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Kurzzusammenfassung

Neuste Fortschritte in der Lasertechnologie und der Experimentaltechnik machen
es möglich Systeme in Nicht-Gleichgewichtszuständen zu untersuchen und sogar ko-
härent zu kontrollieren. Ein Beispiel dafür sind künstliche Eichfelder in ultrakalten
Atomsystemen, welche durch ausgeklügeltes Treiben des optischen Gitters erzeugt
werden konnten [1]. Mit dem Aufkommen von präzisen Starkfeld-THz-Pulsen ist
man in der Anregungs- und Untersuchungsspektroskopie in der Lage Festkörpersys-
teme jenseits vom chemischen und thermischen Gleichgewicht zu untersuchen [2, 3].
Insbesondere Hochtemperatursupraleiter, wie Kuprate, weisen unter Anregung mit
ultraschnellen THz-Pulsen neuartige Nicht-Gleichgewichtseigenschaften auf [4, 5, 6,
7, 8, 9, 10, 11, 12]. Eine der vielversprechenden Erscheinungen ist die kohärente Git-
terkontrolle zur Begünstigung der Supraleitung, und das teilweise bei Temperaturen
deutlich oberhalb der kritischen Temperatur Tc im Gleichgewicht [13].
Diese Dissertationsschrift bietet ein theoretisches Gerüst um Nicht-Gleichgewichts-
zustände zu untersuchen und liefert einen Beitrag zur Diskussion um diese soge-
nannten transienten supraleitenden Zustände. Die entwickelte e�ektive Theorie für
den Niedrigenergiebereich basiert auf der Magnus-Entwicklung und der Floquettheo-
rie und approximiert letzendlich den Floquet-Hamilton-Operator im Hochfrequenz-
grenzbereich [14, 15, 16]1. Die Theorie wird auf das Standardproblem des parametri-
schen Oszillators und das getriebene Lawrence-Doniach Modell angewandt. Letzteres
ist ein vereinfachtes Modell eines getriebenen stark anisotropen geschichteten Su-
praleiters. Durch Neuanordnung der Störterme aus der Magnus-Entwicklung liefert
die alternative Magnus-Entwicklung eine systematische Entwicklung in der Treib-
amplitude und dem Inversen der Treibfrequenz, das wiederum erweitert etwas den
Anwendbarkeitsbereich der Magnus-Entwicklung.
Mit Hilfe des hergeleiteten e�ektiven Floquet-Hamilton-Operators erlangt man Zu-
gang zu thermodynamischen und statistischen Gröÿen wie dem Josephsonstrom
und die Fluktuationen um diesen im Nicht-Gleichgewichtszustand. Innerhalb die-
ser Theorie �ndet man, dass das Treiben Systemparameter e�ektiv renormiert. Des
Weiteren führt es zu dynamischer Stabilisierung und einem erhöhten kohärenten
Transport in geschichteten Supraleitern.
Die hergeleiteten generellen Formeln der alternativen Magnus-Entwicklung können
benutzt werden um den E�ekt von unterschiedlichen Treibprotokollen zu testen und
vorauszuberechnen. In diesem Sinne stellt diese Dissertationsschrift einen weiteres

1In Ref. [16] Abschnitt 3 habe ich einen Beitrag zur analytischen Herleitung der Magnus-
Entwicklung geliefert. Des Weiteren habe ich Ausdrücke für den parametrischen Oszillator in
Abschnitt 4 aus Ref. [16] berechnet. Alle Beiträge sind in Kollaboration mit B.Zhu and meinem
ehemaligen Betreuer Prof. Ludwig Mathey.
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Versuchsfeld in Richtung Floquet-Design.



Abstract

Recent advances in laser technology and experimental techniques made it feasible
to study and coherently control systems in non-equilibrium states. For example,
by means of elaborated driving of the optical lattice, an e�ective synthetic gauge
�eld in a system of ultra-cold atoms has been established [1]. With the emergence
of precise strong-�eld THz pulses, pump-probe spectroscopy allows to study solid
state systems beyond chemical and thermal equilibrium [2, 3].
In particular high Tc superconductors (HTSC) such as cuprates, stimulated with
ultrafast-THz pulses exhibit novel non-equilibrium features [4, 5, 6, 7, 8, 9, 10, 11,
12]. Among the most promising ones is coherent lattice control to favor supercon-
ductivity, sometimes at temperatures signi�cantly above the equilibrium Tc [13].
This thesis provides a theoretical framework to study non-equilibrium states and
contributes to the debate on these transient superconducting states. The developed
low-energy e�ective theory is based on the Magnus expansion and the Floquet the-
ory and e�ectively approximates Floquet Hamiltonians in the high-frequency limit
[14, 15, 16]2. It is employed to the standard problem of the parametric oscilla-
tor and the driven Lawrence-Doniach model, a simpli�ed model of a driven highly
anisotropic layered superconductor. Via a rearrangement of the perturbative terms
from the Magnus expansion the alternative Magnus expansion yields a systematic
expansion in the driving amplitude and the inverse of the driving frequency, which
slightly increases the range of applicability of the Magnus expansion.
By means of the derived e�ective Floquet Hamiltonian one gains analytical access
to thermodynamic and statistical quantities such as the Josephson current and its
�uctuations for non-equilibrium states. Within this framework, one �nds that the
driving e�ectively renormalizes system parameters. Furthermore it gives rise to dy-
namical stabilization and enhanced coherent transport in layered superconductors.
The derived general formulas of the alternative Magnus expansion can be used to
test and predict the e�ect of di�erent driving protocols [17]. In this sense the thesis
provides a further test ground towards Floquet engineering.

2In Ref. [16], I contributed to the analytic derivation of the Magnus expansion in Section 3 and
I derived the expressions for the parametric oscillator in Sec. 4 of Ref. [16]. All contributions are
in collaboration with B.Zhu and my former supervisor Prof. Ludwig Mathey.
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Chapter 1

Introduction

Recent advances in laser technology and experimental techniques made it possible

to study and coherently control systems in non-equilibrium states. For example, by

means of elaborated lattice driving an e�ective synthetic gauge �eld in a system of

ultra-cold atoms has been established [1]. Generally it is desirable to analyze and

predict the e�ective lattice potential for a system of driven trapped atoms [17].

With the emergence of precise strong-�eld THz pulses, pump-probe spectroscopy

allows to study solid-state systems beyond chemical and thermal equilibrium [2].

Of particular interest are pump-probe experiments which drive collective modes in

solids. This enables interesting applications such as the dynamical manipulation

of competing orders and the creation of non-equilibrium phases of matter. High

Tc superconductors (HTSC) such as cuprates, stimulated with ultrafast-THz pulses

exhibit novel non-equilibrium features [4, 5, 6, 7, 8, 9, 11, 12, 10]. Among the most

promising ones is coherent lattice control to favor superconductivity, sometimes at

temperatures signi�cantly above the equilibrium Tc [7].

The root cause of these transient superconducting states is still debated. Most of

the theories revolve around the role of the apical oxygen excitation in the bi-layered

YBCO compound. One model directly involves non-linear phononics [18, 19]. Oth-

ers demonstrate the dynamic enhancement of superconductivity as an e�ect of a

parametric phonon driving acting on the BCS wave function [20]. Several authors

attribute an enhancement of the superconducting phase as a consequence of stim-

ulated competing orders [21, 22, 23]. Further ideas touch the topic of parametric

cooling in di�erent ways [24]. Furthermore, the e�ects of the excitation and temporal

modulation on the spectrum of the phase �uctuations were considered, demonstrat-

ing a reduction of superconducting phase �uctuations in certain frequency ranges

[25, 26]. Another e�ective theory directly derived the conductivity from the para-

metrically driven Josephson junction model [27, 28].

In a similar context this work develops a low-energy e�ective theory [14, 15] and
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gains analytic insights into driven cuprate systems. Within the framework of the

alternative Magnus expansion, a systematic expansion in the driving amplitude and

the inverse of the driving frequency was developed [16]. Overall the method works

for isolated and dissipative classical systems as well as for isolated quantum systems.

1.1 Normal and high Tc superconductors

The ongoing investigation of superconductivity started over hundred years ago in

1911. The Dutch physicist Heike Kammerlingh Onnes observed in his experiments

with lique�ed helium, that mercury cooled below 4.2K [29] exhibits �practically no

resistance �[30]1. Soon afterwards other metals were discovered to be superconduct-

ing and until the beginning of the 1930s the element niobium had the highest critical

temperature at Tc = 9.25K. Then, alloys such as NbC and V3Si were explored [31].

In the 1960s and 1970s niob-alloys still hold the record for the highest transition tem-

perature, until Nb3Ge was measured with critical temperature of about Tc = 23K

[32].

The theoretical description of the superconducting e�ect was challenging. It was

realized that the physical concept for super�uidity with a vanishing viscosity, and,

therefore, the frictionless �ow and superconductivity with vanishing resistance, is the

same, namely the Bose-Einstein condensation (BEC). This quantum phenomenon

occurs when a macroscopic number of bosonic particles condenses into the lowest

energy state. In case for super�uid helium-4, these particles are electrical neutrally

bosons. In the superconducting mercury, those particles are pairs of electrons with

opposite spin and momentum which were bound together via a phonon-mediated in-

teraction. While single electrons can not undergo the BEC phase transition, bosonic

pairs of two electrons are able to condense into a charged super�uid. The underlying

principle of electron pairing and a comprehensive microscopic description on super-

conductivity was revealed in 1957 by Bardeen, Cooper and Schrie�er, presenting

their BCS theory [33].

1.1.1 Ginzburg-Landau theory

The Ginzburg-Landau (GL) theory [34] is a viable concept to characterize the su-

perconducting phase transition by introducing an order parameter. It is nonzero in

the ordered phase and equals zero in the disordered phase. The order parameter in

a superconductor is a complex wave function Ψ describing the condensed electrons,

1Additionally it is was reported that at very same day he struggled with his cooling agent
helium and witnessed the super�uid-transition of liquid helium-4 without realizing it [30].
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also known as Cooper pairs. The Cooper pair wave function is

Ψ(r) = |Ψ(r)|eiθ(r). (1.1)

The density of Cooper pairs is de�ned as ns(r) = |Ψ(r)|2. The according GL free

energy for charged particles coupled to an electromagnetic �eld is

F = Fn +

∫
dr

[
α|Ψ(r)|2 +

β

2
|Ψ(r)|4 +

1

2m∗
|(−i~∇− qA)Ψ(r)|2 +

(∇×A)2

2µ0

]
.

(1.2)

µ0 is the permeability. A is the gauge potential de�ning the magnetic �ux density

B = ∇×A and Fn is the free energy of the normal state. m∗ is the mass and q is the

charge of a Cooper pair. Apriori in the GL theory α and β are material dependent

phenomenological parameters which have to be determined experimentally.

The free energy in this form (1.2) requires a number of approximations, namely

symmetry arguments and the expansion in terms of the spatially slowly varying

order parameter [35]. It should be slowly varying as compared to the healing

length, which does not always coincide with the Cooper pair radius. Furthermore,

the momentum operator was replaced by the gauge invariant canonical momentum

−i~∇ → −i~∇− qA.

By minimizing the GL free energy (1.2) with respect to varations in the order pa-

rameter Ψ and the vector potential A, one obtains the two GL equations

αΨ + β|Ψ|2Ψ +
1

2m∗
(−i~∇− qA)Ψ(r) = 0, (1.3)

J =
q

m∗
|Ψ(r)|2(~∇θ(r)− qA). (1.4)

Ampére's law µ0J = ∇×B = ∇× (∇×A) and the complex phase representation

(1.1) was used to obtain the structure of the second GL equation (1.4). Eq. (1.4)

describes a supercurrent of particles with an e�ective charge q and mass m∗ in the

presence of a magnetic �eld. Initially, in their original work in 1950, Ginzburg and

Landau identi�ed q with the bare electron charge −e. In 1959, Gor'kov derived the

GL equation from the BCS theory and established the correct form with m∗ = 2m

and q = −2e. [36].

The mean-�eld form of the Cooper pair wave function |Ψ| =
√
−α/β 2 can be

derived from (1.2) assuming the magnetic �eld is o�, i.e A = 0, and the density is

spatially uniform.

2Conventionally one takes β > 0 and around the mean-�eld transition temperature α = α0(T −
T0,c), hence α is positive above T0,c and negative below T0,c in superconducting phase
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An electron travelling from the normal phase to the superconducting phase can not

change its wave function abruptly, the change must take place over a �nite distance

[37]. Alternatively, the �nite distance scale can be de�ned as the length over which

the phase θ(r) of the order parameter has to bend such that the associated bending

energy is equal to the superconducting condensation energy

α|Ψ|2 =
~2

2m∗
|Ψ|2(∇θ)2 (1.5)

⇔ α =
~2

2m∗
ξ2 (1.6)

⇔ ξ =

√
~2

4mα
. (1.7)

For the Cooper pairs the e�ective mass is m∗ = 2m. ξ is called the coherence length

or correlation length. This is basically the scale, over which the supercondcuting

phase can recover from small perturbations. In the �eld of Bose-Einstein conden-

sates, this length is called the healing length. There is an analogy between the GL

equation (1.2) describing charged Bose-Einstein condensed Cooper pairs and the

Gross-Pitaevski equation as the nonlinear Schrödinger-like equation for Bosons.

Using only θ and A = 0, the free energy becomes

F =
ρs
2

∫
dr(∇θ(r))2. (1.8)

The super�uid sti�ness is ρs = ~2n0,s/4m with the uniform super�uid density n0,s =

|Ψ0|2. Another characteristic quantity λ can be derived from the second GL equation

(1.4) by replacing J = µ−1
0 ∇×B and taking the curl of (1.4),

µ−1
0 ∇×∇×∇×A = ∇× q

m∗
|Ψ|2 [~∇θ(r)− qA] (1.9)

−µ−1
0 ∆B = − q2

m∗
|Ψ|2B (1.10)

⇔ 1

λ2
B =

q2

m∗
|Ψ|2B (1.11)

⇔ λ =

√
2m

(2e)2ns
. (1.12)

The vector identities ∇×∇θ(r) = 0, ∇×∇× = ∇(∇·)−∆ and the gauge ∇·A = 0

were used to obtain eq. (1.12).

The London penetration depth λ [38] describes the length scale over which �uc-

tuations in the magnetic �eld B occur. Exposed to an external magnetic �eld, a

superconductor will expel or diminish the internal magnetic �ux B. This well-known

Meissner e�ect was discovered in 1933 [39]. The London penetration depth is still
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used to gain information on the super�uid density. The ratio of the penetration

depth and the coherence length κ = λ/ξ is the only free parameter required to char-

acterize a superconductor within the GL framework. For a typical superconductor

such as niobium, the penetration depth is λ = 360Å and one �nds a coherence length

of ξ = 390Å [40]. If one compares the coherence length to a typical crystal unit cell

distance a of about 0.5− 5Å, one realizes that the Cooper pairs are delocalized over

several lattice sites. So, a Cooper pair consists of a wave function over many other

Cooper pairs, which can interfere and form a coherent ground state.

1.1.2 BCS theory

A key element of the BCS theory is the origin of the energy gap. To derive this,

one starts with the quantum mechanical Schrödinger equation for two interacting

electrons [
−~∇2

1

2m
− ~∇2

2

2m
+ V (r1 − r2)

]
Ψ(r1, r2) = EΨ(r1, r2), (1.13)

where V (r1 − r2) is the interaction potential. A change to the center of mass coor-

dinates R = (r1 + r2)/2 and the relative coordinates r = r1− r2, and the respective

Fourier transform of the introduced variables yields∫
dk′

(2π)2
V (k− k′)Ψ(k′)︸ ︷︷ ︸

∆(k)

= (E − 2εk)Ψ(k), (1.14)

assuming a vanishing center of mass momentum K = 0 for the ground state.

Furthermore, one de�nes the energy εk = ~2k2/2m. The kinetic energy of the

relative coordinate has a minimum for electron pairs with opposite momentum

k = k1−k2. By introducing the modi�ed wave function ∆(k) one �nds the following

self-consistent equation

∆(k) = −
∫

dk′

(2π)2

V (k− k′)

2εk − E
∆(k′). (1.15)

A �rst solution to equation (1.15) requires a few approximations. Taking a constant

∆(k) = ∆ implies a symmetric wave function and anti-parallel aligned electron spins

or a singlet state. Additionally, only the electrons close to the Fermi level are a�ected

by the phonon-mediated attractive interaction. Furthermore, the interaction poten-

tial for unoccupied states above the Fermi level is described by V (k − k′) = −V0.

Following these assumptions, the momentum integral in (1.15) can be replaced by

an integral over a thin energy shell above the Fermi energy εF and equation (1.15)
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yields

∆ = V0ρ(εF )∆

∫ εF+~ωD

εF

dε

2ε− E
. (1.16)

ωD is the Debye frequency of the material and ρ(εF ) is the density of states at

the Fermi level. For the assumption V0ρ(εF ) � 1, the solution of (1.16) gives an

estimate for the binding energy of the Cooper pairs

ECP = 2εF − E = 2~ωDe
− 2
V0ρ(εF ) . (1.17)

Irrespective of the amplitude V0 of the attractive interaction potential, the energy of

the bound state of the electrons will be lower than the two electron energy at a fully

occupied Fermi sea E − 2εF < 0. The Fermi surface is required to clearly separate

the unoccupied and the occupied electron states and to be spherically symmetric.

It is important to point out that it is this assumption which does not hold for

unconventional superconductors.

1.1.3 Unconventional supercondcutors

In 1986, Bednorz and Müller discovered that the ceramic copper-oxide materials

become superconducting at unusual temperatures of about 35K or more [41]. This

important break-through paved the way towards cuprate materials with critical tem-

peratures at about 135K under standard conditions [42]. Additional classes of high

temperature superconductors like fullerites [43] or iron-based ones [44] were discov-

ered. However within the frame of this thesis, the focus is on the layered supercon-

ductors such as cuprates, ruthenates or bismuthates.

The search for a complete and comprehensive theory for high Tc superconductors

is a vivid �eld of research 3. With advances in experimental techniques, such as re-

�ned highly resolved photon emission spectroscopy [46] or improved crystal synthesis

and progress from theoretical side, essential features for high Tc superconductivity

were identi�ed. The CuO2 planes play a key role for superconductivity in cuprates.

These materials are highly anisotropic in a stark contrast to the pure metal super-

conductors or �rst superconducting alloys. The cuprates are regarded as quasi-two

dimensional, with a weak interlayer coupling in the direction perpendicular to the

planes [47]. The crystal structure motivates to involve Josephson junctions, yielding

many macroscopic models which is elaborated in chapter 2.

Measurements of magnetic �ux quanta and supercurrents yield particles with charge

3Even standard text books on superconductivity just report on established facts about high
Tc materials and try to narrow down requirements and properties for a successful theory, because
there is no satisfying theory available [35].
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Figure 1.1: Anisotropic unit cell for the bilayered Y BCO. The strongly correlated
CuO2 planes in ab-direction are separated by the intercalated spacer element Y in
c-direction and a charge reservoir unit around the barium Ba and remaining copper
oxide CuO components. The apical oxygen 0(2) is distorted along the c-axis via
the excitation of the infra-active B1u phonon mode, which leads to induced coherent
transport above Tc for underdoped Y BCO [6, 7]. Modi�ed from originial source
[45].
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2e. Hence, the origin of superconductivity has been traced back to the formation of

Cooper pairs. However the pairing mechanism is not clear and the symmetry of the

wave function may di�er. Additionally, the typical coherence length is ξ = 10−30Å.

Therefore, the spatial extension of coherently interfering Cooper pairs is smaller than

the classical ones [48]. Obviously, �uctuations in the order parameter will play a

more dominant role. According to Emery and Kivelson [49], there are two impor-

tant energy scales for conventional superconductors. The �rst one is the BCS gap ∆,

which is a measure for the strength of the mutual binding of electrons into Cooper

pairs. The second one is the super�uid phase sti�ness ρs, which measures the ability

of the superconducting state to carry a supercurrent. In conventional superconduc-

tors ∆ is much smaller than ρs. Hence, the destruction of superconductivity sets

in with the breakup of electron pairs. In cuprates, the two energy scales are much

more similar. Hence, for temperatures exceeding ρs, thermal agitation will destroy

the superconductor's ability to carry a supercurrent, while the electron pairs still

continue to exist. It has been concluded that superconductivity is reduced by phase

�uctuations. However, quasiparticles to a certain extent modify the phase sti�ness

[13].

Another property of high-Tc superconductors is their high sensitivity to doping and

stoichiometric changes as compared to classical superconductors.

1.2 Experiments on driven high-TC-superconductors

So far, tunable material parameters, such as temperature, pressure, doping and sto-

ichiometric changes were used to investigate the equilibrium properties of high Tc

superconductors. However, advances allow to probe dynamic properties of these

materials away from thermal and chemical equilibrium [50]. In this kind of experi-

ments, an initial light pulse excites a nonequilibrium state with excess energy and

a quasiparticle density. Then, a subsequent pulse, which is delayed relative to the

pump, probes the transient state by detecting changes in the absorbance and the re-

�ectivity. The analysis of the excitation and relaxation of quasiparticles interacting

with the condensate yields information on, for example electron-phonon coupling,

charge and spin order or the structure of the energy gap itself [51, 52, 53]. The

high degree of control allows to alter the collective properties, such as the melting

of an ordered phase [8], the light-induced transient superconductivity or transiently

enhanced coherent transport [4, 5, 6, 7, 11, 10] . These experiments involved low-

energy excitations, nonlinear driving of phonons, Josephson plasmons as well as

elements of competing order.

A key �nding is the phenomenon of light-induced coherent transport far above Tc in
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Figure 1.2: a) The equilibrium THz re�ectivity of YBa2Cu3O6.5 above (dashed line)
and below the transition temperature of TC = 55K(solid line)shows the appear-
ance of a plasmon edge. (b) The temperature-driven change in the imaginary part
of the optical conductivity σ2 (solid line) across the metal-superconductor transi-
tion exhibits the typicall 1/ω divergence for ω → 0 (dashed line). (c) and (d)
The light-induced changes in these observables, 0.8ps after vibrational excitation
of YBa2Cu3O6.5 at 100K with 300 − fs, 15µm mid-infrared pulses, show signatures
similar to the equilibrium superconducting state. The �gure is taken from Ref. [10]

the underdoped YBCO [6, 7, 10]. A study of the underdoped cuprate YBa2Cu3O6.5

after a vibrational excitation above Tc is shown in Figure 1.2.

The results are reminiscent of a transiently enhanced superconducting phase with

a characteristic 1/ω divergence in the imaginary part of the conductivity σ2 and a

typical re�ectivity edge corresponding to the appearance of the Josephson plasmon

in the superconducting state. The last point indicates a modi�cation of the inter-

layer coupling during a pulse excitation.

The cuprate YBCO features a transverse Josephson plasmon which is strongly cou-

pled to the mid-infrared active apical oxygen phononic mode. Via nonlinear phonon-

ics, this transverse Josephson plasmon a�ects the two longitudinal Josephson plas-

mon modes ωw, ωs. These two plasmons play a crucial role in the coherent interlayer

transport and were studied in [6, 7, 10] The e�ect of the driven plasmons on the

layered material is modelled theoretically in the next chapter. Accordingly a toy

model will be derived, which serves for further analytic studies and still comprises

9



the key elements of these nonequilibrium experiments.
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Chapter 2

Modeling driven high Tc

superconductors

Based on the experiments with transient light-induced coherent interlayer trans-

port [6, 7], a theoretical framework to study driven layered complex materials was

developed which naturally encompasses the essentials of the layer structure of the

material.

The thermally �uctuating state of a bi-layered cuprate superconductor, which is

modulated and excited by an external time-dependent �eld, is analyzed. Highly

anisotopic layered materials are often treated within the Lawrence-Doniach (LD)

model or the related extended XY-model [54, 55, 56, 57, 49, 58, 59, 60, 61, 62]. This

basically features a Ginzburg-Landau (GL) behavior in the superconducting layers,

arising from the presence of the copper oxide planes, and a Josephson-junction like

behavior in the direction perpendicular to these planes. So, cuprates and similar

compounds are described as a Josephson stack of superconducting and insulating

layers, schematically illustrated in �gure 1.1.

Close to the critical equilibrium temperature Tc one assumes that the �uctuations

of the condensate order parameter Ψ are predominant. Knowing that the phase or-

dering temperature Tθ determines Tc in the HTSC rather than the gap energy [63],

the coexisting mechanism of pair breaking is less important and will be neglected in

such a phenomenological model.

Several models were developed to theoretically analyse and explain these pump-

probe experiments [18, 28]. Certain aspects have been published in [25, 16]1.

The purpose of this thesis is to establish a systematic analytic formalism to obtain

a solution to the problem of a driven high-Tc superconductor around the critical

1Contribution to the publication in collaboration with the former colleagues Robert Höppner,
Beilei Zhu and Professor Ludwig Mathey. Personal contributions will be marked, explained and
embedded in the course of this thesis.
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Figure 2.1: Phenomenological modelling of the driven YBCO material. Important
here are the two di�erent couplings in c-direction, composed of a weak Jw and strong
hopping term Js. Accordingly one assumes Jw < Js. 3

temperature. By means of the Magnus expansion, a low-energy e�ective theory is

formulated which provides a systematic expansion in the ratio of the driving ampli-

tude A and the driving frequency ωm. Based on this theory, an e�ective stationary

probability density of the driven state is derived and phase �uctuations can be com-

puted. The presented theoretical model explains aspects of the observed transient

superconductivity and the enhanced coherent transport in layered superconductors.

Furthermore the elaborated theoretical framework provides a tool to deal with driven

systems in the high-frequency regime ω0 � ωm, where ω0 denotes the natural fre-

quency scale of the undriven system.

2.1 Phenomenological modelling of layered super-

conducting materials

Motivated by the microscopic structure of the cuprates with the superconducting

ab-planes and the Josephson stacks in c-direction (�gure 1.1), the LD model provides

the basic features to analyze the driven high Tc compounds. The scheme of this

setting is shown in �gure 2.1.

Assuming a small nonzero BCS-pair density on each layer, the starting point

is a bosonic pairing �eld, which is a�ected by the driving of the phononic modes

3The original shared �gure for talks and presentations is from R. Höppner, I modi�ed it for my
purpose.
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[64]. Around the critical temperature Tc, the �uctuations in the order parameter Ψ

predominantly destroy the superconducting coherence, rather than a pair breaking

mechanism. Thermal �uctuations in the pairing �eld will dominate at this temper-

atures, which allows for a classical treatment within the XY model [65].

The pairing �eld on each layer i and each site k in the phase-density representation

is Ψi,k =
√
n0 + ni,k exp iθi,k with the small mean-�eld density n0 = n0,i,k. The ab-

plane is considered as isotropic, therefore the plane is reduced to one site and the

site index k is dropped. Furthermore the in-plane tunneling Jab is neglected. This

model solely focusses on the driven Josephson junctions in c-direction and reduces to

an anisotropic 1D chain along the c-axis. The corresponding undriven Hamiltonian

expanded up to second order in ni yields

H0 = −
∑
〈ij〉

Jij cos (θi − θj) +
Ec

2

∑
i

n2
i . (2.1)

θi is the phase and ni is the density �uctuation in the layer i. Ec is the charging

energy, which is taken to be equal on each layer Ec = Ec,i = Ec,j. The summation

index in the brackets 〈ij〉 indicates the sum over nearest neighboring layers through-

out the thesis unless stated di�erently. The Jij are the di�erent tunneling matrix

elements between the respective nearest neighboring layers. For a bilayered system

like Y BCO the tunneling consists of a strong junction Js and weak junction Jw in

a staggered order, see also the right-hand side of �gure 1.1.

By adding the conjugate term Ec

2

∑
i n

2
i to the phase variable, one obtains a second

derivative from the Hamilton equations of motion. This allows to investigate the full

dynamics. The LD model contains a (quasi 2D) Ginzburg-Landau order parameter

in the adjacent layers which are coupled by Josephson junctions. In the limit of zero

spacing between the ab-planes, one recovers the standard Ginzburg-Landau model

[66, 67].

2.1.1 Time-dependent driving

The resonant excitation of the apical oxygen distortions (see �gure 1.1) periodi-

cially alters the vibronic and electronic structure of the material [68, 18, 19]. As a

consequence the two prominent Josephson plasmon frequencies associated with the

apical oxygen phononic mode are modulated [6]. Neglecting the microscopic details,

there are three practicable di�erent ways to introduce modulations to the Josephson

plasmon frequencies and the Josephson junctions via external driving. In order to

discuss the couplings, it makes sense to derive the plasmon frequency �rst.

The plasmon frequency can be derived from the LD Hamiltonian and its equations
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of motion. For a single undriven Josephson junction between two layers, these equa-

tions are

θ̇1 = ∂n1H = Ecn1 (2.2)

θ̇2 = ∂n2H = Ecn2 (2.3)

ṅ1 = −∂θ1H = −J sin (θ1 − θ2) (2.4)

ṅ2 = −∂θ2H = J sin (θ1 − θ2) . (2.5)

Here the short hand notation for the �rst derivative with respect to time ∂tX = Ẋ

is introduced. Introducing the symmetrized relative coordinates θ = θ1 − θ2 and

n = (n1 − n2)/2 one obtains the two compact Josephson equations

θ̇ = 2Ecn (2.6)

ṅ = −J sin θ. (2.7)

Taking the derivative with respect to time in (2.6) and subsequently plugging equa-

tion (2.7) into (2.6) yields the second-order di�erential equation

θ̈ = − 2EcJ︸ ︷︷ ︸
:=ω2

sin θ. (2.8)

¨denotes the second derivative with respect to time.

The associated frequency ω =
√

2EcJ is identi�ed as the Josephson plasmon fre-

quency of an undriven and undamped system.

The �rst extension is the linear (or dipole) coupling which directly couples the ex-

ternal driving �eld to the density ni, yielding the Hamiltonian term

Hdr,dip =
∑
i

Ai(t)ni. (2.9)

Deriving the equations of motion for a single junction with a staggered potential

Ai(t) = (−1)iA(t), one �nds

θ̇ = 2Ecn+ 2A(t), (2.10)

which generates essentially a phase boost and leads to an externally driven Josephson

junction. The second extension is the inductive coupling yielding a term

Hdr,ind = −
∑
<ij>

JijAij(t) cos (θi − θj) . (2.11)
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Deriving the second order di�erential equation, this term leads to a parametrically

driven Josephson junction and is motivated via the Peierls substitution, which yields

an addtional time-dependent phase shift in the tunneling elements and therefore an

e�ective Jij(t). The third coupling is the capacitive coupling

Hdr,cap =
Ec

2

∑
i

Ac,i(t)n
2
i , (2.12)

which leads to

θ̇ = 2Ec[1 + A(t)]n (2.13)

in the single junction case. Again deriving the second order di�erential equation,

this nonlinear coupling gives rise to a parametrically driven Josephson junction plus

a phase-velocity-dependent term proportional to Ȧn = Ȧ(θ̇/Ec − A). It could be

interpreted as a time-dependent damping parameter.

The terminology of a capacitive and inductive coupling stems from the simpli�ed

analogy to the LC circuit for this layered superconductors. A change in the interlayer

distance due the apical oxygen phonon modi�es the capacitance on each layer and

additionally alters the Josephson tunneling elements. The superconducting layers

are described by the capacitive term and the Josephson junction part is associated

as the inductive term.

2.1.2 Parameter ranges

The values of the parameters Jw, Js, Ec in the Lawrence-Doniach model are con-

strained by the Josephson plasmon frequencies [6]. According to equation (2.8), the

plasmon frequencies are approximated by ωs/w =
√

2Js/wEc. The weak plasmon

frequency scale is ωw = 1THz and the strong one is ωs = 10THz. The respective

LD parameters are summarized in table 2.1

2.1.3 Classical two-oscillator toy model

This section elaborates on a minimal model of a driven bilayered superconductor

which ignores the in-plane tunneling Jab. Around T = Tc thermal �uctuations

dominate and a classical treatment is justi�ed. Again, this minimal toy model

amounts to a 1D chain along the c-direction comprising one strong and one weak

junction, see �gure 1.1. It requires three sites in the corresponding Hamiltonian to

15



Jw Js Jab Ec A0 γ
E/kB(K) 0.2 20 100 6250 20− 450 10

E/h(THz) 0.0042 0.42 2.1 130.7 0.42− 9.4 0.2

E/h(meV) 0.017 1.7 8.6 539.1 1.7− 38.8 0.9

Table 2.1: Model parameters in kB×K,h×THz and meV. All parameters are given
in energy units E. The parameters were chosen to roughly match the measured
Josephson plasmon frequencies ωw/s =

√
2Jw/sEc. Jab is similiar to the Tc of YBCO

at about 100K which is the Kosterlitz-Thouless energy scale the for ab-plane. This
the energy for a phase transition from an bound vortex-anitvortex state to unpaired
and correlated vortices and antivortices. The presented XY model features this as
a loss of phase coherence within the plane.

describe two Josephson junctions

H0 = −Js cos (θ1 − θ2)− Jw cos (θ2 − θ3) +
Ec

2

(
n2

1 + n2
2 + n2

3

)
. (2.14)

Initially, a linear coupling between the driving and the density is used. The time-

dependent Hamiltonian with its staggered potential is, accordingly,

Hdr(t) = A(t)n1 − A(t)n2 + A(t)n3. (2.15)

A(t) represents the externally applied time-dependent �eld. The driving protocol

A(t) is a priori arbitrary. It is su�cient to use a cosine driving A(t) = A0 cosωmt

with modulation frequency ωm and a constant driving amplitude A0 to cover the

essential features.

The equations of motion (eom) derived from the Hamiltonian H(t) = H0 + Hdr(t)

are

θ̇1 = ∂n1H = Ecn1 + A(t) (2.16)

θ̇2 = ∂n2H = Ecn2 − A(t) (2.17)

θ̇3 = ∂n3H = Ecn3 + A(t) (2.18)

ṅ1 = −∂θ1H = −Js sin (θ1 − θ2) (2.19)

ṅ2 = −∂θ2H = −Jw sin (θ2 − θ3) + Js sin (θ1 − θ2) (2.20)

ṅ3 = −∂θ3H = Jw sin (θ2 − θ3) . (2.21)
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To simplify the sin terms one combines the equations (2.16)-(2.21) and introduces

the relative coordinates

θs = θ1 − θ2 (2.22)

θw = θ2 − θ3 (2.23)

ns =
n1 − n2

2
(2.24)

nw =
n2 − n3

2
. (2.25)

By this, one avoids trigonometric addition theorems and nonlinear couplings between

the variables. The resulting equations are

θ̇s = 2Ecns + 2A(t) (2.26)

θ̇w = 2Ecnw − 2A(t) (2.27)

ṅs = −Js sin θs −
1

2
Jw sin θw (2.28)

ṅw = −Jw sin θw −
1

2
Js sin θs. (2.29)

Taking the derivative of eq. (2.26) and eq. (2.27) with respect to time, the four �rst

order di�erential equations (2.26)-(2.29) can be transformed into two second-order

di�erential equations

θ̈s = − 2EcJs︸ ︷︷ ︸
ω2
s

sin θs − EcJw sin θw + 2Ȧ(t) (2.30)

θ̈w = − 2EcJw︸ ︷︷ ︸
ω2
w

sin θw − EcJs sin θs − 2Ȧ(t). (2.31)

Here, the two Josephon plasmon frequencies are ωw, ωs.

An anisotropic XY-model was employed to describe the �uctuating phase in a layered

superconductor close to Tc. A capacitive term (Ec/2)
∑

i ni was added to allow for

a complete description of the dynamics. The system was substantially reduced from

a bulk model to a single pair of two Josephson junctions. Yet, the impact of the

driving to the coherent transport along the c-axis has to be studied.

2.2 Langevin approach and Fokker-Planck equation

2.2.1 Langevin equation

The above system is an open system constantly gaining energy from the external

laser �eld. To include the in�uence of the phonons, in the next step, one adds
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a damping term and a Langevin noise term, which mimics, on the one hand, the

Ohmic resistance in the material and, on the other hand, the excess degrees of

freedom where the energy could be distributed to via phonon decay, for example.

The added damping and the noise term yield a classical description of two coupled

oscillators which feature aspects of the driven YBCO compound with the following

eom

θ̈s = −ω2
s sin θs −

1

2
ω2

w sin θw + 2Ȧ(t)− γθ̇s + ξs (2.32)

θ̈w = −ω2
w sin θw −

1

2
ω2

s sin θs − 2Ȧ(t)− γθ̇w + ξw. (2.33)

γ is the damping rate. The ξw/s are classical Langevin noise terms, which are

assumed to be Gaussian white noise with the correlations

〈ξw/s(t1)ξw/s(t2)〉 = 4γEckBTδ(t1 − t2). (2.34)

kB is the Boltzmann constant, which is usually set to 1, unless explicitly needed

or given elsewhere. The ensemble average of the noise term 〈ξw/s(t)〉 = 0 vanishes.

Furthermore, the average of the rapidly �uctuating force over a long time interval, as

compared to the characteristic time τ = 1/ω0 of the system, ξi(t) = 0 averages out to

zero. The temporal average is de�ned as O =
∫ T

0
O/T . For a more realistic heat bath

one should elaborate on the spectral density of the heat bath based on experimental

results. It is assumed that the lattice environment with a broad phonon spectrum

acts as an appropriate heat bath. The coupling to certain phonon modes is certainly

not the same for the Josephson plasmon modes [6], hence one could introduce mode

selective coupling to the heat bath γi. The speci�cs of the environment are su�cient

to dissipate away the excess energy and to allow for steady states. This matter is

further addressed after the derivation of the driven ensemble distributions at the

end of Chapter 2.2.5 and in Chapter 3.

The di�erential equations (2.32),(2.33) can not be decoupled. Therefore, the strong

junction in eq. (2.32) is considered as an externally driven oscillator, which is only

negligbly a�ected by the presence of the weak junction. This treatment is justi�ed

by the separation of energy scales of the plasmon frequencies ωs � ωw. Further, this

means the backaction e�ect is neglected. The backaction of the weak junction to the

strong junction could lead to shifts or weak renormalization of the strong plasmon

frequency. This is expected to be a rather minor e�ect as compared to the reverse

case. However, the strong junction equation (2.32) is decoupled and its solution can

be computed explicitly. A similar treatment was outlined in the contribution to Ref.

[25]. There, the strong junction was considered as a driven harmonic oscillator.

The Langevin equation for the strong junction without backaction from the weak
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junction is

θ̈s = −ω2
s sin θs + 2Ȧ(t)︸ ︷︷ ︸

F (t)

−γθ̇s + ξs +O(ωw
2) (2.35)

with F (t) = F0 sinωmt = −2ωmA0 sinωmt. O(ωw
2) means the small contributions

of the order ∼ EcJw � EcJs are omitted.

The full nonlinear problem is analytically hard to solve, so as a �rst approximation

the system will be linearized for small phase di�erences θs ≈ 0 between the layers.

This is reasonable as long as the temperature is around the critical temperature

T ≤ Tc.

Taylor expanding the nonlinear sine potential up to the �rst order in θ yields an

equation for an externally driven harmonic oscillator coupled to a heat bath

θ̈s = −ω2
s θs − γθ̇s + F (t) + ξs. (2.36)

The external driving is composed of a deterministic periodic part F (t) and a stochas-

tic part ξs. The derivation of the solution for the driven harmonic oscillator equation

of the strong junction can be found in the Appendix A. The driven harmonic oscil-

lator solution is

θs = θs,h + θs,inh (2.37)

= e−
γ
2
t

(
B1 cos

[√
ω2

s −
γ2

4
t

]
+B2 sin

[√
ω2

s −
γ2

4
t

])

− 2ω2
mγA0

(ω2
s − ω2

m)2 + ω2
mγ

2︸ ︷︷ ︸
Ac

cosωmt+
2ω2

m(ω2
s − ω2

m)A0

(ω2
s − ω2

m)2 + ω2
mγ

2︸ ︷︷ ︸
As

sinωmt, (2.38)

where B1, B2 are determined by the initial conditions. The solution can be used as

a feedback response for the weak junction θw.

5The original shared �gure for talks and presentations is from R. Höppner, I modi�ed it for my
purpose.
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Figure 2.2: For ωs � ωw the presence of the weak junction leaves the dynamics of
the strong junction almost una�ected. Therefore, the equation of motion for the
strong junction is decoupled and solved independently. The solution is fed back to
renormalize the driving of the weak junction.5

2.2.2 Renormalized driving for the weak junction

The strong junction dynamics (2.38) renormalizes the driving of the weak junction

according to

θ̈w = −ω2
w sin θw −

1

2
ω2

s sin θs − 2Ȧ(t)− γθ̇w + ξw (2.39)

= −ω2
w sin θw−

1

2
ω2

s θs − 2Ȧ(t)︸ ︷︷ ︸
=G(t)

−γθ̇w + ξw. (2.40)

Here the equation (2.40) is linearized in θs. For the steady state of the strong

junction response, the e�ective external driving term G(t)6 becomes

G(t) = −ωs
2Ac
2︸ ︷︷ ︸

Gc

cosωmt+

(
2ωmA0 −

ωs
2As
2

)
︸ ︷︷ ︸

Gs

sinωmt (2.41)

This driving term can be cast into the form G(t) = G0 sin(ωmt+φ0). The renormal-

ized amplitude is G0 =
√
G2
c +G2

s and the shifted relative initial phase is de�ned as

φ0 = arctan(Gc/Gs). A global shift on the time axis t → t − φ0/ωm eliminates the

initial phase and one obtains G(t) = G0 sinωmt.

6Technically the damping term −γθ̇ was added after the derivation of the second order di�er-
ential equation. This slightly changes the form of the driving coe�cients Gc and Gs.
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To summarize, equation (2.40) describes the dynamics of a driven bilayered super-

conductor by using a toy model. The dynamics in the ab-plane was neglected and

the anisotropy along the c-direction was kept. After a separation of the strong junc-

tion dynamics, its solution was fed back as a response to the weak junction resulting

in equation (2.40) with a signi�cantly renormalized driving.

2.2.3 Non-linear feedback for the weak junction

From the numerical simulation for the anisotropic 1D chain, the response of the

strong junction phase θs exhibited a skewed behavior as reported in Ref. [25] 7. This

indicates that one might consider the �rst anharmonicities also in an analytically

treatment. By expanding eq. (2.32) up to the cubic term one obtanins the forced

Du�ng oscillator equation, which describes the non-linear response of the strong

junction. The solution to the forced Du�ng oscillator equation

θ̈s = −ω2
s

(
θs −

θ3
s

6

)
− γθ̇s + 2Ȧ(t)︸ ︷︷ ︸

F (t)

+ξs (2.42)

is developed in Appendix B, see also Ref.[69].

Taking into account the nonlinearity, in the form of the cubic term, the amplitude

of θs can bifurcate, meaning for a certain given frequency ωb it has a high and low

amplitude solution. This is a direct result from the Cardano method which includes

three cube roots. Depending on the parameters more of these roots become real

and thus physical solutions, see also Appendix B. The analytic expression for the

solutions of (2.42) are lengthy and not of practical use for further calculations as

feedback for the weak junction. However, the Du�ng response is shown numerically

and implicitly analytically in �gure (2.3). Details for the analytical computation of

the second moment 〈θs
2〉 are presented in the following sections.

2.2.4 Overdamped regime and Fokker-Planck equation

In a �rst approach the di�erential equation for the weak junction (2.40) is solved in

the overdamped limit γ � ωw, Jw. Hence the dynamics of the θ̈w term is neglected

and the according �rst order equation is

θ̇w = −ω
2
w

γ
sin(θw) +

G(t)

γ
+
ξw

γ
. (2.43)

7For this paper the bulk simulation was performed by Robert Höppner and single junction
simulation was done by Beilei Zhu.I only contributed to the analytical part.
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Figure 2.3: Time averaged variances of the strong junction computed numerically
(blue), analytically with the linear oscillator model (red) and with the Du�ng oscil-
lator model (black). The Du�ng model also features the skewness of the variance
peak arising from the non-linearity in the eom (2.42). The parameters in the nu-
merics given temperature units K are Js = 50, Jw = 0.5, A0 = 0.06, Ec = 5000, T =
0.5, γ = 50. The numerical data for this plot was provided by Beilei Zhu.

The goal is to determine the non-equilibrium distribution Pdr[θw, t] for the driven

system at a �nite temperature which allows to compute variances and phase �uc-

tuations. To this end, the Smoluchowski equation is derived from the overdamped

Langevin equation (2.43), which is the overdamped special case for the Fokker-

Planck equation. This can be done without the explicit knowledge of the underlying

probability density or microscopic mechanism. Only the macroscopic equation of

motion (2.43) and the knowledge on the thermal equilibrium state for the undriven

system are required to construct the equation of motion for the probability density

[70].

The Fokker-Planck equation takes into account the �rst two terms of the Kramers-

Moyal expansion and has the following generic structure

∂tP [θ, t] = − ∂

∂θ
(A[θ, t]P ) +

1

2

∂2

∂2
θ

(B[θ, t]P ) . (2.44)

The coe�cient A[θ, t] is derived from the macroscopic equation of motion θ̇w = · · · .
For the Smoluchowski equation, in the overdamped case, this eom is often approxi-

mated by the macroscopic force term acting on the system, renormalized by the mass

of the particle m and the damping γ, e.g A[x, t] = F [x, t]/(mγ). The Smoluchowski

equation for the overdamped and externally driven Josephson Junction (2.43) is

∂tP [θw, t] =
2EcJw

γ

∂

∂θw

(sin θw P [θw, t]) +
G(t)

γ

∂

∂θw

P [θw, t] +
2EckBT

γ

∂2

∂θw
2P [θw, t].

(2.45)
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The expression 2EcJw = ωw
2 is associated to the weak plasmon fequency in a bi-

layered system. The analog inverse mass term for the Josephson junction is Ec.

P [θw, t] is de�ned as the time-dependent probability distribution of θw on the inter-

val (−π, π]. Without external driving G(t) = 0 the thermal equilibrium solution of

the Fokker-Planck equation (2.45) is

Peq = Ne

[
Jw
kBT

cos θw
]
. (2.46)

N is the standard normalization. For G(t) 6= 0 the following exponential ansatz for

the non-equilibrium distribution 8 is proposed

P [θw, t] = N exp(f [θw, t]) (2.47)

with f being the formal solution to the driven Josephson junction problem at �nite

temperature. By inserting the ansatz eq. (2.47) into eq. (2.45) one obtains the

following di�erential equation for f

∂tf =
2Ec

γ

(
T
[
∂θwθwf + (∂θwf)2]+ Jw [cos θw + sin θw∂θwf ]

)
+
G(t)

γ
∂θwf. (2.48)

From (2.48) one deduces that f has to be periodic in θw and its according Fourier

expansion is f =
∑

n exp[inθw]an(t). Principally this Fourier ansatz contains all

higher harmonics. However, for practical purpose the expansion is limited to the

�rst harmonics n = ±1. This is a valid approximation in the weak driving |F | ≤ γJw

and in the high temperature regime T � Jw. Correspondingly, the real ansatz is

f [θw, t] =
Jw

T
[(1 + ac(t)) cos θw + as(t) sin θw] . (2.49)

This "base set" covers the �rst harmonics, explicitly ignoring the higher harmonic

contributions arising from the particular terms ∝ (∂θwf)2 and ∝ sin θw∂θwf . By

construction, the time-dependent dimensionless Fourier coe�cients ac, as take into

account the nonequilibrium admixture. Applying the ansatz (2.49) to eq.(2.48), a

subsequent projection onto cos θw and sin θw yields the equations of motion for the

Fourier coe�cients ac(t) and as(t)in the form

ȧs(t) = −2EcT

γ
as(t)−

G0 sinωmt

γ
(2.50)

ȧc(t) = −2EcT

γ
ac(t) +

G0 sinωmt

γ
as(t), (2.51)

8The ansatz was proposed by my former supervisor Prof. Ludwig Mathey [25].
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after a linearization of the equations assuming ac, as � 1 and keeping terms up to

the order G2
0. Setting the equilibrium initial condition ac[0] = as[0] = 0 the solutions

to (2.50) and (2.51) are

as(t) = C1 exp(−t/tr)− C1 cosωmt+ C2 sinωmt (2.52)

ac(t) = exp(−t/tr) (C3 + C4 cosωmt)−
C4

2
+ C5 cos 2ωmt+ C6 sin 2ωmt, (2.53)

with the coe�cients

C1 = − G0γωm

γ2ωm
2 + 4E2

cT
2

(2.54)

C2 = − G02EcT

γ2ωm
2 + 4E2

cT
2

(2.55)

C3 = − G2
0(γ2ωm

2 + 4E2
cT

2)

4
(
(γ2ωm

2 + 2E2
cT

2)2 + γ2ωm
2E2

cT
2
) (2.56)

C4 =
G2

0(γ2ωm
2 + E2

cT
2)

(γ2ωm
2 + 2E2

cT
2)2 + γ2ωm

2E2
cT

2
(2.57)

C5 =
G2

0(−γ2ωm
2 + 2E2

cT
2)

4
(
(γ2ωm

2 + 2E2
cT

2)2 + γ2ωm
2E2

cT
2
) (2.58)

C6 =
G2

0(3EcγωmT )

4
(
(γ2ωm

2 + 2E2
cT

2)2 + γ2ωm
2E2

cT
2
) . (2.59)

A transient time scale ttr = γ/(2TEc) was introduced in (2.53). The driving ampli-

tude F0 should be always compared to either the scale of TEc or γωm to quantify

the magnitude of the nonequilibrium Fourier coe�cients ac, as. By means of these

coe�cients one constructs the nonequilibrium distribution for the driven system in

the form

Pdr[θw, t] = N(t) exp

(
Jw

T
[(1 + ac(t)) cos θw + as(t) sin θw]

)
. (2.60)

The probability density must be normalized to 1 at every time t, therefore the nor-

malization constant is explicitly time-dependent. This subsection provided the idea

of an exponential ansatz to solve the Smoluchowski equation, which will be further

extended and formalized in the next chapters. In the following a �rst application of

the exponential solution is presented, namely the analytical access to nonequilibrium

variance.
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2.2.4.1 Variance of the currents across the weak and the strong Joseph-

son Junctions

The Josephson current is de�ned as js,w = Js,w sin θs,w. Accordingly, the variance of

the current for a thermal ensemble of a single Josephson junction is

Vs,w,eq = 〈sin2 θs,w〉eq − 〈sin θs,w〉2eq (2.61)

=

∫ π

−π
dθs,w sin2 θs,wPeq[θs,w]−

���
���

���
���

���
�:0 in eq.(∫ π

−π
dθs,w sin θs,wPeq[θs,w]

)2

(2.62)

=
T

Js,w

I1[Js,w/T ]

I0[Js,w/T ]
. (2.63)

Here, In[x] is the modi�ed Bessel function of nth order. The equilibrium (eq.) expec-

tation value of the current 〈sin θs,w〉eq vanishes, because the second integral in (2.62)

yields an even function in θs,w which is zero in the boundaries from (−π, π). The

equilibrium distribution Peq is symmetric in θs,w and the current ∼ sin θs,w is an un-

even function. The result for the variance (2.63) is the analog to the equipartition

theorem for the non-linear cos potential. The expectation values were computed

with respect to the equilibrium probability distribution

Peq = N exp [(Js,w/T ) cos θs,w] . (2.64)

The normalization constant N is de�ned as

N−1 =

∫ π

−π
dθs,w exp [(Js,w/T ) cos θs,w] (2.65)

= 2πI0[Js,w/T ], (2.66)

to normalize the probability distribution to 1. In the high temperature limit T � J

the analytical exact result (2.63) is approximated by

Vs,w,eq ≈
1

2
−

J2
s,w

16T 2
+

J4
s,w

96T 4
. (2.67)

The in�nite temperature limit for the expectation value of the bounded function

sin θ2
s,w is consistently 1/2. This result applies for both, the decoupled undriven

weak and strong junction.

For the driven system, the variance of the weak junction is obtained analogously

Vw,dr = 〈sin2 θw〉dr − 〈sin θw〉2dr, (2.68)
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by using the constructed non-equilibrium probability distribution (2.60) for the weak

junction. Again, within the high-temperature expansion and in leading order of the

coe�cients ac, as the time-dependent variance follows as

Vw,dr(t) ≈
1

2
− J2

w

16T

(
1 + 2ac(t) + 3a2

s (t)
)
. (2.69)

The contribution of the coe�cients is proportional to G2
0, as as scales with G0 and

ac with G2
0 (2.54)-(2.59). The exponential ansatz covers the transient behavior [25].

After averaging the coe�cients over time, e.g. over a driving period Tm = 2π/ωm in

the steady state, the e�ective variance of the current is

V w,dr = 〈sin2 θw〉dr(t)− 〈sin θw〉dr(t)
2

(2.70)

≈ 1

2
− J2

w

16T 2

(
1− F 2

0

γ2ωm
2 + 4T 2E2

c

)
. (2.71)

This is consistent with the full numeric results reported in Ref. [25]. The presence

of the driving leads to a suppression of the �uctuations in the Josephson current

J ∼ Jw sin θw.

2.2.5 Generalization to Kramers equation (KE)

The Smoluchowski equation is a valid equation of motion for an ensemble of over-

damped driven Josephson junctions, provided the Josephson potential Jw sin θw is

practically constant over the distance in which the conjugate variable nw is damped

out, namely when γ � Jw, ωw. This leads to a single equation of motion for θw,

required to construct the usual Smoluchowski equation.

If the overdamped condition γ � Jw, ωw does not hold, one has to construct a

joint probability distribution for P [θw, nw, t]. For further convenience, the index w

is dropped, since only the weak junction is considered in the following.

The corresponding equation of motion for P [θ, n, t] is a bivariate FP equation. It

was derived and used by Kramers [71] to describe reaction kinetics [71], as it de-

scribes the Brownian motion in a potential. The so called Kramers equation (KE)

is also used in other �elds for example for relaxation of dipoles or also for Josephson

tunneling [72]

∂

∂t
P (θ, n, t) = LK P (θ, n, t) = (2.72)

− ∂

∂θ
(Ecn− A(t))︸ ︷︷ ︸

θ̇

P +
∂

∂n
(J sin θ + γn)︸ ︷︷ ︸

−ṅ

P +
γT

Ec

∂2

∂n2
P. (2.73)
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The solution of the Kramers equation (2.73) is not constrained in γ and is allowed

to explore the entire phase space during the time evolution.

The Smoluchowski equation, the Fokker-Planck equation in the overdamped limit,

has been solved via an exponential ansatz P = exp[f(θ, t)] and perturbation theory

in the coe�cients for f . However, an ansatz for the bivariate equation

f(θ, n, t) =
J

T
((1 + ac1,n0(t)) cos θ + as1,n0(t) sin θ + as1,n1(t) sin θ n+ ac1,n1(t)) cos θ n)

+
Ec

2T
(1 + an2(t))n2 (2.74)

leads to equations for the coe�cients ac1,n0(t), . . . which can not be linearized mean-

ingfully and solved analytically. Furthermore, it is not clear a priori that the

nonequilibrium bivariate distribution is of exponential form. In principal the proba-

bility distribution can assume any random shape set by the initial conditions, acting

forces and couplings. Though by performing cumulant expansion for example, one

assumes an exponential shape.

Therefore, a universal strategy to obtain a nonequilibrium probability distribution

Pdr[θ, n, t] is developed in Chapters 3 and 4. Chapter 3 recaps the basics of the

underlying Floquet theory and the Magnus expansion. Chapter 4 demonstrates

how to derive e�ective Floquet Hamiltonians via the alternative Magnus expansion

approach.
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Chapter 3

Fundamentals of driven systems

3.1 Time-dependent driving

A common feature of pump-probe experiments is the high-frequency external driv-

ing to control the low-frequency behavior. Therefore, the high-frequency regime was

studied and a low-energy e�ective theory was established. This allows to construct

time-independent e�ective Hamiltonians. By means of these static Hamiltonians one

is able to estimate and analytically compute observables such as �uctuations, vari-

ances and currents away from equilibrium. This low-energy e�ective theory misses

to describe some resonances, which one usually can capture in the extended Floquet

space picture. However, within the framework of this thesis, the focus was to de-

velop a theory for the low-frequency dynamics away from the resonances.

In Section 3.2 of this chapter, essential parts of the Floquet theory are reviewed

and the concept of the stroboscopic Floquet Hamiltonian is introduced. Afterwards,

the high-frequency regime is discussed to make a connection between the strobo-

scopic and the e�ective Floquet Hamiltonian. Subsequently, a Magnus scheme is

developped to perturbatively approximate an e�ective Floquet Hamiltonian in the

high-frequency limit. The limitations and the validity of this low-energy e�ective

Hamiltonian approach is discussed, such as the convergence properties of the Mag-

nus series or su�cient conditions for the average Hamiltonian theory. Furthermore,

the advantages and disadvantages of having a time-independent Hamiltonian within

the exponential perturbation theory will be outlined.
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3.2 Floquet theory and Magnus expansion

Periodically driven systems occur in various experimental setups. Typical situations

aim to probe processes which involve mechanical shaking or deformation or the appli-

cation of a periodic probing current or the irradiation of material by electromagnetic

waves. Even a priori non-driven systems can become periodically time-dependent by

transforming them for example into the interaction picture [73] or into the rotating

frame, which is a common technique in laser physics.

In the simplest system case, one considers systems subject to a monochromatic pe-

riodic driving with a dimensionless coupling strength A and a driving frequency ωm.

The dynamics of periodically driven systems can be highly complex. Usually the

analysis is restrained to the two extreme regimes of slow and fast driving. In the

�rst regime, the system practically adiabatically follows the instantaneous Hamil-

tonian H(t) at any time t. Hence, the system adapts su�ciently fast to changes

of the time-dependent Hamiltonian. This adiabatic regime is set by the condition

ωm � ω0, where ω0 represents the natural frequency scale of the nondriven system.

In the fast driving regime ωm � ω0, the driving does not couple resonantly to slow

degrees of freedom in the system. Rather it can renormalize or "dress" the low-

energy Hamiltonian with an e�ective static potential, which depends on the driving

amplitude and the driving frequency. The well-known Kapitza pendulum [74, 75] is

such an example. This is a classical pendulum whose pivot is vibrating fastly. For

certain parameters the rather counter-intuitive unstable inverted pendulum position

can be dynamically stabilized. The e�ect of dynamical stabilization is also used in

Paul traps [76] where ions are localized in �eld minima produced by time-dependent

electromagnetic �elds. Further examples are the reduced ionization rates in atomic

systems irradiated by high-frequency and high-intensity electromagnetic �elds [77].

By increasing the �eld strength the ionization rate is also increased up to a critical

radiation �eld intensity Acrit. Beyond Acrit the ionization rate drops due to an ef-

fective deformation of the atomic binding potential for the electrons.

In the following, e�ective Floquet Hamiltonians in the high-frequency limit are de-

rived by means of the Magnus expansion. To this end, it is mandatory to recap the

essentials of the Floquet theory and the related Floquet Hamiltonian. Introducing

exponential perturbation theory, one can identify and extract Floquet Hamiltonians.

By comparing the exponential perturbative solution to the exponential of the time

evolution operator or the thermal density matrix ∼ exp [−βH], where β = 1/(kBT ),

it is possible to deduce e�ective Hamiltonians.
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3.2.1 Floquet Hamiltonian

This section introduces the basic concepts of Floquet theory and the stroboscopic

time evolution of periodically driven systems. The starting point is the Schrödinger

equation for the unitary time evolution operator U(t, t0), although the concepts

presented here can as well be applied to classical systems. In general, the Floquet

theory is applicable to a system of linear di�erential equations with periodic coef-

�cients ẋ = A(t)x, where the periodic coe�cient matrix is A(t) = A(t + T ) and T

denotes the driving period of the system.

For a given periodic Hamiltonian H(t + T ) = H(t), one deals with the following

non-autonomous linear di�erential equation

i~
∂U(t, t0)

∂t
= H(t)U(t, t0), (3.1)

where the initial condition is U(t0, t0) = I with the identity operator I. ~ is the

Planck constant, which is set to ~ = 1 or will given explicitly when needed.

The periodic driving has consequences for the solution of the time evolution operator

(3.1). U(t, t0) is invariant under discrete translations in time (t1, t2)→ (t1 +nT, t2 +

nT ) for integer n. Combined with the factorization group property of the time

evolution operator

U(t2, t1) = U(t2, t)U(t, t1), (3.2)

for arbitrary t, one deduces for the periodic case with a �xed time intervall (t0, t0 +

2T )

U(t0 + 2T, t0) = U(t0 + 2T, t0 + T )U(t0 + T, t0). (3.3)

This can be generalized to

U(t0 + nT, t0) = U(t0 + T, t0)n. (3.4)

The one-cycle evolution operator can be de�ned with the time-independent strobo-

scopic Floquet Hamiltonian HsF
1

U(t0 + T, t0) = exp (−iHsF[t0]T ) . (3.5)

In this de�nition, the stroboscopic Floquet Hamiltonian HsF depends on the choice

of the initial reference time t0 de�ning the stroboscopic periodic driving. Following

1The required unitary gauge transformation and the detailed construction can be found in e.g.
Refs. [15],[78],[79]
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Figure 3.1: Time evolution of a system from time t1 to time t2. The stroboscopic
time window starts at a time t0, which can be chosen anywhere in the �rst period
[t1, t1+T ). This gauge choice t0 generally a�ects the form of the stroboscopic Floquet
Hamiltonian HsF[t0]. Figure taken from Ref. [14].

Bukov et al. [14] it is also called a Floquet gauge. The parametric gauge dependence

is indicated by [t0]. The actual time-dependence is distinguished by (t). As long

as there are no experimental restrictions, such as driving protocols with random

intial conditions or a �xed trigger point for the measurement, one often chooses

a Floquet gauge such that HsF gets the most convenient form. For example, by

�xing t0 one eliminates the relative initial phase of the periodic driving ϕ0, e.g.,

cos[ωm(t − t0) + ϕ0] → cosωmt. Or one simply chooses t0 = 0 for a symmetric

driving f(t) = cosωmt.

In the derviation of the Floquet Hamiltonians, the ambiguity of having a whole set

of equivalent HsF[t0] was extensively discussed [15, 79, 14] and solved by the intro-

duction of an e�ective Hamiltonian Heff . There is a similar idea in the concept of

the average Hamiltonian theory (AHT). In the �eld multi-pulse nuclear magnetic

resonance (NMR) spectroscopy damping factors and perturbation series contribu-

tions are dependent on t0, leading to an incorrect theoretical treatment [80]. By

�xing t0, one chooses a representation or rather a coordinate system in which one

performs the average Hamiltonian (AH) calculation. However, it is shown that the

di�erent AHs are equivalent to a t0-independent Hamiltonian and to each other.

A priori this choice is arbitrary, but there are formulations such that the family of

Floquet Hamiltonians HsF[t0] become independent from the initial time t0. This will

be further explained in a subsequent section [15, 14, 81].

For exactly one cycle T , the time evolution of the system can be described by a

constant operator HsF[t0] 2. For times t = nT with n integer, the stroboscopic time

2The precise requirement is that HF must be a local physical Hamiltonian. For macroscopic
systems there is no guarantee that this is the case. In some generic interacting systems, local HF

might even not exist [82].
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evolution according to Eq. (3.4) is

U(t0 + nT, t0) = exp (−iHsF[t0]nT ) . (3.6)

The stroboscopic time evolution might be deceptive, since there is always a trade-

o� between the simplicity of the stroboscopic Floquet Hamiltonian and the loss of

information on the dynamics within one period t < T or for t 6= nT . However,

precisely the information obtained or exchanged during the cycle leads to additional

e�ects, such as line broadening in NMR spectra [83]. For t < T or t 6= nT , the

concept of the stroboscopic Floquet Hamiltonian can be generalized. It includes the

introduction of the stroboscopic kick operators Ks [79], which propagate from the

initial time t1 ∈ [−T, 0] to the reference time of the periodic evolution t0 and after

the last full period to the �nal time t2 ∈ [0, T ],

U(t2, t1) = e−iKs[t0](t2)e−iHsF[t0](t1−t2)eiKs[t0](t1). (3.7)

Ks[t0](t) is a function of t and parametrically dependent on t0.

The stroboscopic kick operators take into account the deviations on time scales

t < T , the dynamics of the fast varying contributions or the so called micromotion.

They allow to describe the time evolution (3.1) with a time-independent Floquet

Hamiltonian HsF. The respective operators Ks, HsF are dependent on the Floquet

gauge, which �xes the reference point t0 of the stroboscopic evolution in between

the times t1 and t2, see Figure 3.1. A brief discussion and the implicit de�nition of

the kick operator is given in the Appendix C. Setting the initial time t1 to coincide

with Floquet gauge t0 one gets the common Floquet form of the propagator

U(t, t0) = e−iKs[t0](t)e−iHsF[t0](t0−t) (3.8)

= P (t, t0)e−iHsF[t0](t0−t). (3.9)

The micromotion operator is de�ned by

P (t, t0) = U(t, t0)eiHsF[t0](t0−t), (3.10)

which links the P -operator to the Floquet Hamiltonian. By de�nition, the P oper-

ator is also periodic in time.

Fixing the Floquet gauge t0 means that the stroboscopic Floquet HamiltonianHsF[t0]

is ultimately linked to the initial time of the experiment or measurement. Strongly

�uctuating and not well controllable starting or measurement times cause the Flo-

quet Hamiltonian to change accordingly. In particular involving fastly driven ex-

periments are prone to this e�ect. However, in numerical simulations one has full
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control over initial conditions and time intervals.

For a quantum particle in a periodic lattice the Bloch theorem [84] yields the for-

mally analog result to (3.9), but in space. In the lattice case, one rewrites the

eigenfunctions as ϕ(x) =
∑

k uk(x)eikx with periodic Bloch functions uk(x) and an

exponential whose "Floquet exponents" are the eigenvalues of the lattice Hamilto-

nian.

There is a family of equivalent operators for P and HF, which depends on the gauge

choice t0. By means of the Hermitean kick operator K one can perform a simi-

larity transformation on HsF. This leads to a �xed Floquet Hamiltonian, which is

independent from t0 [14, 81],

HF = eiK(t0)HsF[t0]e−iK(t0). (3.11)

This transformation shifts the t0-dependence entirely to the kick operators K[t0]

and allows for an unambiguous de�nition of a time-independent HF. For �nite

systems, the existence of such a time-independent frame with a constant HF is

guaranteed by the Floquet-Lyapunov theorem REF[85]. Namely, for a linear system

of ordinary di�erential equations with periodic coe�cients, there exists a linear

periodic transformation of coordinates, which turns this system into a system with

constant coe�cients. This transformation is in general di�cult to �nd.

Therefore, a workaround is developed to obtain the Floquet Hamiltonian. In the

high frequency limit, the stroboscopic Floquet Hamiltonian HsF is often given by

the time-averaged Hamiltonian

Hav =
1

T

∫ T

0

H(t)dt. (3.12)

However, there are important exceptions when HF is not simply given by Hav (3.12),

even in the in�nite frequency limit T → 0 3. These particular situations often give

rise to remarkable behavior such as dynamical stabilization referring to the classcial

Kapitza pendulum with a fastly varying pivot and a stable solution in the upward

position [86]. The presence and the additional information on the micromotion part

within one period are often a key to obtain nontrivial stroboscopic Floquet Hamilto-

nians [83]. Another prerequisite for nontrivial dynamics is that for t1 6= t2 the Hamil-

tonian should not commute with itself [H(t1), H(t2)] 6= 0. Even for
∫
Hdr(t)dt = 0

there can still be contributions to the stroboscopic Floquet Hamiltonian from Hdr(t)

in higher orders of the approximation schemes, e.g.,Hdr(t)
2.

The naive statement to say the shorter the driving period T = 2π/ωm, the better the

3This happens, for example, if the driving term scales with ωm ∼ 1/T . More details are given
in Ref. [14]
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Figure 3.2: This scheme illustrates the hierarchy of frequencies. Usually one takes
a frequency cut-o� ωc which is way above the low-energy dynamics one wants to
describe. The shaded area is averaged out information on the high-energy scale of
the system which may resulted into a low-energy e�ective contribution.

stroboscopic Floquet Hamiltonian approximates the complete time-evolution oper-

ator U(t, t0) is strictly not correct.

In practice, one introduces a frequency cut-o� ω0 < ωc ≤ ωm to exclude or include

certain energy regimes, see Fig. 3.2. This, in turn, implies a hierarchy of the Flo-

quet Hamiltonian in the high frequency limit with corrections of the order 1/ωc [87].

The focus of this thesis is compute the corrections in terms of 1/ωc and the driving

amplitude A for a systematic construction of low-energy e�ective Hamiltonians.
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3.2.2 High frequency expansion and Magnus series

Generally it is not possible to determine HsF in a closed form, so one has to rely

on approximation schemes [83, 88, 89, 90, 91, 92, 93, 94, 79]. An e�cient tool

to compute the Floquet Hamiltonian in the high frequency limit is the Magnus

expansion (ME) [88]. It is a perturbative scheme in the driving period T , which can

be interpreted as an inverse frequency expansion via T = 2π/ω. Hence, the series is

especially suitable in the short-time limit T = t− t0 � 2π/ω0 or for high frequencies

with ω � ω0, where ω0 is the natural characteristic frequency scale of the undriven

system.

To derive the Magnus scheme, one starts again with the Schrödinger equation

i~
∂U(t, t0)

∂t
= λH(t)U(t, t0). (3.13)

The initial condition is U(t0, t0) = I and H(t) is an arbitrary time-dependent Hamil-

tonian. λ is a dimensionless bookkeeping parameter, which can be taken as λ = 1

in the end. Without loss of generality, one sets t0 = 0 in the following.

Integrating the above equation (3.13) and applying it iteratively, one obtains the

formal solution

U(t, 0) = 1− iλ

~

∫ t

0

dt1H(t1)U(t1, 0) (3.14)

...

= 1− iλ

~

∫ t

0

H(t1) +

(
−iλ

~

)2 ∫ t

0

dt1

∫ t1

0

dt2H(t1)H(t2) + · · · (3.15)

+

(
−iλ

~

)n ∫ t

0

dt1 · · ·
∫ tn−1

0

dtnH(t1) · · ·H(tn), (3.16)

where the times are ordered according to t ≥ t1 ≥ · · · ≥ tn. The so called Dyson

series iteratively represents the full unitary solution. This scheme is equivalent to

the time-dependent perturbation theory (TDPT).

The whole series encompasses an unitary operator, however in practice one trun-

cates the series at a certain order of λ and the result is no longer unitary [95] [96].

Similiarly, the Taylor series of the periodic sin function ceases to be periodic when

truncated. The non-unitary character might be a problem, especially for quasi-

stationary states.

The formal solution to (3.13) can be trivially written as

U(t, 0) = exp

[
−iλ

~

∫ t

0

dsH(s)

]
. (3.17)
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However, this is invalid for a time-dependent Hamiltonian, where a priori the com-

mutator at di�erent times t, t′ may not vanish [H(t), H(t′)] 6= 0. Indeed, interesting

dynamics and physics in driven systemes originate from the non-vanishing commu-

tator [H(t), H(t′)]. The commutator of two elements A,B of an associative algebra

is de�ned as [A,B] = AB −BA.
Introducing the time-ordering operator

T (A(t1)B(t2)) =

{
A(t1)B(t2), if t1 > t2

B(t2)A(t1), if t2 > t1
, (3.18)

the symbolic representation of the in�nite series (3.16) is written as

U(t, 0) = T
(

exp

[
−iλ

~

∫ t

0

dsH(s)

])
. (3.19)

It is unknown, whether equation (3.16) amounts to an exponential representation

for the operator U(t, 0). The same applies to (3.19). However, it is a formal solution

of the Schrödinger equation with a time-dependent Hamiltonian.

The conventional series expansion of the exponential in (3.17) includes the nth power

of the single integral, but from (3.16) one gets some multiple nested integrals.

The Magnus expansion (ME) [88] approximates an exponential solution to (3.13),

see also Ref. [87] for a clear recent review. Hence, one writes the propagator as

U(t, t0) = exp Ω(t, t0) = I +
∞∑
n=1

1

n!
Ωn (3.20)

with the intial condition Ω(t0, t0) = 0. The Magnus expansion is referred to as

exponential perturbation theory (EPT). By changing the unknown from U to Ω,

one actually looks for the logarithm of the time evolution operator.

Since U has to ful�ll the Schrödinger equation (3.13), Ω is constraint to solve an

associated equation.

Following the reasoning of the insightful papers [97, 78], one needs two important

features to derive the equation for Ω. The �rst feature is the group property: The

time-evolution operator ful�lls

U(t2, t0) = U(t2, t1)U(t1, t0). (3.21)

The second one is a lemma from the famous Baker-Campbell-Hausdor� (BCH) for-

mula, sometimes known as the Zassenhaus formula, which helps to express the prod-

uct of two operator valued exponentials. For any two non-commuting operators X
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and Y , the product is

expX expY = exp

(
X + Y +

1

2
[X, Y ] +

1

12
[X, [X, Y ]] +

1

12
[Y, [Y,X]] + · · ·

)
.

(3.22)

The exponent on the right-hand side is an in�nite series and the terms are nested

commutators of increasing order. The explicit form of the series is not known,

although there exist algorithms to compute it to �nite order [98]. The number of

terms in the orderm grows as O (2m/m). Despite the complexity, a compact formula

gives one part of the BCH series to all orders in one of the two involved operators

[99]. The complete expansion in Y yields

expX expY = exp

X + Y +
∞∑
k=1

(−1)k
Bk

k!
[Y, [· · · [Y︸ ︷︷ ︸
k−times

, X]] +O(X2)

 . (3.23)

Here, Bk are the Bernoulli numbers.

Considering the in�nitesimal interval δt, the time evolution operator is decomposed

into a short term evolution U(t+ δt, t) and the standard evolution U(t, t0), i.e.,

U(t+ δt, t0) = U(t+ δt, t)U(t, t0) (3.24)
(3.20)⇔ exp[Ω(t+ δt, t0)] = exp[Ω(t+ δt, t)] exp[Ω(t, t0)]. (3.25)

Here, the time evolution operator was replaced by an exponential solution (3.20).

During the short time intervall (t, t + δt) the Hamiltonian takes a constant value

H(t). Hence, the Schrödinger equation for the short term evolution U(t + δt, t)

frozen at time t yields

U(t+ δt, t)− U(t, t)︸ ︷︷ ︸
1

≈ −iλ
~
H(t)δt U(t, t)︸ ︷︷ ︸

1

. (3.26)

Substituting U(t+ δt, t) = 1 +
∑∞

n=1
1
n!

Ωn(t+ δt, t), the �rst order in Ω and δt is

Ω(t+ δt, t) ≈ −iλ
~
H(t)δt (3.27)

⇔ exp[Ω(t+ δt, t)] = exp

(
−iλ

~
H(t)δt

)
(3.28)

⇔ U(t+ δt, t) = exp

(
−iλ

~
H(t)δt

)
, (3.29)
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which leads to

exp[Ω(t+ δt, t0)] ≈ exp

(
−iλ

~
H(t)δt

)
exp(Ω(t, t0)). (3.30)

Unifying the exponents in (3.30) via formula (3.23) one keeps track of the �rst order

in δt

Ω(t+ δt, t0) = Ω(t, t0)

− iλ

~
δt

H(t) +
∞∑
k=1

(−1)k
Bk

k!
[Ω(t, t0), [· · · [Ω(t, t0)︸ ︷︷ ︸

k−times

, H]]

+O(δt2).

(3.31)

Dividing by δt, substracting Ω(t, t0) and taking the limit δt → 0 yields the exact

result

∂Ω(t, t0)

∂t
= −iλ

~
H − iλ

~

∞∑
k=1

(−1)k
Bk

k!
[Ω(t, t0), [· · · [Ω(t, t0)︸ ︷︷ ︸

k−times

, H]]. (3.32)

The convenience of the time-evolution operator in the exponential representation

is revealed after an expansion of Ω in terms of the parameter λ. Substituting the

Magnus series

Ω =
∞∑
k=1

λkΩk (3.33)

into equation (3.32), one sorts the terms according to their order in λ and derives an

in�nite set of trivally integrable equations for each Ωk. There is a recursive hierarchy

in the equations. To get the equation for Ωn, the previous order Ωn−1 is required.

Hence there are n − 1 equations to solve up to Ω1. The literature provides various

recursive algorithms to obtain the Magnus terms [100], [101],[102]. For the purpose

of this thesis, it su�ces to explicitly give the �rst four Magnus terms. After some

tedious algebra and accounting for the nested commutators in equation (3.32) one
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gets

Ω1 =
1

i~

∫ t

t0

dt1H(t1) (3.34)

Ω2 =
1

2(i~)2

∫ t

t0

dt1

∫ t1

t0

dt2[H(t1), H(t2)] (3.35)

Ω3 =
1

6(i~)3

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3

([H(t1), [H(t2), H(t3)]] + [H(t3), [H(t2), H(t1)]]) (3.36)

Ω4 =
1

12(i~)4

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt4

([H(t1), [H(t2), [H(t3), H(t4)]]] + [H(t2), [H(t3), [H(t4), H(t1)]]]

+[H(t1), [H(t4), [H(t3), H(t2)]]] + [H(t4), [H(t3), [H(t1), H(t2)]]]) . (3.37)

These are the commonly derived Magnus terms, which are also found in the literature

such as in Refs. [103, 104, 105].

The series was derived in the short-time limit for the time evolution operator. Each

temporal integral in the equations (3.34) - (3.37) yields one additional order in the

time window T = t − t0 or T = 2π/ω in terms of the inverse frequency. In this

case, the scale is set either by a cut-o� frequency ωc or by a driving frequency ωm.

Accordingly, the Magnus terms Ωk with subscript k are ordered in powers of the

short time window T k or 1/ωk in inverse frequencies.

With these Magnus terms, the solution U(t, t0) to the Schrödinger equation with

the time-dependent Hamiltonian,

i~
∂U(t, t0)

∂t
= H(t)U(t, t0), (3.38)

has a true exponential representation written in the form

U(t, t0) = exp

[
∞∑
k=1

Ωk(t, t0)

]
= T exp

[
− i
~

∫ t

t0

H(t′)dt′
]
. (3.39)

In general, it is not always guaranteed that the ME converges, a brief discussion on

this issue is provided in Section 3.2.4. However, often the �rst few orders provide

useful physical insights, such as the narrowing of absorption lines in nuclear magnetic

resonance spectroscopy [106, 107].

If the system is subject to a periodic driving, one can employ the stroboscopic

Floquet Hamiltonian concept and the ME becomes a versatile tool to approximate

e�ective Floquet Hamiltonians.
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Applying the Floquet theorem to the full time evolution operator (3.9) and �nally

evaluating it within the stroboscopic time window (t0 + T, t0) yields

U(t0 + T, t0) = P (t0 + T, t0)︸ ︷︷ ︸
=1

exp

[
− i
~
HsF(t0 + T − t0)

]
(3.40)

= exp

[
− i
~
HsFT

]
. (3.41)

Additionally, one expands the stroboscopic Floquet Hamiltonian HsF into orders of

the inverse frequency 1/ωk

HsF =
∑
k=0

HsF,k. (3.42)

The Magnus expanded time evolution operator within the stroboscopic time window

U(t0 + T, t0) = exp[Ω(t0 + T, t0)] = exp
[
− i

~HsFT
]
can be compared order by order

with HsF. Dividing the Magnus solution in the exponent (3.39) by the period T , the

contributions to HsF are

HsF,0 =
i~
T

Ω1(t0 + T, t0), (3.43)

HsF,1 =
i~
T

Ω2(t0 + T, t0), (3.44)

HsF,2 =
i~
T

Ω3(t0 + T, t0), (3.45)

HsF,3 =
i~
T

Ω4(t0 + T, t0). (3.46)

A priori, the right-hand sides of (3.43)-(3.46) comprises the information from all

frequency components within the perturbative 1/ω Magnus scheme. In contrast,

the micromotion operator separates the fast-varying degrees of freedom from the

Floquet Hamiltonian.

For a detailed study of this matter, one decomposes the original Hamiltonian H(t)

into its Fourier harmonics with a certain expansion frequency ω, being given by the

driving, the transition or eigenfrequency,i.e

H(t) =
∑
l∈Z

eilωtHl, (3.47)

where the Hl = (1/T )
∫ T

0
H(t)e−ilωtdt are the respective Fourier coe�cients. This

allows to exactly distingiush the low-frequency or constant contributions of the Mag-

nus terms from the stroboscopic Floquet Hamiltonian. Furthermore, the contribu-

tions dependent on the initial time t0 can be identi�ed. After applying the expres-
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sions to the Magnus terms (3.34)-(3.37), the stroboscopic Floquet Hamiltonian has

the following speci�c form

HsF,0 =
1

T

∫ t0+T

t0

dt1H(t1) (3.48)

= H0 (3.49)

HsF,1 =
1

2(i~)T

∫ t0+T

t0

dt1

∫ t1

t0

dt2[H(t1), H(t2)] (3.50)

(3.47)
=

1

2(i~)T

∫ t0+T

t0

dt1

∫ t1

t0

dt2
∑
k,l

eikωt1eilωt2︸ ︷︷ ︸∑
k,l ckl

[Hk, Hl] (3.51)

=
1

~ω

∞∑
l=1

1

l

(
[Hl, H−l] + eilωt0 [H0, Hl]− e−ilωt0 [H0, H−l]

)
, (3.52)

where the spectral factor ckl is de�ned as

ckl =
1

2(i~)T

∫ t0+T

t0

dt1

∫ t1

t0

dt2e
ikωt1eilωt2 . (3.53)

For time periodic problems, these are the analog of the structure factors from con-

densend matter physics in periodic lattices, which again con�rms the strong analogy

between Floquet theory and Bloch theory.

Theoretically, all higher harmonics with label l contribute to the constant strobo-

scopic Floquet Hamiltonian, though their contributions fall o� as ω0/(lω), where ω0

is the natural frequency scale of the Hamiltonian H. This is exactly the common

condition for which the application of the Magnus expansion is useful and where

the characteristic frequency ω of the time-dependent part in the Hamiltonian H(t)

(3.47) should be much larger than the natural frequency scale, ω � ω0.

Equation (3.52) highlights the t0-dependent terms in the �rst order of the strobo-

scopic Floquet Hamiltonian HsF,1[t0]. These gauge-dependent terms lead to am-

biguous expressions for the stroboscopic Floquet Hamiltonians HsF[t0]. However,

by applying a unitary gauge transformation one obtains a genuinely time- and t0-

independent e�ective Floquet Hamiltonian HF [15, 80, 81, 90]. The action of the

unitary transformation to the e�ective Floquet Hamiltonian,

HF = eiK[t0](t)HsF[t0]e−iK[t0](t), (3.54)

is just a rearrangement of the t0-expressions between the kick operator K and the

stroboscopic Floquet Hamiltonian such that the e�ective Floquet Hamiltonian HF

becomes t0 independent.
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Even without the konwoledge of the required unitary transformation into the co-

rotating frame, one can specify the condition for the construction of the e�ective

Floquet Hamiltonian. The contribution of the Fourier decomposition with the spec-

tral factor (3.53) must be a constant expression before performing the outermost

integral over t1. Therefore, the exponents have to cancel each other out which

enforces k + l = 0. Applying this rule to equation (3.51), the e�ective Floquet

Hamiltonian HF is approximated by

HF,1 =
1

~ω
∑
l=1

1

l
[Hl, H−l] . (3.55)

This �rst order expression coincides with the one of Ref. [15]. The next order of the

stroboscopic Floquet Hamiltonian from the Magnus expansion is

HsF,2 =
1

3!(i~)2T

∫ t0+T

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3

([H(t1), [H(t2), H(t3)]] + [H(t3), [H(t2), H(t1)]]) . (3.56)

Explicitly evaluating HsF,2 in the spectral decomposition yields the following com-

binatoric expression

HsF,2 =
1

3!(i~)2T

∫ t0+T

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3
∑
k,l,m

eikωt1eilωt2eimωt3︸ ︷︷ ︸∑
k,l,m c′klm

×

([Hk, [Hl, Hm]] + [Hm, [Hl, Hk]]) , (3.57)

with the second order spectral factor

c′klm =
1

3!(i~)2T

∫ t0+T

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3e
ikωt1eilωt2eimωt3 . (3.58)

Rearranging the Fourier indices for di�erent temporal arguments (3.57), one obtains

an expression with just one nested commutator in the form

HsF,2 =
1

3!(i~)2T

∫ t0+T

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3
∑
k,l,m

[Hk, [Hl, Hm]]×

(
eikωt1eilωt2eimωt3 + eikωt3eilωt2eimωt1

)
. (3.59)
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The rede�ned spectral factor is, accordingly,

cklm =
1

3!(i~)2T

∫ t0+T

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3
(
eikωt1eilωt2eimωt3 + eikωt3eilωt2eimωt1

)
.

(3.60)

It is always more convenient to deal with a more complex scalar factor than to

manipulate and compare the sum over the nested commutators (3.57), especially in

higher orders.

Under the condition k + l + m = 0, one sums up all possible con�gurations, which

of course require di�erent commutators, such as the combinations involving a zero

index

c0,−k,k → [H0, [H−k, Hk]] = [H−k, [H0, Hk]]− [Hk, [H0, H−k]] (3.61)

c−k,0,k → [H−k, [H0, Hk]] (3.62)

c−k,k,0 → [H−k, [Hk, H0]] = −[H−k, [H0, Hk]]. (3.63)

In equation (3.61)-(3.63) the Jacobi identity for the commutator [A, [B,C]]+[B, [C,A]]+

[C, [A,B]] = 0 was applied to obtain the standard order.

Similiarly, the spectral factors with two running indices demand the following com-

mutators

ck−m,−k,m → [Hk−m, [H−k, Hm]] = [H−k, [Hk−m, Hm]]− [Hm, [Hk−m, H−k]] (3.64)

c−k,k−m,m → [H−k, [Hk−m, Hm]] (3.65)

c−k,m,k−m → [H−k, [Hm, Hk−m]] = [H−k, [Hk−m, Hm]]. (3.66)

After some index manipulation and the evaluation of the spectral factors, this totals

up to the e�ective second order Floquet Hamiltonian

HF,2 =
∑
k 6=0

(
[H−k, [H0, Hk]]

(k~ω)2
+
∑
m 6=0,k

[H−k, [Hk−m, Hm]]

k(m− k)(~ω)2

)
. (3.67)

The prefactors of this expression di�er from the ones found in [15, 14], however

structurewise the expressions coincide. The origin of the di�erent numerical pref-

actors are the di�erent approximation schemes to the Floquet Hamiltonian and its

t0-independent terms. From the Floquet perspective, a tripartite ansatz for the
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unitary time evolution operator yields

U(t, t0) = UK(t, t0)e−
i
~HF(t−t0)U †K(t, t0) (3.68)

= eiK(t,t0)e−i
i
~HF(t−t0)e−iK(t,t0), (3.69)

where UK is a transformation into the co-rotating frame with no micromotion present

and the phase evolution is governed by the time-independent Floquet Hamiltonian.

After a perturbative expansion in 1/ω of either UK or K and HF, one �nds di�erent

prefactors than for the standard bipartite Floquet ansatz with the micromotion

operator

U(t, t0) = P (t, t0)e−
i
~HF(t−t0) (3.70)

= (1 + P1 + P2 + . . . )
∑
n

(
(t− t0)

i~

)n
(HF,1 +HF,2 + . . . )n

n!
. (3.71)

The high-frequency Magnus approximation for a short stroboscopic time window is

a single exponential approximation

U(T + t0, t0) = e−i
T
~ (HF,1+HF,2+... ). (3.72)

In contrast to the tripartite ansatz the latter two approaches still carry residual

information from the micromotion operator in form of a t0-dependence. This is-

sue and the order by order terms of the kick operators K and HF are discussed in

[79, 15, 81, 14]. The method of taking the Magnus expansion and sorting out the con-

stant constribution is just a further approach to construct an e�ective Hamiltonian,

without having the admixtures of the t0-dependent terms from the micromotion.

The third order stroboscopic Floquet Hamiltonian in spectral decomposition accord-

ingly follows as

HsF,3 =
∑
klmn

cklmn[Hk, [Hl, [Hm, Hn]]], (3.73)

with the spectral factor

cklmn =
1

12(i~)3

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt4
(
eikωt1+ilωt2+imωt3+inωt4

+eikωt2+ilωt3+imωt4+inωt1 + eikωt1+ilωt4+imωt3+inωt2 + eikωt4+ilωt3+imωt1+inωt2
)
.

(3.74)

The third-order e�ective Floquet Hamiltonian again requires k+l+m+n = 0. It is a

huge computational e�ort to perform the manipulation of the fourfold commutators.
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Hence, one formally notes

HF,3 =
∑

klmn, k+l+m+n=0

cklmn[Hk, [Hl, [Hm, Hn]]], (3.75)

In the present case of a cosine or sine driving, one only deals with the �rst harmonics

(k, l,m, n) = ±1, which is justi�ed since higher harmonics are stronger suppressed

by the factor of the order 1/k3. Of course, for more elaborated driving protocols

one may require higher harmonics or even polychromatic driving, Ref. [108]. Some

fourth order terms will be explicitly computed in Chapter 5 on behalf of some

solvable reference examples.

3.2.3 Generalization to closed and open classical systems

The Magnus expansion is generally suitable to describe the short time dynamics and

provides a solution to linear non-autonomous di�erential equations of the type

∂tP = L(t)P. (3.76)

The method is applicable to isolated and open classical systems, and to closed

quantum systems, which means the approach works for time-dependent Lagrangians

and Hamiltonians as well as for classical master equations like the Fokker-Planck

equation.

The exponential form of the Magnus solution is analogous to either the thermal

distribution ρth ∼ exp[−βH] or time evolution operator U = exp[−iHt], which
enables us to compare the approximated e�ective Hamiltonians with the ones of the

undriven systems. In the classical case, one uses the Poisson brackets {O1, O2} =

∂xO1∂pO2 − ∂pO1∂xO2 instead of the commutator.

3.2.4 Validity and limitations of the low-energy e�ective the-

ory

In general, it is not known whether the ME is asymptotic or has a �nite radius of

convergence [109]. The Floquet-Magnus expansion is guaranteed to converge, if∫ T

0

‖H(t)‖dt ≤ ξF , (3.77)

where ξF is a constant of the order of 1. Many mathematical papers try to re-

�ne the number on the right-hand side [110, 111]. Criteria are often given in the

context of solvable models like the quantum two-level system [112]. The ME is a
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tool to compute the Floquet Hamiltonian in the high-frequency limit, hence the

setting is ωm � ω0, which automatically satis�es (3.77). Physically, the existence

of resonances leads to fast e�cient heating in the system. Thus, one either avoids

heating by coupling to a su�ciently large low-temperature heat bath. Or the sys-

tems are studied far o�-resonance, which implies that the Magnus-Floquet theory

is not suitable to cover the dynamics around resonances 4 [113]. However, for a

low-energy e�ective theory driven at high frequencies ωm � ω0, the method can

be safely used. Even if the perturbative expansion for the e�ective Hamiltonian is

asymptotic, it can be still physically useful. That means the �rst few orders can give

a physical intuition and can be fairly accurate. Generally, for short or �nite times,

the Magnus expansion can be mostly safely used. For long term approximations or

quasi-stationary behavior, one needs to be more cautious with the Magnus results.

Another criterion for the convergence of a solvable system is

ω >
√
ω0

2 + ω2
A (3.78)

where the natural frequency ω0 has been rescaled by a driving term ωA = ω0A with

a dimensionless driving amplitude A [114]. ω represents the cut-o�, the driving fre-

quency or the expansion frequency. Hence, the statement is again, the system has

to be considered o�-resonant.

This chapter introduced the Floquet-Magnus theory. The concept and the usabil-

ity of the Magnus expansion was explained. An alternative approach to derive

gauge-invariant e�ective Floquet Hamiltonians was developped. By introducing the

concept of the spectral factors cijk with certain "Bragg"-conditions one obtains the

respective Magnus contributions for each order without any further required gauge

transformations in a straight forward manner. In the subsequent Chapter 4 the

Magnus expansion is extended to provide a systematical expansion in the ratio of

the driving amplitude A and the driving frequency 1/ωm. Explicit formulas up to

fourth order in A are derived.

4For large times t� T , it was shown that in a spin systems an n-spin resonance energy transfer
heats up the system, though it is not very likely to happen and can be neglected for the short-time
dynamics.
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Chapter 4

Alternative Magnus expansion

In this Chapter, an alternative Magnus formalism for periodically driven systems is

developed such that it provides a systematical expansion in the driving amplitude

A and the inverse of the driving frequency ωm. Motivated by the experiments, the

high-frequency limit ωm � ω0 is studied assuming that the system is tractable and

the corresponding Floquet Hamiltonians do exist. Naturally, in�nite heating of the

driven system is prevented by coupling it to a heat bath which guarantees that the

presumable steady state is reached. As for isolated systems heating in the low-

frequency regime is often reduced if the energy spectra are well separated. In the

present con�guration, the high energy plasmon has a frequency of 10THz and the

low energy ones is about 1THz.

Parts of this derivation have been published in Section 3 of the paper Ref.[16],

though the line of arguing and the range of validity have been reconsidered and

considerably extended. The perturbative parameter always appears in powers of

(ω0/ωm)mA2n, which allows to study fairly large amplitudes in the high frequency

regime ωm � ω0. The example in Ref.[16] studied the parameteric oscillator. For

strong driving, e.g. (ω0/ωm)mA2n > 1, the perturbative treatment becomes invalid

, an e�ective parameteric resonance was observed. Especially the dependence on

the relative initial driving phase φ0 = ωmt0
1 has been rederived and eliminated, see

Sec. 3.2.2, and the prefactors in the higher orders of the Magnus expansion have

been corrected.

4.1 E�ective low-energy theory

The reduction of the full dynamics to an e�ectively static low-frequency description

allows to apply standard techniques, such as dressing of quantum states, which are

1The Magnus expansion creates a dependence on the driving phase, which can lead to arti�cial
symmetry breaking (Floquet gauge)[15] and ambiguous e�ective Hamiltonians.
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usually only available for time-independent systems [78]. Hence, the construction

of such dressed or e�ectively static Hamiltonians facilitates analytical approaches,

as for example a non-autonomous di�erential equation becomes autonomous again.

Furthermore, in the short time limit Tm = 2π/ωm � T0 = 2π/ω0 one can approx-

imate the non-equilibrium distribution by Pdr ∼ exp[−βHeff ], where β = 1/(kBT )

with a given system temperature T . Ideally, this approximation holds in the weak

coupling and weak driving regime with a heat bath.

The equilibrium distribution of a thermally destributed undriven system is Pth ∼
exp[−βH0]. Given a driven Hamiltonian H(t), one cannot directly deduce a time-

independent Hamiltonian or a steady state distribution. One either has to solve

the master equation or determine the Floquet states, or use, as demonstrated in

Section 2.2.4, an elobarated ansatz (2.49). The alternative Magnus formalism pro-

vides e�ectively static solutions in exponential form to linear di�erential equations

like the Schrödinger equation, the Fokker-Planck or Kramers equation without any

computation of Floquet states or the nececssity of an ansatz. It su�ces to know the

equilibrium term L0 and the driven term Ldr(t). The computational e�ort is shifted

to the evaluation of nested commutators and nested time integrals over driving pro-

tocols f(t).

4.2 Systematic expansion in the driving �eld strength

and the inverse driving frequency

4.2.1 Interaction picture and back transformation

The Hamiltonian is decomposed into a free undriven Hamiltonian part H0 and a

perturbed driven part H1 with the dimensionless perturbation parameter A

H(t) = H0 + AH1(t). (4.1)

The structure of the Magnus terms (3.37) with their nested commutators combines

di�erent orders in A in every order of the Magnus expansion. Conceptionally, the

nth order Magnus term contributes to all the other orders up to n in A [115] 2. Hence

it is impossible to get complete systematical access to the individual orders of A.

This problem is avoided by transforming the problem into the interaction picture

2Looking at the series expansion of exp[X+Y ] =
∑∞

k=0
(X+Y )k

k! , one has to expand the product
(X + Y )k into a sum and �nd admixtures of Y in every order of k.
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according to

H0,I(t) = exp[iH0t/~]H0 exp[−iH0t/~] = H0 (4.2)

AH1,I(t) = exp[iH0t/~]AH1(t) exp[−iH0t/~]. (4.3)

The according di�erential equation for the time evolution operator in the interaction

picture is

i~
∂UI
∂t

= AH1,I(t)UI . (4.4)

Applying the Magnus expansion to (4.4), the resulting nested commutators contain

the bare orders of A. Therefore, the order of the Magnus expansion conincides with

order of the driving term A.

Generalizing to linear di�erential operators L(t), one assumes L(t) can be decom-

posed into an undriven part L0 and a time-dependent driven part Ldr(t)

L(t) = L0 + Ldr(t). (4.5)

For the Schrödinger equation the respective operators are L0 = H0/(i~) and Ldr(t) =

AH1(t)/(i~). Analogously, one introduces an auxiliary interaction picture for the

operator L to handle the orders in the driving amplitude, i.e.,

LI(t, s) = exp[−L0s]L(t) exp[L0s], (4.6)

ρI(t, s) = exp[−L0s]ρ(t) exp[L0s], (4.7)

which amounts to the standard interaction picture term for LI(t, t) = LI(t) and

ρI(t, t) = ρI(t). The additionally introduced variable s is useful for the back trans-

formation into the Schrödinger picture, because it allows to distingiush between

temporal arguments arising from the transformation into the interaction picture

and the argument used for the driving term Ldr(t).

The respective equation of motion for an abritrary linear operator L is

∂tρI = Ldr,I(t)ρI , (4.8)

with Ldr,I(t) = exp[−L0t]Ldr(t) exp[L0t]. The formal solution is

ρI(t) = T
(

exp

[∫ t

t0

dsLdr,I(s)

])
ρI(t0). (4.9)

ρI(t0) is the initial state at t0 in the interaction picture, which is set to ρI(t0) =

1. The true exponential representation of equation (4.9) is given by the Magnus
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expansion

ρI(t)
Magnus

= exp[ΩI(t, t0)] = exp

[∑
k

Ωk,I(t, t0)

]
. (4.10)

Analoguosly to the time evolution operator, the Magnus terms
∑

k Ωk,I approximate

the integral of the operator Ldr,I(t) in the exponential ΩI(t, t0) =
∫ t
t0
dt′Ldr,I(t

′).

Hence the derivative is Ω̇I =
∑

k Ω̇k,I = Ldr,I(t).

The �rst-order Magnus term for the solution of (4.8) is

Ω1,I(t, t0) =

∫ t

t0

dt1 exp[−L0t1]Ldr(t1) exp[L0t1] (4.11)

⇒ Ω̇1,I = L1,dr,I(t) (4.12)

= exp[−L0t]Ldr(t) exp[L0t]. (4.13)

The reduction by one time integral to construct the Magnus term for Ldr,I(t) is a

performance boost, especially in the case of the higher Magnus expressions with

their nested temporal integrals.

Ω̇1,I(t) is the �rst Magnus contribution to the operator in the interaction picture

Ldr,I(t). After the time-dependent back transformation into the Schrödinger picture,

one obtains the �rst-order Magnus correction

L1(t) = exp[L0t]Ω̇1,I(t) exp[−L0t] (4.14)

= exp[L0t]L1,dr,I(t) exp[−L0t] (4.15)

= Ldr(t), (4.16)

which is by construction of �rst order in A.

The second-order Magnus term is

L2(t) = exp[L0t]Ω̇2,I(t) exp[−L0t] (4.17)

=
1

2
exp[L0t]

d

dt

(∫ t

t0

dt1

∫ t1

t0

dt2[Ldr,I(t1), Ldr,I(t2)]

)
exp[−L0t] (4.18)

=
1

2
exp[L0t]

∫ t

t0

dt2[Ldr,I(t), Ldr,I(t2)] exp[−L0t] (4.19)

=
1

2

∫ t

t0

dt2[Ldr(t), exp[L0(t− t2)]Ldr(t2) exp[−L0(t− t2)]]. (4.20)

The temporal arguments in (4.20) resemble the de�nition of the transformation of

the 'shifted' interaction picture (4.6).

To evaluate (4.20), another important lemma of the BCH-formula is needed. For
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non-commuting operators X, Y , the following formula holds

esXY e−sX = Y + s[X, Y ] +
s2

2!
[X, [X, Y ]] + · · ·+ sn

n!
[X, [· · · , [X︸ ︷︷ ︸

n−times

, Y ] · · · ]] + · · ·

(4.21)

=
∑
n

sn

n!
adn

XY, (4.22)

with the de�nition of the nth adjoint action of X on Y

adn
XY = [X, [· · · , [X︸ ︷︷ ︸

n−times

,Y] · · · ]]. (4.23)

For the �nal computation of (4.20), one assumes that the original driving term has

the decomposition Ldr(t) = Ldr,0f(t). f(t) is the driving protocol modifying the

driving amplitude in time. Ldr,0 is a time-independent operator representing any

kind of coupling between the system and the driving. Its structure does not change

in time, however, the amplitude is modulated via the scalar function f(t).

A prerequisite for the applicability of the Floquet-Magnus theory to derive stro-

boscopic Floquet Hamiltonians is the periodicity f(t) = f(t + T ). Nonetheless, if

this does not strictly hold, e.g., the driving protocol is not periodic with a Gaussian

envelope, one can still approximate the transient e�ective Hamiltonian. In this case,

one has to be careful with the stroboscopic averaging time window Tc = 2π/ωc. Fur-

thermore, the Floquet gauge t0 and the associated kick operators K become more

relevant. However, this work focuses on a quasi steady-state approximation derived

exclusively for periodic drivings. Hence, there is no need for the kick operators.

Applying (4.22) to (4.20) with s = t− t2, X = L0 and Y = Ldr(t2) = Ldr,0f(t2) one

obtains the following expression for the perturbative expansion in s

L2(t) =
1

2

∫ t

t0

dt2f(t)f(t2) {[Ldr,0, Ldr,0]

+[Ldr,0, [L0, Ldr,0]](t− t2) + [Ldr,0, [L0, [L0, Ldr,0]]]
(t− t2)2

2!
+ · · ·

}
(4.24)

=
1

2

∫ t

t0

dt2f(t)f(t2) {[[L0, Ldr,0], Ldr,0](t2 − t)

−[[L0, [L0, Ldr,0]], Ldr,0]
(t− t2)2

2!
+ · · ·

}
(4.25)
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Introducing the short hand notation for the nth adjoint action

Ldr,0
n = [L0, [. . . , [L0︸ ︷︷ ︸

n−times

, Ldr,0] . . . ]] = adn
L0

Ldr,0, (4.26)

the second order Magnus term (4.25) of Ldr(t) is compactly written as

L2(t) = −1

2

∫ t

t0

dt2f(t)f(t2)
{

[Ldr,0
1, Ldr,0](t− t2)

+[Ldr,0
2, Ldr,0]

(t− t2)2

2!
+ · · ·

}
. (4.27)

In the above Eq. (4.27) the commutators with the same arguments, namely [Ldr,0, Ldr,0]

and [Ldr,0
1, Ldr,0

1], were dropped, because of the 'factorization' assumption Ldr(t) =

Ldr,0f(t) with constant Ldr,0. If the operator Ldr,0 itself changed in time, one would

�nd [Ldr,0(ti), Ldr,0(tj)] 6= 0. It requires some combinatorics to �nd the non-zero

commutators, but the algebraic prefactors of (t− ti)n are straightforward since they

correspond to the adjoint action superscript n. This allows to rewrite Eq. (4.27) as

L2(t) = C10(t)[Ldr,0
1, Ldr,0] + C20(t)[Ldr,0

2, Ldr,0] + C30(t)[Ldr,0
3, Ldr,0], (4.28)

where the time-dependent coe�cients are just read-o� from equation (4.27), i.e.,

C10(t) = −A
2

2

∫ t

t0

dt2f(t)f(t2)(t− t2), (4.29)

C20(t) = −A
2

2

∫ t

t0

dt2f(t)f(t2)
(t− t2)2

2!
, (4.30)

C30(t) = −A
2

2

∫ t

t0

dt2f(t)f(t2)
(t− t2)3

3!
. (4.31)

The �rst entry of the commutator has the temporal argument t which cancels the al-

gebraic prefactor (t− ti)n. Therefore, the mixed terms proportional to [Ldr,0
2, Ldr,0

1]

do not appear here.

4.2.1.1 Third and fourth order Magnus terms

After the perturbative back transformation to the Schödinger picture, the leading

four orders of the Magnus expansion are derived. These are the necessary orders to

construct e�ective Hamiltonians or operators.
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The �rst order Magnus contribution to the operator Ldr(t) was

L1(t) = exp[L0t]Ω̇1,I(t) exp[−L0t] (4.32)

= Ldr,0f(t) (4.33)

= C0(t)Ldr,0. (4.34)

The �rst order correction is proportional to the bare driving term C0(t) = f(t). For

the construction of the time-independent e�ective Hamiltonian, this term will be

considered in a stroboscopic averaged time window (t0, t0 + Tc), with the time de-

�ned via the cut-o� frequency Tc = 2π/ωc. Ultimately, this time window determines

how coarse-grained the frequency resolution is. The higher the considered frequen-

cies the shorter the time window should be. Vice versa if the averaging windows is

larger than the period of the undriven system Tc > T0 the dynamics is no longer

covered accurately. The respective Magnus orders Ωk converge with the order of the

stroboscopic time window T k+n
c , where n is the index of the polynomial contribu-

tions (t− ti)n from the perturbative back transformation.

The stroboscopic evaluation of (4.34) �nally yields the �rst e�ective time-independent

contribution

Leff,1 = [L1(t)]ω<ωc,�t0
=
∑
n

L
(1,n)
eff,1 . (4.35)

The bracket [·]ω<ωc,�t0
indicates the projection onto the non-oscillating and low-

frequency contributions and the expressions being independent of t0. This is demon-

strated along the example of a simple cos-driving. The according �rst order coe�-

cient would be

[cosωmt]ω<ωc,�t0 =
1

Tc

∫ t0+Tc

t0

dt cosωmt (4.36)

= O
(

sin[ωm(Tc + t0)]− sin[ωmt0]

ωmTc

)
(4.37)

= 0. (4.38)

For Tc = Tm = 2π/ωm this is exactly zero. For Tc � Tm the fastly oscillating

integrals in the coe�cients are approximately zero, because the denominator ωmTc

suppresses the contribution. Furthermore, they contain t0 terms.
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In contrast a second order contribution proportional to a cos2 ωmt expression yields

[(cosωmt)
2]ω<ωc,�t0 =

1

Tc

∫ Tc

0

dt cos2 ωmt (4.39)

=
1

Tc

∫ t0+Tc

t0

dt

(
1

2
+

cos 2ωmt

2

)
(4.40)

=
1

2
+O

(
sin[ωm(Tc + t0)]− sin[2ωmt0]

4ωmTc

)
(4.41)

=
1

2
. (4.42)

If there is just one driving term, only the non-oscillating part of f(t) and contri-

butions from the perturbative expansion ∼ (t − ti)n ∼ T nc can appear under these

conditions. It is mandatory for higher orders of the Magnus terms that the contri-

butions from the oscillating terms cancel each other in the exponent to avoid a t0
dependence (4.42). This 'zero phase' condition most likely enforces constant con-

tributions. Other fastly oscillating contributions from the coe�cients are averaged

out.

The analytic evaluation of the projection [·]ω<ωc,�t0
, in particular the ones for higher

orders, is performed via the programm Mathematica, which suppresses all t0 depen-

dent terms. The formally correct way is shown in the previous chapter and makes

use of Fourier components to determine the constant contributions. However, it is

also advantageous to circumvent the Fourier expansion of Ldr(t) und work directly

with the driving protocols which results in a straightforward prescription for the

coe�cients, such as the second order coe�cients in (4.29) - (4.31).

The second order was deduced to be

L2(t) = C10(t)[Ldr,0
1, Ldr,0] + C20(t)[Ldr,0

2, Ldr,0] + C30(t)[Ldr,0
3, Ldr,0] (4.43)

with the coe�cients given in Eqs. (4.29) - (4.31). To approximate the contribution

to the stroboscopic e�ective operator Leff , the stroboscopic averaging over the time

intervall Tc is performed and furthermore the condition for the t0 terms is applied.

This leads to the second order contribution

Leff,2 = [L2(t)]ω<ωc,�t0
=
∑
i

L
(2,i)
eff,2. (4.44)
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The next two orders are derived in a similar way. The third order correction is

L3 = exp[L0t]Ω̇3,I(t) exp[−L0t] (4.45)

=
1

6
exp[L0t]

∫ t

t0

dt2

∫ t2

t0

dt3 {[Ldr,I(t), [Ldr,I(t2), Ldr,I(t3)]]

−[Ldr,I(t3), [Ldr,I(t), Ldr,I(t2)]]} exp[−L0t]. (4.46)

Each individual Ldr,I(ti) in the Schrödinger picture has intercalated terms of the

structure exp[(t − t0)L0]Ldr,0 exp[−(t − t0)L0]. Using (4.22) to expand these terms

leads algebraic prefactors for the di�erent occuring time arguments, i.e.,

L3 =
1

6

∫ t

t0

dt2

∫ t2

t0

dt3f(t)f(t2)f(t3)
{

[Ldr,0, [Ldr,0
1, Ldr,0]](t− 2t2 + t3)

+[Ldr,0
1, [Ldr,0

1, Ldr,0]]((t− t3)(t− t2))

+[Ldr,0, [Ldr,0
2, Ldr,0]]

1

2
(2(t− t2)2 − (t− t3)2) + · · ·

}
. (4.47)

By construction the involved expressions are of third order in the driving protocol

f(t).

Introducing the third order coe�cients, (4.47) is compactly rewritten as

L3 = C010(t)[Ldr,0, [Ldr,0
1, Ldr,0]] + C110(t)[Ldr,0

1, [Ldr,0
1, Ldr,0]]

+ C020(t)[Ldr,0, [Ldr,0
2, Ldr,0]]. (4.48)

The temporal integrals for the coe�cients cklm contain the three-fold product of

the modulation function 1/6
∫ t
t0
dt2
∫ t2
t0
dt3f(t)f(t2)f(t3) times the polynomial in the

times arising from perturbation theory of the backtransformation into the Schrödinger

picture. The subscript klm indicates the order in perturbation theory of the back-

transformation in the nested commutator structure. Hence the subscript 110 labels

the prefactor of the commutator [Ldr,0
1, [Ldr,0

1, Ldr,0]] and so on. The coe�cients for

an arbitrary driving f(t) from equation (4.47) are

C010(t) =
1

6

∫ t

t0

dt2

∫ t2

t0

dt3f(t)f(t2)f(t3)(t− 2t2 + t3)

C110(t) =
1

6

∫ t

t0

dt2

∫ t2

t0

dt3f(t)f(t2)f(t3)(t− t2)(t− t3)

C020(t) =
1

6

∫ t

t0

dt2

∫ t2

t0

dt3f(t)f(t2)f(t3)
1

2

[
2(t− t2)2 − (t− t3)2

]
. (4.49)
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The e�ective third-order Magnus correction to the original operator Ldr(t) is

Leff,3 = [L3]ω<ωc
=
∑
i

L
(3,i)
eff,3. (4.50)

The fourth Magnus term in the Schrödinger picture is

L4 = exp[L0t]Ω̇4,I(t) exp[−L0t] (4.51)

=
1

12
exp[L0t]

∫ t

t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt4×

([Ldr,I(t), [Ldr,I(t2), [Ldr,I(t3), Ldr,I(t4)]]]

+[Ldr,I(t2), [Ldr,I(t3), [Ldr,I(t4), Ldr,I(t)]]]

+[Ldr,I(t), [Ldr,I(t4), [Ldr,I(t3), Ldr,I(t2)]]]

+[Ldr,I(t4), [Ldr,I(t3), [Ldr,I(t), Ldr,I(t2)]]]) exp[−L0t]. (4.52)

Again, the perturbative transformation of Ldr,I(ti) into the Schrödinger picture is

performed by applying (4.22). Similar to the third-order coe�cients, one introduces

the fourth-order coe�cients with a common integral prefactor

1

12

∫ t

t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt4f(t1)f(t2)f(t3)f(t4)·, (4.53)

times some polynomials in the time arguments which can be explicitly found in the

Appendix E. In a concise form one obtains

L4 = C0010(t)[Ldr,0, [Ldr,0, [Ldr,0
1, Ldr,0]]] + C0110(t)[Ldr,0, [Ldr,0

1, [Ldr,0
1, Ldr,0]]]

+ C1010(t)[Ldr,0
1, [Ldr,0, [Ldr,0

1, Ldr,0]]] + C0020(t)[Ldr,0, [Ldr,0, [Ldr,0
2, Ldr,0]]]

+ C0021(t)[Ldr,0, [Ldr,0, [Ldr,0
2, Ldr,0

1]]] + C0120(t)[Ldr,0, [Ldr,0
1, [Ldr,0

2, Ldr,0]]]

+ C1020(t)[Ldr,0
1, [Ldr,0, [Ldr,0

2, Ldr,0]]] + C0210(t)[Ldr,0, [Ldr,0
2, [Ldr,0

1, Ldr,0]]]

+ C2010(t)[Ldr,0
2, [Ldr,0, [Ldr,0

1, Ldr,0]]] + C0030(t)[Ldr,0, [Ldr,0, [Ldr,0
3, Ldr,0]]].

Applying the de�ned projection [·]ω<ωc,�t0
the e�ective fourth order Magnus correction

to the original operator Ldr(t) is

Leff,4 = [L4]ω<ωc,�t0
=
∑
i

L
(4,i)
eff,4. (4.54)

The higher-order Magnus terms approximate the time-independent e�ective oper-

ator Leff which was derived from L(t) = L0 + Ldr(t). The basic idea is to start

o� with an undriven system operator L0 and a driving term which couples to the

system Ldr(t) = Ldr,0f(t). Provided these three ingredients (L0, f(t), Ldr,0, ), one
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can construct an e�ective time-independent operator Leff

L(t) = L0 + Ldr,0f(t) ⇒ Leff = L0 + Leff,1 + Leff,2 + Leff,3 + Leff,4. (4.55)

The procedure is applicable to open and isolated classical systems as well as to

isolated driven quantum systems. A rigorous derivation of the classical limit for

ME is found in the appendix A of [116] and in Ref. [117]. In the limit ~ → 0 the

quantum commutator has to be replaced by the Poisson bracket 1
i~ [. . . ] → {. . . }.

For case of an open system, L(t) would be the master equation operator, like the

Fokker-Planck or Kramers operator. For case of an isolated system the equations of

motion are derived from the Poisson bracket.

4.3 Summary

This section provides a short summary on how to construct an e�ective Hamiltonian.

The �rst step is to apply the Magnus expansion in the interaction picture to get

a systematic expansion in the driving amplitude f(t) ∝ A. The result is that the

order in A coincides with the order of the Magnus expansion. The second and third

steps are to set the stroboscopic window for the Magnus terms and the according

projection onto the low-frequency components to obtain Leff . The perturbative

back transformation into the Schrödinger picture and the subsequent low-frequency

projection give access to the inverse frequency series. The complete schematical

work �ow is as follows:

1. Interaction-picture for L(t) = L0 + Ldr(t)

with Ldr,I(t) = exp[−L0t]Ldr(t) exp[L0t]

∂tρ = L(t)ρ (4.56)

⇔ ∂tρI = Ldr,I(t)ρI (4.57)

⇔ ρI(t) = T
(

exp

[∫ t

t0

dsLdr,I(s)

])
ρI(t0) (4.58)
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2. Magnus expansion with
∫ t
t0
dsLdr,I(s) = ΩI =

∑
k Ωk,I

Ω1,I =

∫ t

t0

dt1Ldr,I(t1) (4.59)

Ω2,I =
1

2

∫ t

t0

dt1

∫ t1

t0

dt2[Ldr,I(t1), Ldr,I(t2)] (4.60)

Ω3,I =
1

6

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3

([Ldr,I(t1), [Ldr,I(t2), Ldr,I(t3)]]− [Ldr,I(t3), [Ldr,I(t1), Ldr,I(t2)]]) (4.61)
...

3. Perturbative back transformation to Schödinger picture using the BCH for-

mula to get the Magnus corrections to Ldr(t)

L1(t) = exp[L0t]Ω̇1,I(t) exp[−L0t]

= f(t)Ldr,0

L2(t) = exp[L0t]Ω̇2,I(t) exp[−L0t]

= · · ·
L3(t) = · · ·

... (4.62)

4. Represent L(t) ≈ L0 +
∑

i Li(t) in Magnus terms with t0, t

5. Stroboscopic window Tc and low-frequency cut-o� ω0 � ωc

Leff = L0 +

[∑
i

Li(t)

]
ω<ωc,�t0

(4.63)

In summary, this approach establishes a scheme to systematically derive an e�ective

time-independent operator Leff , given an undriven system operator L0 and driven

system part in the form of Ldr(t) = f(t)Ldr,0. This alternative Magnus formalism

provides a systematic expansion in the driving amplitude and the inverse driving fre-

quency. The expressions for Leff,1-Leff,4 have been explicitly computed and compact

formulas have been derived. In the next chapter this alternative Magnus expansion

shall be applied reference examples like the parametric oscillator to benchmark the

method. And �nally it will be applied a driven Josephson junction.
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Chapter 5

Applications of the alternative

Magnus expansion

In this Chapter, the alternative Magnus expansion shall be applied to important

problems of driven condensed-matter systems. As a �rst example, the developed

method is applied to the steady state of a classiscal parametric oscillator with and

without coupling to a heat bath. Additionally, the isolated quantum parametric

oscillator is considered. The obtained results are compared to numerical results and

to some standard solutions. The common solution provides a recurrence relation

for the characteristic values and coe�cients of the Mathieu equation in the form

of a continued fraction [118]. In particular the characteristic values can be com-

pared and systematized to the Magnus approach via the Mathieu parameters a, q.

The lower-energy e�ective theory also covers the e�ect of dynamical stabilization,

which occurs in the second order of the Magnus expansion. Beyond this, higher

order e�ects further renormalize the oscillator frequency and additionally create a

weakly renormalized temperature 1, when applied to open systems with a thermal

environment [16].

Due to the systematic expansion in the inverse driving frequency 1/ωm and the am-

plitude A in a combined dimensionless perturbation parameter (ω0/ωm)nAm < 1,

the amplitude A is allowed to become large while the frequency ratio is su�ciently

small. Whereas the standard Magnus expansion just relies on the high-frequency

regime ω0/ωm � 1.

The extra robustness and control of the alternative Magnus expansion is also re-

1The thermodynamically considered concept of temperature does not strictly hold for nonequi-
librium systems, for an overview and a further discussion on this issue, check Ref.[119] and related
references therein, but this is beyond the scope of this thesis. However, in the present case it
was observed that after the application of the alternative Magnus approach on a linear master
equations, like the Fokker-Planck equation, the temperature dependent di�usion coe�cient, e.g.
the prefactor of ∂pp, was renormalized.
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�ected in the frequency renormalization of the parametric oscillator. It is quantita-

tively accurate even for large A > 1 or close to the parametric instability. Around

the instability, the separation of time scales between the driving and renormalized

eigenfrequency breaks down and the Magnus expansion begins to become inaccurate

and invalid, as expected 2.

As a more involved example, the system of a driven Josephson junction coupled to

a heat bath is examined. Motivated by recent pump-probe experiments, di�erent

driving scenarios can be tested theoretically. By deducing e�ective descriptions one

can investigate which scenario has the most prominent features. The analytical

results are also compared to numerical results.

5.1 The classical and quantum parametric oscillator

A system which already exhibits non-trivial features due to presence of the exter-

nal driving is the classical parametric oscillator. This instructional system allows

to estimate certain system parameters within a straightforward Floquet approach.

With this reference case, one is able to compare the extensions and deviations to

the results of the developed theory and the numerical exact results.

The parametric oscillator is a harmonic oscillator system with a time-dependent

frequency ω2(t) = ω0
2(1 + A cosωmt). Its Hamiltonian has the form

H = H0 +Hdr (5.1)

H0 =
mω0

2

2
x2 +

1

2m
p2 (5.2)

Hdr =
mω0

2

2
A cos (ωmt)x

2. (5.3)

p and x denote the momentum and the spatial coordinate of the classical oscillator,

m the mass and ω0 the bare oscillator frequency. A is the dimensionless amplitude

of the parametric driving term and ωm the driving frequency. In the following sec-

tions the system will be solved by di�erent approaches and methods. The results

are then compared and classi�ed among each other to make a connection between

the standard methods and the Magnus approach.

2Irrespective of other conditions, the Magnus expansion is a high-frequency and short-to-
intermediate time expansion. However, for strong driving A > (ωm/ω0)

n/m the series becomes
inaccurate and the renormalized frequency eventually matches the �rst parametric resonance, more
details follow in Sec. 5.1
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Figure 5.1: This is a scheme of a mechanical realization of the parametric oscillator.
The pendulum is suspended to a motor through a hole in the ceiling which varies
the length of the pendulum by ∆l with frequency ωm. The undriven eigenfrequency
of the pendulum is ω0 =

√
g/l. Hence, the square of the driven pendulum frequency

can be approximated by ω2(t) ≈ ω0
2(1 + ∆l(t)).
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5.1.1 Floquet approach

In this section the renormalization of the eigenfrequency due to the presence of the

driving is derived within a Floquet approach.

The Hamiltonian equations of motion of the isolated parametric oscillator (5.1) are

ẋ =
p

m
(5.4)

ṗ = −mω2
0(1 + A cos [ωmt])x. (5.5)

After combining the two �rst order di�erential equations and the substitution τ =

ωmt/2, one derives the canonical form of the Mathieu equation

∂2x

∂τ 2
+ (a− 2q cos [2τ ])︸ ︷︷ ︸

ω2(τ)

x = 0. (5.6)

Furthermore, the standard Mathieu equation parameters a and q for the parametric

oscillator are a = 4ω0
2/ωm

2 and q = −2ω0
2A/ωm

2. By introducing the dimension-

less variable τ , the two Mathieu parameter a and q already obtain the structure

proportional to 1/ωm. In particular q is identi�ed as the purturbative expansion

parameter.

The Mathieu equation is the special case of the Hill equation comprising only a sin-

gle harmonic mode. The general Hill equation reads ẍ+ f(τ)x = 0 where f(τ) is a

periodic function, which can be rewritten in a Fourier series f(τ) =
∑

n an exp[inτ ].

The coe�cient in the second order di�erential equation (5.6) is periodic in time, so

according to the Floquet theorem [120], the two independent solutions are written

as

x1(τ) = eiλτz1(τ) (5.7)

x2(τ) = e−iλτz2(τ). (5.8)

λ is the unknown and to be determined Floquet exponent, which is conveniently

written as iλ. Hence in a subsequent stability analysis, the unstable regions are

identi�ed by the condition Im[λ(a, q)] 6= 0. z1/2(τ) are periodic functions matching

the period of the coe�cient in equation (5.6) with the parity condition z2(τ) =
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z1(−τ). After Fourier expanding z1/2, the general periodic solution is

x(τ) = A′
∞∑

n=−∞

C2ne
i(2n+λ)τ +B′

∞∑
n=−∞

C2ne
−i(2n+λ)τ (5.9)

= A

∞∑
n=−∞

C2n cos[(2n+ λ)τ ] + iB

∞∑
n=−∞

C2n sin[(2n+ λ)τ ]. (5.10)

The index n labels the Floquet bands. A = (A′ + B′)/2 and B = (A′ − B′)/2 are

constants, which are set by the initial and the boundary conditions. Further initial

conditions and the parity discussions are omitted and after applying (5.10) to (5.6)

the resulting coe�cient equation for the cosine part of the Mathieu equation is

− A
∞∑

n=−∞

(2n+ λ)2C2n cos[(2n+ λ)τ ]

+ A

∞∑
n=−∞

aC2n cos[(2n+ λ)τ ]

− A
∞∑

n=−∞

2qC2n cos[(2n+ λ)τ ] cos 2τ = 0. (5.11)

With the trignometric identity 2 cosφ cos θ = cos(φ− θ) + cos(φ+ θ), Eq. (5.11) can

be compactly written as

A
∞∑

n=−∞

{[
a− (2n+ λ)2

]
C2n − qC2n−2 − qC2n+2

}
cos[(2n+ λ)τ ] = 0. (5.12)

The sum in the inner bracket of Eq. (5.12) can be understood as a recursion relation

for the coe�cient C2n

qC2n = a− (2n+ λ)2 (C2n−2 + C2n+2) . (5.13)

Recursively substituting the coe�cients C2n±2, the recursion may be solved with

respect to the Floquet exponent λ(a, q). The continued fraction method (CFM) is

also equivalent to the recursive substitution of the C2n−x in Eq. (5.13).

After a projection onto the cos[(2n + λ)τ ] basis, the sum connecting the precedent

and the subsequent coe�cients Eq.(5.12) can be mapped onto an in�nite matrix for
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the coe�cients C2n as

R− aI =



. . .

q (2n− 2 + λ)2 − a q

q (2n+ λ)2 − a q

q (2n+ 2 + λ)2 − a q
. . .


.

(5.14)

The R matrix is the remainder after separation of the diagonal element −aC2n. This

linear system of equations has non-trivial solutions if det(R−aI) = 0. This formally

looks like an eigenvalue problem for the Mathieu parameter a. Since a is given, the

characteristic polynomial of (5.14) can be solved for the unknown Floquet exponent

λ(a, q). For non-linear oscillators like the Du�ng oscillator with its x3 potential

this kind of solution does not work, because the coe�cient equations for the Cn also

become non-linear.

The more Floquet bands or coe�cients Cn one takes into account, the higher the

order in the driving parameter q becomes. For n = 0 and neglecting the coe�cients

C−4 and C4, the characteristic polynomial for the remaining 3× 3 matrix of (5.14)

is

−λ6 + (8 + 3a)λ4 − (16 + 3a2 − 2q2)λ2 − (a− 4)(2q2 − a2 + 4a) = 0. (5.15)

In order to get an overview on the result for λ, one switches back from the Mathieu

parameters a, q to the former parameters ω0, ωm, A. Already by substituting to

τ = 2ωmt one obtained the natural 1/ωm structure, which �ts into the perturbative

picture for the low-energy e�ective theory for ωm � ω0.

The solution for the Floquet exponent λ in Eq. (5.15) is plotted in terms of A and

ω0/ωm in Fig. 5.2. In the high-frequency limit ωm � ω0 the e�ective eigenfrequency

reads

ωeff
2 =

(ωm

2

)2

λ2 = ω0
2

(
1 +

A2ω0
2

2ωm
2

+
2A2ω0

4

ωm
4

+
8A2ω0

6

ωm
6

+
3A4ω0

6

4ωm
6

)
. (5.16)

Clearly, ωeff is the e�ective renormalized eigenfrequency, which is sti�ened by the

presence of the driving as compared the bare frequency ω0. The renormalization is

given in polynomials of (ω0/ωm)lAn. An analogue structure will be obtained by the

low-energy e�ective theory via the alternative Magnus expansion in the next section

without any Fourier base ansatz and without any recursive formula.
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Figure 5.2: Stability map for the Floquet exponent λ, plotted as a function of
the driving amplitude A and the dimensionless oscillator parameter ω0/ωm. The
resonance at ω0/ωm = 0.5 is the standard parametric resonance for ωm = 2ω0. The
unstable region with Im[λ] 6= 0 is marked white. The instability region grows with
driving amplitude, also known as power broadening. The low-energy e�ective theory
works away from the resonances in the regime of ω0/ωm � 1. For large amplitudes
Acrit � 1, the power broadened resonance also a�ects the high-frequency regime
ω0/ωm � 1, which is usually away from any resonances. The observation that the
e�ective eigenfrequency becomes resonant with the driving will be further discussed
at the end of this section.
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5.1.2 Alternative Magnus approach to the isolated quantum

parametric oscillator

Next, the parametric oscillator is treated quantum mechanically within the alterna-

tive Magnus expansion. The system setup is given by the Hamiltonian

H = H0 +Hd (5.17)

H0 =
mω2

0

2
x2 +

1

2m
p2 = ~ω0a

†a (5.18)

Hd =
mω2

0

2
A cos (ωmt)x

2 =
~ω0

4
A cos (ωmt) (aa+ a†a† + 2a†a+ 1), (5.19)

where ω0 is the bare frequency of the undriven oscilllator, ωm the driving frequency,

A the driving amplitude and m the respective mass of the oscillator. The conjugate

variables are represented in terms of the creation and annihilation operator

x =

√
~

2ω0m

(
a+ a†

)
(5.20)

p = −i
√

~ω0m

2

(
a− a†

)
(5.21)

obeying the commutation relation [x, p] = i~ or respectively [a, a†] = 1. To apply

the formulas of the e�ective Magnus corrections, one identi�es

H0 = ~ω0a
†a (5.22)

Hdr =
~ω0

4
(aa+ a†a† + 2a†a+ 1) (5.23)

f(t) = A cos (ωmt) . (5.24)

The �rst order Magnus term (4.34) of Heff is

H1 =
1

i~
A cos(ωmt)Hdr. (5.25)

The �rst low-frequency Magnus correction to the unperturbed Hamiltonian H0 is

the projection onto the low-frequency sector

Heff,1 = i~ [H1]ω<ωc,�t0
= 0. (5.26)

The Magnus series is a formal solution for the exponential of the Schrödinger equa-

tion i~U̇ = H(t)U which means U = exp[Ω] ≈ exp[Hefft/(i~)]. There is no low-

frequency contribution in �rst order of the Magnus expansion for the standard driv-

ing protocol of the parametric oscillator (5.24).
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The second order correction given in Eq. (4.43) is in this case given by

H2 = C10(t)[H1
dr, Hdr] + C20(t)[H2

dr, Hdr] + · · · . (5.27)

With the useful relations [a†a, aa] = −2aa , [a†a, a†a†] = 2a†a†, [aa, a†a†] = 4a†a+2,

one determines the adjoint actions of H0 on Hdr as

H1
dr = [H0, Hdr] =

~2ω2
0

4
(2a†a† − 2aa) (5.28)

H2
dr = [H0, [H0, Hdr]] =

~3ω3
0

4
(4a†a† + 4aa) (5.29)

H3
dr = [H0, [H0, [H0, Hdr]]] =

~4ω4
0

4
(8a†a† − 8aa). (5.30)

The evaluation of the nested commutators yields then

[H1
dr, Hdr] = −~3ω3

0

2
(a†a† + aa+ 2a†a+ 1) (5.31)

[H2
dr, Hdr] = −~4ω4

0(a†a† − aa) (5.32)

[H3
dr, Hdr] = −~5ω5

02(a†a† + aa+ 2a†a+ 1). (5.33)

(5.34)

The low frequency components of the coe�cients (4.29)-(4.31) with f(t) = A cosωmt

are

[C10(t)]ω<ωc,�t0
= − 1

i~
A2

4~2ωm
2

(5.35)

[C20(t)]ω<ωc,�t0
= 0 (5.36)

[C30(t)]ω<ωc,�t0
= − 1

i~
A2

4~2ωm
2
. (5.37)

Therefore, the e�ective second-order Magnus term of equation (5.27) for the para-

metric oscillator is

Heff,2 = i~ [H2]ω<ωc,�t0
=

~ω0

4
(a†a† + aa+ 2a†a+ 1)

(
A2ω0

2

2ωm
2

+
2A2ω0

4

ωm
4

)
. (5.38)

The third-order Magnus term has the shape

H3 = C010(t)[Hdr, [H
1
dr, Hdr]] + C110(t)[H1

dr, [H
1
dr, Hdr]]

+ C020(t)[Hdr, [H
2
dr, Hdr]]. (5.39)
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Due to the symmetry of the nested integrals in the coe�cients Cijk (4.49) and

f(t) = A cosωmt , the low-frequency projection immediately yields

[C010(t)]ω<ωc,�t0
= 0 (5.40)

[C110(t)]ω<ωc,�t0
= 0 (5.41)

[C020(t)]ω<ωc,�t0
= 0. (5.42)

Hence, there is no third-order contribution to the e�ective low-frequency Hamilto-

nian Heff . Straightforward to the fourth-order Magnus term, one �nds

H4 = C0010(t)[Hdr, [Hdr, [H
1
dr, Hdr]]] + C0110(t)[Hdr, [H

1
dr, [H

1
dr, Hdr]]] (5.43)

+ C1010(t)[H1
dr, [Hdr, [H

1
dr, Hdr]]] + C0020(t)[Hdr, [Hdr, [H

2
dr, Hdr]]] (5.44)

+ C0021(t)[Hdr, [Hdr, [H
2
dr, H

1
dr]]] + C0120(t)[Hdr, [H

1
dr, [H

2
dr, Hdr]]] (5.45)

+ C1020(t)[H1
dr, [Hdr, [H

2
dr, Hdr]]] + C0210(t)[Hdr, [H

2
dr, [H

1
dr, Hdr]]] (5.46)

+ C2010(t)[H2
dr, [Hdr, [H

1
dr, Hdr]]] + C0030(t)[Hdr, [Hdr, [H

3
dr, Hdr]]]. (5.47)

The projection of the coe�cients Cijkl (E.19)-(E.28) with f(t) = A cosωmt results

in

[C0010(t)]ω<ωc,�t0
=

1

i~
A4

12(i~)4

9

16ωm
4

(5.48)

[C0110(t)]ω<ωc,�t0
= 0 (5.49)

[C1010(t)]ω<ωc,�t0
= 0 (5.50)

[C0020(t)]ω<ωc,�t0
= 0 (5.51)

[C0021(t)]ω<ωc,�t0
=

1

i~
A4

12(i~)6

5

32ωm
6

(5.52)

[C0120(t)]ω<ωc,�t0
= − 1

i~
A4

12(i~)6

37

32ωm
6

(5.53)

[C1020(t)]ω<ωc,�t0
=

1

i~
A4

12(i~)6

1

32ωm
6

(5.54)

[C0210(t)]ω<ωc,�t0
= − 1

i~
A4

12(i~)6

25

16ωm
6

(5.55)

[C2010(t)]ω<ωc,�t0
= − 1

i~
A4

12(i~)6

1

32ωm
6

(5.56)

[C0030(t)]ω<ωc,�t0
= − 1

i~
A4

12(i~)6

39

64ωm
6
. (5.57)
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The needed nested commutators are

[Hdr, [Hdr, [H
1
dr, Hdr]]] = 0 (5.58)

[Hdr, [Hdr, [H
2
dr, H

1
dr]]] = −2(~ω0)7(a†a† + aa+ 2a†a+ 1) (5.59)

[Hdr, [H
1
dr, [H

2
dr, Hdr]]] = 0 (5.60)

[H1
dr, [Hdr, [H

2
dr, Hdr]]] = 2(~ω0)7(a†a† + aa+ 2a†a+ 1) (5.61)

[Hdr, [H
2
dr, [H

1
dr, Hdr]]] = 2(~ω0)7(a†a† + aa+ 2a†a+ 1) (5.62)

[H2
dr, [Hdr, [H

1
dr, Hdr]]] = 0 (5.63)

[Hdr, [Hdr, [H
3
dr, Hdr]]] = 0. (5.64)

Hence the fourth-order Magnus term for the parametric oscillator is

Heff,4 = i~[H4]ω<ωc,�t0
=

~ω0

4
(a†a† + aa+ 2a†a+ 1)

9A4ω0
6

8ωm
6
. (5.65)

Rearranging all of the Magnus contributions �nally yields

Heff = H0 +Heff,2 +Heff,4 (5.66)

= ~ω0a
†a+

~ω0

4
(a†a† + aa+ 2a†a+ 1)

(
A2ω0

2

2ωm
2

+
2A2ω0

4

ωm
4

+
9A4ω0

6

8ωm
6

)
(5.67)

=
p2

2m
+
mω0

2x2

2

(
1 +

A2ω0
2

2ωm
2

+
2A2ω0

4

ωm
4

+
9A4ω0

6

8ωm
6

)
. (5.68)

The e�ective constructed Hamiltonian resembles a renormalized harmonic oscillator

system with the renormalized frequency

ωeff
2 = ω0

2

{
1 +

A2ω0
2

2ωm
2

+
2A2ω0

4

ωm
4

+
9A4ω0

6

8ωm
6

}
. (5.69)

The result indicates an enhancement of the e�ective eigenfrequency as compared to

the undriven case. This is in agreement with the e�ective frequency extracted from

the Floquet exponent given in Eq. (5.16) up to the order (ω0/ωm)4A4. However,

there is a deviation in the order (ω0/ωm)4A6. The alternative Magnus expansion

yields C46,mag = 9/8, while the determinant method predicts C46,det = 3/4, see Eq.

(5.16).

This sixth order coe�cient from the determinant method was derived via a trun-

cation down to a 3 × 3 matrix. It is possible that for higher orders one needs to

extend the matrix and then solve the characteristic polynomial for the e�ective

eigenfrequency. Table 5.1 shows the solutions of the characteristic polynomials in
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altMag 2× 2 3× 3 5× 5 7× 7 9× 9
C22 1/2 1/4 1/2 1/2 1/2 1/2

C24 2 0 2 2 2 2

C26 8 0 8 8 8 8

C42 0 0 0 0 0 0

C44 0 0 0 0 0 0

C46 9/8 −1/16 3/4 25/32 25/32 25/32

Table 5.1: Dependence of coe�cients Clm on the matrix size for the determinant
method. For matrices smaller than 5× 5 the sixth-order coe�cients di�er. Solving
the characteristic polynomial, one expands for ω0/ωm � 1 and A � 1, it is likely
that via some combinations lower-order terms contribute to higher-order terms or
one has to consider an in�nite matrix to obtain an exact result. The coe�cient C46

stabilizes for larger matrices> 5 × 5, at that point it is hard to conclude whether
the result is converged to a stable value or the computation of the Magnus term was
incorrect. Up to the fourth order in (ω0/ωm)4A4 the results coincide.

the form

ωeff
2 = ω0

2

{
1 + C22

A2ω0
2

ωm
2

+ C24
A2ω0

4

ωm
4

+ C26
A2ω0

6

ωm
6

(5.70)

+C42
A4ω0

2

ωm
2

+ C44
A4ω0

4

ωm
4

+ C46
A4ω0

6

ωm
6

}
(5.71)

for di�erent matrix sizes.

The low-energy e�ective theory via the Magnus expansion is consistent with the

standard Floquet solution up to the order(ω0/ωm)4A4. Furthermore, the Magnus

approach can be extended to more complicated potentials and driving protocols

without the need of an elaborated ansatz. In the subsequent section, a heat bath

will be coupled to the parametric oscillator system, which can still be treated within

the alternative Magnus expansion.

5.1.3 Alternative Magnus expansion for the classical para-

metric oscillator with heat beath

The classical parametric oscillator is extended by a heat bath and treated in terms of

the Kramers-Equation (KE). The KE is a bivariate master equation which takes into

account the dynamics of the two conjugate variables x, p. Hence, the full dynamics

of the system is describable and the parameters are not restricted to the overdamped
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limit, like in the Smoluchowski equation case 3.

This equation assumes the form of a linear master equation

∂tP (x, p, t) = LKP (x, p, t) (5.72)

for the probability density distribution P (x, p, t) and the alternative Magnus expan-

sion can be applied. The Kramers operator LK is de�ned as

LK = Lrev + Lir + Ldr(t). (5.73)

The reversible part of the dynamics is described by

Lrev = −∂x [(∂pH0) · ] + ∂p [(∂xH0) · ] (5.74)

= − p

m
∂x +mω0

2x∂p, (5.75)

which incorporates essentially the classical equations of motion from the Hamilton

formalism. The inner brackets () in (5.74) represent ẋ = ∂pH0 and ṗ = −∂xH0. Lrev

describes the �ow of an incompressible or conserved probability distribution in the

phase space of x and p.

The irreversible contribution to the master equation is

Lir = γ∂p (p · +mT∂p · ) , (5.76)

where γ is the friction or damping coe�cient, which describes the coupling to the

bath. Assuming a Gaussian white noise, the bath correlations lead to the di�usion

coe�cient mγT . The parametric driving is

Ldr(t) = f(t)mω0
2x∂p︸ ︷︷ ︸

Ldr,0

(5.77)

= f(t)Ldr,0. (5.78)

As usual, f(t) is the driving protocol. Therefore, the Kramers equation for the

driven parametric oscillator is

ρ̇ = LKρ (5.79)

LK = − p

m
∂x +mω0

2x∂p︸ ︷︷ ︸
Lrev

+ γ∂p (p · +mT∂p · )︸ ︷︷ ︸
Lir

+ f(t)mω0
2x∂p︸ ︷︷ ︸

Ldr(t)

. (5.80)

3In the Hamiltonian language, the equations of motion are two �rst-order di�erential equations
for q and p, or, combined, one second-order equation. Hence, setting the conjugate variable constant
or neglecting it, is related to the omission of the second-order derivative.
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By de�ning the unperturbed part

L0 = Lrev + Lir (5.81)

and the driving part

Ldr(t) = f(t)Ldr,0, (5.82)

the given formulas are applied order by order to the Magnus expansion. The com-

mutators are now interpreted as the Poisson brackets [A,B] ≡ ∂xA∂pB − ∂pA∂xB.
The e�ective �rst-order terms is

Leff,1 = 0. (5.83)

The low-frequency component of the second-order terms yields

L2,2
eff,2 = mω0

2x
A2ω0

2

2ωm
2
∂p (5.84)

L2,4
eff,2 = mω0

2x
A2ω0

2(4ω0
2 − γ2)

2ωm
4

∂p +mγT
2A2ω0

4

ωm
4
∂pp. (5.85)

The fourth-order correction is derived via the formula (4.54) with the coe�cients

(E.19)-(E.28) given in the Appendix. After projection onto the low-frequency part,

the e�ective contribution is

L4,6
eff,4 = mω0

2x
9A4ω0

6

8ωm
6
∂p. (5.86)

The e�ective time-independent operator to LK(t) is therefore

Leff = L0 + L2,2
eff,2 + L2,4

eff,2 + L4,6
eff,4. (5.87)

By comparing the prefactor ∂p in Lrev, one �nds again a renormalization of the

eigenfrequency ω0 in the presence of the driving. Due to the expansion of the

master equation for an open system, one additionally obtains contributions which

depend on γ. Rewriting the e�ective eigenfrequency for Leff yields

ωeff
2

ω0
2

= 1 +
A2ω0

2

2ωm
2

+
2A2ω0

2

ωm
4

(
ω0

2 − γ2

4

)
︸ ︷︷ ︸

:=ω2
open

+
9A4ω0

6

8ωm
6
. (5.88)

The �rst e�ect is the strengthening of the oscillator frequency, which means that

by increasing the driving amplitude, the e�ective frequency is also increased. For

74



γ = 0 the second order Magnus contributions from the isolated quantum system

and the classical system coincide (5.71). In the case γ 6= 0, there is an additional

term proportional to the renormalized frequency of a damped harmonic oscillator

ωopen =
√
ω0

2 − γ2/4.

The temperature in the system is initially set by the Gaussian white noise correla-

tion, which enters via the di�usion coe�cient into the Fokker-Planck equation. This

di�usion coe�cient is also renormalized as compared the original undriven system,

the prefactor of ∂pp in Eq. (5.85) is namely

Teff

T
= 1 +

2A2ω0
4

ωm
4
. (5.89)

To illustrate the consequences of these two renormalizations, the �uctuations in

the variables x and p are studied. The thermodynamic observables are computed

analytically via the de�nition given in Eq. (5.94) and the de�nition of the variance

in Eq. (5.95). This requires the construction of the e�ective underlying probability

density distribution P (x, p, t). In the thermal equilibrium case, the distribution is

known to be

ρth(x, p) =
exp[−βH0(x, p)]

Z
, (5.90)

with β = 1/(kBT ). Z is the canonical partition function

Z =

∫ ∞
−∞

∫ ∞
−∞

exp[−βH0(x, p)]dxdp, (5.91)

which just normalizes the probability distribution.

Employing the renormalizations from Eqs. (5.88), (5.89), one sets up an e�ective

Hamiltonian and assumes a putative low-energy e�ective steady state of the system

with

Heff =
mω2

eff

2
x2 +

1

2m
p2. (5.92)

Compared to the thermal equilibrium distribution, one also takes into account the

renormalized temperature. Hence the e�ective distribution for the driven state is

ρeff(x, p) =
exp [−βeffHeff(x, p)]

Zeff

, (5.93)

explicitly using the renormalized quantity βeff = 1/(kBTeff). The terms in the parti-

tion function are also renormalized accordingly.

For illustration, the probability density distribution ρeff(x, p, t) with p being inte-
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Figure 5.3: The e�ective steady state probability density distribution ρeff integrated
over p (blue) compared to the thermal equilibrium one ρth (red dashed). The dis-
tribution is clearly narrowed in driven case (blue line). The FWHM is reduced,
because the strengthened oscillator frequency (5.88) overcomes the e�ectively en-
hanced temperature (5.89).

grated out is shown and compared to the thermal equilibrium distribution ρth, see

Fig.5.3. Furthermore, the di�erence between ρeff(x, p, t) − ρeff with x being inte-

grated out is shown in Fig.5.4. Due to the presence of the parametric driving, the

densities are redistributed. The momentum distribution is slighly broadened and

the spatial distrubtion is narrowed due to the sti�ened oscillator frequency (5.88).

The analytical results of the redistributed probability density for the parametric

oscillator is further con�rmed by numerical results presented in Ref. [16].

5.1.4 Variances and comparison to numerics

Based on the constructed e�ective distribution ρeff , the variances can also be com-

puted analytically and compared to the numerical results. The expectation value

for the observable O is de�ned as

〈O〉any =

∫ ∞
−∞

∫ ∞
−∞

O(x, p)ρany(x, p, t)dxdp, (5.94)

where the sub index any indicates the underlying probability distribution. The

de�nition of the variance is

V ar(O) = 〈O2〉 − 〈O〉2. (5.95)
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Figure 5.4: Di�erence between the e�ective steady state probability density distri-
bution ρeff for integrated x and the thermal equilibrium one ρth (red dashed). The
driven e�ective distribution is broadened compared to the thermal one due to the
renormalized e�ective higher temperature(5.89). Hence it is �attened out in the
center region and enhanced in the outer regions.

It is a measure of �uctuations around the mean value. The thermal variances for

the undriven system are respectively

V arth(x) =
kBT

mω0
2

(5.96)

V arth(p) = kBTm, (5.97)

where 〈x〉th = 〈p〉th = 0. The expectation values

xT =

√
kBT

mω0
2
, (5.98)

pT =
√
kBTm, (5.99)

can be used to rescale x and p. With this choice, many quantities appear without

the temperature or just with a remaining renormalization and it also provides an

appropriate energy scale for the system. The rescaling is not suitable for open

quantum mechanical oscillators since there is an additonal regime where quantum

�uctuations dominate kBT � ~ω0. However, here the focus is on the thermal regime

kBT ∼ ~ω0 .
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The e�ective steady state variance is

V areff(x) = 〈x2〉eff − 〈x〉2eff (5.100)

=
kBTeff

mω2
eff

(5.101)

=
kBT

(
1 + 2A2ω0

4

ωm
4

)
mω0

2
(

1 + A2ω0
2

2ωm
2 + 2A2ω0

2

ωm
4

(
ω0

2 − γ2

4

)
+ 9A4ω0

6

8ωm
6

) (5.102)

≈ kBT

mω0
2

(
1− A2ω0

2

2ωm
2

+
2A2ω0

2γ2

4ωm
4
− 9A4ω0

6

8ωm
6

)
(5.103)

V areff(p) = kBTeffm (5.104)

= kBTm

(
1 +

2A2ω0
4

ωm
4

)
. (5.105)

In Eq. (5.103) a 1/ωm expansion was used, assuming γ, ω0 � ωm. The �uctuations

in the momentum variable p are enhanced and the �uctuations in spatial variable x

are reduced as compared to the undriven thermal equilibrium values.

5.1.4.1 Low-frequency part of the variance

Before one compares the analytical and numerical results for the variances of the

parametric oscillator system, the projection onto the low-frequency or constant part

is considered. For this purpose, one computes the variances by integration over

the frequency in the power spectral density (PSD). In this way, one achieves a

frequency controlled access to the variance, which allows to �lter up to a certain

cut-o� frequency ωc
4.

Often it is not possible or very hard to obtain an explicit analytical expression for the

PSD of the nonequilibrium system. By de�nition, the PSD is de�ned as the Fourier

transform (FT) of the auto-correlation function in time of, for example, the position

variable x(t). This requires knowledge of the solution x(t) of the equations of motion

of the explicitly time-dependent Hamiltonian H(t). To reduce the complexity of this

task one works with the e�ective time-independent Hamiltonian derived from the

Magnus expansion. With the simpli�ed dynamics for x(t), the PSD might be easier

to compute. However, it lacks information in the high-frequency regime ω � ωc. The

e�ective model for the parametric oscillator is a renormalized harmonic oscillator

with the frequency ω0 → ωeff (5.88) and the renormalized temperature T → Teff

(5.89). The computation of the power specral density for a harmonic oscillator is a

4A comparison between the variance from the full spectral range of the PSD to one with the
cut-o� can exhibit large deviations for driven systems, see also Fig. 5.8. Furthermore the derived
analytic expressions are only valid in the low-frequency regime ω0 < ωc < ωm.

78



straightforward task.

Starting from a Langevin equation for the harmonic oscillator with random noise ξ

and noise correlation 〈ξ(t)ξ(t′)〉 = 2γmTδ(t− t′),

ẍ+ ω0
2x+ γẋ = ξ, (5.106)

the solution is formally written as

x(t) =

∫ t

0

e
γ
2

(s−t) sin[Ω(t− s)]
mΩ

ξ(s)ds, (5.107)

see Appendix A. The open system eigenfrequency is Ω =
√
ω0

2 − γ2/4. One sets

the initial conditions to x(0) = 0 and p(0) = 0. The auto-correlation function is

〈x(t1)x(t2)〉 =

∫ t1

0

∫ t2

0

e
γ
2

[(s1+s2)−(t1+t2)] sin[Ω(t1 − s1)]

m2Ω2
·

× sin[Ω(t2 − s2)]〈ξ(s1)ξ(s2)〉ds2ds1 (5.108)

=
2γT

mΩ2

∫ t1

0

∫ t2

0

e
γ
2

[(s1+s2)−(t1+t2)] sin[Ω(t1 − s1)]·

sin[Ω(t2 − s2)]δ(s2 − s1)ds2ds1. (5.109)

Substituting t1 − s1 = τ1 and t2 − s2 = τ2 yields

〈x(t1)x(t2)〉 =
2γT

mΩ2

∫ t1

0

∫ t2

0

e−
γ
2

(τ1+τ2) sin[Ω(τ1)] sin[Ω(τ2)]δ(τ1 + t2 − t1 − τ2)dτ2dτ1

(5.110)

=
2γT

mΩ2

∫ t1

0

e

− γ
2

(2τ1+t2 − t1︸ ︷︷ ︸
−τ

)

sin[Ω(τ1)] sin[Ω(τ1 + t2 − t1︸ ︷︷ ︸
−τ

)]dτ1 (5.111)

Gxx(τ) =
2γT

mΩ2

∫ τ

0

e−
γ
2

(2τ1−τ) sin[Ω(τ1)] sin[Ω(τ − τ1)]dτ1. (5.112)

The equation (5.112) is the convolution of the function e−γτ/2 sin Ωτ with itself. Via

the Fourier transformation (FT) of this convolution the xx power spectral density

yields

Sxx(ω) =

∫
dτGxx(τ)eiωτ (5.113)

=
2γT

mΩ2

∥∥FT [e(−γ/2τ) sin Ωτ
]∥∥2

(5.114)

=
2γT

m

1

(ω0
2 − ω2)2 + γ2ω2

. (5.115)
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By taking the derivative of x(t) (5.107) and multiplying by m one gets the conjugate

momentum p(t). The according PSD is computed analogously. The correlation

function is

Gpp(τ) =2mγT

∫ τ

0

e−
γ
2

(2τ1−τ)

(
cos[Ω(τ1)]− γ sin[Ω(τ1)]

2Ω

)
·(

cos[Ω(τ1 − τ)]− γ sin[Ω(τ1 − τ)]

2Ω

)
dτ1. (5.116)

Again one �nds a convolution in equation (5.116) and performs the FT to �nd

Spp(ω) =

∫
dτGpp(τ)eiωτ (5.117)

= 2mγT

∥∥∥∥FT [ω2e−γ/2τ
(

cos[Ω(τ)]− γ sin[Ω(τ)]

2Ω

)]∥∥∥∥2

(5.118)

= 2mγT
ω2

(ω0
2 − ω2)2 + γ2ω2

. (5.119)

The above formulas (5.115) and (5.119) allow to compare the numerical results for

the PSD of the parametric oscillator to the e�ective model of a renormalized har-

monic oscillator with frequency ωeff [A, ωm]. This is even possible without the explicit

solution of the original parametric oscillator problem x(t).

The numerical power spectra in the low-frequency sector ω < ωc con�rm the renor-

malized oscillator model, as demonstrated in Fig. 5.5 and 5.6. The two pronounced

features at the �rst side bands around the driving frequency ωm ± ω0 are not in-

cluded, which is in accordance with the low-energy e�ective theory, as shown in Fig.

5.5 and 5.6. By re�ning the stroboscopic time window Tc = 2π/ωc with ωc � ωm one

could try to resolve the higher frequency part of the spectrum. However, averaging

way above ωm does not contain any further relevant information, because there is

no additional fast degree of freedom and one has e�ectively only slow time scales.

This amounts to the question how does the slow ω0 part interact with the ωm part

on the time scale Tc and which Magnus contributions with spectral factors cijk are

relevant 5.

5As always the intermediate regime between the adiabatic regime and the high-frequency regime
is di�cult to treat analytically.
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Figure 5.5: Comparison of the PSD from numerical results of the parametric oscilla-
tor to the PSD for the e�ective model. There is a shift of the resonance peak at the
eigenfrequency ω0 which is also featured in the analytical model. The model is an
e�ective low-energy model, therefore the resonance with its splitting at the driving
frequency ωm ± ω0 is not captured. However, the description is consistent for small
frequencies (zoom in the right panel). There is a redistribution of the spectral weight
towards higher frequencies. This e�ect is the reason for the reduced �uctuations in
the low-energy degrees of freedom. Ref.[25] reports about the similar e�ect for the
parametrically driven Josephson junction.7
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Figure 5.6: Comparison of the pp-PSD from numerical results of the parametric
oscillator to the PSD for the e�ective model. The e�ects are similiar to the ones
mentioned in the previous Fig. 5.5. The numerical data matches quantitatively and
qualitatively the analytical prediction for the renormalized harmonic oscillator as in
Fig. 5.5.

7In Ref.[25], which is about the Josephson junction system, the numerical simulation was per-
formed by my colleagues R.Höppner and B.Zhu. I contributed to the analytical computation of
the variances, which were solved by a direct exponential ansatz proposed by Prof. Ludwig Mathey.
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Figure 5.7: Mapping of the power spectra as a function of ω and the driving ampli-
tude A. The driving frequency is ωm/ω0 = 20. The brown lines indicate the shifted
�rst harmonic frequencies at ωm ± ωeff . The blue one is the e�ective frequency ωeff

according to Eq. (5.88). These lines perfectly follow the peaks in the PSD. At
A = 180 the peak from the e�ective frequency ωeff merges with the �rst side band
ωm−ωeff and the numerics breaks down. However, this plot illustrates the matching
of the analytical derived e�ective frequencies and the numerical simulations. The
similiar plot for the numerical data was �rst created by colleague Beilei Zhu in Ref.
[16]. The data here is my own.

The mapping of the power spectrum from Fig. 5.5 as a function of the frequency ω

and additionally the driving amplitude A yields Fig. 5.7. It shows how the sti�ened

e�ective eigenfrequency ωeff merges at critical driving amplitude Ac with the �rst

side band at the frequency ωm − ωeff . By setting the condition for the merging of

the frequency peaks one determines Ac, i.e,

ωm − ωeff(A) = ωeff(A) (5.120)

⇔ ωm = 2ωeff(A) (5.121)

= 2ω0

√
1 +

A2ω0
2

2ωm
2

+
2A2ω0

2

ωm
4

(
ω0

2 − γ2

4

)
+

9A4ω0
6

8ωm
6
. (5.122)

Equation (5.121) is the typical resonance condition for the parametric oscillator.

However the resonance is not matched by tuning the driving frequency but rather

83



by forcing the e�ective eigenfrequency ωeff(A) to match the condition. There one

may call it e�ective parametric resonance. The eigenfrequency has been derived in

the high frequency regime and under far o�-resonant conditions ωm � ω0. For large

driving amplitudes A� 1, the hierarchy of the frequencies breaks down, the power

broadened eigenfrequency matches the driving frequency. In Ref. [16], it was only

stated that accordingly the Magnus expansion breaks down, but the precise point is

determined by the e�ective parametric resonance.

In the second order of A one obtains a quadratic equation and takes the positive

real solution for Ac,2, i.e,

Ac,2 =

√
ωm

4

2ω0
4
− 2

ωm
2

ω0
2
. (5.123)

In the fourth order of A, one obtains a quartic equation and takes the positive real

solution for Ac,4, i.e,

Ac,4 =
1

3

√
ωm

2
√

2(11ωm
4 − 20ωm

2ω0
2 + 32ω0

4)

ω0
4

− 8ωm
2

ω0
2
− 2ωm

4

ω0
4
. (5.124)

The comparison with the numerical exact result Ac for a given value ωm/ω0 = 20

yields

Ac = 180 (5.125)

Ac,2 = 281 (5.126)

Ac,4 = 217. (5.127)

The numerical exact value Ac is read o� from the PSD map in Fig. 5.7. Hence the

fourth order Magnus correction shows the correct tendency, but there is a strong hint

that higher order Magnus contributions (e.g A6, . . . ) sti�en the e�ective frequency

ωeff even further, such that the merging occurs at around Ac = 180.
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Figure 5.8: Left panel shaded area (yellow) indicates the contribution to the low-
frequency part of variance from the PSD. The cut-o� frequency is set to ωc/ω0 = 8,
the driving frequency is ωm/ω0 = 20. Right panel the shaded area (red) reaches
up to the tails of the �rst harmonic resonance at ωm ± ω0. The cut-o� frequency
is ωc/ω0 = 15, the driving frequency is ωm/ω0 = 20. Due to the higher driving
amplitude A the splitting of the resonance peaks is larger and the tails of the shifted
resonance from ωm−ω0 reach towards lower frequencies. Hence the hierarchy of the
frequencies breaks down and one ends up with highly increased �uctuations.

One expects the variance to depend on the cut-o� frequency, as it is the Fourier

transform of the PSD. For the numerical data, the Fourier back transformation of

the PSD is performed with a frequency cut-o� ωc. Hence, one selects the frequency

contribution to the resulting variance. This is a crucial point, since the usual vari-

ance contains information from all the frequencies. The numerical variance from

PSD with cut-o� ensures comparability to the results of the e�ective model. This

can be seen in Fig. 5.5, the PSD for the analytical model lacks the resonance peaks

at ωm ± ω0, hence a contribution to the variance is missing. The redistribution of

the spectral weight towards higher frequencies in the right panel of Fig. 5.5 is the

remarkable feature in this plot. This feature gives rise to reduced �uctuations in the

low-energy degrees of freedom, which is con�rmed by the analytical results (brown

lines) in Fig. 5.9.

For the low-energy e�ective theory one derived the Magnus contributions, necces-
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Figure 5.9: Comparison of the analytical and numerical results for the variances
of x and p in thermal equilibrium Varth and in the e�ective steady state Vardr.
The quantities are normalized to the respective thermal equilibrium values in Eqs.
(5.96), (5.97). The driving frequency is ωm/ω0 = 20 and the cut-o� frequency for the
numerical computation of the variance is chosen to be ωc/ω0 = 8. The numerical
data of the driven system (brown line) diverges for large driving amplitudes A.
Again this point of the divergence at about A = 180 takes place when the e�ective
frequency ωeff merges with the �rst side band ωm − ωeff . The low-energy e�ective
theory (blue line) does not include this resonance since the assumption was ω0 was
far o�-resonant to ωm. However one runs into the resonance condition due to the
strong renormalization of the eigenfrequency Eq. (5.88). Since all contributions to
the analytically derived e�ective frequency Eq.(5.16) are positive, there is a decrease
of the variance with increasing driving amplitude A. Note that even for large A > 1
the agreement between the theoretical and numerical data is quanitatively correct.
This large range of validity for A arises from the perturbative expansion in terms of
(ω0/ωm)nAm < 1, so if the frequency ratio is small, the amplitude term can become
larger.
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sary to set up a time-independent e�ective operator. The Magnus expansion was

performed in the interaction picture. Afterwards, a perturbative back transforma-

tion into the Schrödinger picture yielded the constant contributions to the e�ective

operator. The compact formulas can be applied to various example systems. In the

case of the parametric oscillator one �nds a renormalization of the eigenfrequency

ω0.
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5.2 Parametrically driven Josephson junction with

alternative Magnus expansion

The parametrically driven harmonic oscillator model demonstrated how the alter-

native Magnus expansion works and showed agreement up to the order (ω0/om)4A4.

In this particular case, the results of the Magnus expansion are directly comparable

to the results from the straightforward ansatz given in Eq. (5.10). In this section

the complexity of the model is increased. Aiming for an e�ective description of a

driven superconductor, one considers a parametrically driven Josephson junction

with a full sin θ-potential. Originally this is related to the classical pendulum with

a parametric driving, also known as the Kaptiza pendulum [74]. The respective

Hamiltonian for the systems is

H = H0 +Hdr (5.128)

H0 =
Ec
2
n2 − J cos θ (5.129)

Hdr = Hd · f(t) = −J cos θ · f(t), (5.130)

with the two conjugate variables n and θ and the Poisson bracket [θ, n] = 1. n is the

density di�erence between the two sides of the junction and θ is the relative phase

of the densities between layers. f(t) is any kind of an amplitude driving protcol, for

the present case one assumes f(t) = A cosωmt. The formulas for the di�erent orders

of the low-energy e�ective Magnus contributions yield

Heff,1 = 0 (5.131)

Heff,2 = J
ω0

2A2

4ωm
2

sin2 θ +
ω0

4A2(3Ecn
2 + 4J cos θ)

4ωm
4

sin2 θ (5.132)

Heff,3 = 0 (5.133)

Heff,4 = J
ω0

6A4

ωm
6

(
9

16
sin2 θ − 161

384
sin4 θ

)
, (5.134)

with the de�nition of the Josephson plasmon frequency for a single junction ω0 =√
EcJ . Applying the addition theorems sinx sin y = 1/2 [cos(x− y)− cos(x+ y)]

and sinx cos y = 1/2 [sin(x− y) + sin(x+ y)] reduces the powers of the trigono-

metric functions in (5.131)-(5.134) which makes the upcoming computation of the

variance and other observables more convenient. The reshaped e�ective Hamiltonian
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is

Heff = J

(
ω0

2A2

8ωm
2

+
127ω0

6A4

1024ωm
6

)
+
Ec
2
n2

(
1 +

3ω0
4A2

4ωm
4

)
− J

(
1− ω0

4A2

4ωm
4

)
cos θ − J

(
ω0

2A2

8ωm
2

+
55ω0

6A4

768ωm
6

)
cos 2θ, (5.135)

where the higher harmonics proportional to cos 3θ, cos 4θ and the cross term n2 cos 2θ

were neglected, because the coe�cients become negligible compared to the second

order cos 2θ or n2J � J . Due to the nonlinear periodic cos-potential, the nested

Poisson brackets for the Magnus contributions, e.g. [sin θ, [cos θ, n]], never hit the

identity 1. Thus more and more higher harmonics appear in the higher orders of

the Magnus terms and a nontrivial potential landscape is created, whereas for the

parametric oscillator one just �nds an e�ective renormalization of the harmonic po-

tential frequency ω0.

This e�ective Hamiltonian has several interesting features. First of all, the para-

metric driving in J a�ects e�ectively Ec, as shown by the prefactor of Ec in Eq.

(5.135). Without an ansatz by just applying the alternative Magnus scheme for

certain parameters, the former instable point at θ = π can become a stable one.

Taking the second derivative of (5.135) with respect to θ and plugging in the two

extremal points {θ = 0, θ = π}, one obtains the conditions for the minima

∂2
θHeff |θ=0 = J

(
1 +

ω0
2A2

2ωm
2
− ω0

4A2

4ωm
4

+
55ω0

6A4

192ωm
6

)
> 0 (5.136)

∂2
θHeff |θ=π = J

(
−1 +

ω0
2A2

2ωm
2

+
ω0

4A2

4ωm
4

+
55ω0

6A4

192ωm
6

)
> 0. (5.137)

A and ωm are the parameters originating from the parametric driving J(t) = J(1 +

A cosωmt). The minimum at θ = 0 is also present in the undriven system with

A = 0. The second extremal point, which is a maximum for A = 0, only becomes a

minimum for

A ≥
√

8

55

√
ωm

2
√

3(3ω0
4 + 67ω0

2ωm
2 + 12ωm

4)

ω0
4

− 3ωm
2

ω0
2
− 6ωm

4

ω0
4
. (5.138)

The stabilization of a formerly instable point via driving is called dynamical stabi-

lization. In the present case, the dynamical stabilization in a Josephson junction is

achieved via parametric driving. Citro et al. derived a similar e�ect for the many-

body version [121].

The single junction is analogous to the Kapitza pendulum [74], a full non-linear

classic pendulum with a parametrically driven pivot. The stability analysis for the
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Kapitza pendulum involves a separation of time scales for a slowly varying and a

fastly oscillating contribution of the variable θ. Kapitza already predicted the oc-

curence of another minimum apart from θ = 0. The criterion for a second minimum

according to the Kapitza approach yields

A ≥

√
2ωm

2

ω0
2
. (5.139)

This is in accordance with Eq. (5.138). The leading-order correction of the e�ective

Hamiltonian yields the same result. By applying the alternative Magnus expansion

one has further access to the next order terms and can re�ne the condition for the

minimum.

5.2.1 E�ective distribution of the parametrically driven Joseph-

son junction

The known equilibrium distribution is

ρth(θ, n) =
1

Z
exp[−β(Ec/2n

2 − J cos θ)]. (5.140)

The time-independent e�ective Hamiltonian again allows for a quasi steady state

treatment in exponential form and yields

ρeff(θ, n) =
1

Zeff

exp[−βHeff ]. (5.141)

The distribution is illustrated for n = 0 in Fig. 5.10 with parameters such that the

side minimum occurs. The e�ective potential landscape in Eqs. (5.132) and (5.134)

provides further localization of the distribution around θ = 0 and θ = π, whereas

the density distribution around θ = π is strongly reduced. The strong enhancement

around θ = 0 is investigated by Taylor expanding the full e�ective Hamiltonian

H0 +Heff,2 +Heff,4 given in Eqs. (5.132),(5.134) and isolating the prefactor of θ2/2.

The resulting e�ective Josephson tunneling is

Jeff = J

(
1 +

ω0
2A2

2ωm
2

+
2ω0

4A2

ωm
4

+
9ω0

6A4

8ωm
6

)
> J. (5.142)

The expression ω0
2A2/2ωm

2 is exactly the leading order Kapitza term [122] and it is

also consistent with the term from the renormalized paramtric oscillator frequency

(5.71), as it should be. Yet, the Magnus expansion yields additional terms, which
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Figure 5.10: The e�ective steady state probability density distribution ρeff for a
parametrically driven Josesphson junction at n = 0 compared to the thermal equi-
librium one (red dashed). In the plot the condition for the side minimum (5.138) is
ful�lled and there is an enhanced probability density at θ = π. The general distri-
bution at θ = 0 is strongly enhanced, indicating that the renormalized is Jeff > J
(5.148). The parameters were Ec/J = T/J = 1, ωm/J = 10, J = 1, A = 20.

lead to an even deeper potential around θ = 0. Due to the enhanced probability

density around θ = 0 and θ = π the total density is more localized and thus can

be associated with an e�ectively more ordered and less thermally spread system.

For comprison the in�nite temperature distribution is totally �attened out and the

underlying periodic cosine-potential is negligible, as the distributed electron pairs

have enough energy to travel across the potential hills multiple times. At �nite

temperature and in the low-frequency regime, the e�ective terms next to the leading

order become relevant and enforce the e�ectively narrowed distribution, especially

for large drivings A > ωm/ω0.

Furthermore some of these terms do not only in�uence the distribution of θ, but also

the distribution of n. To illustrate this, the di�erence between the e�ective steady

state probability density distribution ρeff and the thermal one ρth is shown in Fig.

5.11.
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Figure 5.11: Di�erence between the e�ective steady state probability density dis-
tribution ρeff and the thermal one ρth. Close to θ = ±π/2 the nonequilibrium
distribution is reduced. The parameters were chosen to visualize all features
Ec/J = T/J = 1, ωm/J = 10, J = 1, A = 20.

5.2.2 Variance of the parametrically driven Josephson junc-

tion

Using the e�ective steady state distribution ρeff , the �uctuations of the current

∼ sin θ across a parametrically driven Josephson junction are computed analytically.

The result is then compared to the undriven thermally distributed system with

the underlying distribution ρth. The current �uctuations are related to the phase

sti�ness and phase correlations of a superconductor, see Eq. 1.8. In the context of

driven high-Tc superconductors the literature describes the e�ects of the driving as

transiently enhanced coherent transport or tunneling [4, 5, 6, 7, 11, 27, 28].

The equilibrium variance was already computed in (2.63) and is

V areq(sin θ) = 〈sin2 θ〉eq − 〈sin θ〉2eq =
T

J

I1[J/T ]

I0[J/T ]
. (5.143)

The In[x] is again the modi�ed Bessel function of nth order. In Chapter 2, so before

the introduction of the low-energy e�ective theory, the nonequilibrium distribution

for the overdamped case was approximated by the smart ansatz exp[f(θw, t)], where

f was

f(θw, t) =
Jw

T
[(1 + ac(t)) cos θw + as(t) sin θw] . (5.144)
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Figure 5.12: Mapping of the power spectral density of the current squared ∼ sin2 θ
of a driven Josephson junction as a function of ω and the driving amplitude A. The
blue line is the e�ective frequency ωeff , as deduced from a linear potential (5.148).
The dashed magenta lines indicate the �rst harmonic frequencies at ωm±ωeff . These
lines follow the peaks in the PSD for small amplitudes A. A similiar mapping of the
power spectral density of the parametric oscillator has been used by my colleague
Beilei Zhu in Ref. [16].
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The low-energy e�ective theory with the alternative Magnus scheme yields the fol-

lowing result

Heff = −J cos θ +
Ec

2
n2

+ J
ω0

2A2

4ωm
2

sin2 θ +
ω0

4A2(3Ecn
2 + 4J cos θ)

4ωm
4

sin2 θ

+ J
ω0

6A4

ωm
6

(
9

16
sin2 θ − 161

384
sin4 θ

)
. (5.145)

By means of this time-independent Hamiltonian one constructs an e�ective nonequi-

librium distribution ρeff = exp(−βHeff) and computes the variance of the Josephson

current accordingly, i.e.,

V areff(sin θ) = 〈sin2 θ〉eff − 〈sin θ〉2eff , (5.146)

Since the exponent of ρeff is slighly more complex, the lengthy expressions for the

variances will be ordered in powers of An and (ω0/ωm)m. The result for the variance

up the order n = 2 and m = 4 is

V areff(sin θ) =
T

J

I1[J/T ]

I0[J/T ]

(
1 +

ω0
2A2

ωm
2

3T

2J
− ω0

4A2

ωm
4

(
2 +

39T 2

2J2

))
+

TI1[J/T ]2

JI0[J/T ]2

(
ω0

2A2

4ωm
2
− ω0

4A2

ωm
4

5T

4J

)
+
ω0

4A2

ωm
4

39T

4J
− ω0

2A2

ωm
2

3

4
(5.147)

The analytical result for the variance with the Hamiltonian in the exponent Heff is

fully evaluated without any Taylor series and plotted in Fig. 5.13. Even for large

amplitudes up to A = 50 the analytical prediction has good qualitative and quanti-

tative agreement with the full numerical simulations. The variance of the current of

a parametrically driven Josephson junction can be reduced and therefore the phase

coherence between two layers of superconductors can be enhanced.

Numerically one should try to resolve the bump in the variance at A = 140 in Fig.

5.13 a little more, as this seems to be the crucial part where the resonance peaks

from linearized approximation suddenly stop and some new unknown frequencies

appear, see Fig.5.8. Maybe these e�ects are related to some phase slips in this non-

linear non-trivial cos potential landscape.

The application of the alternative Magnus expansion to parametrically driven

Josephson junction yields an e�ective system Hamiltonian Heff , which has several

interesting features. First o� all, a new side minimum at θ = π appears for critical

value of A. This is the Kapitza e�ect which is referred as dynamical stabilization,

where the former instable point θ = π becomes stable under the fast periodic driv-
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Figure 5.13: Variance of the Josephson current, which is proportional to sin θ plotted
versus the driving amplitude A. The key feature of the driven Josephson junction is
a reduction of the variance as a function of the driving amplitude A. The numerical
results for the thermal equilibrium (dark green line) and for the driven case (brown
line) quantitatively coincide with analytic predictions from the lower-energy e�ec-
tive theory. The analytic solution for the driven case (blue line) lacks the resonance
bump at A = 135, apart from that it accurately describes the variance for driving
amplitudes up to A = 50. The driving frequency ωm was 20 times the Josephson
plasmon frequency ωm/ωp = 20. In Ref. [25], my colleagues computed the vari-
ances numerically for the single Josephson junction system and the bulk system of
Josephson junctions. Here the numerical data for the single Josephson junction are
my own product.
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ing. So the Magnus expansion can automatically derive the Kapitza e�ect [121].

Furthermore due to the cos function the Magnus expansion generated higher and

higher harmonic potentials, e.g. cos 2θ, cos 3θ, whereas compared to the parametric

oscillator one only obtained a frequency renormalization. By linearizing the Heff

with respect to θ one estimates the renormalized e�ective Joesphson tunneling

Jeff = J

(
1 +

ω0
2A2

2ωm
2

+
2ω0

4A2

ωm
4

+
9ω0

6A4

8ωm
6

)
> J, (5.148)

and �nds an e�ective enhancement. As it is already known from nonequilibrium

distribution ρeff , the systems seem to favor the alignment of the relative phases

θ = 0 or for some critical driving amplitude also allow for an anti-alignment of

the phases, where other con�gurations of phases are further suppressed under the

driving.
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Chapter 6

Summary and conclusion

Phase �uctuations of the wave function of the order parameter play a crucial role in

highly anisotropic high Tc supercondcutors around the critical temperature. Based

on the Lawrence-Doniach model, the layered high Tc superconductors were described

as stacks of Josephson junctions. These Josephson junction arrays were considered

as a thermodynamic ensemble. The central extension is the addition of a time-

dependent external driving, which creates a state away from the equilibrium in these

materials. In order to study the e�ects the thesis presented an alternative Magnus

expansion, which is especially siutable in the high-frequency regime ωm � ω0.

At �rst the equilibrium distribution ρeq is directly analytically computed. This

probability distribution shows the spread of the relative phases of the order param-

eter between the layers at a given temperature T and allows to compute the phase

�uctuations. For the nonequilibrium situation a master equation was derived and

solved by a simple exponential ansatz. For the overdamped case it was analytically

shown that phase �uctuations in layered superconductors can be suppressed in the

presence of the driving [25], e�ectively enhancing the phase coherence between the

layers, supporting the observed experiments from [6, 7].

Inspired by the direct exponential solution, the idea was to �nd a general scheme for

solutions of driven systems. Therefore, the main result of this thesis is an alternative

Magnus expansion approach, which was used to derive Floquet Hamiltonians in the

high-frequency approximation. In Chapter 3 a formalism to derive e�ective gauge-

invariant Floquet Hamiltonians has been developed. This involved the introduction

of spectral factors from the nested integrals of the Magnus series such as

cklm =
1

3!(i~)2T

∫ t0+T

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3
(
eikωt1eilωt2eimωt3 + eikωt3eilωt2eimωt1

)
.

(6.1)
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To obtain the constant, t0-independent contributions, the condition k+l+m = 0 has

to be ful�lled. Given a time-dependent Hamiltonian system in Fourier decomposi-

tion H(t) =
∑

k e
ikωtHk, this method yields a short cut to the e�ective Hamiltonian

without the requirement of gauge transformations [15].

In Chapter 4 the Magnus series was perturbatively rearranged such that it pro-

vides a systematic expansion in the driving amplitude A and the inverse driving

frequency 1/ωm. Apart from having a systematic expansion, the alternative Magnus

expansion approach is a little more robust as compared to the standard Magnus

scheme, because the perturbation parameter is always a controllable polynomial of

(ω0/om)nAm. Especially in the high-frequency limit, this allows to study rather

large driving amplitudes A > 1.

Furthermore, a scheme and explicit formulas to construct the e�ective Floquet

Hamiltonian in the high-frequency limit up fourth order is presented. With these

closed formulas, one can then easily check whether a certain driving as non-trivial

impact on the low-frequency e�ective system. It also enables to test di�erent cou-

pling and driving scenarios by just substituting Ldr(t) = f(t)Ldr,0.

Applications of these general schemes are presented in Chapter 5. Applying the

alternative Magnus formalism to a linear master equation, the initial problem with

an explicitly time-dependent operator L(t) is approximated by an e�ective time-

independent operator L(t) ≈ Leff . Exploiting the exponential form of the solu-

tion, one approximates a putative steady-state distribution for example as ρdr =

exp[−βHeff ]. With time-independent operators for driven systems, one can transfer

concepts and techniques only available for time-independent systems to periodically

driven systems, as stated in Ref. [78].

As a �rst benchmark for the developed theory the Magnus expansion is explicitly

applied to the parametric oscillator, which led to an e�ectively renormalized har-

monic oscillator. This allowed to construct analytically a non-equilibrium power

spectral density for the low-frequency sector. The quantitative agreement of the

spectra from the full numerical simulation with solution from the Magnus expansion

just con�rms, that the scheme works.

Studying the parametric oscillator via the power spectra also revealed, that the re-

duced e�ective low-energy variance V ardr(x)<Varth(x) is caused by a redistribution of

the spectral weight towards higher frequencies. Analytically this is also con�rmed

by the dynamical stabilization of the renormalized eigenfrequency ωeff > ω0, see

Eq. (5.88). The redistribution of spectral weight can therefore be interpreted as an

e�ective cooling for the low-energy degrees of freedom. A related observation has

been reported in Ref. [25] for the driven Josephson junction.
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In the paper Ref. [16]1, the Magnus expansion is used to derive dynamical stabiliza-

tion and to provide an approach to the parametric instability. The breakdown of the

Magnus expansion indicates only a breakdown in the hierarchy of time scales which

is now explained in this thesis. It is demonstrated that the numercial observed in-

stability is nothing but the e�ective parametric resonance, namely the point where

the �rst side band meets the e�ective eigenfrequency

ωm − ωeff [A, ωm] = ωeff [A, ωm]. (6.2)

The e�ect is called e�ective parametric resonance, because it is not the driving fre-

quency ωm which is tuned to 2ω0, but the e�ective dressed eigenfrequency which

matches for some critical Acrit the resonance condition. Keep in mind that this

only happens for really large driving amplitudes A � 1, since one is usually in the

high-frequency o�-resonant regime ωm � ω0. The �nal result of the thesis is the

analytical derivation of the reduced phase �uctuations for the parametrically driven

Josephson junction. The e�ective Hamiltonian, which encompasses the renormaliza-

tion of system parameters and e�ects like dynamical stabilization, leads to enhanced

phase coherence between the layers of anisotropic superconductors and is a hint to-

wards the explanation of the transiently enhanced coherent transports in driven high

Tc materials such as YBCO, see also Refs. [6, 7, 8]. By means of the Magnus expan-

sion it was shown, that the non-equilibrium θ distribution of a parametrically driven

Josephson junction has an enhanced probability around θ = 0 or at the anti-aligned

θ = π. The distribution is increased around the two preferred phases and reduced

close to θ = ±π/2, this can be interpreted as an e�ective cooling or enhanced phase

coherence via an enhanced Josephson parameter Jeff > J .

The thesis provides an instruction how to compute e�ective Hamiltonians without

any elaborated ansatz up to the fourth order in Magnus terms and it also works for

nonlinear potentials. The only required input is the undriven system Hamiltonian

H0 and the driven system part Hdr(t) = f(t)Hdr,0 comprising a time-dependent driv-

ing protocol f(t) and a coupling to the system Hdr,0. Even the explicit knowledge

of the Floquet states is not required. By keeping formulas for the driving protocols

and the coupling general, this thesis provides an ideal test ground for driven systems

in the high frequency limit [17]. This allows for example to explore di�erent driving

scenarios for the cuprate superconductors such as an U(t), J(t) or simply a linear

coupling. With the growing number of pump-probe experiments and the advance-

ment in experimental techniques in cold atom systems and solid state systems, there

will be a broad spectrum of non-equilibrium setups which can be treated within the

1My contribution was to set up scheme and derive the formulas and prefactors. My former
supervisor Ludwig Mathey gave valuable hints and advice here.
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presented low-energy e�ective theory.

Possible further directions could be the extension of the scheme towards multi-mode

driving which is a further step towards Floquet engineering [14].
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Appendix A

Green's function for the externally

driven harmonic oscillator

In this section, the solution for the externally driven harmonic oscillator, i.e.,

θ̈s + γθ̇s + ω2
s θs = F (t). (A.1)

is derived. γ is a damping term and F (t) = F0 sinωmt is the external driving.

First, one solves the homogeneous di�erential equation

θ̈s + ω2
s θs + γθ̇s = 0 (A.2)

with the exponential ansatz

θs,hom = exp(iλt). (A.3)

Inserting (A.3) into Eq. (A.2) yields an algebraic equation for λ in the form

exp(iλt)(λ2 − iγλ− ω2
s )

!
= 0, (A.4)

(A.5)

which has the two solutions

λ± = i
γ

2
±
√
ω2

s −
γ2

4︸ ︷︷ ︸
ω

. (A.6)
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The general solution of the homogeneous problem is

θs,hom = e−
γ
2
t
(
Ãeiωt + B̃e−iωt

)
(A.7)

= e−
γ
2
t [A cos(ωt) +B sin(ωt)] (A.8)

where the unknown constants A and B are �xed by the initial conditions. In the next

step, one solves the inhomogeneous di�erential equation with the Green's function

formalism

θ̈s + γθ̇s + ω2
s θs = F (t) (A.9)

L̂θ = F (t) (A.10)

with the linear di�erential operator

L̂ =
d2

dt2
+ γ

d

dt
+ ω2

s . (A.11)

The fundamental solution is de�ned by the equation

L̂G(t) = δ(t). (A.12)

First one Fourier transforms Eq. (A.12) from the time domain to the frequency

domain

F
[
L̂G(t)

]
=

1√
2π

(A.13)

1√
2π

∫ ∞
−∞

eiλtL̂G(t) =
1√
2π

(A.14)

−
(
λ2 − iγλ− ω2

s

)
F [G(t)] =

1√
2π

(A.15)

G(t) = − 1√
2π

F−1

(
1

λ2 − iγλ− ω2
s

)
(A.16)

which means by performing the Fourier backtransform, one obtains the fundamental

solution

G(t) = −F−1

(
1

λ2 − iγλ− ω2
s

)
(A.17)

G(t) = − 1

2π

∫ ∞
−∞

eiλt

λ2 − iγλ− ω2
s

dλ. (A.18)
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Applying the residue theorem for integration in the complex plane yields

G(t) = lim
η→0
− 1

2π

∫ ∞
0

eiλ(t+iη)(
λ− iγ

2
− ω

) (
λ− iγ

2
+ ω

)dλ (A.19)

− 1

2π

∫ 0

−∞

eiλ(t−iη)(
λ− iγ

2
− ω

) (
λ− iγ

2
+ ω

)dλ (A.20)

= −2πi

2π

[
ei(i

γ
2

+ω) (λ− iγ
2
− ω

)(
λ− iγ

2
− ω

)
2ω

+
ei(i

γ
2
−ω) (λ− iγ

2
+ ω

)
−2ω

(
λ− iγ

2
+ ω

) ]
(A.21)

=
e−

γ
2
t

ω
sinωt (A.22)

G(t) = Θ(t)︸︷︷︸
for causality

e−
γ
2
t

ω
sinωt (A.23)

Now one can construct any solution for the inhomogeneous di�erential equation

(A.30) by folding the inhomogeneity with the fundamental solution

θs,inh =

∫ t

−∞
dt′G(t− t′)F (t′) (A.24)

= −e
− γ

2
tωm

ω

∫ t

−∞
dt′e−

γ
2
t′ sinω(t− t′)F0 sinωmt

′ (A.25)

=
ω2

mγF0

(ω2
s − ω2

m)2 + ω2
mγ

2
cosωmt−

ωm(ω2
s − ω2

m)F0

(ω2
s − ω2

m)2 + ω2
mγ

2
sinωmt. (A.26)

Hence the general solution to the inhomogeneous di�erential equation is given by

θs = θs,h + θs,inh (A.27)

= e−
γ
2
t

(
B1 cos

[√
ω2

s −
γ2

4
t

]
+B2 sin

[√
ω2

s −
γ2

4
t

])
(A.28)

+
ω2

mγF0

(ω2
s − ω2

m)2 + ω2
mγ

2
cosωmt−

ωm(ω2
s − ω2

m)F0

(ω2
s − ω2

m)2 + ω2
mγ

2
sinωmt, (A.29)

where the coe�cients B1 and B2 have to be determined by the initial conditions.

The Langevin equation for a harmonic oscillator with external driving is

θ̈s + γθ̇s + ω2
s θs + ξ = F (t). (A.30)

with the Gaussian white noise ξ and its noise correlation 〈ξ(t)ξ(t′)〉 = 2γmTδ(t− t′)
and expectation value 〈ξ(t)〉 = 0.

Hence, in order to solve the Langevin Equation (A.30) one has to fold the stochastic
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noise term with the fundamental solution

θs,inh,stoch =

∫ t

−∞
dt′G(t− t′)ξ(t′) (A.31)

and add this expression to the solution θs.
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Appendix B

Solution of the forced quartic (or

Du�ng) oscillator

The response of the high-frequency mode in Eq. (2.33) can be described analytically

via a Du�ng oscillator approximation

θ̈s ≈ −γ θ̇s − ωs
2

(
θs −

θs
3

6

)
+ F̃ + ξ +O(ωw

2), (B.1)

where the backaction of weak Josephson junction to strong Josephson junction has

been neglected, because for ωs � ωw the term ωw
2 sin θw is a rather weak perturba-

tion to the strong junction, than vice versa. The solution of (B.1) for the strongly

coupled degree of freedom θs then acts as driving term for the weak junction (2.40)

θ̈w = −γ θ̇w − ωw
2 sin θw +

(
ωs

2 sin θs − F̃ + ξ
)
. (B.2)

This section provides the stationary solution of a Du�ng oscillator which describes

the strong junction, i.e.,

θ̈s = −γ θ̇s − ωs
2

(
θs −

θs
3

6

)
+ F (t) . (B.3)

Introducing the van der Pol transformation leads to variables (u, v) rotating in the

(θs, θ̇s/ωm)-plane. The transformation is

u = θs cosωmt−
θ̇s

ωm

sinωmt (B.4)

v = −θs sinωmt−
θ̇s

ωm

cosωmt. (B.5)
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Taking the derivative of Eqs. (B.4), (B.5) with respect to t and substituting (B.3)

for θ̈s yields

u̇ = 1
ω

[−∆(u cosωmt− v sinωmt)− ωmγ(u sinωmt+ v cosωmt)

+ωs
2

6
(u cosωmt− v sinωmt)

3 − F (t)
]

sinωmt (B.6)

v̇ = 1
ω

[−∆(u cosωmt− v sinωmt)− ωmγ(u sinωmt+ v cosωmt)

+ωs
2

6
(u cosωmt− v sinωmt)

3 − F (t)
]

cosωmt (B.7)

where ∆ = ωm
2 − ωs

2.

Averaging (B.6) and (B.7) over the small period 2π/ωm we get equations for the

slow varying amplitudes u, v

u̇ =
1

2ωm

[
−ωmγu+ ∆v +

3

24
ωs

2
(
u2 + v2

)
v

]
(B.8)

v̇ =
1

2ωm

[
−∆u− ωmγv −

3

24
ωs

2
(
u2 + v2

)
u− F0

]
. (B.9)

Expressed in polar coordinates r =
√
u2 + v2 and φ = arctan(v/u) this amounts to

ṙ =
1

2ωm

(−ωmγr − F0 sinφ) (B.10)

rφ̇ =
1

2ωm

(
−∆r − 3

24
ωs

2r3 − F0 cosφ

)
. (B.11)

By checking the stationary states of (B.10), (B.11), one can analyze the response

of the strong junction to the periodic external applied �eld V (t) which leads to the

equation −ωmγr −

√
F 2

0 −
(
−∆r − 3

24
ωs

2r3

)2
 !

= 0 (B.12)

for the amplitude r. Note that, if the cubic expression in (B.12) is zero, the standard

solution to the amplitude of the harmonic oscillator is retrieved

r =
F0√

γ2ωm
2 + (ωm

2 − ωs
2)2

(B.13)

(B.14)

Taking into account the non-linearity, e.g., the cubic term, the amplitude r can

bifurcate, meaning for a certain given frequency ωb it has a high and low amplitude

solution.
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Appendix C

Generalization of the stroboscopic

time evolution

The non-stroboscopic time evolution for times which do not exactly match a multiple

of the driving period t 6= nT can be de�ned via

U(t2, t1) = U(t2, t0 + nT )eiHF [t0](t2−t0−nT )e−iHF [t0](t2−t0−nT )e−iHF [t0]nT ·
e−iHF [t0](t0−t1)eiHF [t0](t0−t1)U(t0, t1) (C.1)

= P (t2, t0)e−iHF [t0](t2−t1)P †(t1, t0) (C.2)

= e−iK[t0](t2)e−iHF (t1−t2)eiK[t0](t1). (C.3)

The unitary operator P , which does not necessarily come in exponential represen-

tation, is de�ned here as

P (t2, t0) = U(t2, t0)eiHF [t0](t2−t0) = e−iK[t0](t2). (C.4)

This implicitly de�nes the stroboscopic kick operator K[t0](t). The operator P

contains the dynamics of the fast varying contributions on time scales t < T

and yields a temporal translation such that one keeps the stroboscopic Floquet

Hamiltonian HF in the time evolution operator. By construction P is periodic, i.e,

P (t, t0) = P (t, t0 + nT ) = P (t + nT, t0) and ful�lls P (t0 + nT, t0) = I. Equation

(C.4) directly relates the stroboscopic kick operator K[t0](t) = i log[P (t, t0)] to the

fast varying motion operator P . Hence, K satis�es K[t0](t0 +nT ) = 0 for an integer

n.

By choosing one of the times t1 or t2 to coincide with t0, we reduce equation (C.2) by

one P operator This simpli�cation comes at a cost, namely the Floquet Hamiltonian

is either tied to the initial or �nal time of the evolution. Regarding experiments in

the high-frequency limit, the initial and �nal time of a measurement often �uctuate
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within a period, accordingly the Floquet Hamiltonian changes. In these cases, it

is more convenient to de�ne the Floquet Hamiltonian with respect to some �xed

Floquet gauge t0, independent of t1 and t2. In this way, the kick operators may

di�er, but the Floquet Hamiltonian HF for the "middle part" of the time evolution

remains unchanged.
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Appendix D

Numerics

This section provides a few remarks on a few techniques and assumptions for the

numerical computation.

D.1 De�nition of power spectral density (PSD)

For a stationary time random process X(t) the �rst moment ful�lls

mx[t] = 〈X[t]〉 = mx[t+ τ ] = 〈X[t+ τ ]〉 ∀ τ ∈ R (D.1)

and the centered second moment, the autocovariance, su�ces

acov[t, t′] = 〈(X[t]−mx[t])(X[t′]−mx[t
′])〉 = acov[t− t′, 0]. (D.2)

As usual, the expectation value 〈·〉 is understood as a trajectory or ensemble aver-

age. The �rst statement implies that the mean is constant. The second one states

that the autocovariance only depends on the time di�erence of t − t′. This is the

standard setting, for example, for the Gaussian white noise ξ with its properties

〈ξ(t)ξ(t′)〉 = 2γmTδ(t − t′) and mean 〈ξ(t)〉 = 0. It holds at thermal equilibrium.

If one considers driven noise, the statements no longer hold.

In this thesis, the Langevin equation is studied, which is a stochastic di�erential

equation with its noise term as external driving. Therefore, the solution of this

equation comprises generally three contributions -the deterministic homogeneous

part Xh,d(t), the deterministic inhomogeneous part Xi,d(t), the stochastic inhomo-

geneous part Xi,s(t).

The PSD is de�ned via the Fourier transform of the observable X(t)

X(ω) = lim
T→∞

1√
T

∫ T

0

X(t)e−iωtdt, (D.3)

109



namely

Sxx(ω) = 〈|X(ω)|2〉 =

〈
1

T

∫ T

0

X(t)e−iωtdt

∫ T

0

X(t′)e−iωt
′
dt′
〉
. (D.4)

Note here that t and t′ are independent variables. Numerically one considers the

case for t′ = t+ τ . This means technically one computes the quantity

Sxx(ω, τ) = 〈Xt(ω)Xt+τ (ω)〉, (D.5)

where the constant shift τ is a free parameter. The dependence on τ is shown for

the PSD from 〈sinx(t) sinx(t+ τ)〉 in Fig. (D.2). In order to obtain the PSD one

�rst ensemble averages the considered variable at each time slice tn. Afterwards the

time intervall is Fast Fourier transformed.

D.2 Remark on the FFT

The computation of the PSD involves the Fast Fourier transformation of the com-

puted trajectories x(t) and p(t). In some examples the numerical thermal equilib-

rium PSD did not match perfectly with the thermal analytical PSD. Also in the

driven case the thermal back ground was a little overrated. One reason for this is

the acquisition time for the Fourier sample, which leads to deviations in particular

in the high-frequency part. The acquisition time Tac limits the spectral resolution

df =
1

Tac

. (D.6)

In the example (D.2) the PSD of the parametric oscillator in the long term steady

state is studied. With longer acquisition times the PSD converges towards the

thermal equilibrium values

D.3 Remarks on PSDs

The numerical ensemble preparation consists of a large number of independent tra-

jectories, usually around 500-20000 depending on signal to noise ratio (SNR) needed

to provide useful data. The SNR is de�ned as

SNR =
µ

σ
(D.7)

where µ is the expectation value and σ ∝ 1/
√
N the standard deviation and N

the number of trajectories. This means the standard deviation gets smaller by the
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Figure D.1: PSD for a single Josephson junction computed from di�erent correlation
times 〈sinx(t) sinx(t+ τ)〉, here speci�ed as in terms of τ = 2πn/ω0 where n labels
the fraction of the period (last number in the plot labels). As expected the PSDs
strongly di�er in the high frequency part ω > 10ω0 of the spectrum but the low
frequency part is almost not a�ected. The plots show this e�ect for di�erent driving
amplitudes.
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Figure D.2: Acquisition time dependence of the PSD

factor 1/
√
N and the SNR grows as

√
N . In order to keep the computational time

handable the number of trajectories was limited to 20000.
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Appendix E

General fourth order Magnus term

This section summarizes the general fourth-order Magnus term after the backtrans-

formation into the Schrödinger picture. For a linear operator L(t) = L0 + f(t)Ldr,0

the fourth-order term assumes the form

L4 = exp[L0t]Ω̇4,I(t) exp[−L0t] (E.1)

=
1

12
exp[L0t]

∫
t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt4

([Ldr,I(t), [Ldr,I(t2), [Ldr,I(t3), Ldr,I(t4)]]] (E.2)

+[Ldr,I(t2), [Ldr,I(t3), [Ldr,I(t4), Ldr,I(t)]]] (E.3)

+[Ldr,I(t), [Ldr,I(t4), [Ldr,I(t3), Ldr,I(t2)]]] (E.4)

+[Ldr,I(t4), [Ldr,I(t3), [Ldr,I(t), Ldr,I(t2)]]]) exp[−L0t]. (E.5)

Omitting the common integral prefactor

1

12

∫ t

t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt4f(t)f(t2)f(t3)f(t4)·, (E.6)

one sorts the occurring expression according to their order in perturbation theory

of the back transformation into the Schrödinger picture. The nested commutators

only di�er by their time arguments. In particular, one can always exchange the

innermost commutator and just get a di�erent temporal argument and a negative

sign. For example, the line (E.2) has two contributions to the �rst order of the

perturbative back transformation to the Schrödinger picture, namely

[L4]
(1)
(E.2) = [Ldr,0, [Ldr,0, [Ldr,0

1, Ldr,0]]](t− t3) + [Ldr,0, [Ldr,0, [Ldr,0, Ldr,0
1]]](t− t4)

(E.7)

= [Ldr,0, [Ldr,0, [Ldr,0
1, Ldr,0]]](t4 − t3). (E.8)
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Collecting all the terms carefully, one arrives at

[L4](1)
0010 = [Ldr,0, [Ldr,0, [Ldr,0

1, Ldr,0]]]2(t2 − t3) (E.9)

for the �rst order contribution after the back transformation. The second order has

the following contributions

[L4](2)
0110 = [Ldr,0, [Ldr,0

1, [Ldr,0
1, Ldr,0]]]

× {(t− t2)(t4 − t3) + (t− t3)(t− t4) + (t− t4)(t2 − t3) + (t− t3)(t2 − t)}
(E.10)

[L4](2)
1010 = [Ldr,0

1, [Ldr,0, [Ldr,0
1, Ldr,0]]] {(t− t2)(t− t4) + (t− t4)(t2 − t)} (E.11)

[L4](2)
0020 =

1

2
Ldr,0, [Ldr,0, [Ldr,0

2, Ldr,0]]]2{(t− t3)2 − (t− t2)2}. (E.12)

The third order is a more involved, since one has to deal with di�erent orders

(1, 2, 3) in the perturbative back transformation on di�erent 'slots' in the nested

commutators

[L4](3)
0021 =

1

2
Ldr,0, [Ldr,0, [Ldr,0

2, Ldr,0
1]]]

×
{

(t− t3)2(t− t4)− (t− t4)2(t− t3) + (t− t3)2(t− t2)− (t− t2)2(t− t3)
}

(E.13)

[L4](3)
0120 =

1

2
[Ldr,0, [Ldr,0

1, [Ldr,0
2, Ldr,0]]]

×
{

(t− t2)[(t− t3)2 − (t− t4)2] + (t− t3)[(t− t4)2]

+(t− t4)[(t− t3)2 − (t− t2)2] + (t− t3)[−(t− t2)2]
}

(E.14)

[L4](3)
1020 =

1

2
[Ldr,0

1, [Ldr,0, [Ldr,0
2, Ldr,0]]]

×
{

(t− t2)[(t− t4)2] + (t− t4)[−(t− t2)2]
}

(E.15)

[L4](3)
0210 =

1

2
[Ldr,0, [Ldr,0

2, [Ldr,0
1, Ldr,0]]]

×
{

(t− t2)2(t4 − t3) + (t− t3)2(t− t4) + (t− t4)2(t2 − t3) + (t− t3)2(t2 − t)
}

(E.16)

[L4](3)
2010 =

1

2
[Ldr,0

2, [Ldr,0, [Ldr,0
1, Ldr,0]]]

×
{

(t− t2)2(t− t4) + (t− t4)2(t2 − t)
}

(E.17)

[L4](3)
0030 =

1

3!
[Ldr,0, [Ldr,0, [Ldr,0

3, Ldr,0]]]2{(t− t3)3 − (t− t2)3}. (E.18)
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The above expressions are the contributions to the fourth-order Magnus term. For

a better overview, the time-dependent coe�cients are speci�ed here as

C0010(t) =
1

12

∫ t

t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt4f(t)f(t2)f(t3)f(t4)2(t2 − t3) (E.19)

C0110(t) =
1

12

∫ t

t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt4f(t)f(t2)f(t3)f(t4)·

{(t− t2)(t4 − t3) + (t− t3)(t− t4) + (t− t4)(t2 − t3) + (t− t3)(t2 − t)}
(E.20)

C1010(t) =
1

12

∫ t

t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt4f(t)f(t2)f(t3)f(t4) {(t− t2)(t− t4) + (t− t4)(t2 − t)}

(E.21)

C0020(t) =
1

12

∫ t

t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt4f(t)f(t2)f(t3)f(t4){(t− t3)2 − (t− t2)2}

(E.22)

C0021(t) =
1

12

∫ t

t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt4f(t)f(t2)f(t3)f(t4)
1

2

×
{

(t− t3)2(t− t4)− (t− t4)2(t− t3) + (t− t3)2(t− t2)− (t− t2)2(t− t3)
}

(E.23)

C0120(t) =
1

12

∫ t

t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt4f(t)f(t2)f(t3)f(t4)
1

2

×
{

(t− t2)[(t− t3)2 − (t− t4)2] + (t− t3)[(t− t4)2]

+(t− t4)[(t− t3)2 − (t− t2)2] + (t− t3)[−(t− t2)2]
}

(E.24)

C1020(t) =
1

12

∫ t

t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt4f(t)f(t2)f(t3)f(t4)
1

2

×
{

(t− t2)(t− t4)2 − (t− t4)(t− t2)2
}

(E.25)

C0210(t) =
1

12

∫ t

t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt4f(t)f(t2)f(t3)f(t4)
1

2

×
{

(t− t2)2(t4 − t3) + (t− t3)2(t− t4)

+(t− t4)2(t2 − t3) + (t− t3)2(t2 − t)
}

(E.26)

C2010(t) = −C1020(t) (E.27)

C0030(t) =
1

12

∫ t

t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt4f(t)f(t2)f(t3)f(t4)
1

3
{(t− t3)3 − (t− t2)3}.

(E.28)

115



116



117



118



Bibliography

[1] Julian Struck, Malte Weinberg, Christoph Ölschläger, Patrick Windpassinger,
Juliette Simonet, Klaus Sengstock, Robert Höppner, Philipp Hauke, André
Eckardt, Maciej Lewenstein, et al. Engineering ising-xy spin-models in a tri-
angular lattice using tunable arti�cial gauge �elds. Nature Physics, 9(11):738�
743, 2013.

[2] Claudio Giannetti, Massimo Capone, Daniele Fausti, Michele Fabrizio, Ful-
vio Parmigiani, and Dragan Mihailovic. Ultrafast optical spectroscopy of
strongly correlated materials and high-temperature superconductors: a non-
equilibrium approach. Advances in Physics, 65(2):58�238, 2016.

[3] Daniele Nicoletti and Andrea Cavalleri. Nonlinear light�matter interaction at
terahertz frequencies. Advances in Optics and Photonics, 8(3):401�464, 2016.

[4] A Dienst, Matthias C Ho�mann, Daniele Fausti, Jesse C Petersen, S Pyon,
T Takayama, H Takagi, and Andrea Cavalleri. Bi-directional ultrafast electric-
�eld gating of interlayer charge transport in a cuprate superconductor. Nature
Photonics, 5(8):485, 2011.

[5] Daniele Fausti, RI Tobey, Nicky Dean, Stefan Kaiser, A Dienst, Matthias C
Ho�mann, S Pyon, T Takayama, H Takagi, and Andrea Cavalleri. Light-
induced superconductivity in a stripe-ordered cuprate. science, 331(6014):189�
191, 2011.

[6] Wanzheng Hu, Stefan Kaiser, Daniele Nicoletti, Cassandra R Hunt, Isabella
Gierz, Matthias C Ho�mann, M Le Tacon, T Loew, B Keimer, and Andrea
Cavalleri. Optically enhanced coherent transport in yba 2 cu 3 o 6.5 by ultra-
fast redistribution of interlayer coupling. Nature materials, 13(7):705, 2014.

[7] Stefan Kaiser, Cassandra R Hunt, Daniele Nicoletti, Wanzheng Hu, Isabella
Gierz, HY Liu, M Le Tacon, T Loew, D Haug, B Keimer, et al. Optically
induced coherent transport far above t c in underdoped yba 2 cu 3 o 6+ δ.
Physical Review B, 89(18):184516, 2014.

[8] Michael Först, A Frano, Stefan Kaiser, Roman Mankowsky, Cassandra R
Hunt, JJ Turner, GL Dakovski, MP Minitti, J Robinson, T Loew, et al. Fem-
tosecond x rays link melting of charge-density wave correlations and light-
enhanced coherent transport in yb a 2 c u 3 o 6.6. Physical Review B,
90(18):184514, 2014.

119



[9] Roman Mankowsky, Michael Först, and Andrea Cavalleri. Non-equilibrium
control of complex solids by nonlinear phononics. Reports on Progress in
Physics, 79(6):064503, 2016.

[10] R Mankowsky, M Fechner, M Först, A von Hoegen, J Porras, T Loew,
GL Dakovski, M Seaberg, S Möller, G Coslovich, et al. Optically induced
lattice deformations, electronic structure changes, and enhanced supercon-
ductivity in yba2cu3o6. 48. Structural Dynamics, 4(4):044007, 2017.

[11] Matteo Mitrano, Alice Cantaluppi, Daniele Nicoletti, Stefan Kaiser, A Pe-
rucchi, S Lupi, P Di Pietro, D Pontiroli, M Riccò, Stephen R Clark, et al.
Possible light-induced superconductivity in k 3 c 60 at high temperature. Na-
ture, 530(7591):461, 2016.

[12] Wanzheng Hu, D Nicoletti, AV Boris, B Keimer, and A Cavalleri. Optical
melting of the transverse josephson plasmon: A comparison between bilayer
and trilayer cuprates. Physical Review B, 95(10):104508, 2017.

[13] Andrea Cavalleri. Photo-induced superconductivity. Contemporary Physics,
59(1):31�46, 2018.

[14] Marin Bukov, Luca D'Alessio, and Anatoli Polkovnikov. Universal high-
frequency behavior of periodically driven systems: from dynamical stabiliza-
tion to �oquet engineering. Advances in Physics, 64(2):139�226, 2015.

[15] André Eckardt and Egidijus Anisimovas. High-frequency approximation for
periodically driven quantum systems from a �oquet-space perspective. New
Journal of Physics, 17(9):093039, 2015.

[16] Beilei Zhu, Tobias Rexin, and Ludwig Mathey. Magnus expansion approach to
parametric oscillator systems in a thermal bath. Zeitschrift für Naturforschung
A, 71(10):921�932, 2016.

[17] André Eckardt. Colloquium: Atomic quantum gases in periodically driven
optical lattices. Reviews of Modern Physics, 89(1):011004, 2017.

[18] Roman Mankowsky, Alaska Subedi, Michael Först, SO Mariager, M Chollet,
HT Lemke, JS Robinson, JM Glownia, MP Minitti, A Frano, et al. Nonlinear
lattice dynamics as a basis for enhanced superconductivity in yba2cu3o6. 5.
Nature, 516(7529):71�73, 2014.

[19] M Först, Roman Mankowsky, and Andrea Cavalleri. Mode-selective control of
the crystal lattice. Accounts of chemical research, 48(2):380�387, 2015.

[20] Andreas Komnik and Michael Thorwart. Bcs theory of driven superconduc-
tivity. The European Physical Journal B, 89(11):244, 2016.

[21] Zachary M Raines, Valentin Stanev, and Victor M Galitski. Enhancement
of superconductivity via periodic modulation in a three-dimensional model of
cuprates. Physical Review B, 91(18):184506, 2015.

120



[22] Aavishkar A Patel and Andreas Eberlein. Light-induced enhancement of super-
conductivity via melting of competing bond-density wave order in underdoped
cuprates. Physical Review B, 93(19):195139, 2016.

[23] Michael A Sentef, Akiyuki Tokuno, Antoine Georges, and Corinna Kollath.
Theory of laser-controlled competing superconducting and charge orders.
Physical review letters, 118(8):087002, 2017.

[24] Mehrtash Babadi, Michael Knap, Ivar Martin, Gil Refael, and Eugene Dem-
ler. Theory of parametrically ampli�ed electron-phonon superconductivity.
Physical Review B, 96(1):014512, 2017.

[25] Robert Hoeppner, Beilei Zhu, Tobias Rexin, Andrea Cavalleri, and L Mathey.
Redistribution of phase �uctuations in a periodically driven cuprate supercon-
ductor. Physical Review B, 91(10):104507, 2015.

[26] SJ Denny, SR Clark, Y Laplace, A Cavalleri, and D Jaksch. Proposed paramet-
ric cooling of bilayer cuprate superconductors by terahertz excitation. Physical
review letters, 114(13):137001, 2015.

[27] Jun-ichi Okamoto, Andrea Cavalleri, and Ludwig Mathey. Theory of enhanced
interlayer tunneling in optically driven high-t c superconductors. Physical
review letters, 117(22):227001, 2016.

[28] Jun-ichi Okamoto, Wanzheng Hu, Andrea Cavalleri, and Ludwig Mathey.
Transiently enhanced interlayer tunneling in optically driven high-t c super-
conductors. Physical Review B, 96(14):144505, 2017.

[29] H Kamerlingh Onnes. The resistance of pure mercury at helium temperatures.
Commun. Phys. Lab. Univ. Leiden, b, 120, 1911.

[30] Dirk Van Delft and Peter Kes. The discovery of superconductivity. Physics
Today, 63(9):38�43, 2010.

[31] George F Hardy and John K Hulm. Superconducting silicides and germanides.
Physical Review, 89(4):884, 1953.

[32] JR Gavaler. Superconductivity in nb�ge �lms above 22 k. Applied Physics
Letters, 23(8):480�482, 1973.

[33] John Bardeen. J. bardeen, ln cooper, and jr schrie�er, phys. rev. 108, 1175
(1957). Phys. Rev., 108:1175, 1957.

[34] LD Landau. 545; vl ginzburg and ld landau. Zh. Eksp. Teor. Fiz, 20:1064,
1950.

[35] Anthony J Leggett. Quantum liquids: Bose condensation and Cooper pairing
in condensed-matter systems. Oxford University Press, 2006.

[36] Lev Petrovich Gor'kov. Microscopic derivation of the ginzburg-landau equa-
tions in the theory of superconductivity. Sov. Phys. JETP, 9(6):1364�1367,
1959.

121



[37] David Dew-Hughes. The critical current of superconductors: an historical
review. Low Temperature Physics, 27(9):713�722, 2001.

[38] Fritz London and Heinz London. The electromagnetic equations of the supra-
conductor. Proc. R. Soc. Lond. A, 149(866):71�88, 1935.

[39] W Meissner and R Ochsenfeld. A new e�ect in penetration of superconductors.
Die Naturwissenschaften, 21:787�788, 1933.

[40] Thorsten Fredrick Stromberg. The superconducting properties of high purity
niobium. 1965.

[41] J George Bednorz and K Alex Müller. Possible hight c superconductivity in
the ba- la- cu- o system. Zeitschrift für Physik B Condensed Matter, 64(2):189�
193, 1986.

[42] A Schilling, M Cantoni, JD Guo, and HR Ott. Superconductivity above 130
k in the hg�ba�ca�cu�o system. Nature, 363(6424):56, 1993.

[43] Alexey Y Ganin, Yasuhiro Takabayashi, Yaroslav Z Khimyak, Serena Mar-
gadonna, Anna Tamai, Matthew J Rosseinsky, and Kosmas Prassides. Bulk
superconductivity at 38 k in a molecular system. Nature materials, 7(5):367,
2008.

[44] Yoichi Kamihara, Takumi Watanabe, Masahiro Hirano, and Hideo Hosono.
Iron-based layered superconductor la [o1-x f x] feas (x= 0.05- 0.12) with t c=
26 k. Journal of the American Chemical Society, 130(11):3296�3297, 2008.

[45] modi�ed and saved as png. Illustration from wikipedia.
https://commons.wikimedia.org/wiki/File:Ybco.jpg.

[46] T Valla, AV Fedorov, PD Johnson, BO Wells, SL Hulbert, Qiang Li, GD Gu,
and N Koshizuka. Evidence for quantum critical behavior in the optimally
doped cuprate bi2sr2cacu2o8+ δ. Science, 285(5436):2110�2113, 1999.

[47] J Orenstein and AJ Millis. Advances in the physics of high-temperature su-
perconductivity. Science, 288(5465):468�474, 2000.

[48] Anthony J Leggett. What do we know about high t c? Nature Physics,
2(3):134, 2006.

[49] VJ Emery and SA Kivelson. Importance of phase �uctuations in supercon-
ductors with small super�uid density. Nature, 374(6521):434�437, 1995.

[50] SD Brorson, A Kazeroonian, JS Moodera, DW Face, TK Cheng, EP Ippen,
MS Dresselhaus, and G Dresselhaus. Femtosecond room-temperature measure-
ment of the electron-phonon coupling constant γ in metallic superconductors.
Physical Review Letters, 64(18):2172, 1990.

[51] RD Averitt, G Rodriguez, AI Lobad, JLW Siders, SA Trugman, and AJ Taylor.
Nonequilibrium superconductivity and quasiparticle dynamics in yba 2 cu 3 o
7- δ. Physical Review B, 63(14):140502, 2001.

122



[52] Gino P Segre, Nuh Gedik, Joseph Orenstein, Doug A Bonn, Ruixing Liang,
and Walter N Hardy. Photoinduced changes of re�ectivity in single crystals of
yba 2 cu 3 o 6.5 (ortho ii). Physical review letters, 88(13):137001, 2002.

[53] S Dal Conte, CLAUDIO Giannetti, Giacomo Coslovich, Federico Cilento, Da-
vide Bossini, Tadesse Abebaw, FRANCESCO Ban�, Gabriele Ferrini, Hiroshi
Eisaki, Martin Greven, et al. Disentangling the electronic and phononic glue
in a high-tc superconductor. Science, 335(6076):1600�1603, 2012.

[54] WE Lawrence and S Doniach. Proceedings of the 12th international conference
on low temperature physics. 1971.

[55] L Bulaevskii and John R Clem. Vortex lattice of highly anisotropic lay-
ered superconductors in strong, parallel magnetic �elds. Physical Review B,
44(18):10234, 1991.

[56] LN Bulaevskii, M Zamora, D Baeriswyl, H Beck, and John R Clem. Time-
dependent equations for phase di�erences and a collective mode in josephson-
coupled layered superconductors. Physical Review B, 50(17):12831, 1994.

[57] Mihail D Croitoru and Alexandre I Buzdin. Extended lawrence-doniach model:
The temperature evolution of the in-plane magnetic �eld anisotropy. Physical
Review B, 86(22):224508, 2012.

[58] Denis Feinberg, Stavros Theodorakis, and Abdel Mouneim Ettouhami. Model
for layered superconductors: From josephson coupling to three-dimensional
behavior. Physical Review B, 49(9):6285, 1994.

[59] Alexei E Koshelev and Matthew JW Dodgson. Josephson vortex lattice in
layered superconductors. Journal of Experimental and Theoretical Physics,
117(3):449�479, 2013.

[60] CS Owen and DJ Scalapino. Vortex structure and critical currents in josephson
junctions. Physical Review, 164(2):538, 1967.

[61] Dirk van der Marel and A Tsvetkov. Transverse optical plasmons in layered
superconductors. Czechoslovak Journal of Physics, 46(6):3165�3168, 1996.

[62] L Benfatto, C Castellani, and Thierry Giamarchi. Doping dependence of
the vortex-core energy in bilayer �lms of cuprates. Physical Review B,
77(10):100506, 2008.

[63] VJ Emery and SA Kivelson. Crossovers and phase coherence in cuprate super-
conductors. Journal of Physics and Chemistry of Solids, 59(10-12):1705�1710,
1998.

[64] TP Devereaux, A Virosztek, and A Zawadowski. Charge-transfer �uctuation,
d-wave superconductivity, and the b 1 g raman phonon in cuprates. Physical
Review B, 51(1):505, 1995.

123



[65] EW Carlson, SA Kivelson, VJ Emery, and E Manousakis. Classical phase
�uctuations in high temperature superconductors. Physical review letters,
83(3):612, 1999.

[66] S Jonathan Chapman, Qiang Du, and Max D Gunzburger. On the lawrence�
doniach and anisotropic ginzburg�landau models for layered superconductors.
SIAM Journal on Applied Mathematics, 55(1):156�174, 1995.

[67] Zhiming Chen, K-H Ho�mann, and Lishang Jiang. On the lawrence�doniach
model for layered superconductors. European Journal of Applied Mathematics,
8(4):369�387, 1997.

[68] Alaska Subedi, Andrea Cavalleri, and Antoine Georges. Theory of non-
linear phononics for coherent light control of solids. Physical Review B,
89(22):220301, 2014.

[69] Ali H Nayfeh and Dean T Mook. Nonlinear oscillations. John Wiley & Sons,
2008.

[70] Nicolaas Godfried Van Kampen. Stochastic processes in physics and chemistry,
volume 1. Elsevier, 1992.

[71] HA Kramers. Ha kramers, physica 7, 284 (1940). Physica, 7:284, 1940.

[72] Hannes Risken. Fokker-planck equation. In The Fokker-Planck Equation.
Springer, 1996.

[73] M Matti Maricq. Equilibrium in periodically time-dependent two-level sys-
tems. Physical review letters, 56(14):1433, 1986.

[74] P.L. Kapitza. Dynamic stability of a pendulum when its point of suspension
vibrate. Soviet Phys. JETP, 21:588�592, 1951.

[75] Saar Rahav, Ido Gilary, and Shmuel Fishman. Time independent description
of rapidly oscillating potentials. Physical review letters, 91(11):110404, 2003.

[76] Wolfgang Paul. Electromagnetic traps for charged and neutral particles. Re-
views of modern physics, 62(3):531, 1990.

[77] Q Su and JH Eberly. Suppression of ionization and atomic electron localization
by short intense laser pulses. Physical Review A, 43(5):2474, 1991.

[78] Martin Holthaus. Floquet engineering with quasienergy bands of periodically
driven optical lattices. Journal of Physics B: Atomic, Molecular and Optical
Physics, 49(1):013001, 2015.

[79] N Goldman and J Dalibard. Periodically driven quantum systems: e�ective
hamiltonians and engineered gauge �elds. Physical Review X, 4(3):031027,
2014.

124



[80] EB Feldman, AK Hitrin, and BN Provotorov. On the equivalence of di�er-
ent e�ective hamiltonians which determine the dynamics of a spin system in
rapidly oscillating periodic �elds. Physics Letters A, 99(2-3):114�116, 1983.

[81] Saar Rahav, Ido Gilary, and Shmuel Fishman. E�ective hamiltonians for
periodically driven systems. Physical Review A, 68(1):013820, 2003.

[82] Luca D'Alessio and Marcos Rigol. Long-time behavior of isolated periodically
driven interacting lattice systems. Physical Review X, 4(4):041048, 2014.

[83] M Matti Maricq. Application of average hamiltonian theory to the nmr of
solids. Physical Review B, 25(11):6622, 1982.

[84] Felix Bloch. Über die quantenmechanik der elektronen in kristallgittern.
Zeitschrift für Physik A Hadrons and Nuclei, 52(7):555�600, 1929.

[85] AK Khitrin, Jiadi Xu, and Ayyalusamy Ramamoorthy. Coherent averaging in
the frequency domain. The Journal of chemical physics, 136(21):214504, 2012.

[86] L.D. Landau and E.M. Lifshitz. Mechanics. Pergamon Press, 1:95, 1969.

[87] Sergio Blanes, Fernando Casas, JA Oteo, and José Ros. The magnus expansion
and some of its applications. Physics Reports, 470(5):151�238, 2009.

[88] Wilhelm Magnus. On the exponential solution of di�erential equations for a
linear operator. Communications on pure and applied mathematics, 7(4):649�
673, 1954.

[89] André Nauts and Robert E Wyatt. Theory of laser-molecule interaction: The
recursive-residue-generation method. Physical Review A, 30(2):872, 1984.

[90] TP Grozdanov and MJ Rakovi¢. Quantum system driven by rapidly varying
periodic perturbation. Physical Review A, 38(4):1739, 1988.

[91] M Matti Maricq. Relaxation and equilibrium of a spin system coupled to a
radiation �eld. Physical Review B, 37(13):7215, 1988.

[92] Heinz Peter Breuer and Martin Holthaus. A semiclassical theory of quasiener-
gies and �oquet wave functions. Annals of Physics, 211(2):249�291, 1991.

[93] Malay Bandyopadhyay and Sushanta Dattagupta. Quantum mechanics of
rapidly and periodically driven systems. Pramana�J. Phys, 70(3), 2008.

[94] Albert Verdeny, Andreas Mielke, and Florian Mintert. Accurate e�ective
hamiltonians via unitary �ow in �oquet space. Physical review letters,
111(17):175301, 2013.

[95] Freeman J Dyson. The radiation theories of tomonaga, schwinger, and feyn-
man. Physical Review, 75(3):486, 1949.

[96] Richard P Feynman. An operator calculus having applications in quantum
electrodynamics. Physical Review, 84(1):108, 1951.

125



[97] Sergio Blanes, Fernando Casas, JA Oteo, and J Ros. A pedagogical approach
to the magnus expansion. European Journal of Physics, 31(4):907, 2010.

[98] Matthias W Reinsch. A simple expression for the terms in the baker�campbell�
hausdor� series. Journal of Mathematical Physics, 41(4):2434�2442, 2000.

[99] S Klarsfeld and JA Oteo. The baker-campbell-hausdor� formula and the con-
vergence of the magnus expansion. Journal of Physics A: Mathematical and
General, 22(21):4565, 1989.

[100] RM Wilcox. Exponential operators and parameter di�erentiation in quantum
physics. Journal of Mathematical Physics, 8(4):962�982, 1967.

[101] D Prato and PW Lamberti. A note on magnus formula. The Journal of
chemical physics, 106(11):4640�4643, 1997.

[102] DP Burum. Magnus expansion generator. Physical Review B, 24(7):3684,
1981.

[103] S Klarsfeld and JA Oteo. Recursive generation of higher-order terms in the
magnus expansion. Physical Review A, 39(7):3270, 1989.

[104] Philip Pechukas and John C Light. On the exponential form of time-
displacement operators in quantum mechanics. The Journal of Chemical
Physics, 44(10):3897�3912, 1966.

[105] I Bialynicki-Birula, B Mielnik, and J Pleba«ski. Explicit solution of the con-
tinuous baker-campbell-hausdor� problem and a new expression for the phase
operator. Annals of Physics, 51(1):187�200, 1969.

[106] WAB Evans. On some applications of the magnus expansion in nuclear mag-
netic resonance. Annals of Physics, 48(1):72�93, 1968.

[107] U Haeberlen and JS Waugh. Coherent averaging e�ects in magnetic resonance.
Physical Review, 175(2):453, 1968.

[108] Albert Verdeny, Lukasz Rudnicki, Cord A Müller, and Florian Mintert. Op-
timal control of e�ective hamiltonians. Physical review letters, 113(1):010501,
2014.

[109] Fernando Casas. Su�cient conditions for the convergence of the magnus ex-
pansion. Journal of Physics A: Mathematical and Theoretical, 40(50):15001,
2007.

[110] F Casas, JA Oteo, and J Ros. Floquet theory: exponential perturbative
treatment. Journal of Physics A: Mathematical and General, 34(16):3379,
2001.

[111] Per Christian Moan and Jitse Niesen. Convergence of the magnus series.
Foundations of Computational Mathematics, 8(3):291�301, 2008.

126



[112] M Matti Maricq. Convergence of the magnus expansion for time dependent
two level systems. The Journal of chemical physics, 86(10):5647�5651, 1987.

[113] EB Fel'dman. On the convergence of the magnus expansion for spin systems
in periodic magnetic �elds. Physics Letters A, 104(9):479�481, 1984.

[114] Francisco M Fernández. Convergence of the magnus expansion. Physical Re-
view A, 41(5):2311, 1990.

[115] WR Salzman. An alternative to the magnus expansion in time-dependent
perturbation theory. The Journal of chemical physics, 82(2):822�826, 1985.

[116] Luca D'Alessio and Anatoli Polkovnikov. Many-body energy localization tran-
sition in periodically driven systems. Annals of Physics, 333:19�33, 2013.

[117] Anatoli Polkovnikov. Phase space representation of quantum dynamics. An-
nals of Physics, 325(8):1790�1852, 2010.

[118] Milton Abramowitz, Irene A Stegun, et al. Handbook of mathematical func-
tions: with formulas, graphs, and mathematical tables, volume 55. Dover
publications New York, 1972.

[119] J Casas-Vázquez and D Jou. Temperature in non-equilibrium states: a review
of open problems and current proposals. Reports on Progress in Physics,
66(11):1937, 2003.

[120] Gaston Floquet. Sur les équations di�érentielles linéaires à coe�cients péri-
odiques. 12:47�88, 1883.

[121] Roberta Citro, Emanuele G Dalla Torre, Luca D'Alessio, Anatoli Polkovnikov,
Mehrtash Babadi, Takashi Oka, and Eugene Demler. Dynamical stability of a
many-body kapitza pendulum. Annals of Physics, 360:694�710, 2015.

[122] P.L. Kapitza. Dynamical stability of a many-body kapitza pendulum. Usp.
Fiz. Nauk, 44:7�15, 1951.

127



128



Muchas gracias

Eigentlich bin ich kein Fan von viel Pathos, aber ein paar Menschen lassen mich
nicht daran vorbeikommen.

Michael, ich ziehe meinen Hut vor so einer groÿen aufrichtigen Persönlichkeit
Paulina, du hast mich ausgehalten

meiner Familie

129



130



Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, die vorliegende Dissertationsschrift selbst ver-
fasst und keine anderen als die angegebenen Hilfsmittel und Quellen benutzt zu
haben.

Die eingereichte schriftliche Fassung entspricht der auf dem elektronischen Speicher-
medium.

Die Dissertation wurde in der vorgelegten oder einer ähnlichen Form nicht schon
einmal in einem früheren Promotionsverfahren angenommen oder als ungenügend
beurteilt.

Hamburg, den 28. Juni 2019

Tobias Rexin

131


	Introduction 
	Normal and high Tc superconductors
	Ginzburg-Landau theory
	BCS theory
	Unconventional supercondcutors

	Experiments on driven high-TC-superconductors

	Modeling driven high Tc superconductors
	Phenomenological modelling of layered superconducting materials
	Time-dependent driving
	Parameter ranges
	Classical two-oscillator toy model

	Langevin approach and Fokker-Planck equation
	Langevin equation
	Renormalized driving for the weak junction
	Non-linear feedback for the weak junction
	Overdamped regime and Fokker-Planck equation
	Generalization to Kramers equation (KE)


	Fundamentals of driven systems
	Time-dependent driving
	Floquet theory and Magnus expansion
	Floquet Hamiltonian
	High frequency expansion and Magnus series
	Generalization to closed and open classical systems
	Validity and limitations of the low-energy effective theory


	Alternative Magnus expansion
	Effective low-energy theory
	Systematic expansion in the driving field strength and the inverse driving frequency
	Interaction picture and back transformation

	Summary

	Applications of the alternative Magnus expansion
	The classical and quantum parametric oscillator
	Floquet approach
	Alternative Magnus approach to the isolated quantum parametric oscillator 
	Alternative Magnus expansion for the classical parametric oscillator with heat beath
	Variances and comparison to numerics

	Parametrically driven Josephson junction with alternative Magnus expansion
	Effective distribution of the parametrically driven Josephson junction
	Variance of the parametrically driven Josephson junction


	Summary and conclusion
	Green's function for the externally driven harmonic oscillator
	Solution of the forced quartic (or Duffing) oscillator
	Generalization of the stroboscopic time evolution
	Numerics
	Definition of power spectral density (PSD) 
	Remark on the FFT
	Remarks on PSDs

	General fourth order Magnus term
	Bibliography
	Acknowledgement
	Affirmation

