
field of topology studies global properties. Here the iconic example is the Gauss-Bonnet
theorem, which states that the integral of the (gaussian) curvature over the full surface
yields a total curvature of 2π(2− g), where g is an integer number, a so-called topological

1Structures in the sense of mathematical structures such as vector spaces, groups, etc.
2or more generally differentiable manifolds
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index, that can be used to group surfaces into classes. This specific index counts the
number of holes of the surface, i.e. zero for a sphere, one for a torus, two for a pretzel, and
so on. This example illustrates two important properties of topological indices. Firstly,
the number of holes can only be changed when the surface is “cut” and “glued” together
again, which translates to the previously mentioned topological protection. Secondly, for
determining g the full surface is involved, in the sense that any missing part might contain
additional holes, and is therefore a global property.

For geometry and topology in the context of quantum physics, the spaces of interest
are the high dimensional Hilbert spaces formed by the entirety of the possible quantum
mechanical states of a system, and the “attached” spaces are the quantum mechanical
phases of the wave functions3. In analogy to the previous example of the angle sum of the
triangle, a non flat surface like the sphere here corresponds to geometrically nontrivial
Hilbert spaces, and the angle sum deviation from 180° here corresponds to a quantum
geometric phase. The quantum geometric phase leads to novel interference phenomena
that are not present in geometrically trivial systems. For the case of a static system, i.e.
a system that occupies a state that does not change with time4, the quantum geometric
phase is called the Berry phase [14]. Because the wave function in this case can be derived
from the system parameters, the Berry phase can be regarded as a phase “attached” to a
parameter space. If the system is for example an electron, such a system parameter could
be the position of the electron as it determines the present magnetic field (or rather the
vector potential)[15]. Keeping the visualization via the angle sum of a triangle in mind,
one can define a curvature in the parameter space derived from the Berry phase which is
accordingly known as the Berry curvature5. The integral over the Berry curvature also
defines a topological index called Chern number6 [7], which for the QHE corresponds [17]
to the number of conduction quanta7, and for the ABE to the number of magnetic flux
quanta.

The experiments presented in this thesis are concerned with the geometry and topology
of systems with a spatial periodicity. In nature, such systems are typically realized
in form of crystalline materials, such as most conducting metals and semiconductors,
superconductors and the famous8 graphene, and are therefore classically studied in the
context of condensed matter physics. While these systems have for a long time been
primarily characterized by their excitation spectrum, i.e. the electronic band structure,

3or more mathematically, a U(1) line bundle
4an eigenstate of the Hamiltonian, that gets varied adiabatically
5The analogy to the angle sum is not fully concise: The Berry phase is equal to the total curvature

enclosed by the path in parameter space. For the angle sum this is only true on a sphere. For a better
picture refer to Chap. 4

6The Chern index stems from a generalization of the Gauss-Bonnet theorem [8, 16].
7Given by the bulk-boundary correspondence principle [10] as the number of conducting chiral edge

states.
8Nobel prize in physics was awarded for the experiments on graphene [18–20]
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also the geometric properties have a significant impact on the material properties [21, 22].
Here we are using clouds of fermionic potassium, that have been cooled to quantum
degeneracy, as a quantum simulation platform to study quantum geometric and topological
phenomena. In analogy to condensed matter physics, the role of the crystal structure of
the atomic cores is taken by an optical lattice potential created via the interference pattern
of intersecting laser beams, and the role of the electrons by the ultracold atoms. Using
ultracold atoms as a platform opens up new experimental pathways[23–27] as it has the
advantage that many system parameters can be tuned that are otherwise fixed properties
of the analyzed material or restricted due to technical limitations. One major shortcoming
of the ultra cold atom platform is, however, the neutrality of the electric charge of atoms,
and the entailed absence of the Lorentz force, which opposed to electrostatic forces, cannot
simply be emulated by an optical dipole potential9. This shortcoming can be overcome by
using geometrically non trivial, i.e. non-flat, systems, because the Berry curvature is a
general quantity that in the case of an electron in a magnetic field can be identified with
the magnetic field. This strategy is therefore also referred to as engineering of artificial
gauge fields [15, 30–34].

The experimental research with ultracold atom systems has a long and successful
history of the exploration of magnetic phenomena, ranging from the emulation of classical
frustrated magnetism [32] to the realization of Ising models [35]. In the recent years, the
past forty years of exploration of topological and geometrical effects in condensed matter
physics found a fast forward revival on the new ultracold atom platform. One of the early
experiments was, for example, the realization [36, 37] of the Hofstader-Hamiltonian [38, 39],
the very same system that was originally considered in the seminal paper by Thouless
et al. that led to the paradigm shift in the definition of quantum phases. The energy
spectrum of this system, which forms, as a function of the magnetic flux through its unit
cell, the famous fractal structure called the Hofstader-butterfly. In a condensed matter
system only a very small region of this structure is accessible, because an average of one
flux quantum per unit cell corresponds to magnetic fields of the order of tens of thousands
of Tesla. In the cold atom realization, the geometric phases are tuned via the phase of
laser assisted tunneling processes and the associated magnetic field can be freely tuned to
arbitrary strengths [31]. Further important experiments in the exploration of topological
quantum matter with ultra cold atoms were among others [40–42] the interferometric
measurement [43] of the Zak-phase, which is the one-dimensional equivalent to the Chern
index, the measurement [44] of chiral edge currents and the realization [45] of the famous
Haldane model, which was originally [46] intended as a toy model, unthinkable to be ever
realized in a condensed matter system, because it requires equally strong magnetic fields
that alternate at a sublattice scale.

In this thesis I am going to present two main experiments. For both experiments

9It can, in limited extend, be emulated by a rotating frame of reference [28, 29]
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hexagonal optical lattices [27, 41, 47] were explored. To be specific, the lattice is of the
boron-nitride type, which is similar to the lattice structure of graphene, in the sense
that its “sites”, i.e. the location of the atomic cores in a real material, coincide with
the intersection points of a honeycomb structure. The difference from graphene is, that
every second site is more strongly binding than the others. It can be shown [48] that
the Berry curvature is an even function for inversion symmetric systems and an odd
function for time reversal symmetric systems. This implies that it is zero for time and
inversion symmetric systems, and its integral, the Chern number, is zero as soon as time
reversal symmetry is given. In condensed matter systems this time reversal symmetry
can be simply broken by applying a magnetic field. Also in ultra cold atom systems it
can be broken to create nontrivial topological systems [45, 49]. A common realization is
periodic driving [50–57] of lattice parameters, as for example the coupling of the laser
assisted tunneling mentioned earlier. In the presented experiments we break time reversal
symmetry by translating the absolute lattice position periodically over time, which is also
known as lattice shaking [32, 33, 35, 58–61].

In the first experiment [62] we determined the Berry curvature with a high resolution
and over the entire first Brillouin zone of this two dimensional lattice system via a complete
state tomography [59]. In condensed matter system the effects of a changed Chern index
are highly severe and easily observable. The underlying change of Berry curvature however,
is not easily accessible and could therefore not be measured yet. In ultracold atom systems
the Berry phase has been measured [63] interferometrically for isolated paths, but by
providing a quasimomentum resolved measurement of the Berry curvature for the entire
Brillouin zone, this experiment constitutes a novelty.

In the second experiment [64] we explore the relationship between nonequilibrium
dynamics and the geometrical and topological properties of the system in which the
dynamics take place. In the wave function of a state that has initially been prepared as
a filling the lowest band of a deep undriven boron-nitride lattice with an essentially flat
band structure, we observe the creation, movement, and annihilation of vortices during its
evolution in the circularly driven system. The path of these vortices in quasimomentum
space eventually forms a closed contour. This contour separates the two maxima of Berry
curvature, the so-called Dirac points, only if the underlying Hamiltonian is topologically
nontrivial [65–67]. Probing a topological Hamiltonian without preparing a topological
state, as it is done here, is of special relevance because topological ground states are
extremely difficulty to create [68, 69].

We further explore the nonequilibrium dynamics in yet another context by identifying
the pairs of dynamical vortices as an order parameter of a so-called dynamical phase
transition [70–72] (DPT). For traditional phase transitions in physics, like the freezing of
a liquid to a crystalline solid, the properties of a system at equilibrium change drastically
upon reaching a critical value of its external parameters, like temperature, pressure or
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magnetic field. In contrast to this DPTs describe nonequilibrium systems. Here, an
initial state changes over time without the need for externally varied parameters. Such a
nonequilibrium state is typically reached by preparing an equilibrium state, followed by
a quench of a system parameter. During the evolution of the state, physical quantities
associated to it may expose a nonanalytic behaviour at accordingly termed critical times.
The nonanalytic behaviour in a traditional phase transition can be related [70, 73–76] to
the occurrence of zeros, called Fisher zeros, in the partition function. The definition of
dynamical phase transitions is motivated by [70] the mathematical analogy of the Loschmidt
amplitude, i.e. the overlap of the evolved state with the initial state, with the (boundary)
partition function [77] when replacing the spatial coordinate with imaginary time, which
therefore also may entail critical behaviour in time [78]. In recent theoretical studies
dynamical phase transitions could be related to the topological properties [68, 79–81] and
phase transitions in general [82] of the underlying system. For one-dimensional systems
the winding number of the Pancharatnam geometric phase [83] could be identified [84, 85]
as a topological order parameter for the DPTs. In the present work we generalize this idea
to higher dimensions and introduce the number of dynamical vortices as an experimentally
well accessible order parameter.

Prior to our experiment, so-called Lee-Yang [86, 87] zeros, which, like the Fisher
zeros, are a special case of zeros in the partition function, have for the first time been
experimentally observed [88] in a molecule. The Lee-Yang zeros describe an equilibrium
phase transition in terms of an imaginary magnetic field instead of relating it to the
real time evolution of the Loschmidt amplitude. Shortly after the initial publication [89]
of our findings, further experimental studies of DPTs in one-dimensional trapped ion
systems [90, 91] and condensed matter systems [92] have been conducted.

Our experiment shows the accessibility of a dynamical order parameter as an experi-
mental observable and opens the route towards a deeper exploration of the connection
between nonequilibrium dynamics and topology in quasi continuous 2D systems. With
the developed experimental techniques the topology of lattice Hamiltonians has been
probed [65]. The study of topology of more complicated systems with interactions is a
promising candidate for further exploration.

1.1 Outline
The thesis is structured in nine chapters. Chapts. 6 and 8 report on the main two
experiments, that have been conducted as part of this work, namely the reconstruction of
the Berry curvature and the observation of dynamical vortices. Chapts. 1-5 introduce the
theoretical concepts and experimental setup relevant for both experiments and Chap. 7
introduces additional concepts relevant for the experiment on dynamical vortices. The
final chapter analyses in depth a digital fiber phase lock as an experimental device, that
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has been developed in the course of this work. The content of the individual chapters is as
follows:

2. Preparing and Probing Ultracold Trapped Fermions
Chapter 2 deals with the experimental apparatus, that is used to conduct all the experiments
presented in this thesis, with a special focus on the changes that have been implemented in
the course of this work. These changes are: The setup of a laser system for the generation
of a far detuned hexagonal optical lattice, the implementation of a Python10 scriptable
experiment sequence control and the implementation of a post acquisition image processing
algorithm, capable of removing interference patterns that arise when imaging the atoms
with coherent light.

3. Ultracold Atoms in Optical Lattice Potentials
In this chapter the necessary theoretical background on optical lattices is established.
Starting from general optical dipole potentials, optical lattice made from three beams
are introduced. Secondly, the wide class of lattice structures and associated describing
parameters is restricted further and further over in-plane lattices, to hexagonal lattices, to
finally the balanced boron nitride lattice, that stands at the center of these experiments.
Thirdly, the Bloch electron model for a quantum mechanical description of a single atom
in an optical lattice and its numerical implementation are presented. And finally the
tight-binding approximation, which is relevant for an analytic description of the conducted
experiments, is introduced.

4. Geometry and Topology of Periodically Driven Boron Nitride Lattices
Chapter 4 introduces the concept of the geometric phase and the Berry curvature, two
quantities that stand at the center of the experiment reported on in Chap. 6. Furthermore,
Floquet theory for the description of periodically driven lattice is presented.

5. State Tomography for an Optical Lattice
In chapter 5 the central experimental technique for retrieving the information about the
quantum state of the ensemble of ultracold atoms in the lattice is explained. This technique
is central for the data in Chap. 6 and 8.

6. Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band
In this chapter the results of one of the two main experiments are presented. The
experimental protocol for the data acquisition and the data analysis gets reported upon.

10Programming language
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The data in this chapter has also been published in Ref. [62].

7. Nonequilibrium Dynamics in Topological Bands
Chapter 7 introduces the new concepts necessary to understand the data presented in
Chap. 8 and analyses the relationship of dynamical vortices with topology, dynamical
phase transition and the Pancharatnam geometric phase.

8. Experimental Observation of Dynamical Vortices in a Topological Bloch Band
Here I present the data of the second of the main two experiments in the thesis. The data
in this chapter has also been published in Ref. [64].

9. Development of a Digital Fiber Phase Lock
Optical fibers transfer mechanical vibrations onto the phase of the light that they are
guiding. In the present context of optical lattices these phase fluctuations lead to a
stochastic shaking of the lattice, which in turn heats the confined ultracold atoms in an
uncontrolled manner. The fiber phase lock subject to this chapter reduces the noise of
such a fiber via an electronic negative feedback loop. In this chapter the optical, electronic
and software setups are presented and characterized.
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In connection with this work, the following articles have been published:

In Verbindung mit dieser Arbeit sind die folgenden Publikationen entstanden:

• Experimental Reconstruction of the Berry curvature in a Floquet Bloch Band
N. Fläschner, B. S. Rem, M. Tarnowski, D. Vogel, D. S. Lühmann, K. Sengstock,
C. Weitenberg
Science 352, 1091–1094 (2016) DOI: 10.1126/science.aad4568

• Observation of Topological Bloch-State Defects and their Merging Transition
M. Tarnowski, M. Nuske, N. Fläschner, B. S. Rem, D. Vogel, L. Freystatzky, K. Sengstock,
L. Mathey, C. Weitenberg
Phys. Rev. Lett. 118, 240403 (2017) DOI: 10.1103/PhysRevLett.118.240403

• High Precision Spectroscopy of Ultracold Atoms in Optical Lattices
N. Fläschner, M. Tarnowski, B. S. Rem, D. Vogel, K. Sengstock, C. Weitenberg
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2 Preparing and Probing Ultracold
Trapped Fermions

The very foundation for the experiments presented in this thesis is an ensemble of confined,
quantum degenerate fermions, that can be manipulated and probed, which is here given
by a trapped cloud of ultracold fermionic 40K atoms.

However, the phenomena studied here are fully independent of the specific choice of
platform, as they do not principally rely on any of the atomic properties. Phenomena and
techniques similar to those reported on here can also be found in realizations in the field of
condensed matter physics, as for example the phenomena in illuminated graphene [93] and
the technique of angle resolved photoemission spectroscopy (ARPES) [94, 95]. Over the last
decades ultracold atoms have evolved [26] into a powerful and versatile quantum simulation
platform, that offers a wide set of tools for engineering physical systems. In the present
context this means specifically that in contrast to condensed matter samples, the lattice
potentials can be systematically varied through simply accessible external parameters such
as the polarization and the phase of the beams constituting the optical lattice potential.

In this chapter I will summarize how we produce and probe samples of ultracold 40K ,
with a special focus on the relevant additions and improvements of the previously existing
system, that have been implemented in the course of this thesis. I want to underline that
the these additions and improvement have been conducted as an communal effort in a
team. My personal contributions are centered around the construction of the lattice laser
setup (Sec. 2.2), the extension of the experiment control (Sec. 2.3) and the fringe removal
via image post-processing (Sec. 2.4). Detailed information on the implementation of a
gray molasses and the construction of the lattice telescopes can be found in the theses of
my colleagues Nick Fläschner [96], Matthias Tarnowski [97] and Maria Langbecker [98].

2.1 Preparation of Ultracold Potassium
The apparatus described in this section is capable of producing samples of ultracold
fermionic 40K atoms in a continuous sequence of experimental cycles. For the two types of
experiments presented in this thesis we require clouds of 2 · 105 atoms to create states that
completely fill the lower band of the band structure of the typical lattice Hamiltonians.
With the optimizations of the apparatus that we implemented [96], we can produce samples
of this size, at a temperature between 10 to 20 percent of the Fermi temperature (TF)
typically within 14 s. Because the apparatus is also capable of producing an ultracold
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mixture of 40K and bosonic 87Rb it has been named Bose-Fermi-mixture apparatus or
short BFM-apparatus.

The apparatus was conceptualized and built by Silke and Christian Ospelkaus [99, 100]
starting in 2003. It is one of four apparatus [101–103] in the group led by Klaus Sengstock,
which share a similar design, that has, over many years now, proven to be very reliable
and successful. Among the main design parameters for those apparatus, in order to
serve as a platform for a multitude of different experiments, are the optical access for the
manipulation and probing of the atoms via laser light and the vacuum pressure of the
residual background gas that disturbs the sample through collisions. For this reason the
apparatus consist of two glass cells that on only one side are connected to a steel chamber
that provides all stages of the vacuum pumping infrastructure.

The two cells are dedicated to different stages of the cooling process of the atoms. Both
rubidium and potassium are earth alkali metals that are solid at room temperature. To
create a gas, so-called dispensers are used. These are devices, located in the vacuum,
that heat the metals electrically and thereby cause atoms to sublimate into the gas phase.
Those dispensers are located in the upper glass cell. We use commercial dispenser that
supply an isotopic distribution that reflects the natural abundance (NA) for rubidium and
for potassium is enriched with 40K , to counter its extremely low NA of only 117 ppm [104].

From the generated background gas, atoms are captured and cooled using a specific
constellation of two pairs of near resonant laser beams and a magnetic field gradient,
which is know as a magneto-optical trap (MOT) [105]. Ordinarily a MOT consists of
three perpendicular pairs of beams, but in this 2D-MOT the confinement in the vertical
direction is omitted and the captured atoms are instead transferred via a pushing beam
along that direction into the lower glass cell.

To create a ultra high vacuum with a background pressure below 1e− 11 mbar in the
lower glass cell, it is protected from the higher pressure of 1.5e − 10 mbar due to the
dispensors in the upper glass cell by a differential pumping stage, which is a thin an
elongated tube that significantly decreases the diffusion rate. During the so-called loading
process a stream of precooled atoms from the 2D-MOT, that passes through the differential
pumping stage guided by the pushing beam, is captured in the lower glass cell by a 3D
MOT.

Both MOTs, contrary to ordinary MOTs, consist of superimposed beams of different
wavelengths, so that both rubidium and potassium can be trapped simultaneously. Even if
exclusively fermions are required, as it is the case for all the experiments presented in this
thesis, the simultaneous operation of the rubidium MOTs is required, because, as it will
be explained later, the rubidium atoms are necessary for the efficient evaporative cooling
of potassium.

The 3D MOT for potassium is a so-called Dark-SPOT MOT [99, 100, 106], which
counteracts the loss mechanism of light assisted collisions, that becomes relevant when of
trapping high densities of potassium in a MOT. In a dark-SPOT MOT the atoms at the
center of the MOT are pumped into a dark state by imaging a dark spot into the cloud on
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the repumper beams.
After a loading phase of typically three seconds, both MOTs and the pushing beam get

turned off and optical molasses [105] are switched on for 10 ms to cool the atoms below the
Doppler limit. For rubidium an ordinary bright molasses is employed and for potassium
we implemented a gray molasses on the D1 line to reach lower molasses temperatures and
thereby significantly shorten the time needed for the ensuing evaporative cooling phase.
Details on the implementation and the improved performance of the gray molasses can be
found in the theses of my colleagues [96, 97].

In order to cool the atoms into a quantum degenerate regime further evaporative
cooling is required. For that, the atoms are first optically pumped into their corresponding
hyperfine states of highest magnetic dipole moment which are

F = 9
2 mF = 9

2 for 40K

F = 2 mF = 2 for 87Rb
(2.1)

and are then, on site, loaded into a magnetic trap which is a hybrid of a cloverleaf
type and a 4Dee type1. Subsequently, a radio frequency field is exponentially swept from
15MHz down to 1MHz within 10 seconds. As mentioned earlier, during the evaporation
the presence of the rubidium is essential for cooling potassium. At low temperature,
scattering is dominated by the s-wave mode, which is forbidden by the Pauli exclusion
principle for pairs of fermions. With the resulting low scattering rate, the thermalization
time is extremely increased, which would require excessively slow evaporation sweeps.
Instead, the potassium atoms are cooled sympathetically, i.e. through collisions with the
bosonic rubidium, that can be cooled evaporatively at much faster timescales, due to their
bosonic nature.

To produce a pure fermionic sample, the rubidium atoms are fully evaporated from the
trap by choosing the final evaporation frequency, such that the associated photon energy
is smaller than the Zeeman splitting of the hyperfine structure of the trapped rubidium
atoms, which leads to the transfer of even the coldest atoms into a non-confined state at
some point of the ramp.

The sample of cold atoms is subsequently transferred into a crossed dipole trap [107].
Within 100ms, two crossing beams are ramped up with waists2 of

w(1)
y = 70µm w(1)

z = 240µm
w(2)
y = 120µm w(2)

x = 120µm
(2.2)

where the elliptical beam (1) lies within the symmetry plane of the experiment, which
will be defined later in Chap. 3, and the round beam (2) propagates perpendicularly to it.

1For details the reader is referred to [99, 100]
2where the waist is defined as the distance where the intesity has dropped to exp(−2) of its maximum

value. I(w) = exp(−2)Î
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The dipole potential is created at a wavelength of 825 nm, i.e. far red-detuned from all
optical transitions in 40K , to ensure a low scattering rate. When the dipole trap reaches
its final depths, the magnetic trap is turned off slowly within 1 s to provide an adiabatic
transfer into the new trapping geometry.

At this point there is a pure, spin polarized, atomic ensemble of 2 · 105 40K atoms
at 0.1 − 0.2TF trapped in the dipole field [96], which forms the starting point for the
experimental sequences described in Chaps. 6 and 7. All experiments have in common
that they will be conducted in a hexagonal optical lattice that is described in more detail
in Sec. 3.2. The lattice potential is created through the dipole force of additional far
red-detuned laser beams, that intersect at the position of the atomic cloud. To transfer
the atoms into the lattice, the intensity of those beams is simply ramped up. The
associated potential consists of two components: a pure lattice potential and an additional
homogeneous background from the non-interfering components (see Sec. 3.2). Additionally
the potential exposes an envelope due to the finite widths of the beam profiles [108],
which we approximate as an additional harmonic confinement potential. For the two
types of experiments presented here, we measured the overall harmonic confinement by
the superposition of the lattice and the dipole trap to be given by the following trapping
frequencies (sup. mat. of [62, 64])

νx = 83(4) Hz νy = 108(5) Hz νz = 93(4) Hz (2.3)

The dipole trap is not switched off once the lattice has been fully loaded, in order to avoid
further ramps that might induce oscillations.

The two presented experiments are concluded by switching of all potentials, leaving the
cloud to unhindered expansion during a so-called time of flight (TOF) of 21 ms, limited
by the geometrical constraints of the apparatus. This procedure effectively maps the
momentum distribution into real space (see also Chap. 5). After the TOF the sample is
imaged using standard absorption imaging (see Sec. 2.4), which enables the determination of
the atomic density, spatially resolved within the lattice plane, and integrated perpendicular
to it. As this measurement is of destructive nature, a typical experiment is conducted over
many cycles of the described sequence, while the relevant control parameters are varied.
The realization of the control over this sequencing is described in Sec. 2.3.

2.2 Laser Setup for a Hexagonal Lattice
A central upgrade of the BFM-apparatus implemented as a part of this work, was the
construction of an optical setup for the creation of a hexagonal optical lattice potential at
the site of the atomic cloud. Previous experiments had been conducted in a retro-reflected
cubic lattice, which does not fulfill the requirements for the geometric and topological
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effects that were of interest here3.
Hexagonal lattices and the properties of optical lattice potentials in general are discussed

in detail in Chap. 3, here I will present the technical realization of the underlying optical
setup. The hexagonal lattice is created by three non-retro-reflected beams that intersect a
common point at an relative angle of 120° between each pair. In contrast to the retro-
reflected lattices, the hexagonal lattice is sensitive to the phase noise induced by the
optical fibers used to guide the light between the optical tables of the main experiment
and the laser setup. To compensate for that detrimental noise we developed a fiber lock
or optical phase locked loop in parallel to the presented main experiments. In Chap. 9 I
present characterization data that convincingly qualifies the fiber lock as a powerful future
upgrade of the experimental apparatus.

The laser setup is depicted in Fig. 2.1. It can be divided into two sections: on the
left the beam generation on the laser table connected by four optical fibers to the right
side for the beam shaping on the experiment table. For the beam generation we use a
Innolight/Coherent Mephisto MOPA 25 NE, that produces a single mode field at 1064 nm
with a power of 26.6W. To protect it from counter propagating modes, as a first element,
we guide the beam through an optical isolator/diode (Electro-Optics Technology, model
08-01037 for 1030-180 nm). This protection is especially relevant, because by the design
of the fiber lock, a non-negligible fraction of light will be back reflected into a nearly
identical spatial mode. In our first setup we placed the isolator directly in front of the
laser head. However, the power density of the diverging beam caused significant thermal
lensing effects within the isolator. By moving the isolator about 40 cm away from the
Laser head, we could reduce the thermal lensing at full power, to what would correspond
to a transfer matrix of a lens with a focal length of 267mm4. With the two subsequent
lenses (f = −500 nm and f = 400 nm) the mode is shaped such that its focus coincides
with the positions of the acousto-optic modulators (AOM) at a design waist of 1mm. All
other distances are chosen such that no further lenses are necessary to reach the maximum
fiber coupling efficiency.

Thereafter the beam is split up into four arms by a series of pairs consisting of a half
wave plate (HWP) and a polarizing beam splitter cube (pol-cube), that are arranged such
that each arm is vertically polarized. The HWPs can be adjusted to obtain the desired
distribution of power over the arms. The subsequent components are identical for each
arm. First in line is a high power 110MHz AOM (Crystal Tech. 3110-197), which fulfills
three tasks: Controlling the phase to shake the lattice potential (see. Sec. 3.2.1 and
Chap. 4), enabling future compensation of the phase noise the light will pick up in the
fiber and stabilizing the light intensity via another feedback loop. The first diffraction
order of the AOM is then led through a stage of a HWP, a pol-cube and another HWP.
The first HWP rotates the polarization to the parallel plane, such that the beam passes

3It is however possible to creating a geometrically non trivial lattice by superimposing the cubic lattice
with a linear lattice, as reported in Ref. [40]

4The beam profiles can be found in [98]
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through the non-reflected port of the subsequent” “polarization cleansing” pol-cube, that
offers the higher extinction rate. The following HWP serves for the convenience to adjust
the polarization axis to the principal axis of the polarization maintaining (PM)-fiber,
fully decoupled from the spatial degrees of freedom. Finally the beam is coupled using a
TOPTICA FiberDockTM into the fiber (nLight LIEKKITM Passive-10/125-PM).

For a number of reasons we had to connectorize the bare fiber ourselves. At the time
of construction, and to our best knowledge, there was no commercial manufacturer for
readily connectorized fibers that fulfill all requirements for our setup. These are: operation
at a desired input power of 5W, one flat and one angle polished connector, and a high
quality single mode gaussian beam profile. Usually fibers are connected with two angle
polished ends to avoid interference through back reflections. Here we deliberately chose
one flat end to create a back reflex at the end of the main experiment that can be used for
the fiber lock (Chap. 9).

Earlier tests at the fiber optics prototype section of our research group had shown that
the previously mentioned fiber model withstands this input power if correctly connectorized.
We connectorized the fibers with standard (Thorlabs) connectors5 in a connectorizing
process developed at the prototype section, which includes the etching of the cladding6.
The etching protects the fiber against potentially damaging misaligned beams by creating
a rough surface area on the part of the cladding, from where light can scatter into the
ferrule. For the flat end no etching is needed as it is exclusively used as an outcoupling
end. An additional advantage is that the fiber length could be fully adjusted to our needs.
This is important because at high input powers the stimulated Brillouin scattering [109]
depends strongly on the length of the fiber and can lead to significant losses.

The reflex from the silica air interface of the usual 4% propagates back through the fiber
and passes a beam splitter (BS), where 1% gets picked up and directed to a photo detector,
which provides the option of a local end intensity stabilization. Here we implemented
a stabilization through a pick up on the remote end of the fiber. In the case of our
nonretroreflected lattice the full laser power needs to be dumped after the light has passed
the atomic cloud and thus an arbitrary fraction can be picked up. At these locations
we implemented a polarimeter because a highly precise control of the polarization of the
lattice beams is crucial for controlling the lattice geometry (see Chap. 3). Instead of adding
another pick up for the intensity stabilization we use the signal for the p-polarization
from the polarimeter. The implementation of the polarimeter is described in [96]. The
photo detector signal serves as the input for a custom made feedback controller setup (see
Ref. [101]), that actuates via the RF-power at the AOM of the corresponding arm.

All optical components for implementing a fiber lock are readily installed: the back

5Angle polished (FC/APC) connector with a ferrule of a 126±1µm bore and a flat (FC/PC) connector
with 140 µm bore

6(125± 2µm) diameter
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reflex on the laser table propagates unhindered back through the polarization cleaning
stage to the AOM, where a fraction gets diffracted into the minus first order and finally gets
blocked by the optical diode, and another fraction continues unaltered and is steered onto
the fiber lock photo detector. To obtain an interference signal, this path is superimposed
with a second beam, originating from the forward propagating beam that passes the AOM
without being diffracted. Before it gets disposed in the beam dump a fraction of 4%,
matching the reflectivity of the flat fiber end, is retroreflected at a coated glass slab. Upon
its second transversal of the AOM, the undiffracted part gets eventually disposed in the
optical diode and the diffracted part forms the desired reference for the interference signal.
For the fiber lock setup on the laser table we initially implemented analog electronics
following Ref. [101] but then realized that a fixed stable digital RF source yielded lower
heating rates [97]. This motivated the development of the digital fiber lock that I present
in Chap. 9.

At the main experiment table, where the ultracold fermions are produced in the glass
cell, the flat fiber ends are mounted in telescopes to produce the optical lattice at the
location of the atoms. Three of the four axis are arranged in the hexagonal lattice
configuration (Chap. 3), i.e. at a regular angular spacing of 120°. To assure a maximally
high stability of the lattice, two of the telescopes are mounted on a massive plate, which
stands perpendicular to the table plane, where they can guide the beams directly to
the atoms without passing further optical components, except for the quarter-wave plate
(QWP) and HWP that serve the purpose of configuring the light to any desired polarization
mode. The third telescope emits the beam into the plane parallel to the optical table
from where it gets reflected over a single mirror in a right angle to the intersection point
of the other two lattice beams. The foci of those beams all lie at their mutual point of
intersection, where they meet their design e−2-intensity radii of 160 µm within a margin of
about 4 µm7. Details on the telescopes, the polarimeter and the lattice calibration can be
found in Refs. [96, 97].

7see [96] and [98] for the numbers of the individual axes.
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Figure 2.1: Schematic of the optical setup for the generation of the lattice laser modes.
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2.3 Extended Experiment Control
The experimental cycle described in Sec. 2.1 is centrally controlled by a commercial digital
to analog conversion (DAC) unit that offers control over digital an analog channels at a
maximum resolution of 10 µs. Additionally to this, on every cycle further instruments,
such as high current sources and wave form generators, are programmed remotely from a
PC. To meet the strict timing requirements, these devices are triggered externally by the
DAC unit. All devices get programmed by a custom LabVIEW program, which provides
the possibility to sweep a single parameter of the experimental cycle, including its insertion
into the VISA8-commands. The restriction to a sweep of a single parameter however,
constitutes a significant limitation for the execution of experiments that surpass a certain
magnitude of complexity of the controlled parameters. A partially manual control, i.e. the
sequential user execution of single parameter sweeps, would not only open the possibility
of errors, but it also reduces the yield of the apparatus.

To realize the experimental control of the experiments presented here, we extended the
existing control system to be fully scriptable and thereby enable sequences with arbitrarily
complex parameter dependencies. This hybrid approach unites the advantages of a purely
programmed and a exclusively graphical user interface (GUI) driven system. It allows
to fully operate the system from shot to shot with the existing LabVIEW GUI and in
the scripted mode one only needs to describe the varied parameters. Technically this
control was realized by implementing a Python9 library that facilitates the readout and
generation of XML10-files that describe a single cycle and are compatible with the GUI.
To the LabVIEW program we added a scripting-mode that simply plays back the list of
generated files. A short example for such a script is shown in Fig. 2.2.

With this powerful extension to the experiment control extension we have realized long
experimental protocols of a few thousand cycles that ran continuously over several days.
This programmatic control of the experiment also lays the foundation for an adaptive
experiment control, where the experimental parameters of the next cycle are determined
dependent on the measured quantities of the previous cycles. This way it would be possible
to sample a region of interest in the parameter space in dependence of the feature size or
the gradient of the parameters.

8Virtual Instrument Software Architecture, a standardized protocol for programming remote devices
9Interpreted programming language, popular in the field of data science

10Extended Markup Language
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1 import ExperimentControl as ep
2
3 infilename = r’C:\ Protocols \ exmapleGenerated .xml ’
4 outpath = r’C:\ Users\ exampleInput .xml ’
5 name = ’Example ’
6
7 VISAcmds1 =r"\
8 amp -99.0;
9 tri;

10 os1 110. FREQ FREQ 0. 0.0002 0. 6. 1. 0.004;
11 flush"
12 VISAcmds2 = ...
13 counter =1
14 for avg in range (0 ,10):
15 for k in range (1 ,20):
16 for i in range (1 ,26):
17 ep = ExperimentProtocol ( infilename )
18 ep. setSlotDuration (’LHC_mod ’, round (12500/(7500+500* k)*i))
19 ep.set(’LatticeShakingPhase ’,’WaveformGenerator1 ’,VISAcmds1 )
20 ep.set(’LatticeShakingPhase ’,’WaveformGenerator2 ’,VISAcmds2 )
21 ep. replaceVisaString (’LatticeShakingPhase ’,’

WaveformGenerator1 ’,’FREQ ’, str ((120.0+1.0* k) /10000) )
22 ep. replaceVisaString (’LatticeShakingPhase ’,’

WaveformGenerator2 ’,’FREQ ’, str ((120.0+1.0* k) /10000) )
23 ep. safeEnum (name , outpath , counter )
24 counter += 1

Figure 2.2: Example script for the extended experiment control. The above script controls a fictive
experiment and describes the sequence for around 5000 cycles. Here two parameters k and i a varied
to set the frequencies of waveform generators and also a slot duration in a bilinear form. This cycle is
repeated 10 times for averaging.

2.4 Fringe Removal

In this section I will present the implementation and characterization of a model free
defringing algorithm [110] for the BFM experiment, that is capable of reducing the image
noise to close to the shot noise limit, with minimal computational effort. This algorithm
has been used for all absorption image data presented in this thesis and improved the signal
quality significantly. The idea of defringing atomic absorption images via post-processing
and the implementation in Ref. [110] originates from the works of Jochen Kronjäger [111]
and Micheal Erhard [112] in the Sengstock group.

The imaging of ultracold atomic ensembles works mostly analogous to the imaging of
any other ordinary object, except for one aspect: the comparably narrow atomic spectral
absorption line width. All light power outside the atomic spectrum is not absorbed and
deteriorates the image quality by reducing the contrast. Therefore the spectral line width
of the imaging light source is required to be at least as spectrally narrow as the absorption
line width of the atoms.

It is customary to use a narrow laser light source whose frequency is electronically
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Figure 2.3: Single shot comparison. Left: a typical atomic density distribution, yielded by absorption
imaging without defringing. Right: the same distribution, using the fringe removal algorithm.

locked to the atomic resonance. But using monochromatic light leads adverse interference
effects, which manifest as fringes in the image. These interference fringes can have many
different origins, such as dust and scratches on optical components, parallel surfaces, and
ghost images from lenses.

The standard absorption imaging procedure [113] would be sufficient to remove the
fringes, if they were of static nature. Here, the effects of inhomogeneous exposure canceled,
by taking a reference image shortly after the first one, when the atoms have fallen out of
the imaging region. The optical density (OD) of the atomic cloud is then determined by
dividing the atom image by the reference image.

Unfortunately the fringes are of dynamic nature, i.e. they are different on the atom
and reference images. The optical path length of the imaging beam is coupled to the
environment on acoustic and thermal timescales. Vibrations are picked up by optical
elements and temperature changes expand the optical path by changing the diffraction
index of the surrounding air.

The fringes persist, though weakened, even when clean and sound optics are used
in combination with suited anti-reflection coatings, an adequate optical path design
and temperature stabilized laminar air flow. This persistence is not unexpected when
considering that the modulation amplitude in two beam interference is determined as the
geometric mean of the light intensities.

Several different approaches [111] were developed to suppress the fringes. We chose to
use a fringe removal algorithm for the BFM experiment because it has proven effective
and especially convenient for being of non invasive post-processing nature.

The Fringe Removal Algorithm
The key idea of the fringe removal algorithm is to replace the reference image, by an
artificial reference image that is a weighted mean of the current and several previously
taken reference images, while the weights are determined such that the OD is minimal in
a region where no atoms can be expected (cf. Fig. 2.4).

That means even though, the fringes might have changed in the time between the atom
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image and the reference image have been taken, we suppose that the fringe pattern in the
atom image is still similar to previously taken reference images to some degree and can
therefore be reconstructed by superimposing several of those. In the atom region it cannot
be distinguished between real shadow of the atoms and an interference fringe. Therefore
this region is excluded when finding the weights, but yet fringes will be successfully removed
from that region due to the non-local structure of the fringes.

Figure 2.4: Schematic of defringing Regions. Shaded in blue, region without atoms. Shaded in red
atom region.

This concept is very powerful and can be applied in a vast range of scenarios, because
it is model free, in the sense that no assumptions are made about the column density
distribution of the atoms, other than the existence of a sufficiently large atom free area.
There are, however, two prerequisites that have to be met by the noise i.e. interference
fringes.

Firstly, the noise has to be spatially correlated. Only information from outside of
the atom region (AR) is used to construct the synthetic reference image. If there is no
correlation, no information about the noise within the AR can be deduced. Therefore a
lack of correlation can be the source of artifacts.

This perquisite is perfectly met in the case of interference fringes due to their delocalized
nature. Within the framework of Fourier optics it is evident that even a tiny disturbance
like a grain of dust, will cause interference rings that extend over the full imaging region.

Secondly, the noise has to be correlated in time. If there was no correlation in time,
the fringes of images taken in sequence would be completely distinct and therefore of no
value for the fringe removal of one of them. Here correlated in time means that subsequent
images resemble each other in average more than any two random images. This means, that
if only certain shapes of fringes are observed the references can be considered temporally
correlated, independently of the correlation of the occurrence of those shapes.

A judgment about the temporal correlation cannot be made based on model assumptions
for an experimental system as complex as the one under consideration. On the one hand
would slow thermal drifts most probably lead to a high correlation at the considered
timescale of the 20-60 seconds experimental cycle. While on the other hand it would be
plausible if vibrations of many coupled modes of many components would lead to a rather
broad noisy background. Therefore, at this point the fulfillment of this requirement is
postponed to the end of this section, where on the basis of experimental results it will be
shown that temporal correlation is present.
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The very first algorithm that has been implemented [112] for defringing, used the Gram
Schmidt process to build an orthogonal set of basis reference images, onto which the image
to be defringed is projected to obtain the weights for the new synthetic reference image.
For the BFM experiment we chose to implement a more recent algorithm [110] that is
computationally more efficient.

In order to get a formal understanding of the algorithm a few definitions have to be
made. The pixel data provided by the camera can be naturally identified as elements of a
vector space. An image can thus be written as a column vector x of the following form

x =
∑
i

ciêi (2.4)

where the coefficients ci correspond to the light intensity shone onto a pixel with an
index i and êi is the respective unit vector. The indexing of the pixels is fully arbitrary
for the following considerations. However, we will consider image regions, that in this
notation correspond to sub-vector-spaces. There are two regions of interest. The atom
region, a region where a nonzero atomic density may be found, denoted by a subscript A,
and the complimentary region, where any nonzero OD is caused by fringes, denoted by a
subscript F.

The atomic density for absorption imaging is commonly [113] defined as

n ∝ · ln
(xAbsorption − xDark

xreference − xDark

)
= a − r (2.5)

With those definitions the problem can be formulated as a standard minimization
problem

∇w (aF −wRF )2 = 0 (2.6)

where RF is a p× n matrix containing the n available previous reference images as rows
and w is a 1× n row vector containing the weights of the reference images. Note that all
images are restricted to the region without atoms, where the OD is to be minimized.

Once the weights are determined the defringed image ā can be calculated using the
unconstrained image a and the unconstrained reference images R.

ā = a −wR (2.7)

In order to make the problem, formulated in eq. 2.6, numerically accessible it can be
reformulated as

RFR
T
Fw = RFaF (2.8)

Now a simple matrix inversion yields the desired weights w. Bear in mind, that R cannot
be canceled from the left, because there is no inverse operator for operators represented
by a nonsquare matrix. But RRT is symmetric by definition and thus invertible.
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Implementation and Performance
For the BFM apparatus this algorithm has been implemented in MATLABr, to integrate
seamlessly into the existing data analysis framework. We developed a graphical user
interface, which allows to conveniently select the used regions, quickly browse through the
resulting defringed images and view the used weights to produce the artificial reference
image.

On a standard computer from 2010 the algorithm takes about one second to defringe
200 images using a base of 200 reference images. Compared to a typical experimental
cycle time of around 30 seconds the computation time is of no issue. Thus the reduction
of memory consumption is of higher priority than speed, when using large image sets.

Noise Reduction
For a quantitative statement about the quality of the defringed images and to compare
the performance of this algorithm to the original one, a statistical noise analysis has been
conducted.

In order to compare the pixel noise against the photon shot noise of the imaging beam,
the difference images of the absorption and respective (synthetic) reference images have
been considered instead of the OD, i.e without prior taking of the logarithm. Further, the
images have been converted to the domain of photon counts. The employed CCD camera
(Andor iKon-M 934 BR-DD) is highly linear and the conversion therefore consists simply
of a linear scaling factor that is determined by the quantum efficiency (0.93), the imaging
wavelength and the chip gain value.
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Figure 2.5: Comparison of photon background noise statistics for defringed and nondefringed images.
The defringed image noise is very close to the shot noise limit of the given intensity corresponding to
about 23000 photons. The histograms are obtained from the photon count difference between the
atom and the reference image within a homogeneously illuminated region for 200 images.

To determine the intensity fluctuations, an atom-free region of constant illumination
has been chosen. Fig. 2.5 shows a histogram of the set of all pixel values within that region
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for 200 difference images.
The photon number distribution is fully characterized by the Poisson distribution, where

the single parameter is the mean photon count. The plotted distribution corresponds to
a mean photon count equal to the one obtained by the mean photon count in the atom
images within the chosen region, which is about 23000 in the given case.

It becomes clear that the defringing procedure is capable of fully removing interference
fringes and thus reduces the noise level almost to the shot noise limit. The remaining
difference fits well be within the given scale of electron noise, that is specified by the
manufacturer for the given parameters as an equivalent of ca. 13 photons. This electronic
noise can not be removed by the algorithm as it does not fulfill the above mentioned
requirements.

Temporal correlation of fringe patterns
In order to analyze the temporal correlation of the fringe pattern, a set of 8000 atom
images has been defringed using the basis of all the corresponding reference images to
construct a synthetic reference image for every atom image. The algorithm described here
produces a matrix of 8000x8000 weights of which every row i contains the weights wi of
the linearly combined reference images. To produce the temporal correlation, we shift
the rows such that the previously diagonal entries, corresponding to the weights of the
original reference image, that was taken in close succession of the absorption image, line
up at one central column. Taking the average along the unshifted dimension, the mean
weight for images that have been taken in an interval ∆t can be obtained. The resulting
data in Fig. 2.6 reveals that there is as expected a clear short term temporal correlation
but only weak long term correlation of fringe patterns.

Outlook
The implemented algorithm has proven to be very robust, computationally inexpensive
and highly effective. Considering that the noise floor limit is reached there is little space
for improvement.

With respect to the implementation, an automatic noise analysis could be realized. A
deviation from a Poisson statistic would thereby be capable to cause an alert in the case
of an incorrect choice for the atom free region.
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Figure 2.6: Averaged relative weight of reference image as a function of time. Around 8000 images
have been defringed using all of the corresponding reference images. The obtained weights have
been averaged for all atom and reference images that have been taken with the same time interval
∆t. Panel a) shows that there is no long term temporal correlation, i.e. the fringe pattern does not
repeat itself even after long times. Magnification. Panel b) shows that the previous and following 50
reference images contribute most significantly to the synthetic reference image.
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3 Ultracold Atoms in Optical
Lattice Potentials

All the experiments conducted in this thesis are based on the observation of the dynamics
of an ensemble of ultracold fermions in the presence of three intersecting laser beams, whose
interference pattern is called an optical lattice potential (OLP) due to its approximate
discrete translational symmetry at their intersection point. The atoms interact with
the interference pattern via the optical dipole force and experience a scalar potential
proportional to the local light intensity. Optical lattices therefore enable the creation of
"atomic crystals" that bear strong resemblance to those electronic many body systems that
are studied in the context of solid state physics and materials sciences. In this analogy
the atoms take the role of electrons, and the interference pattern takes the role of atomic
cores. Many concepts that have been developed for and observed in electrons in solids can
be mapped one to one to the realm of atoms, as for example, the emergence of a band
structure in the excitation spectrum. But there are also substantial differences between
the two systems. Most strikingly of which are probably the fact that optical lattices exist
on one hundred times larger length scales with a harmonic cell potential as opposed to the
superposition of singular Coulomb potentials created by the atom cores in an ordinary
crystal, and the fact that the particles trapped in the optical lattice are atoms that are
about 104 times heavier than the electrons and have a substructure but no total charge.
Over several decades of research many of those differences have been overcome and others
have been exploited, so that ultracold atoms in optical lattices have developed a very potent
platform for quantum emulation of solid state systems and also for studying exotic many
body systems that find no equivalent in the solid state world. The first optical lattices have
attracted interest [114–116] even before the experimental creation of degenerate atomic
ensembles [117]. One of the very first optical lattices that has been realized [118] was a
lattice created by interfering three beams in a plane with an angle of 120° between each
pair, which is called a hexagonal lattice, describing the form of the resulting unit cell.
Hexagonal optical lattices have ever since continued revealing a plenitude of intriguing
physics through generations of experiments [33, 40, 41, 45, 47, 63, 119–121], including the
ones presented in this thesis.

3.1 The optical dipole potential
The effect of an OPL on the dynamics of an atomic ensemble can, under certain circum-
stances, be well approximated by adding an additional scalar potential, that is proportional
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to the local light intensities, to the Hamiltonian of the system. This so-called optical
dipole potential arises from the interaction energy between the oscillating electric field E
of the beams constituting the OPL and the electric dipole moments that it induces in the
atoms. The dipole potential V (r) can thus be written for an atom with polarizability α
within linear response as [107]

V (r) = −1
2 Re{E} · Re{αE} (3.1)

When neglecting both the inhomogeneity of the polarization of the electric field and the
terms of twice the original field frequency, that are created in the mixing process described
by Eq. 3.1 but are suppressed by the inertia of the atoms, the potential takes up the
following more intuitive form that shows a proportionality of the potential to the local
light intensity I(r):

V (r) = − 1
2ε0c

Re{α}I(r) (3.2)

Here ε0 refers to the vacuum permittivity and c to the speed of light. The polarizability of
the atom depends on the internal structure of the atom and is a function of the frequency
ω of the driving field, but can be treated as a constant for all experiments presented
in this thesis because all occurring field frequencies lie within a band width of ~10kHz
corresponding to a mere 0.1 ppb of ω, over which α does not vary significantly. The
numeric value of α can be determined by modeling the atom as a two level system in a
classical light field. By neglecting saturation effects, i.e. the excitation of the atom, and
making a rotating-wave approximation the polarizability takes the form (derived from
[107])

α = −3πc3ε0
2ω3

0

Γ
∆

(
1− i Γ

2∆

)
(3.3)

where ω0 is the resonance frequency of the two level system, Γ the natural (electric dipole)
linewidth of the system, and ∆ = ω − ω0 the detuning. The necessary condition to
neglect saturation effects is a detuning that is much larger than Γ while the rotating
wave approximation requires a detuning small compared to the atomic resonance. For the
system considered in this thesis of potassium atoms in an optical lattice of 1064 nm wave
length, both of these conditions are perfectly fulfilled. The contribution of the imaginary
part, which determines the scattering rate, is of the order of 10−4 for a linewidth of around
6 MHz for the D1 and D2 lines of potassium and will henceforth be neglected.

3.2 Lattice structures
The lattice potentials considered in this thesis are created by superimposing the foci
of multiple beams inciding from different directions. In a region around this common
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intersection point the electric fields of the individual beams can be well approximated [108]
as plane waves and can be put in the following form

Ei(r, t) = Re
{
ĒiPi exp(i(ki · ri − ωt))

}
(3.4)

where the sub index i enumerates the beams and Ēi is the amplitude of the electric field,
ki is the wave vector, ω the frequency, and Pi ∈ C(3) the complex polarization unit vector
also known as phasor. For the rest of this thesis the commonly used complex field notation
will be used, i.e. the Re symbol will be dropped and understood implicitly to improve
the readability of the formulas. Here Pi is defined in the full three dimensional space
despite the fact that all components parallel to ki are unphysical. This facilitates the
computation of the interference terms when beams of different ki are involved. To express
Pi more customarily as a polarization vector with the orthogonal and parallel components
s and p one needs to chose a basis for the polarization space of each beam. For forming
an orthonormal basis the polarization unit vectors ŝi and p̂i have to fulfill1

ŝi = k̂i × p̂i (3.5)

where k̂i is a unit vector in the direction of the wave vectors ki = kLk̂i with kL as the
common wavenumber as given by the wavelength of the lattice beams. The last degree of
freedom, that uniquely defines the polarization basis, can be chosen arbitrarily. Here a
definition is presented where all p̂i are parallel to the xy-plane

p̂i = ẑ× k̂i∥∥∥ẑ× k̂i
∥∥∥ (3.6)

This choice is particularly convenient for the description of the experiments in this thesis
which are conducted in a lattice confined to this same plane. Using a spherical coordinate
system the unit vectors can be written more explicitly as

k̂i =


− cosϑ(k)

i sinϕ(k)
i

cosϑ(k)
i cosϕ(k)

i

sinϑ(k)
i

 p̂i =


cosϕ(k)

i

− sinϕ(k)
i

0

 ŝi =


sinϑ(k)

i sinϕ(k)
i

− sinϑ(k)
i cosϕ(k)

i

cosϑ(k)
i

 (3.7)

Having made a choice for the polarization basis, the phasors Pi can be written explicitly
as

Pi = exp(iϕi) (siŝi + pip̂) (3.8)

with ϕi as an additional phase factor relevant for the description of the relative phase
between the beams constituting the lattice. The relevance of this inconspicuous phase

1up to sign.
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factor will be elaborated upon in the next subsection, and Chap. 9 is solely concerned
with its experimental control. The phasors can be alternatively parameterized in terms of
the phase and mixing angles αi and ϑi which describe the polarization as a vector on the
Poincaré sphere

Pi = eiϕi

eiαi sinϑi
cosϑi

 ·
 ŝi

p̂i

 (3.9)

Having made all these definitions one can finally write the dipole potential associated with
the interfering plane waves by inserting 3.9 into 3.4 as

V (r) = −α4

∑
i

Ē2
i + 2

∑
i

∑
j<i

ĒiĒj Re{Pi ·Pj exp(i(kj − ki) · r)}
 (3.10)

The first sum of this equation is merely a constant offset that has no influence on the
dynamics of the atoms. The double sum in this equation is a sum over all the pairs of
beams. Every pair contributes to the lattice potential with a homogeneous potential that is
cosine modulated in the direction perpendicular to the bisection of the wave vectors of the
involved beams. The complex amplitude of these fundamental 1D lattices is determined
by the scalar product of the involved phasors, that will be abbreviated forth on as

Pij = ĒiĒjPi ·Pj P0 =
∑
i

∣∣∣ĒiPi

∣∣∣2 (3.11)

Here shall be noted that there are two different conventions for defining the scalar product
for complex valued vectors, in regard to which elements are complex conjugates. In this
notation the complex conjugation of the first vector was chosen. Any optical lattice is thus
fully characterized by these phasor products and the wave vectors of the involved beams.

3.2.1 Three beam lattices
Among the vast range of different optical potentials that can be described by Eq. 3.10,
the class of potentials created by three non-colinear beams takes up a special role. Their
interference creates a potential with a periodicity characterized by a two dimensional
lattice SpanZ{a1, a2}, whose lattice vectors a1 and a2 are exclusively determined by the
involved wave vectors [122]. A fourth beam, that does not lie in the lattice plane, yields a
three-dimensional lattice with the same properties. A fourth beam within the plane or
any number of additional beams would create a dependence on the phases of the involved
beams. In the three beam case a change of the relative phase results simply in a translation
of the whole lattice. The ability to control the position of the lattice potential while
leaving its structure untouched is a crucial ingredient for engineering effective Floquet
lattice potentials, that result from translating lattice potentials on periodic trajectories
and will be discussed in Sec. 4.3. This relationship can be best understood by analyzing
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the periodicity of the lattice potential within in terms of a Fourier expansion. A three
beam potential is, following Eq. 3.10, determined by the sum of the three pairs of beams
and can thus be written as

V (r) = −α4

[1
2P0 + P12eib1·r + P23eib2·r + P13ei(b1+b2)·r + c.c.

]
(3.12)

The vectors bi that define the periodic axes are called Bravais vectors. Due to their
relation to the coordinate vector r via a scalar product they are defined in a dual space
which is commonly referred to as the reciprocal space. In the case of a three beam lattice
they are determined by the wave vectors

b1 = k1 − k2

b2 = k2 − k3

⇒ b2 + b1 = k1 − k3

(3.13)

Eq. (3.12) shows also that the phasor products are the Fourier coefficients of the potential.
To make this point clearer consider the reformulation in the square lattice form:

Ṽ (t) =
∑
m,n

Vmnei(mt1+nt2) V (r) = Ṽ (B r) B = (b1b2)T (3.14)

with the matrix elements

Vmn = −α4



m\n -1 0 1
-1 P ∗13 P ∗12 0
0 P ∗23 P0 P23

1 0 P12 P13

 (3.15)

The fact, that the normal vector of the third pair is a linear combination of the two others
is essential here. If there was another vector b3 that lay in the plane spanned by b1 and b2,
as it would be the case for a 2D lattice composed of more than three beams, the potential
could not be written in this simple form where the Bravais vectors are given by the wave
vector differences and the Fourier components by the products of phasors. Instead one
would need to find two shorter Bravais vectors, with which there exist pairs of integers to
linear combine every difference ki − kj of wave vectors. The wave vectors can be chosen
such that the Bravais vectors become arbitrarily short and thereby create a lattice that
can have an arbitrarily long period as exemplarily shown in Fig. 3.1. These lattices are
therefore referred to as quasi periodic crystals or short quasicrystals.

To understand the relationship between the phasors and the translation consider the
subspace spanned by the two Bravais vectors. In this subspace the Bravais vectors have
a two dimensional representation and the coordinate transformation matrix B becomes
invertible. With the definitions form eq. (3.14) a translation of the potential Ṽ (t + ∆t)
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Figure 3.1: Quasicrystal. This optical po-
tential is created by the interference of five s
polarized beams with equal angles between
the wave vectors of neighboring pairs. The
image is produced using the band structure
simulator.

corresponds to V (r + B−1 ∆t) and as Ṽ has a periodicity of 2π in both t1 and t2, the real
space lattice vectors can be identified as

a1 = B−1

2π
0

 a2 = B−1

 0
2π

 (3.16)

Translations of the lattice other than 2π will create additional phase factors for the Fourier
coefficients. The resulting coefficients, however, correspond to the lattice obtained from a
phase shift of the phasors. Put the other way round: a change in phases of the phasors
creates an identical lattice potential that is shifted in space. Inserting the phase shifts
∆ϕ1, ∆ϕ2 and ∆ϕ3 into the definitions of the corresponding phasors will yield coefficients
Vmn with additional phase factors that can be absorbed into t1 and t2, which creates a
translation in real space of

∆r = B−1

 ∆ϕ1 −∆ϕ2

−∆ϕ3 + ∆ϕ2

 (3.17)

The Bravais vectors span a lattice themselves, which is commonly referred to as the
reciprocal lattice or the dual lattice. Through the relationship of the dual space the lattice
G and the reciprocal lattice Γ can be defined viam

n

 · B r = BT

m
n

 · r
G =

amn | m,n ∈ Z, amn = 2πB−1

m
n




Γ =

bmn | m,n ∈ Z,bmn = BT

m
n




(3.18)
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3.2.2 In-plane lattices
In the special case of a lattice where all three beams lie in a plane, the orthogonal
polarization modes of the beams decouple, and the total lattice potential can be split
into the sum of an s and p contribution, which have an identical lattice structure2, but
their depths and position can be controlled independently by changing the phase and
population of their corresponding polarization mode. This can be seen when considering
how the scalar product of the pairs of phasor vectors simplifies. With the definitions for
the direction of wave vectors in eq. (3.7) such an in-plane lattice is given for ϑ(1,2,3)

k = 0.
The polarization basis as chosen in Eqs. 3.6 takes a particularly simple form for in-plane
lattices. Here the s polarization basis vectors ŝ(1,2,3) are all identical ŝ(1,2,3) = ẑ and thereby
orthogonal to all other p polarization unit vectors. The scalar products of the phasors
therefore lose their mixed terms

Pj ·Pi = sis
∗
j ŝi · ŝj +�����sip

∗
j ŝi · p̂j +�����pis

∗
j p̂i · ŝj + pip

∗
j p̂i · p̂j (3.19)

and reduce to

Pj ·Pi = sis
∗
j + pip

∗
j cos

(
ϕ

(k)
i − ϕ

(k)
j

)
(3.20)

In the Poincaré sphere basis for the polarizations this is

Pj·Pi = exp(i(ϕi − ϕj))
[
exp(i(αi − αj)) sin(ϑi) sin(ϑj) + cos

(
ϕ

(k)
i − ϕ

(k)
j

)
cos(ϑi) cos(ϑj)

]
(3.21)

The lattice potential can now be split up into a part Vs with only the sis∗j terms and one
part Vp with only the pip∗j terms, where the relative phase angles αi take up a role that is
identical to the role taken by the absolute phase angles ϕi and will therefore cause the
same translation but only for Vs

V (r) = Vs(r) + Vp(r) −→ Vs(r + ∆rs + ∆r) + Vp(r + ∆r) (3.22)

∆rs = B−1

 ∆α1 −∆α2

−∆α3 + ∆α2

 (3.23)

This means, that experimental control over the polarization and relative phase not only
allows to position a lattice potential accurately in space, but also allows to precisely vary
its shape by moving the two components relative to each other.

2The sign of the two lattices may be inverted changing the role of minima and maxima and leading to
potentially different number and relative position of lattice sites within the unit cell. This is e.g. the case
for hexagonal lattices which will be discussed later
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3.2.3 Hexagonal lattices
The hexagonal lattice is a special case of the three-beam in-plane lattice, which is of special
interest in the context of this thesis because it is the lattice type that has been used to
conduct the presented experiments. The hexagonal lattice derives its name from the fact
that its Wigner-Seitz-Cell has the shape of a hexagon. It is attained by symmetrically
arranging the three beams in the plane, such that all three pairs of beams enclose an angle
of 120°

∀i,j∈[1,2,3]

∣∣∣ϕ(k)
i − ϕ

(k)
j

∣∣∣ = 4π
3 =⇒ p̂i · p̂j = −1

2 (3.24)

The resulting numerical values describing the geometry of the hexagonal lattice are
summarized in appendix A. All restrictions that have been made so far only concerned
the choice of the wave vectors and thereby the geometry of the lattice. Despite those
restrictions, the class of hexagonal lattice potentials still spans a parameter space of six
free phasor parameters, when excluding changes under rotation, translation and an overall
potential scaling factor. As a final restriction the subspace of balanced hexagonal lattice
potentials will be considered in the following.

Balanced hexagonal lattices

With the term balanced optical lattice potential it shall be referred to a lattice with
a symmetric choice mixing angles ϑi = ϑ and field amplitudes Ēi = Ē. Owed to this
choice the lattice acquires a rotational symmetry of order three and has only three free
parameters. Its Fourier components take the simple form

Pj ·Pi = exp(i(ϕi − ϕj))
[
sin2(ϑ) exp(i(αi − αj))−

1
2 cos2(ϑ)

]
(3.25)

The three parameters determine the relative position of the two polarization sublattice
potentials (αi) and the relative strength (ϑ). The polarization sublattice potentials
themselves do not have any free parameters and are inverse of each other (factor −1/2).
Potentials of this form are commonly referred to as honeycomb and triangular lattice
potentials. Which sign refers to which potential depends on the sign of the polarizability.
In the case of potassium atoms in a red detuned lattice as in the experiments of this
work, the former is the triangular and the latter the honeycomb potential. Both lattice
geometries have already been realized in the context of ultracold atoms ([40, 47]).

Boron nitride lattice

The boron nitride type lattice is a special type of hexagonal lattice. It is similar to the
honeycomb lattice in that way, that is has two local minima per unit cell, but reduces the
order of the rotational symmetry from six to three by reducing the depths of one of the
two minima. Such a lattice can be created by choosing the polarization angles for the
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Figure 3.2: Interference pattern of triangular and honey comb lattices. For 40K the atoms are
trapped in the intensity maxima, thus the left panel depicts the triangular lattice and the right one
the honeycomb lattice.

Figure 3.3: The boron nitride lattice. The
interference pattern for a balanced hexagonal
lattice with polarizations determined by the
mixing angles all of 9° and phase angles of
0°, 60° and 120°. The scale is exponential,
and contours have been added to make the
relatively small offset between the A and B
sites visible

hexagonal lattice such that the triangular lattice component is translated to a position,
where its maximum coincides with one of the minima of the honeycomb component. This
is for example the case for the polarization phase angels α1,2,3 = 2π/3( 0 1 2 ). The mixing
angle ϑ, as the remaining degree of freedom controls the offset of the two types of sites of
this so-called A-B-lattice. In the context of this thesis, the boron nitride lattice has been
chosen, because it breaks inversion symmetry, which has important consequences for the
geometric properties of its band structure.

The s- and p-contributions (as of Eq. 3.22) to the overall potential of the boron nitride
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lattice are obtained by inserting the phase angles into Eq. 3.25 and further into Eq. 3.12

Vs(r) = −2VL sin2 ϑ
[

cos(b1 · r + ϕ12 − 2π/3)+
cos(b2 · r + ϕ23 − 2π/3)+
cos((b2 + b1) · r + ϕ31 − 4π/3)

]
Vp(r) = VL cos2 ϑ

[
cos(b1 · r + ϕ12)+
cos(b2 · r + ϕ23)+
cos((b2 + b1) · r + ϕ31)

]
(3.26)

where the overall lattice depth has been gathered into

VL = α

4 I (3.27)

with I being the light intensity of one of the three equal beams.

3.3 Band Structure Description
In quantum mechanics the dynamics, stationary states and excitation spectra of any
physical system can be derived from its Hamiltonian operator. The Hamiltonian of a
quantum many-body system, such as an ensemble of atoms in an optical lattice, takes
into account quantum statistics and interactions between atoms. An essential building
block for the construction of a many-body Hamiltonian are the eigenstates and energies of
the single particle Hamiltonian, which describes a single interactionless particle. In the
present case of ultracold fermions, which exhibit negligible interactions and can, to most
respects, be well approximated by a zero temperature description, the spectrum of the
single particle Hamiltonian is identical to the one of a many-body Hamiltonian and thereby
also the eigenstates can be trivially extended. Therefore the subject of discussion of the
following section will be the single particle Hamiltonian of an atom in an optical lattice
and the solutions to its eigenvalue equation, i.e. the stationary Schrödinger equation.

The Hamiltonian operator arises by canonical quantization from the Hamiltonian
function. With the Fourier representation of the lattice potential as given in Eq. 3.14 and
Eq. 3.15 the Hamiltonian thus reads as

H0 = p2

2mA

+
∑
m,n

Vmn exp(ibmn · r) (3.28)

where p and r are the momentum and position operators and mA the mass of the particle,
here the atomic mass of 40Na. Without any restrictions on the Fourier coefficients, this
Hamiltonian represents a particle in an arbitrary two dimensional periodic potential. For
convenience the Hamiltonian will from now on be expressed unitless. Its natural energy
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scale is given by the recoil energy ERec = ~2k2
L/2mA, which describes the kinetic energy

an atom gains/loses upon the absorption/emission of a lattice photon. Rescaling the
Hamiltonian by H = (ERec)−1 H0 allows to write it in the compact form

H = k2−
∑
m,n

vmn exp(ibmn · r) (3.29)

where also the potential has been expressed in terms of atomic recoil units Vmn = ERecvmn,
and the unitless wavenumber operator k = p/~kL has been introduced.

Eq. 3.29 has the same functional form of the Hamiltonian used in solid state physics to
describe an electron in an atomic crystal structure. In the solid state case, the Fourier
series is infinite because the lattice potential results from the superposition of the coulomb
potentials of the atomic cores, which are of singular nature. As shown in Sec. 3.2.1, for an
optical lattice with two dimensions, created by three beams, there are only nonzero Fourier
coefficients for |m|, |n| ≤ 1. Despite the simplicity and compactness of the eigenvalue
equation for a Hamiltonian with this highly harmonic potential, there is no general analytic
solution and it has to be treated similarly to the solid state case. This implies that the
following calculations are not restricted to three beam lattices. For a higher number of
beams the Bravais vectors have to be determined (see Sec. 3.2.1), and in general there will
also be non zero Fourier coefficients for higher orders of m and n.

The spatial periodicity of the Hamiltonian can be expressed in the form of a discrete
translation symmetry, which manifests in the fact that the Hamiltonian commutes with
the lattice translation operator Tmn. They can thereby be diagonalized simultaneously

H |ψqn〉 = En(q) |ψqn〉 (3.30a)
Tmn |ψqn〉 = exp(iq · amn) |ψqn〉 (3.30b)

which give rise to an additional quantum number q which is, in analogy to the momentum
quantum number for continuous translation symmetry, called quasimomentum. The
quasimomentum is defined within the Wigner-Seitz cell of the reciprocal space, which
is also known as the (first) Brillouin Zone. Eq. 3.30 also introduces the band index n
which owes its name to the fact that the spectrum En(q) forms bands, that are generally
continuous in q and discrete in n.

The states of the eigenbasis |ψqn〉 are the so-called Bloch states. Opposed to the Hamil-
tonian, they are eigenstates to the translation operator and therefore not invariant under
lattice translation (for eigenvalues other than unity). They can however be decomposed
into a lattice periodic wavefunction |uqn〉 and the momentum translation operator, as
stated by the so-called Bloch theorem

|ψqn〉 = Tk(q) |uqn〉 (3.31)

The momentum translation operator conducts a boost into a moving frame and is defined
by the translation of the momentum eigenstates |k〉 as follows

Tk(k) |k′〉 = |k + k′〉 (3.32)
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and it can be expressed in terms of the position operator

Tk(k) = exp(−ik · r̂) (3.33)

In this sense, the Bloch theorem is equivalent to stating that the non zero Fourier
components of the Bloch functions coincide with the reciprocal lattice that has been
shifted by their quasimomentum.

It is convenient to use eq. (3.33) to reformulate the potential operator as a function of
the momentum translation operator

H = k2−
∑
m,n

vmn Tk(−kLbmn) (3.34)

In this form, not only the description of the lattice in the Bragg picture becomes evident,
but also the separability of the Hamiltonian into quasimomentum eigenspaces. This means,
that when the momentum operator is separated into the quasimomentum contribution
and the reciprocal lattice contribution, i.e.

k = q + bmn (3.35)

then the matrix elements in the momentum basis split up into a product of a q-dependent
term and a lattice index dependent term

〈k′|H|k〉 = k2δ(k− k′)−
∑
m,n

vmnδ(k− k′ − bmn)

〈q′ + bs′t′|H|q + bst〉 = δ(q − q′)
[
(q + bst)2 δss′δtt′ +

∑
mn

vmnδ(s−s′)mδ(t−t′)n

]
︸ ︷︷ ︸

〈bs′t′ |H⊕(q)|bst〉

(3.36)

which, for a finite dimensional case, could be visualized as a block diagonal form. For the
infinite dimensional case this decomposition can be expressed by the direct integral, a
continuous extension of the direct sum

H =
∫ ⊕

BZ
H⊕(q) dq [H⊕(q),H⊕(q′)] = δ(q − q′) (3.37)

Here q ceases to be an operator and becomes an index, because for this separation a
partial choice of basis has been made. This separation of spaces forms the foundation to
geometry and thereby topology in periodic systems.

3.3.1 Numerical Implementation
As a part of this thesis a software has been developed that allows a fast and intuitive
exploration of band structures and lattice potentials within the vast parameter space of
optical lattices generated by three beams. The core algorithm is based upon and tested
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against a previous version that has been created by Dr. Christoph Becker [101], which
was restricted to triangular and honeycomb lattices. The new algorithm extends the
functionality to any type of optical lattice. A GUI has been created and to allow a fluent
usage of it, the performance has been improved tenfold for the single threaded case, plus
a strongly machine dependent improvement by parallelization. Fig. 3.4 shows the user
interface, and the caption summarizes its features.

The Hamiltonian in Eq.3.37 acts on an infinite dimensional Hilbert space. In order to
compute a numerical solution, the problem has to be reduced to a finite dimensionality.
The chosen Fourier basis is especially suited for this reduction, because higher Fourier
frequencies are associated with higher bands. For the study of the lowest two bands, which
are of principal interest for the remainder of this thesis, it is sufficient to use a truncated
space that only includes Fourier components up to an order of c = 5, i.e. the indices from
Eq. 3.35 (later in Eq. 3.36 called s and t) are restricted to |n|, |m| ≤ c. The validity of
this approach becomes plausible by calculating the convergence of the band structure with
increasing Fourier order. Fig. 3.5 shows the error of the truncated band structure relative
to a reference calculation based on the order c = 10.

Even with this reduction of dimensionality eq. (3.36) does not resemble a standard
eigenvalue problem in matrix form. This is because the Fourier basis for the two dimensional
wave functions is indexed by two indices corresponding to the two dimensions of the
reciprocal space. Linear algebra is however completely agnostic to the order of the base
elements and the two indices can therefore be replaced by a single one. In computer
algebra systems this conversion is common practice and is known as subindexing or index
ravelling. The mapping between the indices is arbitrary and here we chose the simplest
possible, corresponding to enumerating the matrix elements column by column or more
formally expressed by indexing functions

m = umod d− c
n = u trunc d− c

⇐⇒ u = (n+ c)d+ (m+ c) + 1
(3.38)

where u is the new flattened index ranging from 1 to D = d2, d = 2c+ 1 is the number
of Fourier components in one dimension, and mod and trunc describe the modulus and
truncated division (i.e. division with subsequent truncation after the decimal point) opera-
tions. While eq. (3.38) describes a two dimensional subindexing, the extension to arbitrary
dimensions is trivial. For a short code snippet illustrating the matrix representation of the
potential, the reader is referred to App. B.

With this subindexing the Hamiltonian can be cast in matrix form and standard
algorithms can be used to determine the eigenvalues and vectors. In this concrete case
for the Hamiltonian as a hermitian matrix, the used algorithm is the built-in Cholsky
decomposition. With respect to the few nonzero elements of the matrix an algorithm
for sparse matrices could yield further speedup. In the non sparse case care has to be
taken to avoid unnecessary copies of the data. With the chosen truncation of Fourier

37



Chapter 3 Ultracold Atoms in Optical Lattice Potentials

components the matrix has a size of 121× 121 which amounts to about one gigabyte when
rasterizing the Brillouin zone in a 100× 100. Even though one gigabyte of data can be
handled easily by modern computers, multiple copies of the data set, or data leaks, quickly
fill the RAM and cause swapping, which slows down the calculation by several orders of
magnitude. While the current implementation only allows a near real-time exploration of
the parameter space for an extremely low resolution of the reciprocal space, the problem is
ideally suited for an implementation on a GPGPU3-system, because of the high degree of
parallelizability. It is also conceivable to implement a progressive algorithm that starts out
by solving the problem for a highly truncated space and iteratively includes more Fourier
components.

3general-purpose computing on graphics processing unit
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Figure 3.4: Screenshot of the band structure simulation program, developed as part of this thesis.
The upper window allows to set all parameters of the three lattice beams. The values can be entered
directly or a slider can be used. Upon changes the update of the remaining windows is triggered
immediately. In the second row the band structure and the direct lattice (intensity) are shown. The
resolution can be changed, and in case of the band structure, the band desired for display as well as
the subtraction of the first band can be chosen (all options in bottom status bar of the window). The
lower window shows the band structure along the high symmetry path. Here only the points along
the path are calculated to enable a responsive update of the plot.
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Figure 3.5: This plot shows the dependency of the relative error ε(c) = ∑
kx,ky∈BZ 1/ERefN(E(c)−

ERef) as a function of the truncation order c. Here E(c) represents the integrated energy difference
between the lowest two bands of a boron nitride lattice (θ = 9 °, V = 15.5 ERec) arising from a
calculation of the order c while ERef was determined including orders up to c = ±10. The sum
is carried out over the smallest square including the hexagonal Brillouin zone on a regular grid of
N = 225 points. The observed breakdown of convergence for orders > 8 is most likely due to the
limit imposed by numerical precision.
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3.4 A Tight-Binding Model for Boron Nitride Lattices

3.4.1 Motivation
The experiments conducted at this thesis are all concerned with the geometric effects
of the lowest two bands, the so-called s-bands, of a Boron nitride lattice. Even though
geometric properties can be assigned to certain bands, they are generally dependent on the
complete Hamiltonian (see Chap. 4, e.g. the definition of the Berry curvature in Eq. 4.14).
In the case of the boron nitride lattice in the chosen parameter regime (see Chap. 6),
there is however a strong separation of energy scales between the family of the lowest two
Bloch bands and the rest of the spectrum. Therefore the Hamiltonian projected onto this
two-band sub-Hilbert space constitutes a good approximation of the actual system.

This approximation is motivated by the intuitive picture of the geometric and topological
effects it can be used to developed, by allowing to express the Hamiltonian and the states
as a bundle of two level systems over the first Brillouin zone.

Furthermore, the reduced Hilbert space enables a fast and yet precise computation of
the properties of the driven system. The full Hamiltonian is represented, as described
in Eq. 3.36 in the case of ±5 Fourier components, by a matrix of 121x121 entries. With
a reduction to the projected space it can be represented by a simple 2x2 matrix, which
yields an estimated speed up of the order of 104 for calculating the effective Hamiltonian
representing the driven system, as discussed in Sec. 4.3.

The s-bands of a boron nitride lattice form a so-called family [123] of Bloch bands, or
are alternatively referred to as different branches of a single complex Bloch band.

The existence of a complex band is closely related to the concept of Wannier func-
tions [124] and the fact that the boron nitride lattices have two stable local minima of
similar depth within one unit cell.

For the subspace of each band or family of bands, the associated Wannier functions
[124] form an alternative complete basis. They are the Fourier transform of the Bloch
functions and are thereby contrary to them in the sense that they have (for an adequate
choice of Bloch gauge) a probability density that is localized at the lattice sites and are
invariant under lattice translations.

In condensed matter physics the Wannier functions are reminiscent of the atomic
orbitals, because the potential of the atomic core dominates the shape of those localized
states. This means, that in the limit of increasing lattice spacing, or potential depth, the
Wannier functions converge towards the stationary atomic wave functions. Following this
analogy the bands are attributed names of the corresponding s, p, d,. . . orbitals.

For our description of the boron nitride lattice, the Wannier functions are relevant in two
distinct ways. Firstly, they enable the construction of a basis for the reduced Hamiltonian,
that can be identified with the two sublattices, formed by the A and respectively B sites.
And secondly, they are necessary for the creation of a tight-binding model, with which
the Hamiltonian can be well approximated by a simple analytic expression with only few
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parameters.
In regard to both aspects, the explicit calculation of the Wannier function is not strictly

necessary and has not been conducted here. The reason for this is, that, while for Bravais
lattices with a one atomic basis, i.e. with only one local minimum per unit cell, the
determination of the Wannier functions follows a relatively simple recipe [124], for a
lattice with multiple minima, there is no unique way of constructing the two sets of
Wannier functions from the two branches Bloch functions, that cannot be associated to
any sublattice. Different choices however lead to different parameters of the associated
tight-binding model [125–131].

In the case of the tight-binding model the Wannier functions are needed to determine
the values of the parameters of the model, as it will be discussed below. One obvious
quantifier for the choice of Wannier functions is therefore how well the resulting Hamiltonian
resembles the band structure as compared to the original model without the tight-binding
approximation. Here we decided to directly determine a set of tight binding parameters
suitable for our lattice with respect to the same quantifier via a standard least square fit
of the band structures [132].

A two-band tight-binding model for the boron nitride lattice has already been studied
in 1984 by Semenoff [133] in the context of topology. The model was extended and then
used by Haldane in his famous paper to unravel the analog to a quantum Hall effect in
form of a nontrivial topology of honeycomb lattice with a staggered magnetic field.

The model that is used here for the non-driven lattice is identical to the one used by
Haldane when the magnetic flux is set to zero (φ = 0 in [46]).

The central definitions and derivations will be summarized in this section because they
are of central importance for the understanding of the presented experiments.

3.4.2 The Tight-Binding Description
The tight-binding model was born in the context of condensed matter physics, and in the
past it has led to quite some breakthrough insights into the electronic properties of solids
by its capacity to produce an approximative lattice Hamiltonian with a highly reduced
complexity, that nevertheless capture many of the essential properties of the system. The
name tight-binding stems from the fact that in this model electrons are regarded as well
localized around, i.e. tightly bound to, an atomic core. The approximation consists in
neglecting tunneling processes to distant sites. It is carried out in the Wannier basis,
where the diagonal elements of the Hamiltonian correspond to the on-site energy for the
associated Wannier function and the off-diagonal elements correspond to the tunneling
amplitudes between the two associated sites. They decay exponentially with the increasing
distance of the sites, and therefore only tunneling up to a certain relative distance between
sites is considered in this model.

It is customary [46, 133] to describe the tight-binding boron nitride Hamiltonian in
second quantization, even though it is a single particle operator, to make the resemblance
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to quantum field theories explicit.
The Hamiltonian for an isolated sub-band (with possibly multiple branches) can then be

expressed by a sum over the complete Wannier basis, represented in second quantization
by the creation and annihilation operators w�

i and wi, that create/annihilate a particle in
a Wannier eigenfunction centered at the lattice sites with index i.

H =
∑

i,j,k,l∈N
t(kl) w� (A (mn )) w

(
A
(
m+k
n+l

))
(3.39)

where the t(kl) are the matrix tunnel elements, or in the case of equal indices tijij the
on-site energy.

For a lattice with multiple local minima per unit cell and multiple Bloch band branches,
the sum can be rearranged to reflect the fact that the lattice can be composed of multiple
sublattices that have distinct Wannier functions. For a lattice composed of the two
sublattices A and B the Hamiltonian becomes

H =
∑

i,j,k,l∈N
α,β∈{A,B}

t
(kl)
αβ w�

α (A (mn ) + δα) wβ

(
A
(
m+k
n+l

)
+ δβ

)
(3.40)

To take advantage of the translation symmetry of the system the plane wave basis has
to be chosen. In analogy to the Fourier pair relation of the Wannier function and the
Bloch wave for simple bands, in the case of complex bands the Fourier pair of a Wannier
function is called a quasi Bloch wave [123]. The operators associated with the Wannier
states can thus be expressed in terms of the quasi Bloch wave operators uα(k) as follows

wα(r) = 1
BBZ

∫
k∈BZ

dk exp(ik · r) uα(k) (3.41)

With this definition and the identity
∑

m,n∈N
exp(i (k− k′) · A (mn )) = BBZδ(k− k′) (3.42)

The Hamiltonian can be expressed in the plane wave basis

H = 1
BBZ

∫
k∈BZ

dk
∑
k,l∈N

α,β∈{A,B}

t
(kl)
αβ exp{−ik · (A ( kl ) + δα − δβ)} u�

α(k) uβ(k) (3.43)

This expression of the Hamiltonian in terms of quasi Bloch waves is of special relevance,
because the integral over the Brillouin zone can be, in analogy to Eq. 3.37, interpreted as
a direct sum integral, so that the Hamiltonian breaks down into a parameterized set of
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Hermitian operators of rank 2. To emphasize this the sum over α and β can be written in
matrix form

H = 1
BBZ

∫
k∈BZ

dk
(

u�
A(k) u�

B(k)
)

H(k)

uA(k)
uB(k)

 (3.44)

with

H(k) =
∑
k,l∈N

exp{−ik · A ( kl )}

 t
(kl)
AA t

(kl)
AB exp(−ik · δ)

t
(kl)
BA exp(ik · δ) t

(kl)
BB

 (3.45)

where without loss of generality δA = 0, δB = δ was chosen.

3.4.3 Properties of Two-Band Hamiltonians
For most considerations of two level systems it is extremely helpful to use the Bloch sphere
representation. Because the description of the Hamiltonians in the shape of Eq. 3.45 is
central to the topic of this thesis and there are many possible different conventions, I will
briefly summarize the definitions that have been used.

Any traceless Hermitian operator of rank two can be decomposed into a linear combi-
nation of Pauli matrices. One can thus write

H = h0I + h · σ (3.46)

where h0 = 1/2 tr H, I the identity operator, h a vector containing the coefficients repre-
senting H in this picture, and σ a vector containing the Pauli matrices as entries. For any
H the Bloch sphere representation and corresponding matrix representation are then given
by

h =


h12 + h21

i (h12 − h21)
h11 − h22

 H =

h0 + h3 h1 − ih2

h1 + ih2 h0 − h3

 (3.47)

or most conveniently in spherical coordinates

h = R


sin θ cosϕ
sin θ sinϕ

cos θ

 = Rĥ

H = h0I +R

 cos θ sin θ exp(−iϕ)
sin θ exp(iϕ) − cos θ

 = h0I +RĤ

(3.48)
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and inversely

R = ‖h‖ =
√
− det(H−h0) θ = arccos

(
ĥ3
)

φ = arctan
(
ĥ2, ĥ1

)
(3.49)

The characteristic polynomial in two dimensions can be solved generically and lead to
the eigenvalues and vectors

ε± = h0 ±R |+〉 = cos θ/2 |A〉+ sin θ/2 exp(iϕ) |B〉
|−〉 = − sin θ/2 exp(iϕ) |A〉+ cos θ/2 |B〉

(3.50)

Here the convention has been chosen that for θ = 0 the eigenstate belonging to the higher
eigenenergy corresponds to the A-sublattice. The spectral projectors are

|+〉〈+| = 1
2
(
1 + Ĥ

)
|−〉〈−| = 1

2
(
1− Ĥ

)
(3.51)

and the propagator can be written in terms of the natural timescale τ = Rt/~ as

U(τ) = exp
(
−ih0τ

R

)
exp

(
−iτ Ĥ

)
= exp

(
−ih0τ

R

)(
cos τ − iĤ sin τ

)
(3.52)

In the same spirit any two level state |ψ〉 can be defined (up to a phase) through a pair of
polar and mixing angles θS and ϕS or a vector ψ on the Bloch sphere. Identifying a state
with the eigenvector belonging to the positive eigenenergy this leads to

|ψ〉 = cA |A〉+ cB |B〉 = cos
θS

2 |A〉+ sin θ
S

2 exp
(
iϕS

)
|B〉 (3.53)

ψ =


sin θS cosϕS

sin θS sinϕS

cos θS

 (3.54)

θS = arccos(ψ3) φS = arctan
(
ψ2,ψ1

)
(3.55)

3.4.4 Boron Nitride Lattice
For the tight-binding description of the boron nitride lattice all that is left to do is chose the
order of the Fourier expansion of the tunnel matrix elements and consider the symmetries
of the lattice. Because the association of the t(kl)αβ depends on the choice of lattice vectors,
one usually uses the term (next)-nearest neighbor tunneling. Fig. 3.6 shows how the
neighborhood of a boron nitride lattice can be defined. To reflect its coordination number
of three, we defined three lattice vectors δl for the translation from one sublattice site to
its three next neighbor, which are members of the other sublattice, and the three lattice
vectors al from one site to its next nearest neighbors, which lie within the same sublattice.
While Semenoff [133] chose a model including only nearest neighbor tunneling, Haldane
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Figure 3.6: Tunneling parameters for a boron nitride lattice. The two sub-figures show the real space
lattice for the tunneling from A sites (left) and for tunneling from B-sites (right). A negative sign of
the lattice vectors is equivalent to a negative sign in the tunneling amplitude.

also included next nearest neighbors [46]. Here we made the same choice as Haldane, but
with real tunneling matrix elements, which reflects the presence of time-reversal symmetry.
In this case the t(kl)αβ are identical regardless of the direction of tunneling. Furthermore
we suppose ideal rotational symmetry of order three, which results in a model with only
three free parameters, when neglecting the average energy σ that bears no significant
contribution. The superscripts are no longer necessary and due to the symmetry of the
potential tunneling in the directions a1 are pairwise equal. With the shorthands the
Hamiltonian takes the simple form

H(q) =

∆
2 + 2tAA g(q) tAB f(q)
tAB f

∗(q) −∆
2 + 2tBB g(q)

 (3.56)

where ∆ is the difference in on-site energies of the two sublattices. The diagonal terms
g(q) and the coupling element f(q) are given by

f(q) =
∑
l

exp(−iq · δl)

g(q) =
∑
l

cos(q · al)
(3.57)

There are isolated quasimomenta for which the two sublattices are fully decoupled even
though the overall coupling strength tAB is non-vanishing. These points, identified by
f(Di) = 0, are called Dirac points. They owe their name to the analogy of their local
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dispersion relation to the Dirac equation. In case of the honeycomb lattice, where there
is no offset between the sublattices (∆ = 0), the two bands become degenerate, and the
dispersion in their vicinity becomes linear. For half filling their intersection coincides with
the Fermi energy, and low energy excitations of the system can be considered as quasi
particles described by the Dirac equation, following the same relativistic dynamics as e.g.
photons. The concept can be extended to the Boron nitride lattice. Here, the energy
offset between the sublattices lifts the degeneracy and causes the Dirac points to open.
Those Dirac points are also referred to as massive because the low energy excitations
mimic the dispersion of a massive relativistic particle. This extension makes clear that
the Dirac points are of geometric nature, in the sense that they can appear for any shape
of band structure and only depend on the coupling of the two bands. Therefore their
description in the Bloch sphere picture, which is purely concerned with the coupling terms,
is adequate for an intuitive visualization. Here the Dirac points are represented by the
poles of the sphere, which means that a Dirac point can come in two flavours. The two
poles correspond to the two different situations where the subband under consideration
coincides with either the A or the B sublattice at the quasimomentum of the Dirac point.
This sign of Dirac points also serve as a sufficient measure for the Chern number of the
system: the Chern number is equal to (half) the difference in the number of Dirac points
[134] with positive and negative signs.
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4 Geometry and Topology of
Periodically Driven Boron Nitride
Lattices

The effects of non-euclidean geometry are abundant in physics. Prominent examples are
the special and general theory of relativity, whose effects can be entirely described in
terms of the geometry of a curved space-time. Another popular example of geometric
effects in classical mechanics is the Foucault pendulum, whose plane of oscillation precesses
dependent on the latitude of its geolocation. In non-relativistic quantum mechanics however,
geometric effects have not been discovered until 1983, when Micheal Berry reported [14]
on the existence of a phase factor for eigenstates of systems under an adiabatic change of
parameters, that can be considered geometric, in the sense that it does not depend on
time but on the trajectory of the varied parameters through the configuration space. Barry
Simon established [8] the connection between this so-called Berry phase, which will be
discussed in detail in the next section, and the general mathematical field of geometry.
Therefore the Berry Phase lays the foundation, in the same way as in the previously
mentioned examples, for defining a curvature, a parallel transport law and topological
order. While the late discovery of this geometrical phase could be misunderstood as a very
rare and unimportant detail, quite the opposite is the case. The concepts of geometry and
topology relate the Berry phase to the quantum Hall effect [5, 7, 135], one of the most
intriguing effects of condensed matter physics.

4.1 Geometric Phases in Non-relativistic Quantum
Mechanics

The concept of geometry in quantum mechanics is build upon the idea that the total phase
δtotal, that is accumulated by a state |ψ(t)〉 during its evolution in a system described by a
time-dependent Hamiltonian H(t), can be split into two parts: a dynamical phase δdyn and
a geometric phase γ which is thereby defined as

γ = δtotal − δdyn (4.1)
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This separation is made due to the distinct origin of the two phases. The dynamical phase
evolves with time at a rate determined by the instantaneous energy of the state.

δdyn = −1
~

∫ T

0
〈ψ(t)|H(t)|ψ(t)〉 dt (4.2)

The geometrical phase, in contrast, does not have any time dependency and derives its
name from the fact that it is determined by the shape of the trajectory in the projective1

Hilbert space the state under consideration traces out. In contrast to the dynamical phase
it cannot be defined in a simple form without any further restrictions. It is therefore
generally simply defined as in Eq. 4.1.

However simple this definition of a geometric phase may seem at the first glance, yet
the concepts it involves are quite intricate. This fact is reflected in the history of its
discovery. Even though the concept of an additional phase factor was described in detail by
Pancharatnam in 1956 [83] in the context of the evolution of polarization states of a light
beam under the passage through a sequence of polarization changing optical components,
the mere existence of a geometrical phase in general quantum system has not been realized
until the rediscovery by Berry as late as 1984 [14].

Before the connection to the Pancharatnam phase was made, the Berry phase has been
solely specified for the restricted case of an energy eigenstate under an adiabatic and
cyclic evolution. Later, the restriction of the adiabaticity has been removed by Anandan
and Aharnov [136] and finally also the restriction to cyclic Hamiltonians has been lifted
by Samuel and Bhandari [137], who realized the equivalence to the scenario studied by
Pancharatnam. All the experiments conducted in the context of this work, fulfill the
condition of adiabaticity and do not require to consider non-cyclic trajectories. Their
geometry are therefore well described by the Berry phase and quantities derived thereof.

4.2 Berry Calculus
In the non-adiabatic case a geometric phase is an attribute of a specific trajectory of a
state in the projective Hilbert space. It is not an attribute of an Hamiltonian, however
each trajectory can be associated with a class of different time-dependent Hamiltonians
that realize this trajectory for a given initial state. The restriction to an adiabatic change
of the Hamiltonian simplifies this description greatly because it permits to attribute the
phase to trajectories in the finite dimensional parameter space, which all belong to the
same time-independent parametric Hamiltonian. Berry [14] deduces the geometric phase,
simply by contemplating carefully the evolution, as determined by the time-dependent
Schrödinger equation, for a state in a form in accordance with the adiabatic theorem [138].

1All states of the Hilbert space that differ only by a phase are projected onto the same element in
the projective Hilbert space. Otherwise a trajectory would uniquely correspond to one Hamiltonian and
would thereby also have a time dependency. For details see [136]
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It is probably fair to summarize the essence of the adiabatic theorem by stating, that an
eigenstate of a time-dependent Hamiltonian remains an eigenstate to the new Hamiltonian
under time evolution, if the Hamiltonian varies sufficiently slow, i.e. adiabatically with
time2. Formally this means, that for a Hamiltonian H(q) parameterized by the vector q,
which endows the projective Hilbert space with a natural basis through the stationary
Schrödinger equation

H(q) |n(q)〉 = En(q) |n(q)〉 (4.3)

the adiabatic evolution of a non-degenerate initial eigenstate |n(q(0))〉, following a trajec-
tory in parameter space described by q(t), can be written as

|ψ(t)〉 = exp(iδn(q, t)) |n(q(t)〉 (4.4)

Here the phase factor δtotal has been assumed in the most general form, i.e. with an
explicit dependence on both the parameter q and the time t. Without making any further
assumptions, these dependencies have to be considered as necessary. At this point one
can already see that a separation as in Eq. 4.1 of δtotal into a q -dependent geometric
part and a t-dependent part is desirable. In the following the index n will be dropped for
convenience, bearing in mind that all deductions are equally valid for every other set of
non-degenerate eigenstates. In the case of degenerate eigenvectors there appears a similar
geometric phase described by so-called Wilson lines [139], which have also recently been
observed in a ultracold lattice system [120]. The concept of Berry curvature, which is
relevant here, is however restricted to the non-degenerate case.

To find the dependency of the phase factor on the adiabatic parameter and on time,
Berry simply inserts Eq. 4.4 into the time-dependent Schrödinger equation(

i~ ∂
∂t
− E(q(t))

)
exp(iδ(q(t), t)) |n(q(t)〉 = 0 (4.5)

By carrying out the chain rule and multiplying from the left with the bra 〈n(q(t)| with a
subsequent rearranging of the summands this yields the derivative of the phase

δ̇(q(t), t) = i 〈n(q(t)| ∂
∂t
|n(q(t)〉+ 1

~
E(q(t)) (4.6)

Integration over time and employing the fundamental theorem of calculus renders the
aspired separation into the sum of a geometrical and a dynamical part

δ(q(T ), T ) = i
∫ q(T )

q(0)
dq 〈n(q)|∇q|n(q)〉︸ ︷︷ ︸

γ

+ 1
~

∫ T

0
dt E(q(t))︸ ︷︷ ︸
δdyn

(4.7)

2Messiah formulates the adiabatic theorem a lot more detail, specifying what adiabatic means and
describing the dynamical phase evolution with time
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The notation used for the partial derivatives with respect to the parameter ∇q, may be
misleading and it shall therefore be explicitly stated here that the object ∇q |n(q)〉 is
element of the composite space Q×H3 of the parameter space Q and the Hilbert space
H. It collapses to a scalar phase through the induced scalar product with dq 〈n(q)| as an
element of its dual space.

To understand Eq. 4.7 it is imperative to remember that the eigenstates for each
parameter value are only defined up to a phase by the eigenvalue equation Eq. 4.3. One is
free to chose a different, yet fully equivalent, set of eigenstates defined by

|̃n(q)〉 = exp(iχ(q)) |n(q)〉 (4.8)

As will become clear later, the function χ(q) is a gauge field, but for now it shall only be
noted that it fulfills the role of a gauge in that way, that it influences the description of
the system without causing any observable physical change.

The gauge choice is thereby reflected in the phase of the evolved state

|ψ(t)〉 = exp(i (δ(q, t)− χ(q))) ˜|n(q(t)〉 (4.9)

which means that a definition of δ is only meaningful in combination with a specific choice
of |n(q)〉.

At this point it is not clear that the geometric phase given by Eq. 4.7 carries any
physical meaning. It is always possible to find a gauge choice such that the geometric
phase vanishes along a given (open) path. Furthermore, the observable state of a system is
not defined by a vector in the Hilbert space but rather by a ray, i.e. an overall or global
phase factor does not change the state. A relative phase, however, would lead to observable
changes to the system through interference. Whether the phase in the given case is of
global or relative nature cannot be straightforwardly determined but requires to recognize
how its description can be sensibly embedded into the mathematical framework of line
bundles [8, 137]. This difficulty can be illustrated by the naïve attempt to determine
the relative phase and the observed interference between a state that has adiabatically
evolved under a Hamiltonian following some trajectory to a point q and a state that has
evolved under a constant Hamiltonian at q0. The evolved states |n(q)〉 and |n(q0)〉 are
generally not parallel to each other, so that the relative phase remains undefined without
further assumptions. To circumvent this problem Berry imposes the restriction to systems,
where the trajectories through parameter space are closed and the start- and end-state are
parallel to each other so that the relative phase is trivially given. In such a cyclical system
with a period T the phase for a closed path P is then obtained from Eq. 4.7

γ[P ] = i
∮
P

dq 〈n(q)|∇q|n(q)〉 (4.10)

This phase γ[P ] becomes physically manifest, for example, if the returned state is interfered
with one that has not undergone the adiabatic evolution.

3To be precise, this space is not a product space but also a fiber bundle
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Figure 4.1: Illustration of the Hannay angles.
An vector in the tangent bundle of sphere is
parallelly transported from the north pole to
and along the equator, and back to the north
pole. After the transport there is a mismatch
with respect to the initial vector. This illus-
trates the holonomy of the Berry phase at the
simple geometric example of the sphere.

4.2.1 Geometric Interpretation of the Berry Phase
In a geometric interpretation the Berry phase is described by a Hermitian line bundle.
The base space of this bundle is a adiabatic parameter manifold Q in which q is defined.
In the case considered in this thesis, this manifold is the torus of quasimomenta defined
by the Brillouin zone. The fiber is given by a cyclic one dimensional complex vector space
and describes the phase factor for any given parameter in the base space. The difference
between a bundle and a simple map between the two involved spaces can be illustrated
at the example of the Hannay angles [140] as shown in Fig. 4.1. Here the base space is
a sphere and the fiber bundle is the tangent fiber bundle. A vector in the fiber bundle
can in close analogy to the Berry phase be described by a angle. Then its transport along
the sphere is equivalent to the change of the adiabatic parameter. Following the closed
trajectory in Fig. 4.1 the vector acquires an additional angle upon the completion of one
loop, which in this analogy corresponds to a nonzero Berry phase. In general terms the
emergence of such a mismatch is called a holonomy. The reason for the holonomy is the
curvature of the surface.

In this example the transport of the vector along the sphere is quite intuitive and
is determined by the geometry the sphere. The mathematical term for transporting a
vector from the vector bundle along the base space is called parallel transport. The parallel
transport can be defined by a connection, which describes how adjacent fibers are connected
in the sense of describing how a vector is transferred between them. In the case of the
sphere this connection is so intuitive because the embedding of the sphere in space, i.e.
a coordinate description of the sphere in three dimensions is given. In the case of the
Berry Phase this is different. For the aforementioned example of a two dimensional band
structure the base space has a topology of a torus, but the actual geometry of a possible
spatial embedding does not necessarily correspond to an ideal torus. Here it becomes
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obvious that the geometry is a local property, while the topology is a global property.
The connection describing the parallel transport of the Berry phase is determined by the
Schrödinger equation [137]. The so-called Berry connection is defined as the integrand in
Eq. 4.7 and Eq. 4.10

A(q) = i 〈n(q)|∇q|n(q)〉 (4.11)
and defines the parallel transport of any phase in parameter space to the corresponding
phase at a different point in parameter space via the integral along the connecting trajectory.
Please note, that unlike the example of the parallel transport of the Hannay angles on the
sphere, the Berry connection is not gauge invariant.

Based on this observation we can define the gauge invariant Berry Curvature. The line
integral in Eq. 4.10 can be converted through Stokes’ theorem into a surface integral

γ[P ] =
∮
P

A(q) · dq = −
∫

V(P)
Im (∇×A(q)) dV (4.12)

where the integrand of the surface integral is called Berry curvature
Ω(q) = Im∇×A(q) (4.13)

As in the example of the Hannay angles, the enclosed Berry curvature is a measure for
the holonomy resulting for a closed trajectory in parameter space. Accordingly it is a
physical, gauge invariant quantity. It gives rise to a number of effects especially in the field
of condensed matter physics e.g. the polarizability of the electronic wave function [21] and
the anomalous Hall conductivity [141].

Numerical Determination of the Berry Curvature

The formula in Eq. 4.13 defines the Berry curvature in terms of derivatives of the gauge
dependent eigenstates. This form has two disadvantages: firstly, the eigenvectors are
generally not single-valued in Q and secondly, a their numeric computation yields them
in a random gauge, such that neighboring eigenvectors are not smoothly connected,
which renders the derivative undefined. To circumvent this difficulty one can apply their
completeness relation [14] and arrive at an expression where the derivatives are applied to
the Hamiltonian, which is gauge invariant

Ω(q) = Im
∑
m6=n

〈n|[∇H]|m〉 × 〈m|[∇H]|n〉
(En(q)− Em(q))2 (4.14)

It is important to notice here, that the Berry curvature fully characterizes the geometric
properties of the line bundle associated with the Berry phase of the system. Furthermore
it can be seen from Eq. 4.14, that the Berry curvature is a propriety of the system that
is complementary to its spectrum, because the Berry curvature can be varied through
transformations of the Hamiltonian that keep the spectrum unchanged. On the other hand,
a singular curvature can for a smooth dependence on the adiabatic parameter, only be
achieved through degeneracies of the spectrum.
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Topological Indices

In generalization of the Gauss-Bonnet theorem, one can define an integer index called Chern
number, which allows to define equivalent classes for Hamiltonians of equal topology. The
Chern number is invariant under transformations that result in a smooth transformation
of the Berry curvature, i.e. transformations of the Hamiltonian that can be performed
without inducing level crossings in the spectrum.

The typical example for visualizing such a topological invariant is the example of a two
dimensional (orientable) surface embedded in three dimensional space, as in the example of
the Hannay angles. Here the integral over the Gaussian curvature of the full surface always
renders an integer number. This integer number is preserved for any smooth deformations
of the surface. A transformation that changes the topological index can be visualized as
punching a hole into the surface and sticking it back together in a different way, as for
example when forming a torus from a sphere.

The Chern number as a topological invariant appears in many physical phenomena, as
for example as the quantized enclosed flux-quanta in the Aharanov-Bohm effect [4] or the
quantized conductivity in the quantum Hall effect. Formally it can be simply defined as
[48] the integral of the Berry curvature over the complete parameter space Q

C = − 1
2π

∫
Q

dq ·Ω(q) (4.15)

In the next section a more pictorial definition will be given that applies to two-band lattice
Hamiltonians only.

4.2.2 Geometry of a Two-Dimensional Lattice Hamiltonian
The concept of geometry described by the Berry phase has no further restrictions and
applies to all systems that can be described by a Hamiltonian that is adiabatically
parameterized as, for example, spins in magnetic fields, light in fibers, and most relevant
here, condensed matter systems. The adiabatic parameter in the geometric description of
condensed matter systems is the quasimomentum and the Berry phase can, for example,
manifest itself in the interference of a quaismomentum eigenstate that has transversed a
closed loop in the reciprocal space (for an experimental realization see [63]) To establish
an analogy to the typical example of a spin in a magnetic field, the quasimomentum
eigenstate can be considered as a pseudo spin, where the energy eigenstates correspond
to the spin projections. The choice of the quasimomentum as the adiabatic parameter
brings also along some peculiarities that cannot be translated into this analogy. One
of them concerns the symmetries of the system [48]. Opposed to the ordinary position
coordinate, the quaismomentum changes its sign under time-reversal T . In systems where
the adiabatic parameter is invariant under T the Berry curvature is rendered flat [8] while
for a condensed matter system time-reversal only leads to a Berry curvature which changes

55



Chapter 4 Geometry and Topology of Periodically Driven Boron Nitride Lattices

sign under parameter space inversion and thus yields a zero Chern number[21]

T Ω(x) = −Ω(x) T Ω(q) = −Ω(−q) (4.16)

If the condensed matter system itself (i.e. the Hamiltonian), however, is symmetric under
inversion I : x→ −x also the Berry curvature will be inversion symmetric [21]

IΩ(q) = Ω(−q) (4.17)

which implies, that for a nonzero Berry Curvature in a condensed matter system, either
the time-reversal symmetry or the inversion symmetry have to be broken.

Another difference is the fact that the parameter manifold, i.e. the quasimomentum space,
itself has a nontrivial toroidal topology. For a formal description, the lattice Hamiltonian,
which is split up into a direct integral of operators restricted to quasimomentum eigenspaces
in Eq. 3.37, serves as a starting point. On the first sight it fulfills the assumptions made in
the previous section as a parameterized Hamiltonian with the Bloch states as its eigenstates,
so that Eq. 4.3 seemingly can be identified with

H⊕(q) |ψqn〉 = En(q) |ψqn〉 (4.18)

The analogy however is breaks down when realizing, that here the eiqenstates for different
quasimomenta are all orthogonal to each other by construction and likewise that H⊕(q)
is not simply parameterized in the sense of Eq. 4.3, as it acts on disjunct subspaces
for different q. The proper analogy is drawn by states that are defined in the same
Hilbert space4 [21, 142]. This problem is solved by simply translating the eigenfunctions in
reciprocal space by q back onto the reciprocal lattice. Those translated functions coincide
with the cell periodic lattice states |uqn〉. The Hamiltonian transforms accordingly

H(q) = Tk(k) H⊕(q) T�
k(k) (4.19)

With this transformation5 the cell periodic states |uqn〉 can be identified with the eigenstates
|n〉 of the previous chapter.

In the case of a two dimensional problem as, for example, the boron nitride lattice,
the Hamiltonian has only dependencies on the two adiabatic coordinates. Without loss of
generality this can be expressed by ∂q3 H = 0. For the Berry curvature, which generally
is a vector quantity, this implies that it becomes unidirectionally orthogonal to the
parameter plane and can be considered a scalar. Eq. 4.14, which describes the non-
vanishing component, collapses to only one addend and can be further simplified by

4Strictly speaking, also the |ψqn〉 can be defined in the same Hilbert space (spanned by all momentum
states), but the space spanned by the Bloch states over all band indices but for one qusimomentum are
disjunct form those spanned at a different quasimomentum.

5The projection into the space of lattice periodic functions is implicitly understood.
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defining a relative coupling strength F (q), normalized to the band gap R(q) and becomes

Ω = Ω3(q) = Im ∂q1F (q)∂q2F
∗(q) with F (q) = 〈−q|H(q)|+q〉

R(q) (4.20)

In the representation of the Hamiltonian as a vector on the Bloch sphere, introduced in
Sec. 3.4.3, this evaluates to

Ω(q) = ∂q1h1 ∂q2h2 − ∂q1h2 ∂q2h1 Ω(q) = −1/2 sin θ
(
∂q1θ ∂q2φ−∂q2θ ∂q1φ

)
(4.21)

Also the Chern number can be expressed in a fairly simple form [143] for the two-level
system

C = 1
4π

∫
BZ

dq h ·
(
∂q1h× ∂q2h

)
(4.22)

This form of is of special importance to develop a pictorial understanding of the Chern
invariant. The integral of Eq. 4.22 is a triple product and takes the value of the volume
spanned by the three vectors it is constituted of. The first vector, h is per definition
normalized to unity and is orthogonal to the other two, so that it contributes only with
a sign to the overall value. The integrand therefore corresponds to the oriented area
subtended by ∂q1h and ∂q2h. The complete Hamiltonian h(q) can be visualized as a map
from the Brillouin torus onto the Bloch sphere. In this image the Chern number becomes
equal to the overall directed area of the image of this map on the sphere. There a two
simple scenarios that come to mind, when trying to imagine how to wrap a torus onto a
sphere: the torus can lie outside on some part of the sphere like a flat inner bicycles tube,
or the sphere can be inside the torus and the parts of the torus that are not directly in
contact with the sphere lie in a double layer on the surface that has already been covered
once. In the first case all parts of the torus exist in a double layer, so that for every part
of the integral in Eq. 4.22 has a counter part with an opposite orientation and the total
integral evaluates to a Chern invariant of zero. In the second case the complete sphere
is surrounded by a single layer of uniform orientation and some parts find an additional
double layer with two opposed orientations on top, which evaluates to a total Chern
number of one. To change from one situation to the other one would need to cut the
torus open. In this picture it becomes clear that the integral is invariant under smooth
transformations of h(q) and the Chern number is indeed an integer topological invariant of
the system. Higher Chern numbers follow the same logic, but cannot be perfectly described
in this picture of an elastic torus on a sphere because here the torus is required to intersect
itself.

4.3 Geometry of the Circularly Driven Boron Nitride
Lattice

As argued earlier, it is necessary to both break time reversal symmetry and inversion
symmetry, to realize systems with nontrivial topology. Inversion symmetry can be simply
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broken by choosing an adequate lattice potential, as here for example, the boron nitride
lattice. Even though breaking time reversal symmetry is generally more difficult to achieve,
there exist many different paths of realization. These are mostly discussed in the context
of artificial gauge fields [15, 144]. For a summary of the different schemes the reader is
referred to reference [15, 144]. In the context of the experiments presented in this thesis
we decided to break time reversal symmetry by circularly driving the lattice. This means
that the lattice position in real space is controlled such that every site describes a circular
trajectory. For the experimental realization of the positional control of the lattice please
refer to Sec. 3.2.2.

Temporally periodic systems can be described within Floquet theory (see. Sec. 4.3) by
a static effective Hamiltonian that describes the dynamics of the system for stroboscopic
times. This effective Hamiltonian has a band structure that may significantly differ from the
initial Hamiltonian. In this sense, Periodic driving is a means of band structure engineering6

that is a well established experimental tool for degenerate matter in optical lattices7, and
has also been implemented for the merit of lifting TRS [33]. Periodic driving refers very
generally to any kind of periodically varied Hamiltonian. Here we will only consider what
is commonly known as lattice shaking, i.e. a periodically changed lattice position.

While for one-dimensional periodic driving there are paths that do not break TRS, in
two dimensions every periodic path, that is not quasi-one-dimensional, spans a number
of orientable areas, whose orientation changes sign when the time axis is reversed. For
circular shaking this simply means that the chirality of the circle changes from right to left
and vice versa upon time reversal. Among all possible trajectories, the circle is of special
interest in the present context of a hexagonal lattice, as it closely resembles the effect of
illuminating graphene with circularly polarized light [93, 146].

The resulting driven Hamiltonian can be determined [147] by transferring the position
operator and the wave function into the dynamic frame with the unitary transformation
U(t) given by the translation operator Tr(s(t)) for the trajectory s(t). The resulting time-
dependent Schrödinger equation can be brought into the form of an effective Schrödinger
equation with a modified Hamiltonian describing the system in the moving frame

i~∂t U(t) |ψ(t)〉MF =
[
U(t) H U(t)�

]
U(t) |ψ(t)〉MF

i~∂t |ψ(t)〉MF =
(
U(t)� H U(t)− i~U(t)�∂t U(t)

)
︸ ︷︷ ︸

HMF

|ψ(t)〉MF
(4.23)

Evaluating the derivative for the translation operator and the application of the quadratic
complement yields an Hamiltonian, which is formally equivalent to the minimal substitution

6please note, that in the present context should more precisely be band geometry engineering, because
the geometry is a property of the system that is related to the band structure, but cannot be deduced
from it.

7For a review see e.g. [57, 145]
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Hamiltonian of a particle with unit charge in a magnetic field.

HMF(t) =p2/2m + VLattice−p ·∂t s(t)

=(p−A)2

2m + VLattice + const. A = m∂t s(t)
(4.24)

For a circularly driven lattice this means that the problem is equivalent to the one of a
charge in a lattice in the presence of a constant uniform rotating magnetic field, whose
frequency is identical to the driving frequency and whose amplitude is derived from the
radius of the trajectory, acting as the coupling strength.

Systems with a time-dependent Hamiltonian are generally hard to solve. As the term
driving suggests, energy will be exchanged with the environment and it therefore ceases to
be a preserved quantity. A periodically driven system, however, does not fully remove the
time translation symmetry, but it rather reduces it to a discrete time translation symmetry,
i.e. Hamiltonians that are one period T in time apart are identical

H(t) = H(t+ T ) (4.25)

Mathematically this problem is therefore closely related to the problem of periodic lattice
Hamiltonian and it is treated within the Floquet-Bloch theory that generalizes the Bloch
theory to the time domain. The analogy between the two cases might not be apparent on
first sight because time is customarily treated as a parameter in quantum mechanics, as
opposed to the space and momentum coordinates that are expressed through operators.
The Floquet-Bloch theory however, does not consider any physical system but it is a
theory for describing solutions to differential equations. Applying separation of variables to
the Schrödinger equation yields two ordinary differential equations with the same type of
symmetry in the boundary conditions. The full analogy between time and space coordinate
can also formally be reestablished, as it was done by Sambe et. al. [148], by introducing
an extended Hilbert space that includes the time dependency of the states.

For a detailed discussion of Floquet theory in the context of driven systems the reader
is referred to Refs. [57, 149]. Here only the most important aspects shall be summarized in
analogy to the lattice case and with respect to the special case of a two level tight-binding
model of the boron nitride lattice.

The most important result of the Floquet description for the engineering of band
structures via periodic driving is the fact, that similar to the quasimomentum, here, quasi
energies that lie in Brillouin zones, are conserved. This allows, under certain restriction, to
treat the shaken system as if it were a static system with a modified band structure. One
should bear in mind, that the solutions to the time-dependent Schrödinger equation (TDSE)
generally have a nontrivial time-dependency and do not expose the same periodicity in
time as the Hamiltonian. Within the Floquet formalism, special solutions to the TDSE,
so-called Floquet modes, can be identified, which expose, up to a phase, the same periodicity
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as the Hamiltonian and form a complete basis for the solution space. In the Sambe space,
one can define a eigenvalue equation, much alike the stationary Schrödinger equation [148]

H |Φα〉 = εα |Φα〉 (4.26)

where H = H−i~∂t defines the Floquet Hamiltonian, the eigenvectors |Φα〉 are the Floquet
modes and the eigenvalues εα are the quasi energies. The Floquet states, i.e. the solutions
to the TDSE are then given by

|Ψα〉 = exp(−iεαt/~) |Φα〉 (4.27)

There are many different approaches [30] to numerically solve Eq. (4.26). In analogy
to the band structure calculations, presented in Sec. 3.3, a finite subspace of the Sambe
space can be used, that only includes time-periodic functions up to a certain Fourier order.
Within this subspace simple diagonalization yields the approximations for the Floquet
modes and the quasi energies. Here, an alternative method [132], will be used, that is
computationally superior in the given context. The central idea of this method is to
numerically calculate the evolution operator over one cycle and make use of the fact, that
its eigenvectors are the Floquet modes.

The evolution operator in a pertubative form, for the evolution from a time t0 to t0 + t

is described by the Feynman-Dyson series [149]

Ut0(t) = T exp
(
−i/~

∫ t0+t

t0
H(τ) dτ

)
(4.28)

where T is the time-ordering operator. The composition property of the evolution operator
allows to write it as the product integral of infinitesimal partial evolution operators

Ut0(t) = lim
∆t→0

N=t/∆t∏
n=0

Utn(∆t) tn = t0 + n∆t (4.29)

For sufficiently small time intervals ∆t, the Hamiltonian can be considered constant and
the product integral can be substituted by a simple matrix product.

Ut0(t) =
N∏
n=0

Un Un = exp[−i/~ H(tn) ∆t] (4.30)

For a numeric simulation of the complete dynamics of the system for longer time scales at
a lower temporal resolution, the periodicity of the evolution operator can be exploited,
such that only one matrix multiplication per time step is necessary. For a driving with a
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period T and a time discretization such that one period is divided in C steps the evolution
operator is

N∏
n=0

Un = Um
C

V∏
n=0

Un with N = mC + V V ≤ C (4.31)

Here it is important to realize that the evolution operator is not time-periodic, even though
its constituents Un are

Ut0(t+ T ) = UC Ut0(t) (4.32)

For Ut0 to be time-periodic the evolution operator for one period UC would need be unity.
Following the same line of reasoning it can be seen that the eigenstates of UC , are the
time periodic Floquet modes.

For the experiments in this thesis, we are going to consider stroboscopic measurements
only, where the state will only be measured at times tm = mT + t0. The state of the system
at these times is simply given by

|ψ(tm)〉 = Um
C |ψ(t0)〉 (4.33)

This evolution is identical to one under an effective time independent Hamiltonian Heffective,
because UC as a unitary operator can be written as an exponential of a hermitian operator

UC = exp(−i/~ Heffective T ) (4.34)

This method is especially useful for the simulation of the dynamics induced by tight-
binding Hamiltonian restricted to the lower two bands of the boron nitride lattice, because
here the evolution operator is given by a two-by-two matrix.

4.3.1 Periodically Driven Two-Band Tight-Binding Hamiltonian
In the special case of a two level system, the effect of driving can be visualized on the
Bloch sphere which allows to develop a concise and intuitive picture of the relationship of
the states and operators used in the formal theory. Furthermore, the fact that the Hilbert
space is two-dimensional allows for an analytic description of the matrix exponential from
Eq. (4.34) as described earlier in Eq. (3.52).

In terms of the q-dependent tight-binding Hamiltonian defined in Eq. (3.56) , the effect
of the driving in Eq. (4.24), is described through a shift in the quasimomentum

q(t) = qstatic − m/~ ∂ts(t) qn = q(tn) with qn+C = qn (4.35)

Fig. 4.2 shows how the dynamics in every quasimomentum eigenspace are governed by the
Hamiltonian of other eigenspaces whose offset is described by the shaking trajectory.
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Figure 4.2: Mapping of the shaking trajectory onto the Bloch sphere. The left part of the image
shows a path in the first Brillouin of a hexagonal lattice. The considered circular driving path in real
space translates (Eq. (4.35)) into a circular displacement of the quasimomentum eigenspaces of the
Hamiltonian. The dot marks a single quasimomentum, for which the instantaneous Hamiltonians are
illustrate on the Bloch sphere in the right part of the image.

Neglecting the common energy offset, the discretized evolution operators for the nth

step are then obtained by inserting Eq. (4.35) and Eq. (3.56) into Eq. (4.34)

Un = cos(R(qn)∆t/~) + iĤ(qn) sin(R(qn)∆t/~) (4.36)

Using Eq. (4.36) and (4.34), the effective Hamiltonian for the shaken system is straigtfor-
wardly determined. For the numeric implementation the most time intensive step is the
determination of the matrix logarithm, which is generally implemented with an iterative
approximation method8. In the two 2D case, however the eigenvectors of any matrix can
be determined analytically and therefore the matrix logarithm can be replaced by a regular
logarithm of the eigenvalues. The complex logarithm is furthermore a multi-valued function.
This corresponds to picture of quasi energies and the multiple copies of bands that are
generated. Without loss of generality forth on the first branch, i.e. the first Brillouin zone
will be used.

4.3.2 Gauge Dependency and Adiabatic Launching
So far the dependency of the effective Hamiltonian on the initial time t0 has not been
taken into account. In the case of circular shaking this corresponds to the initial phase of
the shaking. To make this dependency become more apparent consider the discrete cycle
evolution operator for a different choice of initial time

Ut0(t) = ︸ ︷︷ ︸
UC

U1 U2

ŨC︷ ︸︸ ︷
U3 · · ·Uc−2 Uc−1 Uc U1 U2 U3 · · ·Uc−2 Uc−1 UC U1 U2 U3 · · · (4.37)

8see e.g. [https://doi.org/10.1137/110852553] as used in MATLAB ®
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Here ŨC is the cycle evolution operator for t0 → t0 + 2∆t and it is connected to UC

through the unitary transformation characterized by the so-called kick-operator K [30]

ŨC = UK UC U�
K UK = exp(−i/~ K) here UK = U1 U2 (4.38)

The effective Hamiltonian is accordingly transformed

H̃C = UK H U�
K (4.39)

The change of t0 obviously does not change the driven system and can be regarded as a
gauge transformation [147]. At the first sight, this might be contradictory to the fact, that
different choices of t0 lead to different evolved states. This difference stems from the initial
state, which is not gauge invariant from within the moving frame. For the experimental
reconstruction of the Berry curvature that will be described in Chap. 6, it is desirable
to minimize this dependency. For this we employ a adiabatic launching scheme, as it is
suggested in [30]. In the scheme the modulation depth, i.e. the radius of the shaking
trajectory, is controlled to increase adiabatically from zero to its final value. This entails
that an initial state, that is in eigenstate of the static Hamiltonian, will adiabatically
follow to become an eigenstate of the driven system.

4.3.3 Full Evolution at the K-Point
In this section the complete dynamics of a state at the K-point of the boron nitride
lattice will be exemplarily discussed. Fig. 4.3 shows the θ- and ϕ-component of the full
Brillouin zone. For a low shaking amplitude, the path described by the Hamiltonian in
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Figure 4.3: Cyclic shaking at the K-Point. On the left φ(qk) and on the right θ(qk) of the static
boron nitride Hamiltonian are shown. The path indicates the different values φ and θ assume at the
k-point (center of circle) when circularly shaking with a relatively low amplitude.

the pseudo-spin representation on the Bloch sphere, for an adiabatically launched state at
the K-point, exposes a particularly simple form. The mixing angles stays approximately
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Figure 4.4: Micromotion and stroboscopic dynamics in a quasimomentum eigenspace. See main text
for a closer description of the different trajectories.

constant and the phase angle has a nearly linear slope. Fig. 4.4 shows dynamics for an
arbitrary initial state for this periodic Hamiltonian.

The blue line in fig. 4.4 indicates the trajectory of the instantaneous Hamiltonian for
the driven system. One shaking period corresponds to one circuit of the circle.

The black line shows the evolution over 12 periods of some initial state (left arrow)
under this Hamiltonian. It can be clearly seen, that the state is not periodic. For this
choice of initial state close to the in ital Hamiltonian and a sub-resonant driving frequency,
the origin of the term micromotion becomes evident. Micromotion here refers to the fast
spiralling deviations of the state around the slow circular motion of the Hamiltonian.

The white line is traced out by one of the eigenstates of the evolution operator for an
arbitrary, but with respect to the state dynamics equivalent, gauge t0. As there is no rule
for the enumeration of the eigenstates for the evolution operators for different times, they
have been chosen such that the scalar product is minimized for adjacent time steps and
thereby trace out a continuous line. The simulation shows that Ut0(t) is not periodic, but
upon completion of one cycles at times mT returns to the same point (or to its inverse,
which corresponds to the other of the arbitrarily chosen eigenvectors).

The red circles mark the points of the state trajectory at times mT . I can be seen
that they are, as expected, arranged in a circle around the crossing point of the evolution
operator and thereby trace out the stroboscopic evolution under the effective Hamiltonian,
with its eigenvectors at the crossing points.

One should bear in mind that the depiction of the states on the Bloch sphere only
shows their shadow in the projective Hilbert space (i.e. without considering relative phases
between states of different times).
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5 State Tomography for an Optical
Lattice

The results of both of the two main experiments presented in this thesis, are obtained
by performing a complete tomography of the states associated with s-band family of the
periodically driven boron nitride lattice. The term complete state tomography refers to
measuring the coefficients of the Bloch states in the sublattices basis, for all quasimo-
menta in the Brillouin zone. Even though neither the relative phases between different
quasimomentum states nor the associated eigenenergies, i.e. the band structure are di-
rectly accessible through this method, it can be used, as explained in detail in Chap. 6
and Chap. 8 respectively, to extract the complete information of the geometry of lattice
Hamiltonian, and as well to study its nonequilibrium dynamics. In the first experiment
in this thesis, the tomography is employed to determine the eigenstates of the effective
Floquet-Bloch system, so that its geometry can be inferred from the identical geometry of
the state. In the second experiment, series of tomography measurements are conducted
to observe the dynamical evolution of a nonequilibrium state under the influence of the
Bloch-Floquet Hamiltonian.

For the realization of the state tomography for the considered two-band Bloch state we
follow a scheme that was proposed by P. Hauke et. al. [150]. This publication proposes the
state tomography as a means of determining the Berry curvature and derived quantities
in one- and two-dimensional optical lattice potentials. In the present work we follow this
proposal and find a experimentally accessible realization by engineering and control an
effective Floquet-Bloch Hamiltonian through shaking of an optical lattices potential. A
similar tomography proposal, but for atoms with internal (spin-)degrees of freedom, has
been published in Ref. [143, 151].

The central idea of these tomography schemes is to infer the state under investigation
from the momentum resolved density oscillations in a time of flight image after a quench
of the lattice Hamiltonian. The concept is similar to a tomography measurement of Rabi-
oscillation, with the main difference that the density oscillations does not represent the
population of the state in the new pseudospin basis as in the Rabi case, instead it is
proportional to a quadrature component of the new basis. In the Bloch sphere picture this
means, that the observable is not a projection to the z-axis, but one to the x-axis.

An important prerequisite for the quench is, that the periodicity of the lattice remains
unchanged, so that the quasimomentum is preserved and its eigenspaces can be considered
individually. Even though the method can be extended to more complicated scenarios,
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we will follow Refs. [143, 150] and restrict it to the case of two-band tight-binding
Hamiltonians. Within this restriction there are only a limited number of parameters
over which a quasimomentum preserving quench could take place. Another important
prerequisite in this scheme is, that the post-quench Hamiltonian has flat bands. One
readily controlled parameter of the lattice that can be quenched such that a flat band
Hamiltonian is reached is the lattice depth. A quench of the lattice depth however, can
become incompatible with the two-band approximation of a realistic Hamiltonian with two
isolated bands, in the sense that a for a significant change in lattice depth the previously
well separated higher bands will become resonant in the deep lattice. An alternative that
circumvents this problem consists in quenching the energy offset between the A and B
sublattices.

For our setup we considered tuning the sublattice offset through the control over
the lattice beam polarization in form of optical components such as AOMs, EOMs, or
mechanically controlled wave plates. The difficulty for the implementation of an additional
AOM or EOM on the laser table is that the polarization mode cannot be transported cleanly
to the main experiment table, because polarization maintaining fibers only maintain the
polarization on their main axes but not their relative phase1. However, an implementation
on the side of the main apparatus would deteriorate the lattice stability and homogeneity
by introducing additional optical components in the otherwise direct beam path. The
option of a motorized wave plate is difficult, if not impossible, to implement with rotation
velocities suited for the timescales relevant for theses quench experiments2. Here we employ
yet another method, which is specific to the case of a periodically driven system, namely a
quench of the modulation depth. The effective Hamiltonian of the Floquet-Bloch system
in which we conduct the experiments, is created by near-resonant shaking of a flat band
Hamiltonian. By abruptly switching off the shaking, we effectively project onto a flat band
Hamiltonian as required for the tomography scheme.

5.1 Time of Flight Imaging and the Sublattice Basis
For the time of flight measurement all trapping potential are abruptly switched off and
the atomic clouds expands freely. Under the assumptions of negligible interaction of the
spin-polarized fermions, and an expansion time long enough that the initial distribution is
small compared to the final cloud size, the expanded atomic density reflects the momentum
distribution of the state prior to the expansion [25, 153]

n(k) = |〈k|ψ〉|2 → nx(x) = n
(

m
~ tTOF

x
)

(5.1)

1A viable but more involved solution would be to use two PM-fibers for each lattice beam with an
adequate fiber phase lock.

2this option has been studied by the team, in form of a supervised Bachelor thesis [152].
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This expression can be evaluated in the Wannier sublattice basis that has been introduced
in the context of the tight-binding description (see Sec. 3.4)

n(k) =
∣∣∣∣〈k| ∫

BZ
dq

(
cq

A |q A〉+ cq
B |q B〉

) ∣∣∣∣2 with 〈k|q σ〉 = wσ(k)δ(qk − q)

=|cqk
A wA(k) + cqk

B wB(k)|2
(5.2)

A B C

Figure 5.1: Band width as a function of lattice depth. The figure shows how the width of the lower
two bands decreases drastically with increasing lattice depth VL. The black lines show the average
band energy. The energy scale is relative to the average energy of the lowest band.

Here wσ(k) are the generalized Wannier functions in momentum representation of the
sublattices σ ∈ A,B and qk is the quasimomentum related to the momentum k via a
reciprocal lattice vector. Eq. 5.2 shows that the information about the Wannier functions
and the initial state are intertwined and further knowledge about the Wannier functions is
required for the tomography. To circumvent this difficulty we use a lattice potential that
is deep enough to produce a Hamiltonian with flat bands (see Fig. 5.1) as the reference
system. For the limiting case of such a flat band Hamiltonian, the Wannier functions
are fully located at the lattice sites around which it can be approximated as a local
harmonic potential. Furthermore for a boron nitride type lattice they become identical.
As a consequence the expression for the atomic density simplifies to

n(k) = |w(k)|2
(
|cqk

A |
2 + |cqk

B |
2 + 2 Re{cqk

A c∗qk
A }

)
(5.3)

The first two summands are simply equal to one, because the total occupation of a
quasimomentum state stays constant, and the third summand embodies the relevant
interference observable that characterizes the initial state. To make this relationship
clearer, consider Eq. 5.3 in the Bloch sphere picture. Here the interference term is equal to
the expectation value of the x-component of the pseudo spin. In spherical coordinates the
projection on the x-axis takes the form

n(k) = |w(k)|2 (1− sin(θ(qk)) cos(φ(qk))) (5.4)

A time series of this projection observable is sufficient to reconstruct the initial state if the
Hamiltonian of the dynamics is known.
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5.2 State Tomography
For the same limit of a flat band boron nitride Hamiltonian, that has been exploited for
the TOF description, the lattice Hamiltonian becomes trivial, because the presence of flat
bands (see Fig. 5.1) implies that the eigenstates of the upper and lower band approximate
the eigenstates of the A and B sublattices (see Fig. 5.2).
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Figure 5.2: Reference Hamiltonian for increasing lattice depth. This figure shows the Hamiltonian
of boron nitride lattices represented through their eigenvectors. Every dot marks a Bloch state in
the AB-sublattice basis for a selected grid of quasimomenta from a top perspective onto the Bloch
sphere. The subfigures A, B and C correspond to lattice depths VL = {2, 8, 15.5} ERec and coincide
with the vertical markers in Fig. 5.1

Within this approximation the evolution of every initial quasimomentum state is simply
given by a rotation about the z-axis of the Bloch sphere and the TOF flight observable,
i.e. the projection onto the x-axis, becomes an oscillation (see Fig. 5.3) whose amplitude
corresponds to the mixing angle, whose phase corresponds to the phase angle and whose
frequency is given by the band gap of the reference Hamiltonian. Formally the local atomic
density of an ensemble that has evolved over a time t in the post-quench reference system
can thus be described by

n(k, t) = |w(k)|2 〈ψ0|U�
t0(t)σx Ut0(t)|ψ0〉

n(k, t) = |w(k)|2
[
1− sin

(
θ0(qk)

)
cos

(
∆qt/~ + φ0(qk)

)] (5.5)

This means, that given a series of TOF absorption images, the initial pre-quench state
can be reconstructed by fitting fitting a curve to a time series for each pixel in the first
Brillouin zone. Please note, that the tomography will only yield sin(θ0(qk)) and not θ0(qk)
itself. In other words, the method does not allow to determine whether the measured
states are located on the north or south hemisphere. This information however, can be
supplemented by employing ordinary band mapping [154]. In the established picture the
band mapping process can be described by a projection onto the z-component and thereby
allows the distinction of the hemisphere. The band mapping process is however expected
to induce significant errors due to the fact that during the mapping process additional
dynamics occur. As a supplementary measurement, however, band mapping still might be
of value, as the data obtained through the state tomography is a smooth function of the
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Figure 5.3: Oscillation of the atomic
density after TOF. This figure examplar-
ily shows the oscillations observed for
three different initial states. The left col-
umn shows a Bloch sphere as in Fig. 5.2
and the trivial evolution in the approxi-
mated reference Hamiltonian. The right
column shows the atomic density oscial-
lations as the projection onto the x-axis.
The amplitudes and phases enable the
reconstruction of the initial state marked
as a solid dot in the left column.

quasimomentum and the band mapping thus is only needed to identify the hemisphere
of complete regions in the Brillouin zone that are separated by an equator crossing. For
the experiments presented in this thesis the projected data provided by the TOF state
tomography is fully sufficient.
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6 Experimental Reconstruction of
the Berry Curvature in a Floquet
Bloch Band

In this chapter, all the concepts introduced in the previous chapters will be joined to
describe the experimental realization of a complete state tomography of a resonantly
circularly shaken boron nitride lattice as well as the extraction of the momentum resolved
Berry curvature of the system. The experiment has been realized as part of this thesis
in a team effort together with my colleagues Nick Fläschner, Benno Rem and Matthias
Tarnowski, under the supervision of Christof Weitenberg and Klaus Sengstock. My principal
contributions are centered around the implementation of the hexagonal lattice setup, the
simulations and the data analysis. This experiment was published article in Ref. [62], upon
which most of the figures in this section are based.

This section is structured in two main parts. In the first part I will describe how the
presented experimental methods have been used to prepare a state in a system with a
strong localization of Berry curvature and how this state has been measured. In the second
part the measured states will be analyzed and discussed in the previously established
framework of the Berry curvature and Chern invariant.

6.1 Experimental Protocol
Fig. 6.1 gives an overview of the experimental sequence that has been systematically
repeated and parametrically modified to generate a data set for 50 different evolution
times, each of which having been repeated 10 times for averaging.

Preparation

As a first step a cloud of degenerate spin-polarized 40K atoms is produced through the
cascade of optical cooling techniques which have been summarized in Chap. 2. Because all
atoms occupy the same spin state their interaction through s-wave scattering is suppressed
by Pauli blocking and because the higher order scattering processes are extremely weak,
the dynamics of the system can be well approximated by a single-particle Hamiltonian.

Subsequently the atoms are loaded into the optical boron nitride lattice at a phase
mixing angle of θp = π/20, as it has been described in detail in Chap. 3. For the loading
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Figure 6.1: Experimental scheme. The upper half sketches how the two main experiment control
parameters, lattice depth and coupling strength of the driving, evolve throughout the phases of the
experimental cycle. The lower half shows the effective band structure for those phases and the Bloch
sphere representation of a selected state (marked as a dot) . Adapted from our publication [64].

process the intensity of the three lattice beams is linearly increased and allows for an
adiabatic transfer of the cloud into a deep lattice. Due to the low scattering rate of the
Fermions this loading process can be conducted within a short ramping time of 10ms. The
light employed for the lattice has a wave length of 1064 nm, which is far-detuned for any
atomic transitions in 40K and thereby ensures a low heating rate through photon scattering.
The number of atoms has been chosen such that after the loading the ensemble occupies
all the quasimomentum states of the lowest band. For the chosen lattice parameters filling
the lowest band is achieved by a particle number of about 50.000 atoms.

For a hexagonal lattice, there is no standard convention to define the lattice depth.
Here we use the parameter VL as defined in Eq. 3.27. In these terms the lattice depth at
the end of the adiabatic ramp is given by VL = 15.15(15)ERec. To determine this value up
to the given precision it is insufficient to measure the light intensities of the lattice beams,
because of a variety of uncertainty factors, such as the reflection on the glass cell, slight
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imperfections in the mode shape, small deviations from the polarization angles, to name
just a few. Therefore the lattice depth has been determined by measuring the resulting
band structure with the atoms and subsequently fitting the lattice model to the band
structure (for details see sup. mat.of Ref. [89]).

The chosen value of VL corresponds to a deep lattice in the sense of Chap. 5, such that
the contribution of the kinetic energy of the atoms is so small that the band structure is
almost flat (cf. Fig. 6.1-(i)). Quantitatively this means that the band width of the lowest
two bands is 335 Hz and 48 Hz respectively, which is, compared to the energy scale given
by the band gap of 11.68 kHz, a relative width of 3.9% and 0.4% respectively. The flatness
of the bands is of special importance for the validity of the approximations for the state
tomography scheme described in Chap. 5.

From the experimentally determined lattice depth, the tight-binding representation
of the lattice can be calculated. The fit of the band structures results in the following
parameters

∆ = 11.65(11) kHz tAB = 250 Hz tBB = 0 Hz tAA = 32 Hz (6.1)

The error in the sublattice offset ∆ is of systematic nature and is owed to the fact that
the lattice depth varies over the extent of the atomic cloud due to the Gaussian shape of
the lattice beams and the additional dipole trap.

Adiabatic launching into the driven system

As explained earlier, an adiabatic launching is necessary to transfer the atoms into the
ground state of the shaken system. In our setup the relative real-space position of the
lattice is controlled by AOMs. The relationship between the lattice position and the driving
frequency is described in detail in context of the optical lattice in Sec. 3.2.2(Eq. 3.23), and
in the context of the fiber lock in Sec. 9.1.1(Eq. 9.2). For the launching procedure the
two relevant parameters are the driving frequency and the coupling strength or driving
amplitude. It can thereby represented by a trajectory through a two dimensional parameter
space. Due to adiabaticity, there may not be any discontinuities of this parameter ramp.
For the driving frequency this entails that the range of frequencies that is swept through
may no contain any lossy resonances, as for example two photon resonances. For our
system we found that the best results are achieved with two consecutive linear ramps. First
we ramp the shaking amplitude within 5 ms from the resting system to a system shaken
with an amplitude of 223 nm, while holding a constant frequency of 9 kHz. Subsequently,
we increase the driving frequency within 2 ms to a close resonant value of 11 kHz. After
the ramp the system populates the quasimomentum eigenstates of the Floquet system
whose eigenenergies form the lower band, which is marked as step ii) in Fig. 6.1.
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Quenchdynamics

In the next step the lattice shaking is instantaneously turned off. As discussed in detail
in Sec. 4.3, the quasimomentum continues to be preserved and the dynamics of every
quasimomentum eigenstate are now driven by the Hamiltonian of the static system. In
the approximation of flat bands this static Hamiltonian is diagonal in the sublattice
basis, i.e. the A and B sub-lattice states are its eigenstates. The dynamics of the Floquet
eigenstates can now be evaluated by considering its components in the sublattice basis.
These components can be described by a population and a phase for each sublattice. Being
eigenstates of the Hamiltonian the two sublattice states evolve fully independently, as
one would expect from a flat band Hamiltonian where the tunneling to other sites is
suppressed strongly enough that the dynamics are completely decoupled. The evolution of
each sublattice is trivially given by a dynamic phase factor oscillating with the respective
eigenenergy. The interference between the two sublattices thereby oscillates with a frequency
according to the energy difference between the two bands, an amplitude according to
the population imbalance and a phase according to the initial phase of the respective
components. The equivalent dynamics in the Bloch sphere picture are shown in Fig. 6.1
(inset iii).

State tomography

The state tomography follows the method detailed in Chap. 5. After a variable time tQ all
potentials are abruptly switched off and the cloud expands for 21 ms in free fall. During
the expanse the A and B sublattice sites interfere and the quasimomentum gets mapped
to real-space. In the flat band approximation the column atomic density of a the cloud
after the expansion therefore behaves according to Eq. 5.5:

n(q, tQ) = |w(k)|2
[
1− sin

(
θ0(qk)

)
cos

(
∆qtQ/~ + φ0(qk)

)]
(6.2)

which enables the extraction of the angles ϑq and φq of the Floquet state by a fit.

6.2 Data Analysis
The TOF absorption images were defringed (see Sec. 2.4) and the resulting atomic
densities were averaged over the 10 repetitions for each time step. Those processed atomic
density distributions are depicted in the upper part of Fig. 6.2 for five selected time steps.
Subsequently every pixel trace was fitted with a sinusoidal function with an exponential
damping factor to model the effects of decoherence and heating

f(tQ) = A
[
1−B exp(−tQC) cos(tQD + E)

]
(6.3)

The lower part of Fig. 6.2 shows those fits for three different pixels. The resulting parameters
were mapped to the quasimomentum space using Eq. 5.1 with a pixel size of 13µm and

74



Data Analysis

a magnification factor of 2.15, which yields a resolution of 57(2) pixel along the Bravais
vector b2 (see appendix A).

Figure 6.2: TOF images and fit to pixel series. The upper row consists averaged TOF absorption
images for five different post quench evolution times tQ. The lower row shows the fit to a time series
for individual pixels located at three different quasimomenta. Adapted from our publication [64].

To finally reconstruct the Berry curvature according to Eq. 4.21, the extracted angles ϑq
and φq need to be differentiated with respect to the quasimomenta. Here a Savitzky-Golay
filter of third order with a window size of 15 pixels was applied. The principal results of this
experiment are shown in Fig. 6.3. Here the measured amplitude, phase and Berry curvature
of the Floquet-Bloch band are compared against their theoretical values, obtained from a
tight-binding simulation (see Sec. 4.3 ) with the frequency ∆q extracted from the fit as
the input parameter.

The Berry curvature along the high symmetry path M −K ′ − Γ−K −M has been
additionally plotted for both shaking directions in Fig. 6.4. The Chern number, i.e. the
integral of the Berry Curvature over the first Brillouin zone, can be simply calculated as
the sum of the pixel values within the BZ normalized by the number of pixels contained in
the BZ. For the two chiralities of the driving we obtain experimental values for the Chern
numbers of

C+ = 0.005(6) C− = −0.016(8) (6.4)

while for the present topologically trivial system a zero value for both cases is expected.
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Figure 6.3: Measured and simulated amplitude, phase and Berry curvature of a Floquet Bloch band.
Adapted from our publication [64].
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Figure 6.4: Berry curvature along the high symmetry path. The filled circles show the Berry curvature
on the path, linearly interpolated from the nearest pixels. The red solid line represents the theoretical
Berry curvature. The left and right graph are distinguished by the chirality of the driving. Adapted
from our publication [64].
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6.3 Summary and Outlook
In this chapter I presented a new measurement scheme that allows the reconstruction of
the Berry curvature in a driven lattice system, based on a complete state tomography
[150]. This scheme was applied to a boron-nitride type lattice that was shaken circularly
near the resonance of the transition of the initially flat bands. The acquired data shows
very clear sinusoidal density oscillations for over three periods. The fits to the oscillations
reveal a representation of the wave function in quasimomentum space in terms of its
phase angle and the sine of its polar angle. Both quantities are highly resolved and show
clear features. Both the amplitude and phase data show a rotational symmetry, which is
reduced as compared to the undriven system from sixth order to third order. The azimutal
phase angle distribution shows the location of the Dirac points in form of two vortices in
the BZ of opposed chirality. The Dirac points are located at the Γ- and K-points, while
in the undriven system they were located at the K and K’ points. The amplitude data
shows clear minima that coincide, as expected, with the locations of the Dirac points. The
Berry curvature distribution, that has been computed from those two quantities, shows a
high amplitude with maxima of opposite signs at the two Dirac points, as it is expected
from theory. We also performed the state tomography for an identical system but an
inverse shaking direction. Inverting the shaking direction corresponds to an inversion in
quasimomentum space (q → −q) and is reflected in the measured phase and amplitude. For
the Berry curvature this additionally yields the expected inversion of its sign. Furthermore
we compared the results with our simulation (see Chap. 4) of the system and find excellent
agreement both in scale and structure.

The presented experiment demonstrates that the Berry-curvature is a experimentally
accessible quantity for lattice periodic system. This paves the way towards the exploration
of further, more complicated quantum geometric phenomena in e.g. interacting systems or
for topologically nontrivial states. It might also spark the motivation for the measurement
of Berry phases in condensed matter experiments. Chaps. 7 and 8 report on another
experiment, where we extended the experimental technique of a complete state tomography
to study the relationship between the dynamics of a nonequilibrium state and the underlying
topology of the system.
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7 Nonequilibrium Dynamics in
Topological Bands

In this chapter I am going to present the nonequilibrium dynamics of a general two-band
model, with the application to the class of effective Floquet-Bloch Hamiltonians in mind,
that are considered throughout this thesis. The goal of this chapter is to develop a formal
description and an intuitive understanding of the experiment presented in the next chapter.
The focus will be on the vortex pairs in the nonequilibrium wave function, that emerge
during its evolution under a Hamiltonian near a topological phase transition, subsequently
move through the quasimomentum space and finally annihilate in pairs. These dynamical
vortices will be identified as an order parameter for a dynamical phase transition [70] and
will be studied in this context. The calculations presented in this chapter were conducted
by me and the conceptual development of the ideas leading to the experiment arose in
close collaboration with the members of the research team as named previously in Chap. 6.

7.1 Quench Dynamics in Bloch Bands

In the two-band model introduced in Sec. 3.4.3, the dynamics of a state can be described
straightforwardly by an analytic time evolution operator (Eq. 3.52), as it has been done in
Chap. 5 to describe the full-state tomography. In that case however, the time evolution
was reduced to an additional trivial phase factor, i.e. an uniform rotation about the z-axis
on the Bloch sphere, because the associated flat band Hamiltonian has no geometric
structure, in the sense that its eigenvectors point to the poles of the Bloch sphere for all
quasimomenta. In contrast to this, in the following chapter, general Hamiltonians will be
considered, including those with a significant geometric structure and nontrivial topology.
In this case, the time evolved state has a complicated dependency on both the initial state
and the Hamiltonian of the system. To reduce this complexity we limit our description to
the dynamics induced into a geometrically trivial initial eigenstate. As will be discussed
in detail in Chap. 8, this situation can be realized experimentally with the same class of
shaken boron nitride lattice systems as described in the previous chapter (Chap. 6), when
the eigenstate of the reference Hamiltonian is not adiabatically transferred but quenched
into the Floquet-Bloch-Hamiltonian.

In the sublattice basis the evolution of a B-sublattice eigenstate ( 0
1 ) for an arbitrary

Hamiltonian, defined through the angles ϕH
q and ϑH

q in the BZ, is represented by the
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following time-dependent state vector (Eq. 3.48 in Eq. 3.52 applied to ( 0
1 )):

|ψq(t)〉 =

gA
q

gB
q

 = exp
(
−ih0,q t

~

) cos(τq)− i cos
(
ϑH

q

)
sin(τq)

−i sin
(
ϑH

q

)
exp

(
iϕH

q

)
sin(τq)

 (7.1)

Here gA/B
q are introduced as a shorthand notation for the sublattice coefficients, and the

superscript H marks the angles of the Hamiltonian to avoid confusion with the angles
describing the evolved state which shall be marked with a superscript S. The angles
describing the evolved state can be calculated with the definitions in Eq. 3.55 and standard
trigonometric identities

ϕS
q = atan[cot(τq), cos

(
ϑH

q

)
]− ϕH

q

ϑS
q =2 acos[sin

(
ϑH

q

)
sin(τq)]

(7.2)

In these equations we make use of the four-quadrant inverse tangent function (see e.g.
[155]). By using two arguments it simplifies the extraction of an angle in the form of
α = atan[sinα, cosα] for α ∈ [−π, π].

Fig. 7.1 depicts an exemplary evolution of an initial sublattice eigenstate as a series of
time steps for an associated Hamiltonian, that can be produced by circularly driving a
boron nitride lattice. The evolution shows a number of interesting features. First of all,
the evolved state reflects the 3rd order rotational symmetry1 of the Hamiltonian. This is
a natural consequence of the choice of the singular initial state. Furthermore, the phase
profile of the state resembles the phase profile of the Hamiltonian up to a constant offset.
Taking the limit t→ 0 in Eq. 7.2 confirms this observation formally

lim
t→0

ϕS
q(t) = π/2− ϕH

q (7.3)

Intuitively this can be understood, by imagining the trace of the evolution of an arbitrary
quasimomentum mode on the Bloch sphere as a small circle around the corresponding
eigenstate, intersecting with the initial state at the pole. For short times the evolution
follows the tangent and the state thus acquires the offset of π/2. The chosen Hamiltonian
breaks the Brillouin zone up into three symmetrical areas in which its phase takes almost
homogeneously the values 0,−2/3π and 2/3π. Each of those areas corresponds to one of
the three wings formed by the evolved state in the BZ, which can be clearly seen in the
first image of the third row of Fig. 7.1. This symmetric trinary phase distribution leads
inevitably to the appearance of a static phase vortex at every point where the three areas
are joined. Within the BZ there are two static vortices (one at the Γ-point and three times
a third of a vortex at the K-points), which are of opposite handedness. We will refer to
those vortices as static vortices as they are preserved under the evolution of the state.

The main focus of this chapter is however directed to the creation of pairs of vortices
and anti-vortices that propagate with the evolution of the state and will thus be referred to

1This symmetry is slightly broken by the initial kick (see Sec. 4.3.2)
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Chapter 7 Nonequilibrium Dynamics in Topological Bands

-

0

BA

Figure 7.2: Phase profile around a vortex. Subfigure A shows the enlarged phase profile in the vicinity
of a vortex as e.g. in the seventh time step of Fig. 7.1. Subfig. B visualizes the phase along the
circular path marked in Subfig. A. The phase has not been unwrapped - along the path an overall
phase of 2π is collected.

as dynamical vortices. Under careful observation of Fig. 7.1 one can identify the appearance
of such a dynamic vortex pair at time step number six of the depicted example system.
For a clearer view of the vortex, Fig. 7.2 shows a magnified version and the phase along
a circular shaped path around the vortex. Owed to the topological nature of the vortex
any arbitrary closed path that includes a single vortex will collect an overall phase of ±2π
depending on the handedness of the vortex.

Another noticeable feature in the phase profile is the appearance of sharp phase jumps.
In the example plotted in Fig. 7.1 they appear in the form of circles around the k points
in the last shown time step. Before discussing the dynamics of vortices in more detail,
I will present an approach that we developed for a more intuitive understanding of the
complicated dynamics and to handle the transcendental nature of Eq. 7.2 more easily
by reducing it to its here relevant topological properties. In Sec. 7.4 the relation to the
Pancharatnam phase will be illustrated, whose winding number was introduced as a
dynamical topological order parameter in Ref. [84] and is closely related to the topological
nature of the vortices described here.

In this approach we unfold the dynamics of the sphere onto two flat maps for the two
angles, which are shown in Fig. 7.3 and visualize the state at a given point in time as
the projection of the closed BZ surface onto their preimage. These maps are described
by Eq. 7.2, where the phase ϕH

q has been set to zero, because it can be trivially restored
through a simple unitary transformation and does not have any influence on the dynamics.
At an initial time lim t→ 0 the projection of the surface onto the map would correspond
to an infinitely thin vertical line approximating the t = 0-axis, within which the point
distribution is equal, as argued earlier, to the one of the Hamiltonian of the system. An
example of such a surface in the case of a one-dimensional Hamiltonian will be presented
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later in Sec. 7.1.1 and Fig. 7.5. The evolution of the state in this picture is described by
a purely horizontal movement of every point of the surface within the maps, at a speed
which is given by the band structure of the system. Bear in mind, that here Rq refers to
the relative band gap at a given quasimomentum and the coordinate in τ -space is thus
given by the linear relation

τq(t) = Rqt

~
(7.4)

and that the maps ϕS
q and ϑS

q are π-periodic.

-

0

0

½

Figure 7.3: Relative phase angle ϕS
q (top) and mixing angle ϑS

q (bottom) of the evolved state as
a function of the effective time and the polar angle of eigenstate of the Hamiltonian governing the
dynamics. In this basis the dynamical vortices become apparent. The dynamics are fully captured by
the shown dependencies, so that any evolved state of a two-band Hamiltonian could be depicted as a
surface on the shown maps.

Regarding the concrete representation of those mappings in Fig. 7.3, one can identify
the same features, that have been discussed earlier in this section (Fig. 7.1) for a specific
choice of an exemplary Hamiltonian, as being generic features i.e. independent of any
concrete form of the Hamiltonian. The phase map ϕS

q exposes a vortex (within every π-
period), that can be associated with the vortex-anti-vortex pairs that are created at critical
times. Because of the toroidal topology of the Brillouin zone, the surface representing a
Hamiltonian that produces dynamical vortices will always cover the vortex on this map
in such a way that pairs of points with normals of opposite orientation will be mapped
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0

30

60

90 Figure 7.4: View of the trajectory of an
initial state at the pole of the Bloch sphere
under evolution of an arbitrary Hamiltonian,
whose eigenstate is here indicated by a blue
dot. Upon completing one period, the phase
angle of the state makes a π-jump.

to the vortex, which results in dynamical vortices of opposite chirality. The phase map
also shows the π-phase jump at times t = nπ. Because the jump is independent of cosϑH

q
it will always appear in the form of a closed line in the BZ. From the second map ϑS

q of
Fig. 7.1 we can infer that the vortices can be associated exclusively with the singularities
at the pole of the Bloch sphere opposite to the chosen initial state, where cosϑS

q = ±1.
The pole of the initial state is reached at the lines of the π-phase jumps and at the upper
and lower edges of the map. Formally the condition for the appearance of a dynamical
vortex at a point q is thus defined by

ϑH
q = π

2 (7.5a)

tcrit = ~
Rq

(n+ 1/2)π (7.5b)

These equations constitute a first sign to the intimate connection of dynamical vortices to
the topological nature of the static Hamiltonian: only if the Hamiltonian spans parts of
the two Bloch hemispheres dynamical vortices will appear.

The condition for the appearance of dynamical vortices in Eq. 7.5 can also be easily
understood in the Bloch sphere picture: A state on one pole of the sphere can only reach
the opposite pole through a rotation along an axis that lies in the equator plane. This is
equivalent to the evolution through a Hamiltonian that fulfills the condition in Eq. 7.5a.
On this trajectory the poles are reached for every half rotation. With a period of the
Hamiltonian of T = 2Rq/h this coincides with Eq. 7.5b.

The nature of the π-phase jumps is illustrated in Fig. 7.4. Here it becomes very clear
that for any trajectory including the initial state will approach an angle of π/2 and upon
traversal of the pole will jump to −π/2.

The projective view of an arbitrary trajectory in Fig. 7.4 furthermore shows that there
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exists an isomorphism between the quasimomentum modes in projective Hilbert space
restricted to one hemisphere and the complex numbers. This isomorphism can especially
used to describe the vortices as ordinary singularities known from complex analysis.

7.1.1 Kitaev-Chain with Next Nearest Neighbor Hopping
To illustrate how this approach can be applied to understand dynamical vortices and
dynamical phase transitions in real physical systems and to show how it naturally em-
beds the phase windings studied in one-dimensional systems [84] and two-dimensional
systems [79] in the same framework, the Kitaev chain with next nearest neighbor hopping
will be considered as an example. Note that the phase considered in the given Ref. [84] is
not the polar phase of the state but the Pancharatnam Phase, concerning their winding
number, however they are identical (see Sec. 7.4).

In analogy to Ref. [84] the Hamiltonian of the quenched system can be defined using
the previously introduced notation as

hq =


0

sin(q)
1 + cos(2q) + λ cos(q)

 (7.6)

At a parameter value λ = 2, the system undergoes a topological phase transition, which
in this system, means that the Hamiltonian will form a closed circle in the x = 0-plane
around the Bloch sphere and that cosϑH

q will span the region from −1 to 1. Fig. 7.5 shows
the evolved state of the system, represented by a line in the domain of the phase map ϑS

q,
for a topologically trivial realization of the system (λ = 1) in blue and for a nontrivial
one (λ = 3) in red. The states are depicted at three different evolution times, from left
to right: 0,π, 5. The features of the map are depicted schematically, marked in gray: the
periodic vortices as +, the π-phase jump as a dashed line and the pole coinciding with the
initial state as a line at the bottom all of which describes a single state in the image of the
mapping. In this figure it can be clearly seen how the time evolution in these coordinates
corresponds to a simple stretch of the τq axis. At the critical time tcrit = π (left side
of Fig. 7.5) both states transverse the singularity and thereby acquire a phase winding.
For the topologically trivial system (blue) the phase winding is fully obvious as the line
forms a loop around the vortex. At a later time the loop will pass the vortex, which will
unwind the phase again. At still later times the loop will grow wide enough to include
multiple vortices. The state, evolving in the topologically nontrivial system (red), also
effectively wraps the singularity. This means that the appearance of a dynamical vortex
pair, or here in the one-dimensional case the equivalent appearance of a phase winding,
does not necessarily signal an underlying topological Hamiltonian, instead, in this case,
the monotonic increase of the winding number with time is a clear indicator of nontrivial
topology in the considered system.
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Figure 7.5: State evolution in the Kitaev chain model - phase windings and accidental phase windings.
This figure depicts the evolution of a state after a quench in a Kiteav chain model in terms of the
topological features of the polar and azimutal angles. The axis are the same as for the maps shown in
Fig. 7.3 but the features of the maps have been reduced to the principal topolocial characteristics: +
marks the vortices and the gray dashed and solid lines the north and south pole respectively. The
evolved states in a topologically trivial (blue solid line) and a nontrivial system (red dashed line) are
depicted for three different evolution times (left to right). The time evolution corresponds to a simple
stretch of the x-axis.

7.2 Dynamical Vortices and Topology in Shaken Boron
Nitride Lattices

For the shaken boron nitride lattice that we study in this work, there is also a relationship
between the appearance of dynamical vortices and the topology of the underlying system.
When considering the conditions in Eqs. 7.5 individually they can be depicted as two sets
of lines through the BZ as depicted in Fig. 7.6. Here the white line represents the first
condition and marks all quasimomentum modes which are associated with a Hamiltonian
that lies on the equator of the Bloch sphere. This line represents a static property of the
Hamiltonian and is thus equal for a time steps. The (solid) yellow line represents the
second condition and marks all quaismomentum modes that have evolved half a period of
their oscillatory dynamics at the respective time step.

The intersections of those two lines thus mark locations of a dynamical vortex. Fig. 7.6
now shows clearly how a vortex-anti-vortex-pair gets created (just before time step 2),
moves in opposite directions along the white equator line (steps 3-5) before the vortices
annihilate with other pairs (last time step). The observation of one full cycle, therefore
allows to trace the full equator line.

The topology of the system can be characterized by the properties of the Dirac
points [134]. The Hamiltonian at the Dirac points is by definition represented by a
vector that points to one of the poles of the Bloch sphere. In the present case of two
Dirac points, the system is topologically nontrivial if both Dirac points have different
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- 0

Figure 7.6: Conditions for dynamical phase vortices. This series of six images shows the phase profile
of a sublattice eigenstate upon evoultion in a topologically nontrivial shaken boron nitride lattice.
The static white line and the dynamical yellow line visualize the conditions for the occurence of a
dynamical phase vortex (Eqs. 7.5).

signs, i.e. are associated with opposed poles. While the location of the Dirac points in
the BZ can be easily determined from the static voritces in the phase profile, their signs
are experimentally less accessible. But an equator line that encloses a static vortex, i.e.
the location of a Dirac Point, yields that any path connecting the two Dirac points will
cross the equator an odd number of times, meaning that they are located on opposite
poles. In this sense it is possible to relate the Chern number of the Hamiltonian to the
winding number2 of the equator line, which can be directed by defining its orientation
dependent on the handedness of the dynamical vortices. This way, tracing out the path of
dynamical vortices in respect to the static ones allows to determine the topology of the
system without making any further assumption of its structure and without populating its

2Not to be confused with the winding number relating to the quantum mechanical phase, as used here
for defining the vortices. Instead winding number refers to the mathematical concept of how a curve winds
around a point and describes the winding of the polar angle of the trajectory with respect to that point.
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ground state, which is difficult to reach because it is topologically protected [69]. Note,
that for a nonequilibrium system it is necessary to distinguish between the Chern number
of a state and the Chern number of the Hamiltonian. The common definition of the Chern
number is based on the definition of the Berry connection in terms of the eigenstates of the
system (see Eq. 4.11). Formally it is possible to apply this definition to any other, possibly
nonequilibrium, state and thereby deduce a Berry curvature and Chern number for this
state. In the case of quench dynamics without dissipation, the unitary time evolution
preserves [69] the zero-valued Chern number of the initial state, even when Chern number
of the Hamiltonian changes.

Following our initial publication [89], Wang et. al. [67], generalized this concept. They
consider not only the trajectories that are traced out by the static and dynamical vortices,
i.e. those belonging to the north and south pole of the Bloch sphere, but those that map to
any constant point on the Bloch sphere. They prove that for any two points of the Bloch
Sphere, the associated paths have a linking number3, that reflects the Chern number of
the Hamiltonian. In the special case presented here the trajectory of the static vortices
reduces to a point and the linking number becomes the winding number. In this spirit Yu
[66] studied the phase vortices of the Haldane model.

With our simulations, for an ideal circularly driven boron nitride lattice and an initial
state originating from an infinitely deep sublattice (i.e. fully localized at a pole), we could
not find a parameter regime with a equator line that does not enclose a Dirac Point. Our
data, however, shows closed vortex traces that do not enclose the Dirac points and will
be discussed in Chap. 8). In general, the appearance of dynamical vortices is a necessary
condition for a topologically nontrivial systems and thus can potentially be exploited as
an experimentally accessible signature of a topological phase transition.

In Fig. 7.7 the fundamental branch of the phase diagram for a circularly shaken boron
nitride lattice (VL = 15.363, ϑ = 9°) is shown. It exposes only three phases which can be
characterized through the Chern numbers 0, +1 and -1. The nontrivial phases are only
present in a narrow band, here of a relative width of about 1% of the shaking frequency.

Number of Vortex Pairs

For longer evolution times more and more vortices will be created. To understand how the
number of vortex pairs evolves with time, consider the band structure of the system along
the equator line as marked in Fig. 7.8.

Fig. 7.9 visualizes the condition in Eq. 7.5b by splitting it up as
~
Rq

= tcrit

(n+ 1/2)π (7.7)

where the left hand side is simply the inverse of the band structure (ondulating line in the
figure) and the right hand side a set of q-independent lines. Dynamical vortices exist at the

3The linking number defines how many times a path winds around another.
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Figure 7.7: Numerical simulation of the phase diagram of the circularly shaken boron nitride lattice.
This phase diagram shows three different phases corresponding to Chern numbers equal to 0 (green),
-1 (blue) and 1 (yellow). The Chern number has been determined as the difference in orientation of
the Hamiltonian at the Dirac points. The lattice is defined as previously by a polarization mixing
angle of 9°and a lattice depth of VL = 15.363

0

100

200

300

400 Figure 7.8: Relative band structure with
marked equator line. The black equator line
in this plot marks the quasimomentum states
in the BZ which evolve under an Hamilto-
nian whose eigenstates lie on the equator of
the Bloch sphere, i.e. ϑH

q = π/2. The color
mapping indicates the difference in energy
between the considered two bands. A cut
along this line is shown in Fig. 7.9. The max-
ima of energy on the equator line indicate
the points where vortex pairs are created and
the minima where they annihilate.

intersection of those two sets of lines. In this picture time evolution is represented by scaling
the vertical axis for the set of horizontal lines corresponding to the linear time dependency
of the right hand side of Eq. 7.7. In the plot also the previously mentioned breaking of the
three fold symmetry due to the choice of Floquet gauge becomes clearly visible. The left
and right box indicate the minima and maxima where vortices get created and annihilated
in the two asymmetric regions. It becomes clear that the number of simultaneously visible
vortices is approximating a linear increase, even though not a monotonic one. To make
this relationship still clearer the vortex number as a function of time is explicitly shown in
Fig. 7.10.
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Figure 7.9: Inverse band structure (blue, ondulating line) along equator line cut and critical times
(horizontal lines). In this picture dynamical vortices exist a the intersections of the two sets of curves
and time evolution corresponds to scaling the vertical axis for the set of lines associated with the
critical times.

Figure 7.10: Number of dynamical vortex pairs as a function of time. The two lines correspond to
the number of vortices in the two regions arising from the symmetry breaking by the Floquet gauge.

7.3 Connection to Dynamical Phase Transitions
The phenomenon of dynamical vortices in the evolution of pseudo spin states, as it has
been presented in this chapter, is closely connected to the recent concept of dynamical
quantum phase transitions(DQPT) as introduced in Ref. [70]. Please note, that there
exist multiple concepts associated with the term dynamical phase transition as e.g. the
transition from localized to non-localized states in disordered systems [156–158]. In the
context of this thesis, by DQPT it will be exclusively be referred to those defined in
Ref. [70]. While quantum phase transitions have been studied extensively [159, 160] for
systems at equilibrium, the framework for the description of nonequilibrium systems is
still under active research (for an overview see e.g. [161]). Quantum phases are canonically
defined through a local order parameter or a global topological invariant associated with
the state or Hamiltonian. In equilibrium systems a phase transition can occur for the
change of an external parameter such as the magnetic field. For a nonequilibrium system, in
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contrast, a differentiated classification needs to be established, because the quantum state
constantly evolves. The definition of a DQPT in [70] allows to carry over a broad tool set
from equilibrium phase transition into the nonequilibrium domain by establishing a formal
analogy between the static partition function Z of a quantum many body system and
the dynamical property G, the so-called Loschmidt amplitude. The Loschmidt amplitude,
sometimes also referred to as return amplitude, is defined as the overlap of an evolved
state with the initial state [70]. For a time-independent system this is expressed through
the expectation value of the evolution operator for the initial state

G(t) = 〈Ψ0|exp(−i/~ H t)|Ψ0〉 (7.8)

For a field theory with imposed equal boundary conditions expressed through the state
|Ψ0〉 at a distance z between the boundaries, a so-called boundary partition function [70, 77]
can be defined

Z(z) = 〈Ψ0|exp(−zH)|Ψ0〉 (7.9)

which is identical to the Loschmidt amplitude for complex distances

z = it/~ (7.10)

Even though the partition function at complex values bears no direct physical meaning,
the extension into the complex parameter plane allows important insights into its behavior
restricted to the real axis. From complex analysis it is known4 that any entire function,
such as Z(z) for a finite number of particles [70], can be fully expressed through a product
of its zeros. This fact has been used by M. E. Fisher [162] to analyze the canonical partition
function to describe phase transition as a function of temperature and analogously by Lee
and Yang [86, 87] for phase transitions driven by a magnetic field. Therefore these zeros
are also referred to Fisher zeros or Lee-Yang zeros.

A phase transition is typically signaled by a sudden change of some of the system’s
thermodynamic properties, as for example a jump from zero to finite magnetization. As
all thermodynamic properties can be expressed in terms of the according thermodynamic
potential, such a non-analytic behaviour is rooted in a nonanalyticity of the potential itself
and is ultimately connected to the partition function. In the case of the free energy as the
potential this relationship is given by [70]

f(z) = − lim
N→∞

1/N ln[Z(z)] (7.11)

The logarithm in Eq. 7.11 will create a singularity in the complex plane causing nonanalytic
behaviour for every Fisher zero in the partition function. Taking the thermodynamic limit,
the Fisher zeros usually condense in the complex plane to lines [70], in the case of

4as the Weierstrass factorization theorem
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one-dimensional system, or planes [79], in the case of two-dimensional systems. The
intersections of those, with the real axis, marks the critical parameters at which phase
transitions occur, as any singularity on the real axis induces a noncontinuous behaviour of
the thermodynamic potential.

In the case of the DQPT, Fisher zeros appear in the domain of time, where the evolved
many-body state becomes orthogonal to the initial state. In this analogy the role of the
free energy is taken by the rate function [82]

g(t) = − lim
N→∞

1/N ln[L(t)] (7.12)

where L(t) = |G(t)| is the Loschmidt Echo. Following the same argument, the rate function
will show a non-analytic behaviour at critical times. Here however, the critical times are
not identified by the intersection of the Fisher Zeros with the real axis, but with the
imaginary axis, because within the analogy the parameters z and t are related through
the proportionality factor of i (see Eq. 7.10).

In a system of noninteracting fermions, as it is considered in this thesis, a Fisher zero is
encountered if any one of the single particle modes |ψq〉 becomes orthogonal to its initial
state. Here the full many-body state is given as a direct product at any given point of
time

|Ψ(t)〉 =
∏
q

exp(−i/~ H(q)t) |ψq(0)〉 (7.13)

and the Loschmidt amplitude equally decomposes into a product of partial Loschmidt
amplitudes gq as contributions of the individual modes q

G(t) =
∏
q
gq(t) with gq(t) = 〈ψq(0)|exp(−i/~ H(q)t)|ψq(0)〉 (7.14)

so that the total Loschmidt amplitude becomes zero if a single term of the product is zero.

In the context of a two-band lattice Hamiltonian we identify the Fisher zeros with
the previously described dynamical vortices: If for a specific quasimomentum mode q
the sublattice eigenstates, which are represented by the poles of the Bloch sphere, are
given by {|A q〉 , |B q〉}and the initial state is, without loss of generality, chosen to be
|ψq(0)〉 = |A q〉, then the partial Loschmidt amplitude of the associated mode becomes
zero if, and only if, the evolved state coincides with |B q〉

gA
q (t) = 〈A q|ψq(t)〉 (7.15a)

gA
q (tcrit) = 0 ⇐⇒ ψq(tcrit) = |B q〉 (7.15b)

which is identical to the conditions for a dynamical vortex as in Eq. 7.5a and 7.5b.
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The description that has been established in the previous section for the dynamical
vortices can be transferred to the field of complex phasors of the partial Loschmidt ampli-
tudes, because it is almost identical to the phase distribution ϕS

q(t) of the quasimomentum
eigenstates. Their relation is given by the following expression

ϕS
q(t) = arg(gA

q (t))− arg(〈B q|ψq(t)〉) (7.16)

The second term in Eq. 7.16 contains merely the static phase of the Hamiltonian, that has
also been neglected earlier, and the discussed π-phase jump at the initial pole, rooting from
the sign of sin(τq). Fig. 7.11 shows the phase profile of the partial Loschmidt amplitude,
similar to the one in Fig. 7.3, and underlines the similarity between the two quantities. In

-

0

Figure 7.11: Phase of the partial Loschmidt amplitude for a quasimomentum mode q. Similar to
the phase of the wavefunction in fig. 7.3, there is a vortex in every π-period, but here the overall
periodicity is changed from π to 2π.

summary, the observation of a dynamical vortex a necessary and sufficient condition for a
dynamical quantum phase transition.

The location of the Fisher zeros zn(q) in the complex plane for a two-band model can
be expressed [79] in a closed form by inverting the condition given in Eq. 7.15b for the
real and imaginary part individually

zn(q) = iπ~
Rq

(
n+ 1

2
)
− ~
Rq

arth [hI · hQ] (7.17)

Here arth refers to the inverse hyperbolic tangent, which accounts for the complex argument
of the inverse tangent (arthz = 1/i atan(iz)), and hI and hQ are the vector representations
of the initial pre-quench and post-quench Hamiltonians, respectively. Including an arbitrary
initial state hI makes this expression more general than the previously discussed situation
with an initial state that occupies the same single particle state for all modes. The two
situations can be brought into agreement by identifying

hI · hQ = cosϑH
q (7.18)
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and interpreting ϑH
q as the relative angle between the two Hamiltonians. This notion is

by some authors [71, 84] also referred to as the relative Bloch sphere. The integer n in
Eq. 7.17 indexes the period of the DQPT. In terms of the vortex map in Fig. 7.11, the left
vortex corresponds to n = −1, the right to n = 0 and so forth.

In analogy to the study of Fischer zeros in the Haldane model in Ref. [79], here Fig. 7.12
shows the domain of Fisher zeros for a circularly shaken boron nitride lattice, as it has
been realized in the experiments presented in this thesis. In contrast to the Haldane case,
for the studied system there is no analytic model available and instead of plotting the
density of Fisher zeros, the position of Fischer zeros is plotted for single particle modes in
the Brillouin zone, that lie on a finite, rectangular grid of 800 by 800 states. Here only the
zeroth order (n = 0 in Eq. 7.17) domain of the zeros is shown. Higher order domains have
a related shape that results from a simple stretch along the imaginary axis.

A

B

Figure 7.12: Fisher Zeros in the complex plane for a circularly shaken boron nitride lattice. Subfigure A
shows the zeros due to a topologically nontrivial Hamiltonian at a shaking frequency of 11.85 kHz that
exposes a DQPT and subfigure B shows the trivial case at 11.9 kHz. The insets show a magnification
of the region of interest around the imaginary axis and clarify that only in subfigure A the FZs cross
the imaginary axis.

The system chosen for the simulation corresponds to the one presented in the previous
chapter, of a lattice stemming from beams with equal polarization mixing angles of θp = 9°,
a depth of VL = 15.363ERec that is circularly shaken with modulation depth of 2 kHz at
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frequencies of 11.85 kHz (subfigure A) and 11.9 kHz (subfigure B). Despite the the small
difference of 50 Hz, i.e. under half a percent of the shaking frequency, the Fisher zeros
distributions of the two subfigures are completely distinct. The reason for this behaviour
roots in the intimate connection between DQPTs and the topology of the underlying
system, as it has been discussed in Sec. 7.2. In the inset of subfigure B, it can be seen that
the Fisher zeros approach the imaginary axis without touching it, while in subfigure A
the domain of the Fisher zeros fills a dense area that is intersected by the imaginary axis
which marks the critical times for the creation and annihilation of the dynamical vortices
at its edges.

At those edges, as mentioned earlier, the rate function is expected to acquire a disconti-
nuity. While for a one-dimensional system, the existence of a kink in the rate function,
due to the intersection of a line of Fisher zeros with the imaginary axis at a single point is
trivially clear, the analog case for a two dimensional domain, where, in the thermodynamic
limit, there are infinitely many densely packed FZs within a region of the imaginary axis,
is more complicated. For this case Vajna et al. [79], deduce a jump ∆gs of the second
derivative of the rate function

∆gs = −2πD cos2(φ) (7.19)

that is dependent on the jump of the normalized density of zeros D and the angle of
intersection φ. From the shape of the Fisher area in Fig. 7.12-A it can be concluded that
the kinks are expected to be less pronounced compared to the ones present in the Haldane
model where, the Fisher area intersects almost vertically with the imaginary axis [79]. The
density distribution in 7.12-A also indicates a stronger first kink. Furthermore Eq. 7.19
allows to deduce that the signs of a pair of kinks are always opposing each other.

Based on the numerical simulation of the system studied here, we calculated the
derivative the singular part of the rate function gs as defined in Ref. [70]. The attribute
singular refers to the Weierstrass factorization that establishes the relationship between
the zeros and the rate function, by allowing to express the partition function in terms of
the zeros zj and a entire function h(z)

Z(z) = exp(h(z))
∏
j

(
1− z

zj

)
(7.20)

The singular part of the rate function is obtained by setting h(z) = 0, and since it contains
all singularities, it is sufficient to be considered here.

Fig. 7.13 visualizes dgs

dt for a system with identical parameters as the one shown in
Fig. 7.12-A.

In agreement with the previous qualitative considerations, the simulation exposes the
expected kinks with the expected signs and strengths at the critical times. At close
examination of Fig. 7.13 one may discover that the plotted function actually exposes
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Figure 7.13: First derivative of the singular part of the rate function. The red circles mark the
expected kinks stemming from the second order nonanalyticity at the critical times, where the density
of FZs on the imaginary axis jumps to a finite value. The kinks frame the range of time during
which a DQPT is present in the system, here marked with a red background. Adapted from our
publication [89].

many densely packed small kinks during the range of time where DQPTs are present (red
background), while outside of that region it is perfectly smooth. Those kinks are numerical
artifacts that stem from the finite grid spacing in quasimomentum space of the eigenstates,
that have been considered in the simulation. For Fig. 7.13 we chose a grid of 1200 by 1200
modes, so that the kinks at the edges can be clearly distinguished from the artifacts. The
reduction of the grid spacing also corresponds to taking the thermodynamic limit, so that
for a real system in parallel to the simulated case the impact of the phase transition is
expected to become physical for finite systems of a corresponding size.

Comparing the location of the critical times in Fig. 7.13 with the ones in 7.12-A a slight
mismatch can be discovered. The reason for this mismatch is the slightly broken discrete
rotational symmetry of the system, due to the initial phase of the shaking. In that system
the vortices in the three regions do not appear at the same time. In Fig. 7.13 one of those
regions has been isolated, while in Fig. 7.12-A the FZs for the full BZ are shown. If one
were to include the full BZ further kinks would show up in Fig. 7.13.

7.4 Connection to the Pancharatnam Geometric Phase
The dynamics of a two-band Hamiltonian, as presented in this chapter, can also be put into
context [84] of the so-called Pancharatnam geometric phase, which has been introduced in
Sec. 4.1. As a generalization of the Berry phase, the Pancharatnam phase allows to establish
a phase relation between the evolved state |ψq(t)〉 and the initial state |ψq(0)〉 that purely
depends on the path that the state has taken through the (projective) Hilbert space under
time evolution. As a reminder it shall be mentioned that for the state |ψq(t)〉 a Berry phase
cannot be defined, because firstly, it is most likely a nonequilibrium state of the system
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and secondly, its trajectory is generally not closed. While the Berry phase characterizes
the Hamiltonian (through its eigenstate) the Pancharatnam phase is a property of the
evolved state. For present case of quench induced dynamics, however, these two quantities
are tightly connected, because the Hamiltonian does not vary with time and is (up to sign)
uniquely defined by the trajectory of a state. By inserting Eq. 4.2 into Eq. 4.1 for the
two-level system under discussion, one obtains an analytic expression of the Pancharatnam
phase γP:

γP(q, τq) = arg(gA(q))− τq cosϑH
q︸ ︷︷ ︸

δdyn

(7.21)

Because of the trivial, monotonic contribution of the dynamical phase, the Pancharatnam
phase exposes the same singularities as discussed in detail throughout this chapter for the
partial Loschmidt amplitudes and the polar phase of the evolved state itself. To illustrate
this consider the modified map shown in Fig. 7.14 corresponding to the ones from Fig. 7.3
and Fig. 7.11.

-
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Figure 7.14: The Pancharatnam phase for a quasimomentum mode q. Similar to the phase of the
wave function in Fig. 7.3 and the phase of the partial Loschmidt amplitudes in Fig. 7.11, there is a
vortex in every π-period. Despite the more quickly oscillating phase, all vortices have the same overall
phase winding (n of one handedness on the left and n+ 1 of the opposite handedness on the right).

In this figure the vortices become visible as the typical branching points. The condition
for the vortices and their phase winding stays clearly unchanged.
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8 Experimental Observation of
Dynamical Vortices in a
Topological Bloch Band

This chapter reports on the experimental observation of the creation, evolution and
annihilation of dynamical vortices in a Haldane like model, that is realized by near
resonant circular shaking of a boron nitride lattice. We interpret the number of dynamical
vortices as an order parameter and compare the system with the theoretically expected
phase diagram. The measurements presented here, contribute to the understanding to
the young field of dynamical phase transitions (DPTs) [70]. Shortly after the preprint
publication of the results [89], other groups reported [90–92] on the observation of DPTs.
The results presented in this chapter have also been published as an article [64] and the
figures are adapted from this publication. The experiment has been realized as part of
this thesis in a team effort together with my colleagues Nick Fläschner, Benno Rem, and
Matthias Tarnowski under the supervision of Christof Weitenberg and Klaus Sengstock.
My principal contributions are centered around the interpretation, the simulation and the
data analysis.

8.1 Experimental Scheme
The experimental scheme, we followed to observe dynamical vortices, is based on the
complete state tomography presented in Chap. 5. The system and the preparation thereof
are very similar to the those of the experiment presented in Chap. 6. In detail this means
that we start by preparing a sample of 1 · 105 ultracold, spin polarized (F = 9/2,mF = 9/2)
40K (Sec. 2.1) atoms and load it into a boron nitride lattice with a polarization mixing angle
of ϑ = 9°(Sec. 3.2.3), by adiabatically ramping up the lattice beams (Sec. 2.2) to a final
lattice depth between VL = 14.07 ERec and VL = 14.90 ERec. This regime has been chosen
such that topologically trivial and also potentially nontrivial Floquet Hamiltonians are
produced in the shaken system, for a fixed shaking frequency. It is furthermore important
to note, that for the given particle number, the atomic ensemble fills the lowest band of the
band structure throughout this region of lattice depths. For the following it is convenient to
specify the final lattice depth in terms of the parameters of the tight-binding approximation
(Sec. 3.4.4) of the lowest two bands of the associated band structure. Here, the lattice
depth range corresponds to a sublattice offset energy (divided by the Plank constant h)
∆/h between 10750Hz and 11460Hz, a inter-sublattice tunnel amplitude tAB/h between
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256Hz and 280Hz, an A-sublattice tunnel a amplitude tAA/h between 33Hz and 38Hz,
and a negligible small B-sublattice tunnel amplitude. Again, the sublattice energy offset
is the dominating parameter and we assume the flat band approximation (Sec. 5.2). At
the relvant lattice depths the tight-binding parameters can be considered proportional to
the lattice depth (see Fig. 8.1). Experimentally the lattice depth is extracted from the
tomography data, as will be explained at the end of this section.

BA

Figure 8.1: Tight-binding lattice parameters as a funciton of the latttice depth. Subfig. A shows the
sublattice energy offset as a detuning, i.e. relative to a the shaking frequency, which is here chosen to
be 1.65 kHz. Subfig. B shows the corresponding tunnel amplitudes tAB and tAA. tBB is not shown as
it is vanishingly small.

The experimental scheme is depicted in Fig. 8.2. The upper half shows the change of
the shaking amplitude and the lattice depth and in the lower half the associated evolution
of an arbitrary single particle in the quasimomentum basis of the unshaken lattice is
displayed on the Bloch sphere. The sequence can be divided into four phases. First the
aforementioned state-preparation phase (i), second the state-evolution phase in the shaken
system (ii), followed by the spectroscopy evolution phase (iii) and finally the time of flight
phase.

After the state preparation phase, instead of adiabatically launching the prepared state
into a shaken system, as it was performed (Chap. 6) for measuring the Berry curvature, it
is quenched into the Floquet system by abruptly starting the shaking of the lattice. Due to
this quench, the state ceases to be an eigenstate of the system, and a nontrivial evolution
under the influence of the Floquet-Hamiltonian begins. This evolution time is denoted here
as t. As before, the quasimomentum remains a good quantum number and the evolution
can be described individually for every quasimomentum mode. In the flat band limit, all
modes start out in the lower sublattice eigenstate, which is represented here by the south
pole of the Bloch sphere. The evolution under the influence of an arbitrary Hamiltonian
(black arrow) of a quasimomentum mode is indicated as red small circle in Subfig.(ii).
The subsequent state tomography is conducted as before, with the only difference, that
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(ii) (iii)(i)

Figure 8.2: Experimental sequence. The upper row shows schematically how the shaking amplitude
and the lattice depth are varied over time. The lower row indicates the Hamiltonian (black arrow)
and the nonequilibrium state (red arrow) for a single quasimomentum on the Bloch sphere. Adapted
from our publication [64].

the state being reconstructed is not an eigenstate of the shaken system. This difference
is, however, insignificant for the tomography procedure. After an evolution time t in the
shaken system, another quench takes place, this time into the static flat band Hamiltonian,
which leads to an evolution that can be described by a rotation around the horizontal
axis on the Bloch sphere (iii). After a time tspec in the static system, all potentials are
turned off for letting the cloud expand freely and being imaged after a the TOF phase.
An exemplary TOF image for a chosen pair of times (t, tspec) is shown in Fig. 8.3 (right),
together with the tomography time series (left) at a specific pixel for two selected times t.

For each tomography a series of 32 images with a temporal resolution of 5.5 µs were
taken. Each image was convoluted with a 5 px × 5 px Gaussian kernel with a spread of
5 px. Here no Savitzky-Golay was applied. The scaling is 58(2) px. To extract the phases
characterizing the state the same fit-routine was applied as described in Sec. 6.2.

While for determining the Berry curvature a single static, effective Hamiltonian was the
object of the tomography, here the focus lies on the nonequilibrium dynamics of the state,
which means that for every time step of its evolution, a complete tomography sequence
had to be conducted. We measured the state for 10 sequential time steps at stroboscopic
times for the chosen shaking frequency.

To obtain the lattice depth for the following measurements, it is insufficient to purely
measure the light powers of the lattice beams and deduce the intensity, because for the
required relative precision over the measured parameter range (compare Fig. 8.1) this
method is prone to many sources of significant errors like partial reflections on the glass
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Figure 8.3: Atomic density evolutions during the complete state tomography for different quench
times. The left plot shows the atomic density oscillations for two different quench times t = 0.267 ms
(blue/rectangles) and t = 0.801 ms (red/triangles) with their respective fitted model (solid line) of a
damped sine (see Chap. 5). The x-axis is given by the time tspec of free expansion of the cloud and
the y-axis by the atomic density in an absorption image given by the quasimomentum bin defined by
the pixel marked in the picture on the right (for filtering see text below). The right pane shows a
typical absorption image for a pair (t, tspec). Adapted from our publication [64].

cell, the propagation of the error in the determined beam waist, imperfections in the mode
profile, and a possible slight misalignment of the beam intersection centers. Instead we
perform a band spectroscopy via amplitude modulation for each of the three pairs of beams
to calibrate the relative intensities of the beams to be equal. For the absolute value of the
lattice depth, we average the momentum resolved oscillation frequencies extracted from
the previously acquired state tomography data and compare those values to our model.
For a more detailed description the reader is referred to the sup. mat. of Ref. [89].

8.2 Results

Bloch Sphere Representation
As a result we reconstruct the dynamics of the quasimomentum resolved state. For three
chosen time steps, the state is depicted in Fig. 8.4 as a point cloud on the Bloch sphere.
Here every point corresponds to a quasimomentum mode. In this form of visualization it
can be seen how the three wings of the momentum mode, belonging to the initial three
uniform phase regions of the BZ, start reaching around the Bloch sphere until they finally
meet the south pole, where as discussed in the previous chapter a vortex pair is created by
each wing. The point clouds shown here have been scaled to reach the maximum amplitude
(i.e. equator). The reason for the necessity of this scaling is that the oscillations show a
dephasing, probably due to the gaussian envelope of the lattice potential, which reduces
the apparent amplitude. The dynamical vortices, however, are more insensitive to this
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mechanism, as they are an exclusive feature of the phase of the oscillation.

Figure 8.4: Top view on the Bloch sphere representation of a nonequilibrium state for different evolu-
tion times t. Every red dot represents a quasimomentum component of the state. The amplitudes have
been scaled to compensate for dephasing by 14%, 21%, and 28%. Adapted from our publication [64].

Phase Profiles
The vortices are not visible in the Bloch sphere representation. Therefore we consider the
phase evolution as shown in Fig. 8.5. For ten stroboscopic steps at times t = (n+2)×89 µs1.
The images (I) and (II) are, as expected, reminiscent of the phase profile data shown

0

-

I II III IV V

VI VII VIII IX X

Figure 8.5: Phase profile ϕS
q(t) for stroboscopic evolution times t = (n + 2) × 89 µs, where n

is the index of the image. The hexagon indicates the BZ and the circles in the first image mark
the static vortices. The circles in the later images mark the dynamical vortices. Adapted from our
publication [89].

in Chap. 6 that have been used for determining the Berry curvature. At the third step,
however, ring-structures appear around the K-points of the BZ. The ring-structures are

1The first two steps have been omitted as they resemble (I), i.e. with no dynamical structure.

103



Chapter 8 Experimental Observation of Dynamical Vortices in a Topological Bloch Band

coined by their sharp edges of strong gradients, bridging two regions with values about π
apart, as it is expected for states in the vicinity of the south pole. For most parameter
regimes these features do not expose any vortices, since the state passes in close proximity
of the south pole without actually transversing it. For the chosen data set the south pole
is clearly reached for one of the branches. Here a pair of phase vortices appears on the
line separating the two regions of nearly constant phase. Fig. 8.6 shows an enlargement of
the fourth time step. Here it is clearly visible that there is one point on the phase front
(three o’clock) where, when drawing a circle around it, the phase varies from 0 (white)
over −1/2π (light purple) and 1/2π (golden) back to zero and thereby constitutes a right
handed vortex. Further along the vortex front (at six o’clock) the situation is reversed
and a left handed vortex is encountered. As the phase front grows in the next steps in

Figure 8.6: Zoom into the phase profile at
t = 365 µs, also shown in Fig. 8.5-IV of
Fig. 8.5. The two dynamical vortices with
opposed chiralities are clearly visible. The
color scale is equal to Fig. 8.5.

Fig. 8.5, the vortices move further along it until they finally meet in time step (VII) and
are annihilated in step (VIII). In the last time step the appearance of another phase front
is visible. This is in full agreement with the simulations presented in the previous chapter,
according to which this next phase front corresponds to the completion of a full oscillation
cycle of the corresponding quasimomentum mode where the Bloch vector representing the
state revisits the south pole. In the experimental data the expected π-phase-jump is not
fully pronounced, which is most likely due to the not fully fulfilled approximation of flat
bands, i.e. the remaining spread of the initial state and tomography Hamiltonian around
the poles, but also in part due to diminishing signal amplitude for longer evolution times,
as will be discussed in the following.

Amplitude Profiles
The state tomography also reveals the distribution of the polar angle ϑS

q in form of its
sine: sinϑS

q. This data is shown in Fig. 8.7 for the same data set and in correspondence to
Fig. 8.5.

Here, as expected, the vortices appear as zeros. Both, static vortices, corresponding to
the north pole (ϑS

q = π), and dynamical vortices, corresponding to the south pole (ϑS
q = 0),
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Figure 8.7: Amplitude profile sinϑS
q(t) for the matching data set and times as of Fig. 8.5. The circles

again mark the static and dynamical vortices. Adapted from our publication [64].

are associated with a zero amplitude (sinϑS
q = 0). In Fig. 8.7 the vortices are marked,

as before, with circles. While the vortices are clearly visible for most time steps as local
minima, it is generally more difficult to uniquely identify the vortices, because the signal
is less pronounced and further minima seem to exist, that are not associated with vortices.
In time step III for example, the minima of the dynamic vortices can barely be identified.
In time step IV to VII those minima are clearly visible, but their position along the grove
associated with the phase front is not very well defined. In the following steps VIII to X
local minima can still be found, even in the absence of vortices. Fig. 8.7 also shows how
the maximum amplitudes decay further and further with every time step, even though
they are expected to stay constant at a value of one. This decay is potentially caused by
a dephasing due to heating the sample while periodically shaking it or due to fact that,
opposed to the assumed model, in the experiment the factual lattice depth varies spatially
with the gaussian profile of the lattice beams.

Vorticity
To extract the vortex positions in an automated way, free of human bias, we determine a
quantity we denote by vorticity. We define the vorticity as the curl of the gradient of the
phase profile From electrodynamics it is well known that the curl of the gradient of a scalar
field, such as the phase profile, is an identity with zero. Here, however, this identity does
not apply, because the phase is only defined modulo 2π. Formally we define the vorticity
of a phase field as

v(q, t) = 1
π
∇× [mod(∇ · ϕS

q + π, 2π)− π] (8.1)

Here the modulo operator is understood as acting element-wise on its two-vector argument,
and both instances of π are also added and subtracted element-wise.
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The vorticity of a right handed vortex will therefore yield a charge of plus one and for
a left handed vortex a charge of minus one. Everywhere else the vorticity yields zero. We
numerically calculate the vorticity for the data on ϕS

q(t) by approximating the gradient
in Eq. 8.1 through the finite symmetric difference between neighboring pixels, i.e. the
average of the left and right/top and bottom differences. This effectively corresponds to a
convolution with a discrete kernel and every vortex yields thereby a finite vorticity in a
region of four pixels containing the vortex. The vorticity proves itself as a reliable local
quantity for identifying phase vortices. Fig. 8.8 shows the total vorticity, i.e. the sum

vtot =
∑
i

v(q, ti) (8.2)

over the time steps of the data set shown previously in Fig. 8.5 and 8.7. Here one can

Figure 8.8: Vorticity extracted from the
phase profiles and summed over all time steps
in Fig. 8.5. The color scale is truncated to
the vorticity of a single vortex. In the center
(Γ− point) and in three of the corners (K-
points) the static vortices appear as clusters,
due to a slight noise on imaging method,
leading to small offsets in quasimomentum
space. In this particular data set the three-
fold symmetry is disturbed such that only one
vortex pair is created within the BZ. Please
note, that below the first BZ another copy
of the vortex pair is visible. Adapted from
our publication [64].

clearly see the two static vortices with opposed handedness at the K and Γ points. It is
also visible that the system seems to be slightly perturbed, which leads to small deviations
of their positions for different time steps. The dynamical vortices trace out a curve,
that, when linearly interpolated, forms a closed trajectory2. This trajectory shows how a
vortex-anti-vortex-pair is created, moves through the BZ and finally annihilates.

Vortices as an Order Parameter
One of the main results of the previous chapter, was the introduction of the dynamical
vortex pair count as a discrete order parameter for a dynamical phase transition. The
number of vortices for the presented data set is visualized in Fig. 8.9. It indeed behaves as

2The total vorticity is chosen as a quantity of convenience. The vorticities of the individual time steps
confirm that the trajectory is indeed traced out in the right order, with one vortex pair per time step that
also corresponds to the intuitive interpretation of the phase profile images.
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Figure 8.9: Number of vortices as a function of the time step. The vortices can be interpreted as an
order parameter for a DPT. The gray square marks the occurrence of the DPT. Adapted from our
publication [163].

expected by jumping from 0 to 2 and thereby marking a region of critical times where
a dynamical phase transition is occurring. For longer times the appearance of multiple
simultaneous vortex pairs is expected.

Connection to Topology
In order to relate the observed dynamical vortices to the topology of the quenched
Hamiltonian, we recorded a series of measurements at different lattice depths. Fig. 8.10-A,
shows the occurrence of dynamical vortices as a function of the evolution time in the
quenched system and the detuning between the fixed driving frequency and the frequency
associated to the energy offset between the A and B sublattice states, which is effectively
varied through the different lattice depths . In contrast to the previously presented data,
this data set has not been taken at a modulation depth of 2 kHz but 1.65 kHz. Fig. 8.10-
B shows a simulated phase diagram of the Chern index as a function of the shaking
modulation depth and the detuning. The bar at 1.65 kHz represents the data set from
Fig. 8.10-A, where the gray shaded area again marks the detunings for which dynamical
vortices are created during the time of observation. From the phase diagram it is clearly
visible, that the region of dynamical vortices does not exactly coincide with the topological
phase transition. Dynamical vortices were however exclusively observed in the close vicinity
of the topologically nontrivial regions.
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Figure 8.10: Critical regions and topology. Subfigure A marks the presence (gray squares) of dynamical
vortices at different times steps for measurement series at 14 different lattice depths. Subfigure B
shows a simulated phase diagram of the considered system in terms of the shaking amplitude and
detuning. There are topologically trivial regions (white) and regions with Chern index -1 (blue) and
1 (red). The light gray bar marks the region at 1.65 kHz which has been probed and is shown in
Subfig. A. The dark gray region marks the range of detuning for which we observed dynamical vortices.
Adapted from our publication [64].

8.3 Interpretation and Outlook

The data shown in this chapter shows clearly the creation, movement and annihilation of
dynamical vortices. In its character, it is in full agreement with the simulations presented
earlier in Chap. 7 and thereby poses an observation of a dynamical phase transition,
which we experimentally characterized by the number of vortex pairs as a discrete order
parameter that changes with time. The shape of the trajectory traced out by the vortices,
however, does not correspond to the trace expected from numerical simulations, and
we were not able to observe a trace that encloses one of the Dirac points in order to
characterize the system as topologically nontrivial. Nevertheless, the parameter regime in
which dynamical vortices have generally been observed, covers and only slightly extends
the expected domain of the topological phase. The appearance of dynamical vortices for
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quenches between Hamiltonians of equal Chern indices, so-called accidental vortices, is
indeed expected for general systems [79]. Inspired by our publication, the relationship
between topology and the appearance of dynamical vortices has been studied in detail in
Refs. [66, 67], and it has been shown that without regarding the trajectory of the vortices,
the mere appearance is only a sufficient indicator for a topological phase transition, if
the initial state corresponds to an eigenstate of a Hamiltonian with flat bands, as it was
also assumed in our simulations. In the real experimental system this condition cannot be
perfectly met (see also Sec. 5.2), which explains the observation of the accidental vortices.

A plausible explanation for the mismatch of the observed and simulated trajectories
can be found when considering the difficulty we experienced when trying to tune the
parameters into a regime with dynamical vortices. Our simulations have shown, that in
proximity to the topological phase transition, the shape of the vortex trajectory is highly
sensitive to most system parameters. On traversal of the topological phase, through varying
the lattice depth VL by less than 1%, the trajectory emerges from one Dirac point, travels
through the full BZ and finally vanishes enclosing the other Dirac point.

While in the simulation a perfectly homogeneous lattice potential was used, the real
lattice potential has a Gaussian envelope in real space, which means that the observed
atomic densities, that form the basis for the extracted phase profiles, should rather be
modeled by a superposition of a continuous spectrum of lattice depths. In a follow-up
experiment [65] at the same setup, this shortcoming has been overcome by reducing the
lattice depth and thereby creating a larger topological regime, where the observed traces
clearly form a closed loop around one of the Dirac points.

The experiment (Chap. 8) and conceptual work presented here (Chap. 7) pave the way
towards a deeper understanding of the interplay of topological systems with nonequilibrium
dynamics. In particular the description of nonequilibrium dynamics from the relatively
recent perspective of dynamical phase transitions has the potential to deepen our under-
standing by further developing the analogy to equilibrium phase transitions. Since our
initial publication [89], further groups reported [90–92] on the observation of dynamical
phase transition. While the system presented in this work is comprised of noninteracting
fermions it lays out the basis for further research to gain understanding of the connection
between the nonequilibrium dynamics of two dimensional, interacting many body systems
and their topology.

109





9 Development of a Digital Fiber
Phase Lock
This chapter reports on the conception, implementation and performance of a new
experimental fiber lock setup, that effectively suppresses optical phase noise induced
by the spurious mechanical coupling of a fiber to its environment. Among countless
application fields, this setup is specifically relevant in the context of this work, because
here fiber phase noise affects the beams forming the optical lattice potential and thereby
causes detrimental heating of the atomic quantum states under analysis.
In the presented setup, fiber noise is compensated for by an optical phase-locked loop
(OPLL). A negative feedback control system imparts a compensating phase shift to the
beam on the local end via an acousto-optic modulator, while an error signal, representing
the double transit phase shift, is obtained via a local end heterodyne measurement of
a reflex from the flat remote fiber end. The setup sets itself apart from conventional
OPLL setups by employing a fully digital feedback loop that with a direct digital
synthesis (DDS) radio frequency (RF) source. DDS signals feature intrinsically low
phase noise and the possibility to control the phase rather than frequencies eliminates
the need for relocking. Compared to previous setups, this setup enables the use of
polarization maintaining (PM) fibers, the error signal offers a more favorable dependence
on light power improving the performance for ramps and the number of required optical
components is reduced.
The adaptability, comfort and automation potential of digital control loops been fully
exploited by a software design that features scripting and programmatic real-time in loop
control of all parameters via a flexible network interface. The feedback loop operates at
a loop repetition rate of 772 kHz with a total signal loop delay of 1355 ns. It reaches a
suppression of up to 30 dB of the phase noise power spectrum of a 20m fiber.

Over the course of the past decades, optical fibers have become a key technology for
many technical applications as well as for most modern research apparatus that involve
optical radiation. In general optical fibers can transport a signal coherently over long
distances at low loss rates. In ultracold atom experiments for example, optical fibers
are commonly used, among many other applications, to decouple functional groups of
components of a setup as e.g. here the lattice laser table from the main experiment.
Despite the tremendous advantages over free air propagation, optical fibers can not be
considered as an ideal transmitter, that outputs a signal identical to the coupled input
signal at the remote location. Apart from obvious nonlinear dispersion effects, there are
further changes to the signal spectrum: optical fibers couple mechanical noise and thermal
drifts in their environment to the optical phase of the guided light, leading to extraneous
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phase modulation of the transmitted signal spectrum. This effect roots in the fact that the
refractive indices of the fiber waveguide will generally expose a small, but non-vanishing,
dependence on temperature and mechanical stress. Over the full length of a fiber these
add up to a significant and time varying optical path length difference.

Unavoidably most optics laboratories are however highly mechanically polluted by an
orchestra of e.g. vibrating fans in power supplies and compressors in air dehumidifiers.
Even normal speech can cause phase shifts of several radiants [164, 165].

For vast range of modern experiments the associated phase shift can be disruptive. In
metrology for example, where optical frequency standards have long outperformed the
classical microwave standards, an unperturbed transmission of optical clock signals is
essential, for instance to detect a possible drift of fundamental constants by comparing
two distant optical clocks based on different atomic isotopes [166].

Another example are ultracold atoms trapped in optical lattices. Here changes of the
relative phases between the lattice beams can cause a translation of the lattice potential
(see Sec. 3.2), or even to change its fundamental structure [167]. Thus stochastic phase
shifts become detrimental by causing undefined lattice structures, heating or, in case
of pinning lattices [168, 169] for single site resolved fluorescence imaging, washed out
exposures.

Given this tremendous impact of fiber induced phase noise, it is not surprising that
a variety of solutions have been developed [101, 164, 166, 167, 170–173]. These can be
categorized into passive and active solutions.

Passive solutions reduce the optical phase noise by shielding the fiber mechanically and
thermally from its environment. Significant shielding however can often be unsatisfactory
or impossible due to the additionally required volume and material around the fiber. A
fiber to connect two optical clocks might for example be several hundred kilometer long,
inaccessible dark fiber of the telecommunication network [166].

Active solutions, however, have proven to be very effective and less invasive. Active in
this case refers to the use of an electronic feedback controller to compensate for the fiber
induced phase noise, instead of avoiding it.

Already in 1994 Ma et. al. [164] implemented the first active fiber noise cancellation.
They interferometrically detected the phase shift induced by the fiber and imprinted its
negative onto the incoming beam. Such a system that synchronizes the phase of two optical
signals, in this case the phases of the unperturbed and the fiber output beam, is called an
optical phase locked loop (OPLL).

The fiber noise cancellation concept by Ma et. al. has been refined and was implemented
[101] for the first phase stabilization of optical lattice potentials in 2008. This implementa-
tion bears special relevance for this work, because it was realized for an apparatus, which is
very similar to the BFM apparatus and is run by the same research group. In the following
it will be referred to as the Spinor apparatus.

The lattice phase stabilization developed at the Spinor apparatus was also implemented
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for other experiments [170] and an extended version became the central technology for
experiments with variable lattice geometries [167]. Recently a closely related scheme led
to the construction of a polarization synthesizer [174], that permits the implementation
of an atom sorting algorithm by precisely moving individual atoms with respect to each
other in two overlapping, swiftly controlled 1D lattices with highly suppressed phase noise.

In the context of the BFM apparatus, fiber induced phase noise played an important
role for the construction of the hexagonal optical lattice, that stands at the heart of all
experiments presented in this thesis. Because all three lattice beams experience suffer the
phase noise induced by 8̃m long fibers, we decided to implement a fiber noise cancellation
setup. We chose the Spinor implementation as a references because it was the only
stabilization for optical lattices we were aware of, when we started the construction in
2012.

To implement the Spinor setup for the BFM apparatus, it had to be modified. The
most crucial improvement was the lifting of the restriction to non-polarization maintaining
fibers. In contrast to the Spinor apparatus, the BFM apparatus is designed to conduct
experiments with ultracold atoms in non-state-selective lattices, i.e. a lattice where all
spin components of the gas experience the same optical dipole potential. Therefore a
far-detuned lattice at 1064 nm is employed, which in turn requires higher optical powers
(see Sec. 3.1). And the, to our knowledge, only commercially available type of single mode
fiber1 that prove capable of guiding the desired 5W of 1064 light in a Gaussian shaped
mode, was a PM fiber.

The implemented fiber noise cancellation successfully proved to suppress [98] the phase
noise, as compared to the open loop operation. For the open loop operation however,
we noticed a relatively broad output spectrum of the voltage controlled oscillator, that
has been used in combination with an acousto-optic modulator to imprint the negative
feedback on the optical phase. Further analysis of the fiber noise cancellation revealed
[97], that replacing the controlled VCO with a static low noise digital frequency source
reduced the heating rate in a 1d lattice from 120mHz/Erec to 55mHz/Erec. For this reason we
decided to continue using a static digital RF source and to develop a fiber lock based on a
DDS RF-source that is capable to suppress the fiber induced noise further by additionally
providing feedback on the phase of the signal.

As a beneficial side effect, the digital controller we developed for the fiber lock setup
has proven to be a new valuable asset in our lab infrastructure. Due to its low cost of
components and the flexible software architecture we implemented, it can readily be used
in a variety of other scenarios, e.g. as a remote2 controlled AOM driver, as a simple network
analyzer or as a intensity stabilization.

An overview of the fiber lock and how it will be implemented into the main experiment is

1nLight LIEKKI Passive-10/125-PM
2VISA over ethernet and USB are supported.
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given in Fig. 9.1. On the left side it shows a schematic of the optical setup that corresponds
to the main lattice laser setup briefly described in Sec. 2.2. From a feedback perspective
this part constitutes as well an optical phase discriminator as a phase actuator and thereby
couples the electronic part of the feedback loop, depicted on the right hand side, to the
optical domain.

Mixer low pass
∫ ADC

DDS
reference
(160 MHz)

steering
 (80+ν MHz)

PRU
µC
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Error signal
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Interferometer Feedback ControllerLaser Source

User Controlled Lock Parameters & Sequencing

Ethernet

Experiment Control Computer

+1

+1
&-1

AOM

Figure 9.1: Schematic of the fiber lock. Shown is one of the three identical copies responsible for
stabilizing one fiber each. The schematic divides the setup into two parts: the interferometer in the
optical domain and the feedback controller in the RF domain. The numbers next to the AOM refer
to the diffraction orders.

In this chapter I will first present the optical part of the setup in Sec. 9.1, comparing it
to the setup of the Spinor apparatus. I will then go on to describe in Sec. 9.2 the hardware
and software that we developed for the digital feedback controller and finally in Sec. 9.3, I
will report on the quantitative performance and the setup that we used to determine it.

All fiber lock related development has been principally carried out by me in the
supportive environment of the research group, except for the heating rate measurements
mentioned above which have been realized by my colleague Matthias Tarnowski.

9.1 Phase Discrimination and Phase Control
Both, controlling the phase of a light field before it enters an optical fiber and determining
the phase of the field where it emerges, sound like easily solved experimental problems.
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An AOM, for example, reliably transfers a phase signal of the electronic domain to the
light field, while by heterodyne detection, i.e. beating two beams on a photo diode, the
signal can be transferred back into the electronic domain. But both, the imprinted, as
well as the measured phase, only reflect a relative phase, which is in this case the phase
difference between the diffracted and undiffracted beams and the difference between the
two interfered beams.

In general a local oscillator signal is needed as a ‘clock’ to determine the time frame
relative to which a phase is measured. Because optical frequencies are very high this clock
is required to be extremely precise. When e.g. using light at 1064 nm, as in the case of the
lattice beams of the BFM experiment, a clock deviation of 10 attoseconds corresponds to
an error of about one degree in the measured phase. So in more general terms the problem
is, how to distribute a high precision clock signal to distant sites.

To solve this problem Ma et. al. [164] found a simple workaround: sending part of the
light back through the fiber and beating it with a light field at the local end will yield
the round-trip phase. Assuming that the optical path length through the fiber has only
changed insignificantly during the propagation time, the desired remote end phase can be
approximated to be simply half the round trip phase.

This idea was first brought into the context of optical lattices for ultracold atoms at
the Spinor experiment [101] in the Sengstock group. The topology of the original setup
was refined, such that no components were required at the fiber remote end on the main
apparatus side, where optical access to the atoms is scarce.

In this section I am going to present a modified setup for the general detection and
steering of the phase of an optical field emerging from a glass fiber, which shows three
improvements over the Spinor setup. Firstly, the restriction to non-polarization-maintaining
fibers is removed. Secondly, it exposes a more favorable light power dependency of the error
signal. And thirdly, less optical components are necessary, which makes it intrinsically less
sensitive to vibrations.

While the conceptual idea behind the experiment by Ma et. al. holds true for any general
kind of fiber stabilization, the stabilization of three beam (see Sec. 3.2.1) optical lattices
constitutes a special case of fiber locking, where the absolute phase of a single beam is
irrelevant. That means that the phases of the lattice beams only need to be stabilized
relatively to each other as a simultaneous shift in phase of all beams does not yield any
translation of the lattice potential. The previously mentioned essential problem of the
distribution of the reference clock signal is not given here, and it would be sufficient to
measure the relative phases purely at the remote ends of the fibers. Nevertheless, in the case
of the BFM setup, we decided against the remote end measurement, because, as in most
other atomic lattice experiments, the optical access to the main experimental apparatus is
very scarce. A remote end measurement would require a stable interferometer that fills the
full plane spanned by the telescopes and would therefore pose a big intervention in the
existing setup.
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9.1.1 Model
For the description of the OPLL it is necessary to approximate the optical light fields of the
involved beams. The spatial dependence and the vectorial character of modes constituting
a beam will be neglected, so that the electric field E(x, t) of a beam can be described by a
time (t) dependent scalar function of the optical path x along its main propagation axis

E(x, t) = E0 exp(−iϕ(x, t))

ϕ(x, t) = ω0

(
t+ x

c

)
+ ϕ0

(9.1)

For any type of OPLL it is necessary to change the phase and thereby frequency of
the beam with time. Here it will be assumed that the associated changed spatial modes
are sufficiently similar so that the optical path length con be considered constant. The
instantaneous frequency is then defined as

ω(x, t) = dϕ(x, t)
dt (9.2)

This relation can be, for example, used to determine the phase shift due to an AOM whose
frequency is coherently swept to be

ϕ(t) =
∫
ωAOM(t) dt (9.3)

Due to Eq. 9.2 it is fully sufficient to describe the signal by its phase. The action of a
AOM will also be considered with regard to the phase of the beam. The driving RF signal
can be expressed as

pAOM(t) = ωct+ ϕAOM(t) (9.4)

such that the imprinted phase of the light beam becomes

ϕ(x, t) = (ω0 + ωc)
(
t+ x

c

)
+ ϕ0 + ϕAOM (9.5)

9.1.2 Basic Phase Stabilization Scheme
In the basic setup as shown in Fig. 9.2-A the steering of the phase is achieved by coupling
the first order of an AOM into the fiber. The phase at the remote end (i.e. experiment
table side) of the fiber is discriminated indirectly by a Mach-Zehnder type interferometer
at the local end (i.e. laser table side). One of the two beams that create a beat note on
the photo diode is the unshifted incoming beam. The other beam is a small fraction of
light that is retro-reflected at the flat uncoated fiber end at the remote end. On arrival
at the photo diode, it has run twice through the fiber and has been diffracted twice into
the same order at the AOM and thus forms a heterodyne beat signal together with the
undiffracted beam at twice the driving frequency.
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Figure 9.2: Schematics of the basic and improved optical setups. Subfigure A1 shows the basic setup,
subfigure B shows a variation where the AOM acts as the central beamsplitter of the interferometer
and subfigure C shows the improved setup, that lifts the restriction to PM-fibers.

Note that, the forward and backward propagating beams occupy almost identical spatial
modes and therefore need to be separated in the interferometer. Here this is achieved
by bringing the retro-reflected beam into an orthogonal polarization mode by means of
manual fiber polarization controllers, which make the fiber act as a quarter wave plate.
The two polarization modes are then simply separated using a PBS.

To understand the principle idea behind this setup I will for now make a simplifying
assumptions for the description of the phase propagation and will postpone the more
detailed discussion of their constraints to the next section. Here I assume that the optical
path length of the setup can be considered as constant within the timescales of light
propagation, i.e. the light picks up the same phase noise in both directions when passing
through the fiber and it experiences the same frequency shift both times it is diffracted at
the AOM. For a silica fiber and a beam of a wavelength of 1064 nm the index of refraction
is about 01.45 [175], which leads to a round-trip time of 77 ns for an 8m long fiber. The
associated frequency is ca. 13MHz and the delay can thus be neglected for relevant phase
disturbances in the fiber in the range of up to some tens of kHz. Following the same
argument the phase imprinted by the AOM is considered equal for the initial and the
counter-propagating beam.

Having made this assumption, consider Fig. 9.3, where the phase propagation of the setup
is sketched. The upper path shows the AOM and fiber twice, once for each passage.The
added phase that the beam picks up when propagating through the fiber and AOM is
denoted as ∆ϕ1(t) and ∆ϕ2(t) for the second passage, which are considered identical. The
lower path symbolizes the reference beam that is needed for the beat.
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Figure 9.3

From here it is evident that the total phase difference ∆ϕDetect(t) at the chosen inter-
ferometer position, equals twice the phase difference ∆ϕExp(t) at the fiber end up to a
constant in time and a constant offset by the modulation frequency ωc of the AOM

∆ϕDetect(t) = 2∆ϕExp(t) + const. != 2ωct (9.6)

which means that if ∆ϕ(t) has been stabilized to twice the modulation frequency of the
AOM plus a remaining stochastic noise distribution, so ∆ϕExp(t) at the remote fiber end
will be stabilized to ωc plus half the noise amplitude.

If the signal were to be obtained without passing through the AOM a second time the
linear relation between the measured beat phase and the phase at the fiber end would not
be given anymore.

9.1.3 Improved Phase Stabilization Scheme
The basic concept as presented above relies on the use of different polarization modes to
separate the initial beam from the retro-reflected that carries the desired phase information.
As mentioned in the introduction the basic concept cannot be transferred without changes
to the BFM setup, because here the use of high power PM-fibers is required. As the name
suggests PM fibers are meant to maintain the polarization mode and therefore cannot act
as QWP as the non-polarization-maintaining fibers did before. One could sacrifice the
polarization maintaining property by placing a QWP just in front of the fiber coupler.
But this would not lead to desired phase signal either, because the two polarization modes
corresponding to the two polarization maintaining axes experience two different phase
shifts and only the common mode phase changes will be measured as a phase signal.

Furthermore non-polarization-maintaining fibers possess a higher symmetry of the
polarization modes and therefore couple weaker to mechanical deformations as compared
to PM that are not coupled perfectly on axis. However one has to keep in mind that
in the above presented basic concept, the incoming and reflected beams probe different
polarization modes3, which possibly violates the previously made model assumptions and
thereby cause an inaccuracy in the measured phase.

3Consider e.g. the first section of the fiber after the incoupling. If the beam possesses eg. vertical
polarization here, the retroreflected will be of horziontal polarization as it passed twice the fiber that
acts as a QWP. Only if mechanical and thermal disturbances induce the same phase shift for the vertical
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An alternative solution to circumvent the problems entailed by using different polariza-
tion modes could be either using a non-polarizing beam splitter or a Faraday rotator in
the place of the PBS of the interferometer. The BS comes with the huge drawback of a
high power loss either in the lattice beam power or in the phase signal, depending on the
splitting ratio. A Faraday rotator would solve the problem with only the minor drawback
of a large footprint on the optical table and additional degrees of freedom to be adjusted
but also at an immensely increased cost.

In the following I will present an improved setup that we developed to remove the
polarization requirement of the basic concept without using any additional components.

The improved concept works very similarly to the basic concept, with the main difference
that the interferometer section and the steering section have been fused into a single group
of optical components. This is possible because of the optical properties of an AOM of not
only shifting the phase of the diffracted mode, but also separating them spatially. It can
therefore be employed as the central beam splitter of the phase detection interferometer.

Consider schematics B and C depicted in Fig. 9.2, where subfigure B is an intermediate
step and subfigure C shows the actual schematic of the improved setup. The only difference
between A and B is, that in B the undiffracted incoming Beam does not get dumped but
is retro-reflected. Passing the QWP twice puts it into the orthogonal polarization mode,
so that on its second undiffracted passage through the AOM it occupies the same spatial
and polarization mode as the signal beam that has picked up the phase of the fiber and
has been diffracted twice. At the PBS they get separated from the incoming beam and get
finally steered onto the photo detector. Except for the different intensity dependencies (see
Sec. 9.1.4 for a discussion) the two setups are clearly equivalent. Here the AOM has been
used like a beam splitter to superimpose the two optical signals and thereby replacing the
beam splitter in A. Thinking of the AOM as a beam splitter motivates to also use it to
separate the incoming from the reflected modes in order to replace the PBS and thus lift
the restriction to PM fibers. For that all four ports of the “beam splitter” have to be used.

As before in A and B, the incoming beam in C gets scattered at the AOM and picks up
a phase ∆ϕAOM(t), travels through the fiber and back thus picking up another 2∆ϕFiber(t)
and now instead of guiding the mode that gets diffracted another time onto a photo diode
as before, the undiffracted zeroth order is used. The missing phase difference that is needed
for measuring the phase at the end of the fiber is now gathered by the reference beam,
which picks up a phase of −∆ϕAOM(t), with a minus sign as it is diffracted into the minus
first order. Summing up all phases we get the same phase relation as before

∆ϕDetect(t) =
[
2∆ϕFiber(t) + ∆ϕAOM(t)

]
− (−∆ϕAOM(t))

The situation becomes very evident when considering the replacement schematic as
shown in Fig. 9.4.

and horizontal polarization mode, the assumption is valid that the phaseshift of the vertical (incomming)
polarziation is given by half of the total (vertical+horizontal) phaseshift.
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Local
Oscillator

Signal

Figure 9.4: Replacement schematic for the Improved setup.

9.1.4 Comparison
In the following the two schemes will be compared regarding their susceptibility to
mechanical noise and their capability to operate over a wide range of output powers, which
is relevant here in the context of lattice depth ramps.

Stability

The mechanical and thermal stability of this local end setup are highly relevant for the
aspired reduction of phase noise at the remote end of the fiber. Any thermal drift or
vibrations of most of the optical components of the setup potentially induces phase noise at
the remote end of the fiber. For the non-standard interferometers presented in this chapter
(see e.g. Fig. 9.2) we distinguish three categories of vibration susceptibilities of components,
depending on their position in the interferometer. Firstly there are the components the
beam passes before it has been split up into the interferometer arms. Any additional phase
shift introduced here is common mode and is therefore undetectable by the phase detector.
It nevertheless leads to a phase noise at the remote end of the fiber. In the context of
using the presented fiber lock for stabilizing an optical lattice, this means that the copies
of the fiver lock setups for the individual arms are susceptible to vibrations and thermal
drifts relative to each other. Secondly there are components that are either placed in the
reference arm of the interferometer or are part of the feedback arm and are only passed
once. These components lead to a change in OPL, causing a change of the phase signal
measured at the photo diode, that does not reflect the actual change of phase at the
remote end of the fiber and thereby constitutes an artifact. Thirdly there are components
that are part of the feedback arm and get passed twice, like e.g. the fiber itself. Any phase
perturbation is reflected in an accordingly changed signal at the phase detector and with a
theoretical ideal lock, that is infinitely fast, these fluctuations could be fully compensated
for.

Fig. 9.5 shows the vibration sensitive paths in a color code: red represents noise leading
to artifacts, orange represents sources of noise that can be compensated for and gray
represents elements that are insensitive to vibrations.

Our measurements presented later in this chapter (Sec. 9.3) are for those aforemen-
tioned reasons all prone to a broad spectrum of phase noise induced by the multitude of
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A CB

Figure 9.5: Schematic of the paths relevant for stability. Parts shown in red and orange are sensitive to
vibrations. While vibrations of orange parts lead can be compensated for by the lock, while vibrations
of the red parts cannot be compensated for.

contributing vibrational modes of the involved optical components. The data presented in
this chapter is therefore supplemented with interferometer background spectra that show
the phase noise without any fiber nor feedback.

Light intensities

For most experiments with ultracold atoms in optical lattices the capability of lattice ramps
i.e. to gradually increase or decrease the depth of the lattice potential is very important.
As for example when preparing a lattice state that entirely fills the lowest band, as it is
done in the experiments presented in Chapts. 6 and 7, where the lattice beam intensity is
linearly ramped from zero, up to the final lattice depths within an adiabatic timescale.

Therefore the fiber lock is required to work efficiently and seamlessly over a wide range
of different intensities. As the lattice ramp is known a priori, the lock parameters could
for example be electronically steered by a feed forward. Nevertheless, for obvious reasons
is it desirable to obtain the best quality of the interference signal before electronically
amplifying it. In both presented designs the beam intensities are regulated through the RF
power of the same AOM as used for the phase lock. As it will be pointed out here, this
leads to a nonlinear dependency of the error signal on the light intensity. Adding another
AOM to decouple these two tasks is undesirable because it would not only further increase
the complexity of the setup, but also reduce the maximally achievable lattice depth.

For analyzing the lattice depth dependent signal strength it is necessary to consider
the intensities of the phase probing beam IP and the reference beam IR. For an AOM
diffraction efficiency of η, an approximated zeroth order fraction of 1 − η and a beam
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splitting ratio of γ of the first beam splitter of the basic setup that separates out the
reference beam, the intensities for the different setups as depicted in Fig. 9.2 can be
summarized by

I
(A)
P ∝ (1− γ)η2 I

(A)
R ∝ γ

I
(B)
P ∝ η2 I

(B)
R ∝ (1− η)2

I
(C)
P ∝ η(1− η) I

(C)
R ∝ η(1− η)

(9.7)

where the superscript index coincides with the subfigure index. The modulation intensity
of the interference signal Imod =

√
IPIR, i.e. the intensity corresponding to the modulation

amplitude, are identical in cases B and C but differ from A:

I
(A)
mod ∝ η

√
γ (1− γ)

I
(B/C)
mod ∝ η (1− η)

(9.8)

This relationship is also shown in Fig. 9.6. There, instead of plotting the modulation
intensity as a function of the diffraction efficiency η, it is plotted as a function of the
actual relative intensity at the fiber remote end. In the basic setup, the available remote
end light power is diminished, because the reference beam intensity is split up from the
main input beam and the relative remote end intensity is thus given by (1 − γ)η. The
circles in Fig. 9.6 show the maximally available power assuming a diffraction efficiency of
ηmax = 0.8.

1% 4% 7% 10% 15%

Figure 9.6: Comparison of the modulation intensities of the interference signal of setup A versus
A/B for different relative reference beam strengths γ. The relative remote end intensity on the x axis
is given by (1− γ)η and the circles indicate the maximally possible intensity for the according γ if a
maximum diffraction efficiency of 80% is assumed.

Analyzing Fig. 9.6 reveals that the improved setup yields a stronger error signal over
most of the range of η. Only at high diffraction efficiencies and high reference beam
strengths γ does the basic setup provide a stronger signal, which however comes at the cost
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of a reduced maximally achievable lattice depth. Especially in the range of low diffraction
effciencies which are important when the atoms are loaded into the lattice and the lattice
intensity is ramped up from zero, the improved setups provide a significantly stronger
error signal.

Under the previous considerations, the alternative improved setups B and C are seem-
ingly equal with respect to their applicability to a wide range of intensities. However it is
worth noting, that I(B)

P scales quadratically and I(C)
P linear in the first nonvanishing order.

For shallow lattices in the case of the basic setup, a very small fraction of the input light
intensity carries the phase information and is amplified by an extremely strong reference.
This comes at the cost of a higher susceptibility to stray light and a higher DC offset that
might saturate the photo detector. To make this point clearer consider, as an example,
the concrete implementation that has been presented in Sec. 2.2. Here a total power of
5W is used in every lattice arm and the actual power coupled into the fiber is ramped up
starting from zero. At the beginning of this ramp, the AOM diffraction efficiency is close
to zero. This means that almost the entire light power is retro-reflected and focused on
the phase discrimination photo detector. For an attenuation of 96% of the reference beam,
matching the reflectivity of the flat fiber end, this would still lead to 200mW and thereby
require a larger dynamic range of the photo detector. This effect increases drastically if
the homodyning reference beam shall be stronger that the signal beam, i.e. at attenuation
factors below 96%.

So additionally, one should consider the average light intensity for the two different
setups. These are simply given by

Ī = IP + IR

Ī(B) = LPη
2 + LR(1− η)2

Ī(C) = (LP + LR) η(1− η)

with the additional loss factors LP and LR for the round trip losses and attenuation of
the beam carrying the fiber phase information and the reference beam respectively. The
different average intensities cannot be compared straightforwardly as a function of the loss
factors, because changing those loss factors also changes the modulation intensity. As a
measure for comparison we therefore use the modulation depth

µ = Imod

Ī
(9.9)

The modulation depth is plotted for a select set of ratios LP/LR in Fig. 9.7. The dashed and
solid lines represent µ(B) and µ(C) respectively. The modulation depth µ(C) is independent
of the diffraction efficiency η while µ(B) is strongly dependent on it. For the case LP > LR
(stronger attenuation of the reference) there is a window within the range 0 < η1 < η2 = 0.5
in which setup C yields a smaller modulation depth. In the case of a stronger reference
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Figure 9.7: Comparison of the modulation depth dependency on the diffraction efficiency η of setup
B (solid lines) versus C (dashed lines) for different attenuations of the reference beam (see legend).

the range is 0.5 = η1 < η2 < 1. For a use case where a ramp from η = 0 is relevant, the
behaviour of setup C is more favorable, since here the modulation depth does not drop to
zero for small light powers. The ideal situation is reached for equal losses in both beams,
where setup C exposes full modulation for all η.

9.2 All digital phase-locked loop
This section reports on the development of an all digital phase locked loop (PLL). In
the context of the fiber stabilization a PLL is used to generate and control the phase
of the driving signal for the phase control AOM such that the phase fluctuations of the
interferometer beat signal are being minimized. The developed electronic setup is however
by no means restricted to the purpose of fiber stabilization, but, as a general PLL, finds
application in a wide range of different areas.

A PLL can be defined as a device that synchronizes the phase of its output signal
to the phase of an input signal. Typically it is implemented as a feedback control loop
that comprises three main components (see Fig. 9.8): a controllable oscillator, a phase or
frequency detector and a controller.

For every one of the aforementioned three components there exists a variety of different
classes of devices that can be chosen from, depending on the context in which the PLL is to

controlled
oszillator

φ Phase detector
Loop Filter/
Controller

SystemReference

Figure 9.8: Components of a phase locked loop.
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be employed. A typical implementation would e.g. be a voltage controlled oscillator (VCO)
whose frequency is controlled by an PID-controller based on the error signal obtained from
an analog phase detector.

The PLL developed in this work follows a rather unusual choice of components. Instead
for the VCO, a so-called direct digital synthesis (DDS) integrated circuit (IC) generates the
output signal. The RF signals generated by DDS ICs feature an extremely low background
of phase noise [176]. The bandwidth of phase and frequency modulation, however, is lower
than what can be achieved with VCOs4.

Because DDS ICs are digital devices, their integration into a feedback loop is funda-
mentally different as compared to analog frequency sources. The DDS IC generates a RF
signal by sequential digital to analog conversion (DAC) of individual samples forming the
desired waveform. The parameters of the generated signal, such as frequency or phase, can
be changed dynamically by transferring their numerical values via a digital communication
interface to the DDS IC.

Using DDS for a PLL therefore requires to replace the control signal, that is classically
represented by a voltage proportional to the fed back phase or frequency, by a stream of
digitally encoded and time discrete data points. This, however, entails the necessity of the
other two PLL components also being digital: A digital controller to calculate and provide
such a stream, and a phase detector with a digital interface or alternatively an analog to
digital converter to digitize the analog error signal.

Here we implemented a discretized version of a proportional-integral-differential (PID)
controller. The discretization leads to the following equation [177]

un = un−1 +B0en +B1en−1 +B2en−2 (9.10)

Here ui is the discrete series of the actuation signal, where n refers to the latest time step,
and ei is the series of error signals. The parameters B can be linked to the P, I and D
gains (Kx) via

B0 = Kp +Ki
Ts
2 + Kd

Ts

B1 = −Kp +Ki
Ts
2 − 2Kd

Ts

B2 = Kd

Ts

(9.11)

where Ts is the sampling rate.

4Comparing all relevant models from Analog Devices, one of the leading DDS manufacturers, leads to
the conclusion that the minimal latency for setting a phase is under the best circumstances 60 ns. VCOs
can, in contrast, easily modulated with several MHz

125



Chapter 9 Development of a Digital Fiber Phase Lock

9.2.1 Hardware implementation

The hardware implementation is determined by a number of requirements imposed by the
optical setup and the aspired loop pipeline delay, determining the bandwidth of the system.
While a shorter pipeline delay is of advantage for any system, it will generally require
more sophisticated and more specialized measures to be achieved. Therefore a trade-off
decision had to be taken between speed on the one hand and extensibility, flexibility, ease
of development and cost on the other hand.

Phase detector

As a digital phase detector a simple analog phase detector in combination with an analog
digital converter is used. The analog phase detector generates an analog phase signal by
down-conversion. For the down-conversion the interferometer photo diode signal is mixed
with a DDS generated reference and subsequently the difference signal is extracted with
a low pass filter. Employing a DDS reference guarantees that no significant phase noise
artifacts are generated and furthermore adds a digital and non-phase-wrapped (see below)
interface for the steering of the reference phase signal.

A disadvantage for analog phase detector is their non-linearity, i.e. their output voltage
u is not proportional to the phase difference ∆φ between the reference and interferometer
signals, but behaves as u ∝ sin ∆φ , which exposes non-linear terms. The periodicity of
the sin dependency also creates a phase wrapping, which describes the fact that all phase
differences are effectively mapped onto an interval of −π to π. In the context of the PLL
phase wrapping can lead to phase slips: when ∆φ changes more than π within one lock
cycle period, the sign of the error signal will change, causing the controller to lock to the
next multiple of 2π and thereby creating a phase slip between the reference and control
signals.

To digitize the phase signal, which can be negative or positive a so-called bipolar analog
to digital converter is required. We chose the LTC1419 by Linear Technologies, which
samples at 800kHz with a precision of 14 bit. For the full contribution to the pipeline
delay budget not only the acquisition time has to be taken into account but also the time
required to transfer the data from the ADC to the controller. In this respect the chosen
controller offers a minimal transfer pipeline delay by exposing the sampled data without
additional delay at a parallel interface with the full width of 14 bit. High speed serial
transfer would be a viable alternative that however comes at the expense of increasing
complexity by adding additional serialization/deserialization units and requiring careful
PCB design to handle the high frequency signals.
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DDS IC

As a DDS IC we have chosen the AD9959 by Analog Devices. It offers good phase noise
characteristics and with 500MSpS 5 sampling rate it is suitable to drive common AOMs.
Similarly to the speed considerations made for the ADC, two pipeline delays have to be
taken into consideration: the internal delay for changing the phase of the output signal
and the data transfer delay determined by the interface. To our knowledge there are no
commercial alternatives that offer a significantly shorter data transfer delay than the 60 ns
of the chosen model. The data transfer pipeline delay for the selected model is determined
by the 4 channel SPI interface, that can be operated at 200MHz. There are models that
offer a more parallel interfaces, these however would require a different choice of controller
that exposes more high speed I/O lines.

Controller

For digital feedback loop controller so-called field programmable gate arrays (FPGA)
have become a very popular choice. FPGAs are particularly suited for real-time data
processing, because they can harness the full potential of speed and processing power
offered by semiconductor technology by operating at the lowest possible abstraction layer.
Opposed to microprocessors and digital signal processors (DSP), which are programmed
by providing a list of commands, the functionality of FPGAs is determined by specifying
the wiring of a grid of logic blocks like AND-gates and OR-gates. This way data can be
processed extremely parallelized and highly optimized for a specific application.

The access to this low abstraction layer however also requires a fundamentally different
development process, that may not only constitute an unnecessary or even insurmountable6

complication for developers without prior training, but is also associated with a generally
increased design effort . To implement a certain functionality with an FPGA, instead of an
ordinary program written in C or an assembly language as it is the case for microprocessors
or DSPs, a hardware design must be created with a Register Transfer Level design language,
like VHDL or Verilog. The development process, which typically involves many iterative
versions, is further slowed down by long compilation times. Depending on the complexity
compilation times range from minutes to hours, in contrast to usual sub-second to few
seconds for µCs and DSPs. Another difficulty is, that the minimal pipeline delay for a
controller implemented on a FPGA has a complex dependency on the hardware layout
and can therefore only be determined after compilation.

The upper bound, i.e. the limit for an infinitely fast controller, for the closed loop cycle
time is principally determined by the pipeline delay of the DDS and the propagation
time of the acoustic wave in the crystal of the AOM and can be estimated to about

5Mega samples per second
6described as ’insurmountable hurdle”” for many without background

by one of the main FPGA manufactures in an official application note.
[https://www.xilinx.com/support/documentation/application_notes/xapp1163.pdf]
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400 ns corresponding to a 2.5 MHz loop rate. The associated maximal bandwidth can be
estimated [177] to be around 250 kHz.

The envisioned PID algorithm does not offer a lot of parallelization potential, so the
speed gain by an FPGA be assumed to be moderate. A so-called finite impulse response
filter (FIR) of higher order that can be implemented highly parallel would require manifold
higher computation times on a processor. The algorithm (see also Eq. 9.10) for calculating a
feedback similar to an analog PID-controller however can be expected to be fully sufficient
in the present use case, where no sharp resonances in the feedback system itself, as it is
for example the case for piezo controlled systems, can be expected.

For a quantitative estimation consider a micro processor driven controller running at
200MHz, that is intended to have a pipeline delay equal to the minimal delay caused by
the AOM and DDS, thereby reducing the bandwidth by a factor of one half. For this
processor there will be time for 80 instructions cycles, which seams adequate for both
computation and communication overhead.

Because the reported spectral range of phase noise induced by fibers of up to 1 kHz
[164] and even an extended range of acoustic noise in the lab environment of up to 10 kHz
can be covered by processor driven feedback loop and in prospect of a bandwidth increase
below a factor of two for an FPGA based solution, we decided to implement a processor
based controller.

Specifically we chose the AM3359 by Texas Instruments, which is a system on a chip
(SoC) that unites, among other components, an Cortex-A8 core, which clocks with up
to 1GHz and two programmable real-time units (PRU), clocked at 200MHz, on one die.
The AM3359 offers a number of features that make it very suitable as a platform for a
feedback loop controller.

Firstly, program execution on the PRU is deterministic. That means with every clock
cycle a command is executed7, such that the execution time of every command of a program
can be reliably predicted. For a feedback control program e.g. the associated pipeline delay
is fixed and can be predicted from the source code. For ordinary non-real-time processors
the command execution time can vary by a number of factors like task scheduling by the
operating system, dynamic branch prediction and pipelined memory access, to name just
a few [178].

Secondly, the PRUs are specifically designed [179, 180] to flexibly interface a broad
range of external hardware components and offer therefore reading and writing access to a
decent number of input and output pin within one clock cycle. For our use case as a loop
controller, this means that the sampling output of the ADC connected via 14 parallel lines
can be read into a register for further calculation with a single operation. It is common
that access to I/O lines introduces further latency, by for example multiplexing.

And thirdly, monitoring, steering and programming of the PRU cores is comfortably
available from the ARM core on which a full Gnu/Linux operating system can be run to

7with the exception of a few commands that take two clock cylces to excecute.
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implement all non-real-time functionality.

Mainboard

All of these presented main components need to be appropriately linked to each other and
depend on further peripheral components for e.g. voltage supply, memory and filtering. For
the DDS and ADC, development boards from the manufacturers, that provide periphery
and expose communication interfaces at pin header rows have been used. For the controller
a fully equipped single board computer8 has been used, that provides RAM, ethernet
interface as well as power management and exposes most of the PRU I/O lines on two pin
header sockets. Furthermore a custom PCB (see App. C.1 for details) has been designed
to connect the components, translate logic levels and provide various voltage supplies from
a single power supply.

9.2.2 Software implementation
For a fully functional and controllable phase lock not only a main locking algorithm for
the PRU cores has been developed but also a complete software stack that allows to
operate the lock remotely over the network. It is thus possible to, for example, set the
central frequency, change the RF-power, adjust the PID constants and set point without
delaying the lock loop and to read out the error signal. The software stack also opens
many applications beyond locking, as for example the application as a dynamic frequency
source with software-defined modulation up to a bandwidth of 2 MHz.

PRU Locking algorithm

The central locking algorithm had to be implemented in an assembly language specific for
the PRUs-subsystem. The basic structure of the algorithm is very simple. Fig. 9.9 shows
the three steps of the main loop: first data is captured from the ADC. Then a new phase
value is computed according to Eq. 9.10 using the newly read phase value and the previous
phase and error values. Finally the new phase value is transferred to the DDS.

The actual implementation of this scheme is however is rendered slightly more com-
plicated by the fact, that only a subset of the possible 32 I/O-lines of each of the two
PRU cores are routed to the ball point contacts of the package of the SoC. Therefore the
ADC and DDS cannot be interfaced with a single PRU core and the connectivity has
to be shared between the two cores. This implies that there are two separate programs,
one running on each core, that need to synchronize and exchange data. Fig. 9.10 shows a
sketch of the distributed implementation of the locking algorithm. It can be summarized
by saying that PRU core number 0 (PRU0) is responsible for the communication with the
DDS as well as for requesting a new ADC sample and PRU1 reads the ADC sample and
calculates the corresponding control phase, which is subsequently passed together with a

8Beaglebone black
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Figure 9.9: Basic structure of the locking algorithm.

status update into the so-called scratch pad, a type of delay free shared memory between
the PRUs, from where it is received from the other PRU core to be serialized and sent to
the DDS.

Using two PRU cores in parallel has the advantage of several idle time slots, i.e. time
spans during which the one of the cores or both are not executing the lock algorithm but
are waiting for an external event, as for example in IDLE0 (see Fig. 9.10), where PRU1
waits for PRU0 to finish transmitting the new phase to the DDS. Instead for waiting
these idle times are used to implement an additional layer of communication with the host
program running in the GNU/Linux environment on the main ARM core. Any transfer of
larger chunks of data from the host program to the PRUs can only be done via the DDR
memory of the system. Access to it is however pipelined and will cause stochastic waiting
times, which would be undesirable outside of any idle time slot.

The both PRU cores feature 32 registers, which are 32 bits wide each. So operations
within one core can be completed without using any RAM and there are enough registers
to dedicate the values of the set point, Bi, ei and ui exclusively to a single register. For
the actual calculation of Eq. 9.10 the multiply and accumulate (MAC) unit is used. It is
an additional component of the SoC which supplies integer multiplication and addition
in a single clock cycle, that is thereby ideally suited for the task at hand. One difficulty
however is the restriction to integer numbers, that arises on second sight. As the actuated
signal, i.e. the phase sent to the DDS, is itself an integer number and the error signal
input from the ADC is encoded as a signed integer, using exclusively integers for a simple
calculation does not seem to impose any problems. In practice however the granularity
that created by requiring the feed back parameters Bi to be integers is unsatisfactory.
We solved this problem by right shifting the actuation signal by seven bytes after the
calculation. This corresponds to a (truncated integer)9 division of the actuating signal
by 128 and thereby refines the resolution of the feed back parameters by the same factor.
With a phase resolution of 14 bit of both the ADC and the DDS there is no risk in causing
a overflow with the 32 bit wide registers.

Care has also to be taken with the representation of negative numbers. The ADC

9rounding could simply be included by branching according to first fractional bit.
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Figure 9.10: Locking algorithm. This graphic illustrates how the locking algorithm is executed on
the two real time processors and how the data is exchanged between the involved components. The
red arrows indicate communication via signal lines and the black arrows symbolize memory transfer.
The @-sign is used to signal states: @phaseRdy indicates, that a new value has been acquired and
@ConvStrtd, that an acquisition has been started. For simplicity not shown here is the communication
to the DDR in the idle times, the commucication with the multiply-accumulate-unit (MAC) in the
PID calculation time slot and the communication with the shared memory in idle 2 phase to update
the PID constants from network user input.

conveniently provides the input signal as a two’s complement, with which multiplication
and addition routines are identical for positive and negative numbers. Nevertheless the
sign of the input value has to be determined so that the 14 bit two’s complement value
can be extended to the full width of the 32 bit register.

The pipeline delay of the main locking cycle is 70 instruction cycles, corresponding to
350 ns and thereby meets the expected requirements. The distribution over the individual
tasks can be retrieved form Tab. 9.1. For the total pipeline delay the latency of the DDS of
60 ns and the acquisition time of 1250 ns have to be taken into account (see also Tab. 9.2).
The total theoretical pipeline is therefore given by 1660 ns, which is expected to lead to
a controlling bandwidth of 60 kHz if a factor of ten between frequency associated to the
latency, and the bandwidth is assumed [177]. Note that the actual lock cycle frequency is
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Function instructions time [ns]

PID calculation 17 85
DDS communication 43 215
ADC communication 6 30
PRU-PRU communication 4 20
total pipeline delay 70 350

Table 9.1: Timings of the controller operations.

component time [ns]

controller 350
DDS 60
ADC 1250
total pipeline delay 1660

Table 9.2: Timings of the different components.

slightly higher because the cycle is not interrupted for the time the DDS takes for updating
the phase. The expected cycle frequency is 625 kHz.

Host program and communication shells

The host program is opposed to the PRU programs an ordinary program that is executed
by the ARM core and runs in the user space of the operating system. Its main purpose
is to launch and control the PRU programs and to expose this control over a network
interface for remote control. The PRUs are controlled over three communication channels.
Firstly, the PRU shared memory, which is a small (12 kB) section of memory that can be
access from all parties without delay and is therefore used to transfer the lock set point
and PID constants from the host program to PRU1. Secondly the external DDR memory,
of which 8 MB can be reserved for the PRU sub system by a Linux kernel module. The
DDR memory is used to transfer the error and actuation signals to the ARM core, which
in turn sends them over ethernet to the remote client, where it can be used to monitor the
lock performance with low latency. And thirdly, an interrupt is used to notify the host
over a successful halt of the PRU programs.

Because the lock controller does not have any physical buttons or displays a network
interface is necessary for operation. A minimal script language interpreter has been
implemented to exchange command sequences between a client and the host program.
The lock controller can thus be operated as a VISA industry standard network device.
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Alternatively it can simply be controlled from a telnet session or via a MATLAB library
we developed for this purpose as a part of the software stack.

An overview of the software stack and the communication shell model is given in
Fig. 9.11 and a minimal example on how a command issued from a matlab script cascades
through all shells down to the hardware is presented in App. C.2.
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Figure 9.11: Shells of the fiber locking software stack. The separation into many shells enables a
flexible use of the device. The user can use any VISA compatible interface to access the real time
functionality of the fiber lock by writing custom scripts that are interpreted on the controller. Larger
chuncks of data are transferred in binary mode.

The implementation of the full software stack allowed us to essentially use the fiber
lock similarly to a simple function call, so that measurements can be entirely written as a
single MATLAB script. To control the lock we also created a user interface with MATLAB,
where the PID parameters can be controlled with sliders and the current error signal and
its Fourier transform are live-plotted.

9.3 Implementation and Performance
In order to test the performance of the fiber lock that has been presented in this chapter
without risking any down time of the main apparatus, we constructed a separate setup
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as shown in Fig. 9.12. The setup closely resembles the principal setup already described
earlier (Fig. 2.1). For simplicity it is restricted to a single fiber. Furthermore an available
fiber coupled DFB10 laser at a rubidium compatible wavelength of 780 nm and a fiber
coupled output power of 3.4mW together with typical AOMs (Crystal Tech 3080-124) with
a center frequency at 80MHz were used. Using a different wavelength is not expected to
have any impact on the fiber lock performance. There are a few additions for benchmarking
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D-shaped

PD1- error signal
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Error in

Fiber Lock

BS1

BS2

Fold 3

Figure 9.12: Schematic of the setup used for benchmarking the performance of the digital fiber
lock.

purposes. Firstly, optics are added that enable heterodyne measurement of the phase of
the beam emitted at the remote end of the fiber. For that a 10% fraction of the beam is
picked up at BS1 and diffracted by another AOM and subsequently interfered via BS2
with the remote end beam. The interference signal is picked up by the photo detector PD2
(Thorlabs PDA10A EC). The HWP in the beam path serves the single purpose to align
the polarization axes of the two interfering beams for the different PM-fibers that have
not been key aligned. Secondly a pair of folding mirrors (1 and 2) is inserted bridge the

10Distributed Feedback Laser, homebuilt.
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fiber, so that the phase stability of the interferometer without fiber induced shifts can
be measured. Finally there is another folding mirror (3) for retro-reflection to mimic the
back reflex signal from the flat end of the fiber, but without the noise induced by it. The
retro-reflected signal has a very poor mode match with the incoming beam because there
are no lenses to refocus the beam. This is however compensated to some degree by the
high reflectivity as compared to the 4% in case of the fiber. It is necessary to have those
two reference paths, because when the fiber is bridged with folding mirrors 1 and 2 no
error signal is available and when using folding mirror 3 no evaluation signal is available.
The modes are shaped through the fiber coupler to create a focus in the primary AOM,
located half way between the couplers. To assure that the undiffracted beam is reflected
into the same spatial mode a lens has been added tho focus it onto the retro-reflection
mirror. Additionally to this D-shaped mirrors are used to separate the diffraction orders
early. Nevertheless, not the full potential for minimizing the spatial footprint of the setup
has been exploited. As will be shown later, the stability of the interferometer itself is an
important measure for the overall performance of the fiber lock. An essential detail that is
not visible from Fig. 9.12 is the slight deviation from the horizontal plane of the beams
passing AOM1. This was necessary to separate the reflexes of the AOM crystal from the
actual signal beam as the signal beam here is of the order of 1% of the incoming light
power and the anti reflection coating of the crystal is of a similar order of magnitude. The
fiber that has been used for the presented benchmarks is a bare 20m silica core PM fiber.

Both AOMs are steered by the fiber lock. AOM1 is connected to output of 80MHz
that is phase modulated according to the error signal input and AOM2 is driven with a
fixed frequency of 80 MHz + ∆νHeterodyne according to the desired heterodyne measurement
frequency. The error signal is picked up from PD1(Femto MK-S-S5972 with current amplifier
HCA-200M-20K-C). After a simple high pass filter (100MHz Minicircuits SHP-100H+)
and a low pass filter (250MHz Minicircuits BLP-250+), a 10 dB fraction of the signal is
picked up by a directional coupler and is used as an input signal for the spectrum analyzer.
The main signal is down converted at a mixer with a 160MHz reference signal originating
from the fiber lock. Finally the signal is pre-amplified (Minicircuits ZFL 500LN) and fed
into the ADC of the fiber lock. At the entry port a socket for exchangeable capacitors
between the input and ground has been added. The capacitors (if present) act together
with the 50Ohm input impedance of the ADC as a passive low pass filter of first order. Low
passing at this point is essential for anti-aliasing purposes [177]. A capacitance leading to a
low pass filter frequency lower than the actual lock cycle frequency will have a similar effect
as applying a higher value to the integration constant of the PID algorithm. The reason for
testing various different capacities is that capacitors have an exponential charging curve
and thereby do not provide ideal anti-aliasing.
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9.3.1 Cycle frequency
To reliably determine the cycle frequency of the lock, we operated the lock as usual but
feed a 1 kHz signal to the error input and subsequently Fourier transform the acquired
signal. The resulting frequency is given in units of inverse cycle durations 1/∆tStep and
thus enables the determination thereof. As a frequency source for the 1 kHz reference signal
two unused ports of the DDS operated at 100Mhz and 100.001Mhz are mixed (standard
Minicircuits ZAD-3+). As a reference clock for the DDS serves a calibrated commercial
(Rohde&Schwarz SMB 100) RF source. The Fourier transform has been conducted at a
basis of about 1 · 106 points corresponding to roughly 1300 periods, which should provide
a sufficiently high accuracy. Surprisingly the Fourier analysis results in

TCycle = 1295 ns fCycle = 772 kHz (9.12)

which deviates significantly from the previously estimated value of 1600 ns (see Tab. 9.211).
It is unlikely that such a big deviation stems from the execution time of the code on the
controller. The data sheet of the LTC1419 reveals that the acquisition time is subject
to deviations due to the manufacturing process and that only the maximal acquisition
time is given by the previously assumed 1250 ns. The typical acquisition time is specified
with 1040 ns. With the assumptions made about the code execution time we measure an
acquisition time for our model of 945 ns.

9.3.2 Step Response
Without setting up any further electronics it is possible to measure the step response
for the lock. For this we wrote a script that operates the lock at a certain set point for
the phase and instantaneously changes the set point. The step response arises from the
recorded error signal. In Fig. 9.13 data averaged over 1000 repetitions for 6 different
settings of the PID-parameters is depicted. The feed back constants, shown in the legend,
are given in integer units, which as explained earlier (Sec. 9.2.2) can be converted to the
conventional units by dividing by 128. A small anti-aliasing capacity of 10 nF is used to
maintain the highest possible resolution.

The observed behavior fully matches the expectations by resembling the behaviour of an
analog PID controller. For low values of the feed back constants, e.g. the blue line in the top
figure, an exponential approaching of the new set point value can be observed. For higher
values (red in top figure) the value is approached quicker and slight overshooting occurs.
For even higher values (yellow in top figure) a damped oscillatory behaviour manifests.
The oscillatory frequencies lie between 150 kHz and 250 kHz.

11The DDS pipeline delay is excluded here, because it does not influence the cycle time (see Fig. 9.10)
as it happens in parallel to further computation. Nevertheless it is included in Tab. 9.2 as it determines
the pipeline delay that is ultimately relevant for the performance of the lock.
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Figure 9.13: Step response of the fiber lock recorded with the fiber lock itself. With increasing
strength of the feed back the typical transition from an exponential to an oscillatory behaviour can
be seen.

9.3.3 Heterodyne Measurements
To benchmark the performance of the fiber lock we measured (Rohde&Schwarz FSV7)
a power spectral density (PSD) estimator of the error signal (Error signal monitor in
Fig. 9.12) around its carrier of 160MHz and of the interference signal with a reference
beam with a detuning of 1MHz (eval signal in Fig. 9.12). To compare different settings we
conducted seven measurement series with parameters summarized in Tab. 9.3. Additionally
we measured the background spectrum of the interferometer. In the case of the error signal
the background was produced by flipping folding mirror 3 and for the heterodyne signal by
flipping mirrors 1 and 2. The series have been taken for 32000 points in two regions, one
with a 500 kHz span, 100Hz resolution band width (RBW) and 500 averages. The other
one with a one with a 10 kHz span, 1Hz RBW and 20 averages.

The PSDs for the heterodyne measurement are shown in Fig. 9.14. In Subfig. B, it
can be seen that in the 5 kHz range all chosen series of different settings show a similar
reduction of noise over the unlocked signal (blue) of about 20 dB. Additionally it is quite
striking that for low frequencies in the range of 1 kHz a lot of sharp peaks appear. This
regions is depicted enlarged in Subfig. C. The surprisingly these perturbations of the

137



Chapter 9 Development of a Digital Fiber Phase Lock

series KP KI KD Capacitance [nF]
1 0 0 0 0
2 29 39 19 10
3 85 87 32 10
4 128 109 72 10
5 196 91 179 47
6 108 114 71 5
7 31 35 20 470

Table 9.3: Filter parameters for the measurement series.

otherwise smooth spectrum show a strong correlation to perturbations of the background
signal (black). The existence of a perturbed background signal means that even without
any feedback, the interferometer is unstable and thereby impose a natural limit to the
performance of the fiber lock. The initial measurements showed even more pronounced
perturbations but the observation of the coincidence of the peaks with a 100Hz grid
(especially Subfig. B), let us discover a damaged connection of the power supply of the
DFB laser source. Fixing the connection improved the spectra to those shown here. Inducing
vibrations to the optical table caused only a slight deterioration of the spectra so that the
mechanical origin for the perturbations could be ruled out. For those reasons it is highly
probable that the noise is induced by the malfunctioning laser source.

The undemodulated error signal corresponding to the same measurement series are
depicted in Fig. 9.15. Those spectra resemble the previously shown closely, which is a sign
for the well functioning of the fiber lock. It is remarkable to see that similar noise floors
are reached, when bearing in mind that it is result of the 4% reflection of a beam with an
initial light power of merely 3.4mW, that has passed twice through an AOM, has been
fiber coupled, so that the final power at the photo detector are around 40 µW.

Comparing the error signal at around 380Hz shows how the fiber lock eliminates noise
artifacts and thereby induces additional noise in the heterodyne signal.

For higher frequency it can be observed that the lock follows the typical behaviour
of a PID controller by eliminating low frequency noise a creating so-called servo bumps
between 120 kHz and 180 kHz of heightened noise levels. For most settings the point where
the unlocked and locked spectra cross lies at around 50 kHz.

138



A

B

C

Color legend(Series no.):

Figure 9.14: Power spectral density (PSD) of the fiber phase noise. Plotted are the PSDs of the
interference signal of the beam emitted by the stabilized fiber with a reference beam that has not
passed a fiber. The spectrum is shifted by the chosen homodyning frequency of 1MHz. The color
legend at the bottom applies to all plots, and associates the lock parameter series to the different
spectra. The “background” trace has been acquired for the unregulated interference signal when the
fiber is bypassed via a set of mirrors.
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Figure 9.15: Power spectral density (PSD) of the homodyne error signal. Plotted are the PSDs of
the interference signal between the fiber probing beam and the local oscillator beam. The homodyning
frequency of 160MHz (each beam 80MHz upon AOM passage) has been subtracted. The color
scale at the bottom applies to all spectra and indicates the measurement series for the chosen lock
parameters. In the “no fiber” series the fiber has been replaced by a retro reflecting mirror.



Outlook

9.4 Outlook
The bench mark of the fiber lock presented in this section, shows that it is capable of
reducing the fiber induced phase noise for frequencies under 50 kHz significantly. It is
expected to further improve the life time of atoms in optical lattices, where this frequency
range is especially relevant for excitations that lead to heating. The current implementation
of the fiber lock has proven to be extremely versatile especially through the additional
controllable DDS output channels (4 in total) and the live transfer of the error signal. A
permanent and automated observation of the fiber noise could be simply implemented and
disturbances could even be associated with experiment run IDs12 to post select perturbed
runs. For future improvements, the possibility for implementing a digital phase detector
should be investigated to improve the acquisition speed and quality.

12A network client that obtains the IDs has already been implemented for the lock.
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A Lattice Definitions
The lattice geometry for the hexagonal lattice can be summarized by the following values.
For the definition of the symbols refer to Chap. 3
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B Band structure Code
One central piece of code to calculate the band structure is the code defining the potential
in the Fourier basis given the (relative) Fourier components. In order to show how the
subindexing is manage a short MATLAB snippet defining the potential matrix V is given.
Variables are named according to the nomenclature established in sec. 3.3.1. Note that the
colon operator is used in matlab for index ravalling and the apostrophe operator represents
transposing.

Vmn = -V0 * [ dot(P1 ,P3) dot(P1 ,P2) 0;
dot(P2 ,P3) P0 dot(P3 ,P2);

0 dot(P2 ,P1) dot(P3 ,P1) ];
S1 = meshgrid ( c : -1 : -c );
s1 = S1 (:) ';
S2 = S1 ';
s2 = S2 (:) ';
[NN , MM] = meshgrid ( 1:D, 1:D);
V = zeros(D);
Vmndim = size(Vmn ,1);
min_k = -(Vmndim -1) /2;
max_k = -min_k;
for i=min_k:max_k

for j=min_k:max_k
V = V +Vmn(i-min_k +1,j-min_k +1) *(s1(NN)-s1(MM)== i)

.*( s2(NN)-s2(MM)== j);
end

end





C Fiber Lock
C.1 Electronics
The following figures show the schematics and pcb layout for the fiber lock electronics
developed as part of this work.
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Figure C.2: Schematic of the fiber lock mainboard.
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C.2 Fiber Lock Code
Here a simple example is given how a simple command for setting the frequency of the lock
cascades through the software shells before it reached the actual device. For this example
multiple wrapping of the same command might seem to create unnecessary overhead, but
for more complicated scenarios it provides vital functionality on every layer, as in the
case of another more complex example of a matlab scripts we implemented that allow to
monitor and operate the controller by providing a GUI, that shows the error and steering
signal, as well as their Fourier spectra, in realtime and allows to manipulate the PID
constants via a slider bar without interrupting the lock.

The first code snippet in Fig. C.3 is a realistical use case where the error functions
resulting from two different PID settings are compared.

Figure C.3: Code snippets for a simple command to set the frequncy of the lock.
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