
UNIVERSITÄTSKLINIKUM 
HAMBURG-EPPENDORF 

 
Zentrum für Experimentelle Medizin 

Institut für Systemische Neurowissenschaften 

Prof. Dr. med. Christian Büchel 
 
 
 
 
 
 
 
 
 

Dopaminergic modulation of the  

explore/exploit trade-off in human decision making 

 
 
 
 
 
 
 
 
 

Dissertation 
 

zur Erlangung des Doktorgrades Dr. rer. biol. hum. 

an der Medizinischen Fakultät der Universität Hamburg 
 
 
 
 
 

vorgelegt von 

Karima Chakroun 

aus Bremerhaven 
 
 
 

Hamburg 2019 

  



2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Angenommen von der  

Medizinischen Fakultät der Universität Hamburg am:  27.06.2019 

 

Veröffentlicht mit Genehmigung der  

Medizinischen Fakultät der Universität Hamburg. 

 
 
 
 
Prüfungsausschuss, der/die Vorsitzende: Prof. Dr. Jan Peters 
 

Prüfungsausschuss, zweite/r Gutachter/in: Prof. Dr. Steffen Moritz 
 

Dritte/r Gutachter/in: Prof. Dr. Gerhard Jocham 
 

 

 

Datum der Disputation:  27.06.2019 

       



3 
 

Contents 

1 Introduction.......................................................................................................................... 5 

1.1 The explore/exploit trade-off .................................................................................................. 5 

1.2 The dopaminergic brain system ............................................................................................ 26 

1.3 Dopamine in the explore/exploit trade-off ........................................................................... 42 

1.4 The current project ................................................................................................................ 52 

 

2 Methods ............................................................................................................................. 54 

2.1 Participants ............................................................................................................................ 54 

2.2 General procedure ................................................................................................................ 54 

2.3 Baseline screening ................................................................................................................. 55 

2.4 Bandit task ............................................................................................................................. 60 

2.5 Post-fMRI testing ................................................................................................................... 62 

2.6 Additional control variables .................................................................................................. 64 

2.7 Cognitive modeling ................................................................................................................ 65 

2.8 Functional magnetic resonance imaging (fMRI) .................................................................... 75 

2.9 Further behavioral data analysis ........................................................................................... 82 
 

3 Pilot study 1 ........................................................................................................................ 86 

3.1 Study-specific methods ......................................................................................................... 86 

3.2 Study-specific results and conclusion .................................................................................... 89 
 

4 Pilot study 2 ........................................................................................................................ 92 

4.1 Study-specific methods ......................................................................................................... 92 

4.2 Study-specific results and conclusion .................................................................................... 94 
 

5 Main results ........................................................................................................................ 96 

5.1 Cognitive model comparison ................................................................................................. 96 

5.2 Model-based behavioral results ............................................................................................ 98 

5.3 Model-free behavioral results ............................................................................................. 105 

5.4 Control variables ................................................................................................................. 106 

5.5 Inverted-U analysis .............................................................................................................. 107 

5.6 fMRI results ......................................................................................................................... 112 
 

6 Discussion .......................................................................................................................... 119 

6.1 Summary of results .............................................................................................................. 119 

6.2 Behavioral results ................................................................................................................ 119 

6.3 fMRI results ......................................................................................................................... 141 

6.4 Inverted-U analysis .............................................................................................................. 151 



4 
 

6.5 Cognitive model comparison ............................................................................................... 154 

6.6 Limitations and future directions ........................................................................................ 161 

6.7 Conclusion ........................................................................................................................... 164 
 

7 Summary ........................................................................................................................... 165 

8 Zusammenfassung (German summary) ............................................................................... 166 

9 Abbreviations .................................................................................................................... 168 

10 List of symbols ................................................................................................................... 169 

11 List of figures ..................................................................................................................... 170 

12 List of tables ...................................................................................................................... 171 

13 References ......................................................................................................................... 172 

14 Acknowledgment ............................................................................................................... 205 

15 Appendix ........................................................................................................................... 206 

16 Curriculum Vitae ................................................................................................................ 215 

17 Eidesstattliche Versicherung ............................................................................................... 216 

  



5 
 

 

1 Introduction 

1.1 The explore/exploit trade-off 

1.1.1 The concept of explore/exploit 

Our lives are made up of countless decisions. These range from relatively trivial ones, such as which 

ice cream to buy or which shirt to wear, to important and potentially life-altering decisions about  

which career to pursue and which partner to choose. A central aspect of many decision problems is 

the regulation of when to exploit, i.e. to choose a familiar option with a well-known reward, and when 

to explore, i.e. to try an alternative option with an unknown or uncertain but potentially higher reward. 

This decision dilemma is commonly known as the “explore/exploit trade-off” and is encountered  

in many different life situations (for reviews see Addicott, Pearson, Sweitzer, Barack, & Platt,  

2017; Cohen, McClure, & Yu, 2007). To get a better understanding of the concept and complexity  

of explore/exploit problems, consider the following example: Suppose you are planning your  

next summer vacation and need to decide where to travel. On the one hand, the safe choice would  

be to spend the holidays at your favorite and well-known holiday resort in Italy, which you have  

visited and enjoyed for the past five years. On the other hand, there are also some other promising 

holiday destinations like France or Portugal, which you have never visited before. How should  

you decide? Arriving at an optimal decision for this problem is not easy, since different aspects have 

to be considered. Since you only go on summer vacation once a year and spend much hard earned 

money on it, you want it to be a most rewarding experience. While you already know that a holiday  

in Italy is always very rewarding, you are still uncertain about how enjoyable a trip to one of the  

other countries would be. Yet, exploring one of the unknown alternatives has both its advantages  

and disadvantages. On the upside, exploration helps you to gather information about the alternatives 

and reduce decision uncertainty in the following years. Also, this information could be useful  

for maximizing rewards in the long term, as you might find out that there are holiday destinations  

that even surpass Italy and are hence more worthwhile to exploit. Moreover, exploring different 

alternatives from time to time becomes even more important if the rewarding qualities of different 

choice options change over time, such as certain countries becoming less attractive for vacations  

while others start to bloom. On the downside, exploring one of these unknown alternatives  

is more risky in its outcome and only comes at a cost: the time and effort spent on planning and 

travelling, the money paid for flight tickets and hotels, as well as the “opportunity costs”, i.e. the 

rewards forgone by not exploiting your favorite holiday resort in Italy. Also, excessive exploration may 

lead to unnecessary losses and deplete resources like money and time without returning much  

reward. Hence, striking a good balance between exploration and exploitation is essential in order  

to maximize rewards and minimize costs in the long term (Addicott et al., 2017) and can be regarded 

as a “fundamental need for adaptive behaviour in a complex and changing world” (Cohen et al.,  

2007, p. 934). 
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The explore/exploit dilemma is a very common problem faced by all kinds of decision makers. Humans, 

for instance, encounter this decision trade-off at various scopes and timescales, ranging from everyday 

choices like exploiting your favorite meal vs. exploring a new dish on the menu, to once-in-a-life 

decisions like staying in your old profession vs. exploring alternative career paths. Similarly, also 

animals encounter the explore/exploit dilemma when foraging for limited resources like food, shelter, 

or mates (Addicott et al., 2017; Cook, Franks, & Robinson, 2013; Mehlhorn et al., 2015). For example, 

a honey bee that feeds on a flower’s nectar has to decide how long to exploit that flower (or patch of 

flowers) and when to move on to the next (Katz & Naug, 2015). Even foraging microorganisms have 

been shown to face and solve the explore/exploit dilemma, for example when growing out in different 

directions before concentrating growth at a particular area of high nutritional payoff (Reid et al., 2016; 

Watkinson et al., 2005; see also Cohen et al., 2007). Furthermore, explore/exploit trade-offs are not 

only encountered by single subjects, but are also relevant for larger instances, e.g. for organizational 

learning (Gupta, Smith, & Shalley, 2006; Lavie, Stettner, & Tushman, 2010; March, 1991), business 

management (Molina-Castillo, Jimenez-Jimenez, & Munuera-Aleman, 2011; Uotila, Maula, Keil, & 

Zahra, 2009), or scientific and cultural innovation systems (Hills, Todd, Lazer, Redish, & Couzin, 2015). 

Finally, explore/exploit trade-offs are not limited to living agents, but often need to be solved by 

computer algorithms applied in machine learning and artificial intelligence, e.g. for swarm robotics 

(Alers et al., 2011; Baldassano & Leonard, 2009), web content optimization (Agarwal, Chen, & Elango, 

2009), and user recommendation systems (Lacerda, Santos, Veloso, & Ziviani, 2015; Mahajan, Rastogi, 

Tiwari, & Mitra, 2012). Taken together, all these diverse examples demonstrate that the 

explore/exploit dilemma is a widespread and fundamental part of various real-world decision 

problems. 

Despite the high occurrence and relevance of the explore/exploit trade-off across several fields, 

research is still at the beginning to understand how humans and non-human agents solve this dilemma. 

In fact, many important questions revolving around this topic have remained unanswered so far, some 

of which will be briefly considered here before addressing more specific research findings on the 

explore/exploit trade-off in the following sections. A first important and open question is how agents 

should optimally solve the explore/exploit dilemma. Until now, there is no known optimal solution for 

this decision problem and it is unclear if such an optimal solution even exists (see Cohen et al., 2007). 

Empirical research has focused instead on describing how living organisms actually behave when facing 

explore/exploit problems and on studying the mechanisms underlying this behavior (e.g. Daw, 

O'Doherty, Dayan, Seymour, & Dolan, 2006; Lee, Zhang, Munro, & Steyvers, 2011; Steyvers, Lee, & 

Wagenmakers, 2009). A second question still under debate is whether exploration and exploitation are 

two qualitatively different and competing processes, or if they are better conceptualized as extreme 

ends of a continuum (see Addicott et al., 2017; Gupta et al., 2006; Mehlhorn et al., 2015). According 

to the continuum idea, behaviors at the extreme ends may be disadvantageous, considering that too 

much exploitation fosters inflexibility and habit formation, whereas too much exploration may lead to 
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volatile, inefficient decision making and prevent the formation of expertise (Addicott et al., 2017; 

Beeler, Cools, Luciana, Ostlund, & Petzinger, 2014). Optimal behavior may occur somewhere in 

between both extremes, where exploration and exploitation are balanced. Third, as the 

explore/exploit trade-off extents to numerous disciplines and can be assessed by various paradigms 

(see 1.1.2), it is a very heterogeneous construct that still lacks a clear definition and unified theoretical 

framework so far (Hills et al., 2015; Mehlhorn et al., 2015). This heterogeneity of definitions and 

paradigms makes it difficult to integrate findings from different studies and research fields, and also 

poses a problem for the overall reproducibility of research on the explore/exploit trade-off (Addicott 

et al., 2017; Helversen, Mata, Samanez-Larkin, & Wilke, 2018). For example, the current literature 

offers at least three different approaches for defining exploration and exploitation (see Mehlhorn et 

al., 2015). These approaches are either based on (a) observable behavioral patterns, i.e. staying 

(exploit) vs. switching (explore), (b) expected rewards, i.e. choosing the option with the highest 

expected reward (exploit) vs. choosing an alternative option (explore), or (c) obtained outcomes, i.e. 

obtaining explicit rewards like money or food (exploit) vs. obtaining information (explore). Adding to 

the complexity, these three approaches are by no means mutually exclusive, and most explore/exploit 

concepts involve more than one of them (Mehlhorn et al., 2015). Only recently, scientists have started 

to synthesize research from different fields for building a general and multidisciplinary framework of 

the explore/exploit trade-off (Berger-Tal, Nathan, Meron, & Saltz, 2014; Mehlhorn et al., 2015). Lastly, 

research is only beginning to reveal the neural mechanisms underlying explore/exploit decisions, i.e. 

the brain regions and neurotransmitter systems involved therein. Although some progress has been 

made in this direction over the past decade (see 1.1.4 and 1.1.5), many aspects remain poorly 

understood and further studies are needed to gain more knowledge on the neural substrates of 

explore/exploit behavior in health and disease (see 6.6). 

Following this broad introduction, the next sections dig deeper into the existing literature on the 

explore/exploit trade-off with a focus on behavioral and neuroscientific research in humans and 

animals. First, the main paradigms for assessing explore/exploit behavior are presented (1.1.2), along 

with an overview of the most common cognitive modeling approaches taken in this field (1.1.3). Then, 

recent research on the brain regions (1.1.4) and neurochemical systems (1.1.5) involved in 

explore/exploit behavior is reviewed, before specifically focusing on the dopaminergic system (1.2) 

and its potential role in the explore/exploit trade-off (1.3). 

 

1.1.2 Paradigms to study explore/exploit behavior 

Several behavioral paradigms have been developed to study explore/exploit decisions in animals and 

humans. In the following, four of the most commonly used paradigms are described in more detail, as 

these are reencountered later in this introduction and in the discussion.  

The most widely used behavioral paradigm to study explore/exploit decisions in the laboratory is the 

n-armed (or multi-armed) bandit task (Gittins, 1979; Gittins & Jones, 1974; originally described by 
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Robbins, 1952). The basic idea of this task is that of a casino’s slot-machine known as the one-armed 

bandit, with the difference that the n-armed bandit task offers several (n) arms to be pulled, each 

paying out at a different and initially unknown reward rate. The number of arms varies between 

studies, but often bandit tasks with two to four arms are used. In each trial, the subject chooses one 

bandit, which then reveals its payoff before a new trial starts. The overall goal of the game is to 

maximize the overall payout. Depending on the bandits’ payoff structures, different types of bandit 

tasks can be distinguished. First, bandit tasks can be distinguished into a binary and non-binary version. 

In the binary version, each bandit pays out binary rewards, i.e. a fixed reward or no reward, with a 

certain reward probability. In contrast, bandits in the non-binary version pay out continuous rewards 

like points or cents that vary randomly (e.g. normally distributed) around a certain mean reward value. 

Second, and more importantly, bandit tasks can be distinguished into stationary and non-stationary 

(restless) bandit problems. In the stationary version, reward rates of each bandit are fixed throughout 

the task, meaning that the reward probability (for binary rewards) or the reward mean value (for 

continuous rewards) does not change over trials (e.g. Harlé et al., 2015; Steyvers et al., 2009). In this 

case, subjects need to learn the expected reward of each bandit only once in order to choose the one 

with the highest expected payoff. In the restless bandit task, however, reward rates (i.e. reward 

probabilities or mean payoffs) of each bandit vary slowly and randomly over time, challenging subjects 

to repeatedly choose between exploiting the currently best option and exploring unfamiliar options to 

keep track of their changing reward rates. Research on the explore/exploit trade-off is typically based 

on the restless bandit paradigm to study how subjects balance exploration and exploitation in such 

dynamic environments (although see below for the horizon task). For instance, Daw et al. (2006) used 

a restless four-armed bandit task with continuous payoffs to study explore/exploit behavior and its 

neural correlates in human subjects. Since the same task was also used in the current project, a 

detailed description of its procedure can be found in the methods section (see 2.4).  

The restless bandit paradigm offers several advantages for research. First, it is easily applicable to both 

humans and animals, allowing to study explore/exploit behavior in and across different species 

(Addicott et al., 2017). For example, bandit tasks have been adapted for monkeys (Costa, Tran, Turchi, 

& Averbeck, 2014; Pearson, Hayden, Raghavachari, & Platt, 2009), pigeons (Racey, Young, Garlick, 

Pham, & Blaisdell, 2011), mice (Naudé et al., 2016), and even microorganisms (Reid et al., 2016). 

Second, in its basic characteristics, the bandit problem is representative of a broad class of real-world 

decision problems encountered in dynamic environments, some examples being food foraging, 

partner search, consumer decisions, and organizational learning (see Hills et al., 2015; Mehlhorn et al., 

2015). Third, the multi-armed bandit problem is well amenable to formal analysis and has already been 

extensively studied in the field of reinforcement learning (e.g. Berry & Fristedt, 1985; Brezzi & Lai, 

2002; Gittins, 1979; Kaelbling, Littman, & Moore, 1996; Macready & Wolpert, 1998; Sutton & Barto, 

2018). As a result, a wide repertoire of elaborate algorithms and cognitive modeling approaches 
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already exists for this problem, which can be profitably applied to empirical studies in order to examine 

explore/exploit behavior and its underlying cognitive and neural processes more deeply (see 1.1.3). 

A second widely used paradigm to study explore/exploit decisions is the (patch) foraging task, which 

exists in various forms. Foraging tasks use a more naturalistic scenario, in which animals or humans 

explore and exploit sources of food, either in a real life setting (e.g. Cook et al., 2013; Evans & Raine, 

2014; Hall, Humphries, & Kramer, 2007; Latty & Beekman, 2013) or in a virtual environment (e.g. 

Addicott, Pearson, Kaiser, Platt, & McClernon, 2015; Lenow, Constantino, Daw, & Phelps, 2017; Mata, 

Wilke, & Czienskowski, 2013). For example, Constantino and Daw (2015) used a virtual foraging task, 

in which human subjects are presented with an apple tree and have to decide whether to harvest that 

tree or to move on to a new and unharvested one. Crucially, exploiting a tree entails only a short 

harvest delay (3 s), but leads to an exponential depletion in the amount of harvested apples, while 

exploring a new tree entails a much longer travel time delay (9 s). Other human studies have used 

similar virtual foraging tasks with comparable scenarios, e.g. with berry bushes (Addicott et al., 2015) 

or fishing ponds (Hutchinson, Wilke, & Todd, 2008; Mata et al., 2013). All these tasks essentially 

measure how long subjects exploit a current source of food before abandoning it to search for a better 

one, a decision also known as “patch leaving” (Hayden, Pearson, & Platt, 2011; Hutchinson et al., 2008; 

Pyke, 2018; Stephens & Krebs, 1986). The term “patch” therein refers to the fact that natural food 

sources often occur in unevenly distributed clumps or patches (e.g. patches of flowers, fruits on a tree), 

such that leaving a depleting patch to explore a new one is often associated with a certain traveling 

cost. While the foraging paradigm shows similarities to the restless bandit problem, it also differs in 

some important aspects. In the typical foraging task, different patches or options can only be chosen 

one after another, such that a previously exploited option cannot be visited again and each explored 

option has never been visited before. Also, exploitative decisions result in a successive reduction of 

the reward rate due to depletion, while reward rates in the bandit task are independent of subjects’ 

choices. Hence, both paradigms offer slightly different approaches to measure explore/exploit 

decisions and it eventually depends on the research question, which of these tasks is more suitable 

and more representative of the real-world setting under study. 

A third paradigm that has often been used to study explore/exploit decisions in humans is the clock 

task (Moustafa, Cohen, Sherman, & Frank, 2008; see also Frank, Doll, Oas-Terpstra, & Moreno, 2009). 

In this task, subjects see a clock face with one arm that rotates once around the clock over the course 

of five seconds. Subjects are instructed to stop the arm at any time before it makes a full turn, whereby 

the time of response affects the number of points won. After stopping the arm, subjects receive 

feedback about the number of rewarded points before the new trials starts. The entire task includes 

four separate blocks à 50 trials, each block with a different latent reward function that determines how 

reward magnitude and probability change with response time. Similar to the bandit task, the clock task 

challenges subjects to balance the exploration of different choice options (here: response times) with 

the exploitation of the option with the highest expected reward. However, due to the fixed reward 
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structure within each block, the task prompts transitions from exploration to exploitation only once 

during each block, and transitions from exploitation to exploration only in between blocks (similar to 

a stationary bandit task). Also, subjects are explicitly instructed for each block to “try to respond at 

different times along the clock cycle” (i.e. to explore) in order “to learn how to make the most points” 

(i.e. exploit; Moustafa et al., 2008, p. 12295). Thus, how subjects solve the explore/exploit-trade-off is 

less flexible and more pre-determined by the task structure and instructions than in the restless bandit 

task. A second limitation of the clock task relates to the fact that the classification of a choice as 

exploratory is based on the observation of a large response time difference between successive trials 

within a task block (see Frank et al., 2009), which is more likely to arise from decision noise than 

exploratory choices (switches to another option) in the bandit and foraging task (Addicott et al., 2017). 

In addition to these three paradigms, there are some other tasks that have been used to study the 

explore/exploit trade-off (e.g. Blanchard & Gershman, 2018; Glass et al., 2011; Knox, Otto, Stone, & 

Love, 2012; Navarro, Newell, & Schulze, 2016; Wilson, Geana, White, Ludvig, & Cohen, 2014). Yet, 

basically all these paradigms share a set of common features, as reviewed by Addicott et al. (2017). 

First, there are multiple options to choose from (simultaneously or sequentially). Second, these options 

are associated with initially unknown reward rates and need to be sampled in order to learn their 

current reward rates and predict their future outcomes. Third, each decision is a trade-off between 

exploiting a familiar option and exploring a less familiar option to reduce uncertainty, albeit for an 

opportunity cost of forgoing the option with the highest known immediate reward. 

Aside from these classical paradigms to measure explore/exploit behavior, a new variant of the bandit 

task has recently been developed (Wilson et al., 2014), which allows to distinguish between different 

types of explorations. This new variant is called the “horizon task”, since it implements different time 

horizons for decision making. The horizon task works analogous to a stationary two-armed bandit-task, 

offering two choice options with different reward rates that are fixed within each task block. In contrast 

to a typical bandit task, however, each block in the horizon task starts with four forced-choice trials, 

during which subjects just observe the choices and their outcomes. These forced-choice trials either 

provide equal (two vs. two) or unequal (one vs. three) information about the two choice options. After 

that, the block continues with either one (short horizon) or six (long horizon) free-choice trials, 

whereby the horizon of each block is visible to the subjects. This manipulation of the time horizon 

creates two different settings for the decision maker: one in which the focus is only on the immediate 

decision (short horizon), and one in which early exploration might pay out in later choices (long 

horizon). Modeling behavior in the different task conditions (short vs. long horizon, equal vs. unequal 

information) then allows to quantify the extent to which subjects use random exploration arising from 

decision noise versus directed exploration, which is selectively targeted towards information seeking 

and uncertainty reduction. Using this task, Wilson et al. (2014) found that both decision noise and 

information seeking are increased with longer time horizons and concluded that humans use both 

random and directed exploration to solve the explore/exploit dilemma. Since then, the horizon task 
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and variants thereof have successfully been applied in further human studies to differentiate between 

random and directed exploration (e.g. Cogliati Dezza, Yu, Cleeremans, & Alexander, 2017; Krueger, 

Wilson, & Cohen, 2017; Somerville et al., 2017; Zajkowski, Kossut, & Wilson, 2017). One limitation of 

the horizon task is, however, that it is rather time inefficient, since only the first free choice in each 

block, thus only < 15 % of all trials, are used in the behavioral modeling analysis, compared to 100 % of 

trials in the restless bandit paradigm. Another limitation relates to the fact that the horizon task is 

formulated as a series of discrete games, in which reward-related information is reset prior to the start 

of each new game (see Cogliati Dezza et al., 2017). Hence, explore/exploit behavior can only unfold 

over very limited time frames in this task (1-6 trials), whereas it unfolds in the restless bandit task over 

the course of a whole experiment (e.g. 300 trials), making the latter more suitable for studying dynamic 

transitions between both decision strategies over longer time frames. 

 

1.1.3 Cognitive modeling of explore/exploit behavior 

Most explore/exploit paradigms – including the bandit task, clock task, and horizon task – rely on 

cognitive modeling of the observed behavioral data. Cognitive models provide a mathematical 

description of the processes underlying subjects’ behavior, from which quantifiable parameters can be 

inferred for subsequent analyses. Modeling of behavior offers in general many advantages over using 

only raw behavioral data. First, modeling can largely promote the understanding of the cognitive and 

neural mechanisms generating the observed behavior, since it requires a clear and complete formal 

characterization of all modeled processes. Within such formalizations, all variables and their 

dependencies need to be fully specified before the model is implemented, leaving no room for 

vagueness or incoherence in its theoretical assumptions (Fum, Missier, & Stocco, 2007). Such a clear 

and formal specification furthermore facilitates scientific communication of a theory and aids 

reproducibility (Anderson, 2014). Second, mathematical models generally allow for precise behavioral 

predictions that can be directly tested against the observed data to evaluate the quality of a model. 

Thereby, different candidate models can be quantitatively compared (e.g. based on their predictive 

accuracies or goodness of fit) to arrive at increasingly accurate formal descriptions of behavioral 

phenomena, a method called “quantitative model selection” (Burnham & Anderson, 2010; 

Lewandowsky & Farrell, 2011; Zucchini, 2000). In this regard, cognitive models can be viewed as tools 

for scientific discovery, since they enable scientists to investigate the implications of different 

theoretical ideas “beyond the limits of human thinking” (McClelland, 2009, p. 16). Third, the 

quantification of model parameters by model fitting can reveal (subtle) behavioral differences 

between experimental conditions or between normal and clinical populations that may not manifest 

in model-free behavioral variables (see e.g. Addicott et al., 2017; Harlé et al., 2015). Such model 

parameters can moreover be used as individual difference measures with regard to a certain behavior 

or underlying process in order to examine how these relate to other psychological constructs, such as 

personality traits or intelligence (e.g. Steyvers et al., 2009), or to aid psychiatric diagnostics and 

research (Adams, Huys, & Roiser, 2016; Stephan & Mathys, 2014; Wang & Krystal, 2014). Moreover, 
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cognitive models can be used for a trial-by-trial analysis of experimental data (Daw, 2011), allowing to 

estimate otherwise subjective quantities like the expected reward for every single trial and choice 

option in a bandit task experiment. This point is especially relevant for research on explore/exploit 

behavior, since the classification of choices as exploitative or exploratory is most commonly based on 

model-derived estimates of the expected reward value (see Daw et al., 2006; Mehlhorn et al., 2015). 

That is, a choice is classified as exploitative if the option with the highest expected reward is chosen, 

whereas all other choices are classified as exploratory. Combined with functional neuroimaging, this 

trial-by-trial analysis also makes it possible to examine the neural correlates of these model-derived 

quantities (Gläscher & O'Doherty, 2010; O'Doherty, Hampton, & Kim, 2007). This approach, called 

“model-based neuroimaging” (see 2.8.1), has already provided a substantial contribution to 

understanding the neural mechanisms underlying learning and decision making (see reviews by Daw 

& Doya, 2006; Dreher, 2013; O'Doherty, 2004). Finally, formal models enable scientists to develop and 

evaluate mathematically optimal solutions to particular behavioral problems. For instance, optimal 

decision strategies for trading-off exploration and exploitation have already been formally developed 

for stationary bandit problems with finite or infinite horizons (Averbeck, 2015; Berry & Fristedt, 1985; 

Gittins & Whittle, 1989; Kaelbling et al., 1996; Lee et al., 2011), whereas the restless bandit problem 

still remains unsolved (see Cohen et al., 2007). 

In the following, an overview of the cognitive models most commonly applied in empirical research on 

explore/exploit behavior is given, with a main focus on the bandit paradigm. For a more extensive 

review of the various modeling approaches used in this field, the reader is referred to the 

computational modeling and machine learning literature (e.g. Berry & Fristedt, 1985; Daw, 2014; 

Dayan & Sejnowski, 1996; Gittins, Glazebrook, & Weber, 2011; Kaelbling et al., 1996; Sutton & Barto, 

2018; Thrun, 1992). 

Modeling choice behavior in the multi-armed bandit task is mostly based on models of reinforcement 

learning (RL; Sutton & Barto, 1998, 2018). Reinforcement learning is a type of machine learning that 

formally describes how agents learn the expected reward values of different choice options and how 

they use this knowledge to select actions so as to maximize the overall reward. A key aspect in these 

models is the process of error-driven learning, which entails that an agent can only learn about the 

rewards by taking actions and observing their outcomes. Each action thereby results in the 

computation of a reward prediction error, quantifying the difference between the received and 

expected reward of that action, which is then used to update the expected reward for the next trial. 

An important parameter in most RL models is the learning rate, which determines the degree to which 

expectations are updated by the reward prediction error. A classical RL model for updating is called 

the “Delta rule” (Sutton & Barto, 1998), for which a formal description can be found in the methods 

section (see 2.7.2). Aside from the Delta rule, research on explore/exploit behavior has also often 

applied the “Bayesian learner” model for updating (e.g. Daw et al., 2006; Speekenbrink & 

Konstantinidis, 2015). This model is based on the same principle of error-driven learning as the Delta 
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rule, but uses a different parametrization for the learning process. The Bayesian learner model includes 

no learning rate parameter, but instead a set of parameters to quantify an agent’s assumptions about 

the underlying reward distributions of different choice options and (in a restless bandit paradigm) how 

these change over time. This parametrization allows to compute trial-by-trial estimates for both the 

expected mean and variance of each reward distribution, thereby offering a way to model subjects’ 

uncertainty about the learned values in contrast to the simpler Delta rule. A formal description of the 

Bayesian learner model can also be found in the methods section (see 2.7.2). 

Update rules (learning models) like the Bayesian learner or the Delta rule describe the process by which 

subjects learn the expected rewards of different choice options, but not the processes by which 

subjects select their actions based on this knowledge and by which they explore. The process of action 

selection is instead modeled by choice rules (decision models), whereby different choice rules can be 

used to implement different explore/exploit strategies, which range from simple heuristics to complex 

mathematical models.  

One of the simplest choice rules applied to (two-armed) bandit problems with binary outcomes is the 

learning-independent Win-Stay Lose-Shift (WSLS) heuristic (Robbins, 1952). According to this heuristic, 

a subject continues to choose an option if it returned a reward (win-stay), but switches to the other 

option if it returned no reward (lose-shift). In a stochastic variant of the WSLS heuristic, subjects stay 

after winning or shift after losing only with a certain probability, which is determined by the model 

parameter � (e.g. Steyvers 2009; Harle 2015). However, the WSLS heuristic is by no means a 

sophisticated decision strategy, as it only uses reward information of the current trial for selecting the 

next action, disregarding all the information gained by previous trials. Another simple choice rule is 

the �-greedy strategy and different variants thereof (Sutton & Barto, 1998). The �-greedy strategy is 

often used within the RL framework to model random exploration behavior in an otherwise greedy 

(exploiting) agent. This strategy assumes that on each trial, the subject explores with a small probability 

of � by choosing randomly from all options, and with a probability of 1 − � exploits the option with the 

highest expected reward. Thereby, the � parameter of the model controls the balance between 

exploration and exploitation, which stays constant over time and typically adopts small values like 

� = 0.1 (i.e. 10 % probability to explore; Sutton & Barto, 2018; Vermorel & Mohri, 2005). One variant of 

this rule is the �-first strategy (Even-Dar, Mannor, & Mansour, 2002; Vermorel & Mohri, 2005). Here, 

exploration and exploitation are assumed to occur in two distinct and subsequent stages. For the first 

�� trials (where � denotes the total number of trials), the subject only explores by choosing randomly 

between all options, while for the remaining trials, the subject exploits the option with the highest 

expected reward. A second variant of the �-greedy strategy is the �-decreasing rule (Sutton & Barto, 

1998; Vermorel & Mohri, 2005), in which the exploration rate decreases over trials. Formally, this 

strategy starts with an exploration probability of �� in the first trial, which gradually declines to an 

exploration probability of ��/� in the �th trial. Hence, this modification of the �-greedy model allows 

the explore/exploit balance to shift over the course of learning. Together, the �-greedy strategy and 
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its variants all belong to a class called “semi-uniform strategies” (see Vermorel & Mohri, 2005), which 

have in common that they imply a binary distinction between greedy behavior, in which the best 

known option is always exploited, and random exploration, in which the choice probability is uniformly 

distributed across all remaining options. 

Aside from these simple decision strategies, one of the most widely applied choice rules in the field of 

RL is the softmax rule (McFadden, 1974; Sutton & Barto, 1998; see 2.7.2 for formula). According to this 

rule, choice behavior can vary gradually between pure exploitation and pure exploration, which is 

controlled by the softmax (	) parameter. A 	 of zero reflects a purely exploratory behavior with equal 

choice probability for all options, whereas an extremely large 	 reflects a purely exploitative (greedy) 

behavior, in which the best known option is always taken. In between those extremes, choices are 

probabilistically based on the relative expected rewards of all available options, whereby the inverse 

	 reflects the noisiness of the probabilistic decision (see also 2.7.2). That is, options with a larger 

expected value have a higher probability to be chosen, but also inferior options can still be selected 

due to decision noise. In this way, the softmax function allows to model choice behavior as a 

combination of both exploitative (value-driven) and exploratory (noisy) choice tendencies. The 

softmax rule is typically applied with a 	 parameter that is constant over trials (e.g. Daw et al., 2006). 

In dynamic variants of the softmax rule, however, the 	 parameter can increase or decrease over trials 

according to different mathematical functions (e.g. Cesa-Bianchi & Fischer, 1998; Speekenbrink & 

Konstantinidis, 2015; Vermorel & Mohri, 2005), thereby allowing the explore/exploit balance to 

change over the course of learning. 

Both the softmax rule and semi-uniform strategies like �-greedy describe exploration based on 

decision randomness and thus only capture undirected (random) exploratory behavior. However, it 

has been argued in the literature that one important goal of exploration is to gather information and 

reduce uncertainty for future choices (Averbeck, 2015; Cogliati Dezza et al., 2017; Dayan & Sejnowski, 

1996; Payzan-LeNestour & Bossaerts, 2012; Wilson et al., 2014). For this reason, exploratory choices 

might not be fully random, but (at least partly) directed towards options with more uncertain 

outcomes, for which exploration will be most informative. To capture this kind of directed exploration, 

other choice rules have been developed that are based on the use of an exploration (or information) 

bonus (e.g. Cogliati Dezza et al., 2017; Daw et al., 2006; Dayan & Sejnowski, 1996; Sutton, 1990; Wilson 

et al., 2014). The general idea behind these choice rules is to introduce an extra value (bonus) into the 

model that increases with uncertainty and biases choices towards options with more uncertain 

outcomes. For instance, Daw et al. (2006) used a modification of the softmax rule, called the “softmax 

with exploration bonus”, to model directed exploration in the restless bandit task. According to this 

model, choices are probabilistically based on the sum of a bandit’s mean expected reward plus an 

exploration bonus (see 2.7.2 for a formal description of this model). This exploration bonus, in turn, is 

computed on each trial from the variance (uncertainty) of an option’s expected reward rate, which is 

tracked for each bandit by the Bayesian learner model (see above). A key parameter of the modified 
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model is the exploration bonus parameter 
, which determines how strong this uncertainty is 

weighted in the softmax rule. Hence, the 
 parameter reflects the degree to which the uncertainty of 

an outcome, relative to the expected value of an outcome, influences choice behavior. A similar 

approach has been taken by Cogliati Dezza et al. (2017) for modeling directed exploration in the 

horizon task. Their model, called “knowledge RL model”, includes a two-fold learning rule, which not 

only learns reward values (via the Delta rule), but also information values for all options. The 

information value of an option is learned as a function of previous observations, i.e. it increases each 

time the option is chosen. Then, both types of values are combined by subtracting the (weighted) 

information value from the expected reward value, thereby devaluating options that have been 

observed more often in the past. This combined reward-information value is then used, in place of the 

simple expected reward value, in the standard softmax rule for action selection. Although the 

knowledge RL model (Cogliati Dezza et al., 2017) and the softmax with exploration bonus (Daw et al., 

2006) use a different parametrization, both models capture directed exploration behavior which is 

driven towards actions with more uncertain outcomes. While these and similar approaches have often 

been used to model directed exploration, empirical evaluation of these models has yielded 

inconclusive results so far. While Daw et al. (2006) found no evidence in support of an exploration 

bonus in human decision making, studies on the horizon task concluded that humans use indeed a 

combined reward-information value for solving explore/exploit problems (e.g. Cogliati Dezza et al., 

2017; Wilson et al., 2014). Yet, these studies differed in many aspects, from the behavioral paradigm 

to the modeling approach taken, and hence their results are difficult to compare. Note also that a more 

detailed elaboration on these controversial findings is provided in the discussion (see 6.5.2). 

Aside from the mentioned choice rules, further and more complex models of explore/exploit behavior 

have been developed. While a detailed description of all these models exceeds the scope of this 

introduction, some of their main ideas are briefly presented. For instance, a model called the 

“Knowledge Gradient” (Frazier, Powell, & Dayanik, 2008; Harlé et al., 2015; Zhang & Yu, 2013) has been 

applied to stationary bandit problems, which implements the idea that choices are based on a 

combination of an immediate reward gain and a long-term knowledge gain. This knowledge gain 

approximates the value of exploration in each trial, i.e. the degree to which collecting information may 

pay off in the future. Crucially, the trade-off between reward and knowledge gain changes with the 

distance to the horizon, such that exploitation is increasingly favored over exploration with fewer trials 

left (i.e. with an approaching horizon). Another sophisticated choice rule that has been applied  

to the restless bandit task is the “Probability of Maximum Utility” (PMU) model (Speekenbrink & 

Konstantinidis, 2015). According to this model, an agent takes into account the whole expected reward 

distribution of each bandit when making decisions, which is tracked by the Bayesian learner model 

(see above). In each trial, these reward distributions are quantitatively compared between all options 

in a pairwise manner to determine the probability (density) of each option to pay off the maximal 

reward, which is then used as that option’s choice probability. The PMU model has some similarities 
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to the softmax rule with exploration bonus, but does not require an extra parameter to model 

exploratory decisions. Rather, explore/exploit decisions in the PMU model follow naturally from the 

learned reward distributions, which are used to maximize the expected reward in each trial. Note that 

the PMU model therefore implies that uncertain options are not chosen to reduce uncertainty (for 

exploratory purposes), but because they are expected to have the highest probability to yield the 

largest immediate reward (for exploitative purposes), in contrast to other models of uncertainty-driven 

exploration. An empirical evaluation in human subjects has shown that the PMU model outperformed 

the softmax rule with or without an exploration bonus for many subjects, whereas the standard 

softmax rule still fitted best across all subjects (Speekenbrink & Konstantinidis, 2015). In addition to 

the PMU model, other choice rules have been developed that take into account the uncertainty 

associated with each choice option to model exploration (Audibert, Munos, & Szepesvári, 2009; Auer, 

Cesa-Bianchi, & Fischer, 2002; Lai & Robbins, 1985). For example, “Upper Confidence Bound” (UCB) 

models use the estimated uncertainty (e.g. the variance) to compute the upper confidence bound for 

all options before choosing the option with the highest such bound (see Audibert et al., 2009). Finally, 

some cognitive models of explore/exploit behavior assume that the agent does not strictly follow one 

particular choice rule, but rather adapts its decision strategy to changes in the environment (Ishii, 

Yoshida, & Yoshimoto, 2002; Tokic, 2010; Tokic & Palm, 2011). For instance, such an adaptive policy 

has been introduced by Tokic and Palm (2011) and is called “Value-difference based exploration 

combined with softmax action selection” (VDBE-Softmax). This model combines both the �-greedy and 

softmax strategy to describe exploratory behavior: While the � parameter determines the probability 

to explore in each trial, the softmax policy determines which option to select for exploration. Crucially, 

the � parameter in this model depends on the current state of the environment, such that the extent 

of exploration increases when the knowledge about the environment is uncertain, as indicated by 

fluctuating values during learning. Tokic and Palm (2011) showed that the VDBE-Softmax model 

outperforms both the �-greedy rule and softmax rule in a simulation experiment based on the multi-

armed bandit problem. 

As demonstrated by this overview, a large number of cognitive models with varying levels of 

complexity have been developed to empirically describe explore/exploit behavior and to find optimal 

decision strategies for explore/exploit problems. However, research has so far yielded little or 

ambiguous evidence as to which of these models best describes human choice behavior and its 

underlying processes (e.g. Cogliati Dezza et al., 2017; Daw et al., 2006; Speekenbrink & Konstantinidis, 

2015; Vermorel & Mohri, 2005). One aspect that further complicates the comparison of these  

different modeling approaches is that explore/exploit problems come in different forms and 

operationalizations. Even when limited to the bandit paradigm, the exact circumstances under which 

explore/exploit behavior is examined may hugely impact the modeling results. Such aspects are, for 

instance, if the model is applied to a stationary or restless bandit task, if rewards are binary or 

continuous, if the task horizon is short or long, how outcome values and uncertainties are learned,  
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as well as the degree of volatility and complexity of the environment (see Behrens, Woolrich, Walton,  

& Rushworth, 2007; Knox et al., 2012; Payzan-LeNestour & Bossaerts, 2011; Speekenbrink & 

Konstantinidis, 2015). In the end, more research is needed to further evaluate these different modeling 

approaches and to resolve the question how explore/exploit behavior can best be described under 

different circumstances. 

 

1.1.4 Brain regions involved in explore/exploit behavior  

The brain regions involved in explore/exploit behavior have been investigated by a number of different 

studies so far, most of which used model-based functional magnetic resonance imaging (fMRI; see 

2.8.1). In the following, results on exploratory choices are reviewed first, while results on exploitative 

choices will be considered thereafter. The first fMRI experiment that examined the neural correlates 

of human explore/exploit behavior in a restless four-armed bandit task was the study of Daw et al. 

(2006). In this study, subjects’ choice behavior was first modeled with a Bayesian learner plus softmax 

rule to obtain trial-by-trial estimates for the expected reward of each bandit. Choices were then 

classified as either exploitative, i.e. following the highest expected reward, or exploratory, i.e. choosing 

one of the remaining options. Based on this classification, differential brain activations for exploration 

and exploitation were analyzed. Exploratory choices were found to specifically activate the right 

frontopolar cortex (FPC) and, to a lesser extent, the left frontopolar cortex. The FPC is the most anterior 

part of the prefrontal cortex and is known to be involved in high-level behavioral control (Braver & 

Bongiolatti, 2002; Christoff & Gabrieli, 2000; Koechlin & Hyafil, 2007; Ramnani & Owen, 2004; 

Tsujimoto, Genovesio, & Wise, 2011). Hence, its activation in exploratory trials has been proposed to 

reflect a top-down control mechanism that overrides value-driven choice tendencies to facilitate 

behavioral switching between an exploitative and exploratory mode (Daw et al., 2006; see also 

Mansouri, Koechlin, Rosa, & Buckley, 2017). Additionally, greater activation in exploratory trials was 

also found bilaterally in the intraparietal sulcus (IPS), an area which has repeatedly been implicated in 

reward-based decision making (Dorris & Glimcher, 2004; Hunt et al., 2012; McClure, Laibson, 

Loewenstein, & Cohen, 2004; Platt & Glimcher, 1999; Sugrue, Corrado, & Newsome, 2004; Tanaka et 

al., 2004) and in serving as an interface between perceptive and motor systems for planning and 

controlling hand and eye movements (Andersen & Buneo, 2002; Buneo & Andersen, 2006; Culham & 

Valyear, 2006; Gottlieb, 2007; Grefkes & Fink, 2005). Accordingly, Daw et al. (2006) suggested that this 

region might act as an interface between frontal areas, in which decision variables relevant for 

exploratory choices are calculated, and motor areas, in which behavioral responses like button presses 

are generated (see also Rathelot, Dum, & Strick, 2017). Other human fMRI studies have later replicated 

these findings, all showing an increased bilateral activation in the FPC and IPS during exploratory 

compared to exploitative decisions in the restless bandit task (Addicott, Pearson, Froeliger, Platt, & 

McClernon, 2014; Laureiro-Martínez et al., 2014; Laureiro-Martínez, Brusoni, Canessa, & Zollo, 2015). 

Moreover, further neuroimaging studies provided evidence that the FPC indeed tracks decision 

variables relevant for exploratory choices, such as the reward probability and reward uncertainty of 
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alternative (unchosen) choice options (Badre, Doll, Long, & Frank, 2012; Boorman, Behrens, & 

Rushworth, 2011; Boorman, Behrens, Woolrich, & Rushworth, 2009; Cavanagh, Figueroa, Cohen, & 

Frank, 2012). These studies also found that the FPC tracks the reward uncertainty of alternative choice 

options especially in subjects who use an uncertainty-guided strategy for exploration (see Badre et al., 

2012; Cavanagh et al., 2012). Furthermore, Boorman et al. (2009) showed that the pattern of 

functional connectivity between the FPC and IPS changes immediately before a voluntary switch to an 

alternative choice option takes place, suggesting that the FPC engages parietal areas to implement a 

behavioral switch when it has accumulated sufficient evidence to support such a decision. Taken 

together, the reported findings support the notion of a frontoparietal top-down mechanism, in which 

the FPC tracks information relevant for exploratory decisions and functionally interacts with 

intraparietal regions for the implementation of exploratory actions. 

Given the consistent finding of an increased FPC activation during exploration, a number of studies 

have investigated the causal role of the FPC in exploratory decision making, either by use of the lesion 

method (Kovach et al., 2012; Mansouri, Buckley, Mahboubi, & Tanaka, 2015) or with brain stimulation 

techniques (Raja Beharelle, Anjali, Polanía, Hare, & Ruff, 2015; van Holstein, Froböse, O'Shea, Aarts, & 

Cools, 2018; Zajkowski et al., 2017). For instance, Kovach et al. (2012) investigated exploratory choice 

behavior of eight patients with FPC lesions in comparison to healthy controls, using the same restless 

four-armed bandit task as Daw et al. (2006). Surprisingly, the FPC-lesioned patients showed no general 

impairment in overall task performance or exploratory switching. However, a model-based analysis of 

choice behavior revealed that the patient group was selectively impaired in the ability to extrapolate 

short-term reward trends and to use these extrapolations to guide future choices, such as switching 

away from an exploited bandit when its reward rate suddenly drops. It was hypothesized from these 

results that the increased FPC activation during exploration, as observed in previous studies (see 

above), might reflect its role in tracking reward trends in dynamic environments for guiding behavior. 

Another FPC lesion study in monkeys (Mansouri et al., 2015) investigated the causal role of the FPC in 

cognitive flexibility, i.e. the cognitive ability to adapt to changing task demands, as assessed with the 

Wisconsin Card Sorting Test (WCST) and related tasks. While the FPC-lesioned animals were not 

impaired in their general ability to follow rule switches, they stayed more focused than control 

monkeys in exploiting the current task under distractions like an intervening task or an unexpected 

reward. The authors concluded from these findings that the FPC might play a key role in redistributing 

cognitive resources from the current task to alternative sources of reward in order to explore new 

choice opportunities. Recently, also non-invasive brain stimulation techniques have been applied to 

human subjects in order to investigate the causal role of the FPC in exploratory behavior. One study 

used transcranial direct current stimulation (tDCS) over the right FPC and found that a selective 

upregulation of the FPC (via anodal tDCS) leads to more exploratory behavior, while a selective 

downregulation of the FPC (via cathodal tDCS) results in more exploitative behavior in a three-armed 

bandit task (Raja Beharelle et al., 2015). Moreover, a model-based analysis of the data showed that 
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FPC downregulation increased the focus on the bandit with the highest expected reward, whereas 

choice behavior under FPC upregulation was less influenced by expected rewards and more driven by 

recent negative reward prediction errors. These results suggest that the FPC is part of a neural 

mechanism that triggers exploration after encountering a surprisingly low choice outcome in order to 

search for alternative courses of action, in line with the above findings on FPC-lesioned patients 

(Kovach et al., 2012). Another study, which applied transcranial magnetic stimulation (TMS), showed 

that inhibition of the right FPC leads to a selective reduction in directed but not random exploration as 

assessed with the horizon task (Zajkowski et al., 2017). This finding further supports the view that 

human exploration is not a unitary but a dual process based on both a directed and an undirected 

strategy (see Wilson et al., 2014), and shows that both types of exploration rely on (at least partly) 

dissociable neural systems. Recently, another human TMS study (van Holstein et al., 2018) showed 

that stimulation of the FPC leads to a decrease in reward-related striatal activity as measured by fMRI. 

This finding provides further evidence that the FPC exhibits top-down control over striatal reward 

processing, which might contribute to its role in overriding exploitative tendencies to facilitate 

behavioral switching from exploitation to exploration. Taken together, the results of lesion and brain 

stimulation studies strongly suggest that the FPC is causally involved in promoting exploration and 

further support the view of a top-down control mechanism for exploratory decisions. 

Aside from the FPC and IPS, there are additional brain regions that have repeatedly been shown to 

exhibit greater activation during exploration compared to exploitation. Two of these regions are the 

insula and the anterior cingulate cortex (ACC; Addicott et al., 2014; Blanchard & Gershman, 2018; 

Laureiro-Martínez et al., 2014, 2015). Consistent with their activation during exploration, both these 

regions have been shown to be activated during risky decision making and have been implicated in 

encoding reward uncertainty or risk (Christopoulos, Tobler, Bossaerts, Dolan, & Schultz, 2009; 

Critchley, Mathiast, & Dolan, 2001; Fitzgerald, Seymour, Bach, & Dolan, 2010; Fukunaga, Purcell, & 

Brown, 2018; Huettel, Song, & McCarthy, 2005; Preuschoff, Bossaerts, & Quartz, 2006; Preuschoff, 

Quartz, & Bossaerts, 2008; Rudorf, Preuschoff, & Weber, 2012; see also reviews by Bach & Dolan, 2012; 

Dreher, 2013; Singer, Critchley, & Preuschoff, 2009). Moreover, both regions have also been implicated 

in emotional processing and in mediating the effects of emotional arousal on decision making (Bush, 

Luu, & Posner, 2000; Craig, 2002, 2009; Critchley, 2005; Xue, Lu, Levin, & Bechara, 2010). The anterior 

insula (AI), in particular, is considered to play a key role in the conscious experience (i.e. the feeling) of 

an emotion (Craig, 2002, 2009; Damasio & Carvalho, 2013; Singer et al., 2009), and its activation in 

exploratory trials has been proposed to reflect the experience of anxiety associated with choosing an 

option with a highly uncertain outcome (Laureiro-Martínez et al., 2015). Furthermore, the AI and 

dorsal ACC (dACC) are considered to form a “salience network” for the detection of behaviorally 

relevant stimuli in order to guide attention and actions towards these stimuli (Menon, 2015; Menon & 

Uddin, 2010; Uddin, 2015). Accordingly, it has been proposed that these regions might subserve 

attentional and behavioral switching from an exploitative to an exploratory mode (Laureiro-Martínez 
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et al., 2015; see below). In line with this view, the dACC has been ascribed the function of promoting 

behavioral switching in foraging decisions (Kolling, Behrens, Mars, & Rushworth, 2012; Kolling, 

Behrens, Wittmann, & Rushworth, 2016; Rushworth, Kolling, Sallet, & Mars, 2012). Specifically, it has 

been suggested that the dACC may represent “the value of switching to a course of action alternative 

to that which is taken or is the default” (Kolling et al., 2012, p. 97; although see Shenhav, Straccia, 

Cohen, & Botvinick, 2014), consistent with its proposed role in switching between exploitation and 

exploration. Aside from the insula and ACC, exploratory choices were also shown to be associated with 

higher activity in the cerebellum, thalamus, supplementary motor area (SMA), and brain stem 

(Addicott et al., 2014; Daw et al., 2006, supplement; Laureiro-Martínez et al., 2014, 2015). Concerning 

the increased brain stem activation during exploration, it has been proposed that these signals might 

originate from the locus coeruleus (LC; Laureiro-Martínez et al., 2014, 2015), although temporal 

resolution in these fMRI studies was too low to unambiguously confirm this (see Addicott et al., 2017). 

However, an increased LC activation during exploration would support the view that the LC 

norepinephrine system is also playing an important role in regulating the trade-off between 

exploration and exploitation (see 1.1.5; e.g. Aston-Jones & Cohen, 2005; Cohen et al., 2007). 

In contrast to exploration, research on the brain regions involved in exploitation has yielded more 

mixed results so far. For instance, Daw et al. (2006) did not find any brain regions showing significantly 

greater activity during exploitative compared to exploratory trials. However, they reported that both 

the orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (vmPFC) exhibit “activity 

characteristic of an involvement in value-based exploitative decision making” (Daw et al., 2006, p. 876). 

More specifically, they found activity in the medial OFC to correlate with the magnitude of the obtained 

reward, and activity in the vmPFC and medial/lateral OFC to correlate with the choice probability of 

the chosen option. Note that this choice probability reflects the expected reward of the chosen option 

relative to the unchosen ones, according to the standard softmax model they applied (see also 2.7.2). 

Later studies supported these findings by showing that both the vmPFC and OFC exhibit significantly 

greater activity during exploitative compared to exploratory trials (see below; Laureiro-Martínez et al., 

2014, 2015). Moreover, the observation of a reward- and exploitation-related activity in the vmPFC 

and OFC converges well with a large body of research implicating these regions in encoding the 

subjective value of both primary and secondary rewards during decision making and outcome delivery 

(see reviews by Grabenhorst & Rolls, 2011; Kringelbach & Rolls, 2004; O'Doherty, 2004; Rushworth et 

al., 2012). Together with the ventral striatum, these prefrontal regions are thought to form the core of 

a “valuation system” in the human brain, which codes a domain-general subjective value signal and 

plays a key role in guiding reward-based decision making (Bartra, McGuire, & Kable, 2013; Fellows, 

2011; Kable & Glimcher, 2009; Levy & Glimcher, 2012; O'Doherty, 2011; Peters & Büchel, 2010). In 

contrast to Daw et al. (2006), later human fMRI studies with larger sample sizes have revealed several 

brain regions that show significantly greater activation during exploitative compared to exploratory 

choices in the restless bandit task. For example, Laureiro-Martínez et al. (2014) showed that 
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exploitative choices elicited stronger activation in a number of distributed brain regions, including the 

vmPFC and OFC, as well as the bilateral hippocampus, ACC, middle temporal gyri, and left posterior 

cingulate cortex (PCC). A second study from the same group (Laureiro-Martínez et al., 2015) largely 

replicated these findings, also showing exploitation-specific activity in regions of the vmPFC and OFC, 

the bilateral hippocampus, the left ACC and middle temporal gyrus, as well as in the bilateral superior 

temporal gyri and left PCC/precuneus. Note, however, that the latter study used a behavioral rather 

than a computational definition of explore/exploit decisions, in which exploitation was defined as 

staying with the current option and exploration as switching to an alternative option. A third human 

fMRI study (Addicott et al., 2014), on the other hand, reported greater activation during exploitation 

compared to exploration only in the left angular gyrus and bilateral temporal lobes, including the 

superior/middle temporal gyri and planum temporale, but not in prefrontal regions like the vmPFC or 

OFC. The failure of this study to detect prefrontal activation during exploitation might be (partly) due 

to its relatively low sample size (n=24), which was less than half of the sample sizes used in the two 

studies by Laureiro-Martínez et al. (2014, 2015). For a discussion on the potential functional roles of 

these brain regions in exploitative decision making, the reader is also referred to section 6.3.1. Taken 

together, although research on the neural correlates of exploitation yielded partly mixed results, most 

of these studies provided evidence for an involvement of prefrontal areas, especially the vmPFC and 

OFC, in reward coding and exploitative decision making. 

Aside from mapping the distinct neural signatures of exploratory and exploitative choices, research 

has also provided first insights into the neural mechanism which may underlie switching between 

exploitation and exploration. For example, a model-based fMRI study by Boorman et al. (2009) 

investigated the neural precursors to behavioral switching in a restless two-armed bandit task in 

humans. Notably, this study found that the vmPFC encodes the value of the chosen relative to the 

unchosen action, while the FPC tracks the reward probability of the unchosen action relative to the 

chosen one. Moreover, FPC activity during the intertrial interval was found to predict behavioral 

switching to the alternative option on the following trial within and between subjects, and to 

functionally interact with the IPS immediately before such a switch takes place (see above). Hence, 

these results suggest that the vmPFC and FPC play key complementary roles in human decision making 

(see also Domenech & Koechlin, 2015) and corroborate well with the above findings, showing greater 

vmPFC activation during exploitation and greater FPC and IPS activation during exploration. Moreover, 

the results of various neuroimaging studies have recently been integrated by Laureiro-Martínez et al. 

(2015) into a proposed neural mechanism for behavioral switching between exploitation and 

exploration. In short, they suggest that the values of foregone options, as represented in the FPC 

(Boorman et al., 2009, 2011; Mansouri et al., 2017), are continuously compared with the value of the 

current choice, as represented in medial prefrontal regions (Boorman et al., 2009; Daw et al., 2006), 

by the monitoring performance mechanisms implemented in the ACC (Ridderinkhof, Ullsperger, Crone, 

& Nieuwenhuis, 2004). If activity in the FPC exceeds vmPFC activity, i.e. if the accumulated evidence 
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favors the alternative over the current choice option, this triggers an attentional disengagement from 

the current choice in the IPS (see Boorman et al., 2009; Laureiro-Martínez et al., 2015). Hence, 

switching between exploitation and exploration appears to require the interplay of several brain 

regions subserving different functions, including the evaluation of competing choice options, 

performance monitoring, attentional/behavioral control, and action implementation.  

Finally, it should be noted that while explore/exploit decisions have mostly been studied within the 

multi-armed bandit paradigm, this paradigm has recently been criticized to not clearly disentangle 

exploration from exploitation, making it therefore problematic to unambiguously identify their neural 

correlates (see Blanchard & Gershman, 2018). A first point of criticism relates to the fact that 

exploration in the bandit task not only yields information but also reward, while exploitation not only 

yields reward but also information, making it difficult to conceptually differentiate between both types 

of decisions as either purely reward-maximizing or purely information-seeking. A further point of 

criticism has been that the classification of choices as exploitative or exploratory is based on subjective 

reward estimates derived from a cognitive model, which in turn depends on prior assumptions about 

a subject’s decision strategy, offering no theory-neutral way to distinguish between both types of 

decisions. To overcome these drawbacks of the bandit task, the “observe or bet” task (Tversky & 

Edwards, 1966) has been proposed by Blanchard and Gershman (2018) as an alternative to clearly 

distinguish between explore/exploit decisions and their neural signatures. In this task, subjects need 

to decide to either observe the outcome of an option without actually gaining it (“pure exploration”) 

or to bet on an option and gain its reward without receiving direct feedback about the rewarded value 

during the task (“pure exploitation”). Based on this task, Blanchard and Gershman (2018) investigated 

the neural correlates of pure explore/exploit decisions in humans by comparing brain activation 

patterns between observe and bet trials using fMRI. In line with findings based on the bandit paradigm, 

they found that pure exploration is associated with greater activation in the dACC, insula, and 

thalamus, while pure exploitation is associated with greater vmPFC activation, although the latter 

result did not survive multiple comparison correction. Yet, surprisingly, they did not find higher activity 

during pure exploration in the FPC, which was included in their region of interest analysis, nor in the 

IPS within a whole-brain analysis, suggesting that this task indeed measures (partly) different choice 

processes than the restless bandit task. While the “observe or bet” task offers an interesting model-

free approach to study explore/exploit behavior, it also brings the limitation of a task switching 

confound due to the dual nature of the task (for further details see Blanchard & Gershman, 2018). 

Moreover, it is unclear how well the concept of a binary distinction between pure exploration and pure 

exploitation actually represents real-world explore/exploit decisions, which most often come with a 

coupling of reward and information (e.g. in foraging), as implemented by the bandit task. Still, research 

on explore/exploit behavior might benefit from the application of such different experimental 

paradigms that allow to assess different aspects of this complex behavior and their underlying neural 

processes. 
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In conclusion, neuroscientific research has already made some progress towards mapping the brain 

regions involved in exploration and exploitation. Furthermore, the knowledge gained from these 

studies has also been used for the development of neural network models, which seek to explain how 

these different brain areas functionally interact to initiate switching between both decision strategies 

(e.g. Cohen et al., 2007; Laureiro-Martínez et al., 2014, 2015; McClure, Gilzenrat, & Cohen, 2006). Still, 

more research is needed to test and refine these neuromechanistic accounts, e.g. by applying model-

based fMRI and non-invasive brain stimulation techniques (see Parkin, Ekhtiari, & Walsh, 2015) to 

further elucidate the neural computations underlying explore/exploit decisions and their causal role in 

this trade-off. 

 

1.1.5 Neurochemical systems involved in explore/exploit behavior 

This section will give a brief overview of the main neurochemical systems (i.e. neurotransmitters and 

neuromodulators) involved in explore/exploit behavior, including dopamine, norepinephrine, and 

acetylcholine.  

Dopamine (DA) is one of the most studied neurochemicals in research on reward-based decision 

making and explore/exploit behavior, whereby different aspects of DA signaling are believed to 

subserve different behavioral functions (e.g. phasic vs. tonic DA, see 1.2.2). First of all, it is by now well 

established that phasic DA is tightly involved in the process of reinforcement learning (RL) by encoding 

a reward prediction error (RPE) signal (reviewed by Glimcher, 2011; Schultz, 2016; Schultz, Stauffer, & 

Lak, 2017). This RPE signal reflects differences between received and expected outcomes and serves 

as a “teaching signal” according to temporal difference models of RL (see 1.1.3; e.g. Sutton & Barto, 

2018). Neuroimaging studies in animals and humans provide strong evidence that midbrain DA 

neurons encode the RPE signal by responding with short phasic bursts (or pauses) of firing to discrete 

events involving errors in reward prediction on a millisecond timescale (Hart, Rutledge, Glimcher, & 

Phillips, 2014; Ljungberg, Apicella, & Schultz, 1992; Schultz, Apicella, & Ljungberg, 1993; Schultz, Dayan, 

& Montague, 1997; Waelti, Dickinson, & Schultz, 2001; Zaghloul et al., 2009). In addition, more recent 

experiments in animals and humans yielded causal evidence for the notion that this phasic DA activity 

actually drives reward learning and reward-seeking behavior (Adamantidis et al., 2011; Chang et al., 

2018; Kim et al., 2012; Ramayya, Misra, Baltuch, & Kahana, 2014; Steinberg et al., 2013; Tsai et al., 

2009; Witten et al., 2011; Zweifel et al., 2009; see also reviews by Schultz et al., 2017; Steinberg & 

Janak, 2013). Hence, given these findings, phasic DA signaling appears to play a causal role in driving 

exploitative behavior. Aside from that, other studies have also focused more specifically on DA’s role 

in regulating the trade-off between exploitation and exploration – a topic which is considered in more 

detail in a later section of this introduction (see 1.3). To shortly summarize, evidence from animal and 

neural network studies suggest that tonic DA may be involved in regulating the trade-off between 

exploitation and random exploration by controlling the degree to which behavioral choices are based 

on previously learned rewards (Beeler, Daw, Frazier, & Zhuang, 2010; Beeler, Frazier, & Zhuang, 2012; 
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Humphries, Khamassi, & Gurney, 2012). Moreover, also human studies have provided first evidence 

for a DA involvement in controlling explore/exploit behavior, which is mainly based on findings from 

genetic variation studies in healthy subjects (Blanco et al., 2015; Frank et al., 2009; Kayser, Mitchell, 

Weinstein, & Frank, 2015) or from studies on altered explore/exploit behavior in patients with DA-

related disorders, such as Parkinson’s disease or schizophrenia (e.g. Moustafa et al., 2008; Strauss et 

al., 2011). Finally, indirect evidence also stems from animal and human studies showing that DA 

modulates potential subcomponents of explore/exploit behavior, such as risky decision making (Kohno 

et al., 2016; Lancaster, Linden, & Heerey, 2012; Sherman & Wilson, 2016; St Onge, Abhari, & Floresco, 

2011) and cognitive or behavioral flexibility (Beeler et al., 2014; Cools & D'Esposito, 2011; Floresco, 

2013).  

Aside from DA, also the locus coeruleus norepinephrine (LC-NE) system is considered to play an 

important role in the regulation of explore/exploit behavior (Aston-Jones & Cohen, 2005; Cohen et al., 

2007; McClure et al., 2006). The locus coeruleus is a brain stem nucleus containing NE-synthesizing 

neurons that send widespread projections throughout the whole brain, including the neocortex, 

hippocampus, cerebellum, and thalamus (Benarroch, 2009). According to the “adaptive gain theory” 

of LC-NE function (Aston-Jones & Cohen, 2005), which is rooted in monkey neurophysiological 

research, the trade-off between exploration and exploitation can be explained through two different 

modes of LC activity: phasic and tonic. A phasic LC mode is characterized by short bursts of LC activity 

in response to task-related stimuli, which facilitates engagement in the current task and the 

optimization of task performance, i.e. exploitative behavior. In contrast, a tonic LC mode is 

characterized by a higher baseline LC activity and reduced bursts, which promotes disengagement 

from the current task and the search for alternative options, i.e. exploratory behavior. According to 

the theory, transitions between the phasic and tonic LC mode are triggered by changes in task-related 

utility, which is signaled to the LC via direct inputs from the ACC and OFC, where task performance and 

utility are monitored. Specifically, high values of long-term task utility drive the phasic (exploitative) 

mode, while low values trigger the tonic (exploratory) mode. Based on the assumptions of the adaptive 

gain theory, several human studies have been performed to investigate the role of the LC-NE system 

in explore/exploit behavior. Most of these studies applied pupillometry, the measuring of pupil size, 

as an indirect marker of LC activity during task performance (see Aston-Jones & Cohen, 2005; Murphy, 

Robertson, Balsters, & O'Connell, 2011). For instance, Jepma and Nieuwenhuis (2011) assessed 

subjects’ pupil size while they made explore/exploit decisions in a restless four-armed bandit task and 

found that exploratory choices were preceded by a larger baseline pupil diameter (reflective of a higher 

tonic LC activity) than exploitative choices. Moreover, they showed that changes in pupil size during 

explore/exploit transitions correlated with changes in task utility, and that subjects with a larger 

baseline pupil diameter showed an overall higher tendency to explore. All these findings are in line 

with the adaptive gain theory, supporting the view that utility-related changes of LC activity play an 

important role in the regulation of explore/exploit behavior. In addition, also other studies reported 
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increased baseline pupil diameter during exploratory behavior using different behavioral paradigms, 

including a target detection task (Gilzenrat, Nieuwenhuis, Jepma, & Cohen, 2010), an analogical 

reasoning task (Hayes & Petrov, 2016), and attentional set shifting tasks (Pajkossy, Szőllősi, Demeter, 

& Racsmány, 2017). On the other hand, two pharmacological studies reported findings not supporting 

the adaptive gain theory. The first study (Jepma, Te Beek, Wagenmakers, van Gerven, & Nieuwenhuis, 

2010) did not find any differences in exploratory behavior under reboxetine, a selective NE reuptake 

inhibitor that increases tonic NE levels, although changes in other behavioral parameters indicated the 

general effectiveness of the drug treatment. In the second study (Warren et al., 2017), administration 

of atomoxetine, another selective NE reuptake inhibitor, was found to reduce rather than increase 

random exploration in the horizon task, while leaving directed exploration unaffected. In both studies, 

the adaptive gain theory would instead have predicted an increase in exploration driven by a drug-

induced increase in tonic NE levels. Given these inconsistent results, further research will be necessary 

to clarify the role of the LC-NE system in human explore/exploit behavior. 

Recently, also the role of acetylcholine (ACh) in explore/exploit behavior has been investigated in a 

transgenic mice experiment (Naudé et al., 2016). The study found that mice lacking the β2* subunit of 

the nicotinic ACh receptor (nAChR) showed less uncertainty-driven exploration than wild-type controls 

in a mice-adapted three-armed bandit task. The nAChR is a receptor expressed in the ventral tegmental 

area (VTA), where it is thought to influence DA transmission and thereby value-based decision making 

through a yet unknown mechanism (see Naudé et al., 2016). Furthermore, the study showed that  

re-expression of the β2* subunit in the transgenic mice restored spontaneous activity of DA neurons 

in the VTA as well as uncertainty-driven exploration. The authors conclude from these findings that 

the nicotinic ACh receptor in the VTA is involved in translating uncertainty into motivational value for 

driving exploratory decisions, which might also explain altered risk-taking and exploratory behavior 

observed in nicotine addiction (e.g. Addicott, Pearson, Wilson, Platt, & McClernon, 2013; Lejuez, Aklin, 

Bornovalova, & Moolchan, 2005).  

Finally, when studying the role of different neuromodulatory systems in explore/exploit behavior, it is 

important to note that these systems do not function separately in the brain, but tightly interact with 

each other. The study of Naudé et al. (2016) provides an example for the interaction between the DA 

and ACh system, but also interactions between DA and NE have often been claimed as important for 

the regulation of explore/exploit behavior (Aston-Jones & Cohen, 2005; Cohen et al., 2007; McClure et 

al., 2006). For example, the adaptive gain theory (Aston-Jones & Cohen, 2005) assumes that the LC-NE 

system synergistically interacts with DA-dependent reward learning for controlling explore/exploit 

behavior: During the tonic LC mode (exploration), when utility is low, the DA system drives 

reinforcement learning to discover new sources of reward and to strengthen behavior towards these 

rewards. This reinforced behavior, in turn, leads to an increase in utility and a transition of LC activity 

from the tonic into the phasic mode (exploitation). During exploitation, the rewarded behavior is 

maintained by both the phasic LC activity and DA-dependent reinforcement, until utility declines and 
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the LC changes back into the tonic mode to promote exploration of new resources. Moreover, it has 

also been proposed that NE interacts with the ACh system to signal different types of uncertainty for 

decision making (Yu & Dayan, 2005). Specifically, it was suggested that ACh levels encode “expected 

uncertainty”, i.e. the uncertainty which can be predicted from prior experience (e.g. probabilistic 

rewards), whereas NE levels signal “unexpected uncertainty”, i.e. unforeseen fluctuations of decision 

outcomes that might call for an update of beliefs and a change of behavioral strategy. As proposed by 

Yu and Dayan (2005), the direct comparison of these two uncertainty signals in the brain might provide 

a computationally tractable algorithm for determining when to revise expectations, which is likely to 

be involved in controlling explore/exploit behavior. For instance, when the uncertainty starts to exceed 

the expected degree signaled by ACh, then this rise in unexpected uncertainty, signaled by NE, might 

drive exploratory behavior (see Cohen et al., 2007). This assumption is also in line with the adaptive 

gain theory, according to which an increase in tonic LC activity promotes exploration (Aston-Jones & 

Cohen, 2005). 

Taken together, the current research literature provides strong evidence that different neurochemical 

systems – including DA, NE, and ACh – and their interactions play an important role in the regulation 

of the explore/exploit trade-off. The next part of this introduction will first broadly introduce the DA 

brain system and its basic characteristics in general, before the current state of research on the role of 

DA in explore/exploit behavior is reconsidered in more detail. 

 

1.2 The dopaminergic brain system 

1.2.1 Dopamine and dopaminergic pathways in the brain 

Dopamine (DA) is an organic compound of the catecholamine group that exhibits several important 

functions in the body and brain. Chemically, dopamine (3,4-dihydroxyphenethylamine) is characterized 

by a benzene ring with two hydroxyl groups and an amine side chain. It is synthesized in the organism 

from its precursor L-dopa (L-3,4-dihydroxyphenylalanine) by enzymatic decarboxylation. In turn, DA 

itself represents a precursor molecule for the synthesis of the catecholamine neurotransmitters 

norepinephrine and epinephrine (Meiser, Weindl, & Hiller, 2013). In the brain of animals and humans, 

DA acts as both a synaptic neurotransmitter and neuromodulator (Doya, 2002; Katz & Calin-Jageman, 

2009; Richerson, Aston-Jones, & Saper, 2013; Schultz, 2007). As a neurotransmitter, DA is involved in 

the fast, time-specific signal transduction between a pre- and postsynaptic neuron via impulse-

dependent synaptic DA release (see reviews by Grace, Lodge, & Buffalari, 2009; Schultz, 2007; Schultz 

et al., 2017). As a neuromodulator, DA diffuses through the brain tissue and can thereby exert spatially 

distributed, temporally extended effects on several neurons distant from the site of release, e.g. by 

modulating excitability and synaptic strength at these targets (Marder, 2012; Marder & Thirumalai, 

2002; Nadim & Bucher, 2014; Richerson et al., 2013; Schultz, 2007). The majority of DA neurons are 

localized in the mesencephalon (midbrain), mainly in the substantia nigra pars compacta (SNc) and the 

ventral tegmental area (VTA; Arias-Carrión, Stamelou, Murillo-Rodríguez, Menéndez-González, & 
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Pöppel, 2010). Although these DA neurons make up less than 1% of the neuronal brain cell population 

(Arias-Carrión & Pŏppel, 2007; Björklund & Dunnett, 2007), they affect diverse brain functions by 

sending numerous and widespread projections to different subcortical and cortical regions. 

Three main DA pathways, or DA systems, are distinguished in the brain (see Figure 1; Arias-Carrión et 

al., 2010; Ayano, 2016). First, the nigrostriatal pathway, projecting from the SNc to the dorsal striatum, 

i.e. the caudate nucleus and putamen. This nigrostriatal system is part of the basal ganglia circuit and 

plays a key role in voluntary movement control and motor skill learning (Bissonette & Roesch, 2015; 

Korchounov, Meyer, & Krasnianski, 2010; Obeso et al., 2008; Smith & Villalba, 2008). Second, the 

mesolimbic pathway, originating in the VTA and projecting to the ventral striatum, i.e. the nucleus 

accumbens and olfactory tubercle, but also to the amygdala, hippocampus, and septum. This pathway 

is considered to be crucially involved in reinforcement learning and motivated behaviors (Arias-Carrión 

et al., 2010; Berridge, 2012; Berridge & Kringelbach, 2015; Bissonette & Roesch, 2015). Third, the 

mesocortical pathway, sending projections from the VTA to cortical regions, e.g. the prefrontal, 

cingulate, and perirhinal cortex. This pathway is regarded to play an important role in executive 

functions, including working memory and cognitive or behavioral flexibility (Cools & D'Esposito, 2011; 

Floresco, 2013; Floresco & Magyar, 2006; Klanker, Feenstra, & Denys, 2013; Leh, Petrides, & Strafella, 

2010). Because the mesolimbic and mesocortical pathway are tightly connected, they are often 

together referred to as the mesocorticolimbic system (see Arias-Carrión et al., 2010; Wise, 2005). 

 

  

Figure 1. Main dopaminergic pathways in the human brain. 

SNc: substantia nigra pars compacta; VTA: ventral tegmental 

area. Adapted from Arias-Carrión et al. (2010). 

Figure 2. Dopaminergic synapse. See text for 

further explanations and abbreviations. Adapted 

from Blackstone (2009). 

 

1.2.2 DA neurotransmission 

Dopaminergic neurotransmission involves several processes and molecules (see Figure 2). In the 

cytosol of catecholamine-producing neurons, DA is synthesized from its precursor L-dopa by the 

enzyme aromatic L-amino acid decarboxylase (AADC), also known as DOPA decarboxylase (DDC).  
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L-dopa itself is produced from the amino acid L-tyrosine by the enzyme tyrosine hydroxylase (TH), 

which catalyzes the initial and rate-limiting step in the biosynthesis of DA (see Hälbig & Koller, 2007; 

Meiser et al., 2013). After cytosolic synthesis, DA is packaged and stored in synaptic vesicles located 

within the presynaptic terminals of DA neurons. When an action potential reaches the axon terminal, 

it triggers a series of events causing DA to be released into the synaptic cleft by a process called 

exocytosis (Westerink, 2006). Upon synaptic release, DA diffuses across the synaptic cleft to the 

postsynaptic membrane, where it binds to and activates DA receptors. Importantly, there are several 

subtypes of DA receptors that exhibit different cellular functions, adding to the complexity of the DA 

system and its physiological functions (for details see Beaulieu & Gainetdinov, 2011; Neve, 2010; Neve, 

Seamans, & Trantham-Davidson, 2004). In mammals, there are at least five subtypes of DA receptors, 

labeled D1 to D5, whereby D1 and D2 are the most frequent subtypes in the human brain (Ayano, 

2016; Hurd, Suzuki, & Sedvall, 2001; Strange & Neve, 2013). These five subtypes are grouped into two 

families, the D1-like and D2-like receptor family, which differ in their pharmacological properties and 

associated signaling pathways (see below). Both DA receptor families belong to the class of G protein-

coupled receptors (GPCRs), also called seven-transmembrane (7TM) receptors as they span the cell 

membrane seven times (Oldham & Hamm, 2008; Pierce, Premont, & Lefkowitz, 2002). The binding of 

extracellular DA to these receptors triggers an intracellular signaling cascade mediated by a guanine 

nucleotide-binding protein (G-protein), which is coupled to the cytosolic part of the receptor. This  

G-protein mediated signaling cascade can have different downstream effects on the cell, depending 

on the type of G-protein that is activated by the receptor (see Beaulieu & Gainetdinov, 2011; 

Romanelli, Williams, & Neve, 2010). D1-like receptors (D1 and D5) are coupled to Gαs/olf proteins, which 

stimulate the regulatory enzyme adenylate cyclase (AC) in its production of the second messenger 

cyclic adenosine monophosphate (cAMP). In contrast, D2-like receptors (D2, D3, D4) are coupled to 

Gαi/o proteins, which inhibit adenylate cyclase and cAMP production. This increase or decrease in 

cellular cAMP levels can have different downstream effects on a wide array of cellular substrates, 

including ion channels, enzymes, and transcription factors (Neve et al., 2004; Tritsch & Sabatini, 2012). 

Hence, the same ligand, DA, can trigger very different cellular responses in a target neuron, depending 

on the subtype of DA receptor and the intracellular signaling pathways it activates. In addition to 

postsynaptic DA receptors, there are also presynaptic DA autoreceptors of the D2 or D3 subtype 

residing in the cell membrane of an axon terminal (Ford, 2014; Schmitz, Benoit-Marand, Gonon, & 

Sulzer, 2003; Wolf & Roth, 1990). These autoreceptors play an important role in regulating DA 

transmission via a negative feedback mechanism (feedback inhibition), which controls different 

presynaptic cell processes in response to extracellular DA levels, such as firing patterns, DA synthesis, 

DA release, and DA uptake (de Mei, Ramos, Iitaka, & Borrelli, 2009; Ford, 2014; Sulzer, Cragg, & Rice, 

2016). Furthermore, extracellular DA can diffuse away from the synaptic cleft into the extrasynaptic 

space of the surrounding brain tissue and act on more distant targets as a neuromodulator (see above; 

e.g. Nadim & Bucher, 2014; Richerson et al., 2013; Schultz, 2007). 
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DA neurotransmission can be terminated by different processes, either by rapid reuptake of DA into 

the presynaptic neuron or by metabolic degradation (see Figure 2). Reuptake is mainly mediated by 

the dopamine (active) transporter, short DAT, which spans the presynaptic cell membrane and actively 

pumps most of the released DA back into the cytosol, where it is repacked into storage vesicles or 

degraded (see Sotnikova, Beaulieu, Gainetdinov, & Caron, 2006; Torres, Gainetdinov, & Caron, 2003; 

Westerink, 2006). DA inactivation by metabolic degradation, on the other hand, primarily involves the 

enzymes catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO), resulting in the main 

degradation products homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC; Hälbig & 

Koller, 2007; Meiser et al., 2013). While MAO is located in the outer mitochondrial membrane of 

neurons and glial cells (Meiser et al., 2013; Westlund, Denney, Rose, & Abell, 1988), COMT is mainly 

found in glial cells and only some types of neurons, where it is predominantly expressed in its 

membrane-bound isoform (Chen et al., 2011; Männistö & Kaakkola, 1999; Meiser et al., 2013; 

Myöhänen & Männistö, 2010; Myöhänen, Schendzielorz, & Männistö, 2010). It is still controversial, 

however, whether this membrane-bound COMT isoform is bound to the plasma membrane or to 

intracellular membranes and if it acts extra- or intracellularly to degrade DA (see Chen et al., 2011; 

Myöhänen & Männistö, 2010; Schott et al., 2010). The soluble COMT isoform, on the other hand, is 

mainly expressed in peripheral tissues and considered to play only a minor role for DA inactivation in 

the human brain (Chen et al., 2011; Männistö & Kaakkola, 1999; Myöhänen & Männistö, 2010). 

Importantly, the two mechanisms of DA reuptake and DA degradation differentially contribute to the 

termination of DA transmission in different brain regions. Fast reuptake via DAT is the primary way of 

terminating the DA signal in the striatum (Cass & Gerhardt, 1995; Cass, Zahniser, Flach, & Gerhardt, 

1993; Giros, Jaber, Jones, Wightman, & Caron, 1996; Shen et al., 2004). However, DA reuptake plays a 

minor role in regions with low DAT expression, such as the prefrontal cortex (PFC), where degradation 

by COMT appears to substantially contribute to DA inactivation (Bilder, Volavka, Lachman, & Grace, 

2004; Garris & Wightman, 1994; Käenmäki et al., 2010; Sesack, Hawrylak, Matus, Guido, & Levey, 1998; 

Tunbridge, Bannerman, Sharp, & Harrison, 2004; Yavich, Forsberg, Karayiorgou, Gogos, & Männistö, 

2007). As COMT inactivates DA more slowly than DAT, DA signals persist much longer in the PFC, and 

the released DA is free to diffuse out of the synaptic cleft to have more widespread effects on 

extrasynaptic sites (see Bilder et al., 2004; Cass & Gerhardt, 1995; Garris & Wightman, 1994; Sesack et 

al., 1998). 

Finally, two different modes of DA neurotransmission can be distinguished, known as the phasic and 

tonic mode (Grace, 1991; Grace & Bunney, 1984a, 1984b; Hyland, Reynolds, Hay, Perk, & Miller, 2002; 

Owesson-White et al., 2012; see also reviews by Goto, Otani, & Grace, 2007; Wightman & Robinson, 

2002). Phasic DA transmission is caused by a short high-frequency series of action potentials (“burst”), 

e.g. triggered by a rewarding stimulus or electrical stimulation of DA neurons, which leads to a fast 

presynaptic DA release. This burst firing rapidly and transiently increases DA concentrations in the 

synaptic cleft to the micro- to millimolar range, which is sufficient to stimulate postsynaptic DA 
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receptors for signal transduction (Bilder et al., 2004; Goto et al., 2007; Grace, 1991, 2008). Tonic DA 

transmission, in contrast, is caused by a low-frequency (~5 Hz) series of action potentials, which occur 

spontaneously and irregularly due to the baseline activity of DA neurons. This baseline firing results in 

a slow DA release that underlies the constant low levels of tonic DA in the extrasynaptic space, which 

reach concentrations in the tens of nanomolar range (Abercrombie, Keefe, DiFrischia, & Zigmond, 

1989; Grace, 1991, 2008; Smith, Olson, & Justice, 1992; Zetterström, Sharp, Marsden, & Ungerstedt, 

1983). While this concentration is too low to activate postsynaptic DA receptors for signal transduction, 

it is sufficient to stimulate presynaptic DA autoreceptors and can thereby act to modulate (i.e. 

downregulate) phasic DA transmission (Bilder et al., 2004; Floresco, West, Ash, Moore, & Grace, 2003; 

Grace, 1991). Furthermore, the mechanisms of tonic and phasic DA transmission are considered to 

differ between brain regions (see Bilder et al., 2004): In the striatum, tonic DA release is thought to 

result from the slow baseline firing of VTA neurons, as described above, and may further be modulated 

by glutamatergic afferents from the PFC. In the PFC, however, tonic DA levels are believed to result 

from the phasic burst firing of VTA neurons and the subsequent diffusion of phasically released DA into 

the extrasynaptic space. The diffusion of DA out of the synaptic cleft is facilitated in the PFC due to a 

reduced clearance of synaptic DA by DAT, which is much lower expressed in prefrontal compared to 

striatal regions (see above). Thereby, phasic burst firing of VTA neurons may contribute to both phasic 

and tonic DA transmission in the PFC. Finally, the phasic and tonic mode of DA activity are believed to 

mediate distinct aspects of behavior (see Beeler et al., 2012; Beeler, 2012; Goto et al., 2007; Schultz, 

2002, 2007; Zweifel et al., 2009). Phasic DA activity is considered to encode an RPE signal that drives 

reinforcement learning, mediated by the activity of midbrain DA neurons that respond with short 

phasic bursts (or pauses) of firing to errors in reward prediction on a millisecond timescale (see 1.1.5; 

e.g. Glimcher, 2011; Schultz, 2016). Tonic DA activity, on the other hand, is thought to operate across 

a broader temporal span than phasic DA and is more widely associated with motivational aspects of 

reward-based behavior, such as the regulation of response vigor (Beierholm et al., 2013; Niv, Daw, 

Joel, & Dayan, 2007; Rigoli, Chew, Dayan, & Dolan, 2016) and behavioral energy expenditure (see 1.3.1; 

Beeler et al., 2012; Beeler, 2012). 

Taken together, this section provided a brief overview of the different neural pathways, receptors, and 

cellular mechanisms involved in DA signaling, which contribute to the immense complexity of the DA 

brain system and the diversity of physiological functions mediated by DA. For a more comprehensive 

introduction to these topics, the reader is referred to Neve (2010), Beaulieu and Gainetdinov (2011), 

and Iversen (2010). 

 

1.2.3 DA pharmacology 

Dopaminergic drugs modulate the function of the DA brain system by specifically targeting the 

molecules, enzymes, and processes involved in DA signaling. For example, DA drugs can act as 

(selective) DA receptor agonists or antagonists, thereby stimulating or blocking the activity of one or 
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more subtypes of the DA receptor (see Beaulieu & Gainetdinov, 2011; Nichols, 2010; Prante, Dörfler, 

& Gmeiner, 2010). Other DA drugs target the metabolic pathway of DA, e.g. by inhibiting DA 

degradation by COMT or MAO (Nissinen & Männistö, 2010; Pisani et al., 2011; Scheggia, Sannino, 

Scattoni, & Papaleo, 2012; Stahl & Felker, 2008), or by providing a precursor substance for increased 

DA synthesis like the drug L-dopa (see below). Furthermore, DA drugs can also affect synaptic release 

or reuptake of DA, for instance by inhibiting DAT or other DA transporter molecules (Gether, Andersen, 

Larsson, & Schousboe, 2006; Huot, Fox, & Brotchie, 2016). As a result, DA drugs may lead to an overall 

increase or decrease in DA transmission (the latter also referred to as “antidopaminergic effects”), but 

mostly affect the function of the DA system in more complex ways (see below; e.g. Cools, 2006; Pryor 

& Storer, 2013; Ruskin et al., 1999; Stępnicki, Kondej, & Kaczor, 2018; Yael et al., 2013). 

Dopaminergic drugs have a broad field of applications. First of all, DA drugs are often developed and 

used for medical treatment of human diseases known to involve a DA dysfunction, such as Parkinson’s 

disease and schizophrenia. Parkinson’s disease (PD) is characterized by a progressive degradation of 

DA neurons in the basal ganglia, leading to striatal DA depletion and severe motoric symptoms, such 

as slowed voluntary movement (bradykinesia), tremor, and rigidity (Hornykiewicz, 1966; Kish, 

Shannak, & Hornykiewicz, 1988; Litvan et al., 2003). Schizophrenia, on the other hand, is considered 

to involve excessive striatal DA function giving rise to positive symptoms like hallucinations and 

delusions, and reduced prefrontal DA function resulting in cognitive impairments and negative 

symptoms like avolition, anhedonia, and alogia (Abi-Dargham, 2004; Davis, Kahn, Ko, & Davidson, 

1991; Howes & Kapur, 2009; Lau, Wang, Hsu, & Liu, 2013; Weinstein et al., 2017). Two classical DA 

drugs for the treatment of PD and schizophrenia, L-dopa and haloperidol, will be introduced in more 

detail below, as they were also used in the current study. Moreover, DA drugs are widely applied in 

pharmacological research on animals and humans to investigate the biochemical and functional 

properties of the DA brain system and its different subcomponents. For example, a wide range of 

selective DA receptor agonists and antagonists have been developed to target and characterize the 

different subtypes of the DA receptor and their physiological functions (Missale et al., 1998; Nichols, 

2010; Prante et al., 2010; Strange & Neve, 2013). Aside from clinical and research drugs, many 

recreational drugs exert (part of) their psychotropic properties by targeting specific components of the 

DA brain system, typically resulting in an enhanced DA transmission (Lüscher & Malenka, 2011; Lüscher 

& Ungless, 2006; Nestler, 2005; Sulzer, 2011). Such recreational DA drugs include, for example, cocaine 

(Pomara et al., 2012), amphetamine (Calipari & Ferris, 2013; Fleckenstein, Volz, Riddle, Gibb, & 

Hanson, 2007), and MDMA, also known as ecstasy (Fleckenstein et al., 2007; Kalant, 2001).  

One widely used DA drug for the medical treatment of PD and for research is L-dopa, also known as 

levodopa. Chemically, L-dopa is the levorotatory isomer of the non-proteinogenic amino acid  

3,4-dihydroxyphenylalanine and an immediate precursor of DA (see 1.2.1). In the biosynthetic pathway 

of catecholamines, L-dopa itself is produced from the amino acid L-tyrosine and then directly 

converted to DA through decarboxylation by the enzyme DDC (see Figure 2; Meiser et al., 2013).  
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For treatment and research, synthetically produced L-dopa is used as a drug to increase DA 

concentrations in the brain by providing additional substrate for DA biosynthesis (Hälbig & Koller, 

2007; Pryor & Storer, 2013). In the clinical field, this approach is known as “dopamine replacement 

therapy” (see below), describing a treatment which compensates for the lack of endogenous DA in PD 

patients. Dopamine itself is not a suitable drug for such a treatment, as it cannot pass the blood-brain 

barrier, whereas L-dopa is actively transported into the central nervous system (CNS) via the large 

neutral amino acid (LNAA) transport system (Contin & Martinelli, 2010; Wang et al., 2017). L-dopa is 

usually administered in combination with a peripheral DDC inhibitor (DDCI; e.g. benserazide or 

carbidopa) to avoid its conversion to DA in the peripheral tissue. Thereby, co-administration of a DDCI 

largely increases the cerebral bioavailability of L-dopa and prevents adverse side effects caused by 

excessive peripheral DA, such as nausea and hypotension (Hauser, 2009; Nord, 2017; Pryor & Storer, 

2013). One frequently used L-dopa/DDCI combination product for PD treatment and research is known 

under the brand name Madopar (L-dopa/benserazide, 100/25 mg), which has also been used in the 

current study. Once L-dopa has crossed the blood-brain barrier, it is rapidly metabolized to DA within 

the CNS by the endogenous enzyme DDC, whereby the exact brain sites of this reaction are unknown 

(see Hälbig & Koller, 2007). Previous studies in animals and humans indicate that the highest DDC 

concentrations are located in the terminals of nigrostriatal DA neurons (Hälbig & Koller, 2007; Hefti & 

Melamed, 1980; Lloyd, Davidson, & Hornykiewicz, 1975; Lloyd & Hornykiewicz, 1972; Melamed, Hefti, 

& Wurtman, 1980). Still, also other sites exhibit DDC activity and are likely to contribute to the 

conversion of exogenous L-dopa to DA, including capillary endothelial cells and the terminals of 

serotonergic and noradrenergic neurons (Bertler, Falck, Owman, & Rosengrenn, 1966; Hefti & 

Melamed, 1980; Hökfelt, Fuxe, & Goldstein, 1973; Kitahama et al., 2009; Melamed et al., 1980; Mura, 

Jackson, Manley, Young, & Groves, 1995; Ugrumov, 2009). This newly synthesized, exogenous DA can 

then contribute to DA neurotransmission within the CNS by binding to pre- and postsynaptic DA 

receptors in addition to the endogenous DA (Hälbig & Koller, 2007; Pryor & Storer, 2013). More 

specifically, previous research suggests that exogenous L-dopa is taken up by nigrostriatal nerve 

terminals, converted to DA, stored in synaptic vesicles, and then co-released with endogenous DA 

upon neural excitation, resulting in increased striatal DA release (see Breitenstein et al., 2006; Cools, 

2006; Floel et al., 2008; Hälbig & Koller, 2007; Horne, Cheng, & Wooten, 1984). Hence, by this 

mechanism, L-dopa administration may transiently normalize (striatal) DA levels in DA-depleted 

subjects like PD patients or boost DA levels in healthy subjects. Yet, these acute drug effects are only 

of short duration, since conventional L-dopa/DDCI preparations have a short plasma half-life of 60 to 

90 min and reach peak plasma concentration about 30 to 60 min after oral ingestion (Baruzzi et al., 

1987; Iwaki et al., 2015; Keller et al., 2011; Nyholm et al., 2012; see also reviews by Contin & Martinelli, 

2010; Hälbig & Koller, 2007; Khor & Hsu, 2007). During chronic L-dopa treatment, however, the 

duration of the drug response can by far exceed the short half-life of the drug. Especially early stage 

PD patients often experience improved motor symptoms for several days after L-dopa administration, 

termed “long-duration response”, in addition to a “short-duration response” that parallels L-dopa 
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plasma concentrations (Anderson & Nutt, 2011; Khor & Hsu, 2007; Nagao et al., 2018; Nutt, Carter, & 

Woodward, 1995; Zappia & Nicoletti, 2010). Degradation of L-dopa follows principally the same 

pathways as for endogenous L-dopa (Hälbig & Koller, 2007), but is shifted in the presence of DDCIs 

towards peripheral COMT metabolism in the liver and kidney, whereby metabolites are predominantly 

eliminated in the urine (Contin & Martinelli, 2010; Khor & Hsu, 2007; Männistö & Kaakkola, 1999). 

Clinically, L-dopa is used for dopamine replacement therapy since the 1960s and still remains the gold 

standard for the pharmacological treatment of PD (for reviews see Hauser, 2009; Hornykiewicz, 2002, 

2017; Ovallath & Sulthana, 2017). It has to be noted, however, that all currently available 

antiparkinsonian drugs – including L-dopa – only provide symptomatic treatment with no proven 

protective or curative effect on the disease (see Fahn, Jankovic, & Hallett, 2011). Still, clinical trials 

have shown L-dopa to be the most effective and best tolerated drug for symptomatic PD therapy (Fahn, 

2006; Katzenschlager & Lees, 2002; Müller, 2007; Poewe, Antonini, Zijlmans, Burkhard, & Vingerhoets, 

2010). Especially in the early stages of treatment, L-dopa largely alleviates motoric symptoms of PD 

like bradykinesia, rigidity, and tremor (Bernheimer, Birkmayer, Hornykiewicz, Jellinger, & Seitelberger, 

1973; Hälbig & Koller, 2007; Poewe et al., 2010; Pryor & Storer, 2013). On the other hand, L-dopa can 

also have adverse side effects like nausea, hypotension, and sedation (Hälbig & Koller, 2007; Pryor & 

Storer, 2013). Furthermore, L-dopa therapy can cause neuropsychiatric symptoms, such as 

hallucinations, paranoid psychosis, and impulse control disorders (ICDs), the latter including 

pathological gambling, hypersexuality, and binge eating (Hälbig & Koller, 2007; O'Sullivan, Evans, & 

Lees, 2009; Weintraub et al., 2010; see also 6.2.1.1). In the long term, chronic L-dopa treatment also 

leads to serious motoric complications in most PD patients, including involuntary movements 

(dyskinesia) and “wearing off” phenomena, meaning that medication effects become progressively 

shorter during treatment, presumably owing to the reduced DA storage capacity with progressing loss 

of DA neurons (Bhidayasiri & Truong, 2008; Dewey, 2004; Hälbig & Koller, 2007; Jankovic, 2005). 

Wearing off is followed by stronger and more unpredictable fluctuations in the drug response called 

“on-off” phenomenon, which makes it difficult to adequately control motoric symptoms in the later 

stages of treatment (Bhidayasiri & Tarsy, 2012; Dewey, 2004; Hälbig & Koller, 2007; Jankovic, 2005). 

These severe motoric complications have been shown to emerge in 50 % of PD patients after five years 

of L-dopa treatment and in > 80 % of patients after 10 years of treatment (see Dodel, Berger, & Oertel, 

2001; Hälbig & Koller, 2007) and to strongly impair the patients’ quality of life (Chapuis, Ouchchane, 

Metz, Gerbaud, & Durif, 2005; Dodel et al., 2001; Gómez-Esteban et al., 2007; Sławek, Derejko, & Lass, 

2005). Therefore, current research aims to develop new L-dopa formulations with enhanced 

pharmacological properties (Contin & Martinelli, 2010; Haddad et al., 2017; Hauser, 2009; Ovallath & 

Sulthana, 2017), as well as alternative PD treatment strategies, including other drugs like DA agonists, 

COMT inhibitors, and MAO inhibitors (Fahn et al., 2011; Kaakkola, 2000; Pryor & Storer, 2013; Riederer 

& Laux, 2011) in addition to neurosurgical approaches (Benabid et al. 2009; Fang & Tolleson, 2017). 
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Another frequently used DA drug for therapy and research is the DA receptor antagonist haloperidol, 

which is a common antipsychotic (neuroleptic) medication for the treatment of schizophrenia (see 

below). Haloperidol is an organic substance belonging to the class of butyrophenones, which are 

derived from the aromatic compound butyrophenone (1-phenylbutan-1-one). The two halogen atoms 

in its structure, fluorine and chlorine, have led to its generic name haloperidol (Janssen et al., 1959; 

López-Muñoz & Alamo, 2009). Although the drug’s therapeutic mechanism is not completely 

understood, it appears to primarily rely on the competitive blockade of DA receptors in the mesolimbic 

DA system (Brenner & Stevens, 2013; Kapur, Agid, Mizrahi, & Li, 2006; Labbate, 2010; Pryor & Storer, 

2013), meaning that DA receptors are occupied but not activated by the drug. Haloperidol thereby 

exhibits the highest affinity for the D2 receptor (dissociation constant Kd = 1 nM) and other D2-like 

receptors like D3 (Kd = 5 nM) and D4 (Kd = 2 nM), but lower affinity for the D1 receptor (Kd = 25 nM) and 

D5 receptor (Kd = 12 nM; Bymaster et al., 1999). Notably, haloperidol not only blocks postsynaptic but 

also presynaptic D2 autoreceptors, which can result in an increase rather than decrease of DA 

transmission, specifically at acute low doses (see 6.2.2.1; Frank & O'Reilly, 2006; Starke, Göthert, & 

Kilbinger, 1989; Westerink, 2002). Moreover, haloperidol also antagonizes other neurotransmitter 

receptors like the adrenergic α1 receptor (Kd = 46 nM) and the serotonergic 5-HT2A receptor 

(Kd = 58 nM), contributing to the drug’s side effect profile (Bymaster et al., 1999; Pryor & Storer, 2013). 

However, compared to other typical antipsychotics, haloperidol only shows negligible affinity 

(Kd > 1000 nM) for the histamine H1 receptor and muscarinic acetylcholine receptors, thereby 

exhibiting less antihistaminic and anticholinergic side effects like sedation or weight gain (Bymaster et 

al., 1999; Labbate, 2010; Li, Snyder, & Vanover, 2016). Haloperidol can be administered orally, 

intravenously, or intramuscularly to human subjects (Kudo & Ishizaki, 1999). As a highly lipophilic 

substance, it can freely distribute into different tissues and can also cross the blood-brain-barrier to 

enter the brain (D'Ambrosio, Zivkovic, & Bartholini, 1982; Kudo & Ishizaki, 1999; Labbate, 2010; 

Schinkel, Wagenaar, Mol, & van Deemter, 1996). The pharmacokinetic parameters of orally 

administered haloperidol show a high variability between different studies and subjects: Reported 

mean values for the plasma half-life range between 14.5 to 36.7 hours, and for the time of peak plasma 

concentration between 1.7 and 6.1 hours (see review by Kudo & Ishizaki, 1999). Haloperidol is 

extensively metabolized in the human liver by cytochrome P450 enzymes to various substances, which 

are primarily eliminated from the body in the urine and bile (Kudo & Ishizaki, 1999; Li et al., 2016; Pryor 

& Storer, 2013). 

In the clinic, haloperidol is used as an antipsychotic drug since the late 1950s and is primarily marketed 

under the trade name Haldol (Li et al., 2016; López-Muñoz & Alamo, 2009). It is a prototypical example 

for the class of first-generation (or “typical”) antipsychotics and one of the most frequently used drugs 

in the treatment of schizophrenia and other psychotic disorders (Dold, Samara, Li, Tardy, & Leucht, 

2015; Kudo & Ishizaki, 1999; Li et al., 2016). Haloperidol is especially effective for the treatment of 

positive symptoms like hallucinations and delusions, but is also used for relapse prevention and long-
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term stabilization (Geddes, 2002; Labbate, 2010). In contrast, negative symptoms during the chronic 

phase of schizophrenia, as well as cognitive and executive dysfunctions respond less well to the 

treatment with haloperidol or other typical antipsychotics (Labbate, 2010; Li et al., 2016). The full 

therapeutic effects of the drug occur only after weeks of treatment, suggesting that these long-term 

effects reflect secondary or adaptive responses to D2 antagonism, possibly relying on altered gene 

expression and synaptic reorganization (Brenner & Stevens, 2013; Labbate, 2010). On the other hand, 

haloperidol also produces serious adverse side effects on various organ systems, the most 

characteristic being diverse movement disorders known as “extrapyramidal symptoms” (EPS; see 

Haddad, Das, Keyhani, & Chaudhry, 2012; Haddad & Dursun, 2008; Leucht et al., 2013; Pryor & Storer, 

2013). EPS include dystonia (involuntary muscle contractions), akathisia (motor restlessness), and PD-

like symptoms like bradykinesia, rigidity, and tremor. These motoric side effects appear to be primarily 

caused by D2 receptor blockade in the nigrostriatal pathway, although the precise mechanism is 

unclear (Kapur, Zipursky, Jones, Remington, & Houle, 2000; Labbate, 2010; Pryor & Storer, 2013). 

Furthermore, haloperidol can also cause potentially lethal side effects, such as the neuroleptic 

malignant syndrome (NMS; see Berman, 2011; Haddad & Dursun, 2008) and cardiac adverse reactions 

like arrhythmias and sudden cardiac death (Girardin & Sztajzel, 2007; Leonard et al., 2013; Ray, Chung, 

Murray, Hall, & Stein, 2009). Because of the drug’s various side effects, its narrow therapeutic window, 

and the wide interindividual variation in its pharmacokinetics, haloperidol treatment needs to be 

individually optimized and carefully monitored (Kapur et al., 2000; Kudo & Ishizaki, 1999). An 

alternative to haloperidol for the treatment of schizophrenia are the newer second-generation (or 

“atypical”) antipsychotics, such as clozapine and risperidone. These drugs exhibit a different receptor 

affinity profile with lower D2 selectivity and are claimed to have higher efficiency against negative 

symptoms and a reduced risk of EPS (see Labbate, 2010; Leucht et al., 2009; Li, Snyder, & Vanover, 

2016). However, recent meta-analyses comparing the therapeutic efficiencies and side effect profiles 

of several antipsychotics have not convincingly shown a general superiority of the second- over the 

first-generation drugs and, moreover, challenge the straightforward classification of antipsychotics 

into these two distinct categories (Davis, Chen, & Glick, 2003; Geddes, Freemantle, Harrison, & 

Bebbington, 2000; Leucht et al., 2009, 2013; see also Labbate, 2010; Pryor & Storer, 2013). 

Both drugs, L-dopa and haloperidol, are often used in human research to investigate the causal effects 

of increased or decreased DA transmission on different behaviors, including reward-based decision 

making (e.g. Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006; Pine, Shiner, Seymour, & Dolan, 2010; 

Wunderlich, Smittenaar, & Dolan, 2012). Exemplary for such an approach is the pharmacological fMRI 

experiment of Pine et al. (2010), who used a placebo-controlled, double-blind, within-subjects design 

to study temporal discounting behavior in healthy subjects under both dopaminergic (L-dopa) and 

antidopaminergic (haldoperidol) drug conditions. Notably, a similar experimental design has been 

employed in the current study to test for DA-dependent effects on explore/exploit behavior (see 1.4.2). 

However, this section has also demonstrated that the mechanisms underlying the seemingly opposite 
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drug actions of L-dopa and haloperidol are rather complex, with various factors contributing to the 

(anti-)dopaminergic effects of these drugs. Hence, this mechanistic complexity should be kept in mind 

when utilizing DA drugs like L-dopa and haloperidol for research. 

To summarize, DA drugs provide an important tool for both the treatment of DA-related diseases and 

for neuroscientific research. In the clinic, the DA precursor L-dopa is a widely used drug for dopamine 

replacement therapy in PD, while the D2 receptor antagonist haloperidol is a typical antipsychotic drug 

for the treatment of schizophrenia. For research, L-dopa and haloperidol are often used to examine 

the behavioral and neural effects of either increased or decreased DA transmission, respectively, an 

approach that was also employed in the current study. 

 

1.2.4 Inverted-U hypothesis of DA 

The “inverted-U hypothesis” of DA states that the relationship between DA levels and cognitive 

performance follows an inverted-U-shaped function, or optimum curve, in which deviations from 

optimal DA levels in both directions result in a deterioration of performance (see Figure 3; Cools & 

D'Esposito, 2011). In other words, both too low (depleted) and too high (excessive) DA levels impair 

cognitive functioning, whereas moderate DA levels allow for an optimal performance. Several studies 

on animals and humans have, in general, provided empirical support for this hypothesis and its 

implications (reviewed by Cools & D'Esposito, 2011; Floresco, 2013). 

 
Figure 3. Inverted-U-shaped function of dopamine (DA). The relationship between DA levels and cognitive 

performance follows an inverted-U curve, where both too little (depleted) and too much (overdosed) DA 

impairs performance. Hence, the same DA drug should produce opposite effects on performance in two 

subjects with different baseline DA levels (A and B). Note also that optimal DA levels might vary between 

different tasks and brain regions, as indicated by the shifted (dashed) curve. See text for further 

explanations. Adapted from Cools & D'Esposito (2011). 

 
A first implication of the inverted-U hypothesis is that subjects with very low or very high baseline DA 

levels perform worse in DA-related cognitive tasks than subjects with intermediate DA levels. Note 

that the term “baseline DA level” thereby refers to the DA level of the subject without drug 

administration or other external DA manipulations. Previous empirical studies have confirmed this 

relationship for different cognitive functions (Akbari Chermahini & Hommel, 2010, 2012; Dang, Xiao, 

Liu, Jiang, & Mao, 2016; Ueda, Tominaga, Kajimura, & Nomura, 2016; see also review by Jongkees & 
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Colzato, 2016). For example, Akbari Chermahini & Hommel (2010) used a divergent thinking task to 

assess creative performance in humans, which is claimed to rely on DA. In a large sample of 117 

subjects, they showed that the baseline DA level – as indexed by the spontaneous eye blink rate (sEBR; 

see 1.2.5) – predicts individual task performance according to an inverted-U-shaped function, with 

medium sEBRs predicting optimal performance. Later studies have reported similar inverted-U-shaped 

relationships between the sEBR and creative thinking (Akbari Chermahini & Hommel, 2012; Ueda et 

al., 2016) or self-regulatory control (Dang et al., 2016). In addition, the idea that non-optimal DA levels 

are associated with cognitive impairment also contributed to a better understanding of the cognitive 

symptoms observed in diseases linked to excessive or depleted DA levels, such as Parkinson’s disease 

(Williams-Gray, Hampshire, Barker, & Owen, 2008; Wu et al., 2012), schizophrenia (Alawieh et al., 

2012; Kömek, Bard Ermentrout, Walker, & Cho, 2012; Wu et al., 2012), attention deficit hyperactivity 

disorder (ADHD; Levy, 2009), and obsessive-compulsive spectrum disorders (van Velzen, Vriend, de 

Wit, & van den Heuvel, 2014). Also, cognitive impairments in healthy subjects due to aging or acute 

stress have been linked to depleted or excessive DA levels, respectively, based on the inverted-U 

hypothesis of DA (Goldman-Rakic, Muly, & Williams, 2000; Seamans & Yang, 2004; Williams & Castner, 

2006). 

A second implication of the inverted-U hypothesis is that administration of a DA drug can have mixed 

and even opposite effects in different subjects, depending on their individual baseline DA level. As 

demonstrated in Figure 3, a drug-induced increase in DA levels (e.g. by L-dopa) should improve 

cognitive performance in individuals with low DA levels, but impair performance in subjects with 

already optimal or above-optimal DA levels. In contrast, a drug-induced decrease in DA levels (e.g. by 

haloperidol) should improve cognitive functioning in subjects with high DA levels, but have detrimental 

effects in individuals with optimal or below-optimal DA levels. Thus, administration of the same drug 

can lead to opposite (paradoxical) drug effects in subjects with low compared to high baseline DA 

levels. Several studies in animals and humans have provided empirical evidence for such paradoxical 

drug effects, thereby supporting the inverted-U hypothesis of DA (see reviews by Cools & D'Esposito, 

2011; Floresco, 2013; Jongkees & Colzato, 2016; Schacht, 2016). For instance, Cools et al. (2009) 

showed that the D2 receptor agonist bromocriptine improved reward-based (relative to punished-

based) reversal learning in human subjects with low striatal DA synthesis capacity, but impaired it in 

subjects with high striatal DA synthesis capacity, as measured by positron emission tomography (PET). 

Note that differences in striatal DA synthesis capacity were suggested to reflect differential baseline 

levels of synaptic DA in this study. Other studies found a similar DA baseline dependency of DA drug 

effects on other cognitive functions, including working memory (Frank & O'Reilly, 2006; Gibbs & 

D’Esposito, 2005, 2006; Mehta et al., 2000), set shifting (Frank & O'Reilly, 2006; Kimberg, DʼEsposito, 

& Farah, 1997), and response conflict processing (Cavanagh, Masters, Bath, & Frank, 2014). Instead of 

PET imaging, however, these studies assessed individual baseline DA levels by the use of behavioral 

proxies like the sEBR and working memory capacity (see 1.2.5). Moreover, additional evidence stems 
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from human pharmacogenetic studies showing that DA drug effects are strongly modulated by certain 

genotypes that are indicative of a subject’s baseline DA level, such as the COMT Met/Val polymorphism 

(reviewed by Schacht, 2016). For example, one such study (Farrell, Tunbridge, Braeutigam, & Harrison, 

2012) showed that an increase in prefrontal DA levels via the COMT inhibitor tolcapone increases 

working memory performance and risk aversion in Val/Val subjects (with supposedly low baseline DA 

levels in the PFC), but has the opposite effect in Met/Met subjects (with supposedly higher baseline 

DA levels in the PFC). The review by Schacht (2016) suggests, however, that such pharmacogenetic 

effects depend on the subcomponent of the DA system that is targeted by the drug: While there is 

strong evidence for pharmacogenetic effects with antipsychotic drugs, which mainly target D2 

receptors, the evidence is mixed for psychostimulants and COMT inhibitors, which exhibit larger effects 

on D1 receptor transmission. Finally, it was shown that the individual baseline DA level does not only 

modulate DA drug effects, but also the effects of tDCS neurostimulation on cognitive performance 

(reviewed by Wiegand, Nieratschker, & Plewnia, 2016). For instance, two human tDCS studies found 

that anodal (excitatory) stimulation of the PFC reduced executive functioning specifically in Met/Met 

subjects (Plewnia et al., 2013), while cathodal (inhibitory) PFC stimulation reduced executive 

functioning specifically in Val/Val subjects (Nieratschker, Kiefer, Giel, Krüger, & Plewnia, 2015). Both 

results are in line with the inverted-U hypothesis, assuming that Val homozygotes are located on the 

ascending (left) side of the curve where DA inhibition decreases performance, while Met homozygotes 

are located on the descending (right) side of the curve where DA stimulation decreases performance 

(see Wiegand et al., 2016). 

Although the inverted-U hypothesis of DA has gained much empirical support, research has also shown 

that the true relationships are probably much more complex than the simple idea suggests, with many 

important questions remaining open. First of all, the observation of an inverted-U-shaped relationship 

between DA levels and cognitive performance is, at present, only a “descriptive rather than a 

mechanistic account of the action of DA” (Cools & D'Esposito, 2011, p. e121). It remains largely 

unknown, by which neural mechanisms too low and too high DA levels impair cognitive functioning 

and if (or how) these two extremes differ (for mechanistic speculations see Cools & D'Esposito, 2011; 

Floresco, 2013). Furthermore, the inverted-U hypothesis remains relatively vague about the exact 

meaning of the term “baseline DA levels”. Since DA concentrations cannot be directly measured in the 

living human brain, most research on the inverted-U hypothesis relies on behavioral or genetic proxies 

to assess baseline DA levels, whereby it is often unclear which specific aspect of DA function these 

proxies reflect (see 1.2.5). For instance, it remains unsettled whether the inverted-U function rather 

applies to the modulating effects of striatal DA (Cools et al., 2009) and/or prefrontal DA (Floresco, 

2013; Floresco & Magyar, 2006; Mattay et al., 2003; Schacht, 2016), or perhaps to frontostriatal 

connectivity (Cools & D'Esposito, 2011). Pharmacological research on animals suggests, however, that 

the inverted-U function specifically describes the relationship between prefrontal D1 receptor activity 

and working memory performance, whereas the relations between other DA receptor subtypes and 
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cognitive domains may follow different functions (Floresco, 2013; Floresco & Magyar, 2006; see also 

Fallon et al., 2015). Based on this evidence, Floresco (2013) concludes that the inverted-U curve is not 

a “one-size-fits-all function”, but rather represents one specific member in a family of functions 

describing how DA modulates behavior across different cognitive domains. Finally, it was suggested 

that the exact shape of the inverted-U curve may be highly variable between subjects and tasks (see 

Wiegand et al., 2016), and also that the position of the curve’s turning point may vary between 

different tasks and brain regions to exhibit distinct task- and region-specific DA optima (Cools & 

D'Esposito, 2011; Fallon et al., 2015). Regarding these points, more research is clearly needed to 

specify when and in what form the inverted-U function applies to different cognitive domains, as well 

as to reveal the neural mechanisms underlying that relationship. 

To conclude, while many aspects of the inverted-U hypothesis remain open and require more research, 

the hypothesis has proven highly useful to describe and predict how individual baseline DA levels 

modulate DA-dependent cognitive functions and DA drug effects. Consequently, further research on 

DA-related behaviors should take individual differences in baseline DA levels into account and also 

directly test for non-linear (quadratic) relationships as predicted by the inverted-U hypothesis.  

 

1.2.5 DA proxies 

Currently, there are no techniques to directly measure intra- or extracellular DA concentrations in the 

living human brain (see Badgaiyan, 2014). While certain aspects of DA function – such as DA synthesis 

capacity and DA receptor availability or occupancy – can be visualized in vivo using PET imaging with 

radiolabeled receptor ligands or metabolites (Badgaiyan, 2011; Laruelle, 2000), this technique is 

expensive and methodically complex, partly limiting its use for research. Therefore, most DA research 

relies on the use of behavioral or genetic proxy measures to indirectly assess central DA function, 

providing a cheap and non-invasive alternative to PET. In the following, two of these proxy measures, 

the spontaneous eye blink rate and the working memory capacity, are introduced in more detail, as 

they were both used in the current study. 

The spontaneous eye blink rate (sEBR) is one of the oldest and most widely used proxy measures for 

central DA function. It is usually measured under resting conditions (“tonic sEBR”) by counting the 

number of spontaneous eye blinks over a course of several minutes, e.g. through direct observation, 

video recording, or electromyography (see 2.3.1). Note, however, that the sEBR can also be measured 

in response to stimulus conditions, such as a cognitive task or a video, and is then referred to as “phasic 

sEBR”. The utility of the sEBR as an indicator of DA function has recently been evaluated in an extensive 

research review by Jongkees and Colzato (2016). Based on more than 100 studies, the review 

concluded that the sEBR is a “useful predictor of DA in a wide variety of contexts” (p. 58), whereby 

three main research contexts have been distinguished. First, several pharmacological studies have 

investigated the effects of different DA drugs on the sEBR in animals and humans. Overall, these studies 

showed that the sEBR can reflect drug-induced changes in both D1 and D2 receptor activity, with higher 
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sEBR indicating higher DA function. However, when measured under non-pharmacological (baseline) 

conditions, the sEBR was found to be positively related to D2 but not D1 receptor availability (Groman 

et al., 2014). Hence, it has been suggested that the sEBR may reflect D1 receptor activity only under 

pharmacological conditions, which might be explained by the lower DA sensitivity of D1 compared to 

D2 receptors (see Jongkees & Colzato, 2016). Second, the sEBR has been widely used to study DA 

dysfunctions in various human disorders, both at baseline and after DA drug treatment. For example, 

it was found that the sEBR is typically reduced in PD patients and increased in schizophrenic patients, 

consistent with the notion that these patients exhibit diminished or excessive striatal DA function, 

respectively (e.g. Adamson, 1995; Aksoy, Ortak, Kurt, Cevik, & Cevik, 2014; Bologna et al., 2012; 

Deuschl & Goddemeier, 1998; Karson, 1983; Mackert, Woyth, Flechtner, & Frick, 1988; Stevens, 1978; 

see also review by Jongkees & Colzato, 2016). Moreover, while DA-stimulating treatment (e.g. with  

L-dopa) typically increases the sEBR in PD patients (Agostino et al., 2008; Bologna et al., 2012; Kimber 

& Thompson, 2000), neuroleptic treatment reduces the sEBR in schizophrenic patients (Adamson, 

1995; Bartkó, Herczeg, & Zádor, 1990; Karson, 1983; Karson et al., 1981; Kleinman et al., 1984), both 

effects indicating a (partial) normalization of DA function in response to the DA drugs. Third, many 

human studies have used the sEBR to examine the relationship between individual differences in 

baseline DA function and cognitive performance. Overall, these studies have shown that the sEBR at 

baseline can reliably predict individual differences in task performance, particularly in tasks of 

cognitive flexibility and reinforcement learning (see Jongkees & Colzato, 2016). While some of these 

studies found a linear relation between sEBR and performance (e.g. Slagter, Georgopoulou, & Frank, 

2015; Zhang et al., 2015), other studies reported an inverted-U-shaped relationship (see 1.2.4; e.g. 

Akbari Chermahini & Hommel, 2010, 2012; Ueda et al., 2016). Although the sEBR has been extensively 

used across all these research contexts, it is presently unknown by what mechanism the relationship 

between sEBR and central DA function can be explained. One hypothesis is that DA modulates – via 

the basal ganglia – the activity of the spinal trigeminal complex, which has been suggested to be an 

integral part of the spontaneous blink generator circuit (Kaminer, Powers, Horn, Hui, & Evinger, 2011; 

Kaminer, Thakur, & Evinger, 2015). Finally, some limitations of the sEBR include its (relative) 

unspecificity for different DA subfunctions, such as different DA pathways and DA receptor systems, 

and the large methodological variability in assessing the sEBR (see Jongkees & Colzato, 2016). In 

addition, recent PET studies in humans have questioned the validity of the sEBR as a (positive) predictor 

of DA, as they have found either no or even a negative relationship between the sEBR and different 

aspects of central DA function (Dang et al., 2017; Sescousse et al., 2018). 

A second behavioral marker for baseline DA function is the working memory capacity (WMC), which 

has gained attention as a DA proxy measure over the last two decades (see Cools & D'Esposito, 2011). 

It is usually measured with working memory span tasks, such as the reading span test (Daneman & 

Carpenter, 1980) or the listening span test (Daneman & Carpenter, 1980; Salthouse & Babcock, 1991). 

In these two tests, subjects read aloud or listen to a series of sentences and need to recall the final 
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word of each sentence in the correct order. Notably, these and other WMC tasks are typically  

dual-task paradigms, which require both the storage of information (e.g. memorizing words) and the 

simultaneous processing of information (e.g. reading or listening), in contrast to simple short-term 

memory tasks which only require the storage of information (see Conway et al., 2005; Kail & Hall, 2001; 

Kane et al., 2004; Oberauer, Süß, Schulze, Wilhelm, & Wittmann, 2000; Unsworth & Engle, 2007). Both 

the reading and listening span test have been used in several studies as a proxy for baseline DA function 

(e.g. Cools et al., 2009; Cools, Gibbs, Miyakawa, Jagust, & D'Esposito, 2008; Gibbs & D’Esposito, 2005, 

2006; Kimberg et al., 1997; Kimberg & D’Esposito, 2003; Landau, Lal, O'Neil, Baker, & Jagust, 2009). 

Additionally, other studies have also used the digit span task to measure baseline WMC as a proxy for 

DA (Wechsler, 2008; e.g. used by Mehta et al., 2000; van der Schaaf et al., 2014). In this task, a series 

of numerical digits is presented to the participant and needs to be recalled in the same order (forward 

version) or in the reverse order (backward version). Note that while the forward version is considered 

a measure of short-term memory rather than WMC (Kail & Hall, 2001; Kane et al., 2004; Unsworth & 

Engle, 2007), the backward version requires both the simultaneous storage and processing of 

information (i.e. recalling and reordering the digit string) and has hence been regarded and used as a 

measure of WMC (see Conway et al., 2005; Mehta et al., 2000; Oberauer et al., 2000). The first direct 

evidence for an association between WMC and baseline DA function stems from a human PET study 

by Cools et al. (2008). In a small sample of 11 female subjects, this study showed that the WMC, as 

measured with the listening span test, positively predicts DA synthesis capacity in the striatum. This 

finding was later replicated in a sample of 22 healthy elderly subjects by another human PET study 

(Landau et al., 2009). Note, however, that both studies did not allow to test for an association of WMC 

with prefrontal DA, as their applied PET technique, 6-[18F]fluoro-L-m-tyrosine (FMT) PET, is optimized 

to visualize DA function in the striatum, but not in the PFC (see Cools & D'Esposito, 2011; Jordan et al., 

1997). Aside from these PET studies, further (indirect) evidence for an association between WMC and 

baseline DA stems from pharmacological studies showing that baseline WMC predicts DA drug effects 

on cognitive performance according to an inverted-U-shaped function (see 1.2.4). Several studies have 

shown, for example, that DA receptor agonists improve cognitive performance in subjects with low 

WMC, but impair performance in subjects with high WMC (reviewed by Cools & D'Esposito, 2011). This 

WMC baseline effect was found for different cognitive functions, including set shifting (Frank & 

O'Reilly, 2006; Kimberg et al., 1997), working memory updating (Frank & O'Reilly, 2006; Mehta et al., 

2000), and working memory retrieval (Gibbs & D’Esposito, 2005, 2006). These findings suggest that the 

individual WMC (low or high) reflects differential baseline levels of DA (low or high), which in turn 

modulate DA drug effects in opposing ways as predicted by the inverted-U hypothesis of DA (see 1.2.4). 

One limitation of the WMC is that it is presently not clear which aspect of DA function the proxy 

reflects, e.g. whether it specifically indicates striatal DA or also prefrontal DA, and to which DA receptor 

subtype(s) it corresponds. Also, there are currently only a few (small-sample) studies in the literature 

showing direct associations between WMC and baseline DA, wherefore more research is needed to 

establish the WMC as a valid and reliable marker of DA function. 
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1.3 Dopamine in the explore/exploit trade-off 

While the preceding sections have broadly introduced the DA brain system and outlined its basic 

functions in reward-based decision making, this section will now specifically focus on the role of DA in 

regulating the explore/exploit trade-off based on evidence from animals, humans, and neural network 

models. 

 

1.3.1 Animal and neural network studies 

One line of evidence for a dopaminergic involvement in the explore/exploit trade-off stems from 

research on animals and neural network models. A main contribution in this field has come from the 

experimental and theoretical work by Beeler and colleagues. In 2010, Beeler et al. conducted an 

experiment on dopamine transporter (DAT) knockdown mice, which are characterized by increased 

levels of tonic DA due to a reduced reuptake of extracellular DA (Zhuang et al., 2001). Compared to 

wild-type controls, these hyperdopaminergic mice showed less exploitative (i.e. more exploratory) 

behavior in an instrumental learning task, in which food was earned by lever presses. More specifically, 

the mice could choose between two levers, one cheap and one expensive lever yielding food rewards 

at different costs (i.e. number of presses), whereby the assignment of the two levers as cheap or 

expensive switched from time to time. Behavioral analysis showed that the hyperdopaminergic mice 

choose the expensive lever more often than control mice, despite responding to switches in lever costs 

similarly quickly. These findings suggest that DAT knockdown mice are not impaired in learning about 

changes in the environment, but exert more effort than controls for earning a given amount of reward. 

In other words, the hyperdopaminergic mice show a lower tendency to base their choices on previously 

learned reward (cost) rates, i.e. a lower tendency to exploit. Furthermore, a model-based analysis of 

choice behavior revealed a selective decrease in the softmax 	 parameter, but not in the learning rate, 

for the DAT knockdown mice compared to controls, reflecting a noisier, more exploratory choice 

behavior. Based on the results of this and other studies, Beeler et al. (2012) developed a new 

conceptual framework of DA function, suggesting that the primary role of DA in behavior is the 

regulation of energy expenditure or thrift (see also Beeler, 2012). According to this framework, DA 

modulates energy expenditure along two dimensions: a conserve-expend axis and an explore-exploit 

axis. The conserve-expend axis reflects the regulation of the general activity level, i.e. how much 

energy to expend, ranging from low activity (conserve) to high activity (expend). The explore-exploit 

axis describes instead how to allocate this energy to different behavioral activities along a continuum 

from exploitation to exploration. Along these two dimensions, behavior is modulated by DA according 

to the environmental energy conditions: In rich environments with plentiful resources, increased DA 

drives behavior towards energy expenditure and exploration, whereas in poor environments with 

scarce resources, decreased DA promotes energy conservation and exploitation. In fact, this 

framework suggests that the well-established role of DA in reward-related and motivated behaviors 

may actually arise as a consequence of DA’s primary role in behavioral energy management. 
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Although influential, the theoretical framework of Beeler et al. (2012) remained relatively vague about 

the exact neural mechanisms underlying the regulation of energy expenditure and explore/exploit 

behavior by DA. As Beeler et al. (2012) remarked, the term “DA function” in their skeletal framework 

is broadly construed and may include several factors like extracellular DA levels, tonic and phasic DA 

cell firing, properties of DA synthesis and vesicular DA release, and the relative expression rates of 

different DA receptors and DA transporters. A more mechanistic account on the role of DA in 

explore/exploit regulation has been provided by studies based on neural network models (Humphries 

et al., 2012; Mandali, Rengaswamy, Chakravarthy, & Moustafa, 2015). For instance, Humphries et al. 

(2012) performed a simulation experiment on a computational model of the full basal ganglia (BG) 

circuit to test the hypothesis that tonic striatal DA controls the explore/exploit trade-off via the basal 

ganglia. The outcome of their simulations supported this hypothesis, showing that variations in striatal 

DA modulate the BG output in a way favoring either exploratory or exploitative actions. More 

specifically, they showed that higher tonic DA levels in the striatum lead to a more peaked probability 

distribution for action selection (i.e. a higher softmax 	) as encoded in the BG output, reflecting a 

choice behavior that is more value-driven (exploitative) and less noisy (exploratory). The authors 

concluded from these results that tonic DA variations in the striatum are sufficient to control the 

explore/exploit trade-off by encoding the degree to which action selection in the BG is influenced by 

previous rewards. In addition, another simulation experiment on a spiking BG network model also 

supported the view that DA levels in the BG might regulate explore/exploit behavior, albeit suggesting 

a different mechanism (Mandali et al., 2015). In short, this study showed that the DA-dependent level 

of neural synchrony within the BG (i.e. between the subthalamic nucleus and globus pallidus externus) 

modulates to the level of exploration, as demonstrated on simulated choice behavior in the multi-

armed bandit task. Specifically, intermediate DA levels in this model were associated with high neural 

synchrony and more exploratory behavior, whereas high DA levels led to neural desynchronization and 

more exploitative behavior. Hence, both neural network studies arrive at the conclusion that the BG 

might represent the subcortical neural substrate for controlling the trade-off between exploitation and 

random exploration, but also indicate that the actual function linking striatal DA levels to behavior 

might be rather complex. 

Aside from these studies on subcortical DA systems, there is also evidence for an involvement of 

prefrontal DA in different aspects of explore/exploit behavior, including risk preference, working 

memory, and behavioral flexibility (reviewed by Cools & D'Esposito, 2011; Floresco, 2013; Floresco & 

Magyar, 2006). For instance, it was shown that pharmacological manipulation of prefrontal D1 and D2 

receptor activity affects risky choice behavior in a probability discounting task, in which rats choose 

between a small certain and a large but uncertain reward (St Onge et al., 2011). More specifically, the 

study showed that while D1 blockade in the medial PFC decreases risky choices, D1 stimulation and D2 

blockade increases risky choices. The authors concluded from these results that prefrontal D1 and D2 

receptors play complementary roles in risky decision making. Further, they suggested that balancing 
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D1/D2 receptor activity might reflect the mechanism by which prefrontal DA assists the trade-off 

between exploitation of a certain reward and exploration of an uncertain but potentially larger reward. 

In addition, prefrontal DA receptors have been implicated in working memory and behavioral flexibility 

(Floresco, 2013; Floresco & Magyar, 2006), functions which have also been related to explore/exploit 

behavior (Addicott et al., 2017; Beeler et al., 2014). For example, it was found that D1 receptor activity 

modulates working memory according to an inverted-U-shaped function, with too low or too high 

activity leading to impaired performance (see Floresco, 2013). As suggested by Addicott et al. (2017), 

this DA-dependent modulation of working memory could influence the learning rate component of 

explore/exploit behavior, i.e. the degree to which learned values (and the choices based thereon) are 

influenced by the previous reward history. Moreover, it was shown that an increased D1 and D2 

receptor activity enhances cognitive flexibility and adaptive behavior, potentially by signaling changes 

in reward contingencies triggered by unexpected outcomes (Floresco, 2013). This DA-dependent 

cognitive and behavioral flexibility might also represent an essential component of explore/exploit 

behavior that facilitates adaptive switching between both decision strategies (Beeler et al., 2014). In 

sum, previous research on animals and neural network models has yielded evidence for an 

involvement of both striatal and prefrontal DA in the regulation of explore/exploit behavior and related 

cognitive functions. 

 

1.3.2 Human studies 

The role of DA in explore/exploit behavior has also been investigated in humans by a number of 

behavioral and few neuroimaging studies. A first line of evidence stems from genetic variation studies, 

which investigated the influence of different DA gene polymorphisms on explore/exploit behavior 

(Blanco et al., 2015; Frank et al., 2009; Kayser et al., 2015). For example, Frank et al. (2009) found that 

genetic variations in prefrontal and striatal DA genes predict individual differences in exploration and 

exploitation, respectively, as measured by the clock task (see 1.1.2). More specifically, they showed 

that exploitative behavior was influenced by two genes controlling striatal DA function, namely the 

DRD2 gene predictive of striatal D2 receptor availability (Hirvonen et al., 2004) and the DARPP-32 gene 

involved in striatal D1 receptor-mediated synaptic plasticity and reward learning (Calabresi et al., 2000; 

Stipanovich et al., 2008). In contrast, uncertainty-driven exploration was associated with the COMT 

gene, which is mainly involved in controlling prefrontal DA function (see 1.2.2; e.g. Bilder et al., 2004; 

Meyer-Lindenberg et al., 2005). Furthermore, model-based analysis of choice behavior revealed a 

gene-dose effect between the COMT genotype and exploratory behavior. Note, therefore, that the 

human COMT gene exists in two allelic variants, the “Val” allele and the “Met” allele, whereby the Met 

allele is associated with lower enzymatic activity and therefore higher prefrontal DA levels (see Bilder 

et al., 2004). Based on these allelic variants, Frank et al. (2009) showed that the uncertainty-driven 

exploration parameter in their cognitive model was highest in Met/Met carriers, intermediate in 

Val/Met carriers, and smallest in Val/Val carriers. This gene-dose effect suggests that increased 

prefrontal DA function promotes uncertainty-driven exploration in humans, which is consistent with 
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animal findings showing that increased prefrontal DA receptor activity promotes behavioral flexibility 

(see above; Floresco, 2013). While this gene-dose effect between COMT genotype and exploration 

could not be replicated in two later studies (Blanco et al., 2015; Kayser et al., 2015), one of these 

studies showed that the COMT inhibitor tolcapone, expected to increase prefrontal DA levels, 

increases uncertainty-driven exploration, although only in Met/Met subjects (Kayser et al., 2015). In 

contrast, exploitative behavior was not affected by tolcapone, irrespective of the COMT genotype. 

While the observed drug-genotype interactions are not easy to explain in mechanistic terms (see 

Kayser et al., 2015), these results nonetheless support the view that prefrontal DA is involved in 

regulating uncertainty-driven exploration, and demonstrate again that DA drug effects depend on the 

individual baseline DA level (see 1.2.4). A third human genetic study (Blanco et al., 2015) used a variant 

of the two-armed bandit task to investigate the influence of the COMT genotype on explore/exploit 

behavior under different task load conditions. The authors hypothesized that if strategic exploration 

depends on prefrontal DA, then Met carriers should outperform Val/Val subjects in the explore/exploit 

task, especially under high task load conditions that strain the limited cognitive resources of the 

prefrontal system. The behavioral results supported this hypothesis, showing that Met/Met and 

Met/Val subjects performed better, i.e. selected the best option more often, than Val/Val 

homozygotes, but only in the high task load condition. Moreover, model-based analysis of choice 

behavior suggested that Met carriers and Val/Val subjects followed different exploration strategies 

under high task load conditions: When comparing a naïve choice model capturing only random 

exploration (softmax rule) against a more complex choice model capturing also uncertainty-driven 

exploration (Ideal Actor model), Met carriers were more likely to be best characterized by the more 

complex model than Val/Val subjects. In sum, the reported human genetic studies largely support the 

notion that prefrontal DA is involved in exploratory behavior, especially in uncertainty-driven 

exploration. 

A second line of (indirect) evidence comes from studies examining the role of DA in risky decision 

making and cognitive flexibility, which are both believed to represent essential components of 

explore/exploit behavior (see Addicott et al., 2017; Beeler et al., 2014). Most of these studies also used 

genetic variations of different DA genes as a proxy for DA function. For example, a number of human 

studies have found that the COMT Met allele (linked to higher prefrontal DA levels) is associated with 

better set shifting performance as measured with the Wisconsin Card Sorting Test (WCST; Caldú et al., 

2007; Egan et al., 2001; Malhotra et al., 2002; Minzenberg et al., 2006; Rosa et al., 2004). Hence, 

consistent with the animal literature reported above (see Floresco, 2013), these findings suggest that 

prefrontal DA promotes cognitive flexibility, which may be related to its role in promoting exploratory 

behavior (see Beeler et al., 2014). However, it should be noted that this COMT effect on set shifting 

performance could not be validated in a later meta-analysis including 16 independent studies (Barnett, 

Scoriels, & Munafò, 2008), questioning the reliability of the earlier findings. Aside from cognitive 

flexibility, other studies have investigated the influence of DA gene variations on risky decision making 
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and its neural correlates (Kohno et al., 2016; Lancaster et al., 2012). Risky decision making in these 

studies was assessed with the Balloon Analogue Risk Task (BART; Lejuez et al., 2002), in which subjects 

pump a virtual balloon to yield increasingly larger rewards and have to decide in each step to either 

continue pumping with the risk of losing the reward if the balloon explodes, or to stop the trial with 

the reward earned so far. Note that this task shows clear similarities to explore/exploit paradigms like 

the restless bandit task, in which subjects also have to decide in each trial to either safely exploit a 

known option or to explore a risky option to seek an even larger reward. Using this task, it was shown 

that COMT Met carriers are more willing to take calculated risks when rewards are attainable than 

Val/Met or Val/Val subjects (Lancaster et al., 2012), in line with the view that higher prefrontal DA 

function is associated with increased uncertainty-driven exploration. A second study used a gene 

composite score as a positive proxy for striatal DA function, which combined functional variations 

across five different DA genes (Kohno et al., 2016). The study found that this gene composite score 

predicted BART performance, as measured by the total monetary payout, according to an inverted-U 

function, and negatively predicted activity in the dorsolateral prefrontal cortex (DLPFC) during risky 

choices. Hence, these findings suggest that risky decision making, similar to uncertainty-driven 

exploration, depends on prefrontal substrates, which may reciprocally interact with the striatal DA 

system during risk/reward (or explore/exploit) decision making (Kohno et al., 2016; see also discussion 

in 6.2.1.2). Aside from genetic variations, research in this field has also relied on the spontaneous eye 

blink rate (sEBR) as a proxy for central DA function (see 1.2.5). For instance, it was reported that a 

higher sEBR (indicating higher baseline DA function) is associated with both enhanced cognitive 

flexibility (Dreisbach et al., 2005; Müller et al., 2007; Tharp & Pickering, 2011) and higher risk seeking 

(Sherman & Wilson, 2016). Note, however, that these findings do not allow to conclude which specific 

aspects of DA function are underlying the observed associations, given that the sEBR is a relatively 

unspecific proxy for DA function (see 1.2.5). While the sEBR is mostly considered to reflect striatal DA 

function (see Jongkees & Colzato, 2016), both cognitive flexibility and risky decision making have often 

been linked to prefrontal DA function (see above; e.g. Floresco, 2013; Floresco & Magyar, 2006; St 

Onge et al., 2011; St Onge & Floresco, 2010), which might as well be reflected by the sEBR. Hence, 

when interpreting the sEBR findings in terms of prefrontal DA function, they would be consistent with 

the human genetic studies reported above, which link higher prefrontal DA function to increased 

uncertainty-driven exploration (Blanco et al., 2015; Frank et al., 2009; Kayser et al., 2015). In sum, 

several human studies provide evidence for a DA involvement in risky decision making and cognitive 

flexibility, two functions that are likely to subserve exploratory behavior. 

A third line of evidence stems from research on human disorders associated with a dysregulation of 

the DA brain system, such as PD and schizophrenia. While PD is characterized by depleted striatal DA 

levels, schizophrenia is commonly regarded to involve excessive striatal but reduced prefrontal DA 

function, as described above (see 1.2.3). Hence, both these disorders are characterized by either too 
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low or too high activity in distinct DA subsystems, which can be used to examine the influence of DA 

on different behaviors. 

On the one hand, research on PD patients found that these patients show altered reward-maximizing 

(exploitative) behavior in the clock task compared to healthy controls, whereas exploratory behavior 

was not found to be altered in these patients (Moustafa et al., 2008). More specifically, PD patients off 

medication were selectively impaired in speeding up their responses to maximize rewards (Go 

learning), while the same patients on medication (i.e. L-dopa and/or DA agonists) were selectively 

impaired in slowing down their responses to maximize rewards (NoGo learning). Similar DA medication 

effects in PD patients have also been reported by Frank, Seeberger, and O'Reilly (2004) in two classical 

reinforcement learning tasks. Furthermore, both studies showed that the observed DA medication 

effects on Go/NoGo learning could be simulated using a computational model of the basal ganglia 

network, hence supporting the view that these effects depend on striatal DA function. Another PD 

patient study examined DA medication effects on risky decision making and its neural correlates (van 

Eimeren et al., 2009). This study found that PD patients acutely medicated with the DA agonist 

pramipexole showed increased risk-taking behavior compared to the same patients off medication, 

which was associated with drug-induced changes in prefrontal activity. More specifically, a model-

based analysis revealed that pramipexole led to a desensitization of the lateral OFC towards negative 

reward prediction errors. The authors concluded from these results that the drug-induced increase in 

tonic DA activity may prevent pauses (“dips”) in DA transmission in response to losses, thereby 

impairing negative reinforcement learning and promoting risk-taking behavior. In contrast, no such 

effect was observed in the same PD patients acutely medicated with L-dopa, which is considered to 

stimulate phasic rather than tonic DA transmission (van Eimeren et al., 2009; see also discussion  

in 6.2.1.1). Taken together, the reported DA medication effects in PD patients are in line with the above 

findings from human genetic studies (e.g. Frank et al., 2009), supporting the view that striatal DA  

drives reinforcement learning and exploitation, while prefrontal DA promotes risk taking and 

uncertainty-driven exploration. 

On the other hand, research on explore/exploit behavior in schizophrenic patients found that these 

patients show impaired positive reinforcement learning (Go learning) and substantially reduced 

uncertainty-driven exploration compared to healthy controls (Strauss et al., 2011). The authors 

attributed the deficits in Go learning to a potential dysregulation of subcortical DA in the direct  

(D1-driven) pathway, which was supported by simulations on a neural network model of the basal 

ganglia. In contrast, the deficits in uncertainty-driven exploration were attributed to reduced 

prefrontal DA function. This interpretation was supported by the finding that the effect on directed 

exploration correlated with the severity of anhedonia, a negative symptom that has been linked to 

degraded prefrontal DA function (see Abi-Dargham & Moore, 2003; Brisch et al., 2014; Davis et al., 

1991; Strauss et al., 2011). Following this interpretation, the reduced exploration in schizophrenic 

patients might further be regarded as an effect opposite to the above finding in pramipexole-
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medicated PD patients, showing that increased prefrontal DA activity promotes risk-taking behavior 

(van Eimeren et al., 2009). Yet, a concrete mechanistic explanation of these results needs further 

research, especially since all schizophrenic patients in the sample were already treated with 

antipsychotic drugs, which might have affected central DA function in these patients in unknown ways. 

In addition, another study in schizophrenic patients examined instead the role of prefrontal DA in 

cognitive flexibility (Egan et al., 2001). The study found that cognitive flexibility was significantly 

reduced in schizophrenic patients compared to healthy controls, whereby healthy siblings of these 

patients showed intermediate performance between both groups. Moreover, COMT genotyping 

revealed a higher frequency of the Val allele in schizophrenic patients compared to healthy controls, 

and again intermediate levels in the patients’ siblings. Based on these findings, the authors suggested 

that the COMT Val allele and its effects on prefrontal DA function may be responsible for the 

impairments in cognitive function and the increased risk for schizophrenia (see also Weinberger et al., 

2001). Hence, the observation that cognitive flexibility is reduced in both schizophrenic patients (Egan 

et al., 2001) and Val carriers (see above; e.g. Malhotra et al., 2002; Rosa et al., 2004) agrees well with 

findings of reduced uncertainty-driven exploration in both groups (Frank et al., 2009; Strauss et al., 

2011) and supports the view that prefrontal DA is tightly involved in controlling directed exploration. 

To conclude, several human studies have provided evidence for a DA involvement in explore/exploit 

behavior and related cognitive functions, specifically suggesting a key role for striatal DA in driving 

reinforcement learning and exploitation, and for prefrontal DA in risk taking and uncertainty-driven 

exploration. 

 

1.3.3 Limitations of previous studies 

The research findings reported above (section 1.3.1 and 1.3.2) should be considered with certain 

limitations in mind. First of all, a large part of these results are based on genetic association studies, 

i.e. studies which examine the association between certain DA-related genotypes (e.g. the COMT 

Val/Met polymorphism) and certain behavioral phenotypes (e.g. directed exploration). However, such 

genotype-phenotype associations are only correlative and provide, on their own, no evidence that the 

studied gene is indeed causal for the observed phenotype (see Blanco et al., 2015; Kayser et al., 2015; 

Li, Tesson, Churchill, & Jansen, 2010). Instead, a third variable, which actually causes the phenotype, 

might covary with the studied genotype and thereby explain the observed association. For instance, 

the studied genotype might be “tagged” to another gene variant which is actually causal for the 

phenotype, an effect called “linkage disequilibrium” (Slatkin, 2008). Furthermore, the studied gene 

might show different allele frequencies between different subgroups of a population, e.g. different 

ethnicities, which themselves causally explain the phenotypic variations – an effect called “population 

stratification” (Hellwege et al., 2017; Tian, Gregersen, & Seldin, 2008). Linkage disequilibrium and 

population stratification are common limitations of genetic association studies, which also hamper the 

causal interpretability of the genetic research findings reported above (see Blanco et al., 2015; Li et al., 
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2010). Further, many of the reported genetic association studies suffer from relatively small sample 

sizes, which might increase the risk of yielding unreliable results that cannot be replicated in later 

studies, as seen for some of the findings reported above (e.g. Barnett et al., 2008; Frank et al., 2009; 

Kayser et al., 2015). Moreover, another limitation has to be noted for the genetic association studies 

based on the COMT Val/Met polymorphism, since the COMT enzyme degrades not only DA, but also 

other catecholamines like epinephrine and norepinephrine. Thus, the COMT Val/Met polymorphism 

might not only influence DA function, but also other neurotransmitter systems, challenging the 

interpretation that the observed COMT genotype-phenotype associations clearly represent DA-specific 

effects. Finally, one should keep in mind that the reported genetic association studies mostly focused 

on the effect of one single polymorphism, whereas complex phenotypes like explore/exploit behavior 

surely rely on many more (genetic) influences and their diverse interactions. 

Aside from genetic studies, other studies have used the sEBR as a proxy for central DA function, which 

also brings some limitations. Above all, the validity of the sEBR as a positive predictor of DA function is 

controversially discussed in the literature, particularly since recent human PET studies found either no 

or even a negative correlation between the sEBR and different aspects of central DA function (Dang et 

al., 2017; Sescousse et al., 2018). Furthermore, it remains uncertain which specific aspect of DA 

function the sEBR reflects, hence most studies simply refer to it as a marker of “DA function” or “DA 

activity” (see Sescousse et al., 2018). Evidence across different studies remains rather inconclusive 

about this question, suggesting that the sEBR may (positively or negatively) predict different aspects 

of DA function, including striatal DA synthesis capacity (Sescousse et al., 2018), D2 receptor availability 

(Groman et al., 2014), and D1 receptor activity (e.g. Kotani et al., 2016; see also review by Jongkees & 

Colzato, 2016). This uncertainty makes it difficult to mechanistically interpret the findings of sEBR 

studies in the light of DA function. In addition, there is a large variability in the methods applied to 

measure the sEBR, as well as in the measurement conditions, durations, and time points (Jongkees & 

Colzato, 2016). This methodological heterogeneity may cause a variability in sEBR data not attributable 

to DA function that further complicates the interpretability of these data within and across studies. 

Lastly, many sEBR studies, including the ones reported above (see 1.3.2; Dreisbach et al., 2005; Müller 

et al., 2007; Sherman & Wilson, 2016; Tharp & Pickering, 2011), only analyze sEBR data under the 

assumption of a linear relationship between the sEBR and DA-related functions, e.g. by a linear 

correlation/regression analysis or by median splitting into low and high sEBR groups (see Jongkees & 

Colzato, 2016). However, such approaches do not account for a potential nonlinear (e.g. quadratic) 

relationship in the data, as suggested by the inverted-U hypothesis of DA (see 1.2.4; e.g. Cools & 

D'Esposito, 2011). Indeed, some studies found performance to be optimal at an intermediate sEBR, 

while both lower and higher sEBRs were associated with reduced performance (e.g. Akbari Chermahini 

& Hommel, 2010, 2012; Dang et al., 2016; Ueda et al., 2016), a pattern which might be overlooked 

when only testing for linear associations. Thus, although there are good reasons for using the sEBR as 
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a cheap and noninvasive marker of DA function (see 1.2.5), these limitations should be kept in mind 

when drawing conclusions about DA effects based on sEBR data. 

Another limitation concerns studies based on patients with DA-related diseases like PD and 

schizophrenia. Both these diseases involve very heterogeneous phenotypes resulting from a complex 

pathomechanism that is not reducible to a DA dysfunction (see Barone, 2010; Galvan & Wichmann, 

2008; Sawa & Snyder, 2002; Tost, Alam, & Meyer-Lindenberg, 2010; Tsuang, 2000). For instance, 

previous studies have shown that also changes in serotonergic, glutamatergic, and GABAergic 

neurotransmission are involved in the neuropathology of both PD (Barone, 2010; Bonnet, 2000) and 

schizophrenia (Brisch et al., 2014; Gill & Grace, 2016; Sawa & Snyder, 2002). Thus, caution is warranted 

when concluding DA-specific effects from these patient studies without accounting for the potential 

involvement of other neurotransmitter systems. Additionally, the interpretation of these data in terms 

of DA function is further complicated in studies examining patients already treated with different drugs 

or drug combinations, as it is mostly the case (e.g. Egan et al., 2001; Frank et al., 2004; Moustafa et al., 

2008; Strauss et al., 2011; van Eimeren et al., 2009). These drugs might unspecifically act on, or interact 

with, different non-dopaminergic neurotransmitter systems (see Stępnicki et al., 2018), making it even 

more difficult to clearly attribute observed differences between patients and controls to DA-specific 

functions. 

Aside from these study-specific limitations, two general limitations are shared by most of the reported 

studies. A first basic limitation to these studies is that most of them lack direct evidence on the neural 

mechanisms underlying the observed effects on explore/exploit behavior. Such evidence might be 

provided by in vivo brain imaging techniques like fMRI or PET, especially when combining these 

techniques with cognitive modeling (see 2.8.1). Note that while fMRI cannot directly distinguish 

between activities of different neurotransmitter systems, it nevertheless allows to locate the neural 

correlates of different DA-dependent behaviors and DA drug effects, thereby facilitating the 

mechanistic interpretation of these findings (e.g. striatal vs. prefrontal effects). Yet, none of the 

reported studies applied PET, and only three of them used fMRI, albeit none of them in an actual 

explore/exploit paradigm (see Egan et al., 2001; Kohno et al., 2016; van Eimeren et al., 2009). 

Alternatively to fMRI and PET, neuromechanistic interpretations are also facilitated by the use of 

neural network models which simulate observed behaviors, as reported above (see 1.3.1; Humphries 

et al., 2012; Mandali et al., 2015). Yet, a limitation to these simulation studies is that their neuronal 

models were limited to the basal ganglia network, leaving out influences from prefrontal and other 

cortical regions that are most likely involved in explore/exploit behavior, as shown by previous 

research (see 1.1.4; e.g. Daw et al., 2006; Raja Beharelle et al., 2015; Zajkowski et al., 2017). Another 

limitation to these studies is that neuromechanistical hypotheses generated in silico from 

computational models still need to be empirically validated in the living organism by in vivo 

neuroimaging techniques. Without more research providing direct evidence on the neural processes 
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underlying explore/exploit behavior, mechanistic interpretations from simulation studies attributing 

this trade-off to DA-specific functions can only remain speculative. 

A second basic limitation shared by most of the reported studies is the lack of evidence for a causal 

role of DA in explore/exploit behavior. Such evidence might be provided, for example, from transgenic 

animal experiments targeting certain DA-specific genes, as it was done in the study of Beeler et al. 

(2010). It should be kept in mind, however, that the genotype of these transgenic animals is already 

modified in the embryo and may therefore affect the adult phenotype in complex and unpredictable 

ways, given the various gene-gene and gene-environment interactions throughout ontogeny. 

Accordingly, the hyperdopaminergic DAT knock down mice examined by Beeler et al. (2010) might 

have exhibited (unobserved) differences in their brain development and neuronal organization 

compared to control mice, which makes it difficult to specifically attribute behavioral changes in these 

animals strictly to DAT-specific effects. Alternatively, evidence for a causal role of DA in explore/exploit 

behavior may be provided by randomized, placebo-controlled pharmacological experiments in animals 

or humans using DA-specific drugs, preferably in combination with in vivo neuroimaging techniques to 

facilitate mechanistic interpretations. Yet, only four of the reported human studies used a 

pharmacological approach, of which only one was a placebo-controlled experiment in healthy subjects 

(Kayser et al., 2015), while the other three were on/off medication studies in PD patients (Frank et al., 

2004; Moustafa et al., 2008; van Eimeren et al., 2009). The placebo-controlled experiment was based 

on the COMT inhibitor tolcapone, which might however be less DA-specific than other available DA 

drugs, given that the COMT enzyme also metabolizes other neurotransmitters than DA (see Männistö 

& Kaakkola, 1999). Also, this study considered tolcapone effects only on the behavioral level and did 

not apply neuroimaging. In addition, most of these pharmacological studies failed to account for 

individual differences in baseline DA levels, which are believed to strongly influence DA drug effects 

(see 1.2.4). This might represent an important limitation to these studies, since overseeing such a 

potential baseline dependency may further complicate the interpretation of their results and even 

render conclusions drawn from group-level analyses misleading. Note, finally, that while there are 

further neuroscientific approaches allowing for causal inference, like non-invasive brain stimulation 

(Parkin et al., 2015) or lesion studies (e.g. Kovach et al., 2012), these methods do not provide, by 

themselves, direct evidence for a dopaminergic basis of the causal factors. 

Taken together, while evidence from several animal and human studies suggests that DA may be tightly 

involved in regulating the explore/exploit trade-off, most of these studies share important limitations 

that make it difficult to draw concrete mechanistic or causal conclusions from their findings. Further 

research should aim to overcome these limitations and employ well-controlled experimental study 

designs in combination with functional neuroimaging to directly test for the causal effects of DA 

modulation on explore/exploit behavior and its neural correlates. 
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1.4 The current project 

1.4.1 Objectives 

While a growing body of evidence suggests that DA may be causally involved in regulating the 

explore/exploit trade-off, direct evidence in this regard is very limited and still lacking in humans  

(see 1.3.3). Therefore, the main aim of this study was to experimentally show that DA is causally 

involved in controlling human explore/exploit behavior and to reveal the neural underpinnings of this 

DA-dependent control. A second aim was to examine how individual differences in baseline DA 

function modulate DA drug effects on explore/exploit behavior, and specifically to test whether such 

an influence follows the inverted-U function of DA (see 1.2.4). Lastly, one additional aim was to 

advance cognitive modeling in this field by comparing different established and novel cognitive models 

of explore/exploit behavior and to select the best-fitting model to be applied to the behavioral and 

neuroimaging data of this study. 

 

1.4.2 Study design and hypotheses 

To directly test for DA effects on explore/exploit behavior and its neural correlates, this study  

used a pharmacological fMRI approach with a double-blind, placebo-controlled, counterbalanced, 

within-subjects design. According to this design, healthy subjects (n=31) performed the restless  

four-armed bandit task in the fMRI scanner under three different drug conditions: the DA precursor  

L-dopa (150 mg), the DA antagonist haloperidol (2 mg), and placebo. While L-dopa is well established 

to stimulate DA transmission by providing increased substrate for DA synthesis in the brain, haloperidol 

is known to reduce DA transmission by blocking D2 receptors (see 1.2.3). Choice behavior in the bandit 

task was analyzed using a hierarchical Bayesian modeling approach (see 2.7). Therefore, different 

cognitive models of learning and decision making were first compared using Bayesian cross-validation 

techniques to select the model with highest predictive accuracy for further analysis. Based on the 

selected model, DA drug effects on explore/exploit behavior and its neural correlates were then 

examined, the latter by using a model-based trial-by-trial analysis of the fMRI data (see 2.8). Finally, all 

subjects in this study performed an initial “baseline session”, in which different behavioral proxy 

measures of DA function were assessed (sEBR and WMC; see 1.2.5) to test whether these measures 

predict individual differences in DA drug effects according to an inverted-U-shaped function (see 

1.2.4). 

Based on previous research (see 1.3), it was hypothesized that explore/exploit behavior and its neural 

correlates are modulated by the two DA drugs, L-dopa and haloperidol, compared to placebo. Note 

that the heterogeneity of findings in this field (see 1.3) and the complexity of the DA brain system and 

DA drug actions (see 1.2) make it difficult to formulate specific hypotheses about the expected 

magnitude and direction of the DA drug effects. Still, most research supports the view that an increase 

in tonic striatal DA promotes random exploration (see 1.3.1; e.g. Beeler et al., 2010), while an increase 

in prefrontal DA promotes uncertainty-driven exploration (see 1.3.2; e.g. Frank et al., 2009; Kayser et 
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al., 2015). Therefore, it was hypothesized that both random exploration, as indexed by the softmax 	, 

and uncertainty-driven exploration, as indexed by the exploration bonus parameter 
, are increased 

under L-dopa vs. placebo and decreased under haloperidol vs. placebo. These behavioral drug effects 

were expected to be mediated by drug-induced modulations in the activity of brain regions implicated 

in exploratory choices, foremost the FPC and IPS (see 1.1.4; e.g. Daw et al., 2006). Furthermore, it was 

expected that DA drug effects on explore/exploit behavior are modulated by the individual DA 

baseline, as indexed by the sEBR and WMC, according to an inverted-U-shaped function (see 1.2.4; e.g. 

Cools & D'Esposito, 2011). More specifically, L-dopa should increase exploration most strongly in 

subjects with below-optimal (depleted) baseline DA levels, while showing no or even a reversed drug 

effect in subjects with optimal or above-optimal baseline DA levels. In contrast, haloperidol should 

decrease exploration most strongly in subjects with above-optimal (excessive) baseline DA levels, while 

showing no or even a reversed drug effect in subjects with optimal or below-optimal baseline DA levels. 

Yet, note that also alternative hypotheses are possible, since it is unclear how the term “optimal 

performance” used in the inverted-U hypothesis of DA relates to explore/exploit behavior. Lastly, for 

the cognitive model comparison, it was expected that choice behavior in the bandit task is best 

described by a model which accounts for both random and uncertainty-driven exploration, as previous 

research has shown that humans use both these strategies for exploration (see 1.1.2 and 1.1.3; e.g. 

Cogliati Dezza et al., 2017; Wilson et al., 2014). Furthermore, it was hypothesized that a novel 

extension of this model, which also captures reward-independent choice repetition (perseveration), 

further improves the model fit compared to previous models not accounting for perseveration. 

Notably, this last hypothesis is based on previous findings showing that humans indeed exhibit 

perseverative choice behavior, also known as “sticky choice” (Brough, Isaac, & Chernev, 2008; Payzan-

LeNestour & Bossaerts, 2012; Rutledge et al., 2009; Schönberg, Daw, Joel, & O'Doherty, 2007; Worthy, 

Pang, & Byrne, 2013; see also Lau & Glimcher, 2005). Moreover, it has been argued in the literature 

that if perseveration is not explicitly accounted for in the cognitive model, it might be captured by the 

exploration bonus parameter as a tendency to avoid uncertain options, making it more difficult to 

detect uncertainty-driven exploration (see Badre et al., 2012; Payzan-LeNestour & Bossaerts, 2012; 

further discussed in section 6.5.2). 
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2 Methods 

2.1 Participants 

In total, 34 healthy male subjects participated in the study (aged 19 to 35 years, M = 26.85, SD = 4.01), 

of which 31 completed all experimental sessions (see 2.2). Three subjects dropped out of the study 

due to illness or personal reasons, two after the initial baseline session and one after the first fMRI 

session, but their behavioral data from the baseline session were included in the analysis. Only males 

were included, owing to the rationale that female menstrual cycle effects are an unwanted source of 

variance, especially since ovarian hormones have been shown to interact with central DA function (see 

reviews by Almey, Milner, & Brake, 2015; Yoest, Quigley, & Becker, 2018). Participants were recruited 

via an online job portal (www.stellenwerk.de) and included mainly students from the University of 

Hamburg. Subjects who signed up via e-mail or telephone were subsequently screened in a telephone 

interview for the following inclusion criteria: male, age 18-35 years, normal weight (BMI 18.5-25.0), 

right-handed, fluent German in speaking and writing, normal or corrected to normal vision, no hearing 

impairments, no major past or present psychological, neurological, or physical disorders, non-smoker, 

no excessive consumption of alcohol (< 10 glasses per week), no consumption of illegal drugs, no 

consumption of prescription drugs within the two months prior to the study, no irreversibly attached 

metal in or on the body, no claustrophobia (the latter two due to the fMRI measurement). Before 

participating in the study, all subjects provided informed written consent and completed a medical 

check by a physician including an electrocardiogram (ECG) and an interview about their medical history 

and present health status. Only subjects who passed this medical check were allowed to take part in 

the study. Participants were paid afterwards with a fixed amount (270 €) plus variable monetary 

rewards from the decision tasks (30-50 €). The study procedures were approved by the local ethics 

committee (Hamburg Medical Council).  

 

2.2 General procedure 

This pharmacological fMRI study employed a double-blind, placebo-controlled, counterbalanced, 

within-subjects design (see Pine et al., 2010). Each subject was tested in four separate sessions: one 

baseline session and three fMRI sessions. At the baseline session, participants were invited in groups 

of four either in the morning (9 am to 1 pm) or in the afternoon (2 pm to 6 pm) for the medical check, 

the signing of study agreements, and for the behavioral baseline screening (see 2.3). The baseline 

session was scheduled five to six days prior to the first fMRI session. At the three fMRI sessions, each 

participant performed two decision tasks in the fMRI scanner under three different drug conditions: 

the DA precursor L-dopa, the DA antagonist haloperidol, and placebo. The order of drug conditions 

was counterbalanced across subjects, and both subjects and experimenter were blinded to the drug 

order. For each subject, fMRI sessions were scheduled exactly one week apart and at the same time of 

day. Each fMRI session lasted about 4.0 to 4.5 hours, starting between 8 am and 2 pm depending on 



55 
 

the participant. The procedure of each fMRI session was as follows: Upon arrival, subjects first signed 

fMRI agreements and completed several questionnaires on their physical wellbeing and mood (see 

2.9.3). After that, and exactly 2.5 hours before testing in the fMRI scanner started, participants 

received a first pill containing either 2 mg haloperidol or placebo. Two hours later, i.e. exactly 0.5 hours 

before testing in the fMRI scanner started, subjects received a second pill containing either Madopar 

(150 mg L-dopa + 37.5 mg benserazide) or placebo. Placebo pills contained maize starch and were 

indistinguishable from the drugs. Over the whole experiment, each subject received one dose of 

Madopar in one session, one dose of haloperidol in another session, and two placebo pills in the 

remaining session (with counterbalanced drug order, see above). The administration of two pills per 

session was necessary to account for the different pharmacokinetics of both drugs without revealing 

the drug order to the participant or experimenter by the time of drug administration. Testing in the 

fMRI scanner started 0.5 hours after ingestion of the second pill, aiming to achieve a peak plasma 

concentration of the drug (Madopar or haloperidol) approximately halfway through the one hour 

testing in the fMRI scanner. In the scanner, subjects first performed the restless four-armed bandit 

task (see 2.4), followed by a short reinforcement learning task that was not further analyzed in this 

study. Both tasks were trained on a practice version outside the scanner prior to the fMRI testing. On 

the first fMRI session, a structural MR image was acquired directly after fMRI testing (see 2.8.2). Each 

fMRI session ended with a post-fMRI testing outside the scanner (see 2.5), lasting about 30 min, before 

the participant was released. Throughout each fMRI session, several control variables were assessed 

at different time points, including physical wellbeing parameters and mood (see 2.9.3). Subjects were 

not allowed to eat or drink anything but water throughout the fMRI session, but were offered a small 

snack (cereal bar) after testing in the fMRI scanner to aid concentration for the post-fMRI testing. Data 

assessment for all subjects and sessions was conducted by the same experimenter with the help of 

two trained assistants according to fixed protocols. 

 

2.3 Baseline screening 

The baseline screening included several components and lasted about two hours on average. The 

screening was performed in groups of four in the same experimental room, each subject sitting in front 

of a computer screen, separated by partition walls. An experimenter was present in the room at all 

times. The screening started with a measurement of the spontaneous eye blink rate (ca. 15 min), 

followed by a computerized testing of working memory capacity and discounting behavior (ca. 75 min), 

and ended with several questionnaires (ca. 30 min). Note that the discounting tasks and most of the 

questionnaires were included for another project and were not further analyzed in this study. The 

computerized testing included six tasks in a fixed order: (1) Rotation Span Task, (2) Operation Span 

Task, (3) Delay Discounting Task, (4) Listening Span Task, (5) Digit Span Task, (6) Probability Discounting 

Task. Participants were encouraged to take small breaks in between the tasks to aid concentration. In 

the following, all relevant components of the baseline screening will be described in more detail.  
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2.3.1 Spontaneous eye blink rate (sEBR) 

The spontaneous eye blink rate (sEBR) at baseline was measured via electromyography (EMG) for 5 min 

under resting conditions. For the measurement, three Ag/AgCl electrodes were attached to the 

participant’s face. Two electrodes were placed directly below the left eye, one of them centrically and 

one peripherally with 2-3 mm distance to the central one (see Blumenthal et al., 2005). A ground 

electrode was placed in the middle of the forehead. Recording was performed with a sampling rate of 

1000 Hz and an online bandpass filter of 28-500 Hz, using an MP100 hardware system with the software 

AcqKnowledge (version 3.9.1; Biopac Systems, Goleta, CA). 

For recording, subjects were instructed to sit in front of a computer screen and look straight ahead at 

a fixation cross for 5 min. Participants were told to behave as quietly as possible and not to talk, move, 

or grimace during the recording. Crucially, participants were neither informed about the actual 

purpose of the measurement, nor were they instructed in any manner about blinking. Instead, they 

were told that the purpose of the measurement was to record eye muscle activity under rest and that 

blinking during recording was “not a problem”. This cover story was used to avoid that participants 

became aware of their blinking behavior and changed it deliberately during the measurement, e.g. by 

trying not to blink or to blink more or less than they would naturally do. Illumination in the testing 

room was kept constant for all participants. In addition, all data were recorded before 5 pm, since the 

sEBR is stable during daytime, but increases in the evening (Barbato et al., 2000). EMG recordings were 

used to extract the number of spontaneous eye blinks per minute for each participant using the 

software MATLAB (R2014b; MathWorks, Natick, MA). For this, the 5 min recordings were divided into 

time windows of 10 s. Within each window, the number of peaks exceeding a locally determined 

threshold was counted using the MATLAB function findpeaks. The threshold for each time window was 

set to the local mean of the data plus four times the local standard deviation. The total number of 

peaks across all time windows was then divided by five to yield the sEBR per minute. 

 

2.3.2 Working memory capacity (WMC) 

Working memory capacity (WMC) was measured using four different tasks: the Rotation Span Task, 

Operation Span Task, Listening Span Task, and Digit Span Task. All four tasks were implemented using 

the software MATLAB (R2014b; MathWorks, Natick, MA) with the Psychophysics Toolbox extensions 

(version 3.0.12; Brainard, 1997; Kleiner et al., 2007). 

The Rotation Span Task was adopted from Foster et al. (2015) and belongs to the class of complex span 

tasks for measuring WMC (see Kane et al., 2004; Redick et al., 2012; Unsworth, Redick, Heitz, 

Broadway, & Engle, 2009). In this task, subjects were required to memorize a sequence of different 

arrows (memory component) while being distracted by a letter rotation task (distractor component). 

The memory component of the task is described first. In each trial, a random series of two to five 

arrows out of 16 different arrows (eight short and eight long arrows pointing in eight different radial 

directions) was presented on screen. Each arrow appeared on screen for 650 ms, followed by a blank 
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screen for 250 ms. Thereafter, subjects had to recall all arrows of the preceding series in the same 

order as they were presented. For recall, all 16 possible arrows were displayed on screen and subjects 

were asked to click on the arrows that appeared in the preceding series in the correct order. 

Participants had no response time limit for recall. At the end of each trial, feedback about the number 

of correctly recalled arrows was presented on screen. In addition to this memory component, each 

trial also contained a distractor component. Before the presentation of each arrow within a trial, 

subjects had to solve an item of a letter rotation task. Each trial therefore contained as many letter 

rotation items as arrows (i.e. two to five), both being presented intermixed within one trial. In each 

item of the letter rotation task, one of four letters (F, G, J, or R) rotated at different angles (0°, 45°, 90°, 

135°, 180°, 225°, 270°, or 315°) appeared on screen, being either mirror-inverted or not. The task was 

to mentally rotate the letter and to indicate whether it was mirror-inverted or not. About half of all 

letters presented in the task were mirror-inverted. The response time limit for each subject was 

determined from their mean reaction time plus 2.5 standard deviations in the preceding practice block 

of the letter rotation task (see below). If participants exceeded this limit, the letter disappeared and 

the item was counted as an error. After each item of the letter rotation task, a blank screen appeared 

for 200 ms before the next arrow was shown. At the end of each trial, subjects received feedback about 

their performance in the letter rotation task (percent accuracy), averaged over all preceding trials. 

Participants were instructed to always maintain accuracy levels in the letter rotation task above 85 %. 

In total, the Rotation Span Task contained 12 trials, including three trials of each set size (two to five) 

in random order. Thus, 42 arrows and 42 letters were presented in total. At the end of the task, two 

different memory scores were calculated: the partial score and the absolute score. The partial score 

equals the number of correctly recalled arrows out of all 42 presented arrows. The absolute score only 

includes the number of correctly recalled arrows within sets in which all arrows were recalled correctly. 

In preparation for the task, participants completed three practice blocks. In the first practice block, 

only the memory component of the task was trained for four trials (two trials of set size two and two 

trials of set size three). In the second practice block, only the distractor component of the task was 

trained for 15 trials. After this block, the mean reaction time plus 2.5 standard deviations was 

calculated for each subject to determine the response time limit for this subject in the distractor 

component of the final task (see above). The third practice block trained the final task with both its 

memory and distractor component and contained three trials of set size two. 

The Operation Span Task was adopted from Foster et al. (2015) and also belongs to the class of complex 

span tasks for measuring WMC (see above). The general procedure of this task was very similar to the 

Rotation Span Task described above, except for the type of stimuli involved. In this task, subjects were 

required to memorize a sequence of letters (memory component) while being distracted by math 

operations to be solved (distraction component). The memory component of the task is described first. 

In each trial, a random series of three to seven letters out of 12 different letters (F, H, J, K, L, N, P, Q, 

R, S, T, Y) was presented on screen. Each letter appeared on screen for 1 s, followed by a blank screen 
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for 250 ms. Thereafter, subjects had to recall all letters of the preceding series in the same order as 

they were presented. For recall, all 12 possible letters were displayed on screen and subjects were 

asked to click on the letters that appeared in the preceding series in the correct order. Participants had 

no response time limit for recall. At the end of each trial, feedback about the number of correctly 

recalled letters was presented on screen. In addition to this memory component, each trial also 

contained a distractor component. Before the presentation of each letter within a trial, subjects had 

to solve an item of a math operation task. Each trial therefore contained as many math operation items 

as letters (i.e. three to seven), both being presented intermixed within one trial. In each item of the 

distractor task, a math problem (e.g. (1*2) + 1 = ?) appeared on screen. Subjects were required to solve 

this problem as quickly as possible and press a button as soon as they had a solution. A potential 

solution was then displayed on screen (e.g. 3) and participants had to indicate whether this solution 

was correct or false. The response time limit for each subject was determined from their mean reaction 

time plus 2.5 standard deviations in the preceding practice block of the math operation task (see 

below). If participants exceeded this limit, the math problem disappeared and the item was counted 

as an error. After each item of the math operation task, a blank screen appeared for 200 ms before the 

next letter was shown. At the end of each trial, subjects received feedback about their performance in 

the math operation task (percent accuracy), averaged over all preceding trials. Participants were 

instructed to always maintain accuracy levels in the math operation task above 85 %. In total, the 

Operation Span Task contained 15 trials, including three trials of each set size (three to seven) in 

random order. Thus, 75 letters and 75 math operations were presented in total. At the end of the task, 

two different memory scores were calculated: the partial score and the absolute score. The partial 

score equals the number of correctly recalled letters out of all 75 presented letters. The absolute score 

only includes the number of correctly recalled letters within sets in which all letters were recalled 

correctly. In preparation for the task, participants completed three practice blocks. In the first practice 

block, only the memory component of the task was trained for four trials (two trials of set size two and 

two trials of set size three). In the second practice block, only the distractor component of the task was 

trained for 16 trials. After this block, the mean reaction time plus 2.5 standard deviations was 

calculated for each subject to determine the response time limit for this subject in the distractor 

component of the final task (see above). The third practice block trained the final task with both its 

memory and distractor component and contained three trials of set size two. 

The Listening Span Task was adapted from the German version of the automated Reading Span Test 

developed by van den Noort, Bosch, Haverkort, and Hugdahl (2008), which is based on the original task 

by Daneman and Carpenter (1980). In the Reading Span Test, subjects are required to read a series of 

sentences aloud and to recall the last word of each sentence directly after. For the baseline screening, 

a listening version of this test was developed in order to run the task completely computerized on 

multiple subjects simultaneously. In the listening version of the task, subjects also needed to recall the 

final word of each sentence, but here they listened to the list of sentences rather than reading it aloud 
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(similar to the Listening Span Test also developed by Daneman & Carpenter, 1980). For recall, subjects 

typed the remembered words into the computer rather than saying them aloud to an experimenter. 

Except for these changes, the Listening Span Task used exactly the same sentences and task structure 

as the Reading Span Test by van den Noort et al. (2008). The task contained five blocks, each block 

including one trial of each set size, with set sizes ranging from two to six sentences. Thus, 100 sentences 

were presented in total. Within each block, the order of set sizes was the same for each subject and 

taken from van den Noort et al. (2008), who generated a random order of set sizes for each block. The 

block structure was introduced to distribute trials of different set sizes more evenly throughout the 

task, but was not visible to the subjects in any form. In each trial, subjects listened to a sequence of 

recorded German sentences over headphones and had to memorize each sentence’s final word. The 

length of the sentences was controlled for, ranging from 12 to 17 words. After each sentence, there 

was a time interval of 1 s before the next sentence started. After the last sentence of the series, the 

German word “Erinnern” (recall) was displayed on screen along with a text box, in which participants 

could type in the words they recalled. The order of recall was free and there was no time limit for 

recall. All words to be recalled were simple and frequent German words like “Park” (park), “Kaffee” 

(coffee), or “Anfang” (beginning). After recall, subjects pressed a button to proceed to the next trial. 

During the task, participants received no feedback about their memory performance. At the end of the 

task, the total number of correctly recalled words over all trials was determined (span score). In 

preparation for the task, subjects performed two practice trials (of set size two and three), in which 

they received feedback about the number of correctly recalled words. 

The Digit Span Task was adopted from the Wechsler Adult Intelligence Scale (WAIS-IV; Wechsler, 2008) 

and contained a forward and a backward version. In this task, subjects heard a series of numerical 

digits and had to recall the series in the normal order (forward version) or in the reverse order 

(backward version) directly after. For the baseline screening, the task was adapted for PC in order to 

test multiple participants simultaneously. Here, the digits were presented over headphones and 

subjects typed the recalled digits into the computer rather than saying them aloud. Except for these 

changes, the computerized version of the Digit Span Task used exactly the same task structure and 

digit sequences as the original task by Wechsler (2008). In the forward version, set sizes ranged from 

three to eight digits and in the backward version from two to seven. Both versions contained two trials 

per set size, whereby set sizes were presented in ascending order. Each trial started with the 

presentation of a digit sequence with a speed of one digit per second. After that, a question mark 

appeared on screen to prompt subjects to type in the digits they recalled in the correct order. There 

was no time limit for recall and subjects received no feedback about their memory performance. 

Participants needed to recall at least one trial per set size correctly in order to proceed to the next 

larger set size. The task terminated if both trials of the same set size were not recalled correctly. Thus, 

the number of trials depended on the subject’s performance with a maximum of 12 trials for both the 

forward and the backward version. At the end of the task, two different types of scores were calculated 
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for each version: the span score and the total score. The span score is the size of the longest digit 

sequence recalled correctly in the normal order (span score forward) or in the reverse order (span 

score backward). The total score equals the total number of correct trials, calculated separately for the 

forward version (total score forward) and for the backward version (total score backward). The 

maximum achievable scores were eight for the span score forward, seven for the span score backward, 

and 12 for the total scores of both versions. In preparation for the task, participants performed one 

practice trial of set size three for each version, in which they received feedback about the correctness 

of their answer.  

 

2.3.3 Questionnaires 

At the end of the baseline screening, subjects completed a computer-based survey including several 

questionnaires assessing demographics, personality traits, addictive behavior, and various symptoms 

of psychopathology. The questionnaires were presented in a fixed order and were all implemented 

using the online survey application LimeSurvey (LimeSurvey GmbH, Hamburg, Germany). Since most 

of these questionnaires were assessed for a different study, methods and results of the survey are not 

further reported here. Only two questionnaires were included in the data analysis. First, data of the 

Symptom Checklist-90-Revised (SCL-90-R; Derogatis, 1992; German version by Franke, 1995) were 

analyzed to ensure that subjects included in this study did not exhibit any severe psychiatric symptoms. 

For this, mean scores for each of the nine subscales (somatization, obsessive-compulsive, interpersonal 

sensitivity, depression, anxiety, hostility, phobic anxiety, paranoid ideation, and psychoticism) as  

well as the Global Severity Index (GSI), which is the mean value of all 90 items, were calculated for 

each subject and transformed into T values based on a German norm sample of male students (see 

SCL-90-R manual by Franke, 2000, p. 310-329). As instructed in this manual, the screening cut-off was 

set to TGSI ≥ 63 or T ≥ 63 for at least two of the nine subscales, which was reached by none of the 

participants. Second, data of the Edinburgh Handedness Inventory (EHI; Oldfield, 1971) were analyzed 

to ensure that all participants were right-handed. Results confirmed this, as laterality quotients ranged 

between 40 and 100 (M = 91.71, SD = 13.29), with positive scores indicating the dominance of a 

person’s right hand in everyday activities. 

 

2.4 Bandit task 

The restless four-armed bandit task was adapted from Daw et al. (2006). The task included 300 trials, 

which were separated by short breaks into four blocks à 75 trials. Each trial started with the 

presentation of four different colored squares (“bandits”) representing four choice options (see Figure 

4a). The squares were displayed on a screen that was reflected in a head coil mirror inside the fMRI 

scanner (see 2.8.2). Subjects selected one option using a button box held in their right hand, which had 

four buttons in the same relative positions as the four bandits on screen. Subjects had a maximum of 

1.5 s to indicate their choice. If no button was pressed during that time, a large red X was displayed for 
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4.2 s in the center of the screen indicating a missed trial with no points earned. If subjects pressed a 

button on time, the selected bandit was highlighted by a black frame. After a waiting period of 3 s, 

signaled by the subsequent presentation of three black dots within the chosen bandit, the number of 

points earned in this trial was displayed within this bandit for 1 s. After that, the four bandits 

disappeared and only a fixation cross remained on screen until the trial ended 6 s after trial onset, 

followed by a jittered intertrial interval before the new trial started. Durations of the intertrial intervals 

followed a Poisson distribution with a mean of 2 s, thereby mostly ranging between 0-5 s. At the end 

of the task, the sum of all points earned as well as the monetary payout resulting from these points 

were displayed on screen. Participants were told in advance that 5 % of all points earned would be paid 

out as cents after the experiment (i.e. 5 cents per 100 points). 

 

 

 

Figure 4. Task design of the restless four-armed bandit task. (a) Illustration of the timeline within a trial. At trial onset, 

four colored squares (bandits) are presented. The subject selects one bandit within 1.5 s, which is then highlighted and, 

after a waiting period of 3 s, reveals its payoff for 1 s. After that, the screen is cleared and the next trial starts after a 

fixed trial length of 6 s plus a variable intertrial interval (not shown) with a mean of 2 s. (b) Example of the underlying 

reward structure. Each colored line shows the payoffs of one bandit (mean payoff plus Gaussian noise) that would be 

received by choosing that bandit on each trial. See text for detailed descriptions. Both figures adapted from Daw et al. 

(2006). 

 

The mean payoffs of the four bandits drifted randomly across trials according to a decaying Gaussian 

random walk (as described by Daw et al., 2006). At each trial �, the payoff of bandit � was drawn from 

a Gaussian distribution with mean value μ�,�  and variance ��
� = 4² (observation variance) and rounded 

to the nearest integer between 1 and 100. From one trial to the next, the mean value of bandit � 

changed according to μ�,��� � λμ�,� � �1 − λ�ϑ � v�  , with a decay parameter λ = 0.9836, decay center 

ϑ = 50, and diffusion noise v drawn independently in each trial from a Gaussian distribution with zero 

mean and variance ��
� = 2.8² (diffusion variance). Daw et al. (2006) generated three instantiations of 

this process for their bandit task, which were also used in the three fMRI sessions of the current study. 

One of these instantiations is shown in Figure 4b. Each colored line reflects the payoffs of one bandit 
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(mean payoff plus observation variance) that would be received by choosing that bandit on each trial. 

The order of these three instantiations across fMRI sessions was the same for all subjects, thereby 

unconfounded with the drug order, which was counterbalanced across subjects. The task was 

implemented using the software MATLAB (R2014b; MathWorks, Natick, MA) with the Psychophysics 

Toolbox extensions (version 3.0.12; Brainard, 1997; Kleiner et al., 2007). 

 

2.5 Post-fMRI testing 

After testing in the fMRI scanner, subjects completed a post-fMRI testing to assess different control 

variables in order to test for DA drug effects on these variables. On the one hand, this testing included 

three tasks from a test battery of attentional performance (see below) and the Digit Span Task (forward 

and backward). These measures were included as control variables to test whether DA drug effects on 

explore/exploit behavior might be mediated by drug-induced alterations in attention or working 

memory. On the other hand, also the spontaneous eye blink rate (sEBR) was assessed in this post-fMRI 

testing to test if this measure would be sensitive to the DA drug condition, as partly suggested by 

previous research (reviewed by Jongkees & Colzato, 2016; although see Mohr, Sándor, Landis, Fathi, & 

Brugger, 2005). The testing was computer-based and conducted individually in a quiet room next to 

the fMRI scanner with an experimenter being present in the room. In the following, all components of 

the post-fMRI testing will be described in more detail. 

The Tests of Attentional Performance (TAP, version 2.3; Zimmermann & Fimm, 2012) is a computerized 

test battery that measures different aspects of attentional performance. Three subtests of the TAP 

were used in the post-fMRI testing: Alertness, Go/NoGo, and Flexibility. All tasks were implemented 

using the TAP 2.3.1 software and the corresponding response buttons delivered with this software. 

The subtest Alertness measures the general wakefulness of a subject, which enables the subject to 

respond quickly and accurately to a given demand (Zimmermann & Fimm, 2012). The subtest included 

four blocks, in which reaction times were assessed under two conditions. In two blocks (first condition), 

subjects needed to respond as quickly as possible to a white cross (�) appearing in randomly varying 

time intervals in the center of a black screen. Responses were made by button press using the index 

finger of the dominant (right) hand. These two blocks measured intrinsic alertness. The other two 

blocks (second condition) were similar, but a warning tone (cue) preceded the presentation of the 

white cross. Subjects were instructed to only respond to the white cross, but not to the warning tone. 

These two blocks measured phasic arousal. In each block, the white cross was presented 20 times. The 

order of the blocks was fixed according to an ABBA design (A = without warning tone, B = with warning 

tone) to compensate for effects of fatigue. In total, the subtest took about 5 min. Reaction times for 

correct responses and number of errors (misses) were examined, as well as the index of phasic arousal, 

calculated as the difference of the median reaction time in condition A minus B, divided by the median 

reaction time across both conditions (see Zimmermann & Fimm, 2012). 
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The subtest Go/NoGo measures a subject’s ability to perform appropriate responses quickly and 

accurately while simultaneously suppressing inappropriate responses. This ability for selective reaction 

is considered an important aspect of behavioral control (see Zimmermann & Fimm, 2012). The subtest 

contained one block, in which two types of stimuli were shown successively in the center of the screen 

in randomly varying time intervals. Subjects were instructed to respond as quickly as possible to the 

upright cross (�), but not to the diagonal cross (×). Both stimulus types were presented 20 times in 

random order. This subtest took about 2 min. Reaction times for correct responses and number of 

errors (misses and false alarms) were examined. 

The subtest Flexibility is a set shifting task that measures a subject’s ability to actively switch attention 

between different tasks or objects (see Monsell, 2003; Zimmermann & Fimm, 2012). This subtest 

contained one block of 100 trials. In each trial, two types of stimuli (one letter and one number) were 

presented simultaneously on the left and right side of the screen. Subjects needed to indicate as 

quickly as possible at which side of the screen a target stimulus appeared. Crucially, the type of the 

target stimulus changed from trial to trial, alternating between letters and numbers. In the first trial, 

subjects had to indicate the side of the letter, in the next trial the side of the number, and so on. 

Responses were made by pressing either a left button or a right button with the index finger of the 

corresponding hand. This subtest took about 4 min. Reaction times for correct responses and number 

of errors (incorrect response side) were examined. 

The Digit Span Task followed the same procedure as in the baseline screening (see 2.3.2). For each of 

the three fMRI sessions, a new stimulus set of random digit sequences was generated for both the 

forward and backward version of the task, which differed from the set presented in the baseline 

screening. The order of these three stimulus sets across fMRI sessions was the same for all subjects 

and thus unconfounded with the drug order, which was counterbalanced across subjects. 

The sEBR measurement in the post-fMRI testing followed the same procedure as in the baseline 

screening (see 2.3.1), except for one difference: Here, the sEBR was assessed using a video-based 

procedure instead of electromyography (EMG) due to the lack of an EMG equipment in the testing 

room. Therefore, subjects were video-recorded while they looked at a central fixation cross on the 

screen for 5 min under resting conditions. Instructions for the measurement were exactly the same as 

in the baseline screening. Additionally, subjects were informed about the video recording and agreed 

to this procedure before the measurement started. Illumination in the testing room was kept constant 

for all subjects and testing sessions. After all sessions, video records were analyzed by a trained 

assistant (blinded to the drug condition), who counted the number of eye blinks that occurred during 

the 5 min interval. The total number of eye blinks was divided by five to yield the sEBR per minute. 
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2.6 Additional control variables 

In addition to the first set of control variables assessed in the post-fMRI testing, another set of control 

variables was assessed at several time points throughout each fMRI session and included different 

measures of subjective mood and physical wellbeing. While the latter were mainly assessed to monitor 

subjects’ wellbeing throughout the testing, all control variables in this set were later tested for DA drug 

effects in order to rule out these factors as potential mediators of DA drug effects on explore/exploit 

behavior. 

First, subjective mood was assessed with two paper-and-pencil instruments at three different time 

points: (1) before ingestion of the first pill, (2) directly before testing in the fMRI scanner, and  

(3) directly after testing in the fMRI scanner. The first instrument was a visual analog scale (VAS; Bond 

& Lader, 1974) that measured subjective feelings on 16 bipolar dimensions, such as “happy – sad”, 

“interested – bored”, and “strong – feeble”. For each dimension, subjects marked a position along a 

horizontal line (100 mm) that indicated how they felt at that moment in relation to the two extremes 

at both line ends. For further analysis, scores on these 16 dimensions were summarized into three 

subscale scores called “alertness”, “contentedness”, and “calmness”, as described by Bond and Lader 

(1974). In short, after reversing some of the items, all items were log-transformed and grouped into 

three subscales, then subscale scores were calculated by a weighted summation over all items 

belonging to that subscale, weighting each item by its respective factor loading. The second instrument 

was a pictorial rating system called Self-Assessment Manikin (SAM; Lang, 1980; see also Bradley & 

Lang, 1994), which examined subjective states on three dimensions. The three dimensions were 

“pleasure” (i.e. feeling happy or unhappy), “arousal” (i.e. feeling calm or excited), and “dominance” 

(i.e. feeling in control or controlled). Each dimension was presented by a series of five pictograms 

showing figures in different emotional states, which marked different points along a nine-point rating 

scale. 

Moreover, physical wellbeing of participants was examined at four different time points: (1) before 

ingestion of the first pill, (2) one hour after ingestion of the first pill, (3) directly before testing in the 

fMRI scanner, and (4) at the very end of the post-fMRI testing, i.e. immediately before the participant 

was released. First, vital parameters, including pulse and blood pressure (systole and diastole), were 

measured by the experimenter or a trained assistant. In addition, a paper-and-pencil questionnaire 

was used to assess ten potential drug side effects, including vertigo, nausea, blurred vision, headache, 

tremor, irregular heartbeat, lethargy, inner unrest, dry mouth, and dry skin. Each side effect was 

measured on a seven-point rating scale ranging from 0 (not present) to 6 (extreme). 

At the end of each fMRI testing day, subjects were asked to guess which drug they had received at that 

day, as well as how confident they were about that guess on a five-point rating scale ranging from  

1 (very uncertain) to 5 (very certain). Note that subjects were instructed to make their drug guesses 
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on each fMRI session independently of the other sessions, meaning that they were also allowed to 

guess the same drug more than once. 

 

2.7 Cognitive modeling 

2.7.1 Introduction to hierarchical Bayesian modeling 

The theoretical background of hierarchical Bayesian modeling is only briefly described in this section. 

For a more comprehensive introduction to this method, the reader is referred to the textbooks of 

Kruschke (2015), Lee and Wagenmakers (2015), and Gelman (2014). 

Bayesian modeling is based on the Bayes rule for conditional probabilities, which states that the 

probability of an event A, given that another event B has been observed, is: 

�� |"� � ��"| � �� �  ��"�      �$��ℎ ��"� ≠ 0�.⁄  

Herein, �� |"� is the conditional probability of A given B, ��"| � the conditional probability of B given 

A, and �� � and ��"� are the unconditional probabilities of event A or B, respectively. In Bayesian 

cognitive modeling, this rule is used to estimate the parameter values of a cognitive model from the 

observed data and prior knowledge. Analogous to the formula above, the probability (for a discrete 

parameter) or density (for a continuous parameter) of a parameter value (*) given the observed data 

(+) can be expressed as: 

,�*|+� � ,�+|*� ,�*�  ,�+�      �$��ℎ ,�+� ≠ 0�.⁄  

Herein, ,�*|+� is called the posterior distribution of the parameter, ,�+|*� the likelihood, and 

,�*� the prior distribution, or simply prior. The term ,�+�, called the marginal likelihood, only serves 

as a normalizing constant, which is usually of minor importance in Bayesian modeling as it does not 

affect the relative posterior probabilities of different parameter values. Thus, the formula above 

simplifies to: 

,�*|+� ∝ ,�+|*� ,�*�, 

which states that the posterior distribution is proportional to the likelihood times the prior. One 

important aspect in Bayesian inference is that both the prior belief about the parameter (before 

observing the data) as well as the posterior belief (after observing the data) are expressed as 

probability distributions, which assign each possible parameter value a relative probability of being 

true. For example, if no prior knowledge about the parameter exists, this might be expressed by a 

uniform prior distribution that assigns equal probability to each possible parameter value. However, if 

prior knowledge, e.g. gained by previous studies, renders certain parameter values more probable, 

this can be expressed by assigning these values a higher prior probability compared to values that are 

less likely based on prior knowledge. Accordingly, the posterior distribution expresses the relative 

probability of each parameter value after observation of the data, which thereby also reflects the 

degree of uncertainty about the true parameter value. Note that this approach clearly distinguishes 
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Bayesian parameter estimation from frequentist approaches like maximum likelihood estimation 

(MLE), which do not account for prior knowledge and only provide classical point estimates (or interval 

estimates) for the true parameter value. Finally, in order to arrive at this posterior distribution, the 

prior needs to be combined with the likelihood, which contains information from the observed data. 

The likelihood function describes the probability of the observed data given the parameter value(s), 

which can be determined from the cognitive model. For example, a reinforcement learning model (see 

1.1.3) allows to calculate for each set of parameter values (e.g. learning rate and softmax parameter) 

the choice probabilities of all actions that have actually been observed, and thereby the overall 

probability of these data given the parameter values (likelihood). 

As the posterior distribution is typically a complex function which cannot be solved analytically, it is 

usually numerically approximated by a class of sampling methods called Markov Chain Monte Carlo 

(MCMC; Robert & Casella, 2005). Commonly used MCMC algorithms in Bayesian modeling include the 

Metropolis-Hastings algorithm, the Gibbs sampler (e.g. in the software WinBUGS and JAGS), and the 

Hamiltonian Monte Carlo algorithm (e.g. in the software Stan; see 2.7.2). The basic idea behind these 

MCMC algorithms is to generate a random number sequence (“Markov chain”) through parameter 

space that “visits” parameter values with higher posterior probability more often, thereby yielding a 

representative sample from the posterior distribution once the chain has reached equilibrium. In other 

words, the stationary distribution of the Markov chain equals the posterior distribution. To ensure that 

the stationary distribution has been reached, users usually run multiple independent Markov chains 

for several thousand steps, discard their initial “burn-in” period, and check their samples after burn-in 

for convergence by statistical tests. For instance, one such test for convergence is the so called ./ (“R 

hat”) statistic (Gelman & Rubin, 1992), which basically tests if the ratio of the between-chain to the 

within-chain variance is close to one, whereas values above 1.1 indicate inadequate convergence.  

Hierarchical Bayesian modeling combines the Bayesian modeling approach with the use of hierarchical 

models to describe the data (see Gelman & Hill, 2007; Kruschke & Vanpaemel, 2015). These models 

involve multiple parameter levels to reflect hierarchical dependencies within the data, e.g. between 

single subjects belonging to a group. To express these dependencies, the model assumes that subject-

level parameters describing individual behavior are drawn from a higher-level distribution specified by 

group-level parameters, also called hyperparameters. This higher-level distribution is often modeled 

as a Gaussian, whose mean and variance are then hyperparameters of the model. The subject-level 

and group-level parameters form a joint parameter space and are estimated simultaneously, whereby 

data from different subjects mutually inform each other via the higher-level group parameters. As a 

result, hierarchical models show “shrinkage” of the subject-level parameters towards the group-level 

mean (Efron & Morris, 1977; Lehmann & Casella, 1998). The degree of shrinkage depends on the 

estimated group-level variance, which is in turn informed by the actual between-subject variance in 

the data. By pulling extreme values towards more plausible values, shrinkage serves to reduce the 

impact of sampling noise in the data (see Gelman, Hill, & Yajima, 2012; Kruschke, 2013; Kruschke & 
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Vanpaemel, 2015). Moreover, since each subject-level parameter is informed by data of the entire 

group, hierarchical modeling often provides stable parameter estimates even with sparse data, e.g. 

few trials per subject (Ahn, Krawitz, Kim, Busmeyer, & Brown, 2011; Katahira, 2016). Another benefit 

of hierarchical models is that hyperparameters can be meaningfully interpreted to reflect overall group 

tendencies and can be used to directly compare different subpopulations (e.g. healthy vs. atypical) or 

different experimental conditions with each other, as done in the current study (see 2.7.2). 

 

2.7.2 Cognitive modeling in the current study 

Choice behavior in the four-armed bandit task was modeled using several cognitive models of learning 

and decision making in order to compare these models and select the best one (in terms of predictive 

accuracy) for further analyses. Each of the applied cognitive models was composed of two 

components: First, a learning rule describing how participants update subjective value estimates for 

each choice option (bandit) based on previous choices and obtained rewards. Second, a choice rule 

modeling how these learned value estimates influence future choices. By combining two different 

learning rules with three different choice rules, a total of six cognitive models resulted for model 

comparison. In the following, all cognitive models are introduced first, before the procedure of their 

parameter estimation is described. 

The first learning rule was the “Delta rule” (Sutton & Barto, 1998), which is an established temporal 

difference model of reinforcement learning. According to this rule, subjects update the expected 

reward value (0) of a chosen bandit based on their prediction error (1), i.e. the difference between the 

actual reward (2) and the expected reward for that trial: 

034,5�� � 034,5 � 615     with     15 � 25 − 034,5 . 

Herein, the indices � and ��1 denote the current and the next trial, respectively, and 75 the index of 

the bandit chosen on trial �. The parameter 6 denotes the learning rate, which was a free parameter 

in this model ranging between 0 and 1. The learning rate determines which fraction of the prediction 

error is used for updating. In contrast, the expected rewards of all unchosen bandits were not changed 

from one trial to the next, i.e. they remained constant until that bandit was chosen again. This trial-by-

trial updating was initialized for each bandit with the same expected reward value 0�, which was 

another parameter of the model.  

The second learning rule was the “Bayesian learner” model as described by Daw et al. (2006). This 

model implements the Kalman filter (Kalman, 1960; Kalman & Bucy, 1961; see also Anderson & Moore, 

1979) as the Bayesian mean-tracking rule for the reward-generating diffusion process in the bandit 

task. First, this model assumes that subjects form an internal representation of the true underlying 

reward structure of the task. As described in section 2.4, the true reward structure followed a decaying 

Gaussian random walk determined by the parameters 8 (decay parameter), 9 (decay center), 

��
� (observation variance), and ��

� (diffusion variance). In the cognitive model, subjects’ estimations of 
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these parameters are denoted accordingly as  8;, 9;, �<�
�, and �<�

�. Second, the model assumed that 

subjects update their reward expectations of the chosen bandit according to the Bayes rule (see 2.7.1). 

They start each trial with a prior belief about each bandit’s mean payoff, which is normally distributed 

with mean =̂?,5
@AB

 and variance �<?,5
� @AB for bandit � on trial �. For the chosen bandit, this prior distribution is 

updated by the reward observation 25, resulting in a posterior distribution with mean =̂?,5
@�C5 and variance 

�<?,5
� @�C5 according to: 

 =̂34,5
@�C5 � =̂34,5

@AB � D515     with     15 � 25 − =̂34,5
@AB

,   

�<34,5
� @�C5 � �1 − D5��<34,5

� @AB
. 

Herein, the coefficient D denotes the Kalman gain, which calculates for each trial � as: 

D5 � �<34,5
� @AB  E�<34,5

� @AB � �<�
� FG . 

Similar to the learning rate parameter in the Delta rule, the Kalman gain determines the fraction of the 

prediction error that is used for updating. In contrast to the learning rate, however, the Kalman gain 

changes from trial to trial depending on the current variance of the prior expected reward distribution 

(�<34,5
� @AB) and the estimated observation variance (�<�

�). The observation variance indicates how much the 

actual rewards vary around the (to be estimated) mean reward of a bandit and therefore reflects how 

reliable each trial’s reward observation (each new data point) is for estimating the true underlying 

mean. If the prior variance is large compared to the estimated observation variance, i.e. if a subject’s 

reward prediction is very uncertain while the reward observation is very reliable, the Kalman gain 

approaches 1 and a large fraction of the prediction error is used for updating. If, in contrast, the prior 

variance is very small compared to the estimated observation variance, i.e. if a subject’s reward 

estimation is very reliable while reward observations are very noisy, then the Kalman gain approaches 

0 and only a small fraction of the prediction error is used for updating. Similar to the Delta rule, the 

expected rewards (prior mean and variance) of all unchosen bandits are not updated within a trial, i.e. 

their posterior distributions equal their prior distributions for that trial. However, prior distributions of 

all four bandits are updated between trials based on the subject’s belief about the underlying Gaussian 

random walk by: 

=̂?,5��
@AB � λ/=̂?,5

@�C5 � E1 − 8;Fϑ/     and      �<?,5��
� @AB � 8;��<?,5

� @�C5 � �<�
� , 

wherein the indices � and ��1 denote the current and the next trial, respectively, and � the index of 

the bandit. The trial-by-trial updating process was initialized for all bandits with the same prior 

distribution N(=̂�
@AB , �<�

� @AB
), whereby =̂�

@AB and �<�
@AB were two further parameters of the model. 

Next, three different choice rules were used to model subjects’ choices based on their expected 

rewards derived from either the Delta rule or the Bayesian learner rule. All choice rules were based on 

the commonly applied softmax function (McFadden, 1974; Sutton & Barto, 1998). The first model was 

the softmax function in its basic form without any bonus term (short: SM). According to this rule, 
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choices are probabilistically based on the relative expected reward values of all available choice 

options. The SM model has the form (a) if combined with the Delta rule and form (b) if combined with 

the Bayesian learner rule: 

(a)  �?,5 �
BK@�LMN,4) 

∑ BK@�LMP,4)P
             (b)  �?,5 �

BK@�LQRN,4
STU

) 

∑ BK@�LQRP,4
STU

)P
 . 

Herein, �?,5 denotes the probability to choose bandit � on trial �, and ΣW indicates a summation over all 

four bandits. The softmax 	 parameter, also called inverse temperature, reflects (inversely) the degree 

of randomness (“noisiness”) in a subject’s decisions: For small 	, choices are very noisy, i.e. all actions 

have nearly the same probability irrespective of their relative expected values. The larger 	 gets, 

choices become less random and more and more value-driven (greedy). For extremely high 	 values, 

the choice probability for the option with the highest expected value approaches one, meaning choices 

are fully deterministic and always favoring this option (greedy strategy). 

The second choice rule was a modified version of the softmax function called “softmax with exploration 

bonus” (short: SM+E), which was adopted from Daw et al. (2006). This model added an additional 

exploration bonus to the expected value of each bandit, which increased with the uncertainty of a 

bandit’s outcome. Depending on the learning rule, different metrics were used to quantify that 

uncertainty.  In the Bayesian learner rule, the uncertainty for a bandit � on trial � is directly quantified 

by the prior standard deviation of that bandit’s expected reward distribution (�<?,5
@AB). Since the Delta 

rule does not directly calculate these uncertainties, they were modeled based on a simple heuristic 

adopted from Speekenbrink and Konstantinidis (2015). According to that heuristic, a bandit’s 

uncertainty increases linearly with the number of trials since it was last chosen. This is formalized as 

�� − �?�, where �? is the last trial before the current trial � in which bandit � was chosen. By 

incorporating these uncertainty metrics into the SM+E model, the model obtains form (a) if combined 

with the Delta rule and form (b) if combined with the Bayesian learner rule: 

(a)  �?,5 �
BK@�L[MN,4� Y�5Z[N�]) 

∑ BK@�L[MP,4� Y�5Z[P�])P
         �b�  �?,5 �

BK@�L[QRN,4
STU� Y]RN,4

STU
]) 

∑ BK@�L[QRP,4
STU� Y]RP,4

STU
])P
 . 

Herein, 
 denotes the exploration bonus parameter, which reflects the degree to which choices are 

influenced by the uncertainty associated with each bandit. If 
 is zero, choices are not influenced  

by these uncertainties and the SM+E model reduces to the simpler SM model. The larger 
 gets, 

choices become more and more uncertainty-driven (assuming 	≠0�. Note that the softmax 	 is also 

often interpreted as an exploration parameter (e.g. Beeler et al., 2010, 2012; Beeler, 2012; Daw et  

al., 2006; Gershman, 2018; Humphries et al., 2012). However, since it simply reflects the noisiness of 

the decision in general, it describes only a form of random (undirected) exploration, while the 
 

parameter reflects a form of uncertainty-driven (directed or strategic) exploration (see Daw et al., 

2006; Gershman, 2018). 
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The third choice rule was a novel extension of the SM+E model called “softmax with exploration bonus 

and perseveration bonus” (short: SM+EP). This version of the softmax rule included an extra 

perseveration bonus, which was a constant value (free parameter) only added to the expected value 

of the bandit chosen in the previous trial, but not to all other bandits. The SM+EP model has the form 

(a) if combined with the Delta rule and (b) if combined with the Bayesian learner rule: 

(a)  �?,5 �
BK@�L[MN,4� Y�5Z[N�� ^_4`abNρ]) 

∑ BK@�L[MN,4� Y�5Z[N�� ^_4`abPρ])P
       (b)  �?,5 �

BK@�L[QRN,4
STU�Y]RN,4

STU� ^_4`abNρ]) 

∑ BK@�L[QRP,4
STU�Y]RP,4

STU� ^_4`abPρ])P
. 

Herein, ρ denotes the perseveration bonus parameter and d an indicator function that equals 1 for the 

bandit that was chosen in the previous trial (indexed by 75Z�) and 0 for all other bandits. 

Note at this point that the formalizations of the SM+E and SM+EP model included a bracket around 

the sum of expected rewards and bonus terms. Leaving out the bracket around this sum would 

mathematically result in the same model, but then the bonus parameters 
 and e would obtain 

different values and interpretations (i.e. 	
 and 	e, respectively). The formalization used here, which 

nested the bonuses within the softmax scheme (as described by Daw et al., 2006), has the advantage 

that bonuses can be directly interpreted in terms of reward value units in order to better compare all 

choice-influencing factors quantitatively with each other. 

Taken together, by combing each learning rule with each choice rule, the following six cognitive models 

resulted for model comparison: Delta-SM, Delta-SM+E, Delta-SM+EP, Bayes-SM, Bayes-SM+E, and 

Bayes-SM+EP. The free and fixed parameters for each model are summarized in Table 1.  

Parameters were estimated for each subject and drug condition using hierarchical Bayesian modeling. 

A graphical description of the modeling scheme is presented in Figure 5. The hierarchical modeling 

approach was chosen to improve the estimation of each subject-level parameter by assuming that 

these parameters are drawn from a group distribution (see 2.7.1; Gelman & Hill, 2007; Katahira, 2016; 

Kruschke & Vanpaemel, 2015). Parameters for the group distribution (mean and standard deviation) 

were estimated separately for each drug condition, which allowed the comparison of subject-level as 

well as group-level parameters between drugs. For all Bayesian learner models, the six parameters 

specifying subjects’ estimation of the Gaussian random walk (8;, 9;, �<�
� , �<�

�, =̂�
@AB, �<�

@AB) – from here one 

referred to as “random walk parameters” – were initially fixed to constrain the free parameter space 

for these models, which largely facilitated estimation of the remaining choice parameters. Also, some 

of the Bayesian learner models did actually not converge with free random walk parameters, thus 

fixing these parameters was necessary in order to include all six cognitive models in the model 

comparison. In detail, the parameters 8;, 9;, �<�
�, and �<�

� were fixed to the values of the true underlying 

random walk parameters (see 2.4). The parameters =̂�
@AB and �<�

@AB, specifying the mean and standard 

deviation of subjects’ prior reward expectation for each bandit in the first trial, were fixed to =̂�
@AB  = 50 

and �<�
@AB

 = 4. Similarly, the parameter 0� of the Delta rule models, specifying the expected reward value  
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Table 1. Free and fixed parameters of all six cognitive models.  

 Delta rule Bayesian learner rule 

SM 6, 	 fixed: 0� 	  fixed:  8;, 9;, �<�
�, �<�

�, =̂�
@AB , �<�

@AB 

SM+E 6, 	, 
 fixed: 0� 	, 
 fixed:  8;, 9;, �<�
�, �<�

�, =̂�
@AB , �<�

@AB 

SM+EB 6, 	, 
, e fixed: 0� 	, 
, e fixed:  8;, 9;, �<�
�, �<�

�, =̂�
@AB , �<�

@AB 

Note. Free parameters are only listed for the subject level. Note that hierarchical models contained for each free subject-level 

parameter f two additional free parameters (ΜK , ΛK) on the group level (see Figure 5). SM: softmax; SM+E: softmax with exploration 

bonus; SM+EP: softmax with exploration bonus and perseveration bonus; 6: learning rate; 	: softmax parameter; 
: exploration 

bonus parameter; e: perseveration bonus parameter; 0�: initial expected reward value for all bandits; 8;: decay parameter; 9;: decay 

center; �<�
�: observation variance; �<�

�: diffusion variance; =̂�
@AB: initial prior mean of the expected reward for all bandits; �<�

@AB: initial 

prior standard deviation of the expected reward for all bandits. 

 

 

 

Figure 5. Graphical description of the hierarchical Bayesian modeling scheme. In this graphical scheme, nodes 

represent variables of interest (squares: discrete variables; circles: continuous variables) and arrows indicate 

dependencies between these variables. Shaded nodes represent observed variables, here rewards (2) and choices (7ℎ) 

for each trial (�), subject (i), and drug condition (j). For each subject and drug condition, the observed rewards until 

trial �-1 determine (deterministically) choice probabilities (�) on trial �, which in turn determine (stochastically) the 

choice on that trial. The exact dependencies between previous rewards and choice probabilities are specified by the 

different cognitive models and their model parameters (f). Note that the double-bordered node indicates that the 

choice probability is fully determined by its parent nodes, i.e. the reward history and the model parameters. As the 

model parameters differ between all applied cognitive models, they are indicated here by an f as a placeholder for 

one or more model parameter(s). Still, the general modeling scheme was the same for all models: Model parameters 

were estimated for each subject and drug condition and were assumed to be drawn from a group-level normal 

distribution with mean ΜK and standard deviation ΛK for any parameter f. Note that group-level parameters were 

estimated separately for each drug condition. Each group-level mean (ΜK) was assigned a non-informative (uniform) 

prior between the limits fl?m and flnK as listed above. Each group-level standard deviation (ΛK) was assigned a half-

Cauchy distributed prior with a location parameter 0 and scale 1. Subject-level parameters included 6, 	, 
, and e, 

depending on the cognitive model (see Table 1). 
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of each bandit in the first trial, was fixed to 50. Note that while these fix values for the initialization 

parameters were chosen somewhat arbitrarily, they only influence modeled choice behavior on the 

first few trials and thus have low impact on the overall model fit (see Daw et al., 2006). At this point, 

the reader is also referred to the discussion in section 6.5.2, in which the subject of fixing these random 

walk parameters to facilitate model fitting is reconsidered. 

Bayesian modeling was performed using the software Stan (version 2.17.0; Stan Development Team, 

2017b; see also Carpenter et al., 2017), operating from within the general statistical package R (version 

3.4.3; R Core Team, 2017) with the interface rstan (version 2.17.2; Stan Development Team, 2017a). In 

Stan, posterior distributions of model parameters are stochastically approximated using Hamiltonian 

Monte Carlo sampling (Girolami & Calderhead, 2011). Sampling in Stan was performed with four 

chains, each chain running for 1000 iterations without thinning after a warmup period of 1000 

iterations. Priors for all subject-level parameters were normally distributed with a parameter-specific 

mean (denoted by ΜK for any parameter f) and standard deviation (denoted by ΛK for any parameter 

f). The prior for each group-level mean was uniformly distributed within the limits as given in Figure 

5. For each group-level standard deviation, a half-Cauchy distribution with location parameter 0 and 

scale parameter 1 was used as a weakly informative prior (see Gelman, 2006). For this specific half-

Cauchy distribution, the 90th percentile is 6.31 and the 99th percentile is 63.66, thereby covering the 

most plausible values for the group-level standard deviations of each parameter, while also allowing 

for more extreme values. 

Following parameter estimation, the six cognitive models were compared in terms of predictive 

accuracy using a Bayesian leave-one-out (LOO) cross-validation approach (Vehtari, Gelman, & Gabry, 

2017). The LOO cross-validation approach measures pointwise out-of-sample predictive accuracy by 

repeatedly taking one data set (“testing set”) out of the sample, refitting the model to the reduced 

data (“training set”), and then measuring how accurately the refitted model predicts the data of the 

testing set. This procedure is repeated as many times as there are data sets in the sample, with every 

single data set being used once as the testing set. Note that there are different ways here to define 

the scope of a testing set, e.g. as a single subject or a single trial. For the LOO analysis of the main 

study, a testing set was defined as the data of one subject under one drug condition, compounded 

over all trials. However, an alternative analysis was conducted in pilot study 2 (see 4.1.3), in which each 

cognitive model was fitted to the first 240 trials of each subject (training set) to predict that subject’s 

choices in the last 60 trials (testing set). Since both approaches yielded largely similar results (see 4.2), 

only the first approach (LOO over subjects) was adopted in the main study. 

Model comparison for the main study was performed using the data sets from all 31 subjects who 

completed the experiment, once combined over all drug conditions (yielding 93 data sets) and once 

separately for each drug condition (each with 31 data sets). In order to reduce computational burden, 

the R package loo (Vehtari et al., 2017) was used, which applies Pareto-smoothed importance sampling 
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to calculate LOO estimates that closely approximate exact LOO measures without refitting the model 

several times. Note that in pilot study 2, these LOO estimates were directly compared to the exact LOO 

measures, confirming that both approaches yielded very similar results (see 4.2). Applying this 

package, LOO estimates were calculated for each model fit based on its Stan output, using the log 

likelihood function evaluated at the sampled posterior parameter values. The log likelihood for each 

subject was calculated as the logarithmized product of choice probabilities (�) of the chosen bandits 

(indexed by 75) compounded over trials �:  

opqE∏ �34,55 F. 

The detailed procedure of estimating LOO measures based on the subject-specific log likelihoods can 

be found in Vehtari et al. (2017). Since cross-validation measures like LOO are not biased in favor of 

more complex models (like ordinary goodness-of-fit measures), no penalty term is needed here to 

compensate for model complexity in order to prevent over-fitting.  

Based on the results of the model comparison, the cognitive model with the highest predictive 

accuracy (Bayes-SM+EP) was then selected for further data analysis. Before that, however, the model 

was refit to the data with a different set of fixed values for the random walk parameters of the Bayesian 

learning rule. More specifically, while these parameters were initially fixed to their true (or arbitrarily 

chosen) values only for the model comparison (since some models did not converge with free random 

walk parameters, see above), these values were exchanged with the best-fitting parameter values 

obtained from pilot study 2 (except for ��
�, which was still fixed to its true value due to model 

degeneracy; see Daw et al., 2006). Therefore, each of these parameters was estimated once over all 

16 subjects of the pilot data set (see 4.1.3), yielding the following posterior medians: 8;  = 0.93, 9;  = 46.0, 

�<�
� = 6.6², =̂�

@AB  = 82.7, and �<�
@AB  = 3.6 (see also Table A1 in the appendix). These posterior medians were 

then used as new fix values to refit the Bayes-SM+EP model to the data of the main study. As this new 

model fit showed even higher predictive accuracy than the previous one, it was chosen for all further 

model-based analyses.  

On the one hand, parameter estimates of this model fit were used to test for DA drug effects on the 

behavioral level. First, posterior distributions of all six group-level parameters of this model (i.e. 

ΜL , ΜY, Μs and ΛL , ΛY, Λs) were compared between the DA drug conditions by calculating for each 

drug pair the difference between the drug-specific posterior distributions and then analyzing for each 

of these posterior differences the percentage of samples greater than zero. Additionally, it was 

analyzed if the 90 % highest density interval (HDI) of these posterior drug differences included zero 

(see Kruschke, 2013, 2015). The 90 % HDI defines that interval of a posterior distribution, in which 

every parameter value has a higher probability density than any value outside of the HDI and which 

contains 90 % of its total mass. Hence, this interval reflects that part of the posterior distribution which 

contains the most credible drug difference values. Note that 90 % HDIs are reported, since these are 

computational more stable than 95 % HDIs, for which each end only relies on 2.5 % of the posterior 
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samples (Gabry & Goodrich, 2018; Robert & Casella, 2005, p. 93). Second, DA drug effects on the 

subject-level posterior medians of each choice parameter (i.e. 	, 
, e) were analyzed using a repeated 

measures ANOVA with the factor drug, followed by paired t-tests for each drug pair. 

On the other hand, subject-level posterior medians of the three choice parameters (	, 
, e) were also 

used for further behavioral analyses, including the inverted-U analysis (see 2.9.2) and a correlation 

analysis with the percentage of exploratory trials (see below). In addition, these subject-level posterior 

medians were used to generate trial-by-trial regressor for the model-based fMRI analysis (see 2.8.3) 

as described by Daw (2011), including the expected value (=̂@AB) and uncertainty (�<@AB) of the chosen 

bandit, the reward prediction error (1), and the overall uncertainty (denoted here as Σ�<@AB). The latter 

variable was computed by summing for each trial the uncertainty, i.e. the prior standard deviation 

(�<@AB), over all four bandits. Moreover, some trial-by-trial variables – including the expected value 

(=̂@AB), exploration bonus (
�<@AB), and perseveration bonus (de) of each bandit – were also used to 

classify subjects’ choices into different choice types based on two different classification schemes: 

First, a binary classification scheme adopted from Daw et al. (2006), which divides choices into either 

exploitations or explorations. According to this scheme, a choice is exploitative if the bandit with the 

highest expected value was chosen, and exploratory if one of the other bandits was chosen. Second, a 

trinary classification scheme, which divides choices into exploitations, directed explorations, and 

random explorations. According to this scheme, a choice is exploitative if the bandit with the highest 

expected value was chosen, or the bandit with the highest sum of expected value plus perseveration 

bonus. All the remaining (i.e. non-exploitative) trials are classified as either directed explorations, i.e. 

trials in which the bandit with the highest exploration bonus was chosen, or random explorations, i.e. 

trials in which not the bandit with the highest exploration bonus was chosen. The choice types derived 

from both classification schemes were also used as regressors in the model-based fMRI analysis (see 

2.8.3). Note also that Pearson correlations between all model-based variables that were used as fMRI 

regressors are reported in Table A4 of the appendix. 

Furthermore, the choice classification schemes were used to calculate the percentage of overall 

explorations (according to the binary classification) and the percentage of random and directed 

explorations (according to the trinary classification) for each subject over all trials per session in order 

to analyze pairwise Pearson correlations between these percentages and the subject-specific posterior 

medians of all choice parameters (	, 
, e). Note that data from the placebo condition (n=31) and pilot 

study 2 (n=16) were combined to increase the sample size for this correlation analysis (n=47). Finally, 

DA drug effects on the percentage of exploratory trials (overall, random, and directed) were analyzed 

by performing on each of these dependent variables a repeated measures ANOVA with the factor drug, 

followed by paired t-tests for each drug pair.  
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2.8 Functional magnetic resonance imaging (fMRI) 

2.8.1 Introduction to functional magnetic resonance imaging 

Since its development in the early 1990s, functional magnetic resonance imaging (fMRI) has gained 

immense popularity as a research tool to investigate human brain function (Poldrack, Mumford, & 

Nichols, 2011). FMRI is a noninvasive technique that measures brain activity from local changes in 

blood oxygenation via magnetic resonance (MR) imaging (see below; Heeger & Ress, 2002; Logothetis, 

2002; Sprawls, 2000). It is based on the fact that neuronal activation leads to an increased blood flow 

through the active brain area, called hemodynamic response, whereby the additional blood carries 

more oxygen than is actually needed by the active neurons (Fox & Raichle, 1986; Fox, Raichle, Mintun, 

& Dence, 1988). This relative increase in the local blood oxygenation level changes the local magnetic 

properties of the tissue, which can be measured by fMRI as the so called “blood oxygenation level 

dependent” (BOLD) signal (Ogawa et al., 1992; Ogawa, Lee, Kay, & Tank, 1990; see also Heeger & Ress, 

2002). More specifically, the BOLD signal relies on the different magnetic properties of deoxygenated 

and oxygenated hemoglobin in the blood: While deoxygenated hemoglobin is strongly paramagnetic 

and induces inhomogeneities in a local magnetic field, oxygenated hemoglobin is weakly diamagnetic 

and shows little effect on a magnetic field (Logothetis, 2002). The shift in the ratio of paramagnetic to 

diamagnetic hemoglobin in response to neuronal activity can be detected via MR imaging. 

MR imaging is a technique that uses a magnetic field and radio frequency signals to visualize 

anatomical structures and physiological processes within the body (for details see Sprawls, 2000). In 

an MR scanner, a subject’s head is exposed to a strong magnetic field (B0), whereby field strengths of 

1.5 or 3.0 Tesla are commonly applied. As the hydrogen nuclei (protons) in the tissue are constantly 

rotating around their own axes, called “spin”, each of them exhibits a magnetic moment with random 

orientation. Application of the external magnetic field changes the protons’ magnetic moments from 

a random orientation to an orientation in which they are aligned either parallel or anti-parallel to the 

external field. As the parallel alignment reflects the lower-energy state, more protons are aligned 

parallel than anti-parallel to B0. Furthermore, the protons start to “precess” in the external magnetic 

field, meaning that their spin “wobbles” in a cone-shaped form around the axis of B0. Overall, the result 

of this field-induced spin alignment and precession is a net magnetization parallel to B0 known as 

longitudinal magnetization. In this state of longitudinal magnetization, radiofrequency (RF) pulses are 

transmitted to the tissue, which deflect the protons from their alignment along the B0 axis. A fraction 

of the protons is flipped from the parallel to the anti-parallel state, which results in a reduction of the 

net longitudinal magnetization. In addition, the RF pulse leads to a synchronization of precessing 

protons, which results in a net magnetization orthogonal to the B0 axes, called transverse 

magnetization. These RF pulses are repeated in short intervals, referred to as “repetition time” (TR) of 

the MR measurement. When the RF pulse is switched off, the protons start to relax, whereby relaxation 

occurs in two different ways. First, a fraction of the protons fall back into the lower energy state of 

parallel alignment to B0, thereby restoring longitudinal magnetization, which is called longitudinal (or 
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T1) relaxation. Second, synchronized precessing protons start to desynchronize again, thereby 

reducing transverse magnetization, which is called transverse (or T2) relaxation. These relaxation 

processes produce electrical signals which can be detected by RF receiver coils placed around the 

subject’s head, whereby these signals are localized in space by the use of magnetic field gradients. As 

T1 and T2 relaxation times vary between different tissues, they generate signal contrasts which can be 

visualized in different types of MR images (Currie, Hoggard, Craven, Hadjivassiliou, & Wilkinson, 2013; 

Sprawls, 2000). T1-weighted images primarily rely on differential T1 relaxation times between different 

tissues and are often used in fMRI to generate high-resolution structural brain images to aid anatomic 

localization of BOLD signals. In contrast, T2- and T2*-weighted images predominantly rely on 

differential transversal relaxation times. Thereby, transverse relaxation is further distinguished into T2 

relaxation, which is caused by local spin-spin interactions in the tissue, and T2* relaxation, which is 

additionally caused by local field variations (inhomogeneities) within B0 (Chavhan, Babyn, Thomas, 

Shroff, & Haacke, 2009). Importantly, the T2* relaxation time is also influenced by changes in blood 

oxygenation following neuronal activation, since the relative decrease in paramagnetic 

deoxyhemoglobin reduces local field inhomogeneities and prolongs the T2* relaxation time 

(Logothetis, 2002; Ogawa et al., 1990). Thus, the BOLD signal can be visualized in a T2*-weighted 

image, in which active brain areas temporarily exhibit a stronger signal and appear brighter in the 

image (Sprawls, 2000). For fMRI, T2*-weighted images are usually acquired with a very rapid MR 

imaging technique called echo planar imaging (EPI; Mansfield, 1977; Poustchi-Amin, Mirowitz, Brown, 

McKinstry, & Li, 2001).  

To arrive from a raw fMRI scan to an interpretable image of brain activity, multiple analysis steps are 

required. First, several preprocessing steps are usually performed to reduce noise, improve data 

quality, and transform images to a common anatomical space for later analyses. In short, these steps 

include quality control, distortion correction, motion correction, slice timing correction, temporal 

filtering, spatial normalization, and spatial smoothing (for details see Poldrack et al., 2011; Soares et 

al., 2016; see also 2.8.3). The preprocessed images are then subjected to statistical analysis, which 

usually includes the steps of statistical modeling, inference, and visualization of results in statistical 

maps (for details see Friston, Ashburner, Kiebel, Nichols, & Penny, 2006; Poldrack et al., 2011). 

Statistical modeling of fMRI data commonly relies on the general linear model (GLM) approach (Friston 

et al., 1994; Kiebel & Holmes, 2006). The GLM approach basically performs an independent multiple 

regression analysis for every single voxel (i.e. volume element) in the fMRI scan. The model assumes 

thereby that the observed BOLD time series (t) of a given voxel can be expressed as a linear 

combination (weighted sum) of one or more experimental design variables (u�, u�, …, um), each 

weighted by a regression coefficient (	�, 	�, …, 	m), plus a constant (the intercept 	�) and a random 

error term (�). In vector notation, this GLM can be written as: 

t �  	� �  	�u� � 	�u� � ⋯ � 	mum � �. 
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Herein, the different design variables (u?), also called “regressors”, are typically task-related. They may 

represent onset times of different stimulus events in the experiment (e.g. trial onsets, reward onsets) 

or different parametrical modulators of such events (e.g. reward values). As different regressors may 

be correlated with each other to some degree, they are often orthogonalized in the GLM (see 

Mumford, Poline, & Poldrack, 2015; Poldrack et al., 2011). Orthogonalization results in uncorrelated 

regressors (i.e. no shared variance), such that only the variability unique to one specific regressor 

determines the estimate of its regression coefficient. Before the regressors are entered into the GLM 

analysis, they are typically convoluted with a canonical hemodynamic response function (HRF), which 

describes the time course of a typical BOLD response to a single brief stimulus. The canonical HRF rises 

within 1-2 s and peaks around 5 s after stimulus onset, followed by a small undershoot (negative peak) 

that lasts up to 20-30 s after stimulation (see Henson & Friston, 2006; Poldrack et al., 2011, chapter 5). 

After model specification, the regression coefficients (“betas”) for each regressor are then estimated 

by least squares optimization, which minimizes the squared distance between the observed data and 

the values predicted by the GLM. The resulting beta estimates reflect how strongly each regressor 

contributed to the observed BOLD time series in a given voxel, controlling for all other regressors in 

the model. Beta estimates for all recorded voxels can be collectively visualized in the so called “beta 

image” of a regressor, and different beta images can be linearly combined to obtain so called “contrast 

(con) images”. Next, these beta and con images can be used for statistical inference (hypothesis 

testing), which can be performed either on the subject level (“first-level analysis”) or across subjects 

on the group level (“second-level analysis”; see Friston et al., 2006; Poldrack et al., 2011). On the 

second level, random effects models are often applied, which account for both within-subject and 

between-subject variability in the data (Friston, Stephan, Lund, Morcom, & Kiebel, 2005; Penny & 

Holmes, 2006). As the term “general” implies, the GLM approach can be used for various types of 

statistical tests, including paired and unpaired t-tests, analysis of variance (ANOVA), and analysis of 

covariance (ANCOVA). For example, by subtracting the beta images of two task-related regressors (e.g. 

explore minus exploit), it can be tested for each voxel if one task condition elicited a significantly 

stronger or weaker BOLD response than the other. The results of these tests are usually visualized in 

statistical parametric maps, which show the according test statistic (e.g. t- or F-values) for each voxel 

in the fMRI scan. For better visualization, these maps are often thresholded at a certain value, color-

scaled, and overlaid onto a structural (T1) brain image of the subject or a mean T1 image of the group. 

As hypothesis testing is performed simultaneously for every single voxel in an fMRI scan, which 

typically contains more than 100 000 voxels across the brain, this testing approach has a high chance 

of yielding an accordingly large number of false positive results (Type I errors), which is known as the 

“multiple testing problem” (Nichols, 2012). Different approaches have been developed to correct for 

this problem by using p-values adjusted for multiple comparisons instead of uncorrected p-values (see 

Brett, Penny, & Kiebel, 2006; Nichols, 2012; Nichols & Hayasaka, 2003). One such approach is called 

the “familywise error” (FWE) correction, whereby the familywise error rate denotes the probability to 
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obtain at least one false positive result in a family of statistical tests. Hence, using FWE-corrected  

p-values and a threshold of p < .05 in a whole-brain fMRI analysis ensures that the probability to obtain 

at least one false positive results across all tested voxels is less than 5 %. Alternatively, the FWE 

correction can also be applied to an a priori selected brain region of interest in order to reduce the 

number of tests to correct for, which is known as “small volume (FWE) correction” (Brett et al., 2006; 

Poldrack et al., 2011). In fMRI, the FWE approach is commonly based on Gaussian random field theory 

to account for the fact that statistical tests on single voxels in an fMRI scan are not actually 

independent of each other due to spatial correlations in the data (Nichols & Hayasaka, 2003; Worsley, 

2006). 

Finally, model-based fMRI combines the fMRI approach with cognitive modeling, yielding a powerful 

tool to investigate the neural correlates of cognitive processes underlying observed behavior. In this 

approach, trial-by-trial estimates for latent (unobservable) cognitive variables derived from the model, 

such as the subjective value or uncertainty associated with a given choice option, can be entered as 

parametric regressors into the GLM to investigate the neural correlates of these variables (Daw, 2011; 

Gläscher & O'Doherty, 2010). For instance, model-based fMRI has enabled to pinpoint the neural 

correlates of the reward prediction error signal from reinforcement learning models by showing that 

this signal positively correlates with the BOLD response in striatal brain regions (Dreher, 2013; 

O'Doherty et al., 2004; O'Doherty, Dayan, Friston, Critchley, & Dolan, 2003). Importantly, also the 

neural signatures of explore/exploit decisions have been analyzed by using this method, as the 

classification of choices into explorations and exploitations is mostly based on model-derived 

subjective value estimates (see 1.1.4; e.g. Addicott et al., 2014; Daw et al., 2006; Laureiro-Martínez et 

al., 2014). Note that the procedure for such a model-based fMRI analysis of explore/exploit decisions 

is described in more detail below (see 2.8.3). 

For a comprehensive introduction to MR imaging and fMRI, the reader is referred to the textbooks of 

Sprawls (2000), Poldrack et al. (2011), and Friston et al. (2006). More details on model-based fMRI and 

its application in decision neuroscience can be found in the reviews by Gläscher and O'Doherty (2010), 

Daw (2011), and O'Doherty et al. (2007). 

 

2.8.2 fMRI data acquisition 

Functional imaging data were acquired on a Siemens Trio 3T scanner (Erlangen, Germany) equipped 

with a 32 channel head-coil. For each subject and drug condition, four blocks à 75 trials were recorded 

for the bandit task. The first five scans of each block served as dummy scans to allow for magnetic field 

saturation and were discarded. Functional volumes were recorded using a T2*-weighted EPI sequence. 

Each volume consisted of 40 slices with 2 mm isotropic voxels and 1 mm gap, acquired with a repetition 

time (TR) of 2470 ms, an echo time (TE) of 26 ms, and a flip angle of 80°. In addition, a high-resolution 

structural image was acquired for each subject at the end of the first fMRI session, using a T1-weighted 

magnetization prepared rapid gradient echo (MPRAGE) sequence with 1 mm isotropic voxels and 240 
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slices. The experimental task was projected onto a mirror attached to the head coil and participants 

responded by using a button box with four buttons held in the right hand (see 2.4). 

 

2.8.3 fMRI data analysis 

Preprocessing and statistical analysis of fMRI data was performed using SPM12 (Wellcome Department 

of Imaging Neuroscience, London, UK). The preprocessing included four steps. First, to correct for 

subject motion, functional images of each subject were realigned to the first functional image of the 

placebo condition using a six-parameter affine transformation and unwarped to correct for the 

interaction between motion and distortion. Second, functional images were slice time corrected to the 

onset of the middle slice to correct for the shifted acquisition time of the slices within a volume. Third, 

all images were spatially normalized to Montreal Neurological Institute (MNI) space using the DARTEL 

toolbox (Ashburner, 2007). Therefore, the structural T1 image of each participant was first 

coregistered to the mean functional image (generated during realignment) and segmented into grey 

matter, white matter, and CSF. The resulting segmented images were then used within the DARTEL 

toolbox to normalize the structural T1 image and functional images of each subject to MNI space, and 

to resample functional images to 1.5 mm isotropic voxels. The normalized T1 images were 

subsequently averaged across all subjects to be used as a mean structural scan for visualization 

purposes (see below). Fourth, functional images were spatially smoothed using a Gaussian kernel of 

6 mm full-width at half-maximum (FWHM).  

For the first-level analysis of fMRI data, a general linear model (GLM) was created for each subject and 

drug condition, concatenated over all four blocks of the bandit task within one drug condition. For each 

trial in which a bandit was chosen, two different time points were included in the model: the time of 

the trial onset and the time of the outcome presentation. GLM regressors for these time points were 

created by convolving the event onsets, modeled by a stick function of zero duration, with the 

canonical hemodynamic response function (HRF) as implemented in SPM12. In addition, several 

parameteric modulators of these onset regressors were included in the model, which were also 

convolved with the HRF. First, the type of each choice (1 = explore, 0 = exploit) was entered as a 

parametric modulator of the trial onset regressor. Choice types were derived from the cognitive model 

according to the binary classification scheme used by Daw et al. (2006), as described above (see 2.7.2). 

Second, the reward prediction error 1, also derived from the cognitive model (see 2.7.2), was entered 

as a first parameteric modulator of the outcome onset regressor, and the outcome value (the number 

of points gained on each trial) as its second parametric modulator. For trials in which no bandit was 

chosen, the model contained an additional error regressor constructed by convolving the onsets of 

these trials with the HRF. Furthermore, four sessions constants (not convolved with the HRF) were 

included in the model as regressors for the four concatenated task blocks. Low-frequency noise was 

removed by employing a temporal high-pass filter with a cut-off frequency of 1/128 Hz, and a first-

order autoregressive model AR(1) was used to remove serial correlations. After each first-level GLM 
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was estimated, regressor-specific contrast images were created for each subject and drug condition 

for the following five regressors of interest: trial onset, outcome onset, choice type, prediction error, 

and outcome value. 

Next, the first-level results were taken to a second-level random effects analysis to allow for statistical 

inference on the group level. For each regressor of interest, the subject- and drug-specific contrast 

images were submitted to a flexible factorial model in SPM12, including the factors drug (3 levels, 

within-subject), subject (31 levels), and a constant. The drug factor was specified as containing 

dependent observations of equal variance, and the subject factor as containing independent 

observations of equal variance. For each contrast-specific second-level analysis, a t-contrast image was 

created that tested for the main effect of that specific contrast over all subjects and drug conditions, 

calculated by weighting each drug level by one and each subject level by 3/31 (see Gläscher & 

Gitelman, 2008). Note that for the choice type regressor, computing this t-contrast with positive 

weights only tests for the direction explore > exploit, as explore trials were coded with 1 and exploit 

trials with 0 in this regressor. Hence, the same t-contrast was also computed with negative weights in 

order to create a t-contrast image for the comparison exploit > explore.  

In addition to the main (first) GLM, two alternative GLMs were created and analyzed accordingly on 

the first and second level. Both alternative GLMs only differed from the main GLM with respect to the 

regressors modeled at trial onset, while the remaining regressors remained the same. Whereas the 

main GLM included one trial onset regressor with one parametrical modulator (explore/exploit), the 

second GLM included instead three trial onset regressors: one for directed explorations (directed), one 

for random explorations (random), and one for exploitations (exploit). These three choice types were 

defined according to the trinary classification scheme as described above (see 2.7.2). For this GLM, the 

second-level random effects analysis included the t-contrasts directed > exploit, random > exploit, 

directed > random, and random > directed. The third GLM included one trial onset regressor with two 

parametric modulators: the expected value (=̂@AB) and uncertainty (�<@AB) of the chosen option (in that 

order), both derived from the cognitive model as described above (see 2.7.2). Note that also a second 

version of this GLM was analyzed with the reverse order of both parametric modulators, which yielded 

substantially the same results as the first version and is thus not further considered here. For the third 

GLM, t-contrasts for both parameteric modulators, i.e. expected value and uncertainty, were included 

in the second-level random effects analysis. 

To test for DA drug effects across subjects, an F-contrast image was created for each contrast-specific 

second-level analysis (see above) with the weights [1 -1 0; 0 1 -1] over the three drug levels [P D H] and 

zero weights for all 31 subject levels. Note that this F-contrast tests for the main effect of the drug 

condition analogous to a repeated measures ANOVA (see Henson & Penny, 2005). Since this F-test 

performs an undirected (two-sided) comparison, F-contrasts for the main and second GLM are 

denoted accordingly (i.e. without direction) as explore vs. exploit (main GLM), directed vs. exploit, 

random vs. exploit, and directed vs. random (second GLM). In addition to the second-level ANOVA,  
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a second-level regression analysis was conducted for each drug pair to test whether DA drug effects 

on exploration-specific brain activity were linearly predicted by DA drug effects on exploratory 

behavior. For this, the subject- and drug-specific contrast images for explore vs. exploit were used to 

calculate for each subject the difference image of this contrast for a given drug pair (P-D, P-H, or D-H). 

These difference images were then used in the second-level regression analysis, including the subject-

specific drug differences of the exploration bonus parameter �
 posterior medians; see 2.7.2) for the 

same drug pair as explanatory variable. The same kind of regression analysis was also performed for 

the contrasts directed vs. exploit and random vs. exploit of the second GLM. 

Finally, a fourth GLM was created for an additional post-hoc exploratory analysis. This fourth GLM 

differed from the main GLM only with respect to the parametric modulator of the trial onset regressor, 

replacing the binary variable choice type (explore/exploit) by a continuous model-based variable 

termed overall uncertainty (Σ�<@AB), which is the summed uncertainty (�<@AB) over all four bandits (see 

2.7.2). The contrast images for the overall uncertainty regressor were then used in a second-level 

random effects analysis (as described above) to test for drug differences in the parametric effects of 

this regressor across subjects. Since this post-hoc analysis specifically focused on a comparison of the 

placebo and L-dopa condition (based on the behavioral findings, see 5.2), the first second-level model 

only included these two drug conditions. Based on this model, different t-contrast images were created 

to test for the parameteric effects of this regressor in the placebo condition alone, and for its 

differential parametric effects between both drug conditions (placebo > L-dopa, L-dopa > placebo).  

For completeness, also a second-level analysis with all three drug conditions was performed to test  

for the remaining pairwise drug effects accordingly (placebo > haloperidol, haloperidol > placebo,  

L-dopa > haloperidol, haloperidol > placebo). Finally, also a second-level regression analysis (as 

described above) was performed for this regressor. 

All fMRI results are reported at a threshold of p < .05, FWE-corrected for the whole brain volume, unless 

stated otherwise. In addition, results of the second-level ANOVA and regression analysis for the first 

and second GLM (i.e. exploration-specific contrasts) were also analyzed using small volume FWE 

correction (p < .05) for seven regions that have previously been associated with exploratory choices: 

the left/right FPC and left/right IPS (Daw et al., 2006), as well as the dACC and left/right AI (Blanchard 

& Gershman, 2018). Regions used for small volume correction were defined by a 10 mm radius sphere 

around the respective peak voxel reported by the previous studies (see Table A5 in the appendix). For 

display purposes, an uncorrected threshold of p < .001 was used (unless stated otherwise), and 

activation maps were overlaid on the mean structural scan of all participants. 
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2.9 Further behavioral data analysis 

2.9.1 Model-free choice variables 

In addition to the cognitive modeling analysis, also four model-free measures of choice behavior were 

analyzed. First, the total monetary payout of the task (denoted here as payout) was used as a model-

free performance measure, assuming that a successful balance between exploitation and exploration 

results in a high overall payout. The second model-free variable was the percentage of choices in which 

the bandit with the highest actual payoff was chosen (denoted here as % best bandit). A high value of 

% best bandit over time is also assumed to indicate a successful explore/exploit trade-off, in which a 

subject exploits a bandit as long as it pays out best, but also knows when to switch to the next bandit 

that pays out best through occasional exploration. The third model-free variable was the mean rank of 

all choices (denoted here as mean rank), whereby rank refers to the actual payoff of the bandit from 

lowest (1) to highest (4). This measure is similar to % best bandit, but considers not only the fraction of 

choices in which the best bandit was chosen, but also where the second or third best bandits were 

chosen over the fourth bandit. For example, even if two subjects chose the first best bandit equally 

often, their average choice ranks might still differ if one subject selected the second and third best 

bandit more often than the other subject. If choices are totally random, the expected value for 

mean rank is 2.5, whereas it should be close to 4.0 for an optimal performer. The fourth model-free 

variable was the percentage of all choices in which the bandit was switched (denoted here as 

% switches). While switching to another bandit is not per se an indicator of an exploratory choice, it 

may still be assumed to highly correlate with the percentage of exploratory choices. Note, however, 

that a switch can also be an exploitative choice, e.g. if a subject switches back to the bandit with the 

highest expected reward after having explored other options. Note further that while the first three 

model-free variables (payout, % best bandit, mean rank) were all assumed to be indicators of a 

successful explore/exploit balance in terms of maximizing the overall payout, the fourth variable 

(% switches) is assumed to indicate the extent of exploration alone rather than the balance between 

exploration and exploitation. For each of these model-free choice variables, the effect of the drug 

condition was tested using a repeated measures ANOVA with the factor drug.  

 

2.9.2 Inverted-U analysis 

The inverted-U analysis containted two steps: In a first step, it was tested whether individual 

differences in explore/exploit behavior under drug-free conditions were predicted by the individual 

DA baseline according to an inverse quadratic (inverted-U-shaped) relationship. In a second step, it 

was tested whether DA drug effects on explore/exploit behavior were modulated by the individual DA 

baseline, as also predictied by the inverted-U hypothesis. For both steps, the sEBR and WMC were used 

as behavioral proxy measures for the individual DA baseline. All parts of this analysis were performed 

in R (version 3.4.3; R Core Team, 2017). 
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For the first step, data from the placebo condition (n=31) and pilot study 2 (n=16) were combined to 

increase the sample size to 47 subjects. Two regression models were then fitted to these data. First, a 

regression model termed “linear model” (LM), which only tested for a linear relationship between a 

given behavioral choice measure and DA proxy measure according to: 

wxℎy0�p2yo 7ℎp�7x zxyi{2x �  	� � 	� + ,2pf| � �, 

with � denoting a random error term. Second, a regression model termed “quadratic model” (QM), 

which also tested for a quadratic relationship between these variables according to: 

wxℎy0�p2yo 7ℎp�7x zxyi{2x �  	� � 	� + ,2pf| �  	� + ,2pf|² � �. 

As behavioral choice measures, different model-based and model-free variables were used. Model-

based measures of choice behavior included the subject-level posterior medians for all choice 

parameters of the Bayes-SM+EP model, i.e. the softmax parameter (	), the exploration bonus 

parameter (
), and the perseveration bonus parameter (e). Note that while the e parameter does not 

reflect explore/exploit behavior, it was nonetheless included in the analysis for exploratory purposes. 

Model-free measures of choice behavior included the four variables introduced in section 2.9.1, i.e. 

payout, % best bandit, mean rank, and % switches. The first DA proxy used for this regression analysis 

was the sEBR (see 2.3.1). For the second DA proxy, a principal component analysis (PCA) was 

performed over the z-transformed scores of the following WMC tasks: the Rotation Span Tak (absolute 

scores), the Operation Span Task (absolute scores), and the Listening Span Task (span scores). The Digit 

Span Backward Task was not included in this PCA because of too many missing values (zero scores), 

since 9 out of 47 subjects misunderstood the task instructions and performed the forward instead of 

the backward version of the task. The PCA was performed using the R function prcomp, and the first 

principal component of this PCA, denoted WMCPCA, was used as DA proxy in the regression analysis. 

For exploratory purposes, each of the three WMC task scores included in this PCA was also used 

separately as a DA proxy in the regression analysis. 

The regression coefficients 	�, 	�, and 	� of all models were estimated using the R function lm, which 

fits linear models based on the ordinary least squares method. After fitting all regression models to 

the data, a LOO cross-validation approach (see 2.7.2) was used to compare the LM fit and QM fit for 

each pair of variables. The LOO model comparison was performed as follows: For each subject in the 

sample (n=47), both regression models were fitted to a reduced data set excluding that subject 

(training set). Then, predictive accuracies of both models were calculated for the left-out subject 

(testing set), using the squared distance between the true value for that subject and the predicted 

value based on the respective model fit. Finally, the squared distances for all subjects were averaged 

to yield the overall LOO measure of each model, which were then compared between the LM and QM. 

Additionally, the resulting p-values for the 	� coefficients, which test for the null hypothesis 	� = 0, 

were examined for each QM. 
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The second step of this inverted-U analysis was based on the data of all subjects who completed all 

three drug conditions of the main study (n=31). For this analysis, only the three model-based choice 

parameters (	, 
, e) were used as dependent variables to keep the number of statistical tests in a 

reasonable range (see below). DA proxies were the same as in the first step, i.e. the sEBR, WMCPCA, 

and the three separate WMC task scores (see above). For each behavioral choice measure, the 

magnitude of the DA drug effect was first calculated for each subject by computing the difference of 

this measure for each drug pair, i.e. placebo minus L-dopa (P-D), placebo minus haloperidol (P-H), and 

L-dopa minus haloperidol (D-H). These drug differences were then plotted against each DA proxy. The 

turning point of the inverted-U curve was approximated by the sample’s median value and marked in 

the plots by a vertical line. Based on the assumptions of the inverted-U hypothesis, the direction and 

magnitude of the DA drug effects were expected to differ between subjects below and above the 

turning point of the inverted-U curve (see 1.2.4; Figure 3), which was visually examined in the plots. 

Furthermore, for each DA proxy measure, the subject sample was split at its median value into a low 

(n=16) and a high (n=15) DA baseline group, and DA drug effects (P-D, P-H, and D-H) on each behavioral 

choice measure were compared between both groups using two-sample t-tests.  

 

2.9.3 Control variables 

Several control variables were tested for DA drug effects. The first set of control variables was 

measured during the post-fMRI testing (see 2.5) and comprised 18 variables in total: the sEBR, the total 

scores of the Digit Span Forward and Backward, and 15 attentional performance measures from the 

TAP, including reaction time medians, reaction time standard deviations, and error rates for each of 

the subtests Alertness, Go/NoGo, and Flexibility, as well as the index of phasic arousal for the subtest 

Alertness. Each of these 18 control variables was used as a dependent variable in a univariate repeated 

measures ANOVA with the factor drug and data from 31 subjects. Note that due to missing data, the 

ANOVA for the sEBR and all variables of the subtest Flexibility included only 30 subjects, and for the 

Digit Span Backward only 29 subjects. Since none of the 18 control variables showed a significant 

(p < .05) drug main effect in this ANOVA, no further t-tests were performed. 

The second set of control variables, measured at different time points throughout each fMRI session, 

comprised a total of 19 variables on subjective mood and physical wellbeing (see 2.6). Mood 

parameters included ratings on the subscales alertness, contentedness, and calmness from the VAS 

(Bond & Lader, 1974) and ratings on the dimensions pleasure, arousal, and dominance as assessed by 

the SAM (Lang, 1980). Physical wellbeing parameters included pulse, blood pressure (systole and 

diastole), and ratings on ten potential drug side effects (see 2.6). For statistical testing, ratings on the 

ten potential side effects were summed to yield a “side effects sum score” for each time point. Mood 

variables were obtained at three different time points: before ingestion of the first pill (t0), directly 

before testing in the fMRI scanner (t1), and directly after testing in the fMRI scanner (t2). Physical 

wellbeing variables were assessed at four different time points: before ingestion of the first pill (t0), 
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one hour after ingestion of the first pill (t1), directly before testing in the fMRI scanner (t2), and at the 

very end of the post-fMRI testing (t3). To test for drug effects on these variables, their scores at later 

time points (t1, t2, t3) were first subtracted by the baseline score (t0) for each drug condition. Each of 

these difference scores (t1-t0, t2-t0, t3-t0) was then used as dependent variable in a univariate repeated 

measures ANOVA with the factor drug. For each control variable that showed a significant drug effect 

(p < .05) in this ANOVA, three paired t-tests were conducted to test for significant mean differences 

between each pair of drug conditions, i.e. placebo vs. L-dopa, placebo vs. haloperidol, and L-dopa vs. 

haloperidol. 

For completeness, also reaction times in the bandit task were tested for DA drug effects. For each 

subject, the mean and median reaction time was calculated across all 300 trials per drug condition, 

and both measures were used as a dependent variable in a univariate repeated measures ANOVA with 

the factor drug. 

 

2.9.4 Drug guesses 

Drug guesses from each subject at the end of each fMRI session were analzyed in order to test if 

participants were able to guess the drug they received above chance level. Since subjects were 

instructed to make their drug guesses on each fMRI session independently of the other sessions (see 

2.6), all drug guesses were assumed to be independently of each other for the analysis. First, subjects’ 

drug guesses were classified as correct or incorrect and it was tested whether the proportion of correct 

guesses over all subjects and drug sessions exceeded the one expected by chance alone (which was 

1/3, since there were three guessing options of which one was correct). Second, the number of correct 

guesses per subject was counted (0, 1, 2, or 3) and it was tested whether its frequency distribution 

over all subjects differed from the one expected for random guessing using a chi-squared test (with 

Monte Carlo approximation). Third, the frequency of each drug guess (“placebo”, “L-dopa”, or 

“haloperidol”) over all subjects was counted separately for each drug condition and it was tested 

whether these frequencies differed between the three drug conditions, also using a chi-squared test. 

Finally, it was analyzed if subjects’ confidence ratings for drug guesses differed between the three drug 

conditions using a repeated measures ANOVA with the factor drug, or if they differed between correct 

and incorrect guesses using a two-sample t-test. Note that only 29 subjects were included in the 

repeated measures ANOVA due to missing confidence ratings for two subjects. For the same reason, 

the two-sample t-test only included confidence ratings for 30 correct vs. 61 incorrect guesses. 
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3 Pilot study 1 

The aim of this pilot study was to assess the temporal stability (retest reliability) and interindividual 

variability of different potential proxy measures for DA, following the rationale that a reliable predictor 

of baseline DA function should be relatively stable over time and variable between subjects. Tested DA 

proxies included the spontaneous eye blink rate (sEBR) and various measures of working memory 

capacity (WMC). Based on the results of this pilot study, some of the tested measures were then 

selected to be used as DA proxies in the main study. 

 

3.1 Study-specific methods 

3.1.1 Participants 

In total, 16 healthy male subjects participated in the study (aged 19 to 32 years, M = 24.31, SD = 3.42), 

of which 15 completed both experimental sessions. One subject dropped out after the first session and 

was not included in the analysis. Furthermore, one subject scored zero in one of the tasks (Digit Span 

Backward) due to a misunderstanding of the task instruction and was excluded from the data  

analysis of the Digit Span Backward task. Participants were recruited via an online job portal 

(www.stellenwerk.de) and were screened for the following inclusion criteria: male, age 18-35 years, 

right-handed, fluent German in speaking and writing, normal or corrected to normal vision, no hearing 

impairments, no major past or present psychological, neurological, or physical disorders, no regular 

consumption of prescription drugs. Before participating in the study, all subjects provided informed 

written consent, and study procedures were approved by the local ethics committee (Hamburg 

Medical Council). Participants were paid after the experiment with 10 € per hour, which resulted in an 

average total payout of about 60 € per subject. 

 

3.1.2 General procedure 

To study the retest reliability of the sEBR and different WMC tasks, each subject performed a testing 

session (see 3.1.3) similar to the baseline screening of the main study on two separate days. The two 

sessions of each subject were scheduled exactly one week apart and at the same time of day. Sessions 

started between 10 am and 4 pm and lasted about 2.5 hours on average, separated by small breaks. 

Sessions were conducted in groups of four in the same experimental room, each subject sitting in front 

of a computer screen, separated by partition walls. An experimenter was present in the room at all 

times. 

 

3.1.3 Testing session 

For the most part, the testing session equaled the baseline screening of the main study as described 

in section 2.3. It started with a measurement of the sEBR using EMG (ca. 15 min), followed by a 

computerized testing of WMC and discounting behavior (ca. 100 min), and ended with several 
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questionnaires (ca. 30 min). Note that the discounting tasks and questionnaires were conducted for 

another project and were not further analyzed in this study. The computerized testing in both sessions 

comprised eight tasks in random order. These included the six tasks already described for the baseline 

screening of the main study (see 2.3.2), plus two additional WMC tasks (Symmetry Span Task and Block 

Span Task), which are described in the following. For each task, the sequence of items to be recalled 

was different in the second (retest) session than in the first session. 

The Symmetry Span Task was adopted from Foster et al. (2015) and belongs to the class of complex 

span tasks for measuring WMC (see Kane et al., 2004; Redick et al., 2012; Unsworth et al., 2009). The 

general procedure of this task was very similar to the Rotation Span Task and Operation Span Task 

described in section 2.3.2, except for the type of stimuli involved. In this task, subjects were required 

to memorize a sequence of square positions (memory component) while being distracted by a 

symmetry task (distraction component). The memory component of the task is described first. In each 

trial, a series of two to five small red squares was presented on screen, which were randomly 

positioned within a large 4x4 grid. Each red square appeared on screen for 650 ms, followed by a blank 

screen for 250 ms. Thereafter, subjects had to recall the positions of all red squares of the preceding 

series in the same order as they were presented. For recall, the 4x4 grid was displayed on screen and 

subjects were asked to click on the positions in which the red squares appeared in the preceding series 

in the correct order. Participants had no response time limit for recall. At the end of each trial, feedback 

about the number of correctly recalled red squares was presented on screen. In addition to this 

memory component, each trial also contained a distractor component. Before the presentation of each 

red square within a trial, subjects had to solve an item of a symmetry task. Each trial therefore 

contained as many symmetry task items as red squares (i.e. two to five), both being presented 

intermixed within one trial. In each item of the distractor task, a black-and-white picture appeared on 

screen, which was either left-to-right symmetric or not. Subjects were required to indicate as quickly 

as possible if the picture was left-to-right symmetric or not. About half of all pictures in the task were 

left-to-right symmetric. The response time limit for each subject was determined from their mean 

reaction time plus 2.5 standard deviations in the preceding practice block of the symmetry task (see 

below). If participants exceeded this limit, the picture disappeared and the item was counted as an 

error. After each item of the symmetry task, a blank screen appeared for 200 ms before the next red 

square was shown. At the end of each trial, subjects received feedback about their performance in the 

symmetry task (percent accuracy), averaged over all preceding trials. Participants were instructed to 

always maintain accuracy levels in the symmetry task above 85 %. In total, the Symmetry Span Task 

contained 12 trials, including three trials of each set size (two to five) in random order. Thus, 42 red 

squares and 42 pictures were presented in total. At the end of the task, two different memory scores 

were calculated: the partial score and the absolute score. The partial score equals the number of 

correctly recalled red squares out of all 42 presented red squares. The absolute score only includes the 

number of correctly recalled red squares within sets in which all red squares were recalled correctly. 
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In preparation for the task, participants completed three practice blocks. In the first practice block, 

only the memory component of the task was trained for four trials (two trials of set size two and two 

trials of set size three). In the second practice block, only the distractor component of the task was 

trained for 15 trials. After this block, the mean reaction time plus 2.5 standard deviations was 

calculated for each subject to determine the response time limit for this subject in the distractor 

component of the final task (see above). The third practice block trained the final task with both its 

memory and distractor component and contained three trials of set size two. 

The Block Span Task was adapted from the Corsi block-tapping test (Corsi, 1972) and contained a 

forward and a backward version. In the original task, subjects are presented with a board with nine 

blocks in different spatial locations. The experimenter taps sequentially on some of the blocks and 

subjects need to recall the locations of the tapped blocks in the correct order (forward version) or in 

the reverse order (backward version). Note that the original task by Corsi (1972) only included the 

forward version, whereas the backward version was introduced later (see Berch, Krikorian, & Huha, 

1998; Kessels, van den Berg, Ruis, & Brands, 2008). For the baseline screening, the task was adapted 

for PC in order to test multiple participants simultaneously. Here, the blocks were displayed on the 

screen in white color and were sequentially highlighted in blue color instead of being tapped by an 

experimenter. For recall, subjects clicked sequentially on the blocks rather than tapping them on the 

board. Except for these changes, the computerized version followed exactly the same procedure as 

the Corsi block-tapping test (described by Kessels et al., 2000, 2008). In the forward version, set sizes 

(i.e. sequence lengths) ranged from two to nine blocks and in the backward version from two to eight 

blocks. Both versions included two trials per set size, whereby set sizes were presented in ascending 

order. Each trial started with the presentation of a block sequence with a speed of one block per 

second. Thereafter, the German word “Erinnern” (recall) appeared on screen to prompt subjects to 

click on the blocks they recalled in the correct or reverse order, depending on the task version. There 

was no time limit for recall and subjects received no feedback about their memory performance. 

Participants needed to recall at least one trial per set size correctly to proceed to the next larger set 

size. The task terminated if both trials of the same set size were not recalled correctly. Thus, the 

number of trials depended on the subject’s performance with a maximum of 16 trials for the forward 

version and 14 trials for the backward version. At the end of the task, two different types of scores 

were calculated for each version: the span score and the total score. The span score is the size of the 

longest sequence recalled correctly in the normal order (span score forward) or in the reverse order 

(span score backward). The total score equals the total number of correct trials, calculated separately 

for the forward version (total score forward) and for the backward version (total score backward). The 

maximum achievable scores were nine for the span score forward, eight for the span score backward, 

16 for the total score forward, and 14 for the total score backward. In preparation for the task, 

participants performed two practice trials (of set size two and three) for each version, in which they 

were given feedback about the correctness of their answer. 
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3.1.4 Data analysis 

To quantify the one-week retest reliability of each instrument, the Pearson correlation coefficient was 

calculated between the task scores from both sessions over all subjects. Furthermore, the coefficient 

of variation (CV) was calculated for each measure on each session to compare the relative 

interindividual variability between the different instruments. The CV, also referred to as relative 

standard deviation, is defined as the standard deviation divided by the mean and is usually expressed 

in percent. 

 

3.2 Study-specific results and conclusion 

This pilot study examined the retest reliability and interindividual variability of different potential DA 

proxy measures, including the sEBR and different WMC task scores. Each variable was measured twice 

within the same sample (n=15) with a time interval of one week. The scores of both sessions are plotted 

against each other in Figure 6. For each measure, the retest reliability was quantified by the Pearson 

correlation coefficient and the relative interindividual variability by the CV, both shown in Table 2 

(ordered by descending retest reliability). The Pearson correlation coefficient was significant for nearly 

all of the tested measures and ranged between .39 and .86. On the basis of these results, the five 

instruments with highest retest reliability were selected to be included in the baseline screening of the 

main study: the sEBR, the Rotation and Operation Span Task, the Listening Span Task, and the Digit 

Span Task. This selection also took into account that the total execution time of these tasks should not 

exceed 90 min to limit mental fatigue effects on cognitive performance (see Boksem, Meijman, & 

Lorist, 2005; Lorist, Boksem, & Ridderinkhof, 2005). Note that while the Digit Span Task was included 

with both its forward and backward version in the baseline screening of main study, only the latter 

may be considered a WMC measure due to its dual-task nature, whereas the forward version is rather 

a measure of simple short-term memory (see 1.2.5; e.g. Conway et al., 2005; Kail & Hall, 2001; Kane et 

al., 2004; Oberauer et al., 2000; Unsworth & Engle, 2007). Hence, only the Digit Span Backward was 

planned to be used as a DA proxy measure in the main study.  

As some of the WMC tasks offered two alternative types of scoring, only the scoring method with the 

better retest reliability and CV was selected to be used in the main study (see Table 2). For the Digit 

Span Task, the total score was selected over the span score, since it showed a higher retest reliability 

and CV for both the forward and backward version. For the Rotation and Operation Span Task, the 

absolute score was selected over the partial score, since it showed considerably higher interindividual 

variability (CV) for both tasks and higher retest reliability for the Rotation Span Task, whereas retest 

reliabilities for the Operation Span Task were comparable between both scoring methods. Note, 

however, that these latter results diverge from findings of previous studies, which report higher retest 

reliabilities for partial over absolute scores in complex span tasks (see Redick et al., 2012).  
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Figure 6. Scorings for all tested dopamine (DA) proxy measures. Each plot shows the scorings of both sessions plotted 

against each other, as well as a diagonal (dashed) line indicating equal values in both sessions. 

 

Finally, it should be kept in mind that due to the small sample size, this pilot study only allowed for a 

rough estimation of the retest reliability and interindividual variability of the tested instruments. 

However, the retest reliabilities measured here are in line with the results of other studies with larger 

sample sizes, which also report values around .80 for the Digit Span Backward (Waters & Caplan, 2003), 

the Operation Span Task (Redick et al., 2012), and the sEBR (Barkley-Levenson & Galván, 2017; Dang 

et al., 2017; Kruis, Slagter, Bachhuber, Davidson, & Lutz, 2016; see also Jongkees & Colzato, 2016). 

Additionally, it should be considered that only some of these measures (e.g. the sEBR, Listening Span 
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Task, and Digit Span Task) have been used as DA proxies in previous studies (see 1.2.5). While it could 

be speculated that also the remaining WMC tasks tested in this pilot study should principally reflect 

central DA function, a direct link between these measures and central DA function has not yet been 

established by previous research. Note also that based on the results of the main study, a further 

discussion on the validity of these measures as proxies for DA function is provided in section 6.4. 

In conclusion, five measures were selected to be used as DA proxies in the main study: the sEBR, the 

Rotation and Operation Span Task (absolute scores), the Listening Span Task (span score), and the Digit 

Span Backward (total score). All these measures showed adequate retest reliability (around .80; 

Carretero-Dios & Pérez, 2007; Nunnally & Bernstein, 1994) and mostly high interindividual variability. 

 

Table 2. Retest reliabilities and coefficients of variation (CV) of all tested DA proxies. 

Task (scoring method)  
Retest  

reliability  

p value  

(Pearson) 

   CV (%) 

  day1      day2 

Rotation Span (absolute score) * .86 < .001 56 59 

Listening Span (span score) * .84 < .001 8 8 

Operation Span (partial score) .83 < .001 17 22 

Operation Span (absolute score) * .81 < .001 34 43 

Spontaneous eye blink rate (per min) * .78 < .001 44 54 

Digit Span Backward (total score) * .78 < .001 19 26 

Rotation Span (partial score) .77 < .001 31 34 

Block Span Forward (span score) .74 .002 24 24 

Digit Span Backward (span score)  .72 .004 15 23 

Block Span Forward (total score) .66 .007 27 26 

Digit Span Forward (total score) .64 .011 17 23 

Block Span Backward (total score) .58 .024 17 23 

Symmetry Span (absolute score) .54 .039 35 39 

Digit Span Forward (span score) .53 .041 14 16 

Symmetry Span (partial score) .51 .052 20 21 

Block Span Backward (span score) .39 .150 14 15 

Note. * indicates measures that were selected as dopamine (DA) proxies for the main study. 
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4 Pilot study 2 

The aim of this pilot study was to test the bandit task prior to its use in the main study and to compare 

different approaches for quantitative model comparison based on these data. Furthermore, some data 

of this pilot study were also included in the inverted-U analysis (see 2.9.2), which are hence reported 

and discussed later in the respective sections of the main study (see 5.5.1 and 6.4). 

 

4.1 Study-specific methods 

4.1.1 Participants 

In total, 16 healthy male subjects participated in the study (aged 20 to 31 years, M = 24.81, SD = 2.81). 

Participants were recruited via an online job portal (www.stellenwerk.de) and were screened for the 

following inclusion criteria: male, age 18-35 years, right-handed, fluent German in speaking and 

writing, normal or corrected to normal vision, no hearing impairments, no major past or present 

psychological, neurological, or physical disorders, no regular consumption of prescription drugs. Before 

participating in the study, all subjects provided informed written consent, and study procedures were 

approved by the local ethics committee (Hamburg Medical Council). Participants were paid after the 

experiment with 10 € per hour plus variable monetary rewards from the bandit task (5-15 €), resulting 

in total payouts between 40 and 50 € per subject.  

 

4.1.2 General procedure 

Each subject was tested in one session, which started with the baseline screening as described for the 

main study (see 2.3), followed by the restless four-armed bandit task (see 2.4). The bandit task 

followed the same procedure as in the main study, except that it was performed outside the fMRI 

scanner in this pilot study. Sessions started between 9 am and 4 pm and lasted between 3.0 to 3.5 

hours, separated by small breaks. Sessions were conducted in groups of two or four in the same 

experimental room, each subject sitting in front of a computer screen, separated by partition walls. An 

experimenter was present in the room at all times. 

 

4.1.3 Cognitive modeling 

For the most part, the cognitive modeling in this pilot study equaled the one in the main study (see 

2.7.2). In short, choice behavior in the bandit task was modeled using six different cognitive models in 

a hierarchical Bayesian modeling approach. The six cognitive models were the same as in the main 

study, which resulted from the combination of two different learning rules (Delta rule, Bayesian 

learner) with three different choice rules (SM, SM+E, SM+EP). Bayesian modeling was performed with 

the software Stan (version 2.17.0; Stan Development Team, 2017b), operating from within the 

statistical package R (version 3.4.3; R Core Team, 2017) with the interface rstan (version 2.17.2; Stan 

Development Team, 2017a), using the same settings for sampling as in the main study (see 2.7.2). 
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Following parameter estimation, the cognitive models were compared in terms of their predictive 

accuracy using leave-one-out (LOO) cross-validation. 

However, the cognitive modeling performed here differed from the one in the main study in two 

points. First, for the model comparison, exact LOO measures were calculated for each model in 

addition to the LOO estimates obtained by the R package loo (Vehtari et al., 2017). The general 

procedure of calculating exact LOO measures was already described in section 2.7.2. In short, for each 

subject in the data set (n=16), the model was fitted to a reduced data set excluding that subject 

(training set). Then, the predictive accuracy of the model was calculated for the left-out subject (testing 

set), using the log likelihood function evaluated at the sampled posterior parameter values for that 

subject, which were obtained from fitting the model to the testing set. To obtain subject-specific 

posteriors for the left-out subject in these model fits, these fits included one additional subject without 

any data points, for which posterior samples were drawn. Without any data points included for this 

additional subject and with uninformative priors, this subject’s posterior samples were only informed 

by the posterior samples for the group-level parameters of the hierarchical model (ΜK and ΛK for any 

parameter f, see Figure 5), which are in turn informed by the data in the training set. Finally, the 

averaged log likelihoods (i.e. averaged across posterior samples) for all subjects were then summed to 

yield the overall LOO measure for each cognitive model (as described by Vehtari et al., 2017). 

Second, in addition to the exact and estimated LOO measures, an alternative measure of predictive 

accuracy was used for the model comparison in this pilot study, which was calculated over left-out 

trials and not over left-out subjects. In the following, this measure is denoted as CVtrials (for cross-

validation over trials). For the CVtrials measure, the choice data of each subject were divided into a 

training set, containing the first 240 trials of the bandit task, and a testing set, containing the last 60 

trials. Each cognitive model was then fitted to the training set to obtain subject-specific parameter 

posteriors based only on the first 240 trials. Next, it was examined how well each of the fitted models 

predicted choices in the last 60 trials, using the log likelihood function evaluated at the sampled 

posterior parameter values obtained from the training set, summed over all 60 trials of the testing set. 

Finally, the averaged log likelihoods for all subjects were then summed to yield the overall CVtrials 

measure for each cognitive model (see Vehtari et al., 2017). 

After model comparison, the winner model Bayes-SM+EP was fitted again to the data of this pilot 

study, but this time treating the random walk parameters �<�
�, 8;,  9;, =̂�

@AB, and �<�
@AB

 as free parameters 

in order to use their posterior estimates (medians) in the main study (see 2.7.2). Each of these 

parameters was estimated once over all 16 subjects, using uniform priors within the following limits: 

[0,  ∞] for �<�
�; [0,  1] for 8;; [0,  100] for 9;; [0,  100] for =̂�

@AB; [0,  ∞] for �<�
@AB. 
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4.1.4 Data analysis 

Several data from this pilot study, including data from the baseline screening and the bandit task, were 

analyzed in combination with data from the main study to increase the sample size for these analyses. 

Procedures for these combined data analyses are described in the respective methods sections of the 

main study, i.e. section 2.7.2 for a correlation analysis between the model-based choice parameters 

and the percentage of exploratory trials, and section 2.9.2 for the inverted-U analysis. 

 

4.2 Study-specific results and conclusion 

In this pilot study, six cognitive models of learning and decision making were compared using different 

cross-validation approaches. First, all models were fitted to the data (n=16) in a hierarchical Bayesian 

modeling framework and then compared using three measures of predictive accuracy: an exact leave-

one-out measure (LOO exact), an estimated leave-one-out measure using the R package loo (LOO 

estimate), and a cross-validation measure calculated over left-out trials instead of left-out subjects 

(CVtrials). The results of all predictive accuracy measures for all six cognitive models are shown in Table 

3 and plotted in Figure 7. Note that Figure 7 shows predictive accuracies per subject and trial to allow 

for a better visual comparison of the three measures, which were compounded over different numbers 

of trials. Notably, all three approaches show the same winner model (Bayes-SM+EP), despite slight 

variations in the order of the remaining five models. Since LOO estimates yielded comparable results 

to the alternative measures, but are much faster to compute, they were subsequently selected as the 

measure for model comparison in the main study. Since the model comparison results of this pilot 

study largely equaled those of the main study, a more detailed discussion of these findings is provided 

in the respective section of the main study (see 6.5). 

 

Table 3. Results of the cognitive model comparison in pilot study 2.  

cognitive model 
LOO  

estimate 
order 

 LOO 

exact 
order 

 
CVtrials order 

Delta-SM -3559.8 6  -3576.5 6  -778.2 5 

Bayes-SM -3435.9 5  -3453.7 4  -711.0 3 

Delta-SM+E -3431.8 4  -3468.9 5  -803.3 6 

Bayes-SM+E -3334.7 3  -3368.2 3  -707.3 2 

Delta-SM+EP -3235.2 2  -3350.6 2  -714.7 4 

Bayes-SM+EP -3193.8 1  -3243.0 1  -670.3 1 

Note. Three different cross-validation measures were calculated: two leave-one-out (LOO) measures over subjects, either calculated 

exactly (LOO exact) or estimated with the R package loo (LOO estimate), and one cross-validation measure over trials (CVtrials).  

SM: softmax; SM+E: softmax with exploration bonus; SM+EP: softmax with exploration bonus and perseveration bonus.  
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Figure 7. Results of the cognitive model comparison in pilot study 2. Three different cross-validation measures were 

calculated: two leave-one-out (LOO) measures over subjects, either calculated exactly (LOO exact) or estimated with 

the R package loo (LOO estimate), and one cross-validation measure over trials (CVtrials). All cross-validation measures 

were devided by the total number of data points in the sample (n*t with n=16 subjects, t=300 trials for LOO, and t=60 

trials for CVtrials) for better comparability across the different approaches. Note that such linear transformations do not 

alter the relative order of the cross-validation measures for the six cognitive models, which is of main relevance for the 

model comparison. SM: softmax; SM+E: softmax with exploration bonus; SM+EP: softmax with exploration bonus and 

perseveration bonus. 
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5 Main results 

5.1 Cognitive model comparison 

After the initial model comparison in pilot study 2 (see 4.2), the six cognitive models were compared 

again based on the larger sample of the main study. First, all cognitive models were fitted separately 

to each drug condition using hierarchical Bayesian modeling. Then, LOO estimates were calculated as 

a measure of predictive accuracy, once separately for each drug condition and once compounded over 

all three drug conditions. LOO estimates for all six cognitive models are shown in Table 4 and plotted 

in Figure 8. Note that Figure 8 shows predictive accuracies per subject and trial to allow for a better 

visual comparison of all measures (and to the results of pilot study 2), which were compounded over 

different numbers of trials. Altogether, the model comparison over drugs and the three drug-specific 

model comparisons consistently showed the same winner model, Bayes-SM+EP (as in pilot study 2; see 

4.2), as well as the same overall order of all six cognitive models. 

Of particular interest is the finding that the novel Bayes-SM+EP model with an extra perseveration 

bonus parameter outperformed the Bayes-SM+E model, which does not account for perseveration. It 

has been argued in the literature that perseveration, if not explicitly accounted for in the cognitive 

model, might be captured by the exploration bonus parameter and interpreted as an uncertainty-

avoiding choice bias (as discussed in section 6.5.2; see Badre et al., 2012; Payzan-LeNestour & 

Bossaerts, 2012). Hence, one question of interest was how estimates for the exploration bonus 

parameter (
) were affected by introducing the extra perseveration bonus parameter (e) into the 

model. Therefore, 
 parameter estimates for the placebo condition were compared between the 

winner model Bayes-SM+EP (with perseveration bonus) and the Bayes-SM+E model (without 

perseveration bonus). The comparison showed that subject-level 
 medians correlated highly 

between both models (r29 = .90, p < .001), but were significantly higher for the Bayes-SM+EP than for 

the Bayes-SM+E model (mean difference = 0.79, paired t-test: t30 = 7.97, p < .001). The number of 

subjects who showed a negative 
 median, reflecting a discouragement rather than an encouragement 

of uncertainty-driven exploration, was 13 of 31 for the Bayes-SM+E model, but only 6 of 31 for the 

Bayes-SM+EP model. Also, the corresponding group-level mean parameter ΜY was considerably 

higher for the Bayes-SM+EP model (ΜYmedian = 0.95) than for the Bayes-SM+E model (ΜY 

median = 0.16). 

After model selection, the winner model Bayes-SM+EP was fitted again to the data, but this time the 

five random walk parameters of the Bayesian learner rule were fixed to their posterior medians 

estimated over all subjects of pilot study 2 (see 2.7.2 and Table A1 in the appendix) instead of fixing 

them arbitrarily to the true values of these parameters. Note that fixing the random walk parameters 

to their true values was done only initially in order to include all six models in the model comparison, 

since some of these models did not converge with free random walk parameters. Predictive accuracy 

of this new model fit proved to be even better (smaller absolute LOO values) than for the previous 
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model fit, as shown in Table 4. Thus, this improved Bayes-SM+EP model fit, in which the random walk 

parameters were fixed to their posterior medians from pilot study 2, was selected to be used for all 

further model-based analyses. 

 

Table 4. Results of the cognitive model comparison in the main study.  

cognitive 

model 

LOO  

over drugs 

LOO 

placebo 

LOO 

L-dopa 

LOO 

haloperidol 

order  

(all) 

Delta-SM -17698.7 -6088.1 -5724.7 -5897.3 6 

Bayes-SM -17428.5 -6037.7 -5590.4 -5807.4 5 

Delta-SM+E -17220.2 -5932.7 -5513.8 -5798.0 4 

Bayes-SM+E -16942.9 -5891.2 -5386.5 -5686.5 3 

Delta-SM+EP -16724.4 -5782.5 -5349.8 -5610.9 2 

Bayes-SM+EP -16269.9 -5652.2 -5182.7 -5465.4 1 

Bayes-SM+EP a -15546.9 -5356.9 -4987.7 -5232.7 - 

Note. LOO estimates were calculated once over all drug conditions (column: over drugs) and once separately for each drug condition 

(columns: placebo, L-dopa, haloperidol). SM: softmax; SM+E: softmax with exploration bonus; SM+EP: softmax with exploration 

bonus and perseveration bonus. 

a Random walk parameters for this model fit were fixed to their posterior medians from pilot study 2, not to their true values. 

 

 

Figure 8. Results of the cognitive model comparison in the main study. Leave-one-out (LOO) estimates were calculated 

once over all drug conditions (n=31 with t=3*300) and once separately for each drug condition (n=31 with t=300). All 

LOO estimates were devided by the total number of data points in the sample (n*t) for better comparability across the 

different approaches. Note that such linear transformations do not alter the relative order of LOO estimates for the six 

cognitive models, which is of main relevance for the model comparison. SM: softmax; SM+E: softmax with exploration 

bonus; SM+EP: softmax with exploration bonus and perseveration bonus. 
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5.2 Model-based behavioral results 

5.2.1 Bayes-SM+EP model characterization 

Since all model comparison approaches of the main study and pilot study 2 consistently resulted in the 

same winner model, Bayes-SM+EP, this model was selected for further analyses of the behavioral and 

fMRI data. To facilitate the understanding and interpretation of these model-based analyses and their 

results, some characteristics of the Bayes-SM+EP model should be considered first. Therefore, the 

most relevant trial-by-trial quantities of this model are plotted in Figure 9, derived from the placebo 

data of one representative subject (with the following posterior medians: 	 = 0.29, 
 = 1.34, and 

e = 4.11). According to this model, subjects’ choices are stochastically dependent on three factors: the 

expected reward value (=̂@AB; Figure 9a), the exploration bonus (
�<@AB; Figure 9b), and the 

perseveration bonus (�e; Figure 9c) of each bandit. Based on these quantities, the model predicts the 

choice probability for each of the four bandits on each trial (�; Figure 9d). Crucially, the size of the 
 

and e parameter determine how these three factors are weighted for the choice prediction, i.e. how 

strongly choices are driven by uncertainty and perseveration relative to the bandits’ expected reward 

values. Another important quantity of this model is the reward prediction error (1; Figure 9e), which 

is the difference between the received and expected reward on a given trial (2 − =̂@AB; both shown in 

Figure 9a) and which is used to adjust value predictions for the selected bandit on the following trial. 

Note also how the expected values of all unchosen bandits drift from trial to trial towards a certain 

value (here: 45.99), a behavior that is determined by the random walk parameters 8; (decay) and 9; 

(decay center) of the Bayes-SM+EP model. This decay may capture a subject’s belief that extreme 

reward values drift back towards a central (or the initial) value, but also a gradual forgetting of 

expected reward values over time. Finally, another quantity, which was specifically of interest for the 

model-based fMRI analysis, is the summed uncertainty of all four bandits (Σ�<@AB; Figure 9f), which was 

employed as a measure for the subject’s overall uncertainty in a given trial.  

Furthermore, it is important to note that these trial-by-trial quantities can be used to classify subjects’ 

choices into different choice types. According to Daw et al. (2006), choices can be classified in a binary 

fashion as either exploitations, i.e. choosing the bandit with the highest expected value, or 

explorations, i.e. choosing one of the other bandits. For demonstration, all exploration trials (according 

to this binary classification) are marked by a black line in the lower half of Figure 9a. However, this 

classification defines exploration rather broadly as all choices that are not value-driven, but does not 

further distinguish between different types of exploration (i.e. directed vs. random exploration). 

Therefore, a second classification scheme was used here, which divides choices into exploitations, 

directed explorations, and random explorations. According to this trinary classification, exploitations 

are all trials in which the bandit with the highest expected value is chosen, or the bandit with the 

highest sum of expected value plus perseveration bonus. All the remaining (i.e. non-exploitative) trials 

are classified as either directed explorations, i.e. trials in which the bandit with the highest exploration 

bonus was chosen, or random explorations, i.e. trials in which not the bandit with the highest 
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exploration bonus was chosen. Note, however, that according to this trinary classification, “random 

explorations” can also be driven partly (but not solely) by a bandit’s expected value or exploration 

bonus. 
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Figure 9. Trial-by-trial variables of the Bayes-SM+EP model. Trial-by-trial estimates were derived from the placebo data 

of one representative subject with the following posterior medians: 	 = 0.29, 
 = 1.34, and e = 4.11. (a) Expected value 

(=̂@AB) and actual payoff (2). Each colored line shows the expected value of one bandit for all trials, whereas colored 

dots mark the size of the actual payoffs on all trials. Black lines in the lower part of the plot mark exploratory trials 

according to the binary classification by Daw et al. (2006). (b) Exploration bonus (
�<@AB) and uncertainty (�<@AB). Each 

colored line represents one bandit. Note that the exploration bonus is merely the uncertainty scaled by the 
 

parameter in order to express the bonus in value units. (c) Perseveration bonus (�e). This bonus is a fixed value added 

only to the bandit chosen in the previous trial, shown here for one bandit. (d) Choice probability (�). Each colored line 

represents one bandit. (e) Reward prediction error (1). (f) Overall uncertainty (Σ�<@AB). This plot shows the summed 

uncertainty (�<@AB) over all four bandits, which was calculated as a measure of the subject’s overall uncertainty in a 

given trial.   

Based on these classifications, it was evaluated how these different choice types related to the three 

choice parameters (	, 
, e) of the Bayes-SM+EP model. Therefore, the percentage of overall 

explorations (according to the binary classification) as well as the percentage of random and directed 

explorations (according to the trinary classification) were calculated for each subject over all trials per 

session, and Pearson correlations between these percentages and the subject-specific posterior 
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medians of each choice parameter were computed (see Table 5). Note that data from the placebo 

condition (n=31) and pilot study 2 (n=16) were combined to increase the sample size for this 

correlation analysis (n=47). When using the binary classification, the percentage of explorations per 

subject correlated negatively with the 	 parameter, but positively with the 
 parameter. However, 

when further subdividing exploratory choices according to the trinary classification, the percentage of 

directed explorations showed a significant positive correlation only with the 
 parameter, while the 

percentage of random explorations showed a significant negative correlation only with the 	 

parameter, consistent with the idea that both parameters should reflect different types of exploration 

(see 1.1.3 and 2.7.2). 

 

Table 5. Correlations between different exploration types and model-based choice parameters. 

% explorations    	 
 e 

overall -.65*** .30*      -.18 

directed -.28   .64***  -.09 

random -.68***   -.09   -.22 

Note. Reported are Pearson correlation coefficients between the percentage of exploratory trials per subject 

and the subject-level parameter medians of the Bayes-SM+EP model. Note that overall explorations were 

defined according to the binary choice classification, while directed and random explorations were defined 

according to the trinary choice classification. 	: softmax parameter; 
: exploration bonus parameter;  

e: perseveration bonus parameter. 

* p < .05. *** p < .001. 

 

5.2.2 Drug effect analysis on group-level parameters 

Dopaminergic drug effects were first analyzed for the group-level parameters of the Bayes-SM+EP 

model, which are the mean (Μ) and standard deviation (Λ) for each of the three choice parameters  

(	, 
, e). Posterior densities for these six group-level parameters were estimated separately for each 

drug condition and are plotted in Figure 10. Each plot shows the posterior median (vertical black line) 

as well as the 80 % central interval (i.e. from the 10th to 90th percentile; blue area) and 95 % central 

interval (i.e. from the 2.5th to 97.5th percentile; black contours) of the posterior distribution. These 

plots show a clear reduction of the group-level mean parameter for 
 (ΜY) under L-dopa compared 

to placebo and haloperidol, as well as a reduction of the group-level standard deviation for 
 �ΛY� 

under haloperidol compared to placebo and L-dopa. For better visualization of these drug effects, the 

pairwise drug differences of the ΜY and ΛY posterior densities are plotted in Figure 11. Additionally, 

Table 6 shows for each of these posterior differences the percentage of samples with values above 

zero and the 90 % HDI. Notably, for the ΜY parameter, 97.4 % of the posterior difference for the 

comparison placebo minus L-dopa lay above zero, while 98.3 % of the posterior difference for the 

comparison L-dopa minus haloperidol lay below zero. For both of these ΜY posterior differences, zero 

was not included in the 90 % HDI. 
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Figure 10. Group-level parameter estimates of the Bayes-SM+EP model. Shown are posterior distributions of the group-

level mean (Μ) and standard deviation (Λ) for all choice parameters (	, 
, e� of the Bayes-SM+EP model, separately 

for each drug condition. For each posterior distribution, the plot shows the median (vertical black line), the 80 % central 

interval (blue area), and the 95 % central interval (black contours). 	: softmax parameter; 
: exploration bonus 

parameter; e: perseveration bonus parameter. 
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Figure 11. Drug effects on the exploration bonus parameter (
) on the group level. Shown are posterior drug 

differences of the group-level mean (Μ) and standard deviation (Λ) for the 
 parameter of the Bayes-SM+EP model. 

For each posterior distribution, the plot shows the median (vertical black line), the 80 % central interval (grey area), 

and the 95 % central interval (black contours). 
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Table 6. Drug effects on the exploration bonus parameter (
) on the group level. 

  ΜY  ΛY 

  % above 0 90 % HDI  % above 0 90 % HDI 

placebo - L-dopa  97.5 [ 0.05,  0.69]  47.5 [-0.18, 0.16] 

placebo - haloperidol  49.3 [-0.30,  0.27]  90.0 [-0.04, 0.29] 

L-dopa - haloperidol  1.7 [-0.70, -0.10]  90.8 [-0.02, 0.31] 

Note. Results refer to the posterior drug differences of the group-level mean (ΜY) and standard deviation (ΛY) for the 
 parameter 

of the Bayes-SM+EP model. For each posterior difference, the table shows the percentage of samples with values above zero 

(column: % above 0) and the 90 % highest density interval (column: 90 % HDI). 

 

5.2.3 Drug effect analysis on subject-level parameters 

Next, dopaminergic drug effects were analyzed for the subject-level choice parameters (	, 
, e) of the 

Bayes-SM+EP model. Posterior densities for these parameters were estimated separately for each drug 

condition in a hierarchical design (see below for results on non-hierarchical designs) and are plotted in 

Figure 12 for the 
 parameter and in Figure A1 and A3 of the appendix for the 	 and e parameter, 

respectively. Note that for each parameter, posterior densities are ordered ascendingly by their 

median in the placebo condition to better visualize their relative changes in the L-dopa and haloperidol 

condition. In addition, pairwise drug differences of these posterior densities are plotted in Figure 13 

for the 
 parameter and in Figure A2 and A4 of the appendix for the 	 and e parameter, respectively. 

Results for the 
 parameter are reported first. From visual inspection of Figure 12 and 13, an overall 

trend towards a reduction of 
 under L-dopa compared to placebo and haloperidol was observed, 

although some of the subjects also showed the opposite or no clear drug effect under L-dopa. Such an 

overall trend could not be observed under haloperidol, although visual inspection pointed towards the 

pattern that haloperidol increased 
 for subjects with a relatively low 
 value under placebo and 

decreased it for subjects with a relatively high 
 value under placebo. In accordance with this, it was 

found that haloperidol reduced the variability of the subject-level 
 medians (range = -0.43 to 2.33; 

SD = 0.64) compared to placebo (range = -0.95 to 2.48; SD = 0.85) and L-dopa (range = -1.77 to 2.00; 

SD = 0.85). For the 	 and e parameter, visual inspection of the respective plots (Figure A1 to A4 in the 

appendix) showed no systematic trend or pattern between drug conditions over all subjects, although 

drug effects of different magnitude and direction were present on the individual level. 

To test for drug effects on the subject-level parameters, a repeated measures ANOVA with the factor 

drug and with posterior medians as the dependent variable was performed for each of the three choice 

parameters, followed by paired t-tests. Results of the ANOVA and t-tests are summarized in Table 7. 

The ANOVA showed a significant drug effect only for the 
 parameter (F2,60 = 4.54, p = .015), but not for 

the 	 and e parameter. The paired t-tests revealed a significant difference of the 
 parameter for the 

comparisons placebo vs. L-dopa (t30 = 2.81, p = .009) and L-dopa vs. haloperidol (t30 = -2.34, p = .026), but 

not for the comparison placebo vs. haloperidol (t30 = -0.01, p = .991).  
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Next, the robustness of this L-dopa effect against different modeling approaches was tested. 

Therefore, the paired t-test comparison of the subject-level 
 medians between the placebo and  

L-dopa condition was repeated based on the parameter estimates from the following alternative 

model fits:  

(1) the Bayes-SM+E model without the perseveration bonus parameter (t30 = 3.15, p = .004);  

(2) the Delta-SM+EP model with the Delta learner instead of the Bayesian learner (t30 = 2.97, p = .006); 

(3) the Bayes-SM+EP model fitted in a non-hierarchical design, i.e. without the group-level parameters 

Μ and Λ (t30 = 2.11, p = .043);  

(4) the Bayes-SM+EP model, in which all random walk parameters were fixed to their true values (see 

2.4 and 2.7.2) instead of their posterior medians derived from pilot study 2 (t30 = 3.44, p = .002);  

(5) the Bayes-SM+EP model with free random walk parameters, i.e. each random walk parameter was 

estimated once over all subjects (as described in 4.1.3) for each drug condition (t30 = 4.20, p < .001). 

Note that with the last modeling approach, a direct comparison of 
 estimates between drugs 

conditions is more complex in its interpretation, since each drug condition exhibits different random 

walk parameters (see Table A1 in the appendix). Taken together, all of these modeling approaches 

showed a significant (p < .05) reduction of the 
 parameter under L-dopa compared to placebo. 

 

placebo  L-dopa  haloperidol 

     

Figure 12. Subject-level parameter estimates for the exploration bonus parameter (
). Shown are posterior 

distributions of the subject-level 
 parameter of the Bayes-SM+EP model, separately for each drug condition. For each 

posterior distribution, the plot shows the median (black dot), the 80 % central interval (blue area), and the 95 % central 

interval (black contours). For the L-dopa and haloperidol condition, posterior distributions (in blue) are overlaid on the 

posterior distributions of the placebo condition (in white) for better comparison. 
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placebo - L-dopa placebo - haloperidol  L-dopa - haloperidol 

    

Figure 13. Drug effects on the exploration bonus parameter (
) on the subject level. Shown are posterior drug 

differences of the subject-level 
 parameter of the Bayes-SM+EP model. For each posterior distribution, the plot shows 

the median (black dot), the 80 % central interval (grey area), and the 95 % central interval (black contours). 

 

 

Table 7. Testing for drug effects on the subject-level choice parameters. 

 ANOVA  t-test: P - D  t-test: P - H  t-test: D - H 

 F2,60 p  diff t30 p  diff t30 p  diff t30 p 

	 0.34 .714  0.011 0.83 .414  0.007 0.52 .606  -0.004 -0.29 .776 


 4.54 .015  0.377 2.81 .009  -0.002 -0.01 .991  -0.378 -2.34 .026 

e 1.81 .172  0.613 0.73 .469  -0.818 -1.48 .149  -1.431 -1.71 .098 

Note. The subject-level posterior medians of the three choice parameters of the Bayes-SM+EP model were used as dependent 

variables for the repeated measures ANOVA and paired t-tests. 	: softmax parameter; 
: exploration bonus parameter;  

e: perseveration bonus parameter; P: placebo; D: L-dopa; H: haloperidol; diff: mean difference.  

 

5.2.4 Drug effect analysis on the percentage of exploitations and explorations 

In addition to the three choice parameters, drug effects were also analyzed for the percentage of 

exploitative and exploratory trials per subject, which were determined according to different 

classification schemes (see 2.7.2). For this, a repeated measures ANOVA with the factor drug was 

performed for each of the following four dependent variables: (a) the percentage of overall 

explorations, (b) the percentage of directed explorations, (c) the percentage of random explorations, 

and (d) the percentage of exploitations, with (a) following the binary classification scheme by Daw et 

al. (2006), and (b) to (d) following the trinary classification scheme. Note that results for the percentage 

of exploitations according to the binary classification scheme are not explicitly reported, since these 

can be derived from the results for (a) by sign reversal. The corresponding data are plotted in Figure 

14. The ANOVA showed a significant drug effect only for the percentage of directed explorations 
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(F2,60 = 7.15, p = .002), but not for the percentage of random explorations (F2,60 = 0.53, p = .592), overall 

explorations (F2,60 = 0.97, p = .386), or exploitations (F2,60 = 1.62, p = .207). Next, paired t-tests were 

performed to compare the percentage of directed explorations pairwise between the three drug 

conditions. The t-tests showed a significant reduction in the percentage of directed explorations under 

L-dopa compared to placebo (mean difference P-D = 2.82, t30 = 4.69, p < .001) and haloperidol (mean 

difference H-D = 2.42, t30 = 2.76, p = .010), but not between placebo and haloperidol (mean difference 

P-H = 0.39, t30 = 0.43, p = .667). Note also that a further exploratory t-test revealed that the percentage 

of exploitations was marginally increased under L-dopa compared to placebo (mean difference P-D =  

-2.61, t30 = -1.92, p = .065). 

 

% overall  
explorations 

% directed  
explorations 

% random  
explorations 

% exploitations 

 

Figure 14. Drug effects on the percentage of explorations and exploitations. Shown are the pairwise drug differences 

for the percentage of overall explorations, directed explorations, random explorations, and exploitations. Note that 

overall explorations were defined according to the binary choice classification by Daw et al. (2006), whereas the other 

three choice types were defined according to the trinary choice classification. P: placebo; D: L-dopa; H: haloperidol.  

 

5.3 Model-free behavioral results 

In addition to the model-based choice parameters, also some model-free measures of choice behavior 

were tested for DA drug effects. These variables were the overall monetary payout (payout), the 

percentage of choices in which the bandit with the highest actual payoff was selected (% best bandit), 

the mean rank of all chosen bandits when bandits are ranked by their actual payoff (mean rank), and 

the percentage of switches (% switches). Yet, the repeated measures ANOVA yielded no significant 

drug effect on any of these four model-free choice variables (payout: F2,60 = 0.06, p = .943; % best bandit: 

F2,60 = 0.34, p = .711; mean rank: F2,60 = 0.37, p = .690; % switches: F2,60 = 1.02, p = .366).  
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5.4 Control variables 

Several behavioral control variables were tested for DA drug effects. The first set of control variables 

was measured during the post-fMRI testing and included the spontaneous eye blink rate (sEBR), the 

total scores of the Digit Span Task (forward and backward), and 15 attentional performance measures 

from the Tests of Attentional Performance (TAP). To test for DA drug effects, a repeated measures 

ANOVA with the factor drug was performed on each of these 18 control variables. None of these 18 

variables showed a significant drug effect in the ANOVA (all p > .05). The complete ANOVA results for 

the first set of control variables can be found in Table A2 of the appendix.  

Furthermore, a second set of control variables was measured at different time points throughout each 

fMRI session and comprised six variables on subjective mood (alertness, contentedness, calmness, 

pleasure, arousal, and dominance) and four variables on physical wellbeing (pulse, systolic and diastolic 

blood pressure, and the side effects sum score). To test for drug effects on these variables, their scores 

at different time points after drug administration (t1, t2, t3) were first subtracted by their baseline score 

before drug administration (t0) for each drug condition. A repeated measures ANOVA with the factor 

drug was then performed on each of these difference scores (t1 - t0, t2 - t0, t3 - t0). The complete ANOVA 

results can be found in Table A3 of the appendix. To summarize, the ANOVA showed no significant 

drug effect for any of the physical wellbeing parameters (all p > .05). However, a significant drug effect 

(F2,60 = 4.46, p = .016) was found for one of the difference scores (t3 - t0) on the subscale “calmness” of 

the VAS (Bond & Lader, 1974). Paired t-tests on this variable revealed a significant increase (indicating 

lower calmness due to item reversal) under haloperidol compared to placebo (mean difference P-H =  

-0.67, t30 = -2.05, p = .049) and L-dopa (mean difference D-H = -0.85, t30 = -2.99, p = .005), but no 

significant difference between placebo and L-dopa (mean difference P-D = 0.18, t30 = 0.61, p = .544). It 

should be noted, however, that with the large number of hypothesis tests performed here (42 ANOVAs 

over all control variables and time points) and without correction for multiple comparisons, at least 

two significant results (p < .05) would be expected by chance alone, including one p ≤ .016 (as it was 

found here) with a probability of ca. 50 %. 

For completeness, also reaction times in the bandit task were tested for DA drug effects. However, a 

repeated measures ANOVA with the factor drug yielded no significant drug effect on either mean 

reaction time (F2,60 = 0.54, p = .585) or median reaction time (F2,60 = 0..50, p = .611).  

Furthermore, to test whether subjects were actually blinded to the drug condition, their drug guesses 

after each session were examined for their correctness above chance. Over all subjects and drug 

sessions, 30 of the 93 guesses (32.3 %) were correct, which is in line with the number of correct guesses 

expected by chance (31, i.e. 33.3 %). However, this result does not rule out that some subjects 

performed above chance (i.e. recognized all drug conditions) and others below. Therefore, a second 

analysis was conducted based on the performance on the subject level, taking the within-subject 

design into account. First, the number of correct guesses per subject was calculated, resulting in the 
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following frequency distribution: 25.8 % (0 correct guesses), 51.6 % (1 correct guess), 22.6 % (2 correct 

guesses), 0.0 % (3 correct guesses). This distribution was then compared to the frequency distribution 

predicted by random guessing: 29.6 % (0 correct guesses), 44.4 % (1 correct guess), 22.2 % (2 correct 

guesses), 3.7 % (3 correct guesses). A chi-squared test showed that there was no significant difference 

between both distributions (χ² = 1.66, p = .634; with Monte Carlo approximation). Finally, it was 

examined whether the frequency of drug guesses (i.e. how often each drug was guessed) depended 

on the actual drug condition. The corresponding data are reported in Table 8. A chi-squared test 

showed that the frequencies of drug guesses did not significantly differ between the three drug 

conditions (χ²4 = 0.36, p = .986). Taken together, the results of all three analyses indicate that the 

observed data are in accordance with random guessing. 

 

Table 8. Frequencies of drug guesses for each drug condition. 

drug condition 
guess: 

placebo 
guess: 
L-dopa 

guess: 
haloperidol 

placebo (n=31) 18 5 8 

L-dopa (n=31) 17 5 9 

haloperidol (n=31) 19 5 7 

 
 

Finally, subjects’ confidence ratings for drug guesses were analyzed. Over all subjects and drug 

conditions, the average confidence rating was 2.65 (SD = 1.03), i.e. between 2 (“uncertain”) and  

3 (“moderately certain”). Confidence ratings did not significantly differ between drug conditions 

(ANOVA: F2,56 = 0.51, p = .605) or between correct and incorrect guesses (two-sample t-test: t60.27 =  

-0.10, p = .922).  

 

5.5 Inverted-U analysis 

5.5.1 Modulation of choice behavior by the individual DA baseline 

The inverted-U hypothesis of DA states that DA-dependent cognitive functions are modulated by the 

individual DA baseline according to an optimum (inverted-U-shaped) curve (see 1.2.4). As the trade-

off between exploration and exploitation is assumed to be a DA-dependent behavior, it should be 

modulated by the individual DA baseline accordingly. To test for this assumption, it was examined 

whether individual differences in explore/exploit behavior, as assessed by different model-based and 

model-free choice variables, were predicted by the individual DA baseline (indexed by the sEBR and 

WMC) according to an inverse quadratic relationship. To increase sample size for this analysis, data 

from the placebo condition (n=31) and pilot study 2 (n=16) were combined, resulting in a sample of  

47 subjects. 

In preparation for this analysis, a principal component analysis (PCA) was performed on the  

z-transformed WMC data, including task scores from the Rotation Span Task, Operation Span Task, and 
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Listening Span Task. Loadings on the first principal component, which explained 56.6 % of the 

combined variance, were 0.62 for the Rotation Span Task, 0.64 for the Operation Span Task, and 0.46 

for the Listening Span Task. Subjects’ scores on the first principal component were then used as a WMC 

compound measure, denoted as WMCPCA, for the following plots and analyses. 

Results are first reported for the model-based choice variables, including the three choice parameters 

(	, 
, e) of the Bayes-SM+EP model. For each of these parameters, subject-level posterior medians 

were plotted against the two baseline DA proxies sEBR and WMCPCA (see Figure 15a). Two regression 

models were then fitted to the data shown in each plot: a “linear model” (LM, red line) testing only for 

a linear relationship between a given choice variable and DA proxy, and a “quadratic model” (QM, blue 

line) testing also for a quadratic relationship between these variables (see 2.9.2). Next, both models 

were compared using leave-one-out (LOO) cross-validation. Therefore, LOO measures based on 

squared distances were calculated for each model and subtracted (LOOLM - LOOQM), such that negative 

values indicate a higher predictive accuracy of the LM. The results of this LOO model comparison are 

reported in the upper part of Table 9, showing only negative values for all six comparisons, i.e. higher 

predictive accuracy of the LM. Additionally, the estimate and p-value for the 	� parameter of each QM 

are reported in Table 9 (upper part), showing that the 	� parameter does not significantly differ from 

zero for any of the six QMs. 

Next, the same kind of analysis was conducted for the four model-free choice variables, i.e. payout, 

% best bandit, mean rank, and % switches. First, each of these variables was plotted against the sEBR 

and WMCPCA (see Figure 15b), then both an LM and a QM were fitted to the data shown in each plot. 

Results of the LOO model comparison for the model-free variables are presented in the lower part of 

Table 9, along with estimates and p-values for the 	� parameters of all QMs. Most of these LOO 

comparisons yielded negative values, indicating a higher predictive accuracy of the LM. Only the 

regressions of % best bandit and mean rank on the sEBR showed a higher predictive accuracy of the 

QM. Yet, a visual inspection of the two respective plots in Figure 15b shows that the right part of the 

QM fit is only informed by very few data due to the asymmetric distribution of sEBR values in the 

sample. Also, none of the eight QMs showed a 	� estimate that significantly differed from zero. 

Finally, the same kind of analysis was repeated for all dependent variables (model-based and model-

free choice measures) using the separate WMC tasks scores (Rotation Span, Operation Span, or 

Listening Span) as baseline DA proxies instead of the WMCPCA score. All these LOO comparisons showed 

a higher predictive accuracy of the LM compared to the QM, and there was no QM for which 	� 

estimates significantly differed from zero. 
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a    model-based choice variables 

   

b    model-free choice variables 

 
Figure 15. Test for an inverted-U relationship between choice behavior and DA baseline. Choice behavior was assessed 

by (a) the posterior medians of the three choice parameters (	, 
, ρ) of the Bayes-SM+EP model and (b) the four model-

free choice variables (payout, % best bandit, mean rank, % switches). Baseline dopamine (DA) function was assessed by 

the two behavioral DA proxies spontaneous eye blink rate (sEBR) and working memory capacity (WMC). For the latter, 

the first principal component across three different WMC tasks was used, denoted by WMCPCA. Each plot shows two 

regression lines that were fitted to the data, one for the linear model (red line) and one for the quadratic model (blue 

line). Note that data from pilot study 2 and the placebo condition of the main study were combined for this analysis to 

increase the sample size to n=47. 	: softmax parameter; 
: exploration bonus parameter; e: perseveration bonus 

parameter. 
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Table 9. Test for an inverted-U relationship between choice behavior and DA baseline. 

Note. Choice behavior was assessed by the three choice parameters of the Bayes-SM+EP model (upper part) and four model-free 

choice variables (lower part). Baseline dopamine (DA) function was assessed by the two behavioral DA proxies spontaneous eye blink 

rate (sEBR) and working memory capacity (WMC). For the latter, the first principal component across three different WMC tasks was 

used, denoted by WMCPCA. The column “LOOLM - LOOQM” shows the difference of the squared distances for the linear model (LM) 

minus the quadratic model (QM) from the leave-one-out (LOO) model comparison. Note that negative values for LOOLM - LOOQM 

indicate better predictive accuracy of the LM. The columns “ 	� estimate” and “	� p-value” show for each quadratic model the 

estimated value and p-value of the 	� regression coefficient, respectively. Note that data from pilot study 2 and the placebo condition 

of the main study were combined for this analysis to increase the sample size to n=47. 	: softmax parameter; 
: exploration bonus 

parameter; e: perseveration bonus parameter. 

 

5.5.2 Modulation of behavioral drug effects by the individual DA baseline 

According to the inverted-U hypothesis of DA, the direction and magnitude of DA drug effects depend 

on the individual DA baseline (see 1.2.4). To test for this hypothesis, it was examined if L-dopa and 

haloperidol effects on explore/exploit behavior were modulated by the individual DA baseline, as 

indexed by the sEBR and WMC. 

Results for the exploration bonus parameter 
 are reported first to demonstrate the different steps of 

this analysis. First, the subject-level 
 medians were subtracted pairwise between all drug conditions 

(P-D, P-H, D-H) to quantify the direction and magnitude of DA drug effects for each subject. These 
 

drug differences were then plotted against the two baseline DA proxies sEBR and WMCPCA (see Figure 

16). Visual inspection of these plots did not show any systematic variation of the DA drug effects (y-

axes) dependent on the DA baseline measures (x-axes), contrary to the assumption of the inverted-U 

hypothesis. To further test this, subjects were divided by median split into a low (n=15) and high (n=16) 

DA baseline group, once for the sEBR and once for the WMCPCA. Then, two-sample t-tests were 

performed on these data to compare the 
 drug differences between the low and the high DA baseline 

group. The t-tests showed no significant difference between the low and the high DA baseline group 

for any of the six comparisons (see Table 10). 

 

  LOOLM - LOOQM  �� estimate  �� p-value 

  sEBR WMCPCA  sEBR WMCPCA  sEBR WMCPCA 

model-based:          

    	  -0.06 -0.04  -2.09e-04 2.98e-04  .132 .949 

    
  -3.60 -2.57  -1.13e-03 1.27e-02  .470 .809 

    e  -53.09 -49.68   1.69e-03 1.20e-01  .869 .726 
       

 

  

model-free:          

    payout  -0.95 -1.05  -6.04e-04 1.37e-02  .582 .710 

    % best bandit  198.06 -245.78  -2.45e-02 7.40e-02  .149 .897 

    mean rank  0.06 -0.10  -5.29e-04 -3.45e-03  .080 .733 

    % switches  -484.04 -700.67  -2.09e-04 6.58e-01  .222 .509 
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a 

 

 b    

Figure 16. Drug effects on directed exploration in dependence of the DA baseline. Baseline dopamine (DA) function 

was assessed by the two behavioral DA proxies (a) spontaneous eye blink rate (sEBR) and (b) working memory capacity 

(WMC). For the latter, the first principal component across three different WMC tasks was used, denoted by WMCPCA. 

Drug effects on directed exploration were assessed by calculating pairwise drug differences of the subject-level 

exploration bonus parameter (
) medians. Each plot is split at the median of the DA proxy (sEBR or WMCPCA) into a 

white area (below the median) and a grey area (above the median). P: placebo; D: L-dopa; H: haloperidol.  

 

Table 10. Comparison of drug effects on choice behavior between low and high DA baseline. 

 sEBR  WMCPCA 

model parameter low high group comparison  low high group comparison 

�        

    P - D 0.012 0.010 t27.77 =  0.07; p = .943  0.003 0.019 t26.93 = -0.57; p = .576 

    P - H -0.019 0.032 t28.71 = -1.94; p = .062  -0.011 0.024 t28.65 = -1.32; p = .199 

    D - H -0.031 0.021 t26.60 = -1.94; p = .063  -0.014 0.006 t24.63 = -0.70; p = .492 

�        

    P - D 0.451 0.310 t27.92 = 0.51; p = .611  0.399 0.359 t28.92 = 0.15; p = .885 

    P - H -0.232 0.213 t28.49 = -1.69; p = .103  -0.035 0.029 t28.57 = -0.23; p = .819 

    D - H -0.682 -0.095 t27.81 = -1.90; p = .068  -0.431 -0.330 t25.80 = -0.31; p = .762 

�        

    P - D 2.085 -0.765 t28.51 = 1.77; p = .088  0.438 0.779 t28.95 = -0.20; p = .842 

    P - H -0.077 -1.522 t28.92 = 1.33; p = .195  -0.752 -0.889 t24.14 = 0.12; p = .906 

    D - H -2.173 -0.751 t27.31 = -0.84; p = .408  -1.192 -1.670 t25.22 = 0.28; p = .783 

Note. Group comparisons were performed by two-sample t-tests, using the pairwise drug differences of the subject-level choice 

parameter medians of the Bayes-SM+EP model as dependent variables. Baseline dopamine (DA) function was assessed by the two 

behavioral DA proxies spontaneous eye blink rate (sEBR) and working memory capacity (WMC). For the latter, the first principal 

component across three different WMC tasks was used, denoted by WMCPCA. 	: softmax parameter; 
: exploration bonus 

parameter; e: perseveration bonus parameter; P: placebo; D: L-dopa; H: haloperidol.  
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In addition, the same kind of analysis was performed with the two remaining choice parameters (	, e) 

as dependent variables (see Table 10), and also for all three dependent variables using the separate 

WMC task scores (Rotation Span, Operation Span, or Listening Span) as DA proxies instead of the 

WMCPCA score. Altogether, no evidence was found that DA drug effects on any of these choice 

measures were modulated by the individual DA baseline according to an inverted-U function, neither 

from visual inspection of the plotted data (not shown), nor from the two-sample t-tests comparing DA 

drug effects between the low and the high DA baseline group (all p > .05). 

 

5.6 fMRI results 

5.6.1 Brain activity associated with exploration and exploitation 

First, differences in brain activity between exploratory and exploitative choices were analyzed across 

all subjects and drug conditions. For this, trials were classified as either exploitative (following the 

highest expected value) or exploratory (not following the highest expected value) as previously 

described by Daw et al. (2006). It was found that the pattern of brain activity markedly differed 

between both types of choices, as shown in Figure 17. 

Exploratory choices were associated with greater activation in the bilateral frontopolar cortex (FPC; 

left: -42, 27, 27 mm; z = 6.07; right: 39, 34, 28 mm; z = 7.56) and in a large cluster along the bilateral 

intraparietal sulcus (IPS; cluster peak at -48, -33, 52; z = 10.45), extending on both sides into the 

postcentral gyrus and precuneus. Furthermore, greater activation during exploratory trials was also 

observed bilaterally in the anterior insula (AI; left: -36, 15, 3 mm; z = 6.69; right: 36, 20, 3 mm; z = 6.87) 

and in a cluster extending into the dorsal anterior cingulate cortex (dACC; cluster peak at 8, 12, 45 mm; 

z = 8.47). Also, the thalamus, cerebellum, and supplementary motor area showed increased bilateral 

activation during exploration compared to exploitation. A complete list of activations associated with 

exploratory choices can be found in Table A6 of the appendix.  

In contrast, exploitative choices were associated with greater activation in the ventromedial prefrontal 

cortex (vmPFC; -2, 40, -10 mm; z = 5.67) and bilaterally in the lateral orbitofrontal cortex (lOFC; left:  

-38, 34, -14 mm; z = 5.81; right: 38, 36, -12 mm; z = 5.02). Furthermore, greater activation during 

exploitative trials was also observed in a cluster spanning the left posterior cingulate cortex (PCC) and 

left precuneus (cluster peak at -6, -52, 15 mm; z = 7.40), as well as bilaterally in the angular gyrus (left: 

-42, -74, 34 mm; z = 8.04; right: 52, -68, 28 mm; z = 7.02), hippocampus (left: -24, -16, -15 mm; z = 4.16; 

only at p < .001, uncorrected; right: 32, -16, -15 mm; z = 5.09), and several clusters along the superior 

and middle temporal gyrus. A complete list of activations associated with exploitative choices can be 

found in Table A7 of the appendix. Aside from these neural correlates of exploratory and exploitative 

choices, it was found that the reward prediction error positively correlated with activity in the bilateral 

ventral striatum (left: -16, 6, -12 mm; z = 6.40; right: 16, 9, 10 mm; z = 6.20), as shown in Figure 18. 

  



113 
 

  a) explore > exploit 

 

  b) exploit > explore 

  

Figure 17. Brain regions differentially activated by exploratory and exploitative choices. Shown are statistical 

parametric maps for (a) the contrast explore > exploit and (b) the contrast exploit > explore over all drug conditions.  

AG: angular gyrus; AI: anterior insula; Cb: cerebellum; dACC: dorsal anterior cingulate cortex; FPC: frontopolar cortex; 

HC: hippocampus; IPS: intraparietal sulcus; vmPFC: ventromedial prefrontal cortex; OFC: orbitofrontal cortex; PCC: 

posterior cingulate cortex; SMA: supplementary motor area; T: thalamus. Thresholded at p < .001, uncorrected. R: right. 
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Figure 18. Striatal coding of the reward prediction error. Activity in the bilateral ventral 

striatum correlated positively with the reward prediction error signal. Thresholded at 

p < .001, uncorrected. R: right. 

 

Next, it was analyzed whether the subdivision of exploratory choices into directed explorations 

(following the highest exploration bonus) and random explorations (not following the highest 

exploration bonus) revealed different activation patterns for both types of explorations. Therefore, a 

second GLM was set up that included two separate regressors for directed and random explorations 

(both modeled at trial onset). While the contrast directed > random yielded no suprathreshold 

activations across drugs or for any of the drug conditions alone, the opposite contrast (random > 

directed) yielded a small cluster of three voxels in the right frontopolar cortex (32, 50, -8 mm; z = 5.34) 

across drugs, though not for any of the drug conditions alone. It should be noted, however, that the 

number of trials was very unequal for both exploration conditions with considerably more trials in the 

random exploration condition (on average 3.2 times more random than directed exploration trials per 

session). Hence, the second-level results for this contrast should be treated with caution (see Chen, 

Saad, Nath, Beauchamp, & Cox, 2012). Also, after exclusion of all sessions with ≤ 5 trials in the directed 

exploration condition (excluding 8 out of 93 sessions), the frontopolar cluster for the contrast 

random > directed was no longer significant. Furthermore, overlaying activation maps for directed, 

random, and overall explorations (each contrasted against exploitation) showed substantially the same 

activation pattern under all three exploration conditions (see Figure 19), including the bilateral FPC, 

IPS, dACC, AI, and thalamus. Note that for the overlay, activation maps were displayed at a liberal 

threshold of p < .05 (uncorrected) to account for the small trial number and low statistical power in the 

directed exploration condition. 

In addition to the main GLM with a binary coding of explore/exploit (1/0), a third GLM was set up to 

examine instead the parametric effects of two model-based quantities that are tightly involved in 

exploitation and exploration: the expected value (=̂@AB) and uncertainty (�<@AB) of the chosen bandit 

(both modeled at trial onset). While the expected value was positively correlated with activity in a 

network of brain regions largely overlapping with the one for exploitative choices (see Figure 20a), the 

uncertainty was positively correlated with activity in a network of brain regions largely overlapping 

with the one for exploratory choices (see Figure 20b). Although results of this third GLM are not 

reported in further detail, it is important to note that the expected value and uncertainty are both 

quantities that are substantially correlated with the choice type explore/exploit (see Table A4 in the 
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appendix), which should be kept in mind when interpreting the fMRI results of the main GLM (as 

discussed in section 6.3.1). 

 

 directed + random   directed + overall   random + overall 

 

Figure 19. Brain activation patterns for different types of exploration. Shown are pairwise overlays of the statistical 

parametric maps for the contrasts explore > exploit (“overall” in green), directed > exploit (“directed” in red), and 

random > exploit (“random” in blue) over all drug conditions. While the first contrast is based on a binary choice 

classification according to which all choices not following the highest expected value are explorations, the other two 

contrasts are based on a trinary choice classification, which further subdivides explorations into choices following the 

highest exploration bonus (directed) and choices not following the highest exploration bonus (random). Thresholded 

at p < .05, uncorrected for display purposes. R: right. 

 

a) expected value + exploit  b) uncertainty + explore 

 

Figure 20. Neural codings of expected value and uncertainty. (a) Overlay of the statistical parametric maps for the 

parametric regressor expected value (in blue) and the contrast exploit > explore (“exploit” in red) over all drug 

conditions. (b) Overlay of the statistical parametric maps for the parametric regressor uncertainty (in blue) and the 

contrast explore > exploit (“explore” in red) over all drug conditions. Thresholded at p < .001, uncorrected. R: right. 

 

 

5.6.2 Brain activity differences between drug conditions (planned comparisons) 

First, it was analyzed whether brain activation patterns for exploratory and exploitative choices 

showed any differences between the DA drug conditions across subjects. Therefore, a repeated 

measures ANOVA was performed on the second level to test for the main effect of drug on the contrast 

explore vs. exploit of the first GLM, and also on the contrasts directed vs. exploit, random vs. exploit, 
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and random vs. directed of the second GLM. However, none of these tests yielded any suprathreshold 

activations on the whole-brain level, nor in any of the seven regions included in the small volume 

correction (i.e. left/right FPC, left/right IPS, left/right AI, and dACC). In addition, the same kind of 

analysis was performed on the four remaining regressors of the first GLM (trial onset, reward onset, 

prediction error, and outcome value), also revealing no suprathreshold activations for any of these 

regressors on the whole-brain level. 

According to the behavioral results, DA drug effects on directed exploration (i.e. the 
 parameter) 

largely differed between subjects in magnitude and direction (see Figure 13). Therefore, a second-level 

regression analysis was performed for each drug pair, testing whether drug effects on exploration-

specific brain activity (i.e. pairwise drug differences of the subject-specific contrast images 

explore vs. exploit, directed vs. exploit, and random vs. exploit) were linearly predicted by the drug 

effects on exploratory behavior (i.e. pairwise drug differences of the subject-specific 
 medians). 

However, none of these regression analyses revealed any suprathreshold activations on the whole-

brain level, nor in any of the seven regions included in the small volume correction (see above). 
 

5.6.3 Exploratory fMRI analysis 

Following these planned analyses, fMRI data were further explored for DA drug effects on the neural 

level that might explain the behavioral findings, foremost the reduction of directed exploration under 

L-dopa compared to placebo. Based on the null findings in the planned analyses, it was reasoned that 

L-dopa might exhibit its influence on the explore/exploit trade-off not by altering brain activations for 

exploratory or exploitative choices per se, but rather by affecting the neural correlates involved in 

behavioral switching from exploitation to directed exploration when the overall uncertainty increases. 

Thereby, L-dopa might delay the time point at which directed exploration is triggered in response to 

accumulating uncertainty, hence resulting in fewer directed explorations over time. This alternative 

hypothesis was tested by performing another model-based fMRI analysis. According to the cognitive 

model (Bayes-SM+EP), one important quantity to trigger directed exploration at a specific time point 

is the growing uncertainty over all choice options that are currently not exploited, since this is directly 

linked (via the exploration bonus) to the probability to choose (explore) one of these options. This 

overall uncertainty (Σ�<@AB) can be quantified in each trial by the summed standard deviation (�<@AB) of 

all four bandits, whereby �<@AB of the currently exploited bandit is constant over trials and negligible in 

this process. The resulting metric gradually increases during a series of exploitations, but reduces 

abruptly when one or more bandits with high uncertainty are explored (see Figure 9f). Following this 

reasoning, the overall uncertainty was used as a parametric regressor in a new GLM (modeled at trial 

onset) to reveal brain regions for which activity was correlated with this quantity. The contrast images 

for this regressor were then used in a second-level random effects analysis with the factors drug and 

subject. Since a comparison between the placebo and the L-dopa condition was of primary interest in 

this exploratory fMRI analysis (based on the behavioral findings), these two drug conditions were 
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analyzed first. In the placebo condition alone, no voxels survived FWE correction (p < .05), but a  

more lenient threshold (p < .001, uncorrected) showed that activity in the bilateral dACC (cluster peak 

at -3, 21, 39 mm; z = 3.96), right anterior insula (42, 15, -6 mm; z = 3.46), and left posterior insula (-34,  

-20, 8 mm; z = 4.63) was positively correlated with the overall uncertainty (see Figure 21a). Next,  

the placebo and L-dopa condition were compared by directed t-contrasts (placebo > L-dopa and  

L-dopa > placebo) to find regions for which the parametric effect of the overall uncertainty differed 

between both drug conditions. While the contrast L-dopa > placebo yielded no suprathreshold 

activations, the opposite contrast (placebo > L-dopa) revealed a significant activation in the left 

posterior insula (-34, -20, 8 mm; z = 5.05). At a reduced threshold (p < .001, uncorrected), also activity 

in the left anterior insula (-38, 6, 14 mm; z = 4.88) and bilateral dACC (left: -2, 36, 33 mm; z = 3.32; right: 

4, 14, 28 mm; z = 3.41) showed a stronger correlation with the overall uncertainty under placebo 

compared to L-dopa (see Figure 21b). For completeness, the placebo and L-dopa condition were also 

compared to haloperidol by computing four directed t-contrasts (placebo > haloperidol, 

haloperidol > placebo, L-dopa > haloperidol, haloperidol > L-dopa), none of which yielded any 

suprathreshold activations. However, at a lower threshold (p < .001, uncorrected), the contrast 

placebo > haloperidol revealed activations in a number of regions, including the bilateral anterior insula 

(left: -30, 21, 6 mm; z = 3.81; right: 39, 15, -4 mm; z = 3.88) and left posterior insula (-34, -22, 8 mm; 

z = 3.78), as shown in Figure 21c. A complete list of activations for all t-contrasts of this second-level 

analysis can be found in Table A8 of the appendix. 

 

a) placebo   b) placebo > L-dopa  c) placebo > haloperidol 

 

Figure 21. Drug effects on the neural codings of overall uncertainty. (a) Regions in which activity correlated positively 

with the overall uncertainty in the placebo condition included the dorsal anterior cingulate cortex (dACC) and left 

posterior insula (PI). (b) Regions in which the correlation with overall uncertainty was reduced under L-dopa compared 

to placebo included the dACC and left anterior insula (AI). (c) Regions in which the correlation with overall uncertainty 

was reduced under haloperidol compared to placebo included the bilateral AI and left PI. Thresholded at p < .001, 

uncorrected. R: right. 
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Finally, a second-level regression analysis was performed on the overall uncertainty regressor for each 

drug pair. This regression analysis tested whether drug effects on neural activations for the overall 

uncertainty (i.e. pairwise drug differences of the subject-specific contrast images for overall 

uncertainty) were linearly predicted by the drug effects on directed exploration behavior (i.e. pairwise 

drug differences of the subject-specific 
 medians). However, this regression analysis yielded no 

suprathreshold activations for any of the three pairwise drug comparisons. 
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6 Discussion 

6.1 Summary of results  

The current study examined the causal role of DA in human explore/exploit behavior in a 

pharmacological fMRI approach, using L-dopa (DA precursor) and haloperidol (DA antagonist) in a 

double-blind, placebo-controlled, counterbalanced, within-subjects design. First, explore/exploit 

behavior, as assessed with the restless four-armed bandit task, was analyzed using different cognitive 

models of learning and decision making in a hierarchical Bayesian modeling approach. A quantitative 

model comparison showed that choice behavior was best described by the Bayes-SM+EP model, which 

combines a Bayesian learning rule tracking both mean and variance (uncertainty) of the expected 

reward, with a modified softmax choice rule capturing both random and directed exploration along 

with choice perseveration. Using this model, it was found that directed (uncertainty-driven) 

exploration, as indexed by the 
 parameter, was significantly reduced across subjects under L-dopa 

compared to placebo. In contrast, haloperidol did not significantly shift the 
 parameter across 

subjects, but showed a tendency to reduce the group-level variance of this parameter (ΛY) relative to 

placebo and L-dopa. No overall drug effects were observed on random exploration or perseveration, 

as respectively indexed by the 	 and e parameter, nor on any of the tested model-free choice variables. 

Also, neither drug was found to cause apparent side effects on physical well-being, self-reported mood, 

or alertness, hence these factors may be ruled out as potential mediators of the observed drug effects. 

To examine drug effects on the neural level, choices were first classified as either exploitative (i.e. 

following the highest expected reward value) or exploratory, and the pattern of brain activity was 

compared between both types of choices. Across all drug conditions, exploratory choices were 

associated with higher activity in the FPC, IPS, dACC, and insula, whereas exploitative choices showed 

higher activity in the vmPFC and OFC, as well as in the PCC, precuneus, angular gyrus, and 

hippocampus, largely replicating the results of previous studies (see 1.1.4). Surprisingly, no drug effects 

were found on these neural correlates of exploratory and exploitative choices, nor on striatal reward 

prediction error signaling. Yet, an exploratory analysis of the brain imaging data revealed that L-dopa 

reduced insular and dACC activity associated with the overall reward uncertainty across all choice 

options. Finally, no evidence was found in support of the added hypothesis that DA drug effects on 

explore/exploit behavior are modulated in an inverted-U fashion by the individual DA baseline, as 

assessed by the behavioral proxies sEBR and WMC. 

 

6.2 Behavioral results 

Overall, the finding that pharmacological manipulation of the DA system resulted in a shift of the 

explore/exploit trade-off is in line with previous animal and human studies suggesting that DA is 

causally involved in regulating this trade-off (see 1.3). However, the observed pattern of DA drug 

effects on explore/exploit behavior did not match the initial hypothesis, according to which both 
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random and directed exploration should be increased under L-dopa vs. placebo and decreased under 

haloperidol vs. placebo. In the following, the behavioral results of the L-dopa treatment will be 

discussed first, followed by a discussion of the haloperidol results.  

 

6.2.1 L-dopa effects 

Model-based analysis of choice behavior revealed that across subjects, L-dopa administration resulted 

in a reduction of the 
 parameter (capturing directed exploration) compared to placebo, while the 	 

parameter (capturing random exploration) remained unaffected by the drug. It should be noted first 

that this reduction of the 
 parameter can be regarded from two perspectives: On the one hand, it 

indicates a reduced tendency for uncertainty-driven exploration, but on the other hand also an 

increased tendency for value-driven exploitation. Remember that the 
 parameter of the cognitive 

model determines the relative degree to which choices are biased towards the uncertainty of an 

option, whereby a smaller absolute value of 
 indicates that less weight is given to the uncertainty 

and, in turn, more weight to the value (which can be thought of as having a constant weight of one in 

this model). Hence, the observed choice behavior under L-dopa can be described as less uncertainty-

driven and more value-driven. Accordingly, when classifying all choices per subject into exploitations, 

directed explorations, and random explorations, L-dopa was found to reduce the percentage of 

directed (but not random) explorations compared to placebo across subjects, and to marginally 

increase the percentage of exploitations. Since on the neural level, L-dopa is well known to increase 

DA transmission compared to placebo, these findings suggest that increased DA strengthens value-

driven, exploitative behavior against uncertainty-driven exploration. While this interpretation is in line 

with several studies showing that striatal DA drives reinforcement learning and exploitative behavior 

(e.g. Frank et al., 2004, 2009; Moustafa et al., 2008; Pessiglione et al., 2006), it contradicts other studies 

suggesting that prefrontal DA promotes uncertainty-driven exploration (e.g. Blanco et al., 2015; Frank 

et al., 2009; Kayser et al., 2015; see 1.3.2). Thus, to compare the L-dopa results with other studies on 

DA’s role in explore/exploit behavior, it is important to distinguish striatal from prefrontal DA effects 

and to first regard these two subsystems separately. Therefore, the L-dopa findings are first discussed 

with respect to striatal DA function and then with respect to prefrontal DA.  

 

6.2.1.1 L-dopa effects with respect to striatal DA function 

To begin with, previous studies support the view that L-dopa promotes positive reinforcement and 

exploitation by enhancing striatal DA activity. For example, Pessiglione et al. (2006) showed in a 

reinforcement learning task with monetary gains and losses that administration of L-dopa compared 

to haloperidol biases choice behavior towards the most rewarding action (i.e. increases exploitation) 

and also increases the magnitude of the reward prediction error signal in the striatum. Specifically, this 

drug effect was only observed under the task condition of positive reinforcement (“gain condition”), 

but not negative reinforcement (“loss condition”). Moreover, the study demonstrated that the drug-
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induced differences in striatal activity could explain the drug effects on choice behavior when 

incorporated into a standard reinforcement learning model. To show this, they first used the amplitude 

of the striatal reward prediction error signal to estimate the effective reward value for each drug 

condition, which was ₤ 1.29 for the L-dopa group and ₤ 0.71 for the haloperidol group (compared to a 

reference value set to ₤ 1.0 for the placebo control group). These drug-specific reward values were 

then incorporated into the reinforcement learning model, showing that they accurately and specifically 

reproduced the observed drug effects on choice behavior. Together, these results provide strong 

evidence for a causal involvement of striatal DA in driving exploitative behavior, whereby increased DA 

by L-dopa seems to promote more value-driven choices by increasing the apparent value of rewards 

as represented in the striatum. Integrating these results with the findings of the current study, it might 

be hypothesized that L-dopa administration increased the apparent reward value compared to placebo 

and haloperidol, such that obtained rewards were coded as “more valuable” in the striatum, which in 

turn might explain the shift towards more value-driven, exploitative behavior under L-dopa (but see 

6.3 for fMRI results). 

Furthermore, the effects of L-dopa administration on reward-based decision making were often 

examined in Parkinson’s disease (PD) by comparing patients on and off dopaminergic medication 

(Frank et al., 2004; Moustafa et al., 2008; Rutledge et al., 2009). These studies consistently found that 

PD patients on DA medication show enhanced positive reinforcement (“Go learning”) compared to 

patients off medication, whereas negative reinforcement (“NoGo learning”) is either not affected or 

impaired by DA medication. For example, Moustafa et al. (2008) studied the choice behavior of PD 

patients in the clock task (see 1.1.2) and found that patients on medication were better at speeding 

up decisions to maximize expected rewards compared to the same patients off medication. Similar 

enhancements of Go learning in PD patients on versus off medication were also found in reinforcement 

learning tasks with either probabilistic or deterministic outcomes (Frank et al., 2004) and in a dynamic 

foraging task (Rutledge et al., 2009). Hence, these studies support the view that DA plays an important 

role in learning from positive outcomes and therefore also in guiding exploitative behavior. 

Importantly, all three studies attributed the DA medication effects on reinforcement learning 

specifically to striatal DA function. While none of these studies directly provided neuroimaging data, 

it still appears reasonable to interpret the above findings in terms of striatal DA function for different 

reasons. First, L-dopa is known to primarily act on the level of the striatum, while having much smaller 

effects on the prefrontal DA system, which is depleted to a lesser degree in early PD (see reviews by 

Cools, 2006; Lloyd et al., 1975). This (relative) regional specificity of L-dopa effects might potentially 

be explained by the finding that striatal regions exhibit the highest DOPA decarboxylase activity, the 

enzyme that converts L-dopa to DA in the brain (see Hälbig & Koller, 2007; Hefti & Melamed, 1980; 

Lloyd et al., 1975; Lloyd & Hornykiewicz, 1972; Melamed et al., 1980). Indeed, neurochemical studies 

in rats suggest that L-dopa administration generates 50-60 times more DA in the intact striatum than 

in the cortex (Carey, Dai et al., 1995), although DA levels in the medial PFC were still found to be 
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noticeably increased by L-dopa (Carey, Pinheiro-Carrera, Dai, Tomaz, & Huston, 1995; see also Antinori 

et al., 2018; Devoto et al., 2016). Moreover, two of the reported PD studies further support their 

interpretation that L-dopa primarily affected striatal DA by showing that the behavioral drug effects 

were adequately predicted by simulations in a computational model of the basal ganglia (BG) circuit 

(Frank et al., 2004; Moustafa et al., 2008). In this BG model, unmedicated PD was simulated by a 

reduced number of intact DA units, such that both tonic and phasic striatal DA activity were reduced. 

While the reduced phasic DA activity in response to positive outcomes was associated with impaired 

Go learning in this model, the reduced tonic DA activity was associated with enhanced NoGo learning, 

both effects paralleling the behavioral results observed in unmedicated PD patients (Frank et al., 2004; 

Moustafa et al., 2008). In contrast, medicated PD was simulated by a BG model with partly restored 

striatal DA activity. In this model, increased phasic DA activity (simulating L-dopa effects) led to 

enhanced Go learning, whereas increased tonic DA activity (simulating the effects of DA agonists often 

co-administered with L-dopa) led to impaired NoGo learning, together matching the behavioral effects 

observed in PD patients on versus off medication. Hence, these simulations support the view that the 

L-dopa effects on positive reinforcement observed in PD patients are specifically driven by increased 

phasic striatal DA activity in response to positive feedback. Transferring these findings to the current 

study, it might be hypothesized that L-dopa strengthened exploitation by enhancing phasic DA activity 

and prediction error signaling in the striatum, thereby driving choices more strongly towards positive 

outcomes. It should be kept in mind, however, that the effects of a daily L-dopa treatment in PD 

patients might not be directly comparable to the effects of a single dose of L-dopa in healthy subjects, 

given the atypical DA network in the parkinsonian brain and the complex long-term effects of L-dopa 

(see 1.2.3; Grace, 2008; Hershey, 2003). Still, the assumption of an increased phasic DA activity under 

L-dopa would also be in line with the above findings of Pessiglione et al. (2006), showing that L-dopa 

enhances reward prediction error signaling in the striatum of healthy human subjects.  

The view that L-dopa primarily affects phasic rather than tonic DA activity is further supported by PET 

experiments in healthy human subjects (Black et al., 2015; Floel et al., 2008). These studies assessed 

striatal DA release by use of the radioligand [11C]raclopride (RAC), which specifically binds to D2-like 

receptors, but is displaced from these receptors when synaptic DA concentration increases (see 

Egerton et al., 2009; Laruelle, 2000). It was shown that L-dopa (vs. placebo) produces no measurable 

increase in baseline (tonic) striatal DA release under resting conditions (Black et al., 2015; Floel et al., 

2008), but a significant increase in task-evoked (phasic) striatal DA release during motor training (Floel 

et al., 2008). This increased phasic DA release was associated with improved learning under L-dopa 

compared to placebo, presumably by enhancing the reinforcing effect of positive feedback during 

learning (see also Breitenstein et al., 2006; de Vries, Ulte, Zwitserlood, Szymanski, & Knecht, 2010; 

Frank et al., 2004). Moreover, also in vivo microdialysis or voltammetry studies in rats have shown that 

L-dopa primarily increases phasic (i.e. impulse-dependent) DA release in the striatum (Harun et al., 

2016; Keller, Kuhr, Wightman, & Zigmond, 1988; Miller & Abercrombie, 1999; Wightman et al., 1988). 
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Still, the question remains why L-dopa might specifically enhance phasic and not tonic DA levels, as 

proposed by these findings. Based on previous research, it has been suggested that exogenous L-dopa 

is taken up by nigrostriatal DA nerve terminals, converted to DA, stored in synaptic vesicles, and then 

co-released with endogenous DA upon neural excitation (see 1.2.3; e.g. Breitenstein et al., 2006; Floel 

et al., 2008; Hälbig & Koller, 2007; Horne et al., 1984). In other words, L-dopa basically “stocks up” 

presynaptic DA stores in healthy subjects, or “replenishes” these stores in subjects with depleted DA 

levels like PD patients. From this, it might be assumed that L-dopa boosts DA release in both the phasic 

and tonic firing mode and hence also increases tonic DA transmission, as often stated in the literature 

(e.g. Antinori et al., 2018; Guthrie, Myers, & Gluck, 2009; Kroemer et al., 2018; Price, Filoteo, & 

Maddox, 2009). However, based on the above PET findings, it has been hypothesized that in the intact 

striatum of healthy subjects, DA catabolism and storage capacity are sufficient to prevent the 

exogenous DA from being released under resting conditions, i.e. in the tonic state, while it is released 

during phasic bursts of firing (Tedroff et al., 1996; see also Black et al., 2015; Floel et al., 2008). In line 

with this notion, studies in healthy human subjects have often reported that L-dopa produces opposite 

behavioral effects to DA receptor agonists, which are thought to selectively increase tonic (but not 

phasic) DA signaling (see Breitenstein et al., 2006; Floel et al., 2008; van Eimeren et al., 2009). For 

example, several studies have shown that L-dopa improves learning in healthy subjects (de Vries et al., 

2010; Floel et al., 2005, 2008; Knecht et al., 2004), whereas the DA agonist pergolide was found to 

impair learning (Breitenstein et al., 2006). Notably, these mixed findings have been attributed to the 

differential effects of increased phasic (with L-dopa) versus increased tonic (with pergolide) DA 

signaling, whereby increased tonic activity may actually “mask” phasic DA signals critical for feedback-

driven learning (Breitenstein et al., 2006; see also de Vries et al., 2010; van Eimeren et al., 2009). Note 

that in the parkinsonian brain, however, L-dopa may actually lead to an increase in tonic DA levels due 

to the reduced storage capacity of DA nerve terminals in the denervated striatum, as suggested by 

animal studies (see Carey, Dai et al., 1995; Miller & Abercrombie, 1999; Tedroff et al., 1996). Taken 

together, the reported PET findings and further studies support the view that L-dopa might indeed 

primarily boost signal-dependent phasic DA release, while leaving tonic DA levels relatively unaffected 

in healthy subjects. 

The assumption that the observed L-dopa effects are primarily attributable to enhanced phasic rather 

than tonic striatal DA is also in line with studies examining specifically the effects of tonic DA 

modulation on explore/exploit behavior (Beeler et al., 2010; Costa et al., 2014; Humphries et al., 2012). 

Together, these studies suggest that elevated tonic DA levels in the striatum increase rather than 

decrease different forms of exploratory behavior, contrary to the L-dopa effect observed here. To 

better compare and discuss the differential roles of tonic and phasic DA on specific aspects of 

explore/exploit behavior, it is worth to consider some of the work on tonic DA in more detail. For 

instance, it was shown that DAT knockdown mice, which are characterized by higher tonic striatal DA 

levels due to reduced DA reuptake, show increased random exploration as expressed by a higher 
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softmax 	 parameter than controls (Beeler et al., 2010). Notably, this result is qualitatively different 

from the result of the current study, in which random exploration (i.e. the softmax 	) was not changed 

under L-dopa compared to placebo. The view that tonic DA specifically regulates the trade-off between 

exploitation and random exploration is also expressed in the “thrift regulation” hypothesis of DA (see 

1.3.1; Beeler, 2012). According to this theoretical framework, tonic DA levels regulate thrift, i.e. the 

degree to which prior reward learning needs to be exploited to maximize return on energy 

expenditure. While increased levels of tonic DA reduce thriftiness and facilitate exploratory behavior, 

decreased levels of tonic DA increase thriftiness and strengthen exploitative behavior. Formally, the 

framework describes this trade-off also through the softmax 	 parameter, which reflects how strongly 

choices are driven by learned reward values. The view that tonic DA regulates action selection via the 

softmax 	 parameter is additionally supported by a simulation study on a computational basal ganglia 

(BG) model (Humphries et al., 2012). This simulation showed that changes in tonic striatal DA levels 

affect the trade-off between exploitation and random exploration (i.e. the softmax 	) on both the 

neural and behavioral level. More specifically, the study showed that on the neural level, higher tonic 

DA levels result in a higher 	 parameter (corresponding to less random exploration) as encoded in the 

BG output by a more peaked probability distribution for action selection. However, they also showed 

that on the behavioral level, these associations might paradoxically lead to a situation where high 

compared to medium tonic DA levels result in more random exploration, consistent with the above 

findings in hyperdopaminergic DAT knockdown mice (Beeler et al., 2010). Thus, the evidence reported 

so far suggests that tonic DA in the striatum specifically regulates the trade-off between exploitation 

and random exploration, which was not found to be affected by L-dopa in the present study, suggesting 

that tonic DA was not significantly affected by the drug. Yet, it should also be noted that the reported 

studies on tonic DA all modeled choice behavior with the standard softmax function (i.e. without 

exploration bonus) and could thereby only capture tonic DA effects on random but not directed 

exploration. Hence, it may not be inferred from these studies how tonic DA activity affects the 

explore/exploit trade-off when directed exploration is additionally accounted for. 

The effects of tonic DA modulation on directed exploration were, however, investigated in an animal 

study by Costa et al. (2014). In this study, the choice behavior of monkeys was examined in a 

probabilistic reinforcement learning task after systemic administration of the selective DAT inhibitor 

GBR-12909, which is known to increase tonic striatal DA levels by slowing DA reuptake (Zhang, Doyon, 

Clark, Phillips, & Dani, 2009). It was found that DAT blockade increased directed (novelty-driven) 

exploration, i.e. biasing the monkeys to select novel options over familiar ones. Cognitive modeling 

revealed that increased exploration after DAT blockade was driven by the assignment of a higher 

subjective value to novel (i.e. more uncertain) choice options. In contrast, DAT blockade did not 

significantly change the trade-off between exploitation and random exploration, as expressed by the 

softmax 	 parameter. Hence, these behavioral effects after DAT blockade show basically the same 

pattern – albeit in the opposite direction – as the L-dopa effects observed in the current study. Here, 
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directed exploration was reduced under L-dopa, driven by a lower subjective value assigned to more 

uncertain options (i.e. lower 
), while random exploration (i.e. the softmax 	) was also not affected. 

To explain these opposite results, it might be assumed that the behavioral effects produced by DAT 

blockade are not solely attributable to increased tonic striatal DA levels, but also to additional changes 

within the DA system. First, increased tonic striatal DA levels are considered to reduce phasic striatal 

DA release through feedback inhibition via presynaptic DA autoreceptors (Bilder et al., 2004; Cools, 

2006; Floresco et al., 2003; Ford, 2014; Grace, 1991, 2000). Hence, DAT blockade should result in both 

increased tonic and reduced phasic striatal DA levels. Indeed, DAT knockdown mice were shown to 

exhibit not only elevated tonic striatal DA levels, but also a clear (ca. 75 %) reduction in the amplitude 

of phasic striatal DA release (Zhuang et al., 2001). In contrast, L-dopa is known to increase the 

amplitude of phasic striatal DA release (see above; e.g. Harun et al., 2016; Keller et al., 1988; Miller & 

Abercrombie, 1999; Wightman et al., 1988), which might already (partly) explain the opposite results 

of both studies. Moreover, it might be assumed that also changes in the prefrontal DA system might 

have contributed to the observed effects on directed exploration in both studies. In particular, the 

relative balance between striatal and prefrontal DA activity might play a crucial role in regulating the 

trade-off between exploitation and directed exploration, as discussed in more detail in the following 

section (see 6.2.1.2). To briefly outline this idea here with respect to the current discussion: A decrease 

in directed exploration – as observed after L-dopa administration – might result from a state of high 

phasic striatal versus low prefrontal DA transmission. In contrast, an increase in directed exploration – 

as observed after DAT blockade – might result from a state of low phasic striatal versus high prefrontal 

DA transmission. Note that prefrontal DA transmission may indeed be increased after DAT blockade, 

either in relative terms (i.e. relative to the reduced phasic striatal DA activity, see above) or in absolute 

terms. The latter assumption would be supported by studies in rodents showing that DAT inactivation 

by knockout or GBR-12909 significantly increases extracellular DA levels in the PFC (Carboni, Silvagni, 

Vacca, & Di Chiara, 2006; see also Bai et al., 2014; Xu et al., 2009). Since DAT is also substantially 

expressed in the PFC of monkeys and humans (Ciliax et al., 1999; Lewis et al., 2001), DAT blockade by 

GBR-12909 might therefore indeed have led to an absolute increase in prefrontal DA levels in the 

money study by Costa et al. (2014), contributing to a shift in the striatal/prefrontal DA balance. In 

conclusion, the reported findings from animal and BG network studies suggest that the behavioral 

effects of tonic DA modulation are different – and partly opposite – from the L-dopa effects observed 

in the current study: While increased tonic DA levels (probably accompanied by reduced phasic striatal 

DA release) were shown to promote random and/or directed exploration over exploitation, L-dopa 

was found to promote exploitation over directed exploration. The discrepancies in these findings, 

together with the PET studies reported above, support the idea that the observed L-dopa effects 

primarily resulted from increased phasic striatal DA activity, and that tonic striatal DA levels might not 

have been substantially altered by L-dopa. 
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Finally, the assumption that L-dopa strengthened exploitation by increasing phasic striatal DA activity 

are also in line with studies examining the role of striatal DA on temporal discounting. Temporal 

discounting, or delay discounting, refers to the phenomenon that subjective reward values are 

discounted by imposed time delays (see Green & Myerson, 2004). While the concepts of temporal 

discounting and explore/exploit behavior describe different aspects of reward-based decision making, 

they might still be strongly related. Remember that exploitation is commonly defined as choosing the 

option with the highest (immediate) expected reward value. Accordingly, the current study showed 

that exploitative choices were associated with higher expected reward values than exploratory choices 

(see Table A4 in the appendix). Thus, it might be assumed that exploitation reflects a more short-

sighted (impulsive) choice behavior driven towards immediate rewards, whereas exploration reflects 

a more far-sighted choice behavior to maximize reward in the long term. Thereby, greater temporal 

discounting and impulsivity might be linked to a more exploitative choice behavior. Notably, a previous 

fMRI study (Pine et al., 2010) on temporal discounting showed that a single dose of L-dopa (vs. placebo) 

increased impulsivity in healthy human subjects, driving choices more strongly towards immediate 

compared to delayed monetary rewards. Moreover, the study also showed that the greater choice 

impulsivity under L-dopa was associated with a corresponding increase in the striatal correlates for 

temporal discounting. The idea that L-dopa enhances choice impulsivity via increased striatal DA 

activity is further supported by several studies investigating DA medication effects in Parkinsonism. 

For example, it was shown that PD patients under DA treatment become prone to impulse control 

disorders (ICDs) like pathological gambling, compulsive shopping, or binge eating (see O'Sullivan et al., 

2009; Weintraub, 2008), and that both L-dopa and DA agonists are independently associated with the 

development of ICDs (Weintraub et al., 2010). Moreover, experimental studies in PD patients showed 

that DA treatment with L-dopa or DA agonists leads to an increase in choice impulsivity and reward-

related striatal activity (Cools, Barker, Sahakian, & Robbins, 2003; Housden, O'Sullivan, Joyce, Lees, & 

Roiser, 2010; Voon, Pessiglione et al., 2010; Voon, Reynolds et al., 2010). These effects were especially 

observed in PD patients susceptible to ICDs, suggesting that drug-induced alterations in striatal DA 

activity may play a central role in the development of impulsive behaviors in PD. In addition, animal 

studies showed that both chronic L-dopa treatment in parkinsonian rats as well as acute L-dopa 

treatment in control rats lead to an increase in impulsive behavior (Carvalho et al., 2017), the latter 

being consistent with the finding that acute L-dopa administration increases choice impulsivity in 

healthy human subjects (Pine et al., 2010). Taken together, these studies show that L-dopa 

administration enhances choice impulsivity in both healthy subjects and PD patients, presumably 

mediated by increased striatal DA release. 

The idea that increased striatal DA release promotes impulsive behavior is also supported more 

directly by human PET studies. For example, it was shown that higher trait impulsivity is associated 

with increased striatal DA release in healthy subjects, probably resulting from diminished feedback 

inhibition of DA release due to a lower D2/D3 autoreceptor availability in impulsive subjects (Buckholtz 
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et al., 2010; see also Dalley et al., 2007; Lee et al., 2009). Similarly, increased striatal DA release was 

also found in PD patients with DA medication-induced impulsive or compulsive disorders compared to 

PD patients without such disorders (Evans et al., 2006; Steeves et al., 2009). Although the exact 

mechanisms by which striatal DA release mediates impulsive behaviors are currently not understood, 

it might be assumed that the striatal DA system plays a critical role in the differential valuation of 

immediate and delayed rewards. Animal studies have shown, for example, that behavioral discounting 

is associated with a decreased striatal DA response for delayed versus immediate rewards during the 

decision process (Fiorillo, Newsome, & Schultz, 2008; Kobayashi & Schultz, 2008; Schultz, 2010) and 

have also established the causal relationship between the magnitude of the striatal DA response and 

the behavioral choice preference in intertemporal decision making (Saddoris et al., 2015). These 

studies further showed that both longer delays and lower reward magnitudes lead to a similar 

decrease in the striatal DA response, suggesting that temporal delays influence choices by reducing 

the apparent subjective value for delayed rewards (see Schultz, 2010). In line with this notion, evidence 

from human fMRI studies indicates that choosing between immediate and delayed rewards involves 

the comparison of neurally encoded subjective values within a valuation network including striatal 

regions (Kable & Glimcher, 2007; Peters & Büchel, 2011). In particular, it was shown that a greater 

preference for immediate over delayed rewards (i.e. steeper discounting) is associated with an 

increased reward-related activity in the ventral striatum, suggesting that high impulsivity may be linked 

to a striatal hypersensitivity for rewards (Hariri et al., 2006). Transferring these findings to the current 

study, it could be hypothesized that by increasing phasic striatal DA release, L-dopa might have 

enhanced the overvaluation of immediate compared to delayed rewards, thereby leading to a more 

impulsive, exploitative choice behavior. However, it should be noted that this assumption only focuses 

on L-dopa effects on the striatal DA system, while the neural correlates of temporal discounting and 

its modulation are surely more complex than that, also involving other brain regions such as the vmPFC, 

OFC, and PCC (see Kable & Glimcher, 2007; Peters & Büchel, 2011). To conclude, the findings on 

temporal discounting are largely consistent with those on explore/exploit behavior reported above, 

both supporting the view that L-dopa strengthens the positive reinforcing effect of immediate rewards 

via increased phasic DA release in the striatum, thereby fostering impulsive and exploitative choice 

behavior. 

 

6.2.1.2 L-dopa effects with respect to prefrontal DA function 

While the previous section mainly focused on potential L-dopa effects on striatal DA activity, striatal 

and prefrontal DA systems are known to strongly interact and to be both involved in explore/exploit 

behavior. While the striatal DA system has been implicated in the trade-off between exploitation and 

random exploration, the prefrontal DA system has been proposed to promote directed (uncertainty-

driven) exploration, as reviewed in the introduction (see 1.3). To briefly summarize these findings, 

genetic and pharmacological studies have shown that prefrontal DA function positively predicts 

uncertainty-driven exploration (Blanco et al., 2015; Frank et al., 2009; Kayser et al., 2015) and related 
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functions such as behavioral flexibility (e.g. Egan et al., 2001; Fallon et al., 2015; Malhotra et al., 2002) 

and risk-seeking behavior (Lancaster et al., 2012). Also, uncertainty-driven exploration was found to 

be reduced in schizophrenic patients and to negatively correlate with the severity of anhedonia, a 

negative symptom that has been linked to degraded prefrontal DA function (Strauss et al., 2011). 

Furthermore, human brain stimulation experiments point towards a causal role of the prefrontal 

cortex, especially frontopolar regions, in promoting uncertainty-driven exploration (Raja Beharelle et 

al., 2015; Zajkowski et al., 2017), although the DA specificity of these effects remains to be shown. 

In the current study, directed exploration – as expressed by the 
 parameter – has been shown to be 

reduced under L-dopa compared to placebo. Since previous research suggests that higher prefrontal 

DA function is associated with increased directed exploration, this finding might be interpreted in the 

way that L-dopa reduced directed exploration by reducing prefrontal DA activity. However, this 

interpretation seems relatively unlikely at first sight, since L-dopa, as a metabolic precursor of DA, 

might be assumed to elevate DA levels in both striatal and prefrontal regions, as it was previously 

shown in rats (Carey, Dai et al., 1995; Carey, Pinheiro-Carrera et al., 1995). Yet, these studies also 

showed that the DA increase induced by L-dopa is considerably (i.e. 50-60 times) larger in striatal than 

in prefrontal brain regions. Thus, an alternative interpretation of the findings might be that L-dopa 

reduced prefrontal DA activity relative to striatal DA, thereby leading to a corresponding shift in the 

explore/exploit trade-off towards more exploitation and less directed exploration. The assumption 

that L-dopa primarily increases striatal over prefrontal DA function is further supported by previous 

research suggesting that the drug mainly acts on the striatal level, as discussed above (see 6.2.1.1).  

To better understand how a relative shift in the striatal/prefrontal DA balance might affect 

explore/exploit behavior, it should be considered that frontostriatal interactions are believed to play 

a crucial role in regulating this trade-off. Specifically, it is assumed that uncertainty-driven exploration 

is implemented on the neural level via a frontostriatal top-down control mechanism, as already 

described in the introduction (see 1.1.4). According to this idea, the FPC tracks the relative uncertainty 

of alternative choice options and may interfere via frontostriatal connections with the striatal DA 

system to override exploitative choice tendencies and trigger exploration. Empirical support for this 

idea is provided by human brain stimulation studies, showing that the FPC plays a causal role in 

promoting exploratory behavior (Raja Beharelle et al., 2015), especially uncertainty-driven exploration 

(Zajkowski et al., 2017). Furthermore, the idea that frontostriatal interactions play a crucial role in the 

explore/exploit trade-off is also supported by a recent fMRI functional connectivity study in humans 

(Morris et al., 2016). The study showed that resting-state functional connectivity between the FPC and 

ventral striatum correlates positively with uncertainty-driven exploration as assessed with the clock 

task. Additionally, animal experiments provide more direct evidence that reward-related behavior is 

regulated by a DA-dependent frontostriatal top-down control mechanism. For instance, a PET study in 

monkeys showed that prefrontal DA depletion leads to an increase in striatal DA release and greater 

reinforcement sensitivity, i.e. an improved ability to learn from rewarding feedback (Clarke et al., 
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2014). Moreover, reinforcement sensitivity was shown to correlate with the PET measure of striatal 

but not prefrontal DA activity, suggesting that the behavioral effect was specifically mediated by 

increased striatal DA release. Similar evidence is provided by a rat study showing that PFC lesions 

induce greater impulsivity, which is in turn alleviated by striatal administration of the D2 receptor 

antagonist sulpiride, in line with a frontostriatal top-down control of impulsive behavior (Pezze, Dalley, 

& Robbins, 2009). Finally, the notion of a balanced interaction between the striatal and prefrontal DA 

system also corresponds well to the “neurochemical reciprocity between DA in the PFC and the 

striatum” (Cools & D'Esposito, 2011, p. e117), according to which prefrontal and striatal DA function 

are inversely related (e.g. Akil et al., 2003; Meyer-Lindenberg et al., 2005; Pycock, Kerwin, & Carter, 

1980; Roberts et al., 1994; see also review by Cools & D'Esposito, 2011). 

On the basis of these findings, it might be hypothesized (in a simplified way) that exploration and 

exploitation are associated with different functional brain states, characterized by a reciprocal 

relationship between striatal and prefrontal DA activity: On the one hand, a state of high phasic striatal 

versus low prefrontal DA activity, which is associated with enhanced value-driven, exploitative 

behavior. On the other hand, a state of low phasic striatal versus high prefrontal DA activity, which is 

associated with enhanced uncertainty-driven exploration. Further, it might be assumed that the shift 

between both states is adaptively regulated via frontostriatal interactions, e.g. through increased or 

decreased prefrontal top-down control. Based on this idea, a change in the relative balance between 

striatal and prefrontal DA activity should shift the explore/exploit trade-off accordingly, leading to a 

higher tendency to exploit or to explore. More specifically, a relative increase in prefrontal over phasic 

striatal DA activity (as assumed under DAT blockade, see 6.2.1.1) should favor the state in which the 

prefrontal system dominates, leading to more directed exploration and less exploitation – as observed 

by Costa et al. (2014). On the other hand, a relative increase in phasic striatal over prefrontal DA activity 

(as assumed under L-dopa) should strengthen the state in which the striatal system dominates, 

stabilizing it against prefrontal control and leading to more exploitation and less directed exploration 

– as observed in the current study.  

Consistent with this assumption, several findings on explore/exploit behavior may be interpreted in 

terms of a relative shift in the striatal/prefrontal DA balance. For instance, it was found that 

uncertainty-driven exploration is reduced in COMT Val/Val compared to Met/Met subjects (Frank et 

al., 2009), whereby the Val allele has been linked to both lower prefrontal DA levels (Bilder et al., 2004) 

and increased phasic (reward-related) striatal DA activity (Brody et al., 2006; Krugel, Biele, Mohr, Li, & 

Heekeren, 2009). Moreover, uncertainty-driven exploration was found to be reduced in schizophrenic 

patients compared to healthy controls (Strauss et al., 2011), whereby schizophrenia has also been 

linked to reduced prefrontal and increased striatal DA function (see 1.2.3; e.g. Abi-Dargham, 2004; 

Davis et al., 1991; Howes & Kapur, 2009; Lau et al., 2013; Weinstein et al., 2017). Notably, as mentioned 

above, uncertainty-driven exploration in these patients correlated negatively with anhedonia, a 

negative symptom attributed to degraded prefrontal DA function (see Abi-Dargham & Moore, 2003; 
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Brisch et al., 2014; Davis et al., 1991; Strauss et al., 2011), in line with the idea that the behavioral shift 

in the explore/exploit trade-off may directly scale with the (assumed) shift in the striatal/prefrontal DA 

balance. Also in line with the view of a reciprocal balance between both DA systems – and of particular 

interest – are the findings of a human fMRI study on risky decision making, which used a gene 

composite score across five different DA genes as a positive marker of striatal DA activity (Kohno et al., 

2016). The study showed that this positive marker of striatal DA activity was negatively correlated with 

prefrontal activity during risky decision making. Note that a similar reciprocal relationship has already 

been found in an earlier human PET study by Kohno et al. (2015), who showed that striatal D2-like 

receptor availability was positively correlated with reward-related striatal activity, but negatively with 

risk-related prefrontal activity and risky choice behavior. Interestingly, the authors interpreted these 

findings as support for the notion that “striatal dopamine signaling modulates top-down corticostriatal 

control to guide adaptive decision making” (Kohno et al., 2016, p. 701). In other words, these results 

indicate that striatal DA activity may directly influence prefrontal DA function and reduce its top-down 

control, according to a frontostriatal bottom-up mechanism. Therefore, individuals with higher striatal 

DA function may be more reward sensitive and have a less effective cortical inhibition of reward-driven 

responses, which may lead to a preference for immediate smaller gains over risky delayed ones (see 

Kohno et al., 2015). With respect to explore/exploit behavior, such a frontostriatal bottom-up 

mechanism might function to stabilize value-driven exploitation against the initiation of uncertainty-

driven exploration (i.e. risky choices). The notion that striatal DA activity can modulate prefrontal DA 

function is also supported by further research, and different neural mechanisms have been proposed 

to explain these interactions (see Cools, 2011; Duvarci et al., 2018; Kohno et al., 2015; Simpson & 

Kellendonk, 2017; Simpson, Kellendonk, & Kandel, 2010). For example, it was shown that increasing 

striatal DA activity by transient D2 receptor overexpression modulates various aspects of prefrontal 

DA signaling (Kellendonk et al., 2006; Simpson & Kellendonk, 2017), and that such striatal-to-prefrontal 

interactions might be mediated by the degree of long-range neural synchrony between VTA DA 

neurons and the PFC (Duvarci et al., 2018). Aside from neural synchrony, such interactions might also 

depend on other regulatory mechanisms within frontostriatal circuits involving, for example, 

glutamatergic and GABAergic signaling (as discussed by Kohno et al., 2015; see also Seamans & Yang, 

2004; Sesack & Grace, 2010). Based on these findings and ideas, it might be speculated that such 

frontostriatal bottom-up interactions could also occur under pharmacological stimulation of the 

striatal DA system by L-dopa, potentially even mediated by drug-induced changes in neural synchrony, 

which have been observed in response to both L-dopa and haloperidol (see below, 6.2.1.3). Hence, this 

might provide an explanation how L-dopa, by boosting striatal DA activity, could indeed have reduced 

prefrontal control and thereby uncertainty-driven exploration without actually reducing prefrontal DA 

concentrations in absolute terms. However, further research would be needed to support these ideas 

and to investigate the neural mechanism underlying such a reciprocal regulation of the explore/exploit 

trade-off. 
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In conclusion, previous research suggests that striatal and prefrontal DA fulfill different and even 

opposing functions within the explore/exploit trade-off: While the striatal DA system – especially with 

its phasic activity – promotes impulsive and exploitative behavior, the prefrontal DA system is thought 

to promote uncertainty-driven exploration via a frontostriatal top-down mechanism. Since L-dopa is 

considered to primarily enhance phasic striatal DA activity, it should shift the balance between both 

systems towards a state more strongly dominated by striatal DA, hence explaining the observed 

behavioral shift towards more exploitation and less directed exploration. Further research is needed, 

though, to elucidate the precise neural mechanisms behind these effects and to disentangle the 

differential contributions of striatal vs. prefrontal and phasic vs. tonic DA activity in the regulation of 

explore/exploit behavior. 

 

6.2.1.3 L-dopa effects with respect to further aspects of DA function 

Finally, it should be noted that the actual neural mechanism behind the observed L-dopa effects might 

be much more complex than suggested by the studies discussed so far. Previous research has shown 

that there are various other aspects of DA function, in addition to the striatal/prefrontal and 

phasic/tonic aspect, which might have contributed to the observed L-dopa effects.  

One of these aspects relates to the fact that DA signaling depends on different DA receptor subtypes, 

i.e. D1-like vs. D2-like receptors, which were shown to exert different functions in driving reward-based 

and risky decision making (e.g. Bromberg-Martin, Matsumoto, & Hikosaka, 2010; Floresco, 2013; 

Keeler, Pretsell, & Robbins, 2014; Kravitz, Tye, & Kreitzer, 2012; Simon et al., 2011; St Onge et al., 

2011). Reviewing this literature shows, however, that the reported relationships between D1/D2 

signaling and behavior are highly complex and often inconsistent between studies, not allowing to 

conclusively relate these findings to the observed L-dopa effects in the current study. For example, D1 

and D2 receptors are differentially expressed in distinct pathways within the BG circuit, which are 

assumed to play different roles in positive and negative reinforcement: a direct (“Go”) pathway, which 

predominantly expresses excitatory D1 receptors and mediates positive reinforcement, and an indirect 

(“NoGo”) pathway, which mainly expresses inhibitory D2 receptors and mediates negative 

reinforcement (see Bromberg-Martin et al., 2010; Frank et al., 2004; Frank & O'Reilly, 2006; Kravitz et 

al., 2012). In line with this notion, evidence from a human PET study (Cox et al., 2015) indicates that 

phasic striatal D1 receptor signaling correlates with positive reinforcement, whereas striatal D2 

receptor signaling relates to negative reinforcement in an inverted-U-shaped fashion. Based on these 

functional distinctions, it might be speculated that the observed increase in exploitative behavior 

under L-dopa is primarily attributable to enhanced phasic D1 receptor signaling in the direct pathway 

implicated in positive reinforcement. However, there is also evidence for an involvement of the D2 

receptor in positive reinforcement and exploitative behavior. For example, another human study 

(Eisenegger et al., 2014) found that while D2 receptor blockade does not affect the learning rate for 

positive reinforcement, it still affects choice behavior as shown by a reduced softmax 	 parameter 
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indicating less value-driven exploitation. Furthermore, also prefrontal D1 and D2 receptors have been 

linked to explore/exploit behavior, as they were shown to modulate risk/reward decision making, 

albeit in a complex and often nonlinear fashion (Floresco, 2013; Simon et al., 2011; St Onge et al., 

2011). For example, one rat study showed that D1 and D2 receptors make dissociable and partly 

complementary contributions to risk/reward judgments in decision making, from which it was 

concluded that the explore/exploit trade-off may critically depend on a “fine balance between D1/D2 

receptor activity” (St Onge et al., 2011, p. 8625). Altogether, the reported studies show that 

distinguishing D1 and D2 receptor function in different DA systems seems crucial to understand how 

DA regulates the explore/exploit trade-off on the neural level. Yet, the methodology of the current 

study does not allow to unequivocally infer how L-dopa affected signaling in the different DA receptor 

subsystems and how these changes might have contributed to the observed behavioral effects. 

Another notable aspect of DA signaling, which has been implicated in explore/exploit behavior, is the 

degree of neural synchrony within dopaminergic networks. Previous research suggests that adjacent 

DA neurons show electrical coupling, which can lead to synchronous firing within a population of DA 

neurons (see Grace et al., 2009; Grace & Bunney, 1983). Moreover, there is by now strong evidence 

that the degree of neural synchrony within the BG network depends on nigrostriatal DA levels 

(Bergman et al., 1994, 1998; Fountas & Shanahan, 2017; Plenz & Kital, 1999) and is modulated by DA 

drugs like L-dopa and haloperidol (Brown et al., 2001; Burkhardt, Constantinidis, Anstrom, Roberts, & 

Woodward, 2007; Ruskin et al., 1999; Yael et al., 2013; see also reviews by Brittain & Brown, 2014; 

Hammond, Bergman, & Brown, 2007; Quiroga-Varela et al., 2013). Crucially, it has also been suggested 

that the degree of neural synchrony within different DA networks might play an important role in the 

regulation of explore/exploit behavior. For instance, a simulation experiment on a spiking BG network 

model found that striatal DA levels regulate explore/exploit behavior by changing the level of neural 

synchrony within the BG circuit (see 1.3.1; Mandali et al., 2015). More specifically, this study showed 

that high (vs. intermediate) striatal DA levels were associated with a more exploitative choice behavior 

in a restless four-armed bandit task, which was mediated by decreased neural synchrony. Assuming 

that the L-dopa condition (vs. placebo) in the current study corresponds to the high (vs. intermediate) 

striatal DA condition in the simulation experiment, the predictions from the BG model are broadly in 

line with the finding that L-dopa increased exploitation in the bandit task. Note, however, that both 

findings are not directly comparable, as the simulation study focused specifically on the subcortical 

substrates of explore/exploit behavior and used a choice model that only captures random but not 

directed exploration. Aside from this study, striatal DA was furthermore shown to modulate the degree 

of neural synchrony not only within the BG circuit, but also in DA networks extending to prefrontal 

cortical regions. For example, a recent transgenic mice study (Duvarci et al., 2018) showed that striatal 

DA hyperfunction leads to alterations in the long-range neural synchrony between VTA DA neurons 

and the PFC, which are associated with an impairment in PFC-dependent cognitive functions. As 

discussed above, this finding points to a potential mechanism by which striatal DA could influence 



133 
 

prefrontal DA function in order to control the explore/exploit trade-off from “bottom-up”, which might 

have contributed to the observed shift in explore/exploit behavior under L-dopa. Yet, within the 

confines of the current study design, it cannot be answered if and how drug-induced changes in neural 

synchrony might have contributed to the observed behavioral effects. 

In conclusion, various aspects of DA signaling may have been involved in producing the observed  

L-dopa effect in the current study, and further research is needed to examine their potential roles in 

the explore/exploit trade-off. Based on the current knowledge, however, most evidence supports the 

(simplified) conclusion stated above, which attributes the observed L-dopa effect mainly to increased 

phasic striatal DA activity and a relative shift in the striatal/prefrontal DA balance, resulting altogether 

in a strengthening of value-driven exploitation against uncertainty-driven exploration. 

 

6.2.2 Haloperidol effects 

In contrast to L-dopa, haloperidol was not found to substantially affect explore/exploit behavior across 

subjects. As shown by cognitive modeling, the drug did not shift the group-level 
 or 	 parameter 

relative to placebo. On the subject level, however, haloperidol was found to elicit a complex pattern 

of mixed drug effects on both the 
 and 	 parameter. Additionally, haloperidol showed a tendency to 

reduce the group-level variance for the 
 parameter (ΛY) relative to placebo and L-dopa. The following 

discussion of these results will first focus on haloperidol effects on the striatal level, before potential 

drug effects on the prefrontal level will be considered. 

 

6.2.2.1 Haloperidol effects with respect to striatal DA function 

The absence of a clear behavioral effect under haloperidol is partly surprising, given previous findings 

on the dopaminergic modulation of explore/exploit behavior as discussed in the preceding section (see 

6.2.1). As a potent D2 receptor antagonist, haloperidol would be expected to reduce DA transmission 

and thereby modulate DA-dependent behaviors, including the trade-off between exploitation and 

exploration. According to the initial hypothesis, a haloperidol-induced reduction of tonic striatal or 

prefrontal DA function would be expected to decrease exploratory behavior relative to placebo (see 

1.4.2). Yet, the findings discussed above (see 6.2.1.1) also allow for an alternative hypothesis, 

according to which haloperidol might exhibit an effect opposite to L-dopa and reduce reward-related 

(phasic) striatal activity, thereby reducing exploitation and facilitating exploration. Consistent with the 

latter assumption, previous experimental studies have shown that haloperidol and other D2 receptor 

antagonists reduce reward-driven exploitative behavior in healthy human subjects (Eisenegger et al., 

2014; Pessiglione et al., 2006; Pleger et al., 2009). For example, it was found that haloperidol (1 mg), 

compared to L-dopa (100 mg), reduces exploitative choice behavior and striatal reward prediction 

error signals in a reinforcement learning task with monetary gains and losses (Pessiglione et al., 2006). 

This drug effect was specifically observed for positive reinforcement (“gain condition”), but not for 

negative reinforcement (“loss condition”). To provide further insights into the nature of this effect, the 
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study combined the fMRI results with a cognitive modeling approach, as described in more detail 

above (see 6.2.1.1). They inferred from this analysis that haloperidol reduced the apparent value of a 

monetary reward from ₤ 1.0 (i.e. the placebo reference value) to a value of ₤ 0.71, which could in turn 

explain the reduced exploitative choice behavior under haloperidol observed in their study. Hence, 

these results suggest that haloperidol, by decreasing striatal DA activity, reduces the apparent value 

of rewards and thus the tendency to exploit these rewards. Consistent with these findings, another 

human fMRI study showed that both reward-driven choice behavior and reward-related striatal 

activity are enhanced under L-dopa and reduced under haloperidol in a tactile decision making task 

(Pleger et al., 2009). Likewise, also the D2 receptor antagonist sulpiride was shown to reduce 

exploitative choice behavior and reward-related striatal activity in healthy human subjects (Eisenegger 

et al., 2014; McCabe, Huber, Harmer, & Cowen, 2011). For example, Eisenegger et al. (2014) found 

that sulpiride impairs exploitative choice behavior in the gain domain, but not in the loss domain, 

consistent with the above haloperidol findings in the same behavioral paradigm (Pessiglione et al., 

2006). In sum, these findings support the notion that haloperidol – opposite to L-dopa – decreases 

reward-related striatal DA activity and positive reinforcement, thereby shifting the trade-off between 

exploitation and exploration towards the latter. Yet, no such behavioral (or neural) effects have been 

observed under haloperidol treatment in the current study (see also fMRI discussion in section 6.3.2), 

raising the question how the absence of such effects might be explained. 

Importantly, however, numerous studies yielded results contrary to the findings reported above, 

showing that a single dose of haloperidol (or other D2 antagonists) does not always produce the 

expected antidopaminergic effects. In fact, several studies found either no clear haloperidol effect on 

the behavioral or neural level, or even reported that haloperidol paradoxically enhances rather than 

impairs DA signaling and DA-dependent behaviors. For the following discussion, it is worth to consider 

some of these studies in more detail.  

To begin with, a large number of animal studies have found that acute low doses of haloperidol and 

other D2 antagonists actually stimulate DA signaling, contrary to the antidopaminergic effects 

observed under chronic and high-dose treatment with these drugs (as reviewed by Frank & O'Reilly, 

2006; Knutson & Gibbs, 2007; Starke et al., 1989). It is generally assumed that these opposite drug 

effects result from the fact that D2 agents can act on both post- and presynaptic D2 receptors: While 

blockage of postsynaptic D2 receptors reduces DA signaling and exerts antidopaminergic effects, the 

blockage of presynaptic D2 autoreceptors is thought to stimulate (phasic) DA signaling due to reduced 

feedback inhibition of DA release (see Ford, 2014; Frank & O'Reilly, 2006; Schmitz et al., 2003). 

Crucially, it has been shown that low doses of D2 agents primarily exhibit presynaptic effects in vivo, 

potentially reflecting the higher binding affinity of pre- versus postsynaptic D2 receptors or the larger 

D2 receptor reserve at presynaptic sites (see Ford, 2014; Knutson & Gibbs, 2007; Meller, Bohmaker, 

Namba, Friedhoff, & Goldstein, 1987; Neve & Neve, 1997). Indeed, evidence from numerous in vivo 

microdialysis and voltammetry studies in rodents and nonhuman primates support this notion, 
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showing that single low doses of haloperidol and other D2 antagonists potentiate phasic DA release in 

the striatum (e.g. Garris et al., 2003; Jaworski, Gonzales, & Randall, 2001; Kuroki, Meltzer, & Ichikawa, 

1999; Moghaddam & Bunney, 1990; Pehek, 1999; Schwerdt et al., 2017; Westerink et al., 2001; 

Westerink, 2002; Wu et al., 2002; Youngren, 1999), whereas single low doses of D2 agonists diminish 

it (e.g. Kennedy, Jones, & Wightman, 1992; Stamford, Kruk, & Millar, 1991; see also review by Starke 

et al., 1989). Similarly, pharmacological MRI studies in animals have shown that amphetamine-induced 

increases in striatal blood volume are potentiated by low doses of D2 antagonists (Chen, Choi, 

Andersen, Rosen, & Jenkins, 2005; Schwarz et al., 2004) and blunted by low doses of D2 agonists (Chen 

et al., 2005), consistent with the notion of a presynaptic drug mechanism. Also in humans, acute low 

doses of haloperidol were found to increase resting cerebral blood flow in the striatum of healthy 

subjects, in line with a DA-stimulating drug effect (Handley et al., 2013). Together, these findings 

suggest that due to presynaptic drug actions, D2 agents can affect DA signaling in the exact opposite 

way than commonly assumed when taking only postsynaptic mechanisms into account (as in the initial 

hypothesis, see above). 

In line with these findings, several human studies have reported “paradoxical” drug effects from single 

low doses of haloperidol or other D2 antagonists, which are clearly in accordance with the notion of a 

presynaptic DA-stimulating drug mechanism. For example, it was shown that an acute dose of 2 mg 

haloperidol, i.e. the same dose as used in the current study, enhances positive reinforcement (Go 

learning), but impairs negative reinforcement (NoGo learning) relative to placebo in healthy subjects 

(Frank & O'Reilly, 2006). Interestingly, this haloperidol effect showed exactly the same pattern as the 

behavioral effect seen in medicated PD patients compared to healthy controls with the same task 

(Frank et al., 2004), suggesting that low doses of haloperidol can exert similar DA-stimulating effects 

as the DA medication used for PD therapy (i.e. L-dopa and DA agonists). Furthermore, these 

paradoxical haloperidol effects were specifically observed in a subgroup of subjects showing an 

increase in prolactin levels under haloperidol, which provides an indirect measure of the degree to 

which the drug increased DA levels via presynaptic mechanisms (see Frank & O'Reilly, 2006; further 

discussed below with regard to baseline-dependent drug effects). Conclusively, the authors attribute 

these paradoxical haloperidol effects to a presynaptically mediated increase in phasic DA signaling in 

the BG, which facilitates Go relative to NoGo learning. In addition, they claim that the low dose of 2 mg 

haloperidol is unlikely to have produced significant postsynaptic effects, which should only be 

observed at higher drug doses and/or chronic administration. They support this claim by arguing that 

a substantial blockade of postsynaptic D2 receptors would be expected to produce sedative and 

Parkinson-like side effects, leading to a slowing of reaction times (see Sanberg, 1980). Yet, a slowing 

of reaction times has not been observed in their study or other studies using similar low doses of D2 

antagonists (e.g. Mehta, Manes, Magnolfi, Sahakian, & Robbins, 2004; Mehta, Sahakian, McKenna, & 

Robbins, 1999; Peretti et al., 1997), including the current one. Consistent with these haloperidol 

findings, it was shown that low doses of the D2 antagonist sulpiride enhance reward versus 
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punishment learning in healthy human subjects, which was associated with a drug-induced increase in 

striatal prediction error signaling (van der Schaaf et al., 2014). Likewise, another study found that the 

same low dose of sulpiride enhances reinforcement learning in healthy subjects relative to placebo 

(Mehta, Hinton, Montgomery, Bantick, & Grasby, 2005). Furthermore, also low doses of amisulpride, 

another D2 antagonist, have been shown to enhance reward-based decision making and striatal 

prediction error signaling in healthy volunteers (Jocham, Klein, & Ullsperger, 2011). In contrast, low 

doses of the D2 agonist pramipexole were found to impair rather than enhance reward responsiveness 

and reward-based decision making in healthy participants (Pizzagalli et al., 2008). In sum, all these 

behavioral and neural drug findings support the notion that D2 agents, when acutely administered at 

low doses, primarily act via presynaptic mechanisms, thereby leading to seemingly paradoxical effects 

in which DA signaling is stimulated by DA antagonists and reduced by D2 agonists. 

In addition to these paradoxical drug effects, many studies also found that low doses of haloperidol 

(i.e. 1-2 mg) either produced no significant drug effect across subjects, or that a clear drug effect was 

only present in a subgroup of subjects, consistent with the findings of the current study. For example, 

a null effect of haloperidol was reported by Pine et al. (2010), who conducted a human fMRI 

experiment with a similar placebo-controlled, counterbalanced, within-subject design as employed in 

the current study. In that study, they did not find a significant difference between haloperidol (1.5 mg) 

and placebo on impulsive behavior or its neural correlates, whereas L-dopa (150 mg) vs. placebo 

showed clear effects on both the behavioral and neural level (see also 6.2.1.1). In addition, also the 

study of Pessiglione et al. (2006), which examined the effects of haloperidol (1 mg) and L-dopa (100 mg) 

on reinforcement learning in a placebo-controlled, between-subject design, did not find a significant 

behavioral effect of haloperidol relative to placebo. In their study, only the statistical tests of 

haloperidol against L-dopa yielded significant effects on choice behavior. Moreover, comparing both 

of their drug conditions separately against placebo reveals that L-dopa exhibited a much stronger (and 

statistically significant) effect on choice behavior than haloperidol, which suggests that the reported 

effect between both drugs was primarily driven by a strong L-dopa effect, as observed in the current 

study. In addition to these null findings, other studies showed that the effects of low doses of 

haloperidol and other D2 agents strongly depend on individual baseline measures (see below and 

1.2.4). Crucially, this baseline-dependency might also explain why some studies found no overall drug 

effect across subjects or only observed drug effects in a specific subgroup of subjects. For instance, the 

aforementioned study by Frank and O'Reilly (2006) showed that the extent to which haloperidol affects 

reinforcement learning strongly depends on the individual working memory span, which is mostly 

taken as an indicator of baseline DA levels (but see below). After median splitting their sample, they 

found a significant haloperidol effect only for subjects with low working memory span, but no effect 

for subjects with high working memory span. Similar span-dependent drug effects were also found for 

other D2 antagonists and agonists on both the behavioral and neural level (e.g. Gibbs & D’Esposito, 

2005; Kimberg et al., 1997; van der Schaaf et al., 2014; see also review by Cools & D'Esposito, 2011). 
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Interestingly, it has been proposed by Frank and O'Reilly (2006) that these span-dependent differences 

might not necessarily reflect individual differences in baseline DA levels, as commonly assumed (see 

1.2.5; e.g. Cools & D'Esposito, 2011), but rather individual differences in the sensitivity to D2 receptor 

stimulation. In line with this idea, pharmacogenetic studies have shown that the extent to which D2 

drugs affect behavior depends on genetic differences in the D2 receptor system (e.g. Cohen, Krohn-

Grimberghe, Elger, & Weber, 2007; Eisenegger et al., 2014; Kirsch et al., 2006). These studies showed, 

for instance, that D2 drugs affect reward-related brain activity and behavior specifically in a subgroup 

of human subjects carrying the A1 allele of the Taq1A polymorphism, which is associated with a 

substantial reduction in the availability of striatal D2 receptors (Gluskin & Mickey, 2016; Jönsson et al., 

1999; Pohjalainen et al., 1998; Thompson et al., 1997). Hence, these findings demonstrate that the 

sensitivity to D2 drug effects strongly depends on individual differences in the D2 receptor system, for 

which the working memory span might be (partly) predictive. Furthermore, it was also proposed that 

such individual differences in the D2 receptor system might strongly influence the extent to which a 

specific dose of a D2 drug acts on pre- versus postsynaptic receptors (see Cools et al., 2009; Frank & 

O'Reilly, 2006; van der Schaaf et al., 2014). For instance, Frank and O'Reilly (2006) hypothesized that 

low-span subjects may have a higher sensitivity to D2 receptor stimulation and are therefore more 

susceptible to presynaptic drug effects from low doses of D2 agents than high-span subjects, consistent 

with the behavioral results of their experiment. Further research is needed, though, to actually reveal 

how D2 receptor sensitivity and other factors determine the extent to which a specific drug dose acts 

on pre- versus postsynaptic receptors and how these cellular actions relate to individual differences in 

the magnitude and direction of behavioral drug effects. Taken together, the reported findings indicate 

that various factors influence the specific pattern of D2 drug effects, including the exact drug, the 

dosage, the examined behavior, and individual baseline measures, which might explain the high 

variability of drug effects within and across studies and also the occasional null findings observed in 

some studies, including the current one. 

Based on these findings, it may be concluded that the behavioral null effect of haloperidol in the 

current study can be explained from a number of factors. First, it might be assumed that the 

administered dose of 2 mg haloperidol was too low to substantially block postsynaptic D2 receptors 

and produce the expected antidopaminergic effects, e.g. a reduction in phasic striatal DA signaling and 

exploitation across subjects (according to the later hypothesis, see above). Note that the administered 

dose of 2 mg is in the range of clinically-prescribed introductory doses and was kept that low in order 

to minimize the risk of any side effects. However, it has been argued in the literature that D2 agents at 

such a low dose should primarily exert presynaptic effects, as largely supported by evidence from 

animal and human studies (see above; e.g. Frank & O'Reilly, 2006; Jocham et al., 2011; Mehta et al., 

2005; Pizzagalli et al., 2008; van der Schaaf et al., 2014; although see Eisenegger et al., 2014; 

Pessiglione et al., 2006; Pleger et al., 2009). Also consistent with this assumption is the observed null-

effect of haloperidol on the sEBR, which was used as a positive maker of striatal DA function and should 
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have been reduced under antidopaminergic drug conditions, as seen for example in schizophrenic 

patients medicated with haloperidol or other D2 antagonists (see 1.2.5; e.g. Adamson, 1995; Bartkó et 

al., 1990; Karson, Bigelow, Kleinman, Weinberger, & Wyatt, 1982; see also Jongkees & Colzato, 2016; 

Kaminer et al., 2011). Second, it might be assumed from previous research that this low dose of 

haloperidol also exerted presynaptic DA-stimulating effects to some extent, which might have 

counteracted any postsynaptic drug effects across subjects, leading to the overall behavioral null 

finding. In particular, it might be assumed that this overall null effect actually reflects a mixture of pre- 

and postsynaptic effects on the individual level. This assumption is supported by the observation that 

while no clear drug effect was found for haloperidol on the group level, drug effects of different 

magnitude and direction were indeed found on the subject level for most of the observed variables, 

including the exploration bonus parameter 
 and the sEBR. Third, it might be assumed that the extent 

to which haloperidol acted on pre- versus postsynaptic receptors in different subjects may be (in part) 

determined by the individual D2 receptor system at baseline, as proposed by Frank and O'Reilly (2006; 

see above). Interestingly, the observation that haloperidol (but not L-dopa) reduced the variance of 

explore/exploit behavior across subjects (i.e. the ΛY parameter) might potentially reflect such a 

baseline-dependency of drug effects. Notably, the pattern of drug effects on the subject level showed 

a general tendency for haloperidol to increase the 
 parameter in low-
 subjects (i.e. low 
 at placebo) 

and decrease it in high-
 subjects. From this pattern, it could be speculated that individual differences 

in the placebo 
 parameter might indicate, to some extent, differential baseline levels of striatal DA 

function (analogous to the working memory span in the study of Frank and O'Reilly, 2006), which might 

in turn influence a subject’s sensitivity for pre- versus postsynaptic D2 drug effects. For example, it 

might be speculated that high-
 subjects, who exploit less and might accordingly have lower striatal 

DA levels at baseline, are specifically susceptible to the DA-stimulating effects of haloperidol, leading 

to more exploitation (
 reduction) in these subjects. In contrast, low-
 subjects with already high 

striatal DA levels at baseline might rather show DA-antagonizing effects under haloperidol, leading to 

less exploitation (
 increase) in these subjects. Still, no such baseline-dependency was observed when 

taking the working memory span as a predictor of baseline striatal DA function (see 6.4), in contrast to 

several studies showing span-dependent D2 drug effects (see above; e.g. Frank & O'Reilly, 2006; Gibbs 

& D’Esposito, 2005; Kimberg et al., 1997; van der Schaaf et al., 2014). Hence, it remains unknown if the 

observed pattern of haloperidol effects on the subject level indeed reflects some sort of baseline-

dependency and, if so, what the neural underpinnings of this effect might be. 

Finally, it should be noted that the points discussed so far still leave out several aspects of DA function 

that might have contributed to the observed pattern of haloperidol effects. These factors include, but 

are not limited to, prefrontal DA function (see below), the level of phasic vs. tonic DA activity, and the 

ratio of D1 vs. D2 receptor signaling. For instance, it is possible that aside from the presynaptic increase 

in phasic DA release, haloperidol might block postsynaptic D2 receptors to some extent even at low 

doses, thereby leading to a net increase in (phasic) postsynaptic D1 receptor signaling (as discussed by 
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Kahnt & Tobler, 2017; Shi, Smith, Pun, Millet, & Bunney, 1997; van der Schaaf et al., 2014). Crucially, 

such a shift in the balance between D1/D2 and phasic/tonic signaling may critically influence the 

behavioral trade-off between exploration and exploitation (e.g. Beeler, 2012; Burke et al., 2018; Frank, 

2005; St Onge et al., 2011). However, it is currently not known how exactly these aspects influence 

explore/exploit behavior and how they are modulated by D2 agents like haloperidol on an individual 

level. Future studies will be necessary to resolve these issues, for example by employing a combination 

of methods such as DA pharmacology, genotyping, and neuroimaging (see e.g. Cohen et al., 2007; 

Kirsch et al., 2006). 

 

6.2.2.2 Haloperidol effects with respect to prefrontal DA function 

Since the discussion above mainly focused on drug effects on the striatal level, the question remains 

open if and how haloperidol affects prefrontal DA function and how such prefrontal drug actions might 

have contributed to the observed pattern of behavioral drug effects in the current study. However, the 

existing literature provides mixed answers to these questions. 

On the one hand, a number of findings support the view that single low doses of haloperidol 

predominantly affect striatal DA, while leaving prefrontal DA function relatively unaffected, as 

previously discussed by Frank and O'Reilly (2006). First, the expression of D2 receptors in the human 

brain is several times lower in the PFC than in the striatum (Camps, Cortés, Gueye, Probst, & Palacios, 

1989; Hall et al., 1994; Hurd et al., 2001), and it is reasonable to assume that higher doses of D2 agents 

are required to functionally affect prefrontal activity states (see Frank & O'Reilly, 2006; Seamans & 

Yang, 2004; Trantham-Davidson, Neely, Lavin, & Seamans, 2004). In particular, D2 autoreceptors were 

found to be relatively rare in the PFC and other mesocortical projection areas, with some autoreceptor 

subtypes being completely absent at these sites (Bannon, Wolf, & Roth, 1983; Ford, 2014; Lammel et 

al., 2008; Roth, 1984; Wolf & Roth, 1990), suggesting that presynaptic effects from low doses of 

haloperidol are less likely to occur in prefrontal regions. Indeed, several animal experiments have 

shown that acute low doses of haloperidol selectively stimulate DA release in the striatum, while 

leaving prefrontal DA levels relatively unaffected (e.g. Kuroki et al., 1999; Pehek, 1999; Rollema, Lu, 

Schmidt, Sprouse, & Zorn, 2000; Volonté, Monferini, Cerutti, Fodritto, & Borsini, 1997; Westerink, 

2002). Moreover, human PET and fMRI studies have provided evidence that D2 antagonists modulate 

task-related cerebral blood flow and functional connectivity specifically in striatal but not in prefrontal 

regions (Honey et al., 2003; Mehta et al., 2003). Additionally, D2 drugs were shown to affect working 

memory processes only when administered systemically, but not when applied locally to the PFC 

(Arnsten, Cai, Steere, & Goldman-Rakic, 1995; Luciana, 1998; Sawaguchi, 2001; see also Yang & 

Seamans, 1996). In contrast, prefrontal administration of D1 drugs produces clear effects on working 

memory processes (Durstewitz & Seamans, 2002; Sawaguchi, 2001; Sawaguchi & Goldman-Rakic, 

1991; Williams & Goldman-Rakic, 1995), consistent with evidence that D1 receptors are much more 
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prevalent in the PFC than D2 receptors (Hall et al., 1994; Hurd et al., 2001; Lidow, Goldman-Rakic, 

Gallager, & Rakic, 1991). 

On the other hand, a number of studies have shown that haloperidol and other D2 drugs can 

significantly influence prefrontal function. First, in vivo microdialysis studies in rats have found that 

acute systemic administration of haloperidol can stimulate DA release also in the PFC (Hernandez & 

Hoebel, 1989; Moghaddam & Bunney, 1990; Westerink et al., 2001), contrary to the findings reported 

above. However, these prefrontal drug effects were shown to strongly depend on the administered 

dose in a complex fashion. For example, a single dose of 0.5 mg/kg haloperidol was shown to 

significantly increase prefrontal DA levels (Hernandez & Hoebel, 1989; Moghaddam & Bunney, 1990), 

whereas no such effect was found with a higher dose of 1.0 mg/kg (Pehek, 1999) or a lower dose of 

0.1 mg/kg (Moghaddam & Bunney, 1990). Yet, the higher dose of 1.0 mg/kg was still shown to increase 

amphetamine-induced DA release in both striatal and prefrontal regions (Pehek, 1999), suggesting that 

haloperidol at this dose may selectively enhance phasic (stimulus-dependent) but not tonic DA release 

in the PFC. Aside from these microdialysis results, behavioral studies in rats showed that D2 drugs can 

produce clear effects on different cognitive functions when selectively applied into the PFC (e.g. Druzin, 

Kurzina, Malinina, & Kozlov, 2000; Floresco, Magyar, Ghods-Sharifi, Vexelman, & Tse, 2006; St Onge et 

al., 2011; Zeeb, Floresco, & Winstanley, 2010; see also reviews by Floresco, 2013; Floresco & Magyar, 

2006), contrary to the working memory findings reported above (e.g. Sawaguchi, 2001). Yet again, 

these prefrontal D2 drug effects were found to depend in a complex manner on the exact drug dosage 

and examined behavior (see Floresco, 2013). For example, while the D2 antagonist eticlopride, injected 

into the PFC, was shown to affect risky choice behavior and set shifting only at high doses (1.0 µg; 

Floresco et al., 2006; St Onge et al., 2011), the same drug was found to affect impulsive choice behavior 

most strongly at medium doses (0.3 µg; Zeeb et al., 2010). Similarly, other D2 drugs applied to the PFC 

were found to modulate different aspects of working memory performance in a dose-dependent 

manner, with some aspects already affected at low doses and others only at higher doses (Druzin et 

al., 2000). Finally, a human study showed that a single oral dose of 3 mg haloperidol administered to 

healthy subjects not only increases resting-state blood flow in the striatum, but also decreases it in 

prefrontal regions relative to placebo (Handley et al., 2013; see also Bartlett et al., 1994). It has been 

proposed, though, that this change in prefrontal blood flow might actually represent a secondary effect 

that results from primary drug actions on the subcortical level (see Handley et al., 2013). In particular, 

it was suggested that low doses of haloperidol might stimulate DA signaling primarily in regions with 

high D2 receptor density, such as the striatum, leading to downstream modulatory processes in brain 

areas innervated by these D2-dense regions, such as the PFC. In line with this assumption, it was shown 

that direct injection of the D2 antagonist eticlopride into the VTA of rats affects DA levels not only 

locally, but also in striatal and prefrontal brain regions in a complex dose-dependent fashion, 

presumably reflecting downstream regulatory effects within ascending mesolimbic and mesocortical 

DA pathways (Chen & Pan, 2000). In addition, a single dose of haloperidol (1 mg/kg) was shown to 
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reduce resting-state functional connectivity between midbrain and prefrontal regions in the rat brain, 

suggesting that prefrontal haloperidol effects may indeed arise from drug-induced network changes 

within ascending DA pathways (Gass et al., 2013). Taken together, the reported findings show that D2 

drug effects in the PFC, as in the striatum, are highly variable and critically depend on a number of 

factors, including the exact drug, the dosage, the way of administration (e.g. local or systemic), and 

the specific behavioral or neural outcome measure under study.  

Based on the reported literature, it might be concluded that the single dose of 2 mg haloperidol used 

in the current study could in principle have affected DA function in the PFC via direct or indirect 

mechanisms, albeit presumably to a lesser extent than in the striatum. Yet, various factors may have 

influenced the individual expression of such prefrontal drug actions, thereby contributing to the 

complex pattern of behavioral drug effects observed on the subject level. For instance, individual 

baseline differences in the (prefrontal) D2 receptor expression (see e.g. Cohen et al., 2007; Eisenegger 

et al., 2014; Kirsch et al., 2006) or in the functional connectivity within ascending DA pathways (see 

Gass et al., 2013) may have influenced the extent to which haloperidol affected prefrontal DA function 

in different subjects. While it could be speculated that the observed subject-level haloperidol effects 

on directed exploration (i.e. the 
 parameter) may actually reflect prefrontal drug actions to some 

part, these effects might likewise result from pre- or postsynaptic drug actions on the striatal level and 

a corresponding shift in the relative striatal/prefrontal DA balance (see 6.2.1.2). Hence, it is not directly 

inferable from the behavioral results (and without clear neural drug effects, see 6.3.2) if and how 

haloperidol actually modulated prefrontal DA function in the current study. Future research is 

necessary to further investigate the mechanisms by which D2 drugs influence specific aspects of DA 

function in different brain regions and how these drug actions affect explore/exploit behavior 

dependent on individual variations in the D2 receptor system. 

 

6.3 fMRI results 

6.3.1 Neural signatures of exploration and exploitation  

First, the neural signatures of exploratory and exploitative choices were examined across all subjects 

and drug conditions. Consistent with previous research, it was found that the pattern of brain activity 

markedly differed between both types of choices.  

On the one hand, exploratory choices were associated with higher activity in the FPC, IPS, dACC, and 

AI, replicating the results of previous human fMRI studies (Addicott et al., 2014; Daw et al., 2006; 

Laureiro-Martínez et al., 2014, 2015). Note that while the dACC and AI were not reported by Daw et 

al. (2006), this might be explained by the much smaller sample size and lower power of this study 

compared to the later fMRI studies. A detailed elaboration on the functional roles of these brain 

regions for exploratory decision making was already provided in the introduction (see 1.1.4). To briefly 

summarize, a growing body of evidence supports the view that the FPC and IPS are part of a 
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frontoparietal control network underlying exploratory decision making. In this network, the FPC may 

track information relevant for exploratory decisions, such as the expected reward and uncertainty of 

unchosen choice options, and trigger a behavioral switch from an exploitative to an exploratory mode 

whenever the accumulated evidence supports such a decision (see Badre et al., 2012; Boorman et al., 

2009, 2011; Cavanagh et al., 2012). The IPS, in contrast, may act as an interface between these frontal 

areas and motor output areas, in which behavioral responses like button presses are initiated to 

implement exploratory actions (see Boorman et al., 2009; Daw et al., 2006; Laureiro-Martínez et al., 

2015). The dACC and AI, on the other hand, are though to form a salience network involved in detecting 

and orienting towards salient stimuli (Menon, 2015; Uddin, 2015), which might also subserve 

attentional and behavioral switching from an exploitative to an exploratory mode. Furthermore, both 

regions have been widely implicated in risky decision making and in mediating the effect of emotional 

arousal on decision making, two aspects which are further discussed below (see 6.3.3). Aside from 

these regions, also the bilateral thalamus, cerebellum, and supplementary motor area showed greater 

activation during exploration compared to exploitation, mostly consistent with the findings of previous 

fMRI studies (see 1.1.4; Addicott et al., 2014; Daw et al., 2006, supplement; Laureiro-Martínez et al., 

2014, 2015). 

Regarding the neural signatures of exploitative choices, previous findings have been more mixed (see 

1.1.4), but are still largely consistent with the results of this study. First, exploitative choices were 

associated with greater activation in the vmPFC and OFC, replicating the findings of previous work 

(Laureiro-Martínez et al., 2014, 2015). While Daw et al. (2006) did not find any brain regions with 

significantly higher activity for exploitative compared to exploratory choices, they showed that activity 

in both the OFC and vmPFC correlated with variables underlying value-based exploitative decision 

making. More specifically, they found activity in the medial OFC to correlate with the magnitude of the 

obtained reward, and activity in the vmPFC and medial/lateral OFC to correlate with the choice 

probability of the chosen option, the latter reflecting the expected reward of that option relative to 

the unchosen ones (see also Boorman et al., 2009). Hence, the observation of a value-related activity 

in the OFC and vmPFC during exploitative behavior agrees well with evidence from numerous human 

neuroimaging studies, which implicate these regions in encoding reward and guiding value-based 

decision making, as already reviewed in the introduction (see 1.1.4; e.g. Bartra et al., 2013; 

Grabenhorst & Rolls, 2011; Kringelbach & Rolls, 2004; O'Doherty, 2004, 2011; Peters & Büchel, 2010). 

In addition, greater activation during exploitative trials was also observed in the PCC, angular gyrus, 

precuneus, and hippocampus, partly replicating the results of earlier studies (Addicott et al., 2014; 

Laureiro-Martínez et al., 2014, 2015). Together with the medial PFC, these regions are hypothesized 

to form a large-scale brain system referred to as the “default mode network” (DMN; Andrews-Hanna, 

Smallwood, & Spreng, 2014; Buckner, Andrews-Hanna, & Schacter, 2008; Raichle et al., 2001). The 

DMN was shown to be active during conscious rest and mind wandering, i.e. when the individual is 

focused on internal (self-generated) thoughts rather than on the external world or on goal-oriented 
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tasks. In contrast, activity in the DMN decreases when the brain is engaged in attention-demanding 

cognitive tasks, i.e. when cognitive resources are needed for efficient task performance (Buckner et 

al., 2008; Mazoyer et al., 2001; McKiernan, Kaufman, Kucera-Thompson, & Binder, 2003). Hence, the 

observed activity pattern for exploitative choices might indicate that subjects were engaged in task-

independent thoughts (i.e. mind-wandering) during periods of exploitation, in which the attentional 

demand of the bandit task should have been relatively low. In any case, it can be assumed that 

attentional task demands during periods of exploitation, in which the same choice was repeated every 

few seconds, were considerably lower than during phases of exploration, in which different choice 

options need to be sampled and evaluated to decide which option to choose next. Accordingly, this 

lower task demand during exploitation compared to exploration might explain why exploitative trials 

were associated with higher activity in regions of the DMN. Interestingly, the salience network (i.e. 

dACC and AI) has been proposed to play a key role in switching brain activity from introspective 

functions of the DMN to externally focused, task-based functions (Bressler & Menon, 2010; Menon, 

2015), consistent with the finding that regions of this salience network showed higher activity during 

exploratory trials (see above). Aside from this interpretation in terms of lower task demands, certain 

regions of the DMN may also serve other, more specific functions during exploration. The angular 

gyrus, for example, has been shown to play a crucial role in number comparisons (Göbel, Walsh, & 

Rushworth, 2001), and its activation during exploitation may also be related to the numerical 

monitoring of point (reward) values (see Addicott et al., 2014). The PCC is considered to be part of the 

brain’s valuation system and might hence also be involved in encoding reward-related information 

during exploitation (Bartra et al., 2013; Grueschow, Polania, Hare, & Ruff, 2015; Hayden, Nair, McCoy, 

& Platt, 2008; Lebreton, Jorge, Michel, Thirion, & Pessiglione, 2009). Moreover, increased hippocampal 

activity during exploitation may reflect processes of episodic memory retrieval involved in reward-

based decision making (see Bornstein, Khaw, Shohamy, & Daw, 2017). More specifically, it has been 

proposed that subjects may use memories for individual instances of past choices (i.e. episodic 

samples) to predict the outcome of the current decision, and that the hippocampus could play a crucial 

role in this process (Bornstein et al., 2017; Bornstein & Norman, 2017; see also Shadlen & Shohamy, 

2016; Wimmer & Shohamy, 2012). Finally, exploitative trials were also associated with higher activity 

in the bilateral temporal lobes, including the middle and superior temporal gyri, largely replicating the 

results of Addicott et al. (2014) and Laureiro-Martínez et al. (2014, 2015). While these temporal lobe 

regions are mostly known for auditory, language, and semantic processing (Price, 2010), they were 

also shown to form a subcomponent of the DMN involved in the retrieval of (social) semantic and 

conceptual knowledge (Andrews-Hanna et al., 2014), which might explain their activation during 

exploitative trials (see above). Finally, aside from the neural signatures of exploratory and exploitative 

choices, the reward prediction error signal was found to positively correlate with activity in the 

bilateral ventral striatum, consistent with numerous previous studies (e.g. Abler, Walter, Erk, 

Kammerer, & Spitzer, 2006; Bray & O'Doherty, 2007; Gläscher, Daw, Dayan, & O'Doherty, 2010; Hare, 
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O'Doherty, Camerer, Schultz, & Rangel, 2008; O'Doherty et al., 2003, 2004; see also review by Dreher, 

2013). 

In a next step, it was analyzed whether the subdivision of exploratory trials into directed explorations 

(following the highest exploration bonus) and random explorations (not following the highest 

exploration bonus) revealed different neural substrates for both types of exploration. Across all 

subjects and drug conditions, it was found that random exploration was associated with higher activity 

in a small region of the right FPC compared to directed exploration. Yet, after accounting for the 

unequal number of trials in both exploration conditions, directed and random exploration showed no 

longer a significant difference in their neural activity patterns. At first glance, these findings are 

unexpected, given that previous studies have associated FPC function with uncertainty-driven 

exploration (see 1.1.4; e.g. Badre et al., 2012; Cavanagh et al., 2012; Zajkowski et al., 2017), whereas 

random exploration has been hypothesized to rely on subcortical substrates (e.g. Aston-Jones & 

Cohen, 2005; Humphries et al., 2012; Ishii et al., 2002; Mandali et al., 2015). According to these studies, 

an increased FPC activity should have been observed during directed compared to random exploration, 

not vice versa. However, recent evidence suggests that also random exploration might be driven by 

uncertainty (Gershman, 2018) and could hence also rely on prefrontal structures to track this 

uncertainty and to control the level of choice stochasticity based on this metric. In addition, Mansouri 

et al. (2017) recently proposed a functional model of the human FPC, in which distinct subregions of 

the FPC play different functional roles in exploratory behavior. More specifically, they suggest that the 

lateral FPC may be involved in directed exploration, which entails an online tracking of relevant choice 

alternatives in order to potentially re-engage one of these alternatives as replacement for the currently 

exploited strategy. In contrast, the medial FPC may be involved in undirected (random) exploration, 

for which only the ongoing strategy is monitored to potentially redistribute cognitive resources away 

from this strategy when it is deemed irrelevant. Hence, the above finding of a small FPC subregion with 

higher activity during random than directed exploration would therefore be consistent with this 

functional model. Finally, it should be noted that a clear distinction of choices into random and directed 

explorations is difficult for several reasons. First, the cognitive model applied here (Bayes-SM+EP) nests 

the exploration bonus within the softmax function, i.e. it adds randomness also to uncertainty-driven 

choice behavior, making it difficult to conceptually separate both exploration strategies. Also, since 

the exploration bonus influences choice behavior parametrically, a choice can still be uncertainty-

driven to some extent, even if it does not follow the highest exploration bonus. Furthermore, the 

aspect that also random exploration may be driven by uncertainty (see above; Gershman, 2018) is not 

captured by the cognitive model used in this study, which might therefore not describe subjects’ 

exploration strategies appropriately. Hence, the failure to observe distinct neural correlates for 

random and directed exploration might also be attributable to these factors, and further studies on 

this topic should use behavioral paradigms and cognitive models that allow for a better distinction 

between both exploration strategies, such as the horizon task (Wilson et al., 2014).  
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Finally, a third analysis was performed to examine the neural correlates of two model-based quantities 

that are tightly involved in explore/exploit behavior: the expected reward (=̂@AB) and uncertainty 

(�<@AB) of the chosen bandit. It was found that the neural correlates of the expected reward and 

uncertainty largely overlapped with the brain activity patterns for exploitative and exploratory choices, 

respectively. These findings are not surprising, given the high positive correlation between expected 

reward and exploitation on the one hand, and between uncertainty and exploration on the other hand. 

Still, these correlations should be taken into account when interpreting neural signatures of 

exploration and exploitation. The first correlation reflects the fact that exploitation is most commonly, 

and also here, defined as choosing the option with the highest expected reward (for alternative 

definitions see Mehlhorn et al., 2015). Accordingly, the neural signatures of exploitation should overlap 

with brain regions involved in encoding expected rewards, consistent with the finding that the vmPFC 

and OFC were more active during exploitative trails (see above). The second correlation results from 

the fact that subjects usually select the option with the highest expected reward more often, and 

hence have more uncertainty about the alternative options, i.e. when they explore. Accordingly, the 

neural signatures of exploration should overlap with brain regions involved in encoding reward 

uncertainty, for which the FPC, but also the AI and dACC are likely candidates (see 1.1.4; e.g. Badre et 

al., 2012; Cavanagh et al., 2012; Christopoulos et al., 2009; Dreher, 2013; Singer et al., 2009). In fact, 

this second aspect is also tightly related to the criticism that reward and uncertainty (information) are 

confounded in the bandit task (see Wilson et al., 2014), and alternative paradigms have been proposed 

to remove this confoundation (see 1.1.2). In the horizon task (Wilson et al., 2014), for example, each 

block starts with several forced choice trials, by which the level of information (uncertainty) can be 

manipulated independently of the expected reward. In the “observe or bet” task (Tversky & Edwards, 

1966), on the other hand, reward and information are entirely dissociated, as exploit (bet) trials only 

yield reward but no information, and explore (observe) trials only information but no reward. 

Interestingly, the neural signatures of explore and exploit trials in this task only include a subset of the 

activated brain regions observed in the current study. In particular, Blanchard and Gershman (2018) 

found greater activation during exploratory trials only in the AI, dACC, and thalamus (but not in the 

FPC or IPS), and during exploitative trials only in the vmPFC. Hence, these mixed findings demonstrate 

that the neural correlates of explore/exploit decisions clearly depend on the behavioral paradigm in 

which they are studied and how it conceptualizes exploration and exploitation in terms of reward and 

information. While the classical bandit paradigm has been criticized for its reward/information 

confound, it might actually represent real-world explore/exploit problems quite appropriately, which 

often come with a coupling of reward and information (i.e. higher expected reward and lower 

uncertainty during exploitation compared to exploration; see examples in 1.1.1). Still, alternative 

paradigms, which entirely dissociate reward and information or remove their confoundation, might 

also be needed to further disentangle the different aspects underlying explore/exploit decisions and 

their distinct neural correlates. 
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6.3.2 Brain activity differences between drug conditions (planned fMRI analysis) 

After examining the neural signatures of explore/exploit decisions across all drug conditions, it was 

tested whether these signatures were modulated by the DA drugs. However, no significant drug effects 

were found on the brain activity patterns for exploratory choices (overall, directed, or random), nor on 

the neural correlates of exploitative choices or the reward prediction error. In the following, these 

findings are first discussed with respect to the L-dopa condition, before the haloperidol condition will 

be regarded. 

For the L-dopa condition, the null results on the neural level are especially surprising, given the finding 

of a clear behavioral L-dopa effect on directed exploration across subjects (see 5.2.2 to 5.2.4). 

According to the initial hypothesis, DA drug effects on exploratory behavior should be associated with 

drug-induced changes in the activity of brain regions implicated in exploratory choices, foremost the 

FPC and IPS, for which no evidence was found in the fMRI data. Yet, deviating from this hypothesis, 

the observed L-dopa effect on explore/exploit behavior could also be assumed to rely on an enhanced 

phasic DA release and prediction error signaling in the striatum, as discussed above (see 6.2.1.1). 

Accordingly, L-dopa would be expected to increase the magnitude of the striatal reward prediction 

error signal, as previously shown by Pessiglione et al. (2006). However, this effect could not be 

replicated in the current study. A number of factors might have contributed to the failure to detect 

any significant L-dopa effects on the neural correlates of explore/exploit decisions or the reward 

prediction error. First, this failure may simply be due to a lack of statistical power provided by the 

sample size of 31 subjects (see Button et al., 2013; Szucs & Ioannidis, 2017; Turner, Paul, Miller, & 

Barbey, 2018). In fact, recent empirical work suggests that in a typical fMRI approach testing for within-

group differences in brain activation, sample sizes of at least 40 should be acquired to reliably detect 

regions with high effect sizes, while sample sizes closer to 80 are needed to reliably detect regions with 

medium-sized effects (Geuter, Qi, Welsh, Wager, & Lindquist, 2018; see also Turner et al., 2018). 

Furthermore, the timing of the drug administration might also be a crucial factor to consider, given the 

narrow pharmacokinetic time window of L-dopa (see 1.2.3). Previous studies have shown that the 

mean time point at which L-dopa reaches peak plasma concentration (tmax) usually lies between 30 and 

60 min in healthy human subjects (e.g. Baruzzi et al., 1987; Crevoisier, Hoevels, Zürcher, & Da Prada, 

1987; Iwaki et al., 2015; Keller et al., 2011; Nyholm et al., 2012; see also reviews by Contin & Martinelli, 

2010; Hälbig & Koller, 2007; Khor & Hsu, 2007). Hence, the time schedule of the current experiment 

was adjusted to this short tmax: The bandit task started 30 min and ended 80 min after L-dopa 

administration, such that peak plasma concentrations were approximately reached halfway through 

the task. However, it is also conceivable that L-dopa effects on phasic DA activity might rather peak 

with some delay to the tmax, considering that L-dopa needs to pass the blood-brain barrier (by active 

transport), be converted to DA and packaged into synaptic vesicles to contribute to phasic DA signaling. 

Also, the tmax parameter is usually measured after over-night fasting, whereas subjects in the current 

study did not fast before the experiment to avoid fasting-related effects on explore/exploit behavior. 
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This aspect might also have reduced or delayed L-dopa effects in this study, as it was shown that food 

intake can significantly influence L-dopa pharmacokinetics due to slower gastric emptying and 

increased competition (between L-dopa and dietary amino acids) for active transport across the 

intestine and blood-brain barrier (Baruzzi et al., 1987; Contin & Martinelli, 2010; Nutt, Woodward, 

Hammerstad, Carter, & Anderson, 1984; Wang et al., 2017). Notably, the study of Pessiglione et al. 

(2006), in which L-dopa was found to significantly increase striatal prediction error signaling, followed 

a different time schedule for the drug administration. There, the behavioral task only started one hour 

after L-dopa administration, which could have been more suitable to capture the time interval in which 

L-dopa exerts its maximal neural and behavioral effects. Finally, it should be considered that the BOLD 

signal does not directly measure DA release, and that the precise physiological relationship between 

DA release and BOLD signal are currently unknown (see Brocka et al., 2018; Knutson & Gibbs, 2007). 

Based on evidence from pharmacological MRI studies, it has been suggested that striatal DA release 

may increase the BOLD signal via a D1-dependent mechanism, according to which D1 receptor 

activation changes the postsynaptic membrane potential and engages metabolic processes, which in 

turn lead to increased oxygen utilization followed by an elevated local BOLD response (Knutson & 

Gibbs, 2007). However, a recent optogenetic study in rats suggests that canonical BOLD responses in 

the reward system may actually mainly represent the activity of non-dopaminergic neurons, such as 

glutamatergic projecting neurons (Brocka et al., 2018). Moreover, the authors conclude from their 

findings that mesolimbic DA release and concurrent BOLD signal changes in regions of the reward 

network may not even be causally related. Given these findings, it cannot be directly inferred from the 

absence of a significant L-dopa effect on the BOLD signal that DA release was not affected by the drug. 

It is also conceivable that L-dopa might have enhanced striatal DA release to some extent without 

actually triggering a (detectable) BOLD signal change.  

For the haloperidol condition, the null findings on the neural level are less surprising, given the lack of 

a clear behavioral haloperidol effect across subjects (see 5.2.2 and 5.2.3). As discussed before, it might 

be assumed that the low dose of haloperidol used in this study exerted a mixture of both presynaptic 

(DA-stimulating) and postsynaptic (DA-antagonizing) effects across subjects, presumably explaining 

why no overall haloperidol effects were found on the behavioral and neural level. Similarly, another 

human fMRI study (Pine et al., 2010) also failed to observe any significant low dose (1.5 mg) haloperidol 

effect on reward-related striatal activity or choice behavior across subjects. The authors discuss  

a number of factors which might have contributed to these null findings, including potential  

DA-stimulating effects due to the low dosage and the drug’s relatively unspecific and widespread 

pharmacological effects (see 1.2.3). On the other hand, these null findings contrast with the results of 

Pessiglione et al. (2006), who showed that haloperidol (1 mg) reduces the magnitude of the striatal 

reward prediction error signal and exploitative behavior relative to L-dopa. Yet, it cannot be inferred 

from these results to what extent haloperidol alone affected striatal signaling in their study, as they 

report haloperidol effects only in relation to the L-dopa condition (since the placebo condition was not 
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double-blinded). From their behavioral data, it might be assumed that the reported effect was mainly 

driven by the drug actions of L-dopa and not haloperidol (see 6.2.2.1). Hence, it cannot be excluded 

that the inconsistent haloperidol findings between their study and the current one are actually 

attributable to differences in the L-dopa effects between both studies, for which potential reasons 

have been discussed above (e.g. the timing of drug administration). In addition, the failure to find a 

significant haloperidol effect on the neural level may also be due to a lack of statistical power, 

especially since the administered haloperidol dose was relatively low and might only have produced 

subtle changes in DA signaling. Also, these subtle changes in DA signaling could have been too weak to 

actually trigger a (detectable) BOLD signal change at all, as already discussed above. Future studies 

should consider using higher doses of haloperidol to achieve more consistent antidopaminergic effects 

from postsynaptic D2 receptor blockade across subjects, or other DA antagonists with a lower side 

effect profile. 

 

6.3.3 Drug effects on uncertainty-related brain activity (exploratory fMRI analysis) 

Aside from the points discussed so far, the null findings on the neural level might also indicate that the 

planned fMRI analysis simply failed to capture the specific aspect of brain function modulated by the 

drugs. For example, it is possible that L-dopa reduced directed exploration not by affecting the neural 

signatures of explore/exploit decisions or the reward prediction error, but instead by modulating some 

other aspect of DA-dependent brain function involved in the explore/exploit trade-off. Specifically, it 

was hypothesized that L-dopa might affect the neural correlates involved in behavioral switching from 

exploitation to exploration in response to accumulating uncertainty. Thereby, L-dopa might delay the 

time point at which uncertainty-driven exploration is triggered, resulting in fewer directed explorations 

over time. This alternative hypothesis was tested with an additional model-based fMRI analysis, in 

which trial-by-trial estimates for the overall uncertainty, quantified by the summed standard deviation 

over all bandits, were used as a parametric regressor in the GLM.  

First, it was found that activity in the bilateral insula and dACC positively correlated with the overall 

uncertainty in the placebo condition, suggesting that these regions may either track the overall 

uncertainty directly or encode an affective or motivational state that increases with accumulating 

uncertainty. Either way, these signatures could be involved in triggering exploratory behavior under 

conditions of high overall uncertainty, potentially by facilitating attentional and behavioral switching 

between the currently exploited option and salient, more uncertain choice alternatives (see 1.1.4). 

Indeed, previous research on the role of the insula and ACC in human decision making supports these 

assumptions. For instance, numerous studies have found greater activation in these regions during 

risky decision making, i.e. decision making with an uncertain outcome, and have implicated both 

regions in encoding outcome uncertainty or risk (Christopoulos et al., 2009; Critchley et al., 2001; 

Fitzgerald et al., 2010; Fukunaga et al., 2018; Huettel et al., 2005; Preuschoff et al., 2006, 2008; Rudorf 

et al., 2012; see also reviews by Bach & Dolan, 2012; Dreher, 2013; Singer et al., 2009). Furthermore, 
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the insula is considered to play a key role for integrating interoceptive signals about bodily states into 

conscious feelings that influence decision making under risk and uncertainty (Craig, 2002, 2009; 

Critchley, 2005; Critchley & Harrison, 2013; Naqvi & Bechara, 2009; Singer et al., 2009). In particular, 

evidence from a human fMRI study (Xue et al., 2010) suggests that the insula might signal the urge for 

taking a risk, consistent with its critical role in signaling other feelings of urgency (Brody et al., 2002; 

Garavan et al., 2000; Lerner et al., 2009; Pelchat, Johnson, Chan, Valdez, & Ragland, 2004; see also 

review by Naqvi & Bechara, 2009). Specifically, this study found that decision making after refraining 

from a previous risk (i.e. gamble) was more risky and more likely to activate the insula and ACC. 

Moreover, this increase in insular activity was positively correlated with the increase in risk taking after 

refraining from a risk both within and across subjects, and also with an individual’s personality trait of 

urgency. With respect to the current study, these findings might implicate that foregoing a previous 

chance to explore could increase the urge to explore and the extent of exploratory decisions in the 

subsequent trial, as mediated by the insula and ACC. As further discussed by Xue et al. (2010), the 

insula and ACC may both be part of an “integral neural network that underlies the effect of emotional 

arousal on risky decision-making” (p. 715). Accordingly, the co-activation of both regions has been 

observed in various emotional tasks (see Craig, 2009), and it has been proposed that while the insula 

might mediate the feeling of an emotion, the ACC might mediate the motivation associated with an 

emotion and hence be directly involved in the initiation of behaviors (Craig, 2002, 2009; see also 

Hampton & O'Doherty, 2007). In addition, the ACC has been implicated in signaling the salience of each 

new piece of information for predicting future outcomes (Behrens et al., 2007; Rushworth & Behrens, 

2008) and may hence be involved in guiding attention and actions towards choice options that are 

especially uncertain or informative. Consistent with this idea, a human fMRI study (Christopoulos et 

al., 2009) found that activity in the dACC not only increased with risk (i.e. outcome uncertainty), but 

was directly linked to subjects’ choice behavior in a monetary gambling task, as it positively predicted 

the probability of a risky choice. These findings also fit well to a large body of research implicating the 

ACC in cognitive control processes (Kerns et al., 2004; Niendam et al., 2012; Ochsner & Gross, 2005; 

Ridderinkhof, van den Wildenberg, Segalowitz, & Carter, 2004) and in the underlying cost-benefit 

evaluations that determine which action to select next and how much control to allocate to this action 

(Shenhav, Botvinick, & Cohen, 2013; Shenhav, Cohen, & Botvinick, 2016). Furthermore, the ACC is also 

considered to play a crucial role in monitoring response conflict – which should increase with the 

overall uncertainty – and in triggering attentional and behavioral changes which serve to reduce 

conflict in subsequent performance (Botvinick, Cohen, & Carter, 2004; Kerns et al., 2004; van Veen & 

Carter, 2002). Finally, both the ACC and insula project to the striatum (Chikama, McFarland, Amaral, & 

Haber, 1997; Haber & Knutson, 2010; Kunishio & Haber, 1994) and have been suggested to directly 

modulate striatal reward signals and reward-related behavior (Behrens et al., 2007; Botvinick, 

Huffstetler, & McGuire, 2009; Jones, Minati, Harrison, Ward, & Critchley, 2011; Shenhav et al., 2013, 

2016; Walton, Kennerley, Bannerman, Phillips, & Rushworth, 2006; see also Elston & Bilkey, 2017). For 

instance, evidence from a human fMRI study (Jones et al., 2011) suggests that feelings of urgency, as 
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represented in the insula, may directly interfere with striatal representations of expected reward to 

influence risk/reward decision making. Accordingly, it might be speculated that uncertainty-related 

activity in the insula and ACC, as observed in the current study, could directly interfere with the 

subcortical DA substrates of value-driven choice behavior to facilitate switching between exploitation 

and exploration. Taken together, these findings largely support the assumption that both the insula 

and dACC are tightly involved in triggering exploration under circumstances of high overall uncertainty. 

The insula might thereby signal an urge to explore, which grows with accumulating uncertainty and 

encourages subsequent exploration, whereas the dACC might subserve cognitive control processes 

that guide attention and behavioral responses towards salient, uncertain choice alternatives.  

Importantly, it was also found that this uncertainty-related activity in the insula and dACC was reduced 

under L-dopa compared to placebo, potentially explaining why subjects showed less directed 

exploration under L-dopa. More specifically, it might be speculated from these findings that subjects 

in the L-dopa condition felt a lower urge to explore under conditions of high overall uncertainty and 

were less drawn towards uncertain choice alternatives, hence they stayed longer at the currently 

exploited option. Moreover, it was found that uncertainty-related activity in the bilateral insula was 

also reduced under haloperidol compared to placebo. However, these haloperidol effects on insular 

activity were not associated with a corresponding shift in the explore/exploit trade-off on the 

behavioral level across subjects (see 6.2.2). Also, an additional fMRI regression analysis found no 

association between the subject-specific L-dopa or haloperidol effects on uncertainty-related brain 

activity (i.e. the BOLD correlate of overall uncertainty) and the subject-specific drug effects on directed 

exploration (i.e. the 
 parameter). Hence, it remains unknown how exactly these DA drug effects on 

the neural level correspond to behavioral changes in the explore/exploit trade-off. Also, it should be 

noted that both drugs were found to affect activity in partly different subregions of the insular cortex 

(i.e. left/right, anterior/posterior), whereas it is not clear what functional roles these different 

subregions may play in the neural response to uncertainty and the regulation of explore/exploit 

behavior. Finally, it remains unknown by what mechanism L-dopa and haloperidol might have affected 

these signals in the insula and ACC. Previous research has shown that both regions receive DA 

projections from the midbrain (Berger, Gaspar, & Verney, 1991; Narita et al., 2010; Ohara et al., 2003), 

express D1 and D2 receptors (Gaspar, Bloch, & Moine, 1995; Hurd et al., 2001; Richfield, Young, & 

Penney, 1989), and that their function is modulated by DA and DA drugs (e.g. Burkey, Carstens, & 

Jasmin, 1999; Coffeen et al., 2008, 2010; López-Avila, Coffeen, Ortega-Legaspi, del Angel, & Pellicer, 

2004; Narita et al., 2010; Schweimer & Hauber, 2006; see also reviews by Assadi, Yücel, & Pantelis, 

2009; Coffeen, Ortega-Legaspi, & Pellicer, 2012; Gogolla, 2017). Hence, it is possible that L-dopa and 

haloperidol directly modulated DA transmission – and thereby the BOLD signal – in these cortical 

regions. However, a drug-induced increase in DA release by L-dopa or haloperidol (assuming 

presynaptic haloperidol effects) should have increased rather than decreased the BOLD signal in these 

regions (see Knutson & Gibbs, 2007), conflicting with the reported findings. Moreover, human studies 



151 
 

have shown that the expression of D1 and D2 receptors is much higher in the striatum than in the 

insula and ACC (Hall et al., 1994; Hurd et al., 2001), and both L-dopa and haloperidol are considered to 

primarily exert their effects on the striatal level (as discussed above, see 6.2). Hence, it seems more 

likely that these drugs affected uncertainty-related activity in the insula and ACC indirectly by 

modulating DA transmission on the striatal level. More specifically, it might be assumed that 

information about reward uncertainty is initially encoded on the striatal level and then transmitted to 

cortical structures to be integrated with other decision parameters for guiding behavior (see Haber & 

Knutson, 2010; Kennerley, Walton, Behrens, Buckley, & Rushworth, 2006; Rushworth & Behrens, 2008; 

Shenhav et al., 2013). Indeed, a number of studies in humans and nonhuman primates have provided 

evidence that the striatal DA system codes both the expected value and uncertainty (i.e. variance) of 

reward via spatially and temporally distinct signals (Dreher, 2013; Dreher, Kohn, & Berman, 2006; 

Fiorillo, Tobler, & Schultz, 2003; Preuschoff et al., 2006; Schultz et al., 2008; see also Linnet et al., 2012; 

Rudorf et al., 2012). For instance, a human fMRI study (Preuschoff et al., 2006) has shown that during 

reward anticipation in a monetary gambling task, initial BOLD activation in the striatum and putamen 

correlates positively with expected reward, whereas delayed BOLD activation in the striatum and 

midbrain shows an inverted-U relationship with reward uncertainty. The notion that the midbrain and 

striatal DA system codes reward uncertainty according to an inverted-U relationship is also supported 

by evidence from single cell recordings in monkeys (Fiorillo et al., 2003; Schultz et al., 2008) and human 

PET imaging (Linnet et al., 2012). Given these findings, it might be interesting to reexamine the fMRI 

data of the current study, as they could potentially reveal striatal BOLD correlates of reward 

uncertainty and a modulation of these correlates by the DA drugs. 

Taken together, while this exploratory fMRI analysis only revealed weak DA drug effects on 

uncertainty-related brain activity, these effects still point to an interesting hypothesis about how  

L-dopa could have affected explore/exploit behavior. To empirically validate these ideas, future studies 

should more closely examine the role of the insula and ACC in triggering exploration in response to 

accumulating uncertainty and further investigate how DA might be involved in this process. 

 

6.4 Inverted-U analysis 

One additional aim of this study was to test whether DA drug effects on explore/exploit behavior were 

modulated by the individual DA baseline (indexed by the sEBR and WMC), as predicted by the inverted-

U hypothesis of DA. However, the current study found no evidence for such a relationship between 

the DA baseline measures and DA drug effects on explore/exploit behavior. Still, one should be 

cautious to interpret this finding as clear evidence against the inverted-U hypothesis in general for 

several reasons.  

First, this finding contrasts with a large body of research supporting the inverted-U hypothesis (see 

1.2.4; reviewed by Cools & D'Esposito, 2011; Floresco, 2013), some of these studies even assessing 
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baseline DA functions more directly with PET imaging (Cools et al., 2008; Landau et al., 2009). 

Moreover, it should also be noted that despite this evidence, the inverted-U hypothesis of DA remains 

relatively vague in its predictions and is therefore rather difficult to test and falsify. For example, it 

remains unclear how to construe the exact shape and turning point (optimum) of the inverted-U 

function, especially since it has been suggested that these features may vary between different tasks, 

cognitive functions, and individual subjects (see Cools et al., 2009; Cools & D'Esposito, 2011; Fallon et 

al., 2015; Wiegand et al., 2016). Furthermore, it is not clear to which specific aspect(s) of DA function 

and which cognitive domains this hypothesis actually applies. For example, animal studies suggest that 

the inverted-U function specifically describes the relationship between prefrontal D1 receptor activity 

and working memory performance, whereas the relation between other DA aspects and cognitive 

functions may follow different functions (see Floresco, 2013; Floresco & Magyar, 2006). Hence, it 

cannot be unequivocally concluded from the data of the current study if they generally speak against 

the inverted-U hypothesis, or if this hypothesis simply not applies to the specific aspect of DA function 

and behavior under study.  

Aside from these points, it should also be considered that the current study has a number of 

limitations, which might have contributed to the failure to observe an inverted-U effect in the data. 

First, the sample size of 31 subjects may have been too small to provide enough power for the 

statistical tests performed on account of the inverted-U hypothesis, i.e. the test for an inverse 

quadratic relationship in the baseline (placebo and pilot) data and the test for a group difference in DA 

drug effects between subjects with low vs. high DA baseline measures. To detect these inverted-U 

effects, it is critical to have a subject sample with sufficient variability in the DA baseline measures, 

ideally also including extreme values at both ends of the curve, which might require a much larger 

sample size than used here. In relation to this point, it has been argued (Slagter et al., 2012) that 

healthy subjects may display only a relatively restricted range in baseline DA levels during resting 

conditions, making it more difficult to observe inverted-U effects in these samples. A further limitation 

of this study relates to the observation that the distribution of sEBR values was strongly left-skewed 

across subjects, with only few high-sEBR subjects in the sample. This aspect proves particularly 

problematic when splitting the sample into low- and high-sEBR groups to test for DA baseline effects, 

which also relates to the aforementioned problem of how to define the turning point of the inverted-

U curve: On the one hand, one might define the turning point as the median value of the sample, which 

is the typical approach when testing for DA baseline effects (see review by Jongkees & Colzato, 2016). 

While median splitting provides similar group sizes, it also entails the problem that the position of the 

turning point heavily depends on the distribution of baseline values in the sample and may hence be 

ill-defined if this distribution is strongly skewed. In the current study, for example, the sEBR median 

value of 11.2 was much closer to the smallest (5.4) than to the largest (38.4) observed sEBR value in 

the sample. Alternatively, one might define the turning point as the midpoint between the smallest 

and largest observed sEBR value and split the sample at this point (here: 21.9). However, when using 
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this approach in the current study, only three subjects remained in the high-sEBR group, also providing 

no reliable basis for statistical inference. A larger sample size or the pre-screening of subjects with 

respect to their DA baseline values (e.g. sEBR or WMC) may circumvent such problems by providing a 

testing sample with a more even and wide-ranged distribution of these values to facilitate testing for 

inverted-U effects.  

Aside from these limitations, the failure to observe an inverted-U effect in the current study might also 

be explained in terms of poor DA proxy measures. While the sEBR has been extensively used as a proxy 

for DA function in animals and humans, many of these studies have also yielded conflicting results (see 

1.2.5; reviewed by Jongkees & Colzato, 2016). For example, some studies have found that the sEBR is 

sensitive to pharmacological modulation of the DA system in healthy humans (e.g. Blin, Masson, 

Azulay, Fondarai, & Serratrice, 1990; Cavanagh et al., 2014), whereas other studies have found no such 

effects (e.g. Ebert et al., 1996; Mohr et al., 2005; van der Post, de Waal, de Kam, Cohen, & van Gerven, 

2004; see also Jongkees & Colzato, 2016). In accordance with the latter, the present study has found 

no DA drug effects on the sEBR with either L-dopa or haloperidol. Furthermore, recent PET 

experiments in humans have raised some doubt about the validity of the sEBR as a (positive) predictor 

of DA, as they have found either no or even a negative relationship between the sEBR and different 

aspects of central DA function (Dang et al., 2017; Sescousse et al., 2018). For the WMC, the available 

evidence is overall more limited than for the sEBR, as fewer studies have used this measure as a DA 

proxy (see 1.2.5). While some studies have found that the working memory span predicts individual 

differences in DA drug effects on cognitive performance, they also yielded opposing results with 

respect to the direction of these effects. For example, while two studies found that the DA agonist 

bromocriptine improves working memory performance in low-span subjects, but impairs it in high-

span subjects (Gibbs & D’Esposito, 2005; Kimberg et al., 1997), two other studies found the opposite 

effect with the DA agonist pergolide (Gibbs & D’Esposito, 2006; Kimberg & D’Esposito, 2003). To 

reconcile these mixed findings, it has been proposed that baseline effects of the working memory span 

may depend on a number of factors, including the specific DA function targeted by the drug (D1 vs. 

D2), the site of modulation (striatal vs. frontal), and the behavioral outcome measure under study 

(Cools & D'Esposito, 2011; see also Fallon et al., 2015; Kimberg & D’Esposito, 2003). Yet, the proposed 

complexity of interactions between these different factors further complicates empirical testing of 

inverted-U effects with the WMC. Also, direct evidence for the assumption that the WMC predicts 

central DA function in humans remains relatively sparse to date (Cools et al., 2008; Landau et al., 2009). 

Moreover, for both proxies, WMC and sEBR, it is not yet clear which specific aspect(s) of DA function 

they predict and why, i.e. by what neural mechanism. Given this uncertainty, it is also conceivable that 

these proxies reflect a specific aspect of DA function, which is however not the critical determinant for 

the inverted-U effect with respect to a studied behavior. For example, previous research suggests that 

the inverted-U curve specifically describes the relationship between prefrontal D1 receptor function 

and working memory performance (see above; e.g. Fallon et al., 2015; Floresco, 2013; Floresco & 
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Magyar, 2006), whereas the sEBR and WMC may rather reflect certain aspects of striatal DA function, 

such as striatal D2 receptor availability (see Groman et al., 2014; Jongkees & Colzato, 2016) and striatal 

DA synthesis capacity (Cools et al., 2008; Landau et al., 2009), respectively. In conclusion, it cannot be 

ruled out that the DA proxies used in this study either failed to validly measure baseline DA function, 

or specifically measured an aspect of DA function which was not predictive for the behavioral outcome 

measure under study.  

Finally, it should be considered that the explore/exploit trade-off describes a very complex behavior, 

which differs from the behavioral outcome measures that have usually been used to study the 

inverted-U hypothesis. Previous studies have mostly examined inverted-U effects on behavioral 

variables for which an “optimal performance” (i.e. good or bad performance) can be more readily 

defined, such as accuracies and reaction times in working memory tasks (e.g. Frank & O'Reilly, 2006; 

Gibbs & D’Esposito, 2005, 2006; Mehta et al., 2000), or perseverative errors in set shifting tasks (e.g. 

Frank & O'Reilly, 2006; Kimberg et al., 1997). However, it is theoretically not clear what level of directed 

or random exploration may be “optimal” (see 1.1.1; Cohen et al., 2007) and how to describe 

explore/exploit behavior in terms of an optimum curve. Accordingly, the model-based variables used 

here to quantify exploratory choice behavior (	 and 
) may therefore not be appropriate dependent 

variables in the inverted-U analysis. On the other hand, alternative (model-free) performance 

measures like the overall payout may be too crude to reflect a DA-specific cognitive function, 

explaining why also no inverted-U effects could be observed on these variables.  

Taken together, although the results of the current study do not support the inverted-U hypothesis of 

DA, a number of limitations have been discussed that may have contributed to the observed null 

findings. Future studies should try to overcome these limitations, e.g. by larger sample sizes and/or 

direct PET assessment of baseline DA function, in order to further refine the inverted-U hypothesis and 

show if it also applies to (certain aspects of) explore/exploit behavior. 

 

6.5 Cognitive model comparison 

A further aim of this study was to quantitatively compare different cognitive models of learning and 

decision making for their predictive accuracy in the examined explore/exploit paradigm. In the 

following, the results of this model comparison are first discussed with respect to the applied learning 

rules, before the different choice rules are considered in more detail. 

 

6.5.1 Learning rules 

Two different learning rules were used to describe subjects’ learning process in the bandit task: a 

simple reinforcement learning rule (Delta rule) and a more complex Bayesian learner rule. With regard 

to these learning rules, the model comparison showed that the Bayesian learner outperformed the 

Delta rule for each of the applied choice models. This superiority of the Bayesian learner may be 
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attributed to the fact that this model offers, in many ways, a more elaborate description of the learning 

process than the simple Delta rule and might thereby capture the complexity of human behavior more 

appropriately. First, while both models are routed on the same error-driven learning principle, the 

Bayesian learner assumes that subjects additionally track the variance (uncertainty) of their reward 

expectation, which is not represented in the Delta rule. In line with this assumption, several 

neuroimaging studies have shown that the human brain indeed tracks trial-by-trial changes in reward 

uncertainty as encoded in different brain regions, including the FPC, ACC, insula, and striatum (e.g. 

Badre et al., 2012; Cavanagh et al., 2012; Critchley et al., 2001; Dreher et al., 2006; Fukunaga et al., 

2018; Huettel et al., 2005; Preuschoff et al., 2008; Rudorf et al., 2012; Yoshida & Ishii, 2006; see also 

reviews by Bach & Dolan, 2012; Dreher, 2013). Second, this additional tracking of uncertainties can be 

seen as a prerequisite for the implementation of more sophisticated choice strategies for directed 

exploration, as evidently employed by humans (e.g. Cogliati Dezza et al., 2017; Wilson et al., 2014). For 

example, if directed exploration is implemented via an exploration bonus, this bonus can be directly 

calculated from the trial-by-trial uncertainty estimates provided by Bayesian learning, whereas Delta 

learners would need to approximate this uncertainty by the use of simple heuristics (see Dayan & 

Sejnowski, 1996; Speekenbrink & Konstantinidis, 2015; Sutton, 1990). Indeed, previous neuroimaging 

studies suggest that humans use such trial-by-trial uncertainty estimates derived from Bayesian 

learning, as coded in frontal brain regions, to guide directed exploration (Badre et al., 2012; Cavanagh 

et al., 2012; see also Boorman et al., 2009). Third, the Bayesian learner implements a more efficient 

update algorithm than the Delta rule, since it dynamically adjusts its learning rate from trial to trial 

according to the current level of uncertainty. Thereby, error-driven learning is high when reward 

predictions are uncertain (i.e. during exploration), but decreases when predictions become more 

certain (i.e. during exploitation). In fact, it was shown that this update algorithm (Kalman filter) of the 

Bayesian learner model represents the optimal mean-tracking rule for the Gaussian type of restless 

bandit problem implemented in the current study (in terms of minimal mean squared errors; see 

Anderson & Moore, 1979; Kalman, 1960; Kalman & Bucy, 1961). Based on these points, it seems 

reasonable to assume that the Bayesian learner model captures the actual reward learning process as 

implemented in the human brain more appropriately than the simpler Delta rule, in line with the model 

comparison results of the present study. 

On the other hand, previous model comparison studies have provided mixed evidence for the question 

which of these models captures human learning more accurately. For example, Speekenbrink and 

Konstantinidis (2015) compared the Bayesian learner and Delta rule in combination with various choice 

rules in a variant of the restless four-armed bandit task with both gains and losses and changing 

volatilities (diffusion rates). A comparison of all cognitive models across subjects showed that the 

performances of both learning rules were relatively matched, which a slight advantage for the Delta 

rule. However, when they compared model fits between subjects, they found that the best-fitting 

model varied between subjects and that the largest number of participants were best fitted by one of 
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the models incorporating the Bayesian learner. Furthermore, another human study (Payzan-LeNestour 

& Bossaerts, 2011) compared the model fits of a Bayesian learning rule and Delta rule (both combined 

with the softmax choice rule) in a restless six-armed bandit task, in which reward probabilities of all 

arms unexpectedly changed (“jumped”) during the task. Similar to the current study, their Bayesian 

learner model assumes that subjects track both the expected value and uncertainty of reward on the 

basis of an internal representation of the underlying reward structure – also referred to as “model-

based learning”. The Delta rule, in contrast, makes no assumptions about the underlying reward 

process and learns expected rewards only on the basis of the previous reward history – also called 

“model-free learning”. Interestingly, a model comparison across subjects showed that the Bayesian 

learner only fitted better when subjects were fully instructed about the underlying reward structure 

of the task. Without full instruction, behavior was slightly better fitted by the model-free Delta rule 

across subjects, whereby the best-fitting model varied between subjects. Hence, the authors 

concluded from these results that humans implement Bayesian learning only if enough structural 

information about the reward-generating process is provided. Therefore, the superiority of the 

Bayesian learner rule observed in the current study may (partly) reflect the fact that in this study, 

participants were mostly instructed about the underlying reward structure (i.e. that rewards of all 

options change slowly and randomly over time) and could additionally learn about the task structure 

in a prior training run. Also, the bandit task structure in the present study was decidedly less 

complicated than in the jumping six-armed bandit task used by Payzan-LeNestour and Bossaerts 

(2011), which might have further encouraged the utilization of a model-based learning rule. Finally, 

the question whether humans engage in model-based or model-free learning was also examined by 

Knox et al. (2012), who used a variant of the restless two-armed bandit task called the “Leapfrog task”, 

in which both options continually alternate in their superiority by sudden jumps in their payoffs. They 

found that the process by which subjects update their reward expectations was better captured by a 

model which incorporates knowledge about the underlying reward structure (model-based learning) 

than by a naïve RL model which – based on the Delta rule – updates rewards only on the basis of 

observed outcomes (model-free learning). In conclusion, while the results of the current study suggest 

that human reward learning is more accurately described by the Bayesian learner than the Delta rule, 

previous evidence in this regard is mixed. It might be assumed from the reported findings that the 

best-fitting model not only varies between subjects, but also strongly depends on the kind of task, the 

complexity of the underlying reward structure, and subjects’ prior knowledge about this structure (i.e. 

task instructions). 

 

6.5.2 Choice rules 

In combination with the learning rules, three different choice rules were evaluated in this study: the 

standard softmax rule (“SM”), a softmax with exploration bonus (“SM+E”), and a softmax with both 

exploration bonus and perseveration bonus (“SM+EP”). It was found that irrespective of the learning 
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rule and in line with the initial hypothesis, explore/exploit behavior was best described by the SM+EP 

model, which captures both random and directed exploration along with choice perseveration. 

First, the finding that the model fit of the softmax rule is improved by inclusion of an exploration bonus 

parameter (
) is consistent with previous research, showing that humans use both random and 

uncertainty-driven exploration (e.g. Frank et al., 2009; Gershman, 2018; Krueger et al., 2017; Payzan-

LeNestour & Bossaerts, 2012; Somerville et al., 2017; Wilson et al., 2014; Zajkowski et al., 2017). As in 

the SM+EP model, random and directed exploration are usually implemented via two separate model 

parameters. On the one hand, random exploration is commonly modeled by adding noise 

(stochasticity) to the value-driven choice process via the softmax function (see Beeler et al., 2010; 

Beeler, 2012; Daw et al., 2006; Gershman, 2018; Humphries et al., 2012; Thrun, 1992). Since previous 

studies have already shown that this softmax function captures random exploration in humans better 

than the simpler �-greedy model (see 1.1.3; Daw et al., 2006; Speekenbrink & Konstantinidis, 2015), 

the latter was not included in the model comparison of the current study. Uncertainty-driven 

exploration, on the other hand, is commonly implemented by the use of an exploration bonus, 

sometimes also referred to as “information bonus” or “novelty bonus” (Cogliati Dezza et al., 2017; Daw 

et al., 2006; Dayan & Sejnowski, 1996; Ishii et al., 2002; Kakade & Dayan, 2002; Wilson et al., 2014; 

Wittmann, Daw, Seymour, & Dolan, 2008). Despite the different terms, the basic idea behind this 

approach is to add an extra bonus for “uncertainty” or “information” to the expected reward value of 

each option and to select actions based on this combined value, thereby biasing choices towards more 

uncertain/informative options. Consistent with the results of the current study, numerous studies have 

found evidence for such an exploration bonus in human decision making (e.g. Badre et al., 2012; 

Cavanagh et al., 2012; Cogliati Dezza et al., 2017; Frank et al., 2009; Geana, Wilson, Daw, & Cohen, 

2016; Gershman, 2018; Krueger et al., 2017; Wilson et al., 2014; Zajkowski et al., 2017), with only few 

exceptions (as discussed below; Daw et al., 2006; Speekenbrink & Konstantinidis, 2015). Notably, the 

current study also found evidence for an exploration bonus when reward uncertainty is not directly 

estimated (as in the Bayesian learner), but instead approximated by simple heuristics like the time that 

has passed since an option was last chosen (as in the Delta rule; see Speekenbrink & Konstantinidis, 

2015; Sutton, 1990). 

Interestingly, when regarding the subject-level estimates for the exploration bonus parameter 
 in the 

current study, it was found that this parameter was actually negative for some subjects, reflecting 

rather a “penalty” than a “bonus” for uncertainty. In line with this finding, negative exploration (or 

information) bonuses have already been reported by previous studies (Cavanagh et al., 2012; Daw et 

al., 2006; Payzan-LeNestour & Bossaerts, 2011, 2012; Wilson et al., 2014), and different interpretations 

of this finding have been discussed. For example, it has been suggested that a negative exploration 

bonus might actually not reflect a specific explore/exploit strategy, but might rather capture choice 

autocorrelation, presumably resulting from perseveration (see Badre et al., 2012; Daw et al., 2006, 

supplement; Payzan-LeNestour & Bossaerts, 2012). Perseveration, also known as “sticky choice”, 
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describes the behavioral tendency to repeat the same choice regardless of rewards, and a number of 

studies have found evidence for such a tendency in human choice behavior (Brough et al., 2008; 

Payzan-LeNestour & Bossaerts, 2012; Rutledge et al., 2009; Schönberg et al., 2007; Worthy et al., 2013; 

see also Lau & Glimcher, 2005). Crucially, if perseveration is not explicitly accounted for in the cognitive 

model, then it might be captured by the exploration bonus parameter as a (value-independent) choice 

preference for the option with the smallest uncertainty. As a result, estimates for the exploration 

bonus parameter will be smaller, often negative and harder to interpret (see Badre et al., 2012; Daw 

et al., 2006, supplement; Payzan-LeNestour & Bossaerts, 2012). To circumvent this problem, the 

current study has extended the softmax model with exploration bonus (SM+E; Daw et al., 2006) by an 

extra perseveration bonus parameter (SM+EP) and shown that the introduction of this parameter 

improves the model fit. Moreover, the introduction of this parameter significantly increased the 
 

parameter estimate across subjects and reduced the number of subjects with a negative 
 parameter 

estimate. Hence, it can be concluded that choice perseveration is indeed captured, to some part, by 

the exploration bonus parameter of the SM+E model and that the SM+EP improves the model fit by 

disentangling these two distinct choice tendencies. Still, the introduction of a perseveration bonus 

parameter did not fully solve the issue, as negative 
 parameter estimates were still observed in the 

Bayes-SM+EP model for some of the subjects. A similar result was obtained by Payzan-LeNestour and 

Bossaerts (2012), who modeled human choice behavior in a restless six-armed bandit task. They found 

that the exploration bonus parameter was negative for most of their subjects, even after accounting 

for perseveration in their cognitive models. Hence, these findings show that negative exploration 

bonuses cannot be fully explained by choice perseveration. Alternatively, it has been suggested that 

negative exploration bonuses may indeed be interpreted as a penalty term for uncertainty, thereby 

reflecting a form of “ambiguity-aversion” that discourages subjects from engaging in uncertainty-

driven exploration (Badre et al., 2012; Payzan-LeNestour & Bossaerts, 2011, 2012). Payzan-LeNestour 

and Bossaerts (2012) further investigated this idea by fitting new and improved models to both human 

choice data and simulated data in the restless six-armed bandit task. Together, the results of their 

study support the hypothesis that uncertainty-driven exploration might actually involve a dilemma 

between two motives: a curiosity motive, which seeks out uncertainty to learn about novel reward 

opportunities, and a cautiousness motive, which avoids uncertainty for its potential dangers. 

Accordingly, the curiosity motive might be captured by a positive exploration bonus, and the 

cautiousness motive by a negative exploration bonus (i.e. penalty). Hence, the classic exploration 

bonus parameter, which does not distinguish between both aspects, may therefore be a “readout of 

the dominating motive” (Payzan-LeNestour & Bossaerts, 2012, p. 4) and range from negative to 

positive values as observed in the current study.  

Although the modeling results of the current study are largely consistent with previous research, they 

contrast with the study of Daw et al. (2006), who found no evidence for an exploration bonus in human 

decision making. More specifically, they found that while the inclusion of an exploration bonus 
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parameter significantly improved the model fit for half of their subjects, the best-fitting estimate for 

this parameter was actually close to zero, thereby making the model equivalent to the simple softmax 

rule. Furthermore, when they analyzed the contribution of this parameter to exploratory behavior, 

they found that the majority of exploratory choices could not be explained by the bonus, suggesting 

that subjects predominantly relied on the softmax strategy for (random) exploration. Hence, Daw et 

al. (2006) concluded that there is “no evidence to justify the introduction of an extra parameter that 

allowed exploration to be directed towards uncertainty”. The apparent inconsistency of these results 

with the results of the current study, and with a large body of evidence in support of the exploration 

bonus, might be explained by a number of factors. First, Daw et al. (2006) did no account for choice 

perseveration in their cognitive models, which might have contributed to the small (and often 

negative) 
 parameter estimates observed in their study and their lack of support for the SM+E model. 

Second, assuming that the SM+E model captures both uncertainty-seeking and uncertainty-avoidance 

in the same bonus parameter (see above; Payzan-LeNestour & Bossaerts, 2012), a 
 parameter 

estimate close to zero might not necessarily be interpreted as evidence against an exploration bonus, 

but could also indicate the overlay of two competing choice motives that are not separately resolved 

by the model. Third, it has been argued that the failure to observe exploration bonuses in the classic 

restless bandit task might also stem from the fact that reward and uncertainty are usually confounded 

in this task, since subjects tend to choose more rewarding options more often and have therefore less 

uncertainty about these options (see Gershman, 2018; Wilson et al., 2014). Hence, reward-driven 

behavior might be mistaken as uncertainty-aversion, making it more difficult to find evidence for the 

exploration bonus unless this confound is removed, as for example in the horizon task (see 1.1.2; 

Wilson et al., 2014). Yet, it should be noted that all three arguments also apply to the SM+E model 

used in the current study, for which 
 parameter estimates were – in contrast to the results of Daw et 

al., (2006) – significantly different from zero for most subjects (based on their 90 % HDIs, data not 

shown). Yet, there is another aspect which might explain the contradicting findings between the study 

of Daw et al. (2006) and the current study. Daw et al. (2006) obtained in their Bayes-SM+E model fit 

an extremely large estimate for the diffusion variance parameter (�<�
�), which quantifies a subject’s 

belief about the level of reward volatility. Across subjects, the best-fitting estimate for the �<� 

parameter was 50.9, which is several times larger than the estimates obtained in the current study 

when treating �<� as a free parameter (between 6.4 and 7.0; see Table A1 in the appendix) and the 

actual diffusion variance used to generate the payoffs (��
� = 2.8²; see 2.4). Importantly, the �<� 

parameter largely contributes in each trial to the uncertainty estimate for each bandit (�<@AB), and 

therefore to the exploration bonus (
�<@AB). Hence, a large �<� value, i.e. an overestimation of reward 

volatility, might have two notable effects. First, it should be associated (in the joint parameter 

estimates) with an accordingly small 
 parameter value to keep the size of the exploration bonus in a 

plausible range, given its direct scaling in reward units. Second, a large �<� keeps uncertainty estimates 

for all bandits (regardless of choice history) constantly high, such that differences in the uncertainty 

and exploration bonus between chosen and unchosen bandits become negligible (as confirmed by 
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simulations with different �<� values, data not shown). In this scenario, where diffusion variance 

(reward volatility) is the major source of uncertainty, the informational value of exploration will be 

very small since reward uncertainty cannot be substantially reduced by sampling. Both these factors 

might explain why 
 parameter estimates were negligible in the study by Daw et al. (2006). 

Interestingly, a similarly large estimate for the �<� parameter (�<�  = 52.4) in the Bayes-SM+E model was 

also reported by Speekenbrink and Konstantinidis (2015), who also found no evidence in support of 

this model compared to the simpler Bayes-SM model without the exploration bonus. The question 

remains, however, why �<� estimates have been considerably larger in these studies than in the current 

one. On the one hand, it is possible that these large estimates actually captured some specific aspect 

of subjects’ learning behavior, i.e. a general overestimation of reward volatility, which might have 

varied between studies due to differences in the subject sample, study design, or task instruction. On 

the other hand, it is also possible that the �<� parameter is poorly identified in the Bayes-SM+E model 

(with free random walk parameters) and thereby causes unreliable estimates, especially within the 

MLE framework applied in both of the earlier studies. Indeed, Daw et al. (2006) reported that 

parameter estimates in their individual model fits pointed towards poor identifiability and often 

yielded extreme values, making it necessary to equate most of the free parameters (including 
) 

between subjects. In fact, similar problems of unreliable parameter estimates for the Bayes-SM+E 

model have also been encountered in the present study, despite adopting a hierarchical Bayesian 

modeling approach to facilitate parameter estimation. More stable parameter estimates were only 

obtained after constraining the free parameter space of this model by fixing the random walk 

parameters of the Bayesian learner rule (see Table 1), which were of secondary relevance for the 

current study. Although fixing these parameters also has its disadvantages (i.e. subjects’ belief about 

the reward-generating process might not be appropriately captured), it may have contributed to more 

reliable and plausible estimates for the exploration bonus parameter than obtained in the earlier 

studies. Either way, the findings of Daw et al. (2006) and Speekenbrink and Konstantinidis (2015) 

should not be interpreted as clear evidence against the notion of an exploration bonus in human 

decision making, especially since numerous studies consistently support this idea, including the current 

one.  

Finally, it should be noted that recent modeling research suggests that the processes underlying 

human explore/exploit behavior are actually much more complex than assumed by the cognitive 

models used in the current study. For example, it has been described (Payzan-LeNestour & Bossaerts, 

2011) that there are at least four different types of uncertainty that influence human decision making, 

of which estimation uncertainty – modeled here as the prior standard deviation associated with each 

bandit – is only one. Other types of uncertainty include expected uncertainty (risk), unexpected 

uncertainty (e.g. sudden contingency changes), and structural uncertainty (e.g. about the reward 

environment), which might even be separately encoded in the human brain (see Bach & Dolan, 2012; 

Hsu, Bhatt, Adolphs, Tranel, & Camerer, 2005; Huettel et al., 2005; Payzan-LeNestour & Bossaerts, 
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2011; Schultz et al., 2008). Also, another modeling study (Krueger et al., 2017) suggests that there are 

actually three independent processes that drive human exploration: decision noise (random 

exploration), information-seeking (directed exploration), and a baseline uncertainty-seeking, which is 

driven by a prior that is optimistic for losses and pessimistic for gains. In other words, Krueger et al. 

(2017) propose that information-seeking (to reduce uncertainty) is not the same as uncertainty-

seeking, and show that both processes can be distinguished in a variant of the horizon task with both 

gains and losses. Moreover, a very recent modeling study suggests that also random exploration might 

be influenced by reward uncertainty (Gershman, 2018). They report evidence for a “hybrid model” of 

exploration, in which uncertainty acts as both an exploration bonus and a driver for choice 

stochasticity, in contrast to earlier models assuming a fixed (uncertainty-independent) source of 

randomness like the softmax rule. Aside from these conceptual refinements of uncertainty and 

exploration, it was also shown that modeling of human explore/exploit behavior can be improved by 

accounting for individual differences in strategy (Steyvers et al., 2009). By modeling choice behavior in 

the stationary bandit task from a large number of subjects (n=451), they found clear evidence for 

individual differences in the way participants approached the explore/exploit trade-off, both in terms 

of which decision model they used (i.e. optimal Bayesian model vs. simpler heuristic strategies) and 

what the best-fitting parameter values were. Moreover, they found that both the adoption of an 

optimal Bayesian strategy and the ability to approximate the true underlying reward structure of the 

task significantly correlated with measures of general intelligence. Finally, further studies showed that 

human explore/exploit behavior is not only influenced by trait measures like intelligence, but also by 

the temporary context in which the task is performed. For example, participants were found to explore 

more when they perceive the task as boring (induced by experimental manipulation of the task 

environment; Geana et al., 2016) or when the overall reward level in the task is high (Cogliati Dezza et 

al., 2017). Taken together, the reported findings point to interesting ideas how modeling of 

explore/exploit behavior may be extended to better capture the complexity of the underlying cognitive 

processes and their modulation by different individual traits and situational factors. 

 

6.6 Limitations and future directions 

Aside from the limitations that have already been discussed in the preceding sections, some further 

limitations of this study need to be acknowledged. A first limitation relates to the fact that while the 

applied pharmacological fMRI approach can visualize DA drug effects on the whole brain level, it 

cannot determine which of these effects directly reflect local changes in DA signaling, and which reflect 

downstream effects that may also involve other neurotransmitter systems (see Schrantee & Reneman, 

2014). As already pointed out, the fMRI BOLD signal provides an indirect index of blood oxygenation 

rather than a direct measure of DA activity (see 2.8.1 and 6.3.2). Hence, an observed BOLD signal 

change must not necessarily rely on a change in DA transmission, and a change in DA transmission 

must not necessarily produce a (detectable) BOLD signal change (see Brocka et al., 2018). Accordingly, 
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it cannot be ruled out that DA drug effects on a specific brain region (e.g. the striatum) are not actually 

reflected in a BOLD signal change in this region, but modulate activity and thereby the BOLD signal in 

other, locally distant regions (e.g. insula and ACC). Future research should therefore complement 

pharmacological fMRI studies with other in vivo techniques that specifically monitor local changes in 

DA activity, such as molecular imaging with PET and SPECT (single photon emission computed 

tomography) in humans (see Cropley, Fujita, Innis, & Nathan, 2006), or fast-scan cyclic voltammetry 

and microdialysis in animals (Kehr & Yoshitake, 2013; Phillips, Robinson, Stuber, Carelli, & Wightman, 

2002; Robinson, 2003). Another limitation relates to the point that the fMRI data acquired in this study 

were only analyzed using a standard mass-univariate approach, whereby alternative and more 

sophisticated methods are available that should be considered for further analysis. For example, 

multivariate approaches like multi-voxel pattern analysis (MVPA) might be more sensitive to detect DA 

drug effects on explore/exploit-related brain activity patterns than the applied voxel-wise approach 

(see Mahmoudi, Takerkart, Regragui, Boussaoud, & Brovelli, 2012; Norman, Polyn, Detre, & Haxby, 

2006). Furthermore, as behavioral switching between exploitation and exploration is considered to 

involve the interplay of several brain regions (see 1.1.4), a functional connectivity analysis of the fMRI 

data based on dynamic causal modeling (DCM; Friston, Harrison, & Penny, 2003; Stephan & Friston, 

2010) or psychophysiological interactions (PPI; Friston et al., 1997; O'Reilly et al., 2012) may provide 

more insight into the neural networks underlying explore/exploit behavior and their DA modulation. 

Another limiting factor of this study is that the reported DA drug effects on insula and dACC activity 

resulted from an exploratory analysis of the fMRI data, which was performed only after the planned 

fMRI analysis failed to yield any significant drug effects. However, such post hoc exploratory analyses 

must be treated with caution, as they increase the likelihood to observe and report false positive 

findings – a problem that is often referred to as “data-dependent analysis” (Gelman & Lokenz, 2013) 

or “researchers degrees of freedom” (Simmons, Nelson, & Simonsohn, 2011). This problem is 

especially critical in brain imaging studies, where a large number of exploratory tests can be performed 

on the vast amount of data collected (Szucs & Ioannidis, 2017). Hence, the results of the exploratory 

fMRI analysis should only be regarded as preliminary evidence until replicated in further studies. 

Moreover, this study only investigated male participants, and future studies need to show whether 

these effects also generalize to the female population. In addition, it should be kept in mind that this 

work only focused on the role of DA in the explore/exploit trade-off, but did not consider critical 

interactive effects between DA and other neurotransmitters that are likely to contribute to this trade-

off, especially NE and ACh (see 1.1.5). For instance, it has been suggested that the trade-off between 

exploitation and random exploration, which was not found to be affected by the DA drugs in this study, 

may be specifically regulated by the LC-NE system (see Aston-Jones & Cohen, 2005; Cohen et al., 2007; 

Doya, 2002; Ishii et al., 2002). Thus, a challenging prospect for future research will be to examine DA 

effects on explore/exploit behavior in a broader context, which also accounts for functional 

interactions between different neuromodulatory systems. 
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Another interesting prospect for future research arises from the finding that activity in the insula and 

dACC was increased during exploratory decisions and correlated with the overall reward uncertainty. 

Both these regions have been widely implicated in uncertainty coding, emotional processing, and 

mediating the effects of emotional arousal on (risky) decision making (see 6.3.3; e.g. Bush et al., 2000; 

Craig, 2002, 2009; Critchley, 2005; Dreher, 2013; Fukunaga et al., 2018; Preuschoff et al., 2008; Singer 

et al., 2009; Xue et al., 2010). Hence, the involvement of these regions in uncertainty coding and 

exploration might point to an interesting interpretation, according to which exploratory decisions may 

also be driven by emotional responses to accumulating uncertainty. In the literature, uncertainty-

driven exploration is mostly considered to be rational and strategical, i.e. to account for the value of 

information in order to maximize rewards in the long term (see 1.1.3; e.g. Cogliati Dezza et al., 2017; 

Frank et al., 2009; Gershman, 2018; Wilson et al., 2014). This form of strategical exploration is 

considered to rely on a frontoparietal control network, in which the FPC tracks relevant decision 

parameters like the relative reward and uncertainty of alternative choice options in order to initiate 

exploratory actions whenever the available evidence supports such a decision (see 1.1.4; e.g. Badre et 

al., 2012; Boorman et al., 2009, 2011; Cavanagh et al., 2012). However, it might be assumed that also 

emotional arousal in response to increasing uncertainty or risk could play an important role in 

controlling exploratory behavior, and that these effects might be mediated by the insula and ACC. 

While the current study does not allow to directly test this assumption, future study could employ 

additional techniques to determine the extent to which exploratory actions are driven strategically vs. 

emotionally. For example, these studies could assess emotional responses to increasing uncertainty, 

e.g. by self-report or by recording physiological parameters like skin conductance and heart rate, and 

could test to what extent these responses correlate with activity in the insula/ACC and with exploratory 

behavior. Moreover, these studies may also provide more insight into the kinds of emotions triggered 

by growing uncertainty – e.g. the urge for taking a risk (Xue et al., 2010) or uncertainty-related anxiety 

(Hartley & Phelps, 2012; Hirsh, Mar, & Peterson, 2012) – and how these emotional responses may 

relate to individual differences in explore/exploit behavior and psychological constructs like 

risk/ambiguity aversion and novelty seeking (see Christopoulos et al., 2009; Costa et al., 2014; Hartley 

& Phelps, 2012; Levy, Snell, Nelson, Rustichini, & Glimcher, 2010; Payzan-LeNestour & Bossaerts, 

2012). Additionally, such experiments may also use pupillometry to track cognitive processes during 

explore/exploit behavior, as pupil responses were recently found to indicate trial-by-trial changes in 

relevant decision parameters such as the expected value and uncertainty of reward (van Slooten, 

Jahfari, Knapen, & Theeuwes, 2018). 

Finally, further research will be needed to better understand how alterations in the DA system 

contribute to dysfunctional decision making in psychiatric and neurological disorders. Recent studies 

have already started to investigate how explore/exploit behavior is altered in different clinical 

conditions, including depression (Blanco, Otto, Maddox, Beevers, & Love, 2013; Byrne, Norris, & 

Worthy, 2016), addiction (Addicott et al., 2013, 2014, 2015; Harlé et al., 2015; Morris et al., 2016), 
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schizophrenia (Strauss et al., 2011), and PD (Moustafa et al., 2008; Rutledge et al., 2009), as well as in 

healthy subjects in response to stress (Lenow et al., 2017), sleep deprivation (Glass et al., 2011), and 

childhood adversity (Humphreys et al., 2015). However, only few of these studies have specifically 

investigated the role of DA in altered explore/exploit behavior (e.g. Byrne et al., 2016; Moustafa et al., 

2008; Rutledge et al., 2009), and more research is needed to bridge this gap. Eventually, the knowledge 

gained from these studies may also provide the basis for the development of new therapeutic 

interventions in the treatment of various disorders that involve a dysregulation of the explore/exploit 

trade-off. 

 

6.7 Conclusion 

The present study examined the causal role of DA in human explore/exploit behavior in a 

pharmacological fMRI approach, using the DA drugs L-dopa and haloperidol in a placebo-controlled, 

within-subjects design. First, the behavioral modeling results agree well with previous research, 

showing that humans use both random and directed exploration to solve the explore/exploit trade-

off. More importantly, the findings of this study support the notion that DA is causally involved in this 

trade-off by regulating the extent to which subjects engage in uncertainty-driven exploration. 

Interestingly, the neuroimaging data of this study do not support the hypothesis that DA controls this 

trade-off by modulating the neural signatures of exploratory and exploitative decisions per se. In 

contrast, they provide preliminary evidence that DA may modulate uncertainty-related brain activity 

in a cortical control network comprising the insula and dACC, which may be involved in directing 

attention and behavior towards exploratory actions in the face of accumulating uncertainty. Future 

research should more closely examine the potential role of these regions in driving exploration based 

on emotional responses to increasing uncertainty, and further investigate how DA may be involved in 

this process. 
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7 Summary 

A central aspect of many decision problems is the regulation of when to exploit, i.e. to choose a familiar 

option with a well-known reward, and when to explore, i.e. to choose an alternative option with an 

uncertain but potentially larger reward. This decision dilemma is commonly known as the 

explore/exploit trade-off, and a growing body of evidence suggests that dopamine (DA) may be tightly 

involved in regulating this trade-off. However, direct evidence for a causal role of DA in explore/exploit 

behavior is sparse and still lacking in humans. Therefore, the aim of this study was to directly test for 

DA effects on human explore/exploit behavior and its neural correlates in a pharmacological fMRI 

approach, using L-dopa (DA precursor) and haloperidol (DA antagonist) in a double-blind, placebo-

controlled, within-subjects design. First, explore/exploit behavior, as assessed with the restless four-

armed bandit task, was analyzed using different cognitive models of learning and decision making in a 

hierarchical Bayesian modeling approach. Among the tested models, choice behavior was best 

described by the Bayes-SM+EP model – a model that includes a Bayesian learning rule for tracking both 

the mean and variance (uncertainty) of the expected reward, combined with a modified softmax choice 

rule that captures both random and directed exploration along with choice perseveration. Using this 

model, it was found that directed (uncertainty-driven) exploration, as indexed by the 
 parameter, 

was significantly reduced across subjects under L-dopa compared to placebo. In contrast, haloperidol 

did not significantly shift the 
 parameter across subjects, but showed a tendency to reduce the group-

level variance of this parameter relative to placebo and L-dopa. To examine drug effects on the neural 

level, choices were first classified as either exploitative (i.e. following the highest expected value) or 

exploratory, and the pattern of brain activity was compared between both types of choices. Across all 

drug conditions, exploratory choices were associated with higher activity in the frontopolar cortex 

(FPC) and intraparietal sulcus (IPS), consistent with previous studies which suggest that exploration is 

mediated via a frontoparietal control network. In contrast, exploitative choices showed higher activity 

in the orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (vmPFC), brain areas that have 

previously been implicated in reward coding and exploitation. Surprisingly, no drug effects were found 

on these neural correlates of exploratory and exploitative choices, nor on striatal reward prediction 

error signaling. Yet, an exploratory analysis of the brain imaging data revealed that L-dopa reduced 

brain activity associated with the overall uncertainty in the insula and dorsal anterior cingulate cortex 

(dACC), areas that have been implicated in coding reward uncertainty and in mediating the effect of 

emotional arousal on risky decision making. Accordingly, by reducing uncertainty-related activity in 

these regions, L-dopa might have delayed the time point at which exploratory decisions are triggered 

in response to accumulating uncertainty. In conclusion, the results of this study support the notion 

that DA plays a causal role in human explore/exploit behavior. While more research is needed to reveal 

the underlying neural mechanisms involved in this process, first evidence suggests that DA may 

influence uncertainty-related activity in a cortical control network that guides attention and behavioral 

responses toward salient, uncertain choice options. 
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8 Zusammenfassung (German summary) 

Zentraler Gegenstand vieler Entscheidungsprobleme ist die Frage, wann man „exploitet“, d.h. eine 

vertraute Option mit bekannter Belohnung wählt, und wann man „exploriert“, d.h. eine alternative 

Option mit einer ungewissen, aber möglicherweise höheren Belohnung wählt. Dieses Entscheidungs-

dilemma ist als „explore/exploit trade-off“ bekannt, und es gibt zunehmend Anhaltspunkte dafür, dass 

Dopamin (DA) eine zentrale Rolle in der Regulierung dieses trade-offs spielt. Direkte Evidenz dafür, 

dass DA kausal am explore/exploit Verhalten beteiligt ist, ist jedoch spärlich und fehlt bislang beim 

Menschen. Das Ziel dieser Studie war es daher, die kausale Rolle von DA in Bezug auf menschliches 

explore/exploit Verhalten und dessen neuronale Korrelate zu untersuchen. Hierzu wurde ein 

pharmakologischer fMRI Ansatz gewählt, bei dem L-Dopa (ein DA Vorläufer) und Haloperidol (ein DA 

Antagonist) in einem doppelt verblindeten, Placebo-kontrollierten Crossover-Studiendesign zur 

Anwendung kamen. Zunächst wurde explore/exploit Verhalten, das mittels der nicht-stationären 

vierarmigen Banditen-Aufgabe („restless four-armed bandit task“) untersucht wurde, unter 

Verwendung verschiedener kognitiver Modelle des Lernens und Entscheidens in einem hierarchischen 

Bayesianischen Modellierungsverfahren analysiert. Unter den getesteten Modellen wurde das 

Entscheidungsverhalten am besten durch das Bayes-SM+EP Model beschrieben. Dieses Modell 

kombiniert eine Bayesianische Lernregel, die sowohl den Mittelwert als auch die Varianz (Unsicherheit) 

der erwarteten Belohnung kontinuierlich aktualisiert, mit einer modifizierten Softmax-Entscheidungs-

regel, die sowohl zufällige als auch gerichtete Exploration und Perseveration erfasst. Anhand dieses 

Modells wurde festgestellt, dass gerichtete (unsicherheits-getriebene) Exploration, erfasst durch den 


 Parameter, über alle Testpersonen hinweg unter L-Dopa gegenüber Placebo signifikant reduziert 

war. Dagegen zeigte sich unter Haloperidol keine signifikante Verschiebung des 
 Parameters über alle 

Testpersonen hinweg, jedoch eine Tendenz zur Reduzierung der Gruppenvarianz dieses Parameters 

gegenüber Placebo und L-Dopa. Um die Effekte der dopaminergen Wirkstoffe auf der neuronalen 

Ebene zu untersuchen, wurden Entscheidungen zunächst als exploitativ (d.h. dem höchsten 

erwarteten Belohnungswert folgend) oder explorativ klassifiziert und das Muster der Gehirn-

aktivierung zwischen beiden Arten von Entscheidungen verglichen. Über alle experimentellen 

Bedingungen hinweg waren explorative Entscheidungen mit einer höheren Aktivität im frontopolaren 

Kortex (FPC) und intraparietalen Sulcus (IPS) assoziiert. Dieser Befund steht im Einklang mit früheren 

Studien, welche nahelegen, dass exploratives Verhalten über ein frontoparietales Kontrollnetzwerk 

vermittelt wird. Im Gegenzug dazu zeigten exploitative Entscheidungen eine höhere Aktivität im 

orbitofrontalen Kortex (OFC) und ventromedialen Präfrontalkortex (vmPFC) – Gehirnregionen, die 

zuvor mit der Kodierung von Belohnungen und exploitativem Verhalten in Verbindung gebracht 

wurden. Wider Erwarten zeigte sich kein signifikanter Einfluss der dopaminergen Substanzen auf die 

erwähnten neuronalen Korrelate explorativer und exploitativer Entscheidungen, noch auf die 

striatalen Korrelate des Belohnungs-Vorhersage-Fehlers. Hingegen ergab eine exploratorische Analyse 

der fMRI-Daten, dass L-Dopa zu einer Reduktion der mit der Gesamtunsicherheit (d.h. der Belohnungs-
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unsicherheit über alle Entscheidungsoptionen hinweg) assoziierten Gehirnaktivität in der Insula und 

dem dorsalen anterioren cingulären Kortex (dACC) führt – Gehirnareale, die zuvor mit der Kodierung 

von Unsicherheit sowie mit der Vermittlung emotionaler Einflüsse auf riskantes Entscheidungs-

verhalten in Verbindung gebracht wurden. Demnach könnte vermutet werden, dass L-Dopa durch die 

Verringerung der unsicherheitsbezogenen Gehirnaktivität in diesen Arealen den Zeitpunkt verzögert 

hat, zu dem exploratorische Entscheidungen als Reaktion auf zunehmende Unsicherheit initiiert 

werden. Zusammenfassend stützen die Ergebnisse dieser Studie weitestgehend die Vorstellung, dass 

DA eine kausale Rolle im menschlichen explore/exploit Verhalten einnimmt. Wenngleich weitere 

Forschung nötig ist, um die zugrundeliegenden neuronalen Mechanismen dieser Prozesse 

aufzudecken, legen erste Befunde nahe, dass DA unsicherheitsbezogene Aktivität in einem kortikalen 

Kontrollnetzwerk beeinflusst, welches Aufmerksamkeit und Verhalten in Richtung salienter, unsicherer 

Entscheidungsoptionen lenkt. 
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9 Abbreviations 

ACC anterior cingulate cortex 

AI anterior insula 

ANOVA analysis of variance 

BOLD blood oxygenation level dependent 

COMT catechol-O-methyltransferase 

CV coefficient of variation 

CVtrials cross-validation over trials 

DA dopamine 

dACC dorsal anterior cingulate cortex 

DAT dopamine (active) transporter 

DMN default mode network 

fMRI functional magnetic resonance imaging 

FPC frontopolar cortex 

FWE familywise error 

GLM general linear model 

HDI highest density interval 

IPS intraparietal sulcus 

LC locus coeruleus 

L-dopa levo-3,4-dihydroxyphenylalanine 

LM linear model 

lOFC lateral orbitofrontal cortex 

LOO leave-one-out 

NE norepinephrine 

OFC orbitofrontal cortex 

PCC posterior cingulate cortex 

PD Parkinson’s disease 

PET positron emission tomography 

PFC prefrontal cortex 

QM quadratic model 

sEBR spontaneous eye blink rate 

SM softmax 

SM+E softmax with exploration bonus 

SM+EB softmax with exploration bonus and perseveration bonus 

SNc substantia nigra pars compacta 

tDCS transcranial direct current stimulation 

TMS transcranial magnetic stimulation 

vmPFC ventromedial prefrontal cortex 

VTA ventral tegmental area 

WMC working memory capacity 
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10 List of symbols 

 

6  learning rate 

	  softmax parameter (inverse temperature) 

1  reward prediction error 

ϑ  decay center 

D  Kalman gain 

λ  decay parameter 

ΛK  group-level standard deviation of parameter f 

ΜK  group-level mean of parameter f 

=  mean of expected reward 

e  perseveration bonus parameter 

�� variance of expected reward 

��
� diffusion variance 

��
� observation variance 


 exploration bonus parameter 

� choice probability 

2 reward 

0 expected reward value 
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15 Appendix 

 

placebo L-dopa haloperidol 

     

Figure A1. Subject-level parameter estimates for the softmax parameter (	). Shown are posterior distributions of the 

subject-level 	 parameter of the Bayes-SM+EP model, separately for each drug condition. For each posterior 

distribution, the plot shows the median (black dot), the 80 % central interval (blue area), and the 95 % central interval 

(black contours). For the L-dopa and haloperidol condition, posterior distributions (in blue) are overlaid on the 

posterior distributions of the placebo condition (in white) for better comparison. 

 

 

placebo - L-dopa placebo - haloperidol L-dopa - haloperidol 

     

Figure A2. Drug effects on the softmax parameter (	) on the subject level. Shown are posterior drug differences of the 

subject-level 	 parameter of the Bayes-SM+EP model. For each posterior distribution, the plot shows the median (black 

dot), the 80 % central interval (grey area), and the 95 % central interval (black contours). 
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placebo L-dopa haloperidol 

     

Figure A3. Subject-level parameter estimates for the perseveration bonus parameter (e). Shown are posterior 

distributions of the subject-level e parameter of the Bayes-SM+EP model, separately for each drug condition. For each 

posterior distribution, the plot shows the median (black dot), the 80 % central interval (blue area), and the 95 % central 

interval (black contours). For the L-dopa and haloperidol condition, posterior distributions (in blue) are overlaid on the 

posterior distributions of the placebo condition (in white) for better comparison. 

 

 

placebo - L-dopa placebo - haloperidol L-dopa - haloperidol 

     

Figure A4. Drug effects on the perseveration bonus parameter (e) on the subject level. Shown are posterior drug 

differences of the subject-level e parameter of the Bayes-SM+EP model. For each posterior distribution, the plot shows 

the median (black dot), the 80 % central interval (grey area), and the 95 % central interval (black contours). 
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Table A1. Posterior medians of the random walk parameters in the Bayes-SM+EP model. 

 8; 9; �<�  =̂�
@AB

 �<�
@AB

 

pilot study (n=16) 0.93 45.99 6.62 82.72 3.61 

placebo (n=31) 0.93 49.14 7.04 74.02 6.63 

L-dopa (n=31) 0.93 51.81 6.79 70.80 9.26 

haloperidol (n=31) 0.91 48.99 6.35 72.05 9.60 

Note. Each random walk parameter was estimated once over all subjects in the respective sample. 8;: decay parameter; 9;: decay 

center; �<�: diffusion standard deviation; =̂�
@AB: initial prior mean of the expected reward for all bandits; �<�

@AB: initial prior standard 

deviation of the expected reward for all bandits. 

 

 

Table A2. Comparison of control variables (first set) between drug conditions. 

control variable  

(n = number of subjects) 

placebo 

mean (SD) 

L-dopa 

mean (SD) 

haloperidol  

mean (SD) 
ANOVA  

     

sEBR (n=30) 81.3 (94.6) 77.7 (76.0) 88.2 (77.0) F2,58 = 1.31; p = .278 
     

Digit Span Task     

     forward: total score (n=31) 8.8 (2.2) 9.2 (1.8) 8.5 (1.9) F2,60 = 3.02; p = .056 

     backward: total score (n=29) 8.6 (2.4) 7.9 (2.6) 7.9 (2.4) F2,56 = 3.09; p = .054 
     

TAP subtest Alertness (n=31)     

     overall: RT, median 217.4 (19.1) 221.8 (21.5) 222.6 (31.5) F2,60 = 1.37; p = .263 

     overall: RT, SD 32.9 (14.0) 33.7 (17.3) 37.9 (23.2) F2,60 = 1.73; p = .187 

     overall: errors (misses) 2.10 (2.34) 2.19 (2.64) 2.23 (2.06) F2,60 = 0.06; p = .946 

     intrinsic alertness: RT, median 218.3 (21.5) 221.4 (18.5) 223.3 (30.2) F2,60 = 1.22; p = .303 

     intrinsic alertness: RT, SD 30.7 (13.3) 32.0 (14.2) 37.1 (23.3) F2,60 = 2.43; p = .097 

     phasic arousal: RT, median 217.7 (18.5) 223.6 (33.1) 222.5 (34.9) F2,60 = 0.92; p = .406 

     phasic arousal: RT, SD 34.1 (16.1) 31.8 (16.4) 36.0 (22.6) F2,60 = 0.95; p = .391 

     index of phasic arousal 0.001 (0.04) -0.005 (0.10) 0.006 (0.08) F2,60 = 0.20; p = .822 
     

TAP subtest Go/NoGo (n=31)     

     RT, median 363.7 (55.8) 357.6 (45.3) 359.4 (53.9) F2,60 = 0.31; p = .732 

     RT, SD 74.5 (24.8) 75.1 (18.0) 77.7 (29.1) F2,60 = 0.32; p = .726 

     false alarms  1.39 (1.56) 1.68 (1.72) 1.77 (1.54) F2,60 = 1.39; p = .256 

     misses 0.065 (0.25) 0.065 (0.36) 0.065 (0.25) F2,60 = 0; p = 1 
     

TAP subtest Flexibility (n=30)     

     RT, median 530.9 (111.5) 546.5 (136.1) 527.1 (108.3) F2,58 = 0.97; p = .385 

     RT, SD 138.7 (58.8) 139.4 (61.8) 135.2 (59.9) F2,58 = 0.15; p = .862 

     errors 2.93 (2.61) 3.43 (3.80) 3.30 (2.90) F2,58 = 0.38; p = .688 
     

Note. The last column shows the result of the univariate repeated measures ANOVA with the factor drug for each control variable. 

RT: reaction time (in ms); sEBR: spontaneous eye blink rate; TAP: Tests of Attentional Performance (Zimmermann & Fimm, 2012).   
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Table A3. Comparison of control variables (second set) between drug conditions. 

control variable  

(n = number of subjects) 

placebo 

mean (SD) 

L-dopa 

mean (SD) 

haloperidol  

mean (SD) 
ANOVA  

     

side effects sum score (n=31)     

       t1  (1.0 h) 0.13 (1.26) 0.10 (2.47) -0.03 (1.11) F2,60 = 0.08; p = .920 

       t2  (2.5 h) -0.06 (1.36) 0.13 (1.93) -0.23 (1.09) F2,60 = 0.59; p = .559 

       t3  (4.0 h) -0.03 (1.35) 0.71 (1.97) -0.06 (1.59) F2,60 = 2.77; p = .071 
     

vital parameters (n=31)     

   pulse     

       t1  (1.0 h) -7.65 (10.50) -8.94 (9.18) -7.29 (6.88) F2,60 = 0.31; p = .735 

       t2  (2.5 h) -14.87 (10.11) -15.32 (9.20) -14.68 (11.56) F2,60 = 0.04; p = .963 

       t3  (4.0 h) -14.61 (9.76) -11.68 (11.15) -12.94 (13.95) F2,60 = 0.66; p = .522 

   diastolic blood pressure     

       t1  (1.0 h) 3.26 (7.94) 1.29 (7.39) 1.00 (6.86) F2,60 = 0.91; p = .407 

       t2  (2.5 h) 6.06 (8.16) 6.84 (7.51) 3.48 (6.81) F2,60 = 1.93; p = .155 

       t3  (4.0 h) 4.68 (7.84) 2.10 (8.55) 3.61 (7.63) F2,60 = 1.20; p = .309 

   systolic blood pressure     

       t1  (1.0 h) -1.42 (13.57) -0.06 (10.91) -0.45 (10.81) F2,60 = 0.13; p = .876 

       t2  (2.5 h) 2.45 (11.49) 3.16 (8.06) 0.52 (8.49) F2,60 = 0.82; p = .445 

       t3  (4.0 h) 1.87 (13.55) 3.81 (11.59) 3.65 (8.89) F2,60 = 0.33; p = .721 
     

mood ratings by VAS (n=31)     

   alertness     

       t1  (2.5 h) -0.08 (2.24) -0.06 (3.03) -0.17 (2.93) F2,60 = 0.01; p = .986 

       t2  (4.0 h) 2.19 (4.16) 2.50 (4.27) 2.22 (4.54) F2,60 = 0.28; p = .758 

   contentedness     

       t1  (2.5 h) 0.09 (1.39) 0.02 (1.43) 0.07 (1.25) F2,60 = 0.13; p = .882 

       t2  (4.0 h) 0.24 (2.37) 0.37 (1.60) 0.20 (1.71) F2,60 = 0.08; p = .923 

   calmness     

       t1  (2.5 h) 0.14 (0.96) -0.18 (1.10) 0.11 (0.73) F2,60 = 1.09; p = .344 

       t2  (4.0 h) -0.38 (1.48) -0.56 (1.32) 0.29 (1.19) F2,60 = 4.46; p = .016 
     

mood ratings by SAM (n=31)     

   pleasure     

       t1  (2.5 h) 0.10 (0.65) -0.06 (0.93) 0.16 (0.78) F2,60 = 0.79; p = .458 

       t2  (4.0 h) 0.03 (0.84) 0.33 (1.09) 0.19 (0.83) F2,60 = 1.40; p = .254 

   arousal     

       t1  (2.5 h) -0.26 (0.89) -0.23 (0.99) -0.19 (0.75) F2,60 = 0.04; p = .956 

       t2  (4.0 h) 0.26 (0.77) 0.10 (1.12) -0.06 (0.93) F2,60 = 1.55; p = .220 

   dominance     

       t1  (2.5 h) 0.06 (0.44) -0.03 (0.55) -0.03 (0.60) F2,60 = 0.47; p = .630 

       t2  (4.0 h) 0.03 (0.71) -0.03 (0.81) -0.23 (0.72) F2,60 = 1.03; p = .364 
     

Note. All variables are reported as difference measures relative to a baseline (t0) assessed directly before drug administration. The 

last column shows the result of the univariate repeated measures ANOVA with the factor drug for each control variable. VAS: Visual 

Analogue Scale (Bond & Lader, 1974); SAM: Self-Assessment Manikin (Lang, 1980). 
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Table A4. Correlations between all model-based fMRI regressors. 

 
explore 
(overall) 

explore 
(directed) 

explore 
(random) 

expected  
value  

uncer- 
tainty 

overall 
uncertainty 

prediction 
error 

explore 
(overall) a 

- .55 .71 -.63 .78 -.25 .02 

explore 
(directed) b 

.55 - -.10 -.40 .59 -.19 .00 

explore 
(random) b 

.71 -.10 - -.43 .53 -.11 .03 

expected  
value c 

-.63 -.40 -.43 - -.62 .29 -.05 

uncer- 

tainty c 
.78 .59 .53 -.62 - -.19 .06 

overall  
uncertainty d 

-.25 -.19 -.11 .29 -.19 - .13 

prediction  
error e 

.02 .00 .03 -.05 .06 .13 - 

Note. Reported are Pearson correlation coefficients across all trials, subjects, and drug conditions. Correlation coefficients for exploit 

(first GLM) are the same as reported for explore (overall), but with inverse sign. 

a  first (main) GLM; b second GLM; c third GLM; d fourth GLM; e included in all GLMs. 

 

 

Table A5. Regions used for small volume correction.  

region of  peak voxel (mm)  reference for 

small volume correction  x y  z  peak voxel 

right frontopolar cortex (rFPC) 27 57 6  Daw et al. (2006) 

left frontopolar cortex (lFPC) -27 48 4  Daw et al. (2006) 

right intraparietal sulcus (rIPS) 39 -36 42  Daw et al. (2006) 

left intraparietal sulcus (lIPS) -29 -33 45  Daw et al. (2006) 

right anterior insula (rAI) 32 22 -8  Blanchard & Gershman (2018) 

left anterior insula (lAI) −30 16 -8  Blanchard & Gershman (2018) 

dorsal anterior cingulate cortex (dACC) 8 16 46  Blanchard & Gershman (2018) 

Note. Each small volume correction used a 10-mm-radius sphere around the listed peak voxel MNI coordinates, which mark brain 

regions that have previously been associated with exploratory choices. 
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Table A6. Brain regions showing higher activity for exploratory than exploitative choices (first GLM). 

Region   MNI coordinates peak cluster 

     x     y     z z-value extent (k) 
      

R/L intraparietal sulcus, R/L precuneus,  
R/L postcentral gyrus, L precentral gyrus 

-48 -33 52  10.45 15606 

R precentral gyrus 26 -8 50  9.32 2297 

R/L supplementary motor cortex,  
R/L dorsal anterior cingulate cortex 

8 12 45  8.47 2552 

R cerebellum, R fusiform gyrus 18 -51 -22  8.09 2574 

R middle frontal gyrus 39 34 28  7.56 1291 

R cerebellum 24 -57 -54  7.35 128 

L precentral gyrus -51 0 34  7.31 430 

L cerebellum, L fusiform gyrus -40 -54 -32  7.28 1419 

L thalamus -10 -20 6  6.96 556 

R/L calcarine cortex -8 -74 14  6.90 1222 

R anterior insula 36 20 3  6.87 511 

L anterior insula -36 15 3  6.69 557 

R precentral gyrus 51 8 24  6.49 434 

R thalamus 10 -18 8  6.32 331 

R cerebellum 30 -44 -48  6.24 28 

L middle frontal gyrus -42 27 27  6.07 97 

R cerebellum 14 -62 -45  5.88 61 

R pallidum 15 6 -4  5.83 25 

R calcarine cortex 9 -94 6  5.74 104 

vermis 3 -75 -34  5.70 52 

R supramarginal gyrus 51 -42 28  5.69 46 

L middle frontal gyrus -30 46 15  5.67 47 

L pallidum -10 6 -4  5.64 51 

R anterior orbital gyrus 24 54 -9  5.60 33 

L posterior cingulate cortex -3 -32 26  5.51 21 

L caudate nucleus -16 -14 18  5.33 28 

R caudate nucleus 12 -8 16  5.24 16 

L lingual gyrus -16 -84 -12  5.21 10 

R anterior cingulate cortex 10 27 21  5.13 10 
      

Note. Thresholded at p < .05, FWE-corrected for whole-brain volume, with k ≥ 10 voxels. L: left; R: right. 
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Table A7. Brain regions showing higher activity for exploitative than exploratory choices (first GLM). 

Region    MNI coordinates peak cluster 

     x     y     z z-value extent (k) 
      

L angular gyrus -42 -74 34 8.04 2530 

L posterior cingulate cortex, L precuneus -6 -52 15  7.40 1087 

R angular gyrus 52 -68 28  7.02 185 

R postcentral gyrus 33 -26 54  6.80 503 

R cerebellum 27 -78 -38  6.28 452 

R rostral anterior cingulate cortex 4 18 -14  5.90 125 

L superior temporal gyrus -62 -36 3  5.89 70 

L lateral orbital gyrus -38 34 -14  5.81 102 

R central operculum 45 -14 20  5.73 83 

L middle temporal gyrus -62 -4 -22  5.67 193 

R/L medial frontal cortex -2 40 -10  5.67 233 

L superior frontal gyrus -10 54 30  5.54 20 

L superior frontal gyrus -10 51 36  5.45 10 

L middle temporal gyrus -60 -51 -2  5.38 61 

R superior temporal gyrus 52 -12 -9  5.35 25 

R middle temporal gyrus 62 4 -21  5.30 10 

L rostral anterior cingulate cortex -6 46 4  5.17 13 

L inferior frontal gyrus -50 27 2  5.16 20 
 

     

Note. Thresholded at p < .05, FWE-corrected for whole-brain volume, with k ≥ 10 voxels. L: left; R: right. 
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Table A8. Brain regions in which activity was significantly correlated with the overall uncertainty (fourth GLM), shown 

for the placebo condition and for pairwise drug comparisons. 

Region    MNI coordinates peak cluster 

     x     y     z z-value extent (k) 

placebo      

L posterior insula -34 -20 8  4.63 198 

R supplementary motor cortex 8 10 52  3.98 92 

R/L dorsal anterior cingulate cortex,   
L supplementary motor cortex 

-3 21 39  3.96 176 

R anterior insula 42 15 -6  3.46 38 

R thalamus 8 -10 2  3.41 18 

placebo > L-dopa 
     

L posterior insula -34 -20 8 5.05 a 82 

L anterior insula, L frontal operculum -38 6 14  4.88 222 

L opercular part of inferior frontal gyrus -42 9 26  4.01 80 

L precentral gyrus -54 3 12  3.47 23 

R dorsal anterior cingulate cortex 4 14 28  3.41 32 

R precentral gyrus 39 -9 44  3.39 16 

L dorsal anterior cingulate cortex -2 36 33  3.32 17 

L-dopa > placebo      

no suprathreshold activation      

placebo > haloperidol 
     

R/L thalamus 2 -10 -2  4.52 115 

L posterior orbital gyrus -24 30 -14  4.17 63 

L cerebellum -33 -48 -45  4.14 117 

L parahippocampal gyrus -22 -30 -21  3.91 21 

R anterior insula, R frontal operculum 39 15 -4  3.88 125 

L anterior insula -30 21 6  3.81 27 

L posterior insula -34 -22 8  3.78 31 

L central operculum -54 -20 18  3.73 95 

L hippocampus -27 -38 -9  3.72 36 

R cerebellum 28 -42 -46  3.67 66 

R lingual gyrus 21 -40 -15  3.64 24 

L precentral gyrus -30 -18 44  3.64 14 

L cerebellum -30 -64 -56  3.50 23 

R precentral gyrus 15 -26 45  3.49 17 

R parietal operculum 48 -28 27  3.48 43 

L frontal operculum -50 14 -4  3.46 41 

R middle temporal gyrus 56 -54 -4  3.44 16 



214 
 

R superior temporal gyrus 62 -38 14  3.43 11 

L cerebellum -40 -62 -51  3.41 13 

L lingual gyrus -9 -64 -3  3.40 11 

L cerebellum -15 -69 -50  3.37 20 

L cerebellum -28 -62 -30  3.37 14 

R precentral gyrus 46 -10 44  3.36 13 

R temporal pole 54 12 -8  3.35 16 

R precentral gyrus 46 6 22  3.31 10 

L cerebellum -34 -64 -46  3.29 17 

haloperidol > placebo      

no suprathreshold activation      

L-dopa > haloperidol      

no suprathreshold activation       

haloperidol > L-dopa      

no suprathreshold activation      
 

     

Note. Thresholded at p < .001, uncorrected, with k ≥ 10 voxels. L: left; R: right. 

a p = .031, FWE-corrected for whole-brain volume. 
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