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II Naming conventions and abbreviations 

The following terms and abbreviations are being used in the specified sense throughout this 
thesis: 

m/z = mass-to-charge ratio. 

Th = Thomson, the unit of the mass-to-charge ratio (Da/e). 

PRIDE spectral library = Library of consensus spectra created from the results of the PRIDE Cluster 
project. The library was constructed from all ‘complete’ dataset of the PRIDE repository, which 
were condensed into a usable spectral library by the PRIDE team. In this work, the human subset 
of the PRIDE Cluster database is used, which will be referred to as the ‘PRIDE spectral library’ 
throughout this work. 

Peptide species = A unique combination of peptide sequence, charge state and modifications. 

Query peptide = A fragment spectrum of a peptide which is subjected to identification. 

High confident peptide = A peptide that has been identified with an FDR threshold of 0.01 by an 
established search engine. 

Very high confident peptide = A peptide that has been identified with an FDR threshold of 0.001 
by an established search engine. 

Reference or candidate peptide = A peptide from a spectral library with known identity 
(sequence). 

Decoy peptide = A peptide from the spectral library that has been altered in a way to produce a 
negative hit. 

Spectrum-spectrum match (SSM) = a pair of a query and a candidate spectrum which is subjected 
to a scoring function to measure the similarity between the two spectra. 

(True) positive hit = a spectrum-spectrum match where the highest-scoring candidate represents 
the correct peptide sequence. 

Delta score = Difference of the score of the best hit and the next best hit which represent a 
different peptide. A high delta score implies that the best hit matched the spectrum much better 
than any other candidate peptide. 

False discovery rate (FDR) = The percentage of false-positives among all positives which is 
tolerated. 
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1 Zusammenfassung 
Neue Möglichkeiten zur Analyse massenspektrometrischer Proteomdaten ergeben sich durch die 
immer größer werdende Zahl an Datensätzen von Proteomstudien, die durch Online-
Datenbanken verfügbar werden. Mit Hilfe umfassender Spektrenbibliotheken, die aus den vielen 
Datensätzen generiert werden können, und modernen Methoden der Datenanalyse kann die 
Identifizierung von Peptide anhand von Spektrenbibliotheken (‚Spectral Library-Suche‘) eine 
effektive Alternative zur klassischen Sequenzdatenbanksuche werden. In dieser Arbeit soll die 
Spectral Library-Suche als eine Methode zur schnellen, zuverlässigen und sensitiven 
Identifizierung von Peptidespektren weiterentwickelt werden. 

Die humane ‚PRIDE Cluster‘-Spektrenbibliothek umfasst 789,745 Spektren von 189,400 Peptiden 
und deckt damit 25.5% der tryptischen Peptide im bekannten menschlichen Proteom ab. Sie 
wurde für die Etablierung der Spectral Library-Suchmaschine genutzt. 

Die Suche nach passenden Vorläuferionen (‚Precursor‘) wurde mit sehr kleiner Toleranz zu den 
rekalibrierten Masse-zu-Ladungs-Werten der Precursor in der Spektrenbibliothek durchgeführt. 
Die m/z-Werte der Fragmentspektren wurden zunächst mit einer empirisch ermittelten 
Rekalibrierungsfunktion rekalibriert und anschließend in Bins von 1 Th Breite vektorisiert. Mehrere 
Methoden zur Transformation der Intensitäten der Fragmentsignale und zum Scoring der 
Spektrenpaare wurden mit Hinblick auf deren Fähigkeit zur Unterscheidung von korrekten und 
falschen Spektrenpaaren getestet. Die Rank-Transformierung der 150 intensivsten Signale in 
Kombination mit der ‚correlation similarity‘ Scoring-Funktion erzielte die besten Ergebnisse. 

Die Generierung von Decoy-Spektren wurden mit drei verschiedenen Methoden getestet. Die 
Precursor-shuffle-Methode erzeugte die besten Decoy-Spektren. Anders als bei der intensity 
shuffle- und der m/z randomization-Methode werden hierbei nicht die Spektren selbst verändert, 
sondern die Precursor-Masse-zu-Ladungs-Werte modifiziert, so dass effektiv Spektren anderer 
Peptide mit ähnlichen Precursor-Masse-zu-Ladungs-Werten als Decoy-Spektren verwendet 
werden. Die so generierten Decoy-Spektren erhielten sehr ähnliche Scores wie die Zufallstreffer, 
welche sie modellieren sollen. Sie wurden daher bei der anschließenden Validierung zur 
Abschätzung der Falsch-Positiv-Rate genutzt. 

Um das Scoren von Spektrenpaaren und damit die Identifizierungsrate weiter zu verbessern, 
wurde maschinelles Lernen eingesetzt. Ein neuronales Netzwerk ersetzte dabei die Scoring-
Funktion (‚Scoring-Netz‘). Ein weiteres neuronales Netzwerk diente als Trainings-Netz für das 
Scoring-Netz. Letzteres erlernte dabei zwei Vektoren mit Gewichten zur Etablierung einer 
gewichteten Scoring-Funktion (‚weighted correlation similarity‘, WCS). Das WCS-Scoring erzielte 
eine Verbesserung der Scores um 24.3% und der Identifizierungsrate nach Validierung um 6.9% 
bzw. 14.0% in den beiden HeLa-Datensätzen. Die Vektoren selbst lassen Rückschlüsse auf die 
Unterscheidungsgewalt von Fragmentsignalen an einzelnen m/z-Positionen zu. 

Die WCS-Suchmaschine erreichte Übereinstimmungen von über 98% mit der 
Sequenzdatenbanksuche für Peptide, die in der Spektrenbibliothek zu finden waren. Nach 
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Validierung durch konservative globale Abschätzung der Falsch-Positiv-Rate konnten 45% der 
Identifizierungstreffer bestätigt werden. Weitere 5% wurden nur durch die 
Spektrenbibliotheksuche gefunden. Die Zahl der validierten Peptid-Treffer war geringer als mit 
der klassischen Sequenzdatenbanksuche, allerdings konnte die Falsch-Positiv-Rate mit großer 
Sicherheit auf 1% begrenzt werden, da diese Methode nicht der Problematik des Überanpassens 
unterliegt. Die hier entwickelte WCS-Suchmaschine produzierte Identifizierungsergebnisse mit 
hoher Sicherheit an Hand der PRIDE Cluster-Spektrenbibliothek und erreichte höhere 
Identifizierungsraten als die etablierte Suchmaschine SpectraST. 
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2 Abstract 
Mass spectrometric proteomics data analysis can break new ground through the growing amount 
of data from proteomics studies that become publicly available in online repositories. By 
exploitation of the large-scale spectral libraries built from these repositories and application of 
state-of-the-art computational methods, spectral library searching can become a powerful 
alternative to conventional sequence database searching. The present work aims to advance 
spectral library searching as a fast, reliable and sensitive method for the identification of spectra 
from mass spectrometric proteomics data. 

The PRIDE Cluster human spectral library, containing 789,745 spectra of 189,400 peptides, 
covering 25.5% of the human tryptic peptide sequences, was used to develop a spectral library 
search engine for the identification of peptides in proteomics datasets. 

Precursor matching was performed in a narrow m/z range against the recalibrated precursor 
mass-to-charge ratios. Fragment spectra were recalibrated with an empirical recalibration function 
before vectorization into bins of 1 Th. Various methods of intensity transformation and scoring 
were tested for their ability to discriminate true from false spectrum-spectrum matches. The rank 
transformation of the top 150 signals combined with the ‘correlation similarity’ scoring function 
performed best. 

Decoy spectra were generated with three different methods. The precursor shuffle was found to 
produce the best decoys. Unlike the intensity shuffle and m/z randomization methods, it does not 
rely on the manipulation of target spectra. Instead, it modifies precursor information in a way that 
effectively spectra from different peptides with similar precursor m/z values are presented as 
decoys. The decoy spectra produced by this method achieved very similar scores to the random 
hits and were used for hit validation and global false discovery rate (FDR) estimation. 

A machine learning procedure was established to improve the scoring of spectrum-spectrum 
matches and hence the identification rate. A neural net was designed to fully replace the 
spectrum-spectrum scoring function (‘scoring net’). Another neural net was implemented to train 
the scoring net by taking all candidate spectra for a query spectrum as input (‘training net’). The 
scoring net learned two weight vectors that were used to create a ‘weighted correlation similarity’ 
(WCS) scoring function. The WCS function improved the spectrum scores by 24.3% and the 
identification rate after validation by 6.9% and 14% in the two HeLa datasets. The weight vectors 
themselves gave interesting insight on the discriminative power of signals at every m/z position 
for spectrum-spectrum matching. 

The WCS search engine achieved an overall agreement in identifications with conventional 
sequence database searching of over 98% for the peptides present in the library. After validation 
of the hits by a conservative global false discovery estimation, 45% of the sequence database 
identifications were confirmed, and another 5% of additional peptide identifications were 
retrieved. While the number of validated peptide hits was lower than for sequence database 
search, the conservative method of hit validation with global FDR estimation strictly controlled the 
FDR at 1% without proneness to overfitting. The WCS search engine developed in this work 



 Abstract 

 

 14 

yielded high quality identification results with the help of the PRIDE Cluster spectral library and 
achieved higher identification rates than the well-established spectral search engine SpectraST.
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3 Introduction 

3.1 Mass spectrometry of proteins 
Mass spectrometry (MS) is an analytic method which separates and detects charged particles by 
their mass-to-charge ratio. It has become a widely used tool for bioanalytics and the primary 
method for protein identification in biological samples. Technological advances in ionization and 
mass analyzers enabled for high-throughput analyses and established the field of mass 
spectrometric proteomics, the comprehensive analysis of all proteins from a sample [1]. 

The mass spectrometric analysis of proteins can be divided into two basic strategies: top-down 
and bottom-up. With the top-down approach, intact proteins are subjected to mass spectrometric 
analysis [2]. Proteins are biological macromolecules with molecular weights ranging from 10 kDa 
to several hundreds of kilodaltons. Some proteins have molecular weights of more than 1 
megadalton, like Titin, the largest protein in the human proteome, with 3.6 MDa. These large 
analytes are much harder to analyze efficiently than smaller molecules, as they produce a large 
number of different charge states and may come in a large variety of possible isoforms and 
chemical modifications. Also, mass analyzers may not be able to resolve the signals from large 
proteins down to the isotopic peaks for their limited resolution and/or mass range, and 
separation of intact proteins prior to mass spectrometry presents a major challenge [3]. As a 
result, a mixture of proteins can produce extremely complex spectra that are very hard to 
interpret. Top-down protein analysis is therefore reserved for specific analytic tasks where simpler 
methods are not sufficient. 

The bottom-up approach is most widely used in the field of proteomics. Bottom-up proteomics 
involves enzymatic cleavage of the proteins into peptides, which are then subjected to a 
separation step and to mass spectrometric analysis. Peptides typically have molecular weights 
between 500 Da and 5 kDa. Many of them are well separable by liquid chromatography and 
ionize readily into a small number of different charge states upon mass spectrometry [4]. The 
range of possible modifications is limited to few for the majority of peptides, which facilitates 
identification of the peptides from the acquired spectra. Once identified, the peptides are 
mapped to the protein they originated from with the help of a protein database. 

The present work focuses on the analysis of bottom-up proteomics datasets, specifically on the 
identification of peptides by a spectral library. The following sections relate to bottom-up protein 
analysis. 

3.1.1 Separation by liquid chromatography 

Enzymatic cleavage of the proteins in bottom-up analyses produces a complex mixture of tens of 
thousands of peptides. Mass spectrometric acquisition of too many analytes at the same time 
results in charge suppression, i. e. only those analytes with good desorption and ionization 
properties are ionized effectively, while others will not be ionized and hence not be detected by 
the mass analyzer. In addition, many peptides share the same or similar molecular weights. When 
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one of those peptides is selected for fragmentation, several unrelated peptide ions may pass the 
mass filter and the resulting fragment spectra will be a mixture of signals from two or more 
peptides, rendering a reliable identification difficult or even impossible [4]. 

Peptides in bottom-up proteomics are therefore subjected to at least one step of separation. The 
longer the separation procedure, the higher the possible resolution of separation that can be 
achieved [5]. Multiple steps of separation can be combined to achieve a higher dimensional 
separation and even higher resolution, at the expense of increased experimental efforts and 
longer acquisition times [6, 7]. The last (or only) step is most commonly a reversed-phase liquid 
chromatography (RP-LC), which separates peptides by hydrophobic interaction with a column 
matrix. The RP-LC provides good separation efficacy and is suitable for direct coupling with an 
electrospray ionization source of mass spectrometer (Online-LC-MS) [4]. 

3.1.2 Mass spectrometric instrumentation 

Mass spectrometry analysis of substances involves three basics steps: a) ionization of analytes and 
transition to the gas phase, b) separation of ionized analytes by their mass-to-charge ratio, and c) 
detection of the separated ions. Combination of multiple mass analyzers and fragmentation cells 
allows for an isolation of a specific ion species, its fragmentation, and the analysis of the resulting 
fragment ions. These ‘tandem mass spectrometers’ are most widely used for proteomics 
experiments. 

3.1.2.1 Ionization 

All mass analyzers known to date can only separate charged gas-phase particles. An ion source is 
therefore necessary to (1) bring the molecules into the gas phase, termed 'desorption', and (2) 
make them carry a charge, termed 'ionization'. Two ion sources are predominantly used for 
desorption and ionization of biomolecules: matrix-assisted laser desorption/ionization (MALDI) 
and electrospray ionization (ESI). Both ionization methods are often termed soft, as they deposit 
low amounts of energy onto the molecules and minimize their in-source fragmentation, which 
occur otherwise when ionizing biological macromolecules with higher energies [8]. In this work, all 
datasets were acquired with online-LC-ESI mass spectrometry. 

Electrospray ionization 

Electrospray ionization (ESI) is the most frequently used soft-ionization method for biological 
macromolecules [9]. ESI allows for the formation of gas-phase ions from liquid samples. Initial 
electrospray experiments were conducted by Dole in the 1960s, while ESI was first applied to 
peptides and proteins by Fenn et al. in the 1980s [10]. 

By applying a voltage to the solution, charged droplets are created at the tip of the ESI needle. 
Subsequently, droplets shrink as the solvent evaporates and undergo a Coulomb explosion due to 
increasing charge density. Once all solvent molecules have evaporated, a single charged molecule 
is left in the gas-phase. 
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3.1.2.2 Mass analysis and detection 

Once ions have been generated in the ion source, they are guided to the mass analyzer, where 
they are separated by their mass-to-charge (m/z) ratio. Mass analyzers vary in ion separation and 
detection principles and perform differently in terms of speed, dynamic range, available m/z 
range, as well as mass resolution and mass accuracy. 

Mass resolution and mass accuracy are important characteristics of a mass analyzer. Mass 
resolution is defined as (m/z)/(∆m/z) where ∆m/z is the minimal difference where a signal can still 
be distinguished from another signal of the mass-to-charge ratio m/z. Mass accuracy is defined as 
(∆m/z)/(m/z), where ∆m/z is the difference between the m/z observed in the mass spectrum and 
the m/z value. It is usually given in parts per million (ppm). 

The datasets in this work were acquired on two Orbitrap instruments which were equipped with 
three different types of mass analyzers: quadrupoles, an ion trap and Orbitraps. 

Orbitrap 

The concept of the Orbitrap mass analyzer dates back to the Kingdon trap published in 1923, but 
could not be developed into a functioning instrument at that time [11]. The history of the 
Orbitrap including the work of Kingdon and ensuing scientists was reviewed in 2008 by Perry et 
al. [12]. Realization of the Orbitrap concept towards a high-performance mass analyzer was 
facilitated by the work of Makarov [13], including the development of the C-trap as the injection 
device for the ion packets. Since their commercial introduction in 2005, Orbitrap instruments have 
become a very popular choice among proteomic facilities for their compact sizes, high resolution, 
and high speed analytic capabilities [14]. 

The Orbitrap is a Fourier-transform mass spectrometry (FTMS) mass analyzer, which detects the 
image current of ions oscillating between the two outer electrodes while rotating around the 
central electrode. The frequency of the axial oscillation of an ion is proportional to the inverse 
square root of its mass-to-charge ratio (m/z) [15]: 

 

w = Axial frequency, e = elementary charge, k = device-specific field curvature constant 

Commercial Orbitrap instrument achieve mass resolutions of 1,000,000 at m/z 200, which is the 
second-highest among all mass analyzers, only surpassed by FTICR instruments [16]. 

The two mass spectrometers that were used to acquire the experimental data in this study were 
the ‘Q Exactive’, featuring a regular Orbitrap mass analyzer, and the ‘Fusion’, equipped with a 
smaller ‘high-field Orbitrap’ with higher resolution [15]. 

Quadrupole 

A quadrupole mass analyzer consists of four rod-shaped electrodes. For each opposing pair of 
electrodes, a voltage can be applied. A radio frequency signal is used to create a stable flight path 
for a very small window of m/z values, effectively letting only molecules with a specific mass-to-
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charge ratio pass through, while all other molecules will take unstable flight paths and collide with 
the rods. The quadrupole functions as a mass filter and can be attached with an ion detector or 
combined with another mass analyzer for tandem mass spectrometry. 

3.1.3 Mass spectrometric acquisition of peptides: precursor and fragment spectra 

During the mass spectrometric acquisitions of peptides, a spectrum of all analytes eluting from 
the LC column is acquired (full scan or MS(1) spectrum). Every signal in the MS1 spectrum 
represents a molecule of a certain mass-to-charge ratio (m/z). The m/z values can be determined 
to a certain level of accuracy, which depends on the mass analyzer used. The mass spectrometer 
then selects a given number of signals (precursors) for fragmentation. For each selected precursor 
ion, a mass filter is adjusted to the precursor’s mass-to-charge ratio and filters out all other ions. 
The selected precursor ion is fragmented by collision-induced dissociation (CID) or higher energy 
C-trap dissociation (HCD, only available on Orbitrap instruments) [17] using an inert collision gas, 
such as helium, argon, or nitrogen, to break the chemical bonds of the precursor. The resulting 
fragment ions are analyzed by the second mass analyzer to acquire the fragment spectrum 
(MS/MS or MS2 spectrum). 

Orbitrap Q Exactive and Orbitrap Fusion 

The datasets used in this work were acquired on an Orbitrap Q Exactive and an Orbitrap Fusion 
instrument. Both use a quadrupole as the first mass analyzer for filtering, HCD for fragmentation, 
and an Orbitrap for MS1 spectrum acquisition. The Q Exactive uses the same mass analyzer for 
high-resolution MS2 acquisition, while the Fusion uses an ion trap to acquire lower-resolution 
MS2 spectra. Orbitrap MS1 and ion trap MS2 acquisition can be conducted concurrently on the 
Orbitrap Fusion, allowing for a higher speed of fragment spectrum acquisition at the expense of 
lower MS2 resolution. 

3.1.4 Peptide identification 

A peptide in bottom-up datasets is identified from several pieces of information: a) the mass-to-
charge ratio of the monoisotopic precursor and its higher isotopes, and b) the mass-to-charge 
ratios of the fragment ions. 

Firstly, the charge (z) of the peptide is inferred from the m/z values of the isotopic distribution. 
The monoisotopic precursor mass (m) is then calculated from the monoisotopic m/z and the 
charge z. 

Secondly, when peptides are fragmented by CID or HCD, the molecules usually break along the 
backbone chain. Fragments are generated in distances of amino acid residues (Figure 1). 
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Figure 1: Fragmentation of an example peptide with four amino acids. R1-R3 indicate the 
variable residues of the amino acids, arrows indicate the Cα atoms. Peptides typically break at the 
peptide bond into an N-terminal part (b ion) and a C-terminal part (y ion) with CID or HCD 
fragmentation. The distance between two adjacent b or y ions equals the mass of the amino acid 
at that position minus water. 

Every peptide produces characteristic fragment signals upon fragmentation. The most prevalent 
fragment ions for tryptic peptides are usually the y ions, since they are likely to carry a charge at 
their C-terminal amino acid (lysine or arginine for tryptic peptides). Other ions are frequently 
observed as well, including b ions, immonium ions, the unfragmented precursor ion, or neutral 
loss variants of the precursor or the side chains of amino acids such as glutamate, aspartate, 
glutamine and asparagine [18]. The fragment signals can be used to identify the analyzed peptide. 
Various methods for peptide identification exist, including direct sequencing of the amino acid 
chain without further reference (de novo sequencing), comparison of the fragment signals with 
theoretical fragments generated from a protein sequence database (sequence database 
searching), or comparison of the fragment signals with a reference spectra database (spectral 
library searching). 

3.1.4.1 De novo sequencing 

The amino acid sequence can be derived from the mass distances between adjacent fragments of 
the same type (like b ions or y ions). Assignment of an amino acid sequence to a fragment 
spectrum without any reference sequences is called de novo sequencing. De novo sequencing is 
not limited to the pool of existing sequences and may therefore be used where no reference 
sequences are available, e. g. when identifying peptides from unknown species or to determine 
the sequence of the variable region of an antibody [19]. However, without reference sequences, 
the search space is very large since all possible amino acid sequences must be considered. De 
novo sequencing requires fragment spectra of quality (signal-to-noise ratio) and purity levels 
(little contamination by other peptides) higher than database-driven sequencing in order to 
correctly identify a peptide. For lower quality spectra, various amino acid sequences might explain 
the fragment signal pattern equally well, and neither an algorithm nor a trained expert can 
determine the correct sequence [20]. 
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3.1.4.2 Sequence database searching 

Sequence database searching is the method of choice for high-throughput studies, identifying 
tens of thousands of peptides and thousands of proteins in a single LC-MS/MS run. For each 
query spectrum, a list of possible (candidate) peptides is extracted from the sequence database 
by matching of the experimental precursor mass. For every query-candidate pair, the fragment 
signals of the MS2 query spectrum are compared with the theoretical signals of the candidate 
sequence. The quality of the match is quantified with a score [20]. 

Protein sequence databases are assembled from genomic (DNA) sequencing and annotated with 
protein IDs and names. These databases contain all possible canonical amino acid sequences of 
the selected species. A commonly used protein database is SwissProt, a manually curated protein 
database and part of UniProt, which currently holds 559,077 protein entries, including 20,413 
human proteins [21]. 

Popular sequence database search engines include SequestHT, Mascot, X!Tandem, Andromeda, 
and MS-GF+. 

3.1.4.3 Spectral library searching 

Spectral library searching is another strategy for peptide identification which has emerged during 
the past decade as the number of publicly available spectral libraries has been steadily increasing. 
It is based on the comparison of the query spectra with reference spectra from a library that have 
been repeatedly identified in previous experiments. Unlike theoretical spectra in database 
searching, the experimental spectra from the spectral library contain real intensity information 
and non-canonical fragment ions, two features which are usually not considered by sequence 
database search engines. As a result, spectral library search engines produce high identification 
rates and perform well also on lower quality spectra. [20] 

An inherent property of spectral library searching is the limited search space. Only those peptides 
that have been analyzed, correctly identified, as well as submitted to and included in the library 
can be found by spectral library searching. This is somewhat a strength and a weakness at the 
same time: Since the search space includes only those peptides that are known to be detectable 
by mass spectrometry, the number of false hits from non-detectable peptides is reduced. Also, 
spectral library searching is comparably fast [20]. On the other hand, all peptide species which 
have not been included in the library will be missed or assigned with a false sequence. It is 
notable that each combination of peptide sequence, charge, and modifications forms a distinct 
peptide species, and each combination requires its own library entry in order to be identifiable in 
spectral library searching. 

While the size of the library is the most limiting factor in spectral library searching, this will be 
mitigated by the growing number of publicly available proteomics data repository. At the time of 
writing, the PRIDE archive contained data from 11,299 proteomics experiments and continues to 
grow [22]. Also, open-modification search strategies may help to identify peptides where the 
exact modification configuration is missing the library [23]. 
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3.2 Identification of peptide fragment spectra with 
spectral libraries 

3.2.1 Spectral libraries built from online proteomics data repositories 

Online repositories are a continuously growing source of proteomics data that can be condensed 
into comprehensive spectral libraries. Many scientific journals require submitting authors to make 
data from proteomics experiments publicly available through online repositories. Given the 
resources necessary to keep data in online repository available, the authors, members of the 
PRIDE team, state that “We must shift our focus from data review to data reuse.” [24] The idea of 
data reuse has been demonstrated as part of the “Draft of the human proteome” by Wilhelm et al. 
in 2014 [25], where re-analyzed RAW files obtained from public repositories accounted for about 
40% the data and hence significantly enhanced the authors’ experimental data base. 

Re-using online repository data for the generation of reference spectral libraries is not considered 
a straight-forward endeavor. The submitted data comes in a variety of data formats from different 
instruments, has been processed with different tools with different parameters, etc. The high 
heterogeneity is a major hurdle for researchers to re-using data from public repositories [26]. In 
addition, merging of multiple datasets into a consensus library requires not only sufficient 
computational resources, but also careful quality control to limit the number of false-positive 
peptide entries. Specifically, the authors of MassIVE-KB, a spectral library generated from the 
MassIVE repository, estimated that by simply merging all datasets which were individually filtered 
at 1% FDR, the overall FDR would grow as high as 28% [27]. 

The curators of the largest online repositories, PRIDE and MassIVE, both part of the 
ProteomeXchange consortium [28], created large spectral libraries from all data submitted to their 
respective repositories [24, 27]. The work involved development and evaluation of algorithms, 
quality control of the library, and realization through large-scale parallel computing. 

The PRIDE Cluster spectral library was constructed from all ‘complete’ datasets uploaded to the 
PRIDE repository until April 2015. 256 million spectra (66 million identified, 190 million 
unidentified) were clustered and condensed into consensus spectra. A cluster was regarded 
reliably identified when 70% of the spectra, three at least, were identified as the same peptide 
sequence. The human subset of identified peptides consists of 789,745 consensus entries [29]. 

3.2.2 Introduction to spectral library searching 

In 2006 and 2007, four spectral library search engines were published within a short time frame, 
including SpectraST [30], X!Hunter [31], BiblioSpec [32] and MSPepSearch [33]. These search 
engines are similar in that they all perform spectrum-spectrum comparison with the help of the 
dot product but differ in the details of spectrum processing and score calculation. 

To identify a query spectrum with the help of a spectral library, the search engine first selects 
candidate spectra from the library with precursor masses within an adjustable window of the 
query spectrum’s precursor mass (precursor mass tolerance) and (optionally) with the same 



 Introduction 

 

 22 

charge state. The query and candidate spectra may be pre-processed with different methods, like 
noise filters, intensity transformation and normalization. For every pair of query and candidate 
spectra (spectrum-spectrum match, SSM), the score is calculated as a measure of similarity 
between the two. After scoring, the SSMs are subjected to a validation step which separates true-
positive from false-positive matches at a certain confidence (false-discovery rate, FDR). 

3.2.2.1 Peptide modifications 

Peptides can possess a variety of chemical modifications, both naturally and artificially. Every 
modification of a peptide which changes the chemical composition induces a shift of the 
precursor mass and of some or all fragment masses, depending on the position (the amino acid 
the modification is chemically bond to) and its fragmentation properties. For peptide 
identification, the information about present modifications is therefore as vital as the peptide 
sequence itself. Every combination of modifications of a peptide requires a distinct entry in 
spectral libraries to be available for identification. 

Examples for modifications of peptides are a) carbamidomethylation, an artificially induced 
modification of cysteine during tryptic digestion as a protection from re-formation of disulfide 
bonds, b) oxidation as a result of endogenous processes or during sample preparation, c) TMT, 
iTRAQ or other heavy atom labels when labeled experiments are performed, d) biological post-
translational modifications such as phosphorylation, acetylation and glycosylation. 

3.2.2.2 Sequences and coverage 

For the reasons given in the previous sections, ‘coverage’ in terms of spectral library searching 
extends beyond presence or absence of a peptide sequence in the library. Spectral libraries must 
include reference spectra for every desired combination of charge states and modifications in 
order to produce comprehensive identification for proteomics experiments. The number of 
reference spectra is therefore several folds larger than the number of distinct peptide sequences. 

In the human subset of the PRIDE Cluster library, 789,745 consensus spectra represent 189,400 
peptides. The MassIVE-KB spectral library is even larger, containing 2,035,808 spectra which were 
condensed from 227 proteomics datasets (31 TB of data) that had been uploaded to the MassIVE 
repository. The library covers 19,610 human proteins (97.4%) and 54% of the known human 
protein sequences [27]. Notably, the MassIVE-KB library also includes data from PRIDE which was 
mirrored to the MassIVE repository. They enhanced the coverage of their library by the inclusion 
of more than 100,000 spectra from synthetic peptides [34]. 

3.2.3 Precursor matching 

Database search engines select candidate peptides from the database by matching their observed 
(or, optionally, re-calculated) mass to the experimental monoisotopic mass of the precursor ion 
and its charge state. A tolerance can be defined by the user, which is usually as low as 10 ppm, or 
even lower, for high-resolution mass analyzers such as the Orbitrap. 

The precursor mass tolerance also determines the number of candidate spectra that have to be 
compared to each query spectrum. Higher precursor mass tolerance leads to a larger search 
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space and increases the chance of selecting the correct hit for scoring (higher sensitivity), but may 
potentially lead to more false-positive hits (lower specificity). Conversely, a narrow precursor mass 
window may result in higher specificity at the expense of lower sensitivity. Generally, the tolerance 
should be adjusted to the lowest possible value the database and the experimental dataset allows 
for without compromising sensitivity for specificity. 

3.2.4 Fragment spectrum resolution and vectorization 

In MS/MS acquisition mode, fragment signals are usually recorded along the m/z axis in a mass 
range of 100 up to the singly-charged precursor m/z. Some mass analyzers impose limits on the 
maximum mass range, or the mass range may be narrowed deliberately to save analysis time 
and/or disk space. 

Mass analyzers acquire spectra as vectors of intensities (‘profile spectra’). The mass range and the 
desired resolution determine the length of the vector. During preprocessing of the data for search 
engines, the profile spectra are subjected to a peak picker which reduces the continuous 
spectrum to a list of (m/z; intensity) pairs (peak list). Peak picking reduces the amount of data and 
effectively functions as a noise filter, where only peaks with proper shape and, if appropriate, 
proper isotopic distribution will pass through. Search engines usually take peak list spectra as 
input, e.g. in the mascot-generic format (mgf). 

To compare a pair of query and candidate spectra in spectral library searching, most search 
engines transform the peak lists back into a common m/z vector. This allows for the use of vector 
operations like the dot product to calculate spectrum similarity. 

An important decision in vectorization is the bin size, which determines the minimum distance 
between to signals that can be represented by the spectrum vectors. Small bins of 0.02 Th, for 
example, retain high fragment mass resolution and accuracy as found in Orbitrap MS2 data for 
instance, because signals that are as little as 0.02 Th apart will be assigned to different vector bins. 
However, to correctly compare signals in a query spectrum with the corresponding signals in a 
candidate spectrum, mass accuracy of both spectra must be equally high. The mass accuracy of 
query spectra is usually known to the user from the specifications and the quality of calibration of 
the mass spectrometer. In contrast, the diverse nature of spectra in the spectral library in terms of 
instrumentation and processing may not allow to assume such high mass accuracies in candidate 
spectra and require higher fragment mass tolerances. Also, a common m/z vector from 100 to 
2000 Th with 0.02 Th bin size would require an enormous number of 95,050 data points per 
spectrum – most of which represent zeros or noise. This can be mitigated by the use of sparse 
arrays as memory-efficient storage constructs, but still requires processing of the full-size vectors 
when the scoring function is applied. 

On the contrary, bin sizes of 1.0 Th yield shorter vectors and do not require very high mass 
accuracy in query and library spectra. But they will reduce the effective fragment mass resolution 
to 1.0 Th and hence perform the spectrum-spectrum comparison at a comparably high fragment 
mass tolerance of 1.0 Th. Figure 2 demonstrates how fragment signals are divided into bins of 1.0 
Th width. 
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Figure 2: Binning of an experimental fragment spectrum into bins of 1.0 Th. The red dashed 
lines indicate the binning edges. All signals that fall into the same bin will be merged to one. 

An efficient spectrum comparison algorithm needs to find a good trade-off between data 
reduction, effective signal matching between the spectra and maintaining sufficient mass 
accuracy. Spectral search engines tackle this challenge in different ways: 

The SpectraST method 

SpectraST performs binning to 1.0 Th by default, but smaller bins can be specified. To 
compensate for binning errors, i. e. when peak at the binning edge is assigned a to the wrong bin 
due to a small mass error, an adjustable fraction of the peak’s intensity can be added to the 
adjacent bins (50% by default) [30]. 

BiblioSpec 

BiblioSpec performs vectorization in 1 Th bins and sums the intensities of all peaks that fall into 
the same bin. This parameter is non-adjustable in the original version of the program [32]. 

Pepitome 

Pepitome does not perform vectorization by binning of the fragment spectra but applies a 
pairwise peak-matching between query and candidate spectra to allow for exploitation of high-
mass accuracy fragment spectra. Every peak in the query spectrum is matched against the closest 
peak in the library spectrum within a given mass tolerance. The scores are then calculated from 
the matched peak pairs. [35] 

ANN-SoLo 

ANN-SoLo uses 1 Th bins for initial scoring during candidate selection. Once the candidates are 
found, spectrum comparison is performed on peak pairs with adjustable tolerance, similar to 



 Introduction 

 25 

Pepitome. The authors extended the peak matching to finding mass shifts by modification to a 
method they termed ‘shifted dot product’. [23] 

While SpectraST and BiblioSpec use constant bin sizes for spectrum-spectrum match scoring, 
Pepitome and ANN-SoLo implement a more dynamic approach which allows the user to specify 
the fragment mass tolerance as a parameter to the search engine. 

3.2.4.2 Choosing an optimal bin size for fragment spectrum vectorization 

Vectorization of the fragment spectra to 1.0 Th bins offers algorithmic and computational benefits 
and renders the mass accuracy of query and candidate spectra less critical. It must be evaluated, 
though, whether the considerable loss of information about the accurate masses of the fragment 
signals will affect the accuracy of the spectrum identification. 

Interesting observations about the effect of fragment mass resolution to identification accuracy 
can be drawn from experiments with the Orbitrap-linear ion trap hybrid instruments ‘Orbitrap 
Fusion’ and ‘Orbitrap Elite’. These hybrid mass spectrometers use an Orbitrap mass analyzer for 
MS1 spectrum acquisition to determine accurate precursor masses and optionally a linear ion trap 
for MS2 spectrum acquisition. In HeLa runs with the Orbitrap Elite, Michalski et al. used a rather 
low fragment spectrum resolution with a peak width of 0.47 Th at half maximum with the linear 
ion trap. Peptide identification was subsequently performed with a fragment mass tolerance of 0.5 
Da. The results were compared with HeLa runs where MS1 and MS2 spectra were both acquired 
on the high-resolution Orbitrap mass analyzer and the search was performed at a fragment mass 
tolerance of 20 ppm. Interestingly, a higher number of identified peptides (11,543 vs. 10,847) was 
observed with the low-resolution ion trap data [36]. Here, the higher acquisition speed 
compensated for the lower mass resolution and accuracy of the ion trap and yielded more 
identified peptides. 

While these findings from instrument performance are not equally applicable to spectral library 
searching, they demonstrate that good identification performance can be achieved with data 
featuring high precursor mass accuracy and lower resolution fragment spectra. 

3.2.4.3 Recalibration of fragment m/z values 

When constant binning is performed on fragment spectra, signals will be assigned to a specific 
bin based on the fractional parts of their m/z values (‘mass defects’). For example, when 
vectorization to 1.0 Th bin size is applied, a signal at m/z 700.4 will be assigned to the m/z 700 
bin, while a signal at m/z 700.6 will be assigned to the m/z 701 bin. This implies that small mass 
errors at the edge of the bins (around the fractional part of 0.5 in this example) may lead to 
signals being assigned to an adjacent bin instead of the correct bin. 

As mentioned previously, SpectraST used ‘peak spreading’, where 50% of a bin’s intensity is 
added to the neighboring bins, to compensate for possible binning errors. The peak matching 
methods as performed by Pepitome and ANN-SoLo do not suffer from this issue. 

In this work, a new approach is suggested which provides more accurate constant-bin 
vectorization of fragment spectra. The method involves a recalibration of the m/z axis of all 
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fragment spectra prior to vectorization, based on the observation of a typical distance patterns of 
fragment signals. 

This concept relates to the Kendrick mass, where the observed mass is multiplied with the ratio of 
the nominal (integer) mass and the exact mass of a given base fragment [37]. Characteristic mass 
defects of certain molecular species can been exploited in mass spectrometric data analysis in 
various ways [38]. 

3.2.5 Scoring of spectrum-spectrum matches 

For every spectrum-spectrum match, a score is calculated as a measure of similarity between the 
query and the candidate spectrum. The candidate that yields the highest score is considered the 
best match and subjected to FDR validation later on. 

Many spectral search engines base their scoring scheme on the dot product of the spectrum 
vectors. Some engines perform additional calculations to derive the final score, like SpectraST, 
which used a dot bias “to penalize high-scoring matches with massive noise and/or dominant 
peak” [30] before switching to Rank-transformed dot products in version 5.0 [39]. 

The absolute intensities of query and library spectra can differ substantially due to the different 
instruments they were acquired on and different pre-processing methods. The dot product is 
therefore normalized by the total length of the vectors, which may also be referred to as the 
cosine similarity (or 1 - CosineDistance) because it reflects the cosine of the angle between the 
two vectors [40]: 

cos(u, v) = u . v / (Norm[u] * Norm[v]) 

Several measures of similarity were compared by Liu in 2007 [40]. Among these methods were the 
cosine similarity and the correlation coefficient. The latter was defined as: 

CE(u, v) = (u – Mean[u]) . (v – Mean[v]) / ( StandardDeviation[u] * StandardDeviation[v] ) 

The correlation coefficient includes shifting of the vectors by their means before dot product 
calculation and normalization to the standard deviation of the vectors. The authors found that the 
correlation coefficient yielded slightly better scores than cosine similarity. 

In this work, SSM scores are calculated by a related function termed ‘correlation similarity’. The 
correlation similarity is the dot product of spectrum vectors shifted by their means and scaled by 
their norms – a mixture of cosine similarity and correlation coefficient. The correlation similarity is 
defined as: 

CS(u, v) = (u – Mean[u]) . (v – Mean[v]) / ( Norm[u – Mean[u]] * Norm[v – Mean[v]] ) 

The correlation similarity yields scores between 0 and 1 for all non-negative valued vectors, with 1 
reflecting identical vectors and 0 completely unrelated vectors. 

While scaled dot products have proven to be good measures of spectrum similarity, they are 
prone to certain biases. Dot product scores tend to overweight intense peaks, so that a few 
intense peaks may dominate the score of a spectrum-spectrum match and average intense peaks 
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are disregarded, although they may be just as discriminative as the intense ones [39]. Also, 
spectra with higher number of signals tend to produce higher overall scores [35]. 

To compensate for the biases, fragment ion intensities are usually transformed before the scoring 
function is applied. As an alternative, the authors of the spectral search engine Pepitome decided 
to use two probabilistic scoring schemes instead of the dot product, which are not affect by the 
number of fragment signals [35]. 

3.2.6 Transformation of fragment ion intensities before scoring 

Spectral search engines are provided with experimental signal intensities for all fragment signals 
both in the library and the query spectra. With virtually all scoring methods, signals of higher 
intensity have a higher contribution to the score than lower-intensity signals, which is justified, as 
the intense signals are likely to represent true signals from the peptide and the least intense 
signals are more likely to be noise. However, as discussed in the previous section, high-intensity 
signals tend be overweighed, so a reduction of the dynamic range of the intensities is desirable 
for more accurate SSM scoring. Various methods of intensity transformation have been suggested 
and implemented (Table 1). 

Table 1: Selection of intensity transformation methods and the use in common spectral 
search engines. 

 Transformation function Search engine examples References 

1 No transformation (none)  

2 Square root 
SpectraST up to 4.0, 
QuickMod, BiblioSpec 

[20, 30] 

3 Logarithm (none)  

4 Rank transformation 
SpectraST as of 5.0, 
QuickMod, Pepitome, 
ANN-SoLo 

[20, 23, 35, 39] 

5 Unity intensity (none) [40] 

 

The square root (method 2 in Table 1) lowers the impact of high-intensity peaks on the score. 
When used in conjunction with the dot product as the scoring method, it compensates for the 
fact that signals of doubled intensity affect the dot product for times as much [39]. Square root 
transformation and dot product scoring were used together in SpectraST until version 4.0 [20]. 

Log transformation of the intensities (method 3) reduces the dynamic range of intensity even 
more, but still preserves relative intensity differences between the signals. 
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Rank transformation (method 4) does not prevail the intensity values of the peaks at all but only 
its order. The peak with the lowest intensity is assigned the value 1, the seconds lowest the value 
2, and so on. Thus, in a fragment spectrum with 50 peaks, the most intense peak will be assigned 
the value 50. Rank transformation was introduced in SpectraST with version 5.0 [39]. 

Setting all intensities to unity (=1) (method 5) will calculate the score based on the presence or 
absence of peaks with no respect to the peaks’ intensities. This has been tested by Liu 2007 as 
‘counting the number of matching peaks’ [40]. 

In addition to transformation of intensities, spectral search engines may only use a limited 
number of signal, like the top 50 signals (ANN-Solo), to calculate the score, effectively setting the 
remaining signal intensities to zero [23]. By limiting the number of fragment signals for scoring, 
search engines compensate for the fact that denser spectra tend to produce higher scores. Also, 
Pepitome can apply noise peak filtering using adjustable thresholds [35]. In SpectraST, the 
maximum number of peaks used for scoring can be adjusted and is set to 150 by default [41]. 
X!Hunter only uses the top 20 peaks of each spectrum [20]. 

3.2.7 Implementation of a weighted scoring function 

A possible extension of the scoring of transformed intensity values is the application of a 
weighted scoring function. In a weighted scoring function, every m/z signal is multiplied with an 
adjustable weight to account for the potentially different discriminative power of different m/z 
values. It is conceivable that signals which are universally present in all spectra may be scaled 
down by the multiplication with lower weights, and signals which are specific to individual 
peptides may receive higher weights. For instance, the fragment signals at m/z 147 or m/z 175 are 
frequently observed in tryptic peptides representing the y1 ions of a C-terminal lysine and an 
arginine. These signals may not contribute useful information to measure the similarity of two 
spectra, or more so the dissimilarity of two unrelated spectra, because they are present in most 
spectra, anyway. In contrast, signals that are less ubiquitous among all spectra may have more 
discriminative power. Ideally, signals of higher discriminative power will receive higher weights 
and since have more impact on the score, which will render the score more discriminative as well. 

The application of a weighted scoring function and its effect on the peptide identification 
performance will be evaluated in this thesis. 

3.2.8 Hit validation 

Spectral search engines output a score for every spectrum-spectrum match. While the best 
scoring candidate spectrum can be assumed to be the closest match to the query spectrum 
among all spectra in the library, it is not guaranteed to be correct. Particularly, spectral libraries do 
not cover the entirety of protein sequences, thus it cannot be inferred from the score alone 
whether the best match is a true-positive hit, or whether it is a false-positive hit, where the real 
reference spectrum would have scored even better. A validation step therefore follows the scoring 
to decide whether the best match is likely to be correct or not. Common validation procedures 
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involve the estimation of the false-discovery rate, which allows to limit the number of false-
positive hits among all positive hits. 

3.2.8.1 Delta score 

The delta score is the difference between the score of the ‘best match’ and the ‘second best 
match’, where the latter is the highest scoring candidate which represents a different peptide than 
the best match [39]. It can be interpreted as a measure of how much better the best match 
explains the fragment signals in the query spectrum than the second-best match. A low delta 
score means that the two matches are very close to each other and that the search engine cannot 
discriminate well between the two candidates. Conversely, a high delta score indicates that the 
best candidate matches the query spectrum to a much higher degree than the second best, and 
thus is more likely to be correct. 

The delta score can be used for spectral library searching as well as sequence database searching. 
SEQUEST uses an adjustable delta score threshold to filter ambiguous hits [42] before FDR-based 
validation usually follows. SpectraST also calculates the delta score, which can be used for hit 
validation afterwards [39]. 

3.2.8.2 False-discovery rate 

A false discovery rate (FDR) estimation is the most popular procedure to discriminate between 
true-positive and false-positive hits at a certain confidence. An FDR of 0.01 (1%) is usually 
considered acceptable for proteomics studies using modern Q-TOF and orbitrap instruments. The 
score cutoff is adjusted so that among all identified peptides, 1% should be false-positives while 
99% should be true-positives [43]. 

A non-decoy approach to FDR estimation was developed by Keller et al. with the software 
PeptideProphet. PeptideProphet models the scores of the true-positive and false-positive hits by 
fitting two normal distributions into the distribution of all scores [44]. The underlying assumption 
is that both the scores for the true-positive hits as well as for the false-positives hits can be 
modelled from the empirical distributions of all hit scores. It was used for hit validation in the 
original SpectraST publication [30]. 

In sequence database searching, the use of a decoy library is the most common approach to FDR 
estimation. Decoy spectra are artificially generated spectra which are inherently ‘wrong’, so that 
every match with a decoy spectrum is a false-positive hit. Ideally, the score distribution obtained 
from search against the decoy database represents the scores of false-positive hits. From the 
distribution of decoy and target scores, a score cutoff will be calculated so that the number of 
decoy hits is FDR * the number of target hits at most (global FDR) [45]. Unlike sequence database 
searching, where decoy libraries can be easily be generated by sequence reversing [46], 
generation of decoy spectra for spectral library searching is not as simple [47]. 
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3.2.9 Decoy spectrum generation for false discovery rate estimation in spectral library 
searching 

Decoy spectra are generated to model random (false-positive) hits. When generating a library of 
decoy spectra, it must be ensured that decoy spectrum will match the query spectra equally well 
as random (false-positive) hits from the spectral library. If decoy spectra produce scores which are 
lower compared to the false-positives hit scores, the FDR will be underestimated, meaning that 
the number of false-positive is actually higher than the desired target FDR. Conversely, if the 
decoy scores are higher, the FDR will be overestimated and the number of total identifications will 
be below optimum [43]. 

The quality of a decoy library can be assessed by comparing the scores of the decoy spectra to 
the scores of known false-positive hits. Cheng et al. searched spectra from human samples 
against E. coli, yeast, or chicken databases to generate a ‘ground truth’ for false-positive hits, and 
compared the performance of their own decoy library generation method [48]. However, Lam et 
al. argued that cross-species decoy spectra are inferior to decoy spectra created artificially from 
the target library for its potential different library size and different precursor mass distributions 
[47]. 

The generation of decoy spectra has been found to be more complicated than the generation of 
decoy sequences. In order to match query spectra with similar probability as the false-positive 
spectra, decoy spectra need to have similar features as the real spectra [47]. Methods that have 
been proposed for decoy spectrum generation from spectral libraries include the shuffle-and-
reposition method, the DeLiberator method, and the peak-shift method. A method which uses 
original (unaltered) spectra as decoys but changes the precursor mass is the precursor-swap 
method [20]. 

The shuffle-and-reposition method was implemented in SpectraST 4.0 [41]. It creates a decoy 
spectrum from a real spectrum by shuffling its sequence and repositions all annotated fragment 
ions accordingly. Non-annotated fragment ions were left unchanged [47]. 

DeLiberator enhances the shuffle-and-reposition by shuffling the annotated ions incrementally 
until a similarity score of below 0.5 is achieved and also shuffles non-annotated fragment ions 
[49]. 

The peak-shift method shifts all fragment ions by a fixed m/z to generate decoy spectra [48]. 

Precursor-swap does not change the fragment spectra directly but assigns a different precursor 
mass to them. Among the four methods mentioned here, it is the only method that presents 
original spectra instead of artificially modified ones – although from different precursor masses – 
to the search engine. 

When applied to their dataset, Cheng et al. observed that all methods tended to produce decoys 
which would match worse than the real spectra, so they would all underestimate the FDR [48]. 
However, the authors demonstrated that decoy spectra created with their precursor-swap method 
yielded FDRs that were closest to the true FDRs. SpectraST has implemented the precursor-swap 
method in version 5.0 [41]. 
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In this work, two spectrum manipulation methods, ‘intensity shuffle’ and ‘m/z randomization’, and 
an improved version of the precursor-swap method, ‘precursor-shuffle’, will be implemented and 
the quality of decoy spectra will be evaluated. 

3.3 Machine learning for improvement of SSM scoring 
Machine learning is a form of computation where a program learns to improve on a task 
automatically through experience [50]. Typical applications of machine learning are problems 
which cannot be efficiently solved by algorithmic programming for their very high complexity and 
too many degrees of freedom. A self-learning program is being designed and presented with 
training data with known outcomes. Through many training rounds, the program gets better at 
predicting the outcome by adjusting its internal parameters. Ideally, it can predict the outcome of 
unseen (validation) data just as well after training has ended and therefore be used to solve new 
tasks where the outcome is not yet known. 

The large sizes of today’s proteomics datasets, possibly enhanced with data available through 
online repositories, are an excellent training data base for machine learning. Proteomics data 
processing can be extended by machine learning in many ways, one of which is the frequently 
used validation tool Percolator. The concept of machine learning is applied to the scoring of 
spectrum-spectrum matches in this work. An artificial neural network will be built with the aim to 
automatically learn to produce improved SSM scores based on training with known positive and 
negative SSMs. 

3.3.1 Artificial Neural Networks 

The concept of a network of simple primitives which ‘fire’ at certain input values dates back to a 
work of McCulloch and Pitts in 1943 [51]. The authors developed a logical model for the behavior 
of the nervous system in the human brain. At that time, however, computational resources were 
far away from being able to tackle real-world tasks with neural networks. Other tactics dominated 
the machine learning fields until the 1990s. With the evolution of computer hardware and the 
development of the backpropagation method for training of multi-layer networks, interest in 
neural networks for machine learning regained during the past 25 years. 

3.3.1.1 Perceptron 

The most basic form of artificial neurons, the building blocks of neural networks, is a perceptron, 
conceived by Frank Rosenblatt and published in 1958 [52]. The perceptron multiplies an input 
value with a learnable weight (w) and adds a learnable bias (b) to the product. If the result is > 0, 
the perceptron returns 1 (it ‘fires’), otherwise 0. 

3.3.1.2 Neurons 

Artificial neurons are a generalization of the perceptron with non-binary outputs. A neuron 
performs the same calculation w*x + b of input value x, learnable weight w and learnable bias b, 
but may apply any activation function to determine the output value of this calculation. Common 
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activation functions are the step function, linear function, the logistic sigmoid or the hyperbolic 
tangent function, or the ramp or rectifier function [53]. 

In this sense, perceptrons are a subtype of artificial neurons – linear neurons with the step 
function as the activation function. 

3.3.1.3 Training 

The process of adjusting the learnable parameters in a neural net is called training. Training data 
is provided along with the true output (‘ground truth’) to a (usually) randomly initialized network. 
The output of the network is compared to the ground truth by a loss function, which quantifies 
the difference between the calculated and the true output. The learnable parameters are then 
adjusted by a method called backpropagation to allow the network to improve on its task. This 
process is repeated for many rounds. 

3.3.1.4 Validation 

Training of a large number of learnable parameters with a comparably small number of samples is 
susceptible to overfitting, i. e. instead of learning a generalized solution to a given problem, the 
neural net ‘memorizes’ specific properties of the training data. This results in a neural net that 
performs much better on training data than on unseen data. 

To test for overfitting, a validation set of unseen data can be presented to the neural net and the 
loss can be calculated. A large difference between training and validation indicates overfitting. In 
this case, the number of training rounds can be reduced, the training set can be enlarged, 
regularization can be applied, or a different neural net design can be chosen [54]. 

3.3.1.5 Usage examples of artificial neural networks 

Today, artificial neural networks are state-of-the-art techniques for complex machine learning 
tasks [55]. Growth of computational power through distributed computing, acceleration by 
specialized components such as graphics processors (GPUs) or application-specific integrated 
circuits (ASICs) allowed for the design of complex neural nets with several hidden layers (deep 
networks) and millions of learnable parameters. The introduction of convolutional neural 
networks, recurrent and long short-term memory networks lead to major improvements in 
various computational fields in the past decade. Those networks perform tasks which are 
considered the most complex for any machine learning endeavor, including image and speech 
recognition, image or text generation [55], re-colorization of grayscale images [56], and chess and 
go computers [57]. 

3.3.2 Application of neural nets for optimization of the scoring function 

In this work, a shallow neural network, i. e. a neural network with only one layer of learnable 
parameters, will be used to optimize the scoring function of spectrum-spectrum comparisons. 

The underlying premise is that the discriminative power of signals at different m/z values is not 
equal. To exploit this phenomenon for spectrum similarity scoring, every m/z value is multiplied 
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with a learnable weight before the scoring function is applied. Separate weight vectors will be 
established for the query and the database spectra. Optimization of the two vectors is a multi-
dimensional optimization problem which will be tackled with a neural net in this work. During 
training with a subset of experimental data, the neural net will optimize the weights by 
backpropagation to maximize the difference between the scores between positive spectrum-
spectrum matches and negative spectrum-spectrum matches.  

3.4 Performance considerations 
Processing large amounts of data involves significant computational time and memory. All 
algorithms were designed to run a single workstation computer in reasonable time and with 
memory efficiency. Benchmarking of method run times, memory consumption, as well as frequent 
code optimization has been an integral part in the conduction of this work. The performance 
evaluations will be addressed at the end of the results section.  
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4 Aim of the thesis 
The large-scale spectral libraries that have become available through the growth of online 
proteomics data repositories demand for powerful computational methods to be fully exploited 
for proteomics data analysis. The diversity of reference data in spectral libraries and experimental 
query datasets due to different instrumentation, sample preparation and acquisition parameters 
require robust search engines which yield reliable identifications results. 

The present work aims to advance spectral library searching as a fast, reliable and sensitive 
method for the identification of spectra from mass spectrometric proteomics data. A careful 
analysis of the constitution and coverage of the PRIDE Cluster human spectral library will be 
conducted. Several steps of spectral library searching will be examined and optimized. The results 
will be compared to the established spectral library search engine SpectraST. Very high confident 
identifications from the sequence database search engine SequestHT will serve as a ‘ground truth’ 
for all optimization steps. 

This work will incorporate machine learning through neural networks to enhance the scoring of 
spectrum pairs and achieve higher identification rates. While only scratching the surface of what is 
possible with state-of-the-art neural networks, it will be demonstrated how machine learning can 
improve the accuracy of a spectral search engine. 

Findings from this work shall help to understand the capabilities and limitations of spectral library 
searching. This work will address coverage and confidence of spectral library searching and 
discuss strategies to achieve both the high identification rates of sequence database searching 
and the high specificity of spectral library searching. 
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5 Results and discussion 

5.1 The PRIDE Cluster spectral library 
The human subset of the PRIDE Cluster spectral library, built in April 2015 by the PRIDE team, was 
used for all spectral library searches. It consisted of 789,745 spectra from 189,400 peptides. The 
following sections give insight about basic properties of the spectral library. 

5.1.1 Peptide mass-to-charge ratios 

The distributions of precursor mass-to-charge ratios and molecular weights are depicted in Figure 
3. 

 

Figure 3: Histograms of precursor mass-to-charge ratios (a) and molecular weights (b) of 
all peptides in the PRIDE spectral library. The molecular weights were calculated as 
mMW = (m/z - 1) * z. Median values are m/z = 701.8 Th and m = 1,580.1 Da. 

The precursor m/z of most peptides was in range of 400 to 1500 Th with the median m/z at 701.8 
Th. Molecular weights were in the range of 800 to 4000 Da, median of 1,580.1 Da, suggesting that 
2+ is the most dominant charge of the peptides, as the molecular weights are roughly the 
doubled m/z value. The distribution of molecular weights is mirrored by the distribution of the 
sequence lengths, which is shown in Figure 4. 

b a 
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Figure 4: Histogram of sequence lengths of the peptides in the PRIDE spectral library. 
Min = 5, Median = 16, Max = 82 (outside the depicted range). 

The minimum sequence length was 5 amino acids and the longest peptide in the library consisted 
of 82 amino acids. Median length was 16. 

5.1.2 Peptide charge states 

Peptide spectra were acquired from precursors of charge states between 1 and 8. Table 2 
summarizes the charge distribution in the spectral library. 

Table 2: Overview of peptide charge states in the PRIDE spectral library. 

Peptide charge Number of peptides Percentage

1 10,474 1.33% 

2 521,614 66.05% 

3 224,745 28.46% 

4 30,289 3.84% 

5 2,336 0.30% 

6 263 0.03% 

7 20 0.00% 

8 4 0.00% 

Total 789,745 100% 

 

Almost two thirds of the peptides were doubly charged, while 28.5% were triply charged. The 2+ 
and 3+ charge states account for 94% of the peptides. 

Sequence length

Count
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5.1.3 Peptide modifications 

Every distinct combination of modifications of a peptide make for a different peptide species that 
requires its own library entry to be identifiable in a spectral library search. Table 3 summarizes the 
number of peptides which contain at least one of the listed modifications. 

Table 3: List of modifications with occurrence of >1% in the 789,745 library entries. The 
number of peptides which contain at least one of the modification is given. One peptide can 
contain multiple modifications; therefore, the percentages add up to more than 100%. 

Modification Number of entries Percentage 

Unmodified 447,014 56.60% 

Carbamidomethyl 95,509 12.09% 

Oxidation 64,870 8.21% 

TMT6plex 47,499 6.01% 

iTRAQ4plex 46,180 5.85% 

Phospho 25,534 3.23% 

iTRAQ8plex 25,029 3.17% 

+144.105919 Th 18,502 2.34% 

Label:13C 18,025 2.28% 

+31.989829 Th 15,910 2.01% 

Formyl 14,650 1.86% 

+45.029395 Th 8,384 1.06% 

Methylthio 8,308 1.05% 

 

The majority of peptides in the PRIDE Cluster library (56.6%) are unmodified. The most frequent 
modification is carbamidomethylation, found in 12.1% of all peptides, followed by oxidation 
(8.2%) and chemical labels (TMT, 6.0%; iTRAQ, 3.2%). Phosphorylation is present in 3.2% of all 
peptides. Carbamidomethylation is almost universally specified as a fixed modification of cysteine 
residues in database searches, since it is widely used as the protective group for cysteines to 
avoid re-formation of disulfide bonds. Peptides with chemical labels (TMT, iTRAQ) accounted for 
more than 15% of the library. Given that these peptides can only be detected in experiments that 
specifically incorporate the labels, this indicates that labeled proteomics analyses are somewhat 
popular among the studies uploaded to the PRIDE repository. 

Three unspecified modifications of m/z 144.1059 Th, m/z 31.9898 Th and m/z 45.0294 Th are 
found in 2.3%, 2.0% and 1.1% of the peptides, respectively. A possible chemical composition for 
the +31.9898 modification is the addition of two oxygens (double oxidation, m = 31.9988 Da). For 
+144.1059, a possible sum formula is C6H4D5N3O, which is C6H9N3O with 5 hydrogens exchanged 
for deuterium (2H). +45.0294 may correspond to an acetylation with one 13C atom (13CCH4O, m = 
45.0296 Da). 
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5.1.4 Replicate entries 

The 789,745 spectra in the PRIDE spectral library represent 189,400 (24,0%) unique peptide 
sequences. Unique combinations of peptide sequences with modifications sum up to 340,249 
(43.1%). When including different charge states of the previous, 412,389 (52.2%) unique peptide 
species are found in the library. 

The remaining entries are replicates of the peptide species which were not condensed into a 
single cluster by the PRIDE Cluster algorithm. Figure 5 summarizes the number of spectra for each 
combination of sequence, modifications and charge states. 

 

Figure 5: Number of PRIDE clusters per peptide species (unique combinations of sequence-
charge-modifications). Most peptide species were represented by a single entry. For some 
peptide species, higher number of replicates were found. Only the range from 1 to 10 replicates 
is shown in this plot. 

303,320 library entries represented exactly one peptide species in the PRIDE Cluster library. For 
57,023 peptide species, two spectra were included in the library, and 20,345 were represented by 
three spectra. Interestingly, a small number of peptide species was represented by a very high 
number of spectra in the PRIDE Cluster library, as shown in Figure 6. 

Sequence length

Count 
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Figure 6: Peptide species in the PRIDE Cluster library with more than 500 spectra. The most 
frequent peptide species, EFNAETFTFHADICTLSEK with charge state 2+ and a 
carbamidomethylation at C13, was represented by 3,310 spectra. Other peptide species had up to 
1,512 replicates in the library. 

When the PRIDE Cluster library was built, experimental spectra from many proteomics datasets 
were condensed into consensus spectra by clustering for spectral similarity. It seems natural that 
spectra, which were acquired from a large variety of samples on different instruments and with 
different parameters, are dissimilar to a certain extent, even when they represent the same 
peptide species. Multiple spectra of the same peptide species are therefore expected and may be 
beneficial for the identification rate due to the higher chance of a finding a good match to the 
query spectrum among the replicates. However, presence of more than 500 replicates for some 
peptide species seems unreasonably high. It is not known why these replicate spectra were not 
grouped together into a much lower number of clusters in the PRIDE Cluster library. Further 
investigations on the properties of the affected spectra and the PRIDE clustering algorithm could 
reveal possible reasons for this phenomenon but are beyond the scope of this thesis. 

5.1.5 Sequence coverage 

The 189,400 unique sequences in PRIDE cluster sum up a total length of 2,676,998 amino acids 
(aa). 89.2% (2,390,019 aa) were found in the human SwissProt database, and a subset of 75.7% 
(2,043,508 aa) in tryptic peptides of 0 to 2 missed cleavages. The remaining 10.8% of sequences 
could not be assigned to human proteins in the SwissProt database. Some of them originate from 
other databases, like the cRAP database with common contaminants (92,323 amino acids, 3.4%), 
while some could not be assigned to any proteins even by blasting against all non-redundant 
sequences from all species using blastp. It is not known how those sequences were identified in 
the original experiments that were submitted to the PRIDE repository. Possible explanations are 
the identification with a custom protein database (e. g. from DNA or RNA sequencing results) or 
automated or manual de novo sequencing. 

Number of replicates
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In total, the peptides in the PRIDE Cluster library cover 25.5% of the tryptic peptide sequences in 
the human proteome (9,372,879 amino acids). 

5.1.6 Fragment spectrum signals 

The number of fragment signals per spectrum depends on many parameters, including precursor 
intensity, precursor isolation purity, fragmentation mechanism and energy, type of mass analyzer, 
and, finally, spectrum processing with noise filtering and peak picking. Upon building the PRIDE 
Cluster library, spectra were filtered to keep only the 70 highest peaks before clustering to 
homogenize the fragment signal patterns [29]. Subsequently, when pre-filtered spectra are 
clustered, they may add up to higher numbers of fragment signals per consensus spectrum. 
Figure 7 shows the distribution of fragment signal count per spectrum. 

 

Figure 7: Distribution of fragment signal count per MS2 spectrum in the PRIDE Cluster 
spectral library. Min = 12, Median = 50, Max = 235. 

Most library spectra contained between 20 and 100 signals, the median was 50. The number of 
fragment signals in the library is a of particular importance for query spectrum filtering. When 
query and library spectra differ significantly in the number of fragments, scoring may be less 
discriminative because too many fragment signals match randomly. 

Figure 8 depicts how the fragment signals are distributed along the m/z axis. 
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Figure 8: Total number of fragment signals per whole-Th m/z bin in all PRIDE Cluster library 
spectra. Highest counts were observed for m/z 175, which was present in 190,707 spectra, 
followed by m/z 147 (83,580 spectra). 

The m/z value of the fragment signals follows right-tailed distribution with a center around m/z 
600. Outliers are specific fragment signals such as m/z 175 (highest count) and m/z 147 (second-
highest count), which commonly represent the y1 ions of arginine and lysine, respectively. These 
amino acids are found at the C-termini of tryptic peptides, which account for more than 75% of 
the peptides in the PRIDE spectral library. Additional outlying signals can be found in the m/z 
range below 500 Th. 

5.2 The HeLa benchmark datasets 
Two independent bottom-up LC-MS/MS datasets from HeLa lysates were used as benchmark 
datasets to establish the current spectral identification method and test its performance. The 
‘QEx-HeLa’ dataset was acquired on an Orbitrap Q Exactive and features high resolution, high 
mass accuracy for both MS1 and MS2 spectra, as well as a large number of MS2 spectra due to 
the long LC gradient of 120 min. The ‘Fus-HeLa’ dataset, acquired on an Orbitrap Fusion, features 
high resolution and mass accuracy for MS1 spectra, but a low mass accuracy on the MS2 level and 
an overall smaller number of fragment spectra due to the shorter gradient. 

Both datasets represent typical real-world experiments in our laboratory. Optimization of the 
method aims to produce reasonable performance on both datasets. Table 4 summarizes the 
acquisitions parameters of the datasets. 
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Table 4: Acquisitions parameters for two HeLa datasets. R = Resolution at m/z 200. 

Parameter Q Exactive HeLa dataset Fusion HeLa dataset 

Liquid Chromatography Waters nanoAcquity Thermo Dionex 3000 

Mass spectrometer Thermo Orbitrap Q Exactive Thermo Orbitrap Fusion 

MS1 mass analyzer Orbitrap (R = 70,000) Orbitrap (R = 120,000) 

MS2 mass analyzer Orbitrap (R = 17,500) Ion trap (mode = rapid) 

Duration total / gradient 170 min / 120 min 70 min / 45 min 

 

The datasets were processed in Proteome Discoverer to identify the MS2 spectra with SequestHT 
as a ‘ground truth’ and to generate mgf files containing all MS2 spectra and precursor 
information. All subsequent processing used the mgf files created by Proteome Discoverer. Table 
5 prints basic statistics about the datasets. 

Table 5: Statistics for HeLa Datasets for Benchmark. 

Parameter Q Exactive HeLa dataset Fusion HeLa dataset 

Number of MS2 spectra 50,176 30,722 

Peptides identified by 
SequestHT (FDR 0.01) 

25,424 12,436 

Peptides identified by 
SequestHT (FDR 0.01) 

22,352 11,452 

Identification rate (FDR 0.01) 50.7% 40.5% 

 

The QEx-HeLa dataset contained more than 50,000 MS2 spectra, approximately half of them were 
identified at 1% FDR. More than 30,000 MS2 spectra were acquired in the Fus-HeLa dataset, 
around 40% of which were identified at 1% FDR. Overall, the Fus-HeLa datasets contained roughly 
half as many identified peptides as the QEx-HeLa dataset, which is justified given the shorter 
method run-time of 70 min instead of 170 min for the QEx-HeLa dataset. For subsequent method 
optimization, the peptides identified at 0.1% FDR were used (22,352 from QEx-HeLa, 11,452 from 
Fus-HeLa) and referred to as ‘very high confident peptides’ in this work. 

To get more insights about the characteristics of the fragment spectra from the two datasets, the 
number of fragment signals per spectrum was plotted in Figure 9. 
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Figure 9: Distributions of fragment signal count per MS2 spectrum in the two HeLa datasets. 
MS2 spectra were acquired with an Orbitrap mass analyzer (OTMS, QEx-HeLa) or an ion trap mass 
analyzer (ITMS, Fus-HeLa). QEx: Min = 14, Median = 419, Max = 1044. Fus: Min = 293, 
Median = 1,179.5, Max = 1,699. 

The Fusion dataset contained very dense spectra with a median of 1179 fragment signals per 
spectrum. In contrast, the Q Exactive spectra contained only 419 fragments per spectrum at the 
median. This may be a result of the different nature of mass analyzes and/or different data 
processing, including noise filtering and data reduction upon RAW file storage, and the MS2 peak 
picking in Proteome Discoverer. 

While the Q Exactive spectra were sparser, both datasets still featured considerably more 
fragment signals than the PRIDE library spectra (median of 50). Since signal density may introduce 
a bias to similarity scoring, reduction of the number of signals will be evaluated during method 
optimization. 

5.3 Development of a spectral library identification 
method 

5.3.1 Precursor matching 

The first step of spectrum identification is the selection of candidates from the spectral library by 
matching of the precursor m/z. Modern high-mass accuracy instruments allow for small precursor 
m/z tolerances, but small mass errors may still be present in the library and/or the experimental 
spectra and account for candidate misses during precursor selection if the precursor window is 
set too narrow. 

A tolerance of 0.02 Th was selected as a typical value for datasets acquired on high-resolution 
instruments. It was compared to a tolerance of 0.5 Th to estimate the potentially missed peptides 
due to a higher precursor mass error than 0.02 Th. To estimate the effect on the search space, the 
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number of candidate spectra that match a given query spectrum’s precursor m/z at tolerances 
0.02 Th and 0.5 Th is shown in Figure 10. 

 

Figure 10: Distribution of numbers of candidates per query at precursor mass tolerances 
0.02 Th and 0.5 Th. 0.02 Th: Min = 0, Median = 64, Max = 4220. 0.5 Th: Min = 0, Median = 575, 
Max = 4335. 

The increase of the search space at a mass tolerance of 0.5 Th compared to 0.02 Th is remarkable. 
On average, a query spectrum was compared against 64 spectra at a tolerance of 0.02 Th, but 
against 575 when 0.5 Th precursor mass tolerance was used. The larger tolerance increases the 
chance of including correct candidate spectra by the precursor search. At the same time, the 
larger search space renders random (false-positive) hits more likely, so that stricter score 
thresholds will have to be used to keep the FDR at the desired level. To test whether higher 
precursor mass tolerance results in more or fewer overall identifications, two spectral library 
searches will be performed with either 0.02 Th or 0.5 Th tolerance. 

To leverage the high mass accuracy of the experimental data, a search engine (or the spectral 
library builder) can correct for the mass errors of the identified library peptides. Since the exact 
peptide m/z can be calculated from the sequence, the charge state and the modifications, 
precursor matching can be performed with the calculated m/z instead of the experimental m/z. In 
the PRIDE Cluster library, every identified peptide was annotated with its experimental mass 
(‘PEPMASS’ or ‘Parent’) and the mass deviation from the theoretical mass (‘DeltaMass’). 
Recalculation of the theoretical peptide masses confirmed the correctness of the ‘DeltaMass’ 
parameter, so ‘Parent’ – ‘DeltaMass’ could be used as the calculated m/z. A third spectral library 
search will be performed with narrow precursor tolerance (0.02 Th) and the calculated m/z as a 
reference. 

The identification results of a random sample of 2,000 from very high confident query peptides 
with precursor mass tolerances of 0.5 Th, 0.02 Th, and 0.02 Th to the calculated precursor m/z are 
summarized in Table 6. 
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Table 6: Positive hits and peptide misses for spectral library searches of 2,000 very high 
confident peptides at different precursor m/z tolerances. A query was counted as a ‘miss‘ 
when no candidate spectrum of correct identity was present in the database within the given 
precursor m/z tolerance. The Rank-Top150-CorrelationSimilarity method was used for intensity 
transformation and spectrum scoring, which will be discussed in later sections. When the highest 
scoring candidate reflected the correct sequence, the match was counted as a ‘positive hit’. 

Precursor m/z 
tolerance 

Database 
reference mass 

Positive hits Misses 
Median 
delta score 

0.5 Th experimental m/z 1,722 150 0.193 

0.02 Th experimental m/z 1,745 201 0.233 

0.02 Th calculated m/z 1,784 150 0.292 

 

At a precursor mass tolerance of 0.5 Th, 150 of the query peptides were not found in the 
database. When the mass tolerance was reduced to 0.02 Th, the number of missed peptides 
increased to 201 due to their higher mass error. However, the reduction of the search space led to 
an improvement of positive hits from 1,722 to 1,745 and higher delta scores. Finally, when the 
calculated m/z was used as the reference, the number of misses was reduced to 150 again, and 
the number of identifications increased to 1,784 with even higher delta scores. 

The present method of spectrum comparison clearly benefits from keeping the search space as 
small as possible. By using the calculated mass from the library peptides and experimental data 
from high-accuracy mass analyzers, the precursor m/z tolerance could be set as narrow as 0.02 Th 
with no loss in sensitivity but enhanced identification rate. 

In view of these findings, the default precursor tolerance in SpectraST of 3.0 Th seems to be far 
from the optimum for the high-accuracy datasets analyzed in this work. However, Hsieh et al. 
have demonstrated that higher precursor m/z tolerances can be practical when applied during the 
initial search and filtered later when evaluating the scores [58]. But since no gain in sensitivity was 
observed for the wide precursor window of 0.5 Th and the identification results were better, both 
in number and delta scores, for the 0.02 Th tolerance to the recalibrated precursor m/z, the latter 
method will be used for all future searches throughout the present work. 

5.3.2 Vectorization of fragment spectra 

In order to compare spectra with vector-based operations, like the dot product, vectors of equal 
shapes need to be constructed from the query and the library spectra. Vectorization of spectra 
can be performed by dividing the m/z axis into small intervals, ‘bins’, and assigning every 
fragment signal to its closes bin. The bin size determines the effective resolution and therefore 
the fragment m/z tolerance. A vector can also be constructed from pair-wise peak matching, as 
performed in Pepitome and ANN-SoLo. This allows for the use of individual peak matching at 
adjustable tolerance but is computationally more expensive. In the following sections, the effect 
of fragment spectrum binning will be investigated. 
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5.3.2.1 Simulating the effect of m/z binning with theoretical fragment spectra 

As a first step, the effect of spectrum m/z binning will be simulated for the most frequent 
canonical ions, the b and y ions. Simulated spectra were created from all peptide sequences 
stored in the PRIDE spectral library as series of b and y ions. 2,982,569 million unique theoretical b 
and y ions were created. Fragment ions were unique in that each ion represented exactly one 
fragment sequence. 

All theoretical spectra were binned in a common m/z vector with a bin size of 0.05 to preserve 
high mass resolution. The histogram of all fragment signals is shown in Figure 11. Three areas 
were magnified for detailed inspection of the signal m/z values (Figure 12). 

 

Figure 11: Histogram of m/z values of all simulated y ions at a resolution 0.05 Th. Y ions 
were created from all PRIDE Cluster peptide sequences. The marked regions are magnified in 
Figure 12. 

m/z 

Count 
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Figure 12: Magnification of three regions of the m/z histogram of all simulated y ions. The 
histogram depicts the number of m/z signals in bins of 0.05 Th among all simulated fragment 
spectra. 

The overall distribution (Figure 11) yields a similar picture as the previously shown Figure 8, where 
the frequency of experimental fragment signals per m/z was plotted. Because every signal was 
only counted once in this analysis, the outlying signals in the < 500 Th m/z range disappeared. 
The overall shape is similar, however, which confirms that the theoretical b and y ions are a 
reasonable approximation of most of the experimental fragment signals. 

From the magnified regions of the histogram (Figure 12) it is apparent that the distribution of 
theoretical fragments is strongly discontinuous at the sub-Th level. Signals are grouped in 
packages of approximately 1 Th steps (‘whole-Dalton peaks’). It is important to note that this data 
is derived from calculated fragment masses and no calibration error is present. The distribution of 
signals around each whole-Dalton peak is therefore truly a property of the atomic constitution of 
the peptides. 

The centers of these packages, however, are not exactly on the whole-numbered (integer) m/z 
values, but, for example, at m/z 400.2, m/z 1000.5 and m/z 1700.8. Apparently, signals around the 
400 Th mark tend to have fractional parts of about .2, while the fractional parts of signals with m/z 
1000 Th are around .5. When the signals around 1000 Th are divided into 1 Th bins, they may be 
assigned to either the 1000 Th or the 1001 Th bin, depending on small random errors in the 
experimental data. With the assignment to the wrong bin, the signal in the query spectrum will 
not be matched against the correct corresponding signal in the candidate spectrum and the 
calculated score will be less accurate. 

m/z 

m/z m/z 
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5.3.2.2 Evaluation of m/z binning with experimental fragment spectra 

To further estimate the effect of vectorization on the fragment spectra, all experimental 
(consensus) spectra from the PRIDE spectral library were processed. The fragment signals from all 
spectra were binned in a common m/z vector with a bin size of 0.05 and the distribution of signal 
frequencies is shown in Figure 13. 

 

Figure 13: Histogram of m/z values of all experimental fragment ions at a resolution 0.05 
Th. All fragment ions from all PRIDE Cluster spectra were included. The m/z range from 0 to 1400 
Th is shown. The marked areas are magnified in Figure 14. 

 

Figure 14: Magnification of two regions of the m/z histogram of all experimental fragment 
ions. The histogram depicts the number of m/z signals in bins of 0.05 Th among all fragment 
spectra in the PRIDE Cluster library. 

The general signal distribution pattern that has been observed for the theoretical b and y ion 
series in the previous section can be confirmed in the experimental spectra (compare Figure 12 

m/z 
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and Figure 14). Again, the majority of signals are grouped in packages spaced approximately 1 Th 
apart from each other. In contrast to the theoretical fragments, more signals are observed 
between those packages in the experimental spectra. Possible sources for the in-between signals 
may be b or y ions with a higher calibration error in the individual spectra, or other fragment 
signals that do not represent b or y ions. 

5.3.3 Recalibration of the m/z axis 

Even though the experimental spectra are more populated between the 1 Th peaks than the 
simulated spectra, it can be assumed that an exact alignment of the spectrum binning to the 
signal packages would enhance the binning accuracy considerably. Alignment of the bins to these 
peaks can be realized by creating a recalibration function which shifts all fragment m/z values to 
integer m/z values. Subsequent binning can then be performed in 1 Th steps. 

A peak picking was performed on the histogram from the previous sections (Figure 13) to 
determine the positions of the signal packages. The fractional parts of the picked peaks were 
plotted against the m/z value (Figure 15). 

 

Figure 15: Fractional parts of the peaks picked in the experimental fragment m/z histogram 
against their m/z value. In principle, the experimental values plotted here represent the Kendrick 
mass defect of peptide fragments. 

The distribution of fractional parts can be approximated by linear function. The ‘wrap-around’ was 
corrected for and the linear function was fitted in Figure 16. 
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Figure 16: Shift-corrected fractional part of the m/z peaks and the linear fit. The fitted linear 
function (red line) was used as the common mass recalibration function. 

The recalibration function was derived from the linear fit as: 

mrecalib/z = 0.9995 mexp/z - 0.0388 

The slope of 0.9995 can be regarded as an approximation of a Kendrick mass correction factor for 
peptides. It reflects the ratio of the nominal mass to the exact mass of the average atomic 
composition of peptides. Multiplication of any peptide fragment mass with this factor will 
approximate the fragment’s exact mass to its nominal mass, e.g. 400.2 to 400, 1000.5 to 1000, etc. 

5.3.3.1 Application of the recalibration function to theoretical fragment ions 

To evaluate the accuracy of the empirical recalibration function, the m/z values of theoretical b 
and y fragment ions were recalibrated and the distribution of fractional parts (‘mass defects’) was 
plotted before and after recalibration (Figure 17). 
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Figure 17: Distribution of fractional parts of the theoretical b ions (a, b) and y ions (c, d) 
before (a, c) and after (b, d) recalibration. 

The fractional parts of the theoretical fragment masses were broadly distributed before 
recalibration. Specifically, the density was relatively high around +/- 0.5, which is exactly where 
the edges of the 1.0 Th bins are in vectorization. This may lead to false bin assignments of those 
signals. After recalibration, the fractional parts of the signals approximate a normal distribution 
around 0. Only 0.071% of the fragments lie outside the [-0.3; 0.3] interval. Therefore, it can be 
safely assumed that nearly all fragment signals from b and y ions will be assigned to correct bins 
after recalibration. The empirical recalibration function produces a very good fit of the theoretical 
fragment masses. 

5.3.3.2 Application of the recalibration function to the experimental fragment ions 

The same analysis was performed for all experimental fragment ions in the PRIDE Cluster spectral 
library. Figure 18 depicts the distribution of fractional parts of the experimental ions. 
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Figure 18: Distribution of fractional parts of the m/z values of the experimental fragment 
ions before (a) and after (b) recalibration. 

As with the theoretical ions, the broad distribution of fractional parts could be condensed into a 
narrow, roughly normal distribution. 89,6% of all fragments lie in the [-0.3; 0.3] interval. It can be 
assumed that most fragment ions will be assigned to the correct whole-Dalton bin upon 
vectorization. 

5.3.3.3 Recalibration of amino acid masses 

The empirical recalibration procedure presented in the previous section relates to the concept of 
the Kendrick mass, where the exact masses of molecules from a specific class are approximated to 
an integer mass by setting the mass of the class’s building blocks to an integer value. 

For peptides, the building blocks that determine the masses of the precursor and their fragments 
are a) the amino acids, b) a water molecule, c) adducts like protons or sodium/potassium ions, 
d) fragmentation losses, and e) chemical modifications. Thus, when the recalibration function is 
applied to the individual masses of these components, the fractional parts of the recalibrated 
masses should be zero on average. Figure 19 shows the fractional part before and after 
recalibration of amino acids, common modifications, and protonated water. 

m/z m/z 
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Figure 19: Fractional parts of amino acid and common modification monoisotopic masses 
before (gray) and after (red) recalibration. Masses are given for the amino acid residues as 
they occur in peptide bonds. Dots are labeled with the single letter code for amino acids and 
modification names as used in the PRIDE Cluster library. Unlabeled dots represent 
Phosphorylation (m = 79.966) and Deamidation (m = 0.984). 

Before recalibration, the masses of all amino acids (gray dots) were above the nominal mass. For 
example, the alanine residue has an exact mass of 71.037 Da, so it is 0.037 above its nominal mass 
of 71. The fractional part increases as the mass of the amino acids increases. This phenomenon is 
a direct result of the atomic composition of the amino acids: hydrogen and nitrogen have positive 
fractional parts (1.008 and 14.003 resp.), carbon has zero (12.000, by definition), and oxygen has a 
negative fractional part (15.995). 

After recalibration, the fractional parts of all amino acid masses are roughly equal and negative 
(red dots). Application of the recalibration function has successfully corrected for the slope of the 
fractional parts. But surprisingly, the amino acid masses were also shifted to negative values. This 
is unexpected since it seems to lead to a negative drift of fractional parts when recalibrating the 
spectra. An explanation might lie in the difference of fractional parts between b and y ions. From 
Figure 17 b and d it is evident that fractional parts of the b ions were a little lower than 0, while 
the fractional part of the y ions were slightly above 0. Because y ions are usually more prevalent in 
the spectra than b ions, the empirical recalibration function inherently corrects for the additional 
shift in y ions and therefore offsets the whole spectra by a negative value. 

Another remarkable feature of the recalibrated masses is the offset of the TMT6plex and 
iTRAQ8plex modifications. TMT6plex (m = 221.163) has an unusual high fractional part with 0.163, 
which is reduced to 0.018 after recalibration. iTRAQ8plex is recalibrated from 304.205 to 304.026. 
6% of the peptides in the PRIDE Cluster repository were modified with TMT6plex and 3.2% with 
iTRAQ8plex. While these peptides are not the majority, they can be considered outliers of the 
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recalibration fit. If so, it might be desirable to introduce additional recalibration functions which 
are specifically adjusted for TMT- or iTRAQ8plex-modified peptides. 

5.3.3.4 Special role of isotopically labeled peptides 

Separate recalibration functions were created for TMT6plex-modified and unmodified spectra 
(Figure 20). 

 

Figure 20: Fractional parts of fragments from TMT-modified (red) and unmodified (gray) 
spectra and the corresponding linear fits. 

The linear fit of the two distributions lead to recalibration functions with slightly different slopes 
and offsets (Table 7). Also, there is a diversification of fractional parts towards the upper end of 
the fragment masses, between m/z 1400 and 2000. This is probably due to a higher noise level in 
the histogram data as the spectra get sparser. 

Table 7: Slope and offset of the recalibration function derived from the linear fit of 
fractional parts. 

Dataset Slope Offset 

All spectra 0.99954 -0.03876 

Spectra from unmodified peptides 0.99952 -0.02583 

Spectra from TMT-modified peptides  0.99957 -0.09243 

 

The recalibration function of the spectra from unmodified peptides did not change much 
compared to the previously determined recalibration function of all spectra. When only the 
spectra from TMT-modified peptides were used, the slope was a little higher and offset changed a 
little more (5th decimal place in the slope, 2nd decimal place in the offset). A similar effect can be 
expected for the spectra of peptides with the iTRAQ8plex modification. 
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Another possible source of shifting of mass defects may be introduced by higher isotopes of 
fragment signals in general. The most frequent heavy atoms, however, have only a minor effect 
(third decimal place) on the mass offset (Table 8). This is about 10-fold less than what has been 
observed for the amino acids, which affected the mass defect at the second decimal place. 

Table 8: Difference between exact masses of atoms H, C, and N and their respective higher 
isotopes. 

Isotopes Mass difference 

D vs. 1H 1.0063 u 

13C vs. 12C 1.0034 u 

15N vs. 14N 0.9970 u 

 

In summary, calculating the recalibration function specifically for TMT-modified peptides results in 
a different function that fits the fractional parts of the fragment masses slightly better. A similar 
effect can be expected for iTRAQ8plex-modified peptides. While these modification-specific 
recalibration functions will be a better approximation to the Kendrick mass of the modified 
peptides than the general-purpose recalibration function, it remains to be determined whether 
the small increase in accuracy has any effect on the identification rate in spectral library searching. 
This question will surely be interesting when TMT- or iTRAQ-modified peptides are of specific 
interest in a work on spectral library search engines, but it is beyond the scope of this thesis. The 
general recalibration function has shown to be a good approximation to all fragment signals 
regardless of the peptide modifications and will therefore be used for all spectra in subsequent 
analyses. 

5.3.3.5 Identification performance of recalibrated spectra 

The effect of recalibrating the spectra before binning has been simulated, but it remains to be 
determined how recalibration affects the performance of the spectral library search engine. The 
2,000-peptide benchmark subset from the QEx-HeLa dataset was used to evaluate this effect. The 
search was performed with library and query spectra with original fragment masses vs. library and 
query spectra with all fragment masses recalibrated. The result is shown in Figure 21. 
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Figure 21: Positive hits and median delta scores from the spectral library search of 2,000 
previously identified query spectra (by SequestHT) with original or recalibrated spectra. The 
Rank-Top150-CorrelationSimilarity method was used for intensity transformation and spectrum 
scoring, which will be discussed in later sections. 

By using the recalibrated spectra, a small increase in positive hits (six additional hits) was 
observed. Median delta scores were a lower, but the change in score was only minor. While the 
effect is not dramatic, recalibration of spectra can be interpreted as one step towards an 
optimized spectral library identification method. All future searches will be performed on 
recalibrated spectra. 

5.3.4 Additional parameters for the vectorization of fragment spectra 

In addition to spectrum recalibration, two other methods which have been proposed to enhance 
the accuracy of vectorized spectra will be evaluated, the ‘peak spreading’ feature of SpectraST and 
the usage of bins smaller than 1 Th. 

5.3.4.1 Peak spreading 

SpectraST uses vectorization in 1 Th bins without recalibration and implements a feature named 
‘peak spreading’, where an adjustable fraction (50% by default) of a bin’s intensity is added to the 
adjacent bins. This approach compensates for binning errors but lowers the effective accuracy of 
peak matching. To compare the performance of both methods with the present data, SpectraST 
searches were performed with all very high confident peptides from the HeLa datasets against the 
PRIDE spectral library with peak spreading enabled or disabled. The results are summarized in 
Table 9. 
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Table 9: Number of positive hits in SpectraST searches with peak spreading enabled or 
disabled. All very high confident peptides from the two HeLa datasets were used. Precursor m/z 
tolerance was set to 0.02 Th. 

Peak spreading Query spectra Positive hits Positive hits % 

0.5 (default) 22,352 from QEx-HeLa 18,625 83.3% 

0.0 (disabled) 22,352 from QEx-HeLa 19,093 85.4% 

0.5 (default) 11,452 from Fus-HeLa 10,506 91.7% 

0.0 (disabled) 11,452 from Fus-HeLa 10,561 92.2% 

 

By disabling the peak spreading feature, the number of correctly identified peptides in the QEx-
HeLa dataset increased by 2.1% from 18,625 to 19,093. For the Fus-HeLa dataset, a 0.5% increase 
was observed. It is safe to assume that peak spreading had been added to SpectraST as a feature 
to enhance spectrum identification, and it is enabled by default. Its inferior identification 
performance in the two HeLa datasets may therefore seem unintuitive. 

A possible explanation might lie in the higher mass accuracy of both the HeLa datasets and the 
spectral library compared to the data available in 2007 when SpectraST was originally published. 
For example, peptide identification from the QEx-HeLa data, which had been acquired on an 
Orbitrap Q Exactive – a high-resolution, high-mass accuracy mass analyzer –, is usually performed 
with a fragment mass tolerance of 10 ppm. A mass accuracy in this scale may render the addition 
of peak intensities to adjacent bins unnecessary and counter-productive for the resulting lower 
peak-matching accuracy. This is supported by the observation that the effect of peak spreading 
was less pronounced for the Fus-HeLa dataset, where the MS2 spectra were acquired on an ion 
trap mass analyzer. Ion trap data is usually searched with 0.6 Da fragment mass tolerances in our 
lab to account for its significantly lower mass accuracy. Disabling of the peak spreading feature 
still resulted in a slightly better identification rate for the HeLa-Fus data. 

In view of these results, peak spreading was not added as a feature to spectral library searching in 
this work. Moreover, the recalibration procedure established in the previous section reduces the 
likelihood of binning errors in the first place, so spreading of peak intensities will be even less 
necessary. 

5.3.4.2 Bin width 

Bins of 1 Th width have shown to be a good approximation of the distribution of fragment 
signals. Still, the choice of smaller bin sizes would allow for spectrum-spectrum comparisons at a 
higher resolution and may be beneficial for the scoring of SSMs and hence the number of correct 
identifications. To test smaller bins but still having a ‘center’ bin in steps on 1 Th, a width of 1/3 Th 
was chosen. This divides each 1 Th window in three parts, a ‘center’ bin, where the majority of 
fragment signals still fall into, and the left and right side to the center bin (compare Figure 18 b). 
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The 2,000-peptide benchmark dataset was searched at 1 Th and 1/3 Th bin size. Results are 
summarized in Figure 22. 

 

Figure 22: Positive hits and median delta scores from the spectral library search of 2,000 
previously identified query spectra (by SequestHT) with vectorization bin sizes of 1.0 Th 
and 1/3 Th. The Rank-Top150-CorrelationSimilarity method was used for intensity transformation 
and spectrum scoring. 

Although smaller bins of 1/3 Th lead to a 3-fold resolution increase for spectrum-spectrum 
matching, the search result was inferior to the search performed with 1 Th bins. Both the number 
of correct matches and the median scores were lower. The bin size of 1.0 Th is therefore regarded 
a good trade-off for matching the peaks with sufficient accuracy while tolerating small mass 
differences between library and query spectra, which naturally occur due to the diversity and 
acquisition parameters of the experimental library spectra. This work will use 1 Th bins for 
subsequent analyses. 

5.3.5 Spectrum-spectrum match score calculation 

Calculating a score for a spectrum-spectrum match as a measure of similarity of the two can 
involve intensity transformation and the actual scoring function. Two scoring functions and 
multiple transformations were evaluated with the benchmark dataset. 

5.3.5.1 Scoring function 

The most common scoring function is the dot product of the normalized vectors. Since it equals 
the cosine angle between the two vectors, it is termed ‘cosine similarity’, derived from the 
‘CosineDistance’ function in Mathematica and calculated as 1 - CosineDistance. An extension of 
this function is the ‘correlation similarity’ (calculated as 1 - CorrelationDistance), which shifts the 
two vectors by their means before calculating the CosineDistance. The performance of the two 
score functions with respect to the number of identifications was tested with the benchmark 
dataset (Figure 23). 



 Results and discussion 

 59 

 

Figure 23: Number of positive hits and median delta scores for the spectral library search 
of 2,000 benchmark peptides. The Rank-Top150 intensity transformation method was used, 
which will be discussed in the following section. When the highest scoring candidate had the 
correct sequence, the match was counted as a ‘true positive’. 

The two scoring functions yielded the same number of peptide hits, which is not surprising since 
they both apply the dot product to the spectrum pairs in a similar way. Higher delta scores were 
achieved for the ‘correlation similarity’ method, indicating better separation of positive and 
negative hits, so this function will be used for scoring in subsequent analyses. 

5.3.5.2 Transformation of fragment ion intensities 

Various methods of intensity transformation were suggested and used for spectral library 
searching, with the most common being the square root and rank transformation. The 2,000 
benchmark peptides were identified against the PRIDE Cluster spectral library with different 
methods of intensity transformation before scoring. The results of various methods are compared 
in Figure 24. 
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Figure 24: Identification results for various intensity transformation functions which were 
applied to both the library and the query peptides. The number of positive hits and the median 
delta score are plotted. The correlation similarity was used as the scoring function. Transformation 
functions were: Sqrt = Square root, Log = Logarithm and normalization to the median peak, Rank 
= Rank transformation, Unity = Intensity set to 1 for all peaks, 0 for baseline. Top-150 = Remove 
all but the top 150 peaks. 

For 150 out of 2,000 query peptides (7.5%), no corresponding spectrum was found in the library. 
From the remaining 1,850 peptides, 1,451 were assigned to the correct peptide sequence when 
no intensity transformation was applied. Square root transformation increased the number of 
positive hits to 1,741, and log and rank transformation achieved the highest numbers of 
identifications with 1,801 and 1,800, respectively. Filtering of the spectra for the top 150 fragment 
signals decreased the numbers a little but improved the delta scores for both Sqrt and Rank 
transformation. Higher delta scores allow for better separation of true and false positive hits upon 
hit validation. The Top150+Rank method was therefore selected for subsequent searches, since it 
yielded the highest delta scores and only slightly fewer identifications than the top-scoring 
methods. 

An interesting result was observed when library spectra were unitized, i. e. signal intensities of all 
peaks were replaced with 1 and all baseline intensities were kept at 0. Despite the simplification of 
the library spectra, 1,796 peptides were still correctly identified, albeit with lower delta scores. This 
phenomenon may be interpreted with the help of the ‘number of unexplained intense peaks’ 
hypothesis. When the candidate spectrum is transformed to a vector of 0 and 1 and the dot 
product with the query spectrum is calculated, only those peaks in the query spectrum are added 
to the score that have a 1 at the corresponding m/z value in the candidate spectrum. Conversely, 
query spectrum signals that have no corresponding signal in the candidate spectrum will not 
contribute to the dot product. Since the final dot product is normalized to the total intensity, 
higher numbers of unexplained query peaks will result in a lower score. It is notable that the 
concept of unitized intensities has also been used in sequence database search engines. The 
original version of SEQUEST assigned a constant intensity of 50 to all predicted b and y ions [42]. 
These observations suggest that the presence or absence of signals at specific m/z values are of 
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much more importance than the actual intensities, provided that the spectra have been 
sufficiently noise-filtered. 

5.3.6 Search of all very high confident HeLa peptides with the correlation similarity 
method and SpectraST 

In the previous sections, a spectral library search method has been established which involves 
spectrum recalibration, filtering for the top 150 signals, rank transformation of the signal 
intensities, and correlation similarity scoring of the spectrum-spectrum matches. 

Another possible processing step prior to the identification pipeline is the condensation of 
replicate entries in a spectral library into consensus spectra. This procedure has been suggested, 
among others, by the authors of SpectraST [30] and is a prerequisite for SpectraST to construct 
decoy libraries, which will be addressed in later sections. As pointed out previously, the PRIDE 
Cluster spectral library was created by clustering MS2 spectra by their spectral similarity. A 
consensus spectrum was generated for every cluster of similar spectra, where at least 70% of the 
identifications agreed. Thus, for any sequence-charge-modification combination, multiple spectra 
can exist in the spectral library. It needs to be tested whether another iteration of consensus 
reduction is beneficial or detrimental for peptide identifications. 

All very high confident peptides from the two HeLa datasets (22,352 for QEx-HeLa, 11,452 for Fus-
HeLa) were searched against the complete PRIDE spectral library by SpectraST and the correlation 
similarity method established by this work. Another SpectraST search was performed against a 
consensus version of the library. Table 10 summarizes the results. 
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Table 10: Search all very high confident peptides from the two HeLa datasets against the 
complete or consensus PRIDE spectral library with SpectraST and the correlation similarity 
method. Correct identifications (‘correct IDs’) were counted as IDs that agree with the 0.1% FDR 
peptides identified by SequestHT. Number of misses was determined from the output of the 
correlation similarity (CS) search engine. A query was counted as a ‘miss‘ when no candidate 
spectrum of correct identity was present in the database within the given precursor m/z tolerance. 
The identification rate was calculated with the number query spectra that were represented by at 
least on corresponding library spectrum (the ‘non-misses’) as the 100% reference. 

Method and library 
Query 
dataset 

Found in 
the library 

Misses % Correct IDs ID rate % 

SpectraST against 
consensus QEx-HeLa 

(22,352 
identified 
spectra) 

20,305 9.2% 

10,131 49.9% 

SpectraST against all 19,093 94.0% 

CS against all 19,415 95.6% 

SpectraST against 
consensus Fus-HeLa 

(11,451 
identified 
spectra) 

10,797 5.7% 

5,460 50.6% 

SpectraST against all 10,561 97.8% 

CS against all 10,646 98.6% 

 

Searching against the consensus version of the PRIDE Cluster library yielded much lower 
identification rates with the SpectraST search than the complete library. The second iteration of 
consensus spectra building (with the first being the original PRIDE Cluster method itself) did not 
preserve a sufficient number of representative spectra for each peptide to achieve good 
sensitivity. Replicate spectra in the library exist because they did not merge with the other spectra 
of the same peptide upon clustering for spectral similarity. Possible reasons include the use of 
different mass analyzers or presence of chimeric spectra, which contain fragment signals from co-
eluting peptides with a close precursor m/z. These results suggest that higher identification rates 
can be achieved by searching against a spectral library that contains multiple (dissimilar) spectra 
which represent the same peptide. 

Searching the HeLa datasets against the original PRIDE spectral library yielded good identification 
rates of 94.0% for the Q Exactive dataset and 97.8% for the Fusion dataset among the peptides 
that were included in the spectral library. The CorrelationSimilarity (CS) scoring method achieved 
minor improvements of 1.6% and 0.8% over SpectraST (+322 peptides for QEx-HeLa, +85 
peptides for Fus-HeLa). Despite optimization of various processing steps, a small percentage of 
the very high confident peptides in the two HeLa datasets remain unidentified by the present 
search engine (4.4% for the QEx dataset, 1.4% for the Fus dataset). Further enhancement of the 
scoring method will be performed in the machine learning section of this work. 
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It is notable that peptides which were missing in the library accounted for most of the false 
identifications of the search engines. For the QEx-HeLa dataset, 890 spectra (4.0%) were assigned 
to wrong peptides by the CS scoring method although the correct peptide was part of the library, 
but 2,047 (9.2%) could not be found in the library at all. Likewise, wrong assignments accounted 
for 151 (1.3%) of false hits in the Fus-Hela datasets, but complete misses for 655 (5.7%). 

These results give insight about the performance of the search engines on the very high confident 
peptides that had been previously identified with SequestHT. But spectral search engines are of 
particular interest for the identification of the lower quality spectra which cannot be readily 
identified with sequence database search engines. To compare the overall performance of the 
search engines without prior ID knowledge, a validation step, which controls the false discovery 
rate, has to follow the search. The decoy spectrum generation and hit validation will be performed 
in later sections. 

5.3.7 Peptides not in the library 

The significant number of peptides which were not in the library limited the identification rate of 
the spectral search engines. Out of the 22,352 very high confident peptides from the QEx-HeLa 
that were subjected to spectral library searching, 2,047 (9.2%) were not found in the library and 
therefore could not be identified in the first place. Table 11 classifies the causes of peptides 
misses, which could be a) the sequence was not found at all, b) the sequence was found but with 
the wrong charge states, c) the sequence was found but with wrong modifications. 

Table 11: Number and percentage of very high confident peptides from the QEx-HeLa 
dataset that were not found in the PRIDE spectral library for either reason. Numbers add up 
to more than 2,047 due to peptides where both charge state and modification configuration did 
not match. 

Cause of miss Number Percentage 

Sequence not found 691 33.8% 

Charge not found 485 23.7% 

Modification not found 1,066 52.1% 

 

About 1/3 of the very high confident query peptides did not have a library spectrum with the 
correct sequence. For 23.7% of the queries, a peptide with correct sequence and modifications 
was present, but the charge state did not match. Likewise, more than half of the queries had a 
modification configuration which was not present in the library, although entries with the correct 
sequence and charge were present. 

The fact that 9.2% of the query peptides could not be identified with spectral library searching 
stresses the importance of the completeness of the spectral library. Besides the ‘natural growth’ of 
spectral libraries built from online repositories as more experimental data becomes available and 
incorporated, several approaches have been suggested to enhance the coverage of spectral 
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library searching. The ANN-SoLo search engine implements an ‘open modification search’ for 
spectral library identification [23]. First, a large m/z tolerance is used for precursor selection. 
Secondly, a specialized scoring function, which accounts for peak shifts caused by modifications, 
has been designed. The authors demonstrated an increase in identified spectra from 4,141 to 
6,019 due to the open modification search strategy. The most prevalent modifications were 
oxidation, amidation and substitution of glutamine for pyro glutamic acid, followed by 
ammonium adduction and aminoethylbenzenesulfonylation. Many hits also resulted from 
fragmentation of higher isotopic peaks instead of the monoisotopic peak of a precursor, which 
would be have been missed if a narrow precursor m/z tolerance was used. Originally developed 
for sequence database search engines, the open modification search has been demonstrated to 
be an effective strategy for spectral library search. It can enhance the coverage of identifications 
and may be of particular interest when unusual modifications, which are rarely included in public 
spectral libraries, are searched for. 

However, for the 691 peptides that were not represented in the library spectrum by any spectrum 
with the correct sequence, identification would not have been possible even when this strategy 
had been applied. 

5.4 Decoy spectrum generation 
Decoy spectra are the most popular method for the simulation of random hits to estimate the 
false discovery rate. For an accurate estimation of the FDR, the generated decoy spectra should 
produce truly random matches, i. e. they should match a query spectrum with the same likelihood 
as the true-negative target candidates. 

Three different methods were tested for decoy spectrum generation and evaluated with the QEx- 
HeLa dataset. The 2,000 benchmark peptides were run against the target library (original spectra) 
and the decoy library (artificial spectra). The ‘target-decoy delta score’, the difference between the 
best negative target score and the best decoy score, was calculated for each query spectrum to 
test the quality of the decoy spectra. Ideally, the target-decoy delta score should be evenly 
distributed around 0 and yield positive and negative values in a 1:1 ratio, i. e. exactly 50% of all 
hits should be decoys. 

5.4.1 Intensity shuffle method 

The intensity shuffle method randomizes the intensities of all fragment signals within a spectrum. 
The m/z values remain unchanged. Figure 25 plots the distribution of decoy delta scores. 
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Figure 25: Distribution of the ‘target-decoy delta score’ of 2,000 QEx-HeLa benchmark 
peptides with the intensity shuffle method. 

The intensity shuffle method produced more decoy than target hits (81.5%). Even after shuffling 
the intensities around, the decoy spectra still too closely resembled the original spectra and 
therefore produced better scores on average than the random target hits. Shuffling of the 
fragment signal intensities is therefore not sufficient to generate decoy spectra from experimental 
library spectra, which is supported by the previous observation that the intensity information of 
the fragment ions is of secondary importance for spectrum matching compared to the m/z values. 

5.4.2 m/z randomization method 

The m/z randomization method replaces an adjustable fraction of signals to a random position in 
the spectrum. Unlike the shuffle and reposition method used in SpectraST, m/z randomization 
does not respect fragment ion annotation but simply repositions an adjustable fraction of signals 
randomly. Resulting ‘target-decoy delta scores’ are plotted in Figure 26. 

 

Figure 26: Distribution of the ‘target-decoy delta score’ of 2,000 QEx-HeLa benchmark 
peptides with the m/z randomization method at a randomization rate of 60%. 

Repositioning 60% of the fragment signals to a random m/z value was found to produce decoys 
that match the query spectra with similar scores as the true negative targets on average. While 
the fraction of decoy matches (51.2%) suggest a good quality, the score distribution is skewed to 
one side and the variance is higher than desirable. This indicates unevenness among the decoy 
spectra – while they produce roughly equal numbers of matches on average, some decoys will 
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match the query spectra much better than random hits, some much worse. Higher score variance 
requires stricter thresholds upon validation to keep the FDR at the desired level, so the overall 
number of validated hits will be reduced. 

5.4.3 Precursor shuffle method 

The precursor shuffle method randomly assigns a precursor m/z from all other precursors within a 
predefined range. The present implementation assigns precursors within a window of +/- 1.0 Th 
but excludes the +/- 0.1 Th window to avoid matching a library entry to a replicate of itself. Figure 
27 shows the distribution of the ‘target-decoy delta scores’ for the precursor shuffle method. 

 

Figure 27: Distribution of the ‘target-decoy delta score’ of 2,000 QEx-HeLa benchmark 
peptides with the precursor shuffle method. 

Decoy spectra performed almost randomly by matching 49.2% of the queries. Also, the 
distribution of the decoy delta scores is confined and symmetric. This suggests that the decoys 
generated by the precursor shuffle method provide a good estimation of the random hits. 

The original implementation of the precursor swap method by Cheng 2013 produced decoy 
match rates between 45 and 49% [48], depending on the dataset. The precursor shuffle method 
can be regarded a modification to the precursor swap method by assigning different precursor 
randomly from near entries instead of swapping them around. This avoids the need to find an 
even number of spectra to form pairs and allowed for a narrower m/z inclusion window of +/- 1 
Th, with an exclusion window of +/- 0.1 Th, compared to the exclusion window of +/- 8 Th with 
the precursor swap method. A narrower range for re-assigning precursor m/z values may yield 
spectra which are more similar, yet represent different peptides, and therefore increase the quality 
of decoy library. Unlike with swapping, the precursor shuffle method does not guarantee that 
every precursor will have exactly one counterpart in the decoy library. However, no adverse effect 
has been observed on the benchmark dataset of 2,000 peptides. For large libraries with many 
precursor entries and a dense distribution of precursor masses, such as the PRIDE library, this is 
probably not an issue. 

The precursor shuffle method will be used to generate the decoy spectra for FDR estimation in this 
work. 
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5.4.4 Decoy spectrum generation with SpectraST  

SpectraST 5.0 provides the shuffle and reposition and the precursor swap method for decoy 
spectrum generation. With the precursor swap method, however, the SpectraST would crash every 
time halfway in the process, so the method could not be used. It would have been interesting to 
compare the precursor swap’ped decoy spectra with the precursor shuffle method from this work, 
as the latter is an extension to the first. 

A main limitation in SpectraST is that decoy spectrum generation only works with unique 
(consensus) libraries. Attempting to generate decoys with non-unique libraries will produce an 
error message. It is not clear why the authors chose to impose this limitation, as decoy spectra 
can be generated from non-unique libraries as well (as demonstrated in this work). It might reflect 
the authors’ general philosophy of working only with unique libraries when doing spectral 
searching [59]. Notably, the authors of the PRIDE Cluster study experienced this issue as well 
when working with SpectraST [29] (supplementary note 5). 

The SpectraST search with decoy generation and validation could therefore only be performed 
with the consensus PRIDE library and the shuffle and reposition method. Importantly, the decoys 
generated from the consensus library may only be used for FDR validation when the same 
consensus library was used for the main search. They cannot be used as decoys for the validation 
of searches with the complete library, since the search space is much larger, and the FDR would 
be underestimated otherwise. 

5.5 Machine learning for advanced method optimization 

Spectrum-spectrum scoring functions generally calculate the scores from the fragment signals of 
a spectrum pair with respect to the signals’ intensities. More intense signals have a higher 
contribution to the score and vice-versa, and the magnitude of the contribution is altered by the 
intensity transformation function used. 

In this work, a scoring function that contains adjustable weights for all m/z positions will be 
implemented. The underlying premise is that the discriminative power of signals at different m/z 
values is not equal. The ‘weighted correlation similarity’ scoring function is an extension to the 
previously used ‘correlation similarity’ which multiplies the intensity vectors of the query spectrum 
and the candidate spectrum each with a learnable weight vector before calculating the correlation 
similarity. 

5.5.1 Implementation of a ‘weighted correlation similarity’ scoring function 

Two neural nets were constructed to learn optimal weight vectors for query spectra and the 
candidate spectra: a scoring net and a training net. 

The scoring net serves as a replacement of the scoring function. It takes two vectors as input, a 
query and a candidate spectrum. The query spectrum is multiplied with the query weight vector 
and the candidate spectrum with the candidate weight vector, and the correlation similarity is 
calculated between the two. 
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The training net wraps around the scoring net to train it. For each query spectrum, it takes all 
positive query-candidate pairs and all negative query-candidate pairs, invokes the scoring net for 
each pair, and finally calculates the loss as the difference between the highest-scoring positive 
pair (as the difference to 1) and the highest-scoring negative pair. This is effectively the 
contrastive loss calculated from the delta score. 

5.5.1.1 Neural net training 

The neural net was trained on a training set of 4,000 query spectra from the very high confident 
peptides in the QEx-HeLa dataset. The training net was designed to take the all candidates with 
known outcome (true or false match) for a query as input, present the spectrum pairs to the 
scoring net, and calculate the contrastive loss between the best positive SSM and the best 
negative SSM. In 20 min of training, the loss was reduced from the initial value of 0.67 to 0.60 
after 5 rounds with 1013 batches x 32 inputs. Here, every input was a package of all candidate 
spectra for one query. 

5.5.1.2 Neural net scoring in training and validation datasets 

To test the performance of the neural net after training, the scores calculated by the trained 
neural net (weighted correlation similarity) were compared to the (unweighted) correlation 
similarity scores for the training and the validation dataset. Higher scores are favorable for 
positive matches, lower scores for negative matches. Reduction of tailing leads to higher overall 
identifications because the score threshold can be lowered while staying below the target FDR. 
Score distributions are depicted in Figure 28 for the training dataset and in Figure 29 for the 
validation dataset. 

 

Figure 28: Score distributions in the training dataset of correlation similarity (gray) and the 
weighted correlation similarity (red) for positive (a) and negative (b) spectrum-spectrum 
matches. 

Score 

b a 

Score



 Results and discussion 

 69 

 

Figure 29: Score distributions in the validation dataset of correlation similarity (gray) and 
the weighted correlation similarity (red) for positive (a) and negative (b) spectrum-
spectrum matches. 

The weighted scoring function produced better scores than the unweighted CS scoring function 
in training and validation datasets. Positives scores were shifted to the right, and the tailing of 
negative scores towards higher values has been reduced. Also, the scores from the validation 
dataset are nearly as good as in the training dataset, indicating that the WCS scoring function also 
performs well on unseen spectra. 

5.5.1.3 Weight vectors learned by the neural net 

The weight vectors can be plotted to visualize how the neural net has learned to produce better 
scores after the training. Figure 30 depicts the weights for all m/z values for the query and 
candidate spectra. 

 

Figure 30: Weights for all m/z values in the query and the candidate weight vector, as 
learned by the neural net. Query spectrum weights: Min = 0.173 at m/z 175, Median = 1.066, 
Max = 1.322 at m/z 333. Candidate spectrum weights: Min = 0.198 at m/z 175, Median = 0.998, 
Max = 1.663 at m/z 114. 
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In Figure 31, weights were averaged to better visualize the overall trend of each vector. 

 

Figure 31: Weights for all m/z values in the query and the candidate weight vector, averaged 
with a mean filter of 100 Th width. 

For the candidate spectra, the weights average around 1.0 throughout the whole m/z range, but 
individual weights are as low as 0.198. For the query spectra, significant weight adjustments can 
be found in the range of 100 to 500 Th. The weights tend to be smaller than average, meaning 
that fragment ion intensities in this m/z range will be downscaled before scoring. 

The weights learned by the neural net can be interpreted as a measure of the discriminative 
power of fragment signals at every m/z position. The descent towards the lower m/z range 
coincides with previous observation that the lower end of the m/z range is highly populated with 
fragment signals throughout all spectra, both in the library and the query spectra. These frequent 
and intense signals tend to dominate the score although they may not help to distinguish a true 
from a false spectrum-spectrum match. Specifically, the almost ubiquitous y1 fragment ions of 
tryptic peptides at m/z 175 and m/z 147 received weights of 0.173 and 0.289 in the query 
spectrum weight vector, respectively. As a result, those signals will only contribute 17.3% (resp. 
28.9%) of their original intensity to the score. Other signals with higher discriminative power will 
therefore have a higher contribution to the score, rendering the score more discriminative as well. 

5.5.2 Performance of the ‘weighted correlation similarity’ scoring in HeLa datasets 

The weighted correlation similarity (WCS) scoring function was constructed from the two weight 
vectors learned by the training of the neural nets as follows: 

WCS(q, c) = CorrelationSimilarity[QueryWeightVector * q, CandidateWeightVector * c] 

This function is equivalent to the calculation of the scoring net but runs a lot faster since it avoids 
the overhead of the neural net framework. The two HeLa datasets were re-searched with the WCS 
scoring function. 
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5.5.2.1 Search of all very high confident HeLa peptides with the WCS method 

The previous search of all very high confident HeLa peptides was repeated with the WCS scoring 
function and compared to the CS scoring function and SpectraST. Identification results are 
summarized in Table 12. 

Table 12: Identification results from SpectraST, the CS and the WCS scoring method. ‘Correct 
identifications’ were counted as IDs that agree with the 0.001% FDR peptides identified by 
SequestHT. Number of misses was determined from the output of the CS search engine. The 
identification rate was calculated with the number query spectra that were included in the library 
as the 100% reference. 

Method Query dataset 
Found in 
the library 

Misses % Correct IDs ID rate % 

SpectraST  QEx-HeLa 
(22,352 
identified 
spectra) 

20,305 9.2% 

19,093 94.0% 

CS 19,415 95.6% 

WCS 19,918 98.1% 

SpectraST  Fus-HeLa 
(11.452 
identified 
spectra) 

10,797 5.7% 

10,561 97.8% 

CS 10,646 98.6% 

WCS 10,671 98.8% 

 

The WCS scoring function led to improved identification rates for both HeLa datasets to a very 
high level. Notably, the discrepancy of identification rates between the QEx-HeLa and the Fus-
HeLa data almost disappeared. High identification rates have been achieved for both datasets 
(98.1% and 98.8%). 

These results included all correctly identified query spectra (= the best-scoring hit was correct) 
before validation. However, in non-training datasets the identity of spectra is not known 
beforehand, so the best-scoring hits need to be validated in order to control the number false-
positive hits. 

5.5.2.2 Decoy spectrum performance with the WCS method 

Before target and decoy results are used to validate the hits, it is evaluated whether the decoy 
spectra generated previously still perform well when the new scoring function is used. The decoy 
delta scores were re-calculated for both HeLa datasets. Ideally, the decoy spectra would match 
exactly 50% of the query spectra. Figure 32 and Figure 33 show the distribution of the target-
decoy delta scores in the QEx and the Fus HeLa datasets with the original and the weighted 
scoring function. 
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Figure 32: Decoy delta scores for the QEx-HeLa dataset with the original CS (a) and the 
weighted correlation similarity, WCS, (b) scoring function. The decoy delta scores were 
calculated for the very high confident query peptides as the best true-negative score minus the 
best decoy score. CS: Targets = 11,725, Decoys = 10,500 (47.2%). WCS: Targets = 11,163, decoys 
= 11,062 (49.8%). 

 

Figure 33: Decoy delta scores for the Fus-HeLa dataset with the original CS (a) and the 
weighted correlation similarity, WCS, (b) scoring function. CS: Targets = 6,060, decoys = 5,285 
(46.6%). WCS: Targets = 5,807, decoys = 5,538 (48.8%). 

The decoy matching rate improved from 47.2% with the CS scoring to 49.8% with WCS scoring in 
the QEx-HeLa dataset, and from 46.6% to 48.8% in the Fus-HeLa dataset. 

The decoy match rate of 48.8% for the Fus-HeLa dataset is in line with the best results reported by 
[48] for their precursor swap method and better than the shuffle and reposition method by [47]. 

For the QEx-HeLa dataset, a nearly perfect match rate of 49.8% has been achieved with the 
precursor shuffled decoy spectra and the WCS scoring method. The high match rates and the high 
symmetry of decoy delta scores suggest that the decoy spectra generated by this method provide 
a very good estimation of the score distribution of random hits, which leads to a very accurate 
estimation of the false discovery rate. 
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5.6 FDR validation of spectral library identifications 
The target hits were validated with a global FDR estimation from the decoy hit scores. The delta 
score (the score difference between the best and the second-best hit) was included as a 
discriminative parameter to better separate the target from the decoy hits. Figure 34 and Figure 
35 show the number of accepted identifications vs. the delta score at 1% FDR for the QEx-HeLa 
and the Fus-HeLa dataset, respectively. 

 

Figure 34: Accepted peptide identifications at 1% global FDR in the QEx-HeLa dataset with 
the correlation similarity (CS) scoring, the weighted correlation similarity (WCS) scoring, 
and SpectraST (against the consensus library). 

 

Figure 35: Accepted peptide identifications at 1% global FDR in the Fus-HeLa dataset with 
the correlation similarity (CS) scoring, the weighted correlation (WCS) similarity scoring, 
and SpectraST (against the consensus library). 

The CorrelationSimilarity method and SpectraST yielded very similar identification numbers at all 
delta scores for the Fus-HeLa dataset. Significant improvement was achieved by the WCS scoring 
function. The highest identifications rates were achieved at a delta score threshold of 0. 
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Effectively, the delta score did not help to improve the separation of the target hits from the 
decoy hits. 

For the QEx-HeLa dataset, a higher delta score threshold improved the number of validated hits 
for the CS and the WCS function. Detailed identification statistics are summarized in Table 13. 

Table 13: Number of peptide identifications at 1% global FDR in both HeLa datasets. 

Search engine Dataset 
Spectral 
library 

Library 
entries 

Decoy 
entries 

Validated 
hits (FDR = 
0.01) 

SpectraST 

QEx-HeLa 
(50,176 spectra) 

PRIDE Cluster 
(human 
consensus) 

187,709 187,709 4,222 

CS 
PRIDE Cluster 
(human) 

789,745 788,760 10,673 

WCS 
PRIDE Cluster 
(human) 

789,745 788,760 11,411 

SpectraST 

Fus-HeLa 
(30,722 spectra) 

PRIDE Cluster 
(human 
consensus) 

187,709 187,709 4,546 

CS 
PRIDE Cluster 
(human) 

789,745 788,760 4,548 

WCS 
PRIDE Cluster 
(human) 

789,745 788,760 5,186 

 

The WCS function achieved the highest identification rates in both datasets and an improvement 
of 6.9% and 14.0% over the CS function in the QEx-HeLa and Fus-HeLa dataset, respectively. 

The SpectraST target-decoy search could only be performed with a consensus library. Reduction 
of the PRIDE library to consensus library has shown inferior performance in the previous analysis 
of the very high confident peptides. The results presented here may therefore improve when the 
original spectral library is being used, but due to the limitation of SpectraST for decoy library 
generation, this was not possible. 

The overlap of search results between WCS searching and SequestHT is depicted in Figure 36. 
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Figure 36: Percentage of peptide hits at 1% FDR identified with SequestHT, the WCS search 
engine, and both.  The 100% mark was set to the union of validated identifications of both search 
engines. 

The SequestHT sequence database search accounted for most of the validated peptide hits 
among all (57.3 + 37.9% = 95.2%). Many of the peptides identified by the spectral library search 
engine were also found by SequestHT (37.9% out of 42.7% = 88.7%). However, 4.8% (1,295) of all 
validated hits were exclusively identified with the WCS spectral search. Table 14 lists modifications 
among the 1,295 peptides that were only found by the WCS spectral library search. 

Table 14: Modifications of peptides identified exclusively by the spectral library search 
engine at 1% FDR. Since one peptide can contain multiple modifications, the numbers add up to 
more than 100% resp. 1,295. 

Modification 
Occurrence in 
validated peptides 

Occurrence (%) 

Unmodified 704 54.4% 

Modified 591 45.6% 

Carbamidomethyl 221 17.1% 

Oxidation 179 13.8% 

Acetyl 172 13.3% 

Pyro-glu 154 11.9% 

Phospho 36 2.8% 

Deamidation 4 0.3% 

Formyl 1 0.1% 
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Carbamidomethylation and oxidation were used as fixed resp. variable modifications in the 
sequence database search as well, so these peptides could have been found by SequestHT. There 
are, however, peptides with other modifications, including acetylation, exchange of glutamine for 
pyro-glutamate, and phosphorylation, that could not be identified by SequestHT because these 
modifications were not allowed in the search. Adding them to the list of variable modifications 
extends the search space significantly and may lead to overall fewer identifications because of 
more false-positive hits. This observation underlines the strength of spectral library searching, that 
specific modifications can be detected without explicitly being searched for. Also, inclusion of 
these modifications does not increase the search space nearly as much as with sequence database 
searching. Spectral library searching therefore has an advantage in detecting rare modifications, 
provided that the peptides are represented in the library. 

For all methods investigated here, there is a discrepancy between number of peptides that were 
known to be correctly identified (by comparison to the SequestHT results) and the number of hits 
which could be validated. Specifically, at least 19,918 peptides were correctly identified by the 
WCS method (as known from the very high confident peptide IDs from SequestHT), but only 
11,411 could be validated after decoy library search and score thresholding to 1% FDR. The 
overall identification rate at 1% FDR seems low compared to SequestHT (11,411 vs. 25,424) even 
when accounting for the 2,047 peptides which were not in the spectral library. However, the high 
agreement between the very high confident peptides from SequestHT and the of identifications 
this search engine promote the idea that this is not a consequence of lower search engine 
accuracy. 

Instead, it may result from the global FDR validation method used, which would only use the main 
score and the delta score discriminative parameters to separate all decoy from target hits. The 
advantage of this naïve validation method is that overfitting is very unlikely to happen, thus the 
given FDR is likely to be true. Overfitting in this context means that an algorithm learns to 
distinguish between target and decoy spectra by exploiting specific properties of the decoy 
spectra that would not naturally occur in random hits. For instance, if the precursor mass 
deviation had been included as a parameter for validation of target vs. precursor-shuffled decoys 
hits in this work, a validation method could learn to discriminate targets from decoys to 100% 
accuracy without ever inspecting a single spectrum or the scores, since the precursor mass shift is 
exactly the parameter the decoy spectra had been generated by. Likewise, a validation procedure 
for reversed sequences in sequence database searching would be able to distinguish decoy from 
target hits by testing whether the C-terminal amino acid is a lysine or an arginine. If not, the 
sequence was obviously shuffled (semi- or non-tryptic peptides aside) and belong to the group of 
decoys. Such exploitation of specific artifacts of decoy generation will produce invalid FDR 
estimations because the decoys no longer resemble the random hits. 

Search engines validate their results by taking multiple discriminative parameters into account. 
For instance, individual (subgroup) FDRs can be calculated for every charge state of the peptides. 
These strategies should be carefully evaluated, though, in order not to underestimate the FDR and 
accept more false-positive hits than expected. The authors of ANN-SoLo stated about the 
‘subgroup FDR’ approach they used for their open modification search: “Caution has to be 
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observed, however, because the actual FDR might be underestimated when too small groups are 
used.” [23]. Specifically, for the PRIDE spectral library used in this work, the charge states 2 and 3 
dominate in the library, and FDR estimation for the comparably underrepresented charge states 1 
und 4-8 may be inaccurate due to small sample sizes. 

Percolator, the method used to validate the SequestHT hits, optimizes thresholding by a 
combination of 37 parameters, including, for example, the main score (XCorr), delta scores, 
precursor mass and mass deviation, and fraction of matched fragment ions [60]. Optimization of 
large numbers of features may lead to overfitting and therefore underestimation of the FDR, an 
issue which has been specifically addressed by the authors. 

The conservative global FDR method of hit validation yielded only 44.9% of the identifications 
compared to SequestHT, along with 4.8% of additional identified peptides, although agreement 
between the identified spectra of both methods was very high (>98%). A more sophisticated hit 
validation method may lead to improvement of validated peptide IDs. The decoys generated by 
this method have shown very good properties, with score distributions and match likelihoods that 
accurately modeled the random hits. For the results presented here, it can be safely assumed that 
the FDRs are truly at the 1% mark and not underestimated due to overfitting or inferior decoy 
spectrum quality. 
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5.7 Performance considerations 
The development of the present spectral library search method involved processing of millions of 
spectra with various methods and parameters. Time- and memory-efficient code design has been 
an important part throughout the creation of the code base, which consisted of an estimated 
3,000 lines of Mathematica code. Optimization techniques include parallelization, caching of 
intermediate results, data indexing through the NearestFunction and custom B trees, fast object-
like loading and unloading of data. The following section gives details about run-time and 
memory optimization. 

Code design decisions had to be made on the trade-off between run-time and memory 
consumption frequently, as in when to cache precomputed results or when to generate them on-
the-fly. The choice of data structure was equally important, which range from low-level but very 
efficient lists and tables to more flexible high-level data structures such as Mathematica’s 
Associations and Datasets. The general trend was to use low-level data structures for large lists, e. 
g. the PRIDE spectral library, and higher-level structures for smaller lists, including the spectrum-
spectrum matches produced by searching. The first allowed for fast spectral library access while 
the latter increased the flexibility when handling SSMs. For example, it allowed for a very easy 
implementation of additional named scoring schemes that were evaluated by the spectrum 
scoring function. 

Another important point was when to parallelize or when to stay with serial processing, since 
parallel processing requires additional coding effort and produces significant overhead in 
Mathematica. Frequent benchmarks were performed to make optimal decisions for each of these 
questions. Generally, parallelization was universally applied whenever possible, although the 
speedup was as low as 1.5x for certain tasks even when all 12 CPU cores were used due to the 
parallelization overhead. Many tasks, however, could be effectively parallelized with speedup of 
almost 12x, including data import and export, and spectrum recalibration and vectorization. 

Memory management needed to be addressed as well. While the loaded library and datasets 
required 3-4 GB of memory, peak memory consumption was observed for the neural net training, 
where in-memory storage of the spectral library, both HeLa datasets, the generated training data 
and the neural net framework consumed a total amount of 25 GB of memory. By storing related 
data and definitions as DownValues of a singular symbol similar to object-oriented programming, 
symbols could be saved to disk by DumpSave at any time and re-loaded later in a manner of 
seconds. This enabled fast loading and unloading of data into/from memory during the design 
phase of this work. 

5.7.1.1 Evaluation times 

All operations were performed on a 12-core Intel Xeon E1650 v2 with 40 GB of memory. The 
spectra were held in memory during all calculations. Most operations could be parallelized to all 
12 cores. Table 15 summarizes the execution times for several core functions. 
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Table 15: Execution times for several core functions of the search engine developed in this 
work. SpectraST execution times were included for comparison. 

Operation 
No. of 
spectra/items 

Parallelized Time 

Spectral Library Import 789,745 Yes 274 s 

Import of QEx-HeLa MS/MS data 50,176 Yes 175 s 

Import of Fus-HeLa MS/MS data 30,722 Yes 305 s 

Recalibration and vectorization of the 
spectral library 

789,745 Yes 111 s 

Benchmark search with a subsample 
for evaluation of the scoring function 
(single-threaded) 

2,000 against 
789,745 

No 88 s 

Benchmark search with a subsample 
(multi-threaded) 

2,000 against 
789,745 

Yes, partly 69 s 

Decoy generation 
788,630 from 
789,745 

Yes 28 s 

Neural net training 4,000 Yes 1200 s 

Target Search QEx-HeLa 
50,176 against 
789,745 

Yes, partly 1210 s 

Decoy Search QEx-HeLa 
50,176 against 
788,630 

Yes, partly 1200 s 

Target Search Fus-HeLa 
30,722 against 
789,745 

Yes, partly 642 s 

Decoy Search Fus-HeLa 
30,722 against 
788,630 

Yes, partly 638 s 

Total time for import and searching 
of a spectral library and an 
experimental dataset with decoys 

50,176 + 789,745 Yes, partly 2998 s 

SpectraST library import 789,745 No 1,399 s 

SpectraST search of the QEx-HeLa 
dataset 

50.176 No 10,928 s 

Total time for import and searching 
of a spectral library and an 
experimental dataset with 
SpectraST 

50,176 + 789,745 No 14,927 s 
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The search engine implemented in this work required 50.0 min for a complete processing of the 
PRIDE spectral library and the QEx-HeLa dataset. Through parallelization of many tasks, a 
significant speedup could be realized. The main search was still the most time-consuming step 
which could only partly be parallelized due to specific limitations in Mathematica. 

Import of the Fus-HeLa data took longer than QEx-HeLa, although the number of spectra was 
smaller (30 k vs. 50 k). However, the number of fragment ions for each spectrum was considerably 
higher in the Fusion dataset, which required more time to read the data from the text file. 

SpectraST library import and the target search alone required 4.1 h in total. The decoy generation 
and search were not included here because they could not be performed with the complete 
spectral library. SpectraST did not use parallelization.  
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6 Outlook 
Spectral library searching has been continuously improved in the past decade – a process this 
work aims to be part of – but is inherently limited by the availability of reference spectra for the 
experimental targets. In a joint paper by the participants of the 2017 ‘Dagstuhl Seminar on 
Computational Proteomics’, the authors concluded that “it seems logical to couple spectral library 
searching with sequence database searching, where the former assigns those peptide ions that 
have been previously identified, and the latter identifies peptide species that are not in the library 
merging the results of the two approaches into a single output for the user” [61]. A unified search 
engine including both reference spectra from spectral libraries and sequence databases may 
provide proteomics researches with the best of both worlds and achieve higher sensitivity and 
specificity than either strategy on its own. 

The detailed statistic inspection of the PRIDE Cluster spectral library revealed some very 
interesting insights, including high numbers of replicate spectra for individual peptide species. 
While replicate spectra were found to be advantageous for peptide identifications in general, high 
number of replicates from a single species may have negative influences on spectral library search 
performance. The PRIDE Cluster method could be examined in view of these observations and 
may have room for improvement to achieve even higher clustering accuracy. 

The authors of the ‘Dagstuhl Seminar’ also stressed the importance of making new computational 
methods available to end-users by implementing ready-to-use tools and standard file formats 
[20]. This is fair criticism to the present work as well. This work has been implemented in 
Mathematica 11.3 as a software prototype. Processing steps have to be entered as function calls, 
error checking must be done manually, and the code only be executed in the Mathematica 
environment. Since Mathematica is commercial software, license availability may limit the 
adoption by other users in addition to technical obstacles. In order to release this method to the 
community, the code that has been prototyped in Mathematica would need to be re-written in 
other programming languages, such as R or Python. 

The machine learning procedure applied in this method demonstrated how spectrum scoring can 
be improved by automated learning. However, it only scratches the surface of the capabilities of 
state-of-the-art neural networks, which solve complex tasks like image or speech recognition with 
high accuracy. It is conceivable that deep neural networks can be trained to recognize the 
sequence from a peptide spectrum just from the spectrum itself, with no direct comparison to a 
reference spectrum, and outperform current methods of spectrum-spectrum matching. 

Finally, the idea of “[shifting] our focus from data review to data reuse” [24] can become reality 
through the increasing use of spectral library searching. By using the resources of large-scale 
online repositories of proteomics data, analysis of proteomics experiments can become more 
comprehensive and more accurate, especially when combined with conventional sequence 
database search into a unified search engine and the use of modern machine learning techniques. 
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7 Methods 

7.1 Mass spectrometry 
HeLa lysates (Thermo Fisher Scientific) were acquired with the established standard LC-ESI-
MS/MS methods in our laboratory on two nano-liquid chromatography and Orbitrap instruments. 
Two datasets, ‘Q Exactive HeLa’ and ‘Fusion HeLa’, were randomly selected as benchmark data 
from the set of standards that is run on the instruments on a daily basis. These datasets were not 
specifically acquired for the development of this method. 

7.1.1 Q Exactive HeLa dataset 

The Q Exactive HeLa (‘QEx-HeLa’) dataset was acquired on an Orbitrap Q Exactive mass 
spectrometer (Thermo Scientific). Separation of the peptides was performed on a nanoAcquity 
nano-LC (Waters) with a C18 trapping column (nanoAcquity UPLC Symmetry C18 trap column, 
180 μm × 20 mm, 5 μm, 100 Ǻ), a C18 separation column (nanoAcquity UPLC column, BEH 130 
C18, Waters; 75 μm × 250 mm, 1.7 μm, 100 Ǻ), a gradient from 2.0% A to 30% B in 120 min, and a 
total runtime of 170 min. Mass spectrometric acquisition was done in data-dependent acquisition 
mode (DDA). MS1 spectra were recorded in a mass range of m/z 375 to 4,000 at a resolution of R 
= 70,000, AGC target = 3e6. The top 10 signals were selected for fragmentation with a dynamic 
exclusion of 20 s. HCD collision energy was set to 27, isolation width to m/z 4.0. MS2 spectra were 
recorded at R = 17,500 from m/z 100 up to the precursor mass, AGC target = 1e5. 

7.1.2 Fusion HeLa dataset 

The Fusion HeLa (‘Fus-HeLa’) dataset was acquired on an Orbitrap Fusion mass spectrometer 
(Thermo Scientific). Separation of the peptides was performed on a Dionex UltiMate 3000 nano-
LC (Thermo) with a C18 trapping column (Acclaim PepMap μ-precolumn, C18, 300 μm× 5 mm, 5 
μm, 100 Ǻ, Thermo Scientific), a C18 separation column (Acclaim PepMap 100, C18, 75 μm × 250 
mm, 2 μm, 100 Ǻ, Thermo Scientific), a gradient of 45 min and a total runtime of 70 min. 

Mass spectrometric acquisition was done in data-dependent acquisition mode (DDA). MS1 
spectra were recorded every 3 s (cycle time) in a mass range of m/z 400 to 1,300 at R = 120,000, 
AGC target = 2e5. As many signals as possible within the cycle time were selected for 
fragmentation with a dynamic exclusion of 30 s. HCD collision energy was set to 30, isolation 
width to m/z 1.6. MS2 spectra were recorded with the ion trap in ‘rapid’ resolution mode from 
m/z 120 to 2000, AGC target = 1e4. 

7.2 Peptide identification by sequence database search 
The two LC-MS datasets were analyzed with Proteome Discoverer 2.0 (Thermo). MS2 spectra were 
identified with SequestHT against the SwissProt Human database (04/2018) containing 20,260 
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protein entries. Precursor mass tolerance was set to 0.02 Da, fragment mass tolerance to 0.02 Da 
(Q Exactive) and 0.6 Da (Fusion). Fully tryptic peptides with a maximum of two missed cleavages 
and a minimum length of five amino acids were included. Carbamidomethylation of cysteines was 
defined as a fixed modification, and oxidation of methionine as a dynamic modification, allowing 
three at most. 

The MS2 spectra of both datasets were exported as mgf (Mascot generic format) files from 
Proteome Discoverer 2.0 for subsequent search with spectral libraries. The list of peptide 
spectrum matches (PSMs) was exported from the SequestHT results as reference identifications. 

7.3 Development of a spectral library search engine for the 
PRIDE Cluster spectral library 

All development was done in Wolfram Mathematica 11.3 (Wolfram Research). An estimated total 
of 3,000 lines of code were written to implement the method, evaluation, calculation of the 
statistics etc. 

7.3.1 Chemical element, amino acid and modifications data 

Monoisotopic masses of elements, amino acids and common peptide modifications were 
imported into Mathematica from different sources. The exact monoisotopic masses of the 
chemical element H, C, N, O and P were from Wolfram Research’s IsotopeData included in 
Mathematica [62]. Amino acid data was obtained from ExPASy with precision of five decimal 
places [63]. Chemical modifications of peptides including Carbamidomethyl, Oxidation, 
Phosphorylation, Phospho, Methyl, Dimethyl, Formyl, Acetyl, Deamidation, Label:13C(6), 
TMT6plex, iTRAQ4plex, iTRAQ8plex were obtained from unimod.org [64]. 

7.3.2 Spectrum and library import and data storage 

Spectra were imported from msp (PRIDE Cluster spectral library) or mgf formats (Proteome 
Discoverer). Both are human-readable text files which can be easily interpreted. All spectra were 
loaded and kept in memory for all processing steps. Spectrum import was distributed to multiple 
threads for faster processing by splitting the input file into chunks of spectra of approximately 
equal length. Data were stored in a table-like predefined structure to allow for fast random access 
of the entries. 

Next, the entire datasets were indexed with Mathematica’s NearestFunction, which allows for very 
fast lookups in constant runtime. Separate indices were built for the precursor m/z (‘PEPMASS’ 
property in mgf files, ‘Parent’ in msp files), the calculated precursor m/z (‘Parent’ minus 
‘DeltaMass’), and the identified peptide sequence, if applicable (‘sequence’ property). 

For the HeLa datasets that had been processed by Proteome Discoverer, the SequestHT 
identification results were imported from the ‘TargetPeptideSpectrumMatch.txt’ tab-separated 
table files. Spectrum data and identification results were joined by matching the scan number. 
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The in-memory structures were dumped to disk using DumpSave to enable subsequent loading 
of the data in a few seconds, instead of several minutes of re-importing msp/mgf files and re-
calculating the indices and other caches. 

7.3.3 Basic statistics 

After import and preparation of the datasets, basic statistical analyses were performed to ensure 
complete and error-free import of the data and to learn about the constitution of the data. 
Histograms were created with Mathematica’s Histogram or SmoothHistogram function. The latter 
effectively plots the probability density function (PDF) of an empirical distribution derived from 
the data. Tabular statistics were created with the Tally function. 

7.3.3.1 Sequence coverage of the PRIDE spectral library 

The human SwissProt database was loaded using Mathematica’s FASTA Importer. The sequences 
were split into tryptic peptides, allowing peptide lengths of 5 to 80 amino acids and up to 2 
missed cleavages. The intersection of the PRIDE peptide sequences and the digested SwissProt 
sequences was calculated. Then, the total number of amino acids of all intersecting peptides was 
divided by the total number of amino acids in the SwissProt database to calculate the sequence 
coverage. 

To extend the sequence matching to non-tryptic peptides, all PRIDE sequences (189,400) were 
search in the entire human SwissProt database (11.4 million amino acids). To conduct this search, 
the PRIDE sequences were indexed with a custom-built B tree of depth 5, so that the first five 
amino acids of a sequence determine its position in the B tree. Then, all protein sequences from 
the SwissProt database were searched for matches in the B tree (lookup). When a match was 
found, i. e. when the first 5 characters were the same, all matching peptide sequences were 
extended and compared to the remaining FASTA protein sequence to check if the PRIDE peptide 
is fully contained in the FASTA protein. 

The B tree index was implemented as a large SparseArray of PackedArrays. The efficient 
implementation of the sequence index and parallelization of the lookup and string extension 
enabled searching of all 189,400 unique PRIDE sequences in the entire FASTA database (11.4 
million amino acids) in only 2 minutes. 

7.3.3.2 Generation of theoretical fragment spectra 

Theoretical fragment spectra were generated as series of b and y ions. B ion series were 
generated from summing up the monoisotopic amino acid masses. The corresponding y ion 
series was generated by adding the mass of water and subtracting the b ions from the calculated 
singly-charged peptide mass. 

7.3.3.3 Creation of a virtual sum spectrum 

The m/z values of fragment ions were binned in steps of 0.05 and summed up to a single ‘virtual 
sum spectrum’. This step was performed for both the theoretical spectra and the real PRIDE 
spectral library. 
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7.3.3.4 Peak picking in the virtual sum spectrum 

It was apparent that the m/z values of fragment ions were not evenly distributed along the axis 
but occurred in groups of approx. 1 Th distance. To pick those small clusters specifically, a peak 
picker was applied using Mathematica’s FindPeaks (height threshold of 5, Gaussian blurring of 25 
(equals 25 * 0.05 Th = 1.25 Th)). The fractional parts of the m/z value of all signals were plotted in 
a ListPlot. 

7.3.3.5 Recalibration of fragment ion m/z values 

The PRIDE library spectra were used to calculate the recalibration function. First, a rough 
estimation of the slope and offset was applied manually to correct for the ‘wrap-around’ of the 
fractional parts at 0.5. Then, a linear fit was applied to the data using LinearModelFit. Separate fits 
were created for the subsets of unmodified and TMT-modified peptides. 

The linear function derived from the fit of all spectra was turned into a CompiledFunction and 
used as the m/z recalibration function throughout this work. 

7.3.3.6 Fractional parts of fragment ions 

The fractional parts of the fragment ions (theoretical or experimental) was calculated as the 
distance from the nearest whole number, ranging from -0.5 to 0.5. All fractional parts were 
quantified by creating a HistogramDistribution from the observed data at a resolution of 0.01 Th. 
The probability density function (PDF) of the HistogramDistribution was plotted to visualize the 
distribution of fractional parts of the m/z values. The percentage of fractional parts in a given 
interval [a; b] was calculated with the cumulative density function (CDF). 

7.3.4 Vectorization of fragment spectra 

Vectorization transforms the list of (m/z, intensity) pairs into a list of intensities with predefined 
m/z spacing (bins). The common m/z vector was set to range from 100 Th to 2000 Th with a bin 
size of 1 Th. When multiple ions fall into the same bin, only the highest intensity is taken. 

The total length of m/z vectors is 1901. The PRIDE library spectra had an average of 50 ions per 
spectrum, so most values in the vectors are going to be zero. The vectors were therefore stored as 
SparseArrays instead of conventional PackedArrays. Both are built-in Mathematica structures. 
SparseArrays are a very efficient way to handle matrices with many zeros (‘sparse matrices’) and 
stored the data in 3-4x less memory than conventional arrays. 

7.3.5 Dynamic spectrum processing: The filtering pipeline 

The present work involves processing of spectral data with a variety of different methods and 
parameters. During development and optimization of this method, the various steps of data 
processing have to be adjusted frequently and efficiently. A filtering pipeline has been 
implemented to facilitate this process. A filter is a function that may apply any operation to a 
spectrum object as long as it returns another valid spectrum object. Filters can be given at the 
time of executing any function using the spectral library or the query datasets and can be 
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combined in any order. Every access to spectral data, including searching, visualizing and 
exporting, can be passed dynamically through the filters. 

Various core functions have been implemented with the filtering scheme, including recalibration 
and vectorization, intensity transformations (for subsequent spectrum matching and scoring), and 
decoy spectrum generation. Most filters are small methods with only a few lines of code, like the 
IntensityTransformationFilters. Others, such as the AddCalibratedVectorIonListFilter, calls multiple 
subroutines to calculate its result. A list of filters is given in Table 16. 

Table 16: Overview of core functions implemented through filters. 

Vectorization filters 

AddVectorIonListFilter 
Adds a vectorized version of the ion list (m/z-
intensity pairs) to the spectrum record. 

AddCalibratedVectorIonListFilter 
Same, but recalibrates all m/z values before 
vectorization 

Fragment ion intensity transformation filters 

IntensityTransformationFilters["Sqrt"] takes the square root of all intensities 

IntensityTransformationFilters["Rank"] Rank-transforms the intensities 

IntensityTransformationFilters["LogMedian 
Normalize"] 

Log10-transforms intensities and normalizes 
them to the median 

IntensityTransformationFilters["Top150"] 
Filters the top 150 ions, replacing all other ions 
with zeros 

IntensityTransformationFilters["Top150 
Subtract"] 

Same as above, but also subtracts the 151th 
intensity from the top 150 ion intensities 

IntensityTransformationFilters["Constant-1"] Sets all intensities > 0 to 1 (unitizes the data) 

Decoy spectrum generation filters 

DecoyFilter["IntensityShuffle"] 
Shuffles the intensities of a fraction of x of the 
fragment ions. m/z values are left unchanged. 
(default x = 1.0) 

DecoyFilter["MZRandomize"] 
Repositions a fraction of x of the fragment ions 
along the m/z axis. (default x = 0.6) 

Generic filters  

GenericFilter[“Confidence”, qvalue] 

Filters spectrum identification by SequestHT 
confidence (Percolator q-value). Removes ID 
information for spectra with q-value worse than 
‘qvalue’. 

 

Because filters operate on each spectrum individually, the precursor shuffle decoy method was not 
implemented as a filter since it requires precursor information other library entries. 
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For the PRIDE spectral library, the result of AddCalibratedVectorIonListFilter – the recalibrated, 
vectorized fragment spectra – was stored in a cache to avoid recalculation for every library query. 
For the HeLa query spectra, the vectorized fragment spectra were generated on-the-fly by the 
filter. 

The generic confidence filter was used to filter the very high confident peptides from the 
SequestHT identifications (FDR 0.001). 

7.3.6 Decoy spectrum generation 

Three methods of decoy spectrum generation were implemented, including a) shuffling the 
intensities of a certain percentage of fragment signals (IntensityShuffle), b) randomizing the m/z 
values of a certain percentage of fragment masses (MZRandomize), and c) shuffling the precursor 
masses around. 

7.3.6.1 Intensity shuffle 

The intensity shuffle method replaces an adjustable fraction of intensities with a random intensity 
from the same spectrum. m/z values remain unchanged. 

7.3.6.2 m/z randomize 

The m/z randomize method assigns a random m/z to an adjustable fraction of signals. 

7.3.6.3 Precursor shuffle 

The precursor shuffle method replaces the precursor m/z of a fragment signal with a randomly 
selected precursor m/z within a given range. The minimum distance and the maximum distance 
from the original precursor can be adjusted. The two distances were adjusted so that the number 
of precursors shuffled to a replicate spectrum of itself was low, and at the same time the shuffled 
precursor m/z was as close as possible to the original m/z. From all precursors of the same charge 
state that were present within the specified m/z range, one was randomly selected and assigned 
as the new ‘decoy precursor mass’. Precursor masses that shuffled to a replicate of itself were 
removed. 

The precursor shuffling function was implemented to operate on a sorted list of precursor masses 
with linear run-time and parallelization support. Masses were sorted before shuffling, if necessary, 
and the original order was restored afterwards. A NearestFunction (‘DataShuffledMassLookup’) 
was generated from the shuffled recalibrated precursors and used as the precursor mass lookup 
function for decoy spectrum search.  

7.3.7 Decoy spectrum evaluation 

The quality of decoy spectra was evaluated by searching the very high confident peptides from a 
dataset against the target and the decoy library. Since the positive target hits are very likely to be 
true (hence very high confident peptides), the negative hits are assumed to be all wrong. They 
serve as a ‘ground truth’ for the random hits which the decoys should model as accurately as 
possible. The ‘target-decoy delta score’ is calculated by subtracting the score of the best negative 
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hit from the score of the best decoy hit to compare the decoy scores with the negative (random) 
hit scores. 

7.3.8 False discovery rate estimation and hit validation 

False discovery rate (FDR) was estimated as described previously and regularly performed in 
identification through both database and spectral library searching of LC-MS/MS datasets [43]. 
The distribution of decoy scores was used as the null distribution. The FDR was controlled to the 
desired level by calculating the percentage of accepted decoy hits among all hits and adjusting 
the score threshold accordingly (‘global FDR’ estimation). 

7.3.9 SpectraST identification 

SpectraST version 5.0 (TPP v5.1.0 Syzygy, Build 201711031215-7670 (Windows_NT-x86_64)) was 
used for spectral library searching [30]. The PRIDE spectral library (in msp format) was imported to 
SpectraST (splib format). Two SpectraST libraries were created, a library containing all spectra from 
PRIDE, and a consensus library, where duplicates, i. e. spectra which represent the same 
sequence-charge-modification peptide, were removed by merging them into consensus spectra. 
Decoy spectra were generated from the consensus library with the shuffle-and-reposition method 
into a separate library. 

The HeLa datasets were exported from Mathematica to msp files (MSPExporter) to have the 
spectra annotated with their SequestHT identification result, and then used in SpectraST. 

SpectraST parameters were set to the default, except the following: precursorMzTolerance was set 
to 0.02, and peakBinningFractionToNeighbor was set to either 0.5 or 0.0. 

7.4 Benchmarking and method optimization 
Optimizations were performed with a randomly sampled subset of 2,000 spectra which had been 
identified with very high confidence (FDR 0.1%) by SequestHT for efficient computation. They very 
high confident peptides served as a ‘ground truth’ this method was optimized towards. All 
optimizations were conducted with the filtering pipeline by including or excluding the 
corresponding filters or adjusting their parameters. 

The number of true positive matches and the delta score were used as measures of method 
performance. The delta score was calculated as the score of the best hit minus the score of the 
next best hit which represents a different peptide. 

7.4.1 Scoring schemes 

The cosine similarity and the correlation similarity were used for the calculation of the score of a 
spectrum-spectrum match. 

The cosine similarity is the dot product of two vectors divided by their norms. It was calculated as: 

cos(u, v) = u . v / (Norm[u] * Norm[v]) 



 Methods 

 89 

The correlation similarity is the dot product of two vectors divided by their norms. It was 
calculated as: 

cs(u, v) = (u – Mean[u]) . (v – Mean[v]) / ( Norm[u – Mean[u]] * Norm[v – Mean[v]] ) 

7.5 Machine Learning for advanced method optimization 

7.5.1 Training and validation data 

4,000 random spectra (out of 22,352 identified peptides with very high confidence (FDR=0.001)) 
were selected to generate training data for the neural net training. For each of the 4,000 spectra, 
candidates were selected within a m/z tolerance of 0.02 Th, as before. Fragment signals were 
rank-transformed and reduced to the top-150 signals. All positive-matching query-candidate 
pairs were included in the training data. The number of negative-matching pairs was limited to 
10x the number of positives and picked randomly. Otherwise, the negative-matching pairs would 
have greatly outnumbered the positive-matching pairs and the neural net would bias towards the 
negatives during the learning process. A total of 225,151 query-candidate pairs (30,423 positive 
pairs, 194,728 negative pairs) were used as training data. 

Another set of 2,000 different spectra was prepared as a validation dataset and processed in the 
same manner as the training dataset. The validation dataset was built with a negative-to-positive-
ratio of 2:1 and contained 43,441 query-candidate pairs (15,599 positive pairs, 27,842 negative 
pairs). 

7.5.2 Learning of a weighted scoring function 

7.5.2.1 Neural net construction 

The aim of neural net training was the implementation of a modified version of the correlation 
similarity scoring function where every m/z value in the query and the candidate spectrum is 
multiplied with an adjustable weight. The two weight vectors are independent. The neural net 
should adjust the weight vectors by finding values that would minimize the similarity scoring 
score for false matches and maximize the score for true matches. 

First, a scoring neural net was set-up to replace the correlation similarity scoring function. The 
neural net takes two intensity vectors as input, the first from the query spectrum, the second from 
the candidate spectrum. The vectors are fed into two ConstantTimesLayer (‘QueryScaling’ and 
‘CandidateScaling’), which multiply the vectors element-wise with the learnable weights. The 
result is passed to the ‘Scoring’ subnet, which is a neural net implementation of the correlation 
similarity function. The output of the neural net is the similarity score for the spectrum pair (Figure 
37). 
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Figure 37: The scoring neural net used for training of the two weight vectors. ‘QueryPart’ 
and ‘CandidatePart’ select the query and candidate spectrum intensity vector. ‘QueryScaling’ and 
‘CandidateScaling’ are the two layers with learnable weights that multiply the spectrum vectors. 
‘Scoring’ is a sub-net which implements the correlation similarity scoring function. 

The scoring sub-net is a neural-net implementation of the correlation similarity (Figure 38). 

 

Figure 38: The correlation similarity neural net. The net takes two vectors as inputs (In1 and 
In2) and calculates the correlation similarity between the two. 

7.5.2.2 Neural net training 

Training of the neural net was carried out with the help of another neural net which ‘wraps 
around’ the scoring the. Implementation of the training net allowed for a presentation of all 
positive and negative spectra for a single peptide in one run, so that the loss could be calculated 
per-peptide (Figure 39). 
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Figure 39: The neural net used for training of the scoring net. The training nets accepts all 
positive pairs and negative pairs for a query peptide as separate inputs, then applies the scoring 
net to all positives (‘PositiveScoring’) and negatives (‘NegativeScoring’). ‘PositiveScoring’ and 
‘NegativeScoring’ are identical copies of the scoring net with shared weights. Next, the loss is 
calculated as (1 - best positive score) - (best negative score), which is effectively the contrastive 
loss calculated from the delta score. 

Training was performed with the ADAM optimizer for 20 min. 

7.5.2.3 Use of the weight vectors learned by the neural net 

While the neural net can be used as the scoring function itself, the two weight vectors that were 
learning during the training can be extracted and applied directly to the spectra inside the 
correlation similarity scoring function when doing the main search. This avoids the overhead 
produced by the neural net architecture and achieves higher performance when calculating the 
scores. 

The weight vectors learned by the neural net were extracted (‘QueryWeightVector’, 
‘CandidateWeightVector’) and a weighted scoring method was implemented as 

WCS(q, c) = CorrelationSimilarity[QueryWeightVector * q, CandidateWeightVector * c]. 
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9 Appendix 

List of hazardous chemicals 

No hazardous chemicals were used in this work. 
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