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Abstract

Traditional seismic processing has often been steered toward the imaging of seismic reflections.
However, in the recent years, the diffracted wavefield, often weak and therefore hidden behind
high-amplitude reflections, has gained increasing importance. As diffractions are caused by struc-
tures smaller than the predominant seismic wavelength, they are often related to complex geo-
logical features such as faults, edges or pinch-outs. Still, diffractions are not only interesting from
a structural viewpoint, but also due to their unique physical properties. Unlike a reflected wave,
which honors Snell’s law and is reflected under its incidence angle, a diffracted wave is scattered
into all directions independent of its incidence angle. Therefore, in the context of seismic imag-
ing, a diffracted wave connected to the same scattering object in the subsurface can be measured
along large parts of the recording surface and thus contains a significant amount of information
about the traversed structures. This work aims to utilize these unique physical properties of
seismic diffractions for the enhancement of prestack data and for improved tomographic velocity
model building for both multi-channel and single-channel data. The mentioned methods rely on
the so-called wavefront attributes, which are a by-product of multi-parameter stacking schemes
such as the zero-offset common-reflection-surface stack. In the diffraction case, these attributes
describe the emergence angle and the curvature of the wavefront measured at the surface. They
are encoded in the first and second derivatives of the traveltime moveout, which – in constrast to
the reflection case – for diffractions can be measured in a zero-offset section. This property can be
exploited for the imaging of diffractions in the whole prestack data cube by composing any set of
finite-offset attributes out of two independent sets of zero-offset attributes originating from the
same diffracting structure. Beyond imaging, zero-offset wavefront attributes are also the input
for wavefront tomography, an efficient and stable method for the joint estimation of smooth ve-
locity models and the localization of measurements in depth. In the past, wavefront tomography
has been applied mainly to reflected measurements. I suggest, however, to utilize diffractions in
the inversion process. While results for simple synthetic data show the potential of diffractions,
an application to industrial field data suggests that a joint inversion of high-amplitude reflections
and low-amplitude diffractions can help to increase the lateral resolution of the obtained velocity
models. As a next step, in order to further exploit the properties of diffractions, I propose to
enforce the focusing of back-propagated diffracted measurements with the same origin in depth.
A requirement for this idea is the a priori identification of all measurements that belong to the
same subsurface region. For this purpose, I introduce an event tagging algorithm, which auto-
matically analyzes the local similarity of wavefront attributes and assigns a numerical tag to each
diffraction found in the data. Finally, I introduce diffraction wavefront tomography, a modified
implementation of the conventional inversion scheme, in which all diffractions with the same
tag are forced to focus in depth. The modified algorithm reduces the dependency of wavefront
tomography on second-order attributes and evolves into a zero-offset slope tomography, if they
are not taken into account. Results for synthetic diffraction data with vertical and lateral hetero-
geneity suggest that the new approach, which is likewise applicable to passive seismic data, may
offer increased stability in laterally heterogeneous settings.
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Zusammenfassung

Traditionelle seismische Datenbearbeitung ist häufig auf die Abbildung seismischer Reflexionen
ausgerichtet. In den letzten Jahren hat jedoch das diffraktierte Wellenfeld, welches oft schwach
und daher von hochamplitudigen Reflexionen überlagert ist, eine erhöhte Aufmerksamkeit er-
langt. Da Diffraktionen von Strukturen kleiner als die vorherrschende seismische Wellenlän-
ge verursacht werden, stehen sie oft in Zusammenhang mit komplexen geologischen Struktu-
ren wie Verwerfungen, Kanten oder stratigraphischen Fallen. Diffraktionen sind jedoch nicht
nur aus einem strukturellen Blickwinkel interessant, sondern auch aufgrund ihrer einzigarti-
gen physikalischen Eigenschaften. Im Gegensatz zu einer reflektierten Welle, die dem Snelli-
usschen Brechnungsgesetz unterliegt und unter ihrem Einfallswinkel reflektiert wird, wird eine
diffraktierte Welle unabhängig von ihrem Einfallswinkel in alle Richtungen gestreut. Im Kon-
text seismischer Abbildungsverfahren kann daher eine diffraktierte Welle, die zu demselben Un-
tergrundobjekt gehört, entlang eines Großteils des Messbereichs an der Oberfläche registriert
werden und enthält zudem sehr viele Informationen über die durchquerten Strukturen. Das
Ziel dieser Arbeit ist es, diese einzigartigen physikalischen Eigenschaften seismischer Diffraktio-
nen für die Charakterisierung ungestapelter Daten und für eine verbesserte tomographische Ge-
schwindigkeitsmodellbestimmung sowohl für Mehrkanal- als auch für Einkanaldaten auszunut-
zen. Die erwähnten Methoden basieren auf sogenannten Wellenfrontattributen, die ein Neben-
produkt vonMultiparameter-Stapelmethoden wie dem Zero-Offset-Common-Reflection-Surface-
Stack sind. Im Fall einer Diffraktion beschreiben diese Attribute den Auftauchwinkel und den
Radius der an der Oberfläche gemessenen Wellenfront. Sie können aus den ersten und zweiten
Ableitungen des seismischen Moveouts extrahiert werden, welcher für Diffraktionen – im Ge-
gensatz zu Reflexionen – in der Zero-Offset-Sektion gemessen werden kann. Diese Eigenschaft
kann für die Abbildung von Diffraktionen in den gesamten ungestapelten Daten ausgenutzt wer-
den, indem jeder Finite-Offset-Attributsatz aus einem Paar von Zero-Offset-Attributsätzen kom-
biniert wird, die von derselben diffraktierenden Untergrundstruktur stammen. Des Weiteren
sind Zero-Offset-Wellenfrontattribute die Basis für Wellenfront-Tomographie, eine effiziente und
stabile Methode für die Bestimmung glatter Geschwindigkeitsmodelle und die gleichzeitige Loka-
lisierung der Messungen im Untergrund. In der Vergangenheit wurde Wellenfront-Tomographie
hautpsächlich auf Reflexionsmessungen angewandt. Ich schlage hingegen vor, auch Diffraktionen
für die Inversion zu nutzen. Während Ergebnisse für simple, synthetische Diffraktionsdaten das
Potenzial von Diffraktionen zeigen, suggeriert eine Anwendung auf industrielle Felddaten, dass
eine gleichzeitige Inversion von hochamplitudigen Reflexionen und niedrigamplitudigen Diffrak-
tionen dazu beitragen kann, die laterale Auflösung der resultierenden Geschwindigkeitsmodelle
zu erhöhen. Um die Eigenschaften von Diffraktionen weiter auszunutzen, besteht der nächste
Schritt darin, die Fokussierung zurückpropagierter Diffraktionsmessungen mit demselben Ur-
sprung im Untergrund zu erzwingen. Eine Voraussetzung für diese Idee ist die vorhergehende
Identifizierung aller Messungen, die zu derselben Untergrundregion gehören. Zu diesem Zweck
führe ich einen Event-Tagging-Algorithmus ein, der automatisch die lokale Ähnlichkeit der Wel-
lenfrontattribute analysiert und jeder Diffraktion in den Daten einen numerischen Tag zuordnet.
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Schließlich führe ich Diffraktions-Wellenfront-Tomographie ein, eine modifizierte Implementa-
tion des konventionellen Inversionsschemas, in welchem die Fokussierung aller Diffraktionen
mit demselben Tag in der Tiefe erzwungen wird. Der modifizierte Algorithmus reduziert die
Abhängigkeit der Wellenfront-Tomographie von Attributen zweiter Ordnung und wird zu einer
Zero-Offset-Slope-Tomographie, wenn diese nicht berücksichtigt werden. Ergebnisse für synthe-
tische Diffraktionsdaten mit sowohl vertikaler als auch lateraler Heterogenität suggerieren, dass
der neue Ansatz, welcher gleichermaßen auf passiv-seismische Daten anwendbar ist, in Fällen mit
lateraler Heterogenität die Stabilität erhöhen kann.
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1 Introduction

The acquisition and processing of active seismic data looks back on an extensive history (e.g.
Claerbout, 1985). Driven by both academic institutions and the hydrocarbon industry, impres-
sive developments have been achieved within the last decades. While traditional seismic pro-
cessing has often been steered towards the imaging of high-amplitude reflections, seismic diffrac-
tions, which often have weak amplitudes, have been neglected or even treated as noise. In the
recent years, however, diffractions have gained importance, mainly because they are caused by
small-scale objects and thus related to geologically complex structures, such as faults, edges or
pinch-outs (e.g. Krey, 1952; Khaidukov et al., 2004). In contrast to existing applications, which
have used diffractions mainly for high-resolution imaging (e.g. Landa and Keydar, 1998; Kozlov
et al., 2004; Moser and Howard, 2008; Foss et al., 2018), I propose to use them for velocity model
building. While the mentioned publications treat seismic diffractions from a structural view-
point, this work aims to treat them from a wavefront perspective, thus utilizing their unique
physical properties.
In the context of geometrical optics, a field widely used for the description of wave propagation

phenomena, diffractions are considered as effects that cannot be described by the ordinary theory,
such as energy entering shadow zones and scattering at corners or edges (Keller, 1962). I aim to
illustrate an essential property of diffractions – namely illumination – by means of Figure 1.1.
This photo, taken by myself with a telephoto lens, shows a christmas ball hanging from a tree in

Figure 1.1: A christmas ball hanging from a tree in Lüneburg, Germany (photo taken and edited by me).

the city of Lüneburg, Germany. On the surface of this christmas ball, the viewer can recognize a
large part of the surroundings: numerous houses, the street, the sky and my wife and myself. All
this information is concentrated in a small-scale object. This illustrates the illumation potential
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1 Introduction

(a) Reflection case (b) Diffraction case

Figure 1.2: Illustration of the seismic experiment. An abrupt velocity change from v0 to v1 with an extension
considerably smaller than the seismic wavelength acts as a reflecting interface in the subsurface. In
the reflection case (a), waves emitted by the source (star) and reflected at the interface are measured
at the receivers (triangles). The ray paths (red) honor Snell’s law. Therefore, in order to image
the reflector from different directions, sufficiently large source-receiver offsets are required. In the
diffraction case (b), a small-scale subsurface structure scatters an incoming wave into all directions,
that is, the ray paths (red) do not honor Snell’s law. As a result, the response can be measured at all
receivers.

of a seismic diffraction, because a seismic wave, which strikes a subsurface structure smaller
than its predominant wavelength, is scattered into all directions. This back-scattered wave –
just like the christmas ball – contains a lot of information about the subsurface and it can be
measured at large parts of the recording surface. This information merely includes propagation
effects, but no directionality or the geometrical shape of the scattering object, which allows an
analogous description of passive seismic signals. In constrast, a reflecting subsurface structure
has an extension significantly larger than the seismic wavelength except for one spatial direction.
Therefore, a reflected wave has a specific directionality and, consequently, can be measured only
at a distinct region of the recording surface. In the context of Figure 1.1 this would mean a
reflecting disk instead of a sphere, which would not be able to image the complete surroundings,
but only a small part depending on the viewing angle. Considering that this combination of
superior illumination and lateral resolution renders the diffracted wavefield valuable, the aim of
this work is to utilize these unique physical properties of diffractions, that is, non-Snell scattering
at point-like structures or edges, for seismic imaging and subsurface velocity model building.
In order to back the preceding conceptual introduction in the context of applied seismics,

Figure 1.2 illustrates the seismic experiment. When a wave emitted from a source (star) is reflected
at an interface (Figure 1.2a), its ray paths honor Snell’s law and hence, sufficiently large source-
receiver offsets are required during the acquisition in order to image a specific region on the
reflector from different directions. In the diffraction case (Figure 1.2b), however, a small-scale
subsurface structure scatters an incoming wave into all directions and Snell’s law does not hold.
As a result, the wavefront diffracted at the same subsurface object can be measured at all receivers
(triangles). I argue that this superior subsurface illumination of diffractions compared to reflected
waves can be exploited for an improved description of the subsurface particularly in terms of
lateral resolution.
A prerequisite for all applications presented in this work are the so-called wavefront attributes,

which can be extracted from the traveltime moveout of seismic waves. Initially, wavefront
attributes (Hubral, 1983) were a by-product of multi-parameter stacking schemes such as the
common-reflection-surface (CRS) stack (Jäger et al., 2001) or the multifocusing stack (Gelchinsky

2



(a) Reflection case: NIP wave (b) Reflection case: normal wave (c) Diffraction case

Figure 1.3: The 2D wavefront attributes α, RNIP and RN. In the general reflection case, the NIP wave (left) is
excited by a point source placed on the reflector’s point of normal incidence (NIP) and the normal
wave (middle) is excited by an exploding reflector segment (CRS) around the NIP. In the case of
a diffraction (right), the exploding reflector segment shrinks to a point that is the actual diffractor
acting as a secondary source. Consequently, RNIP and RN coincide and the NIP wave is no longer
fictitious, but it describes the actual diffracted wavefront.

et al., 1999). These stacking schemes were introduced as an extension of the classical common-
midpoint (CMP) stack (Mayne, 1962) by stacking not only in offset direction, but also in mid-
point direction. This resulted in a moveout description that depends on three parameters instead
of one. These three parameters – encoded in the first and second derivatives of the moveout –
are related to the physical properties of the wavefront measured at the recording surface (Hubral,
1983). As illustrated in Figure 1.3, they consist of one emergence angle and the curvatures of
two conceptual wavefronts, the normal-incidence-point (NIP) wave and the normal wave. While
the NIP wave (Figure 1.3a) is thought to be excited by a point source placed on the reflector’s
point of normal incidence, the normal wave (Figure 1.3b) is thought to be excited by an explod-
ing reflector segment around the NIP. Hence, in the case of a reflection, the radius of the NIP
wave is related to the depth of the reflector and the radius of the normal wave is related to its
curvature. In the case of a diffraction, however, these two waves coincide and the remaining
wave is no longer hypothetical, but it describes the actual wavefront of the diffraction (Figure
1.3c), thus reducing the number of parameters to two. Figure 1.4 exemplarily shows the results
of the application of the zero-offset CRS stack to a simple dataset containing one diffraction.
While the zero-offset stack (Figure 1.4a), which has an enhanced signal-to-noise ratio compared
to the more noisy raw data due to the stacking of the measurements along the moveout surface,
is a first interpretable image of the subsurface, the coherence section (Figure 1.4b), which shows
the semblance coefficients (Neidell and Taner, 1971) of all time samples, indicates, where in the
data coherent energy was found by the optimization algorithm. In both sections, the diffraction
is clearly distinguishable from the surrounding noise. A by-product of the CRS stack are the
wavefront attributes: the emergence angle α (Figure 1.4c), encoded in the first derivative of the
traveltime moveout ∆t , and the radius of the NIP wave RNIP (Figure 1.4d), encoded in the sec-
ond derivative of ∆t . The second wavefront radius RN is not shown here, because it coincides
with RNIP in the diffraction case. While the plots reveal the smooth behavior of the wavefront

3
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(d) Wavefront radius RNIP

Figure 1.4: Results of the common-reflection-surface (CRS) stack for data with one diffraction. Panel (a) is the
zero-offset stack, (b) is the coherence section, (c) is the emergence angle α and (d) is the radius of the
NIP wave RNIP.

attributes – in particular the emergence angle – along the diffraction, the surrounding parts of
the attribute sections can be ignored, because the semblance coefficients are very close to zero in
the corresponding regions.
Generally, the common-reflection surface can be approximated by parabolic (Schleicher et al.,

1993), hyperbolic (Jäger et al., 2001) or non-hyperbolic (Gelchinsky et al., 1999; Schwarz et al.,
2014a; Fomel and Kazinnik, 2013) moveout descriptions, which generally can be divided into
two categories depending on their derivation (Schwarz and Gajewski, 2017b). However, recent
studies have shown that differences between the different moveout approximations vanish in com-
plex settings (Walda et al., 2017). For the characterization and imaging of measurements in the
prestack domain, more complex finite-offset formulations with a larger number of parameters
exist (Zhang et al., 2001). However, the estimation of wavefront attributes with these operators
for an entire prestack data cube is a very expensive process. Aiming for a cost-efficient alternative,
Baykulov and Gajewski (2009) have proposed a method that uses zero-offset wavefront attributes
for the interpolation and regularization of prestack data. Alternatively, finite-offset wavefront
attributes can be extrapolated from zero-offset (Schwarz et al., 2015). Chapter 2 of this thesis
introduces a method for the determination of exact finite-offset wavefront attributes for diffrac-
tions (Bauer et al., 2016a), which utilizes the previously introduced unique physical properties of
diffractions – namely the fact that Snell’s law does not hold for diffractions and therefore, their
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(a) Initial model (b) Inverted model with final ray paths

(c) Inverted model (d) Correct model

Figure 1.5: Inversion results for data with one diffraction. Panel (a) is the constant initial model with the back-
propagated data points (black asterisks), (b) is the inverted velocity model with the final ray paths,
(c) is the inverted model with the back-propagated data points and (d) is the correct velocity model
with the true diffractor position.

up- and downgoing ray paths are decoupled.
While the initial purpose of multi-parameter stacking was the reduction of noise in seismic data

(e.g. Eisenberg-Klein et al., 2008), the parametrization of the moveout surface in terms of phys-
ically meaningful wavefront attributes has paved the way for numerous subsequent processing
steps. In the context of noise reduction and data regularization and enhancement in the prestack
domain, impressive results have been presented (Baykulov and Gajewski, 2009; Baykulov et al.,
2011). While Mann (2002) used wavefront attributes for the estimation of time migration veloc-
ities, Dell and Gajewski (2011) presented an attribute-based approach for diffraction separation.
Recently, Schwarz (2019) proposed a method for accessing the diffracted wavefield by modeling
and adaptive subtraction of high-amplitude reflections.

While stacking and time migration yield a first image of the subsurface in the time domain,
the final goal of seismic processing is to obtain a depth image of the subsurface. In order to be
able to convert the time axis to a depth axis, a wave velocity model of the subsurface is required.
For the estimation of velocity models, often referred to as seismic inversion (Tarantola, 1984),
numerous techniques exist that range from ray-based tomographic methods, which try to invert
for traveltime-related attributes (e.g. Tromp et al., 2005), to full-waveform inversion (FWI) that
tries to invert for the measured waveforms (e.g. Virieux and Operto, 2009). In this work, I use
wavefront tomography, an inversion algorithm introduced by Duveneck (2004b), which utilizes
zero-offset wavefront attributes for depth velocity model building. Following up on the previous
schematic illustration, Figure 1.5 shows the results of an application of wavefront tomography to
the previously introduced data set containing merely one single diffraction (compare Figure 1.4).

5



1 Introduction

Starting from a constant initial model (Figure 1.5a), in which the back-projected data points (black
asterisks) – that can be picked in an automatic fashion based on the semblance coefficient (Figure
1.4b) – still form a hyperbola due to the wrong velocities, the result of the inversion (Figure
1.5c) shows that the localizations of all data points – although treated independently during the
inversion – focus in one distinct subsurface location and that the correct velocity model (Figure
1.5d) could be recovered. The final ray paths (Figure 1.5b) reveal, which parts of the velocity
model are backed by the data and thus illustrate the illumination potential of diffractions.
Past applications of wavefront tomography were mainly based on high-amplitude reflections

(Meier, 2007; Dümmong et al., 2008) and suggested that prestack slope tomography (Billette and
Lambaré, 1998), which is based on finite-offset slopes, is able to provide better-resolved velocity
models. However, in the paper presented in Chapter 3 of this thesis (Bauer et al., 2017b), we
propose a joint inversion utilizing both high-amplitude reflections and low-amplitude diffractions
in order to increase the lateral resolution of the obtained velocity models and thereby close
the gap between prestack slope tomography and poststack wavefront tomography. Thus, we
render possible better-resolved inversions in the more stable poststack domain, which is often
the only option in academic environments. In addition, Schwarz et al. (2016b) have shown that
wavefront tomography is likewise applicable to passive seismic data, where it can provide joint
source localization and velocity model building (Diekmann et al., 2019a).

In spite of the promising results, the full potential of diffractions – namely their focusing nature
(compare Figure 1.5) – had not yet been exploited. For that purpose, however, all measurements
in the zero-offset section that belong to the same diffraction – and thus to the same subsurface
region – have to be identified and assigned with a so-called event tag. In Chapter 4 of this thesis,
I present a paper (Bauer et al., 2019c), in which we introduce an event-tagging algorithm, which
utilizes the local similarity of wavefront attributes for the unsupervised identification and tagging
of diffractions in the zero-offset domain.
The availability of event tags paves the way for a diffraction wavefront tomography, in which

all data points belonging to the same diffraction are forced to focus in depth. In Chapter 5 of this
thesis, I present first promising results of this modified implementation of wavefront tomography
with enforced diffraction focusing (Bauer et al., 2019a). The modified implementation reduces
the dependency of wavefront tomography on second-order wavefront attributes and thus helps
to increase the stability of the inversion in complex settings with lateral heterogeneity. Further, it
is applicable to zero-offset, passive-seismic and even to earthquake data (Diekmann et al., 2019a),
where the determination of second-order attributes is often challenging.

1.1 Structure of the thesis

Following the introduction given in this chapter, Chapter 2 contains the paper Enhancement
of prestack diffraction data and attributes using a traveltime decomposition approach, which was
published in 2016 in the journal Studia Geophysica et Geodaetica (Bauer et al., 2016a). This work
introduces a method for diffraction enhancement in prestack data, which utilizes the fact that
Snell’s law does not hold for diffracted waves and, consequently, up- and downgoing diffraction
raypaths are decoupled.
Chapter 3 consists of the paper Utilizing diffractions in wavefront tomography that was pub-

lished in 2017 in Geophysics (Bauer et al., 2017b). In this work, diffractions are used for velocity
model building with wavefront tomography. While results for simple synthetic diffraction data
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1.2 Contributions of co-authors

illustrate the potential, results for industrial multi-channel field data suggest that diffractions
can help to increase the lateral resolution of tomographic velocity models and improve depth-
migrated images.
In Chapter 4, the paper Unsupervised event identification and tagging for diffraction focusing,

which was recently published in Geophysical Journal International (Bauer et al., 2019c), is pre-
sented. This work proposes a scheme for the identification and tagging of diffractions in zero-
offset data, which is based on the local similarity of zero-offset wavefront attributes.
While these event tags may significantly improve the performance of the diffraction decompo-

sition, most importantly they are a prerequisite for the development of a Diffraction wavefront
tomography, which is presented in Chapter 5 by means of a manuscript that will be submitted to
a scientific journal in the near future, but has already been accepted for conferences (Bauer et al.,
2019b,a). It presents a modified implementation of wavefront tomography, in which diffractions
are forced to focus in depth. This new approach allows the application of wavefront tomography
to zero-offset and passive seismic data and may increase its stability in settings with strong lateral
heterogeneity.
Finally, in Chapter 6 I summarize this work and draw overall conclusions, before giving an

outlook to possible future work in Chapter 7.

1.2 Contributions of co-authors

Chapters 2–4 of this work are papers published in scientific journals and Chapter 5 is based on
a manuscript that will be published in the near future. In the following, I shortly state the
contributions of the co-authors of each paper and my contributions to the two publications I
co-authored (Schwarz et al., 2016b; Diekmann et al., 2019a) that are not included in this thesis.
The original idea for the diffraction decomposition introduced in Bauer et al. (2016a) stems

from Benjamin Schwarz. Further, Benjamin Schwarz was the supervisor of my master’s thesis
and Dirk Gajewski is the supervisor of both my master’s thesis and my PhD work. Both also
contributed via continuous discussion.
Simultaneously to this paper, Benjamin Schwarz published his work on passive seismic source

localization and velocity model building (Schwarz et al., 2016b), to which I contributed as a
co-author by providing the velocity model and my experience in the application of wavefront
tomography.
The majority of the results presented in Bauer et al. (2017b) were produced by myself. Ben-

jamin Schwarz contributed to this publication by the continuous discussion of ideas and results
and assisted in writing parts of the manuscript. My supervisor Dirk Gajewski contributed via
continuous discussion of the publication strategy. Although not listed as a co-author, I would
like to explicitly acknowledge the work of Ekkehart Teßmer, who produced the RTM results
presented in this work.
While the original idea and the implementation of the event tagging algorithm presented in

Bauer et al. (2019c) are my own work, the implementation of the event tagging algorithm in 3D
was carried out by Tobias Werner, whose master’s thesis I supervised. Again, Benjamin Schwarz
contributed by continuously discussing ideas and results. Further, I included his implementation
for the calculation of apex coordinates into my code. My supervisor Dirk Gajewski contributed
by discussing both content and the publication strategy.
Recently, Diekmann et al. (2019a) submitted a paper on simultaneous localization and velocity
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model building for passive seismic data with wavefront tomography, to which I contributed as a
co-author with my experience in the application of wavefront tomography and by providing data
in the course of the work.

The work presented in Chapter 5 ties my three first-author publications together and concludes
the initial idea of my PhD work of developing a zero-offset slope tomography for diffractions.
While this vision was an idea of Benjamin Schwarz and myself, I elaborated the detailed con-
cept and implemented the method. Leon Diekmann contributed to this work by providing the
laterally heterogeneous velocity model and his code for the modeling of synthetic data.
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2 Enhancement of prestack diffraction data

and attributes using a traveltime

decomposition approach

Abstract

Diffractions not only carry important information about small-scale subsurface structures, they
also possess unique properties, which make them a powerful tool for seismic processing and
imaging. Since a point diffractor scatters an incoming wave into all directions, a diffraction event
implies better illumination than a reflection, because the rays travel through larger parts of the
subsurface. Furthermore, unlike the reflection case, in which the emergence location of the re-
flected wave depends on the source position, in the case of non-Snell scattering, up-going and
down-going raypaths are decoupled. Based on this decoupling, we introduce a diffraction trav-
eltime decomposition principle, which establishes a direct connection between zero-offset and
finite-offset diffraction wavefield attributes. By making use of this approach, we are able to en-
hance diffractions and obtain high-quality diffraction wavefield attributes at arbitrary offsets in
the prestack domain solely based on zero-offset processing without any further optimization of
attributes. We show the accuracy of the method by fitting diffraction traveltimes and on sim-
ple waveform data. Application to complex synthetic data shows the ability of the proposed
approach to enhance diffractions and provide high-quality wavefield attributes even in sparsely
illuminated regions such as subsalt areas. The promising results reveal a high potential for im-
proved prestack data enhancement and further applications such as efficient diffraction-based
finite-offset tomography.

2.1 Introduction

Conventional seismic processing techniques are designed to image and enhance reflection events.
However, reflected waves are not suitable for high-resolution structural imaging of features below
the Rayleigh limit of half a seismic wavelength (e.g. Dell and Gajewski, 2011). Information about
these small-scale structures such as edges, faults, pinch-outs and small-size scattering objects is
encoded in the diffraction response of the subsurface (Khaidukov et al., 2004; Fomel et al., 2007).
Therefore, the imaging of diffracted waves is a crucial challenge in seismic processing. Recently,
different workflows with the goal to separate diffractions from reflections and to enhance diffrac-
tions in the post-stack domain have been presented (Fomel et al., 2007; Berkovitch et al., 2009;
Dell and Gajewski, 2011). However, an important goal of diffraction imaging is the separation of
diffractions and their enhancement in the full prestack data volume, which requires finite-offset
(FO) processing. Finite-offset processing may provide improved resolution, especially in sparsely
illuminated regions such as subsalt areas (Spinner et al., 2012), but due to the larger number
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2 Diffraction decomposition

(a) (b) (c)

Figure 2.1: In the diffraction case, the zero-offset NIP wave (a) approximates the actual physical wavefront. In
the finite-offset setting (b), the common-shot (CS) and common-receiver (CR) experiments may be
resembled by two independent zero-offset NIP-wave experiments (c) at source x0s and receiver x0g .

of parameters, the problem is of higher dimensionality, which makes processing less stable and
computationally more expensive than in the zero-offset (ZO) setting.
In order to combine the stability of the zero-offset common-reflection-surface (CRS) stack

(Jäger et al., 2001) with the improved illumination of finite-offset processing, we introduce a
straightforward decomposition principle for diffractions. Based on the redundancy of zero-offset
and finite-offset information for diffractions, this new approach allows the direct prediction of
finite-offset diffraction attributes from zero-offset CRS processing results (Schwarz et al., 2014a;
Bauer, 2014). In this fashion, the full prestack data volume is accurately characterized without
carrying out computationally expensive generic finite-offset CRS processing (Zhang et al., 2001)
or partial CRS stacking (Baykulov and Gajewski, 2009), where finite-offset traveltimes are ex-
trapolated from zero-offset results.

2.2 Theory

The common-reflection-surface (CRS) stack is a multi-parameter stacking technique, in which
stacking is not only carried out along a traveltime moveout curve in offset direction, but along
a traveltime moveout surface in both offset and midpoint direction (Jäger et al., 2001). CRS
processing is purely data-driven and provides stacked sections with increased signal-to-noise ratio
compared to the classical common-midpoint (CMP) stack, particularly in areas with complex
geology and sparse illumination.
The CRS stack has been formulated for a central zero-offset (ZO) ray (Jäger et al., 2001) and for

an arbitrary finite-offset (FO) central ray (Zhang et al., 2001). While the widely used zero-offset
CRS stack is fast, stable and reasonably accurate for moderate lateral heterogeneity, finite-offset
CRS shows its strengths in complex geological settings, where it provides improved resolution
and illumination at the cost of being computationally more expensive and less stable (see, e.g.,
Spinner et al., 2012).

2.2.1 Zero-offset common-reflection surface

In the reflection case, the 2D zero-offset CRS traveltime moveout depends on three parameters,
the kinematic wavefield attributes α0, RNIP and RN (Hubral, 1983). The latter ones, RNIP and RN,
are the radii of two fictitious wavefronts, the NIP wavefront and the normal wavefront. While the
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2.2 Theory

NIP wave stems from a fictitious point source placed on the reflector’s point of normal incidence
(NIP, see Figure 2.1a), the normal wave is emitted by a fictitious exploding reflector segment
around the NIP. The angle α0 describes the direction, from which the two fictitious waves
emerge at the central midpoint of the aperture. For the computation of the traveltime moveout
along the CRS, different formulations exist. In this work, the hyperbolic and the parabolic
traveltime descriptions are used. The hyperbolic CRS traveltime (Jäger et al., 2001) reads

t 2ZO(∆xm, ℎ) =
(
tZO0 +

2 sin α0

v0
∆xm

)2
+
2t0 cos2 α0

v0

(
∆x2m
RN
+

ℎ2

RNIP

)
, (2.1)

where ∆xm = xm − x0 is the displacement from the central midpoint x0, ℎ denotes the half-offset
and v0 the constant near-surface velocity. The parabolic CRS traveltime (Müller, 1999) is given
by

tZO(∆xm, ℎ) = tZO0 +
2 sin α0

v0
∆xm +

cos2 α0

v0RNIP
ℎ2 +

cos2 α0

v0RN
∆x2m . (2.2)

In the special case of a diffraction, this traveltime moveout only depends on two parameters,
because the NIP wave and the normal wave coincide,

tZO(∆xm, ℎ) = tZO0 +
2 sin α0

v0
∆xm +

cos2 α0

v0RNIP

(
∆x2m + ℎ2

)
. (2.3)

As illustrated in Figure 2.1a, the NIP wave approximates the actual physical wavefront of a diffrac-
tion in the zero-offset section (ℎ = 0),

tZO(∆xm) = tZO0 +
2 sin α0

v0
∆xm +

cos2 α0

v0RNIP
∆x2m . (2.4)

Based on the zero-offset CRS stack, Baykulov and Gajewski (2009) recently introduced the so-
called partial CRS stack. In this method, finite-offset traces are simulated by application of zero-
offset operators for local finite-offset stacks, which corresponds to the extrapolation of traveltimes
from zero-offset. Figure 2.2a shows an example of a partial CRS stacking surface. The expansion
point of the zero-offset operator is marked in red. Due to the smaller number of parameters
this method is computationally more efficient than the generic finite-offset stack and in cases
of moderate complexity and for small partial stacking apertures zero-offset operators perform
reasonably well. However, the zero-offset approximation loses accuracy with increasing offsets
and complexity. Finite-offset operators are more appropriate for local refinement at far offsets
(see also Bauer, 2014; Schwarz et al., 2014a).

2.2.2 Finite-offset common-reflection surface

The finite-offset CRS stack (Zhang et al., 2001) is a generalization of the zero-offset CRS stack to
arbitrary source and receiver combinations, which allows the simulation of the full prestack data
volume. Due to the higher dimensionality of the problem, the finite-offset CRS stack cannot be
parametrized by only three parameters. Instead, because of the asymmetry of up- and downgo-
ing raypaths, the finite-offset CRS parameters describe the attributes of the respective two-way
wavefronts and a coupling coefficient. The five-parameter hyperbolic finite-offset CRS traveltime
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2 Diffraction decomposition

in source (x s = xm − ℎ ) and receiver (x g = xm + ℎ ) coordinates (Bergler et al., 2002) is given by

t 2FO(∆x s,∆x g ) =
(
t FO0 +

sin αs

vs
∆x s +

sin αg

vg
∆x g

)2
+ 2t FO0

(
1
2
B−1A∆x2s +

1
2
DB−1∆x2g + B−1∆x s∆x g

)
,

(2.5)

where ∆x s and ∆x g denote the displacements from the central source and receiver pair (x0s , x0g ).
Further, the angles of emergence at source and receiver are denoted by αs and αg

1 and accordingly,
vs and vg are the near surface velocities at x0s and x0g . The quantities A, B and D are the scalar
elements of the surface-to-surface ray propagator matrix introduced by Bortfeld (1989). Zhang
et al. (2001) describe these quantities in terms of the two emergence angles and three wavefront
curvatures, which correspond to fictitious two-way waves observed in the common-shot (CS)
and common-midpoint (CMP) configurations.
As it follows from a direct expansion of the traveltime, the parabolic finite-offset CRS travel-

time formulation is physically more intuitive than its hyperbolic counterpart. Following Zhang
et al. (2001), it reads

tFO(∆x s,∆x g ) = t FO0 +
sin αs

vs
∆x s +

1
2
cos2 αs

vsR s
∆x2s

+
sin αg

vg
∆x g +

1
2
cos2 αg

vgRg
∆x2g

+ B−1∆x s∆x g ,

(2.6)

The coefficients of this second-order expression contain the emergence angles αs , αg and the radii
of curvature R s , Rg of the wavefronts measured in the common-shot (CS) and common-receiver
(CR) configurations, respectively. For reflections, the coefficient B−1 couples the moveouts in
the CS and CR gathers. In the diffraction case, the coupling between the two-way wavefronts
vanishes and they reduce to one-way waves (see Figure 2.1b). Hence, B−1 becomes zero, which
decouples the moveouts in the CS and CR configurations. Accordingly, the parabolic finite-offset
response for diffractions reduces to

tFO(∆x s,∆x g ) = t FO0 +
sin αs

vs
∆x s +

1
2
cos2 αs

vsR s
∆x2s

+
sin αg

vg
∆x g +

1
2
cos2 αg

vgRg
∆x2g .

(2.7)

2.2.3 Diffraction traveltime decomposition

Due to the decoupling of diffraction raypaths, zero-offset and finite-offset information is redun-
dant for diffractions (Schwarz et al., 2014a; Bauer et al., 2015b): the CS and CR responses in a
finite-offset measurement (see Figure 2.1b) are technically identical to two independent zero-offset

1Please note that we use a different sign convention for the emergence angles at source and receiver, which results in
an alteration in signs compared to the original formula by Zhang et al. (2001)
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Figure 2.2: The partial CRS stacking surface (a) is based on global application of zero-offset operators. The
FO prediction stacking surface (b) is based on a finite-offset operator, which is constructed by two
independent zero-offset diffraction operators at a source x0s and a receiver x0g .

measurements carried out at x0s and x0g , as illustrated in Figure 2.1c. Based on the assumption of
reciprocity, which is valid for diffractions even in highly complex media, comparing equations
(2.4) and (2.7) leads to the following system of equations (assuming a consistent choice of near-
surface velocities):

αs = α
s
0 , (2.8a)

αg = α
g
0 , (2.8b)

R s = Rs
NIP , (2.8c)

Rg = Rg
NIP . (2.8d)

The superscripts s and g indicate the zero-offset attributes measured at the central source and
receiver position, respectively (compare Figure 2.1c). This system of equations establishes the
relations between zero-offset and finite-offset diffraction attributes. Also the finite-offset reference
traveltime can be expressed by the two zero-offset reference traveltimes,

t FO0 =
tZO,s0 + tZO,g0

2
. (2.9)

Relations (2.8) and (2.9) indicate the redundancy of zero-offset and finite-offset information and
thus allow the decomposition of any finite-offset operator into two independent zero-offset oper-
ators at a source x0s and a receiver x0g (Schwarz et al., 2014a),

tFO(x0s , x0g , t FO0 , αs, αg ,R s,Rg ) =
tZO(x0s , tZO,s0 , αs

0,R
s
NIP)

2
+
tZO(x0g , tZO,g0 , α

g
0 ,R

g
NIP)

2
. (2.10)

Since the traveltime decomposition principle is a fundamental property of diffractions, Equation
(2.10) holds independently of the choice of zero-offset operators. If, e.g., hyperbolic operators
such as (2.1) are used during the zero-offset processing, the finite-offset diffraction operators com-
posed according to (2.10) correspond to double square root operators (Yilmaz, 2001), in which
the two square roots are approximated independently.
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2 Diffraction decomposition

Given the results from zero-offset processing are accurate, the introduced decomposition prin-
ciple is exact for diffractions in arbitrary media and therefore we also refer to it as finite-offset
prediction for diffractions. Figure 2.2b shows an example of a stacking surface constructed using
the traveltime decomposition method. Note that this decomposition principle is only valid for
diffractions, because it is based on the assumption of decoupled up- and downgoing raypaths. In
the reflection case, the previously introduced equations do not hold.

2.3 Applications

2.3.1 Diffraction traveltime fit

In order to confirm the redundancy of zero-offset and finite-offset information, we carried out a
diffraction traveltime fit on a simple synthetic model containing vertical and lateral heterogeneity
by predicting finite-offset traveltimes and attributes solely based on a zero-offset fit and comparing
the results to the generic finite-offset reference. The synthetic model consists of a plane interface
at a depth of 300m and a circular discontinuity with a radius of 5 km, whose top point lies at a
depth of 400m. The velocities are 2 km/s above the plane interface, 3 km/s below the interface
and 3.5 km/s inside the circular discontinuity. At a depth of 1 km and a lateral position of 5 kmwe
placed a point diffractor. The model and the reference traveltimes were generated with the NOR-
SAR raytracing software. The traveltime fits were computed for each central source and receiver
pair (x0s , x0g ) with MATLAB using a Nelder-Mead optimization scheme (Nelder and Mead, 1965)
to find those wavefield attributes that minimize the traveltime error. For the computation of
traveltime fitting surfaces in the zero-offset and finite-offset domain, the full parabolic traveltime
formulations (2.2) and (2.6) were used.

Figures 2.3a and 2.3b show the obtained emergence angles at the source αs for FO prediction
and the generic finite-offset fit, respectively. The corresponding receiver attributes are not shown,
since the general behavior is the same. Although it is only based on the results of a zero-offset
traveltime fit, the traveltime decomposition approach almost perfectly reproduces the attributes
which were obtained from a generic finite-offset fit performed for each finite-offset reference
ray (corresponding to one sample of the plot). The symmetry in the results clearly shows the
expected redundancy of zero-offset and finite-offset information for the diffraction case, which
permits the prediction from zero-offset to finite-offset.
The traveltime errors of FO prediction and the generic finite-offset fit are displayed in figures

2.3c and 2.3d. Each sample of these plots shows the RMS traveltime error of the traveltime sur-
face used for the fit at the corresponding central location. As expected from the theory, the misfit
of FO prediction is identical to the one of the generic FO fit. This indicates that the introduced
method is exact for diffractions, that is, it is possible to obtain the exact finite-offset wavefield
attributes by combining zero-offset attributes according to the introduced decomposition rela-
tions. The observed small errors can be explained by inaccuracies of the second-order traveltime
approximation. Figure 2.4 shows the traveltime errors of FO prediction and the misfit resulting
from global application of zero-offset operators, which corresponds to the partial CRS method.
The results clearly reveal the advantages of the new method. Whereas the misfits coincide in
the zero-offset section, partial CRS rapidly loses accuracy in offset direction due to the global
application of zero-offset operators. However, the magnitude of the FO prediction error does
not increase with offset, although both methods use exactly the same input.
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Figure 2.3: Above: Emergence angles at the source αs obtained from a) FO prediction and b) generic finite-
offset fit. Below: Traveltime errors of c) FO prediction and d) generic finite-offset fit at the same
scale. Each sample of the plots corresponds to the RMS traveltime error of one fit.

Due to the significantly smaller number of traveltime fits, the traveltime decomposition ap-
proach only required 0.4% of the time the full finite-offset fitting needed to produce the same
results in this study. Indeed, a challenging task of the traveltime decomposition is the matching
of the two events stemming from the same diffractor at source and receiver, which is not required
during traveltime fitting.

2.3.2 Implementation

For the application to waveform data, we implemented the new diffraction traveltime decom-
position approach into the zero-offset CRS workflow (Mann, 2002). As input, FO prediction
requires the prestack data and results of the optimized zero-offset CRS stack, namely the opti-
mized semblance and the attribute sections of the zero-offset wavefield attributes α0 and RNIP. In
order to predict a finite-offset trace for the half-offset ℎ0 at the midpoint xm = x0, information
from the locations x0s = x0 − ℎ0 and x0g = x0 + ℎ0 in the zero-offset section is required. At these
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Figure 2.4: Traveltime errors of a) FO prediction and b) global application of zero-offset operators plotted at the
same logarithmic scale. Each sample of the plots corresponds to the RMS traveltime error of one fit.

locations, the two events which stem from the same diffractor have to be found and matched.
In this implementation, different event combinations are tested in order to find the one which
provides the best fit. For each sample t FO0 of the finite-offset trace, the source and receiver traces
are searched for the corresponding diffraction events using relation (2.9). For the traveltime
difference ∆t0 between two matching events the relation

∆t0 ≤
2ℎ0
v0

(2.11)

holds and the event search may be confined. For each event pair found, the four finite-offset
wavefield attributes are extracted from the zero-offset attribute sections. They define the finite-
offset diffraction operator for (x0, ℎ0, t FO0 ). The parameters are tested for accuracy by computing
the coherence for the constructed operator. In contrast to the generic finite-offset CRS stack,
only the already estimated zero-offset attribute pairs at source and receiver need to be combined.
As output, FO prediction provides the finite-offset stacks, the respective semblance and the

four finite-offset attribute sections for the predefined range of offsets. The method is able to
handle an arbitrary number of conflicting events, if they are provided with the zero-offset results.

2.3.3 Simple waveform example

In order to verify the proposed method on waveform data, we applied it to a simple dataset based
on the same velocity model as the diffraction traveltime fit, but this time containing an addi-
tional diffractor at a depth of 1.5 km and lateral position of 3.5 km. The dataset contains a total
of 401 CMPs and both the lateral extension of the seismic line and the maximum offset are 5 km.
Figure 2.5 compares various finite-offset semblance sections ranging from 500m to 4000m offset
provided by FO prediction and the zero-offset-based partial CRS method (Baykulov and Gajew-
ski, 2009). The results clearly reveal that the zero-offset operators used by partial CRS (Figure
2.5b) lose accuracy with increasing offset, because they extrapolate traveltimes. However, the
FO prediction results (Figure 2.5a) are of very high quality along the whole offset range, because
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Figure 2.5: Finite-offset semblance sections of the simple waveform data for eight offsets from 500 (left) to
4000m (right) generated by application of (a) the new diffraction traveltime decomposition ap-
proach and (b) the partial CRS method.

the decomposed finite-offset operators are accurate for arbitrary offsets. The decomposition rela-
tions directly connect zero-offset and finite-offset diffraction traveltimes and attributes and thus
define the diffraction moveout globally, while the respective zero-offset-based operators are only
accurate in local vicinities of each zero-offset reference ray.

2.3.4 Complex data example

As a next step, we applied the diffraction traveltime decomposition approach to the synthetic
Sigsbee 2A dataset. The key feature of this acoustic marine 2D model is a large homogeneous
salt body, which is surrounded by sedimentary layers (see Figure 2.6). The rugged top of the
salt body causes a significant amount of diffracted energy in the dataset. In addition, the model
contains two horizontal lines of diffractors within the sedimentary layers to the left of and below
the salt body and several fault structures. The dataset is modeled without a free surface, which is
why it does not contain any surface-related multiple reflections. For the results provided in this
work we used an excerpt of 400 CMPs taken from the complex part of the model (as indicated by
the dotted lines in Figure 2.6), which contains both strong top of salt diffractions and diffracted
energy from the subsalt area.
As in the previous examples, we applied partial CRS (Baykulov and Gajewski, 2009) and the

new diffraction traveltime decomposition approach (FO prediction) to the data. The previous
zero-offset CRS processing was carried out using a global optimization scheme for the attribute
search (Walda and Gajewski, 2015) which accounted for a maximum of nine conflicting events at
each sample. Both methods under investigation were applied with the same stacking apertures
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Figure 2.6: The Sigsbee 2A velocity model. The dotted lines indicate the excerpt which was used for the results
shown in this work.

and processing parameters. Four different finite reference offsets ranging from 1 km to 7 km in
steps of 2 km were considered. For a qualitative comparison of the emergence angle αs to its
generic reference we also applied full finite-offset CRS processing (Zhang et al., 2001) to the data.

Figure 2.7 shows FO stacks of all four offsets for two different time ranges. The upper closeups
(Figures 2.7a and 2.7b) are taken from 4 to 7 s, that is, the top of salt area. Whereas the travel-
time decomposition approach allows us to image diffracted energy well up to the largest offset,
partial CRS is only able to fit the strong top of salt diffractions at small offsets. Weaker events are
hardly visible and with increasing offset all diffracted events become more blurry. Reflections,
however, are still fitted with reasonable quality by partial CRS, whereas the traveltime decompo-
sition inherently suppresses them due to the application of pure diffraction operators (compare
the seafloor reflections visible at 5 km and 7 km offset). The closeups displayed below (Figures
2.7c and 2.7d), which were plotted with a smaller clip than the upper ones, are taken from 8 to
11 s and accordingly contain events stemming from the subsalt area. In general, we observe the
same behavior as before: whereas the traveltime decomposition approach reveals a high imaging
potential for diffractions throughout the whole offset range, the partial CRS stacks are of rea-
sonable quality for small offsets, but become increasingly distorted at larger offsets, where the
method fails to image weak events.
In order to evaluate the reliability of our result it is feasible to take into account the sem-

blance coefficient, which serves as a good indicator of successful operator fit. Figure 2.8 displays
the finite-offset semblance sections of the full time range of the dataset for the same four offset
configurations as obtained by the new diffraction traveltime decomposition approach (left) and
partial CRS (right). A comparison of the two images reveals the differences in the ability to
find coherent energy in the data. Whereas our new approach images coherent diffracted energy
throughout all offsets, partial CRS fails to accurately describe diffracted energy with increasing
offset. Moreover, the total energy in the subsalt area is considerably higher for the prediction
approach when compared to partial CRS, which should contribute to improved subsalt imaging.
However, the reflections from the seafloor and the upper sedimentary layers are more coherent in
the partial CRS results, whereas the traveltime decomposition inherently suppresses them. This
effect becomes more apparent with increasing offset.
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Figure 2.7: Excerpts of finite-offset stacked sections of Sigsbee 2A for four offsets from 1000 (left) to 7000m
(right) from the top of salt area (above) and the subsalt area (below) generated by application of the
new diffraction traveltime decomposition approach (a,c) and the partial CRS method (b,d).
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Figure 2.8: Finite-offset semblance sections of Sigsbee 2A for four offsets from 1000 (left) to 7000m (right)
generated by application of (a) the new diffraction traveltime decomposition approach and (b) the
partial CRS method.

An advantage of the traveltime decomposition is that the new approach, unlike partial CRS,
provides the four finite-offset diffraction attributes (emergence angle and NIP-wavefront curva-
ture at source and receiver, respectively) without any further optimization. Since the decomposi-
tion principle (2.10) is exact for diffractions, the attributes coincide with the respective estimates
obtained from generic finite-offset processing. In this fashion, we can exploit the stability of zero-
offset processing to obtain high-quality diffraction attributes for arbitrary offsets. To assess the
quality and reliability of the obtained attributes we compare them to results from generic finite-
offset CRS processing. Figure 2.9 exemplarily shows the emergence angle at the source αs as
obtained from the zero-offset-based diffraction traveltime decomposition (left) and from generic
finite-offset CRS processing (right, Zhang et al., 2001) for the same data excerpt and offset config-
urations. Note that this is a qualitative comparison, because the algorithms differ and processing
parameters cannot be chosen the same, which makes a quantitative comparison inequitable. Nev-
ertheless, the results reveal the high quality of the emergence angle obtained from application of
the new traveltime decomposition approach. The zero-offset-based attribute appears more stable
and smooth, whereas the one provided by full finite-offset processing reveals stronger distortions,
especially for weak events. A comparison of the attribute values of events, which are imaged by
both methods, reveals that they coincide. This suggests that the decomposition principle is able
to provide reliable prestack diffraction wavefield attributes, which may be used e.g. in the context
of prestack stereotomography (Billette and Lambaré, 1998). Note that the angle values along the
imaged reflections from sedimentary layers are only reliable if they are obtained from generic
finite-offset processing, because the decomposition principle only works for diffractions.

2.4 Conclusions and outlook

We have introduced a universal traveltime decomposition principle for diffractions, which is
based on the decoupling of diffraction raypaths. As a result of this decoupling, the kinematic
diffraction response is highly symmetric and thus, zero-offset and finite-offset information is

20



2.4 Conclusions and outlook

2

4

6

8

10

T
W

T
 [s

]

0 400 800 1200 1600
Trace Number

generic FO CRS: offsets 1000, 3000, 5000, 7000m

-60

-40

-20

0

20

40

60

(a)

2

4

6

8

10

T
W

T
 [s

]

0 400 800 1200 1600
Trace Number

FO prediction: offsets 1000, 3000, 5000, 7000m

-60

-40

-20

0

20

40

60

(b)

Figure 2.9: Finite-offset emergence angle at the source αs [◦] of Sigsbee 2A for four offsets from 1000 (left) to
7000m (right) generated by application of (a) the new diffraction traveltime decomposition ap-
proach and (b) generic finite-offset CRS processing.

redundant for diffractions. We found that every finite-offset diffraction operator can be decom-
posed into two independent zero-offset diffraction operators. In this fashion, we are able to image
diffractions at arbitrary finite-offsets without loss of accuracy and solely based on zero-offset pro-
cessing results. We proved the accuracy of the introduced relations by fitting diffraction travel-
times from heterogeneous media and comparing the results in terms of misfit and attributes to the
finite-offset reference. In the context of the common-reflection-surface (CRS) stack (Jäger et al.,
2001; Zhang et al., 2001), we used the traveltime decomposition principle to enhance prestack
diffraction data and to obtain prestack diffraction wavefield attributes, which can be used for
inversion. The results on simple waveform data showed the method’s ability to fit diffractions
at arbitrary offsets using only zero-offset attributes as input. Subsequent application to complex
data confirmed the potential of the method for the enhancement of prestack diffraction data and
attributes.

Since our method is entirely zero-offset based, it benefits from every improvement in the zero-
offset processing. The use of zero-offset attributes obtained from a global optimization scheme
with improved conflicting dip handling (Walda and Gajewski, 2015) has increased the quality of
our results. Also, the application of non-hyperbolic operators such as i-CRS (Schwarz et al.,
2014b) may lead to further improvement. Future work also includes the extension of the decom-
position principle to 3D. For a point diffractor, this extension is straightforward. However, at
structures such as edge or line diffractors, the decomposition principle is only applicable within
that subset of directions, where the structure acts as a point diffractor. In addition, the unique
properties of diffractions such as improved illumination and decoupling of raypaths are promis-
ing for the successful development of a diffraction-based tomographic scheme, which unites the
efficiency of NIP-wave tomography (Duveneck, 2004b) and the improved resolution of prestack
stereotomography (Billette and Lambaré, 1998).
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3 Utilizing diffractions in wavefront

tomography

Abstract

Wavefront tomography is known to be an efficient and stable approach for velocity inversion,
which does not require accurate starting models and does not interact directly with the prestack
data. Instead, the original data is transformed to physically meaningful wavefront attribute fields.
These can be automatically estimated using local coherence analysis by means of the common-
reflection-surface (CRS) stack, which has been shown to be a powerful tool for data analysis and
enhancement. In addition, the zero-offset wavefront attributes acquired during the CRS stack can
be used for sophisticated subsequent processes such as wavefield characterization and separation.
Whereas in previous works, wavefront tomography has been applied mainly to reflection data,
resulting in smooth velocity models suitable for migration of targets with moderately complex
overburden, this work has the emphasis on utilizing the diffracted contributions in the data
for velocity inversion. By means of simple synthetic examples we demonstrate the potential of
diffractions for velocity inversion. On industrial field data we suggest a joint inversion based
on reflected and diffracted contributions of the measured wavefield, which confirms the general
finding that diffraction-based wavefront tomography can help to increase the resolution of the
velocity models. Concluding this work, we compare the quality of a reverse-time migrated result
using the estimated velocity model with the result based on the inversion of reflections, which
reveals an improved imaging potential for a complex salt geometry.

3.1 Introduction

The estimation of seismic velocities plays a central role in physically characterizing the Earth’s
interior on scales ranging from the exploration of hydrocarbon reservoirs in local regimes of the
crust up to global investigations of the Earth’s deeper mantle and core (e.g., Romanowicz, 2003).
Besides their potential to answer fundamental geodynamical questions, seismic velocity models
are also needed for the migration of recorded seismic data to the depth domain, which leads
to structurally rich images of back-scattering impedance contrasts in the subsurface (Claerbout,
1970). In recent years, the direct inversion of full broadband waveforms has become the primary
tool for inferring the velocity structure with the highest possible resolution (Tarantola, 1984).
Although being based on principles, which were already defined in the eighties, full-waveform
inversion (FWI) is still computationally highly demanding and in 3D can only be afforded by
processers with access to high-performance computing facilities (e.g., Virieux and Operto, 2009).
In addition, current implementations still mostly have to rely on large-offset acquisitions of div-
ing waves with low frequencies or reasonably accurate starting velocity models to ensure stable
convergence to the global misfit minimum (Virieux and Operto, 2009). The established pro-
cess of depth migration, in turn, is designed to provide structural images of high resolution by
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focusing the back-scattered, reflected and diffracted contributions of the excited wavefield even
at principally small source-receiver offsets. In contrast to full-waveform inversion, imaging per-
forms well for comparably smooth models with less detail in the velocity structure (e.g., Yilmaz,
2001).

While full-waveform inversion and depth migration in principle do not require a dense distri-
bution of sources and receivers, Billette and Lambaré (1998) and Duveneck (2004b) have intro-
duced tomographic inversion techniques that exploit redundancy in the data, which is common in
modern seismic acquisitions. These techniques can be formulated either in the pre- or in the post-
stack domain and rely on the local coherence of the recorded wavefield. Prestack stereotomogra-
phy incorporates the wavefield’s traveltimes, and, in addition to conventional traveltime tomog-
raphy, its local slopes in the inversion (Billette and Lambaré, 1998). While this local description,
in principle, allows for a high resolution in the inverted models, the poststack approach offers the
benefits of a decreased noise level and data reduction, which can help to speed up and stabilize
the process (Lavaud et al., 2004). The multi-dimensional common-reflection-surface (CRS) stack
(Jäger et al., 2001) is a tool, which not only aims at optimally utilizing the redundancy in the
data, but also automatically extracts valuable first- and second-order wavefront attributes, which
can be used directly for automatic velocity inversion (Duveneck, 2004b). In contrast to prestack
stereotomography, this CRS-based wavefront tomography relies on a second-order symmetry of
the kinematics of the wavefield in the common-midpoint (CMP) gather, which can be expressed
by an auxiliary one-way wave originating at the normal-incidence point (NIP) of the central ray
(Hubral, 1983).

While previous applications had a strong emphasis on reflected events (Duveneck, 2004b;
Dümmong et al., 2008), we aim to take into account the diffractions in the data. Since diffractions
are the seismic response of small-scale structures, they are crucial for high-resolution imaging of
the subsurface (Klem-Musatov et al., 1994; Moser and Howard, 2008; Dell and Gajewski, 2011).
Santos et al. (2012) propose to make use of diffractions in the framework of tomographic inver-
sion based on common-focus-point operators (CFPOs). Recent works indicate that for diffrac-
tions, poststack attributes can be used to accurately describe the full kinematics of the prestack
response (Schwarz et al., 2014a; Bauer et al., 2016a), which suggests a potential for increased
resolution and stability of wavefront tomography. In this work, we make use of the non-Snell
scattering contributions in the data for obtaining better-resolved velocity models than with con-
ventional applications, which are generally reflection-based. Starting with simple synthetic ex-
amples, we find support of the recently formulated diffraction symmetry. Concluding this paper,
we apply wavefront tomography to industrial field data acquired in the Eastern Mediterranean
offshore Israel. We propose a joint inversion based on data points picked automatically at high-
amplitude reflections as well as data points extracted from diffraction-only data. This promising
approach reveals the potential of increased resolution of diffraction-based inversion for a complex
salt geometry.

3.2 Common-reflection-surface stack

Wavefront tomography is based on wavefront attributes that can be obtained by means of the
zero-offset (ZO) common-reflection-surface (CRS) stack (Jäger et al., 2001), in which a zero-offset
section is simulated in an automatic fashion. The ZO CRS stack is a multi-parameter stacking
technique, which takes into account traces along a stacking surface in both offset and midpoint
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direction around a central midpoint x0. Thus, the signal-to-noise ratio in the resulting zero-offset
section can be significantly reduced without providing any prior model information. The 2D
CRS stacking operator depends on three parameters, which can be expressed in terms of the
geometrical wavefront attributes α0, RNIP and RN (Hubral, 1983). The parameter α0 describes
the emergence angle, at which two fictitious waves emerge at the central midpoint x0 on the
recording surface. The attributes RNIP and RN describe the wavefront curvatures of these two
fictitious waves, the NIP wave and the normal wave, which are excited by a point source placed
on the reflector’s normal-incidence point (NIP) and an exploding reflector segment around the
NIP, respectively. In the case of a diffraction, RNIP and RN coincide and the NIP-wavefront
corresponds to the actual wavefront of the diffraction. This criterion can be utilized for the
separation of reflections and diffractions in the resulting zero-offset sections (Dell and Gajewski,
2011). The hyperbolic zero-offset CRS stacking operator is given by (Jäger et al., 2001)

t 2ZO =
�
t0 + 2p0∆xm

�2
+ 2t0

(
MN∆x2m + MNIPℎ2

)
, (3.1)

where ∆xm = xm − x0 is the displacement from the central midpoint x0, ℎ denotes the half-offset
and t0 the traveltime of the central zero-offset ray emerging at x0. The horizontal slowness of
the normal ray can also be expressed in terms of the geometrical wavefront attributes,

p0 =
sin α0

v0
, (3.2)

where v0 is the constant near-surface velocity. The second derivative of the traveltime in a CMP-
gather is then given by

MNIP =
cos2 α0

v0RNIP
, (3.3)

and accordingly for MN. Although the hyperbolic traveltime operator (3.1) is the most com-
mon one, different moveout descriptions, such as multifocusing (Gelchinsky et al., 1999), non-
hyperbolic CRS (Fomel and Kazinnik, 2013) or implicit CRS (Schwarz et al., 2014b), can be used
to obtain wavefront attributes. At each zero-offset sample (x0, t0), values for the three wavefront
attributes are determined by coherence analysis (usually, the semblance coefficient (Taner and
Koehler, 1969) is used as a measure of coherence) using either a pragmatic approach and subse-
quent local optimization (Mann, 2002) or a global optimization scheme (Walda and Gajewski,
2015). Also conflicting dips can be considered by estimating more than one operator at each
sample (Mann, 2002; Soleimani et al., 2009; Walda and Gajewski, 2015). Since the wavefront
attributes obtained from the ZO CRS stack have a physical meaning, they can be exploited for
further processing steps, such as diffraction separation (Dell and Gajewski, 2011), prestack data
enhancement (Baykulov and Gajewski, 2009; Bauer et al., 2016a) or the tomographic inversion
revisited in this paper (Duveneck, 2004b).

3.3 Diffraction symmetry

Since Snell’s law does not hold in the case of a point diffractor, diffraction raypaths are decoupled
and zero-offset and finite-offset information (Zhang et al., 2001) is redundant for the correspond-
ing traveltime response (Schwarz et al., 2014a; Bauer et al., 2016a). As illustrated in Figure 3.1,
the common-shot and common-receiver responses in a finite-offset measurement of a diffraction
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3 Utilizing diffractions in wavefront tomography

Figure 3.1: A finite-offset diffraction setting can be described exactly by two independent zero-offset measure-
ments at a source x s0 and a receiver x

g
0 .

are technically identical to two independent zero-offset measurements carried out at x s0 and x g
0 .

Based on the assumption of reciprocity, which is a model-independent universal principle valid
for monotypic waves, it is possible to decompose any finite-offset diffraction operator into two
independent zero-offset operators at a source x s0 and a receiver x g

0 (Schwarz et al., 2014a; Bauer
et al., 2016a),

tFO =
tZO(x s0, t s0, p s0,M s

NIP)
2

+
tZO(x g

0 , t
g
0 , p

g
0 ,M

g
NIP)

2
. (3.4)

This traveltime decomposition principle is a fundamental property of diffractions and thus, Equa-
tion (3.4) holds independently of the choice of zero-offset operators. If, e.g., hyperbolic operators
such as (3.1) are used during the zero-offset processing, the finite-offset diffraction operators com-
posed according to (3.4) correspond to double-square-root operators (Yilmaz, 2001), in which
the two square roots are approximated independently. Given the results from zero-offset process-
ing are accurate, the decomposition principle is exact for diffractions in arbitrary media. Note
that it is only valid for diffractions, because it is based on the assumption of decoupled up- and
downgoing raypaths. Accordingly, Equation (3.4) does not apply in the reflection case.
By utilizing diffractions in the zero-offset-based poststack wavefront tomography we aim to

make use of the fact that, unlike the reflection case, the full prestack diffraction response is en-
coded in its zero-offset measurements, which suggests a potential for improved lateral resolution
of the velocity models.

3.4 Wavefront tomography

Wavefront tomography, introduced by Duveneck (2004b), is an efficient tomographic approach,
which is entirely based on the zero-offset CRS attributes p0 and MNIP and provides smooth 2D
isotropic velocity models. Previous to the inversion, independent data points are picked in a data-
driven way in the CRS semblance section by taking into account stack amplitudes and attribute
values. During the tomographic inversion, rays are propagated through the model starting from
the picked locations with the respective attribute values. The velocity model is updated according
to the criterion that in a correct model, all considered NIP waves focus at zero traveltime.
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3.4 Wavefront tomography

Figure 3.2: The wavefront attributes of the NIP wave are determined in the so-called optical image space (black)
by assuming a medium with constant velocity v0, in which the location NIP* is found by straight-
ray projection. By means of wavefront tomography we aim to determine the true velocity model
v(x, z) in order to find the NIP wave’s true source location (gray).

3.4.1 Input data and model

The input for the inversion are automatically picked data points of the CRS results, which are
selected based on their coherence and a number of predefined constraints. Each pick is defined
by its location on the recording surface x0, its zero-offset traveltime t0 and the wavefront at-
tributes p0 and MNIP associated with the picked event (see Figure 3.2). Instead of t0, wavefront
tomography considers the one-way zero-offset traveltime

T0 =
t0
2

. (3.5)

Thus, the input data for the inversion algorithm is given by

(x0,T0, p0,MNIP)i with i = 1, . . . , npicks , (3.6)

where npicks is the total number of automatically picked data points. Each point i can be asso-
ciated with an imaginary normal-incidence point NIP* in the subsurface, which for a constant
initial model can be obtained by straight-ray projection into the optical image space (see Fig-
ure 3.2). Only in a correct velocity model v(x, z), NIP* coincides with the true NIP. In theory,
checking if the back-propagated NIP-waves starting from x i0 with p i0 for all picks focus atT

i
0 = 0 is

a natural condition for the inversion. However, we have to take into account that the data might
be affected by errors in order to ensure stability. Therefore, at every NIP* associated to one data
point i, a ray is started in the subsurface by dynamic ray tracing (Duveneck, 2004b). During
this process, the true subsurface positions (x, z)i and the takeoff angles θi of the rays must be
considered a part of the model, because they are unknown. In order to find the optimum veloc-
ity model, wavefront tomography minimizes the misfit between measured and modeled values
(x0,T0, p0,MNIP)i . Billette and Lambaré (1998) used a similar approach for stereotomography,
which is a tomographic inversion method working in the prestack domain.

27



3 Utilizing diffractions in wavefront tomography

For the description of the smooth velocity model v(x, z), wavefront tomography uses 2D B-
splines,

v(x, z) =
nx∑
j=1

nz∑
k=1

v jk β j (x)βk(z) , (3.7)

where nx and nz are the total number of knots in x and z -direction, respectively. Accordingly,
the model is defined by the B-spline coefficients v jk and the coordinates and ray takeoff angles
related to the data points,

(x, z, θ)i with i = 1, . . . , npicks ,

v jk with ( j, k) = (1, 1), . . . , (nx, nz ) .
(3.8)

In order to obtain the desired optimum velocity model, the inverse problem has to be solved
iteratively. This process will be described in the following section.

3.4.2 Solution of the inverse problem

In order to solve the inverse problem, the algorithm has to find a model vector m, which min-
imizes the misfit between a data vector d and the corresponding modeled values dmod = f(m)
(Duveneck, 2004b), where the model vector m contains all model components (3.8), the data
vector d consists of all picked data points (3.6) and f is a nonlinear operator, which, in the case
of wavefront tomography, corresponds to the dynamic ray tracing carried out in the model. The
presented inversion algorithm uses the least-squares norm (Paige and Saunders, 1982; Tarantola,
2005) as a measure of misfit and tries to minimize the objective function given by

Ψ(m) = 1
2
‖d − f(m)‖2D =

1
2
∆dT (m)C−1D ∆d(m) , (3.9)

where ∆d(m) = d − f(m). The matrix C−1D is symmetric and positive definite and weights the
different data components during the calculation of Ψ. Due to the nonlinearity of the operator
f, the inverse problem is solved iteratively by locally linearizing f(m) around the current model
vector. For this, the Fréchet derivatives of f are needed, which can be calculated during forward
modeling (Farra and Madariaga, 1987). In order to facilitate a stable inversion, the requirement
of a smooth velocity model is implemented as an additional constraint by minimizing its second
derivatives. This results in an additional term in the objective function,

Ψ(m) = 1
2
∆dT (m)C−1D ∆d(m) + 1

2
ε ′′mT

(v)D
′′m(v) , (3.10)

where m(v) is the part of the model vector m containing the velocity coefficients and ε ′′ is a
weighting factor, which balances the contributions of the data misfit term and the regularization
term to the cost function. The additional term contains the integral

mT
(v)D

′′m(v) =
∫ ∫ [

ε xx

(
∂2v(x, z)
∂x2

)2
+ ε zz

(
∂2v(x, z)
∂z2

)2 ]
dx dz , (3.11)

where the factors ε xx and ε zz are used for weighting the contributions of the corresponding
second derivatives. The additional term is added in order to ensure that the matrixD′′ is positive
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Figure 3.3: Results for simple diffraction data containing one diffractor. (a) All 108 automatically picked data
points plotted into the zero-offset semblance section. (b) The constant initial model for the inversion
containing the initial ray starting locations. (c) The inverted model with the final ray starting
locations and the final ray trajectories corresponding to each data point. (d) The correct velocity
model with the position of the diffractor indicated by a black dot.

definite. For the explanation of the matrix D′′ and a more detailed description of the solution
of the inverse problem we refer to the work of Duveneck (2004b). Optionally, the weighting
factors ε xx and ε zz may be decreased successively after each iteration by multiplying them with
a factor η given by

η =

√
Ψl
Ψl−1

, (3.12)

where l is the current iteration andΨl andΨl−1 the corresponding values of the objective function
(3.10) after the current and the previous iteration, respectively.

After setting up an initial velocity model, defined by a constant vertical velocity gradient or a
given starting model, kinematic ray tracing for each data point (x0,T0, p0,MNIP)i yields the cor-
responding coordinates (x, z, θ)i in the model. As a next step, the algorithm performs dynamic
ray tracing in the upward direction until the rays, which are started at (x, z)i with the angles
θi , reach the measurement surface. The updated model for the l -th iteration is then given by
ml+1 = ml + λ∆m, where 0 < λ ≤ 1 (for more details, see Duveneck, 2004b). In this model,
new data values are obtained from dynamic ray tracing and the objective function (3.10) is cal-
culated. If its value decreases with respect to the previous iteration, the next iteration is started.
Otherwise, the factor λ is decreased and the objective function is recalculated. If a minimum of
the objective function is reached, the calculation is stopped.
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3 Utilizing diffractions in wavefront tomography
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Figure 3.4: Results for simple diffraction data containing multiple diffractors. (a) All 992 automatically picked
data points plotted into the zero-offset semblance section. (b) The constant initial model for the
inversion containing the initial ray starting locations. (c) The inverted model with the final ray
starting locations. (d) The correct velocity model with the position of the diffractor indicated by a
black dot.

3.5 Simple diffraction data

In previous studies (Duveneck, 2004b; Meier, 2007; Dümmong et al., 2008), wavefront tomog-
raphy has been applied mainly based on input data points picked on high-amplitude reflections.
However, diffraction events possess properties, which make them an interesting target for wave-
front tomography. Whereas in the case of a reflection, the NIP wave emerges from a hypothetical
point source placed on the reflector’s normal-incidence point, in the case of a diffraction, the NIP
wave is excited by the diffractor itself and therefore, p0 and MNIP describe the actual wavefront
of the diffraction. Furthermore, diffractions imply better illumination than reflections, because
a point diffractor scatters an incoming wave into all directions and thus, contributions stemming
from the same diffractor can be recorded within a large part of the recording surface. This means
that the rays corresponding to just one diffraction may already travel through a significant part
of the model. In addition, the proximity of the starting coordinates of all rays connected to one
diffraction serves as a strong quality criterion for the inverted model.
In order to illustrate the procedure, we applied wavefront tomography to a simple dataset

containing one diffraction based on a model with a constant vertical velocity gradient of 0.5 s−1.
The results are displayed in Figure 3.3, where Figure 3.3a shows the data points, which were
picked automatically in the zero-offset CRS semblance section. As expected, all 108 picks lie
on the diffraction hyperbola. Figure 3.3b shows the initial velocity model for the tomographic
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3.6 Field data

inversion, which merely consists of the near-surface velocity v0 and no initial vertical velocity
gradient. The black asterisks indicate the starting locations of the rays. In a correct velocity
model, these locations should coincide for all rays stemming from the same diffractor. In this
example, we used 18× 18 B-spline knots with a spacing of 250m in x -direction and 100m in z -
direction for the tomographic inversion. Figure 3.3c shows the inverted model after 13 iterations,
the final starting coordinates of the rays and the corresponding ray trajectories. A comparison
of the inverted model with the correct one displayed in Figure 3.3d reveals a good agreement in
those parts of the model illuminated by the rays. In addition, although all picked data points are
treated independently by the algorithm, the final starting locations of the rays are confined to
the same depth point, which coincides with the actual position of the diffractor indicated by the
black dot in the correct model. Although only a single diffractor was used, the gradient in the
illuminated area is already very well reconstructed. By increasing the number of diffractors this
result will further improve, which is demonstrated in the next example.
We applied the same workflow to a dataset based on the same background model, but con-

taining a larger number of diffractors at different locations in the subsurface. Figure 3.4 shows
the results of this application. In Figure 3.4a, the asterisks indicate the 992 automatically picked
data points in the zero-offset CRS semblance section. For the tomographic inversion, we used
26 B-spline knots in x -direction and 21 knots in z -direction with a spacing of 200m each. As
in the previous example, the initial model consisted of the constant near-surface velocity v0, as
displayed in Figure 3.4b, where the starting locations of the rays again indicate the wrong ve-
locity model. The result of the inversion is displayed in Figure 3.4c including the final starting
coordinates of the rays. In this example, we stopped the calculation after 50 iterations, because
the value of the objective function did not change significantly anymore. The ray trajectories are
not displayed in this case for a better visualization of the result. In the inverted model, the ray
starting locations are, except for a few outliers, confined nicely to eight distinct depth points,
although every data point is treated independently by the inversion. The correct model shown in
Figure 3.4d reveals that the inverted depth points coincide very well with the true diffractor posi-
tions. Note that even the two diffractors lying close together on the upper left side of the images
are distinguishable. Since almost the whole model space is covered by rays, also the background
velocity gradient could be well recovered during the inversion.

3.6 Field data

Finally, we applied the same workflow to a marine field dataset recorded by TGS in the Levantine
Basin, which is located in the Eastern Mediterranean offshore Israel. The profile considered in
this work is characterized by pronounced salt-roller structures in the left part (Hübscher and
Netzeband, 2007). In previous studies, Meier (2007) and Dümmong et al. (2008) applied both
wavefront tomography and prestack stereotomography (Billette and Lambaré, 1998) to various
lines acquired in the same region. However, their results were based on data points mainly
picked on high-amplitude reflections. In order to increase the resolution of the resulting velocity
models, we propose to take into account diffractions, which usually have lower amplitudes than
reflections.
Figure 3.5a shows the zero-offset stack of the dataset under investigation. It was obtained

with non-hyperbolic CRS (Fomel and Kazinnik, 2013) using a global optimization algorithm
accounting for a maximum of 17 conflicting events at one sample (Walda and Gajewski, 2015). In
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Figure 3.5: (a) Zero-offset CRS stack of the investigated marine field data. (b) ZO CRS stack after diffraction
separation.
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Figure 3.6: Field data results. (a) All 11955 automatically picked data points plotted into the zero-offset sem-
blance section. (b) The constant initial model for the inversion containing the initial ray starting
locations. (c) Resulting model of the joint inversion using both reflection and diffraction picks
overlain with the final ray starting locations.
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Figure 3.7: Velocity models obtained by (a) inversion of only reflections and (b) joint inversion of reflections
and diffractions.
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3.6 Field data

Figure 3.8: Reverse-time depth-migrated image of the marine field data overlain with the final velocity model
obtained from joint inversion of reflections and diffractions.

order to be able to automatically pick low-amplitude events in the data, we carried out a zero-
offset diffraction separation, which is based on the assumption that the second-order attributes
MNIP and MN coincide in the case of a diffraction. Their similarity is evaluated at each zero-offset
sample by a weight function (Dell and Gajewski, 2011) of the form

w(x0, t0) = exp
(
−
|MN − MNIP |
|MN + MNIP |

)
, (3.13)

which reaches its maximum 1 if MNIP = MN. In this case, we defined a threshold of w = 0.9

and only stacked the events with a larger value of w , while the remaining events were neglected.
The resulting diffraction-only stack is displayed in Figure 3.5b. The result reveals numerous low-
amplitude events, which are masked by reflections in the full zero-offset stack.
For the automatic picking of events, we propose the following strategy: first, picking of high-

amplitude events in the full zero-offset semblance section. Afterwards, picking of low-amplitude
events in the diffraction-only semblance section using a lower semblance threshold. Note that
this picking process is fully automatic and only relies on the semblance and the stack section,
which both offer the advantage of an increased signal-to-noise ratio. In order to get rid of data
points corresponding to multiple reflections, we plotted the two-way time t0 of all picks against
the corresponding MNIP and sorted out all data points not following the general trend. Thus,
we obtained a total number of 11955 data points, of which 6430 were extracted from the full
semblance section and 5525 from the diffraction-only data. Finally, we carried out a joint tomo-
graphic inversion using all picked data points together as input. Figure 3.6a shows all data points
in the full zero-offset semblance section.
For the inversion, we used a grid of 136× 41 B-spline knots with a spacing of 200m in x

and 100m in z -direction. We assumed to have no a priori information of the velocity in the
subsurface. Accordingly, the initial model solely consisted of the near-surface velocity v0 =
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Figure 3.9: Excerpts of the reverse-time-migrated images obtained with (a) the reflection-based velocity model
and (b) the velocity model from joint inversion of diffractions and reflections.

1480ms−1. It is displayed in Figure 3.6b together with the initial ray starting locations associated
to each data point. During the inversion, we constrained the velocity within the water column
to v0. The inverted model is displayed in Figure 3.6c overlain with the final ray starting locations
associated to each data point. Figure 3.7b shows a clean version of the model obtained by joint
inversion of diffractions and reflections, whereas Figure 3.7a shows a velocity model resulting
from an inversion of the high-amplitude reflections only (6430 data points). Both results were
obtained after 6 inversion runs each, during which the regularization weights ε xx and ε zz were
systematically decreased in order to increase the model resolution. Whereas the first inversion
run was started with the initial model displayed in Figure 3.6b, the subsequent runs were started
with the final result of the respective previous run. The total number of iterations was 227 ( joint
inversion) and 239 (reflection-only inversion). The final model of the joint inversion (Figure
3.7b) reveals a high-velocity zone, which is more prominent to the left of the profile. This
is in agreement with the salt geometry known to be present in the region (see also Hübscher
and Netzeband, 2007; Dümmong et al., 2008). Compared to the results of previous studies
(Meier, 2007; Dümmong et al., 2008), our result confirms the general velocity distribution. A
comparison of the velocity models obtained by joint inversion (Figure 3.7b) and reflection-only
inversion (Figure 3.7a) reveals that the incorporation of low-amplitude diffractions enhances the
resolution of the velocity model and even reveals new features, particularly on the right side of
the profile.
In order to examine the validity of the velocity model from joint inversion (Figure 3.7b), we
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Figure 3.10: Common-image gathers (CIGs) of reverse-time-migrated data obtained with (a) the reflection-
based velocity model and (b) the velocity model from joint inversion of diffractions and reflections
for four different midpoint locations with a maximum offset of 2 km each.

used it as input for a reverse-time migration (RTM) algorithm (e.g., Baysal et al., 1983; Schuster,
2002). The used RTM implementation is based on a deconvolution imaging condition in the time
domain (Valenciano and Biondi, 2002). The result is displayed in Figure 3.8 overlain with the
velocity model. It shows that the salt-roller structures could be imaged clearly along the whole
profile, even at the steep flanks. Also the reflections from the bottom of the salt are clearly visible.
The general velocity structure is in good agreement with the salt geometry imaged by the RTM.
For comparison we applied the RTM algorithm again using the reflection-based velocity model
(Figure 3.7a). Figure 3.9 shows excerpts of the migrated images using the reflection-only velocity
model (Figure 3.9a) and the velocity model based on joint inversion (Figure 3.9b) in order to
compare the prominent salt-roller structures in the dataset. The salt geometry appears better
resolved along the whole profile in the RTM image based on the joint inversion and particularly
the rugged structures on the right side of the profile, indicated by strong diffractions in the
CRS stacks (see Figure 3.5), are imaged more clearly and with larger amplitudes. For further
examination of the quality of the migration results, Figure 3.10 shows common-image gathers
(CIGs) taken from four different lateral positions along the profile with a maximum offset of
2 km each. The CIGs taken from the RTM results based on the joint inversion (Figure 3.10b)
generally appear flatter than the ones taken from the reflection-based RTM result (Figure 3.10a),
indicating a better quality of the depth migration. Particularly large differences are visible for the
top-of-salt events at about 2.2 km depth, which confirms the previously made observation that
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3 Utilizing diffractions in wavefront tomography

taking diffractions into account during velocity inversion not only improves the resolution of the
velocity model, but also enhances the resulting depth-migrated image.

3.7 Discussion

The results presented in this paper confirm that poststack wavefront tomography is an efficient
and stable tool to obtain highly-resolved subsurface velocity models, which does not require any
a priori velocity information except the usually well-known near-surface velocity. Furthermore,
unlike other inversion techniques such as prestack stereotomography (Billette and Lambaré, 1998)
or full-waveform inversion (Virieux and Operto, 2009), CRS-based wavefront tomography does
not interact with the full prestack data volume, but relies on wavefront attributes defined in
the poststack domain. These wavefront attributes can be estimated for instance by the zero-
offset CRS stack or any other operator of the CRS family using local coherence analysis, which
allows automatic picking of data points for the tomographic inversion. While this implies a
certain robustness of the method with respect to, for instance, random noise, errors made in the
coherence and attribute estimation may have significant impact on the quality of the inversion.
Therefore, further improvement of the CRS stack, by utilizing global optimization strategies
(e.g. Walda and Gajewski, 2015) or by incorporating more accurate moveout approximations
that are better suited for diffractions (e.g. Schwarz et al., 2014b), as well as the design of more
sophisticated diffraction filters is of central importance to improve the suggested approach to
poststack wavefront tomography.

While previous applications were mainly based on high-amplitude reflections in the data, we
propose utilizing diffractions for improving the resolution of the velocity models. As the simple
synthetic examples show, diffractions can contribute to velocity inversion due to their better
illumination of the subsurface. In addition, they provide a new criterion for the quality of the
inversion results, because in a correct model, all contributions belonging to one diffractor should
focus at the same subsurface position. While we treated each data point independently in this
work, in future work we aim to incorporate the focusing criterion for diffractions as a constraint
into the inversion algorithm.

On complex industrial field data, we suggest independent extraction of reflected and diffracted
events from the data and a joint inversion using all data points together. In this fashion, the gen-
eral velocity distribution may be steered by the high-amplitude reflections, whereas the diffracted
contributions serve to enhance the resolution of the velocity model. While this higher resolu-
tion helps to improve depth-migration results, the resulting velocity models do not feature a
resolution comparable to results of methods like full-waveform inversion, but they may serve
as high-quality starting models for these sophisticated inversion techniques improving cycle-skip
issues.

Since diffractions, in contrast to reflections, from a kinematic point of view are a one-way
process, their moveout can be described entirely in the zero-offset section (Schwarz et al., 2014a;
Bauer et al., 2016a), which supports the nature of our zero-offset-based approach. Wavefront
tomography is also applicable for joint localization and velocity inversion in a passive seismic
setting. First promising results have been published recently by Schwarz et al. (2016b).
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3.8 Conclusions

3.8 Conclusions

In this paper, we revisited the largely automatic process of wavefront tomography as an efficient
tool to infer the seismic velocity structure of the subsurface, which does not require a priori
velocity information. With special emphasis on non-Snell scattering, we illustrated by means
of simple synthetic examples that the use of diffracted contributions can enhance the resolution
of the inverted models. On industrial field data, the joint inversion of reflected and diffracted
contributions led to a reliable detection of the salt and to an increased resolution of the velocity
model compared to the conventional result gained by favoring reflections. Results of reverse-time
migration based on the improved velocity model revealed a better imaging of the complex salt
geometry in the depth domain, which is confirmed by flatter common-image gathers.
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4 Unsupervised event identification and

tagging for diffraction focusing

Abstract

Multi-parameter stacking schemes like the common-reflection-surface (CRS) stack have shown
to yield reliable results even for strongly noise-contaminated data. This is particularly useful for
low-amplitude events such as diffractions, but also in passive seismic settings. As a by-product
to a zero-offset section with a significantly improved signal-to-noise ratio, the CRS stack also
extracts a set of physically meaningful wavefront attributes from the seismic data, which are a
powerful tool for further data analysis. These wavefront attributes describe the properties of two
conceptual wavefronts emerging at the surface. Whereas these wavefronts are hypothetical in the
reflection case, for diffractions and passive seismic events the wavefront attributes describe the
actually measured wavefront. Although the attributes are extracted locally from the raw data
and vary laterally along the events, an analysis of their local similarity allows the global identi-
fication of measurements, which stem from the same diffractor or passive source, that is, from
the same location in the subsurface. In this work, we present a fully unsupervised scheme to
globally identify and tag diffractions in simple and complex data by means of local attribute sim-
ilarity. Due to the fact that wave propagation is a smooth process and due to the assumption of
only local attribute similarity, this approach is not restricted to settings with moderate subsurface
heterogeneity. We demonstrate by means of a simple example that event tagging is an essential
ingredient for, for example, focusing analysis in wavefront tomography and for uncertainty anal-
ysis of velocity and localization for diffraction-only data. Although not explicitly shown in this
work, the proposed method is equally applicable to passive seismic data.

4.1 Introduction

In recent years, the process of seismic diffraction has gained increasing research interest in hydro-
carbon exploration, because it is known to be caused by small subsurface heterogeneities often
related to complicated geology (e.g. Landa and Keydar, 1998). In that context, the successful
focusing of recorded diffractions bears the potential for very localized, highly resolved imaging
of discontinuous changes in elastic properties of the subsurface that naturally complements more
conventional laterally smooth reflection images (Khaidukov et al., 2004). As one of the first ob-
jectives, seismic diffractions have been successfully used to identify and image faults, which are
often poorly resolved (Krey, 1952). In addition to increased resolution, the successful incorpora-
tion of diffracted arrivals in velocity model building schemes has recently suggested that another
major benefit of these weak signatures is improved lateral illumination of subsurface structures,
which makes them particularly useful in reduced cost-effective acquisitions (Fomel et al., 2007;
Santos et al., 2012; Bauer et al., 2017b).
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4 Unsupervised identification and tagging of diffractions

Despite all the aforementioned principal advantages of diffracted wavefields, they still remain
largely unexplored in common processing workflows. Aside from the overall weakness of these
signals’ amplitudes, the main reason for this systematic neglection arguably arises from the fact
that they strongly interfere with other more prominent wavefield contributions, in particular
reflections (e.g. Kozlov et al., 2004). Because of that, in recent years, a variety of methods has
been suggested to robustly separate the weak diffraction background. However, as many of these
approaches depend on the a priori knowledge of a depth-velocity model, they can only indirectly
contribute to velocity model building (e.g. Moser and Howard, 2008; Klokov and Fomel, 2012;
Dafni and Symes, 2017) and diffraction separation remains a direction of active research. Together
with different variations of plane-wave destruction filters (Fomel, 2002), noticeable advances have
been made in utilizing collective event properties, linked to characteristics of the emerging wave-
fronts, for diffraction identification, extraction, and imaging. Building on the assumption of local
coherence, multi-parameter stacking schemes such as the common-reflection-surface (CRS) stack
(Jäger et al., 2001) not only provide an improved data volume with a significantly increased signal-
to-noise ratio, but also extract a set of physically meaningful wavefront attributes from the data.
These wavefront attributes (Hubral, 1983) can be used for numerous subsequent processing steps,
such as time migration (e.g. Mann, 2002; Bóna, 2011), prestack data enhancement (Baykulov and
Gajewski, 2009), prestack diffraction enhancement (Bauer et al., 2016a), diffraction separation
(Dell and Gajewski, 2011; Schwarz and Gajewski, 2017a; Bakhtiari Rad et al., 2018) and velocity
model building for reflection (Duveneck, 2004b) and diffraction (Bauer et al., 2017b), as well as
passive seismic data (Schwarz et al., 2016b; Diekmann et al., 2018b).

Also, it has been suggested that from a wavefront perspective, diffractions behave kinematically
exactly like passive sources excited at the diffracting structure in depth, which makes most of the
aforementioned processing schemes likewise naturally applicable to diffracted and passive events
(Schwarz et al., 2016b, 2017a; Diekmann et al., 2018b). Consequently, all of these applications
would benefit from the a priori knowledge, which wavefront measurements share the same origin
in depth. While this discrimination can be easily made with the human eye by optically tracking
the diffracted or passive event, an algorithm requires objective criteria for the identification and
discrimination of contributions stemming from different subsurface regions. Following the men-
tality of image segmentation, which is routinely employed in image processing workflows, in this
work, we propose a fully unsupervised scheme, which utilizes the local similarity of wavefront at-
tributes for the global identification and tagging of diffractions directly in the data domain. Since
wave propagation is a smooth process, the assumption of local similarity of wavefront attributes
is reasonable and not restricted to settings with moderate subsurface heterogeneity.

In the following section, we introduce the theory of wavefront attributes, whose understand-
ing is fundamental for the proposed method. We outline various applications of them, which
partly are a requirement for event tagging. After that, we introduce the event tagging scheme in
theory and by means of a simple synthetic example. We then confirm the stability of the pro-
posed method by means of simple synthetic 2D and 3D diffraction examples and an application
to complex 2D marine field data. Further, we suggest a range of applications – including the for-
mulation of focusing constraints in wavefront tomography or the assessment of event-consistent
location and velocity inversion uncertainties – directly following or benefiting from the suggested
automated classification strategy.
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Figure 4.1: The 2D wavefront attributes α, RNIP and RN. In the reflection case, the NIP wave (left) is excited
by a point source placed on the reflector’s point of normal incidence (NIP) and the normal wave
(right) is excited by an exploding reflector segment (CRS) around the NIP. In the case of a diffraction
or a passive seismic event, they coincide and describe the actually measured wavefront.

4.2 Wavefront attributes

Wavefront attributes (Hubral, 1983) are physically meaningful parameters, which are encoded in
the moveout of seismic events. They describe the direction and the radii of two conceptual waves
emerging at the recording surface at the angle α. While the normal-incidence-point (NIP) wave
is excited by a hypothetical point source placed on the reflector’s point of normal incidence, the
normal (N) wave is excited by a hypothetical exploding reflector segment around the NIP. In
the case of a point diffraction or a passive event, the two waves coincide. In addition, the NIP
wave is no longer hypothetical as it describes the wavefront that actually emerges at the recording
surface. In Figure 4.1, the meaning of the three 2D wavefront attributes is illustrated. In 3D, the
concept of the two waves is the same, but the number of parameters increases to eight.

4.2.1 Common-reflection surface

The wavefront attributes can be extracted from the raw data by the application of multi-parameter
stacking methods such as the common-reflection surface (CRS) stack (Jäger et al., 2001) using
local (Mann, 2002) or global (Walda and Gajewski, 2017) optimization methods. In 2D, the
hyperbolic CRS stacking operator reads

t 2(t0, x0) = (t0 + 2p∆x)2 + 2t0(MNIPℎ2 + MN∆x2) , (4.1)

where the midpoint displacement ∆x = x − x0 is the distance from the central midpoint x0 and
ℎ the half-offset. The first derivative of the traveltime moveout is the horizontal slowness, which
can be related to the emergence angle α of the locally measured wavefront,

p =
sin α
v0

, (4.2)

where v0 is the near-surface velocity. The second derivatives of the traveltime moveout with
respect to half-offset and midpoint displacement, respectively, contain the wavefront curvatures
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RNIP and RN of the two previously mentioned hypothetical waves (Hubral, 1983):

MNIP =
cos2 α
v0RNIP

, MN =
cos2 α
v0RN

. (4.3)

In addition to CRS, numerous other multi-parameter traveltime formulations exist, which are ei-
ther hyperbolic (Jäger et al., 2001) or non-hyperbolic (Gelchinsky et al., 1999; Fomel and Kazin-
nik, 2013; Schwarz et al., 2014b). However, all of them may be parametrized in terms of the
previously introduced wavefront attributes. Further, recent studies for heterogeneous subsurface
settings have shown that wavefront attributes of good quality can be obtained with either of them
(Schwarz and Gajewski, 2017c,b; Walda et al., 2017).

In practice, the wavefront attributes are extracted from the data in an automatic fashion by
searching the set of attributes (α,RNIP,RN) at a point in the data, which yields the largest local
semblance coefficient for a subset of traces located in a pre-defined aperture extending in mid-
point and half-offset direction around a central point (t0, x0). This optimization problem can be
solved either by three one-dimensional line searches and a subsequent local optimization (Mann,
2002) or by a global optimization with a simultaneous search for all three attributes (Walda and
Gajewski, 2017).

In the 3D case, the hyperbolic CRS traveltime moveout is given by (e.g. Müller, 2009)

t 2(t0,m0) = �
t0 + 2p∆m

�2
+ 2t0(hTMh + ∆mTN∆m) , (4.4)

where the vectors ∆m = m−m0 and h denote the midpoint displacement and half-offset, respec-
tively. The slowness vector p contains the two angles, which define the emergence direction of
the previously introduced conceptual wavefronts, the NIP wave and the normal wave, which are
described by the symmetric 2× 2matricesM andN. Accordingly, in the 3D case eight wavefront
attributes have to be extracted from the data. In the diffraction case, this number reduces to five,
because M and N coincide.

4.2.2 Applications of wavefront attributes

Since the wavefront attributes estimated during the CRS stack have a physical meaning, they
can be exploited for numerous subsequent applications, some of which we will briefly introduce
in the following. All of these applications are directly connected to the event-tagging scheme
suggested in this work. While the application of diffraction filters for active seismic data is a
prerequisite for the event tagging, methods like prestack data enhancement, time migration and
wavefront tomography can benefit from the previous identification and tagging of measurements
with common origin in depth.

Diffraction separation

Diffractions are often hidden or masked by reflections, which usually have larger amplitudes.
However, as they are caused by small subsurface heterogeneities, they often contain structurally
relevant information, which is necessary to obtain detailed images of the subsurface. Therefore,
the separation of diffractions is an important application. For that, we can make use of the fact
that in the case of a diffraction, the two wavefront curvatures RNIP and RN coincide. Dell and
Gajewski (2011) introduced the threshold function

wR(t0, x0) = exp
(
−
|RN − RNIP |
|RN + RNIP |

)
, (4.5)
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which takes the value one if RNIP = RN and is smaller if they differ. Thus, by defining a threshold
close to one and only stacking those events, for which the threshold is exceeded, it is possible to
obtain a stacked section that predominantly contains diffracted energy.
A different approach for the separation of diffractions was recently introduced by Schwarz

and Gajewski (2017a). It is designed for low-fold or single-channel data, as often acquired in
academic environments, where the wavefront curvatures cannot be estimated accurately because
of the missing offsets. Therefore, the separation of reflections and diffractions requires a different
filter function in this case. Schwarz and Gajewski (2017a) suggest to generate reflection-only data,
which can then be subtracted adaptively from the original data in order to generate diffraction-
only data. They use a filter function

Fp(|p |) = 1 − Θ(|p | − |p0 |) , (4.6)

where Θ is the Heaviside step function. Here, p0 represents a user-defined threshold, which can
be chosen relatively small for moderate reflector dips. In contrast to the second-order diffraction
filter (4.5), the function Fp becomes one for reflections and can thus be used to generate reflection-
only data R. The reflection-only data R can then be subtracted adaptively from the input data I,
resulting in diffraction-only data D (Schwarz and Gajewski, 2017a),

D(t0, x0) = I(t0, x0) − γR(t0 + τ, x0) , (4.7)

where γ is a local scaling coefficient and τ a time correction. These quantities are the result of an
optimization problem, which has to be solved for every data point (t0, x0).

Prestack data enhancement

The zero-offset wavefront attributes may also be used for prestack data enhancement without ex-
plicitly performing computationally expensive finite-offset stacks (Baykulov and Gajewski, 2009;
Schwarz et al., 2015; Bauer et al., 2016a). In the partial CRS stack (Baykulov and Gajewski,
2009), the reference traveltime t0 is extrapolated to finite offset and the zero-offset wavefront
attributes are used to perform local finite-offset stacks in the prestack data without any further
optimization. For moderate heterogeneity and small stacking apertures this method can provide
regularized prestack data with a significantly increased signal-to-noise ratio, which is particularly
helpful in the case of low-fold land data with irregular acquisition and strong noise. Schwarz
et al. (2015) extended this method by extrapolating not only t0, but also the slopes to finite-offset.
They use the first-order finite-offset traveltime operator (Zhang et al., 2001) for a local refinement
of the extrapolated slopes and perform local finite-offset stacks with the obtained attributes.

Time migration

Time migration is a widely-used method for obtaining a first structural image of the subsurface.
While depth migration, which is the final step of seismic imaging, is very sensitive to errors in the
velocity model, time migration is far less sensitive to velocity errors. Mann (2002) introduced
a way to estimate the apex location of a diffractor in time based on the zero-offset wavefront
attributes. The apex coordinates can be obtained in the zero-offset plane (ℎ = 0) by setting
the derivative of the traveltime moveout of a diffraction (equation (4.1) with MN = MNIP) with
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respect to the midpoint direction to zero,

t 2apex(t0, x0) =
t 30v0 cos

2 α

2RNIP sin2 α + t0v0 cos2 α
, (4.8)

xapex(t0, x0) = x0 −
RNIPt0v0 sin α

2RNIP sin2 α + t0v0 cos2 α
, (4.9)

v2
RMS(t0, x0) =

2v2
0RNIP

2RNIP sin2 α + t0v0 cos2 α
, (4.10)

where (tapex, xapex) are the estimated apex coordinates for the considered event at (t0, x0) and vRMS
the corresponding dip-corrected effective velocity. The apex coordinates are constant along an
event in the case of no lateral heterogeneity. Still, also in a heterogeneous subsurface they should
not vary much along a diffraction and thus are a helpful tool for the global identification of
events.

4.3 Event tagging

Although the zero-offset wavefront attributes obtained during the application of the CRS stack
are local quantities, they provide us with valuable information about the measured events that
can be exploited for the automatic global identification and tagging of events with a common
origin in depth. Since wave propagation is a smooth process, it is reasonable to assume the local
similarity of wavefront attributes, that is, that wavefront attributes do not change abruptly along
an event. Due to this assumption of only local similarity, the global identification of events is not
limited to data acquired in subsurface settings with a small degree of heterogeneity. Accordingly,
the goal of our method is an automatic analysis of the diffractions in a given set of zero-offset
wavefront attributes resulting in the assignment of a numeric tag to each unique event. The
method consists of two main steps, which we will outline in the following with the help of a
simple synthetic diffraction data example.

4.3.1 Detection of events

Figure 4.2 shows zero-offset sections for a simple synthetic 2D diffraction dataset, which con-
tains three diffractions and is based on a velocity model containing both vertical and lateral
heterogeneity. In the upper two rows of Figure 4.2, the results from the CRS stack are displayed:
the zero-offset stack (Figure 4.2a), the corresponding coherence (Figure 4.2b) and the wavefront
attributes α (Figure 4.2c) and RNIP (Figure 4.2d). The bottom line of Figure 4.2 shows the apex
coordinates tapex (Figure 4.2e) and xapex (Figure 4.2f) calculated from the wavefront attributes via
equations (4.8) and (4.9), respectively. As expected, although α and RNIP vary strongly along
the diffractions, they are locally smooth and do not experience abrupt changes. Therefore, the
assumption of local similarity is valid and we can utilize it for the global identification of events.
The apex coordinates remain almost constant along the events and thus are a suitable additional
criterion for the identification of events. We suggest to use the semblance and all four attributes
for the matching of events in order to better constrain the problem.
The first step of the event tagging consists in the automatic detection of “valid” events, which

is carried out trace-wise. For this purpose, we define a window τmax around a given central
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Figure 4.2: Zero-offset sections for simple synthetic diffraction data with three events. The first line shows (a)
the zero-offset CRS stack and (b) the corresponding semblance. The second line shows the wavefront
attributes (c) α and (d) RNIP estimated during the CRS stack. The apex coordinates (e) tape x and (f)
x ape x are calculated from the wavefront attributes.

sample t0, such that the time range t0 ± τmax is considered. The value for τmax should be chosen
such that the total length of the window is smaller than the width of the events in the coherence
section. The given sample t0 is only considered if its coherence exceeds a pre-defined threshold.
If this is the case, we evaluate the local similarity of the wavefront attributes by calculating their
semblance coefficients (Neidell and Taner, 1971) given by

Sφ(t0, x0) = 1
n

(∑t0+τmax
τ=t0−τmax

φ(τ, x0)
)2∑t0+τmax

τ=t0−τmax
φ(τ, x0)2

, (4.11)

where φ is the corresponding wavefront attribute (α, RNIP, xapex or tapex), x0 the midpoint under
consideration and n the number of samples in the window. In the case of a valid event, which
usually ranges over various samples, the local similarities Sφ of the attributes should be close to
1 at the event’s central sample. If the local similarities of all attributes exceed the corresponding
pre-defined thresholds, which should be chosen close to 1, an event tag is assigned to the sample
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Figure 4.3: Event tags for the simple synthetic diffraction data: (a) the trace-wise detected events and (b) the
final event tags after the lateral matching of the detected events.

t0 under consideration. If an event tag exists within the window t0 − τmax, the corresponding
attribute values are compared directly by calculating

Smatch
φ =

1
2
(φ(t0, x0) + φ(t0 − τ, x0))2
φ(t0, x0)2 + φ(t0 − τ, x0)2 , (4.12)

where φ(t0, x0) is the wavefront attribute at the current sample t0 and φ(t0 − τ, x0) the one at the
sample t0 − τ within the window t0 − τmax, which also contains an event tag. If Smatch

φ is close to
1 for all attributes, the samples t0 and t0 − τ are assumed to belong to the same event and the tag
from the sample t0 − τ is copied to the sample t0. Otherwise, a new tag is assigned to the event
detected on the sample t0. This procedure is repeated for all samples on the trace and for all traces
in the zero-offset volumes. After detecting the events on all traces, we calculate the similarity of
the assigned tags Stags via equation (4.11), which will be needed for the lateral matching of events.
The result of this first step for the simple synthetic diffraction data is displayed in Figure 4.3a. It
shows that the three diffractions could be detected trace-wise throughout the whole section. As
a next step, these detected events have to be matched laterally. During this step, detected events
with only few occurrences, that is, outliers, will be sorted out.

4.3.2 Lateral matching of events

The next step after the trace-wise identification of events is the lateral matching of those measure-
ments, which belong to the same diffraction. For that, we define two windows: a window ∆xmax
in midpoint direction, which defines the maximum number of neighboring traces to be searched,
and a window τmax in sample direction, which defines the range of time samples to be examined.
The search is started at a given sample t0 on a midpoint trace x0, which contains a previously
identified event, that is, Stags is close to 1, and coincides with a local coherence maximum, that
is, the coherence at (t0, x0) is larger than at the surrounding samples. If this seed event at (t0, x0)
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has been matched in a previous search, we will only search for matching events to the right using
the already assigned tag. Otherwise, we will first search for matching events to the left. During
both searches, we vertically shift the search window depending on the local moveout ∆t in the
zero-offset section (ℎ = 0), which we calculate via

∆t (t0, x0) =
√�

t0 + p∆x
�2
+ MNIP∆x2 − t0 , (4.13)

where the midpoint displacement ∆x is the distance |∆x | ≤ ∆xmax from the central trace x0. If
(t0, x0) has not been assigned an event tag yet, we first step trace by trace to the left (∆x < 0)
while vertically shifting the search window τmax depending on the event’s moveout for the given
lateral distance. For each previously matched event contained in the search space, we compare its
wavefront attributes to the ones of the seed event at (t0, x0) by calculating

Smatch
φ =

1
2
(φ(t0, x0) + φ(t0 + ∆t + τ, x0 + ∆x))2
φ(t0, x0)2 + φ(t0 + ∆t + τ, x0 + ∆x)2 , (4.14)

where φ(t0, x0) is a wavefront attribute of the current event and φ(t0+∆t+τ, x0+∆x) a wavefront
attribute on the trace x0+∆x at the sample t0+∆t+τ within the moveout-shifted vertical window
(t0 + ∆t ) ± τmax . If Smatch

φ exceeds the pre-defined thresholds for all attributes, the measurements
at (t0, x0) and (t0 +∆t + τ, x0 +∆x) are assumed to belong to the same event. If various matching
events are found during the search to the left, the one with the highest matching coefficients
Smatch
φ is chosen and the event tag is copied from the corresponding location (t0 +∆t + τ, x0 +∆x)

to (t0, x0). If there are no traces to the left or the target regions of the neighboring traces do not
contain previously matched events, a new event tag is assigned to the current sample (t0, x0).
As a next step, the traces to the right (∆x > 0) of the seed event at (t0, x0) are searched for

matching events. For each event identified during step 1 within the moveout-adapted search space
to the right, the wavefront attributes of the seed event at (t0, x0) are compared to the ones at the
corresponding location (t0 + ∆t + τ, x0 + ∆x). If Smatch

φ exceeds the thresholds for all attributes,
the current event tag is copied from (t0, x0) to (t0 + ∆t + τ, x0 + ∆x).
After searching all traces of the zero-offset sections for matching events, we obtain a section

with a unique tag assigned to each diffraction or passive event. Events occurring on very few
traces are considered outliers and sorted out. The result for the simple synthetic diffraction
data is displayed in Figure 4.3b. As desired, all three diffractions could be identified globally by
assigning them a unique tag. Note that this result was obtained in a fully unsupervised fashion.
Applications of the event tagging algorithm to synthetic diffraction data with more events and to
field data are presented in Section 4.4 of this paper.

4.3.3 Event tagging in 3D

The current implementation of the event-tagging algorithm in 3D is based on the 2D implemen-
tation. However, in the current version, absolute attribute differences instead of the semblance
coefficient are used for the analysis of attribute similarity. Since seismic diffractions are intrin-
sically 3D phenomena, the step from 2D to 3D is a natural one. While the larger number of
wavefront attributes in 3D is an advantage because the discrimination of different events is better
constrained, on the other hand wavefront attributes are more difficult to obtain in a stable fash-
ion in 3D due to the same reason. We present first promising results of an application of the 3D
event-tagging algorithm to synthetic diffraction data in Section 4.4.
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Figure 4.4: Results for 2D synthetic diffraction data with eight events: (a) the zero-offset coherence, the wave-
front attributes (b) α and (c) RNIP, the apex coordinates (d) tape x and (e) x ape x and (f) the resulting
event tags.
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4.4 Examples

In this section we present applications of the introduced event-tagging algorithm to synthetic 2D
and 3D diffraction data as well as complex 2D marine field data.

4.4.1 2D synthetic diffraction data

The results of the application of the 2D event-tagging algorithm to synthetic diffraction data
containing eight diffractions are presented in Figure 4.4. The diffraction-only dataset is based
on a vertically inhomogeneous velocity model with a velocity gradient of 0.5 s−1. Figure 4.4a
shows the zero-offset coherence and Figures 4.4b and 4.4c the wavefront attributes α and RNIP,
respectively, as resulting from the application of the CRS stack. The apex coordinates calculated
via equations (4.8) and (4.9) are displayed in Figures 4.4d and 4.4e. All wavefront attributes reveal
the expected smooth behaviour, which permits the assumption of their local similarity. The result
of the application of the introduced event tagging algorithm to the shown zero-offset sections is
presented in Figure 4.4f. All eight diffractions contained in the data could be discriminated
and were assigned with a unique event tag. Difficulties merely occurred on the tails of the two
diffractions in the upper left of the section. These two diffractions lie so close together that
a discrimination is hardly possible, because the wavefront attributes are practically the same,
particularly on the tails. Since this also means that the two diffractions stem from almost the
same subsurface region, this is not a critical problem, though.

4.4.2 3D synthetic diffraction data

Figure 4.5 presents the results of the application of the 3D event-tagging algorithm to synthetic
3D diffraction data. The dataset contains five diffractions and is also based on a vertically in-
homogeneous velocity model. While Figures 4.5a and 4.5b show the full zero-offset coherence
volume and an inner excerpt of it, Figures 4.5c and 4.5d present the resulting event tags. Although
some problems occurred at the apices of the diffractions, all five events could be tagged correctly.
Since the number of wavefront attributes is larger in 3D, the discrimination of diffractions is even
better constrained than in 2D. In contrast to the presented 2D results, for the generation of these
results absolute attribute differences instead of the semblance coefficient were used. Further, the
apex coordinates have not yet been incorporated into the 3D implementation.

4.4.3 2D field data

In Figure 4.6, the results of an application of the proposed 2D event-tagging algorithm to com-
plex 2Dmarine field data are presented. The dataset was acquired by TGS in the Eastern Mediter-
ranean offshore Israel. It is characterized by pronounced salt-roller structures (Netzeband et al.,
2006), which cause a lot of diffracted energy (Bauer et al., 2017b). The wavefront attributes for
these results were obtained with a CRS implementation using global optimization and account-
ing for conflicting dips (Walda and Gajewski, 2017). Before the application of the event tagging
algorithm, a poststack diffraction separation (Dell and Gajewski, 2011) was applied to the CRS
results. The full resulting zero-offset diffraction coherence section is shown in Figure 4.6a, while
Figure 4.6c presents a close-up taken from the far right part of the profile. The corresponding
event tags are plotted in Figure 4.6b as an overlay over the entire coherence and in Figure 4.6d for
the close-up. The results reveal that a large number of diffractions among the whole profile could
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Figure 4.5: Results for 3D synthetic diffraction data with five events: (a) the zero-offset coherence cube, (b) an
inner excerpt of the coherence cube, (c) the resulting event tag cube and (d) an excerpt of the event
tag cube.
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Figure 4.6: Results for the marine field data: (a) the zero-offset coherence after diffraction separation, (b) the
coherence section overlain with resulting event tags, (c) an excerpt from the far right part of the
coherence section, (d) the event tags for the same excerpt.
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4 Unsupervised identification and tagging of diffractions

be identified and tagged correctly. Problems only occurred in regions, where diffraction apices
lie very close together resulting in very similar wavefront attributes. Please note that this result
was obtained in a completely unsupervised fashion without any manual quality control involved.
As an interesting by-product, the event tagging algorithm also provides a total event count.

4.4.4 Potential applications

As previously outlined, various subsequent processing steps may benefit from the identification
and tagging of diffractions, three of which we will outline in the following.

Diffraction decomposition

In the case of diffractions, that is, non-Snell scattering, one can make use of the fact that up-
and downgoing waves are decoupled and therefore, the moveout of a diffraction can be described
entirely in the zero-offset setting (Bauer et al., 2016a). This means that any finite-offset stacking
operator can be composed out of two zero-offset operators extracted at the source and receiver
locations corresponding to the desired offset,

tFO(x0s , x0g , t FO0 , αs, αg ,R s,Rg ) =
tZO(x0s , t ZO,s

0 , αs
0,R

s
NIP)

2

+
tZO(x0g , t ZO,g0 , α

g
0 ,R

g
NIP)

2
,

(4.15)

where tFO is the finite-offset operator for the half-offset (x0g − x0s )/2 composed out of two inde-
pendent zero-offset diffraction operators measured at x0s and x0g , respectively. The finite-offset
wavefront attributes coincide with their zero-offset counterparts from the corresponding source
and receiver locations and the finite-offset reference traveltime t FO0 is given by (t ZO,s0 + t ZO,g0 )/2.
Unlike the extrapolation method mentioned in section 4.2.2, the diffraction traveltime decompo-
sition is exact, as recently shown in theory and proven in synthetic and field data applications by
Bauer et al. (2015a, 2016a). Since it depends on the unique properties of diffractions, this method
is not applicable to reflection data. Event tagging is an essential ingredient for the application of
diffraction decomposition, because the information, which zero-offset measurements belong to
the same event, is needed in order to find the two zero-offset operators in equation (4.15). If the
information is available, the contributions do not have to be searched for in the data by coherence
analysis, which significantly speeds up the application.

Wavefront tomography

Wavefront tomography (Duveneck, 2004b) is an efficient and stable seismic inversion scheme,
which uses zero-offset wavefront attributes for velocity model building in the depth domain.
Initially, wavefront tomography was mainly applied using attributes measured for reflections
(Duveneck, 2004b; Dümmong et al., 2008). Bauer et al. (2017b) recently showed that diffractions
can help to improve the resolution of the velocity models obtained with wavefront tomography
and that their unique properties may contribute not only to further constrain the inversion, but
also to estimate uncertainties (Bauer et al., 2017a). Further, Schwarz et al. (2016b) have shown
that wavefront tomography may likewise be used for passive-seismic source localization.
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Figure 4.7: Application of wavefront tomography to 2D synthetic diffraction data: The picked data points (a)
are the input for the inversion, (b) the constant initial model, (c) the inverted model with the final
localizations of all data points and (d) the correct model with the correct diffractor positions. (e)
shows the cost function and the standard deviations σx and σz of all locations belonging to the
same event. The peaks in the cost function correspond to refinements of the B-spline-knot grid. In
(f), the trajectories of the mean event locations during the inversion are depicted. The red stars
indicate the mean initial locations, the red circles the mean final locations and the red lines the
corresponding trajectories during the inversion. The black circles are the correct locations of the
diffractors.
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Wavefront tomography is an efficient method because it does not require any interaction with
the prestack data. The data points, which form the input for the inversion, can be picked in a
completely automatic fashion in the attribute volumes estimated by the zero-offset CRS stack
based on their local coherence (Bauer et al., 2017b). Each data point consists of the set of zero-
offset attributes

di = (x0,T , p,MNIP)i, i = 1, . . . , npicks , (4.16)

where T = t0/2 is the one-way zero-offset traveltime. The velocity model v(ξ, ζ ) is described
by B-splines, whose user-defined knot locations are given by a nξ × nζ grid. During the inver-
sion, kinematic ray tracing into the subsurface is performed for all data points starting from di
to obtain initial subsurface locations (NIPs) (ξ, ζ, θ)i , where θ is the angle at which the ray ar-
rives at (ξ, ζ ). Subsequently, dynamic ray tracing in the upward direction starting from (ξ, ζ, θ)i
yields modeled data points d̃i = (x̃0, T̃ , p̃, M̃N I P )i . The least-squares misfit between measured and
modeled data is used as the objective function for the inversion, which is given by

Ψ(m) = 1
2
‖d − d̃‖22 + Λ

�
∂ξξv(ξ, ζ )), ∂ζ ζv(ξ, ζ )� , (4.17)

where m is the model vector that contains the B-spline coefficients vi and the subsurface loca-
tions (ξ, ζ, θ)i related to the data points. The additional regularization term Λ ensures a smooth
velocity model by minimizing the second derivatives of v(ξ, ζ ). In our implementation, the ve-
locity model is updated iteratively by minimizing the misfit function Ψ(m) using a least-squares
algorithm (Paige and Saunders, 1982). A working implementation of wavefront tomography in
3D is also available (Duveneck, 2004a).
In the context of wavefront tomography, the event tags pave the way for an assessment of the

obtained velocity models via the quantification of localization uncertainties in depth. Also, con-
tributions which belong to the same diffraction may be forced to focus in depth by introducing
a constraint into the inversion. As an example, Figure 4.7 shows the results of an application
of wavefront tomography to the 2D synthetic diffraction data introduced in Section 4.4.1. Fig-
ure 4.7a shows the data points, which form the input for the inversion and were picked in an
automatic fashion based on their coherence. The initial model (Figure 4.7b) merely consists of
the constant near-surface velocity used for the estimation of wavefront attributes. Black asterisks
indicate the initial ray starting locations for all data points, which are obtained by kinematic ray
tracing. The final model (Figure 4.7c) was obtained after a total of 61 iterations. During the
inversion, the initial 6× 5-grid of B-spline knots with a knot spacing of 1000m in both x and z -
directions was refined twice by halving the knot spacing, such that the final 21× 17 grid has a knot
spacing of 250m in both directions. The result shows that the final ray starting locations (black
asterisks) focused at eight distinct locations, although they were treated independently in this
application, that is, no focusing constraint has been included into the inversion. A comparison
to the true model with the correct positions of the eight diffractors (Figure 4.7d) directly reveals
that both velocity and localizations could be retrieved successfully by the inversion algorithm.
In this application, the event tags were used to calculate the mean positions and standard de-

viations of the depth locations connected to all data points with the same event tag during the
inversion. Figure 4.7e shows the horizontal and vertical standard deviations σx and σz for each
of the eight events along with the cost function (4.17). The peaks in the cost function corre-
spond to the two refinements of the B-spline grid. As expected, the standard deviations of all
events decrease in a similar fashion as the cost function and converge to very small values, in-
dicating a good localization quality. In Figure 4.7f, the trajectories of the mean event positions
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during the inversion are plotted. The stars indicate the mean positions in the initial model, the
lines correspond to the trajectories of the mean positions during the inversion and the red circles
are the mean positions in the final model. The black circles denote the correct positions of the
diffractors, which are almost congruent with the final localizations for all eight events.

Passive-source data

Diffractions are focusing wavefields and kinematically, from a wavefront perspective, behave ex-
actly like passive-source wavefields excited at the diffractor location. The previously described
process of wavefront tomography back-projects emerging wavefronts, characterized through lo-
cal coherence measurements, into the subsurface, which lets one arrive at an estimate of both, the
focusing location, and the traversed velocity structure. Thus, it is likewise naturally applicable to
passive-seismic data (Schwarz et al., 2016b; Diekmann et al., 2018b). While in controlled-source
acquisitions, the zero-offset response directly reveals (twice) the reference propagation time t0, in
the passive case this quantity needs to be estimated additionally due to the fact that the excitation
time ts is generally not known. For the general 3D case we have

[tdata + t (t0,m0) − t0]2 = (t0 + p∆m)2 + t0 ∆mTN∆m , (4.18)

where tdata = ts+t0 is the reference recording time and t0, here, represents the one-way rather than
the two-way propagation time at the reference receiver location m0. In correspondence with the
general 3D paraxial two-way traveltime operator (4.4), ∆m denotes the lateral receiver separation
of every considered trace, and the quantities p and N represent the two-component slope vector
and the 2× 2 curvature matrix, respectively. As equation (4.18) suggests, the propagation time
t0 and the time coordinate of the considered data point, in contrast to the controlled-source
case, generally differ, thereby demanding the estimation of an additional unknown from the data.
Please note, however, that the source excitation time ts , which can directly be derived from the
given recording time tdata and the estimated t0, represents a natural global event attribute that
can also be used for event discrimination (Schwarz et al., 2016b; Diekmann et al., 2018b). In the
common-source or the common-receiver gather, diffractors appear exactly like passive sources
and the time of diffraction is generally not known and needs to be estimated (e.g. Schwarz and
Gajewski, 2017b). Similar to the example presented in the previous subsection, the application
of wavefront tomography to passive seismic data benefits directly from the event-tagging scheme
(Diekmann et al., 2018b).

4.5 Discussion

A main prerequisite for the suggested event-tagging scheme is the sufficiently dense sampling of
the recorded wavefields. While user-defined constraints can help to guide the coherence analysis
in cases of moderate sparsity, too large trace separations are likely to result in spatial aliasing
which makes conventional coherence analysis suffer or even fail. However, this limitation is in-
trinsic and well-acknowledged in the general context of migration. Therefore, it is by no means
exclusive to the presented method. In addition, owing to the symmetry of diffractions in dif-
ferent data configurations, dense trace spacing – at least in one of these domains – can be safely
assumed in most realistic circumstances. If diffracted wavefields are numerous and strongly in-
terfere with each other – an observation that can often be made, for example, in crystalline rock
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environments – large portions of an event might be hidden behind other, more prominent contri-
butions, resulting in the so-called conflicting-dip problem, which represents a notorious challenge
in multi-dimensional stacking (e.g. Walda and Gajewski, 2017). Schwarz and Gajewski (2017a)
presented a simple yet powerful solution to this problem, in that the less prominent interfer-
ing wavefields can be accessed by adaptively subtracting the amplitude-strong contributions that
are normally favored. Although only reflections were targeted, the same methodology can also
be applied to adaptively separate one diffraction from another. As is the case with other meth-
ods, the estimation of local attribute similarity can be flawed if different diffractions are largely
tangential, that is, of similar shape and location, in data space. While the formulation of more
discriminative attribute representations and similarity measures can, to a certain extent, help to
improve selectivity in these situations, natural limitations are reached when differences in onset
and overall shape approach the order of the predominant signal’s period. However, it may be
argued that in this case, the two events from a wavefront perspective are largely equivalent and
likely have originated in a similar subsurface region.
Building on the potential for full automation in coherence analysis and multi-dimensional

stacking, the presented strategy links individual measurements of one particular diffracted event
without supervision by evaluating the local similarity of a set of wavefront attribute representa-
tions. While the presented attributes turned out to already work reasonably well, they should
merely be viewed as exemplary measures for discrimination. In general, the algorithm, depend-
ing on the wavefield complexity encountered in the preceding coherence analysis stage, couples
to the data through these wavefront characteristics and other, more elaborate versions might be
considered in the future. The unsupervised grouping or tracking of individual contributions of
a dataset is well-known in other fields. In image processing, a variety of sophisticated techniques
exist to perform the segmentation of an image, for example, based on color. As the color-coded
images of the presented event attributes suggest, the detection of their local similarity can be fully
transformed to an image processing objective, which lets a vast ecosystem of commercial or open-
source segmentation routines be readily exploitable for the discrimination of individual diffracted
events. In addition, concepts from machine learning, that is, more sophisticated types of pattern
recognition, should prove useful in further improving the presented results. Despite these strong
and fruitful interfaces, however, it needs to be appreciated that the extracted attributes represent
physically meaningful characteristics of the emerging diffracted wavefronts, which helps to nat-
urally constrain and guide existing techniques. As illustrated with different concrete examples,
we are convinced that the global identification and tagging of individual diffracted contributions
bears the potential to significantly improve existing applications, including but certainly not lim-
ited to velocity model building. We have demonstrated with a simple example that the detection
of a joint origin in depth directly helps to constrain wavefront-tomographic inversion potentially
leading to improved estimates of the scatterer location and the principal assessment of event-
consistent uncertainties. Although not explicitly presented here, it appears natural to assume
that in the same fashion, full-waveform-based as well as migration techniques are expected to
equally benefit from these constraints. Note that the presented method does not intrinsically
assume a type of event and thus, in principle, is applicable to any type of event. While an appli-
cation to reflections is not worthwhile in the context of focusing in the subsurface, since every
reflected contribution in a zero-offset section originates at a different subsurface location, in the
case of edge or line diffractions it makes sense to tag their diffractive parts, which also belong
to the same subsurface point. However, the reflective parts, whose directional behavior honors
Snell’s law, may be neglected.
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4.6 Conclusions

We have introduced a fully unsupervised scheme for the global identification and tagging of
diffractions, which stem from the same subsurface region. The proposed method works en-
tirely in the data domain and only relies on the assumption of local similarity of wavefront
attributes estimated during the common-reflection-surface (CRS) stack. Since wave propagation
is a smoothing process, this assumption does not restrict the suggested approach to moderately
heterogeneous subsurface settings. Applications to synthetic 2D and 3D diffraction data have
confirmed that diffractions can be identified and tagged correctly. An application to complex
marine field data further revealed the potential and stability of the method in complex settings.
Future work may include the integration of sophisticated image-segmentation algorithms as well
as machine-learning techniques into the suggested scheme. As illustrated by means of a synthetic
diffraction example, the gained knowledge may be exploited to further constrain diffraction wave-
front tomography by focusing common contributions in depth and to assess uncertainties in
the obtained velocity models. Also, other processing steps such as time migration and prestack
diffraction enhancement may benefit from the proposed event tagging scheme. In addition, the
suggested scheme is likewise applicable to passive seismic data.
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Abstract

Wavefront tomography is an efficient and stable tool for the generation of smooth velocity mod-
els. As input it requires first and second-order attributes, which describe slope and curvature of
the measured wavefronts. These wavefront attributes can be extracted from the data by multi-
parameter stacking schemes such as the common-reflection-surface (CRS) stack. While the slopes
are stable and relatively easy to determine, the wavefront curvatures can become unreliable in
the case of sparsely-sampled data or strong lateral heterogeneity. Since wavefront tomography
is mainly driven by the misfit of modeled and measured wavefront curvatures, curvatures of
bad quality may compromise its convergence. A possible solution to overcome this problem
are diffractions, which have a unique property that can be exploited for better constraining the
inversion: all measurements belonging to the same diffracted event are connected to the same
subsurface structure, although registered at different positions on the recording surface. In re-
cent work, we introduced an event-tagging scheme that automatically assigns a unique tag to each
diffraction in the data. We propose to use this information to constrain the inversion by enforc-
ing all diffracted measurements with the same tag to focus in depth, thus overcoming the sole
dependency of wavefront tomography on second-order attributes. Results for diffraction-only
data with vertical and lateral heterogeneity confirm that it is possible to obtain depth velocity
models for zero-offset data without using curvature information and that the suggested approach
may help to increase the stability of wavefront tomography in complex settings.

5.1 Introduction

While traditional seismic imaging has often been designed to favor reflections, the true potential
of the weak diffracted wavefield has rarely been recognized (Krey, 1952). In the last two decades,
however, diffractions have gained importance and numerous applications have been proposed
(e.g. Landa and Keydar, 1998; Fomel et al., 2007; Moser and Howard, 2008; Klokov and Fomel,
2012; Bauer et al., 2016a, 2017b; Schwarz, 2019). The main motivation for this change of mind is
the fact that seismic diffractions occur at small-scale subsurface structures, which are often related
to interesting geological features such as faults and pinch-outs and thus contain high-resolution
information about the subsurface (Khaidukov et al., 2004). Since Snell’s law does not hold for
diffractions, any seismic diffraction can be recorded at various positions of the recording surface,
which implies a better illumination of the subsurface compared to reflected waves.
In the recent years, wavefront attributes – initially being a by-product of multi-parameter stack-

ing schemes such as the common-reflection-surface stack (CRS, Jäger et al., 2001) – have proven
to be a powerful tool for seismic data analysis. While they are physical properties of hypothetical
wavefronts in the reflection case, for diffractions they describe the actual wavefronts. Wave-
front attributes can not only be used for imaging (e.g. Eisenberg-Klein et al., 2008; Baykulov and
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Gajewski, 2009; Dell and Gajewski, 2011; Bauer et al., 2016a; Walda and Gajewski, 2017; Schwarz
and Gajewski, 2017b; Schwarz, 2019), but also for velocity model building with wavefront to-
mography (Duveneck, 2004b). Recently, we have shown that the unique physical properties of
diffractions can help to improve the resolution of depth velocity models obtained with wavefront
tomography (Bauer et al., 2017b). A drawback of existing techniques for velocity-model building
such as stereotomography (Billette and Lambaré, 1998), its successor adjoint slope tomography
(Tavakoli F et al., 2017) or full-waveform inversion (e.g. Virieux and Operto, 2009) is that these
methods require seismic data with sufficiently large offsets. However, the acquisition of seismic
data with large offsets is expensive and merely feasible for the hydrocarbon industry, while aca-
demic institutions often have to cope with low-cost acquisitions and short streamers. Owing to
their focusing nature, we argue that diffractions may serve as a solution to overcome this prob-
lem. However, a requirement for further benefitting from the properties of diffractions is the
identification of measurements connected to the same diffraction – and thus the same subsurface
structure – in the data. For this purpose, we recently proposed a scheme, which utilizes the local
similarity of zero-offset wavefront attributes to globally assign tags to every diffraction in a zero-
offset section (Bauer et al., 2019c). While every data point is treated independently in conven-
tional wavefront tomography, the availability of these event tags allows for both event-consistent
statistics, that is, quality control or uncertainty analysis of the obtained velocity models (Bauer
et al., 2019c), and further constraining the inversion algorithm by enforcing diffraction focusing
in depth.

In this work, we introduce diffraction wavefront tomography, a modified implementation of
wavefront tomography, in which all diffractions with the same tag are forced to focus in depth.
As a by-product, this new constraint reduces the dependency of wavefront tomography on the
curvature-related second-order wavefront attributes. If curvatures are not taken into account at
all, the new method evolves into a zero-offset slope tomography for diffractions. This allows
its application to data, in which the determination of curvatures is challenging, such as settings
with strong lateral heterogeneity or zero-offset data with few traces. Applications to synthetic
diffraction data with vertical and lateral heterogeneity confirm the potential of the modified
implementation, which is likewise applicable to passive seismic data (Diekmann et al., 2019a).

5.2 Wavefront attributes

The input for the inversion algorithm used in this work are the so-called zero-offset wavefront
attributes (Hubral, 1983), which can be determined via multi-parameter stacking schemes such
as the common-reflection-surface stack (CRS, Jäger et al., 2001). The wavefront attributes are
encoded in the first and second derivatives of the traveltime moveout ∆t given by

∆t 2(t0, x0) = (t0 + 2p∆x)2 + 2t0(MNIPℎ2 + MN∆x2) , (5.1)

where t0 is the zero-offset time sample under consideration, ∆x = x − x0 is the distance from the
central midpoint x0 and ℎ is the half-offset. The first derivative of ∆t is the horizontal slowness
p that can be expressed in terms of the emergence angle α of the wavefront measured at the
recording surface,

p =
sin α
v0

, (5.2)
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(a) Reflection case: NIP wave (b) Reflection case: normal wave (c) Diffraction case

Figure 5.1: The 2D wavefront attributes α, RNIP and RN. In the general reflection case, the NIP wave (left) is
excited by a point source placed on the reflector’s point of normal incidence (NIP) and the normal
wave (middle) is excited by an exploding reflector segment (CRS) around the NIP. In the case of
a diffraction (right), the exploding reflector segment shrinks to a point that is the actual diffractor
acting as a secondary source. As a result, RNIP and RN coincide and the NIP wave is no longer
fictitious, but it describes the actual diffracted wavefront.

where v0 denotes the near-surface velocity. The second-order quantities MNIP and MN can be
parametrized by the radii of two fictitious wavefronts, RNIP and RN,

MNIP =
cos2 α
v0RNIP

, MN =
cos2 α
v0RN

. (5.3)

In the general case of a seismic reflection, RNIP is the radius of a wavefront excited by a hypothet-
ical point source placed on the reflector’s point of normal incidence (NIP, compare Figure 5.1a)
and RN is the radius of a wavefront excited by an exploding reflector segment around the NIP
(Figure 5.1b). Consequently, RNIP is related to the depth of a reflector and RN is related to its
curvature. However, in the case of a diffraction, the point source is no longer hypothetical, but it
is the diffractor acting as a secondary source, and the reflector segment reduces to the NIP (Figure
5.1c). Therefore, RNIP and RN coincide for diffractions and the NIP wave is the actual wavefront
measured at the recording surface. Hence, in contrast to the reflection case, where offsets in the
data are required for the estimation of wavefront attributes, diffraction wavefront attributes can
also be determined for zero-offset data. Moreover, note that the moveout of a passive seismic
event can be described by the same quantities, except for the additionally unknown source exci-
tation time, as the moveout of an active seismic diffraction (Schwarz et al., 2016b). As a result,
the inversion scheme presented in this work is equally applicable to passive seismic data (Diek-
mann et al., 2019a). While the first-order slopes p in general are easy to extract from the data,
the determination of second-order curvatures, that is MNIP and MN, is more challenging. Partic-
ularly in complex settings with a laterally heterogeneous subsurface the successful determination
of curvatures strongly depends on the chosen aperture.
The results of the CRS stack, namely a zero-offset section with improved signal-to-noise ratio,

a coherence section and the wavefront attributes p and MNIP, are a prerequisite for the application
of wavefront tomography, which we will introduce in the following.
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Figure 5.2: Illustration of five initial ray paths of conventional wavefront tomography for a simple data exam-
ple with one diffraction. The ray paths of the downward and upward ray tracing coincide. As a
result, the initial misfit only depends on MNIP.

5.3 Wavefront tomography

Wavefront tomography is an efficient and stable method for the determination of smooth depth-
velocity models. In the following, we will shortly describe conventional wavefront tomogra-
phy (Duveneck, 2004b), which can be applied to both reflections and diffractions (Bauer et al.,
2017b). Afterwards, we will introduce a modified implementation of wavefront tomography for
diffraction-only data, in which diffractions are forced to focus in depth.

5.3.1 Conventional approach

As input for wavefront tomography, data points di have to be picked in the zero-offset sections.
This can be done in an automatic fashion based on the semblance value associated to the mea-
surements,

di = (x0,T , p,MNIP)i , i = 1, . . . , npicks , (5.4)

where x0 is the midpoint coordinate and T = t0/2 is the one-way zero-offset traveltime. The
velocity model is defined in terms of 2D B-splines,

v(x, z) =
nx∑
k=1

nz∑
l=1

vkl βk(x)βl (z) , (5.5)

where nx and nz are the number of knots in x - and z direction, respectively, and vkl are the
velocity values at the corresponding locations. Accordingly, the model space m is defined by
the nx × nz B-spline velocity coefficients, subsurface locations (x, z)i and ray take-off angles θi
associated to each data point. In the inversion algorithm, downward kinematic ray tracing into
the given initial velocity model yields first guesses of the localizations (x, z)i of each data point.
As a next step, upward dynamic ray tracing starting from (x, z)i provides the modeled data
d̃. After the initial modeling, due to the reciprocity of downward und upward ray paths, the
modeled attributes d̃ and the measured attributes d only differ in the values of MNIP, which
are calculated during the dynamic ray tracing. Figure 5.2 illustrates five ray paths of the initial
modeling for a simple diffraction example. Due to the wrong initial model, the localizations
(x, z)i of the five data points, which would coincide in a correct velocity model, still form a
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5.3 Wavefront tomography

(a) Downward ray paths

(b) Upward ray paths

Figure 5.3: Illustration of five initial ray paths of diffraction wavefront tomography for a simple data example
with one diffraction. The ray paths of the (a) downward and (b) upward ray tracing differ, because
all localizations are set to their mean value after the downward ray tracing. As a result, the initial
misfit mainly depends on x0 and T .

hyperbola. For the inversion scheme, the misfit between measured and modeled data ∆d = d − d̃
is defined in terms of a cost function

Ψ(m) = 1
2
‖d − d̃‖22 + Λ (∂xxv(x, z)), ∂zzv(x, z)) , (5.6)

which is minimized in a least-squares sense by an LSQR algorithm (Paige and Saunders, 1982).
The second term Λ of the cost function is responsible for regularization and ensures a smooth
velocity model by minimizing its second derivatives. For more details on the iterative solu-
tion of the inverse problem we refer to the original work of Duveneck (2004b). In order to
account for the different units of the attributes (x0,T , p,MNIP), they are weighted with given fac-
tors (wx,wT ,wp,wM ) that have to be chosen by the user depending on the attribute quality and
the problem at hand. However, since the initial misfit of conventional wavefront tomography
only depends on the values of MNIP, the weighting factor wM must not be set to zero. Conse-
quently, in complex settings, where the estimation of second-order attributes is challenging, this
may lead to an unstable behavior of the inversion scheme.
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5 Diffraction wavefront tomography

5.3.2 Diffraction wavefront tomography

While in conventional wavefront tomography all data points are treated independently, diffrac-
tions allow the introduction of an additional constraint into the algorithm: all data points that
belong to the same diffraction are connected to the same subsurface structure and therefore, all
localizations connected to the same diffraction have to focus in depth. However, the implemen-
tation of this constraint requires the previous identification and tagging of diffractions, such that
a unique identifier, that is, an event tag, is assigned to every diffraction present in the data. Bauer
et al. (2019c) recently introduced a scheme that identifies and tags diffractions in an unsupervised
fashion by analyzing the local similarity of wavefront attributes.
Accordingly, the diffraction wavefront tomography we propose requires an additional input

parameter: the event tag associated with each data point. The data space d is then given by

di = (x0,T , p,MNIP, j)i , i = 1, . . . , npicks , j = 1, . . . , nevents , (5.7)

where j denotes the event tag and nevents is the number of different diffractions identified in
the data. As in the original implementation, the first step of the initial modeling consists of
downward kinematic ray tracing into the initial velocity model, which yields first guesses of
the subsurface locations (x, z)i related to each data point. These initial downward ray paths are
illustrated in Figure 5.3a. While in the original implementation upward dynamic ray tracing
starting from (x, z)i with the take-off angles θi provides the modeled data d̃, in our modified
implementation, the mean subsurface locations of all data points with the same event tag (x̄, z̄) j
are calculated and the upward dynamic ray tracing is started from these locations. In this case,
the ray take-off angles are calculated from the measured slowness values pi . The resulting initial
upward ray paths for the simple diffraction example are illustrated in Figure 5.3b. Since they
differ from the downward ray paths, this results in an initial misfit ∆d, which does not only
depend on MNIP, but mainly on x0 and T . Consequently, the modified implementation allows
setting the weighting factor wM to zero, thereby evolving into a zero-offset slope tomography for
diffractions.

5.4 Data examples

In this section, we present synthetic data examples comparing diffraction wavefront tomography
to the conventional approach and analyzing the stability of the proposed method in the presence
of lateral heterogeneity.

5.4.1 Simple diffraction data with vertical heterogeneity

The first example consists in an application of both conventional wavefront tomography and our
modified implementation to synthetic diffraction data obtained in a vertically inhomogeneous
velocity model with a velocity gradient of 0.5 s−1. The dataset contains a total of eight point
diffractors. The input for the inversion, 879 automatically picked data points, is displayed in
Figure 5.4a plotted onto the zero-offset semblance section provided by the CRS stack. Figure
5.4b shows the event tags that have been obtained in an unsupervised fashion based on the local
similarity of the corresponding wavefront attributes (Bauer et al., 2019c). The inversion results
are presented in Figure 5.5. In the upper row, the results of conventional wavefront tomography
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(a) Picked data points
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(b) Initial model

Figure 5.4: Panel (a) shows the automatically picked data points plotted onto the zero-offset semblance, (b) the
event tags obtained in an automatic fashion.

are shown: starting from a constant initial model, displayed in Figure 5.5a, consisting in the near-
surface velocity v0 with the initial localizations (black asterisks) connected to all data points, the
inversion algorithm converged to the final model displayed in Figure 5.5b with the final localiza-
tions. Figure 5.5c shows the constant initial model of diffraction wavefront tomography with the
initial scatterer localizations (x̄, z̄) j connected to each event tag (black dots). For all inversion
runs, an initial grid of 6× 5 B-spline knots with a spacing of 1000m each was used. In a cascaded
approach, the knot spacing was halved three times during the inversions, thus ending up with a
41× 33-grid with a spacing of 125m each. While Figure 5.5b is the result obtained with conven-
tional wavefront tomography, Figures 5.5d and 5.5e are the models obtained with our modified
implementation. In the latter, we set the weight for the curvatures wM to zero, that is, no cur-
vature information was used in the inversion. While this would imply a vanishing misfit and
no convergence in the original implementation, in the modified implementation this approach
provides a result of at least the same quality as the conventional implementation compared to the
correct model (Figure 5.5f). Still, for this dataset without lateral heterogeneity it is possible to
obtain good results with both implementations and both with or without relying on curvature
information in diffraction wavefront tomography.

5.4.2 Simple diffraction data with lateral and vertical heterogeneity

The results for the second example, presented in Figure 5.6, are based on a zero-offset dataset,
which contains both vertical and lateral heterogeneity and a total of nine point diffractors. Figure
5.6a shows the 7452 automatically picked data points plotted onto the coherence section obtained
during the CRS attribute analysis. The event tags, which could be assigned successfully to each
diffraction in an automated fashion (Bauer et al., 2019c), are displayed in Figure 5.6b, where
each diffraction has a distinct color. As in the previous example, we applied both conventional
wavefront tomography and diffraction wavefront tomography with and without using curvature
information. For all inversion runs, we used an initial grid of 11× 6 B-spline knots with a spacing
of 1000m each, which was halved three times during each inversion, thus ending up with a 81× 41
grid with a spacing of 125m each. The initial model of conventional wavefront tomography, for
which again merely the near-surface velocity v0 was assumed, is plotted in Figure 5.6c along
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(a) Initial model with conventional approach (b) Inverted model with conventional approach

(c) Initial model with new approach (d) Inverted model with curvature information

(e) Inverted model without curvature information (f) Correct model

Figure 5.5: Results for synthetic data with vertical heterogeneity: (a) the initial model with the initial local-
izations (black asterisks) using conventional wavefront tomography, (b) the inverted model with
the conventional approach without enforced diffraction focusing with the final localizations (black
asterisks), (c) the initial model of the new approach with the initial localizations (black dots), (d)
the inverted model of the new approach obtained using curvature information with the final lo-
calizations, (e) the inverted model obtained without using curvature information with the final
localizations, (f) the correct model with the correct diffractor positions.
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5.4 Data examples

(a) Picked data points (b) Event tags

(c) Initial model with conventional approach (d) Inverted model with conventional approach

(e) Initial model with new approach (f) Inverted model with curvature information

(g) Inverted model without curvature information (h) Correct model

Figure 5.6: Results for synthetic data with vertical and lateral heterogeneity: (a) the picked data points (black
asterisks) plotted into the zero-offset semblance section, (b) the event tags, (c) the initial model with
the initial localizations (black asterisks) of conventional wavefront tomography, (d) the conven-
tional inverted model with the final localizations, (e) the initial model with the initial localizations
(black dots) of the modified approach, (f) the inverted model obtained using curvature information
with the final localizations, (g) the inverted model obtained without using curvature information
with the final localizations, (h) the correct model with the correct diffractor positions.
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5 Diffraction wavefront tomography

with the initial localizations of all data points. Figure 5.6d shows the inverted model using the
conventional scheme, in which the overall velocity distribution (compare Figure 5.6h) could
be retrieved fairly well and the – independently treated – data points focus in the correct nine
distinct subsurface regions. In diffraction wavefront tomography, the data points connected to
each event are not treated independently anymore, which leads to the initial localizations plotted
in Figure 5.6e as black dots onto the constant initial model. Figures 5.6f and 5.6g are the velocity
models and localizations obtained with the modified implementation that enforces diffraction
focusing. While in the first, curvature information was used, the latter was obtained by setting
the curvature weight wM to zero, that is, the second-order attributes were not taken into account
during the inversion. A comparison to the correct model with the correct diffractor positions
(Figure 5.6h) reveals that the result obtained without using curvature information is the one
closest to the correct model. This observation leads to the assumption that an inversion algorithm
relying on curvatures may become less stable in settings with considerable lateral heterogeneity.
However, the unique properties of diffractions allow to overcome this issue by enforcing their
focusing in depth. This finding is supported by the fact that the conventional implementation of
wavefront tomography, whose initial misfit exclusively depends on curvatures, for this example
only converges, if the weight of the regularization term is increased.

5.5 Conclusions

We have presented a modified implementation of wavefront tomography (Duveneck, 2004b;
Bauer et al., 2017b), which makes use of the unique physical properties of diffractions by forc-
ing all measurements belonging to one diffraction to focus in the same subsurface location. A
requirement for the application of the modified implementation is the a priori knowledge, which
measurements in the data belong to the same diffraction. Once these event tags (Bauer et al.,
2019c) are available, all data points with the same event tag are forced to focus in depth by calcu-
lating a mean subsurface location for each event and assigning it to the corresponding data points
during the inversion. While the initial misfit of conventional wavefront tomography exclusively
depends on second-order wavefront attributes, which can be difficult to determine in complex
settings, the modified implementation relies primarily on zero-order and first-order attributes,
whose estimation is generally more stable. As the new approach allows not to take into account
second-order attributes it evolves into a zero-offset slope tomography for diffractions in this case.
Results for synthetic diffraction data confirm the potential of our approach and suggest that it
benefits from the improved stability in settings with lateral heterogeneity. Future work com-
prises further improvement of the event-tagging algorithm (Bauer et al., 2019c), the application
to field data and the extension to 3D. Owing to their focusing nature, it can be demonstrated that
the method is likewise applicable to passive-seismic events (Diekmann et al., 2019a).
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6 Conclusions

While the understanding and processing of reflected-wave measurements is well-established in
the field of applied seismics, the aim of this work has been to emphasize the unique physical
properties of seismic diffractions, which are caused by small-scale subsurface heterogeneities and
thus contain high-resolution information about the subsurface. A particular focus of this work
lies on the illumination properties of non-Snell scattering, which I exploited during different
processing steps. The final goal consisted in the development of a wavefront-tomographic scheme
that enforces the focusing of measured diffracted wavefronts in depth and thus enables velocity-
model building for low-fold-, zero-offset- and passive-seismic data.
In the first presented publication (Bauer et al., 2016a), we utilized the unique properties of

diffractions for prestack diffraction enhancement. Since Snell’s law does not hold for diffractions,
the up- and downgoing ray paths are decoupled. While conventionally, the exact characterization
of prestack data with wavefront attributes requires the application of finite-offset traveltime op-
erators to the entire prestack data cube, with the proposed traveltime decomposition any set of
finite-offset wavefront attributes can be composed out of two sets of zero-offset attributes. As a
result, diffracted measurements within the whole prestack data cube can be characterized from
zero-offset. We confirmed this finding by means of both simple and complex synthetic data ex-
amples, comparing the method to the well-established partial CRS, which extrapolates zero-offset
operators into the prestack domain.
Instead of utilizing the decoupling of diffraction ray paths for prestack data enhancement, the

same property lead to the assumption that diffractions bear the potential of closing the gap in
terms of resolution that had been observed by Dümmong et al. (2008) between zero-offset-based
methods for velocity model building such as wavefront tomography (Duveneck, 2004b) and
finite-offset-based approaches such as prestack slope tomography (Billette and Lambaré, 1998).
In the second presented publication (Bauer et al., 2017b), we utilized diffractions in wavefront
tomography. By means of simple synthetic examples we demonstrated that only a few diffrac-
tions in the data are sufficient for resolving the subsurface velocity model. In an application to an
industrial multi-channel field data set, we showed that a joint inversion of high-amplitude reflec-
tions and low-amplitude diffractions may help to increase the lateral resolution of the obtained
velocity model. We backed this finding by performing a reverse-time depth migration using the
velocity model obtained by reflection-only inversion and the one obtained by joint inversion
of reflected and diffracted measurements. The results showed that the quality of the structural
image of the subsurface improved when taking into account the diffracted wavefield. This obser-
vation was supported by flatter common-image gathers, which generally are an indicator for an
improved velocity model.
However, in order to further benefit from the potential of diffractions, their focusing nature

has to be exploited during the inversion: all measurements of one diffraction along the recording
surface are known to originate from the same subsurface structure. Thus, in a correct velocity
model, these measurements should focus in depth. Utilizing this fact, however, requires the a
priori identification of those measurements that belong to the same diffraction. For this purpose,
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6 Conclusions

I implemented an event-tagging algorithm, which is introduced in the third publication presented
in this work (Bauer et al., 2019c). Based on the fact that wave propagation is a smooth process,
the algorithm automatically analyzes the local similarity of zero-offset wavefront attributes and
assigns a unique numerical tag to each diffraction found in the data. Results for synthetic diffrac-
tion data in both 2D and 3D as well as a field data application confirmed the functionality of the
algorithm.
While also the diffraction decomposition (Bauer et al., 2016a) may benefit directly from the

event tagging, more importantly it paves the way for diffraction wavefront tomography, which is
introduced by the manuscript presented in the previous chapter (based on Bauer et al., 2019a). In
this modified implementation of wavefront tomography (Duveneck, 2004b; Bauer et al., 2017b)
the data points are not treated independently anymore, but all data points belonging to the same
diffraction – as previously identified by their event tag – are forced to focus in depth. This focus-
ing is enforced by calculating the mean event localizations for all equally tagged data points and
initializing the upward ray tracing from these positions. This causes that the initial downward
and upward ray paths do not coincide anymore and therefore – in contrast to conventional wave-
front tomography – the initial misfit does not depend only on second-order wavefront attributes,
but mainly on the lateral positions and the traveltimes. Applications to synthetic diffraction data
with vertical and lateral heterogeneity suggest an improved stability of diffraction wavefront to-
mography in the case of lateral heterogeneity, where the estimation of second-order attributes is
challenging. The modified implementation yielded particularly promising results, when second-
order attributes were not taken into account at all, thereby evolving into a zero-offset slope
tomography and thus closing the circle to the initial idea of this thesis.
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7 Outlook

Although the results presented in this thesis may be seen as important first steps of utilizing the
unique physical properties of diffractions in seismic processing, there is still a long way to go
toward exploiting their full potential.
Inherently, diffractions are 3D phenomena, since diffracting structures scatter incoming waves

into all directions. While 2D field data applications often suffer from out-of-plane effects, in three
dimensions also the full illumination potential of diffractions can be exploited – not only in the
case of a point diffraction, but also in the special cases of edge or line diffractions, which may
be decomposed into their reflective and diffractive parts. Generally, all methods presented in
this thesis either have been extended to 3D already or are extendable to 3D in a straightforward
fashion.

7.1 Event tagging

An important part of future work comprises further development of the presented event-tagging
scheme (Bauer et al., 2019c). While the method works well in synthetic diffraction examples
with relatively few events, field data applications are challenging, particularly in regions, where
diffractions lie close to each other. On the one hand, different matching strategies may be tested
– for instance initializing the search at the diffraction apices instead of arbritrary locations –,
on the other hand modern sophisticated image segmentation and pattern recognition techniques
are expected to significantly improve the method. Further, the problem of event identification
and tagging is perfectly suited for the application of deep learning algorithms. In connection
with beamforming, the method may be extended to seismological problems similar to a method
recently proposed by Ross et al. (2019), who try to associate measured phases to common earth-
quake sources. First successful results for event tagging in three dimensions have been presented
by Werner (2018) and Bauer et al. (2019c), respectively. While the problem is better constrained
in 3D due to the larger number of wavefront attributes – most importantly, there are two angles
instead of one in 2D –, the implementation of the event tagging scheme in 3D still needs to be
subject to further development in the future.

7.2 Wavefront tomography

The original implementations of wavefront tomography in both 2D and 3D have been established
by Duveneck (2004b,a). In addition to the application of conventional 2Dwavefront tomography
to diffraction-only data, which is part of this thesis (Bauer et al., 2017b), results for academic and
industrial single-channel data have been presented by (Schwarz et al., 2017a). The applicability of
wavefront tomography to single-channel data is important in the context of academic acquisitions
or legacy data, which often lack large offsets required for conventional tomographic schemes. In
principle, an application to ground-penetrating radar (GPR) data, which is not always, but of-
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ten zero-offset data, is also possible. A prerequisite for all of these cases is the separation of the
diffracted wavefield that is often hidden behind high-amplitude reflections. For that purpose,
Schwarz (2019) has introduced a method, which models and adaptively subtracts the dominant
reflected wavefield from the data, thus revealing the weak diffracted background. Complex syn-
thetic examples and a GPR field data application prove its potential. For multi-channel data,
where both reflected and diffracted measurements are available, a combination of conventional
wavefront tomography and diffraction wavefront tomography, which only forces diffractions to
focus and treats data points connected to reflected measurements independently might lead to in-
creased stability and better-resolved velocity models. Both the further development of methods
to access and separate the diffracted wavefield and diffraction wavefront tomography remain a
subject of active research.
In order to further increase the stability of wavefront tomography and to facilitate its ap-

plication, first steps have been taken in the course of my work: I implemented an automatic
refinement of the B-spline knot grid, which halves the knot spacing in both directions after each
inversion run. Thus, the inversion may be initialized with a coarse grid and a constant initial
model in order to resolve the low-frequency part of the velocity structure before successively
refining the grid and the velocity model. While previously, the desired smoothness of the veloc-
ity model had to be steered by means of the regularization parameters (as done in Bauer et al.,
2017b), these may be left constant when using the automatic knot refinement (as done in Bauer
et al., 2019a), thus reducing the user interaction. A detailed investigation of the trade-off between
regularization parameters and refinement of the knot grid might be worthwhile in the future.
Further work might lead to an adaptive grid, which should be iteratively adjusted to the density
of data points connected to the localizations in specific regions. Since such a variable grid might
be impossible to combine with the matrix-based implementation of wavefront tomography, this
might require a re-derivation and -implementation of wavefront tomography using the adjoint-
state method, as done by Tavakoli F et al. (2017) for prestack slope tomography (Billette and
Lambaré, 1998)
First applications of 3D wavefront tomography to diffraction-only data have been carried out

by Werner (2018) and Glöckner et al. (2018) showed preliminary results of the application to
3D P-Cable data. Werner (2018) additionally tested an approach for the enforced focusing of
diffractions in depth by including the standard deviations of all localizations with the same tag
into the Fréchet matrix. While I also tested this jointly-developed idea in 2D, results suggested
that the modified implementation presented in this thesis (Bauer et al., 2019a) is more promising.
Consequently, the implementation and testing of diffraction wavefront tomography in 3D is part
of future work.
Adjacent to the adaptation of wavefront tomography to the unique properties of diffractions,

Znak et al. (2018) presented a novel implementation of wavefront tomography, which uses the
so-called dynamic focusing to minimize the geometrical spreading of the back-propagated data
points. In contrast to the matrix-based original implementation, they use an adjoint-state scheme
for the minimization of the cost function. Whereas one aim of diffraction wavefront tomography
was reducing the dependence on second-order attributes, this approach emphasizes the depen-
dence on second-order attributes with the aim of reducing ambiguity. Future work includes an
extension of this method in order to account for anisotropy.

A further possible direction of future work might be the systematic investigation and compar-
ison of tomographic algorithms of different order. While traveltime tomography is most estab-
lished in global studies, in more regional studies first-order slopes and second-order curvatures
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are also taken into account. Since the results presented in this work suggest that for diffractions,
slope tomography may yield velocity models of the same quality as second-order wavefront to-
mography, the question arises, if pure traveltime tomography might be able to provide similar
results.

7.3 Passive-source seismology

Since diffractions are natural focusing functions, the connection from active-seismic diffractions
to passive-source seismology can be directly established. The applicability of conventional wave-
front tomography in passive seismic settings has been proven by Schwarz et al. (2016b) and Diek-
mann et al. (2019a). However, particularly in earthquake studies, the estimation of second-order
attributes of body waves is highly challenging – because of, for instance, few available traces and
noisy data – and therefore, mainly planar beamforming is used in these cases. Hence, the applica-
tion of diffraction wavefront tomography might help to improve the results for both earthquake
studies and passive seismic data. Since in the case of passive events the source excitation time is
an additional unknown that has to be estimated, an optimization of the source excitation time,
as suggested by Diekmann et al. (2019a), helps to stabilize the results.

7.4 Diffraction full-waveform inversion

In the recent years, inversion schemes, which invert for the measured waveforms instead of
traveltime-related attributes, have become increasingly powerful and are used on both local (e.g.
Virieux and Operto, 2009; Warner et al., 2013) and global scales (e.g. Fichtner et al., 2013; Sager
et al., 2017). However, classical tomographic inversion schemes are still widely used in both
academia and hydrocarbon industry, because computationally expensive waveform-based meth-
ods often require starting models that are sufficiently close to the true velocity distribution. In
the context of diffractions, future work comprises the development of a diffraction full-waveform
inversion (FWI). While conventional FWI in general can also invert for the diffracted wavefield,
this requires relatively high frequencies, for which the inversion can become both unstable and
expensive. In a diffraction FWI, however, the diffractors will be considered secondary sources
and a one-way modeling will be used. Thus, it will not be necessary to run the FWI algorithm
with particularly high frequencies. In this context, the joint velocity model building and scatterer
localization provided by diffraction wavefront tomography, as presented in this thesis, will serve
as an initial guess. Naturally, a diffraction FWI, in which active-seismic diffractions are treated as
secondary sources, will be likewise applicable to passive-seismic and earthquake data.
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