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Abstract

Inspired by the behaviour of humans talking in noisy environments, we pro-
pose an embodied embedded cognition approach to improve automatic speech
recognition (ASR) for robots under challenging conditions, such as high levels
of ego-noise, using binaural sound source localisation (SSL). We find that the
humanoid embodiment allows the generation of additional spatial cues that cover
the entire audible range, without additional computational costs. Furthermore,
by simplifying existing biomimetic models for the extraction of spatial cues in
sound, we are able to understand the principles that are important to perform
robustly in noisy environments. We test our approach by measuring the impact
of SSL with a humanoid robot head on the performance of an ASR system. More
specifically, the robot orients towards the angle where the signal-to-noise ratio
(SNR) of speech is maximised for one microphone and uses this signal as input
to the ASR system. In our first experiment, we make use of one humanoid plat-
form (Nao) to produce the spatial cues necessary for SSL. The embodiment of
the robot produces cues that are robust to interfering noise as they span a broad
range of sound frequencies. Then, we use spiking neural networks (SNN) to ex-
tract such spatial cues from the sound. The SNN are biomimetic models of regions
in the mammalian midbrain that are relevant for SSL. Next, a Bayesian model
integrates the spatial cues encoded by the biomimetic models and a feedforward
neural network is used to handle high levels of ego-noise and reverberation in
the signal. Once the robot determines the direction of the incoming sound, it
turns in the direction of the sound source, and the sound signal is fed into an
ASR system. For ASR, we use DOCKS, a system developed by the Knowledge
Technology Group of the University of Hamburg, and compare its performance
with and without support from the SSL system. In order to measure the quality

of the spatial cues created by different robot embodiments, we test our SSL and
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ASR systems on two humanoid platforms with different structural and material
properties (iCub and Soundman). With our approach, we halve the sentence
error rate in comparison to the standard approach of downmixing the input of
both channels. We find that ASR performs more than two times better when the
angle between the humanoid head and the sound source allows sound waves to
be reflected most intensely from the pinna to the ear microphone, rather than
when sound waves arrive perpendicularly to the membrane. In conclusion, our
work allows understanding in greater detail the advantages of using a humanoid
embodiment to produce spatial cues and of using biomimetic models to represent
such cues. Equally important, we also understand better the importance of robots
that use behaviour as a programmatic approach that converges in a sequence of

steps to the optimal configuration for performing ASR in noisy conditions.

Keywords: Automatic speech recognition, behavioural robotics, binaural

sound source localisation, bioinspired neural architectures.

Zusammenfassung

Menschen sind besonders gut darin, sich in gerduschvollen Umgebungen zu
unterhalten. Davon inspiriert, schlagen wir einen kognitiven, in korperliche Wahr-
nehmung eingebetteten Ansatz zur Verbesserung von automatischen Spracherken-
nungssystemen (ASR) vor. Dieser Ansatz ermoglicht die ASR auf Robotern unter
besonders schwierigen Bedingungen, beispielsweise unter Egogerduschen, unter
Zuhilfenahme von binauraler Gerduschquellenlokalisierung (SSL). Wir tiberpriifen
unseren Ansatz, indem wir die Auswirkung von SSL in der Performanz eines ASR-
Systems mit einem humanoiden Roboterkopf bemessen. Insbesondere wird dem
Roboter ermoglicht, sich in die Richtung des Winkels zu orientieren, in welchem
das Signal-Rausch-Verhéltnis (SNR) von natiirlicher Sprache fiir ein Mikrophone
am Besten ist und dann dieses Signal als Eingabe fiir das ASR-System zu be-

nutzen. Zuerst machen wir uns dabei eine humanoide Plattform zu Nutze um



rdumliche Hinweise zu erzeugen, die notwendig fiir die SSL sind. Als néchstes be-
nutzen wir gepulste neuronale Netzwerke (SNN), um diese rdumlichen Hinweise
aus dem Sound zu extrahieren. Die SSN sind bio-mimetische Modelle fiir Re-
gionen im Mittelhirn von Sdugetieren, welche als besonders relevant fiir die SSL
angesehen werden. Schlieflich integrieren wir mit einem Bayesischen Modell die
rdumlichen Hinweise, welche von den bio-mimetischen Modellen enkodiert wer-
den, und benutzen ein neuronales Feedforward-Netzwerk um den hohen Grad an
Egogerduschen und Widerhall des Sounds zu bewiéltigen. Nachdem der Roboter
die Richtung des eingehenden Sounds bestimmt hat, dreht sich dieser in die Rich-
tung der Soundquelle und speist das Sound-Signal in das ASR-System ein. Fiir
die ASR benutzen wir ein System, welches eigens in unsere Gruppe entwickelt
wurde und vergleichen damit die Performanz, sowohl mit als auch ohne die Un-
terstiitzung unseres SSL Ansatzes. Um die Qualitdt von rdumlichen Hinweisen
zu bemessen, die sich aus eingebetteten Kérperwahrnehmungen unterschiedlicher
Roboter ergeben, untersuchen wir unseren SSL- und ASR-Systeme auf zwei hu-
manoiden Roboterplattformen mit unterschiedlichen Struktur- und Materialein-
genschaften. Mit unserem Ansatz sind wir in der Lage, die Fehlerrate auf Sétzen
zu halbieren, verglichen mit dem Standardansatz, bei dem die Eingabe aus zwei
Kanélen heruntergemischt wird. Wir finden, dass das ASR-System mehr als
zweifach besser funktioniert, wenn der Winkel zwischen dem humanoiden Kopf
und der Soundquelle es ermdglicht, dass die Soundwellen am intensivsten von
der Ohrmuschel zum Mikrophon des Ohres reflektiert werden, anstatt wenn die
Soundwellen senkrecht auf die Membran auftreffen. Zusammengefasst, ermoglicht
unsere Arbeit sowohl ein tieferes Versténdnis iiber die Moglichkeiten, wie wir
humanoide eingebettete Korperwahrnehmung nutzen kénnen, um raumliche Hin-
weise zu erzeugen, als auch, wie wir bio-mimetische Modelle zur deren Représen-
tation einsetzen konnen. Gleichermafsen wichtig ist auch unser verbessertes Ver-
stdndnis iiber die Wichtigkeit fiir Roboter, ein Verhalten als programmatische
Anndherung zu nutzen, welches in einer Abfolge von Schritten zur optimalen

Konfiguration konvergiert, um ASR unter gerduschvollen Bedingungen zu leisten.

Keywords: Automatische Spracherkennung, Verhaltensrobotik, binaurale

Schallquellenlokalisierung, bioinspirierte neurale Strukturen.
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GLOSSARY

Glossary

Capital letters indicate sets.

Set membership.

Cardinality of a set.

Boldface capital letters indicate 2D arrays.
Element-wise array multiplication.
Universal quantification.

Logical conjunction.

Logical disjunction.

Logical negation.

Closed interval.

Same order of magnitude.

Of greater order than.
Conditional event.

Computational complexity.



Chapter 1

Introduction

Sound conveys information that is crucial for our interaction with the environ-
ment. This information is particularly useful when the environment obstructs
visual information, e.g., when the light is scarce or in environments cluttered
by the presence of dense vegetation, fog, etc. Sound not only conveys informa-
tion about the occurrence of a given event in time and space (Griffiths & Warren,
2004) but also about its context (Hengel & Andringay, |2007)), the relation between
different events and the physical properties of materials (Sinapov et al., 2011)).
Therefore, audition allows us to create a more accurate and dynamic representa-
tion of the world, which is essential for the emergence of intelligence (McCarthy,
1960; Minskyl, [1961; Newell et al., |1972; McCarthy & Hayes, |1981}; [Samsonovich,
2012). Audition is a broad field of study, and in the present work we focus on the
extraction of spatial information contained in sound. This subfield of auditory
perception is known as sound source localisation (SSL). SSL is an essential ability
for animals to survive, as the continuous spatial localisation of a sound source
can inform the listener about the dynamics of the world, e.g., the direction and
speed of multiple sound sources. SSL can be useful in a wide range of behaviours
in nature, including competition strategies like the detection of predators and the
accurate targeting of prey (Kim, 2006]). Localising sounds in space can also be
crucial for mating, communication and in general for survival.

More specifically, we are interested in the auditory system of humans (Wright
& Zhang, [2006). People routinely display behaviours that are important for in-

teracting with dynamic environments. This range of conducts is made possible
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by our internal representation of the world acquired through our senses and inte-
grated by our brains (Bowers, [2009; Kourtzi & Connor, 2011} West et al. |2018).

This integrative process is called perception, and it is a complex cognitive function

that allows humans to create such representations and find meaning in them.
Even though the information we receive is subject to noise from several

sources, the integration of different sensory modalities can provide the necessary

redundancy to perceive the environment with consistency (Stein & Meredith,
11993a; Dosher & Lu, [1998; Ernst & Biilthoff, 2004; Hartmann et al., 2005). In

the case of auditory perception, our brain extracts various types of information

contained in sound. The first layers in our auditory pathway extract low-level
features of sound. These initial stages of auditory processing allow us to segre-
gate individual sound components from noisy backgrounds, localise them in space
and detect their motion patterns (Lopez-Poveda et al.,|2010; Ruggles et al., 2011}
Moore, 2012; (Grothe, [2000; |Grothe et al. 2010). In later stages, our brain ex-
tracts high-level auditory features to perform tasks such as understanding natural
language (Schnupp et al., [2011; |Golumbic et al., [2013).

For all the previous reasons, audition is also crucial for autonomous robotic
systems (van der Zant & Iocchi, 2011} Stramadinoli et al.,[2011; |Andersson et al.,
2004]). Notably, the ability to pinpoint sound sources is essential for the safe

interaction of robots with the environment and for improving communication

with humans (Roman et al) 2003). Its azimuth, elevation and depth specify the

location of a sound source in space. However, it is only possible for a listener to
estimate the distance to a sound source when the nature of the sound is familiar
to the listener (Nakashima & Mukai, 2005} Schenkman & Nilsson, 2011). For

example, we can estimate how far is our dog when it barks, because it always does

it with the same intensity. In this project, we focus on sound source localisation
on the frontal 180° along the azimuth plane, as our focus is on Human-Robot
Interaction, i.e., on tracking the voice of the speaker that the robot is facing.
Furthermore, we also investigate the use of spatial cues in sound to improve
automatic speech recognition (ASR), as the spatial localisation of a speaker on

the azimuth can increase the signal-to-noise ratio in Cocktail Party scenarios

and support high-level cognitive tasks (Roman et al., 2003; Delcroix et al., 2011}




a) b)

Figure 1.1: a) Interaction of a head structure and low-frequency components
in sound. b) Interaction of a head structure and high-frequency components in
sound. Notice that the head produces a considerable shadowing effect only with
high frequencies (Blauert| 1997, Ch. 2.2.2).

Hurmalainen et al., 2011; Marti et al., |2012; Hill et al.| 2012 Spille et al., 2013}
Jiang & Liu| 2014).

As with any other perceptual capability, a meta-objective of artificial SSL
systems is their portability between different robotic platforms (Yamamoto et al.,
2004). This meta-objective partly explains the broad range of approaches that
scientific literature has documented, including complex microphone arrays fitted
to specific rooms and robotic platforms. An alternative paradigm to multiple
microphone arrays is binaural SSL, as humans are a clear example that it is
possible to achieve accurate sound source localisation using only two sound sensors
or ears. Humans rely on the effect produced by the pinnae, head and torso on
the sound frequency components (FC), and on the capacity to move our head
for performing SSL (Middlebrooks & Green, 1991)). Similarly, with only one pair
of microphones separated by a head-like structure, an SSL system can estimate
interaural time differences (ITD) and interaural level differences (ILD). Both
spatial cues are fundamental, as ITDs convey more accurate information in low
FCs and ILDs in high FCs. All these neurophysiological findings of sound source
localisation in mammals inspired the scientific community to design novel systems
for SSL during the last decade.
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1.1 Embodiment and Neural Correlates

In this section, we present an overview of the biological principles found by neu-

roanatomical studies of the mammalian auditory pathway (King & Palmer, 1983}

Masterton & TImig| [1984; [Jenkins & Merzenich, [1984} [Kayser et all 2005; |Good-
man & Brette, 2010; Brette), [2012). More specifically, we describe the interaction

between the body of the human listener and the approaching sound waves, the

transduction of mechanical vibrations in the inner ear to neural spikes and the
spatial encoding of information contained in sound that takes place at subsequent
layers in our brain (Panchev & Wermter, [2006).

1.1.1 Torso and Pinnae

Sound waves are affected when they interact with our bodies. This interaction

modifies the frequency spectrum of sound reaching our ear canal in different
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ways, depending on the spatial location of the sound source around our body.
Low FCs, with a wavelength at least twice as long as the interaural distance, can
produce ITDs that indicate the angle of incoming sound unambiguously (Schnupp
et al.,2011; Lund et al|1998). However, the ITD for high frequencies in sounds
starts becoming ambiguous once the wavelength of high-frequency components
is less than twice the interaural distance. For example, in human adults, I'TDs
become ambiguous at frequencies above 1600 Hz (Middlebrooks & Green, [1991]).
The torso and pinnae reflect with different intensities high FCs, and the head
does not diffract them around the head, reducing the sound pressure level at the
contralateral ear. Such influence on the sound waves has a “shadowing” effect that
generates specific ILDs for different angles along the azimuth. Figure [I.1] shows
the interaction between a head-like structure and different frequency components
in sound. ITDs and ILDs are complementary cues, as they contain information
from both extremes of the audible frequencies range. As ILDs and I'TDs allow the
localisation of a sound source in space, their integration is known as the Duplex
Theory of sound source localisation (Middlebrooks & Green, 1991)).

Figure shows the anatomy of the human ear. The geometry and material
of the pinna affect the intensity of individual frequencies in the sound spectra
due to reflection and absorption (Hofman et all [1998; Pujol et al. 2019)). This
effect allows the front-back disambiguation of sound sources. After the sound
reaches the eardrum, the middle ear ossicles transfer the air pressure waves into
the cochlear fluid. Figure [I.3] shows the anatomy of the middle ear. There, the
surface ratio between the eardrum and the oval window is around 20:1. Together
with the mechanical amplification produced by the ossicles, the total pressure
increase can reach up to 26 dB, varying with different frequencies and individ-
uals. Afterwards, the middle ear behaves as an impedance adapter; it transfers
efficiently mechanical waves from gas (air) to liquid (cochlear fluid). Without it,
our ears would reflect in the environment approximately 98% of the sound waves
(Pujol et al.,|2019)). Together, the influence of the pinna and ossicles on the sound
spectra provides essential monaural clues that allow us to determine the location

of sound sources on the elevation plane.
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1.1.2 Inner Ear

Figure [1.4] shows the anatomy of the inner ear. Once sound waves reach our
inner ear, they produce vibrations inside the cochlea. The organ of Corti then
encodes the information contained in these oscillation patterns by transducing
mechanical vibrations on the basilar membrane (BM) into neural spikes
, . Inside the cochlea, the BM functions like a mechanical filter that
decomposes the sound wave in its fundamental frequencies. Such filtering is a
clear example of the advantages of Embodied Embedded Cognition (Krichmar,
2012; Pfeifer et al. 2007; Pulvermiller, |2013), as the passive mechanism of the

BM performs this computation efficiently without the need for metabolism. Also

inside the cochlea, the hair-cells (HC) transduce the mechanical vibrations along
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the BM into neural spikes. These spikes are phase-locked to the section of the
BM most sensitive to a particular frequency. The neural topology of the auditory
pathway shows the same spatial distribution of FCs from the BM up to the

auditory cortex |Schnupp et al| (2011). Figures and show in detail the
anatomy of the Cochlea and the Organ of Corti.

An HC has the highest probability of producing a spike when the local wave
amplitude in the BM is maximal. As HCs are attached only to one side of the
BM, they behave like a half-wave rectifier. Figure shows waves representing
vibrations in the left (L) and right (R) basilar membranes at a section resonant
to a given sound frequency component f. The markers above the maximum am-

plitudes of the waves represent the point in time with the maximum probability
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Figure 1.5: The waves represent vibrations on the left (L) and right (R) basilar
membranes at sections that resonate with a given sound frequency component f.
The markers above the maximum amplitudes of the waves represent the point in
time with the maximum probability of a neural spike to be produced by the HCs

in the organ of Corti.
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of a neural spike to be produced by the HCs in the organ of Corti. Once stimu-
lated, HCs release neurotransmitters to their corresponding fibres in the auditory
nerve (AN). Each fibre of the AN has bifurcations to all the subdivisions of the
cochlear nucleus (CN), the first relay station in the auditory pathway
, . From the CN, different cell types convey temporal and spectral
information to the medial superior olive (MSO) (Grothe, 2000; Oliver et al.,
2003, Roberts & Golding, [2012) and the lateral superior olive (LSO) respectively
(Guinan et all, [1972alb} [Park et all, [2004). We are particularly interested in the
MSO and LSO regions, as they extract ITDs and ILDs respectively.

1.1.3 Superior Olives and Inferior Colliculus

The MSO performs the task of a coincidence detector, where different neurones
represent spatially different ITDs (Smith et all, 1993 Biologiel 2007). Neurones

in the MSO encode ITDs more effectively from the low-frequency components

of sounds. Different delay mechanisms accomplished this representation, such as
the different thickness of the axon myelin-sheaths, or different axon lengths from

the excitatory neurones in the ipsilateral and contralateral cochlear nucleus
, 1998)). Figure presents the principle behind these mechanisms. In the
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case of level differences, different neurones in the LSO represent spatially different
ILDs (Glendenning & Masterton, [1983; Thompson & Dau, 2008; Brette, 2012).
Due to the shadowing effect of the head, the LSO encodes ILDs more effectively
from the high-frequency components of sound (Irvine et al., 2001). The mecha-
nism underlying the extraction of ILDs is not clearly understood in comparison to
the mechanism of ITDs. Nevertheless, we know that LSO neurones receive excita-
tory input from the ipsilateral ear and inhibitory input from the contralateral ear.
From this input, different neurones in the LSO display a typical spiking rate for
sound sources located at specific angles along the azimuthal plane(Schnupp et al.,
2011). Precise inhibition is essential for microsecond interaural time difference
(Brand et al., 2002; |Grothe, 2003} |Vasilkov & Tikidji-Hamburyan, 2012)).

In the following station in the auditory pathway, the inferior colliculus (IC)
integrates the output of the MSO and LSO layers (Chase & Young], |2008; Escabi
& Schreiner, [2002) and directs its output to cortical areas (Salminen et al., 2010;
Atencio et all 2012). Even though the IC receives forward connections from the
peripheral areas and recurrent connections from the higher-level areas (thalamic
and cortical), one of its main tasks is the integration of ITDs and ILDs into
a coherent spatial representation of sound sources Recanzone & Sutter| (2008]);
Andersson et al| (2004). We can think of the combination of both spatial cues
as a multimodal integration process Stein (1967)); [Stein & Meredith (1993b)),
where I'TDs and ILDs are the modalities to be integrated in order to sharpen the
neural representation of sound sources in the environment. Finally, the scientific
literature shows that thalamocortical areas can be relevant for SSL (Recanzone
& Sutter, 2008; Huo & Murray, 2009). However, the exact dynamics of such

influence remain unclear, and therefore we do not consider it in this work.

1.2 Research Objectives

From a global perspective, we consider the objectives of the research framework
of the International Graduate Research Group on Cross-Modal Interaction in
Natural and Artificial Cognitive Systems (CINACSH to provide a framework for

"https://cinacs.informatik.uni-hamburg.de/about-cinacs
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Figure 1.8: Diagram of the MSO modelled as a Jeffress coincidence detector for
representing ITDs (Jeffress, 1948|). This model compares spikes produced by the
same frequency components f when the time difference §t between spikes is smaller
than half a period. This is, when 2f - §t < 1.

the present work. Our guiding hypothesis, is that embodiment and cross-modal
integration provide the necessary basis to develop the next generation of artifi-
cial cognitive systems (Krichmar, 2012; Storkl 2012; Hiatt et al., [2012; |Winston,
2012; Kelso et all [2013). The importance of these two principles resides in the
extraction of information from the environment through embodiment, and in the
integration diverse sources of information to facilitate a more robust representa-
tion of the world (Kochl 1993; Wilson| 2002; Metta et al., 2008; Pulvermiiller}
2013). With the integration of biological and engineering approaches, we in-
tend to generate complementary knowledge in both fields in a continuous cycle
(Wermter et al., 2005), rather than only focusing in the direction of reverse-
engineering (Schierwagen, 2012). CINACS promoted the continuous interaction
between research groups in diverse disciplines including us, the Knowledge Tech-
nology Group. During such exchanges, specific research questions provided a
framework for our discussions around cross-modal interactions and defined our
approach to understand spatial cognition, e.g., in some cases, what seems to be
purely visual phenomena can be better understood with the involvement of au-
ditory phenomena, and vice versa (Shinn-Cunningham, [2008). It is important

to clarify that, although our system only works with one sensory input, we treat
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1. INTRODUCTION

the multiple spatial cues as information encoded in sound (Shannon| 1948) as
separate modalities that can be integrated to provide a richer and more accurate

representation of the world. Hence, we try to answer the following questions:

e Which architectures are suitable for certain types of cross-modal tasks?

How to transform between modalities?

What are the mechanisms of cross-modal perceptual phenomena?

What are the general principles for resolving cross-modal conflicts?
e How are multimodal percepts generated and represented?

e How can cross-modal integration be realised in technical systems?

From a concrete perspective, the objective of this work is to gain insights
about the bottom-up and top-down influence of embodiment for spatial audition
in natural and artificial systems. As documented in this thesis, we have designed
an architecture to improve robot speech recognition, based on the principles of
biomimetic computation and embodied embedded cognition. In this context, we
have adapted some of the CINACS objectived! to determine the guidelines that

directed our experimental work:

1. To improve our understanding of acoustic localisation through cross-modal

integration.

2. To understand acoustic localisation from an integrated view of spatial au-

dition at multiple scales.

3. To introduce biological principles into artificial intelligent systems for acous-

tic localisation.

Our first objective, is to increase our understanding of the influence of hu-
manoid embodiment on bottom-up cognitive tasks for sound perception (Koch,
1993; Hofman et al., |1998; Horimoto et al) 2012), such as static and dynamic

SSL. The first step is the selection of the robotic platforms for our experimental
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setup. If the best interface for a human is another human (Wilson, 2002)), we
should exploit the computational advantages that embodiment brings “for free”.
In the present work we use three robotic platforms: Nao (Gouaillier et al., 2009)),
iCub (Beira et al. 2006) and Soundman (Salb & Duhr, 2009). Both, Nao and
iCub, are humanoid robots designed for research in academia, and Soundman is a
platform designed for binaural recordings that maximise the generation of sound
spatial cues. As the design of the iCub robot is intended for research in Cognitive
Developmental Robotics (Metta et al., [2008)), it approaches the physiognomy of
humans and allows to measure more precisely the influence of a humanoid em-
bodiment on our models of the auditory system. In the present work, we are not
interested in the design of a generic SSL or ASR system with higher accuracy
than existing systems.

Our second objective, is to increase our understanding about the influence
of embodiment on top-down cognitive tasks (Koch, (1993 [Zhao et al., 2018) like
ASR, when using biomimetic models of bottom-up cognition like SSL (Singheiser
et al.,2012). There is ample literature about robotic ASR, including systems that
perform SSL with large microphone arrays to improve ASR. However, we are one
of the first and few groups working on SSL and ASR inside the framework of
embodied embedded cognition (Finger & Liu) 2011). This circumstance reduces
the amount of scientific literature available for a comparison of different method-
ologies (Wilson, 2002; Nguyen et al., 2018]), but at the same time, it highlights the
need to expand our understanding in this direction. Once the behaviour of the
robot corresponds to the behaviour of animals (Noé & Reganl, 2000; Nodal et al.
2010; \Greene et all [2012), we can observe the activity of the neural models under
new conditions and produce new hypothesis to guide further studies in biological
systems, such as studies in human speech recognition (HSR).

Our third objective, is to close the loop by using the experimental results ob-
tained with artificial systems to guide further research in natural systems (van
Hateren, 1992; Barres et al., 2013; Famulare & Fairhall, [2010). As pointed out
by [Scharenborg (2007)), further research is necessary to understand better the
auditory cues used by human listeners, and that possibly are being overlooked
in current artificial systems. Once these features (acoustic or from other sen-

sory modalities) are recognised, researchers can readily integrate them into the
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design of novel multimodal architectures (Benoit et al.l 2000; Schauer & Gross,
2003; |Goertzel et al., [2010). More specifically, Scharenborg asks how can such
knowledge about child language acquisition be used to improve ASR systems and
computational models of HSR? He proceeds then to conjecture that understand-
ing how infants acquire language could lead to the design of new paradigms for
ASR, well beyond the probabilistic pattern recognition techniques that modern
systems commonly use. One example being when children acquire language. At
this developmental stage the units for the segmentation of acoustic signals are
not pre-specified, as is nowadays the case for ASR systems and computational
models of HSR. In order to achieve such flexibility, it is necessary to develop novel
architectures that make use of emergent units of recognition, instead of constrain-
ing the systems to use the linguistic units present in current ASR systems and

computational models.

1.3 Novel Contribution to the Field

The objectives defined in Section are tightly coupled; therefore our experi-
ments have not addressed each of them separately, but conjunctly. Concerning
objective [1} we have improved our understanding of the neural mechanisms used
for the integration of sound spatial cues in mammalian brains (Glackin et al.
2010; Fischer & Penay, 2011; Fontaine & Brettel, 2011). More specifically, it has
become clear that the topology of connections between layers in the auditory
pathway can improve the signal-to-noise ratio of information transmitted to the
higher layers (See Section . As we can interpret the topological constraints
found in natural systems as hyperparameters in computational models, it is then
possible to implement such constraints in biomimetic architectures. We can then
proceed to measure their accuracy by replicating ethological experiments with
robots, and measure their predictive power by observing their behaviour in pre-
viously unseen scenarios. For this particular purpose we have designed a virtual
reality experimental setup designed for audio-visual integration (Bauer et al.,
2012)). This setup allows us to measure the response of the system to controlled

stimuli, at the neural and behavioural levels, with high precision. These accom-
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plishments are in line with objectives[I]and 2 We provide a detailed description
of the virtual reality setup in Section [5.1.1]

The biological principles that we have introduced into an artificially intelligent
system (objective|3]) range from the computation performed by the embodiment of
the robot itself, to the biomimetic computational models used to filter and encode
the signals sensed by the robot. Particularly after our last experiment (Chapter
5.3), we gained insights into the computation performed by the asymmetrical
absorption of sound frequencies with the humanoid pinnae. Another important
insight is the benefit of the efficient computation performed in the inner ear.
There, the Organ of Corti performs the mechanical transduction of vibrations
in the basilar membrane without requiring additional metabolism, i.e., without
the need for consuming additional energy resources for quasi-instantaneous com-
putation. The results of the experiments presented in this work have increased
our understanding of the improvements achieved by the generation of spatial
cues with a humanoid head, and the benefits of constraining the search space of
hyperparameters by following anatomical guidelines found in biological systems
(Chapter [3)).

1.3.1 Publications Originating from this Thesis

The present work produced the following publications during its development:

(I) Journals:

(1) J. Bauer, J. Davila-Chacon, S. Wermter. Modelling the development
of natural multi-sensory integration using neural self-organisation and

probabilistic population codes. Connection Science, 2014.

(2) J. Davila-Chacon, J. Liu, S. Wermter. Enhanced Robot Speech Recog-
nition Using Biomimetic Binaural Sound Source Localisation. IEEE

Transactions on Neural Networks and Learning Systems, 2018.
(IT) Conferences:

(3) J. Bauer, J. Davila-Chacon, E. Strahl, S. Wermter. Smoke and Mir-

rors—Virtual Realities for Sensor Fusion Experiments in Biomimetic
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Robotics. IEEE International Conference on Multisensor Fusion and

Information Integration (ICMF), Hamburg, Germany, 2012.

(4) J. Davila-Chacon, S. Heinrich, J. Liu, S. Wermter. Biomimetic Binau-
ral Sound Source Localisation with Ego-Noise Cancellation. Interna-
tional Conference on Artificial Neural Networks (ICANN), Lausanne,
Switzerland, 2012.

(5) J. Davila-Chacon, S. Magg, J. Liu, S. Wermter. Neural and Statistical
Processing of Spatial Cues for Sound Source Localisation. Interna-
tional Joint Conference on Neural Networks (IJCNN), Dallas, USA,
2013.

(6) J. Davila-Chacon, J. Twiefel, J. Liu, S. Wermter. Improving Humanoid
Robot Speech Recognition with Sound Source Localisation. Interna-
tional Conference on Artificial Neural Networks (ICANN), Hamburg,
Germany, 2014.

(III) Abstracts:

(7) J. Davila-Chacon. Neural Sound Source Localisation for Speech Pro-
cessing Based on the Inferior Colliculus. In Proceedings of the Joint
Workshop of the German Research Training Groups in Computer Sci-
ence, 2012, 2013 and 2014.

1.4 Thesis Organisation

Chapter [I] introduces the topics from animal neurophysiology that are relevant to
the biomimetic computational model that we use for SSL and Chapter [2| provides
an overview of the evolution of artificial SSL systems. It starts with an overview
of the initial approaches using large microphone arrays, followed by the second
generation robotic approaches and concluding with an overview of the more recent
bioinspired architectures. In particular, section explains how we adapted this
knowledge to the context of robots producing ego-noise. Such adaptations include
a simplified version of the spiking neural network and the Bayesian model that

we use as a starting point to integrate multiple spatial cues.
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1.4 Thesis Organisation

Then the following chapters then introduce our experimental work. Chapter
details the importance of optimising the hyperparameters that determine the
measurement of interaural level differences and explains how they are dependent
on the geometry of the robotic head. Chapter [d]reflects one of the most significant
contributions of the present work, as it explores the advantages of combining
neural and statistical methods to achieve the required balance between life-long
learning and computational costs. Chapter p|integrates our work in SSL with the
field of automatic speech recognition (ASR). As mentioned before, a pervasive
challenge in the field of robotics is the addition of high levels of ego-noise produced
by the cooling systems. Our objective in the two experiments that we present in
the last chapter is to measure the improvement of ASR when we combine it SSL.
Interestingly, ASR performs best when the angle between the humanoid head and
the sound source allows sound waves to be reflected most intensely from the pinna
to the ear microphone, rather than when sound waves arrive perpendicularly to
the membrane. The first experiment in Section [5.1.2] explores the effect of the
embodiment of two robotic platforms. The second experiment in Section [5.3
concludes our journey by studying the interaction between the robotic platform
and the sound source, i.e., we analyse the effect on ASR of turning towards a
human speaker in different locations inside and outside of the visual field of view.
Finally, Chapter [6] summarises the results that we obtain in our empirical studies

and elaborates on the answers that they provide to our research objectives.
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Chapter 2

Development of Computational
Methods

During the last decade, plenty of neurophysiological findings related to sound
source localisation in mammals inspired the scientific community to design bioin-
spired systems for SSL. In order to contextualise the contribution of the present
work, this chapter outlines the most representative methods used for robotic SSL
in the past three decades. The objective is to understand the importance of SSL
as a technology that can support complex devices, such as robots, but also to un-
derstand its importance as a window for observing some fundamental aspects of
human cognition. A historical perspective also reveals the most significant chal-
lenges that SSL systems have faced and the techniques that were introduced since
the first designs appeared (Rascon & Meza), 2017). This overview is necessary, as

understanding the magnitude of different contributions can be counterintuitive.

2.1 Robotic Sound Source Localisation

As one can imagine, the first methods introduced for robotic SSL looked at nat-
ural systems and provided the basis of modern spatial localisation techniques
(Lyon, |1983)). Firstly, engineers around the globe developed efficient methods
for representing spatial cues. After a couple of years they understood the lim-
itations of their initial approaches, as some of their assumptions did not hold

in more dynamic, common environments (Berglund & Sittel 2005; Besson et al.,
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2. DEVELOPMENT OF COMPUTATIONAL METHODS

2011). Researchers then started searching for different approaches and, as it is
often the case, natural systems provided powerful metaphors that translated into
the creation of more effective systems. More specifically, neuroscientific theories
about SSL in animals opened the doors to a large family of bioinspired methods
(Liu & Meng, 2007)). In the following subsections we will travel from the initial
systems using fixed microphone arrays to the most recent binaural biomimetic

approaches.

2.1.1 First Generation: Static Microphone Arrays

Several approaches were taken during the 1990’s to perform sound source locali-
sation. Two spatial cues used since the first approaches are the Time-Difference-
Of-Arrival (TDOA) between two or more microphones, and the variation of sound
intensity or sound pressure level (SPL). As computing power was relatively scarce
during this time, some implementations were optimised at the hardware level. In
this way, Bhadkamkar (1994)) designed customised hardware micro-components,
to detect the TDOA between two microphones with a known interaural distance.
The system of Bhadkamkar’s CMOS chip for sound localisation utilises the TDOA
between both microphones and can perform accurate SSL using low-frequency
components of sound. However, the system does not compute SPL differences
and is not able to localise sound sources when using high-frequency components
that are part of the human audible range.

Another perspective could involve the integration of visual and auditory sig-
nals to disambiguate simultaneous sound sources (Nakadai et al., [2000; [Siracusa
et al., [2003; [Nakadai et al., 2010; Nakamura et al., 2011). Interestingly, this ap-
proach was considered already in the mid-1990’s. The system devised by |Irie
(1995)) is an example of an early attempt to achieve multimodal sound localisa-
tion. He intended to support the localisation of sound sources in unconstrained
environments with visual information. For this purpose, he implemented a feed-
forward multi-layer perceptron. Unfortunately, the available computing resources
at the time only made possible the classification of sound sources in three cate-
gories: left, right and centre. An interesting part of this implementation is that

the network output has to be exactly zero to localise sources in front of the robot.
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2.1 Robotic Sound Source Localisation

Figure 2.1: Array of 3 microphones in a ring. Array proposed by |Huang et al.
(1997a).

Hence, considerably lowering the localisation accuracy of sounds coming from the
centre.

Huang et al|(1995)) implemented zero-crossing algorithms to detect the sound
source angle of incidence (Huang et al., 1999). This method allowed him to
estimate the difference in TDOA between three microphones in a ring (See figure
. The system showed an excellent localisation performance for sounds coming
from 360 degrees around the robot. However, the system importantly relied on
the detection of sound onsets and was only tested in an anechoic chamber. Later
on, they included an echo-estimation algorithm that facilitated the deployment
of the system in reverberant environments (Huang et al., [1997b,a). The system
could satisfactorily detect the location of pure tones and claps. Onset detection
is a promising approach to SSL (Newton & Smith| |2011)), although a drawback
from this approach was its poor performance for the detection of speech, as the
onset of each frequency component dramatically varies. Finally, [Huang et al.
(1997a)) successfully implemented a robotic system capable of detecting the spatial
location of two concurrent speech signals in both, anechoic and reverberant rooms.
A notable constraint of this system is the inability of dealing with frequency
components above 2520 Hz. As a point of reference for the reader, the human
audition can cope with frequencies up to 20000 Hz.

In order to increase the confidence of the TDOA estimations, researchers
started increasing the number of microphones. (Guentchev & Weng| (1998) pre-

sented another kind of microphone array consisting of four sensors distributed
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2. DEVELOPMENT OF COMPUTATIONAL METHODS

Figure 2.2: Array of 4 microphones in a pyramidal structure. Array proposed by
Guentchev & Weng| (1998]).

in a pyramid-like structure (See figure . This system is very accurate and
can perform 3D localisation, i.e., it can also estimate the distance to the sound
source. It performs with an angle estimation error of + 3° and a distance esti-
mation error of + 20%. |Asono et al.|(1999) implemented a near-field microphone
array to localise sounds closer than 2 meters. The array consists of 8 microphones
equally spaced in a ring. The main idea was to use information about the spatial
location of a speaker to increase the Signal-to-Noise-Ratio (SNR) of the speech.
The testing sounds included reverberation and an SNR of 20 dB. The authors
tested the accuracy of the system with an automated speech recognition system
using a vocabulary consisting of 492 words. With this system, it was possible
to localise speech signals with an accuracy of 95-99%. The accuracy rate of the
speech recognition system varied between 62-73%. As the sound localisation sys-
tem relied only on TDOAs, the authors did not test it with frequency components
higher than 3000 Hz, although the fundamental frequencies of human voice range
between 60-7000 Hz.

The algorithms described so far have different weaknesses:

e They could not cope with SNRs lower than 20 dB, whereas natural systems
can perform well with as low as 1 dB SNR (Guentchev & Weng, |1998)).

e The presence of multiple sound sources would affect tracking any of them.

e Moving sounds were indistinguishable from a wider sound source.
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Figure 2.3: 8 microphones in a cubic array. Array proposed by [Valin et al.[ (2003)).

e The spectral content of the sound source could be a problem, as “sounds

produced with a wide open mouth would yield a higher error value”.

e It was difficult for the systems to perform well in places different to the

environment in which the authors trained them.

e The absolute distance from the microphones to the sound source was a

limitation, as 5 to 10 meters would already pose a serious problem.

As these problems are not present in natural systems, what can we learn from
the physiological findings in animals? In the following subsection, we provide
an overview of artificial SSL systems based on theories of sound localisation in

humans, cats and guinea pigs.

2.1.2 Second Generation: Robotic Microphone Arrays

The systems described in subsection achieved reasonably high accuracy for
the localisation of sounds using the lower frequencies in the audible spectrum.
Some of them were capable of performing accurately in partially reverberant envi-
ronments, performing 3D sound source localisation or even localising two sources
simultaneously. Those systems performed well in constrained environments, and
even though such constraints varied among different approaches, none of them

was capable of performing in diverse daily-life scenarios. For an SSL system
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Figure 2.4: 32 microphones in a 4 rings array. Array proposed by [Tamai et al.
(2005).

to be reliable, it should be capable of handling SNRs present in everyday envi-
ronments, reverberation, dynamic sources and simultaneous speakers (Hu et al.,
2006; |Sasaki et all |2012). What was missing? Where did researchers find a need
for improvement?

The available computational power continued growing exponentially and about
a decade after the initial trials SSL systems adopted more sophisticated methods
and increased the number of microphones. Valin et al.| (2003) explored the per-
formance of new spectral methods using an array of 8 microphones (See figure
. The system could perform with an angular precision of 3° in the horizontal
and vertical plane. In simulations, the array showed to be capable of estimating
accurately the distance of a sound source up to 2 m away. Concerning the number
of concurrent sources, the system could track only one source at a time. Tamai
et al.| (2005) designed an array of 32 microphones that could perform 3D SSL and
the separation of simultaneous sound sources (See figure . They perform SSL
with the delay and sum beamforming (DSBF) method and, in the following step,
sound separation by integrating the DSBF method and frequency band selection
(FBS). In this approach, the accuracy of the system reached up to 5° on the
azimuth and elevation. The system can estimate the sound source distance with
an error of less than 300 mm, but only when sound sources were closer than 1
m. This system can separate frequencies below 3300 Hz even when background

noise is present.
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2.1 Robotic Sound Source Localisation

High frequencies also contain useful spatial information and can improve sound
source localisation and sound separation. However, none of the approaches using
large microphone arrays takes advantage of the level differences produced by
the shadowing of a head-like structure (Geng et al., 2008; Cobos et al., 2011}
Nunes et all 2014]). Here is where bioinspired approaches can offer guidance
for integrating the information of such sound frequencies to develop more robust
systems. In the following subsection, we introduce the advantages of bioinspired

approaches by comparing some of the most representative methods.

2.1.3 Third Generation: Bioinspired Computation

The following biologically-inspired algorithms for sound source localisation and
separation aim to apply neurophysiological theories to robotic systems. None
of the described approaches pursues a complete emulation of the mammalian
auditory pathway, as such a system would demand an amount of parallel com-
putation that is not available in current hardware. Nevertheless, some natural
principles have proven to be valuable paradigms for artificial sound source locali-
sation (Agnes et al.,2012; Amari, 2013; |Chan et al., 2010, 2012; Choudhary et al.
2012). Artificial spiking neural networks (Maass| [1997) are of special interest for
us, as this class of models share a common language that facilitates the represen-
tation of time-dependent information and its integration with additional sensory
modalities (Maeder et al., 2001; Karmarkar & Buonomano|, |2007). Such common
language between modalities is a fundamental property to create autonomous
robots, as rich representations of the environment are essential to navigate in the
real world (Hafting et al., 2005; [McNaughton et al., 2006; [Milford et al., 2004}
Milford & Wyeth, 2009).

Voutsas & Adamy| (2007) created a model with multiple delay-lines using ar-
tificial spiking neural networks (Maass & Bishop, 2001; Maass et al.,2002). After
decomposing the sound in a set of fundamental frequencies, different delay val-
ues added to the sound waves allowed the estimation of ITDs. Their system
only takes into account the I'TDs and can localise broadband, and low-frequency
sounds with 30° accuracy. However, the system performance decreases signifi-

cantly for sounds with high fundamental frequencies, which is a common effect
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Figure 2.5: Sound source localisation architecture. Sound pre-processing consists
of decomposing the sound input in several frequency components with the Gamma-
tone filterbank emulating the human cochlea Slaney| (1993). Afterwards, the MSO
and LSO models represent I'TDs and ILDs respectively. The IC model integrates
output from the MSO and LSO while performing dimensionality-reduction. Finally,
the classification layer produces an output angle that directs motor control (Rokni
& Sompolinsky, 2012]).

in systems relying only on temporal cues. The accuracy for localisation remains
high with broadband signals, so their system performs better when it integrates
information across a broader range of frequencies.

It is also possible to represent spatial information with more than two cues
(Heckmann et all, 2006; Rodemann, [2010)). Rodemann et al.| (2006) developed
a model based on ITDs, ILDs and interaural envelop difference (IED). It can
localise sound sources with a resolution of 10°, that is, with three times finer
granularity than the system in Voutsas & Adamy| (2007)) using only one spatial
cue. Nevertheless, the model in Rodemann et al.| (2006) shows high sensitivity to
the ego-noise produced by the robotic platform. The system computes the differ-
ent localisation cues in parallel, and a weak winner-takes-all strategy defines the
integration of the different cues. In all the testing conditions, higher frequencies
lead to higher error rates estimating the sound source angle. A possibility for
improvement could be to merge spatial cues with a non-linear model, as in the
IC.

The systems from |Willert et al.| (2006) and |[Nix & Hohmann| (2006) include
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2.1 Robotic Sound Source Localisation

probabilistic models of the MSO, the LSO and the IC that can perform SSL with
a resolution of 15°. In both cases, Bayesian statistics were used to estimate the
connections between the layers and the systems perform robustly for simulated
sound sources in real environments. A possible extension of this research is their
implementation with ASNNs in order to explore the dynamics of neural popula-
tions and to exploit their robustness against noise (Ma et al.,|[2006). Nevertheless,
the results from these studies provide valuable insights precisely for the design
of such biomimetic systems. Only Willert et al. (2006) mention multi-source
tracking as part of their future work.

Murray et al|(2009)) proposed an algorithm that relies mainly on the TDOA
between a pair of microphones. He extracts the TDOA with a cross-correlation
of both signals (Murray et al., 2004). Afterwards, a recurrent neural network was
capable of predicting the dynamics of the movement of a speaker. This approach
demonstrates the benefits of motion prediction for continuous sound source lo-
calisation. The implementation of a head related transfer function (HRTF) was
part of the future work for this project and would allow for SSL on the azimuth
plane (Hornstein et al., [2006; Keyrouz & Saleh |2007)).

Liu et al| (2010) proposes a biomimetic supervised learning algorithm for
binaural SSL, where the MSO, LSO and IC are modelled using ASNNs and the
connection weights are calculated using Bayesian inference (Futagi & Kitano|
2012). This system performs SSL with a resolution of 30° under reverberant
and low noise conditions, and can also be used to track multiple moving sources.
Davila-Chacon et al.| (2012) adapt the approach of |Liu et al| (2010) to the Nao
robotic platform (Gouaillier et al., 2009)) that produces ~40dB of ego-noise. This
neural model is capable of handling such levels of ego-noise and even increases
the resolution of SSL to 15°.

In more recent work, Davila-Chacon et al.| (2013)) compare several neural and
statistical methods for the representation, dimensionality-reduction, clustering
and classification of auditory spatial cues. The evaluation of these neural and sta-
tistical methods follows a trade-off between computational performance, training
time and suitability for life-long learning. However, the results of this compar-

ison show that simpler architectures achieve the same accuracy as architectures
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with an additional clustering layer. Figure shows an overview of the best-
performing SSL architecture. Davila-Chacon et al. (2013) found that a neural
classifier on the top layer of our architecture is important to increase the robust-
ness of the system against reverberation and ~60dB of ego-noise produced by the
humanoid iCub (Beira et al., [2006). For this purpose, they include a feedforward
neural network to handle the remaining non-linearities in the output from the IC
model. Finally, in order to improve the robustness of the system to data outliers,
they extended the architecture with softmax layers on the output of the IC model
and the final layer of the SSL architecture.

More recently, research groups have developed novel SSL systems that can
perform robustly under a variety of noise and reverberation Liu & Shen| (2010al);
Ren & Zou (2012); [Pavlidi et al.| (2013). The architecture introduced in Pavlidi
et al.| (2013) is particularly interesting, as it can estimate the number of sound
sources present in the environment. Part of their suggested future work includes
an adaptive width for the window analysing the input signals, as counting sound
sources at low signal-to-noise ratio (SNR) requires different parameters than at
high SNR. As a downside, these systems also neglect the spatial information
encoded in high frequencies of sound sources. In the following section we introduce
the biomimetic approach of Liu & Shen| (2010a)) and then describe the evolution of
our computational model; from the simplifications to the spiking neural networks
and the Bayesian model, to the extension of the model with additional neural

and statistical layers.

2.2 Biomimetic Computational Model

This section describes in full detail our final biomimetic sound source localisation
architecture. It has been designed from an embodied embedded cognition per-
spective to take advantage of the embodiment of the humanoid platforms used
to test it. This approach reduces computational costs by using the embodiment
of the robot as a passive sound filter, and helps to define the value of hyper-
parameters in our models. For example, the biomimetic foundation constrains
the topology of the connections between layers in our architecture (Oliver et al.
2003).
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Figure 2.6: Topology of the connections between the MSO and LSO models to
the IC model. The MSO has excitatory connections to the IC in f between 200 Hz
and 4000 Hz, whereas the LSO has excitatory and inhibitory connections to the IC
only in f > fr between 1400 Hz and 4000 Hz.

2.2.1 Cochlea Model

The first stage of our SSL architecture, shown in Figure [2.5] consists of a Gam-
matone filterbank modelling the frequency decomposition performed by the hu-
man cochlea Slaney| (1993). This is, the signals produced by the microphones
in the robot’s ears are decomposed in a set of frequency components f; € F =
{f1, f2, .-, fr}. All the subsequent layers in our SSL architecture preserve the
same tonotopic arrangement. In healthy young people, all consecutive f; are log-
arithmically separated and respond to frequencies between ~20 Hz and ~20000
Hz Middlebrooks & Green| (1991). We are primarily concerned with the localisa-
tion of speech signals; therefore we constrain the elements in F' to the frequencies
containing where most speech harmonics, i.e., between 200 Hz and 4000 Hz. Once
the system decomposes both signals into I components, each wave of frequency f;
is used to generate spikes mimicking the phase-locking mechanism of the Organ of
Corti, i.e., the model produces a spike when the positive side of the wave reaches

its maximal amplitude.
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Figure 2.7: Activation of the MSO model for a sound consisting of white noise,
presented to the robot at 15°. Notice that lower frequencies (blue) are more in-
formative, as they produce a larger concentration of neural firing in the neurones
sensitive to sounds produced around 15°, which is the real sound source angle,
whereas higher frequencies (red) trigger the firing of neurones sensitive to sounds

produced at the wrong angles.

2.2.2 Medial Superior Olive Model

Figure[2.6)depicts the biomimetic computational model that we designed following
the neuroanatomy of the connections between the MSO and LSO layers to the
IC layer. The MSO has excitatory connections to the IC in f between 200 Hz
and 4000 Hz, whereas the LSO has excitatory and inhibitory connections to the
IC only in f > f, between 1400 Hz and 4000 Hz.

In the following layer of the SSL architecture, we model the MSO as a mech-
anism to represent ITDs. As depicted in Figure the computational principle
observed in the MSO is modelled as a Jeffress coincidence detector Jeffress (1948)
for each f;. The MSO model has m; € M = {my, ms,...,m,} neurones for each
fi. The robot’s interaural distance and the audio sampling rate constrains the

value of m;. Each neurone m;; € N? is maximally sensitive to sounds produced
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Figure 2.8: Activation of the LSO model for a sound consisting of white noise,
presented to the robot at 15°. Notice that higher frequencies (red) are more in-
formative, as they produce a larger concentration of neural firing in the neurones
sensitive to sounds produced around 15°, which is the real sound source angle,
whereas lower frequencies (blue) trigger the firing of neurones sensitive to sounds

produced at the wrong angles.

at angle ;. Therefore, SMS9 i the array of spikes produced by the MSO model
for a given sound window of length AT. The mammalian auditory system re-
lies mainly on delays smaller than half a period of each f; for the localisation of
sound sources (Schnupp et al., 2011, Ch. 5.3.3). For this reason, the MSO model
only computes [TDs when the time difference 6t between two incoming spikes is
smaller than half a period. This is, when 2f; -t < 1. Inspired by the mammalian
neuroanatomy, the MSO model projects excitatory input to all f; € F' of the IC
model (Meddis et al., 2010, Ch. 4, 6.).

2.2.3 Lateral Superior Olive Model

At the same level of the SSL architecture, the LSO model represents ILDs. The
system computes level differences by comparing the L and R waves from each
fi at the same points in time used for computing I'TDs. The auditory system is

known to compare the timing of neural spikes when the time delay between them
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is less than half a period (Schnupp et al) 2011, Ch. 5.3.3). Therefore, our MSO
model considers the time difference At between t; and t, for the computation of
ITDs, but not the At between t, and t3. In order to determine the neurone that
will fire, the LSO model computes ILDs as the logarithmic ratio of the vibration
amplitudes at ¢; and ¢y as log(A;/Ay) at times ¢; and t5. The LSO model has
l; € L={l,ls,...,1;} neurones for each f;. As the bit-depth of the sound data
limits the value of [, it is possible to have many more neurones in the LSO
than in the MSO. For the sake of simplicity, we chose to have the same number of
neurones in the MSO and LSO models by setting [; = m ;. Each neurone [; ; € N
is maximally sensitive to sounds produced at angle «;. Therefore, S50 g the
array of spikes produced by the MSO model for a given sound window of length
AT. Also inspired by the mammalian neuroanatomy, the LSO model projects
excitatory and inhibitory input only to the highest frequencies f; € F' | fi > f;
of the IC model (Meddis et al, 2010, Ch. 4, 6.).

2.2.4 Inferior Colliculus Model

Then we arrive at the layer modelling the IC, where ITDs and ILDs are integrated.
Figure [2.6] shows the topology of the connections between the MSO and LSO
models to the IC model. Bayesian classifiers allow the continuous update of
probability estimations and are known to have good performance even under
strong independence assumptions (Rao, [2004). Furthermore, Bayesian classifiers
allow fast computation as they can extract information from large dimensional
data in a single batch step. For this reason, we estimate the connection weights
assigned to the excitatory and inhibitory output of the MSO and LSO layer using
Bayesian inference Liu et al.| (2010). The IC model has ¢, € C' = {c1,¢a, ..., cx}
neurones for each f;. Each neurone ¢;; € R is maximally sensitive to sounds
produced at angle 0, € O = {01,0s,...,0k}, where K is the total number of
angles around the robot where sounds were presented for training. E™®Y and
EX99 are the ipsilateral MSO and LSO excitatory connection weights to the
IC, and I¥99 are the contralateral LSO inhibitory connection weights to the IC.
Therefore, S'¢ is the array of spikes produced by the IC model for a given sound

window of length AT. More precisely, S’ is computed as follows:
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Figure 2.9: Activation of the IC model for a sound consisting of white noise,
presented to the robot at 15°. Higher frequencies are represented in red and lower in
blue. Notice that in comparison to the MSO and LSO models, the IC model has a
more coherent spatial representation across all frequencies as a larger concentration
of neural firing is found in the neurones sensitive to sounds produced around 15°,
which is the real sound source angle. The IC model has fewer neurones than the
MSO and LSO models to perform dimensionality reduction, and shows negative
values as the inhibitory input is greater than the excitatory input from previous

layers.

SIC _ SMSO ® EMSO + SLSO ® ELSO o SLSO ® ILSO. (21)

Where ® indicates element-wise multiplication between the activation arrays.

In order to estimate the connection weights EM9 EFSO and 145°

, we perform
Bayesian inference on the spiking activity S99 and S*¢ for the known sound
source angles O.

We define the set of training matrices obtained for each 6, as s, € S =
{s1,82,...,Sn}, where N is the total number of training instances. We describe
first the Bayesian process used to estimate the connection weights between the
MSO and the IC, where s, = SM?. Let p(SM%°|6) be the likelihood that a

sound that occurs at angle 6, produces the spiking matrix SM%Y. As we assume
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Poisson-distributed noise in the activity of neurones m; ; in the MSO model,

MSO _
AT e

Where )\, is a matrix containing the expected value and variance of each neurone

SMS0 and it is computed from the training set S for each 6;. In a Poisson

mg; in
distribution, the maximum likelihood estimation of A, is equal to the sample

mean, and we compute it as
1 X
_ Z MSO
AL = N 2 Sn , Vs, € S | 0. (23)

As we assume a uniform distribution over all angles in O, we assign the same

prior p () = 1/K to each ;. In order to normalise the probabilities to the
SMSO)

interval [0, 1], we compute the evidence p( as:
K
p (SMSO) = ZP (SMSO|9k) p(Or) - (2.4)
k=1
Afterwards, the posterior p (9k|SM S O) is computed using Bayes rule:
SMSO 0 0
b (0550) ~ 24 (SL’;?;( ) pyiso, (25)
p

The same Bayesian inference process described so far is used for computing the
LSO inhibitory and excitatory connections to the IC. Finally, the connection
weights for each neurone m, ; in Péwso and [; ; in PﬁSO to neurone c; ;, in the IC,

are set according to the following functions:

PO if PO >
EMSO — (wh!59. arg maxy, (PkMSO)) : (2.6)

0 otherwise

PL59, if P99 >
LSO LSO
RLSO _ (wE .arg maxg, (Pk ))

0 otherwise
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Figure 2.10: Output of all the layers in the SSL architecture for white noise
presented in front of the robot (90°). Higher frequencies are represented in red and
lower in blue. Notice that for this angle most of the IC frequency components agree
on the sound source angle and the MLP correctly classifies the IC output.

1 -PL59 if P9 <
(wILSO. arg maxg, (PﬁSO))

0 otherwise

1499 = (2.8)

Where thresholds w0 A\ wESO A wES9 1 R € [0, 1], determine which connec-

tions will be pruned. Following known neuroanatomy, such pruning avoids the

interaction between neurones sensitive to distant angles (Liu et al., 2008, [2009).
The value of f. marks the transition between the lower and higher frequency spec-
trum. Figures and show activation examples of the first version of
MSO, LSO and IC models. This initial implementation did not assume Poisson-

distributed noise in the activity of neurones, and it did not have the MLP and

softmax layers described in subsection [2.2.5]
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Figure 2.11: Output of all the layers in the SSL architecture for white noise
presented on the right side of the robot (180°). Higher frequencies are represented
in red and lower in blue. Notice that for this angle most of the IC frequency
components disagree on the sound source angle; however, the MLP can cope with

these non-linearities and correctly classifies the IC output.

2.2.5 Non-Linear Probabilistic Model

Finally, we use a feedforward neural network in the last layer of our SSL system for
the classification of S’. This layer increases the robustness of the system against
ego-noise and reverberation. The output of the IC layer still shows non-linearities
that reflect the complex interaction between the robot’s embodiment and sound in
the environment. Some of the elements that influence this interaction include the
sound source angle relative to the robot’s face, the head material and geometry,
and intense levels of noise produced by the cooling system inside the robot’s head.
In previous work, we compare several neural and statistical methods
\Chacon et al| (2013) and found that a multilayer perceptron (MLP) was the

most robust method for representing the non-linearities in S“. The hidden layer

of the MLP performs compression of its input as it has |S'“|/2 neurones, and

similar to the IC neurones analysing a single f;, the output layer of the MLP has
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¢, € C neurones. In order to improve the robustness the system against data

outliers, we perform softmax normalisation on S’¢ before training the MLP:

sic

$IC — (e—m . Vf, € F, (2.9)
ZI S

ir=1 6"

and also on the output SM¥ of the MLP:

GMLP
SMEP _ lax (KM—SMLP) . Ve € C. (2.10)
D kg €

Figure shows the output of all layers in our SSL architecture after training
it with a subset of utterances from the TIMIT speech dataset |Garofolo et al.
(1993). The figures show the spiking matrices produced by with white noise in
order to depict more clearly the stereotypical patterns of each f;. Notice that
the hypotheses generated by most neurones in the IC layer agree on the sound
source angle, irrespective of the frequency component f; from which they receive
input. In this case, it is not surprising that the MLP classifies correctly S¢
since a voting mechanism applying the winner-takes-all rule along each f; would
suffice for a correct classification. However, this is not always the case. Figure
2.11] shows an example of a more complex IC output. Notice that even when the
hypothesis of most f; in the IC layer disagrees, the MLP is capable of classifying

correctly S’¢.

2.3 Robotic Speech Recognition

The final step in this work is to explore the use of sound source localisation
for improving the performance of Automatic Speech Recognition (ASR) in the
context of robotic platforms (Weintraub, [1986; |Sagi et al. 2001; Rouat et al.l
2011). Here is where the biomimetic computation paradigm of this work meets
with the embodied embedded cognition approach. As detailed in the following
paragraphs, existing approaches can perform entirely accurate ASR with robotic
platforms that support speech segregation with SSL (Maas et al.,[2011};|Guo et al.|
2016; Zhang & Wang, [2017)). However, there is still room for improvement, as

often these methods are constrained by assumptions about the number of sound
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Figure 2.12: Experimental setup designed for research in cognitive robotics

il 072)

sources present in the environment, the amount of ego-noise and reverberation
that they are capable of handling or the nature of the sounds that these sys-
tems are designed to localise (Ince et all [2011albi Wang et all, [2018)). All these

systems have strengths that can complement each other and, hence, define the

characteristics of the systems that we design afterwards.

Roman et al| (2003) present a system integrating SSL and ASR where speech

recognition improves with the support of sound a source localisation system. They
generated ['TD-ILD binary masks that increased the SNR of the incoming speech
signal, although the handling of moving speakers and reverberation remains open
in their approach. Two other interesting examples in this direction are presented
by [Asano et al.| (2001)) and |[Fréchette et al. (2012). Both approaches make use

of microphone arrays to localise speech sources in the environment. Afterwards,
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they use information about the sound source to separate speech signals from
noise in the background. The drawback of these methods is that they require
prior knowledge about the presence and number of sound sources. |Cong-ging
et al.| (2009) and Deleforge & Horaud (2012) present two alternative approaches
that make use of binaural robotic platforms. However, both systems suffer from
the same limitations of the binaural SSL methods discussed before as they mostly
rely on the information contained in low-frequencies for SSL.

Woodruff & Wang (2013)) present an architecture employing ITDs and ILDs
for SSL and can perform segregation of an unknown number of sources. Never-
theless, the reported results consider at most two sound sources and segregation
is performed offline due to the time required for computation. The approaches
mentioned above rely on the construction of ideal binary masks for segregating
speech from a discrete set of sound source angles. This approach presents an addi-
tional challenge because these methods are considerably affected when the sound
source differs from the set of trained angles. Therefore, such approaches rely on
an SSL system capable of tracking a human speaker almost instantly and with
high accuracy. Our approach in the current work focuses on increasing the SNR of
speech by continuously localising the most intense sound source and re-orienting
the robot towards the speaker. In other words, we replace the use of ideal binary
masks with a perception-action loop that maximises the SNR of sound arriving
from the direction of the speaker. This sequential approach is feasible, given that
our ASR system can recognise full sentences even if utterances have lower SNR
at the beginning Twiefel et al. (2014)); Heinrich & Wermter| (2011a)). In order
to compare more clearly the performance of ASR with and without the support
of SSL, we constrain the domain-independent output of an ASR system to a
domain-dependent set of sentences. The experimental setup that we designed for

research in multimodal integration for humanoid robots (Lim et al., 2007), hence
ideal for SSL and ASR, can be seen in Figure [2.12]

2.4 Conclusion

The development of SSL methods presented in this chapter provides a context for

the development of our proposed method. It is interesting to see the increments in
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the complexity of the hardware, going from arrays with a couple of microphones
to arrays with several dozens of microphones and back to bioinspired binaural
approaches. Also interesting, is the use of static platforms a few decades ago
and the development of robotic systems that dynamically improve their accuracy
by adapting their orientation to the sound source. Underlying this evolution, we
find an increase in the available computing power and an improvement in the
algorithmic approaches. Earlier systems made use of one spatial cue, whereas
modern systems make use of multiple spatial cues that extract information from
all the audible spectrum of sound. Finally, we approach systems that make use
of the robot embodiment and use biomimetic computation that perform SSL
more efficiently and is robust to noise and reverberation (Devore et al., 2009).
In the following chapters, we present the experiments that detail the evolution
of our architecture and its application to the improvement of automatic speech

recognition under high levels of ego-noise.
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Chapter 3

Noise-Robust Sound Source

Localisation

In this chapter, we introduce the first version of a spiking neural network (SNN)
used for binaural sound source localisation (SSL) integrated with a robotic plat-
form with ego-noise. This SNN is based on the architecture developed by [Liu
et al| (2010) and has two main developments that differentiate it from the orig-
inal model. The first improvement on the architecture is a simplification of the
spiking model that replaces the leaky integrate-and-fire neurones (Steinj, 1967, for
linear inhibitory and excitatory neurones that always fire when stimulated. This
simplification reduces the computational and memory cost, and interestingly, it
improved the localisation accuracy. The second improvement is the determina-
tion of the maximum interaural level difference (ILD) produced by the geometry
of the robot head used in the experiments. We determined the maximum ILD
empirically by measuring the accuracy of sound source localisation while testing

a range of different dB values.

3.1 Anechoic Room and Robot Nao

The experimental setup can be seen in figures and 3.Ibl The location was
a room conditioned with heavy curtains that partially absorb the reverberation
produced by the stimuli presented to the robot. The room reverberation time is

f ~ 0.4 s and the sound pressure level f ~ 25 dB, what provides a recording
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(b)

Figure 3.1: Sounds were played around the Nao in half circle @2m, from 0° to
180° in 15° steps. 13 recordings were made in a room with reverberation damped

by curtains.
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environment quality close to the industry standards for music studios. In this
room, we presented auditory stimuli from a semi-circle around the robot with a
diameter of @2 m. The sound used for this experiment consists of white noise as it
contains on average the same amount of energy across all frequency components.
Along the semi-circle, we reproduced the stimuli from 13 positions between 0° and
180° in 15° steps. At this point in our research, we were interested in testing the
SSL performance with standardised signals; therefore, we did not include more
complex stimuli like human speech or sum-of-ripples (Klein et al.l 2000).

For the experiments detailed in the current chapter, we used the robot Nao
(Gouaillier et al, 2009). This robotic platform has been designed to help re-
searchers in the field of humanoid robots, what fulfils our requirements of having
a torso and a head-like structure between the ears. However, the head of the
robot includes a fan for the cooling system that produces a background noise of
44.6 dBA at the right microphone and 41.6 dBA at the left microphone. In the
original architecture of Liu et al| (2010)), the experiments were carried out with
a human-shaped head that did not produce internal or ego-noise; hence, our first
objective is to find out if the SSL architecture is robust against the interference
of high levels of stationary noise. According to specifications, Nao’s distance be-
tween the left and right microphones is ~0.12m. Therefore, the highest frequency
that does not generate interaural time difference (ITD) ambiguities is f, ~ 1400
Hz.

3.2 Biomimetic Computation

As explained in Chapter the spatial cues that we used for SSL were the ITDs
and the ILDs. We extract these cues with the simplified models of the medial
superior olive (MSO) and the lateral superior olive (LSO) and integrate their
output with the Bayesian model of the inferior colliculus (IC). We estimate using
Bayesian inference the weights of the connections from the MSO and LSO layers
to the IC layer. However, in this first experiment we compute such connection
weights with a simplified version of the model detailed in Section as initially

we do not include the assumption of Poisson-distributed noise in the activity of
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neurones. Figure [3.2] details the resulting connectivity scheme between the MSO,

LSO and IC models used in this first experiment.

IC
0° 0 180°
@_— Inhibitory connection 4000Hz
Excitatory connection
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Figure 3.2: Multiple delay lines deliver spike-trains to MSO cells according to
the Jeffress model (Schnupp et al., 2011). MSO neurones respond to frequencies
between 200 Hz and 4000 Hz. The difference of the wave amplitudes that produced
a spike in the MSO is used to generate a spike in the LSO. LSO neurones respond
to frequencies between ~1000 and 4000 Hz. The MSO has excitatory connections
to the IC in all frequencies. The LSO has excitatory and inhibitory connections to
the IC in frequencies between ~1000 Hz and 4000 Hz.

Willert et al|(2006) inspired this statistical inference, as the procedure is the
same for computing the MSO excitatory connections, and the LSO excitatory
and inhibitory connections. In the following paragraphs, we detail the method
for estimating the MSO connections to the IC. First, we record one second of white

noise with the left and right robot microphones at each of the QJI»C

angles. A single
loudspeaker produces the recordings at one meter from the robot. Afterwards,
the recorded sounds are decomposed in ny frequency components. The value of
each frequency component f, for f = 1...ns, is given by the gamma tone filter
bank. Such filter simulates the mechanical filtering of the human cochlea. The
MSO model analyses separately each of the ny frequency components of sounds.
The IC model will have a total of n;c neurones sensitive to each of the ny
frequency components. Let us define:
§Ic _ 180

| xj, for j=0,1..n;c — 1 (3.1)
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HI “ is the angle of a sound source for which the IC neurone j, f is maximally
sensitive, S1¢ .7 is the number of spikes produced at the IC neurone j, f by a given
sound and n;c equals the total number of azimuth angles, in a half circle in front
of the robot, where we place the sound sources for training.

The MSO model will have a total of na;so neurones sensitive each of the ny
frequency components. Let us define:

180
95\450 = —*’i, fOI’iIO,l...nMso—l (32)

nyso —

6MS50 s the angle of a sound source for which the MSO neurone 4, f is maxi-

S;. M SO is the number of spikes produced at the MSO neurone

mally sensitive and
i, f by a given sound. The value of ny;s0 depends mainly on the distance between
the robot microphones, and the sample rate of the sound card used for recording
the sounds defines its upper limit.

Now, lets define p (S}5°(01, f), as the likelihood probability of a spike being
produced at neurone 1, f , given that a sound is being produced at angle GJI-C.
P (9]1-C| f ) represents the prior probability of a sound being produced at angle 910
given that frequency component f is being analysed. Finally, p ( SM SO| f) is the
evidence of spikes being produced at neurone 1, f.

Finally, from the previous definitions of likelihood, prior and evidence proba-

bilities, the posterior probability can be computed with the Bayes rule:

( MSO'QIC) ) (QJICU')
( MSO|f)

Each of the n;¢ training sounds recorded with the robot is analysed. First, the

(05€1SM59, f) = (3.3)

MSO model compares the wave from the left and right channels of a recording. It
selects the first positive peak of the left channel wave as the reference peak. Then
it selects as comparison peaks, all the positive peaks on the right channel located
around one period after the reference peak. Depending on the time difference
between the reference peak and each of the comparison peaks, the MSO model
generates a spike in the corresponding MSO neurone i, f. Afterwards, the MSO
model repeats the same procedure with the sides inverted and selects the first
positive peak of the right channel wave as the reference peak. Finally, both

reference peaks are shifted to the maximum peaks around one period further,
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and both comparison processes repeated. The reference peaks stop being shifted

forward when two periods are left before the sound wave finishes.

Aj»” 90 is generated for every

At the end of the analysis, an activation matrix
training sound 0}0. The system corrects the activation matrices by a proportion
factor t,,.p, relative to the size of the listening window that the robot will use

under normal operation.

ttrainin
tprop = s (3.4)

tlz’stening

tiraining 15 the time length of the training sounds and #j;stening is the time length

SIS0

Each activation matrix A;‘”SO is composed by ny activation vectors S

The connection weights are computed for every MSO neurone i, f in the acti-

of the listening window that the system uses under normal operation.

vation vector 5%58, to the single IC neurone j, f. There are no connections
between neurones sensitive to different frequencies. The connection weights are

thresholded according to the following function:

“r 0 otherwise

oif { p (059155777, 1) 1 p (019155570, f) > maaso maxy (p (657157777, f))
(3.5)
Ef]{ is the excitatory connection from neurone ¢, f to neurone j, f and 7350
is the real number from the closed interval [01] that determines the minimum
value of a posterior probability in order to be kept as a connection. A value of 0
represents no connection.

The likelihood probability is computed as follows:

(SMSOWIC f) _ S%CSO (3 6)
D\»ir J o _Z' g\fcso :

The system sums the spikes count in the activation matrix over all the

AMSO
j
MSO neurones sensitive to the sound frequency component f.
The prior probability is the same for all neurones, as every angle 9]10 was
trained once. Therefore, each angle has the same probability of producing a

sound:
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1
p (05°]f) = (3.7)
nrc
nrc equals the total number of sound source angles used during the training
of the system.

The evidence probability is computed as follows:

( MSO|f) _p( MSO|6)IC7 ) (9][0’f)+

(3.8)
( MSOl 0]07 ) (_\Hjlc|f)
where
( MSO‘ 9[0’ ) (ﬁejIC’f):
MSO for all AMSO (3.9)

Z Z SMSO

This simplification concludes the modifications made to the IC model from
Liu et al. (2010).

3.2.1 Multi-Array Preliminary Study

In order to have a reference for the performance that is possible to achieve with
the Nao platform, we performed a preliminary study using standard statistical
methods for the extraction of time-difference-of-arrival (TDOA) between 3 micro-
phone pairs in Nao’s head (Li & Levinson, 2002). More specifically, we computed
the cross-correlation between the signal of two microphone pairs: left-front and
right-front. The system computed the TDOAs with a cross-correlation for a
moving window, and the resulting TDOAs were concatenated to produce the in-
put to a standard multilayer perceptron neural network (MLP). The MLP had
|Ir|= 2 input neurones, was tested with |Iz|= 6...72 hidden neurones, and had
|Io|= 24 output neurones. The network was trained with 4 speech recordings

from 24 directions equally spaced around the robot.
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Figure 3.3: Cross correlation of I'TD pairs.

3.2.2 Determination of Robot Interaural Level Difference

We hypothesise that the SSL architecture is robust enough to perform accurately
under ~40dB of ego-noise. A crucial step to achieve this robustness is to de-
termine the maximum ILD produced by the robot head. The maximum ILD
resolution max;;p that can be achieved by a robot depends on the geometry of
its head, and it is necessary to estimate its value to extract ILDs from the high-
frequency components of sounds. For SSL with humanoid dummy heads (Liu
et al., 2010) it is possible to determine the value of max;,p from the scientific
literature. However, for Nao’s head, it was necessary to estimate the max;;p
by analysing the performance of the LSO model for SSL with different groups of

frequencies.

3.2.3 Biomimetic Computation

We performed two experiments with the biomimetic SNN model. In the first one,
we trained the robot with 1 s of uniform white noise (WN), and in the second

one with a longer speech sequence. The speech sequence consisted of 4 instances
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3.3 Experimental Results

of the words hello, look, fish, coffee and tea, each pronounced by male and female
speakers. We chose the words to contain tonal sound from vowels as well as frica-
tive and plosive sound from consonants. In this way, we could observe the effect
these phonological subclasses may have on the system accuracy if any. While
performing SSL, the recordings made by the robot were split into 16 frequency
components between 200-4000 Hz as shown in Figure We chose the range of

frequencies to contain most the harmonics produced in speech (Titze & Martin,
11998; [Baken & Orlikoff, 2000) and determined the frequency components by ap-
plying the Patterson-Holdsworth filter bank algorithm (Holdsworth et al. 1988}
, . In both experiments, the testing sounds consisted of instances of

the same words not used during training and of 0.25 s samples of white noise.

240

300

Position of the speaker (degree)

0 60 120 180 240 300
Classified angle (degree)

Figure 3.4: Confusion matrix of the MLP output.

3.3 Experimental Results

In order to get insights into the TDOAs produced between the two pairs of
microphones, we computed the phase shifts producing the highest correlation
for stimuli presented 360° around the robot. In this experiment, the extension
to the full circle was straightforward as we were using 3 microphones. Figure |3.3

shows the results of the cross-correlations between the left and front microphones.
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Figure 3.5: Localisation error of the LSO model when using the winner-takes-all
strategy. Solid lines represent higher frequency components, and dotted lines repre-
sent lower frequency components. The average error for high-frequency components
is lower than the average error for low-frequency components, which is consistent
with the results obtained in neurophysiological experiments with animals. Even
between high-frequency components, the average error tends to decrease around a
small range of interaural level differences close to 1 dB. This shows that customi-
sation of the max;rp value can reduce by half the average localisation error, even

between the best performing frequency components.

The results of this first experiment show that the system can perform multi-aural
SSL using the robot Nao, independently of the ego-noise produced by the cooling
system. As can be seen in Figure the network classified the location of the
sound source for most of the source angles correctly, and when the classification
was erroneous, the magnitude of the error was minimum. Overall, the MLP
classified the sound source angles with an accuracy of 91%.

Using more than two microphones was avoided in the following experiments
for the sake of biological plausibility. Therefore, the question remained whether
the binaural approach was going to perform as accurately as the approach with
3 microphones. The second experiment was related to the customisation of the

maxy.,p. Once determined, the max;;p value remained fixed in the following
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3.3 Experimental Results

experiments. We estimated the best LSO performance for all —and each— of the
ny frequency components from a range of max;zp values between 0.1 dB and 3.0
dB at 0.1 dB steps. Figures [3.5] and 3.6 show the MSO and LSO output errors

plotted against all the tested max;;p values.
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Figure 3.6: MSO and LSO output errors estimated from their best frequency
components (dotted lines), and average error from all frequencies (solid lines). In
both cases the MSO error (blue lines) is constant for all max;;p values and the

best performance was reached at ~0.8dB.

Finally, we needed to analyse in more detail the behaviour of the system with
the max;;p value that provided the best performance. The third experiment
is related to SSL with only two microphones using a biomimetic spiking neural
network. The results showed that the system was capable of differentiating sounds
with a granularity of 15°, but with higher error rates than the array of three
microphones. The confusion matrices can be seen in Figure[3.7 More specifically,
the system has better performance when training with speech and testing with
WN;, but the accuracy diminishes when the system is trained with WN and tested
with speech. These results are somehow unexpected, as training with WN has
yielded good results in previous versions of the architecture.

Figures and compare the localisation error of the MSO, the LSO and
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(a) Trained with S and tested (b) Trained with S and tested
with S. with WN.
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Figure 3.7: IC output confusion matrices when the system was trained or tested
with uniform white noise (WN) or speech (S). The speech output is for the word

fish. Lighter areas indicate higher values.

the IC models. In this case, the output of each model was chosen using an
average of the winner-takes-all strategy applied to each frequency component.
As expected, the system achieves the best localisation performance when tested
with WN. Except for 0° and 180°, the IC lower boundaries in Figure [3.8show no
deviation from the ground truth values when localising WN stimuli. Figure [3.9
details further the output of the IC alone. In general, for all angles and all sound
classes, the IC performance highly improves in comparison to the classification

accuracy of the MSO and the LSO models alone as the localisation error drops
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to zero between 60° and 120°.
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Figure 3.8: MSO, LSO and IC average errors when training with speech and
testing with WN and speech. The errors are averaged over all sound classes. Notice
that the IC has higher accuracy than the MSO and LSO.

100-

Average error (deg)

=-speech
<=WN

Ve

S b o—0 & :
0 15 30 45 60 75 90 105 120 135 150 165 180
Sound Source Angle (deg)

Figure 3.9: IC average errors when training with speech and testing with white

noise or speech. Notice that the localisation error for white noise is zero for most

angles. It is interesting to notice that training with speech produces a system that

performs better than the common practice of training with white noise.

93



3. NOISE-ROBUST SOUND SOURCE LOCALISATION

3.4 Conclusion

In this chapter, we confirmed the robustness of a biomimetic approach to SSL,
even though the architecture consisting of 3 microphones performed more ro-
bustly. The integration of auditory cues in the IC showed higher performance
than the MSO and the LSO alone. The IC model made no error in the 60° in
front of the robot and had near perfect localisation accuracy for WN. The opti-
mised algorithm proved to be capable of segregating sound sources with similar
precision to state-of-the-art algorithms (Nix & Hohmann| 2006; Willert et al.,
20006; [Voutsas & Adamy), 2007).

Estimating the optimal max;;p value for Nao’s head, allows the system to
double the resolution for the localisation of sound sources in comparison to Liu et
al. (Liu et al.,2010), where the system performs SSL with a granularity of 30°. We
found the max;;p through an analysis of the LSO activation across all frequency
components, but it was clear that high-frequency components are better suited for
the extraction of ILDs. Furthermore, the frequency decomposition of the input
signals opens the possibility of localising concurrent and dynamic sound sources
(Liu et al. 2010) that have different harmonic components. Such an advantage
is missing in networks that extract I'TD pairs from the cross-correlation of the
sound wave.

The Bayesian inference process allowed the system to perform more robustly
under high levels of ego-noise. When the MSO and LSO models were presented
only with the robot’s ego-noise, their output was a fixed angle. However, such
ego-noise activation is distributed evenly among the IC neurones, and as expected
their overall output cancels out. Equally important, the IC regularised the output
of the system in a way that makes it more suitable to human interpretation and
varies more linearly than the output of either the MSO and the LSO models.
The IC output can be designed with a reduced number of neurones, making it
useful as a dimensionality reduction model. This reduction helps to speed up the
training of layers added in subsequent extensions of our architecture.

The processes underlying spatial hearing can be used for the segregation of
speech and increase its signal-to-noise-ratio in this way (Roman et all [2003).

In the following experiments, we go further in this direction, as we explore the
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3.4 Conclusion

potential of using SSL for the enhancement of automatic speech recognition.

Ultimately, we pursue a multimodal approach to the long-standing Cocktail Party

Problem, and SSL is an essential ingredient in such enterprise (Even et al., 2011;

Li et al) 2012; Kim et al., [2015]).
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Chapter 4

Static Sound Source Localisation

When deploying binaural sound source localisation (SSL) algorithms in different
environments and robotic platforms, it is crucial to use methods that are robust
against diverse sources of noise and reverberation. In order to asses this chal-
lenge, in this chapter we compare the performance of various methods that could
fulfil the same function at each stage of the SSL system that we propose. The
architecture has three degrees of freedom, i.e. each tested architecture employs a
different combination of representation of binaural cues, clustering and classifi-
cation algorithms. The heuristic for the selection of methods is the same at each
degree of freedom: to compare the impact of traditional statistical techniques ver-
sus machine learning algorithms with different degrees of biological inspiration.
We evaluate the overall performance in the analysis of each system, including
the accuracy of its output, training time and adequateness for life-long learn-
ing. The results support the use of hybrid systems, consisting of diverse kinds
of artificial neural networks, as they present a practical compromise between the

characteristics evaluated.

4.1 VR Room and Robot iCub

Figure depicts our experimental setup. It consists of a humanoid robotic head
immersed in a virtual reality (VR) setup designed for audio-visual integration
(Bauer et al.,|2012). This setup can help tremendously to test neural architectures

inspired in natural systems (Rucci et al., [1997) with robotic platforms (Rucci
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Figure 4.1: Audio-visual VR experimental setup. The grid shows the curvature
of the projection screen surrounding the iCub humanoid robot head and the dots

represent the location of the sound sources behind the screen.

, 2000)). The iCub is a platform designed for studies in embodied cognition
and cognitive developmental robotics (Beira et al., 2006). The iCub head has a

geometry similar to the average 3 to 4 years old child and is equipped with a pair
of microphones surrounded by pinnae.

The position of the head remains fixed during the experiments, what we de-
nominate static SSL. The iCub head produces ~60 Hz of ego-noise, which is one
of the most common challenges in humanoid platforms. In order to reduce the
influence of additional variables, we reduce the reverberation in the room with
damping curtains. The stimuli that we present to the robot consist of 0.25ms seg-
ments of white noise (WN) and the words hello, look, fish, coffee and tea recorded
from male and female subjects. The WN class consisted of 12 instances, and the
speech class consisted of 40 instances of each word. Each instance of both sound
classes is presented once to the iCub between 0° and 180° at 15° steps along the
azimuth plane. We present stimuli at the same elevation angle and a distance of

~1.3m.
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The system is tested with four training / testing configurations: Speech /
Speech, WN / WN, WN / Speech and Speech / WN. As expected, we obtained
the highest performance when training and testing with different instances of the
same class of sounds, i.e. with the Speech / Speech, WN / WN configurations.
The lowest performance came from the WN / Speech configuration. However,
some architectures were able to generalise between classes in the Speech / WN
configuration. For this reason, we focus in this chapter on the results obtained
with the Speech / WN configuration as it is interesting to analyse the generali-

sation achieved by the learning process.

4.2 Neural and Statistical Processing of Spatial

Cues

We implement an architecture with three degrees of freedom in order to compare
different SSL systems. The architecture is depicted in Figure Each degree
of freedom represents a layer, or processing step, that can be accomplished by
alternative methods. The architecture layers consist of preprocessing, representa-
tion, clustering and classification of binaural sound input. Within these layers,
the system performs the preprocessing step with a fixed algorithm; therefore, we
do not consider it as a degree of freedom. During this step, the sound input is
decomposed in several FCs with the Patterson-Holdsworth filter bank (PHEB)
(Slaneyy, (1993)).

The representation layer is in charge of characterising I'TDs and ILDs numer-
ically. The clustering layer is an intermediate step that can potentially improve
the performance of classifiers, as it can distribute a large number of prototype
vectors similarly to the underlying distribution of the training data. The clus-
tering layer is not present in some of the tested systems, as it is also possible
to directly classify the output of the representation layer. Finally, the classifica-
tion layer generates an output angle that can we use for motor control (Rokni &
Sompolinsky| [2012). In the following subsections, we detail further each of the

processing layers in the architecture.
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4.2.1 Preprocessing of Sound Signals

The first stage in our SSL system is the PHFB. This filter decomposes the left
(L) and right (R) sound recordings in frequency components f € {1,2...F},
where F' = 20. The filterbank separates the extracted f on a logarithmic scale
between 200 Hz and 4000 Hz, i.e., with an increase in bandwidth that resembles
the response of the human cochlea. Afterwards, the subsequent layers compare
the corresponding f from L-R signals for the extraction of spatial cues. All the

classification methods that we describe in this chapter use this step (see Figure

139).

4.2.2 Representation of Spatial Cues

The basis of SSL algorithms is the set of localisation cues chosen as input. As the
method used to represent spatial cues can influence the accuracy of the system’s
output, we want to compare the performance of our SSL system when represent-
ing spatial cues with traditional signal processing techniques against bioinspired
methods. For this reason, we choose two of the most representative methods in
binaural SSL research for representing ITDs: Cross-correlation (CCR) (Benesty
et all, 2007) and MSO Jeffress coincidence detector (Liu et al. 2010; | Joris et al.,
1998). We also make use of ILD cue and represent it with an LSO model previ-
ously presented by the authors (Liu et al., 2010). Furthermore, we compare two
integration methods for the MSO and LSO outputs. The first method (MSO-
LSO) appends the output of the MSO and LSO models, and the second method
(Bayes IC) integrates the output of both models using Bayesian inference. In
Figure [3.2] are shown further details on the MSO, LSO and IC models. In the

following sub-subsections we detail each of the representation methods.

4.2.2.1 Cross-Correlation

The Cross-Correlation (CCR) technique is used to estimate the cross-correlation

sequence CCRy, p between L and R input signals, assuming them to be random
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Figure 4.2: Testing architecture. Solid lines represent fixed steps, and dotted
lines represent different systems that assembled for motor control. The shadowed
brackets indicate the layers that the testing meta-architecture combines to define
different architectures. The preprocessing consists on decomposing the sound input
in several FCs with the Patterson-Holdsworth Filter Bank (PHFB) (Slaney, [1993).
Then, the representation layer numerically characterises different spatial cues. Al-
ternatively, the representation provided by the Bayes IC integrates output from
the MSO and LSO in vectors with reduced dimensionality. The clustering layer
distributes a larger amount of prototype vectors in the space of represented cues in
order to test for a possible improvement in SSL accuracy. All systems were tested
with and without this intermediate layer. Finally, the classification layer produces

an output angle that can be used for motor control.

stationary processes sampled from time window At.
CCRLr(J, [, Al) =
il Lisat-Ricjrar, for  0<j<J (4.1)
CCRy p(—j. f. M), for —J<j<0

where 7 represents sampled values from the input signals, j are the IT' D shifts
made when computing the correlation sequence and J is the length of the input

signals.
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We use the correlation sequences of all f as input to the clustering or the
classification algorithms. However, the output angle © can also be estimated

directly from the j that maximises the correlation over all f with the winner-

takes-all (WTA) rule:

ITD,;, = arg mjax (Z CCRLR(J, f. At)) : (4.2)
!

We are interested in using WTA for benchmarking, as it is the classification

technique the authors previously used in the MSO, LSO and IC models (Liu

et all, 2010; |Davila-Chacon et al., [2012). Due to the geometry of the head, ITDs

vary non-linearly as a sound source moves around us. Therefore, the output angle

is computed as follows:

o .1 <]TDwm—]TDma$+1>
= Sin 9

4.3
IT Doy (43)

where I'T'D,, ., is the maximum possible ITD that occurs when the sound source

is aligned with the interaural axis.

4.2.2.2 Medial Superior Olive

One of the methods we use for extracting ITDs is Liu et al. (Liu et al} 2010)
SNN model of the MSO. This method takes inspiration from neurophysiological
theories describing the underlying mechanisms of the MSO (Ashida & Carr, [2011)),
including the Jeffress Coincidence Detector model. After decomposing the sound
signals with the PHFB, each frequency component f is phase-locked to its positive
values. This locking means that hair cells in the organ of Corti reach the highest
probability of producing a spike when the amplitude of vibrations in the basilar
membrane is maximal (Richter et al., |1998).

Afterwards, the system compares the maximum positive values in time window
At, and the phase shift between these maximums is used to estimate the ITD.
In the last step, neurones k € {1,2... K} in the MSO respond to different ITDs
and for every time window At generate a spikes matrix SXISO of size F' x K.
SR

We can feed the classification algorithms with , or directly compute the

output angle © from the k& with maximal neural activity among all the f. For
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the latter case, IT'D,;, could be estimated using the WTA rule as in eq. (4.4])
and O as in eq. (4.3).

o MSO
ITDyiy, = argmax (ZsAt ) . (4.4)

f

4.2.2.3 Lateral Superior Olive

For estimating ILDs we use Liu et al. (Liu et al.,2010) SNN model of the LSO. It
also was developed by some of the authors and our current objective is to test it
in a different anthropomorphic head with ego-noise. In the LSO model neurones
k€ {1,2... K} fire depending on differences in L-R amplitudes for each f. Using
the same pairs of L-R values from which I'TDs are measured, ILDs are computed
as log(Ls¢/Ry:). Therefore, at every time step At a spikes matrix SK5© of size
F x K is generated. Afterwards, we obtain the output angles following the same

procedure applied to SXSO.

4.2.2.4 Inferior Colliculus

Reducing the dimensionality of input vectors can decrease the amount of data
and time required for training machine learning algorithms. For this reason, we
also test the clustering and classification algorithms with an integrated version
of the MSO and LSO output vectors. Such integrated vectors are constructed
using Bayesian inference in a model of the inferior colliculus (IC) (Liu et al.l
2010). A significant computational advantage comes from the IC dimensionality
reduction, as IC output vectors are more than six times smaller than the MSO
and LSO output vectors together. More details of the IC integration architecture
are shown in Figure [3.2]

An additional benefit from this integration process comes from the overlap
of MSO excitatory connections and LSO inhibitory connections. The LSO cap-
tures the useful information for SSL contained in high frequencies but generates
ambiguous information from low-frequencies. The MSO captures the useful in-
formation for SSL contained in all frequencies, but also generates ambiguous

information from high-frequencies. For this reason, LSO inhibitory connections
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can help to remove misleading information generated by the MSO at high fre-
quencies. Therefore, the IC provides a more accurate representation of auditory
cues along all f.

Similar to the previous cues, the IC model generates a spikes matrix SIS at
every time step At. Again, output angles can be computed with the same proce-
dures applied to SXS©. Chapter provides further details on the architecture
of the MSO, LSO and IC models. Now we proceed to introduce and justify the

selection of clustering methods.

4.2.3 Clustering of Spatial Cues

Clustering algorithms can be used directly for classification when having the same
number of prototypes p € {1,2... P} and target classes ¢ € {1,2...C'}. However,
with a larger P it is possible to cover more closely the distribution underlying
the training data, hence, improving the overall performance of the system. In the
case of SSL, the distribution of auditory cues in each representation space can be
highly convoluted. Therefore, using P > C' can spread the trained prototypes
closer to the distribution of the characterised cue.

Since several p can belong to a single ¢, an additional requirement is the in-
clusion of another layer in the architecture for classifying the winning c¢. Again,
the criteria for selecting clustering algorithms is to compare a standard statistical
technique against a neural method, for which we choose K-Means (KM) (Mac-
Queen), [1967), Learning Vector Quantisation (LVQ) (Lloyd, 1982; |Kohonen, 1995)
and Self Organising Feature Maps (SOM) (Kohonen, 1982, 2013).

4.2.3.1 K-Means Clustering

Due to its simplicity and speed relative to other clustering techniques, K-Means
Clustering (KM) (MacQueen, [1967; Lee & Choil, 2010) is included as a benchmark
against the more sophisticated SOM. The best results are achieved with K = 26
and using a randomly chosen sample of the training data as starting positions
for the prototypes. K = 26 comes from the set of multiples of the total number
of target classes C' (sound source angles used during training), i.e., K € {C X
1,Cx2,Cx3,Cx4,C x5}. All analytical procedures described in this chapter

64



4.2 Neural and Statistical Processing of Spatial Cues

Value Variable Comments
K 26 {13, 26, 39, 52, 65}
Distance Squared Euclidean | {Squared Euclidean, City Block,

Cosine, Correlation, Hamming}

Empty action Singleton {Error, Drop: Remove alone pro-
totypes, Singleton: Create single

instance cluster}

Online phase On {On: guarantees local minima,
Off: slower}
Replicates 10 Times to repeat the clustering

with new initial prototype posi-
tions. Take the solution with
the lowest value for within-cluster
sums of point-to-centroid dis-

tances.

Starting positions Sample {Sample: From data, Uniform:
From data range, Cluster: Pre-

liminary clustering with 10% of
data}

Table 4.1: K-Means Clustering (KM)

use the Euclidean distance as the standard metric. For further details on the
hyper-parameters see Table [4.1]

4.2.3.2 Learning Vector Quantisation

The Learning Vector Quantisation (LVQ) (Lloyd, [1982)) classification method rep-
resents a step between K-Nearest Neighbours and Self-Organising Maps. In our
experiments, we used the LVQ-2 variant, where the presented instance attracts

the winning prototype and repels the second winner.
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Value Variable | Comments
Hidden units 26 {13, 26, 39, 52, 65}
Learning rate 0.01 {0.1, 0.01, 0.001, 0.0001}
Learn function LV2 {LV1: Attracts winner, LV2: Attracts win-
ner and repels second winner}
Train epochs 1000 | {10, 100, 1000, 10000}

Train time Inf. Maximum training time.

Goal 0 Desired error.

Table 4.2: Learning Vector Quantisation (LVQ)

Value Variable | Comments

X prototypes 13 {13, 26, 39, 52, 65}

Y prototypes 13 {13, 26, 39, 52, 65}
Map dimensions 2D Map is projected on a 2D space.
Topology function | Hexagonal | {Square grid, Hexagonal, Triangular,

Random}
Train epochs 1000 {10, 100, 1000, 10000}
Train time Inf. Maximum training time.

Table 4.3: Self Organising Map (SOM)

4.2.3.3 Self Organising Map

Due to its topology-preserving property, Self Organising Maps (SOM) (Kohonen,
1982) facilitate visualisation of the data structure in lower dimensions. We use a
2D SOM in two different configurations. In the first one P = C' and its output
can be directly used for motor control. In the second configuration P = (C?
and a classification layer is added on top of it. In both cases the ordering phase
consists of 1000 steps, has a learning rate n = 0.9 and the neighbourhood distance
(ND) decreases from the furthest neurone to 1. The tuning phase consists of
additional 4000 steps where n = 0.02 and ND = 1. For further details on the
hyper-parameters see Table [4.3]
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4.2.4 Classification of Spatial Cues

In our testing architecture, the classification layer receives input from the repre-
sentation layer or an intermediate clustering layer. Following the same heuristic,
we compare a standard statistical technique for benchmarking against a pair of
artificial neural networks (ANN). K-Nearest Neighbours (KNN) (Cover & Hart,
1967) is the chosen statistical technique and the selected ANNs are the Radial
Basis Functions network (RBF) (Park & Sandberg, 1991) and the Multilayer
Perceptron (MLP) (Rosenblatt, 1958).

4.2.4.1 K-Nearest Neighbours

K-Nearest Neighbours (KNN) (Cover & Hart, [1967)) is a relatively simple, yet
powerful, classification technique. Instead of exhaustive search, we use a KD-Tree
to reduce the cost of finding the nearest neighbour from O(N?), to O(NlogN) for
N data points (Bentley, [1975). We obtained the best performance with K = 4.

4.2.4.2 Radial Basis Functions Network

A significant advantage of Radial Basis Functions Networks (RBF) (Park & Sand-
berg, 1991)) over other ANNs is their much faster training procedure. The number
of neurones in the hidden layer is equal to the number of training instances, and

the network shows the best overall performance with a spread o = 10.

4.2.4.3 Multilayer Perceptron
