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Abstract

In order to make molecules usable for electronic components, they often must be
brought into contact with solid-state systems (by adsorption or as linkers between
two electrodes). Here, the physical properties of the molecules can be strongly
influenced by the interactions with the solid. One example of such an interaction
is the so-called Kondo effect, where the spin of an adsorbate can be screened
by the conduction band electrons of a metal below a certain temperature. This
phenomena can be used to experimentally find an indication for the presence of spin
polarization on adsorbates (which is not known a priori). In addition, this effect
is interesting for information technology and computer science, as it is possible to
monitor the magnetism of adsorbates when manipulating their chemical structures
via the Kondo effect.

In this work, we obtained insights into the chemical and mechanical control of the
Kondo effect, and proposed a conceptional scheme which allows for an interpre-
tation in terms of local properties in line with chemical concepts such as partial
charges. For the latter, we found that the results using a truncated cluster ap-
proach are qualitatively in agreement with those obtained by applying periodic
boundary conditions. Combined with state-of-the-art calculations for Kondo sys-
tems such as DFT++, this concept could pave the way towards new insights for
understanding the control of the Kondo effect.

The physical properties of a system depend often on its atomistic structure, which
is why we studied the effect of structural changes on the DFT++ results at the
examples of a single cobalt atom on Cu(001) and carbonyl cobalt complexes on
Cu(001). At the same time, one observes structure–property relations for the
Kondo effect (or electron correlation effects in general) by such an analysis. We
found that increasing the adsorption distance of Co/Cu(001) significantly affects
the self-energy of the singly occupied orbitals, i.e. they are getting more corre-
lated, which one would expect to result in a lowering in the Kondo temperature.
The same trend was found for Co(CO)2/Cu(001). For structural optimization
of Kondo systems, one learns from this observation that an inadequate choice of
the electronic structure method can have considerable consequences for quanti-
ties extracted from DFT++. To this end, we compared the minimum adsorption
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distances as obtained from DFT, DFT++ and DFT+U . The DFT++ approach
suggests larger values for Co/Cu(001) as compared to DFT, but the differences
are of the same order as changing the exchange–correlation functional, which is
why we believe that applying the more expensive DFT++ approach for structural
optimizations is not necessary for adsorbates on surfaces. This assumption is also
confirmed by the almost unaffected adsorption distances for different values of
U , and the agreement of these distances between DFT+U and DFT++, because
the explicit treatment of electron correlation (DFT++) on Co yields no further
improvement compared with DFT+U .

More care should be taken in the treatment of the Coulomb part within the AIM
at lower electronic temperatures (T < 116 K). We have found for Co/Cu(001) and
Co/Ag(001) that at such electronic temperatures, the physical properties observed
by considering only density–density terms deviate from the results extracted from
the more expensive Coulomb tensor with all its matrix elements. In contrast to
this, the density–density approximation yields results for Co(CO)2/Cu(001) and
Co(CO)4/Cu(001) (C4v) that are in agreement with experimental observations
found by Wahl et al. [1]. According to this, one would conclude that this approx-
imation fails in the special case of Co on metallic surfaces, but is sufficient for its
molecular derivatives, which, however, requires further studies for a more general
conclusion.

With the aim to study how the Kondo properties are affected by chemical mod-
ification, we investigated the effect of CO ligands onto the Kondo temperature
at the example of carbonyl cobalt complexes by applying DFT++ using the
density–density approximation. It could be shown that the Kondo temperature
increases with the number of CO ligands attached to Co due to an increasing
hybridization at the Fermi energy of the Kondo-relevant orbitals. Additionally,
for Co(CO)2/Cu(001) sensitive changes in the magnetism on Co was found by
changing the adsorption distance, which suggests that the Kondo properties of
this system might be easily controlled mechanically. Using a truncated cluster
approach combined with a chemistry-inspired local decomposition analysis, it was
found that the CO ligands in case of Co(CO)4/Cu(001) (C4v) indirectly causes
an increased hybridization due to CO–surface interaction. This observation could
open the door for future applications, by focusing on the modification or substitu-
tion of ligands to indirectly increase the coupling of a magnetic atom (or molecular
fragment) to the conduction band electrons of a metallic substrate.
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Zusammenfassung

Um Moleküle für elektronische Bauteile nutzbar zu machen, müssen diese mit Fest-
körpersystemen in Kontakt gebracht werden (durch Adsorption oder als Linker
zwischen zwei Elektroden). Hierbei können die physikalischen Eigenschaften der
Moleküle stark durch die Wechselwirkung mit den Festkörpern beeinflusst werden.
Zum Beispiel wird bei dem sogenannten Kondoeffekt der Spin eines Adsorbates
durch die Leitungsbandelektronen eines Metalls unterhalb einer gewissen Tem-
peratur abgeschirmt. Dieses Verhalten kann man sich zunutze machen, um ex-
perimentell ein Indiz für Existenz von Spinpolarisation auf Adsorbaten zu finden
(was a priori nicht bekannt ist) oder auch um in spinpolarisierten Molekülbrücken
herauszufinden, ob das ungepaarte Elektron im Transportweg liegt oder nicht. Zu-
dem ist dieser Effekt für die Informationstechnologie und Informatik interessant,
um den Magnetismus von Adsorbaten durch die Manipulation ihrer chemischen
Struktur über den Kondo-Effekt zu steuern.

In dieser Arbeit haben wir Erkenntnisse über die chemische und mechanische
Kontrolle des Kondoeffekts erlangt und schlagen ein konzeptionelles Schema vor,
welches eine Interpretation in Form von lokalen Eigenschaften im Einklang mit
chemischen Konzepten wie Partialladungen ermöglicht. Für letzteres fanden wir
heraus, dass die Ergebnisse mit Hilfe von einem abgeschnittenen Clusteransatz
qualitativ in Übereinstimmung mit Ergebnissen unter periodischen Randbedin-
gungen sind. Kombiniert mit State-of-the-Art Berechnungen für Kondosysteme
wie dem DFT++ Ansatz, könnte dieses Konzept den Weg für ein tieferes Ver-
ständnis zur Kontrolle des Kondoeffekts ebnen.

Die physikalischen Eigenschaften eines Systems hängen oft von seiner atomis-
tischen Struktur ab, welche zum Beispiel häufig von der Wahl der Elektronen-
strukturmethode signifikant beeinflusst werden. Aus diesem Grund ist es für
uns erstrebenswert, die Auswirkungen der DFT++ Methode auf Strukturverände-
rungen zu untersuchen. Hierfür wurden als Beispiele ein einzelnes Cobaltatom auf
Cu(001) und Carbonylcobalt-Komplexe auf Cu(001) ausgewählt. Zusätzlich wird
dabei Einsicht in Struktur–Eigenschaftsbeziehungen erhalten, beispielsweise für
den Kondoeffekt oder Elektronenkorrelationseffekte im Allgemeinen. Wir haben
beobachtet, dass eine Vergößerung des Adsorptionsabstandes für Co/Cu(001) einen
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empfindlichen Einfluss auf die Selbstenergie der einfach besetzten Co-Orbitale
hat, was bedeutet, dass diese stärker korreliert werden und somit eine Erniedri-
gung der Kondotemperatur zu erwarten ist. Der selbe Trend konnte auch für
Co(CO)2/Cu(001) beobachtet werden. Aus dieser Erkenntnis lernt man für Struk-
turoptimierungen von Kondosystemen, dass eine ungeeignete Wahl der Elektronen-
strukturmethode einen beträchtlichen Einfluss auf die aus dem DFT++-Ansatz
extrahierten Eigenschaften haben kann. Zu diesem Zweck haben wir die opti-
mierten Adsorptionsabstände aus DFT, DFT++ und DFT+U miteinander ver-
glichen. Der DFT++-Ansatz kommt dabei zu größeren Werten im Vergleich zu
DFT, aber die Unterschiede sind von derselben Größenordnung wie sie von der
Änderung des Austauschkorrelationsfunktional zu erwarten wären. Aus diesem
Grund glauben wir, dass die teurere DFT++-Methode nicht notwendigerweise für
Strukturoptimierungen von Adsorbaten angewendet werden muss. Diese Annahme
wird auch durch den nahezu unbeeinflussten Adsorptionsabstand von Co/Cu(001)
durch die Änderung des U -Wertes, und durch die Übereinstimmung dieses zwi-
schen DFT++ und DFT+U bestätigt, da offensichtlich die explizite Behandlung
der Elektronenkorrelation (DFT++) auf Co zu keiner Verbesserung gegenüber
DFT+U führt.

Mit mehr Vorsicht sollte der Coulombteil im AIM behandelt werden. Wir haben
herausgefunden, dass für Co/Cu(001) und Co/Ag(001) bei tiefen elektronischen
Temperaturen die physikalischen Eigenschaften unter alleiniger Berücksichtigung
der Dichte–Dichte-Terme des Coulomb-Tensors von denen abweichen, wie die beim
Verwenden einer teureren Berechnung mit allen Matrixelementen zu erwarten
wären. Für Co(CO)2 auf Cu(001) und Co(CO)4 auf Cu(001) (C4v) hingegen liefert
die Dichte–Dichte-Näherung Ergebnisse, die mit experimentellen Beobachtungen
von Wahl et al. [1] übereinstimmen. Hierbei könnte der Schluss gezogen werden,
dass in dem besonderen Fall von Co auf metallischen Oberflächen diese Näherung
versagt, aber ausreichend für seine molekularen Derivate ist. Dies bedarf allerdings
weitere Studien, um ein generelles Fazit ziehen zu können.

Mit dem Ziel, den Effekt von chemischer Modifikation auf die Kondoeigenschaften
zu studieren, haben wir unter Verwendung der Dichte–Dichte Näherung den Ef-
fekt von Liganden auf die Kondotemperatur am Beispiel von Carbonylcobalt-
Komplexen untersucht. Es konnte gezeigt werden, dass die Kondotemperatur
mit steigender Anzahl an CO-Liganden zunimmt, was auf eine vergrößerte Hy-
bridisierung des Kondo-relevanten Orbitals an der Fermienergie zurückzuführen
ist. Zusätzlich wurde für Co(CO)2/Cu(001) eine empfindliche Änderung des Mag-
netismus auf dem Co-Atom abhängig vom Adsorptionsabstand beobachtet. Dies
könnte darauf hinweisen, dass die Kondoeigenschaften dieses Systems relativ ein-
fach durch mechanische Einwirkungen kontrollierbar sind. Unter der Verwendung
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Zusammenfassung

eines abgeschnittenen Clusteransatzes kombiniert mit einer chemisch-motivierten
lokalen Zerlegungsanalyse wurde gezeigt, dass die verstärkte Hybridisierung in
Co(CO)4/Cu(001) C4v indirekt durch die CO-Oberflächen Wechselwirkung in-
duziert wird. Diese Beobachtung könnte die Tür für zukünftige Anwendungen
öffnen, bei denen der Fokus auf der Modifikation oder der Substitution von Li-
ganden liegt, um die Kopplung eines magnetischen Atoms (oder eines Molekül-
fragmentes) an die Leitungsbandelektronen eines metallischen Substrats indirekt
zu erhöhen.
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1. Introduction

In recent years, the quest for smaller and more diverse electronic components
has intensified [2]. The ongoing miniaturization of electronic devices confronts
physicists, chemists and materials scientists with new challenges. On the one
hand, it must be possible to manufacture the components synthetically under
well-controlled conditions, and on the other hand, the desired properties must be
stable under operating conditions. In addition, there is the demand for low energy
consumption that goes along with reducing heat production during operation [3].

Molecular electronics provides an interesting portfolio of possible systems which
potentially can pave a way towards solving problems arising in nano-electronics
[4,5]. This research field may also provide an exciting playground for fundamental
science, since it allows insight into the behavior of molecules under extreme con-
ditions (and how this behavior can be modified via their chemical structure). A
fascinating approach that can help overcome the problem of heat production is to
use the spin degree of freedom of an electron instead of its charge, which defines
the field of molecular spintronics [6].

The idea of building electronic components based on atoms or molecules (bottom-
up approach) was already proposed by von Hippel [7] in the fifties, which was the
first mention of molecular electronics [8]. One of the first scientific works using
monolayers of molecules as a “bridge” for electron transport between two electrodes
was by Mann and Kuhn [9] in 1971. The breakthrough for molecular electronics,
however, was paved by the work of Aviram and Ratner [10] on the theoretical
description of rectification by a single organic molecule.

Already in 1936 Mott [11] postulated the influence of the electron spin on the mo-
bility of electrons. The real breakthrough for spintronics came with the discovery
of the giant magnetoresistance effect (GMR effect) by Grünberg [12] and Fert [13].
In this case, the electrical resistance depends on the magnetic orientation of two
magnetic layers separated by a non-magnetic layer. Nowadays, this effect is used
in almost every hard disk drive [14].

Motivated by the search for new applications, the idea developed to combine the
advantages of spintronics with those of molecular electronics. This new field, called
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“molecular spintronics”, is among others inspired by the experimental works of
Dediu et al. [15] and Rocha et al. [16]. It includes not only the electron transport
by spin-polarized molecules, but also the possibility to use the electron spin to
store and transport information [17].

Devices in molecular electronics and spintronics are often realized by a combi-
nation of a bulky material acting as a surface or electrode for the adsorption of
spin-polarized single atoms or molecules [18–21]. The physical properties of an
adsorbate can strongly be influenced by the interaction with the substrate. For
instance, if the singly occupied orbital of a spin-polarized molecule lies below the
Fermi energy of the substrate, it might lose the spin polarization due to electron
transfer from the substrate into this orbital. leading to a double occupation (for
further details about adsorbate–surface interactions, see Reference [22]). If, how-
ever, the Coulomb repulsion on the singly occupied orbital is large enough to avoid
such double occupation (or transfer of an electron to the substrate), the adsorbate
will keep its spin polarization. In physics, this situation is often called to as a
well-defined local moment [23].

In transition metal atoms or molecules that contain them, the Coulomb interaction
on the d or f shell is often large enough to favor such local moment formation.
Such systems belong to the class of so-called strongly correlated materials [24,25].
If the substrate is metallic, the interaction of the conduction band electron with
the local moment can result in a screening of the spin below a certain temperature,
which is known as the Kondo effect [26]. It manifests itself in scanning tunneling
spectroscopy (STS) experiments as an anomalous behavior at zero bias voltage (of-
ten called zero-bias anomaly) [27]. For this reason, the detection of a Kondo effect
can act as an experimental indication for unpaired electrons on adsorbates [28,29],
which is a priori not known when a molecule is brought into contact with a sub-
strate, but is essential for applications in spintronics. In addition, it is conceivable
to use the Kondo effect as a probe for spin-polarized molecules in a molecular junc-
tion, which could explain in a combined theoretical and experimental investigation
whether the unpaired electron is part of the tunneling pathway or not.

The focus on the Kondo effect has grown recently regarding the control of the
magnetic state of a molecule or an atom which could be promising for information
technology and computing [30, 31], realized by chemical modification [32–35], or
modifying the environment [36]. At present, using the Kondo effect directly for
practical applications in spintronics appears rather unpractical, because it is often
manifested below temperatures of 100 K. Nevertheless, there is experimental evi-
dence for molecules on surfaces with rather large temperatures (T ∼ 200−280 K) at
which the Kondo effect appears [1,32], which is promising for future work towards
new applications in spintronics.
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Chapter 1. Introduction

Another motivation for scientists to study the Kondo effect is its complex many-
body nature, which is why this effect is still not entirely understood. A theoretical
description is often difficult without significant approximations. It is exactly this
complexity which makes the Kondo effect fascinating, and a more complete picture
of it would be a big step towards understanding the correlation of electrons in a
more general context.
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2. Scope and aim of this work

For realistic atomic and molecular adsorbates, qualitative calculations of Kondo
temperatures are parameter-dependent, and (qualitative) structure–property rela-
tionships are often not known. This is why considerable theoretical and experimen-
tal work will be necessary to contribute to its elucidation. This is the motivation
behind this thesis, focusing on obtaining insights into structure–property relations,
and to obtain a quantitative picture for this effect.

Historically, the Kondo effect has its origin in physics. From a theoretical point of
view, several models have been developed for taking into account this many-body
phenomenon to explain experimental observations. As already mentioned before,
the attention to controlling the Kondo effect by modifying the chemical structure
of spin-polarized molecules on surfaces has grown recently. This is also one of
the reasons why this effect has moved in the focus of chemists. It appears likely
that the experience of chemists with the qualitative and quantitative properties
resulting from electron correlation can contribute to understanding this puzzling
many-body phenomenon.

This thesis aims to obtain insights into the chemical and mechanical control of
the Kondo effect. To this end, a conceptional scheme for a chemical analysis of
the bonding between adsorbates and surfaces based on the hybridization function
shall be established, which in combination with state-of-the-art calculations for
the Kondo effect can contribute to the understanding of its control.

One of the commonly used numerical approaches to studying the Kondo effect is
the so-called DFT++ [37] approach, which in our case is a combination of KS-DFT
and the AIM1. This combination captures the electron correlation effects within
a small sub-space explicitly, including the Kondo effect2. Since the DFT++ ap-
proach is in practice not entirely free from approximations, certain parameters

1DFT++ approaches can, e.g., also be a combination of DFT and dynamical mean-field theory
(DMFT), but here we exclusively mean the combination of DFT+AIM.

2It should be mentioned that KS-DFT is in principle an exact method and should also account
for ground-state properties of Kondo systems, if the exact exchange–correlation functional
would be known.
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Chapter 2. Scope and aim of this work

entering this approach will be tested concerning their effect onto the Kondo prop-
erties. This requires knowledge about whether a Kondo effect in the systems under
investigation is present or not above a certain temperature, for which experimental
observations taken from the literature will act as a reference.

Furthermore, the focus of this work will be on translating the fundamentals used
in solid state physics for describing the Kondo effect into a language that is in
line with concepts and terminology known in chemistry. This should highlight
common ground in Kondo physics and in chemical bonding and could make it easier
to transfer ideas and methods between both communities. Wherever possible,
examples from chemistry will be used to obtain further insight into the presented
physical context.
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3. Theory

In this chapter, we discuss the most important theoretical concepts that are nec-
essary for understanding the results of this thesis. At first, we briefly introduce
the Kondo effect and density functional theory. Afterwards, there will be an in-
troduction on Green’s functions in quantum chemistry, and a discussion about
the different definitions of electron correlation in the community of physicists and
chemists. Once the different definitions about electron correlation become clear
and the basics of Green’s functions are known, the Anderson impurity model will
be introduced to take into account electron correlation explicitly within a given
sub-space. This will be complemented by an introduction about the Continuous-
Time Quantum Monte Carlo (CT-QMC) method, which will be used in this work
to solve the AIM.

3.1. The Kondo effect

Figure 3.1.: Resistance vs. temperature curve for a metal (blue), a superconductor
(green) and a metal with an impurity that shows the Kondo effect
(red). Figure taken and adapted from Reference [26].
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Chapter 3. Theory

Imagine the task would be to measure the conductance of several metals like
copper, gold, silver, etc. as a function of the temperature. Before doing so,
one would think of what could be expected by these measurements, and would
likely conclude that the resistance drops to a constant value as the temperature is
lowered . This behavior is shown in blue in Figure 3.1, and is caused by getting
rid of thermally induced lattice vibrations. It is clear that the observation of
an increasing resistance of gold below a certain temperature was challenging to
explain in 1934 [38]. Although it was believed to be caused by impurities, there
was no plausible explanation for this observation. It took almost 30 years until
Jun Kondo [39] found a theoretical explanation for the increased resistivity at low
temperatures for impure metallic systems (red plot in Figure 3.1). He explained
that this phenomenon is caused by the scattering of conduction band electrons by
the localized magnetic moment of an impurity. Kondo showed that the interaction
between the local magnetic moment of the impurity and the itinerant electrons of
the metal is of antiferromagnetic nature [40], similar to what a chemist understands
as an open-shell singlet state [41].

Figure 3.2.: Schematic representation of a quasi particle, at the example of the
quasi horse. left: A horse without dust. right: The horse is dressed
by dust and in the spirit of Landau would then be called a “quasi”
horse. The “quasi” horse has in contrast to the “real” horse a renor-
malized mass, as a consequence of the clouding dust. Figure taken
from Reference [42].

An important step towards understanding the Kondo effect was made by Nozières
[43], who showed that the Kondo effect can conceptually be described as a local
Fermi-liquid [40]. The basic idea of a Fermi-liquid is that the strong interaction
between the local spin of the impurity and the conduction band electrons, leads
to collective low-energy excitations close to the Fermisurface. Below a certain
temperature, impurity electrons dressed by these excitations can behave as weakly
interacting quasiparticles in the spirit of Landau’s phenomenological Fermi-liquid
theory [44]. He argued that only the effective magnetic moment and the mass of
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3.1. The Kondo effect

quasiparticles have to be renormalized1. A good illustration for the renormalized
mass is depicted in Figure 3.2 if one considers the “real” horse as the non-interacting
fermion which changes its mass when it runs through dry sand and swirls up dust
dressing it to a “quasi” horse. In sum, the horse and the dressing cloud of dust has
clearly a different mass as the “real” horse.

In the density of states, or the excitation spectrum, the Kondo effect can be seen
as a resonance close to the Fermi energy which corresponds to these quasi particles
[40] (see Section 3.6.3). The screening of the local moment due to a Kondo effect
has also consequences for the local (impurity) spin susceptibility2 χω=0

imp. For an
unscreened local moment, one expects the well-known Curie behavior,

χω=0
imp(T ) =

1

T
, (3.1)

i.e., the susceptibility increases as the temperature T is decreased. For Kondo
systems, this behaviour can only be observed above the Kondo temperature TK

where the local moment is unscreened. It gets modified below TK, where the system
shows Pauli paramagnetism (χω=0

imp(T ) constant in T ).

In the simplest case, which is one impurity orbital with a constant hybridization
Γ to the conduction band electrons [40], the Kondo temperature can be estimated
as

kbTK =

√
ΓU

2
exp(

πε(ε +U)

ΓU
) , (3.2)

with ε being the energy level of the impurity relative to the Fermi level, U the
Coulomb interaction and kb the Boltzmann constant. It will later get clear what
a constant hybridization means in this context, but for now it is only important
to know that one can learn some interesting properties for the Kondo effect from
Equation 3.2: Lowering U or increasing Γ will shift TK towards larger temperatures.
As we will see in the later course of this work, the Kondo effect in realistic systems
is much more difficult to understand than in this simple model, but these properties
give at least a feeling of how it depends on these two parameters.

1This is only a very brief summary of the important Landau Fermi liquid theory, which in detail
goes beyond the scope of this work. The reader is referred to the textbook of Coleman [44]
for further details.

2The susceptibility is actually energy-dependent, e.g., if it is measured in response to an alter-
nating magnetic field, rather than a constant (ω = 0) one. The ω = 0 susceptibility is often
referred to as the physical susceptibility.
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Chapter 3. Theory

3.2. Hartree–Fock theory

Hartree–Fock (HF) theory is a quantum mechanic approach to calculate the elec-
tronic wave function of a many particle system. It is a so-called ab-initio method,
which means that it is free of empirical parameters and only requires natural con-
stants.

In this theory, one uses the exact many particle operator in the scope of the Born–
Oppenheimer approximation which reads for N electrons in atomic units3 [45],

Ĥ =
N

∑
i=1

[−
1

2
∇2
i + Vi]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ĥi

+
N

∑
i<j

1

ri − rj
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Vee

, (3.3)

with ∇ being the Nabla operator, Vi the interaction between the electron i and
the nuclei, and Vee the interaction between electrons i and j at positions ri/j.

The aim is to calculate the expectation value of the energy of a system,

⟨E⟩ = ⟨Ψ∣Ĥ ∣Ψ⟩ (3.4)

with Ψ being the electronic wave-function. One choice for Ψ is the so-called Slater
determinant, which reads for N electrons [45]

Φ =
1

√
N !

RRRRRRRRRRRRRRRRRR

ψ1(1) ψ1(2) ... ψ1(N)

ψ2(1) ψ2(2) ... ψ2(N)

... ... ... ...
ψN(1) ψN(2) ... ψN(N)

RRRRRRRRRRRRRRRRRR

. (3.5)

Here, ψk are single particle functions (spin orbitals).

A Slater determinant describes an electronic configuration in which one electron
is located in ψ1, another one in ψ2, and so on (the electrons are indistinguishable).
Furthermore, it fulfills the Pauli exclusion principle, which is the antisymmetric
relation of the wave function with respect to the exchange of two identical particles
(fermions). Expressing Equation (3.4) in terms of Φ and using some simplifications,
one ends at an effective single-particle equation (the Hartree-Fock equation) [45],

f̂i∣ψi⟩ = (ĥi +
N

∑
j=1

[Ĵj − K̂j]) ∣ψi⟩ = εi∣ψi⟩. (3.6)

3This is actually the so-called electronic Hamilton operator after separation of the nuclei and
electrons from the full Hamilton operator within the Born–Oppenheimer approximation.
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3.2. Hartree–Fock theory

Here, ĥi = −1
2∇

2
i +Vi (as already introduced above), and Ĵj and K̂j are the so-called

Coulomb and exchange operators. ψi is the eigenfunction of the Fock operator f̂i
with the corresponding eigenenergy εi.

It turns out that in Equation (3.6) the electron–electron interaction (term in square
brackets) simplifies to an effective potential in which the electron i interacts with
the average of the remaining electrons. This is the so-called mean-field approx-
imation and turns the HF theory from a many-particle theory into an effective
one-particle one. The energy of a system then becomes,

EHF =
N

∑
i=1

εi −
1

2

N

∑
i=1

N

∑
j=1
j≠i

(Ĵij − K̂ij). (3.7)

In Practice, one obtains EHF by the so-called variational principle4, for which
reason the total energy obtained within HF theory will always be above the true
ground-state energy E0 of a system. The difference EHF − E0 is then defined as
the correlation energy Ecor [46], which is only a small contribution to the total
energy of a system, but gives rise to many interesting phenomena observable in
experiments. In Section 3.5 it will be discussed what types of electron correlation
are known in physics and chemistry.

Several electronic structure methods have been proposed to overcome this draw-
back of the HF theory. For instance, the electronic wave-function can also be
expanded as a linear combination of different Slater determinants (different elec-
tronic configurations) [47]

Ψ =∑
i

CiΦi, (3.8)

with Ci being the coefficient of the Slater determinant Φi. Including all excited
determinants (usually one takes the HF ground-state configuration as reference)
would yield the numerically exact solution to the electronic Schrödinger equation.
However, in practice this is only possible for very small molecules, which is why
one has to truncate the sum over the determinants appearing in Equation (3.8).
Two examples commonly used in quantum chemistry applying such truncation
are the Configuration-Interaction (CI), and complete active space self-consistent
field (CASSCF) theories [47,48].

4In HF theory, the functions ψi are approximated as a linear combination of atom centered
basis functions φk (ψi = ∑k cikφk), for which the coefficients cik are varied to yield ψi which
minimizes the energy of a system until a given convergence criteria is fulfilled.
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Chapter 3. Theory

3.3. Density functional theory (DFT)

Nowadays density functional theory (in the spirit of Kohn and Sham, see later) is
probably the most widely used quantum mechanic method for electronic structure
calculation. It is based on the proof of Hohenberg and Kohn [49], that there is
a bijective relation of the external potential of a system with the ground-state
density. This gives rise to the idea of calculating the energy of a system from the
ground-state electron density, rather than the electronic wave function, resulting
in the energy functional [45]

E = E[ρ]. (3.9)

One choice for describing the energy functional of Equation (3.9), as proposed by
Kohn and Sham, is

E[ρ] = Ts[ρ] + J[ρ] +EXC[ρ] + ∫ Vext(r)ρ(r)dr. (3.10)

Here, Ts[ρ] is the kinetic energy of a reference system of non-interacting fermions
which have the same ground-state density as the real system. It is assumed that the
difference between the kinetic energies of the reference system and the real system
is small and can be included in the exchange-correlation functional EXC[ρ]. The
term J[ρ] captures the classical electron–electron interaction, and Vext(r) is the
external potential that arises due to the electron–nuclei interaction. Throughout
the rest of the work, the abbreviation DFT is used for the Kohn–Sham formalism
introduced above.

It is important to note that the Kohn–Sham formalism is in principle exact, if
the exact exchange-correlation functional EXC[ρ] would be known. At present,
for EXC[ρ] only approximations are available which can be grouped according to
their nature of including the electron density for describing this term. One of
the simplest exchange–correlation functionals, developed for materials with a ho-
mogeneous electron density, is the LDA. Although working well for solid state
calculations, for molecular systems with a rapidly varying electron density LDA
type functionals have shown only little success [50]. Improvement could be reached
by taking into account the first derivative of the electron density with respect to
spatial coordinates, resulting in general gradient approximation (GGA) type func-
tionals. There are many more groups of exchange–correlation functionals, such
as meta-GGA, which also includes the second derivative of the electron density,
or hybrid functionals where a part of the HF exchange is included [47]. Never-
theless, all of the present-day exchange–correlation functionals suffer from their
approximate nature, which is problematic, e.g., for describing dispersion energies,
or systems with strongly correlated electrons [50,51].
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3.4. Introduction to Green’s functions

3.3.1. Broken-symmetry DFT

The description of antiferromagnetically coupled spin centers (atoms or molecu-
lar fragments with unpaired electrons) usually requires a multi-determinant de-
scription. However, as mentioned before, multi-determinant electronic structure
methods are computationally demanding, which is why one often bypasses this
problem by using broken-symmetry DFT [52]. This approach is based on a single
determinant description with a broken spin symmetry, where in the simplest case
two spin centers are antiferromagnetically coupled with one spin-up electron on
center 1 and one spin-down electron on center 2 (Figure 3.3). In a wave-function
theory, such spin-localization poses a problem for antiferromagnetically coupled
systems, because with a multi-determinant wavefunction, the spindensity would
be zero everywhere.

Center 1 Center 2

Figure 3.3.: Two antiferromagnetically coupled spincenters.

The broken-symmetry determinant can be understood as an equal admixture of the
ferromagnetically and antiferromagnetically coupled state, which in our example
(Figure 3.3) would be the triplet and singlet state [53]. This leads to what is called
spin-contamination [54], i.e. the broken-symmetry determinant is not an eigen-
function of the Ŝ2 operator. However, since in KS-DFT the single-determinant
wave function describes a noninteracting reference system rather than the true
many-electron ensemble, it is by no means clear whether this poses a problem or
not (the matter has been discussed in the literature extensively [55–60]). In prac-
tice, broken-symmetry DFT is widely and successfully used in quantum chemistry
for evaluating exchange coupling constants, hyperfine coupling constants and g-
tensors [61–63].

3.4. Introduction to Green’s functions

In this section, we will briefly introduce the concept of Green’s functions (propaga-
tors) in quantum mechanics, because this technique is important for understanding
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Chapter 3. Theory

upcoming chapters of this thesis. Green’s functions are commonly used in classical
mechanics to solve linear differential equations. However, this powerful technique
was successfully adopted and applied in quantum mechanics, for instance, in the
field of molecular electronics regarding Landauer’s formalism of coherent electron
transport [64], or in quantum physics for describing systems of strongly correlated
electrons [65].
For a time-independent Hamiltonian operator ˆ(H) the Green’s function is gener-
ally defined as [66]:

(E − Ĥ ± iη)Ĝ(E) = 1̂ (3.11)

Ĝ(E) = (E − Ĥ ± iη)−1 (3.12)

In the following, the operator hat of the Green’s function will be dropped, as
usual in the literature. If an effective one-particle problem is solved, as e.g. the
Hartree-Fock equation, one obtains the eigenfunctions ψi and the corresponding
eigenvalues εi. They can be used to build the Green’s function of this problem
directly as,

G(E) =∑
n

∣ψn⟩⟨ψn∣

(E − εn ± iη)
. (3.13)

Equation (3.13) is the so-called Lehmann representation of a Green’s function [66],
where iη is an infinitesimal small imaginary offset. For +iη the (retarded) Green’s
function Gr can be continued analytically on to the upper complex plane, whereas
for −iη the (advanced) Green’s function Ga can be continued analytically on to the
lower complex plane. In passing, we have introduced the first important property
of Green’s functions, namely Gr and Ga are conjugate transposes of each other
[66,67],

Gr(E) = [Ga(E)]†. (3.14)

Both the advanced and the retarded Green’s function have the same physical
meaning, and one can stick either to one of them. In the following (and throughout
the rest of this section) we assume the limit iη → 0 so that we can replace E ± iη →
E.

Inspired by the textbook of Cuevas and Scheer [66], we consider in the following
a simple tight binding model for a hydrogen molecule (Figure 3.4) for getting a
feel for using Green’s functions in practice. In this example, both hydrogen atoms
represent a so-called site, which is coupled to another one via a hopping term t.
For such a system, the Hamiltonian takes the following matrix form,

H = (
ε0 t
t ε0

) . (3.15)
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Here, ε0 are the on-site energies. The eigenvalues of this tight binding model are
ε+ = ε − ∣t∣ and ε− = ε + ∣t∣, corresponding to a bonding and anti-bonding state
ψ+ =

∣1⟩+∣2⟩
√

2
and ψ− =

∣1⟩−∣2⟩
√

2
.

Figure 3.4.: A hydrogen molecule in a minimal basis (one orbital per atom), for
which the coupling between both orbitals is described by a hopping
term t. Figure taken from Reference [66].

There are different ways to obtain the matrix Green’s function for this system. One
can either directly build the Green’s function by using the definition of Equation
(3.15), or by using the eigenvalues to build the Green’s function from the Lehmann
representation (Equation (3.13)). Building the Green’s function directly from the
matrix form of the Hamiltonian (Equation (3.15)) yields

G−1(E) = (
E − ε0 −t
−t E − ε0

) , (3.16)

and after inversion,

G(E) =
1

(E − ε0)2 − (−t)2
(
E − ε0 t
t E − ε0

) . (3.17)

Equation (3.17) is the full Green’s function of the model system, however, often
one is only interested in local properties (as it will be important later on in this
thesis), and therefor the local Green’s function of site 1 can be computed by taking
the element g11(E) of G(E),

g11(E) =
E − ε0

(E − ε0)2 − (t)2
. (3.18)
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Here a small letter g was introduced for local Green’s functions. Equation (3.18)
can be rewritten as

g11(E) =
1/2

E − (ε0 + t)
+

1/2

E − (ε0 − t)
, (3.19)

where one can see that the local Green’s function of site 1 has poles at the eigen-
values ε0 + ∣t∣ and ε0 − ∣t∣.

One important property of Green’s function is that the imaginary part (remember
that a substitution of E → E ± iη was done) of it contains information about the
local density of states5 of a system as

ρ11(E) = −
1

π
Img11(E), (3.20)

where ρ11(E) is the local density of states of site 1. By inversion of Equation
(3.18), one can see how site 1 is affected by the presence of site 2 and the resulting
coupling t between both sites,

g−1
11 (E) =

(E − ε0)2 − (−t)2

E − ε0
= E − ε0 −

t2

E − ε0
= (g0

11(E))−1 − t2g0
22(E)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆11(E)

. (3.21)

Here we have introduced the unperturbed Green’s functions g0
11(E) and g0

22(E) (as
it would appear if we set t = 0). In this example g0

11(E) = g0
22(E) = 1

E−ε0
, because

both atoms have the same on-site energy ε0.

It shall further be noted that the last term in Equation (3.21) arises due to the
coupling, or hybridization of site 1 with site 2. This term is in the literature
often called as energy dependent hybridization function (∆11(E)). The prefix
“energy-dependent” will later be discussed in more detail (see Section 4), and we
are now interested in obtaining the Green’s function of site 1 by using the Lehmann
representation. This is achieved by inserting the eigenvalues of our model system
into Equation (3.13) and taking the element ⟨1∣G(E)∣1⟩,

g11(E) =
⟨1∣ψ+⟩⟨ψ+∣1⟩

E − ε+
+

⟨1∣ψ−⟩⟨ψ−∣1⟩

E − ε−
=

∣⟨1∣ψ+⟩∣2

E − ε+
+

∣⟨1∣ψ−⟩∣2

E − ε−
. (3.22)

Because ⟨1∣ψ+⟩ = ⟨1∣ψ−⟩ =
1√
2
, it follows that

g11(E) =
1/2

E − ε+
+

1/2

E − ε−
, (3.23)

5Note, that we have taken the local Green’s function of site 1, and in general the imaginary part
of a Green’s function of the entire system contains the information about its total density of
states.
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which is the same as Equation (3.19).

In Equation (3.22), we have done a projection of the full Green’s function G(E)

onto the local site 1. As we will show in the next section, this will be of further
interest for solving the many-body problem of an impurity coupled to large num-
ber of states, which gives rise to an energy-dependent hybridization function as
mentioned before.

3.5. How to define “electron correlation”?

Before proceeding with the next sections, it is worthwhile to spend some attention
on different definitions and uses of the terms “strong”, “static” and “dynamical”
correlation. For the term “strong correlation”, we follow here the definition given
by Peter Fulde [41]. It states that a material is strongly correlated if the Coulomb
repulsion on an orbital is large compared to the kinetic energy gained by overlap-
ping with different orbitals. In a tight binding model this could be expressed as
t < U , where t is a hopping parameter (similar to what we have already introduced
in Section 3.4), and U is the Coulomb repulsion on an orbital. For t < U , the
charge fluctuations on an atom are reduced, which in a chemistry sense can be
understood as the electronic wave function consisting of only a small amount of
ionic configurations [41, 68] (see Section A.1 what ionic configurations means at
the example of H2).

This is so far a qualitative estimation of the correlation strength, and after this
explanation a quantum chemist would expect that in the situation of strong cor-
relation in a molecule, there exists molecular orbitals which character is mainly
that of the atom-centered basis functions (which form the molecular orbital) with
only little overlap between them. This comes true for instance, in the bond break-
ing scenario of a H2 molecule (Figure 3.5) where the highest occupied molecular
orbital (HOMO) has 1s character on both hydrogen atoms, with only little (or
vanishing) overlap between them. For this, the true wave function has to be a
linear combination of multiple Slater determinants as shown in Equation (3.8).
This is essentially what chemists call static correlation. On the other hand, at
equilibrium distance, the correlation in a hydrogen molecule is dominated by the
so-called dynamical correlation. This is the correlation energy which arises due to
the electrons avoiding each other6.

6It should be mentioned that at equilibrium distance the amount of correlation is small com-
pared to the kinetic energy in a hydrogen molecule, which is why H2 does not belong to the
class of strongly correlated materials.
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dHH = 0.75  dHH = 2.75  

Figure 3.5.: HOMO of H2 at equilibrium distance dHH = 0.75 Å (BP86/STO-3G),
as well as at dHH = 2.75 Å. ISO-value: 0.1.

For the H2 example, we introduced the definition of static and dynamical corre-
lation in the chemistry sense. The former arises from mixing different electron
configurations (Slater determinants) that are close in energy, or nearly degenerate
with the HF Slater determinant, whereas the latter has its origin from electrons
that are spatially close to each other, and there is no excited Slater determinant
that mixes with the HF determinant [46,47] (in the wavefunction shown in Equa-
tion (3.8)).

Now that we have introduced the chemistry definition of static and dynamical
correlation, it shall be mentioned that Fulde’s definition of strong correlation does
not distinguish between these two. A strongly correlated material can thus be one
in which either the dynamical or static correlation (or both) is large compared
with the kinetic energy of the electrons. Furthermore, this definition shall not be
confused with the definition of the term correlation energy, which the physicists
also define as the the difference between the Hartree-Fock energy and the true
ground-state energy of a system (see Section 3.2), but is rather rarely used in the
context of strongly correlated materials.

As if things were not complicated enough, in the physics community the terms
dynamical and static correlation are used differently than introduced above. In
physics, the term “dynamical” is used for frequency or energy-dependent quantities
such as, e.g., when the self-energy or the hybridization function7 are not constant
in energy [37].

“Static” in this sense means the opposite situation, e.g., in Hartree-Fock theory the
self-energy is a pure energy/frequency-independent term, due to the mean-field
character of this theory [44,69]. When referring to DFT + U (see Section 3.6.2) as

7It will later be discussed what these quantities are.
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3.6. Beyond DFT — explicit treatment of electron correlation

being non dynamical/static, we mean that the self-energy in this approach is still
frequency-independent (although DFT does include what chemists call dynamical
correlation, i.e., including the effect of electrons avoiding each other due to their
Coulomb repulsion), because the added Coulomb potential is just a mean-field-like
term [37].

Of course, these definitions must be treated with care, because DFT is in principle
exact and can also account for what a chemist calls static correlation [70–75]
(dynamical correlation in the physics sense, as introduced above), although in an
unsystematic manner [76]. It is most likely that the physical interpretation of
the term “dynamical” (from a chemist point of view), can rather be understood
as electron correlation taken into account explicitly, which then yields an energy-
dependent self-energy (a quantity which is only rarely used in quantum chemistry).
In DFT the electron correlation is not described explicitly, which is probably the
reason why it is called a static electronic structure method.

3.6. Beyond DFT — explicit treatment of electron
correlation

Going beyond the usual KS-DFT approach is sometimes necessary to compensate
the drawbacks of this method, which are caused by the approximate nature of
present-day exchange–correlation functionals. In this part, two approaches to treat
strong electron correlation shall be introduced, as they are used throughout this
work.

Density functional theory has been applied successfully to a wide range of mate-
rials and molecules, but in systems where the electrons become more and more
localized, and the Coulomb interaction plays a major role, LDA and GGA type
functionals heavily underestimate the band gap, e.g, in nickel oxide (NiO). For
this material, DFT predicts a semiconducting behavior with a band gap of 0.15-
0.5 eV [77,78], although experiments reveal that NiO is an insulator [79] with band
gap of 4.3 eV. Furthermore, DFT is not capable of describing the correlation effects
leading to the Kondo effect, which would require a multi-determinant description
in wave-function theory (static correlation in the chemistry sense,s ee Section 3.5).
There are new developments, however, for extending DFT towards Kondo systems,
e.g., Jacob and Kurth developed an approach to extract the many-body spectral
function (this is the excitation spectrum of an interacting system) from a steady
state DFT calculation [80], which yields promising results in recovering the Kondo
peak using the ground-state density of DFT.
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The NiO conundrum can be resolved by using the DFT+U approach (see Section
3.6.2), where a Coulomb potential is added to the Ni atoms. A different choice
would be to use hybrid functionals for a better description of the NiO electronic
structure [81–83], which would have the advantage of being free of system specific
parameters as compared to DFT+U . However, using hybrid functionals in combi-
nation with periodic boundary conditions (PBC) is not practical, due to the high
computational effort [84], which is why DFT+U has become well established for
material scientists.

While DFT+U is capable to describe certain correlation effects, like the antiferro-
magnetic insulating state in NiO, other effects are beyond its capabilities. These
include the paramagnetic metal to insulator (Mott) transition in NiO or the Kondo
effect [85–87]. For this, dynamical electron correlation (in the physics sense, see
Section 3.5) is needed to describe these many-body phenomenons correctly. In
such cases, combinations of DFT and the Anderson impurity model (AIM) [88] or
the Hubbard model [89, 90] have shown great success, which are often referred to
as DFT++ [37], and will be described in Section 3.6.3 in more detail (focusing on
the combination of DFT+AIM).

Before introducing DFT + U and DFT++, it is necessary to spent some attention
on the Coulomb tensor and its approximations done in practice. This will be the
focus of the following discussion.

3.6.1. The Coulomb interaction tensor

In the DFT++ framework, as well as in the DFT+U approach, one often treats
the Coulomb interaction of the impurity shell in an approximate way, as it is also
done in the scope of this work. To this end, the approximations used will be
introduced here briefly. Since we will be concerned mostly with single atoms as
the impurity, the discussion here is focused on the Coulomb tensor (often referred
to as Coulomb matrix) for the sub-shell of a single atom. The full Coulomb tensor
reads

Ĥee =
1

2
∑
ijkl

Uijkld̂
†
i d̂

†
j d̂ld̂k, (3.24)

with d̂†
i and d̂i being creation and annihilation operators acting on the impurity

orbital i. Uijkl are matrix elements which are given as, [91]

Uijkl = ∫ ∫ drdr′φi(r)φj(r
′)

1

∣r − r′∣
φk(r)φl(r

′) = ⟨ij∣V ∣kl⟩. (3.25)

Here, φx (x = i, j, k, l) being any atom-centered basis function.
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The approximation of the Coulomb interaction can be a specific parametrization
of the elements of the tensor based on few parameters (often U and J), and/or
by taking into account only a part of the full Coulomb interaction (see later for
a discussion). Without such a truncation, it is computationally demanding to
evaluate the Coulomb interaction within the AIM.

In what follows, we discuss a parametrization scheme for the Coulomb interaction
commonly used in many-body physics which is the so-called Slater parametrization
[92]. This is often used in practical applications, because one does not need to
evaluate the integral appearing in Equation (3.25). For this parametrization, it is
important to know that one assumes atomic orbitals of hydrogen type φ that have
the form

φ(r) = Rnl(r)Ylm(θ, φ). (3.26)

Here Rnl(r) is a radial function, and Ylm(θ, φ) is a spherical harmonic function.
The indices n, l, and m are the principal, azimuthal and the magnetic quantum
number. For the solution of the hydrogen atom see, e.g., the textbook of Reinhold
[45].

It is useful to expand the quotient V = 1
∣r−r′∣ in spherical harmonics, which yields [45]

1

∣r − r′∣
=

∞

∑
λ=0

4π

2λ + 1

rλ<
rλ+1
>

+λ

∑
m=−λ

YλmYmλ, (3.27)

with r< and r> being the smaller and greater of r and r′.

Inserting Equation (3.27) into Equation (3.25) leads to a differential equation that
can be separated into an angular and a radial part. Furthermore, the infinite
sum over λ can be truncated to a finite number, because the matrix elements
of Equation (3.25) (after insertion of Eq. (3.27)) leads to an integral over three
spherical harmonics, which is only different from zero if λ ≤ 4 (in the case of d
orbitals where λ = 2 ⋅ l = 2 ⋅ 2 = 4) [45].

In general, the integration of the radial part is not carried out and is left unspecified
as the so-called Slater parameter (or Slater-Condon parameter) [45,92]:

F λ ∶= F λ(nl;nl) = ⟨Rnl(i)Rnl(i)
rλ<
rλ+1
>

Rnl(j)Rnl(j)⟩. (3.28)

The integration of the angular part leads to a single coefficient cλ(ij;kl), from
which one can obtain the full Coulomb matrix elements as

Uijkl =
2l

∑
λ=0

cλ(ij;kl)F λ. (3.29)
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In practice, the Coulomb matrix is often parameterized by the two parameters U
and J , for which the following relation holds (for 3d systems) [91]

U = F 0 =
1

(2l + 1)2∑
ij

Uijij, (3.30)

J =
1

14
(F 2 + F 4). (3.31)

U and J are called the average Coulomb and exchange parameter. It was found for
the isolated 3d ions, that the ratio F 4

F 2 depends only little on the choice of the basis
(Slater-type orbitals, Wannier functions) [93,94], and is also similar in the crystal
structure of these ions [94] (where one has no spherical symmetry), which is why in
practice one parameterizes the Coulomb matrix in a spherical symmetry by only
a few parameters. For 3d systems one commonly chooses F 4

F 2 = 0.625 [91,93].

As mentioned before, electronic structure calculations using the full Coulomb in-
teraction are often computationally demanding, which is why several approxima-
tions have been proposed. One choice is to use the density–density terms only
(i = k, l = j), what in second quantization notation results in n̂iσ = d̂†

iσi
d̂
iσi

and
n̂jσ = d̂

†
jσj
d̂
jσj

), and discarding all other matrix elements. Thus, the Coulomb part
reduces to [91]

1

2
∑
ijkl
σσ′

Uijkld̂
†
iσd̂

†
jσ′ d̂lσ′ d̂kσ ≈

1

2
∑
ij
σσ′

Uijn̂iσn̂jσ′

+
1

2
∑
i≠j
σ

(Uij − Jij)n̂iσn̂jσ = Ĥdens.

(3.32)

A different approximation, often found in practical applications, is the so-called
Kanamori approximation, which reads [91]

ĤKana = Ĥdens +
1

2
∑

i≠jσ,σ′
Jij(d̂

†
iσd̂

†
jσ′ d̂iσ′ d̂jσ − d̂

†
iσd̂

†
iσ′ d̂jσd̂jσ′). (3.33)

The Kanamori approximation tends to maximize Ŝ2, whereas with the density–
density approximation Ŝz is maximized (see supporting information of Reference
[95] for further details). For this reason, the later overestimates the magnetization
on atoms, which has been found in several model calculations [96, 97].

Towards a full ab-inito treatment one faces the task to calculate the Coulomb
tensor explicitly for the system under consideration, which means solving the inte-
gral appearing in Equation (3.25) (and using all elements of the Coulomb matrix).
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This would have the advantage of taking into account the correct symmetry of the
system, as well as evaluating the Coulomb matrix in the same basis as used for
solving the Anderson impurity model.

Furthermore, this would lead to the inclusion of system-dependent screening effects
of the bare Coulomb interaction (that of an isolated atom), which results from
forming electron-hole pairs between the impurity and the electronic bath. This
leads to a drastic reduction of the bare Coulomb interaction, which is roughly
15 eV to 27 eV for the 3d elements (see, e.g., Reference [98]), to only several
electron volts [99].

Nowadays, the most widely used approaches to evaluate the Coulomb interaction
from first-principles are constrained density functional theory (cDFT) [100–102]
and the constrained random-phase approximation (cRPA) [103]. In the former,
one constrains the occupation number on chosen orbital ni of the impurity and
calculates the total energy of the system. The idea is then to evaluate the energy
as a function of the orbital occupation, from which one can estimate the effective
Coulomb interaction on orbital i as [104,105]

Ui = E(ni + 1) +E(ni − 1) − 2E(ni). (3.34)

Here, E(ni) is the ground-state energy, and E(ni ± 1) are the corresponding en-
ergies with ni ± 1 electrons on the chosen impurity orbital. Later, this approach
was improved using a linear response formalism [106, 107]. The cDFT approach,
however, does not yield the entire Coulomb tensor (Equation (3.25)), because one
only calculates the effective Coulomb energy resulting from interactions between
two electrons on one orbital.

An improvement over cDFT is to evaluate the integral in Equation (3.25) explicitly,
by replacing 1

∣r−r′∣ = Vbare with the the screened analogue Vscreened. The latter can
for instance be determined by using the simple Thomas-Fermi model [105,108,109],
or as mentioned earlier, using the cRPA which yields the full tensor for the shells
in question including screening and symmetry effects [103,110,111].

A different approach to calculate the average Coulomb and exchange interaction
was proposed by Carter et al. [112]. Their approach is based on an unrestricted
Hartree-Fock embedded cluster calculation using molecular orbitals to calculate U
and J , with the advantage of being a true first-principles scheme. This approach
yields promising results for Cr2O3 using DFT+U in combination with the ab-initio
calculated values U and J . The disadvantage here lies in a proper evaluation of
the optimal cluster size used, with respect to the convergence of U and J .
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3.6.2. DFT+U

In a DFT+U approach, one combines a density functional theory calculation with
a simple Hubbard U -term. The total energy is then a sum of the DFT energy
EDFT (Equation (3.10)) and an electron interaction term Eei, with accounting
for the double-counting of electron correlation by subtracting a so-called double-
counting (DC) term EDC, which is required due to the fact that a part of the
electron correlation is already captured within DFT [113],

EDFT+U = EDFT +Eei −EDC. (3.35)

The term Eei is given as [113,114],

Eei =∑
ijkl

∑
σσ′

⟨ij∣V ∣kl⟩nσijn
σ′

kl + (⟨ij∣V ∣kl⟩ − ⟨ij∣V ∣lk⟩)nσijn
σ
kl. (3.36)

Here, nσij is the density matrix for spin σ. The matrix elements appearing in
Equation (3.36) are those discussed in Section 3.6.1. Note that in practice, in
Equation (3.36) an additional sum runs over all atoms on which the U correction
is applied. In this work, however, we limit the discussion to only one impurity
atom, so that the sum can be neglected (note that the U correction can also be
applied to molecular orbitals [115]).

The double-counting energy EDC will also be important for Section 3.7.3, where we
show how the total energy within a DFT++ approach can be calculated. In the
literature, two commonly used approaches to account for the double-counting of
electron correlation are used, which are called around-mean-field (AMF) [116] and
fully localized limit (FLL) [114,116,117]. In AMF it is assumed that all orbitals are
equally distributed among all correlated orbitals, and the DC term reads [113],

EAMF
DC = UN↑N↓ +

1

2
(N2
↑ +N

2
↓ )

2l

2l + 1
(U − J). (3.37)

N↑ andN↓ are the total number of spin-up and spin-down electrons in the correlated
sub-space and l is the azimuthal quantum number. U (F 0) and J ( 1

14(F
2+F 4)) are

the average Coulomb and exchange energies between the electrons in the correlated
sub-space.

In this work we focus on the FLL approach, which estimates the double-counting
as,

EFLL
DC =

1

2
UN(N − 1) −

1

2
JN↑(N↑ − 1)

−
1

2
JN↓(N↓ − 1),

(3.38)

N is the total number of electrons in the correlated sub-space.
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3.6.3. The Anderson impurity model as parameterized by
DFT (DFT++)

For describing the electron correlation effects of magnetic impurities, the AIM has
become well established in the physics community [118]. It takes into account the
correlation on a defined set of orbitals (the correlated sub shell) of the impurity
explicitly. This set of orbitals are mostly the d or f shells of transition metal
atoms, but can also be molecular orbitals (MOs) of an adsorbate [119–121]. The
“rest” of the system, the so-called electronic bath, is assumed to be effectively
non-interacting. In this section we use small Greek letters for the electronic bath,
small Latin (Roman) letters for the impurity orbitals, and capital Latin (Roman)
letters for Kohn–Sham eigenvalues and orbitals.

The Anderson Hamiltonian in its general multi-orbital form is written as

Ĥ =∑
νσ

εν ĉ
†
ν,σ ĉν,σ +∑

νiσ

[Vνiĉ
†
ν,σd̂i,σ + V

∗
νid̂

†
i,σ ĉν,σ] +∑

iσ

εid̂
†
iσd̂iσ +

1

2
∑
ijkl
σσ′

Uijkld̂
†
iσd̂

†
jσ′ d̂lσ′ d̂kσ.

(3.39)
In Eq. (3.39), εi is the energy of the local orbital i of the impurity (often defined as
the 3d orbitals), and εν is effectively the kinetic energy of an electron in the bath
orbital ν. ĉνσ/ĉ†νσ are creation and annihilation operators for electrons with spin
σ acting on the νth orbital state, whereas d̂iσ/d̂†

iσ are the corresponding operators
acting on the local orbital i. The bath electrons are coupled to the impurity via
the hybridization Vνi, and Uijkl is the local Coulomb interaction as introduced by
Slater [122] (see Section 3.6.1 fore more details).

In this work, the AIM is solved within the CT-QMC method (see Section 3.7),
parametrized by KS-DFT. In practice, this is done by calculating the so-called
energy-dependent hybridization function,

∆ij(ω) =∑
ν

VνiV ∗
νj

ω + iη − εν
. (3.40)

Here, η is an infinitesimal small offset, and ω is the energy8 on which the hybridiza-
tion function depends on.

The starting point for solving the AIM is the non-interacting KS Green’s function,
which in terms of the KS eigenvalues εK reads (for N KS eigenfunctions)

GKS(ω) =
N

∑
K

[ω + iη + µ − εK]−1. (3.41)

8In the context of many-body physics, one often uses the symbol ω (frequency) in units of the
energy. The relation between a frequency and the energy is given by the Planck–Einstein
relation [123,124].
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Here, µ is the chemical potential. By projection of GKS(ω) onto a set of atom-
centered basis functions on the impurity (which is usually called the correlated
sub-space), one obtains the non-interacting local Green’s function,

gij(ω) =
N

∑
K

P̂iG
KS
K (ω)P̂j = [(ω + iη)δij − (εij +∆ij(ω))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆̃ij(ω)

]−1. (3.42)

In Equation (3.42), εij are the matrix elements of the KS operator in that local
basis, which for i = j (after solving the secular equations) are the subsystem
energies (in the literature often referred to as the static-crystal field energies), and
δij is the Kronecker delta. P̂i is a projection operator defined as

P̂i = ∣φi⟩⟨φi∣, (3.43)

with φi a local basis function of the correlated sub shell (see Section 4.1 for more
details).

The matrix elements εij can be obtained as,

εij =∑
KL

P̂iHKLP̂j, (3.44)

with H being the effective single-particle Kohn–Sham Hamiltonian matrix. Note
that in some implementations Equation (3.44) is not directly evaluated, and the el-
ements εij are observed by taking the limit lim

ω→∞
∆̃ij(ω) = εij, because lim

ω→∞
∆ij(ω) = 0

(i.e. there are no bath orbitals to hybridize with at ω →∞).

Solving Equation (3.42) for ∆ij(ω) yields

∆ij(ω) = −[g
−1
ij (ω) + εij − (ω + iη)δij]. (3.45)

The energy-dependent hybridization function is of central importance, because it
captures the effect of the impurity orbitals being broadened and shifted by the
interaction with the bath states. This concept will be explained in more detail in
Section 4.

Once the AIM has been solved, one obtains the interacting impurity Green’s func-
tion gint,ij(ω), which is related to the non-interacting one by the Dyson equation,

g−1
int,ij(ω) = g

−1
ij (ω) +Σij(ω). (3.46)

Here, Σij(ω) is the self-energy which describes the dressing of impurity electrons by
low-energy excitations caused by electron correlation (which we already mentioned
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in Section 3.1). Same as for ∆ij(ω), the real part of Σij(ω) acts as a shift of the
energy levels, and the imaginary part broadens the energy levels [44].
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Figure 3.6.: Spectral function of the symmetric AIM for a single impurity with a
constant hybridization (after Hewson’s Equation (5.42) [40]). a) The
bandwidth D is 10.0 eV, the hybridization V = 0.4 eV and ε = −U/2.
Results obtained from CT-QMC (see Section 3.7) at β = 100 eV−1 (T
= 116 K).

From the imaginary part of the impurity Green’s function, one obtains the spectral
function Aij(ω) as

Aij(ω) = −
1

π
Imgint,ij(ω). (3.47)

The spectral function should not be confused with the DOS, although it is often
called DOS9 in the literature, because it is obtained from the imaginary part of
the interacting impurity Green’s function (compare Equation (3.20)). Following
Reference [125], the spectral function corresponds to transitions between many-
body states, whereas the DOS refers to single-particle levels. So the features in a
DOS do not include many-body effects while the spectral function does.

In the following, it shall be demonstrated how the spectral function for the simplest
Anderson model, one impurity orbital with a constant hybridization function, be-

9Note that an interpretation in terms of a DOS is only possible if i = j.
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haves by changing the hybridization strength10 V and the Coulomb potential U , as
obtained from a continuous-time quantum Monte Carlo calculation (this method
will be explained in detail in Section 3.7).

For different interaction parameters U and a constant hybridization V = 0.4 eV,
the spectral functions are shown in Figure 3.6 a). By increasing the Coulomb
parameter U (note that in the case of one impurity orbital J = 0.0 eV), the broad
peak at the Fermi energy (ω = 0.0 eV) in the non-interacting case (U = 0.0 eV)
narrows in favor of two broad peaks at −1/2U and +1/2U , which are the so-called
lower and upper Hubbard bands. The sharp feature remaining at the Fermi energy
is the Kondo resonance, that disappears if U >> V . In Figure 3.6 b), the spectral
function is shown for a constant Coulomb interaction and different hybridization
strengths V . From here one can see that a too strong coupling (V = 0.8 eV) leads
to the “destruction” of the Kondo resonance.

What we have discussed above is the so-called symmetric Anderson impurity
model, because the upper and lower Hubbard bands are symmetrically centered
around the Fermi energy, which is the case if one sets the impurity level ε to the
value of −U/2. In the so-called asymmetric AIM, the spectral function will be
modified according to different shifts of the impurity level, as beautifully demon-
strated, for instance, in Reference [126]. Here, the lower and upper Hubbard bands
are no longer symmetrically centered around the Fermi energy.

3.6.4. The energy window for the projection onto the
impurity orbitals

In practical applications, one limits the sum over the states appearing in Equation
(3.42) to a certain energy window. The reason for this lies in the nature of the
projection of the KS orbitals onto a set of local orbitals (e.g. Wannier orbitals or
any other atom-centered basis), as for instance extensively discussed in References
[127] and [128]. In principle, the energy window has to be large enough so that
all of the contribution of the local orbitals (e.g. the 3d orbitals of the transition
metal atoms) to the entire band structure of a system is taken into account. There
are cases in which one can limit this energy window for the projection to only
a small range of several eV, if one can identify almost isolated 3d bands in the
band structure of a system (as e.g. in SrVO3). In the case of molecules or atoms
adsorbed on a metal surface, the 3d orbitals will rather mix (hybridize) with many
different bands of the substrate. In order to get all the contribution of the local (3d)

10The hybridization function has been calculated according to Hewson’s Equation (5.42) [40]
with a bandwidth D = 10.0 eV and impurity level ε = −U/2.
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orbitals to the entire band structure in this case, one has to include all occupied
bands and unoccupied bands up to a certain energy above the Fermi level (in this
work not higher than 10 eV above the Fermi level) in the projection.

In Reference [129], it is discussed that the energy window should not be chosen
too large (which means not to include too many unoccupied bands, or virtual
orbitals), in case to avoid mixing of states of similar character (which would lead to
an artificially small spread of the projected localized orbitals). This in turn would
require a larger Coulomb interaction [128]. Thus, for a full ab-initio treatment one
would have to calculate the Coulomb matrix for the chosen basis (the projected
orbitals) individually for each system, which is not always possible due to the
limited availability of programs in which this is implemented.

A further argument for limiting the number of virtual orbitals in the projection
might be that from a physical point of view, the inclusion of too many unoccu-
pied states leads to very large values of the impurity (subsystem) energies (Equa-
tion(3.44)), which can then be far above the Fermi energy (we will discuss this
later in more detail, see Section 4.2). This lowers the occupation number of the
correlated sub-space to unphysical (or unchemical) values. Therefore, the energy
window has to be chosen with care, which requires a chemical, or physical intuition
for the system under consideration.

3.7. The Continuous-time quantum Monte Carlo
(CT-QMC) method

The CT-QMC method has its roots in the works by Prokof’ev et al. (1996) [130],
and by Beard and Wiese (1996) [131], for the calculation of lattice models. The
discovery of this method being applicable to impurity models was the beginning
for the development of different CT-QMC solvers. The two most important ones
are the weak coupling formulation (CT-INT) [132, 133] and the hybridization ex-
pansion (CT-HYB) [134]. The latter formalism is used throughout this work, and
will thus be explained in more detail in the following.

3.7.1. Introduction

The advantage of the quantum Monte Carlo method in general is that for impurity
models at non-zero temperature, the size of the Hilbert space will not affect the
simulation [135]. The reason for this is that the electronic bath, i.e., the surround-
ing or environment of the impurity, is assumed to be non-interacting, so that its
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contribution to the full partition function is just a single determinant (see below).
This allows for treating impurity models (such as the AIM) with more than one
correlated orbital, without further truncation of the bath states. The partition
function takes the form [135]

Z = Tr[e−βĤ] (3.48)

with Ĥ being the Hamiltonian of the impurity model and β = 1
kbT

(kb is the
Boltzmann constant) the inverse temperature.

For strongly correlated materials, solving an impurity model actually means com-
puting the (local) interacting Green’s function, which is usually done on the imag-
inary time-axis (τ = it

h̵ ). On this axis, the physical quantities are periodic over the
interval τ ∈ [0, β] [44], which is why the interacting impurity Green’s function is
calculated on this interval as [135]

gint(τ) = −⟨T̂τ d̂(τ)d̂
†(0)⟩ =

1

Z
Tr[e−(β−τ)Ĥ d̂e−τĤ d̂†]. (3.49)

In Equation (3.49), T̂τ is the time-ordering operator that orders the creation and
annihilation operators chronologically (with the later times to the left of the earlier
times). d̂ and d̂† are annihilation and creation operators on the impurity site. Note
that gint is actually a matrix, but for the sake of simplicity we dropped the impurity
orbital indices (i and j) here and in the following.

Within CT-QMC, the partition function is evaluated as a sum of weights wc of a
(partition function) configuration c [135,136],

Z =∑
c

wc. (3.50)

Later on, it will be shown what these weights are in detail. The configurations c
are in the literature referred to as diagrams of order k, as will later be discussed in
more detail. By satisfying the two conditions of ergodicity and balance, one can
estimate the impurity Green function as [135],

gint(τ) = −
∑cwcg

c
int(τ)

∑cwc
(3.51)

with gcint(τ) as the Green function of configuration c.

3.7.2. The hybridization expansion

In this part, the general idea of the hybridization expansion shall briefly be out-
lined. The Anderson Hamiltonian in the interaction representation is split into two
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parts ĤA and ĤB(τ) [134,136], for which one chooses ĤA to be time-independent.
The partition function in this representation becomes

Z = TrT̂τe
−βĤAexp [−∫

β

0
dτĤB(τ)] . (3.52)

The part that depends on ĤA it exactly solvable and well understood, because
it is independent of τ , whereas the part that depends on ĤB is more difficult to
solve, which is why it is usually treated perturbatively [137]. In the hybridization
expansion ĤB takes the form

ĤB =∑
νiσ

[Vνiĉ
†
ν,σd̂i,σ + V

∗
νid̂

†
i,σ ĉν,σ] (3.53)

ĤA is then the remainder of the Anderson Hamiltonian,

ĤA =∑
νσ

εν ĉ
†
ν,σ ĉν,σ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ĥbath

+∑
iσ

εid̂
†
iσd̂iσ +

1

2
∑
ijkl
σσ′

Uijkld̂
†
iσd̂

†
jσ′ d̂lσ′ d̂kσ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ĥloc

. (3.54)

The idea is to substitute ĤA and ĤB into Equation (3.52), and to expand the
partition function in powers of ĤB. One finds that the bath degrees of freedom
can be integrated out, since the bath is non-interacting. A detailed review about
this expansion is given in Reference [136]. One ends up with a partition function
of the form

Z = Zbath

∞

∑
k
∫ ∫ ∫ dτ1...dτ

′
k ∑
i1...ik

∑
i′1...i

′

k

×Tr[T̂τe
−βĤloc d̂i

k
(τk)d̂

†
i′
k
(τ ′k)...d̂i1(τ1)d̂

†
i′1
(τ ′1)]det∆,

(3.55)

where the first summation runs over the expansion order k, and Zbath is defined
as [136,138]

Zbath = Tre−βĤbath =∏
σ
∏
ν

(1 + e−βεν). (3.56)

det∆ appearing in Equation (3.55) is the determinant of the anti-periodic hy-
bridization function ∆(τ) with the elements ∆lm(τ) (here l and m are impurity
indices),

∆lm(τ) =∑
ν

V l∗
ν V

m
ν

eενβ + 1
× {

−e−εν(τ−β), 0 < τ < β
e−εντ , −β < τ < 0

(3.57)
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As mentioned earlier, one aims for computing the local Green’s function, which in
this expansion reads [136]

glm(τl, τm) = −Zbath

∞

∑
k
∫ ∫ ∫ dτ1...dτ

′
k ∑
i1...ik

∑
i′1...i

′

k

×Tr[T̂τe
−βĤloc d̂l(τl)d̂

†
m(τm)d̂i

k
(τk)d̂

†
i′
k
(τ ′k)...d̂i1(τ1)d̂

†
i′1
(τ ′1)]det∆.

(3.58)
By comparing with the partition function shown in Equation (3.55), one finds that
glm(τl, τm) is simply the partition function with two additional operators (and a
minus sign) d̂l(τl)d̂

†
m(τm).

In Equation (3.50), the weights ωc have been introduced, which can now be sampled
by quantum Monte Carlo as

ωc = Tr[T̂τe
−βĤloc d̂i

k
(τk)d̂

†
i′
k
(τ ′k)...d̂i1(τ1)d̂

†
i′1
(τ ′1)]. (3.59)

To evaluate the operator trace in Equation (3.59) there exists different ways (see
Reference [136]). For the density-density approximation, Ĥloc commutes with the
number operator of each orbital, which is why the time evolution of the impurity
can be represented by a collection of segments. Each segment is a time interval
at which an electron of a certain flavor (spin and orbital) resides on the impurity
(Figure 3.7). The weights wloc then become,

ωc = s exp(µ
N

∑
l

Ll −
N

∑
k<l

UklOkl). (3.60)

In Equation (3.60), s is a sign factor due to permutation of the operators depicted
in Fig. 3.7, Ll is the length of the segment of flavor l (bold lines in Fig. 3.7),
and Okl is the overlap between segments of flavor k and l (orange areas in Fig.
3.7), while Ukl is the Coulomb interaction between the two flavors, and µ is the
chemical potential. The steps in the DFT++ approach employed here are depicted
in Figure 3.8 at the example of a single impurity orbital (note that the indices have
been dropped for this reason). Generally, one has to calculate the hybridization
function as obtained from DFT on the so-called Matsubara axis at the discrete
frequencies [136,139]

ωn =
(2n + 1) ⋅ π

β
. (3.61)

Here, n is an integer starting from zero (0, 1, 2, ...), and β is the inverse temperature
( 1
kBT

).
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Figure 3.7.: Depiction of the segment picture in CT-HYB for a one-orbital An-
derson model. The upper line correspondents to the spin-up and the
lower line to the spin-down channel. The blue and red circles are a
guide for the eye, to distinguish between creation (blue) and annihi-
lation (red) operators. The bold line is for an occupied orbital and
the length of the orange area contributes to the Coulomb energy via
Okl (second sum term in Equation (3.60)). Time increases from left
to right. For further description, see text. The figure was taken from
Ref. [136], where the hats of the operators were neglected.

As described before, the CT-QMC algorithm is defined on the imaginary time
axis, for which one uses a Fourier transformation (FT) to obtain the hybridization
function on this axis as input for solving the impurity model. Afterwards, the inter-
acting impurity Green’s function gint(τ) is Fourier-transformed onto the fermionic
Matsubara axis to calculate the self-energy via the Dyson equation (Equation
(3.46)).

Solve impurity model

obtain gint(τ)

Get self-energy

Σ(iωn) = g−1(iωn) − g−1int(iωn)

DFT CT-QMC

Input bath GF

∆(iωn)

FT

FT

Figure 3.8.: Depiction of the DFT++ approach using CT-QMC in the case of a sin-
gle impurity orbital (for which reason the indices have been dropped).
For solving the impurity model, see Section 3.6.3. GF is a short form
for Green’s function, and FT means that Fourier transformation is
necessary at this point.
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3.7.3. Total energy within CT-QMC

The evaluation of the total energy within CT-QMC is, for instance, implemented
in Abinit [128, 140] in the framework of the DMFT [24, 119]. DMFT is used to
treat periodically repeating impurities by solving the AIM iteratively until the
self-energy is converged. In case of a single impurity (as in our cases) one obtains
the total energy by solving the DMFT cycle only once.

The expression for the DFT++ energy reads [128]

EDFT++ = T
DFT++
0 +EXC[ρ(r)] −EHa[ρ(r)]

+ ∫ drVext(r)ρ(r) +Epot −EDC.
(3.62)

In Equation (3.62), Vext is the external potential, EXC is the exchange–correlation
functional, and EHa is the Hartree energy (the Coulomb interaction between the
electrons), Epot is the on-site interaction term (Coulomb interaction on the impu-
rity), which is directly calculated from the impurity solver (i.e. CT-QMC), EDC is
the double-counting correction (see Section 3.6.2), and TDFT++

0 is the kinetic energy
term that is an analogue to the DFT kinetic energy, but with a correction due to
the solution of AIM (i.e. the occupation of the Kohn–Sham orbitals changes, and
consequently the kinetic energy has to be corrected according to the new density
obtained from DFT++) [128].

The on-site potential energy Epot, as obtained from CT-QMC (with density-density
type interaction) is evaluated as [136]

Epot =
1

2
∑
ijσσ′

Uij⟨n̂iσn̂jσ′⟩ +
1

2
∑
i≠jσ

(Uij − Jij)⟨n̂iσn̂jσ⟩. (3.63)

Here, ⟨n̂iσn̂jσ′⟩ is the so-called double-occupancy.

3.7.4. Magnetic properties of the impurity atom

In this part, it will briefly be discussed how the local magnetic properties of an
impurity atom can be evaluated. It will be focused on quantities which are used
throughout this work.

Within CT-QMC, we are able to evaluate the spin–spin correlation function χ(τ)
on the imaginary time axis [141,142]

χi(τ) = ⟨χi(τ)χi(0)⟩ = ⟨ŜiZ(τ)Ŝ
i
Z(0)⟩. (3.64)
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In Equation (3.64), ŜiZ(τ) is the local spin on the impurity orbital i at imaginary
time τ . Evaluating χ(τ), one can gain insight into the magnetic behavior of the
system under consideration. The local spin at the initial time τ = 0 is equivalent to
the magnetization before interaction with the surroundings takes place. Another
special value, which is known as the long-time correlation value of χ(τ), is τ = β/2,
from which one can estimate to which extent the impurity electrons are localized
on one of the impurity orbitals, or delocalized/screened due to interaction with
the substrate and the ligands [143]. The latter case is indicated by a rather rapid
drop of χ(τ) as τ → β/2, whereas a finite value at χ(β/2) suggest that there is
spin density located on one of the impurity orbitals even in the presence of the
bath.

From χi(τ), it is possible to calculate the so-called physical susceptibility χω=0
i via

integration [142],

χω=0
i = g2

∫

β

0
dτχi(τ). (3.65)

Here, g is the spin gyromagnetic factor (−2.0). Since the susceptibility is actu-
ally an energy-dependent quantity, the physical susceptibility is obtained at the
frequency ω = 0. Note that χω=0

i can be studied as a function of T , because the
integration interval appearing in Equation (3.65) varies with β = 1

kbT
.

3.7.5. Fermi-liquid properties of the impurity atom

In Section 3.1, it has been introduced that the Kondo effect exhibits the same
properties as known from Fermi-liquid theory, as shown by Nozières [43]. Although
as mentioned before, we do not want to go too deep into the details of this theory,
it is important to discuss some of the properties of a Fermi-liquid, as they will be
used throughout this work for scrutinizing the existence of the Kondo effect.

On the real energy axis, the imaginary part of the self-energy as introduced in
Equation (3.46) behaves in the Fermi-liquid regime as [40]

ImΣ(ω)∝ ω2 (3.66)

as ω → 0. Since CT-QMC works on the imaginary time axis, we obtain the
self-energy (after Fourier transformation) on the Matsubara axis at the discrete
energies ωn, which in the Fermi liquid regime shows the behavior [144]

ImΣ(ωn)∝ ωn (3.67)

as ωn → 0. Another tool for probing the Fermi-liquid properties is the so-called
first Matsubara-frequency (ω0) rule [145], which states that ImΣ(ω0) should go
linearly to zero as T → 0 K.
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The transition to the Fermi-liquid regime can also be studied by considering the
physical susceptibility χω=0

i (T ). As mentioned in Section 3.1, in the case of a well-
defined and unscreened local moment, χω=0

i (T ) obeys the Curie law (∝ 1/T ). If the
temperature is low enough, so that the local moment can be Kondo-screened by
the conduction electrons, χω=0

i (T ) has to cross over to a Pauli behavior (χω=0
i (T ) is

constant in T ) in the Fermi liquid regime. This has also consequences for the spin–
spin correlation function χi(τ), as this function yields the physical susceptibility
via integration (see Equation (3.65)). It turns out that the special point χi(β/2)
behaves as T 2 in the Fermi liquid regime11 [143,146].

3.7.6. From the imaginary to the real energy axis (Analytic
continuation)

The CT-QMC method, although being numerically exact, suffers from being de-
fined on the imaginary time axis. Fourier transformation onto the frequency do-
main leads to the discrete Matsubara frequencies. On this axis, quantities can
only hardly be interpreted in physical terms, which requires an analytical contin-
uation onto the real frequency axis. If the analytic form of these quantities would
be known, this would in principle mean to just replace iωn → ω + i (η is a small
offset). In CT-QMC algorithms, however, the quantities are measured on specific
points τ and posses statistical noise (and so they do on the Matsubara axis).

Here we are interested in obtaining the spectral function A(ω), which has al-
ready been introduced in Section 3.6.3, and which is in general connected to the
imaginary part of a Green’s function. As mentioned before, the impurity Green’s
function in CT-QMC is usually measured in imaginary time, which can be Fourier-
transformed to the frequency domain with the frequencies ωn = π

β (2n + 1) (we
have dropped the orbital indices for the sake of simplicity here and in the follow-
ing) [147],

gint(iωn) = ∫
β

0
dτ gint(τ)e

iωnτ . (3.68)

The inverse Fourier transform reads

gint(τ) =
1

β
∑
n

gint(iωn)e
iωnτ . (3.69)

The Green’s function on the Matsubara axis is connected to the spectral function
by the relation [147]

gint(iωn) = ∫
∞

∞
dω

A(ω)

iωn − ω
(3.70)

11Remember that β = 1/kBT .
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Inserting Equation(3.70) into Equation (3.69) yields [147]

gint(τ) = ∫
∞

−∞
dω

e−τω

1 + ee−βω
A(ω). (3.71)

Solving Equation (3.71) is ill-posed, because it requires the inversion of the integral
kernel [147], in addition to the problem of the statistical noise. For this reasons, one
has to estimate A(ω) using Bayesian inference, by finding the most probable A(ω)
for a measured value ḡint(τ). However, this will not be part of this discussion
(details can be found in Ref. [147]), but it shall be mentioned that this can be
done by the so-called Maximum entropy method (often called “MaxEnt”), which
says that the most probable A(ω) can be assigned by maximizing the information
entropy [147–149]

S = −∫ dωA(ω)log (
A(ω)

m(ω)
) . (3.72)

Here, m(ω) is the so-called default model [147]), which can be any distribution
function such as a Gaussian distribution or some other model distribution. The
maximum value of S (=0) is when A(ω) = m(ω), in all other cases S is nega-
tive [147]. The MaxEnt procedure used throughout this work makes use of the
algorithm by Bryan [150], which was implemented and provided to us by Lewin
Böhnke.

3.7.7. Comparison with other quantum Monte Carlo
methods

Apart from the CT-HYB method there exist other quantum Monte Carlo imple-
mentations. Here, we will briefly introduce them, focusing on the advantages and
disadvantages over CT-HYB.

Historically, CT-QMC was developed roughly 10 years after the so-called Hirsch–
Fye Quantum Monte Carlo (HF-QMC) method. The latter is based on the work of
Hirsch and Fye [151,152], and is formulated to sample the impurity Green’s func-
tion on discretized imaginary times ∆τ (for more details see, e.g., Reference [153]).
The HF-QMC is numerically only exact in the limit ∆τ → 0 [154], which is a clear
disadvantage over the continuous-time quantum Monte Carlo methods. Further-
more, the time-discretization makes the HF-QMC method much more expensive
as compared to CT-QMC [155], which limits it to rather large electronic temper-
atures.

It has already been introduced that there exists a second implementation of CT-
QMC, in which ĤB of Equation (3.52) takes the form of the interaction part of
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the Anderson Hamiltonian (last term of Equation (3.39). This implementation is
rather suited for Hubbard-like models [136]. Both the CT-INT and CT-HYB meth-
ods suffer from a so-called sign problem, which arises due to the anticommutation
relation for fermionic operators. The exchange of two electrons can lead to nega-
tive weights in the CT-QMC sampling, which can not be interpreted in terms of a
probability for a given configuration c. However, it turned out that this problem is
rather relevant for lattice models (e.g., periodically repeated impurities), and only
little important in case of a single impurity (it is nevertheless still present) within
the density–density and Kanamori approximation [155,156]. Further improvement
concerning the sign error can be reached by eliminating off-diagonal terms in the
hybridization function by diagonalizing the correlated sub-space [157].

There are other version of QMC methods such as Continuous-Time Auxiliary-Field
Algorithm (CT-AUX), which is a variant of CT-INT, and there are also attempts
to implement CT-QMC on the real time axis (CT-HYB and CT-AUX). For further
details about these implementations, the reader is referred to the excellent review
by Gull et al. [136], and to References [158–160]
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4. Towards a conceptional
understanding of the Kondo
effect in terms of chemical
bonding

The Kondo effect is often regarded as an open-shell singlet state formed by the
localized spin and the electrons of the conduction band of a substrate [41]. The
Kondo effect can also be observed in nanoparticles, which are usually called “Kondo
box”, due to the confinement of the “bath” states provided by the nanoparticle
[161–163]. This can be considered as an impurity being coupled to “a particle in a
box”, rather than to a continuum of states (band) as in a bulk system. The smallest
Kondo systems are, surprisingly, molecular ones, as suggested by the theoretical
results of Fulde and Dolg [164–166] about bis(π-[8]annulene)cerium (Ce(C8H8)2),
with experimental evidence provided by the work of Booth et al. [167].

For the simplest Anderson model, as discussed in Section 3.6.3, the Kondo reso-
nance strongly depends on the Coulomb interaction U and the hybridization V of
the impurity to the bath states. The latter is readily available from a DFT calcu-
lation, which makes it promising for us to study how a qualitative understanding
of the Kondo effect can be gained by analyzing such DFT calculations.

Our aim is therefor to get insights from a chemistry perspective, by using the con-
cept of chemical bonds for studying structure–property relations concerning the
Kondo effect. In solid-state physics, such analysis is often realized by constructing
a local Wannier basis from Bloch orbitals, but they are not unique and care must
be taken by localizing them onto atoms or chemical bonds, as well as to their sym-
metry [129, 168–170]. For this reasons, it is promising to use quantum chemistry
programs (commonly implemented in an atom-centered basis) for evaluating the
hybridization function using chemical tools, which also allows for an interpretation
in terms of molecular orbitals. For a chemical analysis, this would further have
the advantage of working in real-space instead of the reciprocal-space often used in
solid-state physics. The idea of a chemical analysis of Kondo systems is motivated
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by the textbook of R. Hoffmann [22], who explained the bonding in solid-state
systems in terms of chemical bonds. Merging this with state-of-the-art concepts
from physics, it is believed to obtain new insights for understanding the control of
the Kondo effect, either by mechanical or chemical manipulation.

From the technical point of view, quantum chemistry programs often allows the
use of a wider range of exchange–correlation functionals, which can be particularly
important in cases where the most commonly used LDA and GGA type functionals
fail to describe the correct electronic structure of a system. Thus, the chemical
concept introduced in this section allows for an evaluation of the results from
state-of-the-art DFT++ calculations for Kondo systems, which are due to the
large computational effort along with, e.g., hybrid functionals, often restricted to
be parameterized by LDA or GGA type functionals.

To this end, we introduce a scheme for a local decomposition of hybridization func-
tions, which combined with the concept of molecular orbitals could pave the way
towards new insights into the chemical and mechanical control of the Kondo effect.
This requires a prior description of an implementation for evaluating hybridiza-
tion functions (Equation (3.45)) within an atom centered basis set. Because the
concept of the hybridization as an energy-dependent function is only little known
in chemistry, it will furthermore be explained here using some simple examples.

The first example will be an iron porphyrin (Fe(porph)), in which the Fe 3d orbitals
represent the correlated sub-space (the impurity orbitals), coupled to an electronic
bath provided by the ligand. This choice was made to validate the correctness of
the implementation described in Section 4.1, by comparing the Fe 3d hybridization
functions with the results obtained by Bhandary et al. [171]. Furthermore, first
aspects of the hybridization function will be discussed at this example, and we
will also compare the expected ligand field splitting of a square planar complex
with the Fe subsystem d energies (the 3d splitting) as obtained by projecting
the KS Green’s function onto the Fe 3d orbitals. For this, the effect of different
energy windows applied in the projection scheme (see, e.g. Sec. 3.6.4) onto the Fe
subsystem d energies will be analyzed.

Knowing that the implementation works well, the dissociation of a hydrogen
molecule will be investigated with respect to the hybridization strength and the
open-shell character at different bond distances. In this example, one of the H
atoms is considered as an impurity atom coupled to an electronic bath which is
provided by the second H atom. Here the connection between an open-shell singlet
and the Kondo effect can be illustrated, because we encounter a similar situation as
shown for the Kondo effect in the simplest Anderson impurity model (introduced
at the end of Section 3.6.3). That is the formation or destruction of the Kondo
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effect by varying the hybridization parameter V , which is similar to the transition
of an closed-shell to open-shell singlet state in H2 by stretching it’s bond.)

In the following part, it will be considered how the energy dependence of the
hybridization function can be understood as a consequence of an orbital being
coupled to a continuum of effective single-particle states (a so called band), rather
than discrete molecular levels. For this purpose, the hybridization function of a
helium atom coupled to a chain of hydrogen atoms will be compared for different
chain lengths1. Last but not least, it will be discussed why in practice the AIM is
parametrized by a spin-unpolarized DFT calculation, although dealing with spin-
polarized adsorbates on metallic surfaces throughout this thesis.

After the concept for analyzing hybridization functions using tools from chemistry
has been explained, and realistic Kondo systems have been characterized within
DFT++, such an analysis will later be applied to a tetra carbonyl cobalt complex
on Cu(001) (Section 9) to obtain insights into the chemical control of the Kondo
effect.

4.1. Introducing a local decomposition of
hybridization functions

In this part, the implementation for projecting MOs onto localized orbitals shall
be described. This allows the evaluation of hybridization functions with quantum
chemistry programs and the decomposition into different parts of the electronic
bath. For this, the overlap matrix of the atom-centered basis, the KS Hamiltonian
matrix, the KS eigenvalues, and the MO coefficients of a converged DFT calcu-
lation are required. The entire procedure of this implementation is depicted in
Figure 4.1 and explained in the following.

In our case, the full Hilbert space F (with dimension n×n) is spanned by a set of
non-orthogonal atom-centered basis functions {∣a⟩}2, which generally have a non-
zero overlap between different basis functions (Sab ≠ 0). This is in contrast to a
plane-wave basis as used in the solid state programs, which form an orthogonal set
of basis functions. For this reason, we transform our non-orthogonal basis {∣a⟩}

1This system is without a doubt rather unphysical, but simple enough to understand how the
energy dependence of ∆ij(ω) arises as the consequence of an atomic orbital being coupled to
a quasi-continuum of effective single-particle states.

2Note that the short-hand form φa = ∣a⟩ has been used here.
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into a Löwdin-orthogonalized basis {∣a′⟩},

∣a′⟩ =∑
b

S
−1/2
a′b ∣b⟩, (4.1)

so that we have Sa′b′ = δa′b′ .

DFT calculation

obtain H, C and S

calculate Si'ν (Eq. (4.4))

Löwdin orthogonalization
of the entire system (Eq. (4.5)) 

build G(ω) via orthogonalized H

obtain local Green's function gi'i'(ω)

calculate Δi'i'(ω) via Eq. (1.23) 

Karolak's DFT++ code
see Ref. [176]

interface

diagonalize bath to obtain
bath MO's and bath energies
 (Eq. (4.6))
 
 

in an atom centered basis

  calculate Δpart(ω) (Eq. (4.7))
i'i'

Figure 4.1.: Flow chart of the projection scheme implementation.

It should be mentioned that the Löwdin-orthogonalized basis is in general not
atom-centered, which is why the projection performed later is not entirely locally
defined. However, the Löwdin basis resembles the original atom-centered basis
as good as possible [172], which is why it is applied successfully for population
analysis of a broad range of system in quantum chemistry.

We now want to project the full Hilbert space onto the correlated sub-space C
(C ∈ F )) spanned by {∣i′⟩}. The sub-space C represents in our case the impurity
orbitals, which are usually in the context of strongly correlated materials the d or f
orbitals of an atom (see Figure 4.2). Consequently, the remainder of F represents
the electronic bath which spans the space B. In general, the sub-space C could
also be extended to include other orbitals, such as s and p orbitals or MOs, and is
not only restricted to a single atom (see for instance Reference [121]). Note that
{∣i′⟩} is in our case an element of {∣a′⟩}, but not necessarily has to be3.

3In principle {∣i′⟩} could be any local basis functions centered on an impurity atom, which is
not an element of the Hilbert space F .
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imp
liglig

Full Hilbert space F

cor. sub-space C

F - C     electronic bath B

Figure 4.2.: Schematic illustration of an molecule on a surface (surf), with one
impurity (imp) atom and two ligands (lig). The basis functions of
the entire systems constitutes to the full Hilbert space F , whereas
the correlated sub-space C contains selected basis functions of the
impurity atom (in this work the 3d orbitals of a transition metal atom).
Note that C can in general be extended to more orbitals, including
those on different kind of atoms, as e.g. in Reference [121]. The
electronic bath is simply defined as the difference between the spaces
F and C.

Due to the prior orthogonalization of the full Hilbert space F and since {∣i′⟩} ∈

{∣a′⟩}, the subspace C is orthogonal, too (i.e. Si′j′ = δi′j′). The projection operator
P̂ is defined as

P̂ = ∑
i′∈C

∣i′⟩⟨i′∣. (4.2)

Applying the projection onto the Green’s function in the Lehmann representation
as defined in Equation (3.13) yields (for the orthogonalized subspace C)

gi′i′(ω) = (P̂G(ω)P̂ )i′i′ =
N

∑
K

∣i′⟩⟨i′∣ψK⟩⟨ψK ∣i′⟩⟨i′∣

ω − εK ± iη
. (4.3)

Here ∣ψK⟩ are the Kohn–Sham eigenfunctions with the corresponding eigenenergies
εK , and the sum runs over N eigenfunctions which are usually selected within a
certain energy window (see discussion in Section 3.6.4).

From Equation (4.3) it can be deduced that the overlap elements Si′K = ⟨i′∣K⟩ have
to be evaluated, with ∣K⟩ = ∣ψK⟩ = ∑a cKa∣a⟩, and cKa being the MO coefficients
of a converged DFT calculation4. The elements Si′K are in the following referred

4It is important to remember that the KS eigenfunctions ∣K⟩ = ψK⟩ are a linear combination
of the non-orthogonal basis {∣a⟩}.
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to as projectors Pi′K , to align with common literature [173]. Pi′K can be rewritten
as

Pi′K = ∑
a∈F

⟨i′∣a⟩caK = ∑
a∈F

Si′acaK , (4.4)

with Si′a being the overlap matrix elements of the non-orthogonalized basis func-
tion ∣a⟩ with the Löwdin orthogonalized basis function ∣i′⟩ of subspace C. The
overlap elements Si′a are equal to S

1/2
ia , which can be obtained by using that

∣i′⟩ = ∑b∈F S
−1/2∣b⟩ (Equation (4.1)). The hybridization function ∆i′j′(ω) is then

calculated via Equation (3.45).

Note that in general it is also possible to obtain the local Green’s function gi′i′(ω),
by building the Green’s function G(ω) of the entire system in the matrix form as
explained in Section 3.4. For this, the effective single-particle Hamiltonian matrix
H is transformed into the Löwdin orthogonalized basis

H ′ = S−1/2HS−1/2, (4.5)

and then used to evaluate the matrix Green’s function (according to the definition
in Equation (3.12)) by inversion of H ′. gi′i′(ω) is then simply the element i′i′ of
G(ω).

For the projection of Bloch orbitals onto a set of localized orbitals we use the
implementation within the projector augmented plane-wave (PAW) framework in
solid-state codes (e.g. Abinit [140, 173] or VASP [174, 175]) from which one
obtains the projectors Pi′K (after orthogonalization of the correlated sub-space).
When using VASP, we do the projection of the Kohn–Sham Green’s function
(Equation (3.42)) and the calculation of the hybridization function using an in-
terface developed by Karolak et al. [176], whereas in Abinit these routines are
already existing in the standard implementation.

In terms of a chemical analysis of hybridization functions, the energies and molec-
ular orbitals of the electronic bath are evaluated by diagonalizing only the subset
B (black matrix elements) of the n × n Hamiltonian matrix H ′ (for the sake of
simplicity we assume here to have only one orbital in the correlated sub-space,
which is why the block matrix of space B has a dimension of (n − 1) × (n − 1)),

H ′ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H ′
11 H ′

12 ⋯ ⋯ H ′
1n

H ′
21 H ′

22 ⋯ ⋯ H ′
2n

⋮ ⋮ ⋱ ⋱ ⋮

⋮ ⋮ ⋱ ⋱ H ′
n−1n

H ′
n1 H ′

n2 ⋯ H ′
nn−1 H ′

i′i′

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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as
H̄bath = T

†
bathH

′Tbath. (4.6)

Here, Tbath is a diagonalization matrix of dimension n × n, which contains the
eigenvectors of the bath part (the entries of the sub-space C are zero), and H̄bath

is the Hamiltonian matrix which is diagonal in the space B spanned by the basis
functions of the electronic bath (green matrix elements):

H̄bath =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ε1 0 ⋯ ⋯ V1i′

0 ε2 ⋯ ⋯ V2i′

⋮ ⋮ ⋱ ⋱ ⋮

⋮ ⋮ ⋱ εν Vνi′
Vi′1 Vi′2 ⋯ Vi′ν εi′

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where εν are the energies of the bath orbitals and Vνi′ are the coupling elements
between the bath and the impurity orbitals, which were already introduced in
Equation (3.40).

In the following, we would like to introduce a scheme to decompose the hybridiza-
tion function ∆ij(ω) (for the sake of simplicity we write i = i′ and j = j′) into
different parts, so that we can partition the contribution of different parts of the
electronic bath to the full hybridization function. A possible choice would be the
decomposition into a ligand (lig) and a surface (surf) part, as depicted in Figure
4.2. In the case of more than one ligand, it is also possible to analyze the contribu-
tion of each ligand individually, which is promising for studying the isolated effect
of them onto the hybridization function of the correlated sub-space (the impurity
orbitals).

For this reason, we weight the hybridization function by ∑a c2
νa, where the coeffi-

cients cνa are those of the bath MOs ∣ν⟩ appearing in the columns of the diagonal-
ization matrix Tbath. This sum is 1 if the bath orbitals are normalized. and if the
sum runs over all elements of space B (the electronic bath). Truncating the sum
over a to basis functions of a specific part of the system yields,

∆part
ij (ω) =∑

ν
∑

a∈part

c2
νaVνiV

∗
νj

ω + iη − εν
, (4.7)

where “part” can contain the basis functions of the ligands or the surface (or in
principle any part of the electronic bath). Following our example of Figure 4.2,
the full hybridization function can be recovered as,

∆ij(ω) = ∆lig
ij (ω) +∆surf

ij (ω). (4.8)
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To fulfill Equation (4.8), the remaining basis functions of the impurity atom (or
atoms) need to appear in the sum over a. For instance, if the correlated sub-space
C consists only of the 3d orbitals of one atom, polarization functions5, the 1s shell,
the 2s shell, etc., have to be included in the sum, too.

Combined with state-of-the-art DFT++ calculations, the decomposition of the
hybridization function is a promising tool as it might give new insight into under-
standing the chemical and mechanical control of the Kondo effect. In addition,
such an analysis can be complemented by considering the bath MOs, as a tool for
an analysis in terms of chemical bonding.

4.2. A porphyrin ligand as a discrete electronic
bath: Comparison with ligand field theory

Iron porphyrin (Fe(porph)) and its derivatives are not only interesting in science
due to its biological relevance, but also for its potential for spintronic applica-
tions [177–179]. It could be shown that the Fe spin state in Fe(porph) can be
switched bewteen S=2 and S=1 by mechanically stretching and squeezing it in
a molecular junction-like setup [180]. This spin-crossover behavior motivates re-
searchers to investigate and develop new materials based on such molecules. From a
theoretical point of view, Bhandary et al. [171] have applied the DFT++ approach
to explain that the spin-crossover behavior in Fe(porph) is a delicate interplay be-
tween Fe subsystem d energies (often referred to as the static crystal field splitting
in the literature), the energy-dependent hybridization of the Fe 3d orbitals with
the porphyrin ligand, and by the local Coulomb interaction on the Fe 3d shell.

Using DFT++, one parametrizes the Anderson impurity model by a spin-unpolar-
ized DFT calculation, due to the closed-shell character of the porphyrin ligand
(which represents here the so-called electronic bath). This might seem a little con-
fusing, because the electronic structure of Fe(porph) exhibits an open-shell charac-
ter. It will later be shown in more detail (Section 4.4.3) that the parametrization
of the AIM using closed-shell DFT works well in principle. At this point, it shall
be noted that the magnetic character of the Fe atom will be recovered by solving
the AIM6.

5Depending on the basis set which is used one would also have to include the diffuse basis
functions etc..

6Although this requires that the spin density of the molecule is entirely located on the Fe atom,
in particular on the 3d shell.
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In the following, Fe(porph) was chosen to validate the implementation described in
Section 4.1 using the results of Bhandary et al. [171] as a reference. Furthermore,
first aspects of hybridization functions shall be explained at this system, in which
the Fe 3d orbitals (the impurity) are coupled to a discrete electronic bath provided
by porphyrine. To this end, the results will be compared to what one would expect
from molecular orbital theory.

4.2.1. Computational methodology

FeN

C
H

Iron porphyrin Bath and impurity partitioning

Impurity orbitals

electronic bath

3d

Figure 4.3.: Iron porphyrin (left) split into an electronic bath and the impurity
orbitals. Note that the impurity orbitals comprise the Fe 3d shell
only.

Fe(porph) was optimized with Turbomole [181] using PBE/def2-TZVP [182–
185], with convergence criteria for the SCF algorithm of 1⋅10−6 Hartree, and 1⋅10−4

Hartree/Bohr for the gradient. The hybridization function was obtained from a
closed-shell single point calculation (PBE/def2-TZVP [182–185]), where again a
convergence criterion of 1⋅10−6 Hartree for the SCF algorithm was used. According
to Equation (4.4), we calculated the overlap of the impurity orbitals with the
Kohn–Sham eigenfunctions (molecular orbitals), which were used as an input for
Karolak’s DFT++ code [176] to extract the hybridization function for different
energy windows. Note that the impurity consists of the Fe 3d orbitals only, and that
the remaining Fe basis functions were included in the electronic bath (see Figure
4.3). To make our results comparable to the ones reported by Bhandary et al. [171],
the hybridization function is based on a spin-unpolarized DFT calculation. This

46



Chapter 4. Towards a conceptional understanding of the Kondo effect in terms
of chemical bonding

is a common choice in the literature for the parametrization of the AIM for the
case of a non-magnetic electronic bath, and will later be discussed in more detail
(Section 4.4.3).

4.2.2. Fe subsystem d energies and hybridization function as
obtained from different projection windows
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Figure 4.4.: Fe 3d hybridization function of an iron porphyrin as obtained from
PBE/def2-SVP. In the left panel, the projection was done with all
single-particle orbitals of the system, whereas in the right panel we
show the same results, but only took into account orbitals with an
energy up to 10 eV above the energy of the HOMO. In this plot, a
smearing (the imaginary off-set) of 0.1 eV was used. Note that the bath
MOs shown in the plots have also Fe character, because the electronic
bath consists of all basis functions on the ligand and the remaining Fe
basis functions which are not the 3d orbitals (however, the electronic
bath includes the 3d polarization functions). Isosurface value for bath
MO plots: 0.02.

The Fe 3d hybridization function of Fe(porph) is shown in Figure 4.4, for two
different energy windows (see Sec. 3.6.4 for a brief discussion) used for the projec-
tion. In both cases, the top panel shows the imaginary part of the hybridization
function, whereas the real part is shown in the bottom panel. The former describes
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the effect of the Fe 3d orbitals being broadened due to the porphyrin backbone,
whereas the latter is the energy-dependent shift of the 3d orbitals (therefor often
referred to as the dynamical7 crystal field) in the literature. In simple words, the
hybridization function of the Fe 3d orbitals exhibit peaks at the effective single-
particle energies of the electronic bath8. (in the following sections, this concept
will become more clearly).

Qualitatively, the projections with both energy windows yield similar results for the
real and imaginary parts of the hybridization function. Comparing with Ref. [171],
one can see that our hybridization functions exhibit the same features as the
(VASP) results of Bhandary et al. However, our peaks are shifted to lower energies
compared with the results of Ref. [171], which might result from the different basis
sets used in VASP and Turbomole, as well as from small differences in the
molecular structure.
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Figure 4.5.: Density of states projected onto the Fe 3d orbitals (− 1
π Imgi(ω)) of an

iron porphyrin molecule. Results obtained from PBE/def2-TZVP, by
taking into account all eigenstates of this system up to 10 eV above
εHOMO for the projection (see text for an explanation). The energies
were shifted against the HOMO, so that ω = 0.0 eV = εHOMO. Isosur-
face value for MO plots: 0.015.

At ω = −2.7 eV, one obtains a large peak in the imaginary part of the hybridization
7As already mentioned in Sec. 3.5, the term “dynamical” is often used for energy/frequency
dependent quantities in physics.

8The effective single-particle energies of the electronic bath can be obtained by diagonalizing
the bath part of the Kohn–Sham Hamiltonian, as discussed in Sec. 4.1.

48



Chapter 4. Towards a conceptional understanding of the Kondo effect in terms
of chemical bonding

function of the dx2−y2 orbital, which is caused by the formation of a σ-bond of this
orbital with the ligand9. The resulting anti-bonding molecular orbital has strong
Fe 3dx2−y2 character and is shifted upwards in energy (see Figure 4.5) as compared
to the remaining 3d orbitals (at the same time the bonding linear combination is
shifted downwards in energy), which is the reason for the large feature in the real
part of the hybridization function (bottom panel of Figure 4.4). For the remaining
Fe 3d orbitals, the features in the real and imaginary parts of the hybridization
function are rather small, which is presumably due to the much weaker π-type
interaction. This is probably the reason why these orbitals are only little shifted
against each other, as seen in the PDOS.

It is believed that the dynamical or energy-dependent shift (described by the real
part of the hybridization function) of the 3d orbitals can presumably be understand
as the splitting between the bonding and anti-bonding orbitals formed by the
hybridization of the Fe 3d orbitals with the bath orbitals (or what in chemistry
would be called ligand group orbitals (LGOs)), which is depicted in Figure 4.6.
Note that this is not a molecular orbital diagram as usually drawn in chemistry,
but this figure illustrates that dx2−y2 orbitals is shifted most significantly, which
agrees with the observation of Re∆x2−y2(ω) exhibiting the largest feature among
the Fe 3d orbitals, whereas the remaining 3d orbitals are only little affected (in
agreement with the rather featureless real part of the hybridization function for
these orbitals). Furthermore, this figure demonstrates that the imaginary part
(and also the real part) exhibits peaks at the energies of the bath orbitals, which
is why Im∆i(ω) it is often referred to as the bath density of states which can be
“seen” by the impurity orbitals (in Section 4.4 another example will be introduced
to enlarge upon the concept of the hybridization function), and that these energies
are different than the KS eigenvalues of the entire system.

Before discussing the Fe subsystem d energies obtained from Equation (3.44), it
shall be mentioned that for the square planar Fe(porph) complex one would expect
a d6 electron configuration on the Fe(II) atom, which results in a triplet ground-
state [186] (see Figure 4.7 for the qualitative 3d splitting in this case). The orbital
with the largest energy is expected to be the dx2−y2 orbital, because the porphyrin
ligand is contacting the central atom directly on the x/y-axis.

In the following, it shall be analyzed how the energy window for the projection
(Equation (3.42)) affects the Fe subsystem d energies. As mentioned in Section
3.6.4, a too large window (taking into account too many virtual orbitals) can lead
to physically unreasonable results.

9The molecule lies in the xy-plane with opposing N atoms being aligned on the x and y axis,
respectively.
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Figure 4.6.: A combined picture of the Fe 3d hybridization function with the en-
ergies of the electronic bath, the energies of the Fe d subsystem, the
molecular orbital energies, and the Fe 3d energies of an isolated Fe
atom. Results obtained from PBE/def2-TZVP. The energies of the
Fe d subsystem were obtained by evaluating lim

ω→∞
∆̃i(ω) = εi, after pro-

jection of the KS Green’s function onto the Fe 3d orbitals by taking
into account all occupied and all virtual orbitals up to +10 eV above
εHOMO (sum over K appearing in Equation (3.42)).50
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In Table 4.1, the Fe subsystem d energies are shown (as evaluated by lim
ω→∞

∆̃i(ω) =

εi). Note that the energies are shifted against the Fermi energy (i.e. the energy
of the HOMO εHOMO was set to zero). By taking into account all Kohn–Sham or-
bitals (sum over K appearing in Equation (3.42)) one finds that the Fe subsystem
d energies are all above the Fermi energy (which is here the energy of the HOMO).
That these values are physically unreasonable is indicated by the total Fe 3d occu-
pation of 4.6, because for an Fe2+ ion in Fe(Porph) a 3d occupation of 6 electrons
would be expected [187,188]. By truncating the sum overK appearing in Equation
(3.42), the subsystem d energies are decreasing, and as a consequence the Fe 3d
occupation (nd) is close (virtual orbitals included: +10 eV above εHOMO), or equal
to 6 (virtual orbitals included: +6 eV above εHOMO), and reflects the expected 3d6

configuration for an iron(II) complex, as mentioned before.

isolated atom

square planar ligand field

3d

dxz/yz

dxy

dx2-y2

dz2

Figure 4.7.: Splitting of the 3d orbitals in a square-planar ligand field [189,190].

Comparing the Fe subsystem d energies with the expected splitting from ligand
field theory (Figure 4.7), one observes a qualitatively consistent picture, except for
the positions of the dz2 and dxz/yz orbitals being exchanged for the Fe subsystem d
energies, when all KS orbitals up to +10 eV above εHOMO are taken into account for
the Green’s function projection. Interestingly, considering all KS orbitals, as well
as truncating the virtual orbitals included in the projection to those which energy is
not larger than +6 eV above εHOMO, the qualitative ordering of the Fe 3d orbitals is
consistent with the one shown in Figure 4.7. However, for the former the difference
between εz2 and εxy is too large compared to what one observes by considering
the KS molecular orbitals with mainly Fe 3d character (of the full Fe(Porph)
system) as shown in Figure 4.6. This observation furthermore demonstrates that
too many virtual orbitals accounted for in the KS Green’s function projection lead
to physically unreasonable results.
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Table 4.1.: Fe subsystem d energies (εi) with respect to the Fermi energy (εHOMO)
of the Fe 3d orbitals in Fe(porph) as obtained for truncating the num-
ber of virtual orbitals used in the projection (sum over K appearing
in Equation (3.42)) (all occupied orbitals included). As described in
Section 3.6.3, εi was obtained by evaluating lim

ω→∞
∆̃i(ω) = εi. nd is the

total Fe 3d occupation as obtained by integrating the PDOS. Energies
in eV.

virtual orbitals included all +10 eV above εHOMO +6.0 eV above εHOMO

εx2−y2 9.2 1.4 1.3
εxy 8.6 0.4 -0.1
εxz/yz 7.8 -0.2 -0.3
εz2 7.7 0.2 -0.4

nd 4.6 6.0 6.2

Altogether, it was shown that the projection scheme implemented within an atom-
centered basis set (Section 4.1) can qualitatively reproduce the hybridization func-
tion of the 3d orbitals in Fe(porph), and the 3d orbital splitting of the impurity
atom is in line with the chemical expectation from ligand field theory. Although
small qualitative differences could be observed for the order of the dz2 and dxz/yz

orbitals by using different energy windows, one can conclude that taking into ac-
count all occupied KS orbitals, as well as all virtual orbitals with energies of 6-10 eV
above εHOMO might be a reasonable choice for the projection of the KS Green’s
function onto the Fe 3d orbitals in Fe(Porph), to use the hybridization function
and the Fe subspace d energies as input for the AIM. On the other hand, if one
is only interested in a qualitative analysis of the hybridization function (e.g. for
studying adsorbate–surface interactions), the energy window for such a projection
can be chosen arbitrarily with respect to the number of virtual orbitals, because
we found that ∆i(ω) depends only little on it.

4.3. H2 dissociation — closed-shell to open-shell
singlet transition

In Section 3.6.3, we already discussed that a too strong hybridization between the
impurity and the electronic bath leads to the destruction of the Kondo resonance
at the Fermi level. In this part, a similar situation shall be discussed, which is
the bond stretching of a hydrogen molecule. If H2 is at its equilibrium distance,
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the molecule is in a closed-shell situation which can be transferred into an open-
shell system (a similar situation occuring in the Kondo effect) by pulling the H
atoms apart from each other. By doing so, we follow the S2 expectation values at
different H-H bond distances and at the same time, we consider the hybridization
function of one of the H atoms.

4.3.1. Computational Methodology

H2 was optimized using BP86/STO-3G [191–195] as implemented in the Turbo-
mole program package [181], with convergence criteria for the SCF algorithm of
1⋅10−6 Hartree, and 1⋅10−4 Hartree/Bohr for the gradient. In Figure 4.8 a), the
optimized hydrogen molecule at its equilibrium distance dH2 = 0.75 Å is shown.

For mimicking the bond-breaking scenario, we performed single-point calculations
of the hydrogen molecule after increasing the bond distance by x Å using a broken-
symmetry approach (as described in Section 3.3.1).

4.3.2. Hybridization functions and S2 expectation values at
different H-H bond distances

The S2 expectation value can be used as an indicator for the detection of an open-
shell character in molecules [196]. At the example of H2, this value is assumed to
be zero due to the closed-shell situation mentioned above, and should get larger
when the open-shell character increases at larger bond distances. It will become
clear that similar to the destruction of the Kondo peak (corresponding to the
destruction of an open-shell singlet state) caused by a too strong hybridization,
there is a similar open-shell to closed-shell transition in the H2 bond breaking
scenario which is more familiar to the community of chemists.

At each distance under consideration, the S2 expectation values are shown in
Figure 4.8 b). At equilibrium distance (x = 0.0 Å), and for not too large changes
in the bond distance, the Value of S2 is 0.0 which indicates that the hydrogen
molecule is in a closed-shell situation. For x = 1.0 Å, the S2 value starts to differ
from 0.0 due to localization of spin density on the hydrogen atoms. At x = 2.0 Å,
S2 takes roughly the value of 1.0, because the α (spin-up) electron is well localized
on one of the H atoms, whereas the β (spin-down) electron is located on the other
H atom. Note that such a broken-symmetry Kohn–Sham wave function is not an
eigenfunction of the Ŝ2 operator, and S2 takes an intermediate value between the
singlet (S2 = 0.0) and triplet values (S2 = 2.0).
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Figure 4.8.: a) Optimized (BP86/STO-3G) H2 molecule. b) S2 expectation values
at different displacements of the H-H bond length, as obtained from
unrestricted DFT. As indicated by S2, unrestricted DFT can yield a
closed-shell solution (S2 = 0), as well as a broken-symmetry solution
(S2 > 0). c) Imaginary part of the hybridization function of the 1s
orbital (H1), for α (spin-up) and β (spin-down) electrons (unrestricted
DFT), and as obtained from closed-shell (cs) DFT. Note that the
energy was not shifted against the energy of the HOMO.

The imaginary part of the hybridization function of the 1s orbital in H1 is shown
in Figure 4.8 c). At x = 0.0 Å, the H2 molecule is in a closed-shell situation (S2

= 0.0), for which one obtains that the hybridization of the H1 1s α orbital is the
same as the hybridization of the H1 1s β orbital, due to the fact that the α and
β wave functions are equal in the S2 = 0 case. As expected, both (α and β)
hybridizations also agree with the H1 1s hybridization as obtained from a closed-
shell (cs) calculation. This is different if the bond length of H2 is increased and
the Kohn–Sham wave function takes more and more the character of the broken-
symmetry solution (i.e. the α and β orbitals are not equal anymore). In these
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cases, the α, β, and the closed-shell hybridization functions have peaks at the
corresponding bath energies.

By further inspection of Figure 4.8 c) from the right to the left, one observes that
the peak of the hybridization (for α, β and cs) increases as the bond distance is
decreased, which is noticeable at the growing scale of the y-axis from the right
to the left. As the hybridization strength increases, the S2 value decreases as
mentioned before. This is similar (but not equal) to the simplest Anderson model
(as discussed in Section 3.6.3), where a too strong hybridization parameter V leads
to the destruction of the Kondo effect, being in agreement with the “destruction”
of an open-shell singlet state at H2 bond distances close to the equilibirum distance
(reflected in ⟨S2⟩→ 0).

Having in mind that a Kondo effect is often considered as an open-shell singlet
state [41], it was indeed possible to demonstrate that there are simple parallels
between the H2 bond-breaking scenario and the Kondo effect in the simplest AIM.
An open-shell singlet state in H2 is suppressed close to its equilibrium distance,
because both H 1s orbitals are strongly hybridized with each other, similarly to
the destruction of a Kondo effect at a too strong hybridization parameter V (see
Section 3.6.3). In the further course of this thesis, it will be shown that this
observation will be beneficial for the interpretation of more complex systems.

4.4. From discrete energies to a continuous bath

While in physics one often deals with solid-state systems, in chemistry one is
typically rather interested in the properties of single molecules or supramolecular
systems. Molecular spintronics is at the interface of both disciplines, and topics
such as molecules on surfaces benefit from comparing (and ideally bringing to-
gether) the viewpoints and concepts from both communities. To this end, we are
focusing on simple model systems for understanding how adsorbates couple to a
band rather than to discrete molecular orbitals (the latter was already discussed
in the preceding sections).

It should be recalled that a band is formed if the number of atoms is infinitely
large, caused by the vanishing gap between the MO energies as depicted in Figure
4.9 a). Imagine one would add an additional atom to this system, as e.g. an
adsorbate as depicted in Figure 4.9 b)10.

10The choice of this example has been made, because throughout this work we will focus on
molecules on surfaces.
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Figure 4.9.: a) Schematic representation of the band structure evolution from a sin-
gle atom to a chain of an infinite number of atoms. The red and green
circles represent the phases of s-atomic orbitals. b) Adsorbate–ligand
system for different numbers of ligand atoms (eventually forming a
chain).

Each of the molecular orbitals formed by the chain of atoms (Figure 4.9 a)) can
then be considered as a LGO, from which one could immediately build a molecular
orbital diagram of the adsorbate–ligand system. The resulting MOs are due to
hybridization of the adsorbate’s orbitals with the LGOs.
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In physics, the concept of molecular orbitals is indeed known, but one is typically
rather interested in the effect of the ligands (or in this context the chain of atoms)
on the atomic or molecular orbitals of the adsorbate. As mentioned in Section
3.6.3, these effects are captured in the so-called hybridization function, which is
a complex, energy-dependent function. The energy dependence is a consequence
of the emerging band structure if the “ligand” is not a molecule or an atom with
discrete single particle energies, but an infinitely large solid with a continuum of
these energies.

In the following, the concept of the hybridization function will be merged with
the chemist’s view of a molecular orbital diagram. It will quickly become clear
that the picture of a MO diagram becomes unmanageable for a too large hydrogen
chain, whereas the hybridization function is a convenient tool to deal with such
systems.

4.4.1. Computational methodology

Helium coupled to a hydrogen chain:
To follow the transformation of discrete orbitals into a band, a hydrogen chain
length is increased step-by-step. The hydrogen atoms are spaced by a = 0.75 Å,
and the helium was placed 0.80 Å (dad) above the hydrogen chain in a bridged
position as depicted in Figure 4.10. For each chain length, a single-point calcu-
lation (PBE/STO-3G [182, 183, 197]) was done using Turbomole [181], with a
convergence criterion of 1⋅10−6 Hartree for the SCF algorithm. The hybridization
functions were then calculated from the impurity Green’s function (see Equations
(3.42) and (3.45)), using the projectors as calculated within an atom-centered ba-
sis set (Equation (4.4)).

Spin-up and spin-down hybridization of a spin-polarized adsorbate on a metallic
surface:
The Cu monolayer was modeled as a n × n grid of Cu atoms (each spaced by
2.57 Å), as shown in Figure 4.14. The Co atom was placed in the center of the Cu
monolayer, with an adsorption distance of 1.52 Å. For each grid size a single point
calculation was done using Turbomole [181] (PBE/def2-SVP [182–185]), with a
convergence criterion of 1⋅10−6 Hartree for the SCF algorithm. The hybridization
functions were then calculated from the impurity Green’s function (see Equations
(3.42) and (3.45)), using the projectors as calculated within an atom-centered basis
set (Equation (4.4)).
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4.4.2. Helium coupled to a hydrogen chain

The test system of choice is a helium atom “adsorbed” on a chain of hydrogen
atoms, which acts as a toy model to mimic how an adsorbate interacts with a con-
duction band of a metal. In this example, it is unimportant whether the adsorbate
is a closed-shell (as in this case) or open-shell system, as it shall just demonstrate
how the energy dependence of hybridization functions can be understood as a
consequence of the band structure evolution from a single atom to a chain of an
semi-infinite number of atoms.

He

H1 Hn

 a = 0.75 Å

 dad = 0.80 Å

Figure 4.10.: A helium atom adsorbed on a hydrogen chain of n atoms. The hy-
drogen atoms are spaced by a = 0.75 Å, and the helium atom has an
adsorption distance of dad = 0.80 Å.

In the simplest case, the helium atom (formally) adsorbs on a single hydrogen
molecule H2 (n = 2), that provides two LGOs for the He–substrate interaction
(see Figure 4.11 a)). Due to symmetry, the He 1s orbital can only interact with
LGO1 of H2. This gives rise to a bonding molecular orbital (-17.7 eV) with mainly
He 1s character. In the PDOS (− 1

π Img1s(ω)) of the He 1s orbital (Figure 4.12
a),) one can perceive this as a large peak at the energy of the bonding molecular
orbital (-17.7 eV). Further, one observes a second smaller peak slightly below ω =
0.0 eV, which corresponds to the He 1s contribution to the anti-bonding molecular
orbital at -0.6 eV, and as mentioned earlier, due to symmetry reasons we do not
observe a peak at the MO with the highest energy (ω = 3.4 eV), because there is
no coupling of the He 1s orbital with LGO2.
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a) b)

Figure 4.11.: Schematic representation of a molecular orbital diagram for a He
atom “adsorbed” on a hydrogen chain with n = 2 (left) or 4 (right) H
atoms. Results obtained from PBE/STO-3G. The LGO orbitals are
the molecular orbitals as obtained for the hydrogen chains without
the adsorbate. Note that the energies of LGO2 (left) and LGO4
(right) are larger than the corresponding molecular orbitals in the
adsorbate–substrate system. Isosurface value: 0.15

The hybridization function of the He 1s orbital (for n = 2) is shown in Figure
4.12 b). The peak occurring in the imaginary part of the hybridization function
is shifted towards lower energy as compared to the peak at -0.6 eV in the PDOS.
This can be understood by considering the physical meaning of the hybridization
function: It can be seen as the bath density of states (the bath is here the hydrogen
chain) weighted by the hybridization Viν , or hopping, elements t (see, e.g., the last
term of Equation (3.21)), thus we expect the peaks occurring in ∆(ω) to be at the
energies of the subsystem MOs of the electronic bath spanned by the hydrogen
chain11, and not at the KS eigenvalues of the entire system (at which the peaks in
the PDOS can be observed). In simple words, the imaginary part of ∆(ω) is the
bath density of states which is “seen” by the impurity (here the He 1s orbital). The
reason that there is only one peak (Figure 4.12 b)) is a consequence of the He 1s

11These are obtained by solving the secular equation for the hydrogen block in the Kohn–Sham
Hamiltonian.
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orbital hybridizing with only one LGO, which can be understood by considering
the molecular orbital scheme sketched in Figure 4.11 a).
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Figure 4.12.: a) and c): Projected density of states of the He 1s orbital for the
cases n = 2 (a)) and n = 4 (c)). b) and d): Imaginary and real part
of the He 1s hybridization function as obtained from STO-3g/PBE
for n =2 and n =4.

By increasing the H-chain length to n = 4, one obtains four LGOs, two of which
can hybridize with the He 1s orbital, as depicted in Figure 4.11 b). In Figure 4.12
c) one can see that a third peak in den PDOS emerges in contrast to the example
with n = 2, which is caused by the He 1s orbital contributing to three molecular
orbitals. The imaginary part of the hybridization function (Figure 4.12 d)) of the
He 1s orbital has two peaks, which are due to the hybridization with LGO1 and
LGO3.
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Assuming the number n of the hydrogen atoms would further increase, one could
imagine that at the same time, the number of peaks in the hybridization function
increases, too. A molecular orbital diagram for this scenario would become hard to
interpret, and rather the concept of the energy-dependent hybridization function
proves to be of value, as discussed in the following.

In Figure 4.13, the He 1s hybridization function is shown for n = 8, 32 and by
applying PBC with 32 H atoms in the unit cell (and a k grid of 12x1x112). The
formation of a hydrogen 1s-band (PBC(PAW)) leads to a physically reasonable
energy dependence in the hybridization function of the He 1s atom, because the
number of peaks in the hybridization function increases, and at the same time the
distance between them decreases (which leads to a smoother function)13. From a
chemistry point of view, this “smoothing” can be understood as being caused by
the hybridization of the He 1s orbital with a large number of LGOs, as introduced
at the beginning of Section 4.4. However, in this example the KS eigenvalues are
still too discretized, likely due to a too small number of k points considered in the
DFT calculation, which is why for PBC(PAW) the hybridization does not show
an infinite number of peaks, as one would expect by applying periodic boundary
conditions.
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Figure 4.13.: Real and imaginary part of ∆(ω) of a He 1s orbital coupled to a chain
of hydrogen atoms. The hydrogen chain is modeled by n = 8 and
32 atoms. In the PAW cases, the projectors as obtained from VASP
have been used, whereas in the other cases we used Turbomole
(PBE/STO-3G) as described in Section 4.1.

12Here we used the PAW method as implemented in VASP [174,175] using the PBE exchange–
correlation functional [182,183].

13To obtain an ever smoother hybridization function as shown in this example, a larger number
of hydrogen atoms would be required.
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To conclude, it has been shown at a very simply model system how the energy-
dependence of the hybridization function emerges when the number of states of the
bath is increased to form a band. It is evident that for a more realistic substrate,
a full MO diagram will become too complex as the only tool for interpreting
adsorbate–surface systems. This illustrates that the concept of the hybridization
function used in this work is a benefit for analyzing the bond properties of an
adsorbate to its substrate, which can in combination with a molecular orbital
picture bring new insights in such systems. This is of particular interest in the
context of the present thesis, learning more about the chemical and mechanical
control the Kondo effect.

4.4.3. Spin-up and spin-down hybridization of a
spin-polarized adsorbate on a metallic surface

As common in the literature, the AIM is parametrized by a spin-unpolarized DFT
calculation, as long as the substrate/surface is a non-magnetic system. This might
appear physically unreasonable for adsorbates with open-shell character, for which
one would typically rather use unrestricted DFT. The reason for using the spin-
unpolarized version lies in the nature of the (in our cases) non-magnetic substrate,
which is why the hybridization of the correlated orbitals (of the adsorbate) have
to be similar to the spin-up and spin-down electrons of the substrate. The mag-
netization on the impurity is then recovered by solving the AIM.

n

n

x

y

top view side view

Figure 4.14.: Schematic representation of a single Co atom on a Cu(001) monolayer
with n × n dimensions.

In order to show that a spin-unpolarized DFT calculation yields physically mean-
ingful results for spin-polarized adsorbates on non-magnetic substrates, we calcu-
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late the Co 3d hybridization function for α (spin-up) and β (spin-down) electrons
in the case of an Co atom adsorbed on differently sized Cu monolayers (Figure
4.14). It will be shown that with an increasing size of the Cu monolayer, the α
and β hybridizations function of the Co 3d shell become more and more equal.

The Cu grid of 2×2, which is the smallest under consideration, shows the strongest
deviation between the α and β hybridizations (Figure 4.15). This difference gets
significantly smaller if the Cu grid size is increased, and already at a grid size of
8 × 8, there is a good agreement between the α and β hybridization functions of
the Co 3d shell. This comes from the fact that with a sufficient number of Cu
atoms for mimicking a surface, the electronic structure of this is more and more
“realistically” described by DFT, which leads to the non-magnetic character as
mentioned before.
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Figure 4.15.: Imaginary part of the hybridization function of Co on a Cu monolayer
with different numbers of Cu atoms (n×n). Results are obtained from
PBE/def2-SVP, and projection onto the Co 3d shell. The Fermi level
(HOMO) was set to ω = 0 eV.

In summary, it could be shown that the α and β hybridization functions of a spin-
polarized adsorbate on a non-magnetic substrate become identical in the case of
a proper description of the substrate, and demonstrates that one can use a non-
magnetic DFT calculation for the parametrization of the AIM. In the following
part of this thesis, the AIM will be applied to Co/Cu(001), whereas the Cu(001)
surface will be described by applying periodic boundary conditions.
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5.1. Introduction

To study how the Kondo effect can be controlled chemically, it is worthwhile to
get insight into the structure–property relation of a known Kondo system, for
instance with respect to certain property changes as a function of the adsorption
distance. In an experimental setup this might be realized by the displacement of
a STM tip [198, 199], or through changing the chemical environment (e.g. ligand
substitution and modification). For studying this, the focus will be on a single Co
atom on Cu(001), which is a structural simple system, i.e. that there are no ligands
to take care of which might complicate things, as we will see later throughout this
work.

Co/Cu(001) has been the topic of many experimental [200–203] and theoreti-
cal [111, 199] investigations, regarding the Kondo effect. Experimentally, it was
found that the Kondo temperature of Co/Cu(001) is TK = 88±4 K [200–203], as
extracted from a Fano-fit of the zero-bias (dI/dV ) resonance in a STS experi-
ment. Theoretically, this system was already described using the AIM by Jacob
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(one crossing approximation) [111] and Baruselli et al. (numerical renormaliza-
tion group) [199], and identified as a S = 1 system with the Co 3dz2 and 3dx2−y2

orbitals having one unpaired electron. Both works conclude, that only the local
moment of the 3dz2 orbital is screened due to a Kondo effect, which is therefore
called “underscreened Kondo effect”.

In this part, the focus is not on the Kondo effect in particular, but the DFT++
approach will be used to investigate the potential energy surface (PES) scan along
the adsorption coordinate of Co/Cu(001). It will be shown that adding electron
correlation in the scope of the AIM, but also by using DFT+U the minimum ad-
sorption distance is shifted towards larger values, and that such a shift can have
significant consequences for the electronic structure of Co. In particular, this is an
important observation for studying Kondo systems, as the choice of the electronic
structure method for structural relaxation will, e.g., affect the Kondo tempera-
tures. Nevertheless, it will be discussed that a proper choice of the exchange–
correlation functional is sufficient for this task, and one does not necessarily need
apply the more expensive DFT++ method. Further, we use the results of the
simplest Kondo model to approximate the Kondo temperatures based on our DFT
parameters at different points of the PES, to study how the Kondo temperature is
affected by these distances. For more details see Reference [204]. Note that some
of the results were also part of my master’s thesis [205].

5.2. Computational methodology

We modeled the Cu(001) surface by a 4×4 super cell with five Cu layers. The lattice
parameter was set to a value of 3.615 Å [206]. As determined in Reference [200],
the adsorption position of Co on Cu(001) is the four-fold hollow position, which
is therefore used in this study. Single-point calculations were performed at Co–
surface distances (dCo−surface between 1.3 Å and 1.7 Å in increments of 0.10 Å, with
a finer spacing of 0.02 Å around the energetic minimum. All calculations (DFT,
DFT+U and DFT++) were done with the Abinit 7.10.4 program package [140]
using a PAW basis set [207,208]. For the exchange–correlation functional, the GGA
of Perdew et al. [183] and the local density approximation (LDA) for the exchange–
correlation functional of Perdew and Zunger [209, 210] were applied. In addition,
the effect of including spin-polarization (DFTSP) is investigated, by comparing the
results against spin-unpolarized calculations. The latter were used to parameterize
the AIM, as already mentioned in Section 4.4.3. For all calculations we used a k-
grid of 4×4×1 centered around the Γ-point.
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Figure 5.1.: Unit cell used for calculating the PES for Co/Cu(001) adsorption.
dCo−surface is the difference between the z-coordinate of the Cu atoms
in the first layer (they were aligned so that all Cu atoms in the first
layer have a z-coordinate of 0.00) and the z-coordinate of the Co atom.

We solved the AIM within the CT-QMCmethod as explained in Section 3.7. For all
DFT++ single-point calculations we used an inverse temperature of β = 100 eV−1.
The Coulomb interaction tensor was approximated by using density-density type
interaction only, with the Slater parameters U = F 0 = 3.0 eV, 3.8 eV, 4.0 eV, 4.2
eV and 5.0 eV, and J = 1

14(F
2 + F 4) = 0.9 eV with F 4

F 2 = 0.625. To account for
the double-counting problem, the fully localized limit was used. In the following
we are going to discuss the effect of strong electron correlation on the potential
energy surface along the Co/Cu(001) adsorption coordinate dCo−surface comparing
DFT with DFT++ and DFT+U results. The former are split in spin-unpolarized
and spin-polarized calculations. We consider the spin-polarized calculations as
our DFT reference, and for a physically correct description of the non-magnetic
behavior of the copper surface, we use the spin-unpolarized solution as a starting
point for the DFT++ calculations where the magnetic moment of the Co 3d shell
is described correctly by the AIM, as is common in the literature [111].

After we have discussed the potential energy surfaces, we will consider the elec-
tronic structure in more detail. We provide extensive data at selected values for
dCo−surface to show the sensitivity of the electronic properties as described by the
AIM to the adsorption distance. This allows us to judge the importance of ac-
curate adsorption distances for strongly correlated systems. As mentioned in the
introduction, it was found that Co on Cu(001) exhibits a Kondo effect with a
Kondo temperature of 88 ± 4 K [200–202]. In this work, we will not focus on this
temperature in detail, because the largest inverse temperature β = 100 eV−1 em-
ployed here corresponds to ∼ 116 K which is too high to observe a Kondo effect in
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our calculations1. We will use our DFT results for a qualitative assessment of the
Kondo physics, as will be discussed in Section 5.4.

5.3. Potential energy surface scan along the
adsorption coordinate
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Figure 5.2.: Relative energies obtained from spin-unpolarized DFT (DFT), spin-
polarized DFT (DFTSP) and DFT++ for different adsorption dis-
tances of Co on Cu(001). The DFT++ calculations were performed at
β = 100 eV−1. The DFT++ results for U = 3.8 eV, 4.0 eV and 4.2 eV
are nearly on top of each other (see Section A.2), which is why we
limit this plot to the results of U = 4.0 eV. The exchange parameter
for all values of U is J = 0.9 eV. For the definition of dco−surface see
Fig. 5.1.

The PES of a cobalt atom on a Cu(001) surface is studied with DFT (spin-polarized
and spin-unpolarized) and DFT++, with the presently most used approximate ex-
change correlation functionals in solid state physics, namely LDA (LDA++) and
PBE (PBE++). Furthermore, we provide the adsorption distance as obtained
from structural relaxation with DFT+U (and keeping the Cu(001) surface fixed).
The DFT++ calculations are completely parametrized by the underlying DFT cal-
culation, except for the Coulomb matrix (last term in Eq. (3.39)) and the double-
counting energy EDC, which are often in practice unknown (note that the FLL is
just an estimation to the real DC value). Although, it should be mentioned that
efforts to compute the Coulomb matrix [111], as well as the double-counting [211]

1At lower temperatures (e.g. β = 200 eV−1 (∼ 58 K)) one would need a sufficiently large k-point
grid for a proper integration of the Greens function resulting in a large computational effort,
which will in detail be discussed in Section 6.
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from first-principles exist. The variation of the latter can be used to control the
occupation2 on the correlated atom (the Co atom in our case) manually (as, e.g.
in Ref. [212]), but here we need a unique way to define the double-counting at each
adsorption distance, which is achieved by applying the FLL double-counting cor-
rection (Eq. (3.38)). Of course, the same argumentation holds for choosing U . As
mentioned before, in this study we address this issue by comparing three different
fixed values for U (U = 3.8, 4.0 and 4.2 eV) and one fixed value for J (0.9 eV) at
each data point, allowing for the investigation of the PES with increasing U (for
the parametrization details see Sec. 3.6.1). In addition, we checked for U = 3.0 eV
and U = 5.0 eV if the adsorption distance (LDA++ only) changes for these values,
by computing only a few points around the LDA++ (U = 4.0 eV) minimum of
1.52 Å (see Section A.2), suggesting that slightly varying U around 4.0 eV has no
large impact on the adsorption distance.

The total energies as a function of the adsorption distance for DFT and DFT++
(β = 100 eV−1 ∼ 116 K) are shown in Fig. 5.2 for the two functionals discussed
here. They were plotted relative to the lowest energy obtained for a given method
(all minimum-energy adsorption distances are provided in Tab. 5.1).

Table 5.1.: Adsorption distances in Å at which the energy minima were obtained
within the different methods employed here. The values for U are
provided in the table and the value for J is 0.9 eV.

LDA PBE

DFT 1.40 1.50
DFTsp 1.44 1.56

DFT++ (3.0 eV) 1.52 -
DFT++ (3.8 eV) 1.52 1.68
DFT++ (4.0 eV) 1.52 1.68
DFT++ (4.2 eV) 1.54 1.68
DFT++ (5.0 eV) 1.54 -
DFT+U (4.0 eV) 1.53 1.69

It was found (Tab. 5.1) that the minima are shifted to higher adsorption distances
in the series DFT < DFTsp < DFT++/DFT+U . Remember that the “DFT” results
are without spin polarization, thus the effect of including it (DFTsp) is a small
shift towards higher adsorption distances by about 0.04 Å to 0.06 Å. The effect of

2Unless the exact exchange correlation functional is known, the exact occupation is unknown
too.
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adding dynamical electron correlation (in the physics sense) by applying DFT++
continues shifting the PES towards larger adsorption distances: the shift from
LDAsp (LSDA) to LDA++ is about 0.08 Å to 0.10 Å, and 0.12 Å for PBESP to
PBE++. For DFT+U we have not calculated the PES for the surface adsorption,
but rather optimized Co on Cu(001) with all Cu atoms kept frozen, which is why
we provide the minima in Tab. 5.1. The shift of the adsorption minimum from
LDASP to LDA+U (1.44 Å → 1.53 Å) is in agreement with LDA++, as it is for
PBEsp to PBE+U (1.56 Å → 1.69 Å) compared to PBE++.

−85

−80

−75

−70

−65

−60

−55

1.3 1.4 1.5 1.6 1.7

−0.80

−0.75

−0.70

−0.65

−0.60

E
po

t−
E

D
C

 in
 k

J/
m

ol

E
po

t−
E

D
C

 in
 e

V

dCo − surface in Å

LDA++
PBE++

Figure 5.3.: Epot − EDC as obtained from LDA++ and PBE++ at β = 100 eV−1

with U = 4.0 eV and J = 0.9 eV.

Generally, LDA (LDAsp) predicts a smaller adsorption distance than PBE (PBEsp)
which is not unexpected, because LDA is known for its overbinding character
[213–215]. Accordingly, it is not surprising that we found the LDAsp minimum
0.12 Å below the minimum of PBEsp. To account for dynamical electron correlation
within the DFT++ framework, however, does not solve this issue. Instead, it
shifts the PESs of LDA and PBE towards higher adsorption distances, and further
increases the difference between the minima for the two functionals (see Tab. 5.1).
Further, the much cheaper DFT+U method provides a similar answer as DFT++
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concerning the minimum adsorption distance of Co/Cu(001).

To explain the shifts introduced by DFT++ in contrast to DFT, we will proceed
by separating the correlation energy (Epot − EDC) introduced by CT-QMC from
the total DFT++ energy (EDFT++, see Equation (3.62)). The remaining terms
should account for the isolated effect of the electron density being modified by
adding explicit correlation. Epot −EDC as a function of the adsorption distance is
shown in Fig. 5.3. It is negative and its absolute value increases with adsorption
distance.

The physical interpretation of the increasing ∣Epot −EDC∣ with increasing distance
is that the electrons on the Co 3d shell get more correlated at larger adsorption
distances, similar to H2 being more statically correlated (in the chemistry sense)
when stretched, as indicated by the open-shell character at an increased bond
distance discussed in Section 4.3. In contrast to the interaction term Epot −EDC,
the remaining terms of Eq. (3.62) (shown in yellow in Fig. 5.4) have a minimum
close to the corresponding DFTSP minimum, and from that the energy only slightly
increases with increasing adsorption distance so that the decreasing Epot−EDC term
“dominates” and shifts the minimum towards a larger distance.
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Figure 5.4.: Relative energy obtained from DFT++ for different adsorption dis-
tances of Co on Cu(001) and for EDFT++ − (Epot −EDC). Results ob-
tained at β = 100 eV−1 with U = 4.0 eV and J = 0.9 eV. Bars in
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5.4. Electronic structure of Co/Cu(001)

In the previous section, we could show that there is a non-negligible shift of the
PES minimum by taking into account the dynamical effects within the DFT++
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framework, as well as by adding a Coulomb potential in the framework of DFT+U .
Here we would like to gain insight into how different adsorption distances affect
the electronic structure of an adsorbate.

Besides the parametrization of the Coulomb matrix (discussed in Sec. 3.6.1), it is
important for this discussion to have a look at the hybridization functions and im-
purity levels (the crystal-field splitting3) at different adsorption distances, because
these parameters as obtained from DFT are those entering the AIM. However, to
keep this discussion concise, we will focus on the most relevant orbitals, namely
the ones which are singly occupied, and thus the most promising for rationalizing
the experimentally observed Kondo effect.
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Figure 5.5.: Static crystal-field splitting (i.e. 3d-orbital energies of Co) of the Co
3d shell as obtained from LDA (spin-unpolarized), as a function of the
adsorption distance. The Fermi level is set to zero.

By inspection of Tab. 5.2, one can identify the dxy and the dz2 orbital to be the
orbitals of interest which is in agreement with Refs. [216] and [111]4. The energy
level of each Co 3d orbital as observed from spin-unpolarized LDA with respect to
the Fermi level (0 eV) is shown in Fig. 5.5, where the energetic difference between

3The impurity levels are actually the diagonal elements obtained from solving the secular equa-
tions for the Co 3d subspace of the KS Hamiltonian. In the context of the AIM this is often
reffered to as the static crystal field splitting.

4Note the different orientation of the x- and y- axis.
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5.4. Electronic structure of Co/Cu(001)

Table 5.2.: Occupation of the Co 3d shell as obtained from LDA++ at β = 100 eV−1

and U = 4.0 eV (J = 0.9 eV) via integration of the interacting impurity
Green’s function GIMP, at selected values for the adsorption distance.
All values were obtained by setting the double-counting as calculated
from the fully localized limit. Values in parentheses are obtained from
integration of the non-interacting Green’s function (Eq. (3.42)). We
also show the expectation value of the spin, as well as the weight w
of the most probable local many-body configuration, which is d8, S=1
with half-filled dxy and dz2 . See Section A.2.5 for the full state his-
togram.

dCo−surf. dxy dxz/yz dz2 dx2−y2 total ⟨Sz⟩ w

1.3 Å 1.08 (1.45) 1.86 (1.57) 1.07 (1.56) 1.86 (1.72) 7.73 (7.87) 0.95 0.54
1.5 Å 1.04 (1.47) 1.88 (1.56) 1.05 (1.57) 1.88 (1.71) 7.73 (7.87) 0.99 0.61
1.7 Å 1.02 (1.47) 1.89 (1.55) 1.03 (1.58) 1.90 (1.70) 7.73 (7.85) 1.01 0.65

the Co 3d levels can be seen as the crystal field splitting. The results of PBE
are qualitatively and almost quantitatively in agreement with LDA (see Section
A.2.4). One can notice that with increasing adsorption distance the crystal-field
splitting changes qualitatively and quantitatively, e.g., for adsorption distances
between 1.35 Å and 1.50 Å, the energetic ordering of dxy, dx2−y2 and dz2 changes
multiple times. Regardless of the adsorption distance, the dxy and the dz2 orbitals
are singly occupied (Tab. 5.2), although above 1.48 Å the dx2−y2 orbital is highest
in energy. We emphasize here that this observation is not a violation of the Aufbau
principle, which is fulfilled for the Kohn–Sham Bloch wavefunction. Instead, the
Co 3d orbitals whose occupations are reported here result from projection onto
local orbitals, as mentioned in Sec. 3.6.3. This and the parametrization of the
Coulomb matrix yields the atomic part of the Anderson Hamiltonian (last two
terms of Eq. (3.39)), which in the hybridization expansion of CT-QMC is solved
first. We can follow the change of the atomic ground state from d8, S=1 with half-
filled dxy and dz2 at smaller distances to d8, S=1 with half-filled dx2−y2 and dz2 at
larger distances (as intuitively expected by inspection of Fig. 5.5). In the course of
the QMC calculation the dynamical hybridization ∆(ω) (for its real part, see Fig.
A.5 of Section A.2.2) is evaluated in a formal perturbation theory to all orders,
and precisely this dynamics ensures that for the complete Hamiltonian the local
configuration with the largest contribution to the ground state is d8, S=1 with
half-filled dxy and dz2 at all distances. In Tab. 5.2 we show the contribution of said
atomic state to the many-body ground state as well as the expectation value of Ŝz.
Both are consistent with the system becoming more decoupled from the surface
and thus more atomic as the distance is increased (see Fig. A.8 of Section A.2 for
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a more detailed evaluation of the different charge and spin contributions).

In the following, we consider the imaginary part of the hybridization function as ob-
tained from LDA (Im∆ obtained from PBE is provided in Fig. A.4 of Section A.2,
and is in agreement with LDA), which can be regarded as the dynamical broaden-
ing of the impurity levels, due to the hybridization with the Cu(001) surface. We
focus on the half-filled orbitals (Fig. 5.6) and find that they retain their qualitative
features when changing the adsorption distance, but as one would expect, the hy-
bridization increases systematically as the adsorption distance is lowered. Fig. 5.6
shows that this effect is a little bit more pronounced for the dxy orbital than for
the dz2 orbital. Thus, we would expect that the Kondo effect in the dxy orbital is
somewhat more sensitive towards changes in the adsorption distance than it is in
the dz2 orbital. We can check this behavior of TK with the simplest Kondo-model
(one-band with a constant hybridization Γ) [40], as already introduced in Equation
(3.2), by setting Γ = −Im∆(0.0 eV).

Table 5.3.: Estimated Kondo temperature as obtained from a one-band model with
a constant hybridization. Im∆(0) is the value of the imaginary part
of the hybridization function at ω = 0 eV (Fermi level). εxy/z2 are the
energies of the Co dxy/z2 orbitals relative to the Fermi level. Values
taken here are obtained from LDA, and for U we have chosen 4.0 eV.
For the estimation of the Kondo temperature TK see Equation (3.2).
Experimental value for TK = 88 ±4 K [200–202].

dCo−surf. -Im∆xy(0) -Im∆z2(0) εxy εz2 TK,xy TK,z2

1.30 Å 0.258 0.202 -0.330 -0.308 147.7 62.68
1.40 Å 0.212 0.181 -0.250 -0.265 165.7 67.33
1.50 Å 0.172 0.160 -0.180 -0.227 208.4 69.32
1.60 Å 0.139 0.140 -0.125 -0.190 280.2 75.82
1.70 Å 0.112 0.122 -0.081 -0.156 419.3 85.36

In Tab. 5.3, we have summarized the estimated Kondo temperatures for both the
dxy and the dz2 orbital at different adsorption distances, obtained with the Co
3d-orbital energies (ε) and hybridization strength (Im∆(0)) from spin-unpolarized
LDA. Obviously, this estimation predicts too large Kondo temperatures for the
dxy orbital. Although the hybridization at the Fermi level (ω = 0 eV) is strongly
decreasing for larger adsorption distances, the Kondo temperature is increasing to
unrealistic values (about 419.3 K at 1.70 Å). The increasing Kondo temperature
with increasing distance is a result of the impurity level being shifted towards the
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Fermi energy, thus overcompensating the decreasing hybridization. For the dz2 or-
bital, the Kondo temperature behaves qualitatively similar as for the dxy orbital.
However, the obtained values for TK are in much better agreement with the ex-
periment, and, as assumed earlier, are less dependent on the adsorption distance
compared to the dxy orbital. An estimation of the Kondo temperatures from spin-
unpolarized PBE yields a qualitatively similar picture as from LDA (see Section
A.2).
From our simple estimates of the Kondo temperatures, one observes the serendipi-
tous nature of such simplistic assumptions for multi-orbital Kondo systems. In the
present case, we would conclude that the dxy orbital would be dominant over dz2

in an underscreened or two-stage Kondo situation. However, a low temperature
investigation [111] using a perturbative solver suggests that it is in fact the other
way around, the dz2 Kondo temperature being larger which is caused by more pro-
nounced charge fluctuations. From this observation one could conclude, that the
dz2 orbital is weaker correlated compared to the dxy orbital, if one remembers that
larger charge fluctuations are similar to the wave function becoming more ionic
character, as briefly introduced in Section 3.5. We would like to mention here that
these investigation differs from ours in the way that it includes the effect of a tip,
as well as a different description of the Cu(001) surface. The latter is in Ref. [111]
modeled by a cluster approach embedded in a tight binding Bethe-lattice, whereas
we applied periodic boundary conditions.
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Figure 5.6.: Imaginary part of the hybridization function for the Co 3dxy and the
Co 3dz2 orbital as obtained from LDA, for selected values of dCo−surface.
Results for PBE are given in Section A.2.

To complete our comparative study, we provide the self-energies on the Matsubara
axis5 as obtained from DFT++ in Figure 5.7. This quantity is necessary for the

5ωn = (2n+1)πβ
, with n = 0,1,2,...
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interpretation of the electron correlation effects within the AIM. We limit the
discussion to the half-filled orbitals only. From Fig. 5.7 a) and b), one can see by
comparing the LDA++ with the PBE++ results, that both electronic structure
methods agree well with each other at all selected adsorption distances. This can
be understood as follow: the parametrization for the AIM is completely done by
DFT, as introduced in Sec. 3.6.3, which yields the energy-dependent hybridization
function (Eq. (3.40)), describing the coupling of the Co 3d shell to a non-interacting
“bath” of electrons (the Cu(001) surface).
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Figure 5.7.: Self energies (last term of Eq. (3.46)) obtained from DFT++ at β =

100 eV−1 with U = 4.0 eV and J = 0.9 eV. a) ImΣ for the Co 3dxy

orbital as obtained from LDA++ and PBE++. b) ImΣ for the Co
3dz2 orbital as obtained from LDA++ and PBE++.

Consequently, the agreement between both functionals is due to the similar de-
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scription of the coupling of the Co 3d shell to the Cu(001) surface at a given
adsorption distance (compare Fig. 5.6 and Fig. A.4 of Section A.2).

By further inspection of Fig. 5.7, one can see that we are not in the Fermi liquid
regime (for β = 100 eV−1), because ImΣ(ωn) does not behave linearly as ωn → 0. It
is nonetheless worthwhile to consider ImΣ(ωn) at as a function of the adsorption
distance, because the results of the AIM are potentially affected by the distance,
due to changes in the hybridization function. Indeed, for both orbitals ImΣ drops
to larger absolute values as the distance is increased, which means that the elec-
trons are “more” correlated at larger adsorption distances, and is thus in agreement
with the increasing term ∣Epot −EDC∣ (Fig. 5.3) discussed before. In contrast, the
electron correlation in the almost fully occupied orbitals (Co 3dxz/yz and 3dx2−y2)
are only little affected by the adsorption distances, as can be seen from ImΣ(ωn)
shown in Fig. A.6 of Section A.2 (note the reduced abscissa). Consequently, the
double occupancies showing the strongest variation as a function of the distance
are ⟨n̂xyσn̂xyσ̄⟩ , ⟨n̂z2σn̂z2σ̄⟩ and ⟨n̂xyσn̂z2σ̄⟩. While all other terms change only by
at most ±5 % from 1.3 Å to 1.68 Å, these terms decrease by 57-68 %. This leads to
the conclusion that the shifts of the minima discussed in Sec. 5.3 mainly originates
from both the Co dxy and the Co 3dz2 orbital. The self-energies further reveal that
the dxy orbital is more correlated than the 3dz2 orbital, because the absolute values
of ImΣxy(ωn) are larger compared to ∣ImΣz2(ωn)∣. This is in agreement with the
results reported in Reference [111], which we mentioned earlier in this section.

5.5. Conclusion

In summary, we could show that for Co/Cu(001) adsorption distances increases
when applying the AIM on top of spin-unpolarized DFT by about 0.14-0.23 Å,
and 0.08-0.12 Å when comparing with spin-polarized DFT. The shifts can be
explained by a larger amount of correlation (thus reducing the total energy) at
larger distances as suggested by our data. However, this effect is already captured
by DFT+U , which is much cheaper than DFT++. On the other hand, given
that the difference in adsorption distance between DFT and DFT++/DFT+U
are of the same order as the DFT error bar6, this implies that the effect of strong
correlation on these distances could also be adequately described by a suitable
chosen approximate exchange–correlation functional within DFT.

6Although Kohn–Sham density functional theory is formally correct, the exact exchange–
correlation functional is still unknown, for which reason one has to rely on present-day ap-
proximate exchange–correlation functionals. The approximate nature of these functionals
causes an error compared to experimental values (e.g. for lattice parameters and adsorption
distances), as comprehensively shown in Ref. [217–219]
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Further, for the self-energies as obtained from DFT++, it is less important whether
the AIM is parametrized by LDA or PBE in the case of Co/Cu(001). However,
ImΣ delicately depends on the adsorption distance of Co on Cu(001) for the Co dxy

and dz2 orbitals, implying that the increasing correlation effects (with increasing
distance) in these orbitals are mainly responsible for the observed shifts. That the
electron correlation increases as a function of the distance is in particular inter-
esting, because the results (such as transition temperatures to the Kondo regime)
might strongly be affected by structural optimizations using different electronic
structure methods (as it will also be shown in the later course of this work).

Concerning the correlation strength in both singly occupied orbitals, our results
are in agreement with Reference [111], suggesting that the dxy orbital is slightly
more correlated than the dz2 orbital. From this one would conclude that the
latter should have a larger Kondo temperature, but to clarify this further DFT++
calculations at lower electronic temperatures than shown here are required.

To this end, in the next section we will focus on only one adsorption distance of
Co/Cu(001), and will investigate the electronic structure within the AIM in more
detail, which includes lower electronic temperatures, as well as comparing the effect
of different Coulomb interaction schemes (which were introduced in Section 3.6.1)
onto the Fermi liquid properties of Co/Cu(001).
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6. Kondo screening in Co on
Cu(001) with full Coulomb
interaction

To be submitted: Marc Philipp Bahlke, Alexander Kowalski,
Michael Karolak, Angelo Valli,

Carmen Herrmann and Giorgio Sangiovanni

6.1. Introduction

A single cobalt atom on metal surfaces such as Au, Ag, or Cu is paradigmatic
for the Kondo effect [202, 220, 221]. From the experimental site it is only hardly
to detect, due to the manifestation of this effect at low temperatures. In the
theory, one is rather challenged to find an appropriate balance between the applied
approximations and the accuracy of the observed results. Concerning the Kondo
effect, the truncation of the number of correlated orbitals, or bath states, as well
as approximating the description of the Coulomb interaction might have a deep
impact on the physics of the system under consideration. In addition to this, it
is inevitable that from a DFT point of view a proper choice of the exchange–
correlation functional has to be taken, in order to get molecular structures and
adsorption distances as accurate as possible, as discussed for example in Section
5.

As already mentioned in Section 5, the currently accepted scenario with state-of-
the art calculations is, that in principle the Co 3dz2 and 3dxy

1 orbitals are Kondo
1Depending on the orientation of the unit cell, one sometimes finds the 3dx2−y2 orbital instead
of the 3dxy orbital.
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active, due to it’s occupation closest to one electron. Clearly, the description of the
Coulomb interaction (see Section 3.6.1) within the AIM plays an important role in
the Kondo physics, besides the hybridization of the Co 3d orbitals with the Cu(001)
surface. Treating the full Coulomb tensor within a five-band model (all five 3d
orbitals are included in the calculations) is, however, a computationally expensive
task [136] for which reason in most studies found in the literature approximations
to the Coulomb tensor are used. Since we use DFT++ as a reference concerning
the Kondo effect, we have to check whether the results obtained by applying such
approximations are physically meaningful or not. As shown later, this will become
an important aspect at lower electronic temperatures.

Because the exact value of the double-counting energy (which shifts the total
occupation on the impurity shell) is unknown, one would also have to study this
effect on the observed DFT++ results. The total occupation on the Co 3d shell
plays, without a doubt, a major role in such many-body situations. In this study,
we fix the occupation nd of the Co 3d shell such that we have a well-defined S=1
state, which leads to an occupation of nd = 8.0. This occupation was confirmed by
correlated wave-function-based calculations where a Co/Cun cluster is embedded
in a periodic embedding potential [216].

In this section, we apply the numerically correct CT-QMC approach to solve the
AIM including all five Co 3d orbitals, and compare the Fermi liquid properties
within different Coulomb interaction schemes. It will also be discussed the impor-
tance of a proper description of the Cu surface concerning the k point sampling
of the Brillouin zone, as this is important for the parametrization of the AIM.
Within this discussion we show the limitations of the density–density approxima-
tion for Co/Cu(001) at low T , and that by error compensation by an inappropriate
description of the surface one gets supposedly correct results, but these are due to
wrong reasons.

6.2. Computational methodology

The DFT calculations have been performed with the Vienna ab-initio simulation
program (VASP) [174, 175], using the PAW basis set as provided within this pro-
gram package. We modeled the Cu(001) surface as a 4×4 slab consisting of 5 Cu
layers using the experimentally observed lattice constant of 3.615 Å [206]. The
Co adatom was placed in the fourfold-hollow position at an adsorption distance
of 1.52 Å with respect to the first Cu(001) layer, which we identified in Section 5
to be the energetically favored distance by using a combination of LDA and the
AIM.
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We used a k-grid centered around the Γ-point of size 100×100×1 in order to achieve
a sufficiently accurate description of the Cu(001) substrate, which will be necessary
for the parametrization of the AIM especially at low temperatures (this will be
discussed later in more detail). After projecting the KS Green’s function onto the
correlated sub-space (Co 3d shell), we obtained the hybridization function (Figure
6.1) on the real energy axis by using Equation (3.45), which acts as the starting
point for solving theAIM within CT-QMC.
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Figure 6.1.: Imaginary part of the hybridization function for the Co 3d orbitals of
Co/Cu(001). The results were obtained from LDA using a k-grid of
100×100×1.

The AIM is solved by using the numerically exact CT-QMC) method as imple-
mented in w2dynamics [222,223]. The Coulomb matrix was parameterized using
Slater integrals (see Sec. 3.6.1), with U = 4.0 eV and J = 0.9 eV. The lowest ac-
cessible temperature for Co/Cu(001) in the scope of the full Coulomb interaction
reached here is β= 250 eV−1 (T= 46.6 K)2. To our knowledge, this was applied
for the first time to a single Co adatom on Cu(001) using full periodic boundary

2I thank Alexander Kowalski for doing the CT-QMC calculations with the full Coulomb inter-
action and the Kanamori approximation.
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conditions and solving the AIM for a five-band model (all Co 3d orbitals are in
the correlated sub-space)) using the full Coulomb interaction. We compare the re-
sults against using different parametrization schemes which have been introduced
in Section 3.6.1.

6.3. Fermi liquid properties of Co on Cu(001)

We start by investigating the magnetic properties of Co/Cu(001) as a function of
the temperature for the three Coulomb interaction schemes under consideration
here. For this reason, we measure the spin–spin correlation function χi(τ) as
described in Section 3.7.4, and obtained the spin susceptibility χω=0

i via integration
of χi(τ) (see Equation (3.65)).
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Figure 6.2.: Local spin–spin response χ(τ) at τ = β/2 as a function of the tem-
perature for the Co 3dxy- and 3dxy orbital. The results are shown
for density–density and Kanamori approximation, as well as using full
Coulomb interaction.

In Figure 6.2, we show χ(β/2) as a function of T for both Kondo-relevant orbitals
in Co/Cu(001), which are the Co 3dz2 and 3dxy orbitals as already discussed in
Ref. [111, 199] (note the different orientation of the xy- plane in this thesis). One
can see whether the local moment is screened at low temperatures by a vanishing
value of χ(β/2). For the full Coulomb interaction, the value of χ(β/2) for both
orbitals decreases as the temperature is lowered, with the Co 3dz2 orbital having
smaller absolute values as compared to the Co 3dxy orbital. The results of χ(β/2)
as obtained from the Kanamori interaction, agree qualitatively with the behavior
discussed for the full Coulomb interaction, although the values are larger in in
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this case. It is evident that within the density–density approximation, χ(β/2)
for both orbitals (3dz2 and 3dxy) behaves qualitatively and quantitatively different
compared to what we have observed for the Kanamori approximation and the
full Coulomb interaction. Here, χ(β/2) is rather constant in T for both orbitals,
which is reminiscent of a frozen moment regime (i.e. we have an unscreened local
moment) [143].

For further analysis of the Kondo properties, it is worth checking for a behavior
according to the the Fermi liquid regime, as manifested in a T 2 behavior of χ(β/2).
With the temperatures reached here, we cannot make the transition to this regime
visible, neither with the results obtained from the full Coulomb interaction, nor
from the results of the Kanamori approximation.

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0 50 100 150 200 250

χ l
oc

in
 µ

B
eV

T in K

dxy

Dens-Dens
Kanamori
Full U

0.00

0.05

0.10

0.15

0.20

0 50 100 150 200 250
T in K

dz2

Dens-Dens
Kanamori
Full U

-1
-2

χ l
oc

in
µ B

eV
-1

-2

Figure 6.3.: Inverse spin susceptibility 1
χω=0(T ) of the Co 3dxy and 3dz2 orbital as

obtained from LDA+AIM using different interaction schemes.

The non-Fermi liquid behavior is so far in agreement with the inverse suscepti-
bilities (Figure 6.3) for the Co 3dz2 and 3dxy orbital, and are discussed in the
following. As pointed out earlier, within the density–density approximation, the
Co 3dz2- and 3dxy orbitals are presumably in a frozen moment regime, which is
visible here in the linear behavior of 1

χω=0(T ) indicating agreement with the Curie
law (1/T behavior of χω=0(T )). For the Co 3dxy orbital we observe a slight devi-
ation from this linear dependence of 1

χω=0(T ) on T for both the results as obtained
from the full Coulomb interaction as well as for the Kanamori approximation. For
the Co 3dz2 orbital, 1

χω=0(T ) most clearly deviates form a linear dependence on T
using the full Coulomb interaction, probably due to the largest screening of the
local moment in this orbital (as shown in Figure 6.2).

The Fermi liquid behavior can also be studied by considering the imaginary part
of the self-energy at the first Matsubara frequency as a function of T . For a Fermi
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liquid, it is expected that ImΣ(ω0) shows a linear dependence on the T at low
enough temperatures [145]. In general, or data (Figure 6.4) confirm what we have
found for χ(β/2) and 1

χω=0(T ) , but point out more clearly the difference between
the orbitals studied here. For the Co 3dxy orbital, ImΣ(ω0) agrees qualitatively
among the different interaction schemes, but the absolute values decrease from the
density–density to the Kanamori approximation, and decrease further by using
full Coulomb interaction. For the Co 3dz2 orbital, one can clearly notice that the
density–density approximation predicts a different physical picture for this orbital
than for the Kanamori approximation and the full Coulomb interaction. In case of
the density–density approximation, 3dz2 behaves rather insulating as indicated by
the negative slope at lower temperatures (for T → 0 K). The results obtained from
the Kanamori approximation suggest that ImΣ(ω0) could go linearly to zero as
T → 0 K at lower temperatures as shown here, and this is even more pronounced
if one uses the full Coulomb interaction. However, a clear transition to the Fermi
liquid regime is still not visible.
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Figure 6.4.: First Matsubara frequency rule for Co/Cu(001) at dCo−surf. = 1.52 Å as
obtained from LDA++, within different parametrization schemes for
the local Coulomb interaction.

6.4. Role of the coulomb interaction scheme onto
the Fermi liquid properties of Co on Cu(001)

So far, we have shown that the choice of the interaction scheme can alter the
physical picture of Co/Cu(001) completely. To get a more physical insight into the
roles of the three different interaction schemes, we consider the doubly-occupancies
for same- (⟨niσnjσ⟩) and opposite spin (⟨niσnjσ̄⟩) direction (Figure 6.5). The upper
part of Figure 6.5 shows the same-spin double occupancy ⟨niσnjσ⟩ as obtained from
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the three interaction schemes under study here. The diagonal elements are equal
to the electron density per spin on each individual Co 3d orbital (the off-diagonal
terms are the so-called Hund’s double occupancies), and one observes that within
the density–density approximation, the Co 3dxy orbital and the Co 3dz2 orbital are
close to half-filling (0.5 electrons per spin), whereas the remaining Co 3d orbitals
are almost full.

For the Kanamori approximation, the occupation of the 3dz2 and 3dxy orbitals is
slightly increased as compared to the results of the density–density approximation.
However, this might be coming from the fact that the total 3d electron density
in this case is slightly larger (n = 4.04 per spin) as it is in the density–density
case (n = 4.01 per spin). Comparing the differences of the occupation between
both orbitals (δn = nz2 − nxy), one finds that within the Kanamori interaction δn
is larger as compared to the density–density approximation, which indicates that
the charge fluctuations in the 3dz2 orbital are larger than in the 3dxy orbital.

Figure 6.5.: Same (⟨nxσnyσ⟩) and opposite (⟨nxσnyσ̄⟩) spin double occupancy as
obtained from LDA++ at β = 175 eV−1. Results are shown for the
density–density approximation, the Kanamori approximation, and the
full Coulomb tensor (Coulomb).

For the full Coulomb interaction, the electron density is distributed more homo-
geneously among the Co 3d sub-space, and the filling of the 3dxy and 3dz2 orbitals
increases at the expense of the remaining Co 3d orbitals (the charge fluctuations
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are increased for both orbitals). Furthermore, the difference of the fillings between
both orbitals δn is larger as compared with the Kanamori (and density–density)
case, which suggests that the charge fluctuations in the 3dz2 orbital is more and
more favored if the local Coulomb interaction is described more precisely. In
numbers, for the full Coulomb interaction one obtains that the Co 3dz2 orbital of
Co/Cu(001) carries 0.13 electron density (per spin) more than the 3dxy orbital,
whereas in the Kanamori case the difference is only 0.06. Furthermore, based on
the larger value for the electron density on the Co 3dz2 orbital (for all interaction
schemes under study here), one could assume that the Co 3dz2 orbital is less cor-
related as compared to the 3dxy orbital, and this is most prominent for the “true”
interaction (full Coulomb).

This observation is confirmed by the opposite spin double-occupancy ⟨niσnjσ̄⟩
shown in the bottom part of Figure 6.5. Considering the diagonal elements (same-
orbital opposite-spin double occupancy, Fig 6.5) for all interaction schemes, one
can notice that they are larger for the Co 3dz2 orbital than for the 3dxy orbital,
which supports the observation of the less correlated character of the 3dz2 orbital.
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Figure 6.6.: a) Imaginary part of the hybridization function on the Matsubara axis
at β = 1000 eV−1 as obtained from different k-grids. b) Imaginary part
of the self energy on the Matsubara axis at β = 1000 eV−1 as obtained
from different k-grids (density–density interaction).

As mentioned before, the diagonal values ⟨niσniσ⟩ (same orbital same spin double
occupancy) equal the electron density per spin on each Co 3d orbital. From this one
can calculate the corresponding uncorrelated double occupancies ⟨niσ⟩⟨njσ̄⟩, which
by comparing them with ⟨nxσnxσ̄⟩ gives us an estimator of how correlated the Co
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Fermi liquid properties

3d orbitals are (the larger the difference between these two values, the larger the
correlated character). For instance, with full Coulomb interaction, one finds for the
non-interacting double occupancy of the 3dxy orbital (⟨nxσ⟩ ⟨nxσ̄⟩) a value of 0.41,
and for the 3dz2 orbital a value of 0.59. The non-interacting double-occupancy of
the 3dz2 orbital is clearly closer to its correlated double occupancy (⟨nxσnxσ̄⟩), in
contrast to the 3dxy orbital, resulting from the less correlated character of the 3dz2

orbital. For the density–density- and Kanamori approximations, one observes a
similar qualitative behavior, but the differences between ⟨nxσ⟩ ⟨nxσ̄⟩ and ⟨nxσnxσ̄⟩
increase, and are largest for the density–density-type interaction. This implies
that the density–density type interaction overestimates the correlation strength
in the Co 3dxy/3dz2 orbitals as compared to the other interaction schemes under
consideration here.

6.5. k-grid dependence of the hybridization
function and consequences for the Fermi
liquid properties

Throughout our study, we paid a lot of attention to the density–density approxi-
mation, and found that the physical picture of Co/Cu(001) delicately depends on
the size of the chosen k-grid. Figure 6.6 shows the hybridization function Im∆(ωn)
of the Co 3dz2 and 3dxy orbitals on the Matsubara axis (β = 1000 eV−1) for differ-
ent k-grid sizes, as well as the corresponding LDA+AIM self-energies (ImΣ(ωn))
as obtained using the density–density approximation. One can see that using a
k-grid of 4×4×1 leads to a rather bad convergence of Im∆(ωn) in the low frequency
part. In fact, for the 3dz2 it shows a different qualitative behavior for ωn < 0.05 eV
as compared to larger k-grid sizes. The correct qualitative trend of Im∆(ωn) for
the Co 3dz2 is observed for a k-grid size of 16×16×1, although at the first Mat-
subara frequency (ω0) Im∆(ωn) still changes little when we increase the k-grid
from 40×40×1 to 100×100×1. For the 3dxy orbital a k-grid size of 4×4×1 yields at
least the correct qualitative behavior compared to our most accurate calculation
(100×100×1).

In panel b) of Fig. 6.6 one can see the consequences for the self-energy by using a
too small k-grid (4×4×1). For the 3dz2 orbital one would conclude, that ImΣ(ωn)
behaves as a Fermi liquid by using a k-grid of 4×4×1. For the same grid, the self-
energy of the 3dxy orbital seems to exhibit a non-zero intercept with the ordinate,
which would then be in agreement with an underscreened Kondo effect as discussed
in the literature [111, 199]. However, within the density–density approximation
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ImΣ(ωn) behaves completely different at low frequencies for the Co 3dz2 orbital of
Co/Cu(001) by using larger k-grid sizes. As discussed in Sec. 6.3, the self-energy
shows an insulating behavior for this orbital, which can only be corrected by going
beyond the density–density approximation.

The first Matsubara frequency as a function of T is shown in Fig. 6.7, for the
smallest k-grid (4×4×1) under study here (density–density approximation only),
and confirms the observation that using this k-grid the Co 3dz2 orbital behaves as
a Fermi liquid below T = 25.0 K. This clearly shows the need of an appropriate
description of the metallic substrate in order to get a correct physical picture of
the system under consideration.

Figure 6.7.: First Matsubara frequency rule for Co/Cu(001) as obtained from
LDA+AIM, within the density–density approximation of the local
Coulomb interaction. The parametrization of the Anderson impurity
model was done with a k-grid of 4×4×1 centered around the Γ point.

6.6. Conclusion

The correlation of a localized electron with its surrounding conduction band elec-
tron in an adsorbate–surface situation, can lead to the rather complex Kondo effect
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below a certain temperature. From a theoretical point of view, solving the Ander-
son impurity model can be considered as state-of-the-art for concerning this effect,
in which one reduces the space for taking into account electron correlation effects
explicitly onto a few local orbitals.

By studying the Kondo effect in Co/Cu(001), the AIM was solved within the
numerically exact CT-QMC method. We compared the effect of different approx-
imations to the Coulomb interaction on the Fermi liquid properties of the Co
3d electrons. Furthermore, we highlighted the importance of the k-grid on the
observed results, especially by going to low electronic temperatures.

For the atomistic structure of Co/Cu(001) used in this study, we were not able
to reach the transition to the Fermi liquid regime (with a k-grid of 100×100×1),
required in the spirit of a Kondo effect, with all interaction schemes under con-
sideration. It could rather be shown that the physical properties of Co/Cu(001)
delicately depends on approximation made to the Coulomb interaction. Within
the density–density approximation, the strength of the correlation on the dz2 and
dxy orbitals are overestimated, which probably leads to what is called a frozen-
moment regime (i.e. the local moments on both orbitals are unscreened by the
conduction band electrons). This observation could have its origin in the inherent
property of this approximation to overestimate magnetization (as discussed in Sec-
tion 3.6.1). Using the Kanamori approximation, one obtains at least a qualitative
similar physical picture compared to taking into account all Coulomb matrix ele-
ments, although quantitatively there are still large differences. These differences
originate from the electron density being more homogeneously distributed among
the Co 3d shell by using the full Coulomb interaction, as in contrast to what one
observes from the Kanamori-, or density–density approximation. Similar impor-
tance for taking into accounts all Coulomb matrix elements was found for Co in
Cu(111), reported in Ref. [224].

Furthermore, we have shown that there is a delicate dependence of the Fermi liquid
properties in Co/Cu(001), concerning the description of the surface with respect to
the k-grid size, which is important for the construction of the wave function in the
Brillouin zone. Although, a grid of 4×4×1 (within our unit cell) is sufficient for the
electronic structure on the level of DFT, for instance for comparing energies among
different methods (as shown in Section 5), it fails for low temperature (T < 116 K)
DFT++ calculations.

For studying the chemical and mechanical control of the Kondo effect, it was
shown that approximations to the Coulomb interaction, as well as the k-grid used
in the underlying DFT calculation can have significant effects onto the electronic
structure of Co/Cu(001). Especially concerning the density–density approximation
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one may ask whether this scheme is reliable for such a study. In the following
sections of this thesis it will be shown that using only the density–density terms
of the Coulomb tensor can indeed yield physical meaningful results for carbonyl
cobalt complexes on Cu(001) (Section 8), but fails for a single cobalt atom on
Ag(001) (Section 7) similarly to Co/Cu(001).
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7. Co on Ag(001) at low T : A
general problem with
approximate Coulomb interaction
for Co on metal surfaces?

7.1. Introduction

It has been shown in Section 6 that approximating the Coulomb interaction can
lead to a suppression of the Fermi-liquid properties in Co/Cu(001), and thus the
formation of a Kondo resonance. With this in mind, it is worthwhile to investigate
whether this is a more general problem of a single Co atom on metal surfaces or
not.

In a STS study [201], it was found that Co on Ag(001) shows a zero bias anomaly
due to a Kondo effect, with a Kondo temperature of TK = 41 K (determined by a
Fano fit). This observation could be confirmed later by photoemission experiments,
which yields the excitation spectra of Co/Ag(001) [225] (and other 3d metals on
Ag(001). These were directly compared to the spectral functions as obtained from
HF-QMC calculations.

The theoretically obtained spectra [225] were, however, calculated at a rather large
electronic temperature (T = 580 K) by using only the density–density terms of
the Coulomb tensor. From what we have learned earlier, it is an open question
whether the feature in the spectral function can be interpreted in terms of a Kondo
effect or not. For this reason, we apply low temperature DFT++ calculation (with
a sufficiently large k-grid for the underlying DFT calculation), to check whether
one observes a similar deviation between an experimentally observed Kondo effect
and the absence of it by using the density–density approximation (for details about
this approximation, see 3.6.1).

It will be shown that similarly to Co/Cu(001) the self-energy (T = 29.0 K) suggests
that none of the Co 3d orbitals agree within a Fermi-liquid picture for Co 3d fillings
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between 7.86 and 7.97 (in Reference [225] a filling of 7.8 and 7.9 was used). This
observation points towards a general problem of the density–density approximation
for the description of Co on metal surfaces, which is particularity important for
future studies about the Kondo properties in these systems.

7.2. Computational methodology

1st layer

Co
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x
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x
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Figure 7.1.: Optimized Co on Ag(001) using PBE. dCo−surface is the difference be-
tween the z coordinate of the Cu atoms in the first layer (they were
aligned such that all Cu atoms in the first layer have a z coordinate
of 0.00) and the z coordinate of the Co atom.

The Ag(001) surface was modeled by a 4×4 supercell with 5 Ag layers (Figure
7.1). The Co atom was placed in the fourfold hollow position, as reported in
Reference [225]. We optimized the adsorption distance of the cobalt atom by
keeping all Ag(001) layers fixed using the VASP [174,175] package. All calculations
were performed with the PBE exchange–correlation functional as implemented in
the PAW formalism, with a k-grid size of 4×4×1 centered around the Γ point. The
convergence criteria on the electronic wave function was set to 2.7⋅10−5 eV, and the
structural relaxation was stopped after all forces were below 0.01 eV/Å. We found
that Co an Ag(001) adsorbs at dCo−surface = 1.58 Å above the Ag(001) surface.

For the parametrization of the AIM, we performed a single-point calculation on
the optimized Co/Ag(001) using a k-grid size of 19×19×1. The AIM was solved
within the CT-HYB method as explained in Section 3.7, using an average Coulomb
interaction value of U = 5.0 eV and 1.0 eV for the average exchange interaction J
(values taken from Reference [225]). The Coulomb interaction was approximated
by density-density type interactions, as discussed in Section 3.6.1.
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Table 7.1.: Occupation of the Co 3d shell in Co/Ag(001) as obtained from PBE++
at β = 100 eV−1 and U = 5.0 eV (J = 1.0 eV) via integration of the
local interacting impurity Green’s function gint.

dxy dxz/yz dz2 dx2−y2 total
FLL 1.01 1.95 1.01 1.94 7.86

FLL - 2.0 eV 1.04 1.97 1.03 1.96 7.97

7.3. Excitation spectra of Co on Ag(001) and
Fermi-liquid properties

In Table 7.1, we present the Co 3d occupations as obtained from PBE++ at β
= 100 eV−1 (T = 116 K). Within the fully localized limit, we obtain a total Co
3d occupation of nd = 7.86, which is in good agreement with the value of 7.8
(β = 20 eV−11) reported in Reference [225]. In addition, we shifted the FLL value
by -2.0 eV, which leads to nd = 7.97. In Figure 7.2, we show the orbitally resolved
spectral functions after analytical continuation of the CT-HYB results onto the
real energy axis. A feature at the Fermi energy (ω = 0.0 eV) in the spectral
function can only be observed for the dxy orbital by shifting the DC value by -
2.0 eV (nd = 7.97) from the FLL value (Figure 7.2 b)). This is already visible at T
= 580 K (β = 20 eV−1), and does not further grow by lowering the temperature to
T = 29 K (β = 400 eV−1), as would have been expected in the Kondo regime [40].

By considering ImΣ(ωn) at our lowest accessible electronic temperature (β =

400 eV−1 = 29 K), one can see that using the FLL, both singly occupied or-
bitals (dxy/dz2) clearly disagree with a linear dependence of ImΣ on ωn as ωn → 0,
as would be required for a Fermi-liquid (see Section 3.7.5). By shifting the DC
value by -2.0 eV from the FLL value, the absolute value of ImΣ(ωn) for all or-
bitals is significantly reduced compared with the results obtained within the FLL.
For both the dxy and dz2 orbital at nd = 7.97 (FLL - 2 eV) the transition to the
Fermi-liquid regime could not be reached within the lowest temperature under
consideration here, which is in agreement with the lack of a Kondo resonance at
the Fermi energy.

Furthermore, our data suggest that there is a delicate dependence of the self energy
on the total occupation on the Co 3d shell. This might be of importance for further
studies, because in practice the exact value for the double counting (which shifts
the total occupation on the correlated sub space) is unknown, and in this study
we limited the values of nd to 7.86 and 7.97.

1We obtained nd = 7.77 at β = 20 eV−1.
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Figure 7.2.: Orbitally resolved spectral function of the Co 3d orbitals in Co on
Ag(001), as obtained from PBE++ at different electronic tempera-
tures and for different values for the double counting correction. a)
Results as obtained using the fully localized limit, and b) results as
obtained by shifting the double counting by -2.0 eV apart from the
FLL value.

-3.50

-3.00

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.00 0.05 0.10 0.15 0.20

Im
(

n
)

n in eV

xy
xz/yz

z
2

x
2
-y

2

-0.80

-0.70

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.00 0.05 0.10 0.15 0.20

Im
(

n
)

n in eV

xy
xz/yz

z
2

x
2
-y

2

a) b) FLL - 2 eVFLL

Figure 7.3.: Imaginary part of the self-energy of Co on Ag(001) of all Co 3d orbitals,
as obtained from PBE++ at β = 400 eV−1 and for different values for
the double counting correction.

The observation of the lacking Kondo resonance could be of the same origin as
in the case of Co on Cu(001), which was already discussed in Section 6. Here,
we observe again an almost integer occupation on the dxy/z2 orbitals within the
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density–density approximation, probably due to an overestimation of the correla-
tion strength on these two orbitals, similar to Co/Cu(001) within the same ap-
proximation to the Coulomb interaction.

7.4. Conclusion

Although the density-density approximation to the Coulomb tensor has been suc-
cessfully applied to a wide range of systems in the literature [125, 226–228], our
results suggest that it fails in describing the Kondo properties at the example of
Co/Ag(001). In this system, the self-energy (ImΣ(ωn)) depends delicately on the
value of the double counting (and thus on the total occupation nd on the Co 3d
shell), which is challenging because the exact DC value is unknown, and small
changes have a strong impact on the results. Comparing this with Co/Cu(001)
(Section 6), one could assume that the reason for the lacking Kondo resonance
is of the same origin, that is the density-density approximation to the Coulomb
tensor leading to an overestimation of the electron correlation strength on the Co
dxy/dz2 orbitals.

In order to identify the origin of the lacking Kondo resonance in Co/Ag(001)
within this study, more work is required on comparing results obtained by using
the density–density approximation with using all matrix elements of the Coulomb
tensor (in a similar way as in Section 6). Furthermore, it would be of importance to
treat other transition metal atoms on Ag(001) within low-temperature CT-QMC
calculations (and a simultaneous comparison of different interaction schemes), to
see whether they are similarly affected by approximating the Coulomb part in the
AIM, as in the cases of Co on Ag(001) and Cu(001).
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8. Co(CO)n/Cu(001): Towards
understanding chemical control
of the Kondo effect

Published: Marc Philipp Bahlke, Peter Wahl, Lars
Diekhöner and Carmen Herrmann,
J. Appl. Phys. 2019, 125, 142910.

8.1. Introduction

In this part, we would like to focus on the effect molecular ligands on the Kondo
effect. Wahl et al. [1] have shown that the coupling of the local moment on a Co
atom to the conduction band electrons of a Cu(001) substrate can be enhanced by
attaching CO ligands to the Co atom (forming Co(CO)n complexes), by extracting
the Kondo temperature from STS experiments. The number of CO ligands might
not only affect the hybridization of the Co atom, but will also change the splitting
of the 3d shell, as a consequence of the different symmetries of the complexes.
For n = 2, a four-fold symmetry was found in the scanning tunneling microscopy
(STM), which is due to a thermally induced rotation of the intrinsically two-
fold symmetric adsorbate on Cu(001), which happens on a faster time scale than
what the STM can resolve. Co(CO)3/Cu(001) is observed to have no rotational
(C3v) symmetry, whereas the complex with four ligands exhibits C4v symmetry
(which could result both from an intrinsically C4v-symmetric structure or from a
rotating C2v-symmetric one with two opposing ligands being closer to the surface
than the other two). The Kondo temperatures TK, as extracted from a Fano fit
of the STS spectra, increase with the number of CO ligands: 165 ± 21 K (n =
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2), 170 ± 16 K (n = 3) and 283 ± 36 K (n = 4) [1]. We want to gain insight
into this behavior as a step towards establishing structure–property relationships
for the Kondo effect, by solving the Anderson impurity model parametrized by
Kohn–Sham density functional theory (DFT++). In doing so, we will point out
how shortcomings in present-day first-principles electronic-structure methods when
predicting the atomistic structures of adsorbates on surfaces can strongly affect
predicted Kondo properties. This is particularly relevant for systems with CO
ligands, since interaction of CO with metal surfaces poses a challenge to electronic
structure methods (“CO-puzzle”) [229].

8.2. Computational methodology

In DFT, a proper choice of the exchange–correlation functional is crucial for the
optimization of molecular structures on surfaces, because it needs to describe the
electronic structure of the surface, as well as of the adsorbate correctly, to predict
accurate adsorption distances, angles, adsorption sites and symmetries. For the
description of molecular adsorbates, it usually requires a large number of atoms in
the unit cell, which is why one often chooses local density approximation (LDA)
and general gradient approximation (GGA) type exchange–correlation functionals,
as they are a good compromise between accuracy and computational effort in
practice. These classes of exchange–correlation functionals are problematic for the
description of the CO ligands, due to an underestimated gap between the highest
occupied and the lowest unoccupied molecular orbital (HOMO and LUMO). This
contributes to the well-known problem of DFT in predicting the correct adsorption
sites of CO molecules on different metal substrates, which is known as the “CO-
puzzle” [229] in the literature [115,230]. In the following, we give a brief overview
of attempts to overcome this puzzling challenge by using DFT.

The work of Alaei et al. [231] shows that using BLYP (a GGA functional) can at
least solve the problem of predicting the correct adsorption sites for CO on some
metal substrates, such as Rh(111), Pt(111) and Cu(111), but without solving the
problem of the underestimated HOMO-LUMO gap of a CO molecule. On the
other hand, the work of Favot et al. [232] shows that PBE (a GGA functional) is
able to predict the correct adsorption site of CO on a Cu(001) surface. A more
systematic improvement can be reached by taking into account non-local correla-
tion effects [233], as in the scope of the van der Waals-density functional (vdW-DF
with revPBE) developed by Dion et al. [234], although its generalizations to spin-
polarized systems [235,236] are not broadly available in electronic structure codes
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(for a great overview of recent progress in the “CO-puzzle”, see Ref. [237]). There-
fore, we focus on spin-polarized PBE and BLYP here for structure optimizations,
including their DFT+U variants as we have found this to mimic the effect of strong
correlation on adsorption distances [204]. Furthermore, we applied Grimme’s dis-
persion correction (DFT-D3) in all cases [238, 239]. In addition, a brief summary
of the atomisitc structures of the carbonyl cobalt complexes as obtained from non-
local exchange–correlation functionals is given in the appendix (Section A.3.2).

All Kohn–Sham DFT calculations were performed with the Vienna Ab initio Sim-
ulation Package (VASP) using the projector augmented-wave method [174, 175],
for which we set the kinetic energy cutoff for the plane wave single-particle basis
to 400 eV. For the carbonyl cobalt complexes under study here, we modeled the
Cu(001) surface by a super cell size of 4×4 Cu atoms with five Cu layers in total. It
was found that structural relaxation using a k-grid of 4×4×1 yields no improvement
over a grid size of 2×2×1, for which reasons we chose the latter for all optimization
protocols applied here. The convergence criteria for the self-consistent field algo-
rithm was set to 2.7⋅10−5 eV, and 0.027 eV/Å for the force acting on each atom. In
addition to the adsorbates, we allowed the two topmost Cu layers to be relaxed,
and also the cell shape (i.e. the lattice parameter). The relaxed lattice parameter
is 3.48-3.49 Å for all systems under investigation, consistently for all optimization
protocols. In addition, we optimized the systems (adsorbate and the two topmost
Cu layers) with a fixed lattice parameter of 3.615 Å [206], which is denoted by the
index “fix”. For DFT+U , we used an on-site Coulomb potential of U = 4.0 eV and
J = 0.9 eV applied on the Co 3d orbitals.

The electronic structure of the optimized carbonyl cobalt complexes on Cu(001)
was then analyzed with a combination of density functional theory and the Ander-
son impurity model, using the numerically exact CT-HYB method [136, 138], as
implemented in iQIST [139]. For this purpose, we calculated the electronic struc-
ture with spin-unpolarized DFT (as usual in the literature and discussed in Section
4.4.3) using the PBE exchange–correlation functional and a k-grid of 17×17×1 cen-
tered around the Γ-point (it was found that this grid size is sufficient up to inverse
temperatures β = 150 eV−1).
The Coulomb term of Equation (3.39) is described within the density–density ap-
proximation, parameterized by the Slater integrals [92, 122] F 0, F 2, and F 4 for
which we used the average Coulomb interaction parameter U (F 0) = 4.0 eV and
the exchange-interaction parameter J = 0.9 eV (J = 1

14(F
2 + F 4) = 0.9 eV with

F 4

F 2 = 0.625). For taking into account the double-counting of the electron corre-
lation already captured in the framework of DFT, we applied the fully localized
limit [114,116,117] as introduced in Section 3.6.2.
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8.3. Atomistic structure of Co(CO)n on Cu(001)

From the experimental site of view, it is difficult to obtain detailed information
about bond lengths, bond angles, and adsorption distances of the carbonyl com-
plexes. At the same time, as discussed above, metal surfaces with molecular adsor-
bates in general and with adsorbed CO in particular are challenging for present-day
first-principles methods.

To address this problem, we have optimized all carbonyl cobalt complexes with
PBE-D3 and BLYP-D3, with and without U correction, as well as the non-local
correlation functionals (which were only applied to the tetra carbonyl species)
vdW-DF [234] and vdW-DF2 [240]. In some cases we also compared the results
of keeping the lattice parameters fixed (for this we use the index “fix”) with the
results as obtained by relaxing the cell shape together with the atomic positions of
the carbonyl complexes (and the surface atoms of the first two layers, see Section
8.2 for further details). In the following, we briefly summarize the most important
observations about the structures of the carbonyl cobalt complexes on Cu(001),
while detailed information about the structural parameters can be found in Section
A.3.1.
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Figure 8.1.: a) Co(CO)2, b) Co(CO)3, c) Co(CO)4 on Cu(100) (C4v) and d)
Co(CO)4 on Cu(100) (C2v) as obtained from BLYP-D3+U . We labled
the carbon atoms for Co(CO)3 and Co(CO)4 on Cu(100) (C2v, accord-
ing to the two symmetrically different CO ligands.
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8.3.1. Co(CO)2/Cu(001)

For Co(CO)2/Cu(001), one consistently obtains C2v symmetry for all exchange–
correlation functionals mentioned above, which is in agreement with Ref. [1]. It
can also be confirmed that the rotational barrier of Co(CO)2/Cu(001) is rather
low (6.4 kJ/mol = 66 meV as obtained from PBEfix-D3), which would support the
observation of Wahl et al. [1] that this molecule is rotating faster than the STM
time resolution on Cu(001) in the experimentally accessible temperature range.

Given that present-day approximate DFT has problems to describe the Kondo
screening of the magnetic moment, we would expect to obtain a non-zero magnetic
moment from spin-polarized DFT optimizations for systems showing a Kondo ef-
fect. However, we do not find such a magnetic moment on the adsorbate when
using PBE-D3 and BLYP-D3, both for the optimizations including and exclud-
ing the cell shape. When we apply a Hubbard U correction on the Co atom
for BLYP-D3, we do obtain a magnetic moment of 1.0 µB on the Co atom of
Co(CO)2/Cu(001) when we include the cell shape relaxation in the optimization
protocol. As shown in Table 8.1, this has consequences for the adsorption dis-
tance as indicated by the increased Co–surface distance dCo−surf. compared with
the BLYP-D3 optimized structure. A similar increase of the adsorption distance
can be observed as a result of cell shape relaxation, as suggested by comparing
the values for BLYP-D3fix (1.39 Å) and BLYP-D3 (1.60 Å). This might come from
the slightly reduced lattice parameter (see Section 8.2) in cases with cell shape
optimization, which effectively decreases the size of the four-fold hollow position
and thus increases the adsorbate–surface distance. We will later show that there
is a delicate dependence on the Kondo properties obtained from DFT++ on the
adsorption distance.

8.3.2. Co(CO)3/Cu(001)

The DFT-predicted symmetry of Co(CO)3/Cu(001) in this study differs from the
one reported in Ref. [1] for all exchange–correlation functionals under study. Here,
we obtain a rather C3v-like1 symmetry of the molecule (see Fig. 8.1), whereas
in Ref. [1], the experimental structure suggests no such rotational symmetry. Of
course one may argue whether the STM results (Fig. 1 in Ref. [1]) clearly exclude
C3v symmetry. However, since our optimized structures do not appear consistent
with these data, and since we could not find Kondo features in the DFT++ data

1It is actually not a perfect C3v symmetry, because the two CO ligands in a bridged position
(with respect to the Cu(001) surface) have slightly different structural parameters, compared
to the one in top position.
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(see below for further discussion) for any of these structures, we assume that the
range of DFT variants employed here is not capable of describing the tricarbonyl
structure reliably, and will not focus on it any further within the scope of this work
(see Section A.3 for more details).

Table 8.1.: Adsorption distances of the carbonyl cobalt complexes on Cu(001)
in Å as obtained from different optimizations. The index “fix” is used
in cases where the experimental lattice constant was used. In all cases
Grimme’s dispersion correction (DFT-D3) was applied.

PBEfix PBE BLYPfix BLYP BLYP+U

Co (isolated) 1.46 - - - 1.78
Co(CO)2 1.33 1.54 1.39 1.60 1.74
Co(CO)3 1.58 - 1.66 1.75 1.76

Co(CO)4 (C2v) 1.90 - - 2.07 2.26
Co(CO)4 (C4v) 1.69 - - 1.89 1.85

8.3.3. Co(CO)4/Cu(001)

In the case of Co(CO)4/Cu(001), it is challenging to obtain a four-fold (C4v)-
symmetric structure as suggested by the STM experiments of Wahl et al. [1],
because in all attempts to optimize the structure the two-fold (C2v) symmetry was
found to be lower in energy by about 30.2 kJ/mol (PBEfix-D3) to 42.1 kJ/mol
(BLYP-D3+U). The non-local correlation functionals vdw-DF [234] and vfW-
DF2 [240] (with a fixed lattice constant) predicts the C2v symmetry to be 70.4-
73.3 kJ/mol lower in energy as compared to the C4v symmetry. The rotational
barrier of the molecule (as obtained for the PBEfix-D3 structure) in C2v symmetry
is 20 kJ/mol (0.21 eV), which suggests that a hypothetical rotation of this molecule
in the STM experiments by Wahl et al. (taken at T = 6 K) is not responsible for the
observed C4v symmetry. In addition to that, we can exclude a flipping mechanism
of the CO ligands to mimic a C4v symmetry in the STM experiments, due to an
energy barrier larger than 80 kJ/mol (see Section A.3.3).

In the experiment, the preparation of the carbonyl complexes was done by first
depositing cobalt on Cu(001), and then saturating the surface with CO molecules.
DFT (BLYP+U) suggests a rather short adsorption distance (Table 8.1) of an
isolated Co on Cu(001) (1.78 Å), which is closer to the tetracarbonyl in C4v sym-
metry (1.85 Å) than to the one in C2v symmetry (2.26 Å). It is conceivable that
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the formation of the C4v-symmetric system is kinetically favored, due to the ad-
sorption distance being closer to that of an isolated Co on Cu(001). Although the
sample was annealed to T = 200-300 K, the formation of the probably more stable
C2v structure (as suggested by DFT) may be inhibited.

In the DFT and DFT+U calculations, we again do not obtain a local magnetic
moment on Co(CO)4/Cu(001) in both symmetries. For the C4v symmetry (BLYP-
D3+U), it was also tested to obtain a magnetic moment by increasing the adsorp-
tion distance by about 0.4 Å, which should favor the formation of a local moment
similarly to a stretched H2 (see discussion in Section 4.3). However, no magnetic
moment could be observed in this case. These observations could make an interpre-
tation in terms of a Kondo effect difficult, but as we will see later, it is indeed pos-
sible to identify features in the DFT++ electronic structure for Co(CO)4/Cu(001)
in C4v symmetry which are in agreement with the experimentally observed Kondo
effect. For the corresponding C2v symmetry, no Kondo properties could be found,
suggesting that only the C4v symmetry is consistent with the experimental obser-
vations.

8.4. Kondo properties of Co(CO)n/Cu(001)

In the following, we will focus on the structures optimized with BLYP-D3+U
(with optimization of the cell shape), since these show a non-zero local moment
on the Co atom for the dicarbonyl complex. For Co(CO)4 on Cu(001), we limit
the discussion to the C4v structure, because it fits to the experimentally observed
symmetry (see Figure 1 of Ref. [1]), and allows for an interpretation in terms of
a Kondo effect (see below). For these structures, we parametrize the AIM with
closed-shell PBE, in order to correctly describe the non-magnetic character of the
Cu(001) surface (and thus the coupling of the Co 3d orbitals with a non-magnetic
metal).

As the Kondo effect manifests itself as a sharp feature in the spectral function at
the Fermi energy, we aim at identifying the relevant Co 3d orbitals that might
contribute to the experimentally observed zero-bias anomaly from the spectral
functions of the individual orbitals [1]. Nozières [43] showed that a Kondo effect
can be described within the Fermi liquid theory. We will use this to identify
the transition point to the Fermi liquid regime, as an approximated value for the
Kondo temperature TK. Therefore, we will analyze the temperature dependence of
the spin–spin correlation function χ(τ) at the special value τ = β/2, which should
behave as T 2 in the Fermi liquid regime. Furthermore, we investigate the so-called
first Matsubara-frequency rule [145], which states that ImΣ(ω0) should go linearly
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to zero as T → 0 K, as another tool for probing the Fermi liquid properties of the
di- and tetracarbonyl systems.

8.4.1. Spectral properties of Co(CO)n/Cu(001)
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Figure 8.2.: Spectral functions as obtained from PBE++ for a) Co(CO)2 and b)
Co(CO)4 on Cu(100) at β = 100 eV−1 (T = 116 K). Here the fully
localized limit was used for estimating the DC, and we chose U =
4.0 eV and J = 0.9 eV. In case of the notations 0.6z2 − 0.8(x2 − y2)

and 0.8z2 + 0.6(x2 − y2), the Co dz2 and dx2−y2 orbitals are mixed after
diagonalization of the Co 3d sub-space.

In Figure 8.2, all Co 3d spectral functions of Co(CO)2 and Co(CO)4 on Cu(100)
are shown at T = 116 K. Note that due to diagonalization of the Co 3d subspace,
some of the Co 3d orbitals are mixed. Co(CO)2/Cu(001) (Figure 8.2 a)) shows a
sharp feature at the Fermi energy (ω = 0.0 eV) for the Co 3d0.8z2+0.6(x2−y2) orbital,
whereas the remaining Co 3d orbitals only have broader features below the Fermi
energy (in the energy range shown here). The sharp feature of this orbital thus
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makes it a promising candidate for causing the experimentally observed Kondo
effect, which will be further investigated in terms of its Fermi liquid properties
later on. This is an interesting contrast to the bare Co atom on Cu(001), where
(at least at relatively large temperature) it is likely the dz2 orbital which is causing
the Kondo properties2.

In the case of Co(CO)4/Cu(001) in C4v symmetry, we would like to re-emphasize
that DFT (using GGA-type functionals) predicts a magnetic moment of 0.0 µB

on the Co atom. Nonetheless, the spectral function of Co(CO)4/Cu(001) obtained
form DFT++ (Figure 8.2 b)) shows a sharp feature at the Fermi energy for the
Co 3dz2 orbital. Based on this observation, there is reason to believe that DFT++
predicts a finite local moment on the Co atom of Co(CO)4/Cu(001) in this orbital,
which is probably screened due to a Kondo effect and thus leading to the sharp
feature in the spectral function, as we will confirm later. Due to the C4v symmetry,
Co(CO)4/Cu(001) would be a promising candidate for a so-called orbital Kondo
effect (similar as reported for cobalt-benzene sandwich molecules [176]), because it
has two degenerate orbitals (dxz/yz). However, the lack of a resonance at the Fermi
energy for these orbitals suggests that this is not the case.

To conclude, for Co(CO)2/Cu(001) and Co(CO)4/Cu(001) (C4v), we could identify
a sharp, Kondo-like feature at the Fermi energy, which gives us the opportunity
to investigate the increasing Kondo temperature with an increasing number of CO
ligands, for answering the question of how the Kondo effect can be chemically
controlled.

8.4.2. Fermi liquid properties of Co(CO)n/Cu(001)

We study the Fermi liquid properties to probe the existence of a Kondo effect as
suggested by the spectral functions for Co(CO)2 and for Co(CO)4 in C4v symme-
try.

8.4.2.1. Spin–spin correlation function at high temperatures: Is there
a magnetic moment to be screened?

First, we consider the spin–spin correlation functions of the carbonyl cobalt com-
plexes in Figure 8.3. Here, χ(τ) is shown at T = 1160 K, because we expect that
at this temperature, no Kondo screening takes place, and a finite local moment

2It has been argued that a second orbital may be contributing to the Kondo properties of
Co/Cu(001) at temperatures too low to be reached with the methodology employed here [111,
199]
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should be observed. For Co(CO)2/Cu(001), χ(τ) of the 3d0.8z2+0.6(x2−y2) and 3dyz

orbitals drops to a non-zero value as τ → β/2, suggesting a persisting spin-density
in these orbitals. Most of the magnetic moment observed for Co(CO)2/Cu(001)
is located in the Co 3d0.8z2+0.6(x2−y2) orbital, as suggested by the larger value at
χ(β/2). This observation suggests that the feature at ω = 0.0 eV in the spectral
function of the Co 3d0.8z2+0.6(x2−y2) orbital is indeed a signature of a Kondo effect.
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Figure 8.3.: Spin-spin correlation function χ(τ) as obtained from PBE++ at β =
10 eV−1 (T = 1160 K) of all carbonyl cobalt complexes on Cu(001)
under consideration here. The PBE++ calculation was done with U
= 4.0 eV, J = 0.9 eV, and using the fully localized limit for estimation
the double-counting correction.

For Co(CO)4/Cu(001) (C4v), only the Co 3dx2−y2 orbital shows a finite value of
χ(β/2) at T = 1160 K (Figure 8.3), which is the same orbital contributing spectral
weight at ω = 0.0 eV in form of a sharp feature. Thus, this orbital is a promising
candidate for causing the observed Kondo effect in Co(CO)4/Cu(001). For the C2v

symmetry, we observe that χ(β/2) drops to zero for all Co 3d orbitals, similar as
for Co(CO)3/Cu(001) (see Section A.3.5).

To summarize, we were able to identify promising candidates for Kondo-relevant
orbitals for Co(CO)2/Cu(001) (3d0.8z2+0.6(x2−y2)) and Co(CO)4/Cu(001) in C4v sym-
metry (3dx2−y2) from the spectral and spin–spin correlation functions.
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8.4.2.2. Temperature dependence of χ(β/2)
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Figure 8.4.: a) χ(β/2) as a function of T for all Co 3d orbitals of Co(CO)2/Cu(001)
by using the fully localized limit for the double-counting correction.
b) χ(β/2) as a function of T for the Co 3d0.8z2+0.6(x2−y2) orbital of
Co(CO)2/Cu(001) Here the value of the double-counting was shifted
by ±1.0 eV with respect to the FLL value EFLL

DC . c) χ(β/2) as a function
of T for all Co 3d orbitals of Co(CO)4/Cu(001) (C4v) by using the
fully localized limit for the double-counting correction. b) χ(β/2) as
a function of T for the Co 3dx2−y2 orbital of Co(CO)4/Cu(001) (C4v)
Here the value of the double-counting was shifted by ±1.0 eV with
respect to the FLL value. The fits are quadratic fits of the first two
data points. Note that the fits are meant as a guide for the eye to
check whether the Fermi-liquid behavior is fulfilled or not.
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As mentioned in Section 3.7.5, the Fermi liquid behavior is manifested as a T 2

dependence of χ(β/2). In Figure 8.4 a), we study this behavior for all Co 3d orbitals
of CO(CO)2/Cu(001) as obtained within the fully localized limit. In all cases
χ(β/2) drops as T is lowered, presumably approaching zero as T → 0 K. For the
Kondo-relevant orbital 3d0.8z2+0.6(x2−y2), one does not observe T 2 dependence (and
thus no Fermi liquid behavior), due to the non-zero intercept with the ordinate.
A better agreement within a Fermi liquid behavior can be observed by shifting
the DCvalue by −1.0 eV from the original FLL value EFLL

DC (Figure 8.4 b)), which
increases the occupation of the 3d0.8z2+0.6(x2−y2) orbital from 1.31 (FLL) to 1.49
electrons (see Figure 8.5).
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Figure 8.5.: Co 3d fillings of Co(CO)2 and Co(CO)4 on Cu(001) as obtained from
PBE++ at β = 100 eV−1 for different values of the double-counting
correction. EFLL

DC is the value as obtained from Equation (3.38). Total
Co 3d occupations: nd (EFLL

DC +1 eV) = 7.24, nd (EFLL
DC ) = 7.47, nd

(EFLL
DC -1 eV) = 7.67.

Here one observes that the 3d0.8z2+0.6(x2−y2) orbital of Co(CO)2/Cu(001) behaves
quadratically in T below T = 150 K. Shifting the DC value by +1.0 eV from
the original FLL value, the filling in the 3d0.8z2+0.6(x2−y2) orbital reduces to 1.15
electrons, and the values of χ(β/2) are significantly increased as compared to the
results obtained within the FLL. The sensitivity of χ(β/2) to the shift of the
DC value comes from the fact that the occupation on the 3d0.8z2+0.6(x2−y2) orbital
of Co(CO)2/Cu(001) changes from 1.15 (EFLL

DC + 1 eV) to 1.49 (EFLL
DC − 1 eV), as
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shown in Figure 8.5. This indicates that the charge fluctuations in this orbital
are strongly increased when EFLL

DC is shifted by −1 eV. This leads to the observed
transition to the Fermi liquid regime at roughly T = 150 K, whereas for the other
fillings under consideration here, it is not possible to see this transition for the
temperature range considered.

In Figure 8.4 c), we depict χ(β/2) as a function of T for Co(CO)4/Cu(001) (C4v)
as obtained within the fully localized limit. χ(β/2) of the Kondo-relevant orbital
(3dx2−y2) behaves as T 2 at temperatures below T = 165 K, pointing to a transition
to the Fermi liquid regime at this temperature. Shifting the DC by ±1 eV with
respect to the FLL value alters the temperature at which the transition to the
Fermi liquid regime is observed only little (see Figure 8.4 d)). As one can see from
Figure 8.5, this might be due to the fact that the filling on the 3dx2−y2 orbital (1.12
(EFLL

DC + 1 eV)) to 1.25 (EFLL
DC − 1 eV)) electrons) is not affected as strongly as in

the case of the 3d0.8z2+0.6(x2−y2) orbital in Co(CO)2/Cu(001).

8.4.2.3. First Matsubara frequency rule

We find that a similar behavior of Co(CO)2/Cu(001) concerning the Fermi liquid
properties can be found by considering the so-called first Matsubara-frequency rule
depicted in Figure 8.6 a) and b). The only agreement with Fermi liquid behavior
can be observed if EFLL

DC is shifted by −1.0 eV, as indicated by the linear behavior
of ImΣ(ω0) as T → 0 K for temperatures below T = 150 K. Thus, both χ(β/2) and
ImΣ(ω0) as a function of T lead us to conclude that the 3d0.8z2+0.6(x2−y2) orbital
behaves as a Fermi liquid, but the transition temperature strongly depends on the
Co 3d filling. Nevertheless, this gives further support to our initial conclusion that
the sharp feature observed in the spectral function (Figure 8.2 a)) is a signature
of a Kondo effect.

For Co(CO)4/Cu(001), the first Matsubara-frequency rule (Figure 8.6 c) and d))
is also fulfilled for the 3dx2−y2 orbital at all DC values under consideration here,
and affirms furthermore the transition to the Fermi liquid regime roughly below T
= 165 K. This gives reason to believe that the observed feature at ω = 0.0 eV in
the spectral function is a true Kondo signature.

8.4.2.4. Discussion

To summarize, we could show that the Kondo-relevant orbitals of Co(CO)2/Cu(001)
and Co(CO)4/Cu(001) (C4v) display the Fermi liquid properties expected for a
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Kondo system. However, for Co(CO)2/Cu(001), the transition temperature, or
Kondo temperature, depends delicately on the choice of the double-counting value.
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Figure 8.6.: a) ImΣ(ω0) as a function of T for all Co 3d orbitals of
Co(CO)2/Cu(001) as obtained by using the fully localized limit. b)
ImΣ(ω0) as a function of T for the Co 3d0.8z2+0.6(x2−y2) orbital of
Co(CO)2/Cu(001). Here the value of the double-counting was shifted
by ±1.0 eV with respect to the FLLvalue. c) ImΣ(ω0) as a function
of T for all Co 3d orbitals of Co(CO)4/Cu(001) (C4v) as obtained by
using the fully localized limit. d) ImΣ(ω0) as a function of T for the
Co 3dx2−y2 orbital of Co(CO)4/Cu(001) (C4v). The fits in a)-d) are
linear fits as a guide for the eye to check whether the Fermi-liquid
behavior is fulfilled or not.

Within this work, it is only possible to see a transition to the Fermi liquid regime
(at T = 150 K) if the filling on the Co 3d0.8z2+0.6(x2−y2) orbital is increased by
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shifting the DC value by −1 eV from the FLLvalue. By comparing the uncorrelated
⟨nσ⟩⟨nσ̄⟩ and correlated double occupancies ⟨nσnσ̄⟩ of the 3d0.8z2+0.6(x2−y2) orbital,
one finds that the difference between these quantities is larger by using the fully
localized limit (0.074) compared to shifting it by -1 eV (0.037). This suggests
that in the FLL case the Kondo relevant orbital is more correlated, leading to the
increased transition temperature to the Fermi liquid regime (similarly to what was
found for Co/Cu(001) in Section 6).

In the case of Co(CO)4/Cu(001) (C4v), the transition to the Fermi-liquid regime
is more robust against changes of the double-counting value, as confirmed unani-
mously by χ(β/2) and ImΣ(ω0) as a function of T . We find that for all DC values
the transition to the Fermi-liquid regime of Co(CO)4/Cu(001) is at roughly T =
165 K.

Concerning the question of how the Kondo effect is controlled by the number of
CO ligands, one is now faced with the problem that the exact double-counting
correction for both systems is unknown, and that the Kondo temperature of
Co(CO)2/Cu(001) is only detectable (within the electronic temperatures reached
here) if the value of the DC correction is shifted towards smaller values. How-
ever, comparing the Fermi liquid behavior of both systems as obtained from
the fully localized limit Co(CO)4/Cu(001) has indeed a larger Kondo tempera-
ture than Co(CO)2/Cu(001) in qualitative agreement with the experimental data,
since in the latter case the transition to the Fermi liquid regime occurs at tem-
peratures lower than the ones considered here. Later, we will give an estimation
of TK based on the hybridization function of the Co 3d0.8z2+0.6(x2−y2) orbital in
Co(CO)2/Cu(001), which confirms this assumption.

8.4.3. Adsorbate-structure dependence of the local moment
in Co(CO)2 on Cu(001)

In the context of the preceding section, one could ask how strongly the results for
Co(CO)2/Cu(100) would change for a different molecular structure (see Section
8.3 for more details about how strongly structural parameters can vary depending
on the computational parameters), as this might allow for a deeper insight into
structure–property relations for the Kondo effect.

To investigate the dependence of the magnetization on the adsorption distance, we
show the spin–spin correlation function at T = 1160 K of the Co 3d0.8z2+0.6(x2−y2)

orbital for selected structures (Figure 8.7). For the BLYP-D3 and PBEfix-D3-
optimized structures, χ(τ) drops faster than for the BLYP-D3+U -optimized struc-
ture. This points to a stronger screening of the local moment if the adsorption
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distance is decreased, suggesting a a more weakly correlated nature at smaller dis-
tances, which agrees with what was reported for Co/Cu(001) [204]. At the same
time the adsorption distance is increased, the bonding angle φC−Co−C increases, too,
from what one could suppose that the stronger screening depends on this angle.
For the structures reported here, we can exclude that the spin–spin correlation
function of the Co 3d0.8z2+0.6(x2−y2) orbital is significantly affected by φC−Co−C (see
Section 8.4.3.1).
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Figure 8.7.: a) Spin–Spin correlation χ(τ) as obtained from PBE++ at β =
10 eV−1 (U = 4.0 eV and J = 0.9 eV) of the Kondo-relevant orbital
3d0.8z2+0.6(x2−y2) in Co(CO)2/Cu(001) for different optimized struc-
tures. b) Co-surface distance dCo−surf., C-Co-C bonding angle φC−Co−C

and 3d0.8z2+0.6(x2−y2) filling n (PBE++) for Co(CO)2/Cu(001) as ob-
tained from different structures.

The occupation of the Co 3d0.8z2+0.6(x2−y2) orbital shows a delicate dependence
on the structure, similar to its dependence on the DC value as shown for the
BLYP-D3+U optimized structure. For this reason, it can be assumed that the
transition to the Fermi-liquid regime is similarly affected by changes in the ad-
sorption distance and the C-Co-C bonding angle, and therefore is very sensitive
to the computational parameters with which the molecular adsorbates have been
optimized. The structures under study here are likely a particularly challenging
case because of their large structural flexibility (as opposed to more rigid phthalo-
cyanines) and because of the challenges associated with describing CO binding
to metal surfaces (“CO-puzzle”), as discussed in Section 8.3. These results also
suggest that the Kondo effect in Co(CO)2/Cu(001) might be controllable via ex-
ternal stimuli affecting the adsorption distance (in particular, interactions between
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STM tips and adsorbates), similarly to what has been reported for cobalt-benzene
sandwich molecules bridged between two electrodes [241].

8.4.3.1. Co(CO)2/Cu(001): C-Co-C angle analysis

In this part, we take a brief look at the dependence of the high-temperature spin–
spin correlation function and the hybridization function on the C-Co-C bonding
angle φC−Co−C. For this purpose, Co(CO)2 molecules with different bonding angles
were obtained by using the linear synchronous transit method [242] to interpolate
structures between the optimized Co(CO)2/Cu(001) (BLYP-D3) and an artificially
generated Co(CO)2 by removing the two CO ligands from Co(CO)4/Cu(001) in
C2v symmetry (BLYP-D3), that are further away from the surface (marked as
“C2” in Figure 8.1). In all cases, the obtained structures have an adsorption
distance of 2.07 Å, which is the one as obtained from the BLYP-D3 optimized
Co(CO)4/Cu(001) in C2v symmetry.
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Figure 8.8.: a) Spin–spin correlation function at T = 1160 K, as obtained from
PBE++ for a dicarbonyl complex on Cu(001) with different C-Co-C
bonding angles φC−Co−C. b) Co 3d hybridization function as obtained
from PBE for a dicarbonyl complex on Cu(001) with different C-Co-C
bonding angles φC−Co−C. For all calculations a Co-surface distance of
2.07 Å was used.
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The spin–spin correlation function at T = 1160 K of the 3d0.8z2+0.6(x2−y2) orbital
depends only little on φC−Co−C, as shown in Figure 8.8 a). If φC−Co−C is increased
to larger values than 119○, the dyz orbital shows a localized magnetic moment,
probably caused the increasing energy of this orbital at larger φC−Co−C. However,
such large bonding angles were not obtained for Co(CO)2/Cu(001) within the
optimization protocols applied here.

The reason for the almost unaffected 3d0.8z2+0.6(x2−y2)-spin–spin correlation func-
tion, could be that around the Fermi energy the hybridization function of this
orbital (Figure 8.8 b)) is not sensitive to changes of the bonding angle. Whereas,
the hybridization of the 3d0.6z2−0.8(x2−y2) orbital in the vicinity of the Fermi en-
ergy increase as the bonding angle increases, which could probably be due to a
stronger coupling of the CO ligands with the surface, and at the same time, due to
a more appropriate coupling to this orbital (which exhibits more 3dx2−y2 character
as compared to the 3d0.8z2+0.6(x2−y2) orbital).

8.5. DFT-based analysis of the Kondo effect: What
can we learn without solving the AIM?

To gain further insight into the Kondo properties as obtained from solving the
Anderson impurity model, it can be helpful to consider the spin-unpolarized PBE
electronic structures, as they were used to parametrize the AIM (based on the
BLYP-D3+U optimized structures).

In Figure 8.9, we show the projected density of states (− 1
π Imgi(ω)) of the Co 3d

orbitals, as well as the C 2p local density of states (LDOS), which is the sum of
the projected density of states of the C 2p orbitals. They should exhibit peaks
at the σ2/σ∗2 and π/π∗ orbitals of the CO ligands (a schematic representation of
the molecular orbital diagram of an isolated CO molecule is provided in Section
A.3.7). From this, one can learn which of the Co 3d orbitals are interacting with
the CO ligands, indicated by features in the Co 3d PDOS at the same position as
the C 2p LDOS. This information might be useful to learn more about chemical
control of the Kondo effect by increasing the number of CO ligands, as this will
affect the coupling of the Co 3d orbitals with the rest of the system.

For Co(CO)2/Cu(001), the 3d0.8z2+0.6x−y2 orbital shows only small features at the
C 2p LDOS, as a consequence of this orbital interacting only little with the CO
ligands (as, e.g., compared to the 3dxz orbital). In contrast, the 3dx2−y2 orbital in
Co(CO)4 (C4v) interacts with the CO ligands, as indicated by the features in the
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Figure 8.9.: Projected density of states of the Co 3d orbitals (- 1
π Im gi(ω)), and

local density of states of the 2p orbitals (sum over all 2p orbitals)
of one of the C atoms. Results obtained from PBE (based on the
BLYP-D3+U optimized structures).

PDOS at the position of the σ2/σ∗2 orbitals of CO. This coupling might increase
the Kondo temperature, as discussed below in more detail.

Considering the value of the energy-dependent hybridization function (Figure 8.10)
at the Fermi energy (ω = 0.0 eV), one gets a more complete picture of how strong
the Co 3d orbitals are coupled with the rest of the system. This value is known
from the simplest Kondo model (one-band with a constant hybridization) [40] to
be directly connected to the Kondo temperature (see Equation (3.2)).

Focusing on the Kondo relevant orbitals of Co(CO)2/Cu(001) (3d0.8z2+0.6x−y2) and
Co(CO)4/Cu(001) (3dx2−y2), the energy-dependent hybridization function is in
both cases rather featureless in the range of ω = -1.0 eV to ω = +1.0 eV. As shown
in Table 8.2, the value at ω = 0.0 eV for the 3dx2−y2 orbital of Co(CO)4/Cu(001)
is about four times larger than for the 3d0.8z2+0.6x−y2 orbital in Co(CO)2/Cu(001).
This supports our assumption that the interaction of the 3dx2−y2 orbital of Co(CO)4

(C4v) with the CO σ2/σ∗2 orbitals increases the coupling at the Fermi energy, which
in turns results in a larger Kondo temperature (TK ≈ 165 K) as discussed in Sec.
3.1. Assuming that the Kondo temperature for Co(CO)2/Cu(001) is lowered by the
same factor as the hybridization at the Fermi energy of the 3d0.8z2+0.6x−y2 orbital,
one would expect it to be around TK ≈ 41 K. The lowest electronic temperature
under consideration in the DFT++ calculations discussed in Sec. 3.1 was T =
46.4 K, which could explain why within the fully localized limit, we were not able
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Figure 8.10.: Imaginary part of the hybridization function of a) Co(CO)2 and b)
Co(CO)4 (C4v) on Cu(100) as obtained form PBE (based on the
BLYP-D3+U optimized structures).

to reach the transition to the Fermi liquid regime. According to Sec. 8.4.3, the de-
creased adsorption distance of Co(CO)2/Cu(001) in, e.g., the BLYP-D3-optimized
structure, shows a hybridization of the Kondo-relevant orbital at ω = 0.0 eV of
0.52 eV. Compared with Im∆(0 eV) = 0.33 eV obtained for the BLYP-D3+U
structure, the Kondo temperature would therefore probably shift towards larger
values for this structure.

Table 8.2.: Hybridization in eV at the Fermi energy -Im∆(0 eV) as obtained
from spin-unpolarized PBE (based on the BLYP-D3+U optimized
structures) for different carbonyl cobalt complexes on Cu(001). For
Co(CO)2, the orbitals are labeled according to their largest contribu-
tion after diagonalizing the Co 3d sub-space.

dx2−y2 dxz dxy dyz dz2

Co(CO)2 0.24 1.48 0.24 0.1 0.33
Co(CO)4 (C4v) 1.31 1.91 5.87 1.91 0.33
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8.5.1. The effect of the CO–surface interaction on the Co 3d
hybridization function
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Figure 8.11.: Density of states of the 4s, 4p and 3d orbitals of one of the Cu surface
atoms. Results obtained from PBE.

It would be interesting to study the contribution to the hybridization function of
the Co 3d orbitals coming from the CO ligands directly, or indirectly as caused by
the ligands being coupled to the Cu(001) surface. We try to make a step towards
answering this question at the example of Co(CO)4/Cu(001) in C4v symmetry.
For this purpose, we compare the hybridization functions in Figure 8.12 of all Co
3d orbitals as obtained from an isolated Co on Cu(001), for an isolated Co(CO)4

molecule (no surface) and for Co(CO)4 on Cu(001). For the isolated molecule,
we start from the optimized system and removed all Cu atoms, in order to see
the contribution to the hybridization function of the CO ligands only. While this
analysis neglects effects of, e.g., the surface on the CO ligands, which may in turn
affect the way these ligands contribute to the hybridization of the Co orbitals, we
do expect an elucidating qualitative picture of the relative importance of ligands
and surface.

Note that the plots in Figure 8.12 are differently scaled on the y-axis. The hy-
bridization functions of all Co 3d orbitals for an isolated Co atom on Cu(001)
are rather small and featureless. In all cases, however, there is a small bump at

115



8.5. DFT-based analysis of the Kondo effect: What can we learn without solving
the AIM?

roughly E = -1.8 eV to E = -2.5 eV, which comes from the increased DOS of the
Cu surface at this energy (as shown in Figure 8.11).
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Figure 8.12.: Co 3d hybridization functions as obtained from an isolated (op-
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as obtained by removing the surface atoms from the optimized
Co(CO)4/Cu(001) and from Co(CO)4 on Cu(001). Hybridization
functions as obtained from PBE, based on BLYP-D3+U optimized
structures.

Considering the Co 3d hybridization functions (Figure 8.12) of the isolated molecule
should give an impression of the contribution of the ligands to the hybridization
of the Co 3d orbitals in the full system. For the isolated molecule, the hybridiza-
tion functions of all 3d orbitals (except the dx2−y2 orbital) exhibit a sharp feature
close to the Fermi energy, which is the reason for the hybridization function of
these orbitals being increased in the vicinity of E = 0.0 eV for the full system
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(Co(CO)4/Cu(001))3 compared to an isolated Co atom on Cu(001). We believe
that this enhancement is directly induced by the hybridization with the ligands.
For the dx2−y2 orbital the hybridization at E = -1.8 eV is significantly increased
compared to Co/Cu(001), although for the isolated molecule we do not observe a
peak in ∆(ω) at this energy. Thus, we conclude that the increased hybridization
is indirectly caused by the CO ligands, as they not only couple strongly to the Co
dx2−y2 orbital (as pointed out in Section 8.5), but also to the Cu(001) surface.

8.6. Conclusion

Chemical and mechanical control of the Kondo effect in molecular adsorbates is
an intriguing subject, which promises insight into strong electron correlation. We
have studied such control exploring experimentally characterized cobalt carbonyl
complexes on Cu(001) from a theoretical point of view, employing both DFT++
approaches for a full description of correlation, and DFT-derived properties for a
conceptual understanding of structure–property trends. We find that it is indeed
possible to optimize structures with DFT (employing BLYP-D3+U) whose Fermi
liquid properties are compatible with the experimentally observed trend of larger
Kondo temperatures with increasing number of ligands for the di- and tetracar-
bonyl complex (constraining the latter to C4v symmetry). We can trace back this
behavior to an increased hybridization at the Fermi energy, which correlates with
a stronger interaction of the Kondo-relevant 3d orbital with the CO ligands for
the tetracarbonyl. This Kondo-relevant orbital is the dx2−y2 in both cases, with a
strong admixture of dz2 for the dicarbonyl system. It would be interesting to com-
pare these data with newly developed approaches, in which a general projection
scheme allows for extending the correlated impurity from the cobalt 3d orbitals to
molecular orbitals which include part of the CO ligands [121].

Our data also point to the challenges such systems pose for present-day first-
principles electronic structure methods: The structural flexibility of cobalt car-
bonyl complexes, along with the known difficulty of describing direct carbonyl–
metal binding by present-day DFT, implies that predictive modeling of their
Kondo properties is virtually impossible. In particular, no atomistic structure
could be obtained for the tricarbonyl which is compatible with the experimen-
tally observed Kondo effect (and with the lack of threefold symmetry suggested by
STM data). Furthermore, all DFT protocols employed here suggest that for the
tetracarbonyl, a C2v-symmetric structure is by at least 30 kJ/mol more stable than

3Although, for the dz2 orbital this effect is only small, as can be seen by the low intensity of
the peak of ∆(ω) in case of the isolated molecule, in contrast to the dxy and dxz/yz orbitals.
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a C4v-symmetric one, yet only for the latter can we obtain Fermi liquid properties
consistent with the experimentally observed Kondo effect. This suggests that the
fourfold-symmetric structure observed in the STM results from the intrinsic sym-
metry of the molecule rather than from a rotational process. This is an example
of employing spectroscopic data rather than solely total energies for identifying
molecular structure compatible with the experiment, as also done, for example, in
theoretical extended X-ray absorption fine structure (EXAFS) studies [243]. For
systems with less pronounced structural flexibility, such as metal phthalocyanines,
it is likely that available first-principles methods are more reliable at present. On
the upside, the strong dependence of Kondo properties on structural parameters
suggested by our data could imply that these Kondo properties can be controlled
mechanically, in particular by interactions with an STM tip.

In the following section, the focus will be on more detailed analysis of the hy-
bridization function using the chemical concept introduced in Section 4, at the
example of Co(CO)4 (C4v). In addition, it will be shown how the Co 3d hybridiza-
tion functions are affected by applying a hybrid functional, which increases the
HOMO-LUMO gap of the CO ligands.
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9. Co(CO)4 on Cu(001): What can
we learn from chemical concepts
on the Kondo effect?

It is common in quantum chemistry to truncate a surface for studying the prop-
erties of adsorbates [244–250], or for simulating the electron transport properties
through molecules in a molecular-junction setup [251–255]. This is called a cluster
approach in this thesis. The reason for doing this is not only the lower compu-
tational effort compared to a PBC approach, but also the use of atom-centered
basis functions instead of a plane-wave basis can be a valuable alternative to get
chemical insight into these systems (in physics, such insights are often obtained
by using Wannier orbitals as already mentioned in Section 4.1). For instance, we
have shown (Section 4.1) that using an atom-centered basis set makes it possible
to divide the hybridization function of a correlated sub-shell into different contri-
butions from individual ligands or the surface (Equation (4.7)). Using such local
decomposition of hybridization functions can be beneficial for new insights into
structure–property relations for Kondo systems in combination with PBC-based
DFT++ calculations.

Often, quantum chemistry programs allows for using a wide range of tools for local
analysis (population analysis, bond orbital analysis [256], etc.), one can check the
consistency of results for a broader variety of approximated exchange–correlation
functionals, in contrast to the often rather limited availability of these functionals
in solid state programs (or the often high cost of employing hybrid functionals
within a PBC approach).

To this end, we use the projection scheme described in Section 4.1 for the calcula-
tion of the hybridization function of Co(CO)4/Cu(001) within a truncated cluster
approach. It will be discussed whether such a rather chemical approach can qual-
itatively be compared with a DFT calculation using PBC (Section 8.5) focusing
on the hybridization function only. We will continue the discussion of what one
can learn from DFT about the Kondo effect (which we have started to discuss in
Section 8.5).
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9.1. Methodology

The Co(CO)4/Cu(001) (C4v) cluster was build from the PBC-optimized BLYP-
D3+U structures as explained in detail in Section 8. For modeling the Cu(001)
surface, a pyramid-like cluster with a surface of 6×6 Cu atoms and 6 layers which re-
sults in 91 Cu atoms in total (see Figure 9.1), was excised from the PBC-optimized
Co(CO)4/Cu(001) structure. The odd number of Cu atoms was chosen to en-
force an overall closed-shell situation consistent with the DFT parametrization
of the AIM as discussed in Section 8. Based on this, DFT single-point calcula-
tions were performed with the Turbomole [181] program package (PBE/def2-
SVP [182–185] and PBE0/def2-SVP [182–185, 257]). The convergence criterion
for the energy in theSCF algorithm was set to 1⋅10−6 Hartree, and the hybridiza-
tion functions were calculated as described in Section 4.1, without truncating the
number of Kohn–Sham orbitals used for the projection. Furthermore, the Co 3d
sub-space was not diagonalized, because after the Löwdin orthogonalization of the
entire system, and the subsequent projection of the Kohn–Sham states onto the
Co 3d orbitals, the local (Co 3d) Hamiltonian is already diagonal.

For CO HOMO-LUMO gaps, an isolated carbon monoxide was optimized with
PBE/def2-SVP [182–185], with convergence criteria for the SCF algorithm of
1⋅10−6 Hartree, and 1⋅10−4 Hartree/Bohr for the gradient. Based on this struc-
ture, single point calculations were done with TPSS/def2-SVP [184, 185, 258],
PBE0/def2-SVP (25% exact exchange) [182–185,257] and PBEh-3c/def2-SVP (42%
exact exchange) [184,185,259].

x

y

Figure 9.1.: Co(CO)4 on a Cu91(001). The structure is based on the BLYP-D3+U
PBC-optimization, see Section 8 for details.
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9.2. Can a truncated cluster approach reproduce
the hybridization function of an approach
using periodic boundary conditions ?
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Figure 9.2.: Imaginary part of the Co 3d hybridization function of Co(CO)4 in
C4v symmetry, as well as the surface contribution as calculated with
Equation (4.7). Additionally, some of the bath orbitals are shown.
The Fermi level was set to ω = 0.0 eV. Results obtained from def2-
SVP/PBE.

The hybridization function of the Co 3d orbitals of Co(CO)4/Cu(001) is shown in
Figure 9.2. Focusing on the range of ω = -2.5 eV to -1.5 eV, the hybridization of
the dx2−y2 orbital is strongly increased compared with the remaining Co 3d orbitals.
This feature is in agreement with the hybridization function as obtained from PBC
(see Figure 8.10 b)).
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an approach using periodic boundary conditions ?

Figure 9.3.: Ligand (CO) contribution to Im∆i(ω) of the Co 3d orbitals in
Co(CO)4/Cu(001). Results obtained from PBE, using Equation (4.7).

At the Fermi energy (ω = 0.0 eV), the hybridization strength takes the following
order (beginning from the largest value): Im∆xy(0.0 eV) > Im∆xz/yz(0.0 eV) >

Im∆x2−y2(0.0 eV) > Im∆z2(0.0 eV), which qualitatively reproduces the results of
the PBC approach. Quantitatively, the hybridization of the dxy orbital (cluster ap-
proach) seems to be overestimated compared with the PBC-results, which is caused
by the discretization of the energies in a cluster approach. Presumably, this could
be improved by using a larger Cu cluster, which would effectively “smear” the hy-
bridization function. Nevertheless, the overall qualitative agreement between both
approaches motivates us to use such an approach for analyzing the hybridization
function in more detail.

In Section 8.5.1, it was discussed which parts of the hybridization functions are di-
rectly or indirectly increased through the CO ligands, by comparing the hybridiza-
tion functions with those of an isolated Co on Cu(001). It should be recalled that
for the Kondo-relevant orbital (dx2−y2), Im∆(ω) was increased in the range of ω =

-3.0 to 2.0 eV, with a significant enhancement of the hybridization at ω = −2.0 eV
as compared to Co/Cu(001). We suggested that this is indirectly caused due to
CO–surface interactions, indicating the general importance of such interactions
with respect to the Kondo properties of an adsorbate. In the following, we apply
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our tool to decompose the hybridization function (introduced in Section 4.1), for
obtaining a more quantitative picture of how the CO ligands affect the hybridiza-
tion of the Co dx2−y2 orbital,as a step towards understanding the chemical control
of the Kondo effect.

In the right panel of Figure 9.2, the hybridization function is shown for the con-
tributions coming from the surface, which we obtained after using Equation (4.7).
The feature of the dx2−y2 orbital in the area of ω = -2.5 eV and -1.5 eV comes purely
from the Cu(001) surface, as can be seen by comparing the left and the right panel
of Figure 9.2, or by considering the corresponding bath orbital (see also the ligand
contribution to Im∆(ω) in Figure 9.3). This is in agreement with the assumption
made in Section 8.5.1, that in the vicinity of the Fermi energy the hybridization
is purely of surface-character and is only indirectly enhanced by the ligands (com-
pare with the strong hybridization of the C 2p orbitals with the surface at ω =
-2.0 eV, as depicted in Figure 9.4), suggesting that the ligand–surface interaction
might play an important role in the modification of the Kondo properties.
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Figure 9.4.: Imaginary part of the C 2p hybridization function of Co(CO)4 in C4v

symmetry, as well as the surface contribution as calculated with Equa-
tion (4.7). Results obtained from def2-SVP/PBE.

Most important for the Kondo physics is, however, the hybridization at the Fermi
energy (ω = 0.0 eV). For the Kondo-relevant orbital dx2−y2 , which we identified
in Section 8, we found that the hybridization at the Fermi level is increased as
compared to an isolated Co atom on Cu(001). The surface contribution to the
hybridization function shows that Im∆x2−y2(0.0 eV) is entirely dominated by the
Cu surface. In other words, there is no bath orbital with CO character that couples
with the Co 3dx2−y2 at the Fermi energy. This leads to the conclusion that the
CO ligands indirectly enhances the dx2−y2 hybridization at the Fermi energy, due
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to CO-surface interactions, which is probably the explanation for the increasing
Kondo temperatures in Co(CO)n complexes on Cu(001) when the number of CO
ligands is increased.

In contrast to this, the dxy orbital hybridizes strongest at the Fermi energy of all
Co 3d orbitals in the tetracarbonyl. Within our approach, we can identify that this
comes from a bath orbital with π∗-character on the CO ligands (see Figure 9.2),
which is located at the Fermi energy. On the other hand, the bath orbital with CO
σ-character (at ω = −5.4 eV) which could hybridize with the dx2−y2 orbital, is at
an energetic positions far away from the Fermi energy (the bath orbital with σ∗-
character lies above ω > 2.0 eV which is beyond the energy range shown in Figure
9.2). This observation is in particular interesting for designing Kondo systems, as
we have shown at the example of the simplest Anderson impurity model (Section
3.6.3) that a too strong hybridization can lead to the destruction of the Kondo
resonance.

9.3. The effect of the exchange–correlation
functional onto the hybridization function in
Co(CO)4 (C4v) on Cu(001)

In Section 8, it was discussed that in general GGA-type functionals tend to un-
derestimate the HOMO–LUMO gap in carbon monoxide, which can, e.g., be cor-
rected by using hybrid functionals. For instance, we found a gap of 6.95 eV using
PBE/def2-SVP /GGA) and a gap of 9.95 eV by applying the hybrid functional
PBE0/def2-SVP (Figure 9.5). With the meta-GGA-type functional TPSS one
finds a gap of 7.33 eV, whereas the recently proposed hybrid functional PBEh-3c
yields the largest gap under consideration here (11.98 eV). Obviously, such sig-
nificant differences in the HOMO-LUMO gap will result in drastic changes Co 3d
hybridization function. To demonstrate this, it will be discussed in this section
what the effect of applying a hybrid functional (such as PBE0) can have on the
Co 3d hybridization functions, at the example of Co(CO)4 (C4v) on Cu(001).

In Figure 9.6, Im∆(ω) of the Co 3d orbitals in Co(CO)4/Cu(001) is shown as
obtained from PBE (GGA-type functional) and PBE0 (hybrid functional with
25% exact exchange), as well as the contribution to Im∆(ω) from the Cu(001)
surface.
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Figure 9.5.: HOMO-LUMO gap of a an isolated CO molecule as obtained from
PBE/def2-SVP [182–185], TPSS/def2-SVP [184,185,258], PBE0/def2-
SVP [182–185, 257] (25% exact exchange) and PBEh-3c/def2-SVP
(42% exact exchange) [184, 185, 259]. All gaps were calculated on the
basis of the PBE/def2-SVP optimized CO molecule.

The strong hybridization of the dx2−y2 orbital caused by the interaction with the
CO σ orbital (marked as 1 in Fig. 9.6) as obtained from PBE is shifted towards
lower energies (marked as 1′ in Fig. 9.6) when using PBE0. At the same time, the
hybridization of the dxy orbital with the CO π∗ orbital as obtained from PBE is
shifted towards higher energies if PBE0 is applied (2 → 2′). This is exactly what is
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expected from using a hybrid functional, which increases the HOMO-LUMO gap of
CO. More interestingly, using PBE0 one obtains that the dx2−y2 orbital hybridizes
most strongly at the Fermi energy (ω = 0.0 eV), whereas the hybridization of
the dxy orbital is significantly lowered compared to the PBE-results. The later is
caused due to the π∗ type orbitals of CO being shifted towards higher energies.
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Figure 9.6.: Imaginary part of the Co 3d hybridization function of Co(CO)4 in
C4v symmetry, as well as the surface contribution as calculated with
Equation (4.7). Results obtained from def2-SVP/PBE and def2-
SVP/PBE0.

It is assumed that the strong hybridization of the dx2−y2 orbital predicted by PBE0
would suppress the formation of a Kondo resonance at the Fermi energy, as shown
in Section 3.6.3 at the simplest Kondo model. However, from the literature it is
known that hybrid functionals might lead to serious troubles in the description of
the electronic structure of metals [84,260], which is why the results obtained here
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(PBE0) should be interpreted with care, and a combination of different functionals
(e.g. PBE applied to Cu and Co, and PBE0 applied to CO, as for instance possible
within the frozen density embedding) could be a step towards solving this issue
[261–265], or the use of local hybrid functionals with position-dependent exact-
exchange admixture could be a promising route for future applications [266, 267].
Further studies should also include testing more recently proposed approximate
exchange–correlation functionals, such as SCAN [268], M06-L [269] or vdW-DF
[234].

9.4. Conclusion

Cluster approaches are a useful chemical tool for treating substrate–adsorbate
systems, as it allows for using a rich zoo of exchange–correlation functionals (as,
e.g., implemented in Turbomole), and allowing for interpretations in terms of
molecular orbitals. In this section we have shown that the resulting hybridization
functions from a truncated cluster approach can at least recover qualitatively the
features as observed from a PBC calculation. Furthermore, it has been shown
that the molecular orbitals of the electronic bath can be used to identify the bath–
impurity interaction in the hybridization function. It is likely that this can be
extended to other system for understanding the adsorbate–surface interaction in
more general, that can cause a switchable, or tunable Kondo effect [36,125] .

The application of hybrid functionals (here PBE0) demonstrate that the features
in the hybridization function of the Co 3d orbitals is shifted towards lower, or
higher energies (depending on the CO orbitals they are interacting with), due to
an increased HOMO-LUMO gap in CO. This also results in a different picture of
Im∆(0.0 eV) among the Co 3d orbitals, as compared to what we have observed
with PBE. However, due to the problem of GGA type functionals in describing the
electronic structure of carbon monoxide and the fact that hybrid functionals should
taken with care for the description of metals, it is proposed for future applications
to use a combination of both type of exchange–correlation functionals, applied
to different parts of the system or to test more recently proposed approximate
exchange–correlation functionals.
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The Kondo effect is an intriguing phenomenon caused by the correlation of a lo-
calized magnetic moment with a surrounding electronic bath. In spintronics, this
effect can act as a probe for detecting electron tunneling pathways in a molecu-
lar junction setup or can be used for detecting spin localization on molecules on
surfaces in the STS [28, 29]. Recently, the interest in manipulating the Kondo
effect has grown, as this is equivalent to having control over the spin on molecules
adsorbed on a substrate, which might give rise to new applications in spintron-
ics or information processing technologies [270–272]. Such manipulation can for
instance be mechanically induced or be realized by chemical modification of an
adsorbate.

From a theoretical point of view, describing the Kondo effect of a system is a
challenging task, because it delicately depends on the atomistic structure, as well as
on input parameters required in state-of-the-art electronic structure calculations.

This work aimed for understanding the chemical and mechanical control of the
Kondo effect. To this end, it was scrutinized how the results of the established
electronic structure methods DFT and DFT++ depends on parameters such as U ,
J , k-space, the value of DC correction, and the choice of the exchange–correlation
functional. In addition, for achieving new insights into the control of the Kondo
effect, a conceptional analysis was proposed providing a link with tools and the
language commonly used in chemistry.

10.1. Summary

As a first system, a single Co atom on Cu(001) was chosen due to its simple
atomistic structure, and for being well characterized in experiments concerning
its Kondo properties. We investigated the potential energy surface along the Co
adsorption coordinate with different electronic structure methods, which mimics
the simplest situation of an adsorbate being mechanically manipulated (e.g. by an
STM tip), and provides an ideal playground for comparing the effect of different
parameters on the adsorption distance and the electronic structure of Co/Cu(001).
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Subsequently, we focused on carbonyl cobalt complexes on Cu(001), because it
was found by Wahl et al. [1] in the STS that the Kondo temperature of these
systems increases with the number of CO ligands attached to Co, which provides
an optimal basis for analyzing chemical control of the Kondo effect. In all cases
we used the AIM (DFT++) to obtain insight into the Kondo properties of the
above-mentioned systems. This includes the introduction of a local decomposition
scheme in line with chemical concepts such as partial charges or spins [273, 274],
which allows studying the isolated effect of different parts of the electronic bath
to the impurity hybridization function. Hereby, it was shown at the example of
Co(CO)4/Cu(001) that using a truncated cluster approach for mimicking a metal
surface yields results which are compatible with those obtained by applying PBC.
This observation could pave the way towards understanding the Kondo effect using
chemical tools, and to learn more about its dependence on external stimuli, as well
as the effect to it by chemical modification.

We found that the adsorption minimum of a cobalt atom on Cu(001) using DFT++
or DFT+U is shifted towards larger adsorption distances as compared to spin-
polarized DFT. The shift is, however, of the same order as changing the exchange–
correlation functional and is barely affected by changing U . This suggests that a
proper choice of this functional can produce accurate results, and adsorption dis-
tances obtained from DFT are not too far away from the more expensive DFT++
approach. To examine how the Kondo temperature TK would be affected by dif-
ferent adsorption distances (e.g. as be caused by mechanical manipulation), we
estimated TK using the solution of the AIM for the simples Kondo model (one
impurity orbital with a constant hybridization) [40]. For this, the impurity levels
and hybridization strengths as obtained from DFT were used as input. It was
found that TK would be more affected in the dxy orbital than in the dz2 orbital
(only these two are relevant for a Kondo effect in Co/Cu(001)) by manipulating
the adsorption distance, because both the impurity level and the hybridization
function of the dxy orbital depend more strongly on changes in the adsorption
distance. However, from the literature it is known that the dz2 orbital exhibits
a larger TK compared to the dxy orbital, which is not the case for our estimated
results. This demonstrates that a simple approximations based on DFT input can
lead to the wrong qualitative picture of multi-orbital Kondo systems, and thus
requires the solution of the AIM for taking into account the complex correlation
effects between the impurity electrons.

To this end, we tried to identify the transition to the Kondo regime focusing on
only one adsorption distance as a starting point for a more quantitative analysis
about the Kondo physics in Co/Cu(001). For such an analysis we performed
DFT++ calculations at electronic temperatures down to T = 10 K, which not
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only requires a sufficiently dens k-grid (here we used 100×100 ×1), but also a
proper description of the Coulomb part within the AIM. It was found that using
only density–density terms of the Coulomb matrix (which was also employed for
the PES scan) the physical properties of Co/Cu(001) at temperatures below T =
116 K are qualitatively in disagreement by comparing it with the results with a full
description of the Coulomb matrix. In fact, the spin–spin correlation function, as
well as the local spin susceptibility suggest that the Co 3dz2 orbital is in a frozen
moment regime when using the density–density approximation, which disagrees
with the experimentally characterized Kondo effect and theoretical investigations
[111,199–201]. Using all matrix elements of the Coulomb tensor our results suggest
that the local moment in 3dz2 orbital is screened by the conduction band electrons
(as indicated by an increasing value of χ(β/2) as T is lowered). For the electronic
temperature applied here, however, the transition to the Fermi-liquid regime could
not be observed, which would require further studies at electronic temperatures
below 46.6 K.

Furthermore, we showed that using a too small k-grid (4×4×1) for low temperature
DFT++ calculations, one would reach the Kondo regime below T = 25 K within
the density–density approximation, which is probably caused by error compensa-
tion. This demonstrates the need for a numerically accurate description of the
substrate, and suggests that there may be a general problem with the density–
density approximation for describing Kondo systems in certain cases.

For answering this question, we changed the substrate of an adsorbed cobalt atom
from Cu(001) to Ag(001), which is experimentally characterized as a Kondo sys-
tem, too. Here we found a similar disagreement between experimental observations
and the results obtained from low temperature (T = 29 K) DFT++ in combination
with the density–density approximation. On the other hand, from the literature it
is known that the density–density approximation has been successfully applied to
a wide range of systems [125,226–228]. In addition, we could show for Co(CO)n (n
= 2,3,4) complexes on Cu(001) that a correct qualitative picture concerning the
Kondo effect can be found (with a sufficiently large k-grid), which is in agreement
with experimental results reported by Wahl et al. [1]. This suggests that using the
density–density approximation might be problematic in the special case of single
atoms on metal surfaces, for which the more expensive Kanamori approximation
or a full description of the Coulomb matrix is required [136]. However, this could
be of the expense of low temperature calculations in cases where all five d orbitals
must be included. In order to draw a clear conclusion, more comparative studies
including different transition metal atoms on metal surfaces would be required.

Knowing that DFT++ within the density–density approximation gives a physical
picture for Co(CO)n/Cu(001) (for n = 2,4) which is compatible with experimental
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results, it was used to study the chemical and mechanical control of the Kondo
effect in these systems. First of all, suitable structures have to be found using DFT,
for which one is faced with a problem which is likely related to the well known
“CO-puzzle”. For example, for n = 3, no agreement between the theoretically
observed symmetry and the one in the STM could be found, and for n = 4, DFT
predicts a C2v symmetric structure to be lowest in energy, although in the STM a
C4v symmetric one was observed. Nevertheless, we were able to obtain structures
for the complexes with two and four ligands which are compatible with the ones
reported in Reference [1], whereby the C4v (for n = 4) symmetry is at least 31
kJ/mol higher in energy than the C2v symmetry.

Studying the control of the Kondo effect, it was found that in line with experimen-
tal observations [1], the Kondo regime manifests itself at larger temperatures for
the case of n = 4 compared to n = 2. The reason for this is an increased hybridiza-
tion at the Fermi energy of the Kondo-relevant orbital if the number of ligands
is increased. Using our chemical tool for analyzing the hybridization function of
Co(CO)4/Cu(001), it was found that the ligands contribute only indirectly to the
hybridization at the Fermi energy, which suggest that the strong CO–surface inter-
action is probably responsible for the increased Kondo temperature. To support
this assumption, more work would be necessary using our conceptional scheme,
e.g, applying it to Co(CO)2/Cu(001). This would give interesting insight into
the control of the Kondo effect, by manipulating the ligand–surface interaction of
a molecular complex on a surface, as for instance also shown for manganese ph-
thalocyanine (MnPc) on Ag(001) [125] (although there the stronger ligand–surface
interaction leads to a reduction of TK), and CoPc/Au(111) [32].

Further studies showed that for n = 2, there is a delicate dependence of the Kondo
properties on the DC value, which was not the case for n = 4. This value con-
trols the occupation on the Co 3d shell, and a similar effect might be caused in
experiments by mechanical stress. To this end, we evaluated the effect of different
CO-Co-CO bonding angles and adsorption distances on the Kondo properties in
Co(CO)2/Cu(001). For structures reasonable within DFT, our results suggest that
there is indeed a sensitive dependence of the Kondo temperature on the adsorption
distance in Co(CO)2/Cu(001), which might also be realizable in experiments by
external stimuli. This observation is similar to Co/Cu(001), as in both cases the
Kondo effect would be shifted to smaller temperatures if the adsorption distance
is increased. However, for Co(CO)2/Cu(001), more studies would be needed to
estimate a quantitative value of the TK from DFT++, e.g. by identifying the
transition temperature to the Fermi-liquid regime.
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10.2. Outlook

Future work may build on the insights obtained in this thesis towards a deeper
understanding of how magnetic molecules couple with surfaces, and to find new
practical applications by designing Kondo systems that can be modulated by ex-
ternal stimuli:

• The projection scheme implementation (described in Section 4.1) is a useful
tool for a chemical analysis of adsorbate–surface systems. It would require
to be extended by a projection onto molecular orbitals similar to what is
reported in References [121] and [275], which would yield MO hybridization
functions with potentially more information about adsorbate–surface sys-
tems. This would yield an AIM which includes also ligand orbitals, or frag-
ments of organic molecules on which the electron correlation effects would
explicitly be accounted for, and is not only restricted to sub-shells of single
atoms. Furthermore, the effect of the cluster size used for such a projection
should be investigated in more detail with respect to a convergence of the
results, as a step towards answering the question of “how local” the Kondo
effect is in different systems.

• It was shown that the Kondo temperature of the carbonyl cobalt complexes
on Cu(001) increases due to a stronger hybridization of the Kondo-relevant
orbital with the number of CO ligands attached to cobalt. The increased
hybridization at the Fermi energy was identified as being indirectly induced
through ligand–surface interactions. To clarify this is in more detail, other
ligands with a less pronounced interaction to the surface should be investi-
gated to form cobalt complexes on Cu(001). This would be a big step towards
understanding the control of the Kondo effect via ligand substitution.

• For Co(CO)3/Cu(001), we did not observe a Kondo resonance in our DFT++
calculations even tough being observed in the experiment [1], and further
work is required to address this problem. One strategy would be based on
using all Coulomb matrix elements for solving the AIM, to see whether the
Kondo effect is similarly suppressed by the density–density approximation as
in the cases of Co on Cu(001) and Ag(001). The absence of a Kondo effect
at electronic temperatures below the experimentally one would then further
strengthen the assumption that the atomistic structure of Co(CO)3/Cu(001)
is not reasonable, and new structural optimization protocols should be tested.

• In the literature, the density–density approximation has proven to be a good
compromise between computational effort and accuracy, as well as being
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widely applied due to its minor sign error in CT-QMC at low electronic tem-
peratures [157, 212, 226, 276]. However, for an isolated Co atom on Cu(001)
and Ag(001), we could show that no Kondo effect can be observed within
DFT++ when using the density–density approximation, even though it was
found in Ref. [225] using HF-QMC. The authors reported that in the se-
ries of the 3d metals on Ag(001) the charge fluctuations of Co/Ag(001) are
reduced compared to Fe and Ni (note that the authors used the density–
density approximation to solve the AIM). It would be worthwhile to study
whether this observation still holds by using the full Coulomb interaction
to solve the AIM within the numerically exact CT-QMC method, similarly
to what we have found for Co/Cu(001). Such information is important for
future application of the AIM to magnetic adsorbates, concerning a proper
description of the underlying physical picture which leads to a Kondo effect.
In this context, future work may build on these observations to find clear
rules for cases in which the density–density approximation is reasonable.

Altogether, from both the experimental and theoretical side, more test systems
are required to learn more about the chemical and mechanical manipulation of the
Kondo effect. Future experimental works may build on the investigation of molec-
ular complexes with more structural flexibility as compared to the widely studied
phthalocyanine and porphyrine systems. This would also include the ability to
tune the Kondo properties via exchanging the ligands attached to a transition
metal atom. Based on these studies, the door would be open for future theoretical
investigations concerning the control of the Kondo effect, as well as for developing
new methodologies for its analysis.
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A.1. The H2 bond breaking scenario

Hartee–Fock theory (in it’s restricted form, referred to as RHF) is known to incor-
rectly describe the energy of H2 in the bond breaking scenario, as shown in Figure
A.1. Here, we do not want to discuss all the methods shown in this Figure in all
details, because we are rather interested in a brief introduction about the reasons
of the RHF theory for failing in the bond breaking scenario of H2.

The results obtained from the full confoguration interaction (FCI) method are the
exact solution to the electronic Schrödinger equation (within the basis set applied).
Around the equilibrium distance of 0.71 Å, restricted Hartree–Fock (RHF) and
unrestricted Hartree–Fock (UHF) exhibit the same qualitative picture compared
to FCI. At larger bond distances, RHF begins to deviate from the FCI behavior,
whereas the UHF results are still in good agreement with the exact solution. Note
that Figure A.1 shows relative energies, i.e. for all three methods the energy at
the equilibrium distance was set to zero. This is why the UHF energy suggests to
be smaller than the FCI energy at larger distances, but this is indeed not the case
if one would consider the absolute values.

In the following, it shall briefly be discussed where the deviating behavior at larger
distances of the RHF method originates from. In a minimal basis, one has a basis
function φ (representing the 1s orbital) on each of the hydrogen atoms, which from
a bonding ψ+ and anti-bonding ψ− molecular orbital,

ψ+ = φA + φB = A +B, (A.1)

ψ− = φA − φB = A −B. (A.2)

In the HF wavefunction, the bonding orbital will be occupied by two electrons, for
which the Slater determinant takes the form [47]
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ΦHF = ∣
ψ+(1) ψ+(2)
ψ̄+(1) ψ̄+(2)

∣ , (A.3)

where we have neglected the normalization factor, and the bar above the MO are
for a spin-down (β) electron, whereas no bar represents a spin-up (α) electron.

Rewriting Equation A.3 yields,

ΦHF = ψ+ψ+αβ − ψ+ψ+βα = ψ+ψ+(αβ − βα), (A.4)

for which the electrons are implicitly in the same order as the labels (i.e. ψ+ψ+αβ =

ψ+(1)ψ+(2)α(1)β(2), and so on).

Because Ĥ is independent on the spin of the electrons, one can express ΦHF in
terms of the basis functions as [47],

ΦHF = (A +B)(A +B) = AA +BB
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ionic

+AB +BA
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
covalent

. (A.5)

From Equation (A.5) one can see that the HF wave function is a 1 to 1 mixture of
ionic and covalent contributions. In a RHF calculation this is independent of the
H2 bond distance, which is clearly unphysical if both hydrogen atoms a far away
from each other, where the amount of ionic configurations should be zero [47].

By using UHF, one introduces α and β molecular orbitals, which in the case of H2

takes the form (for the bonding MO)

ψ+ = (φA + cφB)α, (A.6)

ψ̄+ = (cφA + φB)β. (A.7)

Here, c is a coefficient which can be varied to yield the energy minimum. More
importantly, the coefficient c gives the UHF the flexibility to localize an elec-
tron on one of the hydrogen atoms (then c goes towards zero), which qualitatively
reproduces the FCI behavior at larger bond distances (for further details see Refer-
ence [47]). At equilibrium distance c = 1, which corresponds to the RHF solution.

The decreasing amount of ionic configurations in the wave function, is related to
what physicist call “decreasing charge fluctuations on an atomic site” [68], and
corresponds to materials that are strongly correlated in the physical sense.
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Figure A.1.: H2 dissociation energies as obtained in a minimal basis (STO-3G)
from RHF, UHF, and FCI. For this calculations the Gaussian pro-
gram package was used [277].

A.2. Cobalt on Cu(001)

A.2.1. Potential energy surface

Fig. A.2 shows the PES as calculated with LDA++ and PBE++ with U = 3.8 eV,
4.0 eV and 4.2 eV. For PBE++ there is no shift of the adsorption distance of Co
on Cu(100), whereas for LDA++ the minimum shifts from 1.52 Å to 1.54 Å by
increasing U from 4.0 eV to 4.2 eV. The adsorption distance of LDA++ does not
further increase upon increasing U from 4.2 eV to 5.0 eV (see Fig. A.3, but note
that the abscissa is reduced compared to Fig. A.2).
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Figure A.2.: Relative energies as obtained from DFT++ for different adsorption
distances of Co on Cu(100). The DFT++ calculations were performed
at β = 100 eV−1. The DFT++ results for U = 3.8 eV, 4.0 eV and 4.2
eV are nearly on top of each other. The exchange parameter for all
values of U is J = 0.9 eV.
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Figure A.3.: Relative energies as obtained from LDA++ for different adsorption
distances of Co on Cu(100). The LDA++ calculations were performed
at β = 100 eV−1 for U = 3.0 eV and 5.0 eV, both with J = 0.9 eV.
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A.2.2. Hybridization functions

In Fig. A.4, the hybridization function of Co on Cu(100) as obtained from PBE is
shown for selected values of dCo−surface. By comparison with Fig. 5.6 of Section 5.4,
one can notice that both functionals (LDA and PBE) yield a similar hybridization
function at all adsorption distances shown here.
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Figure A.4.: Imaginary part of the hybridization function for the Co 3dxy and the
Co 3dz2 orbital as obtained from PBE, for selected values of dCo−surface.
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Figure A.5.: Real part of the hybridization function of all Co 3d orbitals at
dCo−surface = 1.70 Å and 1.30 Å. Results are obtained from LDA.

Fig. A.5 shows the real part of the hybridization function of Co on Cu(100) at
1.30 Å and 1.70 Å as obtained from LDA. The real part of the hybridization
function can be seen as the energy/frequency dependent shift of the impurity
level. By comparing Re∆(ω) for both distances, one can see that the shift of the
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impurity levels as a function of the energy is larger if Co is closer to the Cu(100)
surface.

A.2.3. Self-energies

In Fig. A.6 we provide ImΣ as obtained from DFT++ (U = 4.0 eV and J = 0.9 eV
at β = 100−1 eV) at selected values for the adsorption distances for the Co 3dxz/yz
and the 3dx2−y2 orbital. Note that in contrast to Fig. 5.7 of Section 5.4 the abscissa
in Fig.A.6 is reduced.
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Figure A.6.: Self energies obtained from DFT++ at β = 100 eV−1 with U = 4.0 eV
and J = 0.9 eV. a) ImΣ for the Co 3dx2−y2 orbital as obtained from
LDA++ and PBE++. b) ImΣ for the Co 3dxz/yz orbital as obtained
from LDA++ and PBE++.
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A.2.4. PBE results
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Figure A.7.: Static crystal-field splitting (i.e. 3d-orbital energies of Co) of the Co
3d shell as obtained from PBE (spin-unpolarized), as a function of
the adsorption distance. The Fermi level is set to 0.0 eV.

Table A.1.: Estimated Kondo temperature as obtained from a one-band model
with a constant hybridization. Im∆(0) is the value of the imaginary
part of the hybridization function at ω = 0 eV (Fermi level). εxy/z2 are
the energies of the Co dxy/z2 orbitals related to the Fermi level. Values
taken here are obtained from PBE, and for U we have chosen 4.0 eV.
For the estimation of the Kondo temperature TK see Equation (3.2).
Experimental value for TK = 88 ±4 K [200–202].

dCo−surf. -Im∆xy(0) -Im∆z2(0) εxy εz2 TK,xy TK,z2

1.30 Å 0.255 0.200 -0.335 -0.310 133.4 58.55
1.40 Å 0.210 0.180 -0.253 -0.266 153.4 63.95
1.50 Å 0.171 0.159 -0.183 -0.226 195.0 69.52
1.60 Å 0.139 0.140 -0.125 -0.187 276.2 79.54
1.70 Å 0.112 0.122 -0.080 -0.152 428.0 94.00

In Fig. A.7 the Co 3d crystal-field splitting as a function of the adsorption dis-
tance is shown, as obtained from PBE. Comparison with Fig. 5.5 of Section 5.4
shows that both functionals predict a similar crystal-field splitting at all adsorption
distances under study here.

In Tab. A.1 we provide the estimated Kondo temperatures as obtained from Equa-
tion (3.2). For εxy/z2 and Im∆xy,z2 we used the values as obtained from spin-
unpolarized PBE.
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A.2.5. Configuration- and spin state probabilities
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Figure A.8.: a) Most probable spin staes (S) and b) atomic configuration as ob-
tained from LDA++ for Co/Cu(001) for selected values of dCo−surface.
The LDA++ (FLL) calculations were performed at β = 100 eV −1, U
= 4.0 eV and J = 0.9 eV.

From Fig. A.8 one can see that at all adsorption distances under study here the
Co atom is predominantly in a d8, S=1 configuration. The character of these
configuration slightly increases for larger adsorption distances.
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A.2.6. Specification of the unit cell

Table A.2.: xyz-coordinates of all atoms contained in the unit cell with dCo−surface

= 1.30 Å. Values are given in Å.
Atom x-coord. y-coord. z-coord. Atom x-coord. y-coord. z-coord.
Cu 1.807445 9.037225 -7.229780 Cu 3.614890 5.422335 -1.807445
Cu 0.000000 7.229780 -7.229780 Cu 5.422335 5.422335 0.000000
Cu 0.000000 9.037225 -5.422335 Cu 3.614890 3.614890 0.000000
Cu 1.807445 9.037225 -3.614890 Cu 5.422335 3.614890 -1.807445
Cu 0.000000 7.229780 -3.614890 Cu 9.037225 5.422335 -7.229780
Cu 1.807445 7.229780 -5.422335 Cu 7.229780 3.614890 -7.229780
Cu 0.000000 9.037225 -1.807445 Cu 7.229780 5.422335 -5.422335
Cu 1.807445 9.037225 0.000000 Cu 9.037225 5.422335 -3.614890
Cu 0.000000 7.229780 0.000000 Cu 7.229780 3.614890 -3.614890
Cu 1.807445 7.229780 -1.807445 Cu 9.037225 3.614890 -5.422335
Cu 5.422335 9.037225 -7.229780 Cu 7.229780 5.422335 -1.807445
Cu 3.614890 7.229780 -7.229780 Cu 9.037225 5.422335 0.000000
Cu 3.614890 9.037225 -5.422335 Cu 7.229780 3.614890 0.000000
Cu 5.422335 9.037225 -3.614890 Cu 9.037225 3.614890 -1.807445
Cu 3.614890 7.229780 -3.614890 Cu 1.807445 1.807445 -7.229780
Cu 5.422335 7.229780 -5.422335 Cu 0.000000 0.000000 -7.229780
Cu 3.614890 9.037225 -1.807445 Cu 0.000000 1.807445 -5.422335
Cu 5.422335 9.037225 0.000000 Cu 1.807445 1.807445 -3.614890
Cu 3.614890 7.229780 0.000000 Cu 0.000000 0.000000 -3.614890
Cu 5.422335 7.229780 -1.807445 Cu 1.807445 -0.000000 -5.422335
Cu 9.037225 9.037225 -7.229780 Cu 0.000000 1.807445 -1.807445
Cu 7.229780 7.229780 -7.229780 Cu 1.807445 1.807445 0.000000
Cu 7.229780 9.037225 -5.422335 Cu 0.000000 0.000000 0.000000
Cu 9.037225 9.037225 -3.614890 Cu 1.807445 -0.000000 -1.807445
Cu 7.229780 7.229780 -3.614890 Cu 5.422335 1.807445 -7.229780
Cu 9.037225 7.229780 -5.422335 Cu 3.614890 -0.000000 -7.229780
Cu 7.229780 9.037225 -1.807445 Cu 3.614890 1.807445 -5.422335
Cu 9.037225 9.037225 0.000000 Cu 5.422335 1.807445 -3.614890
Cu 7.229780 7.229780 0.000000 Cu 3.614890 -0.000000 -3.614890
Cu 9.037225 7.229780 -1.807445 Cu 5.422335 -0.000000 -5.422335
Cu 1.807445 5.422335 -7.229780 Cu 3.614890 1.807445 -1.807445
Cu 0.000000 3.614890 -7.229780 Cu 5.422335 1.807445 0.000000
Cu 0.000000 5.422335 -5.422335 Cu 3.614890 -0.000000 0.000000
Cu 1.807445 5.422335 -3.614890 Cu 5.422335 -0.000000 -1.807445
Cu 0.000000 3.614890 -3.614890 Cu 9.037225 1.807445 -7.229780
Cu 1.807445 3.614890 -5.422335 Cu 7.229780 -0.000000 -7.229780
Cu 0.000000 5.422335 -1.807445 Cu 7.229780 1.807445 -5.422335
Cu 1.807445 5.422335 0.000000 Cu 9.037225 1.807445 -3.614890
Cu 0.000000 3.614890 0.000000 Cu 7.229780 -0.000000 -3.614890
Cu 1.807445 3.614890 -1.807445 Cu 9.037225 -0.000000 -5.422335
Cu 5.422335 5.422335 -7.229780 Cu 7.229780 1.807445 -1.807445
Cu 3.614890 3.614890 -7.229780 Cu 9.037225 1.807445 0.000000
Cu 3.614890 5.422335 -5.422335 Cu 7.229780 -0.000000 0.000000
Cu 5.422335 5.422335 -3.614890 Cu 9.037225 -0.000000 -1.807445
Cu 3.614890 3.614890 -3.614890 Co 5.422335 3.614890 1.30
Cu 5.422335 3.614890 -5.422335
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In Tab. A.2 we provide the coordinates of all atoms in the unit cell used in
our calculations. Note that the Cu atoms were kept frozen, and only the Co
z-coordinate was varied between 1.30 Å and 1.70 Å.

A.3. Co(CO)n/Cu(001)

A.3.1. Information about the Co(CO)n/Cu(001) atomistic
structures

In Table A.3 we provide a collection of structural parameters of CO(CO)2/Cu(001)
after optimizing the atomistic structure with different DFT protocols. In all cases
the adsorbate shows C2v symmetry, and we observed no magnetization on the
adsorbate, except for BLYP-D3+U whith a magnetization of 1.0 µB. Spin po-
larized DFT here leads to an increased adsorption distance (2.66 Å), which is
roughly 0.2 Å to 0.3 Å larger than for the remaining (spin-unpolarized) optimized
Co(CO)2/Cu(001) structures.

Table A.3.: Structural parameters for Co(CO)2/Cu(001) as obtained from different
electronic structure methods and optimization schemes. For BLYP-
D3+U we used U = 4.0 eV and J = 0.9 eV. In all cases Grimme’s
dispersion correction was used (DFT-D3).

PBEfix PBE BLYPfix BLYP BLYP+U

dC−Co 1.74 1.74 1.76 1.79 1.80
dC−surf. 2.37 2.48 2.44 2.43 2.66
dCo−surf. 1.33 1.54 1.39 1.60 1.74
φC−Co−C 106.5 110.7 107.7 111.9 119.4

In Table A.4 we provide a collection of structural parameters of CO(CO)3/Cu(001)
after optimizing the atomistic structure with different DFT protocols. Each of the
optimizations leads to a magnetization of 0.0 µB (e.g. closed-shell character of the
adsorbate).
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Table A.4.: Structural parameters for Co(CO)3/Cu(001) as obtained from different
electronic structure methods and optimization schemes. For BLYP-
D3+U we used U = 4.0 eV and J = 0.9 eV. In all cases Grimme’s
dispersion correction was used (DFT-D3).

PBEfix BLYP BLYP+U

dCt−Co 1.77 1.79 1.78
dCb−Co 1.76 1.78 1.76
dCt−surf. 2.27 2.43 2.43
dCb−surf. 2.30 2.45 2.48
dCo−surf. 1.58 1.75 1.76

In Tables A.5 and A.6 we provide a collection of structural parameters after opti-
mizing the atomistic structure with different DFT protocols for Co(CO)4/Cu(001)
in C4v and C2v symmetry. For the truncated cluster optimization (PBE (clus-
ter)) we used PBE-D3/def2-TZVP [183–185,238,239] as implemented in Turbo-
mole [181]. The resulting structure of Co(Co)4 within this optimization protocol,
shows a C2v symmetry on Cu(001), as shown in Fig. A.9 (a C4v symmetry could
not be obtained).

Table A.5.: Structural parameters for Co(CO)4/Cu(001) in C4v symmetry as ob-
tained from different electronic structure methods and optimization
schemes. For BLYP-D3+U we used U = 4.0 eV and J = 0.9 eV. Com-
pared to the C2v symmetry, the C4v symmetry is 0.44 eV (PBEfix-D3),
0.31 eV (BLYP-D3), and 0.31 eV (BLYP-D3+U) higher in energy. In
all cases Grimme’s dispersion correction was used (DFT-D3).

PBEfix BLYP BLYP+U

dC−Co 1.84 1.85 1.84
dC−surf. 2.15 2.29 2.25
dCo−surf. 1.69 1.89 1.85
φC−Co−C 150.8 154.7 154.6

The atomistic structure of Co(CO)4/Cu(001) in C2v symmetry as obtained from
the cluster optimization is in good agreement with the PBEfix results. Furthermore,
within a cluster approach (PBE) one finds no spin density on the adsorbate, which
agrees with what we have reported in the main article.
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Table A.6.: Structural parameters for Co(CO)4/Cu(001) in C2v symmetry as ob-
tained from different electronic structure methods and optimization
schemes. The index “fix” means that the cell shape was kept fixed.
For BLYP-D3+U we used U = 4.0 eV and J = 0.9 eV. PBE (cluster)
was calculated with Turbomole. In all cases Grimme’s dispersion
correction was used (DFT-D3). Distances in Å and angles in ○.

PBE (cluster) PBEfix BLYP BLYP+U

dC1−Co 1.91 1.90 1.91 1.88
dC2−Co 1.80 1.78 1.80 1.78
dC1−surf. 2.00 1.98 2.44 2.16
dC2−surf. 2.74 2.82 2.98 3.22
dCo−surf. 1.96 1.90 2.07 2.26
φC1−Co−C1 173 174.8 197.2 173.8
φC2−Co−C2 122 118.3 119.1 115.3

A.3.2. Non-local correlation functional for structural
optimization of Co(CO)4/Cu(001)

Table A.7.: Structural parameters for Co(CO)4/Cu(001) in C2v and C4v symmetry
as obtained from the vdW-DF functional proposed by Dion et al. [234],
and the vdW-DF2 functional of Langreth and Lundqvist et al. [240]
(parentheses). Distances in Å and angles in ○.

C2v C4v

dC1−Co 1.91 (1.91) 1.85 (1.86)
dC2−Co 1.81 (1.83) 1.85 (1.86)
dC1−surf. 2.17 (2.23) 2.36 (2.55)
dC2−surf. 3.12 (3.24) 2.36 (2.55)
dCo−surf. 2.17 (2.29) 1.93 (2.16)
φC1−Co−C1 179 (177) 153 (1.56)
φC2−Co−C2 116 (117) 153 (1.56)

Recently several exchange–correlation functionals have been proposed to treat van
der Waals interaction by adding an approximated term for long-range correlation
effects [234,240,278–280]. Here, we used the vdW-DF functional developed by Dion
et al. [234], as well as vdw-DF2 [240] for structural relaxation of Co(CO)4/Cu(001)
with a fixed Cu lattice constant of of 3.615 Å [206]. We found that a C2v symmetry
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Figure A.9.: Optimized Co(CO)4/Cu(001) as obtained from a truncated cluster
approach. The optimization was done with PBE-D3/def2-TZVP.

is favored by about 70 kJ/mol (vdW-DF) and 73 kJ/mol (vdW-DF2) over a C4v

of Co(CO)4/Cu(001). Furthermore, the electronic structure of Co(CO)4/Cu(001)
converges for both symmetries to a closed-shell solution, with both vdW-DF and
vdW-DF2 functionals (i.e. there is no spin-polarization on the adsorbate).

To summarize, both the atomistic and electronic structure as obtained from DFT
(vdW-DF and vdW-DF2) are in agreement with the data reported in the main
article, suggesting that there is no further improvement compared to the reported
optimization protocols, with respect to the experimentally observed C4v symmetry
and spin state.

A.3.3. Ligand flipping in Co(CO)4/Cu(001) (C2v)

A hypothetical mechanism for Co(CO)4/Cu(001) (C2v) to mimic the four-fold sym-
metry in the experimentally observed STM [1], is a flipping of the CO ligands as
depicted in Figure A.10. The energy barrier1 is, however, too large for being
reasonable at the low temperatures applied int the STM experiment.

1The calculations are based on the BLYP+U optimized structure as explained in Section 8.3.
The single point calculations were done with BLYP+U .
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Figure A.10.: Potential energy surface for CO flipping in Co(CO)4/Cu(001) (C2v).

A.3.4. Spectral properties of Co(CO)3/Cu(001) and
Co(CO)4/Cu(001) in C2v symmetry

For Co(CO)3/Cu(001), none of the Co 3d orbitals exhibit a sharp feature at the
Fermi energy in the spectral function (Figure A.11 a)). For Co(CO)4/Cu(001) in
C2v symmetry (Figure A.11 b)), there is a small feature for the Co 3dxz orbital at
the Fermi energy, but this is already present in the case of U = 0.0 eV (see Figure
A.11 b)). For this reason, this feature is not due to a Kondo effect, as discussed
in Section A.3.5 in more detail.
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Figure A.11.: Spectral functions as obtained from PBE++ for a) Co(CO)3, b)
Co(CO)4 in C2v symmetry on Cu(100) at β = 100 eV−1 (T = 116 K).
Here the fully localized limit was used with U = 4.0 eV and J =
0.9 eV. In case of Co(CO)4 in C2v symmetry the spectral function
obtained with U = 0.0 eV is shown, too.

A.3.5. High temperature spin–spin correlation of
Co(CO)3/Cu(001) and Co(CO)4/Cu(001) in C2v

symmetry

For Co(CO)3/Cu(001), χ(τ) rapidly drops to zero for all Co 3d orbitals (Figure
A.12), proving the lack of a localized magnetic moment which could potentially
be screened due to a Kondo effect. This suggests a rather closed-shell character
on this adsorbate, which could be caused by a too strong interaction with the CO
ligands. A related effect can be observed by stretching the bond of a H2 molecule,
that shows a transition from a closed to an open-shell singlet character at a larger
bond distance (i.e., this reduces the interaction of both 1s orbitals which each
other).
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Figure A.12.: Spin–spin correlation function χ(τ) as obtained from PBE++ at β
= 10 eV−1 (T = 1160 K) of Co(CO)3/Cu(001) (based on the BLYP-
D3+U optimized structure). The PBE++ calculation was done with
U = 4.0 eV, J = 0.9 eV, and using the fully localized limit for
estimation the double-counting correction.
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Figure A.13.: Spin–spin correlation function χ(τ) as obtained from PBE++ at β =
10 eV−1 (T = 1160 K) of Co(CO)4/Cu(001) in C2v symmetry (based
on the BLYP-D3+U optimized structure). The PBE++ calculation
was done with U = 4.0 eV, J = 0.9 eV, and using the fully localized
limit for estimation the double-counting correction.
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he spin–spin correlation function at T = 1160 K is shown in Figure A.13 for
Co(CO)4/Cu(001) in C2v symmetry, and reveals that there is no stable local mo-
ment at high temperatures (χ(β/2) is zero for all Co 3d orbitals), which makes
an interpretation in terms of a low temperature screening due to a Kondo effect
impossible.

A.3.6. Dependence of the spin–spin correlation function on
U and J
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Figure A.14.: Spin–spin correlation function of the Co 3d orbitals at T = 580 K,
as obtained from PBE++ for a dicarbonyl complex on Cu(001) with
different combinations of U and J .

Properties obtained from a DFT++ approach can depend delicately on the chosen
values for the average Coulomb interaction U and the average exchange interaction
J . For the reason that there are no first-principles values available for the carbonyl
cobalt complexes on Cu(001), we have tested different combinations of U and J
against changes in the spin–spin correlation function.
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Figure A.15.: Spin–spin correlation function of the Co 3d orbitals at T = 580 K,
as obtained from PBE++ for a tetracarbonyl complex on Cu(001)
in C4v symmetry with different combinations of U and J .

For T = 580 K, we provide the spin–spin correlation function of a dicarbonyl cobalt
complex on Cu(001) in Figure A.14. For all Co 3d orbitals, χ(τ) is unaffected by
changing U and J , except the Kondo relevant orbital (3d0.8z2+0.6(x2−y2)). For this
orbital the value of χ(β/2) is slightly increased for larger values of U and J ,
which would potentially shift the transition to the Fermi liquid regime to lower
temperatures. In case of a tetracarbonyl cobalt complex on Cu(001), the spin–spin
correlation function is almost unaffected for all Co 3d orbitals (Figure A.15) upon
changing U , or J within the values under consideration here.

Altogether, these data suggest that varying U and J within reasonable limits does
not change the qualitative behavior reported in this work.
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A.3.7. Molecular orbital diagram of CO
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Figure A.16.: Schematic representation of a molecular orbital diagram of a CO
molecule.
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