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Abstract 
In the Arctic, vast carbon reservoirs are preserved by cold climate conditions. Due to 
climate change, they are at risk of degradation, which could lead to increased levels of 
greenhouse gases in the atmosphere. One of these reservoirs is the seabed of the East 
Siberian Arctic Shelf (ESAS), which has in recent years attracted attention as a potentially 
large source of methane (CH4) to the atmosphere, both at present and in warmer conditions 
projected by climate models for the coming decades. Yet, estimates of the current annual 
CH4 outgassing of the shelf as well as key controls of the emissions are highly uncertain. 
One reason for the uncertainties is limited data coverage. Thus, this work aims at (1) 
improving the data availability on CH4 emissions from the East Siberian Arctic Shelf and 
(2) estimating current CH4 emissions from this region to the atmosphere. To achieve the 
first goal, an observation station for atmospheric greenhouse gases was established in the 
remote locality Ambarchik at the coast of the East Siberian Sea. The station Ambarchik 
operates continuously since it was established in August 2014 and provides accurate CO2 
and CH4 data suitable for estimating the sources and sinks of these gases via inverse 
modeling of atmospheric transport. As a side product of the calibration efforts of 
Ambarchik data, an improvement of the accuracy of measurements of greenhouse gas mole 
fractions in humid air with the widely used instruments manufactured by Picarro, Inc. was 
achieved. To achieve the second goal, data obtained at Ambarchik were used together with 
data from other sites to estimate CH4 emissions from the ESAS to the atmosphere via an 
inverse model of atmospheric CH4 transport. Results indicate that the ESAS CH4 emission 
budget is on the low end of literature estimates (0.4–1.5 Tg CH4 yr-1 compared to 0–17 Tg; 1 
Tg = 1012 g). Retrieved spatial emission patterns indicate emissions originate predominantly 
from shallow areas of the ESAS. Seasonal variations indicate potentially large emissions 
during fall, continued emissions during the ice-covered period, and limited emissions 
during ice melt. While this allowed some speculation on the underlying emission controls, 
the explanatory power of the retrieved spatiotemporal emission patterns was limited by 
limitations of the atmospheric data coverage and the model. Overall, the estimated budget 
indicates that the relevance of the ESAS for the present global atmospheric CH4 budget is 
small. 
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Zusammenfassung 
In der Arktis sind enorme Kohlenstoffreservoire durch das kalte Klima konserviert. Durch 
den Klimawandel droht ihre Zersetzung, was zu einer Erhöhung des Treibhausgasgehalts 
in der Atmosphäre führen könnte. Eines dieser Reservoire ist der Meeresboden des 
Ostsibirischen Arktischen Schelfs, das in den letzten Jahren Beachtung als möglicherweise 
starke Quelle für Methan in der Atmosphäre auf sich gezogen hat, sowohl gegenwärtig als 
auch in wärmeren Bedingungen die von Klimamodellen für die kommenden Jahrzehnte 
vorhergesagt werden. Dennoch sind Abschätzungen der momentanen jährlichen 
Methanausgasung des Schelfs sowie maßgebliche Einflüsse von denen die Emissionen 
gesteuert werden höchst unsicher. Ein Grund für die Unsicherheiten ist die beschränkte 
Datenabdeckung. Deshalb zielt diese Arbeit darauf ab, (1) die Datenlage über 
Methanemissionen des Ostsibirischen Arktischen Schelfs zu verbessern und (2) die 
momentanen Methanemissionen aus dieser Region abzuschätzen. Um das erste Ziel zu 
erreichen wurde eine Beobachtungsstation für Treibhausgase in der Atmosphäre im 
abgelegenen Ort Ambarchik an der Küste der Ostsibirischen See eingerichtet. Die Station 
Ambarchik arbeitet kontinuierlich seit ihrer Einrichtung im August 2014 und liefert genaue 
CO2- und CH4-Daten die geeignet sind um die Quellen und Senken dieser Gase mittels 
inverser Modellierung des atmosphärischen Transports abzuschätzen. Als Nebenprodukt 
der Bemühungen um die Kalibration der Ambarchik-Daten wurde eine Verbesserung der 
Genauigkeit von Messungen des Stoffmengengehaltes von Treibhausgasen in feuchter Luft 
mit den weithin genutzten Instrumenten von Picarro, Inc. erreicht. Um das zweite Ziel zu 
erreichen wurden die in Ambarchik gewonnen Daten zusammen mit Daten anderer 
Stationen genutzt um Methanemissionen vom Ostsibirischen Arktischen Schelf in die 
Atmosphäre mittels eines inversen Modells des atmosphärischen Methantransports 
abzuschätzen. Die Ergebnisse deuten darauf hin, dass die Methanemissionen des Schelfs 
am unteren Ende der Abschätzungen in der Fachliteratur liegen (0.4–1.5 Tg CH4 pro Jahr 
gegenüber 0–17 Tg; 1 Tg = 1012 g). Erfasste räumliche Muster deuten darauf hin dass die 
Emissionen vorwiegend von flachen Bereichen des Schelfs stammen. Zeitliche Variationen 
deuten auf möglicherweise hohe Emissionen im Herbst, fortgesetzte Emissionen während 
der eisbedeckten Periode, und begrenzte Emissionen während der Eisschmelze hin. 
Während dies Spekulationen über die zugrundeliegenden steuernden Einflüsse erlaubte, 
war die Aussagekraft der räumlichen und zeitlichen Emissionsmuster begrenzt aufgrund 
von Limitierungen der Datenlage und des Modells. Insgesamt deutet das abgeschätzte 
Budget darauf hin, dass das Ostsibirische Arktische Schelf derzeit für den globalen 
atmosphärischen Methanhaushalt von geringer Bedeutung ist. 
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1 Introduction 

1.1 Motivation 
Greenhouse gases are one of the major drivers of present day climate change (IPCC, 2013). 
Therefore, understanding their natural sources and sinks is crucial for projections of future 
climate trajectories. In this context, special attention is directed towards so-called tipping 
elements, i.e. systems which may transition to a new state due to climate change and that 
may not be easily reverted to the previous state (Lenton et al., 2008; Steffen et al., 2018). 
One of these systems is the case of vast amounts of carbon stored in the Arctic and 
preserved by cold climate conditions (Hugelius et al., 2014; James et al., 2016; Schuur et al., 
2015). Terrestrial (Schuur et al., 2013) and subsea (James et al., 2016) carbon reservoirs are 
at risk of being degraded and released to the atmosphere in warming conditions. A 
substantial release of the stored carbon in the form of CO2 and CH4 would constitute a 
significant positive feedback enhancing global warming. Therefore, improved insight into 
the mechanisms that govern the sustainability of Arctic carbon reservoirs and greenhouse 
gas exchange with the atmosphere is essential for the assessment of Arctic carbon-climate 
feedbacks and the simulation of accurate future climate trajectories. 
In recent years, the East Siberian Arctic Shelf (ESAS), one of the carbon pools potentially 
degrading under climate change, has attracted interest as a potentially important source of 
CH4 to the atmosphere at present and in the future (Shakhova et al., 2015, 2010a). The CH4 
cycle within the shelf is a complex system of a variety of sources, sinks, reservoirs and 
transport mechanisms (Damm et al., 2018; Fenwick et al., 2017; Sapart et al., 2017; Shakhova 
et al., 2015; Zhou et al., 2014). Constraints on present-day shelf-wide CH4 emissions to the 
atmosphere are uncertain, with greatly varying budget estimates in the literature. A 
previously identified reason for the uncertainties is limited data coverage. Previous studies 
relied either on bottom-up scaling of emission estimates based on temporary in-situ 
campaigns, in many cases with a focus on the ice-free season and coastal regions. Others 
scaled emission scenarios to fit data from the sparse network of calibrated atmospheric CH4 
observation stations in the Arctic. Better constraints on current CH4 emissions from the 
ESAS to the atmosphere, based on more data and refined methods, could contribute to a 
better understanding of the factors that control the emissions and thus, ultimately, 
contribute to a better understanding of the ESAS CH4 cycle and how it may evolve in our 
changing climate. 

1.2 Goals of this thesis 
This work aims to better constrain present-day ESAS CH4 emissions using atmospheric 
CH4 signals. Given the sparse data coverage, the main goals of this study are two-fold: 
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1. Gather year-round accurate observations of atmospheric greenhouse gases at the coast 
of the East Siberian Arctic Shelf 
To achieve this goal, a station that continuously measures dry air mole fractions of 
atmospheric greenhouse gases (CO2 and CH4) was established in Ambarchik, Northeast 
Siberia. Tasks encompassed setup and maintenance of the station, as well as processing, 
calibration and quality control of the data. 
 
2. Estimate CH4 emissions from the East Siberian Arctic Shelf to the atmosphere based 
on an inverse model of atmospheric CH4 transport 
This goal encompassed estimating the annual ESAS CH4 budget based on year-round 
measurements, finding spatiotemporal patterns in the emissions and, if possible, linking 
them to controlling mechanisms. 

1.3 Structure of this thesis 
This thesis begins with a review of the CH4 cycle of the ESAS, including a review of 
literature estimates on CH4 emissions from the ESAS to the atmosphere (Chapter 2). Next, 
the methods for estimating ESAS CH4 emissions used in this study are introduced (Chapter 
3). Chapter 4 describes the observations gathered at the new station Ambarchik. Chapter 5 
describes the setup and results of an inverse modeling study on ESAS CH4 emissions based 
on the preceding chapters. The main conclusions on the stated goals are given in Chapter 6. 
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2 The CH4 cycle of the East Siberian Arctic Shelf 
The East Siberian Arctic Shelf is an environment with complex biogeochemical cycles and 
hosts large carbon pools of uncertain stability. In the following sections, the origins of CH4 
in ESAS waters and the state of knowledge on dynamics relevant for CH4 release to the 
atmosphere are introduced. The chapter concludes with a review of evidence for CH4 
outgassing from the shelf to the atmosphere (Sect. 2.6). 

2.1 Origins of carbon in the seabed 
Methanogenesis requires a carbon source. In this section, sources of carbon in the seabed of 
the East Siberian Arctic Shelf that can contribute to methanogenesis are introduced. 

2.1.1 Surface sediment layer and organic carbon input  

The topmost sediment layer of the East Siberian Arctic Shelf originates from mostly 
terrestrially (western part) or oceanically (eastern part) derived carbon, with the boundary 
between the domains located in the eastern part of the East Siberian Sea (Anderson et al., 
2011; Semiletov et al., 2005). The divide stems from the dominant water masses. Sediments 
in the Laptev Sea and the majority of the East Siberian Sea are dominated by contemporary 
coastal erosion and river input, which carry organic carbon from adjacent terrestrial 
ecosystems (Rachold et al., 2000; Semiletov et al., 2012; Vonk et al., 2012). The Chukchi Sea, 
on the other hand, is dominated by Pacific waters, and the sediments are partly of 
terrestrial and partly of marine origin (Semiletov et al., 2012). 

2.1.2 Subsea permafrost 

Beneath the surface sediment layer (Sect. 2.1.1), the East Siberian Arctic Shelf is underlain 
by carbon-rich submerged permafrost, which formed in the Pleistocene. I.e. over the past 
hundreds of thousands of years, several transgressions and regressions of the ocean to 
occurred on the ESAS (Nicolsky et al., 2012), the most recent of which (the Holocene 
transgression), took place between about 12 and 5 kyr ago (Bauch et al., 2001) with some 
near-shore areas submerged later (Nicolsky et al., 2012). In the Siberian Arctic, remnants of 
the biosphere accumulated over timescales of hundreds of thousands of years, forming 
soils rich in organic carbon ("yedoma") that does not degrade in the cold temperatures 
(Romanovskii et al., 2005; Sher et al., 2005; Zimov et al., 2006). The permafrost layer of the 
East Siberian Arctic Shelf is a relic of the accumulations that took place while the area was 
not submerged (Romanovskii et al., 2005).  
The extent of subsea permafrost in the ESAS is uncertain. Cramer and Franke (2005) 
speculated that the northern part of the shelf is not covered by continuous permafrost 
based on the occurrence of gas flares; a similar observation was made in the Kara Sea 
(Portnov et al., 2013). Ruppel et al. (2015) assumed a permafrost extent up to 30m depth 
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based on observational results for the Kara Sea and Beaufort Sea, which qualitatively 
agrees with Cramer and Franke. Other assessments of the state of permafrost that could 
allow mapping its extent relied on models (e.g. Nicolsky et al., 2012). 
Shakhova et al. (2010b) give an estimate of the size of this carbon pool at 500 Gt, citing 
Zimov et al. (2006)1. 

2.1.3 Methane hydrates 

CH4 (and other gases) can be trapped in lattices of water ice, forming hydrates (e.g. Gornitz 
and Fung, 1994). Hydrate stability in the ESAS seabed is limited by low pressure and/or 
high temperature at the top, and the geothermal gradient at the bottom. Various upper 
limits for the "Gas Hydrate Stability Zone" (GHSZ) in the Arctic have been reported, e.g. 
300 m (Archer, 2015, model result) and 120 m (Dallimore and Collett, 1995, observations) 
below sea level. The GHSZ can be several hundred meters thick (Archer, 2015). Shakhova 
et al. (2010b) cited a total mass estimate of 540 Gt carbon for this pool2. 

2.1.4 Natural gas 

Below the GHSZ, CH4 can occur as free gas. Seeps of thermogenic CH4 have been observed 
during gas field exploration in the Laptev Sea, suggesting the presence of a natural gas 
pool (Cramer and Franke, 2005). Shakhova et al. (2010b) also cited earlier reports on the 
existence of a free gas pool underneath the permafrost, with an estimated mass of 360 Gt 
carbon3. 

2.2 CH4 sources to ESAS waters 
CH4 emissions from the seabed are a widespread phenomenon observed globally (e.g. 
Etiope, 2015; Judd, 2003). Sea bed CH4 can be produced biogenically (microbial 
decomposition of organic matter), thermogenically (degradation of organic matter in high 
temperatures and pressures over millions of years), or abiotically (via various chemical 
processes). In the seabed of the East Siberian Arctic Shelf, surface sediment and permafrost 
may serve as substrate for biogenic CH4, and CH4 from dissociating hydrates or free gas 
may migrate upwards. In the following paragraphs, sources of CH4 to the waters of the 
ESAS are presented. 

2.2.1 Mobilization of old carbon 

It has been hypothesized that the permafrost layer acts as a barrier for underlying CH4, and 
that this "lid" is at present being compromised, both releasing permafrost-derived CH4 and 

                                                        
1 The 500 Gt estimate by Zimov et al. is for yedoma soil covering a land surface of 1 Mio. 
km2. Therefore, this ESAS carbon pool estimate should actually be ~1000 Gt carbon. 
2 The cited sources therein were in Russian and thus inaccessible to the author. 
3 The cited sources therein were in Russian and thus inaccessible to the author. 
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opening migration pathways for underlying CH4 (Shakhova et al., 2010a). As a result, CH4 
could be released in dissolved form or, more rapidly, as bubbles (gas flares), which has 
been observed on the Arctic shelves (see Sect. 2.3.2 on bubble transport). In the following 
paragraphs, possible warming mechanisms and other pathways for CH4 emissions to the 
shelf waters are briefly introduced. 
 
Warming from the top 
Model results suggest that at present permafrost is thawing due to warming by ocean 
waters since the Holocene transgression (Dmitrenko et al., 2011), which are warmer than 
the average air temperature. The state of permafrost degradation has been linked to 
seafloor CH4 emissions (Shakhova et al., 2015). The time scale of thawing implies that the 
permafrost layer should be more intact in shallower waters, which were flooded more 
recently (Archer, 2015 and references therein). Degradation may be related to submerged 
taliks, i.e. layers or pockets of unfrozen water within the permafrost that formed beneath 
thaw lakes or rivers before the transgression (Frederick and Buffett, 2014; Nicolsky et al., 
2012). Also, the large Arctic rivers transport warm water to the shelf, which may cause 
permafrost to thaw (Delisle, 2000; Romanovskii et al., 2005; Semiletov et al., 2012). Modern 
climate change has been hypothesized to trigger abrupt release of vast amounts of CH4, 
inducing a positive global warming feedback (Shakhova et al., 2010a). Although recent 
warming related to climate change has warmed shallow Arctic shelf waters of the ESAS 
(Dmitrenko et al., 2011), model results indicate that this warming has a considerable impact 
on CH4 release due to permafrost degradation and hydrate destabilization rather on 
millennial timescales (Archer, 2015; Dmitrenko et al., 2011). Note that climate-change-
related warming of bottom waters has been linked to increased CH4 emissions from the 
continental margin to the ocean off Svalbard (c.f. James et al., 2016; Walczowski and 
Piechura, 2006; Westbrook et al., 2009). 
 
Warming from the bottom 
Subsea permafrost may be degraded and CH4 hydrates destabilized where the geothermal 
heat flux is high, i.e. at fault zones (Romanovskii and Hubberten, 2001) or paleo-river beds 
(Frederick and Buffett, 2014). 
 
Exposure at the continental slope 
The transition from the continental shelf to the deep Arctic Ocean (continental slope) 
exposes deep sediment layers closer to ocean water. At the slope, large gas hydrate 
deposits have been suggested (e.g. Cramer and Franke, 2005; references in Miller et al., 
2017) which may be prone to destabilization and escape to the water column due to the 
absence of a permafrost cover. At the Laptev Sea slope, increased CH4 concentrations in 
bottom waters have been observed (Schröder, 2000). However, a recent expedition found 
no evidence for elevated CH4 in sediment cores from the slope of the East Siberian Sea, 
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putting abundant escape of CH4 to the water column across the slope into question (Miller 
et al., 2017). 

2.2.2 Production and consumption in the surface sediment 

CH4 can be produced microbially in anoxic environments in the surface sediment in the 
seafloor (e.g. Koch et al., 2009) and has been shown to be a source of CH4 to bottom waters 
of the ESAS (e.g. Fenwick et al., 2017; Li et al., 2017; Matveeva et al., 2015; Reeburgh, 2007; 
Savvichev et al., 2007). However, CH4 can also be removed in the surface sediment by 
anaerobic oxidation, e.g. sulfate reduction. This process may limit how much CH4 from 
thawing subsea permafrost reaches the water (Overduin et al., 2015; Winkel et al., 2018). 

2.2.3 River input of CH4 

Arctic rivers carry dissolved and particulate terrestrial organic matter to the Arctic Ocean, 
which can be degraded and released to the atmosphere as CH4. The largest stream that 
enters the ESAS, the Lena, exhibits elevated CH4 levels in its delta, but the excess CH4 is 
vented to the atmosphere before reaching the Laptev Sea (Bussmann, 2013). The mouth of 
the Kolyma river exhibits elevated concentrations of dissolved CH4, which indicates that it 
transports CH4 to the East Siberian Sea (Shakhova and Semiletov, 2007). 

2.2.4 Microbial production and consumption of CH4 in the shelf water 

CH4 can be produced microbially in upper ocean waters in the Arctic by methanogens. 
There is evidence for methanogenesis via DMSP (dimethylsulfoniopropionate) as a 
substrate. DMSP is produced by phytoplankton. Accordingly, in situ CH4 production is 
correlated with phytoplankton blooms (Damm et al., 2008, 2010), which has been observed 
in the Pacific-dominated Chukchi Sea (Fenwick et al., 2017; Li et al., 2017). Another 
observed pathway is via methylphosphanate (Repeta et al., 2016). 
CH4 in Arctic shelf waters that is produced in situ or released from the seafloor is partially 
consumed by microbial oxidation (Fenwick et al., 2017; Li et al., 2017), which diminishes 
the amount of CH4 that reaches the atmosphere. This process is more effective the longer 
the residence time of CH4 in the water is, i.e. in the presence of dynamical barriers (see Sect. 
2.3.1 and 2.4). Li et al. (2017) concluded that, in the Chukchi Sea, 43 % of all CH4 input is 
consumed microbially, while 52 % reaches the atmosphere. Shakhova et al. (2015) found a 
turnover time of 300–1000 days for dissolved CH4 in the ESAS and concluded that 
considerable fractions of it would therefore reach the atmosphere. 

2.3 CH4 transport in ESAS water 
CH4 released from the seabed into the water does not necessarily reach surface waters and 
the atmosphere due to microbial consumption (Sect. 2.2.4) and dynamical barriers that can 
effectively trap dissolved CH4 in bottom waters. This section introduces the literature on 
the fate of CH4 in the shelf waters. 
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2.3.1 Stable stratification of shelf waters 

In general, stable stratifications can occur due to density gradients (pycnoclines) related to 
temperature or salinity (Myhre et al., 2016). For example, in summer, upper Arctic shelf 
waters can be stably stratified due to freshwater input, e.g. from the Lena river (Charkin et 
al., 2011; Wåhlström et al., 2012). In the Laptev Sea, seasonal variations of the pycnocline 
have been shown (Janout et al., 2017). It is heavily influenced by sea ice dynamics (Sect. 
2.4), and can be deepened by wind-driven mixing, which is most effective during storms 
(Shakhova et al., 2014). A rough estimate for its depth during the ice-free season is on the 
order of 10 m (Thornton et al., 2016b) to 20 m (M. Janout, personal communication). CH4 
trapped in a stratified water column is more likely to be consumed (Sect. 2.2.4). Thus, 
stratification can inhibit emissions of CH4 from the ESAS to the atmosphere. 

2.3.2 Bubble transport (gas flares) 

The microbial sink in the water column can be circumvented by CH4 that enters the water 
in the form of bubbles. CH4 gas flares emanating from the seafloor have been observed 
across the Arctic shelf seas and continental slopes (Andreassen et al., 2017; Cramer and 
Franke, 2005; Mau et al., 2017; Myhre et al., 2016; Paull et al., 2007; Portnov et al., 2013; 
Shakhova et al., 2010a; Westbrook et al., 2009). Bubble plumes rising through the water 
column are partially dissolved, and the fraction that reaches the surface depends on their 
size, density, release depth, dissolved CH4 concentration in the surrounding water, and 
other factors (DelSontro et al., 2015; e.g. Leifer and Patro, 2002; McGinnis et al., 2006). 

2.3.3 Lateral transport with ocean currents 

ESAS shelf waters are advected with ocean currents (Damm et al., 2018; Kvenvolden et al., 
1993; Li et al., 2017; Shakhova et al., 2015). This process may limit CH4 accumulation under 
and in sea ice on the shelf and instead distribute CH4 to other parts of the Arctic Ocean 
(Damm et al., 2018). 

2.4 Role of sea ice for the CH4 cycle of the ESAS  
The seasonal sea ice cover plays a dominant role in the CH4 cycle of the ESAS. Sea ice 
formation, cover and melt influence the dynamics of CH4 transfer from the water to the 
atmosphere, as well as mixing and stratification of the water column. Furthermore, CH4 
can be stored and produced in situ in sea ice. These processes are introduced in the 
following paragraphs. 
 
Sea ice as a barrier between water and atmosphere 
Closed sea ice cover strongly restricts the flux of CH4 to the atmosphere, acting as an 
effective barrier that traps CH4 below the surface (e.g. Zhou et al., 2014) and increases its 
residence time and thus consumption (Kitidis et al., 2010). However, open water is present 
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in Arctic sea ice throughout the winter in the form of leads and polynyas (introduced 
below) through which CH4 can be emitted to the atmosphere in winter (Kort et al., 2012). 
Furthermore, it has been shown that sea ice can be permeable for CH4 (Crabeck et al., 2014; 
Kelley and Gosink, 1979; Loose et al., 2011; Lovely et al., 2015), but the gas transfer velocity 
is much smaller than direct air-sea gas transfer if fractures in the ice are present (Loose et 
al., 2011). 
 
Water column mixing during sea ice formation and refreezing of leads and polynyas 
During sea ice formation, brine (water with very high salinity) is ejected from the sea ice. 
This can lead to direct CH4 outgassing from the brine (Zhou et al., 2014) and, due to the 
high density of the brine that causes it to sink, mixing of the water column, enabling 
transport of CH4 from seabed sources to the surface (Damm et al., 2015a). Sea ice formation 
continues throughout the winter in areas of open water in the ice, i.e. leads and polynyas. 
The terms “leads” and “polynyas” are sometimes used ambiguously in the literature. Here, 
“leads” denominate linear cracks on the order of meters to kilometers in width that form in 
drift ice through shear stress and are transient features (Miles and Barry, 1998). “Polynyas” 
can be larger and more persistent than leads and can form through several mechanisms. 
Upwelling of warm bottom water e.g. driven by ocean currents can cause ice melt and 
prevent refreezing (“sensible heat polynyas”, cf. Ainley et al., 2003). Persistent winds can 
create openings at the interface of land-fast sea ice and drift ice (“latent heat polynyas”, 
Eicken, 2003), forming an area of continuous ice production and thus brine rejection 
throughout winter (Lowry et al., 2018 and references therein). In particular, the Great 
Siberian Polynya, which can be up to 200 km wide (Dmitrenko et al., 2005), remains open at 
the interface of land-fast ice and drift ice in the Laptev Sea and parts of the East Siberian 
Sea every year and has been suggested as a pathway for CH4 to the atmosphere in winter 
(Shakhova et al., 2015). In polynyas and leads, enhanced mixing due to refreezing has been 
observed and associated with considerably enhanced air-sea gas transfer compared to open 
water conditions (Damm et al., 2007; Else et al., 2011; Lowry et al., 2018; Steiner et al., 2013). 
For example, Else et al. (2011) estimated CO2 fluxes in an area of fractional sea ice cover to 
be 1–2 orders of magnitude higher than open ocean fluxes during summer. Damm et al. 
(2007) estimated CH4 emissions from a polynya close to Svalbard similar in magnitude (26–
104 µmole m-2 d-1) to hot spots estimated for the ESAS in the summer (45–95 µmole m-2 d-1, 
(Shakhova and Semiletov, 2007)). 
 
CH4 cycling in sea ice 
In situ CH4 production and (chemical and biological) consumption in sea ice has been 
suggested (Damm et al., 2015a; Fenwick et al., 2017; He et al., 2013). However, in a study on 
land-fast sea ice close to Barrow, Alaska, physical mechanisms were the dominant drivers 
of CH4 exchange between sea ice, surface waters and atmosphere, such as retention, 
permeability during formation and breakup, and brine rejection (Zhou et al., 2014). 
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Ice melt 
During ice melt, CH4 accumulated under or stored in ice can be released to the atmosphere 
(Kvenvolden et al., 1993; Shakhova et al., 2010a; Zhou et al., 2014). On the other hand, 
melting sea ice forms a fresh melt water layer at the sea surface, which is lighter than the 
salt water below and therefore can increase stratification and has been observed to trap 
CH4-rich water beneath, restricting outgassing to the atmosphere (Damm et al., 2015a; 
Kitidis et al., 2010). 

2.5 Air-sea CH4 transfer: Diffusion and Ebullition 
Exchange of CH4 dissolved in water and the atmosphere is governed by turbulent 
diffusion. Gas transfer via turbulent diffusion depends on the partial pressure difference of 
the gas between air and water, turbulence at the interface, the viscosity of the water and the 
solubility of the gas. Turbulence is often expressed as a function of wind speed, while 
viscosity and solubility depend on the temperature and salinity of the water, as well as 
atmospheric surface pressure (Wanninkhof, 1992). This parameterization has shortcomings, 
and more processes play a role, e.g. at high wind speeds and the ice edge. Gas transfer at 
the air-ocean interface and in the presence of sea ice is a subject of ongoing research (e.g. 
Bigdeli et al., 2018; Deike and Melville, 2018; Turner et al., 2018; Zavarsky et al., 2018). 
Besides diffusive air-sea gas transfer, CH4 gas flares from the seafloor (Sect. 2.3.2) may 
reach the surface in shallow waters (Leifer et al., 2006). This process is termed ebullition. 

2.6 Observational and model evidence for CH4 emissions from 
the ESAS to the atmosphere: pathways, distribution and 
budget 

2.6.1 Observations of seabed CH4 sources and emissions to the 
atmosphere 

In this section, observational evidence for CH4 outgassing from the ESAS to the atmosphere 
is summarized. 
During numerous ship-based campaigns, widespread CH4 supersaturation of ESAS surface 
waters has been observed (Cramer and Franke, 2005; Fenwick et al., 2017; Li et al., 2017; 
Savvichev et al., 2007; Shakhova et al., 2010a). Since partial pressure differences at the air-
water interface drive gas transfer between water and atmosphere via diffusive gas transfer 
(Sect. 2.5), the observed supersaturation implies CH4 emissions to the atmosphere. 
Besides diffusion, widespread ebullition has been reported as a pathway of CH4 from the 
ESAS to the atmosphere (Shakhova et al., 2014). Ebullition fluxes originate from seeps on 
the seafloor (Sect. 2.5), which are presumably paths for CH4 derived from ancient carbon in 
the seabed to the water column (cf. Sect. 2.2.1). These seeps are common not only in the 
ESAS, but also on other Arctic shelves like the shelf off Svalbard (e.g. Mau et al., 2017), the 
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Kara Sea (Portnov et al., 2013), Beaufort Sea (Paull et al., 2007), and Barents Sea 
(Andreassen et al., 2017). 
Shakhova et al. (2010a) reported large spatial heterogeneity of ESAS CH4 emissions to the 
atmosphere, and distinguished between “background” emissions and “hotspots”, 
presumably related to large CH4 seeps (cf. Sect. 2.2.1). They estimated that hotspots 
constitute 10 % of the area of the ESAS and attributed a significant amount of the total 
ESAS CH4 emissions to them. These patterns may be seen in remote sensing data as well 
(Yurganov and Leifer, 2016), although the accuracy of these analyses may not be sufficient 
to discern patterns and estimate emission rates (Martin Heimann, personal 
communication). Locally enhanced atmospheric CH4 levels in the atmosphere above the 
ESAS have been observed by others as well (Pankratova et al., 2018). Thornton et al. (2016b) 
observed only few gas flares in the central shelf and concluded that the CH4 flux to the 
atmosphere there was predominantly driven by turbulent diffusion.  
Besides emissions of CH4 from the seabed, Li et al. (2017) estimated that 20 % of the CH4 

input to the Chukchi Sea is from in situ production in the water. The studies that included 
a focus on in situ production (Fenwick et al., 2017; Li et al., 2017) estimated CH4 emissions 
to the atmosphere on the low end of the literature estimates. 
Whether CH4 in the water reaches the atmosphere depends on its turnover time and its 
residence time. Shakhova et al. (2015) reported a turnover time of dissolved CH4 in ESAS 
waters of 300–1000 days and argued that this makes the release of large parts of the CH4 
input to the shelf water to the atmosphere likely due to storms that mix the water column. 
This assessment was contested by Thornton et al. (2016b). Indeed, the fraction of CH4 that 
reaches the atmosphere without mixing of the water column may be small. Off Svalbard, 
observations indicate that large concentrations of dissolved CH4 originating from seeps can 
be trapped effectively below 50 m depth due to stable stratification of the water, and 
significant amounts would only reach the atmosphere when the stratification is broken, e.g. 
during storms (Myhre et al., 2016). In the Beaufort Sea, Sparrow et al. (2018) observed that 
dissolved CH4 derived from ancient carbon sources does not reach above 30 m below the 
surface. 
Outgassing of CH4 during sea ice growth from Arctic shelves was observed as well as of 
retention of CH4 in sea ice and release during melt (Damm et al., 2015a; Zhou et al., 2014).  

2.6.2 Estimates of the annual ESAS-wide CH4 budget in the literature: 
differences between studies and knowledge gaps  

Literature estimates of the magnitude of CH4 emissions from the ESAS to the atmosphere 
vary widely, from 0 to 17 Tg CH4 yr-1 (Table 1). By comparison, the global CH4 budget is 
540–568 Tg CH4 yr-1 with an annual growth rate of atmospheric CH4 of around 10 Tg 
(Saunois et al., 2016). Thus, the high end of the estimates would constitute a globally 
significant source and warrants increased interest in the ESAS as a CH4 source, in 
particular in the context of potential destabilization of submarine carbon pools and thus 
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increased emissions in a warming climate. ESAS CH4 budget estimates in the literature are 
based on upscaling of local flux estimates obtained during ship-based campaigns, 
modeling atmospheric CH4 observations by scaling emission estimates, or models of subsea 
permafrost degradation and in situ production. In one case, the main focus of the study 
was not on the ESAS (Warwick et al., 2016). Besides several ESAS-wide budget estimates, 
some studies gave emission estimates for parts of the shelf. The available estimates are 
summarized in Table 1. Budget estimates by Shakhova et al. far exceed those by 
subsequent studies. Several authors discussed the differences and attributed them to a 
variety of factors. Fenwick et al. (2017) stated that their study region (Chukchi Sea) was 
different from what Shakhova et al. focused on (East Siberian Sea and Laptev Sea), and that 
it is not underlain by permafrost or gas hydrates. This statement was based on Ruppel 
(2015), who assumed subsea permafrost extends only to less than 30 m depth based on a 
literature review on Arctic shelves. Fenwick et al. (2017) also stated that they did not target 
CH4 release in polynyas, during ice breakup, during storm events and at hotspots, and that 
dilution with melt water may have decreased surface water CH4 concentrations. 
Furthermore, they found that calculating diffusive sea-air CH4 fluxes based on daily or 
instantaneous wind speed data, “as is often done”, would have biased their result by a 
factor of about 2. Instead, they averaged wind speeds 60 days prior to the measurement to 
better reflect the mixing of the surface layer. Li et al. (2017), like Fenwick et al. (2017), 
emphasize that their study area (Chukchi Sea) was different than that of the Shakhova 
group. Thornton et al. (2016b) focused on central parts of the East Siberian Sea, and stated 
that this may be more representative, especially for bubble transport, than the coverage by 
Shakhova et al., which focused more on shallower waters. The model study by Wåhlström 
and Meier (2014) neglected ebullition. 
Knowledge gaps include the annual CH4 budget of the ESAS, the magnitude of winter 
emissions (as campaigns mostly focused on ice-free seasons, apart from sparse data by 
Shakhova et al.), emissions of CH4 built up under sea ice during ice melt, the role of 
polynyas and storms, the spatiotemporal distribution of hotspots (Fenwick et al., 2017), and 
differences between the Laptev, East Siberian and Chukchi Seas. In addition, there may 
also be considerable interannual variability, as Shakhova et al. (2005) reported a five-fold 
difference between potential summer CH4 emissions in 2003 and 2004. Finally, import by 
the Kolyma River should be considered as a source of CH4 in shelf waters. 
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Table 1: Estimates of the annual budget of CH4 emissions from the ESAS to the atmosphere. More 
studies estimated flux rates without integrating them over a larger area (cf. Li et al., 2017; Table 1). 

Study Area Annual budget 
[Tg CH4 yr-1] 

Method 

This study ESAS (2.0×106 
km2) 

0.4–1.5 Top-down 

Shakhova et al. (2010a) ESAS (2.1×106 
km2) 

8  Upscaling 

Shakhova et al. (2014) ESAS 17 Upscaling 
Berchet et al. (2016) ESAS 0–4.5 Top-down 
Thornton et al. (2016b) ESAS 2.9 Upscaling 
Warwick et al. (2016) ESAS “lower half of 

published 
estimated ranges 
(0.5 to 17 Tg yr−1)” 

Top-down 

Fenwick et al. (2017) Eastern 
Chukchi Sea 
(2.1×105 km2) 

(2.3 ± 1.7) ×10-3 Upscaling; no hot spots 

Li et al. (2017) Chukchi Sea 
(5.95×105 km2) 

0.033 Upscaling 

Wåhlström and Meier 
(2014) 

Laptev Sea 
(5×105 km2) 

(7.29 ± 0.98) ×10-3 Process model of 
diffusive fluxes 

Archer (2015) ESAS 0.42 Process model 
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3 Inverse modeling of atmospheric CH4 transport 
Fluxes of CH4 between the surface and the atmosphere cause variations of the atmospheric 
CH4 mole fraction. These variations are transported in the atmosphere and can be detected 
downwind of a source (or sink) location. By calculating the inverse of the atmospheric 
transport process, atmospheric CH4 signals can be used to infer the spatiotemporal 
distribution of surface-atmosphere-fluxes. 
In this chapter, the basic concepts and methods used for estimating ESAS CH4 emissions 
are introduced. The chapter also introduces important general limitations of the method. 

3.1 Atmospheric CH4 transport 
In this section, the basics of atmospheric CH4 transport in the context of source and sink 
estimation, as well as general limitations of transport models, are outlined. 

3.1.1 Atmospheric tracer transport  

CH4 can be treated as a passive atmospheric tracer, which means that its presence does not 
influence its transport. Therefore, its transport can be treated as a linear problem. 
Atmospheric CH4 transport can be divided into two processes: physical displacement, like 
advection with the mean wind, convection and turbulent diffusion, and consumption or 
production. Physical transport can be modeled based on meteorological fields, e.g. from 
mesoscale weather prediction models. For more details, the reader is referred to the 
literature on atmospheric tracer transport models (e.g. Lin et al., 2003). Production and/or 
consumption can be treated separately (Sect. 3.1.2). 

3.1.2 Atmospheric CH4 sinks 

CH4 is chemically oxidized in the atmosphere by several processes. The main sink is the 
reaction with the hydroxyl radical (OH), which accounts for about 90 % of atmospheric 
CH4 consumption globally. OH is formed in a reaction sequence that starts with photolytic 
ozone dissociation (e.g. Cicerone and Oremland, 1988) and therefore varies seasonally. 
Other sinks include reactions with chlorine radicals and atomic oxygen radicals in the 
stratosphere (~3 %), and reactions with chlorine radicals from sea salt in the marine 
boundary layer (~3 %) (Kirschke et al., 2013). Based on a back-of-the-envelope calculation, 
Yu et al. (2015) asserted that the chlorine sink in the Arctic marine boundary layer may be 
up to a third of the OH sink over the Arctic Ocean, due to low OH availability in the Arctic. 
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3.1.3 General limitations of inverse models of atmospheric tracer 
transport 

Inverse modeling methods have a number of general limitations that naturally also apply 
to the results of this study. In this section, important limitations of the methods are 
outlined to help evaluate the results. 
 
Variability between atmospheric tracer transport models 
The accuracy of tracer transport models is a limitation on the accuracy of inversions. A 
recent study found significant differences between high-resolution transport models that 
were related to input meteorology and parameterization of vertical transport (Karion et al., 
2018). Thus, inferred fluxes may be sensitive to which transport model was used in a study. 
 
Stable stratification of the atmospheric boundary layer 
The atmospheric boundary layer is the layer of the surface that is directly influenced by the 
surface and is characterized by fast mixing (timescale ~1 hour). This layer is particularly 
important for quantifying surface-atmosphere exchange processes because the fast mixing 
determines dispersion and ground-based stations measure tracers inside the atmospheric 
boundary layer.  
Tracer transport in the atmospheric boundary layer is difficult to represent if the layer is 
not well mixed, e.g. when it is stably stratified due to a lack of turbulent mixing (Stull, 
1988), which can be generated e.g. by surface heating or wind shear. In the Arctic, stably 
stratified boundary layers are often caused by temperature inversions due to the lack of 
surface heating by sunlight. This occurs especially during the polar night, and meteorology 
models are only moderately successful in capturing these temperature inversions 
(Kilpeläinen et al., 2012). Thus, it is desirable to filter out data that were obtained in a stably 
stratified boundary layer. 
 
Local (near field) fluxes and representativeness of atmospheric data 
Due to the limited resolution of atmospheric transport models and inverse models, errors 
can arise due to the mismatch of the spatial scale for which atmospheric data are 
representative and the model grid. Localized emissions in the far field are less problematic 
in this regard, since they produce signals that are similar to less localized emissions due to 
turbulent mixing, and thus their integrated strength can still be captured by an inverse 
model (F. Vogel, personal communication). However, localized emissions in the far field 
may be hard detect. By contrast, if local fluxes in the vicinity of a measurement location 
occur (the near field), an inverse model will erroneously assign the flux strength to a whole 
grid cell. Thus, models are unable to capture local emissions, and data that are strongly 
influenced by local emissions should be filtered out. In practice, this is difficult to achieve 
based on objective criteria (Sect. 5.1.3.2). 
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3.2 Inverse modeling theory 
In this work, fluxes of CH4 from the surface to the atmosphere are estimated based on 
atmospheric observations and atmospheric transport. The method is widely used in the 
field (cf. e.g. Kirschke et al., 2013). In Sect. 3.2.1, Bayesian inverse modeling theory is 
described in the context of CH4 flux estimation based on measurements of atmospheric CH4 
mole fractions. In Sect. 3.2.2, limitations of the classical Bayesian approach are discussed, 
and Sect. 3.2.3 introduces how some of these limitations can be overcome by geostatistical 
inverse modeling. 

3.2.1 Bayesian inverse modeling theory 

In this section, inverse modeling theory is described based on Rodgers (2000). 
In general, the unknown state vector 𝒇, which is to be estimated, is related to observations 𝒄 
by a forward function 𝒉: 

𝒄 = 𝒉 𝒇   (1) 

Here, 𝒄 denotes measured mole fractions of CH4 in the atmosphere, 𝒇 denotes the unknown 
surface fluxes of CH4, and 𝒉() describes the processes that link the fluxes to the 
observations (transport of CH4 in the atmosphere and the measurement). The formal 
solution of this problem is: 

𝒇 = 𝒉!! 𝒄   (2) 

Hence, the task is to invert the forward function 𝒉(). Here, it is not known, but modeled by 
a forward model 𝑯. Explicitely denoting model-data mismatch 𝜺, the relationship now reads: 

𝑐 = 𝐻 𝑓  +  𝜺  (3) 

Here, 𝑯() is the atmospheric transport model, and the task is to find its inverse. However, this 
is generally an ill-posed problem. In particular, due to the presence of measurement error 
alone, a formal solution as in Eq. (2) does not exist for Eq. (3). This is overcome by finding 
an approximate solution 𝒇 by minimizing a cost function 𝐽() for the difference between 
measured and modeled observations: 

𝐽 𝒇 = 𝒄 −  𝑯 𝒇 𝑹 (4) 

𝒇 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒇

 𝐽 𝒇  
(5) 

Here, ∙ 𝑹 denotes a norm, usually 𝝃 𝑹:= 𝝃!𝑹!!𝝃  with the model-data mismatch 
covariance matrix 𝑹. In practice, possible error covariances in the difference between 
modeled and observed measurements are often neglected for simplicity. In this case, 𝑹 is 
diagonal and describes measurement uncertainties and (the dominant) model errors. 
However, Eq. (5) is usually underconstrained. In other words, the measurements do not 
uniquely constrain all elements of the state vector. This is the case for two reasons: First, 
atmospheric measurements are not sensitive to fluxes outside of their footprint (footprints 
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are introduced in Sect. 5.1.4). Second, different distributions of fluxes 𝒇 can result in the 
same observations 𝒄, a problem that is known as equifinality. In simpler words, the 
measurements do not see fluxes downwind of the measurement location and a single 
observation cannot resolve where in the sampled area the signal originated. 
A frequently used method for solving the underconstrained problem of inverting 
atmospheric transport is to minimize a regularized modification of the cost function, 
specifically adding a penalty term for deviations of the solution to a prior solution 𝒇𝒂 
(Tarantola, 1987): 

𝐽! 𝒇 = 𝒄 −  𝑯 𝒇 𝑹 +  𝒇 −  𝒇𝒂 𝑸 (6) 

Here, the norm ∙ 𝑸 is analogous to ∙ 𝑹, but with flux covariance matrix 𝑸.  

Minimizing 𝐽!() from Eq. (6) is commonly referred to as Bayesian inverse modeling, because 
fluxes optimized using 𝐽!() in Eq. (5) are equivalent to the Bayesian posterior probability 
distribution based on the prior probability distribution 𝒇𝒂 (cf. Reum, 2012). Posterior fluxes 
should be interpreted as updates of the prior fluxes 𝒇𝒂 with new information (atmospheric 
observations 𝒄), since the “gaps” in the knowledge of the fluxes that is provided by the 
observations (described above) are “filled” by the prior fluxes. In this context, the flux 
covariance matrix 𝑸 can serve a special role, because off-diagonal elements describe spatial 
and temporal correlations of 𝒇 −  𝒇𝒂. In other words, off-diagonal elements of 𝑸 define the 
spatiotemporal "range" of fluxes that can be estimated based on an observation, also 
outside of its footprint (see Sect. 5.1.4). More details on flux covariances are given in Sect. 
3.2.3.3. 
In order to facilitate numerical solution of minimizing 𝐽!, atmospheric transport is 
represented by a linear model, i.e. 𝑯 𝒇 → 𝑯 ∙ 𝒇 + 𝒄𝒊𝒏𝒊. Here, 𝑯 is the atmospheric transport 
matrix and 𝒄𝒊𝒏𝒊 are boundary conditions (more details in Sect. 5.1). The difference between 
observations 𝒄 and boundary conditions 𝒄𝒊𝒏𝒊 is optimized and called 𝒛. All probability 
distributions are assumed to be Gaussian. Posterior fluxes 𝒇 and and their covariance 
matrix 𝑽𝒇 thus become (e.g. Tarantola, 2005): 

𝒇  =  𝒇𝒂  +  𝑸𝑯! 𝑯𝑸𝑯! + 𝑹 !𝟏 𝒛 − 𝑯𝒇𝒂  (7) 

𝑽𝒇  =  𝑸 − 𝑸𝑯! 𝑯𝑸𝑯! + 𝑹 !𝟏𝑯𝑸 (8) 

The linear Gaussian case will be used from here on throughout this study. 

3.2.2 Shortcomings of Bayesian inverse modeling 

An inherent problem of solving underconstrained problems is the dependence on prior 
knowledge. In classical Bayesian inverse modeling, prior knowledge takes the form of prior 
fluxes 𝒇𝒂 and covariance matrices 𝑹 and 𝑸. Biases in either quantity reduce the accuracy of 
estimated posterior fluxes. 
Biased prior fluxes result in biased posterior fluxes, especially so where atmospheric data 
exert little influence on the result (i.e. where the footprint is small). The magnitude of CH4 
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emissions from the East Siberian Arctic Shelf is poorly known (Sect. 2.6), which makes an 
unbiased prior estimate difficult to achieve.  
In Sect. 3.2.1, error covariance matrices 𝑹 and 𝑸 have been introduced, and the role of 𝑸 for 
regularizing posterior flux estimates briefly outlined. The matrix 𝑸 describes deviations of 
the unknown fluxes from the prior flux estimate 𝒇𝒂. Hence, 𝑸 depends on the prior flux. As 
an illustration, consider the diurnal cycle of CO2 exchange of a temperate forest with the 
atmosphere. If the prior flux is constant throughout the day, it can at best match the mean 
diurnal flux, and deviations between this model and actual fluxes will be larger than if the 
prior flux has a (realistic) diurnal cycle. In this sense, 𝑸 also describes shortcomings of the 
prior flux, and it should reflect actual flux processes. However, in practice, estimating 𝑸 
can be difficult. For example, Rödenbeck et al. (2003) estimated spatial correlations of NEE 
based on model intercomparisons at 1275 km, while later studies, which were based on 
eddy covariance measurements, concluded that actual spatial correlations are much shorter 
(Chevallier et al., 2006, 2012; Kountouris et al., 2015).  

3.2.3 Geostatistical inverse modeling 

The poor prior knowledge on CH4 emissions from the East Siberian Arctic Shelf (Sect. 2.6) 
makes an unbiased prior estimate as required by the classical Bayesian approach difficult. 
Therefore, methods that allow more data-driven and flexible ways to express prior 
knowledge were employed in this study known as geostatistical inverse modeling 
techniques. The geostatistical inverse modeling techniques used in here were adopted from 
work by the lab of Anna M. Michalak (specific citations in the text). 

3.2.3.1 Regression model  

In geostatistical inverse modeling, the formulation of the prior flux is different than in the 
classical Bayesian approach. Instead of a fixed prior flux estimate, a linear combination of 
predictor variables is included in the cost function (Michalak et al., 2004): 

𝐽! 𝒇,𝜷 = 𝒛 −  𝑯𝒇 𝑹 +  𝒇 −  𝑿𝜷 𝑸 (9) 

The regression model 𝑿𝜷, which takes the place of the prior fluxes, consists of the regressor 
matrix 𝑿, the columns of which are here called auxiliary variables 𝑋!, and the regression model 
coefficients 𝜷. For the flux optimization, regression model coefficients 𝜷 are computed that 
satisfy (Michalak et al., 2004): 

𝑯𝑿 𝑻𝜳!𝟏 𝑯𝑿 𝜷 =  𝜳!𝟏𝑯𝑿 𝑻 𝒛, (10) 

where 

𝜳 = 𝑯𝑸𝑯!  +  𝑹. (11) 

The optimal regression model 𝑿𝜷 is then used as an initial guess for the fluxes, i.e. the 
starting point for calculating optimized fluxes 𝒇. Thus, each auxiliary variable is scaled to 
minimize the mismatch between regression model and posterior fluxes. Simply put, the 
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prior flux is determined by the observations. Thus, this framework eliminates the need for 
an unbiased prior guess of the magnitude of the unknown fluxes. Instead, knowledge on 
spatiotemporal flux patterns is required. 
The difference between optimized fluxes and regression model (𝒇 −  𝑿𝜷) is here called the 
stochastic component of the optimized fluxes. 
Introducing the regression model can be viewed as introducing correlations in the posterior 
fluxes beyond the spatiotemporal correlations of the stochastic flux component, which is 
described by the flux covariance matrix 𝑸. In this sense, the regression model allows the 
observations to control the flux estimate outside of the range allowed in classical Bayesian 
inverse modeling, which is determined by footprint coverage and 𝑸. 

3.2.3.2 Regression model selection 

The ability to compare the performance of different regression models and selecting a best 
one is both a further step towards a more objective optimal prior (or initial) flux estimate 
and a tool for finding spatiotemporal patterns in the fluxes. Thus, model selection provides 
a means to gain knowledge about controls and processes governing of fluxes. 
 
Evaluation metric BIC 
A variety of methods for ranking regression models have been proposed (e.g. Ward, 2008). 
In this study, the Bayesian Information Criterion (BIC) was used as a score for model 
performance, since it rewards goodness of fit and penalizes model complexity. Therefore, 
BIC can help avoiding overfitting data with complex, hard to interpret regression models. 
A description was given e.g. by Yadav et al. (2013), which is summarized here. The 
criterion can be expressed as: 

𝐵𝐼𝐶 =  𝐽!"# 𝜷  +  𝑝 ∙ 𝑙𝑛(𝑛), (12) 

where 𝑝 is the number of auxiliary variables (columns of 𝑿), and 𝑛 is the number of 
observations. The first addend, 𝐽!"# 𝜷 , is the minimum value of the cost function 

𝐽!"# 𝜷 =  𝑙𝑛 𝜳 + 𝒛 − 𝑯𝑿𝜷 !𝜳!! 𝒛 − 𝑯𝑿𝜷 , (13) 

i.e. its value at the values of 𝜷 = 𝜷 that minimize the mismatch of the regression model 
with the atmospheric observations 𝒛. Substituting in the solution 𝜷 yields: 

𝐵𝐼𝐶 =  𝑙𝑛 𝜳 + 𝒛!𝜩𝒛 +  𝑝 ∙ 𝑙𝑛(𝑛), (14) 

𝜩 =  𝜳!!  −  𝜳!!𝑯𝑿 𝑿!𝑯!𝜳!!𝑯𝑿 !𝟏𝑿!𝑯!𝜳!!. (15) 

Qualitatively, a small BIC score of a regression model indicates that it fits the atmospheric 
data well with a small number of auxiliary variables. 
Since BIC and covariance matrices depend on each other (see also Sect. 3.2.3.3), these 
quantities should be iteratively optimized to obtain a best solution.  
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Interpretation of BIC 
BIC is related to Bayes Factors for large numbers of observations, and thus differences in 
the BIC scores of models are a measure for the likelihood that a given model describes the 
data better than another (Kass and Raftery, 1995). Kass and Raftery (1995) suggest a scale 
for the interpretation of the difference between BIC for different models, which is based on 
Jeffreys (1961). On this scale, a difference of less than 2 indicates that there is no evidence 
for the better performance of a model, while a difference of more than 10 is called 
"decisive" evidence. These numbers are used as guidelines here. 
The performance of models on the BIC scale can be expressed more formally via posterior 
probabilities of a model M (Ramsey and Schafer, 1997): 
 

𝑝′′ 𝑀! 𝒄 =
𝑝′ 𝑀! ∙ 𝑒!!"#!

𝑝′ 𝑀! ∙ 𝑒!!"#!!
, (16) 

 
where 𝑝′ 𝑀!  denotes the prior probability of model 𝑀! and 𝑝′′ 𝑀! 𝒄  denotes its posterior 
probability given the data 𝒄. In the absence of prior knowledge on the models (i.e. 
𝑝′ 𝑀! ∝ 1), the posterior probability reduces to a function of BIC. 

 
Collinearity checks 
If the contributions of auxiliary variables to modeled atmospheric data (𝐻𝑋!) are strongly 

collinear, regression coefficients are not stable against small perturbations, which hampers 
interpretation of the regression model. To detect collinearity, Variance Inflation Factors (VIF) 
are used here. The Variance Inflation Factor is the ratio of the variance of the regression 
coefficient of an auxiliary variable when fitting the full regression model and its variance 
when only fitting this particular variable (James et al., 2013). A threshold of 𝑉𝐼𝐹 > 5… 10 
indicates collinearity (James et al., 2013). 

3.2.3.3 Covariance parameter estimation 

As described in Sect. 3.2.2, estimating realistic covariance matrices for inverse models of 
atmospheric transport is difficult. To infer covariance matrices, the approach employed by 
Michalak et al. (2004) is adopted. In this approach, covariance matrices are parameterized, 
and the parameters estimated based on a restricted maximum likelihood approach (REML). 
The parameterization is presented in Sect. 5.1.6, while this section briefly outlines the 
optimization procedure. 
The idea behind the optimization approach is to find covariance parameters 𝜽 that 
maximize the probability of the observations 𝑝 𝒄 𝜽  (Michalak et al., 2004). Since this 
would require the as yet unknown posterior fluxes 𝒇 and regression model coefficients 𝜷, 
these parameters are marginalized out by integrating over them: 
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𝑝 𝒄 𝜽 = 𝑝 𝒛 𝒇,𝜽 𝑝′ 𝒇,𝜷 𝜽 𝑑𝒇𝑑𝜷
𝜷𝒇

 (17) 

Here, 𝑝 𝒛 𝒇,𝜽  is the probability of the observations given values for 𝒇 and 𝜽, and 
𝑝′ 𝒇,𝜷 𝜽  is the joint prior probability of 𝒇 and 𝜷 given covariance parameters 𝜽. In the 
abscence of prior knowledge on 𝜷 (i.e. uniform probability), this probability is maximized 
by minimizing the cost function 

𝐿𝜽 = 𝑙𝑛 𝜳 + 𝑙𝑛 𝑿!𝑯!𝜳!!𝑯𝑿 + 𝒛!𝜩𝒛 (18) 

with 𝜳 and 𝜩 as defined in Eq. (11) and (15), respectively. The optimal parameters 𝜽 are the 
ones that minimize 𝐿𝜽. 

3.2.4 Non-negative posterior fluxes 

In this study, sinks of atmospheric CH4 are accounted for by modifying boundary 
conditions and footprints (Sect. 5.1.4). Therefore, negative fluxes (i.e. surface sinks of CH4) 
would be unrealistic. Therefore, fluxes were restricted to positive values, which can greatly 
regularize the solution (Miller et al., 2014a). The implementation of the non-negativity 
constraint was adopted from Miller et al. (2014a), using Lagrange-multipliers, with the 
modification that the optimization was based on an L-BFGS-B- algorithm (Byrd et al., 1995) 
(Scot M. Miller, personal communication). 
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4 Year-round accurate measurements of atmospheric 
greenhouse gases at Ambarchik 

To improve data coverage of the East Siberian Arctic Shelf, the new atmospheric 
greenhouse gas observation station Ambarchik was established. In this section, the 
measurements performed at Ambarchik, as well as processing, calibration and quality 
control of the data are presented. Data analysis is not included in this chapter; the CH4 data 
that were used for estimating CH4 emissions from the East Siberian Arctic Shelf in Chapter 
5 are presented therein. The material presented in this chapter is an edited version of parts 
of a manuscript that was submitted to the journal Atmospheric Measurement Techniques. 
The manuscript is currently in review and available online as a discussion paper (Reum et 
al., 2018a). Here, the parts of the manuscript that are relevant in the context of this thesis 
are presented with minor edits. The work was performed in collaboration with Mathias 
Göckede, Jost Lavric, Olaf Kolle, Sergey Zimov, Nikita Zimov, Martijn Pallandt and Martin 
Heimann. Author contributions are as follows: MH, SZ and MG conceptualized the study. 
JL, MH, OK, NZ, FR and MG designed and set up the Ambarchik station. NZ and SZ 
coordinated setup and maintenance of the Ambarchik station. FR and MP performed 
calibration experiments. FR curated and analyzed the data. FR prepared the manuscript 
with contributions from all authors. MG supervised the project, and reviewed and edited 
the manuscript. 
Quality control of Ambarchik data revealed shortcomings in a standard calibration 
approach of the greenhouse gas analyzer employed at the station, namely the correction of 
reported CO2 and CH4 mole fractions for the effects of water vapor in the sampled air 
stream. To address the shortcomings, an improved water correction method was 
developed and applied to data from Ambarchik. This work was described in a manuscript 
that is currently under review for Atmospheric Measurement Techniques as well (Reum et 
al., 2018b). Since the biases corrected with this new water correction method were small in 
comparison to the large signals investigated in this study, it is only briefly covered in the 
quality-control part of this chapter and in the appendix. 

4.1 Station description 

4.1.1 Area overview 

Ambarchik is located at the mouth of the Kolyma River, which opens to the East Siberian 
Sea (69.62° N, 162.30° E; Fig. 1). The majority of the landscape in the immediate vicinity of 
the locality is wet tussock tundra. On ecoregion scale, Ambarchik is bordered by the 
Northeast Siberian Coastal Tundra ecoregion in the West, the Chukchi Peninsula Tundra 
ecoregion in the East, and the Northeast Siberian Taiga ecoregion in the South (ecoregion 
definitions from Olson et al., 2001). Major components contributing to the net carbon 
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exchange processes in the area are tundra landscapes including wetlands and lakes, as well 
as the Kolyma River and the East Siberian Arctic Shelf. 

Fig. 1: Ambarchik station location. Background based on Copernicus Sentinel data from 2016. 
Courtesy Martijn Pallandt (figure from Reum et al., 2018a). 

4.1.2 Site overview 

Ambarchik hosts a weather station operated by the Russian meteorological service 
(Roshydromet), whose staff is the entire permanent population of the locality. The closest 
town is Chersky (~100 km to the south, population 2,857 as of 2010), with no other larger 
permanent settlement closer than 240 km. The site therefore does not have any major 
sources of anthropogenic greenhouse gas emissions in the near field. The only regular 
anthropogenic CO2 and potentially CH4 sources that may influence the measurements are 
from the Roshydromet facility, including the building that hosts the power generator and 
the inhabited building. 
The atmospheric carbon observation station Ambarchik started operation in August 2014. 
It consists of a 27 m-tall tower with two air inlets and meteorological measurements, while 
the majority of the instrumentation is hosted in a rack inside a building. The rack is 
equipped for temperature control, but due to the risk of overheating, it is open most of the 
time and thus in equilibrium with room temperature (room and rack temperature are 
monitored). Atmospheric mole fractions of CH4, CO2, and H2O are measured by an 
analyzer based on the cavity ring-down spectroscopy (CRDS) technique (G2301, Picarro 
Inc.), which is calibrated against WMO-traceable reference gases at regular intervals (Sect. 
4.2.2). The tower is located 260 m from the shoreline, with a base elevation of 20 m a.s.l. 
(estimated based on GEBCO_2014 (Weatherall et al., 2015), which in this region is based on 
GMTED2010 (Danielson and Gesch, 2011)). 
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4.1.3 Gas handling 

The measurement system allows switching between two different air inlets and four 
different calibration gas tanks (Fig. 2). Component manufacturers and models of the 
individual components are listed in Table A.1. 
Air inlets are mounted on the tower at 27 (“Top”) and 14 m a.g.l. (“Center”), respectively, 
and are equipped with 5 µm polyester filters (labels F1 and F2 in Fig. 2). The two air inlets 
are probed in turns (15 minutes Top, 5 minutes Center). Signals from the Center Inlet are 
mainly used for quality control purposes (Sect. 4.2.4). Air is drawn from the inlets (I1, I2) 
through lines of flexible tubing (6.35 mm outer diameter) by a piston pump located 
downstream of the measurement line branch (PP1). The cycles of the pump are smoothed 
by a buffer with a volume of about 5 liters. The combined flow through both inlet lines is 
about 17 l/min, monitored by a flow meter (FM1) and limited by a needle valve (NV1). The 
tubing enters the house at a distance of about 15 m from the tower. The air passes 40 µm 
stainless steel filters (F3, F4), behind which the sample line is branched from the high flow 
line using a solenoid valve (V1). 
The sample line (between filters F3/F4 and the CRDS analyzer) is composed exclusively of 
components made of stainless steel; they include tubing (SS tube 1/8”), two 2 µm filters (F5, 
F6), a needle valve for sample flow regulation (NV2, usually fully open), a pressure sensor 
(P1), and a flow meter (FM2). Air is drawn from the high flow line into the sample line by a 
membrane pump downstream of the CRDS analyzer (MP1). 
Calibration gases pass through a line composed exclusively of stainless steel components as 
well. Air from gas tanks (High, Middle, Low, Target) passes through pressure regulators 
(RE1–4), reducing their pressure roughly to ambient pressure. This way, the CRDS 
analyzer can cope with the pressure difference between sample air and calibration air from 
the tanks without an open split, which would normally be installed to equilibrate the line 
with ambient pressure. This setup was chosen in order to conserve calibration air. The lines 
from the gas tanks are connected to a multiposition valve (MPV1), which is used to select 
between gas tanks. Downstream of the multiposition valve, the calibration gas line is 
connected to the sample line by a solenoid valve (V3). The solenoid valves V2 and V3 are 
used to select between sample air from the tower and calibration air. 
During calibrations, the part of the measurement line that is not part of the calibration line 
is continuously flushed by the high flow pump (PP1) through the purge line, which 
comprises solenoid valve V4 (which shuts off air flow from the gas tanks through the purge 
line in case of a power outage during a tank measurement), needle valve NV3 (which is 
used to match the purge flow to the usual sample flow), and flow meter FM3 (which 
monitors the purge flow). 
The flow meters (FM1–3) and pressure sensor (P1) are used to diagnose problems such as 
weakening pump performance, clogged filters, leaks or obstructions. 
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Fig. 2: Air flow diagram of Ambarchik greenhouse gas measurement system. See Sect. 4.1.3 for a 
description of component abbreviations (figure from Reum et al., 2018a). 

 

4.1.4 Meteorological measurements 

Meteorological measurements performed by MPI-BGC at Ambarchik include wind speed 
and direction at 20 m a.g.l., air temperature and humidity at 20 and 2 m a.g.l., and air 
pressure at 1 m a.g.l. (instruments listed in Table A.2). The measurements mainly serve to 
monitor atmospheric conditions like wind and stability of atmospheric stratification for 
quality control of the GHG data (described in Sect. 4.2.4). The 2D sonic anemometer, which 

High

Middle

Low

Target

Gas Cylinder

P  - pressure gaugeF - Filter

PP - Piston pump
MP - Membrane pump

NV - manual needle Valve

V - solenoid three way Valve

FM - Flowmeter

MPV1

2

2Pm
F5

NV1 FM1

2Pm

F7

2Pm

F8

2Pm

F9

2Pm

F10

RE1

RE2

RE3

RE4

P

P2

P

P3

P

P4

P

P5

P

P6

P

P7

P

P8

P

P9

flex tube
1/4"

flex tube
1/4"

PP1

NV3 FM3

P

FM2

CRDS analyzer

Tower

NV2

3

4

1

Gas tanks

Lightning protection

RE   -  Regulator

ss tube
1/16"

P

ss tube
1/8"

flex tube
1/4"

ss
 tu

be
1/

16
"

nylon fitting

nylon fitting

flex tube
1/4"

Buffer

2Pm

F6

40Pm

F3

40Pm

F4 V1

N.C.

N
.O

.

ss tube
1/4"

ss tube
1/4"

ss tube
1/4"

V4

N.C.

N
.O

.

V2

V3

N.C.

N
.O

.

P1

ss
 tu

be
1/

8"

MP1

N.C.

fle
x 

tu
be

1/
4"

fle
x 

tu
be

1/
4"

ss tube
1/16"

ss tube
1/16"

ss tube
1/16"

Rack

27m

5PmF1

I1

14m

5PmF2

I2

Laboratory



   25 

 

is used to measure wind speed and direction, features a built-in heating to prevent 
freezing. The heating is switched on if temperature decreases below 4.5 °C and relative 
humidity is higher than 85 %, and switched off when temperatures increase above 5.5 °C. 

4.2 Quality control 

4.2.1 Water correction 

In order to minimize maintenance efforts and reduce the number of components prone to 
failure, CO2 and CH4 mole fractions are measured in humid air. Hence, the values reported 
by the analyzer have to be corrected for the effects of water vapor to obtain dry air mole 
fractions. This is done by applying a water correction function to the raw data: 

𝒄𝒅𝒓𝒚 =  
𝒄𝒘𝒆𝒕 𝒉
𝑓! 𝒉

 (19) 

Here, 𝒄𝒘𝒆𝒕 is the mole fraction of CO2 or CH4 in humid air reported by the analyzer, ℎ is the 
water vapor mole fraction (also measured by the CRDS analyzer), 𝑓! 𝒉  is the water 
correction function, and 𝒄𝒅𝒓𝒚 is the desired dry air mole fraction. Picarro Inc. provides a 

factory water correction based on Chen et al. (2010), but to achieve accuracies within the 
WMO goals for water vapor mole fractions above 1 % H2O, custom coefficients must be 
obtained for each analyzer (Rella et al., 2013). Here, we employ the novel water correction 
method by Reum et al. (2018b). Results are briefly summarized here, while more details are 
given in Appendix A.2. 
Water correction experiments have been performed in 2014, 2015 and 2017. Differences 
between the water corrections based on the different experiments were on the order of 
magnitude of the WMO goals (Fig. 3). Given the small number of experiments conducted 
so far, it is unknown whether these differences represent drifts over long time scales, short-
term variations and/or systematic differences between the experimental methods. 
Therefore, water correction coefficients were derived based on the averages of the 
individual water correction function responses for each species. The maximum deviations 
of the individual functions to the synthesis functions were 0.018 % CO2 at 3 % H2O, which 
corresponds to 0.07 ppm at 400 ppm dry air mole fraction, and 0.034 % CH4 at 2.7 % H2O, 
which corresponds to 0.7 ppb at 2000 ppb dry air mole fraction (Fig. 3).  
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Fig. 3: Differences between individual water correction functions and the synthesis water correction 
function at dry air mole fractions of 400 ppm CO2 and 2000 ppb CH4. The dashed lines correspond 
to the WMO internal reproducibility goals (in the case of CO2 in the northern hemisphere), a value 

that incorporates uncertainties in transferring the calibration scale from the highest level of 
standards to working standards and other uncertainties, for example related to gas handling (WMO, 

2016) (figure from Reum et al., 2018a). 

4.2.2 Calibration 

Calibrations are performed with a set of pressurized dry air tanks filled at the Max Planck 
Institute for Biogeochemistry (Jena, Germany). The levels of GHG mole fractions of these 
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tanks have been traced to the WMO scales X2007 for CO2 and X2004A for CH4 (Table A.4). 
Three calibration tanks (High, Middle, Low) are probed every 116 hours for 15, 10 and 10 
minutes, respectively. The longer probing time of the first (High) tank serves to flush 
residual water molecules that adhere to the inner tubing and filter surfaces. From these 
three tanks, coefficients for linear calibration functions are derived. Due to the scatter of the 
coefficients over time, the coefficients are smoothed using a tricubic kernel with a width of 
120 days (Fig. A.1). Individual measurements are calibrated by applying the smoothed 
coefficients, interpolated linearly in time. The impact of the smoothing on the calibration of 
ambient mole fractions is smaller than 0.02 ppm CO2 and 0.3 ppb CH4 (one standard 
deviation). The fourth tank (Target) is probed every 29 hours for 15 minutes. Its calibrated 
CO2 and CH4 mole fraction measurements (Fig. 4) serve as quality control of the calibration 
procedure (Sect. 4.2.3). Uncertainties associated with the calibration procedure, as well as 
possible future improvements, are discussed and quantified in Appendix A.5. 

Fig. 4: Target tank bias over time for CO2 and CH4. As in Fig. 3, the dashed lines cover the WMO 
internal reproducibility goals (figure from Reum et al., 2018a). 
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4.2.3 Uncertainty in CO2 and CH4 measurements 

Measurement uncertainties in the CO2 and CH4 data arise from instrument precision, the 
calibration and the water correction. We estimated time-varying uncertainties of hourly 
trace gas mole fraction averages based on the method by Andrews et al. (2014), with some 
modifications. Details of the procedure are given in Appendix A.5. 
Average uncertainties at 1σ-level were 0.11 ppm CO2 and 0.75 ppb CH4. Both were 
dominated by the variability between the water vapor correction experiments at high water 
vapor mole fractions. These values may slightly underestimate the uncertainties due to 
errors that could not be fully quantified based on the available data, which is subject to 
future research (Appendix A.5). On the other hand, they slightly overestimate the 
uncertainties since the uncertainty due to water vapor may be overestimated at low water 
vapor mole fractions and because the increase in precision achieved by averaging 
calibration coefficients from multiple calibration episodes was ignored (Appendix A.5). 
Thus, the uncertainties given here are likely close to those estimated if the abovementioned 
factors are taken into account. 

4.2.4 Data screening 

After water correction and calibration, invalid data are removed before calculating hourly 
averages using filters for bad analyzer status (Sect. 4.2.4.1), flushing of lines (Sect. 4.2.4.2), 
times of calibration and maintenance, contamination from local polluters (Sect. 4.2.4.3) and 
water vapor spikes (Sect. 4.2.4.4). Additional variables reported in the hourly averages 
allow for further data screening, e.g. for using the data in inverse models (Table 2). Details 
on the gradient of virtual potential temperature are given in Sect. 4.2.4.5. 
 

Table 2: Variables for data screening and a suggestion for a strict filter for background conditions. 

Variable Background filter example 

Mole fractions without removing CO2 spikes Remove flagged spikes 
Difference between inlets |ΔCO2| < 0.1 ppm; |ΔCH4| < 2 ppb 
Intra-hour variability σ(CO2) < 0.2 ppm; σ(CH4) < 4 ppb 
Gradient of virtual potential temperature ΔTv,p < 0 K 
Wind speed wv > 2 ms-1 
Time of day 1 pm – 4 pm  

 

4.2.4.1 Analyzer status diagnostics 

Picarro Inc. provides the diagnostic flags INST_STATUS and ALARM_STATUS that 
monitor the operation status of the analyzer. The values in Table 3 indicate normal 
operation. The flag ALARM_STATUS indicates both exceeding user-defined thresholds for 
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high mole fractions (ignored here), and data flagged as bad by the data acquisition 
software. The code reported in INST_STATUS contains, among other indicators, thresholds 
for cavity temperature and pressure deviations from their target values. We created stricter 
filters for these two values based on their typical variation during normal operation of this 
particular measurement system. Occasionally, small numbers (< 5) of outliers are recorded 
after a period of lost data (e.g. due to high CPU load). These are removed manually. 
 

Table 3: Diagnostic values indicating normal status of the CRDS analyzer. 

Quantity Filter 
INST_STATUS INST_STATUS = 963 
ALARM_STATUS ALARM_STATUS < 65536 
Cavity temperature |Tc – 45° C| < 0.0035 K 
Cavity pressure |pc – 186.65 hPa| < 0.101 Pa 

4.2.4.2 Flushing of measurement lines 

Air from the two inlets at the tower and the calibration tanks flows through some common 
tubing (Fig. 2). Hence, air measured immediately after a switch is influenced by the 
previous air source. We remove the first 30 seconds from the record after a switch between 
inlets to avoid sample cross-contamination. Air from calibration tanks exhibits larger 
differences in humidity and mole fractions to ambient air. Hence, the first five minutes of 
ambient air measurements after tank measurements are removed from the record. 

4.2.4.3 Contamination from local polluters 

Possible frequent contamination sources in the immediate vicinity of the tower are the 
building hosting the power generator of the facility (65 m northwest from tower) and the 
heating and oven chimneys of the only inhabited building (30 m and 20 m northeast, 
respectively). These local polluters can cause sharp and short increases in CO2 (and, 
depending on the source, CH4) mole fractions on the timescale of seconds to a few minutes. 
These features cannot be modeled by a regional or global atmospheric transport model and 
should therefore be filtered out. We developed a detection algorithm to identify spikes 
based on their duration, gradients, and amplitude in the raw CO2 data. Spike detection 
algorithms are often compared to manual flagging by station operators (El Yazidi et al., 
2018). Parameters of our algorithm were tuned in this way based on the first year of data. 
Large CH4 spikes often coincided with CO2 spikes. Hence, the spike detection algorithm 
was developed for CO2 and used to flag both CO2 and CH4, although this may remove 
some unpolluted CH4 signals. The algorithm is described in Appendix A.4. The impact of 
the CO2 spike flagging procedure is shown in Table 4. Impacts on the hourly mole fractions 
are small, more so when considering only data that pass other quality filters. 
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Table 4: Fraction of hourly averages of data from the Top inlet that contain flagged CO2 spikes, and 
impact of removing them before averaging (ΔCO2, ΔCH4).  

Metric All data Data with wv > 2 ms-1 and ΔTv,p < 0 
K 

Cases that contain flagged 
spikes 

15 % 6 % 

Cases where ΔCO2 > 0.1 ppm  4 % < 1 % 
Cases where ΔCH4 > 2 ppb < 1 % < 1 % 
Mean / median ΔCO2 0.16 / 0.03 ppm 0.07 / 0.02 ppm 
Mean / median ΔCH4 0.5 / 0.03 ppb 0.2 / 0.02 ppb 

4.2.4.4 Water vapor spikes 

During winter, the CRDS analyzer occasionally records H2O spikes with durations of a few 
seconds. The spikes typically exhibit much higher mole fractions than possible given 
ambient air temperature. This suggests that they are caused by small amounts of liquid 
water in the sampling lines in the laboratory upon evaporation. Since we observed the 
phenomenon exclusively during the cold season, we speculate that it is caused by small ice 
crystals that may form on the air inlet filters (F1, F2), detach, are trapped by one of the 
filters inside the laboratory, and evaporate. 
Since fast water vapor variations deteriorate the accuracy of the water vapor correction, we 
remove the spikes before creating hourly averages. Spikes are identified using a flagging 
procedure similar to the one for CO2 contamination described in Appendix A.4, with 
parameters adapted to the different shape of the H2O spikes. 

4.2.4.5 Virtual potential temperature 

Regional and global scale atmospheric tracer transport models rely on the assumption that 
the boundary layer is well-mixed (e.g. Lin et al., 2003). This requirement is not satisfied 
when the air is stably stratified due to a lack of turbulent mixing (Stull, 1988). This may 
occur when the virtual potential temperature increases with height. To detect these 
situations, sensors for temperature and relative humidity are installed at 2 m and 20 m 
above ground level on the measurement tower (Table A.2). Based on these measurements, 
the virtual potential temperature is calculated for both heights, and the difference can be 
used as an indicator for stable stratification of the atmospheric boundary layer at the 
station (e.g. Table 2). 

4.3 Summary 
The site Ambarchik has been operational without major downtime since its installation in 
August 2014. Greenhouse gas measurements are calibrated about every five days using dry 
air from gas tanks with GHG mole fractions traced to WMO scales. Mole fractions of CO2 
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and CH4 are measured in humid air and corrected for the effects of water vapor using a 
novel water vapor correction method. An algorithm was developed to remove 
measurements influenced by local polluters, which affected a small fraction of the 
measurements. Measurements of the gradient of the virtual potential temperature and the 
two sampling heights allow for detection of stable stratifications of the atmospheric 
boundary layer at the station. Uncertainties of the GHG measurements, which were 
estimated based on measurements of dry air from calibrated gas tanks and water correction 
experiments, were on average 0.11 ppm CO2 and 0.75 ppb CH4, with potential 
improvements by future analyses and experiments. Thus, the CO2 uncertainties were on 
the order of the WMO inter-laboratory compatibility goal in the northern hemisphere (0.1 
ppm CO2), while the CH4 uncertainty was well within the WMO goal of 2 ppb CH4. The 
accuracy of the CO2 and CH4 data obtained at Ambarchik make the Ambarchik station a 
highly valuable tool for carbon cycle studies in Northeast Siberia like estimating CH4 
emissions from the East Siberian Arctic Shelf to the atmosphere. 
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5 Methane emissions from the East Siberian Arctic Shelf 
to the atmosphere 

In this chapter, CH4 emissions from the East Siberian Arctic Shelf to the atmosphere are 
estimated based on the literature, concepts, methods and data introduced in the previous 
chapters. The chapter consists of a description of the model and its inputs, model results 
and their interpretation. Conclusions are given in Chapter 6. 

5.1 Model description 
In this section, the model used to estimate ESAS CH4 emissions is introduced. It includes a 
brief overview of the implementation of the inverse modeling techniques outlined in 
Chapter 3, a description of the domain, atmospheric data, the model of atmospheric CH4 
transport, boundary conditions and covariance model. Lastly, in Sect. 5.1.7, a set of 
auxiliary variables is developed to describe the ESAS CH4 emission processes introduced in 
Chapter 2, as well as terrestrial CH4 emissions in the domain. 

5.1.1 Optimization code 

The code that implemented the GIM techniques described in Sect. 3.2.3 used in this work 
was developed by Miller et al. (2014b). This code, implemented mainly in MATLAB, 
features flux optimization, model selection, covariance parameter estimation, and the 
restriction to non-negative fluxes. 

5.1.2 Domain 

The domain extent for flux optimization was chosen to encompass the East Siberian Arctic 
Shelf and adjacent land areas so that none of the atmospheric observation stations is close 
to the domain boundary (Fig. 5). Other studies only included the Russian part of the 
Chukchi Sea (Shakhova et al., 2010a), but here, the East Siberian Arctic Shelf is defined as 
the area covering the Laptev Sea, the East Siberian Sea and the Chukchi Sea (similarly to 
Thornton et al., 2016b). Definitions of the three seas were taken from Spalding et al. (2007). 
Since this definition of the ESAS includes some small areas beyond the shelf (ocean depths 
dropping to 3000 m), the area was restricted to waters shallower than 500 m. This 
definition encompasses a total extent of 2.0×106 km2. Another 1.2×106 km2 in the domain is 
covered by other ocean areas. Adjacent land areas are tundra and taiga ecoregions, making 
up 1.9×106 km2 in the domain. 
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Fig. 5: Domain with the regions of the East Siberian Arctic Shelf and the atmospheric observation 
stations used for optimizing CH4 emissions. 

 
For the domain, a Lambert Azimuthal Equal Area projection (e.g. Evenden, 1990) was used, 
because in this projection, every grid cell has the same area. The choice of resolution for 
fluxes was guided by practical considerations of computational resources, and was set to 32 
km × 32 km × 1 day. The period of optimization was July 2014 to December 2015. Table 5 
shows the full domain definition. 

Table 5: Definition of the spatiotemporal domain used in this study. 

Projection (proj-string) +proj=laea +lat_0=70 +lon_0=150 +ellps=WGS84 
Extent (xmin, xmax, ymin, ymax) -1200 km, 2000 km, -300 km, 1300 km 
Spatial resolution 32 km 
Number of grid cells (nx, ny) 100, 50 
Area 5.1×106 km2 
Period 2014-07-01 – 2015-12-31 
Temporal resolution 1 day 
Number of time periods (nt) 549 
Length of state vector (nx∙ny∙nt) 2,745,000 
 

5.1.3 Atmospheric data 

5.1.3.1 Stations 

We used data from the three stations Ambarchik, Barrow and Tiksi to estimate CH4 
emissions in this study. Ambarchik (AMB) data were extensively described in Chapter 4, 
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and an overview and references for all stations are given in Table 6. The data are shown in 
Fig. 6. 

Table 6: Atmospheric CH4 observations used in this study. 

Station Institution Location Inlets (a.g.l.) Data coverage Reference 

Ambarchik MPI-BGC 69.62N, 
162.30E 

14 m, 27 m 2014-08-09 – 
ongoing 

(Reum	 et	 al.,	
2018a) 

Tiksi AARI, FMI 71.60N, 
128.89E 

10 m 2010 – ongoing (Uttal	 et	 al.,	
2013) 

Barrow NOAA 71.32N, 
156.61W 

16.5 m 1986 – ongoing (Dlugokencky	
et	al.,	1995) 

SWERUS-C3 
expedition 

Stockholm 
University 

See 
reference 

4 m, 9 m, 15 m, 
20 m, 35 m 

2014-07-11 – 
2014-08-17 

(Thornton	 et	
al.,	2016b) 

 
Tiksi and Barrow were, during the period modeled here, the only other continuously 
operating atmospheric carbon observation stations located at the coast of the East Siberian 
Arctic Shelf. There is another station close to Chersky, about 120 km inland of Ambarchik. 
Chersky has been operated by NOAA until 2016, but has large data gaps in the study 
period. Therefore, it was not used to infer fluxes from the East Siberian Arctic Shelf here. 
Data from the SWERUS-C3 expedition, which collected CH4 data from the Siberian Arctic 
in summer 2014 (Fig. 7), were used for validation. From this data set, data from the upper 
two inlets were used, since these fell into the second level of the atmospheric transport 
model. Data from lower inlets, which were similar to those of the upper inlets (Thornton et 
al., 2016b), were ignored.  
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Fig. 6: Atmospheric data and boundary conditions used for optimizing fluxes in this study (daytime 
averages). Shown here are observations for two different data selection criteria (Sect. 5.1.3.2) and 

two different versions of boundary conditions (Sect. 5.1.5). 

 

 

Fig. 7: Hourly averages of CH4 observations from the SWERUS-C3 campaign and boundary 
conditions (strict optimization, see Sect. 5.1.5). 
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5.1.3.2 Atmospheric data selection criteria 

In this section, the criteria that were used to select data for optimizing fluxes are described. 
Models of atmospheric tracer transport rely on several assumptions that not all 
atmospheric observations fulfill (see Sect. 3.1.3 for an overview). First, a set of filters was 
applied to the hourly data. To summarize, the filters included in all cases a daytime filter, 
as well as criteria for temperature gradients and wind speed. Additional criteria for the 
variability of CH4 observations were used in some model runs, labeled “strict atmospheric 
data selection” (“ds:S”). In other model runs, these variability filters were omitted (“relaxed 
atmospheric data selection” or “ds:R”). Of these criteria, strict data selection (ds:S) 
represented a data set with all filters aimed at removing the influence of the near field. 
However, since the criteria are somewhat subjective, relaxed data selection was used to 
investigate whether strict data selection removed significant signals that the model was 
able to retrieve. Daily averages of the remaining data were used for optimization if almost 
all hourly data passed the quality filters. The data selection criteria are summarized in 
Table 7. Details on the individual filters are given below. 
 

Table 7: Atmospheric data selection criteria. 

 
 
Temperature gradients and daytime filter 
To detect stably stratified boundary layers, temperature gradients were examined where 
available (Ambarchik, Barrow). At both sites, average temperature gradients had a 
seasonal cycle that indicated fewer temperature inversions during summer, which is 

Data selection 
criterion 

Label Applied filters Number of daily 
averages that pass 

Relaxed data 
selection 

ds:R Hourly: 
Daytime 
Temperature inversions (only 
Ambarchik) 
Wind speed 
Daily: 
“Clean day” 

Ambarchik: 234 
Barrow: 352 
Tiksi: 329 
(total: 915) 

Strict data selection  ds:S All of the above plus 
variability criteria 

Ambarchik: 226 
Barrow: 336 
Tiksi: 322 
(total: 884) 
 
SWERUS-C3: 19 
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expected due to the seasonal cycle of solar heating of the surface. They also exhibited a 
diurnal cycle, indicating the smallest fraction of measurements affected by temperature 
inversions was between 8 am and 4 pm local time on average (Ambarchik: < 30 %, Barrow: 
< 60 %). Based on these results, only daytime data from 10 am to 4 pm were used for 
modeling (the delay in the morning allows for some mixing of the newly formed turbulent 
layer) for all stations. Seasonal variations in the diurnal cycle of average temperature 
gradients were ignored here because they would have resulted in throwing out all winter 
data (December-January-February). Instead, results based on winter data are reported, but 
they may be less accurate than those for summer. 
In addition to the general daytime filter, data obtained during temperature inversions were 
removed from the Ambarchik record, but not from Barrow. At Barrow, this would have 
restricted the usable data almost exclusively to the period from May to September, 
throwing out data points outside of this period that were classified by the station operators 
as "background" signals. 
 
Wind speed 
In many inverse models of atmospheric tracer transport, data obtained in calm air are not 
used. The reason behind this filter is the potential influence of local fluxes, which can build 
up to large signals in calm air locally. Dlugokencky et al. (1995) used a threshold of 1 ms-1 
for analyzing the Barrow CH4 timeseries, while Sweeney et al. (2016) used a threshold of 3 
ms-1 for Barrow for inferring trends in it. Here, we used a threshold of 3 ms-1 for Barrow 
and Ambarchik, following Sweeney et al. (2016), while for Tiksi a threshold of 2.5 ms-1 was 
used, following the recommendation by station operators (Tuomas Laurila, personal 
communication).  
 
CH4 mole fraction variability 
Highly variable CH4 mole fractions may indicate emissions in the near field of a station that 
cannot be resolved by the model. Since one assumption of inverse models of atmospheric 
tracer transport is well-mixedness, signals that are difficult to model may be detected by 
short-term variability or differences between air sampled at different heights within the 
atmospheric boundary layer. Thresholds for both criteria are somewhat subjective. The 
former was used e.g. by Sweeney et al. (2016), who discarded data with an intra-hour 
variability of 1𝜎 > 10 ppb from the Barrow record for analyzing long-term changes in the 
CH4 data. On the other hand, Thonat et al. (2017) used no data filter at all for a study about 
the detectability of CH4 emissions from different sources in the Arctic. In this study, the 
impact of a variability data filter on the results is explored by performing inversions with 
and without variability filters (“strict” vs. “relaxed” data selection). 
Differences between air inlets were taken into account where available, i.e. at Ambarchik. 
As for short-term variability, the practical implementation of the filter is subjective. One 
may argue that they should not exceed the WMO inter-laboratory compatibility goals. 
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However, in Ambarchik, air is not sampled simultaneously at both inlets, so differences 
can arise for other reasons like gradients in time, and too strict a data filter carries the risk 
of discarding events that could be resolved by the model (Steve Wofsy, personal 
communication). Therefore, a criterion of |ΔCH4| < 5 ppb was chosen based on the 10 ppb-
threshold for intra-hour variability and the ratio of the median intra-hour variability and 
median absolute difference between the inlets. This "mixing"-criterion was used jointly 
with the variability criterion. 
 
“Clean day” 
A daily average was used for optimization only if all or all but one of the hourly daytime 
data points of this day passed the filters summarized above. The purpose of this last filter 
was to select for data with consistently favorable conditions throughout the day. 
 
Criteria for SWERUS-C3 data 
Data from the SWERUS-C3 expedition are distributed with quality control applied, 
including a filter for wind speeds above 2 ms-1. In addition, the variability filter was 
applied, although its effect was negligible (one daily average was 3.8 ppb lower due to this 
filter). For consistency, the “clean day” filter for daily averages was applied as well. 

5.1.4 Atmospheric transport 

Inverse atmospheric transport was computed using the setup presented in Henderson et al. 
(2015). The model was based on the 'Stochastic Time-Inverted Lagrangian Transport' model 
STILT (Lin et al., 2003) coupled to WRF (Skamarock et al., 2008) and driven by the MERRA 
reanalysis (Rienecker et al., 2011). The resolution of the transport model in the domain was 
mostly 10 km horizontally, using 41 vertical levels. For each observation, backtrajectories of 
500 particles were computed over 15 days. Surface influence of a particle was calculated as 
the time spent in the lower half of the atmospheric boundary layer. Backtrajectories were 
provided by John Henderson (AER). From these backtrajectories, the surface influence 
based on all particles ("footprint") was calculated for the domain used for flux 
optimization. 
Atmospheric CH4 chemistry (Sect. 3.1.2) was implemented by sampling reaction rates along 
the back trajectories and computing the cumulative CH4 loss for both boundary conditions 
and footprints. Reaction rates were taken from Nuñez Ramirez (2019, in prep.).  
Two sets of trajectories were used: one used the full 15 days, the other only the first 5 days. 
This differentiation was initially included to investigate differences. This was ultimately 
not pursued in depth, but there were small differences so both settings were kept as 
plausible implementations of the transport. 
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5.1.5 Boundary conditions 

Backtrajectories were terminated at the domain boundary or after their specified maximum 
lifetime (5/15 days, see Sect. 5.1.4) was reached, at which point their CH4 mole fraction was 
initialized. 
Boundary conditions were derived from global CH4 mole fraction fields from Nuñez 
Ramirez (2019, in prep.). They were obtained from a forward run of the TM3 model with 
CH4 fluxes optimized using the Jena Inversion System. Fluxes were optimized for ground-
based stations including the stations used for optimizing fluxes in this study in order to 
capture their baselines. 
Two sets of boundary conditions were used. The first, herein referred “strict boundary 
condition optimization” (“bc:S”), was computed based on the global CH4 mole fraction 
field obtained with optimized fluxes using the standard settings for covariance matrices 𝑹 
and 𝑸 of the global inverse model. Since this setting created some (unrealistic) negative 
CH4 fluxes, another global CH4 mole fraction field was used, which was optimized with the 
same setup but a 100-fold increase of the weight of the prior flux estimate. Thus, the 
constraint of the data on these boundary conditions was relaxed. Hence, these are referred 
to as “relaxed boundary condition optimization” (“bc:R”). 
The boundary conditions exhibited differences on synoptic and seasonal scales that were 
much larger than typical measurement uncertainties for hourly values (standard deviations 
of 3.8–5.6 ppb per station; Fig. 8). Thus, using both settings constituted a test for robustness 
of results against transport model and data uncertainties. 
 

 

Fig. 8: Difference between strict and relaxed boundary condition optimization. Shown here are the 
values for 5-day backtrajectories and strict atmospheric data selection. 
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5.1.6 Spatiotemporal covariance model 

As in many inverse modeling studies, the flux covariance matrix 𝑸 was based on the 
assumption that the stochastic flux component correlates over certain scales in length and 
time (Sect. 3.2.1). The flux covariance matrix 𝑸 was implemented using the decomposition 
into spatial and temporal correlations used by Yadav and Michalak (2013): 

𝑸 = 𝜎! ∙ 𝑫! ⊗ 𝑬!  (20) 

Here, 𝑫 is the temporal covariance matrix, 𝑬 is the spatial covariance matrix, ⊗ denotes the 
Kronecker product, and 𝜎! is the square root of the variance of the fluxes. Often, 
exponential covariance models are chosen for 𝑫 and 𝑬. However, this way 𝑸 has many 
small, but no non-zero elements. By contrast, a spherical covariance model is zero beyond 
the correlation length, which makes covariance parameter estimation computationally less 
expensive (Kitanidis, 1997). Therefore, spherical covariance models were used here:  
 

𝐶!"
!"! = 1 − 1.5 ∙

𝑑!"
𝛿
+ 0.5 ∙

𝑑!"
𝛿

!

,     0 ≤  
𝑑!"
𝛿
≤ 1

0,                                             otherwise    
 (21) 

 
Here, 𝐶!" denotes the elements of a covariance matrix (𝑫 and 𝑬 in Eq. (20)), 𝑑!" is the 

distance between elements 𝑖 and 𝑗 of the matrix, and 𝛿 is a distance parameter (𝜏 and 𝜉 in 
Eq. (20)). For spatial correlations, 𝑑!" and 𝛿 are spatial lengths, referring to distances 

between cells of the spatial grid on which fluxes are estimated, while for temporal 
correlations, they are time differences. 
The spatial covariance model was modified to remove correlations between land and ocean 
fluxes (Fig. 9): 

𝐷!" = 𝐷!"
!"! ∙ 1 − 𝑙! − 𝑙! , (22) 

where 𝑙! denotes the fraction of the grid cell 𝑖 that is covered by land. 
 

Fig. 9: Spatial correlations for one grid cell (marked by the cross), illustrating the decoupling of land 
and ocean in the covariance model used for optimizing fluxes. 



   41 

 

5.1.7 Description of CH4 emission processes using auxiliary variables 

The processes that may govern CH4 emissions from the ESAS to the atmosphere were 
described in Sect. 2. For the regression model of the geostatistical method (Sect. 3.2.3), these 
processes were described by various datasets, all of them restricted spatially to the ESAS 
(that is, in all regression models, ocean emissions outside of the ESAS were 0). For a full 
model of the CH4 emissions in the domain, terrestrial fluxes have been described in the 
same way. A summary of all auxiliary variables used in this study is provided in Table 8. 
 

Table 8: Brief descriptions of all auxiliary variables. Full descriptions and references are in the text. 

Label Description 

ESAS spatial distribution of subsea emissions 
Hot spots Hot spot map based on Shakhova et al. (2010a) 
Const. ESAS Constant ESAS emissions 
ESAS<30m Area of ESAS shallower than 30m 
ESAS>30m Area of ESAS deeper than 30m 
Edge ESAS edge (100 m – 500 m depth) 

Diffusive gas transfer 

k  Gas transfer velocity 

Ocean depth 
exp-10m Exponential attenuation with ocean depth (𝛼 = 0.1 𝑚!!) 
exp-20m Exponential attenuation with ocean depth (𝛼 = 0.05 𝑚!!) 
exp-100m Exponential attenuation with ocean depth (𝛼 = 0.01 𝑚!!) 

Sea ice 

Const. ESAS-Ice ESAS fraction not covered by sea ice 
Ice growth Sea ice growth 
Ice retreat Sea ice retreat 

Storms 
Storms-0.5-10 Storm occurrence (𝑑 = 0.5 𝑚!!𝑠, 𝑤!,! = 10 𝑚𝑠!!) 
Storms-1-10 Storm occurrence (𝑑 = 1 𝑚!!𝑠, 𝑤!,! = 15 𝑚𝑠!!) 
Storms-0.5-15 Storm occurrence (𝑑 = 0.5 𝑚!!𝑠, 𝑤!,! = 10 𝑚𝑠!!) 
Storms-1-15 Storm occurrence (𝑑 = 1 𝑚!!𝑠, 𝑤!,! = 15 𝑚𝑠!!) 

Kolyma mouth 

Kolyma mouth Location of Kolyma mouth 

Combinations of variables 

exp-10m-ice “exp-10m” modulated by sea ice cover 
exp-20m-ice “exp-20m” modulated by sea ice cover 
exp-100m-ice “exp-100m” modulated by sea ice cover 
ESAS<30m-ice “ESAS<30” modulated by sea ice cover 
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ESAS>30m-ice “ESAS>30” modulated by sea ice cover 
Edge-ice “Edge” modulated by sea ice cover 
Hot spots-ice “Hot spots” modulated by sea ice cover 
Ice growth-edge “Ice growth” multiplied with “Edge” 
k-exp-10m “k” multiplied with “exp-10m” 
k-exp-20m “k” multiplied with “exp-20m” 
k-exp-100m “k” multiplied with “exp-100m” 

Process-based wetland models 

WSL Climatology of CH4 emissions based on model LPJ-WSL 
SDGVM Climatology of CH4 emissions based on model SDGVM  
DLEM Climatology of CH4 emissions based on model DLEM  
ORCHIDEE Climatology of CH4 emissions based on model ORCHIDEE  
LPJ-GUESS Climatology of CH4 emissions based on model LPJ-GUESS 

Lake model 

bLake4Me Climatology of CH4 emissions based on model bLake4Me 

Simple models for terrestrial emissions 

Const. land Constant land emissions 
SWM Simple Wetland Model 
ZCM Zero Curtain Model 

 

5.1.7.1 Oceanic CH4 emissions 

Hot spots (“Hot spots”) 
In previous studies, ESAS CH4 emissions were divided into hot spot and background 
regions, linking hot spots to increased ebullition due to degraded permafrost cover. Thus, 
regions where seabed warming is above average (fault zones, river beds) are candidates for 
CH4 emission hot spots (Sect. 2.6). Here, we used the most extensive dataset of observed 
CH4 emission hot spots in the literature, which is the map by Shakhova et al. (2010a). Since 
we could not obtain the data from the authors directly, the data were extracted from the 
published plot. This dataset only covers the Laptev and East Siberian Seas. Datasets of the 
distribution of fault zones (cf. Nicolsky et al., 2012) or paleo-river beds (Frederick and 
Buffett, 2014) were not considered. 
 
Spatial distributions of subsea permafrost, hydrate or gas (“Const. ESAS”, “ESAS<30m”, 
“ESAS>30m”) 
Several studies scaled up locally measured ESAS CH4 emissions to the whole shelf area 
(Shakhova et al., 2010a, 2014; Thornton et al., 2016b). Therefore, one candidate for the 
spatial distribution of CH4 emissions from the seabed associated with permafrost 
distribution was the geographical extent of the ESAS as introduced in Sect. 5.1.2 (“Const. 
ESAS”). However, there may be considerable spatial variations since the permafrost 
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distribution in the seabed of the shelf may not be uniform. In several Arctic shelves, 
permafrost extends no further than about 20 m water depth, which lead Ruppel (2015) to 
work with an assumed permafrost extent to 30 m water depth (Sect. 2.1.2). Two 
implications are possible: the lack of a permafrost cover may enable CH4 from gas hydrates 
or natural gas pools to migrate to the water, which would explain gas flares (Cramer and 
Franke, 2005; Portnov et al., 2013) (cf. Sect. 2.1.2). Furthermore, permafrost thaw may be 
less advanced in shallower parts of the shelf, since they were inundated more recently 
(Archer, 2015 and refrences therein; Portnov et al., 2013). On the other hand, widespread 
CH4 seepage on the outer part of the shelf was not confirmed in the East Siberian Sea by 
one study (Thornton et al., 2016b), and the lack of subsea permafrost carbon may constitute 
a lack of carbon as substrate for methanogenesis (Sect. 2.2.1). Based on these considerations, 
two more candidates for the spatial distribution of CH4 emissions were added, splitting the 
ESAS into areas where the ocean was shallower (“ESAS<30m”) and deeper (“ESAS>30m”), 
respectively, than 30 m. 
 
Shelf edge (“Edge”) 
At the shelf edge, CH4 may escape due to exposure to warmer water temperatures (Sect. 
2.2.1). The candidate variable describing CH4 emissions from the shelf edge was defined as 
the part of the ESAS between 100 m and 500 m depth. The variable was still based on a 
preliminary ESAS definition that ignored the restriction to the ecoregion definition and 
thus included a slightly larger area (Appendix B). 
 
Gas transfer velocity: proxy for turbulent diffusion (“k”) 
Turbulent diffusion (Sect. 2.5) was described following the approach by Nuñez Ramirez 
(2019, in prep.), who based the gas transfer velocity on Sweeney et al. (2007).  
The functional dependence of the gas transfer velocity 𝑘 follows Wanninkhof (1992): 

𝑘 = 0.27 ∙ 𝑤!! ∙
𝑆𝑐
660

!!.!

, (23) 

𝑆𝑐 =
𝜇
𝜌𝐷

 (24) 

Here, 𝑤! is the wind speed at the surface, 𝑆𝑐 the Schmidt number, 𝜇 the dynamic viscosity 
and 𝜌 the density of seawater, and 𝐷 the diffusion coefficient. These values were computed 
using the R package “marelac” version 2.1.6 (https://CRAN.R-project.org/package=marelac) 
based on wind speed, sea surface temperature and surface pressure taken from ERA-
Interim (Dee et al., 2011). Sea surface salinity was set to a constant value of 35 g kg-1. 
Variability of salinity was ignored because of data availability and its small impact 
(Wanninkhof, 1992). 
This gas transfer velocity estimate mostly followed the square of the wind speed 
(correlation coefficient 0.99). Using 3-hourly wind speeds may introduce errors both due to 
ignoring the impact of instantaneous wind speeds (Wanninkhof, 1992), as well as ignoring 
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the large-scale state of mixing of the water column, which would be better described by 
averaged wind speeds (Fenwick et al., 2017). 
Since spatiotemporal variations of the partial pressures of CH4 on both sides of the air-
ocean interface are poorly known, turbulent diffusion was described solely based on the 
gas transfer velocity. This approach serves as a test whether wind speed dominates the CH4 
emission patterns. 
 
Ocean depth: proxy for ebullition, terrestrial organic matter input and the pycnocline 
(“exp-10m”, “exp-20m”, “exp-100m”) 
CH4 released from the seabed in the form of bubbles dissolves on the way through the 
water column. The fraction of CH4 that reaches the air-water interface depends on several 
factors that are not well constrained (Sect. 2.3.2). However, as a general statement, the 
fraction decreases with ocean depth. Hence, this process was described by a simple 
exponential relationship: 

𝑓!"!  ~ 𝑒!!" (25) 

where 𝑑 is ocean depth. The attenuation factor 𝛼 describes all mechanisms that control how 
much CH4 dissolves on the way through the water column. Archer (2015) used 𝛼 = !

!"
 𝑚!!. 

We computed auxiliary variables for several values of 𝛼: 

𝛼 ∈ (0.1 𝑚!!, 0.05 𝑚!!, 0.01 𝑚!!) (26) 

Since the ESAS generally gets deeper with increasing distance to the coast, these variables 
result in coverage of a narrow strip along the coasts to a large fraction of the shelf area. 
Hence, terrestrial organic matter input may also be described by Eq. (25), since it is more 
prevalent closer to the coasts (cf. Sect. 2.1.1 and 2.2.2) and may provide a carbon source for 
CH4 production (Paul Mann, personal communication). 
Furthermore, this set of auxiliary variables may also be considered to describe the 
pycnocline that traps bottom-released CH4 below a certain depth.  
 
Sea ice barrier (“Ice”) 
To describe the physical sea ice barrier (Sect. 2.4), the remote-sensing sea ice concentration 
product ASI-SSMI (Kaleschke et al., 2001; Spreen et al., 2008) was used, which is distributed 
with a resolution of 12.5 km, spatially and temporally interpolated, and with a 5-day 
median filter applied (Kern et al., 2010).  
 
Deep-water mixing processes: sea ice growth and storms (“Ice growth”, “storms-XX-YY”) 
Several studies indicate that deep-water mixing may be a dominant process governing CH4 
release from Arctic shelves to the atmosphere, since it breaks the stable stratification that 
usually traps CH4 below the surface (Sect. 2.3.1). In Arctic shelf seas, both storms 
(Shakhova et al., 2014) and sea ice growth (Sect. 2.4) have been identified as drivers of 
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deep-water mixing. Heat loss has been identified as a driver for mixing in a shallow water 
reservoir (Liu et al., 2016), but was ignored here after first unsuccessful tests. 
Sea ice growth. Sea ice growth was described by the differences between consecutive time 
steps of the sea ice concentration product; averaged over five days because the product had 
a five-day-median filter applied to it (Kern et al., 2010). This approach, postulating a quasi-
instantaneous link between ice formation and CH4 emissions, was not suitable for 
describing mixing of the complete water column to the average depth of the ESAS, which 
occurs on a timescale of months (Janout et al., 2016). However, it may capture mixing of 
upper water layers (Markus Janout, personal communication) or CH4 release from brine 
(Sect. 2.4). This approach is conflated with increasing sea ice concentration at a given 
location due to drift. Although this may indicate high wind speeds that can likewise induce 
mixing, this represents another process and therefore reduces the quality of this variable. 
The problem was partly mitigated by applying a temporal filter that restricts the variable to 
times of overall growth of the Arctic sea ice cover. Thus usually corresponds to the period 
from September (annual Arctic sea ice minimum extent) to March (annual Arctic sea ice 
maximum extent). The final formulation reads: 

𝑓!"!  ~  𝑎𝑏𝑠 𝑚𝑖𝑛 ∆!"# !"# !"#!., 0 , total Arctic sea ice extent increases
  0, otherwise

  (27) 

Shortcomings of this approach are sensitivity to noise of the sea ice concentration product 
and the conflation with drift during the period not excluded by the filter for increase of 
total Arctic sea ice extent. In addition, a better indicator for induced mixing would be the 
increase in sea ice volume. 
Storms. Storms with wind speeds above about 15 ms-1 were previously suggested to induce 
considerable deep-water mixing of the ESAS (Shakhova et al., 2014). In the ERA-interim 
wind speed product used for the gas transfer velocity (see above), this applies to 0.5 % of 
all ocean voxels in the domain and period of this study. Although storms were already 
represented by the auxiliary variable describing the gas transfer coefficient, we tested 
whether the relationship changed at high wind speeds using a variable that attributed 
emissions only to periods of high wind speeds. Since only a small number of voxels was 
affected, a variable indicating the presence of a storm was used rather than a functional 
relationship increasing with wind speed. For this purpose, we used a logistic growth 
function with sharp transitions between wind speeds that were assigned weight 0 and 
those that were assigned weight 1: 

𝑓!"!  ~ 1 + 𝑒!! !!! !!,!
!!
. (28) 

Four combinations of coefficients were considered: 𝑑 ∈ 0.5,1  𝑚!!𝑠 and 
𝑤!,! ∈ 10, 15  𝑚𝑠!!. 
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Winter ESAS emissions 
The sea ice barrier in winter is not entirely impermeable. Most notably, parts of the ESAS 
remain open throughout the winter, especially the Great Siberian Polynya. In addition to 
opening the barrier, refreezing in leads can induce brine rejection and mixing similar to the 
sea ice growth period (Sect. 2.4). Large openings should be reflected in the sea ice 
concentration product, but smaller openings may not be captured adequately. This 
shortcoming may be addressed in a follow-up study by describing the spatiotemporal 
distribution of open water areas in the Arctic sea ice (e.g. Wang et al., 2016) or ice 
production within them. We accounted for the possibility of winter emissions by including 
candidate auxiliary variables that do not vary with sea ice cover, i.e. assuming constant 
emissions throughout the year. The role of sea ice permeability was not explicitly 
accounted for.  
 
Sea ice retreat (“Ice retreat”) 
Methane accumulated below or in sea ice in winter may be released upon ice breakup (Sect. 
2.4). This process was modeled similarly to sea ice growth based on differences between 
consecutive time steps of the sea ice concentration product (see above): 

𝑓!"!  ~ 𝑚𝑎𝑥 ∆!"# !"# !"#!., 0  (29) 

Shortcomings of this approach are that it may be sensitive to noise in the sea ice 
concentration product, accumulation times are ignored, and that the resulting variable is 
sensitive to both sea ice melt and sea ice drift. Since melting sea ice results in a melt-water 
layer and potentially the release of CH4 stored within sea ice (Sect. 2.4), these are two 
distinctly different processes, which may impact the performance of this candidate variable 
negatively. 
 
Kolyma river mouth 
Methane emissions associated with the Kolyma river mouth were represented by a 
manually created candidate variable. The spatial distribution was based on published 
measurements of CH4 emissions in the area (Shakhova and Semiletov, 2007, Fig. 6) and 
corresponds to the location of the Kolyma mouth and the Kolyma gulf. The variable was 
not varied with time.  

5.1.7.2 Terrestrial CH4 emissions 

For a complete description of CH4 emissions in the study domain, terrestrial emissions had 
to be taken into account. The most important CH4 sources at high northern latitudes are 
wetlands (e.g. Kirschke et al., 2013), but recently, lake emissions have come into focus as 
well (e.g. Wik et al., 2016). In addition, the importance of cold season emissions is emerging 
(Kittler et al., 2017; Mastepanov et al., 2013; Zona et al., 2016). Anthropogenic CH4 
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emissions play a smaller role in the sparsely populated domain of this study and were 
ignored. The following land emission candidate variables were considered: 
 
Process-based wetland CH4 emission models (“SDGVM”, “LPJ-WSL”, “DLEM”, 
“ORCHIDEE”, “LPJ-GUESS”) 
Several process-based wetland CH4 emission models were considered: several submissions 
to the WETCHIMP intercomparison (experiment 2) (Melton et al., 2013; Wania et al., 2013 
and references therein), i.e. SDGVM, LPJ-WSL, DLEM and ORCHIDEE. In addition, LPJ-
GUESS (Zhang et al., 2013, with updated climate forcing) was considered. For all models, 
climatologies were created, since model results in the period of interest were not available 
(WETCHIMP: 2000–2004, LPJ-GUESS: 2010–2014). 
 
Simple Wetland Model (“SWM”) 
In addition to the complex process-based wetland CH4 emission models, a simple Kaplan-
type wetland model (Kaplan, 2002; Pickett-Heaps et al., 2011) was created based on the 
approach by Miller et al. (2014b). Miller et al. (2014b) incorporated a factor representing the 
presence of wetlands in a grid cell. However, maps of wetland extent have strong 
differences in Siberia (Bohn et al., 2015). Therefore, no map of wetland extent was used, 
and soil water content was used as an indicator for the magnitude of CH4 emissions. 
Another factor, describing soil carbon content and turnover time, was ignored as well. 
Thus, the model read:  

𝑓!"!  ~ 𝑤 ∙ 𝐹 ∙ 𝑒
!!"#
!!!!"  (30) 

Here, 𝑤 is soil water content, 𝑇 is soil temperature in K, and 𝐹 is an emission factor 
depending on soil temperature (see Miller et al. (2014b) for a full description). Thus, input 
datasets for this model were soil temperature and soil water content, which were taken 
from ERA-Interim. Following Miller et al. (2014b), the values of soil layer 2 (7–28 cm depth) 
were used. In addition to the simplifications described above, a shortcoming of this model 
is that modeled soil temperatures can be strongly biased during the cold season in 
permafrost regions (Chadburn et al., 2017). This was addressed with the Zero Curtain 
Model (see below). 
 
Zero Curtain Model (“ZCM”) 
Zero curtain CH4 emissions (Zona et al., 2016) from wetlands were modeled with a simple 
model tuned to roughly match cold season emissions measured using the Eddy covariance 
technique at a site near Chersky (Kittler et al., 2017) that were not captured by the Simple 
Wetland Model (SWM) described above. However, the ERA-Interim soil temperature data 
used as input did not feature a zero curtain period, i.e. modeled soil temperatures dropped 
below 0 °C without pause. Therefore, the zero curtain period was modeled using a 
functional temperature dependence that was not intended to represent real processes, but 
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to roughly reproduce the seasonal variations at the Eddy site near Chersky. The presence of 
wetlands was modeled as in the simple wetland model, yielding: 

𝑓!"!  ~ 𝑤 ∙𝑚𝑎𝑥 𝑇!"#$" − 𝑇, 0 !𝑒
!!"# !!"#$"!!,! !

! !!"#$"!!!"# !   (31) 

𝑇!"#$" = 5℃  (32) 

𝑇!"# = −1℃  (33) 

This function assigns emissions at soil temperatures below 𝑇!"#$" with maximum emissions 
at 𝑇!"#. The function is slightly asymmetric with a longer tail towards low temperatures 
(half points: -8.9 °C and 0.9°C). To exclude the thaw period, a filter restricted emissions 
from this variable to periods when the soil temperature was falling during the previous 
month. 
 
Process-based lake CH4 emission model (“bLake4Me”) 
Lake CH4 emissions were described by monthly emission estimates from the model 
bLake4Me (Tan et al., 2015), averaged over the years 2005–2008 (Zeli Tan, personal 
communication). 
 
Fire and anthropogenic emissions 
Fire and anthropogenic CH4 emissions are small in the study area and were ignored. 

5.1.7.3 Combinations of variables 

Since model selection can only combine candidate variables additively, a number of 
candidate variables were created by combining those described in the previous sections 
multiplicatively. Combinations were between variables that described the sea ice barrier 
(i.e. open ocean fraction), variables that described turbulent diffusion (e.g. gas transfer) 
velocity) or ebullition (e.g. exponential functions of ocean depth), and between variables 
that described spatial heterogeneity of fluxes (e.g. exponential functions of ocean depth) 
and diffusion (see Table 8). 

5.1.8 Parameter sets for regression model selection and inversions 

Regression models were computed and evaluated for different settings for atmospheric 
data selection, boundary conditions and backtrajectory length to allow evaluation of the 
robustness of the results against model settings. The parameter sets for model selection are 
outlined in Table 9. 
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Table 9: Parameter sets for regression model selection. Definitions of the atmospheric data selection 
criteria and boundary condition optimization are given in the respective sections referenced below. 

Parameter set label Atmospheric data 
selection 
(Sect. 5.1.3.2) 

Boundary condition 
optimization 
(Sect. 5.1.5) 

Backtrajectory 
length 

ds:S-bc:S-bl:5 Strict Strict 5 
ds:S-bc:S-bl:5 Strict Strict 15 
ds:S-bc:R-bl:15 Strict Relaxed 5 
ds:R-bc:S-bl:5 Relaxed Strict 5 
ds:R-bc:S-bl:15 Relaxed Strict 15 

5.2 Results 

5.2.1 Sensitivity of atmospheric observation network to ESAS 
emissions 

Based on the backtrajectories run for 5 or 15 days, the atmospheric observations were most 
sensitive to the area on the order of few hundreds of kilometers around the measurement 
locations (Fig. 10). Northern parts of the Laptev and East Siberian Seas, as well as the 
southern Chukchi Sea were scarcely sampled. All stations intensely sampled both the ESAS 
and adjacent terrestrial ecoregions. 
 

Fig. 10: Footprints of the atmospheric data used for optimization in this study, aggregated over the 
whole study period and sorted into bins covering 25 % of the cumulative influence each. Shown here 

is the case for strict atmospheric data selection and 5-day backtrajectories (see Table 9 for 
definitions). 

5.2.2 Covariance parameters 

Covariance parameters were estimated based on the restricted maximum likelihood 
method (Sect. 3.2.3.3) for several atmospheric data selection criteria and preliminary 
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regression models. The results for prior uncertainty and model-data mismatch mostly 
depended on data selection (Fig. 11, left panel). Correlation length and time varied 
considerably for the case of relaxed data selection, in one case converging on a correlation 
time of 0 days (Fig. 11, right panel). Since covariance parameter estimation was 
computationally expensive, we opted for one set of parameters per atmospheric data 
selection version (Table 10). For relaxed data selection, we chose the parameter set with a 
shorter correlation length, because this was closer to the settings of a previous study on 
high latitude CH4 emissions that employed the same method (Miller et al., 2016). 
 
 

 

Fig. 11: Covariance parameters based on different regression models and atmospheric data selections. 
The crosses mark the parameters used for further analysis (values in Table 10). Left: Model-data 

mismatch and prior uncertainty. Right: Correlation length and time. 

 

Table 10: Covariance parameter estimates used for further analyses. 

Atmospheric data 
selection 

Model-data 
mismatch (𝜎!) 

Prior uncertainty (𝜎!) Correlation 
length 

Correlation 
time 

Strict 12.7 ppb 5.65 ×10-3 µmol m-2s-1 397 km 47.4 days 
Relaxed 17.5 ppb 5.31 ×10-3 µmol m-2s-1 530 km 60.2 days 

5.2.3 Regression models 

In this section, we evaluate regression models and individual auxiliary variables for the 
purpose of selecting suitable models for inversions. Furthermore, we present insights on 
processes that can be deduced based on the large variety of considered regression models. 
For model selection, the large number of auxiliary variables 𝑛 (cf. Sect. 5.1.7) required the 
number of variables 𝑘 in each regression model to be restricted, since the number of 
possible combinations (𝑛!/(𝑘! 𝑛 − 𝑘 !)) quickly became computationally intractable. After 
reducing the number of variables that describe terrestrial emissions (Sect. 5.2.3.2), 𝑛 = 33 
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variables remained. We considered 𝑘 = 1,… , 7 variables per model, which resulted in 
5,663,889 regression models per parameter set.  
In Sect. 5.2.3.1, evaluation criteria for regression models are introduced. Based on these 
methods, we first selected the best auxiliary variables for terrestrial emissions, which 
allowed more variables describing oceanic emissions to be considered in subsequent model 
selection runs (Sect. 5.2.3.2). In Sect. 5.2.3.3, we describe the range of annual CH4 emissions 
that regression models attributed to the ESAS. In Sect. 5.2.3.4, we present insights on 
processes based on comparisons of individual auxiliary variables. In Sect. 5.2.3.5 we 
describe how atmospheric CH4 data were modeled by the regression models. 

5.2.3.1 Criteria for regression model evaluation 

Based on the set of auxiliary variables (Table 8), regression models and their BIC scores 
were computed as described in Sect. 3.2.3.2. Models where any regression model coefficient 
𝜷 was negative were excluded from further analysis, since negative CH4 emissions are 
unrealistic (CH4 sinks were accounted for in the transport model, see Sect. 3.1.2). From 
these models, we selected models with a BIC score difference of less than 10 compared to 
the best BIC score. These models are subsequently referred to as “well-scoring” models. 
This threshold included models that clearly performed worse in terms of BIC than others: 
following Eq. (16), the probability that one model describes the data better than another 
model given a BIC score difference of 10 is 1:10-4. However, in our opinion, BIC score 
differences had less explanatory power than is suggested by Eq. (16) because of the large 
RMSE of modeled atmospheric CH4 mole fractions compared with the data. We illustrate 
this assessment with an example. In the case that two models consist of the same number of 
auxiliary variables, the BIC score evaluates absolute differences in the residual sum of 
squares (RSS), and not relative differences: models with RSS of 10 and 20, respectively, 
have the same BIC score difference as models with RSS of 1010 and 1020, respectively, 
although the relative performance difference of the former would be considered much 
more significant than that of the latter. We decided to evaluate models with a relatively 
large threshold of ΔBIC<10, because this selected between 113 and 182 well-scoring models 
for each parameter set, a number that allowed ranking individual auxiliary variables. In 
some cases, we present conclusions based on a stricter criterion. For the stricter criterion, 
we selected those of the well-scoring models that were among the 30 best models in terms 
of BIC score, as well as RMSE, correlation and mean bias between modeled and observed 
atmospheric data. This criterion selected between 3 and 8 models per parameter set, which 
we henceforth call the “best-scoring” models. The vast majority of both the well-scoring 
and the best-scoring models contained fewer than the maximum considered seven 
auxiliary variables. This suggests that, although considering regression models with more 
auxiliary variables could improve the fit to the atmospheric data, considering more 
complex models would not change the results based on BIC. 
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Variance inflation factors were generally less than 4 in well-scoring regression models and 
thus indicated no collinearity. This was expected since BIC selects against redundancy. 
Hence, collinearity is not discussed further in the evaluation of regression models. 

5.2.3.2 Preparatory step: auxiliary variables for terrestrial CH4 
emissions 

In order to reduce the number of auxiliary variables in the model selection for oceanic 
variables, the best auxiliary variables for terrestrial CH4 emissions were determined in a 
preparatory step. For this purpose, model selection was run on the full set of variables that 
describe terrestrial emissions, with only few variables that describe ocean emissions. This 
split was possible because most of the important ocean variables from the full set were in 
the set of variables used here (cf. below). This was done for four parameter sets: strict and 
relaxed atmospheric data selection, and 5- and 15-day backtrajectories, in all cases with 
strict boundary condition optimization. 
The largest contributions to the terrestrial CH4 budget were from the Simple Wetland 
Model (SWM) and the constant land flux, either or both of which were chosen for each 
well-scoring model. WSL was part of the vast majority of well-scoring regression models, 
and thus far outperformed all other process-based wetland models. Its contribution to the 
budget was small compared to the contributions from Simple Wetland Model and constant 
land flux. The majority of the well-scoring models also contained the Zero Curtain Model 
(ZCM). In some cases with relaxed data selection, the lake emission model (bLake4Me) was 
selected as well. 
Based on these observations, we computed and analyzed regression models with the full 
set of ESAS-related variables with only the Simple Wetland Model, the constant land flux, 
WSL, the Zero Curtain Model and bLake4me to describe terrestrial CH4 emissions. Other 
auxiliary variables for terrestrial emissions – i.e. all process-based wetland models besides 
WSL – were excluded from further analyses. 

5.2.3.3 Annual ESAS CH4 budget of regression models 

We evaluated the range of annual ESAS CH4 budget estimates supported by the 
atmospheric data by computing them for the well-scoring regression models. For this 
purpose, the budgets of all auxiliary variables that described ESAS emissions were added 
for the period Oct 2014 – Sep 2015. Here, we report ranges and averages of the annual 
ESAS regression model budget depending on parameter set. Contributions of individual 
variables to the ESAS regression model budget are shown in Sect. 5.2.3.4. 
Varying with selected variables, the ESAS regression model budget ranged between 0 and 
1.4 Tg CH4 yr-1 (Fig. 12). The largest ESAS budgets were obtained with relaxed atmospheric 
data selection, strict boundary condition optimization, and 5-day backtrajectories 
(parameter set “ds:R-bc:S-bl:5”); other parameter sets returned maximum budgets of 1.3 
Tg. The average ESAS budgets among the well-scoring models were 0.7–0.9 Tg CH4 yr-1 
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depending on the parameter set, with runs with 15-day backtrajectories and relaxed data 
selection yielding the slightly smaller budgets. When further selecting for best-scoring 
models, the range of the ESAS budget estimate across all parameter sets was narrowed 
down to 0.6–1.2 Tg CH4 yr-1 for strict data selection, and 0–1.2 Tg CH4 yr-1 for relaxed data 
selection with larger averages for strict atmospheric data selection (0.9 – 1.0 Tg) than 
relaxed data selection (0.6 – 0.7 Tg). The ESAS budget slightly correlated negatively with 
the budget attributed to terrestrial emissions for each parameter set, but with large 
variances (illustrated by the large scatter in Fig. 12). Terrestrial emission budgets ranged 
from 2.5 to 5.3 Tg CH4 yr-1 (average: 3.7–4.6 Tg CH4 yr-1) and thus were assigned the 
majority of the emissions in the domain. 
 

Fig. 12: Annual CH4 budgets assigned by well-scoring regression models to ESAS and land regions 
(Oct 2014 – Sep 2015). 

5.2.3.4 Process insights based on regression models 

We compared the performance of individual auxiliary variables or set thereof by two 
different metrics. The first metric was the fraction of regression models (well- or best-
scoring) that contained the variable (or either of the variables in a set). Since this metric 
may be sensitive to the pool of considered regression models, a second metric for the 
comparisons was the rank of the first regression model that contained the variable (or 
either of a set of variables) in terms of their BIC score (normalized to the range 0–1). To 
further assess the relevance of certain auxiliary variables, we investigated annual budgets 
assigned to them. 
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We used this method to compare auxiliary variables that described shallow parts of the 
ESAS to those that described deeper parts of the ESAS, and to compare the performance of 
variables that were modulated by sea ice cover. Furthermore, we identified low-ranking 
variables. 
Larger CH4 emissions attributed to shallow than deep ESAS 
Among the ESAS-related variables that selected for ocean depth, there was a clear 
preference of variables that attributed emissions to shallow waters over those that 
attributed emissions to deeper waters. This finding was consistent across the two different 
evaluation metrics introduced above and all parameter sets (Fig. 13). The maximum budget 
attributed to individual shallow-ocean variables was larger than for deep-ocean variables 
(Fig. 14). The variables modulated by sea ice cover were assigned budgets of up to 0.5 Tg 
CH4 yr-1, while those without modulation reached up to 1.2 Tg CH4 yr-1. Note that, in the 
above assessment, the sea ice growth variable, which attributed emissions throughout the 
shelf, was ignored because it primarily attributed emissions to fall. The results held when 
models that featured this variable were excluded (not shown). 
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Fig. 13: Evaluation metrics as defined in Sect. 5.2.3.1 for auxiliary variables that assign ESAS 
emissions depending on ocean depth. Each data point corresponds to two auxiliary variables with the 
same depth distribution, one constant in time and the other modulated by sea ice. The sea ice growth 

variable was ignored in this test because it primarily attributed emissions to fall. Other ESAS-
related variables were ignored because they were much less frequently selected and did not impact 

the result. The abscissae are sorted by the average performance of each depth distribution (same 
result in both metrics). Top: Fraction of well-scoring regression models that contained at least one of 

the two variables with a specific depth distribution. Bottom: BIC-rank of the first model that 
contained at least one of these variables (normalized to the range 0–1). 
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Fig. 14: Maximum annual CH4 budget attributed to auxiliary variables that vary with ocean depth 
(sorted as in Fig. 13). Left panel: variables without seasonal variation. Right panel: the same 

variables modulated by sea ice cover. 

 
Sea ice cover as a barrier for CH4 emissions 
Among the well-scoring models, variables that were modulated by sea ice cover ranked 
slightly lower than those without the modulation, but with larger differences between 
parameter sets than between the two groups (Fig. 15). Among the best-scoring models, the 
variables without modulation by sea ice cover were preferred as well. 
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Fig. 15: Evaluation of auxiliary variables for ESAS CH4 emissions that are constant in time (left) or 
modulated by sea ice cover (right). The metrics are the same as in Fig. 13 and were introduced in 

Sect. 5.2.3.1. 

Sea ice growth 
The sea ice growth variable was contained in 70–83 % of well-scoring models, and 60–80 % 
of best-scoring models for the individual parameter sets, making it the single highest 
scoring auxiliary variable describing ESAS CH4 emissions. Emissions attributed to this 
variable were substantial in comparison to the variables that describe ESAS CH4 emissions 
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throughout the year, ranging 0.3–0.5 Tg CH4 yr-1 (average 0.4 Tg CH4 yr-1) across the well-
scoring regression models for the different parameter sets. 
 
Sea ice retreat 
The variable describing sea ice retreat was rarely selected and ranked low among the well-
scoring models. The annual budget attributed to the pattern was less than 0.1 Tg CH4 yr-1 in 
all cases. 
 
Hot spot pattern 
The hotspot map extracted from Shakhova et al. (2010a) ranked low among the well-
scoring models, both with and without modulation by sea ice cover. In the cases it was 
included in the regression model, the annual budget attributed to this pattern was below 
0.1 Tg CH4 yr-1. 
 
Wind speed 
All variables linked to wind speed – i.e. gas transfer velocity and storms – were rarely 
selected and ranked low among the well-scoring models. 
 
Kolyma river mouth 
The Kolyma river mouth variable ranked high among the well-scoring models in the cases 
with relaxed atmospheric data selection, and low in the cases with strict atmospheric data 
selection. In either case, the budget attributed to the variable was less than 0.05 Tg CH4 yr-1. 
Regression models that contained the variable attributed smaller annual budgets to the 
ESAS. While lower budget estimates were not affected, budget estimates on the high end 
(above 1.2 Tg CH4 yr-1) were on average reduced by 0.11 Tg and 0.24 Tg with strict and 
relaxed data selection, respectively. 
 
Terrestrial CH4 emissions 
Results of variables that described terrestrial CH4 emissions were similar as in the 
preparatory step that included far fewer oceanic variables (Sect. 5.2.3.2). The vast majority 
of well-scoring regression models contained several auxiliary variables related to terrestrial 
emissions. In particular, most well-scoring models contained either the Simple Wetland 
Model or the constant land emissions, or both. The latter cases yielded the higher terrestrial 
budgets in Fig. 12. Most of the best-scoring models contained both of these variables, with 
the exception of the parameter set “ds:S bc:S bl:5”, where the Simple Wetland Model was 
only selected in two out of the eight best-scoring models. Furthermore, WSL was selected 
in most well-scoring models. The Zero Curtain Model was selected in all best-scoring 
models, while the lake model (bLake4Me) ranked low in these model selection runs. 
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5.2.3.5 Atmospheric data modeled by regression models 

Summary statistics 
Atmospheric observations modeled by the regression models yielded moderate agreement 
with observations. Here, we present statistics on the mismatches between modeled and 
observed atmospheric data, focusing on averages of well-scoring regression models per 
parameter set. Results are displayed in Table 11 and summarized in the following 
paragraphs. Qualitatively, most results agreed across all parameter sets, and also held for 
both the well-scoring and best-scoring regression models. The quantitative results 
depended on atmospheric data selection, but much less on boundary conditions and 
trajectory length.  
Modeled atmospheric mole fractions correlated better with data from Tiksi than 
Ambarchik and Barrow. With the relaxed model selection, the correlations of the latter two 
improved over the strict model selection, while that of Tiksi was similar. On the other 
hand, root mean squared errors were larger with relaxed data selection, indicating larger 
variability of the data that was harder to capture for the auxiliary variables. RMSE for 
Ambarchik was clearly higher than at Tiksi and Barrow. The regression models 
underestimated Ambarchik data on average, while they overestimated Tiksi data and 
Barrow was in between. This indicates differences in the spatial distribution of emissions 
across the domain or in the vicinity of the stations that were not captured by the auxiliary 
variables. 
 

Table 11: Summary statistics of the mismatch between observed and modeled atmospheric CH4 mole 
fractions. Shown here are averages and standard deviation of the well-scoring regression models for 

the model selection runs with trajectory length of 5 days and strict boundary condition optimization. 

 Correlation coefficient RMSE [ppb] Mean bias [ppb] 
 Strict Relaxed Strict Relaxed Strict Relaxed 

Ambarchik 0.40±0.05 0.48±0.03 32.3±0.9 39.1±0.9 -3.3±2.2 -4.3±3.7 
Barrow 0.41±0.04 0.49±0.06 15.9±0.5 21.8±0.6 1.9±0.5 -1.1±1.0 
Tiksi 0.59±0.05 0.61±0.03 21.2±0.6 23.0±0.5 6.6±0.9 8.1±2.3 

All data 0.55±0.02 0.56±0.02 23.0±0.3 27.7±0.4 2.3±0.9 1.4±1.8 
 
Seasonality of biases 
Seasonal biases of modeled atmospheric mole fractions are summarized in Table 12. The 
largest seasonal offsets were observed at Ambarchik, followed by Tiksi. Ambarchik 
observations were clearly underestimated by the models in fall and winter. The opposite 
applied to Tiksi, while the results for Barrow were mixed. By contrast, observations in 
spring and summer were overestimated at Ambarchik and Tiksi (neutral at Barrow). These 
overestimations may be linked to the large underestimation of cold season signals at 
Ambarchik.  
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Table 12: Seasonal biases of the well-scoring regression models averaged over all parameter sets. The 
errors are one standard deviation. All values are in ppb. 

 Winter (DJF) Spring (MAMJ) Summer (JA) Fall (SON) 
Ambarchik -7.1±2.4 9.7±1.0 5.2±2.3 -16.0±0.9 
Barrow 4.4±0.8 1.4±0.8 0.5±1.0 -2.5±3.1 
Tiksi 12.0±3.2 7.2±2.1 3.9±3.6 7.3±1.6 

 
Relative impact of terrestrial and oceanic auxiliary variables on modeled atmospheric 
CH4 signals 
On average, contributions from variables describing oceanic emissions to modeled 
atmospheric signals were smaller than those describing terrestrial emissions in the well-
scoring models (Fig. 16). In a few cases, the largest average oceanic contributions were on 
par with those of terrestrial emissions (Fig. 16). 
We investigated the relative impact of oceanic and terrestrial emissions on the seasonality 
of modeled atmospheric data. For this purpose, we computed average regression model 
biases for two subsets of the well-scoring regression models that excluded seasonally 
varying oceanic and terrestrial variables, respectively. The seasonality of the biases 
depended mostly on the variables that described terrestrial emissions (not shown). 
Thus, terrestrial emissions contributed more strongly to modeled atmospheric signals than 
oceanic emissions. 

 

Fig. 16: Average contribution of terrestrial and oceanic emissions to modeled atmospheric CH4 
signals in all well-scoring regression models. 
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Atmospheric signals modeled by regression models: Impact of individual auxiliary 
variables and ambiguous attribution 
In the following paragraphs, we present how individual auxiliary variables contributed to 
modeled observed atmospheric signals at the three sites used for optimization in different 
regression models. 
Fig. 17 shows atmospheric CH4 mole fractions at Tiksi for two regression models. The 
model in the left panel featured the constant land flux; the model to the right did not. As a 
consequence, the model on the left modeled higher CH4 signals in winter and spring, filling 
some gaps and overestimating other signals. This demonstrates the influence of the 
terrestrial variables on seasonality of model bias that was briefly described above. The plots 
also demonstrate how individual spikes can be attributed to either land or ocean emissions. 
I.e. in spring, a number of signals were attributed partially to the constant land flux and the 
ESAS variable (left panel). 

 

Fig. 17: Atmospheric CH4 mole fractions at Tiksi modeled by two different regression models. Both 
panels show results obtained with relaxed atmospheric data selection. 

 
Fig. 18 shows modeled CH4 mole fractions at Ambarchik. All examples expose the inability 
of the regression models to model fall and winter signals at the station, revealing the 
seasonal biases presented above. The sea ice growth variable contributed a part of this 
missing signal, which may be why the variable ranked high in the model selection. 
The model in the top right panel of Fig. 18 featured the variable for coastal ESAS emissions 
(exp-10m) with a budget of 0.8 Tg CH4 yr-1, the one on the top left featured the Kolyma 
mouth with variable with a budget of 0.04 Tg CH4 yr-1 instead. Despite the vast budget 
difference, the variables contributed similarly to the modeled atmospheric signal, on 
average 4.7 ppb and 2.6 ppb, respectively. This demonstrates that emissions in the near 
field of an observation station can have a large impact on modeled atmospheric data and 
emissions. 
Like Fig. 17, Fig. 18 also demonstrates how certain signals can be attributed to different 
processes by the regression model. Signals in winter were attributed to both the constant 
land flux and, where included, the shallow ocean or Kolyma-mouth variable. 
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Fig. 18: Atmospheric CH4 mole fractions at Ambarchik modeled by three different regression models. 
All panels show results with relaxed data selection. The difference between the regression models is 
the ESAS variable with year-round emissions. Top left: Kolyma mouth. Top right: shallow ocean 

(exp-10m). Bottom: No ESAS variable. 

 
Fig. 19 shows two examples of modeled atmospheric mole fractions at Barrow. Here, the 
difference between strict and relaxed data selection is illustrated, the latter including larger 
signals. The figure demonstrates that even a well-scoring auxiliary variable may not 
describe data at all stations in the domain well: here, the sea ice growth variable, which 
was part of most well-scoring and best-scoring models, produced atmospheric signals that 
were not observed, for example in December 2015 in both models. 
A large number of signals observed at Barrow were modeled very well by the variable for 
constant land emissions.  
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Fig. 19: Atmospheric CH4 mole fractions at Barrow modeled by two different regression models. The 
panel on the left shows results with strict data selection, while the example on the right is for relaxed 

data selection. 

 
The results of this section demonstrated why certain auxiliary variables were featured 
among the well-scoring models, and showcase that signal attribution to auxiliary variables 
can be ambiguous. 

5.2.4 Inversions 

5.2.4.1 Inversion scenarios 

Based on the results of regression model selection, settings for an ensemble of inversions 
were chosen. In summary, the primary influential elements that need to be considered for 
further interpretation were the regression model, but smaller differences between the 
options for atmospheric data selection and backtrajectory length were considered as well. 
The boundary conditions had little influence on the results (see Sect. 5.3.1.3 for more 
details), and therefore, all inversions were performed with strict boundary condition 
optimization. 
Due to the large number of model setups, in particular well-scoring regression models, we 
selected a small number of setups to perform inversions. The primary difference between 
these “inversion scenarios” was the regression model. We considered scenarios that either 
(a) were most compatible with the atmospheric data (best-scoring regression models), or 
(b) yielded lowest and highest ESAS budgets among the well-scoring models, or (c) 
featured less successful oceanic auxiliary variables that were nonetheless suitable for 
certain tests (e.g. constant ESAS emissions or variables modulated by sea ice cover). The 
different scenarios are summarized in Table 13 and explained in the following paragraphs.  
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(a) Best-scoring regression models 
 
Coastal emissions and sea ice growth 
The best-scoring regression models tended to feature the shallowest ocean variable, not 
modulated by sea ice cover (exp-10m) and the sea ice growth variable, both of which were 
therefore chosen for inversions. Since the Kolyma mouth variable ranked among the well-
scoring regression models with relaxed data selection, it was included in an additional 
inversion. Terrestrial variables in the best-scoring models were the constant land flux, the 
Simple Wetland Model, the Zero Curtain Model, and WSL. 
 
(b) Boundaries of ESAS budget 
 
Low ESAS budget scenarios 
The prior ESAS budget was lowest in regression models without an ESAS-related variable 
or only the Kolyma mouth- variable, of which there were some among the well-scoring 
models (cf. Fig. 12). When 5-day backtrajectories were used, regression models without 
ESAS-related variables were not selected in the case of strict atmospheric data selection (cf. 
Fig. 12), and ESAS budgets with 15-day backtrajectories were on average slightly lower; 
therefore, 15-day backtrajectories were used in the Low ESAS emissions scenarios. 
Furthermore, a regression model with a high terrestrial budget was used (i.e., both the 
Simple Wetland Model and the constant land flux were included), since low terrestrial 
budgets yielded slightly higher ESAS budgets. The Kolyma mouth variable was included 
in one Low ESAS budget scenario to assess the impact the variable has on the lower bound 
of ESAS budget estimates. 
 
High ESAS budget scenario 
The highest ESAS budgets were obtained in models with relaxed atmospheric data 
selection (cf. Fig. 12). The regression models that yielded the highest ESAS budgets 
contained a shallow-ocean variable (cf. Fig. 14) without modulation with sea ice cover, and 
the sea ice growth variable. Backtrajectories of 5 days (instead of 15 days) and lower 
terrestrial budgets tended to yield more models with higher ESAS budgets and were 
therefore used in the High ESAS budget scenario. For this scenario, a small modification of 
the model with the highest budget among the well-scoring regression models was chosen. 
It originally featured the shallowest ocean variable (exp-10m), but since individually, exp-
20m yielded slightly higher budgets than exp-10m, this variable was used instead. The idea 
behind this modification was to avoid underestimation of the upper bound of the budget. 
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(c) Tests with less successful ocean variables 
 
No sea ice growth 
The sea ice growth variable was highly successful in the regression model selection but 
strongly influences the seasonality of prior emissions. Inversions without this variable 
serve to investigate where this seasonality is retrieved if it is absent in the regression 
model. The regression models for these scenarios were the same as in the best-scoring 
models, but without sea ice growth.  
 
No Simple Wetland Model 
The Simple Wetland Model was selected in a lower fraction of well-scoring regression 
models for one parameter setting (ds:S bc:S bl:5) than the others. Therefore, this setting was 
chosen for an additional inversion. 
 
Modulation with sea ice cover 
Although the variables modulated by sea ice cover were slightly less successful than their 
unmodulated counterparts, inversion results with ESAS variables modulated by sea cover 
were performed to shed light on the detection of the seasonality of ESAS emissions. The 
best-scoring ESAS-related variable modulated by sea ice cover was the coastal emission 
variable exp-10m-ice. Therefore, inversions were performed with regression models as in 
the cases without sea ice growth (above), but replacing the non-varying ESAS variable exp-
10m with its sea-ice-modulated version exp-10m-ice. 
 
Constant and deep ESAS emissions 
Inversions were performed with a constant ESAS prior, and with a prior that assigned 
ESAS emissions only to the deeper part of the shelf. Despite the low ranking of these 
variables in the model selection, these inversions serve to evaluate how prior emissions far 
from the coastal atmospheric observations are redistributed in the optimization. 
 

Table 13: Model settings of the 15 performed inversions, sorted into the categories described in the 
text. 

Scenario Atmospheric 
data selection 

Regression model Backtrajectory 
length 

Best-scoring regression models 

Coastal emissions + 
sea ice growth (strict) 

Strict Simple Wetland Model, 
constant land flux, WSL, 
Zero Curtain Model, 
exp-10m, sea ice growth 

5 days 

Coastal emissions + Relaxed Simple Wetland Model, 5 days 
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sea ice growth 
(relaxed) 

constant land flux, WSL, 
Zero Curtain Model, 
exp-10m, sea ice growth 

Coastal emissions + 
sea ice growth + 
Kolyma mouth 

Relaxed Simple Wetland Model, 
constant land flux, WSL, 
Zero Curtain Model,,  
exp-10m, sea ice growth, 
Kolyma mouth 

5 days 

Extreme ESAS budgets 

High ESAS budget Relaxed Simple Wetland Model, 
WSL, exp-20m, sea ice 
growth 

5 days 

Low ESAS budget 
(strict) 

Strict Simple Wetland Model, 
constant land emissions, 
WSL, Zero Curtain Model 

15 days 

Low ESAS budget 
(relaxed) 

Relaxed Simple Wetland Model, 
Constant land emissions, 
WSL, Zero Curtain Model 

15 days 

Low ESAS budget + 
Kolyma mouth 

Relaxed Simple Wetland Model, 
constant land emissions, 
WSL, Zero Curtain Model, 
Kolyma mouth 

15 days 

No sea ice growth    

Coastal emissions 
(strict) 

Strict Simple Wetland Model, 
constant land flux, WSL, 
Zero Curtain Model, 
exp-10m 

5 days 

Coastal emissions 
(relaxed) 

Relaxed Simple Wetland Model, 
WSL, Zero Curtain Model, 
exp-10m 

5 days 

No Simple Wetland Model 

Coastal emissions 
(strict, no SWM) 

Strict Constant land flux, WSL, 
Zero Curtain Model, 
exp-10m 

5 days 

Sea ice cover    

Coastal emissions, sea 
ice cover (strict) 

Strict Same as “Coastal 
emissions”, but exp-10m 
replaced by exp-10m-ice 

5 days 

Coastal emissions, sea 
ice cover (relaxed) 

Relaxed Same as “Coastal 
emissions”, but exp-10m 

5 days 
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replaced by exp-10m-ice 

Constant and deep ESAS    

Constant ESAS 
emissions (strict) 

Strict Same as “Coastal 
emissions”, but exp-10m 
replaced by const. ESAS 

5 days 

Constant ESAS 
emissions (relaxed) 

Relaxed Same as “Coastal 
emissions”, but exp-10m 
replaced by const. ESAS 

5 days 

Deep ESAS emissions Relaxed Simple Wetland Model, 
WSL, Zero Curtain Model, 
ESAS>30m 

5 days 

 

5.2.4.2 Annual budget of posterior ESAS emission estimates 

Posterior ESAS budget estimates were higher than those of the regression models in the 
Low ESAS budget scenarios, and matched them in the High ESAS budget scenario (Fig. 
20). The regression model budgets in the inversions were 0.1–1.4 Tg CH4 yr-1. Note that this 
deviates slightly from the range reported in Sect. 5.2.3.3 because it was computed with a 
different method. The budgets in Sect. 5.2.3.3 were calculated by summing the budgets of 
ESAS-related auxiliary variables. By contrast, here we summed the emissions from each 
grid cell multiplied by the fraction of the grid cell that falls into the ESAS. This method 
suffers from some “leakage” of terrestrial emissions into the ESAS budget at coastal grid 
cells, which is the reason why the regression model budgets computed for the Low ESAS 
budget scenarios were 0.1 Tg CH4 yr-1, despite featuring no ESAS-related auxiliary variable. 
Thus, posterior budgets and flux rates of the ESAS were slightly overestimated, especially 
at the low end. Since the impact of 0.1 Tg was insignificant for the conclusions of this work, 
and subtracting the terrestrial regression model contribution would result in some negative 
emissions, no correction for coastal grid cells was applied. 
The range of budget estimates of posterior emissions was 0.4–1.5 Tg CH4 yr-1. The posterior 
budget estimate depended not only on the inversion settings, but also on the period for 
which it was calculated (see caption of Fig. 20). This hints at the influence that short events 
can have on the budget. More details on the flux variations over time are presented in Sect. 
5.2.4.5.  
One pair of inversions (apart from the Low ESAS budget scenarios) differed only in the 
inclusion of the Kolyma mouth variable in the regression model. In this example, 
regression model emissions of the ESAS were 0.17 Tg lower when the Kolyma mouth 
variable was included, and the difference between the posterior budget estimates was 0.13 
Tg. 
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Fig. 20: ESAS CH4 budgets estimated based on regression models and posterior fluxes of all 
performed inversions. For each inversion, budgets were calculated for four periods, i.e. 365 days 

starting Sep 1–Dec 1, 2014 in steps of one month, respectively. 

5.2.4.3 ESAS CH4 emission rates 

We computed emission rates to facilitate comparison to other CH4 sources at high northern 
latitudes for the interested reader. Average emission rates and annual budgets differed 
between the Laptev, East Siberian and Chukchi Sea (Fig. 21). In all cases, average Chukchi 
Sea emission rates were lower than East Siberian Sea emission rates. The emission rates 
from the Laptev Sea were mostly between those of the Chukchi and East Siberian Sea in the 
low budget scenarios, and higher than the emission rates from the East Siberian Sea in the 
inversions that yielded higher total budgets. The ranges of average annual flux rates across 
all inversions were 0.5–2.5 mg CH4 m-2 d-1 (Laptev Sea), 0.6–2.1 mg CH4 m-2 d-1 (East 
Siberian Sea) and 0.5–1.5 mg CH4 m-2 d-1 (Chukchi Sea), with shelf-wide averages of 0.5–2.0 
mg CH4 m-2 d-1. 
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Fig. 21: Emission rates of posterior fluxes averaged over settings for atmospheric data selection and 
averaging period (see caption of Fig. 20). The values were ordered from low to high posterior ESAS 

budgets. 

 
Since emissions were not uniformly distributed across the shelf seas (see Sect. 5.2.4.6), we 
also computed the range of ESAS emission rates at the scale of the grid resolution. Average 
annual emission rates of individual grid cells were up to 7.2 mg CH4 m-2 d-1 (Laptev Sea), 
8.1 mg CH4 m-2 d-1 (East Siberian Sea) and 4.6 mg CH4 m-2 d-1 (Chukchi Sea). Peak daily 
emission rates of individual grid cells were up to 31 mg CH4 m-2 d-1 (Laptev Sea), 38 mg 
CH4 m-2 d-1 (East Siberian Sea) and 30 mg CH4 m-2 d-1 (Chukchi Sea). In almost all 
inversions, the maximum emission rates of the Laptev Sea were located in its southern part. 
In the East Siberian Sea, maximum emission rates were located either in the Kolyma mouth 
or at the coast south of the New Siberian Islands. The locations of the emission maxima in 
the Chukchi Sea, which were in almost all cases much lower than those in the Laptev and 
East Siberian Sea, scattered more between the inversions and were in some cases located 
further off the coast than in the other two regions. 

5.2.4.4 Terrestrial emission budgets and rates 

The budgets of terrestrial emissions were 3.2–4.7 Tg CH4 yr-1 depending on the inversion 
scenario. By comparison, the budgets of the process-based wetland models considered for 
the regression models in this study were 0.4–2.0 Tg CH4 yr-1 (WSL: 1.2 Tg), and the budget 
of the lake model bLake4Me was 2.1 Tg CH4 yr-1. Average flux rates were 4.6–6.8 mg CH4 
m-2 d-1. Flux rates for individual pixels were up to 19 mg CH4 m-2 d-1 averaged over one 
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year, and up to 115 mg CH4 m-2 d-1 on individual days. Thus, terrestrial emission estimates 
dominated over ESAS emission estimates.  

5.2.4.5 Seasonal variation of ESAS emissions 

Fig. 22 shows aggregated posterior and regression model emissions from the three ESAS 
seas. The largest variability and deviations of the posterior from the prior emissions were 
present in the East Siberian Sea. Here, the estimated emissions followed a distinct temporal 
pattern partly independently of the regression model: the highest emissions were assigned 
to fall 2014, and considerable emissions occurred well into the ice-covered period, 
exceeding the estimates of the regression models. The lowest emissions were assigned to 
April and May, where emissions from the regression models in which ESAS emissions 
were not modulated by sea ice cover were adjusted to lower values. Compared to fall 2014, 
emissions in fall 2015 followed the regression model more closely and were thus 
considerably lower if the sea ice growth variable was not included. The regression models 
that featured seasonally varying ESAS emissions reproduced aspects of this pattern in the 
East Siberian Sea: the High ESAS budget scenario featured the largest emissions in both fall 
periods and higher emissions in December than in summer, which was due to the sea ice 
growth auxiliary variable that was part of this model. The regression model in which 
coastal emissions were modulated with sea ice cover also resulted in comparatively large 
fall emissions; with both fall and winter emissions adjusted upwards in the posterior 
estimate compared to the regression models. 
In both the Laptev and Chukchi Sea, the seasonal variations of the posterior emission 
estimates closely followed those of the regression model, with the exception of the Low 
ESAS budget scenarios. These results indicate that the seasonality of estimated emissions 
was mainly driven by the results for the East Siberian Sea, to which Ambarchik was most 
sensitive. 
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Fig. 22: Monthly CH4 emissions from the three parts of the ESAS between September 2014 and 
November 2015 for four inversions. The inversions were selected to represent the range of budget 

estimates and the influence of varying the regression model with sea ice cover. 

 
Averaged over the ESAS, the emission rates during high ice cover (defined here as 
December until end of May) were 0.3–1.7 mg CH4 m-2 d-1 depending on the scenario. 
During the period of lowest ice cover (August – September), emissions were 0.8–1.6 mg 
CH4 m-2 d-1. Thus, in scenarios that yielded high budgets, estimated emissions during the 
ice-covered period rivaled those of the period of lowest ice cover (Fig. 23, let panel). 
Average emission during the period of the bulk of sea ice growth (October–November) 
were 0.9–3.8 mg CH4 m-2 d-1 (Fig. 23, right panel) and thus far exceeded those of all other 
periods in many inversion scenarios. During sea ice retreat (June–July), emission rates were 
0.7–1.4 mg CH4 m-2 d-1, slightly smaller than those of the period of lowest ice cover. 
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Fig. 23: Emission rates averaged over the ESAS for different states of sea ice cover. Posterior 
emission estimates are marked with a dot, and connected to regression model estimates via straight 

lines. Left: Low ice cover (August–September) vs. high ice cover (December–May). Right: Months of 
sea ice growth (October–November) and sea ice retreat (June–July). 

 

5.2.4.6 Spatial patterns of posterior ESAS emissions and their deviation 
from the regression model 

Deviations of posterior fluxes from the regression model (i.e. the stochastic flux 
component) reveal shortcomings of the latter. Here, we present spatial patterns of the 
cumulative annual stochastic flux component in the context of the posterior emissions. 
The interpretation of the stochastic component of the non-negativity code has a caveat: in 
the optimization, the regression model is implicitly adjusted. Conceptually, the reason 
behind this is that non-negative fluxes do not follow a Gaussian probability distribution 
(i.e. their probability to be negative is 0), but regression model coefficients do. Thus, the 
stochastic component can be biased, which can cause boundaries between auxiliary 
variables (e.g. northern ESAS boundary in Fig. 25, left middle panel). Thus, we restricted 
the interpretation of the stochastic component to relative flux redistributions within the 
ESAS. 
The stochastic component in the Low ESAS budget scenarios shows the minimum ESAS 
emissions that are required to explain the atmospheric data. In these scenarios, the 
inversions assign the largest ESAS emissions to southern parts of the Laptev and East 
Siberian Seas, forming hot spots close to the observation stations. No such hot spot was 
detected in the Chukchi Sea. There was a seasonal variation in the hot spot distribution: 
when including fall 2015 instead of fall 2014, there were two hot spots, close to Tiksi and 
Ambarchik, respectively. When including fall 2014 instead of fall 2015, other high-emission 
regions showed up at the coast between the former two and in the central part of the East 
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Siberian Sea (compare Fig. 24 with Fig. 25, top left panel). We continue analysis with the 
period Dec 2014 – Nov 2015, since observations were analogous for the period Sep 2014 – 
Aug 2015. A similar hot spot pattern as in the Low ESAS budget scenario was present in 
the scenario with constant ESAS emissions. Here, part of the constant prior flux was 
redistributed to the hot spots of the Low ESAS budget scenario (Fig. 25, middle panels). In 
the High ESAS budget scenario, the spatial pattern of the posterior emissions followed the 
auxiliary variable that described emissions from the shallow ocean. In this scenario, the hot 
spots from the Low ESAS budget scenario appeared to be part of a larger pattern of 
stronger emissions from the shallower parts of the ESAS (compare bottom and top right 
panels of Fig. 25). 
 

Fig. 24: Annual sum of the stochastic flux component of the Low ESAS budget scenario with strict 
atmospheric data selection for the period Sep 2014 – Aug 2015. 
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Fig. 25: Average stochastic flux component (left panels) and posterior emissions (right panels) of 
three inversions (Dec 2014 – Nov 2015). The titles refer to the inversion scenario. Terrestrial 

emissions were masked because including them would have hidden some of the patterns in the ESAS 
emissions. The panels on the left and on the right share one color scale, respectively. 

5.2.4.7 Validation with independent data (SWERUS-C3 expedition) 

Data from the SWERUS-C3 expedition were modeled using regression models and 
posterior emissions. The largest observed CH4 excess over boundary conditions in this 
dataset, which was previously linked to high CH4 concentrations in surface water 
(Thornton et al., 2016b), was reproduced by the Simple Wetland Model (Fig. 26). All ESAS-
related auxiliary variables modeled signals that were not observed, including those that 
were modulated by sea ice cover (Fig. 26).  
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Fig. 26: Data from the SWERUS-C3 expedition modeled by regression models (stacked shaded areas) 
and posterior fluxes from selected inversions. SWERUS-C3 observations were filtered as in the strict 

data selection filter.  

 

5.2.4.8 Ambiguous attribution of atmospheric signals to terrestrial vs. 
oceanic emissions 

Footprints for many observations were sensitive to both terrestrial and oceanic emissions 
(not shown). Therefore, while some atmospheric signals were clearly attributed to either 
land or ocean emissions, others could be explained by either region. For example, 
individual CH4 signals at Ambarchik in fall 2014, as well as persistently high mole fractions 
in December 2014, were explained both by oceanic and terrestrial emissions (Fig. 27, 
middle panel). By contrast, the fraction of signal explained by oceanic emissions was lower 
in early 2015 at this station, as well as in fall and winter 2015. This demonstrates that high 
fall and winter signals at Ambarchik, which were presumably the reason behind large 
posterior emissions from the East Siberian Sea in these periods (cf. Fig. 22), could also be 
attributed to terrestrial emissions. 
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Fig. 27: Modeled atmospheric CH4 mole fractions at Tiksi, Ambarchik and Barrow based on posterior 
emission estimates of the inversion scenario “Coastal flux + Sea ice growth” with relaxed 

atmospheric data selection. 

5.2.5 Probing the robustness of key results with sensitivity studies 

Key results of regression model selection and inversions were the low annual ESAS CH4 
budget in comparison to some literature estimates, the focus of the emissions on coastal 
areas, considerable emissions in fall associated with sea ice growth, and sustained 
emissions during the ice-covered season. We tested their robustness against several 
shortcomings of the model with additional simulations with modified data input. 
Motivation, implementation, and results of these sensitivity studies are presented in the 
following sections. 
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5.2.5.1 Bias correction for boundary conditions 

Motivation 
The boundary conditions overestimated some of the baseline observations at Tiksi (Fig. 17) 
and Barrow (Fig. 19), particularly in winter. Thus, boundary conditions may have had 
negative biases, in which case the cumulative CH4 emissions inside the domain would have 
been underestimated. However, it is not certain that the negative CH4 enhancements 
induced biases in the annual ESAS budget: since the boundary conditions at times 
explained large portions of the variability in the atmospheric data (Fig. 6), they may have 
been influenced by regional CH4 sources that may have been difficult to model by the 
comparatively coarse global inverse model they were based on. Thus, on a seasonal 
timescale, the boundary conditions may be too smooth instead of biased, which would not 
indicate an overall bias. Furthermore, the impact of potential biases may be limited, since 
they occurred mainly when footprints were not influenced by ESAS emissions: at Barrow, 
negative signals occurred mostly when backtrajectories left the domain north of the station 
quickly after release. At Tiksi, they were mostly associated with backtrajectories that left 
quickly through the western domain boundary. Nonetheless, since a key result was that the 
estimated annual ESAS CH4 budget was low compared to some estimates in the literature, 
the possibility of an underestimation due to biased boundary conditions was explored. 
 
Implementation 
The impact of negative CH4 signals was quantified by performing regression model 
selection and inversions with atmospheric data modified with a simple bias correction. 
Since the seasonality of the biases at Tiksi and Barrow were similar, we assumed a 
seasonally varying bias that was consistent throughout the domain. It was estimated by 
fitting a baseline to all atmospheric data used in the optimization. The baseline consisted of 
a linear component and 10 harmonics (Thoning et al., 1989). It was constructed by fitting it 
to the lowest points in the atmospheric data by iteratively fitting it to the data and 
removing the data with the largest deviations from the fit until the result followed the vast 
majority of negative signals (Fig. 28). The baseline was between +1 and -35 ppb, with an 
average of -8.1 ppb. Model selection and inversions were run with one parameter setting: 
relaxed atmospheric data selection, strict boundary condition optimization and 5-day 
backtrajectories (label ds:R bc:S bl:5). A subset of inversion scenarios from the main set of 
inversions was chosen based on regression model selection similarly to the procedure in 
Sect. 5.2.4.1. They were a Low ESAS budget scenario, the High ESAS budget scenario, a 
scenario with coastal emissions and sea ice growth, and a constant ESAS flux scenario. For 
a comparison with data from the SWERUS-C3 campaign, a simple bias correction was 
implemented for this dataset as well, i.e. subtraction of a constant value. 
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Fig. 28: Atmospheric data (relaxed data selection) after subtraction of boundary conditions, and the 
baseline subtracted from the data in the test of the impact of boundary condition biases. 

 
Results 
Key results on the spatiotemporal distribution of the emissions were robust with the 
modified data: emissions from shallow ESAS regions were preferred over those from 
deeper regions, variables modulated by sea ice performed slightly worse than those 
without the modulation, and the sea-ice-growth variable was among most well-scoring 
models with similar budgets assigned to it. The modification had an influence on the 
budgets of terrestrial regions and the ESAS: the range of the annual estimated ESAS budget 
was 0.6–1.8 Tg CH4 yr-1, compared to 0.4–1.5 Tg in the standard inversions, thus increasing 
the upper limit by 0.3 Tg. The budget of terrestrial regions increased to 3.7–6.0 Tg CH4 yr-1, 
compared to 3.4–4.7 Tg in the standard inversions. A comparison with data from the 
SWERUS-C3 campaign yielded similar results as without the bias correction. 

5.2.5.2 Separation of signals of terrestrial and oceanic origin 

Motivation 
Atmospheric observations that were influenced by the ESAS were often also influenced by 
land areas, i.e. footprints rarely covered the ESAS exclusively (not shown). Since retrieved 
ESAS emissions were smaller than those retrieved for the land areas in the domain (Sect. 
5.2.4.3 and Sect. 5.2.4.4), small errors in the terrestrial emissions may have caused large 
errors in the retrieved ESAS emissions. This could have caused the model to assign larger 
emissions to coastal areas of the ESAS than were actually present, und thus overestimate 
the ESAS CH4 budget and explain the dominance of the shallow ocean in the regression 
models and posterior emissions. Furthermore, the cold season emission estimates may 
have been affected by cross-influence: the inversions assigned particularly large emissions 
to the East Siberian Sea in fall. This pattern was not consistently retrieved in the other ESAS 
regions, where the seasonality largely followed the respective regression models. This 
suggests that large fall emissions and their association with sea ice growth were primarily 
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driven by data from Ambarchik. The vast majority of Ambarchik data during this period 
were obtained during southwesterly winds, and the signals from this direction were much 
larger than those obtained during northerly winds (Reum et al., 2018a). This suggests that 
signals assigned to the East Siberian Sea in fall might have originated from terrestrial 
emissions. An example for this situation is given in Fig. 29. 
For these reasons, the robustness of the key results was tested against optimizing for a 
subset of the atmospheric data for which land and ocean areas were more clearly 
separated. 
 

 

Fig. 29: Example of an atmospheric CH4 signal potentially of terrestrial origin associated with an 
oceanic footprint. The large CH4 enhancement over background conditions of almost 200 ppb (top 

left panel) was obtained during wind from southwest (measured on site; top right panel). By 
contrast, the modeled footprint (bottom panel) indicated influence from the ocean in the north. 

 
Implementation 
The atmospheric data (strict data selection) were selected for situations where 80% of the 
footprint covered either land or ocean regions, and where the locally measured wind 
direction matched the selection. Since footprints for data from both Tiksi and Barrow 
almost never covered the ESAS exclusively, the filter was applied only to Ambarchik. The 
valid wind direction window was 90° … 270° for land footprints, and 270° … 90° for ocean 
footprints. About one third of Ambarchik data matched these criteria. With these data, 
regression model selection was performed and a set of inversion scenarios developed. They 
represented a Low ESAS budget, High ESAS budget, coastal emissions, and an ice-cover 
scenario. 
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Results 
In the regression model selection with the footprint filter, the annual posterior emissions 
aggregated over the shelf were 0.3–0.7 Tg CH4 yr-1 depending on the regression model, 
compared to 0.4–1.4 Tg in the standard inversions. The dominance of auxiliary variables 
that attribute emissions to shallow parts of the ESAS over those that attribute emissions to 
deeper parts of the ESAS was similar as in the standard inversions. Regarding temporal 
emission variations, the relative contributions of fall and winter emissions were smaller 
than in the standard inversions (Fig. 30). First, by contrast to the standard inversions, the 
sea ice growth variable was rarely selected and ranked low among the well-scoring 
regression models. Consistent with this change, area-integrated emission rates in fall (0.4–
1.1 mg CH4 m-2 d-1) were, on the high end, on par with those during the period of lowest ice 
cover (0.7–1.1 mg CH4 m-2 d-1), instead of far exceeding them as in the standard inversions. 
Second, emissions during the highest ice cover (December–May) were 0.2–0.8 mg CH4 m-2 
d-1, and thus did not, as in the standard inversions, rival emissions during the period of 
lowest ice cover. Emissions during strongest sea ice growth (June and July) were slightly 
smaller (0.6–0.9 mg CH4 m-2 d-1) than during the period of lowest ice cover (August and 
September), as it was the case in the standard inversions. Unlike in the standard regression 
model selection, the best-scoring regression models featured more ESAS variables 
modulated by sea ice cover than not. The hot spot map by Shakhova et al. (2010a), 
modulated by sea ice cover, was selected in 8% of well-scoring regression models, 
compared to 4 % in the corresponding standard inversion with the same setup (ds:S bc:S 
bl:5). The map was attributed a maximum of 0.17 Tg CH4 yr-1. Posterior terrestrial 
emissions in this setup were also lower than in the standard inversions (2.3–3.5 Tg 
compared to 3.4–4.7 Tg). Unlike in the standard inversions, the large spike in the SWERUS-
C3 data was not reproduced (possibly because the Simple Wetland Model was not 
included in the inversion scenarios, since it ranked low in the regression model selection) 
while, similarly to the standard inversions, ESAS-related variables still modeled signals 
that were not observed. 
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Fig. 30: Monthly CH4 emissions from the three parts of the ESAS between September 2014 and 
November 2015 for the inversions of the sensitivity study for separating land and ocean signals. 

5.2.5.3 Overestimation of terrestrial emissions 

Motivation 
All best-scoring regression models contained simple auxiliary variables for terrestrial 
emissions, which were not restricted to estimates of wetland extent that are used by more 
complex process-based wetland models. These included the constant land flux, the Simple 
Wetland Model and the Zero Curtain Model. This choice by the model, while fitting the 
atmospheric data best, invites the question whether ESAS emissions were underestimated 
because the spatial extent and, in the case of the constant land flux, cold season emissions 
from the land regions in the domain were overestimated. One inversion was performed in 
which one of these wide-extent variables (Simple Wetland Model) was not included, 
because this choice was compatible with the model selection results for one setting 
(scenario “Coastal flux (no SWM)”). This inversion yielded only minor differences in 
budgets and flux rates compared to including the Simple Wetland Model (scenario 
“Coastal flux”, see Fig. 20 and Fig. 21). However, since the constant land flux and the Zero 
Curtain Model were included, this setup did not exclude an effect of wide-extent terrestrial 
variables on the ESAS budget. 
 
Implementation 
An inversion was performed in which the regression model only featured process-based 
estimates for terrestrial CH4 emissions. For this setup, the wetland model LPJ-WSL was 
chosen because it was the most successful one among the wetland models considered in 

Laptev Sea

East Siberian Sea

Chukchi Sea

Oct 2014
Jan 2015

Apr 2015
Jul 2015

Oct 2015

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04CH
4 

em
iss

io
ns

 [T
g]

Regression model
Coastal flux (L/O:sep)

Coastal flux (sea
ice cover) (L/O:sep)

High budget (L/O:sep)

Low budget (L/O:sep)

Flux
Posterior

Regression model



82  

 

this study. Furthermore, the lake emission model bLake4Me was added. Although it did 
not rank high among the well-scoring regression models, the fact that the simple models 
ranked high suggests that LPJ-WSL underestimates the emission area in regions that the 
station network was sensitive to. Therefore, a regression model that featured both wetland 
and lake emissions was considered more realistic. For ESAS emissions, only exp-10m was 
used as auxiliary variable. Sea ice growth was omitted so as to not bias the model towards 
attributing fall emissions to the ESAS, since the Zero Curtain Model, as the only variable 
that specifically described terrestrial fall emissions, was not included in the setup either. 
Results from this inversion were compared to the scenario “Coastal flux”, which featured 
all of the wide-extent terrestrial variables (constant land flux, Simple Wetland Model, Zero 
Curtain Model) and LPJ-WSL for terrestrial emissions, and only the coastal variable exp-
10m for ESAS emissions. 
 
Results 
In the inversion with wide-area terrestrial auxiliary variables, the posterior terrestrial 
emission budget was 3.5 Tg CH4 yr-1, whereas in the inversion with only process-based 
terrestrial auxiliary variables, it was 1.7 Tg CH4 yr-1. Yet, maximum terrestrial emission 
rates on the scale of individual grid cells were similar as in the standard inversions 
(maximum annual average: 20 CH4 m-2 d-1, maximum individual day: 106 mg CH4 m-2 d-1). 
Emissions from the ESAS increased from 0.9 Tg CH4 yr-1 in the former setup to 1.1 Tg CH4 
yr-1 in the latter. Thus, although excluding wide-area variables from the terrestrial emission 
model reduced the terrestrial budget by 1.8 Tg, it increased the estimate for ESAS 
emissions only by 0.2 Tg. Therefore, the estimated ESAS emission budget was not strongly 
affected by potentially overestimated terrestrial emissions in the domain. 
The fit to SWERUS-C3 data was only slightly improved due to the lower terrestrial 
contributions to the signal. 

5.2.5.4 Shift in ERA-Interim variables 

Due to an oversight in input data preprocessing, ERA-Interim variables were shifted to the 
south and east by half their original resolution of 0.75°. Thus, in our domain the spatial 
error in these variables was about 45 km primarily in north-south direction. These variables 
were used as the basis for several auxiliary variables: gas transfer velocity, Simple Wetland 
Model and Zero Curtain Model. The preprocessing error was corrected and its impact 
tested. This may be viewed as a sensitivity test for potential bias in the localization of data 
grids and horizontal biases in footprint areas. First, the impact on modeled atmospheric 
mole fractions was tested by comparing modeled signals based on a forward run of the 
variables with the transport model. Correlations of modeled atmospheric signals were 
above 0.97 for all variables, indicating the difference between the corrected and 
uncorrected variables was small. Next, model selection results based on the corrected and 
uncorrected auxiliary variables were compared for one parameter set (ds:S bc:S bl:5). The 
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comparison of model selection results indicated that there were only minor impacts on all 
key results. I.e. the spatial and temporal distribution of ESAS emissions, the ranking of all 
auxiliary variables (affected and unaffected by the error), budgets attributed to individual 
variables and the ESAS budget range were barely changed. This confirms that our 
modeling framework was robust against potential biases in the localization of flux controls 
and or horizontal shifts in footprint position, as long as these shifts are small compared to 
the overall extension of the model domain. Since the adjustment of ERA-Interim variables 
was done at a late stage of this work, extensive sets of results had already been produced 
based on the former, uncorrected input data version. Since our experiments with model 
selection as described above yielded only minimal effects of incorporating the shifted ERA-
interim variables, further inversions with the corrected variables were not performed and 
all results shown herein are still based on the uncorrected data. However, the previous 
experience with the model, gained through analyzing the main results and sensitivity tests, 
indicated that differences of key results like the upper bound of the ESAS budget were 
typically small between model selection and inversion results. Therefore, we are confident 
that this oversight did not affect the conclusions of this work. 

5.3 Discussion 

5.3.1 Influence of model parameters on results 

5.3.1.1 Covariance parameters 

The large scatter of covariance parameters estimated using RML (Fig. 11) was previously 
interpreted as low sensitivity of atmospheric data to these parameters (Miller et al., 2016). 
The sensitivity of the results (budget and spatiotemporal distribution of ESAS CH4 
emissions) on covariance parameters was investigated only in narrow limits in our study, 
by using the different sets of covariance parameters obtained for strict and relaxed 
atmospheric data selection, respectively. Thus, uncertainties in covariance parameters were 
not fully explored. For example, the lower bound of the ESAS CH4 budget was determined 
by emission hot spots in the Low ESAS budget scenario whose spatial extent was likely 
determined by the correlation length. However, in an early stage of this work, very 
different covariance parameters were estimated because they were based on optimizing for 
hourly data instead of daily averages. In particular, correlation times were much shorter (2 
days compared to 50 days) and model-data mismatches much lower (3 ppb compared to 13 
… 17 ppb). This setup was abandoned in favor of daytime averages partly because these 
covariance parameters indicated overfitting of the atmospheric data. Despite the 
differences in the model settings, ESAS budgets in these optimizations were similar. Thus, 
although the uncertainty due to covariance parameters was not fully explored, at least the 
sensitivity of the annual budget to uncertainties in covariance parameters was likely small. 
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5.3.1.2 Atmospheric data selection 

Regression model selection and inversions were performed with both strict and relaxed 
atmospheric data selection. Key results were independent of this setting, i.e. the spatial 
distribution of retrieved emissions and the results related to sea ice were consistent. Only 
with relaxed atmospheric data selection was the Kolyma mouth variable included in the 
best-scoring regression models. Since the Kolyma mouth variable attributed highly 
localized fluxes to the close vicinity of one of the stations used in the optimization 
(Ambarchik), this result may reflect that relaxed atmospheric data selection included more 
observations influenced by sources in the near field. Relaxed atmospheric data selection 
included larger signals into the optimization, which explains why regression model budget 
estimates were largest with this setting. However, including the Kolyma mouth variable 
countered the influence of these larger signals on the budget: it attributed atmospheric 
signals at Ambarchik to a source in the near field that was negligible on the scale of the 
ESAS, replacing emissions from larger patterns and consequently reducing the budget. 
This demonstrates the sensitivity of the inverse model to processes in the near field, and 
highlights both the need for realistic prior emission patterns in the regression model, and 
the importance of resolving the processes that affect the atmospheric data in order to obtain 
unbiased results. 

5.3.1.3 Boundary conditions 

A key factor in the performance of inverse models is the accuracy of boundary conditions. 
Therefore, we included two sets of boundary conditions in the analyses; both based on a 
global atmospheric transport model and optimized CH4 emissions. The difference between 
the two sets was that for one the influence of the atmospheric data on the global 
optimization was reduced, and it therefore followed the prior emissions more closely. The 
idea behind this setting was that it would be less sensitive to the atmospheric data, which 
may not be realistically modeled by the coarse global model (it mitigated negative 
emissions in the global optimization). This may imply larger signals attributed to the inside 
of the domain. However, in the regression model selection, the parameter set with relaxed 
boundary condition optimization yielded only small differences to the other parameter 
sets. The relaxed boundary conditions yielded, only among the best-scoring regression 
models, slightly elevated lower boundaries for and averages of the ESAS budget compared 
to other settings. Since the setting influenced none of the key results (the range of ESAS 
budget and the spatiotemporal distribution of the emissions), relaxed boundary condition 
optimization was omitted in the inversions. 
Both sets of boundary conditions may have exhibited seasonally varying biases. A 
sensitivity test with a simple bias correction (Sect. 5.2.5.1) resulted in a small increase of the 
upper limit of the ESAS budget (0.3 Tg CH4 yr-1), but the results on the spatiotemporal 
distribution of ESAS emissions were not affected by the modification. We do not exclude 
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that a more thorough investigation of boundary condition biases may reveal additional 
sensitivities, but the key results were fairly robust against the investigated uncertainties 
and biases in the boundary conditions, which covered both synoptic and seasonal scales.  

5.3.1.4 Backtrajectory length 

Fluxes were optimized based on two settings for the backtrajectory lengths, i.e. 5 and 15 
days. Regression models obtained with the longer backtrajectory length of 15 days tended 
to yield slightly smaller prior ESAS budgets (average 0.06 Tg), and more models with no 
ESAS-related auxiliary variables (or only the Kolyma mouth variable) were among the 
well-scoring models with this setting. Otherwise, spatiotemporal ESAS emission patterns 
were consistent between the short and long backtrajectories. Similarly, average terrestrial 
budgets were smaller with the longer backtrajectories (average 0.13 Tg). These results may 
indicate a bias in the footprints that accumulated over time or different weighting of 
auxiliary variables (some budgets associated to individual variables were larger with 15-
day backtrajectories). However, the observation was not explored further. Instead, both 
sets of backtrajectories were included in the estimation of the ESAS budget as plausible 
implementations of the transport by performing inversions for Low ESAS budget scenarios 
with backtrajectories of 15 days, and the High ESAS budget scenarios with 5 days. 

5.3.1.5 Regression model 

The regression model had the largest impact on the budget and spatiotemporal distribution 
of ESAS emissions among the considered parameters. Individual results are discussed in 
subsequent sections. 

5.3.2 Spatial distribution of ESAS emissions  

Regression model selection and inversions assigned the largest ESAS emissions to shallow 
parts of the ESAS. In Sect. 5.3.2.1, the implications of these results for the ESAS CH4 cycle 
are discussed. However, the result may also be explained by limitations of the data 
coverage and model, which is discussed in Sect. 5.3.2.2. 

5.3.2.1 Possible process-based explanations of spatial emission patterns 

Larger CH4 emissions to the atmosphere from shallow parts of the ESAS compared to 
deeper parts of the ESAS suggest that either larger sources to the water column were 
present there, e.g. due to permafrost degradation, hydrate availability (Sect. 2.6.2) or 
possibly input of terrestrial carbon (Sect. 2.1.1), or that CH4 released from the seafloor in 
deeper parts of the ESAS could be trapped in the water column (Thornton et al., 2016b) due 
to the pycnocline and dissolution of bubble plumes, and subsequent microbial oxidation. 
Retrieved emission hot spots in the Low ESAS budget scenarios may be explained by 
unique local conditions, e.g. dissolved CH4 carried by the Kolyma river (Shakhova and 
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Semiletov, 2007) or warming of the seafloor e.g. by the Lena river (Semiletov et al., 2005). 
Shallow ocean variables assigned lower emission rates to the Chukchi Sea compared to 
Laptev and East Siberian Seas, and may therefore also imply differences between those 
regions other than ocean depth or permafrost and hydrate availability like marine 
biogeochemistry (Sect. 2.1.1). 

5.3.2.2 Limitations 

Uneven sensitivity of the atmospheric observation network 
It was not investigated whether the dominance of shallow ESAS regions or non-detection 
of other spatial emission patterns like the hot spot map by Shakhova et al. (2010a) was a 
result of a lack of sensitivity of the atmospheric observations to these patterns. In 
particular, hot spots identified in the inversions without ESAS variables in the regression 
model were close to the stations Ambarchik and Tiksi, respectively. Thus, they may be the 
result of the large sensitivity of the stations to their vicinity. By contrast, deeper parts of the 
ESAS were comparatively scarcely sampled (Fig. 10), and emissions from these areas may 
thus have been undetected. In the inversions with constant prior emissions from the ESAS, 
emissions were partly redistributed towards the coast. Although this analysis does not 
replace better sampling, it suggests that the preference of coastal emissions was not an 
artifact of the sensitivity of the atmospheric observation network. 
 
Cross-influence of terrestrial emissions on retrieved ESAS emission patterns 
As explained in detail in Sect. 5.2.5.2, estimated coastal ESAS emissions may have been 
influenced by terrestrial emissions, which were estimated to be larger than ESAS emissions, 
due to the ambiguity of atmospheric transport. The dominance of shallow ocean variables 
was robust against removing ambiguous data from the Ambarchik record (Sect. 5.2.5.2), 
suggesting that it may not be the result of cross-influence from terrestrial emissions. 
However, this sensitivity test did not provide conclusive evidence against the cross-
influence hypothesis, because ambiguous data from Tiksi and Barrow were not removed 
due to a shortage of data from these stations that dominantly sampled the ESAS, and 
because transport model accuracy was not investigated. Another argument against the 
cross-influence hypothesis is that the models that fit the atmospheric data best were those 
that featured an auxiliary variable for oceanic emissions, suggesting that terrestrial 
emissions alone did not explain the atmospheric data. Furthermore, Variance Inflation 
Factors did not indicate collinearity, suggesting that the model was able to distinguish 
between oceanic and terrestrial emissions. Overall, the emission pattern of dominant 
emissions from shallow waters appeared robust, but confusion with terrestrial emissions 
was not ruled out conclusively as the reason behind the pattern. 
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5.3.3 Cold season emissions and the role of sea ice  

In fall, estimated ESAS CH4 emissions were larger than was predicted by regression models 
and higher than during other times of the year in many inversion scenarios. The large 
emissions were linked to sea ice growth. In the period of highest ice cover, the observations 
were compatible with a wide range of emission estimates, between the lowest during the 
study period to rivaling those of the lowest ice cover in summer. During sea ice retreat, no 
outstanding emission spike was detected on a monthly timescale. The implications of these 
results for the controls of emission processes related to sea ice are discussed here. As was 
the case with the spatial distribution of the emissions, limitations of the model and the 
atmospheric observation network were important for the interpretation of these results and 
are discussed subsequently. 

5.3.3.1 Possible process-based explanations temporal emission patterns 

Large CH4 emissions were modeled in fall in particular in the East Siberian Sea, far 
exceeding emissions in summer and linked to the sea ice growth auxiliary variable. This 
link suggests considerable CH4 emissions due to mixing of the water column and/or brine 
rejection during sea ice formation. Although gas transfer velocity and thus wind speed was 
not linked to the high fall emissions by the model, they nonetheless roughly fit the 
temporal pattern (Fig. B.1) and were, due to limitations of all auxiliary variables, not ruled 
out as a potential control of the large fall emissions. 
Modeled winter emissions were larger than was suggested by regression models that 
modulated ESAS emissions with sea ice cover, which suggests the presence of CH4 
emissions through areas of open water in winter. This has been observed in the central 
Arctic ocean before (Kort et al., 2012) and suggested for the ESAS as well (Shakhova et al., 
2015). Emissions in winter may be enhanced by brine rejection during refreezing of leads, 
analogous to sea ice growth in fall. Strongly enhanced emission rates compared to the open 
ocean would be necessary to explain the high area-average emission rates during this 
period, since the smaller emission area would have to be balanced by the emission rate. 
Given literature estimates on enhanced air-sea gas transfer in openings in sea ice cover 
(Sect. 2.4), this may be possible. In April and May, estimated emissions were lower and in 
some inversion scenarios close to zero for all regions of the shelf. This may be explained if 
the cumulative open water area that the atmospheric observation network is sensitive to 
was smaller during this period, and/or refreezing ceased (total Arctic sea ice cover already 
decreased during this period). Seasonal patterns of lead area fraction may be compatible 
with this hypothesis. The seasonality of lead area fraction in the Beaufort Sea would fit (Fig. 
1c in Wang et al., 2016). Actual conditions in the ESAS, in particular considering the spatial 
distribution of posterior emissions, were not investigated. Therefore, this hypothesis 
remains speculative. Overall, the description of cold season emissions from the ESAS may 
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be improved by including auxiliary variables that describe the area of and ice production in 
leads and polynyas in the regression model. 
The retreat of sea ice was not identified as a pattern correlating with considerable CH4 
emissions, and no outstanding spike of emissions during this period was detected in 
optimized fluxes either. Thus, the release of CH4 that may have accumulated under (or in) 
ice was limited. This result suggests that accumulation below and in sea ice was limited, 
that release of large amounts of CH4 was prevented by increased stratification due to the 
melt water layer (Damm et al., 2015a; Kitidis et al., 2010), or both. Limited accumulation is 
compatible with our result of sustained CH4 emissions in winter, which may be attributed 
to fractures in the ice cover. Accumulation may also be limited due to microbial 
consumption of trapped CH4 (compare e.g. Li et al., 2017) and under-ice lateral transport to 
other parts of the Arctic Ocean (Damm et al., 2018; Shakhova et al., 2015). 

5.3.3.2 Limitations 

The high ESAS emissions retrieved for fall and associated with sea ice growth were 
sensitive to data selection. In the sensitivity study with data filtered for a clear separation 
of land- and ocean-influenced signals at Ambarchik, the detection of the sea ice growth 
variable vanished, and shelf-wide integrated fall emission rates did not exceed those of 
summer (Sect. 5.2.5.2). Thus, this sensitivity study suggests that strong atmospheric signals 
in fall at Ambarchik that were attributed to the East Siberian Sea may have been of 
terrestrial origin instead (possibly from the near field not resolved by the model). Thus, 
brine rejection and subsequent water column mixing in fall may have played a 
considerably less important role than inferred based on the “standard” atmospheric data 
selection criteria. This highlights the importance of selecting atmospheric data for transport 
situations that can be modeled reliably in inverse modeling studies. 
The wide range of emission estimates for winter emissions indicates dependence on the 
prior and thus low sensitivity of the atmospheric data to such emissions. The result was 
partly influenced by the large emissions estimated for fall 2014, but winter emissions were 
also retrieved in the sensitivity study for confusion of land and ocean fluxes, where this fall 
signal was removed (Sect. 5.2.5.2). In general, winter results may be less accurate than 
summer results, since the frequent temperature inversions during this period are difficult 
to capture by atmospheric transport models (Kilpeläinen et al., 2012) and may cause 
overestimation of emissions (John Henderson, personal communication). Large CH4 
enhancements over background conditions were recorded at Ambarchik throughout the 
winter (Fig. 6). Although the data were filtered for difficult transport situations like 
temperature inversions and low wind speeds, influence by the abovementioned problems 
was not excluded. To summarize, there may be considerable CH4 emissions from the ESAS 
during the ice-covered period, but the result might have been influenced by model 
limitations. 
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The fact that the auxiliary variable that described sea ice retreat was not identified as an 
emission pattern may have had to do with shortcomings of the variable (Sect. 5.1.7.1). 
Nonetheless, posterior emission estimates also did not indicate outstanding emissions 
during this period; unlike it was the case with fall emissions. Thus, CH4 emissions due to 
sea ice melt appeared to be limited. 

5.3.4 No direct detection of link between CH4 emissions and wind 
speed  

Auxiliary variables that linked emissions to wind speed (gas transfer velocity and 
occurrence of storms) were not detected as dominant CH4 emission patterns. The auxiliary 
variables were based on daily average wind speeds and thus represented gas exchange at 
the air-sea interface. However, another wind effect is mixing of the water column, and this 
would likely be better represented by wind speed averages over longer periods (Markus 
Janout, personal communication). On the other hand, the effect of wind speed may indeed 
be limited, as the depth of mixing due to typical wind speeds in the ESAS may be small 
(Thornton et al., 2016b). The effects of wind speed on CH4 emissions could have been 
masked by other variability. In particular, the gas transfer velocity variable had its largest 
values in the Chukchi Sea (Fig. B.1). This area was consistently retrieved as a small emitter 
compared to other parts of the ESAS. This might be related to smaller seafloor emissions 
from this area. Modifying wind speed- related auxiliary variables accordingly may yet 
make an influence of wind speed on CH4 emissions from the ESAS detectable through 
regression model selection. 

5.3.5 Heterogeneity of ESAS CH4 emissions 

Posterior emission estimates varied significantly in space and time. Annual average flux 
rates on the grid scale (32 km × 32 km) were up to 5 times the maximum estimate of the 
annual ESAS-wide average flux rate (9.2 vs. 1.9 mg CH4 m-2 d-1). Flux rates on individual 
days on grid scale were up to 20 times the ESAS-wide average (37 mg CH4 m-2 d-1). These 
numbers depend on the covariance parameters, i.e. shorter correlation lengths and times 
would result in more localized and shorter emission spikes with higher emission rates. 
Thus, these numbers do not cover localized, short emission events that can occur in the 
ESAS. Rather, the results demonstrate that the atmospheric data are compatible with a 
large heterogeneity of ESAS CH4 emissions on the scales of the correlation lengths and 
times in this study, i.e. on the order of 400–500 km and 50–60 days. 

5.3.6 Kolyma mouth 

The hypothesis of elevated CH4 emissions from the Kolyma mouth region compared to 
other parts of the ESAS fit the general flux pattern of the Low ESAS budget and Constant 
ESAS emissions scenarios, in which posterior emissions were elevated compared to the 
regression model in the area. However, the emissions may have been part of the larger 
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pattern that ESAS emissions were attributed primarily to shallow waters and not 
exceptionally high compared to other coastal regions. As part of regression models, the 
variable was assigned a negligible budget (< 0.05 Tg CH4 yr-1) despite the large impact it 
had on modeled atmospheric signals at Ambarchik when selected (Sect. 5.2.3.5). This had a 
small impact on ESAS budget calculations (see 5.3.8). 
As the area was part of the coastal emission flux pattern, elevated emissions attributed to 
the Kolyma mouth delta may have been confounded by signals that originated from 
adjacent land areas (cf. Sect. 5.3.2.2). 

5.3.7 Evaluation of comparison with SWERUS data 

Modeling SWERUS-C3 data supported the Low ESAS budget scenarios, since ESAS-related 
auxiliary variables overestimated the atmospheric signals observed during this campaign. 
However, the largest CH4 excess over boundary conditions, which was convincingly linked 
to a local oceanic CH4 seep by Thornton et al. (2016b), was attributed to the Simple Wetland 
Model, and not reproduced when this variable was not included in the regression model. 
This demonstrates that individual local CH4 sources far from the stations were hard to 
capture for the inverse model. It also suggests that the Simple Wetland Model 
overestimated terrestrial CH4 emissions. 
SWERUS-C3 data were more sensitive to areas around the New Siberian Islands than other 
coastal regions. Thus, the results suggest that the ESAS-related auxiliary variables, which 
produced atmospheric signals not observed by SWERUS-C3, are not valid in this area. 
However, the explanatory power of results based on the SWERUS-C3 dataset is limited: the 
data set was short, with only 19 daily averages over a period of 1 month of observations 
passing quality control. Modeled atmospheric data used in the optimization also exhibited 
considerable biases on this timescale (Fig. 27). In addition, SWERUS-C3 covered the period 
July 15–August 11, 2014, but atmospheric data for optimization were used only from 
August 1, 2014. This start date was chosen to keep the atmospheric network consistent over 
the inversion period (the Ambarchik record started on Aug 9, 2014). Therefore, posterior 
emissions used to model SWERUS-C3 data may be less accurate than during the rest of the 
inversion period. To summarize, the model-data mismatch with SWERUS-C3 data 
supports the Low ESAS budget scenario, but also reveals that the coastal atmospheric 
observation network lacks sensitivity to individual local emission hot spots in off-shore 
parts of the ESAS. 

5.3.8 ESAS CH4 budget range and its uncertainties 

Posterior budget estimates (0.4–1.5 Tg CH4 yr-1) were on the lower end of literature 
estimates. While the exact magnitude of posterior ESAS CH4 budget estimates varied with 
the regression model and through various sensitivity studies, the main conclusion that 
ESAS emissions were low remained robust. In the following paragraphs, we evaluate the 
bounds of the budget range and discuss factors that may alter the result. 
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The High ESAS budget scenario (1.5 Tg CH4 yr-1) featured a shallow ocean variable (exp-
20m) and the sea ice growth variable, the latter of which was assigned up to 0.5 Tg CH4 yr-1 
in the well-scoring regression models. This variable did not distinguish between shallow 
and deep parts of the ESAS. Since emissions appeared to be higher in shallower parts of the 
ESAS (Sect. 5.3.2), this variable may fit the atmospheric data better if it were modulated by 
ocean depth. Also note that the success of the sea ice growth variable was driven by signals 
observed at one station (Ambarchik) and may have been the result of confusion with 
terrestrial (near field) signals (discussed below). 
ESAS CH4 budget estimates may have been influenced by potential biases in the boundary 
conditions, which overestimated some of the baseline observations at Tiksi (Fig. 17) and 
Barrow (Fig. 19). A sensitivity study with a simple bias correction yielded posterior ESAS 
budgets of up to 1.8 Tg CH4 yr-1, compared to 1.5 Tg in the standard inversions (Sect. 
5.2.5.1). However, it is not certain that all negative CH4 enhancements indicated biased 
boundary conditions: the large variability of the boundary conditions suggests that they 
may have been influenced by regional CH4 sources that are difficult to represent with the 
comparatively coarse global inverse model that was used for inferring the boundary 
conditions (Fig. 6). Thus, the boundary conditions may be smoothed instead of biased. The 
0.3 Tg increase in the ESAS budget estimate yielded by the sensitivity study on the simple 
bias correction was used as the order of magnitude of the uncertainty due to boundary 
condition biases. 
In the Low ESAS budget scenarios the regression model assigned zero emissions to the 
ESAS, or only the emissions of the Kolyma mouth variable that were negligible compared 
to the range of shelf-wide budget estimates. Thus, posterior emissions in these scenarios 
reflected the lowest ESAS emissions that were necessary to explain the atmospheric data, 
i.e. it attributed emissions to areas the observations were sensitive to, and no 
“extrapolation” of these signals via the regression model took place. Posterior emissions in 
the Low ESAS budget scenarios were 0.4–0.6 Tg CH4 yr-1 depending on whether the 
averaging period included fall 2014. The Kolyma mouth variable did not influence the 
lower bound of the ESAS budget estimates. Posterior emissions in the Low ESAS budget 
scenarios could have been part of the larger pattern that ESAS emissions in shallow waters 
dominated. In this and other inversions with prior ESAS budgets of less than about 1 Tg 
CH4 yr-1, posterior emissions were also larger than prior emissions, but the difference 
became smaller with larger prior estimates. This indicates that the flux patterns used in 
these scenarios, including the lower bound of our budget estimates, underestimated the 
total emissions as seen by the atmospheric data. 
We speculate that emissions attributed to the ESAS might have been confounded with 
terrestrial emissions in the domain (Sect. 5.2.5.2). This applies in particular to fall emissions 
associated with sea ice growth (Sect. 5.3.3.2), but was also not conclusively excluded as a 
reason behind the model’s preference for coastal emissions (Sect. 5.3.2.2). Thus, the upper 
bound of the ESAS CH4 budget may be much smaller than was estimated here. The budget 
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range in the sensitivity study designed to test this was 0.3–0.7 Tg CH4 yr-1 (Sect. 5.2.5.2), 
reducing the upper bound by 0.8 Tg compared to the standard setup. Since the terrestrial 
budget was also lower in this test, the influence might be from the near field of Ambarchik, 
provided the atmospheric transport model captured the large-scale circulation sufficiently 
well. Thus, the results of this sensitivity study supported a lower range for the ESAS CH4 
budget. 
A possible overestimation of terrestrial emissions only had a small effect on ESAS emission 
estimates. A sensitivity test with only process-based terrestrial emission models yielded a 
decrease of 1.8 Tg CH4 yr-1 of the terrestrial budget, but only a 0.2 Tg increase of the ESAS 
budget. The reason may be that process-based models locate large emissions close to the 
atmospheric stations and at some coastal areas. Therefore, the budget reduction in this 
sensitivity test may have stemmed from inland regions to which the atmospheric 
observations were not sensitive and that were unlikely to be mixed up with signals that 
originated from the ocean. The results of this test indicate that the ESAS budget was not 
considerably underestimated due to a possible overestimation of the terrestrial emissions. 
Assigning emissions to the Kolyma mouth partly explained atmospheric signals at 
Ambarchik and therefore reduced ESAS regression model budget estimates on the high 
end by 0.24 Tg CH4 yr-1 in the case of relaxed data selection (average). One pair of 
inversions was performed that differed only in the inclusion of the Kolyma mouth variable 
in the regression model. In this example, regression model budgets were 0.17 Tg smaller 
when including the Kolyma mouth variable, and posterior emissions were 0.13 Tg smaller. 
Thus, the effect of the variable on the budget was reduced in the posterior estimate. Based 
on these numbers, we estimate that the reduction of the upper bound of the ESAS budget 
estimate when the Kolyma mouth variable was included was on the order of 0.2 Tg CH4. 
As concluded in Sect. 5.3.1.2, this highlights the influence that near field emissions can have 
on inversion results and the need for realistic CH4 emission patterns for the regression 
model. 
A comparison with data from the SWERUS-C3 campaign, which covered central parts of 
the shelf, revealed that local CH4 sources far offshore might have been difficult to capture 
by the coastal atmospheric observation network. Although there were indications that 
widespread large emissions further offshore compared to coastal emissions were not 
compatible with the atmospheric data (Sect. 5.3.2), the ability of the observations to 
constrain emissions far offshore was likely limited (Fig. 10). 
As discussed above, the estimated ESAS budget was sensitive to the regression model. 
Given the moderate agreement between regression models and atmospheric data (Sect. 
5.2.3.5), the considered regression models may have been incomplete. More realistic 
regression models could alter the range of budget estimates. 
To summarize, although the estimated budget range was sensitive to several factors, none 
of the quantified influences altered the main conclusion that the budget was low compared 
to literature estimates. 
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5.4 Summary 
In this section, the results of the study presented in this chapter are summarized, along 
with possible interpretations and a summary of the limitations. A summary of which 
estimates and hypotheses in the literature are supported by the main results can be found 
in the conclusions of the thesis (Chapter 6). 
In this chapter, CH4 emissions from the East Siberian Arctic Shelf to the atmosphere were 
estimated. The study was based on a geostatistical inverse model of atmospheric CH4 
transport and atmospheric CH4 mole fractions measured continuously at three sites located 
at the coast of the shelf (Ambarchik, Barrow and Tiksi) for the period July 2014 – December 
2015. 
Key results on the shelf-wide spatiotemporal distribution of ESAS CH4 emissions, possible 
interpretations as well as the most important limitations of their validity, were as follows: 

1. Estimated annual CH4 emissions from the ESAS to the atmosphere were 0.4–1.5 Tg 
CH4 yr-1, and thus on the low end of literature estimates (Table 1). The range 
depended primarily on the regression model.  
The range of ESAS budgets as cited above may be over- or underestimated due to 
potential systematic biases in input data. Factors that may have contributed to an 
underestimation of the upper limit of the budget were biases in boundary 
conditions (+0.3 Tg) and overestimation of terrestrial emissions (+0.2 Tg). 
Additional factors of unknown quantity include incomplete regression models and 
a lack of sensitivity of the coastal observation network to far offshore parts of the 
ESAS. Factors that may have contributed to an overestimation of the budget were 
confusion of ESAS signals with those from terrestrial (possibly near field) emissions 
(-0.8 Tg) and a potential local influence of emissions from the Kolyma mouth on 
data from Ambarchik (-0.2 Tg). The latter may also be viewed as an indication for 
the general sensitivity of the results on emissions in the near field of the 
observation network. 
The combined effects of these factors on the budget were not computed and may be 
different than their sum. 
To summarize, several factors might have contributed to an over- or 
underestimation of the budget, but none indicated an alteration of the main 
conclusion that the estimated budget was on the low end of those in the literature.  

2. The atmospheric observation network attributed ESAS CH4 emissions primarily to 
shallow waters. Deeper, further off-shore regions were not detected as dominant 
emitters. This result indicates that CH4 emissions from the seafloor are trapped in 
the water column in deeper waters, and/or that emissions from shallow waters are 
higher. The pattern also correlated with the result that Chukchi Sea emissions were 
in general estimated to be smaller than those from the Laptev and East Siberian 
Seas, which may also be related to marine biogeochemistry. We speculate that the 
result may have been influenced by confusion of ESAS signals close to the shore 
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with terrestrial emissions, and by a lack of sensitivity to deeper parts of the ESAS. 
There were indications that the result was robust against both errors (see Sect. 
5.2.5.2 and Sect. 5.2.4.6, respectively), but the conducted analyses did not 
conclusively exclude them.  

3. The highest CH4 emissions from the ESAS may have occurred during fall. This 
would indicate an important role of sea ice formation on CH4 release to the 
atmosphere via brine rejection and subsequent mixing of the water column, and/or 
increased wind speeds during this period. However, the outstanding fall signal 
may have been confounded by terrestrial signals, possibly from the near field 
around Ambarchik, as it was not retrieved in a sensitivity study designed to test for 
this possibility (Sect. 5.2.5.2).  

4. During the ice-covered period, the atmospheric data were compatible with a wide 
range of emission rates, on the low end lower than during all other times of the 
year, and on the high end rivaling those from the period of lowest ice cover. 
Emissions during this period may be related to areas of open water in the ice cover, 
i.e. leads and polynyas. In these open water areas, considerably elevated rates of 
gas exchange compared to open water have been reported in the literature and 
linked to water column mixing due to cooling and refreezing. However, the wide 
range of estimates indicates limited sensitivity of the atmospheric data to winter 
emissions and dependence on the regression model. Furthermore, we speculate 
that the atmospheric transport model may be less accurate in winter due to 
difficult-to-model transport situations like temperature inversions, which may 
cause large atmospheric CH4 signals to build up and be erroneously interpreted as 
large emissions by the model. To summarize, while the results indicated potentially 
considerable emissions during the ice-covered period, their magnitude was both 
less well constrained than during summer and possibly biased towards higher 
values. 

5. Emissions during ice breakup were limited. This result could indicate limited 
accumulation of CH4 under the ice, and/or that the melt water layer inhibited 
release to the atmosphere. Sustained emissions during the ice-covered period, 
which were compatible with the atmospheric data (see above), are one factor that 
could explain limited accumulation. Limited sensitivity of the atmospheric data as 
a factor contributing to this result was not investigated.  

 
The uncertainties common to several key results were a potential confusion between 
atmospheric terrestrial and oceanic emissions, as well as limited sensitivity of the 
atmospheric observation network and difficult-to-model transport situations. In addition, 
not detecting a direct link between a process and CH4 emissions does not necessarily imply 
that the process was not relevant, but may also be due to shortcomings of the auxiliary 
variables, lack of sensitivity of the atmospheric network, or masking by other variability, as 
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using BIC for the evaluation of regression models put a strong focus on first order controls. 
Uncertainties of the results on fall and winter emissions highlight the need to investigate 
transport model accuracy and select atmospheric data for transport situations that can be 
reliably modeled.  
 
Besides the main results on shelf-wide emission patterns, a number of additional results 
were obtained: 

1. Emission estimates had a large spatiotemporal variability. This may make 
upscaling of local measurements difficult, and may contribute to differences 
between estimates of the annual ESAS CH4 budget in the literature. 

2. The Kolyma mouth may be one of the regions of enhanced CH4 emissions to the 
atmosphere in the ESAS, but may also be part of the larger pattern that emissions in 
shallow waters of the ESAS dominate. 

3. The hotspot map by Shakhova et al. (2010a) ranked low among the well-scoring 
regression models and attributed low emissions (< 0.2 Tg CH4 yr-1 in any scenario 
or sensitivity test). 

4. In all scenarios, emissions from the Chukchi Sea were on the low end of the 
respective estimate. This result may be related to ocean depth, but also to marine 
biogeochemistry and emissions from the seafloor. 

5. A comparison of modeled atmospheric CH4 mole fractions with data from the 
SWERUS-C3 campaign indicated that the model could not capture localized CH4 
seeps in the outer part of the shelf. 

 
The method required optimizing terrestrial emissions in the domain. Although these were 
not the focus of this study, some observations may be of interest to the reader: 

1. Terrestrial emissions were best described by a combination of simple models 
(constant flux from the whole land surface in the domain, Simple Wetland Model), 
a process-based wetland model (LPJ-WSL), and a crude description of zero curtain 
emissions. 

2. The majority of the terrestrial CH4 emissions budget was attributed to the simple 
models. These models assigned emissions to the whole land area in the domain, 
whereas in the process-based wetland models that were considered here, emissions 
were spatially limited to estimates of wetland extent. Therefore, we speculate that 
estimates of wetland extent, which differ considerably between models (Melton et 
al., 2013), may be inaccurate in the vicinity of the atmospheric stations used in this 
study. 

3. Estimated terrestrial emission budgets in the domain were compatible with the 
sum of bottom-up estimates of emissions based on process-based wetland and lake 
models. However, such sums suffer from ambiguity between small lakes or ponds 
and wetlands and thus double-counting of emissions (Thornton et al., 2016a). 
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Therefore, our estimates of the terrestrial emissions may be larger than suggested 
by process-based models. A comparison of modeled atmospheric CH4 mole 
fractions with data from the SWERUS-C3 campaign indicated that terrestrial 
emissions might have been overestimated by the Simple Wetland Model. When 
restricting prior terrestrial emission estimates to process-based models, the budget 
decreased by 50 %, which may, for the above reasons, be more realistic. 

4. The fact that the crude model of zero curtain emissions was important for 
explaining atmospheric signals indicates that terrestrial emissions in the area in fall 
were not well described by process-based models. 

 
In addition to the result-specific limitations outlined above, all results are subject to general 
limitations of the methods and uncertainties that were not fully explored. These include the 
accuracy of boundary conditions (see Sect. 5.3.1.3), general transport model accuracy (see 
Sect. 3.1.3), sensitivity of the atmospheric observations to certain processes and transient or 
localized sources (see e.g. Sect. 5.3.7), accuracy of covariance parameters (see Sect. 5.3.1.1), 
as well as near field emissions and representativeness of observations (see Sect. 3.1.3). 
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6 Conclusions 

6.1 Summary, context and relevance of research findings 
With this thesis, two major goals were pursued: improving the data coverage on CH4 
emissions from the East Siberian Arctic Shelf to the atmosphere and using these data to 
estimate these emissions. The results on both objectives are presented in the following 
sections. 

6.1.1 Accurate greenhouse gas observations at Ambarchik 

To improve the data coverage on CH4 emissions from the East Siberian Arctic Shelf to the 
atmosphere, the new atmospheric greenhouse gas observation station Ambarchik was 
established. The station delivers data with precision and accuracy suitable for inverse 
modeling studies without major downtime since its installation in August 2014. The station 
is a valuable addition to the sparse network of atmospheric greenhouse gas observations in 
the Siberian Arctic. Thus, the data obtained at Ambarchik hold the potential to improve our 
knowledge on CO2 and CH4 exchange processes and the carbon cycle in this region, which 
currently experiences rapid climate change. This is of particular interest in light of the vast 
carbon reservoirs in the region, which, if destabilized, could constitute a positive feedback 
to global climate change. The Ambarchik station continues to operate and the data are 
documented in an article that is currently under review for the journal Atmospheric 
Measurement Techniques (Reum et al., 2018a). The data are available to the community 
upon request.  
A side product of the calibration efforts for Ambarchik was an improvement in the 
correction of the effects of water vapor on CO2 and CH4 measurements with the widely 
used greenhouse gas analyzers manufactured by Picarro, Inc. Since the improvement was 
small compared to the large signals analyzed in this study, it was not presented in detail. 
Nonetheless, the new method contributes to keeping the uncertainty of measurements 
obtained with Picarro analyzers within the WMO inter-laboratory compatibility goals for 
atmospheric CO2 and CH4 observations, which were set to ensure the accuracy of fluxes 
estimated based on inverse modeling techniques. Like the Ambarchik station description, 
this work is currently in review for the journal Atmospheric Measurement Techniques 
(Reum et al., 2018b). 

6.1.2 Constraints on CH4 emissions from the East Siberian Arctic Shelf 
to the atmosphere 

Emissions of CH4 from the ESAS to the atmosphere were estimated in an inverse modeling 
study. It was the first study to approach the subject by optimizing shelf-wide emissions on 
high spatial and temporal resolution. It further expanded on previous work by exploiting 
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data from the new station Ambarchik and by utilizing geostatistical inverse modeling 
techniques to provide a top-down perspective on spatiotemporal emission patterns. One 
aspect of the geostatistical method is the representation of prior knowledge on emissions 
via a linear combination of emission patterns optimized for the atmospheric data. A set of 
potentially relevant emission patterns was developed based on the literature on ESAS CH4 
emissions and their underlying mechanisms. Evaluating which combinations (“regression 
models”) fit the atmospheric data best allowed some insight into the first-order controls of 
the emissions and assessment of the underlying mechanisms. Further results were obtained 
from optimizing fluxes starting with these regression models as initial guesses. Here, we 
summarize which estimates of the magnitude and hypotheses on controls on ESAS CH4 
emissions in the literature are supported by this study. A more comprehensive summary 
including minor results and additional details on limitations was given in Sect. 5.4. 
The estimated CH4 emission budget of the ESAS (0.4–1.5 Tg CH4 yr-1; see Sect. 5.3.8 for 
details on possible over- or underestimation) was on the lower end of literature estimates. 
It was previously suggested that ESAS CH4 budget estimates on the high end might be 
related to a focus of observations on coastal areas (Thornton et al., 2016b). This assessment 
is compatible with a key result of the present study, i.e. the dominance of CH4 emissions 
from shallow ESAS waters compared to deeper waters, as the coastal areas of the ESAS are 
also its shallowest areas. The controls compatible with this pattern are trapping of CH4 in 
the water column in deeper waters, as was previously inferred for the Beaufort Sea 
(Sparrow et al., 2018), and/or comparatively large CH4 emissions to the shelf water in 
shallow regions of the ESAS compared to deeper regions. Besides the pattern of 
dominating shallow-water emissions, our results also support a large spatiotemporal 
heterogeneity of the emissions (Sect. 5.3.5), which, on the one hand, makes upscaling sparse 
data difficult, and on the other hand implies that emissions may be different in areas the 
atmospheric data in our study were not sensitive to (i.e. far off-shore, deeper parts of the 
shelf). Both limitations could have contributed to differences between budget estimates of 
this and previous studies. Lastly, other top-down studies put larger upper bounds on the 
budget, but argued that these may have been too high. Assuming emissions from deeper 
ESAS waters are indeed small as suggested by Thornton et al. (2016b) and thus not 
overlooked, our study narrowed down the plausible range of the annual ESAS CH4 budget. 
The fate of CH4 during the ice-covered period was previously identified as a knowledge 
gap (e.g. Thornton et al., 2016b). One hypothesis is accumulation of significant amounts of 
CH4 during the ice-covered period and sudden release to the atmosphere during sea ice 
melt (Shakhova et al., 2010a). However, our estimated CH4 emission rates during this 
period, integrated over the whole shelf area, did not exceed those of summer, which 
suggests that release of accumulated CH4 during the melt period was limited. This result is 
consistent with limited accumulation (Damm et al., 2018; Kitidis et al., 2010; Kort et al., 
2012; Shakhova et al., 2015) and/or restricted release during melt (Damm et al., 2015b; 
Kitidis et al., 2010). Of the various mechanisms that may be responsible (Sect. 5.3.3), only 



   99 

 

sustained CH4 venting during the ice-covered period could be assessed within this study. 
The results during this period were uncertain but compatible with sustained winter 
emissions. These may be associated with fractures and open water areas, i.e. leads and 
polynyas, which are present in Arctic sea ice throughout the winter. Gas exchange rates 
through these fractures can be much larger than in open water areas due to mixing of the 
water column induced by refreezing (e.g. Else et al., 2011). Thus, high emission rates from 
fractures in the sea ice may be a key mechanism for CH4 release from the ESAS to the 
atmosphere and the effectiveness of sea ice as a barrier for CH4 emissions from the ESAS to 
the atmosphere appears limited. 
Previous work suggested high CH4 emissions from the ESAS during fall due to mixing of 
the water column during storms (Shakhova et al., 2014). Our results were compatible with 
strong fall emissions compared to the rest of the year, but possibly related to sea ice 
growth. We regard this result with caution because a sensitivity test suggested it might 
have been influenced by terrestrial (possibly near field) emissions at Ambarchik. 
To summarize, the results of the study on ESAS CH4 emissions indicated they are on the 
low end of literature estimates. Patterns of the spatial and temporal distribution of 
emissions were retrieved that lend support to certain hypotheses on the dominant emission 
controls from the literature, in particular a dominance of emissions from shallow waters, 
no outstanding emission peak during sea ice melt, as well as possibly large emissions 
during fall and sustained emissions during the ice-covered period. However, these patterns 
may have been influenced by several limitations of the model and data coverage. In 
particular, ESAS emission estimates may have been confounded by terrestrial emissions, 
atmospheric data lacked sensitivity to offshore, deep parts of the shelf, and the transport 
model may have been less accurate in winter than in summer (see Sect. 5.4 for a 
comprehensive summary of the limitations). Several sensitivity studies indicated 
robustness of the key results with respect to some of the limitations, with the exception of 
outstanding fall emissions. Nonetheless, the retrieved patterns should be understood as 
indications rather than conclusive evidence. Ways to overcome key limitations of this study 
are proposed in Sect. 6.2. 

6.2 Outlook: improving ESAS CH4 emission estimates based on 
atmospheric data 

In this section, we discuss how key limitations of this study on ESAS CH4 emissions could 
be overcome. 
Key limitations of this study were the role of separation of terrestrial from oceanic signals 
and limited sensitivity of the observations to deeper parts of the shelf. A simple way to test 
for these limitations would be observation system simulation experiments (OSSEs). For 
example, one could create artificial atmospheric data based only on terrestrial emissions 
and test whether the model selection indicates the presence of emissions from shallow 
ESAS areas, as it was the case with the real data. For such tests, uncertainties of the 
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observations and of the transport model need to be represented adequately, for example by 
generating artificial observations using a different transport model. 
Central parts of the shelf were sampled in a previous ship-based campaign that did not 
reveal widespread large CH4 emissions in the area (Thornton et al., 2016b), but the 
observation period and area of such campaigns is limited. Therefore, more observations 
that are more sensitive to the shelf and less sensitive to terrestrial emissions could provide 
additional insights. The station Baranov on the New Siberian Islands, which began 
operation in late 2015 (Tuomas Laurila, personal communication), may prove useful for 
this purpose. 
There are several ways to improve the inverse model. One way would be a better 
description of terrestrial CH4 emissions in the domain. In particular, a crude description of 
zero-curtain emissions was among the successful auxiliary variables and at the same time, 
ESAS emission estimates during fall may have been strongly influenced by terrestrial 
signals. In addition, we speculate that wetland extent in process-based wetland models 
may be inaccurately represented in the vicinity of the atmospheric stations because model 
selection preferred simple, wide-extent models to process-based models for the majority of 
the terrestrial emission budget. The influence of these simple models on the inferred ESAS 
budget was limited (Sect. 5.2.5.3), but better descriptions of the spatial extent of terrestrial 
CH4 emissions and in particular cold season emissions may nonetheless improve the 
accuracy of ESAS CH4 emission estimates.  
Likewise, improved descriptions of ESAS CH4 emission processes and seafloor emission 
patterns could improve our understanding of their role in the ESAS CH4 cycle and better 
constrain the emissions to the atmosphere. Improvable process descriptions include in 
particular the distribution of local emission hotspots, transient emissions (or, more general, 
the spatiotemporal distribution of sources of CH4 to the shelf water), leads and polynyas in 
sea ice, controls on mixing of the water column, sea ice melt and lateral transport via ocean 
currents. 
Investigating transport model quality and refining selection criteria for atmospheric data 
could help reduce the confusion of terrestrial and oceanic emissions, the influence of near 
field emissions, and evaluating the accuracy of results especially during the cold season, 
when difficult-to-model transport situations are prevalent in the Arctic. 
More accurate boundary conditions may improve the accuracy of the model. The results 
appeared to be fairly robust against differences between the two sets of boundary 
conditions used in this study as well as against seasonally varying biases, but the 
uncertainty in this quantity was certainly not fully explored. 
Refined covariance models could be used to test certain hypotheses and robustness of 
results. For example, imposing a smaller prior covariance on emissions close to the shore 
could force the model to react with increasing emissions in offshore parts of the ESAS. 
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Emissions from the ESAS to the atmosphere were only considered for the extent of the 
ESAS itself in this study. For a more comprehensive picture of the ESAS CH4 cycle, lateral 
transport with ocean currents (Damm et al., 2018) needs to be taken into account. 
Lastly, case studies of individual atmospheric signals could provide further insights on 
localized and/or transient CH4 sources in the ESAS. 
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Appendix A Details on Ambarchik hardware and 
quality control 

In the following sections, details on the atmospheric greenhouse gas measurement system 
and the data gathered at Ambarchik are given. Similarly to Chapter 4, the material 
presented here is an edited version of the appendix of Reum et al. (2018a). 

A.1 Ambarchik station hardware 

Table A.1: Gas handling components (labels as in Fig. 2). 

Description Label Manufacturer Model 

CRDS analyzer CRDS analyzer Picarro G2301 
Membrane pump MP1 Picarro Picarro vacuum pump 
Piston pump PP1 Gardner 

Denver Thomas 
617CD32 

Flow meter FM1 OMEGA FMA1826A 
Flow meter FM2 OMEGA FMA1814A-ST 
Flow meter FM3 OMEGA FMA1812A 
Multiposition valve MPV1 Vici Valco EMT2CSD6MWM 
Solenoid valve V1–V4  SMC VDW350-6W-2-01N-H-X22-Q 
Needle Valve NV1–NV3 Swagelok SS-2MG 
Gas tanks High, Middle, 

Low, Target 
Luxfer Gas 
Cylinders 

20 l T-PED cylinders, Type 
P3056Z 

Pressure regulator RE1–4 (incl. 
pressure gauges 
P2–P9) 

TESCOM 44-3440KA412-S 

Pressure sensor P1 Keller PAA-21Y 
Stainless steel 
tubing 

ss tube 1/16” Vici Vici Jour JR-T-625-40 

Stainless steel 
tubing 

ss tube 1/8” Vici Vici Jour JR-T-626-00 

Flexible tubing flex tube 1/4” SERTO SERTOflex 6.35S 
Inlet filter F1, F2 Solberg F-15-100 
Filter F3, F4 Swagelok SS-4TF-40 
Filter F5, F6 Swagelok SS-4FW-2 
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Table A.2: Meteorological measurements by MPI-BGC at Ambarchik 

Measurand Manufacturer Model Height a.g.l. / location 

Wind speed, 
direction 

METEK uSonic-2 20 m / tower 

Air temperature, 
relative humidity 

MELA KPK1_6-ME-H38 (inside 
ventilated radiation 
shield) 

20 m and 2 m / tower 

Air pressure SETRA Type 278 1 m / laboratory 

 

A.2 Derivation of water correction coefficients for Ambarchik 

The influence of water vapor on CO2 and CH4 measurements was corrected for based on 
several water correction experiments and a novel water correction model, which we 
describe in the following paragraphs. For more details, please refer to Reum et al. (2018b). 
Experiments were performed with two different humidification methods. For the so-called 
droplet method, a droplet of de-ionized water (ca. 1 ml) was injected into the dry air stream 
from a pressurized air tank and measured with the CRDS analyzer. The gradual 
evaporation of the droplet provided varying water vapor levels. By contrast to the droplet 
method, the gas washing bottle method was designed to hold water content in the sampled 
air at stable levels. For this purpose, the air stream from a pressurized tank was humidified 
by directing it through a gas washing bottle filled with de-ionized water, resulting in an air 
stream saturated with water vapor. The humid air was mixed with a second, untreated air 
stream from the same tank. Different water vapor levels were realized by varying the 
relative flow through the lines using needle valves. 
Initial experiments have been performed using the droplet method, but systematic biases in 
the resulting dry air mole fractions at H2O < 0.5 % led to further experiments with the gas 
washing bottle method and the development of an improved water correction model:  

𝑓! 𝒉 = 𝟏 + 𝒂𝒄 ⋅ 𝒉 + 𝒃𝒄 ⋅ 𝒉𝟐

𝒇𝒄
𝒑𝒂𝒓𝒂 𝒉

+  𝒅𝒄 ⋅ 𝒆
! 𝒉
𝒉𝒑 − 𝟏  (A.1) 

Here, 𝒇𝒄
𝒑𝒂𝒓𝒂 𝒉  corrects for dilution and pressure broadening (Chen et al., 2010). The 

parameters 𝑑! and ℎ! correct for a sensitivity of pressure inside the measurement cavity of 

Picarro analyzers to water vapor (Reum et al., 2018b).  
Three droplet experiments were performed in 2014, while one gas washing bottle 
experiment was performed in each 2015 and 2017. The droplet method proved unsuitable 
to derive the pressure-related coefficients 𝒅𝒄 and 𝒉𝒑 due to fast variations of water vapor, 

which typically occurred below 0.5 % H2O (Reum et al., 2018b). Therefore, from the droplet 
experiments only the data with slowly varying water vapor were used, and 𝒅𝒄 and 𝒉𝒑 were 

based only on the gas washing bottle experiments. For each species, a synthesis water 
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correction function was derived by fitting coefficients to the average response of the 
individual functions (Table A.3). 
 

Table A.3: Synthesis water correction coefficients. Uncertainties are approximated by the maximum 
difference between the coefficients of the individual water correction functions and the coefficient of 

synthesis function. 

Species 𝑎! [(% H2Orep)-1] 𝑏! [(% H2Orep)-2] 𝑑! [unitless] ℎ! [% H2Orep] 

CO2 (-1.2 ± 0.2) × 10-2 (-2.7 ± 0.5) × 10-4 (2.2 ± 1.0) × 10-4 0.22 ± 0.12 
CH4 (-0.97 ± 0.07)× 10-2 (-3.1 ± 1.4) × 10-4 (1.1 ± 0.7) × 10-3 0.22 ± 0.12 

 

A.3 Calibration scale and coefficients 

Table A.4: Calibrated dry air mole fractions of the air tanks in use at Ambarchik. For a discussion of 
the uncertainties, see Appendix A.5. 

Name WMO scale X2007 CO2 [ppm] WMO scale X2004A CH4 [ppb] 

High Tank 444.67 ± 0.03 2366.95 ± 0.31 
Middle Tank 398.68 ± 0.03 1962.39 ± 0.31 
Low Tank 354.37 ± 0.03 1796.94 ± 0.31 
Target Tank 401.56 ± 0.03 1941.96 ± 0.31 
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Fig. A.1: Coefficients of linear fits to High, Middle and Low Tank. The smoothed coefficients are 
used for calibrating data (figure from Reum et al., 2018a). 

A.4 Spike detection algorithm for CO2 

The CO2 spike detection algorithm is a multi-step process. First, candidates for CO2 spikes 
are identified. In subsequent steps, false positives are removed. Parts of the algorithm are 
based on Vickers and Mahrt (1997).  
Step 1. Identifying spike candidates based on variation of differences between CO2 
measurements 
For this step, data are processed in intervals spanning 1.5 hours. Candidates for CO2 spikes 
are identified based on the variability of differences between individual CO2 
measurements. Measurements with differences that exceed 3.5 standard deviations from 
non-flagged data are flagged as spike candidates. Since flagging the data changes the 
standard deviation of the non-flagged data, flagging is repeatedly applied until changes 
between standard deviations of the non-flagged data between the last and second-last loop 
are less than 10-10 ppm CO2. In cases when all CO2 data in the interval have rather uniform 
variations, this procedure flags the whole interval. In that case, all flags are removed, and 
the interval is considered to have no spikes. 
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Step 2. Blurring 
Around the top of a spike, differences between individual CO2 soundings are often small 
and thus, these measurements are not captured as part of a spike in step 1. To unite the 
ascending and descending parts of spikes, the 20 data points before and after a flagged 
measurement are flagged. From here on, each group of consecutive flagged measurements 
is considered a spike candidate. 
Step 3. Unflagging individual outliers 
Step one often identifies individual or very few consecutive data points as spikes, spanning 
few seconds. We regard these very small groups of flagged data points as noise 
misidentified as spikes. After blurring (step 2), these individual outliers form groups of at 
least 41 data points. In step 3, spike candidates consisting of less than 45 data points are 
unflagged. 
Step 4. Baseline, detrending 
For each spike candidate, the baseline is identified as a linear fit to the unflagged 
measurements within five minutes of any data point of the spike candidate. Using this 
baseline, the data in this interval are detrended, including the spike candidate.  
Step 5. Spike height 
From the detrended data from step 4, the maximum deviation from the baseline (“spike 
height”) is calculated. Spike candidates smaller than 8 standard deviations of the baseline 
measurements are unflagged. 
Step 6. Unflagging abrupt but persistent changes 
Until the previous step, the algorithm flags abrupt CO2 changes even if they are persistent. 
This pattern occurs for example during changes of wind direction and does not constitute 
an isolated spike. In this case, a trough is present in the detrended spike. The minimum 
deviation from the baseline is calculated (“trough depth”) and compared to the spike 
height. Since spike height and trough depths can be based on few data points, the influence 
of noise is strong. To counteract, spike height and trough depth are diminished by two 
standard deviations of the baseline. Spike candidates with trough depths greater than one 
fifth of the spike height are unflagged. 
Step 7. Unflagging persistent variability changes 
The procedure so far can flag the beginning or end of longer periods of larger CO2 
variability. To unflag these false positives, steps 4–5 are applied again with the following 
changes: (1) a longer baseline of 30 minutes before and after the spike candidate (instead of 
five minutes) is used, (2) baseline standard deviations are calculated separately for the 
period before and after the spike candidate, (3) the spike height from step 5 is used instead 
of recalculated, and (4) the spike height must exceed the maximum of the two baseline 
standard deviations by a factor of 6 instead of 8. 
Step 8. Repeat 
The result from steps 4–7 depends on unflagged data points surrounding a spike 
candidate. Therefore, these steps are repeated until a steady state is reached. 
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An example of flagged spikes is shown in Fig. A.2. In this example, removing flagged data 
reduced the hourly averages of Center inlet data between 3 and 4 a.m. by 0.5 ppm (CO2) 
and 7.0 ppb (CH4). No Top inlet data were flagged in this period. Since small spikes can be 
hard to distinguish from natural signals, some smaller features can pass the algorithm 
without being flagged that may be classified as spikes upon visual inspection, e.g. at 5:33 
a.m. in Fig. A.2. However, given that larger spikes alter hourly averages by values on the 
order of magnitude of the WMO goals, the impact of these features is likely negligible. In 
this particular example, removing the detected spikes reduced average CO2 mole fractions 
between 5 and 6 a.m. from the Center inlet by 0.07 ppm. Removing the unflagged small 
spike at 5:33 a.m. would further reduce this average by 0.005 ppm, which is 
inconsequential. 

Fig. A.2: Example of a series of flagged CO2 spikes from December 4, 2016 (figure from Reum et al., 
2018a). 

 

A.5 Measurement uncertainties 

We adopted the uncertainty quantification method of Andrews et al. (2014). Here, we 
summarize the main ideas of this approach, the modifications we made, and quantify 
individual uncertainty components. A detailed description of the nomenclature and 
method was omitted; please refer to Andrews et al. (2014). 
 
Uncertainty estimation framework by Andrews et al. (2014) and modifications 
Andrews et al. (2014) calculated the measurement uncertainty as the largest of four 
different formulations (Eq. (9a–d) therein). Formulations (a) and (b) were the prediction 
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interval of the linear regression of the calibration tanks, which takes into account the 
standard error of the fit (𝑠𝑒!"#) and the uncertainty in the analyzer signal. The difference 
between (a) and (b) was the estimate of the uncertainty in the analyzer signal. In 
formulation (a), it was estimated from a model (𝜎!) that accounts for analyzer precision 
(𝑢!) and drift (𝑢!), uncertainty of the water vapor correction (𝑢!"), equilibration after 
switching calibration tanks (𝑢!") and extrapolation beyond the range covered by the 

calibration tanks (𝑢!"). In measurement uncertainty formulation (b), the uncertainty 
estimate of the analyzer signal was estimated from the residuals of the linear fits of the 
calibration tank mole fractions (𝜎!), accounting for the fact that the assigned values of the 

calibration tanks have non-zero uncertainty (𝜎!): 

𝜎!! =  𝜎!! − 𝑚𝜎! !  (A.2) 

Here, 𝑚 is the slope of the calibration function. Formulation (c) was the bias of the Target 
tank (𝑢!"!), and formulation (d) the uncertainty in the assigned values of the calibration 
tanks (𝜎!). In this approach, uncertainty formulations (b), (c) and (d) only accounted for 
uncertainties of dry air measurements. Hence, we modified it by adding the uncertainty of 
the water correction to these formulations. Thus, the analyzer precision model for 
uncertainty formulation (a) became: 

𝜎! =  𝑢!! +  𝑢!! +  𝑢!"! +  𝑢!"! (A.3) 

The full uncertainty terms were thus: 

𝑢!,! =  𝑧 !,!
! 𝑠𝑒!"#

𝑚

!
+ 𝜎!! + 𝑢!"!  (A.4) 

𝑢!,! =  𝑧 !,!
!

 
𝑠𝑒!"#
𝑚

!
+  

𝜎!!

𝑚

!

+ 𝑢!"!  (A.5) 

𝑢!,! =  𝑢!"!! + 𝑢!"!  (A.6) 

𝑢!,! =  𝜎!! + 𝑢!"!  (A.7) 

Here, 𝑧 !,!  is the quantile function of Student’s t distribution. At Ambarchik, three 
calibration tanks are used to infer linear calibration functions. Thus, for a prediction 
interval at 1𝜎-level, 𝑧 !!!.!"#,!!! = 1.79.  

 
Uncertainty components and estimates 
In the following paragraphs, the individual components of the four uncertainty estimates 
Eq. (A.4)–(A.7) are described. For numerical values of the components, see Table A.5. The 
time-varying uncertainty estimates are shown in Fig. A.3. 
 
Water-vapor (𝑢!") 
For the water correction uncertainty 𝑢!", we used the maximum of the difference between 
individual water correction functions and the synthesis water correction function, i.e. 0.018 
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% CO2 and 0.034 % CH4, regardless of actual water content. This approach likely 
overestimates 𝑢!" at low water vapor content, but was chosen because 𝑢!" was not well 
constrained by the small number of water correction experiments conducted so far. 
Assigned values of calibration gas tanks (𝜎!) 
For the uncertainty of the assigned values of the calibration gas tanks 𝜎!, we followed the 
approach by Andrews et al. (2014), who set them to the reproducibility of the primary 
scales WMO X2007 (CO2) and WMO X2004 (CH4). Estimates based on the MPI-BGC 
implementations of the primary scales yielded smaller uncertainties that underestimated 
the mismatch between the CO2 mole fractions of the calibration tanks. 
Target tank (𝑢!"!) 
The uncertainty based on the Target tank measurements 𝑢!"! was the same as in Andrews 
et al. (2014), but with the weighting and window we used for smoothing the calibration 
coefficients. 
Analyzer signal precision model (𝜎!) 
For the analyzer signal precision model 𝜎!, analyzer precision (𝑢!) and drift (𝑢!) were 

estimated jointly from variations during a gas tank measurement over 12 days prior to field 
deployment. The other components (𝜎!", 𝜎!") appeared negligible. In particular, we found 
no conclusive evidence of non-negligible equilibration errors (𝜎!") in our calibrations; 

however, this remains subject to future research (Appendix A.5). The extrapolation 
uncertainty (𝜎!") applied to only to a small fraction of Ambarchik data, so we ignored this 
error.  
Standard error of fit (𝒔𝒆𝒇𝒊𝒕) 

The standard error of the fit was estimated based on individual calibration cycles. This 
ignores the improvement of the precision achieved by averaging coefficients over multiple 
cycles. Thus, 𝑠𝑒!"# is overestimated here. Since it is not the dominant source of uncertainty, 

this error is small. 
 

Table A.5: Measurement uncertainty components. The nomenclature follows Andrews et al. (2014). 
For time-varying components, averages are reported and denoted with an asterisk (*). 

Uncertainty component CO2 [ppm] CH4 [ppb] 

Water correction 𝑢!" * 0.075 * 0.67 
Assigned values of calibration gas tanks 𝜎! 0.03 0.31 
Analyzer signal (a) 𝜎! 0.013 0.25 
Analyzer signal (b) 𝜎!!  * 0.058 * 0.00 
Standard error of fit 𝑠𝑒!"# * 0.047 * 0.11 
Target tank deviation from laboratory value 𝑢!"! * 0.038 * 0.32 
Maximum of estimates uM,a–d * 0.11 * 0.75 
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Fig. A.3: Estimates of CO2 and CH4 measurement uncertainty as defined in Eq. (A.4)–(A.7). The 
dashed lines are the WMO inter-laboratory compatibility goals (figure from Reum et al., 2018a). 

 
Potential improvements of the calibration accuracy 
Several aspects related to the accuracy of the calibration using regular gas tank 
measurements are subject to future research. Here, we outline potential calibration errors 
that could not be conclusively quantified, and how we plan to address them in the future. 
To investigate whether the regular probing time of the gas tanks was sufficient for 
equilibration (e.g. due to flushing of the tubing), we fitted exponential functions to the 
medians of the regular tank measurements. Deviations between modeled equilibrium mole 
fractions and the averages used for calibration were negligible (|ΔCO2| < 0.008 ppm; 
|ΔCH4| < 0.09 ppb) and thus ignored. Furthermore, in two experiments, we investigated 
equilibration error and other drifts (e.g. diffusion in the pressure reducers) by measuring 
the calibration tanks in reversed order, and in original order for up to two hours. However, 
the experiments were inconclusive. Based on the available data, we estimated the largest 
conceivable biases for the ranges 350–450 ppm CO2 and 1800–2400 ppb CH4. They were up 
to 0.06 ppm CO2 and 0.5 ppb CH4 at the edges of these ranges and vanished around their 
centers. More experiments are necessary to assess these possible biases; hence, no bias 
correction was implemented. 



   111 

 

The CO2 bias of the water-corrected Target tank mole fractions varied from -0.06 to -0.01 
ppm (Fig. 4, left). These variations correlated with residual water vapor (which was much 
smaller than 0.01 %) and temperature in the laboratory during the Target tank 
measurements, as well as with ambient CO2 mole fractions sampled before. This suggests 
that the variations may be due to insufficient flushing during calibration. However, the 
correlations varied over time without changes to the hardware or probing strategy. 
Therefore, further investigation of this observation is required, and no correction was 
implemented. 
So far, possible drifts of the gas tanks have not been included in our uncertainty 
assessment. This will be assessed only when the gas tanks are almost empty, and shipped 
back to the MPI-BGC for recalibration. 
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Appendix B Average maps and timeseries of auxiliary 
variables 
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Fig. B.1: Average maps (2014-12-01 – 2015-11-30) and timeseries averaged over the whole domain 
of all auxiliary variables. 
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