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Abstract
NONEQUILIBRIUM FLUCTUATIONS AND PHASE TRANSITIONS IN HYBRID QUANTUM

SYSTEMS

by Niklas Mann

We investigate the impact of fluctuations on the dynamics of very different systems. Geo-
metric fluctuations in dimer molecules cause symmetry breaking that can enable otherwise
forbidden processes. We demonstrate that angular fluctuations in the dipolar arrangement
of a non-chiral molecule are associated with chirality symmetry breaking. The linear chiral
response which depends on the average geometry thus vanishes, yet certain 2D chiral opti-
cal signals are finite due to geometric fluctuations. The correlation time of these fluctuations
can be experimentally revealed by the waiting time dependence of the 2D signal.

Further, we analyze the dynamics of a quantum two-state system affected by nonequi-
librium quantum fluctuations. We find a nontrivial dependence of the relaxation and de-
phasing rates which is directly linked to the structure of the unperturbed central system.
By means of Heisenberg–Langevin equations of motion, we calculate the correlation func-
tion of the nonequilibrium fluctuations and obtain a generalized nonequilibrium fluctuation
relation which includes the equilibrium fluctuation-dissipation theorem.

In the following, we consider a hybrid quantum many-body system formed by a vibra-
tional mode of a nanomembrane, which interacts optomechanically with light in a pumped
cavity, and a distant ultracold atom gas in the optical lattice of the outcoupled light. The
adiabatic elimination of the light field yields an effective coupling between atoms and mem-
brane which can be realized in two ways.

First, the center-of-mass motion of the atom gas in the lattice can be coupled to the
motion of the membrane. By changing the pump strength, the effective atom-membrane
coupling can be tuned. Above a critical intensity, we find a second-order nonequilibrium
quantum phase transition from a localized symmetric state of the atom cloud to a shifted
symmetry-broken state, the energy of the lowest collective excitation vanishes, and a strong
atom-membrane entanglement arises.

Second, the membrane can be coupled to a transition between two internal states of the
atoms. We show that this coupling scheme allows for first- and second-order nonequilib-
rium quantum phase transitions. The emergent symmetry-broken phase is characterized by
a sizeable occupation of the high-energy internal state and a displaced membrane. The order
of this phase transition can be changed by tuning the transition frequency. In addition, we
show that the mechanical mode can be squeezed by the back-action of internal excitations of
the atoms in the gas. A Bogoliubov approach reveals that these internal excitations form a
fluctuating environment of quasi-particle excitations for the mechanical mode with a gaped
spectral density. Interestingly, mechanical squeezing is enhanced by atomic interactions.
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Zusammenfassung
NICHTGLEICHGEWICHTS-FLUKTUATIONEN UND PHASENÜBERGÄNGE IN HYBRIDEN

QUANTENSYSTEMEN

von Niklas Mann

Geometrische Fluktuationen in Dimeren führen zu einer Symmetriebrechung, die verbotene
Prozesse ermöglichen kann. Wir zeigen, dass Winkelfluktuation in der dipolaren Anord-
nung eines nicht chiralen Moleküls zu einer chiralen Symmetriebrechung führen. Das lin-
eare, chirale Signal verschwindet, während bestimmte chirale, optische 2D Signale, auf-
grund geometrischer Fluktuationen, endlich sind. Wartezeitabhängige Messungen des 2D
Signals erlauben eine experimentelle Bestimmung der Korrelationszeit der Fluktuationen.

Wir untersuchen die Dynamik eines Zwei-Zustands-Systems unter dem Effekt von
Nichtgleichgewichtsfluktuationen. Wir finden eine nicht-triviale Abhängigkeit der Re-
laxations- und Dephasierungsraten, die mit der Struktur des ungestörten Systems zusam-
menhängt. Wir bestimmen die Korrelationsfunktion der Nichtgleichgewichtsfluktuationen
und erhalten eine verallgemeinerte Nichtgleichgewichtsfluktuations-Relation, welche das
Fluktuations-Dissipations-Theorem beinhaltet.

Im Anschluss betrachten wir ein hybrides Quanten-Vielteilchensystem, bestehend aus
einer Vibrationsmode einer Nanomembrane, die optomechanisch mit dem Licht in einer
Kavität wechselwirkt, und einem ultrakaltem atomaren Gas im optischen Gitter des aus-
gekoppelten Lichts. Eine adiabatische Eliminierung des Lichts ergibt eine effektive Wech-
selwirkung zwischen Atomen und Membran, die auf zwei Weisen realisiert werden kann.

Zunächst kann die Schwerpunktsbewegung der Atome im Gitter an die Vibration der
Membran gekoppelt werden. Die effektive Wechselwirkung kann mithilfe der Lichtinten-
sität variiert werden. Oberhalb einer kritischen Intensität finden wir einen kontinuierlichen
Nichtgleichgewichts-Quantenphasenübergang von einem lokalisierten symmetrischen Zu-
stand der Atomwolke zu einem versetzten, Symmetrie gebrochenen Zustand. Die Energie
der niedrigsten kollektiven Anregungsmode verschwindet und eine starke Verschränkung
zwischen Membran und Kondensat wird beobachtet.

Zudem kann ein interner Übergang zwischen zwei Zuständen der Atome an die Mem-
bran gekoppelt werden. In diesem Fall finden wir, dass sowohl ein Nichtgleichgewichts-
Quantenphasenübergang zweiter Ordnung als auch einer erster Ordnung vorliegt.
Die emergente, Symmetrie gebrochene Phase ist durch eine deutliche Besetzung des
energetisch-höheren internen Zustands und einer verschobenen Membran charakterisiert.
Die Ordnung kann beeinflusst werden, indem die atomare Übergangsfrequenz variiert
wird. Weiterhin zeigen wir, dass die nanomechanische Mode durch die atomare Rückkop-
plung der internen Anregungen gequetscht werden kann. In einem Bogoliubov Ansatz zeigt
sich, dass diese internen Anregungen eine fluktuierende Umgebung für die Membran for-
men.
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CHAPTER 1
Introduction and Overview
In 1827, the botanist Robert Brown noticed that tiny particles in water perform jiggled, irreg-
ular movements in a random manner. By that time, this discovery was the first observation
of random processes and it took almost eighty years in order to come up with a theoretical
description that had to go beyond the classical physics predicted by Newton’s second law
of motion. This first theoretical explanation was given by Einstein [1] in 1905 in which he
explained the mechanism behind the irregular motion as a consequence of the molecular
motion in the solvent. Almost at the same time, Smoluchowski (1906) and Langevin (1908)
provided an alternative description for the phenomenon which is known as Brownian mo-
tion. They showed that the mean squared displacement of an initially resting particle grows
linearly in time with the diffusion constant as the proportionality constant, recovering the
original result found by Einstein.

Besides the random force on the Brownian particle that is caused by the irregular oc-
currence of collisions with the solvent molecules, these scattering processes give rise to a
frictional force due to the impact on a moving particle. Even though such events appear
randomly, a systematic result proportional to the particle velocity is produced. In fact, this
means that there has to exist an internal relationship between the fluctuating force and the
friction force, as both originate from the same process. This general concept is manifested in
the fluctuation-dissipation theorem [2, 3] (FDT) which was originally formulated by Callen
and Welton. Within the framework of linear response, Kubo determined the response of a
system that is perturbed by an external force coupled to an arbitrary observable B. In partic-
ular, he showed that the linear response of any measured quantity A is directly connected to
the symmetrized thermal correlator of these two observables A and B for the unperturbed
system, which resulted in the celebrated FDT [2–5]. For instance, two direct applications of
the FDT appear in the form of the Green–Kubo formula which relates the conductivity to
the current fluctuations [4] or the Einstein–Smulochovski relation for the Brownian particle
which provides a relation between its mobility and the diffusion constant [1].

While the FDT holds for classical, quantum and many-body systems alike, it connects
the action of the spontaneous fluctuations at thermal equilibrium with the inevitable conse-
quence of the appearance of dissipation. Since its derivation, it has acted as a decisive tool
in order to investigate systems close to thermal equilibrium and is still. By relating the sus-
ceptibility to the quantum Fisher information, it has been shown that the FDT can be used to
measure quantum entanglement for complex quantum systems at thermal equilibrium [6]

1



2 Chapter 1. Introduction and Overview

drive
source

work

system

heat bath
heat

FIGURE 1.1: The sketch illustrates the setup of fluctuation theorems, in which a classical or quantum
system is driven by an external force and connected to a heat bath. The drive source
performs work on the system under the absorption of heat from the bath. This figure is
adapted from reference [8].

and after a quantum quench [7].
The conceptuality of fluctuations goes far beyond dissipative dynamics in open classical

or quantum systems, including thermal or vacuum noise. In fact, fluctuations play a key role
in the field of phase transitions (PTs). For instance, thermal fluctuations at very high tem-
peratures wipe out any correlation in the system, leading to very small correlation lengths.
On the other hand, when the temperature is very low, thermal fluctuations are very small,
which again results in very small correlation lengths. In between, when the thermal energy
becomes comparable to the relevant energy scale of the system, the correlation lengths can
become much larger, such that the inner disorder can be overcome, leading to a qualitative
change of the physical properties of the system.

In the course of this chapter, we outline the individual problems that are addressed in
this thesis. Throughout this work, we use natural units and will therefore consequently set
h̄ = kB = c = 1.

Fluctuations in Systems out of Thermal Equilibrium

Over the past three decades, the search for similar relations that hold for open and closed
system away from thermal equilibrium alike has been intensified. This led to the discov-
ery of exact fluctuation relations for classical and quantum systems. These relations reveal
the fundamental properties of entropy production for systems under real nonequilibrium
conditions as sketched in figure 1.1. Various relations have been obtained [9–17] which are
collectively referred to as fluctuation theorems (FTs) [5, 18].

The earliest attempts dealt with the question of irreversible work and entropy fluctua-
tions in a closed driven classical system. These investigations culminated in the discovery of
the steady-state and transient FT for entropy production of classical systems in a nonequilib-
rium state [9, 10, 13, 19–21]. In contrast to the second law of (equilibrium) thermodynamics,
it suggests that the entropy of an isolated system may decrease with a finite probability [22,
23]. In fact, the FT reproduces the second law of thermodynamics by taking the ensemble
average. Other types of FTs are obtained for closed systems where the underlying dynam-
ics is described by a time-dependent Hamiltonian. This analysis lead to the discovery of
another prime example, the Jarzynski equality [11, 24] in the steady state limit and its later
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found generalization in the form of the Crooks relation [12]. It implies that the free energy
difference between the initial and final equilibrium state is obtained by measuring the work
performed by the nonequilibrium drive [25, 26]. In form of a quantum fluctuation theo-
rem, the quantum mechanical counterpart of the classical FT was later obtained by making
use of the time-reversal symmetry for a unitary time evolution and the assumption that the
heat bath is initially in a state given by the Gibbs distribution [8, 27, 28]. Still, the classical
and quantum FTs alike are of experimental relevance and a decisive tool to study systems
such as biological molecules [26, 29], molecular motors [30], colloidal particles [15], NMR
systems [31], trapped ions [32] and superconducting qubits [33].

Another branch which has evolved in the recent years addresses the question, whether
there exists a universal law for higher-order fluctuations in equilibrium systems, similar
to the FDT. By considering the second moments of fluctuations and dissipation, operator
sequences in the correlation function are introduced in a out-of-time-order. These out-of-
time-order correlators (OTOCs) were first introduced by Larkin and Ovchinnikov [34] and
are expected to be related to quantum chaos. Tsuji et al. [35–37] have shown that by consid-
ering OTOCs defined according to a bipartite statistical average, a generalization of the FDT
is found. By including linear combinations of the Wigner-Yanase skew information [35, 38],
a special form of the quantum Fisher information, an out-of-time-order FDT for the physi-
cal OTOCs with the usual thermal average is obtained. This generalized FDT connects the
chaotic properties of the system to its nonlinear response and the information content of
quantum fluctuations [35].

In chapter 2, we consider a similar type of system as the generic case depicted in fig-
ure 1.1. We determine the dynamical response of a quantum two-state system that is under
the effect fluctuations provided by very different sources. We consider two specific sys-
tems in which fluctuations play an essential role. We investigate first a dimer molecule that
is affected by thermal fluctuations and second, a mesoscopic system which is driven by
nonequilibrium fluctuations induced by electron transport between two reservoir at differ-
ent chemical potentials.

In the first setup, we study a quantum system in which the transfer of excitation en-
ergy between a donor and an acceptor molecule is forbidden in the static system configura-
tion. The energy transfer only becomes possible when thermal fluctuations are at work, as
these introduce geometry fluctuations of the dipole orientation in the considered perylene
bisimide donor acceptor (PBDA) pair. They show a rather strong Förster resonant energy
transfer [39] that is forbidden in the static average geometry [40] as the dipolar coupling
vanishes. We demonstrate an analogous effect associated with the breaking of chirality
symmetry. In its equilibrium geometry, this dimer is non-chiral, such that the linear chiral
response vanishes. However, angular fluctuations clearly break this symmetry and result
in a finite chirality. This can be quantified by the nonlinear spectroscopic signals, as it was
proposed by Sanda et al. [41]. We apply this concept of chirality fluctuations to the partic-
ular case of the PBDA pair and determine the chiral signals by treating the slow angular
fluctuations as an Ornstein–Uhlenbeck process. We calculate for a finite fixed angle a cer-
tain tensor component of the free induction decay for linearly polarized light. This yields
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the information which is equivalent to the circular dichroism. We also study how the re-
sponse changes when tuning the PBDA pair towards a homodimer. Such an arrangement,
in particular, facilitates the investigation of the noise-induced energy transfer [40]. Then, we
study the angle-averaged 2D chiral spectrum and its dependence on the waiting time. Most
importantly, this allows us to determine the angle fluctuation correlation time and strength.
We show quantitatively that the chirality fluctuations can be used to test the orthogonality
of the (static) dipoles in the PBDA pair on an entirely independent footing.

In the second setup, we study the relaxation of a quantum two-state system and the
action of nonequilibrium quantum fluctuations produced by a strong electron current. We
provide an analysis in terms of lowest-order tunneling processes between the quantum dot
and the leads. The coupling between the electronic level on the dot and the quantum two-
state system can be arbitrarily large. The weak coupling of the tunneling to the fluctuations
generates only a small broadening and a small energy shift of the system states such that the
unperturbed energy spectrum is a good starting point. We employ the well established di-
agrammatic perturbation method [42, 43] formulated on the Keldysh contour to determine
the real-time dynamics of the quantum two-state system under the action of a nonequi-
librium charge current. The population of the central dot and the flowing charge current
follow as well. This allows us to extract the relaxation and dephasing rate for the central
two-state system and to explain their dependence on the various parameters in terms of the
unperturbed energy spectrum. In addition, we use the Heisenberg-Langevin equation of
motion to determine the autocorrelation function of the nonequilibrium fluctuations. For a
static (DC) bias voltage between the two leads, we find a generalized nonequilibrium fluctu-
ation relation which extends the well-known equilibrium fluctuation-dissipation theorem.
The Fourier transform of the autocorrelation function includes Ohmic contributions as well
as nontrivial Lorentzian terms. Due to its simple structure, the nonequilibrium fluctua-
tion relation can be generalized to time-periodic (AC) transport voltages and leads us to a
Floquet-fluctuation relation in terms of higher harmonics of the correlation function of the
nonequilibrium noise.

Periodically Driven Closed Quantum Systems of Interacting Ultracold Atomic Gases

In open systems, the action of thermal and quantum fluctuations results in an equilibra-
tion dynamics such that the system eventually relaxes to a stationary state. In general, this
process is not present in isolated many-body quantum systems. Yet, when the energy uncer-
tainty in an initially prepared pure state is algebraically small in the Hilbert space dimen-
sion of the system Hamiltonian, the long-time average of a few-body observable can be-
come time-independent. In fact, the magnitude of the expectation value then coincides with
the prediction provided by a microcanonical average over the same energy window [44].
The conditions under which an expectation value thermalizes or not are summarized by the
eigenstate thermalization hypothesis (ETH) [45, 46]. It has been shown that the ETH is sat-
isfied by a large variety of nonintegrable quantum systems after a quantum quench [47–56].
In many-body quantum systems, the nonintegrability naturally arises due to finite particle
interactions. Hence, interactions provide effects that otherwise only occur in open system
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FIGURE 1.2: This sketch illustrates the application of a high-frequency periodic modulation of a static
system Hamiltonian sketched on the left-hand side. Under certain circumstances, such
a drive gives rise to an effective time-independent high-frequency Hamiltonian with
renormalized parameters which is illustrated on the right-hand side. In a classical inter-
pretation, an initially unstable equilibrium position (fading circle on the left-hand side)
may be dynamically stabilized (see the right-hand side). A prominent example for such
a scenario is a special inverted pendulum, namely the Kapitza’s pendulum [90]. The
figure is adapted from reference [60].

dynamics such as relaxation.
In addition to the ETH for a quantum quench, equivalent properties have been found

for closed quantum systems under the effect of a periodic drive. In the long time limit,
integrable systems relax to periodic states that are described by a generalized Gibbs ensem-
ble [57, 58]. On the other hand, nonintegrable systems thermalize to a circular ensemble of
random matrix theory, which can be interpreted as an infinite temperature state [59].

Moreover, strong external time-dependent driving is known to have pronounced impli-
cations for quantum many-body systems [60]. For instance, light can induce a collapse of
long-range ordered charge-density-wave phases [61–64], deconstruct insulating phases [65–
67], break Cooper pairs [68–71], or induce novel transient superconducting phases [72–78].
An interesting class of externally driven systems are parametric oscillators in which the
characteristic frequency is periodically modulated. Already the classical Kapitza pendulum
is known for its peculiar dynamics [79] which is stabilized by properly choosing the driv-
ing parameters. The parametric quantum harmonic oscillator has even a nonlinear Floquet
spectrum [80, 81] with regimes of stable and unstable quantum dynamics.

Novel concepts of driven quantum many-body systems can be studied in atomic quan-
tum gases, see references [82–86] for recent reviews. A trapped Bose-Einstein condensate
(BEC) with weak interactions is well described by the mean-field Gross–Pitaevskii equation
(GPE). In absence of any additional optical lattice, a homogeneous BEC in a time-dependent
setup has been considered in different constellations for a long time. In an early work, Castin
and Dum analytically studied a homogeneous BEC in a parametrically modulated harmonic
trap [87]. They showed that the driving induces a parametric instability in the global motion
of the condensate which gets depleted exponentially fast and non-condensed modes become
dominantly populated due to this effective "heating". The effect of a parametrically driven
trap potential was also studied in reference [88] within the Gross–Pitaevskii approach. It
was shown that the dynamics of the condensate wave function is described by the classical
Mathieu equation of a parametrically forced oscillator, by which one obtains stability cri-
teria. In another mean-field study, the effect of a time-dependent scattering length on the
collective motion of a BEC was studied in reference [89].
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In the presence of an optical lattice, the BEC is described by the Bose–Hubbard model
which is known to have the two distinct phases of a superfluid or a Mott insulator. Jaksch
et al. [91] have investigated the case of a Bose–Hubbard model with a time-dependent lattice
depth which leads to a variation of both the on-site interaction and the hopping amplitude.
Starting out from the superfluid phase, the atoms are driven to the Mott insulator phase and
converted there into molecules. Eventually, the melting of the molecular Mott insulating
phase produces a molecular superfluid [91].

Furthermore, a periodically modulated local atomic interaction [92] can stabilize a Bose-
Einstein condensate [93–95]. Moreover, the superfluid-Mott insulator transition can be con-
trolled [96–99]. In the high-frequency limit, these time-dependent examples can be mapped
onto effective, time-independent Hamiltonians in order to reveal the effects of the drive on
the phase boundaries. In figure 1.2, such a scenario is illustrated. This technique is com-
monly referred to as Floquet engineering [86, 100] which can also be used to induce novel
synthetic quantum matter [101]. Apart from this, anyonic statistics [102, 103] might be ac-
cessible [104] as well. Local modulations can coherently control the single-particle tunneling
in shaken lattices [105], magnetic frustration [106], and effective magnetic fields [107]. Mod-
ulated local on-site Bose–Hubbard interactions can lead to correlated tunneling [108] and
artificial gauge potentials, and thus to novel topological phases [109]. All these works com-
monly rely on the time-periodic modulation of local parameters.

An interesting regime which is less explored is realized when a strongly interacting gas
in the Mott phase is exposed to a time-dependent external driving of the global trapping
potential. When a system is driven parametrically, it exchanges energy with the driving
field, and in principle can be heated to infinite temperature [59, 110, 111]. On the other
hand, the parametric oscillator has regions of dynamical stability as well. So the natural
question arises how does strong atomic interaction affect the stability of a globally para-
metrically driven quantum many-body system. Can strong short-range interaction stabilize
a quantum gas in a parametric trap which would otherwise be unstable? In turn, can we
obtain information on the atomic interaction by externally tuning the system to an unstable
dynamical state?

In chapter 3, we show that a global parametric modulation of the trapping potential,
which does not have to be tuned to local properties, can be used to control the stability of the
interacting quantum gas in an optical lattice. In particular, the global dynamics of the quan-
tum many-body system in a parametrically modulated trap can be stabilized or destabilized
against equilibrium fluctuations by tuning the atomic interaction strength. Conversely, lo-
cating the onset of the instability can be used to determine the atomic interaction strength.
To illustrate the mechanism, we investigate the parametrically driven Bose–Hubbard model
with repulsive interaction in two regimes. First, we consider the regime of weakly interact-
ing atoms in the lattice in the presence of a parametrically modulated global trap. This can
be treated by a mean-field ansatz on the basis of the Gross–Pitaevskii equation (GPE) for
the condensate wave function and is supported by a numerically exact treatment in terms
of the time-evolving block-decimation (TEBD) method. Second, we aim to investigate the
interplay of the strongly interacting quantum gas in the Mott regime with an additional
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FIGURE 1.3: (a) An almost uniform gas of atoms is placed within a cavity resonator and orthogonally
pumped by a laser with frequency close to the cavity resonance. (b) Above a critical
pump power, photons scatter coherently into the cavity and a nonequilibrium quantum
phase transition occurs. (c) Consequently, an optical lattice is formed, where the atoms
spatially self-organize in a checkerboard pattern, such that the majority of atoms occupy
either "even" or "odd" lattice sites. This figure is adapted from reference [115].

parametrically modulated trap. To this end, we have calculated the time-dependent dy-
namics in this regime numerically by the TEBD approach, taken from reference [112]. The
parametric driving leads to a breathing of the width of a local central Mott region which
becomes resonant at frequencies which are shifted as compared to the non-interacting case.
In the Mott regime, energy absorption is increasingly suppressed due to the strongly re-
duced compressibility of the Mott region. After introducing the underlying driven Bose–
Hubbard model, we present our mean-field analysis for the parametric resonance based on
a discretized form of the GPE. To go beyond the weak-interacting regime, we compare our
results to the case of strong interactions based on the exact numerical TEBD. The connection
between periodically-driven harmonic trap and site-dependent hopping is clarified.

Nonequilibrium Quantum Phase Transitions in Hybrid Systems

Just as local particle-hole fluctuations drive the superfluid-Mott insulator quantum phase
transition in the Bose–Hubbard model, global fluctuations may also induce a phase transi-
tion. For instance, these global fluctuations occur when a many-body system is collectively
coupled to an external degree of freedom. Such systems often combine solid-state physics,
quantum optics and atom physics in a single setup and are, therefore, usually termed quan-
tum hybrid system. A prime example of this class is implemented in the form of a BEC in an
optical lattice inside a transversely pumped optical cavity which is depicted in figure 1.3. In
fact, this realization exhibits a quantum phase transition that is driven by global fluctuations
of the intracavity photon number. By tuning the transverse laser pump strength above a crit-
ical value, a Dicke quantum phase transition between a normal phase and a self-organized
superradiant phase occurs [113–117], as illustrated in 1.3 (a) and (b), respectively. Moreover,
optical bistability [118, 119], a roton-type softening in the atomic dispersion relation [113,
120–122] and optomechanical Bloch oscillations [123] were uncovered. Similar effects occur
also for polarizable and thermal particles in a cavity at finite temperature [124–126].
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In the recent years, a new generation of hybrids has been experimentally realized. This
class of systems merges state-of-the-art optomechanical systems with an atomic many-body
quantum system into a single atom-optomechanical setup. In this way, as theoretically pro-
posed [127, 128] and later experimentally realized [129–132], the vibrational motion of a
nanomembrane in an optical cavity is coupled to the spatial motion of a distant cloud of
cold 87Rb atoms that reside in the optical lattice of the outcoupled light field. In order to
overcome the resolved sideband cooling limit [133] and cool the nanomechanical oscillator
close to its quantum mechanical ground state, the atom gas can be used as a coolant [128–
130]. Recent approaches include active feedback cooling of the membrane oscillator to reach
a minimal mode occupation number of 〈nm〉 ' 16 [132], investigate collective effects in the
quantum many-body system that lead to collective atomic motion with an instability [131],
while other theoretical proposals suggest ways to induce robust atom-membrane entangle-
ment, coherent quantum state transfer, teleportation and indirect measurement [127, 134–
140].

Cutting-edge experiments in optomechanics demonstrate coherent state transfer [141]
and entanglement between the cavity light and the mechanical resonator [134, 142, 143],
macroscopic quantum coherence [144], as well as squeezed optical [145, 146] and mechan-
ical [147–151] states. Besides, it is well known that squeezed states can be generated by
nonlinearities [152, 153], such as, e.g., particle-particle interactions in an atomic condensate.
Also engineering the environment of an optomechanical setup can produce a squeezed-
vacuum reservoir and a transfer of squeezing to the movable mirror may occur [149]. Spin
squeezed states of atoms can be induced by squeezed light [154–158], in which the squeezed
state is transfered from the light to the atoms. Combining several of these elements in a
single hybrid quantum system may be a key step to generate a robust squeezed mechanical
state, that could be largely insusceptible to dissipative effects.

In chapter 4, we will first review the basics of classical phase transitions and their arising
critical behavior. Most notably, the criticality appears in a universal manner which allows
one to classify phase transitions by a set of very few numbers, the critical exponents. This
feature is shortly outlined by summarizing Landau’s theory of classical phase transitions.
We give a formal definition of the quantum mechanical counterpart of the classical phase
transition. While also quantum phase transitions show universal behavior, nonequilibrium
conditions break this universality, giving rise to critical exponents which, for instance, de-
pend on the structure and characteristics of the bath. A short overview about this aspect
is given by revisiting the superradiant phase transition of the open Dicke quantum system,
depicted in figure 1.3.

The chapter 5 is dedicated to the growing field of atom-optomechanical hybrid systems.
Thereby, our focus is set on two explicit examples which are currently considered in litera-
ture, have been experimentally realized or are currently in development. These approaches
allow to resonantly couple the motion of the membrane to either the spatial motion or in-
ternal degrees of freedom of the atomic gas. Hence, we distinguish between the motional
and internal coupling scheme. The ingenuity of these examples grants access to resonant
coupling over a large range of membrane frequencies. The principles of these realizations



Chapter 1. Introduction and Overview 9

are discussed and a profound derivation of the system Hamiltonian is provided within ex-
perimentally reasonable limits. In addition, we shortly summarize recent experimental and
theoretical progress and applications.

In chapter 6, motivated by recent experimental progress [129, 131, 132], we study a hy-
brid atom-optomechanical setup in the motional coupling scheme [128–132, 137, 140]. Within
the bad-cavity limit, we first adiabatically eliminate the light field in order to derive the
effective equations of motion of the underlying dynamics. We include the full lattice po-
tential and also the atomic interaction in the gas on the mean-field level. The numeri-
cal solution of the generalized Gross–Pitaevskii equation confirms the validity of an an-
alytic approach based on a Gaussian condensate profile (see also chapter 3). Tuning the
atom-membrane coupling by changing the laser intensity or cavity finesse, a nonequilib-
rium quantum phase transition (NQPT) occurs between a localized symmetric state and a
symmetry-broken quantum many-body state with a shifted cloud-membrane configuration.
It is fueled by the competition of the lattice, trying to localize the atoms at the minima, and
the membrane displacement which tries to shake the atoms. In the regime of a deep lattice,
it is revealed that the order of the NQPT is always continuous. Near the quantum critical
point, the energy of the lowest collective excitation mode vanishes and the order parameter
of the symmetry-broken state becomes non-zero, leading to a substantial atom-membrane
entanglement. The mode-softening is accompanied by a roton-type bifurcation of the decay
rate of the collective eigenmodes. Most importantly, the observed NQPT appears also when
the light-mediated coupling between the atoms and the membrane is non-resonant. We
further generalize the mean-field approach by including energetically higher excited states
of the atomic condensate. This allows us to investigate the effects of thermal and light-field
fluctuations. For white noise, we find critical exponents that differ from the usual mean-field
exponents.

In chapter 7, we consider the internal coupling scheme. We show that this very coupling
scheme also allows for a NQPT which can be readily tuned by changing the effective cou-
pling strength. In contrast to the motional coupling scheme, both, a first- and a second-order
NQPT can be realized in the same physical setup and this, by only changing a directly acces-
sible parameter. We show this for the membrane-in-the-middle-setup [159] in which the light
field is adiabatically eliminated and an effective coupling between the membrane and the
transition between two states in the atom gas can be obtained. In a mean-field description,
the atomic part is reduced to a single-site problem with a Gaussian ansatz for the condensate
profile. Tuning the atom-membrane coupling by modifying the laser intensity, the system
undergoes a NQPT. We provide simple analytical expressions for the critical point. More-
over, by tuning the atomic transition frequency, the order of the phase transition can be
changed from second- to first-order and vice versa. In case of a discontinuous phase transi-
tion, the system exhibits hysteresis which can be detected by polarization measurements of
the atom gas.

In chapter 8, we use the Bogoliubov approach to isolate the fundamental mode of the
atomic condensate. This allows us to treat the quasi-particle excitations as fluctuations act-
ing on the vibrational mode of the nanomembrane within in a system-bath picture. We
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find an analytic expression for the bath spectral density of the quasi-particle modes in the
zero-temperature limit, which depends on the atomic interaction strength. Hence, by tun-
ing the atomic interaction, the effective environment of the optomechanical components can
be engineered and the quantum state of the nanomechanical oscillator can be controlled.
For weak atom-membrane coupling, the system becomes analytically solvable and we have
direct access to thermodynamical observables of the membrane and atoms. Most interest-
ingly, the variance of the mechanical displacement coordinate can be reduced to a squeezed
nanomechanical state in a wide range of model parameters. In fact, squeezing is enhanced
by a finite atom-atom interaction at finite temperatures.

Finally, in chapter 9, we provide a generalization of the mean-field ansatz discussed in
chapter 7. Within a Bogoliubov prescription, we describe how the Gaussian ansatz can be
used to estimate the spectrum of collective excitations of a binary BEC coupled to an addi-
tional degree of freedom. For instance, this allows us to include fluctuations and the study
of the atom-membrane entanglement, as well as other effects beyond mean-field physics,
such as correlations. In addition, we apply the Gaussian ansatz in a modified version to the
Dicke model of figure 1.3. We reduce the generalized GPE to two coupled equations of mo-
tion describing the cavity photon amplitude and the atomic imbalance between even and
odd sites.



CHAPTER 2
Fluctuations in and out of Equilibrium

A fundamental process in nature is symmetry breaking caused by thermal fluctuations induced by
an equilibrium bath. This can enable processes that are otherwise forbidden. While a large amount
of research has been devoted to the role of equilibrium quantum fluctuations, the impact of nonequi-
librium quantum fluctuations remains not fully explored until today. In these fields fall the results
obtained in the publications below which are presented in this chapter.

N. Mann, P. Nalbach, S. Mukamel, and M. Thorwart, “Probing chirality fluctuations in molecules by
nonlinear optical spectroscopy”, The Journal of Chemical Physics 141, 234305 (2014).
N. Mann, J. Brüggemann, and M. Thorwart, “Dissipative dynamics of a quantum two-state system
in presence of nonequilibrium quantum noise”, The European Physical Journal B 89, 279 (2016).

In many fields of quantum physics, the impact of fluctuations on a quantum system of
interest is a fundamental problem. For instance, a quantum system, that is initially prepared
in a pure state, loses its quantum coherence over time when brought in contact with thermal
fluctuations. This matter has been in the focus of research since the early days of quantum
mechanics [160–164]. Understanding the principles of quantum decoherence and dissipa-
tion is a key step to find an answer to the fundamental question how quantum mechanics is
reconciled with the appearance of a classical world [165].

Fluctuations appear in different forms such as thermal fluctuations which are random
deviations of a system from its equilibrium state or quantum fluctuations (or vacuum fluc-
tuations) that are allowed by the uncertainty principle. An important physical principle
valid for these two examples at thermal equilibrium is the fluctuation-dissipation theorem
(FDT) [2, 4, 164, 166–168]. Connecting the action of fluctuations with the inevitable conse-
quence of the appearance of dissipation, it holds for classical and quantum mechanical sys-
tems alike. Yet, this elegant concept is well known to be not applicable to nonequilibrium
fluctuations. Up to now, efforts are made to find a general principle for those as well [169,
170].

During the course of this chapter, we present two examples of systems whose dynamics
is under the impact of different types of fluctuations. First, we consider the molecule of a
perylene bisimide donor acceptor (PBDA) pair that is affected by thermal noise, leading to
fluctuations of the molecular geometry which affects its electronic structure. This molecule
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has orthogonal transition dipole moments in its static configuration such that a direct Förster
transfer is forbidden. Yet, geometric fluctuations induce a rather strong Förster resonant
energy transfer as it has been shown by Nalbach et al. [40]. Here, we extend the same idea
to chirality and show in general that a molecule which is achiral in its equilibrium state can
show signatures of chirality when thermal fluctuations are included.

Second, we investigate the relaxation and dephasing dynamics of a quantum two-state
system influenced by nonequilibrium quantum fluctuations which are provided by an elec-
tron current flowing between two non-interacting leads at different chemical potentials. To
lowest-order in the tunneling process, we numerically determine the relaxation and dephas-
ing rate of the two-state system and explain their dependence on various parameters. In
addition, an analytical derivation of the autocorrelation function describing the nonequilib-
rium fluctuations is provided, which extends the FDT in the form of a generalized nonequi-
librium fluctuation-dissipation relation for DC and AC bias voltages between the two leads.

2.1 Thermal Geometry Fluctuations in Dimer Molecules

The existence of chiral molecules in nature is by far no exception. In fact, almost all bio-
logical molecules are chiral. For instance, nuclear bases, sugars, and peptides exist in enan-
tiomer pairs which are connected by a reflection symmetry. While most physical properties
of these pairs are identical, chiral enantiomers exhibit large differences in their biological ac-
tivity and chemical reactivity. As a consequence, the set of physical methods that are usable
to study chirality is limited [171, 172]. For instance, the circular dichroism is a commonly
used method which measures the difference between the absorption of σ+ and σ− circularly
polarized light. However, chiral molecules often have more than just a single conformation
and each of these has its own chiral response. At finite temperature, the different configu-
rations become thermally accessible such that always the thermal average over all confor-
mations is measured for an ensemble of chiral molecules [173]. Proposed in 2011, another
possible candidate to measure chirality makes use of nonlinear optical signals. This method
allows to study not only chiral molecules, but also molecules which are achiral in thermal
equilibrium, yet exhibit a finite chirality when thermal fluctuations of their configuration
break the spatial symmetry [41].

2.1.1 Geometric Setup of the Donor Acceptor Pair and Dipolar Interaction

In this section, we consider an orthogonally arranged perylene bisimide donor acceptor pair
as depicted in figure 2.1. The excitonic energy transfer is induced by dipole-dipole interac-
tions in the donor acceptor pair. Due to its orthogonally arranged dipole moments, the
dipole-dipole interaction strength J is zero in its equilibrium position. A simplified sketch
of the equilibrium scenario is given in figure 2.2(a), showing that not only the electric dipole
moments µ1, µ2 are perpendicular, but also the connecting vector R is perpendicular to the
donor electric dipole moment µ1. In general, the dipole-dipole interaction strength is given
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Donor

Spacer Acceptor FIGURE 2.1: A sketch of the chemical
structure of an orthogonally arranged
PBDA pair is shown together with its
transition dipole moments [174].
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FIGURE 2.2: (a) A simplified sketch of the arrangement of the two transition dipole moments µ1, µ2
and the connecting vector R of the PBDA pair is shown for its non-chiral equilibrium
orientation. (b) The sketch illustrates the angles φ and θ when µ1 is not oriented along
the x-axis.

by

J =
µ1µ2 − 3(µ1n)(µ2n)

R3 , (2.1)

where n is the unit vector in the direction of R = Rn. Consequently, the interaction strength
J vanishes when n ⊥ µ1 ⊥ µ2.

For rigid molecules such as the donor and acceptor, any deviation from the orthogonal
arrangement of the dipoles moments should arise from rotations around the positions of
the chemical bonds between the donor and spacer molecule and between the acceptor and
spacer molecule. In the following, we simplify the description by assuming that the connect-
ing vector fixes the coordinate system and the two dipole moments may only rotate around
their central positions. It follows that although rotations of the dipole moment µ1 will re-
sult in a finite dipolar interaction, the PBDA will stay achiral. When n ‖ µ2, any additional
vector will span a plane with the vector n (or µ2), leaving the whole system planar. Hence,
only when µ2 rotates out of the plane formed by µ1 and n, a chiral signal can be obtained.
In order to simplify the following calculation, we will consequently neglect rotations of the
dipole moment µ1. This step is justified, since for not too strong angular fluctuations, the
results will remain qualitatively unchanged.

Any rotation of the dipole moment µ2 can be described by the two angles θ and φ. These
angles are introduced in figure 2.2(b). The first angle θ denotes the angle between µ2 and
the connecting vector R, and the second angle φ measures the angle between the projection
of µ2 in the y− z plane and the z-axis. Note that, although the complex is chiral for rotations
with φ = π/2, the dipole-dipole coupling vanishes. On the other hand, rotations with φ = 0
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induce a finite dipolar coupling while the complex remains achiral.
By using the formerly introduced angles, the dipole moments are parametrized accord-

ing to

µ1 =
(

0, 0, µ1

)T
, (2.2a)

µ2 =µ2

(
cos θ, sin θ sinφ, sin θ cosφ

)T
. (2.2b)

It follows that the dipolar coupling strength is a function of the two angles resulting in

J ≡ J(θ,φ) = J0 sin θ cosφ . (2.3)

Here, we have introduced J0 = µ1µ2/R3, which takes the value J0 ' 85 cm−1 for the partic-
ular PBDA pair studied here.

2.1.2 Slow Dynamics of the Angular Movement

A stochastic time evolution of the angles originates from fluctuations of the dipole moments
around their equilibrium arrangement. This induces diffusive dynamics of the angles in a
potential, which, in the simplest form, is harmonic. Here, we assume a harmonic potential
for the angle θ with equilibrium position θ0 = 0 and a free rotation around φ. Moreover,
we assume slow movements for the stochastic time evolution described by an Ornstein–
Uhlenbeck process, which results in an equilibrium probability density

ρ
eq
θ (θ) =

1√
2πσθ

exp
(
− θ2

2σ2
θ

)
. (2.4)

Furthermore, the probability to observe θ at time t when the angle at time t = 0 was initially
θ′ is given by the expression

Pθ(θ, θ′, t) =
1

2πσ2
θ

√
1− e−2Dt

exp
(
−θ

2 + θ′2 − 2θθ′e−Dt

2σ2
θ [1− e−2Dt]

)
. (2.5)

Here, the diffusion constant D is a measure for the inverse autocorrelation time of the fluc-
tuations. In order to find an appropriate description of the PBDA pair, we further need
to find a realistic value for the width of the angular probability distribution σθ. In refer-
ence [40], the angular reorganization energy was estimated to be λθ ' 1cm−1. At high
temperatures, the reorganization energy relates to the width σθ of the probability density
via λθ = 〈J2

0θ
2〉/2kBT, where 〈θ2〉 = ∫

dθ θ2ρ
eq
θ (θ) = σ2

θ . Under these considerations, we
may estimate σθ ' 0.24 for the PBDA pair at room temperature.

In addition, we assume a homogeneous equilibrium probability density ρeq
φ (φ) = (2π)−1

for the angle φ. The time evolution of φ is expected to occur in a similar form as the dynamics
of the angle θ, however, with an infinitely large width σφ → ∞. The focus of our study is
the diffusive angular dynamics occurring on the time scales of the diffusion constant D and
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shorter such that we can also model the dynamics of φ by the form

Pφ(φ,φ′, t) =
1

2πσ2
φ

√
1− e−2Dt

exp

(
−φ

2 + φ′2 − 2φφ′e−Dt

2σ2
φ[1− e−2Dt]

)
(2.6)

with the width σφ = 2π.

2.1.3 System Hamiltonian of the PBDA pair and Light-Matter Interaction

In a reduced model of single excitations, we describe each monomer of the PBDA pair as
a quantum two-level system with energy difference εj between ground and excited state.
Then, the dimer is described by a Frenkel-exciton Hamiltonian given by

H =
1
2
ε1σ

(1)
z +

1
2
ε2σ

(2)
z + J(θ,φ)σ(1)x σ

(2)
x , (2.7)

with the standard Pauli matrices σ(j=1,2)
x,y,z . The Hamiltonian is readily diagonalized by the

unitary transformation

T = exp
(

i
2
ασ

(1)
y σ

(2)
x +

i
2
βσ

(1)
x σ

(2)
y

)
(2.8)

with the angles α and β defined according to

tan(α+ β) = − J(θ,φ)
ε

and tan(α− β) = − J(θ,φ)
δε

, (2.9)

where ε = (ε1 + ε2)/2 and δε = (ε1 − ε2)/2. For the considered PBDA, we find δε '
2500cm−1. Applying the transformation T leads to two independent two-level systems with
new Pauli matrices τ (±)z and energies E±(θ,φ) =

√
ε2 + J2(θ,φ) ±

√
δε2 + J2(θ,φ). Then,

the Hamiltonian of the total system is simply given by the expression

Hd = THT† =
1
2

E+(θ,φ)τ (+)
z +

1
2

E−(θ,φ)τ (−)z . (2.10)

In the same way, the total dipole moment µ = µ1σ
(1)
x +µ2σ

(2)
x of the heterodimer trans-

forms according to

µ = µ1

[
cos(α)τ (+)

x − sin(α)τ (+)
z τ

(−)
x

]
+µ2

[
cos(β)τ (−)x − sin(β)τ (+)

x τ
(−)
z

]
. (2.11)

Spectroscopically, the decoupled two-level systems can be addressed individually. For this
reason, it is sufficient to investigate the response of the j = +,− systems, with the corre-
sponding dipole components

µ+ = [µ1 cos(α) +µ2 sin(β)] τ (+)
x , (2.12a)

µ− = [−µ1 sin(α) +µ2 cos(β)] τ (−)x . (2.12b)

For the PBDA pair, we have that ε � δε & J0 ' kBT such that for the transformation
angles α ' −β and tan(2α) = −J(θ,φ)/δε. Additionally, optical spectroscopic experiments
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typically start with the system in the ground state. Under these considerations, the dipole
moments can be further simplified to

µ+ '




−µ2 sin(α) cos(θ)
−µ2 sin(α) sin(θ) sin(φ)

µ1 cos(α)− µ2 sin(α) sin(θ) cos(φ)


 τ

(+)
x , (2.13a)

and similarly

µ− '




−µ2 cos(α) cos(θ)
−µ2 cos(α) sin(θ) sin(φ)

−µ1 sin(α) + µ2 cos(α) sin(θ) cos(φ)


 τ

(−)
x . (2.13b)

Let us note that the transformation angle α ≡ α(θ,φ) depends on both geometric angles
θ, φ. Moreover, we will use the shorthand notation c1(θ,φ) = cos(α) = J(θ,φ)/N (θ,φ)
and c2(θ,φ) = − sin(α) = (

√
δε2 + J2(θ,φ) − δε)/N (θ,φ), with N 2(θ,φ) = J2(θ,φ) +

(
√
δε2 + J2(θ,φ)− δε)2. In order to not exaggerate dependences, we consequently omit the

dependence on the two angle θ and φ from here on.
In the following, we are interested in the nonlinear optical response of the PBDA pair to

a sequence of short lasers pulses. To that extent, we follow the description given in refer-
ence [41]. An expansion of the standard light-matter interaction Hamiltonian with the laser
electric field generates effective magnetic dipole moments and electric quadrupoles which
typically dominate over the real (intrinsic) contributions [175]. Therefore, we neglect the
latter and combine the effective magnetic dipole moment M± and the effective quadrupole
tensor Q± in the tensor

T±,αβ = −iRαµ∓,β = iQ±,αβ −
∑

γ=x,y,z

εαβγM±,γ/k. (2.14)

Here, Rα=x,y,z are the components of the connecting vector R and k is the absolute value
of the wave vector of the incident laser light. Moreover, we note that Q±,αβ is symmetric,
while the contribution

∑
γ εαβγM±,γ is antisymmetric in α and β. Inserting the electric dipole

moments µ±, we find

T− =− iR
2




µ2c2 cos θ 0 0
µ2c2 sin θ sinφ 0 0

µ1c1 + µ2c2 sin θ cosφ 0 0


 , (2.15a)

T+ =− iR
2




−µ2c1 cos θ 0 0
−µ2c1 sin θ sinφ 0 0

µ1c2 − µ2c1 sin θ cosφ 0 0


 , (2.15b)
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from which we can reconstruct Q± and M±. Consequently, the quadrupole tensors results
in

Q− =− R
4




2µ2c2 cos θ µ2c2 sin θ sinφ µ1c1 + µ2c2 sin θ cosφ
µ2c2 sin θ sinφ 0 0

µ1c1 + µ2c2 sin θ cosφ 0 0


 , (2.16a)

Q+ =− R
4




−2µ2c1 cos θ −µ2c1 sin θ sinφ µ1c2 − µ2c1 sin θ cosφ
−µ2c1 sin θ sinφ 0 0

µ1c2 − µ2c1 sin θ cosφ 0 0


 . (2.16b)

In addition, the magnetic dipole moments take the form

M− =
ikR
4

(0,µ1c1 + µ2c2 sin θ cosφ,−µ2c2 sin θ sinφ)T , (2.17a)

M+ =
ikR
4

(0,µ1c2 − µ2c1 sin θ cosφ,µ2c1 sin θ sinφ)T . (2.17b)

With the dimer in the rotating wave approximation, the light-matter interaction Hamil-
tonian with the classical laser field F(t)eikR/2 to first order in the wave vector k reads

Hint = −
∑

α=x,y,z

∑

j=±
Fα(t)τ

(j)
+



µj,α + i

∑

β=x,y,z

kβQj,αβ −
∑

β,γ=x,y,z

εαβγkβMj,γ



+ H.c. . (2.18)

Here, τ (j)
+ = (τ

(j)
x + iτ (j)

y )/2 is the operator which creates an excitation in the j = ± two-state
subsystem.

2.1.4 Chiral Linear Response

In accordance with the assumption that the decoupled two-level systems with energies E±
can be probed individually, we focus solely on the j = + system. Then, the effective field-
matter interaction Hamiltonian takes the simplified form Hint = −∑α Fα(t)Yατ+ + H.c.
with Yα = µα +

∑
β kβTαβ +O(k2), where we omitted the index + and superscript (+).

The linear optical response is given by the correlation function Iαβ(t) = 〈Yα(t)Yβ(0)〉.
As a matter of fact, the response of a single molecule can rarely be resolved experimen-
tally. Hence, we have to introduce instead an orientational average over the solid angle Ω
in order to account for the statistical ensemble where each molecule has a different orienta-
tion in space. We denote this orientational averaging by 〈·〉Ω , which leads to the averaged
correlation function

Iαβ(t) =
1
3
δαβ
∑

γ

〈µ∗γ(t)µγ(0)〉Ω +
1
3

∑

γ,δ

εαβγkγ [〈M∗δ (t)µδ(0)〉Ω − 〈µ∗δ (t)Mδ(0)〉Ω ] . (2.19)

In this expression, only the second part is a chiral signal. Without loss of generality, we
assume that the laser light is propagating along the x-direction with kα = kδαx and measure
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the signal

Iyz(t) '
2i
3

∑

α

∫
dθ ρeq

θ (θ)

∫
dφ
2π

Im {M∗α(θ,φ)µα} e−Γ te−iE+(θ,φ)t , (2.20)

in order to observe the chiral component. To arrive at this expression, we have assumed
a slow variation of the angles with respect to the internal time scale such that we can
set φ(t) ' φ(0) and θ(t) ' φ(0). Moreover, Γ is a phenomenological dephasing rate
for which we assume Γ = 50cm−1, corresponding to a typical time scale of roughly
∼ 100 fs. We obtain the linear chiral spectrum via a one-sided Fourier transformation with
Iyz(ω) =

∫
dθdφ Jyz(ω, θ,φ), where the integrand is given by the expression

Jyz(ω, θ,φ) =
kR
12π

µ1µ2 sin(θ) sin(φ)ρeq
θ (θ)

ω− E+ − iΓ
[ω− E+]2 + Γ 2 . (2.21)

We observe that the integrand is antisymmetric in both angles θ and φ. As a consequence,
each angle average individually leads to vanishing linear chiral response, i.e., Iyz(ω) ≡ 0.

In figure 2.3, we show the real (a), (b), (c) and imaginary (d), (e), (f) part of the linear
chiral signal Jyz(ω, θ,φ) as a function of the frequency ω and the angle φ. For all panels, the
angle θ is fixed to π/4 and we have chosen J0 = 85 cm−1, Γ = 50 cm−1 and the standard
deviation σθ = 0.24 for the angular fluctuations of the angle θ. These parameters have been
chosen in order to mimic the real PBDA complex. From left to right, the energy difference
increases from δε = 25 cm−1 in (a), (d) to δε = 85 cm−1 in (b), (e), and finally δε = 2500 cm−1

in (c), (f), which corresponds to the PBDA pair. For φ = 0, the molecular complex is achiral
and the signal vanishes. When φ is finite, a double peak structure in the real signal emerges
with opposite sign and a single peak in the imaginary part for varying frequency ω. For
the PBDA complex in (c) and (f), a double peak structure is also observed when φ is varied,
while ω is kept fixed. By decreasing the energy difference δε, the ellipsoid shape of the peak
(in the imaginary part) changes toward a heart shape which exhibits two positive peaks
followed by two negative peaks at some ω. We note that the case of small δε is closer to
a homodimer. Moreover, similar results can be expected, if the structure fluctuates around
different chiral equilibrium positions at φ 6= 0 and θ 6= 0. With these results, it is possible to
determine the geometric structure of such complexes.

2.1.5 Two-dimensional Chiral Spectrum

In order to measure a non-vanishing orientation averaged chiral signal, we focus on the
two-dimensional chiral spectrum. Hence, we determine the three-pulse photon echo signal
which is given by the four-point correlation function [176]

Rαβγδ = 〈Y∗α(τ3)Yβ(τ2)Yγ(τ1)Y∗δ (0)〉Ω , (2.22)

with the earlier defined Yα = µα +
∑

β kβTαβ +O(k2). Here, the arrival times of the three
pulses are given by 0, τ1 and τ2, while the signal is detected at time τ3. In particular, we
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FIGURE 2.3: The real (a), (b), (c) and imaginary part (d), (e), (f) of the integrand of the chiral linear
spectrum Jyz(ω, θ,φ) is shown as a function of the frequency ω and angle φ at fixed
θ = π/4. In each column, a different energy difference is considered with δε = 25 cm−1

in (a), (d), δε = 85 cm−1 in (b), (e) and δε = 2500 cm−1 in (c), (f). The other parameters
were chosen according to J0 = 85 cm−1, Γ = 50 cm−1 and σθ = 0.24. For a better
comparison, each signal is normalized to its individual maximum.

estimate a certain combination of the four-point correlation functions [41], given by the ex-
pression

Rc = Rxx
[yz][yz] + 2Rzx

[xy][yz] , (2.23)

which yields a purely chiral two-dimensional signal. In this definition, the superscripts of
the term Rzx represent the response in a setup where the first two pulses propagate in x-
direction, while the third pulse and the detection is along the z-direction. Likewise, the
superscripts of the term Rxx represents a collinear arrangement, where all pulses and the
detection are along the x-direction. Besides, the subscripts denote the polarization direction
of the corresponding pulses, where the bracket notation indicates the antisymmetrization of
the tensors with respect to the parenthesized indices, i.e.,

Rzx
[xy][yz] =Rzx

xyyz −Rzx
yxyz −Rzx

xyzy +Rzx
yxzy , (2.24a)

Rxx
[yz][yz] =Rxx

yzyz −Rxx
zyyz −Rxx

yzzy +Rxx
zyzy . (2.24b)

We note that optical signals, that are associated to chirality exchange, result from the
two-time correlation of the pseudo-scalar µM. In general, these signals are weak as they
scale with ∼ (kR)2. In fact, it can be shown that contributions in Rc to linear order in kR
vanish after the orientational averaging [41]. For the same reason, contributions to zeroth
order in kR coming fromRzx

[xy][yz] vanish. Yet, we may consider

Rxx
[yz][yz] ∼ 〈Y∗α(τ3)Yβ(τ2)Yα(τ1)Y∗β (0)〉Ω − 〈Y∗α(τ3)Yβ(τ2)Yβ(τ1)Y∗α(0)〉Ω . (2.25)
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When angular fluctuations occur on a very fast time scale, the average over θ and φ can
be performed at all times τi separately, which would lead to a vanishing signal Rxx

[yz][yz].
However, this angular motion of the heavy nuclei is typically slow when compared to the
time scale of the internal system1. In fact, a significant signal strength is only experimentally
observed at coherence times τ = τ1 and t = τ3− τ2, which are much smaller than the inverse
of the angular diffusion constant D−1. Hence, the angles do not change significantly during
these time intervals. On the other hand, the delay time T = τ2 − τ1 is usually varied over
much longer times in experiments. Only during this time interval, the angular motion has
to be taken into account, such that we can set θ(τ3) = θ(τ2), θ(τ1) = θ(0) and φ(τ3) =

φ(τ2), φ(τ1) = φ(0). In addition, the probability densities introduced in equations (2.5) and
(2.6) have to be explicitly included. This is done by performing the orientational averaging
according to

〈Y∗α(τ3)Yβ(τ2)Yγ(τ1)Y∗δ (0)〉Ω =e−Γ (t+τ )
∫

dθ
∫

dθ ′
∫

dφ
∫

dφ ′Pθ(θ, θ′, T)Pφ(φ,φ′, T)

×Y∗α(θ,φ)Yβ(θ,φ)Yγ(θ′,φ′)Y∗δ (θ′,φ′)e−iE+teiE′+τ .

(2.26)

Here, we have again used the shorthand notation E+ ≡ E+(θ,φ) and E′+ ≡ E+(θ′,φ′). With
this expression, we find that the zeroth order contribution in the signal Rxx

[yz][yz] vanishes
and, consequently, Rc yields no contributions to zeroth and first-order in kR. Thus, the
two-dimensional chiral signalRc is at least quadratic in kR.

Following the description in reference [41], the chiral signal can be written in the compact
form

Rc(t, T, τ ) = −2k2

3

∑

αβγ

(
〈Xαβγγβα〉Ω + 2〈Xαβγβαγ〉Ω

)
, (2.27)

by defining

Xαβγδεζ = Im
{

Tαβ(τ2)µ
∗
γ(τ2)− Tγβ(τ2)µ

∗
α(τ2)

}
Im
{

Tδε(0)µ∗ζ (0)− Tζε(0)µ∗δ (0)
}

. (2.28)

Evaluating the expression for the PBDA dimer, we find

∑

αβγ

〈Xαβγγβα〉Ω =− R2

2
µ2

1µ
2
2〈cos(θ) cos(θ′) + sin(θ) sin(φ) sin(θ′) sin(φ′)〉Ω , (2.29a)

∑

αβγ

〈Xαβγβαγ〉Ω =
R2

4
µ2

1µ
2
2〈cos(θ) cos(θ′)〉Ω , (2.29b)

where the primed and unprimed angles indicate the initial orientation at time 0 and final
orientation at time τ2, respectively. After a one-sided Fourier transformation with respect to

1We note, however, that in order to treat the case where the angular motion occurs on the same time scale as
the internal system time scale E−1

± , a full quantum mechanical treatment is required.
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FIGURE 2.4: The real (a) and imaginary part (b) of the 2D chiral spectrum Rc(ω3, T,ω1) are shown
for the very short waiting time DT = 10−5 for the PBDA pair with δε = 2500 cm−1,
J0 = 85 cm−1, σφ = 2π and σθ = 0.24. The real and imaginary part of the signal have
been normalized to their individual maximum.

the coherence times τ = τ1 and t = τ3 − τ2, we obtain the two-dimensional chiral signal

Rc(ω3, T,ω1) =
(kR)2

3
µ2

1µ
2
2

∫
dθdθ′dφdφ′ Pθ(θ, θ′, T)Pφ(φ,φ′, T)F(θ,φ, θ′,φ′) , (2.30)

with the function

F(θ,φ, θ′,φ′) = sin(θ) sin(φ) sin(θ′) sin(φ′)
Γ + i(ω3 − E+)

Γ 2 + (ω3 − E+)2
Γ + i(ω1 + E′+)
Γ 2 + (ω1 + E′+)2 . (2.31)

The angular conformations that dominantly contribute to the chiral signal are determined
by the integrand F(θ,φ, θ′,φ′). Accordingly to our previous discussion, these are the chiral
configurations for which both angles are different from zero. The contributions exhibit a
maximum when µ2 is perpendicular to the plane that is spanned by µ1 and R, or, in other
words, when |φ| = |θ| = π/2.

For the parameters of the PBDA complex given above, we show the two-dimensional
chiral signal Rc(ω3, T,ω1) in figure 2.4 for the very short waiting time DT = 10−5. Here,
panel (a) depicts the real part, whereas the imaginary part is depicted in panel (b). Our
assumption of an exponential decay with a fixed rate Γ of the dephasing dynamics corre-
sponds to Markovian dephasing dynamics which is reflected in the peak shape. In general,
the measured nonlinear chiral signals are rather weak as they scale with (kR)2, which is
typically of the order 10−6.

As the diffusive angular dynamics occur on a time scale of the autocorrelation time D−1,
the probability densities progressively tend to their corresponding equilibrium densities as
the waiting time T is increased. It is then expected that the strength of the nonlinear chiral
signal strongly decreases when T is of similar order as the autocorrelation time. This effect
is shown in figure 2.5 by measuring the relative maximum of the chiral signal R(T)/R(T0)

with R(T) = maxω1,ω3 Re {Rc(ω3, T,ω1)} and DT0 = 10−5. In fact, by tracking the peak
maximum of the nonlinear signal R(T), it is possible to experimentally measure the autocor-
relation time of the angular fluctuations. We note that for our considerations, the maximum
is always located at the frequency ω3 = −ω1 = δε.



22 Chapter 2. Fluctuations in and out of Equilibrium

10−5 10−4 10−3 0.01 0.1 1 10
10−4

10−3

0.01

0.1

1

DT

R
(T

)/
R

0

FIGURE 2.5: The maximal am-
plitude of the real part R(T) =
maxω1,ω3 Re {Rc(ω3, T,ω1)} is shown
in dependence of the waiting time T. The
amplitude is scaled to the value R0 = R(T0)
at DT0 = 10−5. The other parameters are
the same as in figure 2.4.

With this example, the striking impact of equilibrium fluctuations on the chiral proper-
ties of a dimer molecule is revealed. In the following section, we go beyond the equilibrium
case of thermal fluctuations and consider an example in which nonequilibrium quantum
fluctuations occur.

2.2 Nonequilibrium Fluctuations in a Mesoscopic Quantum Sys-
tem

In order to find a theoretical description of relaxation and decoherence processes, quantum
statistical fluctuations need to be included in the modeling of the dynamics of a quantum
system [160, 164]. In the style of classical mechanics, a quantum mechanical form of the
Langevin equation can be derived. However, an often favored and more general approach
is to consider an infinite set of uncoupled harmonic oscillators which are held at thermal
equilibrium and coupled to the quantum system of interest. These harmonic oscillators act
as a thermal bath (also bosonic environment) and induce fluctuations for the central system,
leading to decoherence and relaxation effects. The minimal model as a central system that
allows to study these questions is a two-state model or, in other words, spin-one-half model.
This spin-boson model allows to study dephasing of the two states, while transitions lead
to dissipation [161, 162]. In contrast to the minimalist approach, the spin-boson model does
not only act as a simple toy model, but rather forms a cornerstone of quantum statistical
physics. For more than thirty years, it has served as a key model for the development of
various fundamental analytical and numerical techniques to describe open quantum sys-
tems. Outstanding examples among these methods utilize a real-time path integral formu-
lation [161, 162, 177] which allows to obtain analytical results for the spin-boson model in
certain limits. For instance, the non-interacting blip approximation treats transitions be-
tween the two states perturbatively, for which mainly incoherent decay of the population
and coherence [161, 162, 178] are revealed.

The action of nonequilibrium quantum fluctuations to a coherent quantum two-state
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system is however more complex. So far, there exists no closed exact expression for the re-
laxation and dephasing rates in general. A simple model to study the influence of nonequi-
librium quantum statistical fluctuations appears in the form of a quantum two-state system
which is coupled to the energy level of a single spinless non-interacting electron on a quan-
tum dot. The quantum dot is connected to reservoirs of non-interacting electrons held at
constant temperature, such that the electron can tunnel from or into these reservoirs. The
minimal nonequilibrium condition requires at least two reservoirs (leads), between which
an electric voltage is applied. As a consequence of a finite difference of the chemical poten-
tials of the leads, a finite current between the two leads occurs. It follows that this charge
transport induces nonequilibrium quantum fluctuations to the quantum two-state system
coupled to the dot. This system very much resembles the equilibrium spin-boson model,
such that it is also often entitled as the nonequilibrium spin-boson model, despite the fact
that the statistical nature of the reservoirs actually is fermionic.

In order to model the nonequilibrium fluctuations generated by the flowing electron
current through the dot, we consider the system-bath Hamiltonian in the form

H = HS + HB + HT . (2.32)

Here, the quantum two-state system is included in the dot Hamiltonian HS. We denote the
two quantum states of interest by |↑〉 and |↓〉 and couple these to the population of spinless
electrons on the dot. The corresponding fermionic annihilation and creation operators are
denoted as d and d†. To be specific, we consider the system Hamiltonian

HS =
B
2
σz +

∆

2
σx +

J
2

d†dσz , (2.33)

where σj=x,y,z are the Pauli matrices. The energy difference between the two states |↑〉 and
|↓〉 is given by B and we further allow a finite transition with the rate ∆. The effective
spin-1/2 system is coupled to the electronic occupation number n = d†d of the dot with
the coupling constant J. The Hilbert space of the Hamiltonian HS is then spanned by the
vector basis {|σ, n〉}, where σ ∈ {↑, ↓} and n ∈ {0, 1} is the number of electrons on the dot.
By expanding the system Hamiltonian in its eigenbasis HS|±, n〉 = ε±,n|±n〉, we find the
eigenenergies ε±,n = ±

√
∆2 + (B + nJ)2/2. Here, +(−) corresponds to an (anti-)symmetric

linear superposition of the two spin states.
The nonequilibrium bath is composed of two non-interacting reservoirs of spinless elec-

trons with energies εkα described by the Hamiltonian

HB =
∑

kα

(εkα − µα)c†
kαckα , (2.34)

with the reservoir index α ∈ {L, R} which denotes the left and right lead. Provided that the
reservoirs are large enough such that the interaction with the system has almost no back
action on the fermions in the leads, we can commonly assume that the two baths are ther-
malized at all times at the same temperature T = β−1, but with different chemical potentials
µα. Here, we assume a symmetric voltage bias between the two reservoirs according to
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µL − µR = eV.
The electron transport through the quantum dot is described by a coupling Hamiltonian

given by
HT =

∑

kα

(
tkαd†ckα + H.c.

)
, (2.35)

with tunneling amplitude tkα. The electronic operators d and ckα obey the standard algebra
of fermionic operators.

The nonequilibrium quantum two-state model has been addressed in reference [179] on
the basis of a NIBA-like approximation. In the case of vanishing off-diagonal coupling in the
quantum two-state system, i.e., ∆→ 0, the full problem becomes exactly solvable. Hence, it
is reasonable to study the effect of∆ perturbatively. Under the additional assumption of not
too strong system-bath coupling J, an expansion of the noise correlators up to third order in J
can be used. Then, the frequency-dependent spin-relaxation rates, the frequency-dependent
fluctuation-dissipation ratio and an effective frequency-dependent nonequilibrium "temper-
ature" could be determined [179].

A further extended analysis of the regime of small ∆ characterized by a golden rule
rate for the transitions between the two energy eigenstates proportional to ∆2 has been car-
ried out in reference [180]. The intermediate time domain has been carefully addressed for
the full parameter regime of weak to strong system-bath coupling J at zero (or very low)
temperature. A Marcus-like nonequilibrium quantum relaxation rate has been derived. In-
terestingly, a simple mapping between the equilibrium temperature and bias voltage has
been shown not to exist. Different decay characteristics in different time regimes involve al-
gebraic as well as exponential decays of the correlation function. In addition, going beyond
the lowest order in∆, it has been shown that a Coulomb gas description in terms of a power
series in ∆ is suggested to be valid, since the first few orders up to the contribution ∼ ∆6

agree with the numerically calculated exact result. Yet, a complete analysis to all orders in
∆, but for linear order in J at finite temperature remained open.

2.2.1 Nonequilibrium Spin Dynamics and Electron Current

Before turning our focus on the fluctuations explicitly, we determine the system dynamics
when subject to nonequilibrium fluctuations. This is done by using the well established dia-
grammatic perturbation method in Keldysh space [42, 43]. The evolution of the expectation
value of an arbitrary operator A can be formulated in terms of a time-ordered integration
along the Keldysh contour C according to

〈A(t)〉 = tr
[
ρ0TC exp

(
−i
∫

C
dτ HT(τ )I

)
A(t)I

]
, (2.36)

with the time-ordering operator TC along the Keldysh contour. The subscript I indicates that
the time dependence of all operators on the right-hand side is meant as the time evolution in
the interaction picture. By the assumption that the initial density operator of the total system
ρ0 at time t0 factorizes into a system and a bath part, equation (2.36) allows us to perform
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a systematic expansion organized in orders of the tunneling Hamiltonian. Choosing the
operator A to be the projection operator |i〉〈j|, the time evolution of the reduced system
density operator P can be derived. In practice, it is convenient to choose each state |i〉 to
represent a different eigenstate of HS, e.g., |1〉 = |−, 0〉, |2〉 = |+, 0〉, |3〉 = |−, 1〉 and
|4〉 = |+, 1〉. Inserting the projection operator in equation (2.36) and differentiating with
respect to time, the equation of motion for the reduced density operator is obtained

∂tPi
j (t) =

∑

kl

∫ t

t0

dt′ Kik
jl (t, t′)Pk

l (t
′) , (2.37)

with 〈i|P(t)|j〉 = Pi
j (t). The correlation functions to all orders in HT are included in the

kernel K(t, t′). By employing a tensor-matrix multiplication notation, the result may be
rewritten in the compact form

∂tP(t) =
∫ t

t0

dt′ K(t, t′)P(t′) . (2.38)

In the following, we focus on the regime of sequential tunneling of electrons. In this
limit, we are able to apply a Born–Markov approximation and replace P(t′) with P(t) on
the right-hand side of equation (2.38). Thus, we assume the coupling between the quantum
dot (including the electronic level and the effective spin-1/2) and the electronic leads to be
weak in comparison to the typical energy scales of both parts. In addition, we assume the
correlation time of the electronic bath to be much smaller than the relaxation time of the
central system, such that the integral limits can be extended to infinity. To be specific, we
replace the time variable t′ by τ = t− t′. Then, the integral runs from zero to −t0 and we
can set t0 = −∞. It follows that the time evolution equation becomes local in time and the
memory kernel turns into a time independent super-operator W . Finally, equation (2.38)
reduces to

∂tP = WP . (2.39)

Here, the coherences of the reduced density operator due to internal coherent coupling be-
tween the electronic and the spin-1/2 are completely included in the equation of motion.

Another important quantity, especially from an experimental point of view as it is di-
rectly accessible, is the tunnel current I = e∂t(NL − NR), where Nα is the total number of
electrons in the lead α. In a fashion similar to the preceding discussion, an expression for
the stationary current can be derived, which leads to the expression

I =
e
2
〈W I〉st , (2.40)

where the mean has to be taken with respect to the stationary solution of equation (2.39).
The operator W I is very similar to W and can be determined, in general, to all orders in HT

by using the diagrammatic approach formulated in references [42, 43].
In order to find an expression for the super operator W (or W I , analogously), we expand

the perturbation series (2.38). As the total number of electrons in the leads is conserved, only
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even orders in the tunneling constant tkα contribute. In the sequential tunneling approxima-
tion, we consider only the lowest order terms, which are to second order in tkα. It is, then,
useful to encode the tunneling strengths in the parameter Γα = 2π

∑
k|tkα|2δ(EF,α − εkα),

where EF,α is the Fermi energy of lead α. In the following, we set our focus on the sym-
metric tunneling regime, where we set Γ = ΓL = ΓR. In addition, we apply the standard
wide-band limit, which corresponds to an energy-independent tunneling amplitude in the
vicinity of the Fermi energy.

Under these assumptions, we find that W = W0 + W N + WC decomposes into three
parts. The first term W0 describes the free time evolution of the quantum dot according to

[W0]
ik
jl = −i(εi − εj)δikδjl , (2.41)

with the eigenenergies defined below equation (2.33). The second term W N conserves the
number of particles in the reduced system and reads

[W N ]
ik
jl =−

Γ

2π

∑

α

∑

m

{
〈i|d†|m〉〈m|d|k〉[I−α (ωjm)]

∗δjl + 〈i|d|m〉〈m|d†|k〉I+α (ωmj)δjl

+〈l|d|m〉〈m|d†|j〉[I+α (ωmi)]
∗δik + 〈l|d†|m〉〈m|d|j〉I−α (ωim)δik

}
,

(2.42)

where we have used the shorthand notation ωij = εi − εj and introduced the integral

I±α (ω) = i
∫

dE
f±α (E)

ω− E− i0+
, (2.43)

with the Fermi–Dirac distribution f±α (E) = [1 + e±β(E−µα)]−1. Last, the third term WC =∑
α Wα includes sequential tunneling processes, that induce a current between the lead α

and the dot. The contributions read

[Wα]
ik
jl =

Γ

2π

[
〈i|d†|k〉〈l|d|j〉

{
I+α (ωil) + [I+α (ωjk)]

∗}+ 〈i|d|k〉〈l|d†|j〉
{

I−α (ωkj) + [I−α (ωli)]
∗}] .

(2.44)

In fact, this part of the super-operator is closely related to the super-operator W I which
is required to estimate the stationary current. It involves a summation over parts of the
operators Wα and an additional minus sign in order to include the current direction. In
particular, we have that W I = W I

L −W I
R with

[
W I

α

]k
l =

Γ

2π

∑

m

[
〈m|d†|k〉〈l|d|m〉

{
I+α (ωml) + [I+α (ωmk)]

∗}

−〈m|d|k〉〈l|d†|m〉
{

I−α (ωkm) + [I−α (ωlm)]
∗}] .

(2.45)
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FIGURE 2.6: The time evolution of
the quasi-spin occupation difference
〈σz(t)〉 is shown for different values of
B as indicated in the figure. The dot
is initially prepared in the pure state
P(0) = |0 ↑〉〈0 ↑| and the other pa-
rameters are chosen as J = 15Γ , ∆ =
3Γ , eV = 10Γ and β = 0.7/Γ . In
units of the transition rate ∆, the cho-
sen values of B fulfill B = 2 J = 10∆,
B = −J = −5∆, B = −0.75 J = 3.75∆
and B = −J/2 = 1.5∆.

In practice, we perform the energy integration in equation (2.43) by hand and use the
expression

I±α (ω) = −π f±α (ω)± i log(βωc/2π)± 1
2i

[
ψ0

(
1
2
+

iβ
2π

[ω− µα]
)
+ ψ0

(
1
2
− iβ

2π
[ω− µα]

)]
.

(2.46)
Here, ωc is a cut-off frequency which is equivalent to the band width of the leads and, there-
fore, considered to be very large compared to the characteristic frequencies of the system. In
the appendix A, we show how this expression is obtained and why the digamma function
ψ0(z) enters this formula.

2.2.1.1 Nonequilibrium Spin Relaxation and Dephasing

In the following, we investigate the relaxation and dephasing process of the quantum two-
state system under the influence of a nonequilibrium current. By expanding the density
operator P of the reduced system in terms of the right eigenvectors r(k) of the non-Hermitian
operator W , we find that the solution of equation (2.39) takes the form

P(t) =
42−1∑

k=0

ckr(k)e−ΓkteiΩkt . (2.47)

Here, Λk = iΩk − Γk is k-th eigenvalue, satisfying Wr(k) = Λkr(k). The stationary solution
corresponds to the eigenvector r(0) with eigenvalue Λ0 = 0, which is the only eigenvector
with a nonzero trace, i.e., tr r(k) = δk0. In addition, the asymptotic relaxation rate Γr of the
system is given by the second largest real part of the eigenvalues, i.e., the smallest finite rate
Γk 6= 0. The coefficients ck are chosen such that equation (2.47) satisfies the initial condition
P(0) =

∑
k ckr(k), with c0 = 1.

In figure 2.6, we show the time evolution of the mean value 〈σz(t)〉 of the quantum two-
level system for different energy splittings B and universal coupling constants ∆ = 3Γ and
J = 15Γ . For the electronic reservoirs, we have chosen a universal temperature β = 0.7/Γ
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FIGURE 2.7: (a) The relaxation rate Γr is shown as a function of the energy splitting B for different
values of ∆. The solid (dashed) curves show the smallest (second smallest) decay rate,
obtained from the eigenspectrum of the Liouville super-operator W . (b) The decoher-
ence rate Γd is shown for various transition rates ∆ as a function of B. The decoherence
rate is minimal at resonance when B = −J/2 and grows up to a local maximum, when
B + J is one magnitude larger than ∆. The solid curves show the decoherence rate,
whereas the dashed curves show the next largest rate. Due to a degeneracy of eigenval-
ues, exact crossings of the rates occur and the rates become ragged at these points. The
other parameters have been chosen for both panels according to J = 15Γ , eV = 10Γ
and β = 0.7/Γ .

and the bias voltage eV = 10Γ . Under decaying oscillations in the transient dynamics, the
spin relaxes in all five cases to its asymptotic steady state. However, for different values of B
the relaxing behavior differs in several aspects, such as different relaxation rates, amplitudes
and frequencies of the oscillations. A faster relaxation seemingly occurs, when the transition
rate ∆ is of the order of the energy difference B or (B + J).

In order to systematically determine the relaxation rate Γr, we calculate the eigenspec-
trum of the super-operator W2 according to equation (2.47). As a function of the energy
difference B, the results of this analysis are shown in figure 2.7(a) for different transition
rates ∆. A comparison of the rates for different voltages eV and temperatures T = 1/β
shows that the relaxation process is essentially independent of T and eV. Consequently, the
nonequilibrium relaxation rate Γr of the effective spin-1/2 is only a function of its internal
parameters B, J, ∆ and the tunneling rate Γ . On the one hand, for small ∆ ∼ Γ , the relax-
ation rate is peaked at B = 0 and B = −J and shows a local minimum at B = −J/2. But
on the other hand, the local maxima disappear and a global maximum arises at B = −J/2
for transition rates ∆ of comparable size. The particular ragged behavior at the local max-
ima with B 6= −J/2 is due to a degeneracy of two eigenvalues of the super-operator W .
Although each eigenvalue depends smoothly on the energy splitting B, the appearance of
exact crossings at certain values of B is triggered, when the rates exchange their role as min-
imal ones. In addition, this smooth behavior is indicated by showing the next largest decay

2In addition to this analysis, a direct way to determine the relaxation rate from the dynamics shown in
figure 2.6 is via a Fourier transformation of the polarization 〈σz〉(ω) =

∫ ∞
0 dt eiωt〈σz〉(t). The width of the peak

at ω = 0 determines the relaxation rate, which can be evaluated by a Lorentzian fit. Both methods result in
identical rates. Note that this also applies to the determination of the decoherence rate.
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FIGURE 2.8: The energy spec-
trum of the isolated quantum dot
ε±n = ±

√
∆2 + (B + nJ)2/2 is shown.

Here, n = 0, 1 is the electron occupation
number and J = 5∆ was chosen.

rate via the curves in figure 2.7(a).
To explain this behavior, it is necessary to understand the spectrum of the quantum dot

Hamiltonian. Thus, we show the eigenvalues εi as a function of the energy splitting B in
figure 2.8 for the case J = 5∆ which corresponds to the case ∆ = 3Γ in figure 2.7. The two
pairs of energy levels correspond to the two possible electron occupation numbers n. Two
avoided energy crossings occur at B = −J/2 with a gap that is determined by the tunneling
rate Γ . These avoided crossings lead to a mixing of the two spin states with a different
electron occupation. The low and high energy states, i.e., ε+n and ε−n are separated by
J/2. In addition, the two families of eigenstates with different n are separated by J/2 far
away from the avoided energy crossings. Two additional avoided crossings appear as a
consequence of a finite transition rate ∆. These avoided crossings appear when either B = 0
or B = −J. In the first case, the two spin states with electron occupation n = 0 are mixed,
while in the latter case, the states with n = 1 are mixed. The energy gaps of these avoided
crossing are given by the transition rate ∆.

With the visualization of the energy spectrum, we can now understand the behavior of
the relaxation rate depicted in figure 2.7(a). For the case ∆ = 3Γ , the two avoided energy
crossings with the same electron number at B = 0 for n = 0 and B = −J for n = 1 give
rise to the two local serrated maxima. In the vicinity of these positions, the dot occupation
number is stable and thus the fluctuations are very efficient in relaxing the spin. At the
position of the other avoided crossings at B = −J/2, on the other hand, states with different
electron occupation numbers are mixed, which renders the fluctuations around the already
undetermined dot state inefficient. As a consequence, the relaxation rate becomes minimal.

By increasing the transition strength ∆, the energy gaps at B = 0 and B = −J become
larger, while they progressively approach each other. Finally, the four avoided energy cross-
ings are very close to each other around B = −J/2. Then, these avoided crossings can no
longer be resolved and the two local maxima in the relaxation rate merge to a single maxi-
mum at B = −J/2.

While the spin exhibits only pure relaxation dynamics in the long time regime, it also
features decaying oscillatory dynamics in the transient regime, as shown in figure 2.6. This
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spin dephasing is characterized by a frequency Ωk 6= 0 and the corresponding rate Γk, given
by the eigenvalues of the Liouvillian W . In the following, we consider the decoherence rate
Γd given by the largest real part of the eigenvalue Λk with a nonzero imaginary part Ωk 6= 0.

In figure 2.7(b), we show the decoherence rate in dependence of the energy splitting B
for different transition rates ∆. In the same manner as before, the underlying spectrum of
the system Hamiltonian is the foundation to understand the behavior of the dephasing rate
Γd. As a consequence of the absence of any resonance for |2B + J| � ∆, we find a constant
and comparably large decoherence Γd which leads to a rather fast decay of the oscillations.
On the contrary, at the resonance B = −J/2, where two pairs of almost degenerate energy
eigenstates exist, the decoherence rate is globally minimized which leads to a dynamics ro-
bust against dephasing. Away from the energy crossings, the decoherence rate is almost
independent of ∆, as the off-diagonal elements of HS are negligible to B for B, B + J � ∆.
Then, corrections in Γd are only of second-order in the transition rate ∆ and the dephas-
ing process is solely determined by the parametric coupling of the spin operator σz to the
number of electrons n on the dot. Thus, the total Hamiltonian appears diagonal and the
nonequilibrium fluctuations only induce dephasing with a rate dominated by the tunneling
rate Γ .

At this point, let us emphasize again that the relaxation and dephasing describe true
nonequilibrium processes which occur under the action of a strong nonequilibrium envi-
ronment.

2.2.1.2 Electron Current and Differential Conductance

For the sake of completeness, we study the stationary current I between the leads which
is given by equation (2.40). Thus, we show in figure 2.9 the current-voltage characteristics.
Here, (a) shows the current coded in colors versus the voltage eV and energy splitting B,
whereas (b) considers a constant B = −5Γ and shows the current I only as a function of eV.
The behavior of the current can be clearly divided into three different regions.

In the first region I of small voltages, no current flows. This region extends until the
voltage becomes large enough such that the first transport channel opens. This occurs at
eV = 2|ε±0 − ε±1|, when the voltage is large enough to induce the first transition between
the unoccupied and occupied eigenstates. Hence, at the point B = −J/2, where a crossing of
two eigenenergies of the uncoupled dot Hamiltonian happens, an infinitesimally small bias
voltage is enough to open the first transport channel and induce a finite electron transport.

In region II, the current reaches another plateau whose height depends on the parameters
B, J, ∆. On the basis of an analysis of the matrix W I , the current can be determined. Under
the assumption that each allowed transition has an identical probability, we calculate the
trace of W I for sharp steps of the Fermi function and weight everything with a factor 1/4.
By this, we arrive at the expression

III =
eΓ
4

[
1 +

∆2 + B(B + J)√
(∆2 + B2)(∆2 + [B + J]2)

]
. (2.48)
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FIGURE 2.9: (a) The stationary current I is shown color coded versus the bias voltage eV and the level
energy splitting B. The reservoir temperature and dot parameters have been chosen as
β = 10/Γ , J = 15Γ and ∆ = 3Γ . (b) A horizontal cut of the stationary current I,
indicated by the dashed line in (a), is shown for the energy splitting B = −5Γ . Both
plots can be divided into three regions. In these regions, there are either no (I), one
(II) or two (III) energy level transitions of the dot in the energy window spanned by
the voltage eV. In the region I the current is constantly zero, while it is maximized to
I = 0.5 eΓ in region III. In the intermediate region II, the current follows equation (2.48)
which is indicated by the dashed line in (b).

Equation (2.48) is shown by the dashed red line in figure 2.9(b), for which a good agreement
with the numerically calculated current in this region is found.

In the last region III, an additional transport channel becomes available when the bias
voltage is large enough to change the spin quantum number from− to +. Consequently, the
current is maximized to IIII = eΓ/2 in the sequential tunneling regime for voltages larger
than eV = 2(ε+0 − ε−1). For finite temperatures, the behavior is smoothened out, whereas
perfect steps would occur for zero temperature.

The classification into different regions is best visualized by the differential conductance
(∂ I/∂V) shown in figure 2.10(a) color coded versus eV and B and a cut along constant
B = −5Γ in (b). In the vicinity of the resonance B = −J/2, two different curves, on which
the differential conductance is significantly different from zero, appear. These curves divide
the diagram into the three regions I, II, III and correspond to the points at which either
eV = 2(ε−0 − ε−1) or eV = 2(ε+0 − ε−1). When increasing or decreasing the energy bias B
away from the resonance, the separatrix I-II becomes more pronounced, while the separatrix
II-III fades out. This becomes clear when looking at the current in region II. Under the
assumption B(B + J) > 0, the current III to lowest order in ∆ takes the form

III ' eΓ
2

[
1− 1

4

(
∆

B

)2
]

. (2.49)

Thus, away from the resonance, the current jumps almost directly to its maximal value at the
border between regions I and II. Consequently, the differential conductance at the separatrix
II-III is only of the order (∆/B)2. On the other hand, in the regime −J . B . 0, the current
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FIGURE 2.10: (a) The differential conductance (∂ I/∂V) is shown as a function of the bias voltage eV
and the internal energy difference B. The dashed horizontal line indicates the value
B = −5Γ . (b) For this very energy splitting B, the differential conductance is shown
as a function of eV. The other parameters have been chosen as in figure 2.9.

jump at the first separatrix is only to a small level (compare also figure 2.9). Consequently,
(∂ I/∂V) is more pronounced at the second separatrix.

2.2.2 Correlation Function of the Nonequilibrium Fluctuations

It is of foremost interest to know the features of the fluctuations which lead to a relaxation
process to some stationary or thermal equilibrium state of the system that is subject to these
fluctuations. For instance, their spectral distribution determines the relaxation and dephas-
ing rates. At thermal equilibrium and for a Gaussian environment, the fluctuations are com-
posed of a sum over harmonic thermal fluctuations with spectral weight that is determined
by the spectral density of the bath [161]. When the system is subject to nonequilibrium fluc-
tuations, such simple features are not known up to present. Here, we can readily evaluate
the correlation properties of the nonequilibrium noise which acts on the two-state system.

In the presence of the coupling to the electronic occupation number, the Heisenberg
equation of motion for the effective spin-1/2 system is given by

∂tσx =− Bσy − Jd†dσy , (2.50a)

∂tσy =Bσx −∆σz + Jd†dσx , (2.50b)

∂tσz =∆σy . (2.50c)

Then, the tunneling coupling to the reservoirs induces fluctuations of the dot occupation
whose correlation properties will be determined in the following. In order to estimate the
dynamics of the fluctuations, we derive the equations of motion for the fermionic ladder
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operators on the dot and in the leads as

i∂td =
J
2
σzd +

∑

kα

tkαckα , (2.51a)

i∂tckα =εkαckα − tkαd , (2.51b)

respectively. We note that these equations follow after neglecting terms that are at least cubic
in the destruction and creation operators. This approximation is consistent with the Markov
approximation that we applied in the preceding section. In addition, the latter equation also
only includes sequential tunneling events between the leads and quantum dot. Next, we
solve the inhomogeneous linear differential equation of the bath operators (2.51b) to find

ckα(t) = e−iεkα(t−t0)

[
ckα − itkα

∫ t

t0

ds d(s)eiεkα(s−t0)

]
, (2.52)

with ckα = ckα(t0) and insert the solution in equation (2.51a). Under the assumption that the
time scale, on which the continuous density of states of the reservoir thermalizes, is much
smaller than the time scale on which the system dynamics occur, we can set d(s) ≡ d(t).
In other words, we apply the Born–Markov approximation. Then, the appearing integrals
can be solved analytically. In summary, we then arrive at the equation of motion for the
annihilation operator of a particle on the dot in the form

ḋ = − i J
2
σzd− Γ d + ξ(t) , (2.53)

with the inhomogeneity
ξ(t) = −i

∑

kα

tkαe−iεkα(t−t0)ckα , (2.54)

acting as a fluctuating force with vanishing mean value but a non-vanishing autocorrelation
function. In fact, this fluctuating force leads to a damping with rate Γ of the dot occupation,
which in turn is related to the autocorrelation function 〈ξ†(t)ξ(0)〉. Moreover, we have used
once more the wide-band limit and set Γ = (ΓL + ΓR)/2.

With equation (2.53), the dynamics of the dot occupation number n(t) can now be de-
termined under the influence of the nonequilibrium fluctuating force ξ(t). Due to the finite
damping with rate Γ , the dynamics of the dot occupation number become independent of
the spin dynamics in the limit of t0 → −∞. It follows that the occupation number then is
time-independent and is simply given by

n(t) ≡ n =

∫ ∞

0
dsds′ ξ†(s)ξ(s′)e−Γ (s+s′) , (2.55)

with n(t) = d†(t)d(t).
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2.2.2.1 Characteristics of the Nonequilibrium Noise

The characteristics of the nonequilibrium quantum statistical fluctuations is fully deter-
mined by equation (2.55). In the limit of symmetric tunneling, the mean value of the dot
occupation readily follows as

〈n(t)〉 = 1
2

. (2.56)

The autocorrelation function of the dot occupation number is now determined to be

L(t, s) = 〈n(t)n(s)〉 − 〈n(t)〉〈n(s)〉 =
[
γ+(t− s)

]2
, (2.57)

where we have defined the functions

γ±α (t) =
Γα
2π

∫
dE

f±α (E)
E2 + Γ 2 eiEt , (2.58)

with γ±(t) =
∑

α γ
±
α (t). Moreover, f±α (E) = [1 + e±β(E−µα)]−1 is the Fermi–Dirac distribu-

tion of lead α. We observe that the autocorrelation function is time-translational invariant
such that we can further simplify our notation according to L(t, s) = L(t− s, 0) = L(t− s).
The spectral density of the nonequilibrium quantum noise is now obtained via the Fourier
transform L(ω) =

∫
dt L(t)eiωt, which is, in general, given by the convolution integral

L(ω) =
∑

αβ

ΓαΓβ
2π

∫
dE

f+α (E) f+β (ω− E)
(E2 + Γ 2)([ω− E]2 + Γ 2)

. (2.59)

In the limit of either zero3 or infinite temperature, simple expressions for L(ω) can be de-
rived. In the case of infinite temperature, the autocorrelation function results in a Lorentzian

lim
β→0

L(ω) =
1
2

2Γ
ω2 + 4Γ 2 . (2.60)

Hence, the autocorrelation function becomes independent of the applied bias voltage, since
all possible transitions become thermally accessible with unified probability. For compact-
ness, we present the result of the zero temperature limit only for Γ = ΓL = ΓR, which can
be written as

lim
β→∞

L(ω) =
1
2

2Γ
ω2 + 4Γ 2 [C(ω, eV/2) + C(ω,−eV/2)] , (2.61)

by defining the function

C(ω,µ) =
1
π
[θ(ω) + θ(ω− 2µ)]

[
tan−1

(
ω− µ
Γ

)
− tan−1

(
µ

Γ

)
+
Γ

ω
log
(
Γ 2 + (ω+ µ)2

Γ 2 + µ2

)]
.

(2.62)
By studying the zero temperature limit, we observe that for large voltages eV � Γ , the zero
and infinite temperature results are identical, i.e., limβ→0 L(ω) = limeV→∞ limβ→∞ L(ω). For
different values of the bias voltage, we show the zero temperature autocorrelation function

3Strictly speaking, in the limit of zero temperature also quantum effects such as coherent tunneling can play
an essential role such that this result has to be taken with care.
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FIGURE 2.11: The autocorrelation function L(ω) is
shown in the infinite temperature limit (solid) and
zero temperature limit (dashed) for three different
voltages.

(dashed) in addition to the case of infinite temperature (solid) in figure 2.11. In all cases,
the spectral resolution of the nonequilbrium noise correlation function is dominated by a
Lorentzian peak that is centered at zero frequency. The zero temperature limit features the
appearance of a shoulder close to ω = eV, wheres the spectral noise function L(ω) is reduced
at the opposite position ω = −eV.

Besides these two limits, the exact expression of the correlation function L(ω) at arbitrary
temperature involves in general sums over fermionic Matsubara frequencies νn = (2n +

1)π/β, which cannot be evaluated in a closed analytic expression. Yet, these sums generate
peaks in the spectral weight at ω = ±eV/2 and ω = ±eV with temperature dependent
widths.

2.2.2.2 Nonequilibrium Fluctuation Relation

According to the fluctuation-dissipation theorem valid at quantum statistical equilibrium,
an equilibrium correlation function L0(t) satisfies the relation L0(t− iβ) = L∗0(t). In order
to check this relation for the nonequilibrium occupation correlation L(t), we first look at the
functions γ±α (t) for which we find

γ+α (t− iβ) = eβµαγ−α (t) (2.63)

and
γ+L (t) =

[
γ−R (t)

]∗ . (2.64)

By using these two identities, we estimate the final expression

L(t− iβ) = L∗(t)−
∑

α

(
1− e−2βµα

) [
γ+α (t)

]∗ [
γ+α (t)

]∗ (2.65)

which extends the equilibrium FDT to the nonequilibrium case. By taking the limit of van-
ishing voltage µα = 0, we note that the equilibrium FDT is recovered.
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2.2.2.3 Time Dependent AC-Voltage

The results in the preceding part can be readily generalized to the case of AC-driven leads for
which similar results are obtained. The AC-drive is explicitly included in the eigenenergies
of the reservoir modes with εkα(t) = εkα+ eVα cos(Ωt). By using the unitary transformation
U(t) = e−i

∑
kα φα(t)nkα with φα(t) = eVα

∫ t
t0

ds cos(Ωs), the time dependence of the single
particle energies εkα(t) is transfered to the tunnel amplitudes tkα(t) = tkαeiφα(t). Thus, by
making use of the Jacobi–Anger identity

eiz sin θ =
∞∑

n=−∞

Jn(z)einθ , (2.66)

the appearing exponential can be expanded in terms of Bessel functions Jn(z). Thus, we
can follow the same calculus as before and obtain for the AC-driven correlation function

L̄(t, s) =
∑

klmn

γ+kl (t− s)γ+mn(t− s)ei(k+m)Ωte−i(l+s)Ωs , (2.67)

which however is no longer time-translational invariant. In analogy to the DC-driven case,
we have defined

γ±klα(t) =
Γα
2π
Jk

(
eVα
Ω

)
Jl

(
eVα
Ω

)∫
dE

f±α (E)eiEt

Γ 2 + (E + kΩ)(E + lΩ) + i(k + l)ΩΓ
, (2.68)

and again γ±kl (t) =
∑

α γ
±
klα(t). By evaluating the average over a single period T = 2πΩ−1,

the time-translational invariance is regained, such that we investigate in the following the
autocorrelation function

L(t− s) =
1
T

∫ T

0
dτ L̄(t + τ , s + τ ) =

∑

klm

γ+
(k−m)l(t− s)γ+m(k−l)(t− s)eikΩ(t−s) . (2.69)

In order to check the FDT, we use the relations

γ+klα(t− iβ) = eβ(µα−kΩ)γ−klα(t) (2.70)

and ∑

kl

γ+klR(t) =
∑

kl

[
γ−klL(t)

]∗ . (2.71)

Equipped with these identities, we find the relation

L(t− iβ) = L∗(t)−
∑

α

∑

klm

(
1− e−2βµα

) [
γ+
(k−m)lα(t)

]∗ [
γ+m(k−l)α(t)

]∗
e−ikΩt , (2.72)

which generalizes the fluctuation-dissipation theorem to the periodically AC-driven case.
Moreover, we note that in the non-driven regime with either Vα = 0 or Ω = 0, the DC result
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is recovered by making use of the relations Jk(0) = δk0,

∞∑

k=−∞

[Jk(x)]2 = 1 , and Jn(x + y) =
∞∑

k=−∞

Jk(x)Jn−k(y) . (2.73)

Most interestingly, even in the AC-driven regime, the relation (2.72) can coincide with the
equilibrium FDT by choosing the constant bias voltage µα = 0, even though eVα,Ω 6= 0.
This is plausible as we have averaged the autocorrelation function over a single period T
such that the nonequilibrium condition is all together averaged to zero.

The system here studied illustrates the impact of nonequilibrium quantum statistical
fluctuations on the dynamics of a two-level system. The relaxation and dephasing pro-
cess yields nontrivial rates that are directly obtained from the spectrum of Liouville super-
operator. In addition, fluctuation relations can be obtained which recover the normal the
usual FDT under the equilibrium condition eV → 0 and eVα → 0.

In the next chapter, we will study an isolated quantum many-body system that is period-
ically driven. In this example, local particle interactions can provide the means to thermalize
the system as summarized by the eigenstate thermalization hypothesis. Thus, similar effects
as in open system dynamics can be observed.





CHAPTER 3
Parametric Resonance in a Driven
Bose–Hubbard Model

The impact of the atomic interaction on the dynamical stability of the driven quantum many-body
state in a parametrically driven harmonic potential is revealed in the regime of weak interaction. An-
alyzing a discretized Gross-Pitaevskii equation within a Gaussian variational ansatz yields a Mathieu
equation for the condensate width. The parametric resonance condition is shown to be modified by
the atom interaction strength. In this chapter, the main results presented in the following reference
are summarized:

N. Mann, M. Reza Bakhtiari, F. Massel, A. Pelster, and M. Thorwart, “Driven Bose–Hubbard model
with a parametrically modulated harmonic trap”, Physical Review A 95, 043604 (2017).

The eigenstate thermalization hypothesis characterizes whether observables of a closed
quantum system can be accurately described by equilibrium thermodynamics in the form
of a microcanonical ensemble. A prerequisite for such a system is the presence of noninte-
grability. In this chapter, we consider a one-dimensional Bose–Hubbard model, where the
nonintegrability is provided by local particle interactions. Against this background, we in-
vestigate the impact of finite interactions on the resonance condition of the system when it
is affected by a parametric drive.

A weakly interacting Bose–Einstein condensate in a parametrically modulated harmonic
trap has been studied in reference [87]. Within an analytic approach, the dynamical insta-
bility has been determined, which is accompanied by an exponentially fast depletion of the
condensate. Later, it has been shown that the motion of the condensate is described by a
nonlinear Mathieu equation [88]. Here, we include a global harmonic trapping potential in
a one-dimensional Bose–Hubbard model.

The time-averaged potential curvature V0 is parametrically modulated with the strength
δV and the frequency Ω according to V(t) = V0 + δV sin(Ωt). The system Hamiltonian is
given by

H(t) = −J
L−1∑

j=1

(
b†

j+1bj + H.c.
)
+

U
2

L∑

j=1

nj(nj − 1) + V(t)
L∑

j=1

(j− j0)2nj , (3.1)
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where j0 = (L − 1)/2 is the lattice center, bj (b†
j ) are the bosonic annihilation (creation)

operators at site j and nj = b†
j bj denotes the local occupation number operator. Moreover,

J is the nearest-neighbor hopping rate and U the on-site interaction strength. Here, we
consider a lattice with L sites that is loaded with a fixed number of N bosonic atoms.

In an earlier work [112], we estimated the transient quantum many-body dynamics of
the strongly interacting gas on a lattice in the presence of the parametrically modulated har-
monic potential. By using the time-evolving block-decimation (TEBD) method1, a resonant
behavior was found.

For a more rigorous analysis of the resonant behavior and the instability condition, we
establish an analytic mean-field approach and determine the resonance condition. In addi-
tion to this, the results of both approaches are compared with each other.

3.1 Quantum Many-Body Parametric Resonance in the Mean-Field
Regime

In the limit of non-interacting particles, the system can be exactly mapped onto a discretized
version of the quantum harmonic oscillator with the eigenfrequency ω0 = 2

√
JV0. Applying

the parametric drive, regions of dynamical instability [80, 81] are produced in the parameter
space, which are characterized by diverging position and momentum variances. Here, the
parametric resonance for the displacement mode is at

nΩ = 2ω0 , (3.2)

with n ∈ N \ {0}, or the condensate breathing mode according to nΩ = 4ω0, equiva-
lently. By considering the mean-field regime, we elucidate the impact of quantum many-
body interactions on the resonance condition. At the same time, the formalism of the time-
dependent variational theory will be formulated of which we will make use in subsequent
chapters.

In the mean-field regime, the dynamics of a dilute, weakly interacting atomic condensate
at zero temperature is described by the Lagrangian

L =
1
N

∑

j

[
i
2
(ψ∗j ∂tψj − ψj∂tψ

∗
j ) + J(ψ∗j ψj+1 + c.c.)−V(t)(j− j0)2ψ∗j ψj −

U
2
ψ∗j ψ

∗
j ψjψj

]
,

(3.3)
which is readily obtained from the Hamiltonian (3.1) by making the mean-field ansatz |ψ〉 =∑

j ψjb†
j |0〉. Here, |0〉 is the vacuum state with no particles occupying the lattice and by

extremizing the Lagrangian with respect to the expansion coefficients ψj, a discretized form
of the Gross–Pitaevskii equation can be derived. In order to find an approximative, analytic
description for the time evolution of the bosonic condensate, we make a Gaussian ansatz for

1The TEBD method is a variant of the time-dependent density matrix renormalization group [181–183], which
makes use of a clever expansion of the wave function. By expanding the wave function in terms of matrix prod-
uct states, a numerical time evolution of any state can be formulated straightforwardly. Benefiting from a low
entanglement in many one-dimensional lattice systems, the dimension of the generators of the matrix product
state can be chosen quite small, resulting in one of the nowadays most efficient computational algorithms.
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the wave function [95, 184]

ψj(t) =
(

N2

πσ(t)2

)1/4

exp
(
− [j− j0]2

2σ(t)2 + iη(t)[j− j0]2
)

, (3.4)

with real and time-dependent variational parameters including the width σ(t) and the cor-
responding phase η(t). The condensate width is measured in number lattice sites.

In order to drastically simplify our description, we consider a parameter regime where
the atom gas is extended over many sites with σ(t)� 1 for all times. In a static picture, this
is satisfied by making the assumption that the atomic hopping rate is much larger than the
static potential curvature, i.e., J � V0. Then, the summation over the lattice sites j can be
converted into a continuous integration for which we extend the limits to ±∞2. Within this
limit, the Lagrangian takes the form

L = 2J exp
(
− 1

4σ2 − η
2σ2
)
−
[
η̇+ V(t)

]σ2

2
− NU√

8πσ
. (3.5)

The equations of motion for the condensate width and phase are provided by the Euler-
Lagrange equations ∂yL = d

dt∂ẏL with y ∈ {σ, η}. The dynamics is readily obtained via
σ̇ = 4Jγση and

σ̈+ γ̇σ̇+ 4JγV(t)σ = 4Jγ

[
Jγ
σ3 +

NU√
8πσ2

]
, (3.6)

where γ = (1/4σ2) + η2σ2 and Jγ = Je−γ .
In the following, we aim at a linear stability analysis by expanding the condensate width

σ(t) = σ0 + δσ(t) in terms of small deviations δσ(t) around its equilibrium width σ0. Hence,
we assume |δσ| � σ0 and linearize the equations of motion with respect to δσ(t) and δη(t).
Here, we take into account that the stationary part of the phase η(t) = η0 + δη(t) satisfies
η0 = 0, which follows from σ̇0 = 4Jγσ0η0 = 0. Then, the stationary solution of the conden-
sate width is implicitly defined by the equation

V0σ
4
0 = Je−1/4σ2

0 +
NU√

8π
σ0 . (3.7)

On the other hand, the dynamics of the deviation δσ is determined by the generalized Math-
ieu equation

δσ̈+ 4J′
[
V ′ + δV ′ sinΩt

]
δσ = −4J′δVσ0 sinΩt (3.8)

which involves an additional linear driving term on the right-hand side. Moreover, the
hopping J′ = Je−1/4σ2

0 and the driving strength δV ′ = δV(1 + 1/2σ2
0) are renormalized by

the stationary condensate width, whereas the hopping rate and the atom-atom interaction

2In order to send the limits to ±∞, the number of lattice sites L has to be much larger than the spatial
expansion of the Bose gas. Then, a smooth transition to zero for the condensate wave function is guaranteed,
rather than a sudden cut-off at a certain lattice site to zero. Hence, we have to assume that σ � L.
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FIGURE 3.1: (a) The stationary width σ0 of the density profile is shown as a function of the interaction
strength NU for different mean potential curvatures. As indicated in the plot, different
colors correspond to a different V0. (b) The stationary condensate width σ0 is displayed
in dependence of the mean potential curvature V0 for different atom-atom interactions
NU, showing an algebraic behavior.

renormalize the potential curvature according to

V ′ = V0

(
1 +

1
2σ2

0

)
+

3J′

σ4
0

(
1− 1

3σ2
0

)
+

NU√
2πσ3

0

(
1− 1

4σ2
0

)
. (3.9)

Equation (3.8) describes breathing of the atomic condensate with the breathing mode fre-
quency ω = 2

√
J′V ′. The resonance frequency ranges from ω ' 4

√
JV0 ≡ 2ω0 in the non-

interacting limit (U = 0) to ω ' 2
√

3JV0 in the Thomas–Fermi limit (NU � J), when the
kinetic term can be neglected. Moreover, we note that the inhomogeneity of equation (3.8)
does not influence the parametric resonance condition [95]. Hence, the system exhibits a
parametric resonant behavior for δV ′ � V ′ when the resonance condition nΩ = 2ω is ful-
filled.

3.1.1 Static Trap Potential

In order to validate the behavior of the resonance frequency and determine the behavior in
the intermediate regime NU ∼ J, we first calculate the stationary condensate width σ0. That
said, we assume a time-independent potential curvature, i.e., δV = 0. Shown in figure 3.1(a)
as a function of the interaction strength NU for different potential curvatures V0, we find
that the width σ0 ' (J/V0)1/4 is mainly determined by the static curvature V0 and only
gradually increases with NU in the regime below NU . J. On the other hand, when the
interaction becomes comparable to the atomic tunneling, i.e., NU ∼ J, the growth in σ0

becomes steeper, which turns into an algebraic behavior σ0 ∼ (NU)1/3 in the Thomas–
Fermi limit. These proportionalities are directly obtained from equation (3.7) by neglecting
either the interaction term (and setting e−1/4σ2

0 ' 1) or the kinetic term, respectively.
In addition, the equilibrium condensate width is estimated as a function of V0 and shown

in figure 3.1(b) for different atom-atom interactions. Each case shows an algebraic decrease
of σ0 ∼ V−1/m

0 with V0, where 3 ≤ m ≤ 4. Again, m = 4 is obtained in the non-interacting
limit, whereas the strongly interacting limit is dominated by m = 3.
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FIGURE 3.2: The square of the breathing mode frequency ω of the Bose gas is shown as (a) a function
of the interaction strength NU for different mean potential curvatures and (b) in de-
pendence of the mean potential curvature V0 for different atom-atom interactions. The
differently chosen parameters are indicated in both panels.

In accordance with the earlier discussion, the breathing mode frequency ω is displayed
in figure 3.2(a) in dependence of the interaction strength NU. For comparative reasons, we
show the square of ω scaled to JV0 = (ω0/4)2. In the strong interaction regime NU � J,
the resonance frequency approaches ω ' 2

√
3JV0, where J ' J′ is satisfied, and becomes

independent of the interaction NU. In contrast to that, J ' J′ is not satisfied per se in the
opposite limit, when atomic interactions are negligible and the condensate is only extended
over several sites. As an artifact of our ansatz, this can lead to a decreasing ratio ω/ω0, since

the resonance frequency is given by the expression ω ' 4
√

JV0

√
1 + 1/2σ2

0e−1/8σ2
0 within

this limit. In figure 3.2(b), we depict the resonance frequency as a function of the static
potential steepness V0 for different atom-atom interactions. An opposite behavior is found
for small and large enough interaction strengths. While ω2/JV0 monotonically decreases
with V0 for non-interacting atoms NU = 0, it first increases weakly with V0 for large enough
NU and then decreases again, when the static potential curvature is the leading term in the
primed potential curvature of equation (3.9).

3.1.2 Parametrically Driven Trap

In order to get information about the condensate stability inside the parametrically modu-
lated trap, we rewrite the equation of motion (3.8) in terms of a set of coupled first-order
linear differential equations. By defining the vector x = (δσ, δσ̇, τ , τ̇ )T, with τ = sinΩt,
equation (3.8) can be written as ẋ = A(t)x, with the matrix

A(t) =




0 1 0 0
−4J′(V ′ + δV ′ sinΩt) 0 −4J′δVσ0 0

0 0 0 1
0 0 −Ω2 0




. (3.10)

The linear operator A(t) is periodic in time, i.e., A(t + T) = A(t), with periodicity
T = 2π/Ω. By employing the Floquet theorem [185], it is possible to determine whether
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FIGURE 3.3: The stability diagram of the parametrically driven BEC for the first parametric resonance
n = 1 is shown for (a) Ω = 0.028 J, (b) Ω = 0.030 J and (c) Ω = 0.032 J. The horizontal
and vertical axes indicate the interaction strength NU and the driving strength δV for
V0 = 1.6× 10−5 J, respectively. The system becomes unstable in the red colored regions,
while in the blue colored regions all solutions are stable.

the solution for a given set of parameters is stable or not. The concept of Floquet analy-
sis involves the evaluation of the fundamental solution Φ(t) over a single period. Whether
the system is behaving in a stable manner or becomes unstable can be characterized by the
eigenvalues λi of the monodromy matrix B = Φ−1(0)Φ(T). These eigenvalue are connected
to the Floquet exponents νi according to λi = eνiT. Hence, when the modulus of all eigen-
values satisfies |λi| ≤ 1, each Floquet exponent has a real part that is smaller or equal to
zero and the solution is stable. However, if only a single eigenvalue does not satisfy this
relation, meaning there exists an i0 for which |λi0 | > 1, the system eventually destabilizes
and expands exponentially fast.

The resulting stability diagram is visualized in figure 3.3 as a function of the atom inter-
action NU and the driving strength δV. Here, we consider a fixed static potential curvature
V0 = 1.6× 10−5 J, but different driving frequencies Ω for each plot. The dashed curves di-
vide the parameter space in regions of stable and unstable behavior, while the blue regions
indicate that the system is stable, the system becomes dynamically unstable in the red re-
gions. At resonance nΩ = 2ω, an infinitesimal small driving strength δV is sufficient to
destabilize the system. Finite particle interactions shift this resonance to smaller driving
frequencies. While for NU = 0 J in figure 3.3(c), the first resonance is at Ω = 0.032 J, the
resonance frequency is consecutively lowered, when increasing NU/J, see in figure 3.3(a)
and (b).

By modifying the resonance condition, the atom interactions can be exploited to sta-
bilize a condensate of bosonic atoms in a parametrically driven harmonic trap potential.
Interestingly, locating the onset of the instability allows, in principle, to determine the atom
interaction strength. Thus, dynamically probing a quantum many-body system with a pe-
riodic modulation of the harmonic confinement provides a diagnostic tool, which warrants
an experimental realization in the realm of ultracold Bose gases.
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3.1.3 Floquet Engineering and Artificial Gauge Fields

In addition to the parametric resonance, a periodic drive can also be used to Floquet en-
gineer artificial gauge fields [186], which for instance can realize an atomic spin-orbit-like
coupling [187, 188]. Here, the parametric driving of the global trap can be used to cre-
ate a spatially varying hopping strength. Via a time-dependent unitary transformation
U(t) = eiδV sin(Ωt)

∑
j(j−j0)2nj/Ω , the time dependence of the potential can be converted to a

time- and site-dependent hopping amplitude. With this, the ladder operator transforms as

U (t)bjU
†(t) = bje−iδV sin(Ωt)(j−j0)2/Ω . (3.11)

By absorbing the exponential into the hopping amplitude, a complex tunnel coupling is
defined with a time- and site-dependent phase according to

Jj(t) = JeiδV sin(Ωt)[2(j−j0)+1]/Ω = J
∑

k

Jk (δV[2(j− j0) + 1]/Ω) e−ikΩt . (3.12)

Here, the second equality follows by making use of the Jacobi–Anger identity which ex-
pands the exponential in terms of Bessel functions of first kind Jk(x) (see equation (2.66)).
Thus, for a large enough driving frequencyΩ, the time average yields an effective local hop-
ping rate Jeff

j = JJ0(δV[2(j− j0) + 1]/Ω), where the spatial dependence is imprinted by the
Bessel function J0(x).

3.2 Transient Dynamics and Many-Body Resonance for Strongly
Interacting Atoms

Let us first consider the static case δV = 0, and compare the ground states of the Hamil-
tonian (3.1) found by the mean-field ansatz and the numerically exact one of the TEBD
method. From the condensate profile 〈nj〉, we extract the full width at half maximum
(FWHM), which coincides only in the non-interacting limit with the Gaussian width σ0.
The comparison as a function of the interaction strength U is shown in figure 3.4 for a half-
filled lattice with L = 32 sites in a harmonic potential with V0 = 0.0922 J. In addition, the
corresponding distributions ψ∗j ψj and 〈nj〉 for certain U are shown in the inset. While for
U = 0, a perfect match between both approaches is found, deviations grow with increas-
ing interaction U. By increasing the local interaction, quantum fluctuations become more
important, leading to a broadening of the atom distribution and a local formation of Mott
insulating states. This formation of the Mott regions is the main reason for the deviations.
In the inset of figure 3.4, this is indicated by a wedding-cake structure of the density profile
with plateau-like Mott regions at the border for U = 7 J. These Mott regions, where the local
occupation is constantly one, cannot be reproduced by the Gaussian variational ansatz. In-
deed, the condensate width predicted by the TEBD is systematically larger than the width of
the variational mean-field approach. Moreover, the step-like increase of the FWHM around
U ' 7 J, is accompanied by the formation of the Mott plateau, which is a signature of the
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FIGURE 3.4: The main plot shows a com-
parison of the condensate width deter-
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lution (blue) and the variational mean-
field width σ0 (red). The width is de-
termined as a function of the interac-
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Berezinsky–Kosterlitz–Thouless (BKT) quantum phase transition (QPT). It has been shown
that this QPT occurs between U = 7.5 J and U = 8 J for the 〈n〉 = 1 Mott lobe [189, 190].

In addition to the static case, we set our focus next on the transient dynamics of the
condensate in the parametrically modulated trap. Initially, we prepare the Bose gas in the
ground state |ψ0〉 of the Hamiltonian H(0) at time t = 0. The time evolution of the total
energy difference ∆E = E(t)− E(0) is shown figure 3.5(a) as a function of the time t and
driving frequency Ω. Here, E(t) = 〈H(t)〉ψ(t) = 〈ψ(t)|H(t)|ψ(t)〉 is the mean energy and
|ψ(t)〉 = T exp{−i

∫ t
0 ds H(s)}|ψ0〉 is the state at time t. Moreover, E(0) = 〈ψ0|H(0)|ψ0〉 is

the ground state energy of the initial Hamiltonian H(0). In order to compare these results
to the previous analysis, we scale the driving frequency Ω to the breathing mode frequency
ω = 2

√
J′V ′ of the variational mean-field ansatz. Hence, a resonant behavior is expected to

occur in the vicinity of Ω/ω = 2/n. A clear evidence for the two-photon resonance n = 2
is found, which is manifested in a monotonic growth of the total energy after each period.
The resonance appears to be slightly shifted to larger driving frequencies due to effects of
the atom interaction that are not included in the mean-field description. A signature of the
n = 1 resonance is, however, not observed in the transient dynamics, but is expected to
be pronounced for larger times. In the case of an off-resonant modulation, the energy sim-
ply oscillates with the driving frequency, involving only small variations in the amplitude.
These two effects are illustrated by studying cuts along the Ω-lines as exemplary shown in
figure 3.5(b) for Ω = 1.31ω and Ω = 2.34ω.

In order to quantify the resonance in the transient dynamics, we introduce the energy
absorption over a certain number of m periods according to

〈E〉 = Ω

2πm

∫ 2πm/Ω

0
dt∆E(t) . (3.13)

The time window for the calculated dynamics in 3.5(a) encompasses up to m = 7 periods
over which we average the total energy and show the result in figure 3.5(c). Here, the dashed
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FIGURE 3.5: (a) The time evolution of the total energy ∆E(t) = 〈H(t)〉ψ(t) − 〈H(0)〉ψ0 is shown
as a function of the driving frequency Ω. The dashed lines indicate times at which
t = 2πn/Ω. (b) A cut along constant Ω-lines is shown. (c) The total energy of (a) is
averaged over up to 7 periods and shown as a function of Ω. Here, the parameters are
L = 64, N = 32, V0 = 0.01 J, δV = 0.002 J and U = 8 J. The raw data have been taken
from reference [112].

vertical lines indicate the points where the parametric resonance is expected to occur accord-
ing to the Gaussian mean-field ansatz. The second resonance around Ω ' ω is indicated by
a rather broad peak which is slightly shifted, whereas the first resonance Ω = 2ω is only
slightly visible at the flank of the peak. By taking longer times into account, the rise of the
first resonance Ω ' 2ω and the slight oscillations at the flank are expected to enhance and
vanish, respectively.

Nevertheless, we have found a rather good agreement in the resonance condition be-
tween the numerical exact and the Gaussian variational ansatz. In the following chap-
ters, we will again make use of this rather simple and computationally cheap but accurate
method by applying it to a very different type of quantum systems.





CHAPTER 4
Phase Transitions and Critical
Phenomena
The phase of a thermodynamic system is characterized by its uniform physical properties
and the state of matter in which the system resides depends on the external conditions. The
most prominent example of phases are the liquid, solid and gaseous states of matter. For
instance, by lowering the temperature, a gas can condensate to a liquid. This change of
phase, commonly referred to as a phase transition, is described by the van der Waals theory.
Originally published in 1873, van der Waals generalized the ’ideal gas‘ by introducing an
additional two-particle interaction potential. A treatment of the interaction on the mean-
field level provided one of the first theoretical explanations of critical phenomena.

In the years following after van der Waals’ explanation of the gas-fluid phase transition,
similar behaviors in different materials were discovered. For instance, ferromagnetic iron
was found to show also such a critical phenomenon at a certain temperature. Discovered by
Pierre Curie in 1895, this temperature is also known as the Curie temperature or Curie point.
It determines above which temperature iron loses its ferromagnetic features. Later, this
behavior was explained by Weiss. In his molecular-field theory of ferromagnetism, Weiss
introduced a hypothetical molecular mean field in analogy to the van der Waals theory.

The critical phenomena [191, 192] of these two examples show the same universal be-
havior and belong to same universality class, the class of mean-field phase transitions. This
universality class is described by an algebraic behavior of the particle density difference
between liquid and gas or the magnetization according to ∼ (T − Tc)β for the gas or fer-
romagnet, respectively. Here, Tc is the critical temperature at which the phase transition
occurs. For the class of mean-field phase transitions, the critical exponent β is predicted to
be always 1/2. On the basis of general symmetry arguments given by Landau in his work on
the theory of phase transitions in 1937, it is suggested that mean-field theory is essentially
exact. In contradiction to these arguments, Guggenheim showed in 1945 that the coexis-
tence curve of the gas to liquid phase transition is actually not parabolic [193], indicating
β 6= 1/2. Nowadays, it is known that mean-field theory does not provide the actual critical
exponents. However, the Landau theory is still an invaluable tool in order to study phase
transitions and investigate critical phenomena.

49
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4.1 Landau Theory of Phase Transitions

The definition of an appropriate, so-called order parameter is one possible approach in order
to investigate a phase transition and its universal behavior. The order parameter is defined
such that it is only different from zero in one of the two phases. A first general description
of universality goes back to Landau in which he derived the free enthalpy G in the critical
region as a function of the order parameter [194]

ϕ =

∫

V
d3x ψ(x)




= 0 for T > Tc ,

6= 0 for T < Tc ,
(4.1)

with its density ψ(x) and volume V. For the ferromagnet for instance, ϕ corresponds to the
total magnetization, while ψ(x) is the local magnetization. As the temperature T < Tc tends
towards the critical temperature, ψ decreases to zero and the expansion of the free enthalpy1

can be written as

G(T;ϕ) =
∫

V
d3x

[
g0(x)− π(x)ψ(x) + a(T)ψ2(x) + b(T)ψ4(x) + c(T)

(
∇ψ(x)

)2
]

. (4.2)

Here, π(x) is a force conjugate to the order parameter density ψ(x), as for instance the mag-
netic induction for the ferromagnet. Moreover, the enthalpy density at vanishing order pa-
rameter is denoted by g0(x) and the expansion coefficients a, b, c are assumed to behave
smoothly as a function of temperature.

For a given temperature T, the equilibrium value of the order parameter ϕ is fixed by the
condition that G(T;ϕ) is minimal. By reasons of symmetry, the free enthalpy G(T;ϕ) should
not vary when ψ(x) and π(x) simultaneously change their sign. Hence, the expansion only
contains terms that are of even order in the order parameter density ψ(x).

An important special case is the position-independent case, i.e., when ψ(x) ≡ ϕ/V and
π(x) ≡ π. Then, the expansion (4.2) simplifies to

G(T;ϕ) = G(T; 0)− πϕ+
1
V

a(T)ϕ2 +
1

V3 b(T)ϕ4 , (4.3)

where G(T; 0) =
∫

V d3x g0(x). When π = 0, the order parameter ϕ should vanish for T > Tc,
whereas it should be finite for T < Tc. In general, the equilibrium value of ϕ has to minimize
the free enthalpy, and consequently the first derivative has to be zero:

(
∂G
∂ϕ

)

T

!
= 0 =

2
V

a(T)ϕ+
4

V3 b(T)ϕ3 , (4.4)

which has the three possible solutions

ϕ0 = 0 ∧ ϕ0 = ±V

√
− a(t)

2b(T)
. (4.5)

1Here, we are only interested in the free enthalpy as a function of temperature, i.e., we fix the pressure and
omit the pressure dependence.
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FIGURE 4.1: The schematic behavior of the free en-
thalpy G is shown as a function of the order pa-
rameter for three different temperatures.

In the high-temperature regime (T > Tc), the first solution ϕ = 0 should minimize G(T; 0),
such that the second derivative has to fulfill the minimum requirement

(
∂2G
∂ϕ2

)

T
(ϕ = 0) =

2
V

a(T)
!
> 0 . (4.6)

Thus, one finds that the first coefficient has to fulfill a(T) > 0 for T > Tc. On the other hand,
below the critical temperature T < Tc, the order parameter should be given by the second
solution ψ 6= 0 of equation (4.5). In addition, the minimization requirement reads

a(T) +
6

V2 b(T)ϕ2
0 = −2a(T)

!
> 0 , (4.7)

such that a(T) < 0 and b(T) > 0 for T < Tc. The schematic behavior of the free enthalpy is
shown in figure 4.1.

In combination, the expansion coefficient a(T) has to change its sign at the critical tem-
perature such that it suggests the ansatz

a(T) = a0(T − Tc) , (4.8)

where a0 > 0. Moreover, it can be shown that including higher, odd powers of (T − Tc)

would lead to contradictions [194]. In addition, the fourth order expansion coefficient b(T)
at the critical temperature has to fulfill b(Tc) > 0, which in the vicinity of the phase tran-
sition can be approximated b(T) ' b(Tc) ≡ b0. Consequently, the free enthalpy takes the
approximate form

G(T;ϕ) ' G(T; 0) +
a0

V
(T − Tc)ϕ

2 +
b0

V3ϕ
4 . (4.9)

In the case b(Tc) ≤ 0, an expansion of the Gibbs enthalpy to fourth order in the order
parameter is no longer sufficient and higher orders have to be included. In fact, it can be
shown by simple algebra that then the continuous behavior of ϕ in the vicinity of the critical
temperature turns into a discontinuous one. The behavior of the order parameter at the
critical point is a possible way to classify a phase transition.

4.2 Classification and Universality

Already earlier to Landau’s theory, Ehrenfest (1933) introduced a classification scheme by
ascribing an order to the phase transition. He defined the order of a phase transition by order
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heat capacities: α,α′ CH ∼ (−τ )−α′ T < Tc, B0 = 0
CH ∼ τ−α T > Tc, B0 = 0

order parameter: β M ∼ (−τ )β B0 = 0

susceptibilities: γ, γ ′ χT ∼ (−τ )−γ ′ T < Tc, B0 = 0
χT ∼ τ−γ T > Tc, B0 = 0

critical isotherm: δ M ∼ B1/δ
0 T = Tc

correlation length: ν, ν ′ ξ ∼ (−τ )−ν ′ T < Tc, B0 = 0
ξ ∼ τ−ν T > Tc, B0 = 0

TABLE 4.1: The critical exponents are summarized for a ferromagnet with an external magnetic field
of strength B0, taken from reference [194].

of the lowest derivative of the thermodynamical potential that exhibits a discontinuity at the
transition point. For instance, the Landau expansion of the free enthalpy in equation (4.9)
describes a second-order phase transition, as the first derivative of the order parameter ϕ =

(∂G/∂π)T with respect to T, i.e., the second derivative of the Gibbs energy (∂2G/∂T∂π), is
discontinuous at T = Tc.

Yet, the physical differences between the phases, coexisting at the transition point, be-
come progressively insignificant as the order of the phase transition increases. In practice,
only the lowest orders are of relevance and we distinguish between discontinuous, and con-
tinuous phase transitions, corresponding to first-order, and second- or higher-order phase
transitions, respectively.

A characteristic feature of any continuous phase transition is the already mentioned uni-
versal behavior. In the vicinity of the transition point, many physical quantities exhibit a
behavior that can be characterized by universal critical exponents which, for instance, are
independent of the atomic constituents in the case of the van der Waals gas. Indeed, a power
law behavior in the critical region for a physical quantity X according to

X ∼ |τ |ϑ (4.10)

is very often observed, where τ = (T − Tc)/Tc is the reduced temperature. Moreover, this
power law behavior can, in principle, be different below and above the critical temperature,
leading to different critical exponents ϑ whether the critical point is approached from τ < 0
or τ > 0.

A finite set of these critical exponents exists and they are attributed to the power law
behavior of the order parameter, heat capacity, susceptibility, and correlation length. A list
of these critical exponents is summarized for the example of a ferromagnet in table 4.1.

Coming back to the previous example, the Landau theory of equation (4.9) predicts a
power law behavior of the order parameter according to

ϕ0 = ±V
√

a0

2b
(Tc − T)1/2 (4.11)
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universality class α β γ δ ν

Landau theory 0 1/2 1 3 1/2
2D Ising 0 1/8 7/4 15 1
3D Ising 0.1096(5) 0.32653(10) 1.2373(2) 4.7893(8) 0.63012(16)

TABLE 4.2: The critical exponents of the Landau theory are summarized and exemplary compared
to those of the two-dimensional and three-dimensional Ising universality class [195].

with the critical exponent β = 1/2. Hence, the Landau theory belongs to the mean field uni-
versality class for which the critical exponents are independent of the systems spatial dimen-
sion. For many other physical systems, such as the two-dimensional or three-dimensional
Ising universality class, the critical exponents can become very different depending on the
dimensionality. A comparison of the different values of the critical exponents is given in
table 4.2.

4.3 Equilibrium Quantum Phase Transitions

In the last decades, the interest in the quantum mechanical equivalent of a classical phase
transition steadily grew. With the realization of a Bose–Einstein condensate in 1995 [196,
197], which was rewarded with the Nobel prize in 2001, systems of ultracold atoms with al-
most no defects and high controllability could be established for the very first time. Nowa-
days, ultracold atoms are routinely combined with standing wave laser fields, generating
an optical lattice. By this, lattice models such as the Bose–Hubbard model (see chapter 3) or
Fermi–Hubbard model are realized, which are well-known for their rich phase diagrams.

In analogy to the definition of a classical phase transition, the quantum phase transition
(QPT) is defined by a non-analytical point in the ground state energy. In order to describe
the principles of the QPT, we consider a Hamiltonian of the form

H = H0 + λH1 , (4.12)

with a dimensionless coupling constant λ.
For a finite Hilbert space dimension spanned by the eigenvectors of the Hamiltonian H,

the ground state energy is usually a smooth function of the control parameter λ. The only
exception arises when λ couples to a conserved quantity for which [H0, H1] = 0. Hence, both
operators H0 and H1 can be simultaneously diagonalized. Consequently, the eigenvectors
have to be independent of the coupling constant, while the energy spectrum exhibits a level
crossing at a certain critical coupling λ = λc where an excited level becomes the ground
state. As a consequence, the first derivative of the ground state energy with respect to λ is
not defined at λc, which is the definition of a first-order phase transition according to the
Ehrenfest classification. This behavior is schematically shown in figure 4.2(a).

The other possibility is that both operators do not commute with each other, [H0, H1] 6=
0. In the energy spectrum, an avoided energy crossing appears at the critical coupling λ =



54 Chapter 4. Phase Transitions and Critical Phenomena

(a)

λ

E
(b)

λ

E

FIGURE 4.2: The two possible scenarios for the behavior of the two lowest eigenenergies is depicted
as a function of the control parameter λ. In plot (a), the case [H0, H1] = 0 is schematically
visualized, while the other case with [H0, H1] 6= 0 is shown in plot (b).

λc, which is indicated in figure 4.2(b). As the Hilbert space dimension grows, the avoided
level crossing becomes progressively sharper, which leads to non-analytical point in the
limit of infinite Hilbert space dimension.

In the following, we will focus on quantum phase transitions that are continuous, cor-
responding to the latter case. As the quantum critical point λc is approached, the typical
energy scale of fluctuations ∆ above the ground state vanishes according to the universal
behavior

∆ ∼ |λ− λc|zν . (4.13)

For a gapped spectrum, the energy scale ∆ corresponds to the energy difference between
ground and first excited state. On the other hand, for a gapless system, ∆ is the energy
scale at which a qualitative change in the nature of the energy spectrum in comparison to its
low energy behavior occurs. In addition, ∆ defines a time scale tc ∼ 1/∆ on which spatial
correlations of the order parameter decay. At the critical point, these spatial correlations ξ of
the order parameter become long-ranged and diverge with an algebraic behavior ξ ∼ t1/z

c ∼
|λ− λc|−ν . Here, z is the dynamical critical exponent which relates the correlation time to
the correlation length.

Strictly speaking, a quantum phase transition occurs only at temperature T = 0 as it is
formally defined by a non-analytical point in the ground state energy. Essentially, any phase
transition occurring at some finite temperature T will become ’classical’. This happens as
soon as the typical energy of the long-distance order parameter fluctuations becomes less
than the thermal energy ∆ < T1/zν . However, while thermal fluctuations control the critical
behavior and dominate on a macroscopic scale, quantum mechanics can still be important
on a microscopic level. Only at T = 0, the behavior is always dominated by quantum
fluctuations.

For many systems2, this behavior leads to a phase diagram that can be divided into four
regions. It is depicted in figure 4.3. Here, the inverse control parameter λ−1 is represented by
the horizontal axis, such that the ordered phase, where the order parameter is different from
zero, is in the region λ−1 < λ−1

c . The vertical axis represents temperature T. Upon variation
of the control parameter and temperature, the long-range order is destroyed and the phase

2In some exception, order persists only for T = 0, which is for example the case for two-dimensional magnets
with a SU(2) symmetry. Here, the Mermin–Wagner theorem forbids order at finite temperature.
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FIGURE 4.3: The phase diagram is shown in the vicinity of the quantum critical point (QCP) as a
function of the control parameter λ and temperature T. The phase diagram is divided
into four different regions. The solid curve indicates the boundary between ordered
and disordered phase. In the vicinity of this border, the critical behavior is classical. In
the region above the ordered phase, thermal fluctuations destroy the long-range order,
while in the region λ < λc, quantum fluctuations wipe out any long-range order. In
between these two regions, the quantum critical region, the system exhibits unusual
finite temperature behavior. The figure is adapted from [192].

transition occurs, indicated by the solid curve. Around the phase boundary, the system ex-
hibits a critical behavior that is classical. This region progressively narrows as the quantum
critical point (QCP) is approached. In addition, the region of the disordered phase can be
divided into two regions. Within these regions, the physics is dominated by either thermal
fluctuations or quantum fluctuations. In between these regions, both types of fluctuations
become important. This induces an unconventional finite temperature behavior, which is
characterized by thermal excitations of the quantum critical ground state and the absence
of conventional quasi-particle-like excitations. As soon as the thermal energy exceeds the
characteristic microscopic energy scale, this quantum critical behavior is cut-off.

In addition to classical phase transitions, also quantum phase transitions can be grouped
in universality classes. A prominent example is the superfluid to Mott insulator phase tran-
sition in the one-dimensional Bose–Hubbard model given in equation (3.1) with V(t) = 0,
which exhibits a universal behavior. This QPT falls into the BKT universality class to which
also the classical two-dimensional XY model belongs. On the other hand, as soon as a
dissipative channel is included, novel critical phenomena are observed. These nonequilib-
rium phase transitions exhibit critical exponents that can be very different from their non-
dissipative counterpart, even in the mean field regime [120, 198–200].

4.4 The Nonequilibrium Dicke Phase Transition

A well-studied example for a system that exhibits a nonequilibrium quantum phase tran-
sition (NQPT) is the hybrid system sketched in figure 4.4(a) (see also figure 1.3). A BEC is
placed in a high-finesse cavity which is driven by a transversal laser pump field [116, 117,
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201]. A strong enough driving field leads to a phase transition from the normal phase to
the superradiant phase which is characterized by a spatial self-organization of the atomic
gas in a checkerboard pattern. In a semiclassical picture, 90 degree scattering of the photons
into the cavity mode is forbidden by the Bragg condition. Only finite density fluctuations
of the uniformly distributed condensate allow a finite number of photons to be incoherently
scattered into the cavity and superpose constructively. Above a certain pump field strength,
these density fluctuations are sufficient, such that a significant number of photons enter the
cavity. This is followed by an exponential instability for which the intracavity light intensity
is strongly enhanced. Consequently, the atoms self-organize in the formed optical lattice
and the Bragg condition for orthogonal scattering becomes fulfilled.

In summary, this phase transition is triggered by atomic density fluctuations induced by
a light field mediated long-range interaction potential. Moreover, the cavity decay induces
vacuum fluctuations in the light field leading to a steady state which is fundamentally dif-
ferent from the ground state and exhibits increased density fluctuations. In the mean field
regime, the dynamics of this hybrid quantum system in one dimension is described by the
set of coupled differential equations [113, 114]

i∂tα =

[
−∆C + NU0

∫
dz cos2(z)|ψ(z)|2 − iκ

]
α+
√

Nη
∫

dz cos(z)|ψ(z)|2 , (4.14a)

i∂tψ(z) =
[
−ωR∂

2
z + NU0|α|2 cos2(z) +

√
Nη(α+ α∗) cos(z) + Ng|ψ(z)|2

]
ψ(z) . (4.14b)

The cavity mode amplitude α is constantly driven by a transverse laser with strength η at
a finite cavity detuning ∆C. By means of atom-photon scattering, photons may enter the
cavity at a finite life time κ−1. These photons induce an optical potential with amplitude
NU0|α|2 for the atomic ensemble, whose spatial distribution is described by the condensate
profile ψ(z). Here, 〈a†a〉 = N|α|2 is the total number of photons in the cavity and N is
the number of atoms. Moreover, ωR is the atomic recoil frequency and g is the local atomic
interaction strength. Note that the potential has a 2π-periodicity, such that the problem can
be reduced to a single site problem within the definition interval z ∈ {−π,π} by assuming
periodic boundary conditions.

4.4.1 Steady-State Solution

It has been shown that the steady-state solution (α0,ψ0) of equation (4.14) exhibits a
nonequilibrium quantum phase transition for ∆C < 0 at a certain, critical pump amplitude
η = ηc different from zero [113]. This NQPT is characterized by an abrupt change of the
photon number in the cavity mode and a self-organization of the atomic condensate. Below
ηc, the photon number is constantly zero, α0 = 0, and the atomic condensate is homoge-
neously distributed with ψ0(z) = (2π)−1/2. When η is increased above ηc, this symmetry
is spontaneously broken. Consequently, photons enter the cavity and the atoms arrange in
the formed optical lattice with a two-fold steady state. This two-fold steady state has either
a positive (α0 > 0) or negative photon quadrature (α0 < 0), and the atoms favor to locate
around either even or odd lattice sites at z = nπ or z = (2n+ 1)π/2 with n ∈ Z, respectively.
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FIGURE 4.4: (a) An atomic gas ensemble is placed in a high-finesse cavity and transversely driven
by a coherent laser field with driving amplitude η. An optical lattice is generated by
photons that are scattered into the cavity mode with a finite life time κ−1. (b) The steady
state value of the atomic order parameter Θ0 is shown as a function of the pump ampli-
tude η. Below the critical atom-photon coupling ηc, the order parameter is constantly
zero and shows a square root behavior just above ηc which saturates to Θ0 = 1 for
large η. The data were taken from reference [113] for the parameters NU0 = −100ωR,
Ng = 2π× 10ωR, ∆C = −300ωR, and κ = 200ωR.

In order to estimate the critical pump rate ηc, a stabilization analysis can be performed.
For this, a small deviation ε� 1 from the condensate steady state below ηc in the form ψ =

(1 + ε cos z)/
√

2π is assumed. Within this ansatz, the cavity photon amplitude is given by
α0 =

√
Nηε/(∆C −NU0/2+ iκ) to lowest order in ε. By performing a single time evolution

step in imaginary time t = iτ and comparing the decay rates of the homogeneous part and
the perturbation cos z, the critical pump rate is estimated to

√
Nηc =

√
(∆C − NU0/2)2 + κ2

NU0 − 2∆C

√
ωR +

Ng
π

. (4.15)

Apart from the photon amplitude α0, the phase transition can be tracked by the atomic
imbalance Θ0 =

∫
dz cos z|ψ0(z)|2 between odd and even sites, which is also a suitable mea-

sure for the order parameter. Shown in figure 4.4(b) as a function of the pump amplitude,
the order parameter Θ0 is constantly zero in the homogeneously distributed phase below
the critical coupling rate. It exhibits a square root behavior Θ0 ∼ (η− ηc)

1/2 just above
the critical point, which is characteristic for the mean-field phase transition. Far above the
critical pump rate, the order parameter saturates to 1.

4.4.2 Critical Exponents for Steady State and Ground State

In addition to the mean-field description, Nagy et al. [199, 202] have established a
Bogoliubov-like treatment of the open system dynamics for white noise and a non-
Markovian bath, including excitations of the atomic subsystem out of the mean-field steady
state. For non-interacting atoms, they have applied a two mode ansatz for the atomic field
operators in the form

Ψ (z) =
c0√
2π

+
c1√
π

cos z , (4.16)
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FIGURE 4.5: The critical exponent ν
is estimated as a function of the sub-
Ohmic bath exponent s. The parame-
ter were chosen as ωb = 0.5ωa, κ = ωa,
and γ = 0.25ωa. The data points are
taken from reference [199].

with bosonic annihilation operators c0, c1. Via a Holstein–Primakoff transformation in the
normal phase and the limit N → ∞, the system can be mapped onto a system of two bilin-
early coupled harmonic oscillators with the Hamiltonian

H = ωaa†a + ωbb†b +
λ

2
(a† + a)(b† + b) , (4.17)

where a is the annihilation operator of the photon mode and b corresponds to the atomic
mode which describes excitations out of the mean-field ground state ψ(z) =

√
N/2π. In

other words, 〈b†b〉 is a direct measure for the atomic depletion. Both operators, a and b,
follow the usual bosonic commutation relations, i.e.,

[
a, a†] =

[
b, b†] = 1. Here, λ is the

atom-photon mode coupling which is directly proportional to the pump strength η. The fi-
nite lifetime of the photons in the cavity is modeled by zero temperature white noise with a
decay rate κ. For a BEC, it is well known that Beliaev coupling between collective excitation
modes leads to a transfer of energy between energetically higher- and lower-lying excitation
modes [203]. During this process, a single higher-lying energy excitation is converted into
two quanta of lower-lying energy modes. The theoretical treatment of such a process on the
microscopic level is complicated. Hence, the damping of the atomic mode is phenomeno-
logically modelled by a sub-Ohmic bath at zero temperature with the spectral density

J(ω) = θ(ω)
γ

π

(ω/ωb)
s

1 + (ω/ωc)2 , (4.18)

where 0 < s ≤ 1. Here, ωc is a cutoff frequency and γ is the dissipation strength.
Within a path-integral formalism, the steady-state mean occupation numbers 〈a†a〉 and

〈b†b〉 of the photon and atomic mode, respectively, are evaluated. By splitting the path into a
classical path and quantum mechanical fluctuations, the path integral for the two harmonic
oscillators can be evaluated in a closed analytic expression (see appendix E).

In the vicinity of the critical point λ = λc the correlation function 〈a†a〉 ∼ (λ− λc)−ν

follows an algebraic power law with a critical exponent ν. This critical exponent is shown in
figure 4.5 as a function of the sub-Ohmic bath exponent s. For a sub-Ohmic bath, the critical
exponent decreases below 1 and is monotonically growing in dependence of the exponent s.
For the Ohmic case at s = 1, the critical exponent ν becomes 1, being the same result as for
sole Markovian white noise with γ = 0 [120, 198, 200]. In contrast to the ground state, where
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it is always ν = 1/2, the critical exponent strongly depends on the type of dissipation.
In the following, we will study a different hybrid quantum system motivated by recent

experiments [129, 131]. In this process, we will first introduce the system and discuss the
different coupling mechanisms that allow to couple an atomic condensate to the motion of
nanomechanical oscillator. This system is another example for a hybrid system that exhibits
a nonequilibrium quantum phase transition.





CHAPTER 5
Coupling a Nanomechanical
Membrane to an Atomic Gas
The dipolar interaction between atoms and a light field induces a position dependent AC-
Stark shift on the electronic levels of the atoms. By this, the standing wave patterns of re-
flected laser beams create optical lattices for ultracold atoms [204]. These periodic potentials
can be used to realize the Hubbard model for bosonic or fermionic atoms in the laboratory.
State-of-the-art experiments benefit from the high fidelity that has been established over the
last decade. Consequently, various unwanted effects are avoided which include, for instance,
the back-action of the atomic motion on the laser field or thermal vibrations of the mirror
that reflects the light field.

On the other hand, optomechanics [205–207] is nowadays able to realize nanoscale me-
chanical oscillators close to their quantum regime in form of semi-transparent dielectric
slabs, also membranes, or micrometer-sized mirrors. The combination of these two types
of systems has led to a new generation of quantum hybrid systems in which an additional
quantum degree of freedom is included by the vibrational motion of the mirror.

This new type of quantum hybrid systems exhibits many intriguing features and exper-
imental realizations are thinkable in various setups. Though the coupling scheme for each
presented system can be very different, the interaction between the atomic gas and the vibra-
tional mode is always mediated by an external laser drive. Hence, the prototypical system
Hamiltonian can be written as a sum of five consecutive terms

H = Ha + Hm + Hl + Ha−l + Hm−l , (5.1)

where the atomic part is described by Ha, the mechanical degree of freedom by Hm and the
light field by Hl. The atom-light field and membrane-light field interactions are included in
Ha−l and Hm−l, respectively.

In this chapter, we will present different possible realizations of this atom - optome-
chanical hybrid system, explain their essential coupling mechanisms and outline distinct
advantages, features, non-trivial effects as well as useful applications.

61
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FIGURE 5.1: A nanome-
chanical membrane inside
an optical cavity is coupled
to the vibrational motion of
a distant atomic ensemble.

5.1 The Distant Motional Coupling Scheme

In order to achieve a strong and coherent coupling between the motion of atoms in the
lattice and a micromechanical oscillator, one faces the challenge that the effective coupling
strength scales with the mass ratio

√
m/M ∼ 10−7 − 10−4 of the atom mass m and mem-

brane mass M [208]. It has been shown that a strong coupling can still be reached by placing
the combined system inside an optical cavity. This leads to an additional scaling in the
coupling rate with the cavity finesse F [127, 209]. Due to different environmental require-
ments1, the cavity-enhanced coupling between the mechanical oscillator and the atoms is
best realized by placing the oscillator inside the cavity, while the atoms are located outside
the cavity.

In this section, we consider a setup in which the vibrational mode is realized by a di-
electric slab placed inside an optical cavity, the “membrane-in-the-middle” setup [128, 209].
The outcoupled light of the cavity forms an optical lattice for the atoms in a distant location.
In a quasistatic picture, a finite displacement of the membrane leads to a change of the po-
sition of the lattice sites. This generates a linear displacement force on the atoms which, in
turn, pushes the atoms away from their equilibrium position. On the other hand, a back-
action of the atomic motion on the membrane is induced by a finite atomic center-of-mass
displacement [210]. Hence, the atoms start to oscillate around the potential well minima
with a universal phase. As a consequence of the arising dipole force, which is proportional
to the spatial derivative of the lattice potential, the photons in the propagating beams are
redistributed by absorption and stimulated emission. A sketch of the system is provided in
figure 5.1.

We consider one well separated vibrational mode of the membrane which is modeled as
a single harmonic oscillator

Hm = Ωma†a , (5.2)

with mechanical frequency Ωm and bosonic annihilation (creation) operator a (a†) which
follow the usual bosonic algebra

[
a, a†] = 1. The atomic ensemble (without optical lattice)

is modeled by a one-dimensional many-body Hamiltonian in second quantization

Ha = − 1
2m

∫
dzΨ †(z)∂2

zΨ (z) +
g
2

∫
dzΨ †(z)Ψ †(z)Ψ (z)Ψ (z) , (5.3)

with bosonic field operators Ψ (z) and Ψ †(z), obeying
[
Ψ (z),Ψ †(z′)

]
= δ(z− z′). The local

atom-atom interaction with strength g is due to s-wave collisions and m is the mass of one
atom. The light modes are included over a bandwidth 2θ around the laser frequency ωL with

1In order to reach the quantum regime, the oscillator has to be placed in a cryogenic environment, whereas
the ultracold atoms require ultrahigh vacuum.
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the Hamiltonian

Hl =

∫ ωL+θ

ωL−θ
dω ωb†

ωbω , (5.4)

where the mode operators obey
[
bω, b†

ω′
]
= δ(ω− ω′).

In order to describe the light field accurately, we have to distinguish between the light
field outside and inside of the cavity. Thus, we have to explicitly include the mode functions
uω(z) associated to bω. To do so, we define the electrical field operator [211]

E+(z) = i
∫

dω Eωuω(z)bω , (5.5)

with the normalization constants Eω =
√
ω/πA, where A is the beam cross-sectional area.

The mode functions can be divided into three regions: first, the region outside the cavity;
second, the region between the right side-end mirror of the cavity and the membrane; and
third, the region between the membrane and the left side-end mirror.

In the first region, the mode functions take the form uω(z) = eiφω sin(ωz + φω), where φω
is the phase accumulated during the propagation inside the cavity. This leads to a shift in
the standing wave pattern outside of the cavity. In the second region, the mode functions are
given by uω(z) = |TωA−1

ω |eiφω sin(ωz + φ′ω). The coefficients Aω, Tω are defined according to

Aω =
tme−iωdm

1− rme2iω` ≡ |Aω|eiφ′ω , (5.6)

Tω = Aω
te−iωd

1− re2i(ωL+φ′ω)
≡ |Tω|eiφω , (5.7)

where rm (r) and tm (t) are the reflection and transmission coefficients of the membrane
(cavity side-end mirror), respectively. Further, ` is the position of the semi-transparent mem-
brane with thickness dm, L is the cavity length, and d is the thickness of the cavity side-end
mirror. Finally, the mode functions in the third region are uω(z) = eiφω |Tω| sin(ωz).

In the case of an empty cavity (rm → 0), the resonance frequencies ωj = jπ/L with
j ∈ N \ {0} are well-defined and the coefficients |Tω|2 can be approximated around the
nearest resonance by a Lorentzian with width κ. In summary, we have

uω(z) =





|Tω| sin(ωz) if 0 < z < ` ,

|TωA−1
ω | sin(ωz + φ′ω) if `+ dm < z < L ,

sin(ωz + φω) if L + d < z ,

(5.8)

where the additional phase factor eiφω can be absorbed in the mode operators bω.
Here, the membrane is modeled as a dielectric slab with refractive index nm. Then, the

radiation pressure of the light field inside the cavity on the membrane is given by Pl = (n2
m−

1) [E−(`+ dm)E+(`+ dm)− E−(`)E+(`)] /2 [212]. Consequently, the coupling between the
membrane and the light field for a small membrane displacement zm = (a + a†)/

√
2MΩm
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takes the form

Hm−l = PlAzm =
(n2

m − 1)A
2

[
E−(`+ dm)E+(`+ dm)− E−(`)E+(`)

]
zm . (5.9)

In contrast to the radiation pressure force, the dipolar interaction of the atoms with the
light field induces an AC-Stark shift of the electronic levels of the atoms. Assuming a large
detuning |∆| � θ from the closest atomic transition frequency, the atom-light field coupling
is given by

Ha−l =
µ2

a
∆

∫
dz E−(z)E+(z)Ψ †(z)Ψ (z) , (5.10)

where µa is the atomic transition dipole moment.

5.1.1 Linearization in the Photon Field

Before evaluating the electrical field operators in (5.9) and (5.10), we have to explicitly in-
clude the laser drive in this model. The coherent laser drive is provided by a linear replace-
ment for the light field operator at the laser frequency, i.e.,

bω → bω + αLδ(ω− ωL)e−iωLt . (5.11)

The amplitude αL is directly related to the running power of the laser P = ωLα
2
L/2π. In

order to linearize the atom- and membrane-light field interaction in the mode operators bω,
we will assume that αL � 1.

Inserting the expression for the mode functions of (5.8) in (5.9) with (5.11) yields the
membrane-light field coupling in linearized form

Hlin
m−l =

αL(n2
m − 1)A

2

∫
dω EωLEω[uωL(l + dm)uω(l + dm)− uωL(l)uω(l)]

×
[
bωeiωLt + b†

ωe−iωLt
]

zm .
(5.12)

Here, the coupling term quadratic in αL leads to a constant linear force on the membrane,
which only alters its equilibrium position. This can be accounted for, by a simple redefinition
of the zero-point position and will, therefore, be omitted from hereon.

For further simplifications of the expressions in (5.12), we assume that the cavity reso-
nance frequencies are not much influenced by the presence of the membrane, which holds
for a membrane of small reflectivity |rm| � 1. Furthermore, we assume the optical cavity to
be in the bad cavity regime. That is, the photon loss rate κ is much larger than the membrane
frequency Ωm, i.e., κ � Ωm. In addition, we will also have to enforce a similar relation for
the relevant atomic excitations. For our purpose, it is sufficient to assume the atomic side
bands to be in between the membrane side bands. An exemplary depiction of the response
profile of such an optical cavity is given in figure 5.2. Under these assumptions, the response



5.1. The Distant Motional Coupling Scheme 65

ωL −Ωm ωL ωL +Ωm

2κ

ω

FIGURE 5.2: The green envelope indi-
cates the response profile of the cavity
and its width is directly related to the
photon loss rate κ. In the bad cavity
limit κ � Ωm, both sideband photons
ωL ±Ωm are well accommodated.

coefficients |Tω| ' |TωL | are approximately

|Tω|2
∣∣∣
ω'ωL

' 2F
π

κ2

(ω− ωL)2 + κ2 '
2F
π

, (5.13)

with the cavity finesseF = π/2κL, such that uω(z) ' uωL(z). In the limit of a thin membrane
ωLdm � 1, we may rewrite |uωL(`+ dm)|2 − |uωL(`)|2 = dm∂`|uωL(`)|2. Then, with the field
amplitudes Eω ' EωL , we arrive at

Hlin
m−l = λm(a + a†)

∫
dω√
2π

(
bωeiωLt + b†

ωe−iωLt
)

, (5.14)

with the membrane-light field coupling strength

λm =
αL|rm|ωL√
ΩmM

sin(2ωL`)
2F
π3/2 , (5.15)

for which we assumed the membrane reflectivity |rm| = (n2
m − 1)ωLdm/2. The optimal

membrane-light field interaction is achieved, when the membrane is placed on the slope of
the light intensity, i.e., sin(2ωL`) = 1. Here, we have used that the derivative is given by
∂`|uωL(`)|2 = 2FωL sin(2ωL`)/π.

In the same manner, we linearize the atom-light field interaction. Here, however, the
term which is quadratic in the amplitude αL is essential and provides the optical lat-
tice potential V(z) = V sin2(ωLz + φωL) for the atomic ensemble, with the lattice depth
V = α2

Lµ
2
aE2

ωL
/∆. In addition, the lattice depth defines the relevant atomic excitation fre-

quency in the motional coupling scheme. The phase shift φωL can be directly included by
the replacement z → z′ = z − φωL /ωL. Inserting the electric field operator and the linear
displacement (5.11), the atom-light field coupling Hamiltonian to linear order in αL reads

Hlin
a−l =λa

∫
dω√
2π

(
bωeiωLt + b†

ωe−iωLt
) ∫

dzΨ †(z) sin(ωLz) sin(ωz + ∆φω)Ψ (z) , (5.16)

with the phase shift ∆φω = φω − φωLω/ωL ' φω − φωL and the atom-light field interaction
strength

λa =
√

2παLµ
2
aE2

ωL
/∆ . (5.17)
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Finally, in the frame rotating with the laser frequency (without the rotating wave ap-
proximation), the linearized Hamiltonian is given by

Hlin
msc =Ωma†a +

∫
dω∆ωb†

ωbω +
∫

dzΨ †(z)
[

V sin2(ωLz)− ∂2
z

2m
+

g
2
Ψ †(z)Ψ (z)

]
Ψ (z)

+ λa

∫
dω√
2π

(
bω + b†

ω

) ∫
dzΨ †(z) sin(ωLz) sin(ωz + ∆φω)Ψ (z)

+ λm(a + a†)

∫
dω√
2π

(
bω + b†

ω

)
,

(5.18)

with the detuning ∆ω = ω − ωL. This concludes the linearization procedure. In (5.18),
we can see that the cavity response affects the coupling in two ways. First, the cavity fi-
nesse F ∼ |TωL |2 enters the membrane-light field coupling λm, which directly enhances the
coupling strength, and, second, the atom-light field coupling is affected via the phase shift
∆φω = arg(Tω)− arg(TωL).

5.1.2 The Harmonic Approximation

First investigated in the context of sympathetic membrane cooling [128, 209], the authors as-
sumed a non-interacting atomic gas within the limit of a deep optical lattice. In this regime,
the motion of the j-th atom can be expanded around its equilibrium position z̄j with quan-
tum fluctuations zj = (dj + d†

j )/
√

2mΩa, where
[
dj, d†

k

]
= δjk. This yields a harmonic poten-

tial with trap frequency
Ωa = 2

√
VωR , (5.19)

where ωR = ωL
2/2m is the atomic recoil frequency. Accordingly, an expansion of the atom-

light field coupling yields a bilinear coupling and the linearized Hamiltonian becomes

H =Ωma†a +
∫

dω∆ωb†
ωbω +Ωad†d + λm(a + a†)

∫
dω√
2π

(
bω + b†

ω

)

+
√

Nλ′a(d + d†)

∫
dω√
2π

sin(∆ω z̄ + ∆φω)
(

bω + b†
ω

)
,

(5.20)

with the atom-light field coupling strength

λ′a =

√
mπΩ3

a
2αLωL

, (5.21)

and the center-of-mass mode d =
∑

j dj/
√

N. In this form, the atom-light field coupling is
enhanced by a factor

√
N.

In the derivation of the linearized Hamiltonian of Eq. (5.18) and (5.20), a cavity damping
was assumed that is much larger than the dominant time scales of the atomic and mechanical
part, i.e. κ � Ωm, Ωa . Consequently, the strong photon dissipation allows to adiabatically
eliminate the light field in a Born–Markov approximation and an effective description for
the atom-mechanical hybrid system is found. In order to avoid retardation effects within
the effective description, the propagation time τ of the light field between cavity and atom
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gas has to be small in comparison to the system timescales Ω−1
m , Ω−1

a . In total, the hierarchy
of time scales [128]

∆� θ � τ−1,κ� Ωm,Ωa � Nλ′2a ,λ2
m,
√

Nλ′aλm (5.22)

has been assumed for the following calculation.
To obtain the effective description for the atom-membrane coupling, the idea is the fol-

lowing. First, the Heisenberg equations for the field operators are derived to be

i∂ta = Ωma + λm

∫
dω√
2π

(
bω + b†

ω

)
, (5.23a)

i∂td = Ωad +
√

Nλ′a

∫
dω√
2π

sin(∆ω z̄ + ∆φω)
(

bω + b†
ω

)
, (5.23b)

i∂tbω = ∆ωbω +
λm√

2π
(a + a†) +

√
Nλ′a√
2π

sin(∆ω z̄ + ∆φω)(d + d†) . (5.23c)

The formal solution of the Heisenberg equation of motion for the light field modes (5.23c) is

bω(t) =e−i∆ω tbω −
iλm√

2π

∫ t

0
ds e−i∆ω(t−s)[a(s) + a†(s)]

− i
√

Nλa√
2π

sin(∆ω z̄ + ∆φω)
∫ t

0
ds e−i∆ω(t−s)[d(s) + d†(s)] ,

(5.24)

with the shorthand notation bω(0) = bω and the initial time set to 0. In a second step, this
solution is inserted in the equation of motion for the mechanical and atomic operators a
and d. The emergent integration over the field modes ω is of the form

∫ θ
−θ dω eiωt ' 2πδ(t),

which leads to advanced and retarded terms in the equation of motion. Finally, neglecting
the advanced terms and the retardation time, the effective quantum Langevin equations of
motion are obtained

i∂ta(t) =Ωma(t)−
√

Nλ
[
d(t) + d†(t)

]
− ξm(t) , (5.25a)

i∂td(t) =Ωad(t)−
√

Nλ
[

a(t) + a†(t)
]

, (5.25b)

with the effective atom-membrane coupling λ = λmλ
′
a. The light field fluctuations are in-

cluded by the radiation pressure noise ξm(t) on the membrane in Eq. (5.25a). This stochastic
force is given by

ξm(t) =

√
Γm

2

∫ ωL+θ

ωL−θ

dω√
2π

(
bωe−i∆ω t + b†

ωei∆ω t
)

(5.26)

with the associated diffusion rate Γm = 2λ2
m. Under the assumption that the light field

modes bω are initially in a vacuum state with 〈bωb†
ω′〉 = δ(ω − ω′), the noise ξm(t) is charac-

terized by the white noise autocorrelation function

〈ξm(t)ξm(s)〉 = Γm

2
δθ(t− s) . (5.27)
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Here, δθ(t) =
∫ θ
−θdω eiωt = sin(θt)/πt is a delta sequence that is peaked with a width of 1/θ.

Thus, assuming that the timescale on which the reduced system evolves is much slower
than 1/θ, the limit θ → ∞ can be taken, such that

lim
θ→∞

δθ(t) = lim
θ→∞

sin(θt)
πt

= δ(t) . (5.28)

5.1.2.1 Atom Momentum Diffusion and Mechanical Damping

In order to describe a realistic experimental setup and determine a regime in parameter
space where sympathetic cooling is possible, damping (and heating) effects and atom mo-
mentum diffusion have to be included properly.

Atoms in an optical lattice undergo light-induced momentum diffusion processes. As
an artifact of the one-dimensional treatment, this diffusion process has dropped out in the
above calculation [128]. As shown in [213], the atom momentum diffusion in a trapping
potential is determined by the diffusion constant Γa = γseΩa/2∆, with the natural linewidth
of the transition γse.

On the other hand, placing the membrane in a cryogenic environment leads to a cooling
of the vibrational mode and also to clamping losses due to the membrane support, such that
also here appropriate noise terms have to be included. The thermal decoherence is charac-
terized by the damping rate ΓthNm ' T0/Qm, where Qm is the mechanical quality factor,
T0 and Nm are the environment temperature and mode occupation number, respectively.
Simultaneously, absorption of the laser photons leads to an additional heating of the mem-
brane. This heating effect can be included by the definition of an effective bath temperature
Teff = T0 + Pabs/Kth and its corresponding occupation number Nm = Teff/Ωm = Nm + δN.
The absorbed laser power Pabs = 4a2

mFP/π with the thermal link Kth leads to an effectively
raised environment occupation by δN = Pabs/KthΩm. Here, a2

m = 1− t2
m − r2

m is the power
absorption coefficient and the thermal link is a measure that quantifies the heat transport
from the absorption area to the frame support of the membrane. It depends on the geome-
try of the membrane and intracavity beam waist, as well as the thermal conductivity of the
membrane2.

With these considerations, the quantum Langevin equations become

i∂ta =

[
Ωm − i

Γth

2

]
a−
√

Nλ
[
d + d†

]
− ξm + iξth , (5.29a)

i∂td =Ωad−
√

Nλ
[

a + a†
]
− ξa . (5.29b)

The thermal stochastic force operator ξth is a bosonic operator which is characterized by the
commutator

[
ξth(t), ξ†

th(s)
]
= Γthδ(t− s). In addition, the thermal noise is δ-correlated with

〈ξ†
th(t)ξth(s)〉 = NmΓthδ(t − s) and the atomic stochastic operator satisfies 〈ξa(t)ξa(s)〉 =

Γaδ(t− s)/2.

2For more details see the appendix of reference [128], where a thorough calculation on this matter is given
by solving the heat equation for an ultrathin, circular membrane.
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Qm 107 Γm 0.024Ωm Ωa Ωm

F 450 Γa 0.0032Ωm N 108

Nm 83 300 NmΓth 0.029Ωm
√

Nλ 0.085Ωm

δN 208 000 C0 43

TABLE 5.1: The optimized parameters are based on the analysis in reference [128]. The left column
shows the parameters of the optomechanical part, the central column the decoherence
rates and the right column the atomic parameters and atom-membrane coupling.
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FIGURE 5.3: The cooperativity C0 and
strong coupling condition are shown
as a function of the cavity finesse F .
The orange shaded area indicates the
optimal coupling regime. Other pa-
rameters than the finesse are taken
from table 5.1.

With the aim to obtain a coherent state transfer, which, for instance, is essential to set up a
cooling mechanism, the atom-membrane coupling has to exceed the individual decoherence
rates. This strong coupling limit is expressed by

√
Nλ� NmΓth, Γm, Γa . (5.30)

A measure that is directly connected to this condition is the cooperativity

C0 =
Nλ2

Γ tot
m Γa

, (5.31)

with Γ tot
m = NmΓth +Γm. The cooperativity C0 is shown in figure 5.3 as a function of the cav-

ity finesse F for realistic parameters taken from reference [128] and summarized in table 5.1.
For a small finesse, C0 grows quadratically and eventually saturates. In analogy, this behav-
ior is observed in the different ratios of the decoherence rates and atom-membrane coupling
strength. While the atomic diffusion rate does not depend on the finesse, the momentum
diffusion of the membrane grows quadratically in the finesse, leading to a linear behavior
Γm/
√

Nλ ∼ F . On the other hand, the thermal decoherence rate NmΓth is first dominated
by the finesse-independent thermal environment of the support and then outmatched by the
heating effect of the absorbed light field which scales linearly with the finesse. The optimal
coupling regime is reached in the vicinity around F ' 300, where C0 > 1 and the membrane
decoherence rate satisfies Γ tot

m <
√

Nλ.
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5.1.2.2 Sympathetic Cooling Scheme

An atomic gas loaded in an optical lattice is a well-controllable and clean system, which can
be perturbed in various ways. By means of laser cooling, the atomic motion can be cooled
by using, for instance, optical molasses [214]. In combination with the resonant excitation
exchange, it can be used to introduce a sympathetic cooling scheme. The atomic cooling
with rate Γac is included via

i∂td =

[
Ωa − i

Γac

2

]
d−
√

Nλ
[

a + a†
]
− ξa + iξac , (5.32)

where ξac is a bosonic vacuum noise operator. This noise is characterized by the two-point
correlator 〈ξac(t)ξ†

ac(s)〉 = Γacδ(t− s). By defining the vector x = (a, d, a†, d†)t, the quantum
Langevin equation can be written in the form ∂tx = −iMx + ξ, with the dissipation vector

ξ = (iξm + ξth, iξa + ξac,−iξm + ξ†
th,−iξa + ξ†

ac)
t (5.33)

and the linear stability matrix

M =




Ωm − iΓth/2 −
√

Nλ 0 −
√

Nλ
−
√

Nλ Ωa − iΓac/2 −
√

Nλ 0
0

√
Nλ −Ωm − iΓth/2

√
Nλ√

Nλ 0
√

Nλ −Ωa − iΓac/2




. (5.34)

Due to the present dissipation channels, the combined system may eventually equi-
librate to a steady state. The system stabilizes when each eigenvalue mi of the matrix
M satisfies Im(mi) < 0. In this case, the steady state is characterized by the equation
x = limt→∞

∫ t
0 ds e−iM(t−s)ξ(s). Expanding the vector x in the eigenmodes of M, the cor-

relations can be calculated according to

〈xi1 xi2〉 = −
∑

j1,j2

∑

k1,k2

iΞk1k2

mj1 + mj2
Ri1 j1 Ri2 j2 Lj1k1 Lj2k2 , (5.35)

with the matrices of left and right eigenvectors L and R of M3. Further, Ξ is the noise
correlation matrix whose components are defined according to 〈ξi(t)ξj(s)〉 = Ξijδ(t − s),
where ξi(t) is the i-th entry of the noise vector ξ.

Within the rotating frame approximation, the anti-diagonal coupling terms of the sta-
bility matrix are neglected, and the matrix can be diagonalized analytically, yielding the
complex eigenvalues

m1,2 =
Ωm +Ωa

2
− i

Γth + Γac

4
± 1

2

√(
Ωm −Ωa − i

Γth − Γac

2

)2

+ 4Nλ2 , (5.36)

3For a more detailed discussion on the derivation of the solution in terms of left and right eigenvectors see
appendix B.
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FIGURE 5.4: The membrane oc-
cupation 〈a†a〉 is shown as a
function of the cavity finesse F
for different atomic cooling rates
Γac. The inset shows the mem-
brane occupation number mini-
mized with respect to F . Other
parameters than the finesse are
taken from table 5.1.

and m3,4 = −m∗1,2. By estimating the imaginary parts of the eigenvalues, one can define a
sympathetic cooling rate of the membrane4

Γsym '
4Nλ2Γac

Γ 2
ac + 4(Ωm −Ωa)2 , (5.37)

with
√

Nλ,Γth � Γac.
In order to characterize a sympathetic cooling regime, the steady state occupation num-

ber of excitations 〈x3x1〉 = 〈a†a〉 is a suitable figure of merit. In figure 5.4, the number of
excitations on the membrane is shown as a function of the cavity finesse. As indicated by
the color bar, different atomic cooling rates Γac have been considered. In the weak coupling
regime (F . 100), the membrane is strongly affected by thermal effects of the apparatus.
On the other hand, the optical heating caused by laser photon absorption becomes stronger
as the finesse F is increased. The competition between both heating effects and sympathetic
cooling leads to a minimized membrane occupancy around F ' 400.

The position and the value of the minimum depend on the atomic cooling rate Γac which
is visualized in the inset of figure 5.4. Here, the membrane occupancy for a fixed Γac is
minimized with respect to the cavity finesse. In order to reach the strong coupling regime
with inclusion of the atomic cooling, the atom-membrane coupling strength has to exceed
Γac. In combination with optical heating, a global minimum is found at Γac ' Γsym.

5.1.3 Experimental Realization

On the basis of theoretical studies [128, 209], first experimental realizations have investi-
gated the sympathetic cooling scheme [129, 215]. In combination with cryogenic precooling
of the membrane and optical feedback cooling5 [130, 132], it has been shown that the quan-
tum mechanical regime of a low-frequency oscillator can be reached.

In their experimental setup, Jöckel et al. [129] placed a 42 nm thin Si3N4 membrane in a
low-finesse cavity (here, F = 140) and measured its displacement spectrum with and with-
out utilization of the atomic coolant. An effective temperature of the vibrational mode was

4The same sympathetic cooling rate is found within a classical decription [215].
5Optical feedback cooling is achieved by applying engineered radiation pressure of a dedicated laser

beam [216].
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FIGURE 5.5: (a) The membrane temperature is shown in the three-step sequence with (blue) and
without (red) sympathetic cooling. The dashed line indicates the room temperature
TRoom = 20◦C. (b) The minimal temperature of the membrane is determined from the
three-sequence experiment and shown as a function of the laser power P0 in the second
step. When the resonance condition Ωa ' Ωm is met, sympathetic cooling becomes
possible, which leads to a substantially decreased membrane temperature. The solid
curve shows a fit [217] with the function T(P0) = (a + bP2

0 )/(1 + cP0) which follows
from the theory of optical cooling. The data were taken from reference [129].

estimated from the integral of the mechanical displacement spectrum. An exemplary mea-
surement is shown in figure 5.5 (a). Without precooling of the membrane, the experiment
was carried out in a time-resolved three-step sequence, with off-resonant atom-membrane
coupling only in the first step. By tuning the laser power in the second step (shaded re-
gion), the resonant coupling regime Ωa ' Ωm is reached. In the presence of the atomic
coolant (blue curve), a substantial reduction of the membrane temperature is observed. On
the other hand, in the presence of only cavity optomechanical cooling (without atoms, red
curve), the membrane equilibrates to a temperature that is about one order of magnitude
larger. In the last step, the atomic cooling is turned off.

In addition, the minimal temperature is tracked as function of the power of the coupling
beam P0, which is shown with and without atoms in figure 5.5 (b). By increasing the cou-
pling laser power, not only the atom-membrane coupling is enhanced, but also the optical
lattice becomes deeper, i.e., the atomic frequency Ωa is increased. As a consequence, sympa-
thetic cooling is abruptly turned on around P0 ' 14 mW. The data points without the atoms
are well described by the fit function T(P0) = (a + bP2

0 )/(1 + cP0), which originates from
the theory of cavity optical cooling [207, 217].

In addition, the same three-step measurements have been repeated with a modified cav-
ity of F = 300, which results in a lower temperature minimum of 650 ± 230 mK, corre-
sponding to a phonon number of 〈a†a〉 ' (4.9± 1.7) × 104. By combining this technique
with optical feedback cooling, it has been shown that phonon numbers of 〈a†a〉 ' 16± 1
can be reached [132]. Here, the main cooling part is achieved by optical feedback cooling.
Yet, sympathetic cooling allows to further reduce the temperature of the mechanical oscil-
lator by some percents. Most interestingly, this combined method is capable of creating
a strongly coupled quantum hybrid system where the vibration mode is in the quantum
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ground state and the atom gas in a quantum many-body state.
Another feature of the state of a quantum hybrid system is its collective nature. Mediated

long-range interaction in the atom gas due to the coupling to the optomechanical system
can lead to a collective atomic motion in the optical lattice and an instability at large atom
numbers [131].

Despite its attractive simple concept, a large disadvantage of the motional coupling
scheme is the lack of tunability. While a regime where near resonant coupling between
atoms and the membrane becomes possible is desirable, the frequency of the nanooscillator
is limited to feasible trap frequencies in the optical lattice. This limits the nanooscilator to
the sub-MHz regime. Another limiting factor to achieve strong coupling is the scaling of the
atom-membrane interaction with λ ∼

√
m/M. An eligible candidate to circumvent these

problems will be discussed in the following section.

5.2 The Distant Internal State Coupling Scheme

Rather than coupling the vibration of a nanomembrane to the center-of-mass motion of the
atomic ensemble in an optical lattice, a transition in the internal state structure of the atoms
may also be utilized to achieve an effective atom-membrane coupling mechanism [159]. By
coupling the membrane to the internal atomic states, both subsystems can be brought much
easier into resonance, because the atomic energy splitting involved in the transition can
be easily tuned, e.g., by an external magnetic field. For instance, by addressing a transition
between Zeeman-sublevels, the atoms can be resonantly coupled to a membrane in the MHz
regime, while the utilization of hyperfine ground states would allow a resonant coupling in
the GHz regime.

In this section, we consider a cloud of 87Rb atoms placed in an external optical potential
as depicted in figure 5.6. The internal states of the atoms, labeled by τ ∈ {−, +, e}, are
arranged in Λ-type scheme. The energy separation between the two lowest states is denoted
by Ωa. A σ− polarized laser constantly drives the transition between the states |+〉 and |e〉
at a finite detuning ∆. The passing beam is directed to a polarization beam splitter (PBS)
which splits the circularly polarized light into linearly polarized light on two arms of equal
length. The light field in the upper path is reflected back onto the PBS by a fixed mirror. The
light in the left path is directed into a low-finesse optical cavity in which a semitransparent
nanomechanical membrane is placed. The outcoupled light field is returned back to the PBS.
In a quasistatic picture, a finite displacement of the membrane induces a relative phase shift
∆φ between the propagating πy → πyei∆φ beam in the cavity and propagating vertical πx →
πx beam. This relative phase shift is translated to a polarization rotation in the PBS. Then,
the emergent σ+ polarized photon impinges on an atom and may induce a two-photon
transition between the states |−〉 and |+〉. The back-action of the atoms on the membrane is
triggered by an internal transition between the two states |+〉 and |−〉. The emission of the
additional σ+ photon alters the radiation pressure on the membrane.

The optomechanical part of the system is described in a fashion similar to the distant
motional coupling scheme. The nanomembrane is modeled as a single vibrational mode by
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FIGURE 5.6: A nanome-
chanical membrane in an
optical cavity is coupled
to the internal states of a
distant atomic ensemble
that is trapped in an optical
lattice. The internal states
of the atoms are arranged
in a Λ-type scheme ac-
cording to the inset. The
figure is adapted from
reference [159].

the Hamiltonian of equation (5.2). The two optical polarizations are included as two light
fields over a bandwidth 2θ around the laser frequency ωL via

Hl =
∑

µ=±

∫ ωL+θ

ωL−θ
dω ωb†

µ,ωbµ,ω . (5.38)

The mode operators obey bosonic commutation relations
[
bµ,ω, b†

µ′,ω′

]
= δµµ′δ(ω − ω′). The

field operators b−,ω and b+,ω correspond to the different circular polarizations σ− and σ+,
respectively. The atomic gas is modeled by the standard many-body Hamiltonian

Ha =
∑

τ

∫
dzΨ †

τ (z)
[
ετ + Vτ (z)−

∂2
z

2m

]
Ψτ (z) +

1
2

∑

τ ,τ ′
gττ ′

∫
dzΨ †

τ (z)Ψ
†
τ ′(z)Ψτ ′(z)Ψτ (z) ,

(5.39)
with the internal state energies ε± = ±Ωa/2, εe = ωL +∆, the optical potential Vτ (z) and a
state-dependent local particle interaction with strength gττ ′ .

In accordance with the previous section, the non-linearized membrane-light field inter-
action takes the form of equation (5.9), with the exception that both polarizations have to be
included. This is done by taking the electric field operator of the πy polarized light which is
given by

E+
πy

=
∑

µ=±

i√
2

∫
dω Eωuω(z)bµ,ω . (5.40)

The external pumping laser has a σ− polarization, such that the drive is included by the
linear replacement at the laser frequency ωL

bµ,ω → bµ,ω + αLδµ,−δ(ω− ωL)e−iωLt . (5.41)

With this in mind, the linearized form of the membrane-light field interaction is given by
the expression

Hlin
m−l =

∑

µ=±
λm(a + a†)

∫
dω√
2π

(
bµ,ωeiωLt + b†

µ,ωe−iωLt
)

, (5.42)

with the same membrane-light coupling constant λm defined in equation (5.15).
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Assuming a rather large laser detuning ∆� µ+αLEωL , the excited state |e〉 can be elimi-
nated. Here, µ+ is the atomic transition dipole matrix element for the internal state transition
from the state |+〉 to |e〉. Then, the effective atom-light field interaction takes the form

Ha−l =
∑

τ=±

µ2
τ

∆

∫
dz E−σ−τ (z)E+

σ−τ (z)Ψ
†
τ (z)Ψτ (z)

+
µ+µ−
∆

∫
dz
[

E−σ−(z)E+
σ+
(z)Ψ †

−(z)Ψ+(z) + H.c.
]

,

(5.43)

with the atomic dipole moments µτ of the corresponding internal state transition and the
electric field operators outside of the cavity as

E+
σµ
(z) =

∫
dω Eωuω(z)bµ,ω . (5.44)

Here, the relevant mode functions are the same as in the motional coupling scheme of equa-
tion (5.8). After a linearizing procedure in the light field operators analogous to the motional
coupling scheme, we arrive at the atom-light field coupling Hamiltonian

Hlin
a−l =λa

∫
dω√
2π

(
b−,ωeiωLt + b†

−,ωe−iωLt
) ∫

dzΨ †
+(z) sin(ωLz) sin(ωz + ∆φω)Ψ+(z)

+ λ±

∫
dω√
2π

∫
dz sin(ωLz) sin(ωz + ∆φω)

[
Ψ †
+(z)Ψ−(z)b+,ωeiωLt + H.c.

]
,

(5.45)

with the coupling constants λa =
√

2παLµ
2
+E2

ωL
/∆ and λ± =

√
2παLµ+µ−E2

ωL
/∆. In con-

trast to the motional coupling scheme, the atom-light field coupling terms in this section
involve two different processes. The first term in equation (5.45) couples the atoms in the
internal state |+〉 to the photon field quadrature in a similar manner as in the motional cou-
pling scheme. We will later see that this particular term breaks the coupling symmetry. On
the other hand, the terms in the second line induce transitions of the atoms between the dif-
ferent internal states under the creation (annihilation) of a σ+ polarized photon. Moreover,
an optical lattice for the atoms in the internal state |+〉 is provided by the quadratic term in
the field amplitude αL. The lattice potential takes the form V(z) = Ωol sin2(ωLz) with the
depth Ωol = α2

Lµ
2
+E2

ωL
/∆ of the optical lattice.

5.2.1 Specifying the External Lattice Potential

In order to simplify the linearized atom-light field coupling, the external lattice potential
Vτ (z) can be chosen such that the atoms are positioned around the lattice sites zj with
sin(2ωLz) = 1. An additional potential for the atoms in the state |+〉 has to be provided
in order to cancel the lattice potential generated by the driving laser. This leads to a constant
term which redefines the atomic transition frequency Ωa → Ωa +Ωol. Overall, we choose
the optical potential according to Vτ (z) = −V sin(2ωLz)/2.
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In a rotating frame around the laser frequency (without the rotating frame approxima-
tion), we arrive at the linearized Hamiltonian in its final form

Hlin
isc =Ωma†a +

∑

τ=±

∫
dzΨ †

τ

[
τ
Ωa

2
− ∂2

z
2m
− V

2
sin(2ωLz) +

1
2

∑

τ ′=±
gττ ′Ψ †

τ ′Ψτ ′

]
Ψτ

+
∑

µ=±

∫
dω∆ωb†

µ,ωbµ,ω +
∑

µ=±
λm

(
a + a†

) ∫ dω√
2π

(
bµ,ω + b†

µ,ω

)

+

∫
dω√
2π

∫
dz sin(ωLz) sin(ωz + ∆φω)

[
λ±b+,ωΨ

†
+Ψ− + λab−,ωΨ

†
+Ψ+ + H.c.

]
,

(5.46)

where the position dependence in the atomic field operators has been omitted.
This system has been originally proposed by Vogell et al. [159] with slight modifications.

By disregarding the atom-atom interaction, the system was investigated in the context of
sympathetic cooling and compared to the previously proposed cooling scheme which in-
volved the motional coupling. By tuning the atomic transition frequency on resonance with
the membrane frequencyΩa ' Ωm and simultaneous atom cooling, the coupling term which
couples the light field to the number of atoms in the state |+〉 can be neglected.

By means of adiabatic elimination of the light field, an effective description of the atom-
membrane system is found using the master equation in Lindblad form

ρ̇ = −i [H, ρ] +
γm

2
D
[

a + a†
]
ρ , (5.47)

with the Lindblad operator D[x]ρ = xρx† −
{

x†x, ρ
}

/2 and the mechanical diffusion rate
γm = 2λ2

m. By employing a single-mode approximation Ψ±(z) = d±ψ(z) with a complex
mode function ψ(z) and bosonic ladder operators d±, the effective Hamiltonian in the limit
of vanishing atom-atom interactions g = 0 is given by

H = Ωma†a +Ω′aSz − λ(a + a†)Sx (5.48)

with the effective spin operators Sz = (d†
+d+ − d†

−d−)/2 and Sx = (d†
+d− + d†

−d+)/2 and
the effective atom-membrane coupling rate λ = λ±λm.

5.2.2 Realization of a Negative Mass Spin Oscillator

An intriguing feature of the atomic-"spin" ensemble is the realization of a negative mass os-
cillator. This idea involves an optical pump of the atoms in order to generate a population
inversion between the energetically inverted spin states |+〉 and |−〉. For this purpose,
we utilize a spin description in terms of a collective spin of the atomic ensemble with the
effective spin operators Sj =

∑
τ ,τ ′ d

†
τ

(
σj
)
ττ ′ dτ ′/2, bosonic annihilation operators dτ in the

corresponding internal state, j ∈ {x, y, z}, and the Pauli matrices σj. We note that the eigen-
values of the operators Sj range between −N/2 and N/2. Now, the driving induces a large
fraction of atoms to occupy the energetically higher internal state |+〉, such that the mean
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value of the spin operator S = (Sx, Sy, Sz)T is 〈S〉 ' (0, 0, s0). Here, s0 � 1 is a large number
close to the maximally polarized state with 〈Sz〉 = N/2. Next, we define normalized spin
components qa = Sx/

√
s0, pa = Sy/

√
s0 that fulfill the canonical commutation relation

[qa, pa] = i
Sz

s0
' i, (5.49)

in the Holstein–Primakoff approximation. In addition, we make use of the relation Sz '√
s0(s0 + 1)− (q2

a + p2
a)/2, such that the collective-spin Hamiltonian results in

Ha = Ω′aSz ' Ω′as0 −
Ω′a
2

(
q2

a + p2
a

)
, (5.50)

where the first term is only a constant and the second part realizes the harmonic oscillator
with negative mass.

In combination with a regular, positive mass harmonic oscillator, such a realization can
be utilized to unite quantum back-action (QBA) evading measurements6, quantum nonde-
molition measurements and quantum noise cancellation [220]. In addition, entanglement
between two atomic samples mimicking the macroscopic spins has been induced earlier in
reference [221], which in turn can be used to enhance quantum measurements [222].

An experimental setup similar to that shown in figure 5.6 has been realized recently,
in which the vibrational motion of a mechanical membrane placed in a high-finesse opti-
cal cavity implements the harmonic oscillator with positive mass [223]. On the other hand,
the negative mass harmonic oscillator is included by a far distant thermal cloud of caesium
atoms. In their work, the authors have shown that this setup is capable of QBA evading
measurements which enables a high displacement sensitivity. Let us note that the use of a
high-finesse cavity requires a description beyond the effective time-evolution of the Lind-
blad equation (5.47) with (5.48), because retardation effects become progressively more im-
portant. In fact, it is more closely related to a different type of coupling scheme, namely the
high-finesse coupling scheme which we will shortly summarize in the following section.

5.3 The High-Finesse Coupling Scheme

An alternative possible realization of a system that combines an optomechanical system
with an ensemble of bosonic atoms [138, 224, 225] is very closely related to the Dicke model
sketched in figure 4.4(a). This system consists of an atomic ensemble of N atoms that is
placed inside a transversely driven high-finesse optical cavity. The transverse pump coher-
ently drives the atoms with a strength η and is chosen to be far-detuned from the closest
atomic transition in order to ensure low electronic excitations and suppress spontaneous
photon emission. Yet, the laser frequency is nearly resonant with the cavity frequency ωC,
such that the cavity resonance detuning ∆C = ωL − ωC is close to the cavity line width

6The continuous observation of the membrane position imposes a quantum back-action perturbation on its
momentun. In accordance with the Heisenberg uncertainty, the randomness of this back-action accumulates to
an uncertainty on the measurement of motion [218, 219], which puts a limitation on the precision of measure-
ments.
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FIGURE 5.7: A Bose–Einstein condensate is
trapped in an optomechanical cavity with a vi-
brating side-end mirror. The atomic condensate
is coherently driven by a far-detuned, transverse
pump laser.

κ ' ∆C. Hence, the scattering process of photons into the cavity occurs quasi-resonantly. In
addition, the radiation pressure on the side-end mirrors leads to excitations of its vibrational
mode with the mechanical frequency Ωm, giving rise to an additional dissipation channel.
For simplicity, let us consider only a single vibrational mode of the right-hand side mirror,
while the left mirror is kept fixed. Then, a finite displacement of the vibrating mirror is
associated with a shift of the cavity frequency according to

ω′C =
ωC

1 + (b + b†)/L
√

2MΩm
' ωC − λm(b + b†) , (5.51)

where M is the mirror mass and L the cavity length. The effective optomechanical coupling
constant λm = ωC/L

√
2MΩm follows by linearizing the fraction with respect to the mirror

displacement. A simplified sketch of the system is presented in figure 5.7. Note that due to
the similarities to the system without the vibrational degree of freedom, this system also ex-
hibits a nonequilibrium quantum phase transition with similar characteristics as discussed
in section 4.4.

In the rotating wave and electric-dipole approximation [114], the dynamics of the system
in the mean field regime is determined by the set of coupled equations of motion

i∂tβ = (Ωm − iΓm) β −
√

Nλm|α|2 , (5.52a)

i∂tα =

[
−∆C + NU0

∫
dz cos2(z)|ψ|2 −

√
Nλ(β + β∗)− iκ

]
α+
√

Nη
∫

dz cos(z)|ψ|2 ,

(5.52b)

i∂tψ =
[
−ωR∂

2
z + NU0|α|2 cos2(z) +

√
Nη(α+ α∗) cos(z) + Ng|ψ|2

]
ψ , (5.52c)

for a one-dimensional Bose gas elongated along the cavity axis. Here, we have introduced a
phenomenological damping of the mechanical and cavity mode with rates Γm and κ, respec-
tively. The first equation describes the motion of the membrane with the ansatz 〈b〉 =

√
Nβ.

Analogously to the set of equations (4.14), the second and third equation describe the mo-
tion of the cavity photon amplitude α and the atomic condensate wave function ψ in the
cavity.

Due to the non-bilinear coupling between cavity amplitude α and vibrational amplitude
β, i.e., ∼ λm|α|2(β + β∗), the critical coupling rate at which the phase transition occurs is
unchanged. In other words, the long-range order of the atoms happens when the driving
amplitude satisfies η ≥ ηc, where ηc is given in equation (4.15). However what is affected
is the amplitude of the order parameter Θ =

∫
dz cos(z)|ψ|2 in the superradiant phase as
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shown in [226]. In addition, it gives rise to a dynamical unstable phase at η ≥ ηc in the
ground state phase diagram [227, 228], since the phonon-photon coupling is of parametric
nature ∼ |α|2.

In the next chapter, we will investigate the system in the motional coupling scheme.
We will adiabatically eliminate the light field beyond the assumption of a deep lattice (see
equation (5.25)) and then show that the system exhibits a phase transition.





CHAPTER 6
Nonequilibrium Quantum Phase
Transition in the Motional Coupling
Scheme

By altering the laser intensity in the atom-optomechanical hybrid quantum system, a nonequilibrium
quantum phase transition occurs between a localized symmetric state and a symmetry-broken quan-
tum many-body state with a shifted atom cloud-membrane configuration. The results presented in
this chapter have been partially published in:

N. Mann, M. Reza Bakhtiari, A. Pelster, and M. Thorwart, “Nonequilibrium quantum phase transi-
tion in a hybrid atom-optomechanical system”, Physical Review Letters 120, 063605 (2018).

The effective atom-membrane coupling can be derived in various approaches. In section
5.1.2, the effective description was derived by solving the Heisenberg equations of motion
for the field operators bω. In this chapter, we will follow an alternative way. On the basis of
a quantum stochastic Schrödinger equation (QSSE) approach, an effective quantum master
equation in Lindblad form for the reduced system can be derived [159, 211]. On the basis of
the analytical mean-field Gross–Pitaevskii approach developed in chapter 3, we analyze the
emerging equations of motion.

6.1 Adiabatic Light Field Elimination

Here, we start with the linearized Hamiltonian (5.18) in the interaction picture with respect
to the free time evolution of the photon field. The operators in the interaction picture are
denoted by a subscript I next to the time variable. Hence, the only operators transforming
are the light field operators which have to be replaced by bω(t)I = bωe−i∆ω t. The formal
solution of the Schrödinger equation for an initial state |ψ(t0)〉 reads

|ψ(t)〉 = T exp
{
−i
∫ t

t0

ds Hlin
msc(s)I

}
|ψ(t0)〉 , (6.1)
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where T is the time-ordering operator. Next, we expand this equation for small time steps
δt. Up to second-order, the relevant terms read

|ψ(t0 + δt)〉 '
{

1− i
∫ t0+δt

t0

dt Hlin
msc(t)I −

∫ t0+δt

t0

dt
∫ t

t0

ds Hlin
msc(t)I Hlin

msc(s)I

}
|ψ(t0)〉 . (6.2)

In addition, we assume that the initial state |ψ(t0)〉 is in a product state of the form |ψ(t0)〉 =
|ψ(t0)〉a+m⊗ |vac〉l, with the vacuum state of the light field |vac〉l and |ψ(t0)〉a+m referring to
a state acting on the atom-membrane subspace. In other words, we assume bω(t)I |ψ(t0)〉 = 0
and bω(t)Ib†

ω(t′)I |ψ(t0)〉 =
[
bω(t)I , b†

ω(t′)I
]
|ψ(t0)〉.

Equipped with these relations, we evaluate the terms in equation (6.2) and keep only
terms up to first order in δt. Then, the second term on the right-hand side becomes

− i
{

Hmsc,0δt + λm(a + a†)δB†(t0) + λa

∫
dzΨ †(z)Ψ (z)δC†(t0, z)

}
|ψ(t0)〉 , (6.3)

where we have defined the noise-increment operators δB(t) = B(t + δt) − B(t) and
δC(t, z) = C(t + δt, z)− C(t, z) with

B(t) =
∫ t

t0

ds
∫

dω√
2π

bω(s)I , (6.4a)

C(t, z) =
∫ t

t0

ds
∫

dω√
2π

sin(ωLz) sin(ωz + ∆φω)bω(s)I . (6.4b)

Moreover, we have defined the free Hamiltonian of the reduced system Hmsc,0 = Hm + Ha +

V
∫

dzΨ †(z) sin2(ωLz)Ψ (z). By keeping only the terms to lowest order in the time delay δt,
the third term in equation (6.2) has the only contributions

−i
{
−λ(a + a†)

∫
dzΨ †(z) sin(2ωLz)Ψ (z)− i2λ(a + a†)

∫
dzΨ †(z) sin2(ωLz)Ψ (z)

−i
λ2

m
2
(a + a†)2 +

λ2
a

4

∫
dzdz′ Ψ †(z)Ψ (z)G(z, z′)Ψ †(z′)Ψ (z′)

}
δt|ψ(t0)〉 ,

(6.5)

with the effective atom-membrane coupling strength λ = λmλa/2. The adiabatic elimination
of the light field introduces a spatial long-range interaction in the atomic ensemble with the
complex interaction potential

G(z, z′) = sin(ωLz) sin(ωLz′)
[
sin(ωL|z− z′|)− sin(ωL[z + z′])− 2i sin(ωLz) sin(ωLz′)

]
.

(6.6)
In the limit δt→ 0, the QSSE is found. To this extent, we assume that each time step does

not depend on an earlier time step. This is equivalent to the weak-coupling assumption
or Markov approximation, as we had assumed that the system state |ψ(t)〉 always factor-
izes. Additionally, we assume that the evolution of the reduced system happens on a much
slower time scale than the travel time of the light in the system. In this case, we may neglect
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retardations in the equation of motion. The QSSE in Ito form follows according to

d|ψ(t)〉 =
{
−iHeff

msc −
1
2

[
λm(a + a†) + λa

∫
dzΨ †(z) sin2(ωLz)Ψ (z)

]2
}

dt|ψ(t)〉

− i
{
λm(a + a†)dB†(t) + λa

∫
dzΨ †(z)Ψ (z)dC†(t, z)

}
|ψ(t)〉 ,

(6.7)

where the effective Hamiltonian has been defined as

Heff
msc =Ωma†a +

∫
dzΨ †(z)

[
V sin2(ωLz)− ∂2

z
2m
− λ(a + a†) sin(2ωLz) +

g
2
Ψ †(z)Ψ (z)

]
Ψ (z)

+
λ2

a
4

∫
dzdz′ Re[G(z, z′)]Ψ †(z′)Ψ (z′)Ψ †(z)Ψ (z) . (6.8)

In the same way as above, the differential noise increment operators are defined via dB(t) =
limδt→0 B(t + δt)− B(t), and likewise dC(t, z) = limδt→0 C(t + δt, z)− C(t, z).

On a first glance, the quantum stochastic differential equation (QSDE) (6.7) seems to
produce a non-unitary time evolution for the wave function. However, this is not the case,
as the terms to second-order in the differential noise operators follow the Ito rules [211]

dB(t)dB†(t) =dt ,

dC(t, z)dC†(t, z′) = sin2(ωLz) sin2(ωLz′)dt ,

dB(t)dC†(t, z) = dC(t, z)dB†(t) = sin2(ωLz)dt ,

(6.9)

while other quadratic terms are zero. In fact, it can be shown that the time evolution operator
U (t) for the stochastic form of the Schrödinger equation satisfies

U(t, t0) = T exp
{
−i
∫ t

t0

(
Heff

mscds + λm(a + a†)[dB + dB†] + λa

∫
dzΨ †Ψ [dC + dC†]

)}
,

(6.10)
which indeed is unitary.

6.1.1 Quantum Langevin Equation

Rather than describing the system dynamics via a QSDE of the wave function, in some
cases it is more appropriate to derive the quantum Langevin equations for a closed set of
operators. In the Heisenberg picture, the time evolution of an arbitrary operator O is given
by O(t) = U †(t, 0)OU(t, 0). With this, a stochastic form of the quantum Langevin equation
is found according to

da =− i
[

a, Heff
msc

]
dt− iλm(dB + dB†) , (6.11a)

dΨ (z) =− i
[
Ψ (z), Heff

msc

]
dt− iλa sin2(ωLz)Ψ (z)(dB + dB†) . (6.11b)

Here, we have made the replacement dC(z) = sin2(ωLz)dB, which is satisfying the Ito
rules (6.9) and complies with the nature of the stochastic force. Note that the additional



84 Chapter 6. NQPT in the Motional Coupling Scheme

field operator Ψ (z) in front of the stochastic term is needed to conserve the particle number.
Moreover, the last term in (6.11b) describes fluctuations of the lattice potential depth, which
can lead to excitations of the atoms to higher motional bands in the optical lattice.

By interpreting the terms (dB + dB†) as white noise operators, we arrive at the quantum
Langevin equations

i∂ta =
[

a, Heff
msc

]
− λmξl , (6.12a)

i∂tΨ (z) =
[
Ψ (z), Heff

msc

]
− λa sin2(ωLz)Ψ (z)ξl , (6.12b)

where the quantum Langevin equation for the membrane mode is in accordance with equa-
tion (5.25a). The autocorrelation function of the field fluctuations satisfies 〈ξl(t)ξl(s)〉 =

δ(t− s).

6.1.2 Master Equation

While the practicality of the QSSE is that it only involves the time evolution of the wave
function, without loss of the light field fluctuations and the effective atom-membrane cou-
pling, it comes with a disadvantage. Without question, it is numerically advantageous to
evolve only a wave function in time. However, due to the stochastic description, the time
evolution has to be done over and over again until the result is satisfyingly converged. On
the other hand, the QSSE also provides the appropriate quantum master equation in Lind-
blad form for the reduced density operator. Assuming that we start in the pure state |ψ(t)〉,
we can define the stochastic density operator W(t) = |ψ(t)〉〈ψ(t)| and the equation of mo-
tion is found via the three contributions

dW(t) = d|ψ(t)〉〈ψ(t)|+ |ψ(t)〉d〈ψ(t)|+ d|ψ(t)〉d〈ψ(t)| . (6.13)

If we now average over the light field degrees of freedom, we can derive the master equation
for the reduced density operator ρ(t) = TrlW(t), which is no longer stochastic. By using the
relations of equation (6.9), we find the master equation

∂tρ =i
[
ρ, Heff

msc

]
+
∑

ij=a,m

[
LiρL†

j −
1
2

{
L†

i Lj, ρ
}]

, (6.14)

with the Lindblad operators

La =λa

∫
dzΨ †(z) sin2(ωLz)Ψ (z) , (6.15a)

Lm =λm(a + a†) . (6.15b)
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6.2 Nonequilibrium Quantum Phase Transition

By the scaling of the space coordinate z → z/ωL, the equations of motion can be written in
the compact form

i∂ta = [Ωm − iΓm] a− λ
∫

dzΨ †(z) sin(2z)Ψ (z)− λmξl + iξth , (6.16a)

i∂tΨ =
[
V sin2(z)− ωR∂

2
z + gΨ †Ψ − λ(a + a†) sin(2z)

]
Ψ − λa sin2(z)Ψξl , (6.16b)

where we have introduced a thermal damping of the membrane with damping rate Γm

and the bosonic thermal noise operator ξth. For the thermal noise operator, we assume that
it satisfies the autocorrelation functions 〈ξth(t)ξ†

th(s)〉 = 2Γmδ(t − s) and 〈ξ†
th(t)ξth(s)〉 =

〈ξth(t)ξth(s)〉 = 〈ξ†
th(t)ξ

†
th(s)〉 = 0, corresponding to zero temperature noise. Moreover, we

have assumed a large detuning ∆ such that the long-range interaction potential induced by
the photon field can be neglected.

6.2.1 The Extended Gross–Pitaevskii Equation

In the condensate regime, a large fraction of the atoms occupy the ground state. By consider-
ing weakly interacting atoms which, in addition, are only weakly coupled to the vibrational
oscillator, the quantum Langevin equations (6.12) can be drastically simplified. In other
words, when g,λ � Ωm,ωR, the field operators Ψ (z) can be approximated by a complex
function ψ(z) according to Ψ (z) '

√
Nψ(z), with the number of atoms N. In the same man-

ner, the membrane operator a can be replaced by its mean value 〈a〉 =
√

Nα. In this limit,
the system dynamics is determined by two coupled differential equations, the extended
Gross–Pitaevskii equation (GPE),

i∂tα = [Ωm − iΓm]α−
√

Nλ
∫

dz sin(2z)|ψ|2 , (6.17a)

i∂tψ =
[
V sin2(z)− ωR∂

2
z + Ng|ψ|2 −

√
Nλ(α+ α∗) sin(2z)

]
ψ . (6.17b)

We observe that the condensate equation of motion exhibits a π-periodicity in space. This
fact will also be reflected in the condensate wave function, such that ψ(t, z + π) = ψ(t, z).
Hence, we can restrict ourselves to the space interval [−π/2,π/2] and use periodic bound-
ary conditions1.

The set of equations is very similar in structure to that of equations (4.14) for a BEC
in an optical cavity with transversal pumping. There, the competition between the kinetic
energy of the atomic ensemble and the energy of the cavity field lead to a nonequilibrium
quantum phase transition from a non-localized, translational invariant condensate state to a
self-organized state [113]. From the equations (6.17), we see a similar competition. Here, the
two potential contributions V sin2(z) and

√
Nλ(α + α∗) sin(2z) can dynamically compete

with each other. This competition depends on the back-action of the membrane on the atoms

1In order to numerically evaluate the steady-state solution of the combined equations of motion, we use a
Crank–Nicolson scheme in imaginary time. For details about this scheme see the appendix C.
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and consequently on the collective behavior of the atoms. Eventually, this may lead to the
formation of two different stable phases, one with α = 0 and the other with α 6= 0.

Due to the damping of the membrane, the combined system will eventually relax to a
steady state. This state is characterized by the membrane amplitude α0 and the condensate
function ψ(t, z) = e−iµtψ0(z), with the chemical potential µ. By using equations (6.17), the
steady state satisfies

α0 =

√
Nλ

Ωm − iΓm

∫
dz sin(2z)ψ0

2 , (6.18a)

µψ0 =
[
V sin2(z)− ωR∂

2
z + Ngψ2

0 −
√

Nλ(α0 + α∗0) sin(2z)
]
ψ0 , (6.18b)

where we have chosen ψ0 to be real without loss of generality.
The dynamical competition of the potential terms is included in the steady state be-

havior. In order to gain further insight and quantify the steady state, we consider the
deep optical lattice regime, i.e., V � ωR, Ng. In this limit, the condensate wave function
is very closely centered around each lattice minimum and the sine functions can be ex-
panded to lowest order in the position variable z. From the equation (6.18a), the relation
α0 = 2

√
Nλz0/(Ωm − iΓm) is found, where z0 =

∫
dz zψ2

0 is the center-of-mass position of
the condensate. On the other hand, the center-of-mass position according to equation (6.18b)
satisfies z0 =

√
Nλ(α0 + α∗0)/V2. By comparison of these two relations, we see that below

the atom-membrane coupling constant

√
NλV =

√
V
4

√
Ωm +

Γ 2
m

Ωm
, (6.19)

the only possible solutions is z0 = α0 = 0, whereas the relation with z0,α0 6= 0 is only
satisfied at λ = λV . Eventually, the expansion of the sine to lowest order in z breaks down
above this coupling rate, being a first indicator for the presence of a nonequilibrium quan-
tum phase transition which is manifested in an abrupt change of the steady state.

On the other hand, in the zero potential limit, i.e., V = 0, the condensate wave function
at zero atom-membrane coupling is translational invariant. For a finite atom-membrane
coupling, this translational invariance is broken and the condensate profile adopts the shape
of the coupling potential sin(2z). Hence, we make the ansatz [113]

ψ0(z) = π−1/2 [1 + ε sin(2z)] , (6.20)

and find α0 =
√

Nλε/(Ωm − iΓm). This ansatz is inserted in equation (6.17b) and one evo-
lution step in imaginary time is carried out to find

δψ

δτ
= −Ng

π
π−1/2 −

[
4ωR +

3Ng
π
− 2Nλ2 Ωm

Ω2
m + Γ 2

m

]
π−1/2ε sin(2z) . (6.21)

2This relation is found via the expansion of the potential terms in the GPE (6.18b) according to V sin2(z)−√
Nλ(α0 + α∗0) sin(2z) ' Vz2 − 2

√
Nλ(α0 + α∗0)z = V(z− z0)

2 −Vz2
0.
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The first and the remaining terms produce decays with different rates. Equating these two
rates allows us to find the critical coupling rate at which both decay rates are identical. This
happens when

√
Nλfree =

√
2ωR +

Ng
π

√
Ωm +

Γ 2
m

Ωm
, (6.22)

and the homogeneous mode function 1/
√
π of (6.20) decays faster than the ε sin(2z)/

√
π

mode function if
√

Nλ >
√

Nλfree. In order to verify this behavior, we numerically calculate
the steady state as a function of the atom-membrane coupling strength

√
Nλ. In figure 6.1(a),

we show the stationary membrane displacement Re(α0) as a function of the atom-membrane
coupling strength

√
Nλ for different lattice depths V. Here, the membrane displacement can

act as an order parameter equivalent to the center-of-mass position of the atomic ensemble.
It shows that below a certain atom-membrane coupling, the membrane displacement van-
ishes and the atomic condensate is located symmetrically around the lattice site at z = 0.
Tuning the coupling strength above this critical coupling, the stationary membrane dis-
placement takes one of two possible states with either Re(α0) > 0 or Re(α0) < 0. This
spontaneous symmetry-breaking is a second indicator for a phase transition. Eventually, it
goes over into a linear proportionality |α0| ∼

√
Nλ. In the linear region, the atom gas is lo-

cated around newly formed lattice sites by the sin(2z) potential at z = ±π/2, corresponding
to either the positive or negative branch of the membrane displacement.

From the value at which the symmetry-breaking in figure 6.1(a) occurs, we extract the
critical coupling rate

√
Nλc and compare it to the analytical results of the critical coupling

rate. This comparison is shown in figure 6.1(b) as a function of the lattice depth for a non-
interacting (Ng = 0) and a strongly interacting (Ng = 100ωR) condensate in black and blue,
respectively. In both cases, the offset at V = 0 is very well described by equation (6.22)
as indicated by the dashed horizontal lines. The behavior in the deep lattice limit is well
approximated by the green dashed line resulting from equation (6.19).

Examples of the condensate wave function are given in figure 6.2 for non-interacting
atoms (g = 0). Considering an optical lattice depth of V = 200ωR, the shape is very
well described by a Gaussian profile. At zero coupling (blue, solid), the atoms are cen-
tered around the equilibrium position of the optical potential V sin2(z). For the coupling
rate

√
Nλ = 0.85Ωm, which is above the threshold

√
Nλc, the atomic equilibrium posi-

tion is shifted to the position z = tan−1(2
√

Nλ(α0 +α∗0)/V). Due to the twofold degenerate
steady state, the atomic equilibrium position is either shifted to positive values (solid, green)
or negative values (dashed, green).

In the following, we perform a rigorous analysis of the problem. By adapting the ap-
propriate shape of the condensate profile to the present potential, the equations of motion
can be drastically simplified. In figure 6.2, it has been shown that the wave function can be
very well described by a single Gaussian with variable width and center-of-mass position,
although the potential is given by a sum of trigonometric functions. In doing so, the par-
tial differential equations (6.17) can be reduced to a rather simple set of coupled differential
equations. We adapt the mean-field language of chapter 3 to this problem by including an
additional variational parameter.
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FIGURE 6.1: (a) The stationary value of the membrane displacement Re(α0) is shown as a function of

the coupling rate
√

Nλ for a non-interacting condensate (Ng = 0). Curves with different
colors correspond to the different lattice depths V which are indicated in the panel. (b)
The critical coupling rate

√
Nλc is extracted from (a) and shown as a function of the

lattice depth V. Analogously, the critical coupling rate is estimated for an interacting
condensate with Ng = 100ωR. The offset at V = 0 is very well reproduced by the
free condensate limit of equation (6.22), indicated by the dashed horizontal lines. The
green dashed line shows the critical coupling rate in the deep optical potential limit of
equation (6.19). In both panels, we have used the membrane parameters Ωm = 100ωR
and Γm = 20ωR.
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FIGURE 6.2: The condensate wave func-
tion is shown for two different atom-
membrane coupling strength. Below the
splitting point

√
Nλc, the atoms are sym-
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z < 0 (dashed) or z > 0 (solid) above the
critical point for

√
Nλ = 0.85Ωm. The

other parameters used are V = 200ωR,
g = 0, Ωm = 100ωR and Γm = 20ωR.
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6.2.2 Cumulant Expansion of the Equation of Motion

In a rather deep optical lattice, i.e., V � ωR, the condensate profile is well described by
a sum of Gaussian functions residing in the individual lattice wells. When the overlap of
the wave function between neighboring sites is considerably small, the problem effectively
reduces to a single site problem. In this regime, we describe the condensate profile by a
single Gaussian

ψ(t, z) =
(

1
πσ(t)2

)1/4

exp
(
− [z− ζ(t)]2

2σ(t)2 + iκ(t)z + iη(t)z2
)

, (6.23)

with real, time-dependent variational parameters that include the condensate width σ(t)
and the center-of-mass position ζ(t). Moreover, we include a space- and time-dependent
phase in the form κ(t)z+ η(t)z2. This is essential, as otherwise the condensate profile would
be real-valued and no dynamical behavior would be obtained. For an accurate description,
we consider lattice depths V & 10ωR and weak atomic interactions Ng� V.

In order to find the equations of motion for the variational parameters, we determine the
lowest cumulants of the condensate probability distribution, whose dynamics is described
by the extended GPE (6.17). Hence, by multiplying equation (6.17b) by ψ∗(t, z)[z− ζ(t)] and
integrating over the space coordinate z, we find for the left-hand side (LHS)

∫
dzψ∗(t, z)[z− ζ]× [LHS of (6.17b) ] = i

ζ̇

2
− σ2

2
(κ̇+ 2η̇ζ) , (6.24)

and the right-hand side (RHS)

∫
dzψ∗(t, z)[z− ζ]× [RHS of (6.17b) ] =ωR(κ+ 2ηζ)(i + 2ησ2) +

V
2

sin(2ζ)σ2e−σ
2

−
√

Nλ(α+ α∗) cos(2ζ)σ2e−σ
2

.
(6.25)

In addition, we calculate the second cumulant by multiplying by ψ∗(t, z)[{z − ζ(t)}2 −
σ(t)2/2] and integrating over z to find

i
σσ̇

2
− η̇σ4

4
=ωR

[
2η2σ4 − 1

2
+ 2iησ2

]
+

V
2

cos(2ζ)σ4e−σ
2 − Ngσ

4
√

2π

+
√

Nλ(α+ α∗) sin(2ζ)σ4e−σ
2

.
(6.26)

The imaginary part of the two cumulants yield the relations ζ̇ = 2ωR(κ + 2ηζ) and σ̇ =

4ωRησ, which allows us to eliminate the auxiliary phases η and κ. With these, we find the
equations of motion for the membrane amplitude α, the center-of-mass position ζ of the
condensate and the condensate width σ in the compact form

α̇ =− i∂α∗E− Γmα , (6.27a)

(2ωR)
−1ζ̈ =− ∂ζE , (6.27b)

(4ωR)
−1σ̈ =− ∂σE , (6.27c)
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by defining the effective potential energy

E[α,S ,σ] = Ωm|α|2 +
ωR

2σ2 +
Ng√
8πσ
− V

2

√
1− S2e−σ

2 −
√

Nλ(α+ α∗)Se−σ
2

. (6.28)

Most importantly, we have defined the order parameter S = sin(2ζ) of the NQPT that is a
different measure for the center-of-mass position of the atomic ensemble.

6.2.3 Quantum Phase Transition in the Mean-Field Regime

The steady-state value of the membrane is found by setting the corresponding time deriva-
tive to zero, such that we find α0 =

√
NλSe−σ

2
/(Ωm − iΓm). By inserting this expression in

the potential energy E to solely express the energy functional as a function of the conden-
sate parameters σ and S . Then, the steady-state values of these two parameters are given by
those values that globally minimize the energy functional3. Hence, to find the steady-state
values, we have to solve the coupled equations

√
1− S2

0

[
ωR +

Ng√
8π
σ0

]
=Vσ4

0e−σ
2
0 , (6.29a)

S0

[
Nλ2

√
1− S2

0 − Nλ2
Veσ

2
0

]
=0 . (6.29b)

The second equation (6.29b) is solved by three possible values for the order parameter that
are either

S0 = 0 or S0 = ±
√

1− (λV/λ)4e2σ2
0 . (6.30)

The displaced solution S0 6= 0 is imaginary for λ . λV and the only physical solution which
minimizes the energy functional E[α0,S ,σ] is S0 = 0. By increasing the atom-membrane
coupling to λ & λV , the displaced solution becomes real and the initial global minimum
at S0 = 0 turns into a local maximum, which can be shown by a Landau expansion of the
effective nonequilibrium energy functional, see equation (6.35b).

In order to gain a more profound understanding of the role of increasing the atom-
membrane coupling strength λ, we expand the potential energy surface as a function of one
of the variational parameters. For instance, the potential energy E(σ) ≡ E[α0(σ),S0(σ),σ]
exhibits only a single minimum for σ > 0. Via the normalized potential energy

E(σ) = E(σ)− E(σ0)

max
σ̄
{E(σ̄)− E(σ0)}

, (6.31)

we show this behavior in figure 6.3(a) as a function of the condensate width σ and the atom-
membrane coupling rate

√
Nλ for V = 50ωR, Ng = 0. The dashed curve marks the con-

figuration of minimal potential energy E(σ0) = 0. Below the critical coupling rate λc, the

3We note that by directly minimizing the energy functional E[α,S ,σ] of equation (6.28) with respect to α, S ,
and σ, a different result will be found as the nonequilibrium condition is not included. In fact, this procedure
will evaluate the ground state phases.
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FIGURE 6.3: (a) Scaled energy potential as a function of the condensate width σ and the atom-
membrane coupling λ for non-interacting atoms with V = 50ωR. For a fixed λ, the
energy potential exhibits a global minimum which defines the steady state value σ0 as
indicated by the dashed curve. (b) Stationary condensate width σ0 as a function of the
coupling strength for various potential depths V, as indicated by the color bar. Other
parameters used are Ωm = 100ωR, Γm = 20ωR and g = 0.

stationary width σ0 is constant, whereas it decreases to a good approximation as ∼ 1/
√
λ

above λc.
Moreover, figure 6.3(b) shows the stationary condensate width σ0 for various values of

the potential depth V, which are indicated by the color bar. Here, the solid curves show the
variational result of the cumulant expansion, whereas the dashed curves show the steady
state width σ0 calculated using the GPE (6.17) in imaginary time for four corresponding
cases of V. Both results are in good agreement with each other, which validates the Gaussian
ansatz4. The constant plateau is determined by equation (6.29a) with S0 = 0 and for non-
interacting atoms approximately given by σ0 ' (ωR/V)1/4.

On the other hand, the normalized energy surface as a function of the order parameter
S has either one stable state or two stable solutions. This is visualized by plotting E(S) as a
function of the order parameter S and the atom-membrane coupling in figure 6.4(a). Again,
the dashed curve indicates the configuration S0 at which the potential is minimized. For
smaller values λ ≤ λc, the energy potential surface forms a single potential well around
S = 0, whereas for λ > λc, it becomes a double well potential with a local maximum at
S = 0.

In addition, we show the stationary value of the order parameter S0 for different poten-
tial depths V. The variational results (solid curves) are consistent with the full numerical
results (dashed curves). For small values of the atom-membrane coupling, the atomic con-
densate is symmetrically located around the lattice minima at ζ0 = jπ, j ∈ Z. Consequently,
the order parameter S0 vanishes and the membrane amplitude α0 equals zero. Then, the

4A comparison of the computational time consumption shows that the estimation via the analytical approach
is of the order of seconds, while it is of the order of minutes for the estimation via the imaginary time evolution
with the GPE.
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FIGURE 6.4: (a) Scaled energy potential as a function of the order parameter S and the atom-
membrane coupling λ for non-interacting atoms with V = 50ωR. Below the critical
coupling strength the potential surface exhibits a single minimum at S = 0. At λ = λc,
this minimum turns into a maximum and two new minima are formed at S 6= 0. (b) Sta-
tionary value of the order parameter S0 as a function of the coupling strength for various
potential depths V, as indicated by the color bar. Here, only the positive solution S0 ≥ 0
is shown. Other parameters used are Ωm = 100ωR, Γm = 20ωR and g = 0.

NQPT occurs at the critical coupling λc, which follows from solving the implicit equation5

ωR +
Ng√

8π

√
2 log

λc

λV
= 4V

(
λV

λc
log

λc

λV

)2

. (6.32)

Above the critical coupling strength λc, the atoms begin to move away from their equilib-
rium positions ζ0 = jπ to the displaced lattice minima. In the vicinity of the phase transition,
the order parameter is given by the expression S0 ' ±θ(λ− λc)

√
1− (λc/λ)4. By expand-

ing the order parameter around λ = λc(1 + ε), we observe that it follows the universal
scaling law S0 = 2ε1/2 with the critical exponent β = 1/2, which is the characteristic sig-
nature of the mean-field phase transition. By plotting the order parameter S0 as a function
of ε, the different configurations collapse to a single curve, see figure 6.5. In accordance
with an expansion of the energy surface with respect to the order parameter, all these ob-
servables show that the hybrid system undergoes a second-order nonequilibrium quantum
phase transition.

In order to verify that the phase transition is always continuous, we do a Landau expan-
sion of the energy functional around S = 0, where

E[S ] = ωR

2σ2
0
+

Ng√
8πσ0

− V
2

√
1− S2e−σ

2
0 − V

4

(
λ

λV

)2

S2e−2σ2
0 , (6.33)

5This equation is found by setting the bracket in equation (6.29b) to zero for S0 = 0. Hence, the solution for
σ0 can be inserted in equation (6.29a) to find the defining equation for λc.
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FIGURE 6.5: Universal behavior of the
order parameter in the vicinity of the
phase transition for various potential
depths. Other parameters used are
Ng = 0, Ωm = 100ωR and Γm =
20ωR.

and σ0 ≡ σ0(S) is a function of the order parameter. It is implicitly determined via the
surface F[σ0,S ] = 0. With the functional

F[σ,S ] = V
√

1− S2e−σ
2
σ+ V

(
λ

λV

)2

S2e−2σ2
σ− ωR

σ3 −
Ng√
8πσ2

. (6.34)

Since the energy functional E[S ] is symmetric in the order parameter S , i.e., E[−S ] = E[S ],
the Landau expansion takes the form of equation (4.9) with E[S ] =∑n a2nS2n. Up to fourth
order, the Landau coefficients are given by

a0 =
ωR

2σ2
0
− V

2
e−σ0 +

Ng√
8πσ0

, (6.35a)

a2 =
V
4

[
1−

(
λ

λc

)2
]

e−σ
2
0 , (6.35b)

a4 =
V
16

[
1− 2

(
1− 2

λ2

λ2
c

)
σ0σ

′′
0

]
e−σ

2
0 . (6.35c)

The derivative σ′′0 = ∂2
Sσ0 is implicitly defined via the functional F[σ,S ]. With the theorem

of implicit functions, the first derivative follows σ′0 = −(∂SF)/(∂σF)|S=0,σ=σ0 = 0, whereas
the second derivative is given by

σ′′0 =

(
ωζ
ωσ

)2 (
1− 2

λ2

λ2
c

)
σ0 . (6.36)

Here, we have defined the frequency of the breathing mode of the atomic condensate

ω2
σ|S=0 = 4ωR

[
3ωR

σ4
0

+ V(1− 2σ2
0)e
−σ2

0 +
Ng√
2πσ3

0

]
, (6.37)

and the harmonic excitation frequency in the lattice potential

ω2
ζ |S=0 = 4ωRVe−σ

2
0 . (6.38)
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This expression is consistent with the atomic frequency Ωa defined in section 5.1.2. Here,
the additional exponential factor includes effects of the finite elongation of the condensate
in the sine trap potential.

Under the assumption that a4 > 0, the second-order Landau coefficient a2 = 0 defines
the point of the continuous phase transition. In accordance with the prior discussion, this
happens when λ = λc. On the other hand, a first-order phase transition may occur if a4 < 0.
In this case, the Landau expansion to fourth order is no longer sufficient and higher orders
have to be included. However, for our purpose, it is adequate to state that only if a2 =

a4 = 0, the order of the phase transition (PT) can change from continuous to discontinuous.
Hence, we look at the expression in the brackets of a4 in equation (6.35c) for λ = λc which
results in the relation

1− 2
(
ωζ
ωσ

)2

σ2
0 = 0 ⇔

(
ωζ
ωσ

)2

=
1

2σ2
0

. (6.39)

For a strongly confined condensate with σ0 � 1, the harmonic excitation frequency ωζ has
to be much larger than the breathing mode frequency ωσ, in order to fulfill the equality.
Therefore, the effective potential given by the term in the brackets of equation (6.37) would
have to become smaller than the actual lattice potential depth V. This, however, is not pos-
sible. Indeed, we have estimated for the Bose–Hubbard model with a harmonic trap poten-
tial that the breathing mode frequency ranges from ω2

σ ' 16ωRV (non-interacting limit6) to
ω2
σ ' 12ωRV (Thomas-Fermi limit7), see also equation (3.9) and figure 3.2 for the replacement

J ↔ ωR. Hence, the frequency ωσ is always larger than the frequency of the displacement
mode ωζ '

√
4ωRV. Consequently, we can conclude that the NQPT is always continuous

within the validity area of the analytical Gaussian ansatz.

6.2.4 Collective Excitation Spectrum and Ground State Entanglement

Solving the complete set of equations of motion (6.27), or even the extended GPE (6.17), is a
challenging task, however, their linearized forms already provide insight into the collective
behavior of the system. In order to determine the collective excitation frequencies and decay
rates, we follow two different approaches. First, the spectrum of the collective excitations
is evaluated within the cumulant expansion and, second, by considering small deviations
from the steady state in the extended Gross–Pitaevskii equation (a third approach will be
discussed in section 6.3).

6.2.4.1 Analytical Expressions of the Low-Energy Collective Spectrum

Here, we consider deviations from the stationary state (α0, ζ0,σ0) in the form of α(t) =

α0 + δα(t), ζ(t) = ζ0 +
√
ωR/ωζ [δζ(t) + δζ∗(t)] and σ(t) = σ0 +

√
2ωR/ωσ[δσ(t) + δσ∗(t)].

6In the deep lattice limit, the condensate width is given by σ4
0 ' ωR/V, which results in ω2

σ ' 16ωRV, when
higher orders in the condensate width are neglected.

7In the Thomas-Fermi limit, the kinetic term is neglected and the condensate width is approximated by
σ3

0 ' Ng/
√

8πV, leading to the frequency of the breathing mode ω2
σ ' 12ωRV.
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Inserting this ansatz in the equations of motion (6.27) and the subsequent linearization with
respect to these deviations, we find the linearized equations of motion

iδα̇ = [Ωm − iΓm] δα− λαζ(δζ + δζ∗) + λασ(δσ+ δσ∗) , (6.40a)

iδζ̇ =ωζδζ − λαζ(δα+ δα∗) , (6.40b)

iδσ̇ =ωσδσ+ λασ(δα+ δα∗) , (6.40c)

with the bare frequencies

ω2
ζ =

4ωRVe−σ
2
0

√
1− S2

0

, (6.41a)

ω2
σ =4ωR


3ωR

σ4
0

+
V(1− 2σ2

0)√
1− S2

0

e−σ
2
0 +

Ng√
2πσ3

0


 . (6.41b)

Here, the bare atomic displacement frequency ωζ is constant below the critical coupling with
ω2
ζ = 4ωRVe−σ

2
0 and increases linearly with the atom-membrane coupling strength above

λ > λc, according to ω2
ζ = 4ωRV(λ/λV)

2e−2σ2
0 . Moreover, we have defined the coupling

constants

λαζ =
√

Nλ

√
4ωR

ωζ

√
1− S2

0 e−σ
2
0 , (6.42a)

λασ =
√

Nλ
√

8ωR

ωσ
S0σ0e−σ

2
0 . (6.42b)

While the coupling λασ between the membrane mode and the condensate breathing mode
is zero in the non-displaced phase, the coupling λαζ between the condensate and membrane
displacement mode increases linearly with λ, whereas it decreases with λαζ ∼ λ−3/2 in
the displaced phase. Consequently, the atomic displacement mode decouples in the limit
λ→ ∞ from the two other modes.

In order to determine the collective excitation spectrum within the harmonic analysis, we
arrange the deviations in a vector δx = (δα, δζ, δσ, δα∗, δζ∗, δσ∗)T, such that the differential
equations (6.40) can be written in the short form δẋ = −iMδx, with the linear stability
matrix

M =




Ωm − iΓm −λαζ λασ 0 −λαζ λασ

−λαζ ωζ 0 −λαζ 0 0
λασ 0 ωσ λασ 0 0

0 λαζ −λασ −Ωm − iΓm λαζ −λασ
λαζ 0 0 λαζ −ωζ 0
−λασ 0 0 −λασ 0 −ωσ




. (6.43)

Below the critical coupling coupling, the stability matrix becomes block diagonal as
λασ = 0. In the limit of zero mechanical damping Γm → 0, the problem reduces to an
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analytically solvable eigenvalue problem for the matrix

M|αζ =




Ωm −λαζ 0 −λαζ
−λαζ ωζ −λαζ 0

0 λαζ −Ωm λαζ

λαζ 0 λαζ −ωζ




(6.44)

acting on the subspace of the deviations in the ζ-α plane. The reduced linear stability matrix
M|αζ has the four eigenvalues νi, satisfying

ν2 = Ω2
m + ω2

ζ ±
√
(Ω2

m − ω2
ζ )

2 + 16Ωmωζλ2
αζ . (6.45)

Hence, in the limit of off-resonant coupling (Ω2
m− ω2

ζ )
2 � Ωmωζλ

2
αζ , the eigenvalues follow

as

ν1,± '±Ωm

√
1 + (λ/λc)2 ,

ν2,± '± ωζ
√

1− (λ/λc)2 = ±
√

4ωRVe−σ2
0

√
1− (λ/λc)2 ,

(6.46)

and the other two collective excitation frequencies ν3,± = ±ωσ, which are exact.

6.2.4.2 Full Spectrum of Excitations

Similar to before, a harmonic analysis can also be carried out within the GPE approach. The
collective excitation spectrum is found by considering deviations from the stationary state
(α0,ψ0) in the form ψ(z, t) = e−iµt[ψ0(z) + δψ(t, z)] and α(t) = α0 + δα(t). Without loss of
generality, the mean-field steady state ψ0(z) can be chosen to be real valued. Then, lineariz-
ing the coupled equations of motion (6.17) with respect to the deviations, the Bogoliubov–de
Gennes equations

i∂tδα =[Ωm − iΓm]δα−
√

NλQ [δψ+ δψ∗] , (6.47a)

i∂tδψ(z) =
[
h0(z) + Ngψ2

0(z)
]
δψ(z) + Ngψ2

0(z)δψ
∗(z)−

√
Nλ sin(2z)ψ0(z)[δα+ δα∗] ,

(6.47b)

are obtained. Here, we have defined the linear operators Q[ f ] =
∫

dzψ0(z) sin(2z) f (z) and
h0(z) = −ωR∂

2
z + V sin2(z) + Ngψ2

0(z)−
√

Nλ(α0 + α∗0) sin(2z)− µ.
The set of differential equations (6.47) couples the deviations to their complex conjugates.

In that sense, the solutions are of the form δα(t) =
∑

k[e
−iνktδαk+ + eiν∗k tδα∗k−] and δψ(t, z) =∑

k[e
−iνktuk(z) + eiν∗k tv∗k (z)] with complex frequencies νk. Within this ansatz, the frequencies

are determined by solving the eigenvalue problem

νkyk = MGP(z)yk , (6.48)
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FIGURE 6.6: The three energetically lowest (a) collective excitation frequencies ωi = Re(νi) and (b)
corresponding decay rates γi = −Im(νi) are shown as a function of the atom-membrane
coupling. The different colors correspond to different eigenmodes. The dominant con-
tributions for the curves red, blue and green are membrane amplitude, condensate
width and condensate displacement excitation, respectively. Here, the solid curves are
showing the eigenmode spectrum estimated within the cumulant expansion, whereas
the dashed (black) curves are the corresponding values determined in the numerical
GPE scheme. The circles show the excitation spectrum obtained within in the Bogoli-
ubov ansatz of equation (6.59). For ease of comparison, the two smallest decay rates
have been scaled by a factor of 5. The parameters used are V = 200ωR, Ωm = 100ωR,
Γm = 20ωR, and g = 0.

with the vector yk = (δαk+, uk(z), δαk−, vk(z))T and the linear stability matrix

MGP(z) =

(
X(z) Y(z)
−Y∗(z) −X∗(z)

)
, (6.49)

where we have defined the matrices

X(z) =

(
Ωm − iΓm −

√
NλQ

−
√

Nλ sin(2z)ψ0(z) h0(z) + Ngψ2
0(z)

)
, (6.50a)

Y(z) =

(
0 −

√
NλQ

−
√

Nλ sin(2z)ψ0(z) Ngψ2
0(z)

)
. (6.50b)

The symmetry of MGP(z) suggests that if νk is an eigenvalue, the negative complex conju-
gate −ν∗k is also an eigenvalue.

6.2.4.3 Roton-type Spectrum in the Vicinity of the Critical Point

The eigenfrequencies of the collective excitations are shown in figure 6.6(a) as a function of
the atom-membrane coupling constant

√
Nλ. Here, the dashed curves show the frequen-

cies found in the GPE approach, whereas the solid curves refer to the analytical results (the
circles refer to another approach discussed below). As the atom-membrane coupling is ap-
proaching the critical point λc, the lowest excitation frequency decreases with a roton-type
behavior according to equation (6.46). At the same time, the corresponding decay rate in
figure 6.6(b) increases up to a maximum at λ = λc and is followed by a bifurcation. This
bifurcation in addition to the roton-type behavior is well-known from atomic condensates
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FIGURE 6.7: A zoom to the vicinity of the critical
point shows the behavior of the (a) collective ex-
citation frequencies and (b) decay rates. Within a
certain area (shaded in grey), the lowest excitation
frequency is constantly zero and the decay rate ex-
hibits a bifurcation. The same parameters as in fig-
ure 6.6 have been used. Certain curves are scaled
by the indicated factors.

with a long-range interaction [121, 122, 229, 230], which, in the present case, is mediated
by the membrane mode. The vanishing excitation frequency at

√
Nλc corresponds to the

Goldstone boson mode which is associated with the spontaneous symmetry breaking at the
critical point. In fact, the appearance of a massless Goldstone boson is characteristic for a
second-order phase transition

Moreover, we show in figure 6.7 a zoom of figure 6.6 around the critical point. In a
narrow range around the critical point, a bifurcation of the decay rate can be observed,
whereas the lowest excitation frequency is constantly zero in this region.

6.2.4.4 Covariance and Atom-Membrane Entanglement

In addition to the preceding analysis of the collective excitation spectrum, the eigenmodes
can be used as a measure of quantum entanglement between the atomic condensate and
the membrane. Here, we consider the case of zero damping (Γm = 0) and determine the
ground state of the combined system within the Gaussian ansatz. In this case, the dynamics
governed by δẋ = −iMδx with the linear stability matrix of equation (6.43) is generated by
the Hamiltonian

H = Ωmb†
αbα + ωζb†

ζbζ + ωσb†
σbσ − λαζ(b†

α + bα)(b†
ζ + bζ) + λασ(b†

α + bα)(b†
σ + bσ) , (6.51)

with the bosonic algebra
[
bµ, b†

ν

]
= δµν , where bµ = δµ with µ ∈ {α,σ, ζ}. The Hamilto-

nian (6.51) is diagonalized by the Bogoliubov transformation

bµ =
3∑

i=1

[
ui
µdi +

(
vi
µ

)∗
d†

i

]
, (6.52)

with the eigenfrequencies ωi = Re(νi) and new bosonic ladder operators di, d†
i . In order to

satisfy the bosonic commutation relation, the transformation coefficients have to be normal-
ized according to

∑

µ

[
ui
µ

(
uj
µ

)∗
− vi

µ

(
vj
µ

)∗]
= δij . (6.53)
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the atom-membrane coupling λ. The
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(width) mode. The same parameters
as in figure 6.6 have been used, but
with Γm = 0.

In order to determine the entanglement between the membrane and condensate, we cal-
culate the logarithmic negativity EN [198, 231, 232] from the ground state solution of (6.51).
The logarithmic negativity is related to the smallest symplectic eigenvalue ν̃− of the reduced
covariance matrix of the quadratures according to

Ckl =
1
2
〈xkxl + xlxk〉 , (6.54)

with the vector x = (qα, pα, qσ, pσ, qζ , pζ)T, where qµ = (bµ + b†
µ)/
√

2 and pµ = (bµ −
b†
µ)/
√

2i. To describe the entanglement between two different modes, the reduced covari-
ance matrix C′ is obtained by neglecting the columns and rows of the irrelevant mode. Then,
the reduced covariance takes the form

C′ =

(
U V
V T W

)
, (6.55)

and the logarithmic negativity can be expressed as

EN = max{0,− log(2ν̃−)} with ν̃− = 2−1/2

√
Σ(C′)−

√
Σ(C′)2 − 4 det C′ , (6.56)

where Σ(C′) = det U + det W − 2 det V .
The ground state of the collective mode Hamiltonian (6.51) is a three-mode squeezed

state, which generates a strong atom-membrane entanglement close to the critical coupling
rate. This behavior is manifest in a rising logarithmic negativity, which is shown in figure 6.8
and results in a singularity. For Γm = 0, this results in a singularity of the entanglement mea-
sure between the atom and membrane displacement modes at the critical point, indicating
the strong entanglement. In order to study the case Γm 6= 0, the thermal fluctuations have
to be included, as otherwise the occupation of the collective modes will decay to zero. For
instance, this has been studied in BEC-cavity setup by Nagy et al. [198], where it has been
shown that the logarithmic negativity is peaked with a finite-valued global maximum in the
vicinity of the phase transition, instead of a diverging logarithmic negativity. In the next sec-
tion, we will discuss a possible approach to include the thermal and light field fluctuations
in the Gaussian cumulant expansion.
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6.3 Bogoliubov Prescription of the Phase Transition

In order to include the thermal and light field fluctuations in an appropriate manner, we
make a Bogoliubov ansatz for the atomic field operator Ψ (t, z). As we have seen in the
preceding section, the ground state of the harmonic oscillator very well approximates the
steady state of the condensate in the π-periodic optical lattice potential. Here, we make the
three mode ansatz

Ψ (t, z) '
[√

Nψ0(z− ζ0) + dζ(t)ψ1(z− ζ0) + dσ(t)ψ2(z− ζ0)
]

e−iµt (6.57)

with the quasi-eigenstates

ψn(z) =
(

1
πσ2

0

)1/4 1√
2nn!

Hn(z/σ0) exp
(
− z2

2σ2
0

)
(6.58)

and the n-th Hermite polynomial8. The spatial oscillations and breathing of the condensate
are then totally encrypted in excitations to energetically higher oscillator orbitals ψn≥1(z)
via the ladder operators dσ and dζ . These operators follow bosonic commutation relations.
Moreover, ψ0(z− ζ) is the mean-field steady state of equation (6.23).

For the membrane mode, we assume a(t) =
√

Nα0 + dα(t) with bosonic commutation
relations, such that

[
a, a†] =

[
dα, d†

α

]
= 1. The ansatz for the condensate field operator

Ψ (t, z) is inserted in equations (6.12). In the Bogoliubov ansatz, only the terms to linear
order in the ladder operators are considered, such that we linearize these equations with
respect to dα, dσ and dζ . The equations of motion for dζ(t) and dσ(t) are found in a similar
manner as the cumulant expansion. However, here, we simply multiply by either ψ1(z− ζ)
or ψ2(z − ζ) and integrate over the space coordinate z. Hence, we find the equations of
motion9

i∂tdα =(Ωm − iΓm)dα −Λαζ(dζ + d†
ζ) +Λασ(dσ + d†

σ)− λmξl + iξth , (6.59a)

i∂tdζ =Ωζdζ + gζd†
ζ −Λαζ(dα + d†

α)− λζξl , (6.59b)

i∂tdσ =Ωσdσ + gσd†
σ +Λασ(dα + d†

α)− λσξl , (6.59c)

with the bare frequencies

Ωζ =
ωR

σ2
0
+ V

√
1− S2

0σ
2
0e−σ

2
0 +

4Nλ2Ωm

Ω2
m + Γ 2

m
S2

0σ
2
0e−2σ2

0 , (6.60a)

Ωσ =
2ωR

σ2
0

+ V
√

1− S2
0

(
2− σ2

0
)
σ2

0e−σ
2
0 +

4Nλ2Ωm

Ω2
m + Γ 2

m
S2

0
(
2− σ2

0
)
σ2

0e−2σ2
0 − Ng√

32πσ0
. (6.60b)

8Here, we consider only the ground state as well as the first and second excited state of the harmonic oscilla-
tor. Hence, the relevant Hermite polynomials are H0(x) = 1, H1(x) = 2x and H2(x) = 4x2 − 2.

9We note that in order to find these equations of motion, we have made use of the steady state equa-
tions (6.29).
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Moreover, we have defined the coupling parameters

Λαζ =
√

2Nλ
√

1− S2
0σ0e−σ

2
0 , (6.61a)

Λασ =
√

2NλS0σ
2
0e−σ

2
0 , (6.61b)

the atomic interaction induced coupling gζ = Ng/
√

8πσ0, gσ = 3gζ/2 and the coupling to

the light field fluctuations with λζ =
√

NλaS0σ0e−σ
2
0 /
√

2, λσ =
√

Nλa

√
1− S2

0σ
2
0e−σ

2
0 /
√

2.
By expanding the vector x = (dα, dζ , dσ, d†

α, d†
ζ , d†

σ)
T in the collective eigenmodes of the

set of equations (6.59) , we determine the steady state via equation (B.5). The Bogoliubov
eigenspectrum is very well reproduced by the collective spectrum in the Gaussian and nu-
merical GPE ansatz of the previous section. In figure 6.6, the spectra are compared with
each other, where the frequencies (decay rates) of the Bogoliubov prescription are depicted
by the circles.

6.3.1 Without Light Field Fluctuations

A similar approach has been taken in the context of a BEC in an optical cavity [198]. In such
a setup, the dominant source of noise is due to photon losses in the cavity, which is similar
to the zero temperature fluctuations on the membrane that are considered here. In order to
compare our system to the open-system description of the superradiant phase transition, let
us first neglect the light field fluctuations ξl, such that the only present noise is ξth.

In order to observe the present NQPT in a real setup, one has to find observables which
show different characteristic behaviors in both phases. Experimentally accessible quanti-
ties of the membrane are the phonon occupancy 〈nα〉 = 〈d†

αdα〉 and the position variance
〈x2
α〉 = 〈(dα + d†

α)
2〉/2. In figure 6.9(a), we show these two observables as a function of

the atom-membrane coupling strength. For relatively small and large couplings, λ � λc

and λ � λc, the position variance is constantly one half, while it diverges at the criti-
cal point λc. Similarly, the membrane occupation is zero for coupling rates far below and
above the critical point. It diverges at

√
Nλ =

√
Nλc according to the power law behavior

〈nα〉 ∼ |λ− λc|−ν with a critical exponent of ν = 1 rather than the usual mean-field ex-
ponent (cf. table 4.1, where the critical exponent is predicted to be ν = 1/2 according to
Landau theory). The critical exponent is extracted by a log-log plot of the phonon number
in the inset of figure 6.9(a).

Moreover, we show in figure 6.9(b) the quantum depletion of the atomic condensate
Nqntm = 〈d†

ζdζ〉+ 〈d†
σdσ〉 and the occupation number of the two excited states. In contrast

to the phonon number, the atomic condensate always exhibits excited particles for a finite
atom-membrane coupling, even in the non-interacting regime g = 0. Below the critical cou-
pling, only the ζ-mode has a finite occupation, whereas 〈nσ〉 = 〈d†

σdσ〉 is constantly zero
as Λασ ≡ 0. In the vicinity of the phase transition, the condensate depletion diverges with
the exponent -1, while Nqntm exhibits a global minimum above the critical point. Above the
threshold λc, also the σ-mode couples to the membrane and, consequently, the thermal fluc-
tuations lead to a finite occupation 〈nσ〉 6= 0, while the occupation number 〈nζ〉 is steadily
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FIGURE 6.9: (a) The occupation number 〈nα〉 and the displacement variance of the membrane 〈x2
α〉

are shown as a function of the atom-membrane coupling strength λ. The inset shows
a log-log plot of the phonon occupation number. (b) The number of depleted atoms
Nqntm, the occupation number of the first excited state 〈nζ〉, and the second excited state
〈nσ〉 are shown. The dashed vertical line indicates the critical point. Here, we have used
the parameters V = 200ωR, gN = 0, Ωm = 100ωR, and Γm = 20ωR.
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FIGURE 6.10: The logarithmic nega-
tivity EN is shown as a function of
the atom-membrane coupling λ. The
blue (red) curve measures the entan-
glement between membrane displace-
ment and condensate displacement
(width) mode. The dashed vertical
line indicates the critical coupling rate.
The same parameters as in figure 6.9
have been used.

reduced to zero as the order parameter S0 is approaching unity. Consequently, the ζ-mode
decouples from the other modes. The here found behavior is in accordance with the results
of a BEC in a cavity [198].

On the other hand, we show the entanglement between atoms and membrane in fig-
ure 6.10. In contrast to the ground state entanglement, the present fluctuations strongly
reduce the entanglement in the steady state. As a consequence, the singularity of EN in
figure 6.8 is reduced to a non-differentiable, global maximum at λ = λc. Above the critical
coupling rate, the entanglement is progressively reduced as the atom-membrane interaction
increases. This behavior intermediately flattens out in the region where the frequency of the
low energy mode becomes comparable to the membrane frequency Ωm, which is around
λ ' 3.5λc. The entanglement between the membrane displacement and atomic breathing
mode is shifted to larger coupling rates in comparison to the ground state entanglement.
Moreover, it exhibits a maximum just in the vicinity where two of the collective excitation
frequencies in figure 6.6(a) cross each other.
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FIGURE 6.11: (a), (c) The occupation number 〈nα〉 and the position variance 〈x2
α〉 of the membrane

are shown as a function of the lattice depth V. (b), (d) The number of depleted atoms
Nqntm and the occupation number of the first and second excited state, 〈nζ〉 and 〈nσ〉,
are shown. Here, we have used the parameters Ng = 0,Ωm = 100ωR, and Γm = 20ωR.
The atom-membrane coupling strength is chosen such that the phase transition is at
V = Vc = 200ωR, namely

√
Nλ = 74.8ωR. For the top panels (a) and (b) we have

chosen δ = 10, while for the bottom panels (c) and (d) δ = 0.1 was chosen.

6.3.2 Light Field Fluctuations

When including the light field fluctuations in our description and studying the observables
as a function of the coupling strength, one has to define the atom-light field and membrane-
light field couplings individually, as the light field fluctuation couples differently to the
atoms and the membrane with coupling strengths λa and λm, respectively. To circumvent
this problem, we fix the atom-membrane coupling strength to

√
Nλ = λaλm/2 = 74.8ωR

and study the effect of the light field fluctuations as a function of the lattice potential depth
V. Then, for the parameters Ωm = 100ωR and Γm = 20ωR with Ng = 0, the phase transition
happens at V = Vc = 200ωR. Moreover, we choose the parametrization

√
Nλa =

√
2Nλδ

and λm =
√

2λ/δ.
In figure 6.11, we show the occupation numbers of the different modes in dependence of

λ/λc for the cases δ = 10 and δ = 1/10 in (a), (b) and (c), (d), respectively. Here, the critical
coupling λc(V) is a function of the potential depth V according to equation (6.32), such that
a modification of V alters λc. Consequently, the quotient λ/λc varies as a function of V
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Ωm 2π× 263.8 kHz ωR 2π× 3.8 kHz
Γm 2π× 24.4 mHz N 2× 106

M 9.7× 10−11 kg m 1.443× 10−25 kg
ωL 2π× 384 THz ω⊥ 2π× (62 . . . 85)Hz
F 50 to 120 g 2π× (11.6 . . . 16.6) aBohrkHz

TABLE 6.1: The relevant system parameters based on reference [130, 132] are summarized. The left
column shows the parameters of the optomechanical subsystem and the right column
those of the atomic condensate.

while the atom-membrane coupling rate is constantly fixed. We observe that the light field
fluctuations lead to a significant increase of the occupation numbers in the displaced phase
(λ > λc) for δ = 10 in (a) and (b). On the other hand, in the normal phase (λ < λc), 〈nα〉 is
two orders smaller. Here, the light field fluctuations do only indirectly couple to the ζ-mode
via the membrane mode, as λζ = 0. For δ = 1/10 in (c) and (d), this consequently leads to a
larger influence even in the normal phase which results in higher occupation numbers.

Apart from the effects of the light field fluctuations on the excitations, a strong, negative
effect on the atom-membrane entanglement is observed. Already the thermal fluctuations
strongly reduce the steady-state entanglement, when compared to the ground state entan-
glement. By including the photon fluctuations, this entanglement is completely diminished
as the relevant autocorrelator scales with the atom-membrane coupling strength. These fluc-
tuations are, however, necessary in order to create an effective atom-membrane coupling as
a coherent laser field is not able to mediate excitations between both subsystems.

6.4 Experimental Realization and the Role of Atom Interactions

On the basis of the existing setups [129, 130], an experimental observation is possible by
including modest changes. Present optical lattices with potential depths V ' 2000ωR read-
ily achieve resonant coupling, i.e., ωζ ' Ωm, with

√
Nλ ' 3ωR (the other parameters are

summarized in table 6.1). The fact that the atom-membrane coupling does not have to be
resonant in order to measure the phase transition facilitates a realization. For instance, by
ramping down the lattice depth to V ' 30ωR, the critical coupling

√
Nλc can be reached

by altering the cavity finesse F or the laser power. In order to independently tune V and
λ, a second laser has to be applied which is slightly misaligned to the coupling laser of the
same frequency but shifted by π/2. By increasing the laser intensity of the second laser, the
optical potential depth is effectively reduced, while the atom-membrane coupling strength
is unaffected.

Apart from the displacement variance 〈x2
α〉, a possible measure to track the phase tran-

sition is the membrane eigenfrequency which can be readily measured by spectroscopic
means with a precision much below 1% [233]. Therefore, we show a zoom around the collec-
tive excitation frequency corresponding to the membrane mode in figure 6.12(a). The point
of the phase transition exhibits a characteristic cusp which is clearly resolvable within the
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FIGURE 6.12: (a) The membrane excita-
tion frequency and (b) the momentum
distribution |n(k)| of the atoms in a single
well are shown. (c) The width of the mo-
mentum distribution |n(k)| is shown as a
function of the atom-membrane coupling.
Here, the dashed vertical line indicates
the critical point λc. The parameters are
V = 200ωR, Ωm = 100ωR, Γm = 20ωR
and g = 0.

experimental fidelity. In addition, the nonequilibrium quantum phase transition can also be
detected by looking at the momentum distribution of the atoms in a time-of-flight measure-
ment. In figure 6.12(b), together with figure 6.12(c), we show the momentum distribution of
the atoms

n(k) = N
∫

dz eik(z−ζ0)|ψ(z)|2 = Ne−(kσ0/2)2
, (6.62)

and its width for various coupling constants λ. Below the critical point, the width is con-
stant, while it grows monotonically with the square root of λ above the threshold λc.

In a real setup, the periodic character of the potential and condensate wave function has
to be taken into account. Assuming a lattice with L occupied lattice wells, the momentum
distribution nlat(k) = f (k)n(k) is modified by the form factor

| f (k)| = sin(πLk/2)
L sin(πk/2)

, (6.63)

where we considered the atomic density nlat(z) ' (N/L)
∑L−1

j=0 |ψ0(z− jπ)|2. A comparison
of the momentum distribution for a single site lattice and a lattice with L = 10 sites is
shown in figure 6.13(a). By fitting a Gaussian profile to the pronounced maxima of the
lattice momentum distribution nlat(k), the condensate width can be extracted.

In the previous part, we have mainly shown the results for the case of non-interacting
atoms. As shown in table 6.1, the effective one-dimensional interaction strength is, in fact, of
the order Ng ∼ 1− 10ωR. This order of interaction strength is induced by application of a
perpendicular harmonic confinement potential with frequency ω⊥ ∼ 100 Hz and assuming
a number of N/L = 104 atoms per lattice site.

In figure 6.13(b) is shown the order parameter S0(λ) for different atom-atom interactions.
Qualitatively, no difference in the order parameter is found. While the curves are on top
of each other for Ng � V, the critical coupling rate is slightly shifted when the interaction
strength is of the same order as the potential depth. Apart from this, a finite atom interaction
will increase the quantum depletion Nqntm.

A study of the phase diagram on the mean-field level has also been performed in ref-
erence [234] . By considering a shallow optical lattice, the authors effectively described the
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FIGURE 6.13: (a) A comparison of the momentum distribution n(k) for a single site and nlat(k) for a
lattice with L = 10 site below the critical coupling rate λ ≤ λc. Here, we have chosen
Ng = 0. (b) The steady state order parameter S0 as a function of the atom-membrane
coupling is compared for different atom-atom interactions. The colors indicate differ-
ent Ng. The other parameters are V = 200ωR, Ωm = 100ωR, and Γm = 20ωR.

atomic condensate by a Bose–Hubbard model. After an adiabatic elimination of the mem-
brane motion, the mechanical amplitude α enters in the nearest-neighbor hopping rate J and
the on-site energy. This gives rise to different MI and SF regions when the effective atom-
membrane coupling is varied in the displaced phase. However, it is important to realize that
this statement only holds in the condensate regime of weak interactions. If, however, the in-
teractions are very strong such that Mott physics in the lattice occurs, the outcome might be
different. Consequently, different approaches have to be taken.

Finally, let us note that one of the main features of this phase transition was the creation
of a shifted lattice above the critical coupling. In the next chapter, we will show that a similar
NQPT occurs in the internal coupling scheme which offers larger tunability.



CHAPTER 7
Changing the Order of a Quantum
Phase Transition

Above a critical intensity of the coupling laser, a nonequilibrium quantum phase transition to a
symmetry-broken phase emerges which is characterized by a sizeable occupation of the high-energy
internal states and a displaced membrane. The order of this NQPT can be changed by tuning the
atomic transition frequency. In this chapter, we present the results which have been partially pub-
lished in:

N. Mann, A. Pelster, and M. Thorwart, “Tuning the Order of the Nonequilibrium Quantum Phase
Transition in a Hybrid Atom-Optomechanical System”, arXiv:1810.12846 (2018).

In this chapter, we show that the internal state coupling scheme also allows for a NQPT.
As a novel additional feature, the order of this PT can be readily tuned by changing the
atomic transition frequency. Thus, a first- and second-order NQPT can be realized in the
same physical set-up and this, by only changing a directly accessible parameter. We show
this for the membrane-in-the-middle-setup [159]. In a first step, we adiabatically eliminate the
light field, which reveals an effective coupling between the membrane and the transition
between two states in the atom gas.

7.1 Effective Description of the Internal State Coupling Scheme

In order to obtain the effective description of the dynamics for the reduced system, we start
with the linearized Hamiltonian given in equation (5.46). In the same fashion as in the
preceding chapter, we derive the equations of motion within in a QSDE approach. Hence,
we start by expanding the time evolution operator to lowest order in the time delay δt. It
follows that the relevant terms are given by

|ψ(t0 + δt)〉 '
{

1− i
∫ t0+δt

t0

dt Hlin
isc(t)I −

∫ t0+δt

t0

dt
∫ t

t0

ds Hlin
isc(t)I Hlin

isc(s)I

}
|ψ(t0)〉 . (7.1)

Again, we assume that the initial state |ψ(t0)〉 = |ψ(t0)〉a+m⊗ |vac〉l factorizes in a prod-
uct state, where |ψ(t0)〉a+m is an arbitrary state in the atom-membrane subspace and |vac〉l
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the vacuum state of the photon field. By making use of the relations bµ,ω(t)I |ψ(t0)〉 = 0 and
bµ,ω(t)Ib†

µ,ω(t′)I |ψ(t0)〉 =
[
bµ,ω(t)I , b†

µ,ω(t′)I
]
|ψ(t0)〉 with µ ∈ {−,+}, indicating the field

polarization σµ, we evaluate the lowest-order terms in equation (7.1). The first-order term is
reduced to the expression

{
−iHisc,0δt− iλm[a + a†][δB†(t0) + H.c.]− iλ±

∫
dz
[
Ψ †
+(z)Ψ−(z)δC+(t0, z) + H.c.

]

− iλa

∫
dzΨ †

+(z)Ψ+(z) [δC−(t0, z) + H.c.]
}
|ψ(t0)〉 ,

(7.2)

with the noise increment operators for the different polarized photon fields

δB(t) =
∫ t+δt

t
ds
∑

µ

∫
dω√
2π

bµ,ω(s)I , (7.3a)

δCµ(t, z) =
∫ t+δt

t
ds
∫

dω√
2π

sin(ωLz) sin(ωz + ∆φω)bµ,ω(s)I . (7.3b)

Here, ∆φω = φω − φωL is the relative phase shift of the mode functions uω(z), see equa-
tion (5.8), between the field at frequency ω and at the laser frequency ωL. In addition, we
have defined the free atom-membrane Hamiltonian Hisc,0 = Hm + Ha. The last term in
equation (7.1) on the right-hand side has several contributions. The unitary atom-membrane
coupling terms are given by the expression

i(a + a†)

∫
dz sin(2ωLz)

{λ
2

[
Ψ †
+(z)Ψ−(z) + Ψ †

−(z)Ψ+(z)
]
+ λexΨ

†
+(z)Ψ+(z)

}
δt|ψ(t0)〉 (7.4)

with the coupling constants λ = λmλ±/2 and λex = λmλa/2. The second coupling term
scaling with λex is identical to the previously discussed motional coupling, however, with
the exception that it only couples to the |+〉 internal state. Moreover, long-range interac-
tion with a dissipative character due to the complex interaction potential G(z, z′) given in
equation (6.6) is induced by the field elimination according to the terms

− i
4

∫
dzdz′ Ψ †

+(z)
{
λ2
±Ψ−(z)G(z, z′)Ψ †

−(z
′) + λ2

aΨ+(z)G(z, z′)Ψ †
+(z

′)
}
Ψ+(z′)δt|ψ(t0)〉 .

(7.5)

The radiation pressure on the membrane leads to momentum diffusion included by the
term −(λ2

m/2)(a + a†)2δt|ψ(t0)〉. The last contribution of the second-order term induces the
mixed dissipative terms

−2(a + a†)

∫
dz
{λ

2
sin2(ωLz)

[
Ψ †
+(z)Ψ−(z) + H.c.

]
+ λex sin2(ωLz)Ψ †

+(z)Ψ+(z)
}
δt|ψ(t0)〉 .

(7.6)

Finally, by taking the limit δt → 0, the quantum stochastic differential equation for the
wave function follows. With the same assumptions as for the motional coupling scheme, we
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find the QSSE in Ito form

d|ψ〉 =
{
−iHeff

isc −
1
2

[
λm(a + a†) +

∫
dz sin2 ωLz

(
λ±Ψ †

+Ψ− + λ±Ψ †
−Ψ+ + λaΨ

†
+Ψ+

)]2
}

dt|ψ〉

− i
{
λm(a + a†)dB† + λa

∫
dzΨ †

+Ψ+dC†
− + λ±

∫
dzΨ †

−Ψ+dC†
+ + H.c.

}
|ψ〉 . (7.7)

Again, we have defined the differential noise increment operators according to dB†(t) =

B†(t + dt)− B†(t) and dC†
µ(t, z) = C†

µ(t + dt, z)− C†
µ(t, z). Here, the effective Hamiltonian

is given by

Heff
isc =Ωma†a +

∑

τ=±

∫
dzΨ †

τ (z)

[
τ
Ωa

2
− ∂2

z
2m
− V

2
sin(2ωLz) +

1
2

∑

τ ′=±
gττ ′Ψ †

τ ′(z)Ψτ ′(z)

]
Ψτ (z)

− (a + a†)

∫
dz sin(2ωLz)

{λ
2

[
Ψ †
+(z)Ψ−(z) + Ψ †

−(z)Ψ+(z)
]
+ λexΨ

†
+(z)Ψ+(z)

}

+
1
4

∫
dzdz′ Re[G(z, z′)]Ψ †

+(z
′)
[
λ2

aΨ+(z
′)Ψ †

+(z) + λ2
±Ψ−(z

′)Ψ †
−(z)

]
Ψ+(z) , (7.8)

which defines the mediated atom-membrane coupling in the internal state coupling scheme.
Note that the Hamiltonian (7.8) involves two different interaction processes. On the one
hand, the membrane couples to the internal state of the atomic ensemble, which scales with
λ and induces transitions between the state |+〉 and |−〉. On the other hand, a term which
couples the membrane to the motion of the atoms in the state |+〉 arises due to the driving
of the transition between the auxiliary state |e〉 and the |+〉 state. This term scales with the
strength λex. In fact, λex and λ are not independent of each other due to the nature of the
coupling as λex/λ = µ+/µ−. We will therefore choose the parametrization

λex = χλ . (7.9)

For our following purpose, we derive the quantum Langevin equation from the QSSE
(7.7) by introducing new fluctuating forces ξµ which correspond to fluctuations of the corre-
sponding polarized photon fields. With the only non-zero autocorrelation functions of the
field fluctuations satisfying 〈ξµ(t)ξµ′(s)〉 = δµµ′δ(t − s), the quantum Langevin equations
are given by

i∂ta =
[

a, Heff
isc

]
− λm

∑

µ=+,−
ξµ , (7.10a)

i∂tΨ−(z) =
[
Ψ−(z), Heff

isc

]
− λ± sin2(ωLz)Ψ+(z)ξ+ , (7.10b)

i∂tΨ+(z) =
[
Ψ+(z), Heff

isc

]
− λ± sin2(ωLz)Ψ−(z)ξ+ − λa sin2(ωLz)Ψ+(z)ξ− . (7.10c)
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7.2 Mean-Field Description of a First- and Second-Order Phase
Transition

In analogy to the extended GPE (6.17) of the motional interaction scheme, we assume that
the atoms are prepared at low temperatures such that a large fraction occupies the ground
state and a condensate is formed. At weak atom-membrane coupling, i.e., λ � Ωm,Ωa, the
combined system dynamics is subject to the set of coupled mean-field equations of motion

i∂tα =[Ωm − iΓm]α−
√

Nλχ
∫

dz cos(2z)|ψ+|2 −
√

Nλ
∫

dz cos(2z)Re (ψ∗+ψ−) , (7.11a)

i∂tψ− =

[
−Ωa

2
− ωR∂

2
z −

V
2

cos(2z) + N
∑

τ=±
gτ−|ψτ |2

]
ψ−

−
√

Nλ
2

(α+ α∗) cos(2z)ψ+ ,

(7.11b)

i∂tψ+ =

[
Ωa

2
− ωR∂

2
z −

V
2

cos(2z) + N
∑

τ=±
gτ+|ψτ |2

]
ψ+

−
√

Nλ
2

(α+ α∗) cos(2z)ψ− −
√

Nλχ(α+ α∗) cos(2z)ψ+ ,

(7.11c)

where we have scaled and shifted the atom position variable z → z/ωL + π/2ωL, such that
the lattice minima for V > 0 are located at the positions zj = jπ with j ∈ Z. The atomic field
operators Ψτ (z) and the membrane ladder operator a are replaced by their mean values, i.e.,
Ψτ (z) '

√
Nψτ (z) and a '

√
Nα. The motional coupling of the excited internal state |+〉 to

the membrane leads to an asymmetry in the coupling with the asymmetry parameter χ.
The extended GPE (7.11) is, in structure, very similar to its motional coupling equivalent

in (6.17). There, the steady state at zero atom-membrane coupling is characterized by a
non-displaced membrane and atomic condensate. Due to the structure of the interaction
potential, this symmetry is spontaneously broken at the critical atom-membrane coupling
λc, leading to a displacement of the membrane and atomic condensate in the mean-field
ground state. In the following, we show that a similar behavior occurs also in the internal
coupling scheme, but with different characteristics. In addition, fundamentally new effects
emerge, which are discussed in the subsequent section.

7.2.1 Single Mode Approximation and Cumulant Expansion

For a sufficiently deep optical lattice V � ωR, the condensate profile is well described by
a sum of Gaussians residing in the individual lattice wells at zj = jπ. When the overlap
between neighboring sites is small, the problem reduces to an effective single-site problem.
It is then reasonable to make the ansatz

ψτ (t, z) = γτ (t)
(

1
πστ (t)2

)
exp

(
− z2

2στ (t)2 + iητ (t)z2
)

, (7.12)
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FIGURE 7.1: The steady-state condensate profile for the internal state (a) |−〉 and (b) |+〉 is shown
for different values of the atom-membrane coupling, as indicated in panel (b). Here, a
symmetric coupling with χ = 0 is considered. The solid curves show the result obtained
by using the imaginary time evolution of the extended GPE (7.11). The inset shows the
condensate profile width of the corresponding internal state obtained via a Gaussian fit
to the condensate profile. Other parameters used are V = 100ωR, gN = ωR,Ωa = 50ωR,
Ωm = 100ωR and Γm = 10ωR.

with τ = +,− and a constant number of atoms |γ−(t)|2 + |γ+(t)|2 = 1, the individual con-
densate widths στ (t) and corresponding phases ητ (t). In order to reduce the number of
parameters, we here restrict to the special case gττ ′ ≡ g. However, we note that for a binary
BEC, this actually corresponds to a delicate regime as the ground state is either a miscible
or immiscible state1. In fact, a mixture of the condensate profiles associated with the two
different internal states is energetically preferred to the unmixed case for the underlying
problem. Already from equation (7.11a), we can see that a maximally mixed condensate
maximizes the effective coupling between the atoms and the membrane. This will eventu-
ally lead to a minimization of the effective nonequilibrium potential, which we will derive
in the following.

But before, let us justify this ansatz. Therefore, we numerically determine the steady
state of the extended GPE (7.11) by using an imaginary time evolution with the Crank–
Nicolson scheme as described in appendix C. Due to the periodicity of the potential, we
use periodic boundary conditions and evaluate the steady state within the interval from
−π/2 to π/2. In figure 7.1, the condensate profile in a single potential well is shown for
the symmetric coupling case χ = 0 and different coupling constants λ, see the color coding
in figure 7.1(b). The panels (a) and (b) show the condensate profile of the internal states
|−〉 and |+〉, respectively, as a function of the position z. The well minimum is located at
z = 0. In addition, we consider the case µ+ = µ− that corresponds to χ = 1 and show the
numerically calculated condensate profile in figure 7.2. Again, the profile of the state |−〉 is
shown in panel (a) and that of the internal state |+〉 is shown in panel (b). Moreover, the
insets compare the individual widths σ− and σ+ obtained from a Gaussian fit to the conden-
sate profile according to equation 7.12. The deviations between the individual widths are

1The immiscible state is characterized by a condensate profile where atoms in different internal states avoid
each other and the overlap between the wave functions ψ±(z) is minimal. In the miscible phase, on the other
hand, the condensate profile of different internal states is mixable.
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FIGURE 7.2: The steady-state condensate profile for the internal state (a) |−〉 and (b) |+〉 is shown
for different atom membrane coupling rates, as indicated in panel (b). Here, a asym-
metric coupling with χ = 1 is considered. The solid curves show the result obtained
by using the imaginary time evolution of the extended GPE (7.11). The inset shows the
condensate profile width of the corresponding internal state obtained via a Gaussian fit
to the condensate profile. Other parameters used are V = 100ωR, gN = ωR,Ωa = 50ωR,
Ωm = 100ωR and Γm = 10ωR.

negligible in most cases and slightly increase only in the vicinity of the critical point λ & λc.
Consequently, we can approximate the condensate profiles by a unified condensate width
σ = σ− = σ+ and phase η = η− = η+, which drastically simplifies our description.

Next, we perform a cumulant expansion of the equations (7.11) in order to determine the
dynamics of the respective variational parameters. That is, we calculate the (i) zeroth and (ii)
second cumulants by multiplying equations (7.11b) and (7.11b) (i) with ψ0(z) = e−z2/2σ2−iηz2

/(πσ2)1/4 as well as (ii) with (z2 − σ2/2)ψ0(z) and integrate then over z. This leads to five
independent equations of motion of which one is given by σ̇ = 4ωRησ. By defining the
effective potential

E[α, γ−, γ+,σ] =Ωm|α|2 +
Ωa

2
(
|γ+|2 − |γ−|2

)
+
ωR

2σ2 −
V
2

e−σ
2
+

Ng√
8πσ

−
√

Nλ(α+ α∗)
(
χ|γ+|2 + Re

{
γ∗+γ−

})
e−σ

2
,

(7.13)

the equations of motion are given in a compact way

α̇ =− i∂α∗E− Γmα , (7.14a)

γ̇τ =− i∂γ∗τ E , (7.14b)

(4ωR)
−1σ̈ =− ∂σE . (7.14c)

Due to the damping, the variational parameters will eventually equilibrate to a steady-state
configuration. Consequently, the steady-state profile is obtained by setting the time deriva-
tives to zero and solving the set of equations for α0, γτ ,0 and σ0. The last term in equa-
tion (7.13) illustrates that a maximally mixed atomic condensate minimizes the effective
potential energy.
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7.2.2 Nonequilibrium Potential and Steady-State Configuration

From the steady state of the set of equations (7.14) follows the relation for the membrane
amplitude

α0(γ,σ) =

√
Nλ

Ωm − iΓm

[
χγ2 + γ

√
1− γ2

]
e−σ

2
. (7.15)

Assuming that both occupation parameters γτ are real-valued and by using the normaliza-
tion condition γ2

− + γ2
+ = 1, we have introduced γ ≡ γ+. With the relation for α0(γ,σ), the

energy potential E[α,
√

1− γ2, γ,σ] can be expressed in terms of the condensate variational
parameters

E[γ,σ] = −Ωa

2
[
1− 2γ2]− Nλ2

Ω′m

[
χγ2 + γ

√
1− γ2

]2
e−2σ2

+
ωR

2σ2 +
Ng√
8πσ
− V

2
e−σ

2
, (7.16)

where we have defined the primed mechanical frequency Ω′m = Ωm + Γ 2
m/Ωm.

The steady-state configuration (α0, γ0,σ0) is characterized by a global minimum of the
nonequilibrium potential Emin = E[γ0,σ0] according to the equations (7.14). The defining
equations for these steady-state values are given by

Ve−σ
2
0σ0 +

4Nλ2

Ω′m

[
χγ2

0 + γ0

√
1− γ2

0

]2

e−2σ2
0σ0 =

ωR

σ3
0
+

Ng√
8πσ2

0

, (7.17a)

γ0

[
Nλ2

(
χγ0 +

√
1− γ2

0

)(
2χγ0

√
1− γ2

0 + 1− 2γ2
0

)
− Nλ2

Ωe2σ2
0

]
=0 , (7.17b)

where we have defined the coupling rate2
√

NλΩ =
√
Ω′mΩa. Equation (7.17b) suggests the

solution γ0 = 0, which either minimizes or maximizes the nonequilibrium potential E and,
hence, it is either a possible steady-state value or not. In order to answer this question, one
has to consider the second derivative of E with respect to the atomic polarization variable γ
at γ = 0. Instead, we first minimize the effective nonequilibrium potential with respect to σ
and study the energy E(γ) = E[γ,σ0(γ)].

Figure 7.3 shows the normalized energy surface E(γ), which is defined according to
equation (6.31), as a function of γ and the coupling constant λ. The dashed curves indicate
the global minimum γ0 of the potential energy. In the two panels (a) and (b), we consider
the symmetric coupling regime, i.e., χ = 0, with atomic transition frequencies Ωa = 50ωR

and Ωa = 5000ωR, respectively. Below a certain value of the coupling strength λ ≤ λc,
the potential is minimized for γ = 0 and the system equilibrates to a completely polarized
state, where all atoms reside in the energetically lower internal state |−〉. At the critical
point λ = λc, the system undergoes a nonequilibrium quantum phase transition that is
characterized by a non-vanishing polarization variable γ0 6= 0. Interestingly, the behavior of
the order parameter γ in the vicinity of the critical point differs in (a) and (b). ForΩa = 50ωR

in (a), we find a continuous transition of the order parameter γ0 at λ = λc. In the limit of

2The definition of the coupling rate λΩ is in correspondence to the previously defined atom-membrane cou-
pling rate λV of the motional coupling scheme. We will later see that λΩ approximates the critical coupling rate
in the regime of a continuous phase transition within a rather deep optical lattice, just as λV approximated the
critical coupling in the external state coupling setup.
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FIGURE 7.3: The normalized potential surface E(γ) is shown as a function of the atomic polarization
parameter γ and the atom-membrane coupling strength λ. The dashed white curves
show the steady-state configuration. In panel (a) and (b), a symmetric coupling (χ = 0)
is considered with Ωa = 50ωR and Ωa = 5000ωR, respectively. In (a), the system
exhibits a second-order phase transition, whereas the system undergoes a first-order
phase transition in (b). In panel (c) is considered the asymmetric coupling regime with
χ = 0.25 and Ωa = 50ωR. Here, the system always exhibits an asymmetric first-order
phase transition, characterized by a single favored atomic polarization. The other pa-
rameters throughout all panels are V = 100ωR, gN = ωR, Ωm = 2Ωa and Γm = 0.1Ωm.

a large atom-membrane coupling strength, the bistable order parameter saturates to γ0 =

±1/
√

2, which corresponds to the two states (|−〉 ± |+〉)/
√

2. The behavior of the order
parameter suggests that, in this regime, the system exhibits a second-order NQPT with the
critical behavior γ0 ∼ (λ− λc)1/2 with the mean-field exponent 1/2. In contrast, the order
parameter shows a jump at the critical point λc in (b) for the larger transition frequency of
Ωa = 5000ωR, indicating that the system also features a discontinuous phase transition.

Moreover, in figure 7.3(c) is shown an example of an asymmetric first-order NQPT for the
same parameters as before, but with χ = 0.25 and Ωa = 50ωR. This regime is characterized
by a preferred atomic polarization γ0 > 0 above the threshold λc. The branch γ < 0, which
also locally minimizes the energy potential for λ ≥ λc, is energetically raised compared to
the steady-state solution.

In the case of a second-order NQPT, we label the critical coupling by λs2. Then, an
implicit definition of λs2 is found by inserting σ2

0 = log(λs2/λΩ) (see footnote 3) in equa-
tion (7.17a). Note that this equation relates the critical point of the continuous phase transi-
tion to the previously defined coupling rate λΩ via λs2 = λΩeσ

2
0 . Hence, we find the implicit

equation for the critical coupling rate

ωR +
Ng√

8π

√
log

λs2

λΩ
= V

(
λΩ
λs2

)(
log

λs2

λΩ

)2

. (7.18)

Yet, in the event of a symmetric or asymmetric first-order NQPT, such an implicit definition
of the corresponding critical coupling rate can not be found on the basis of the set of equa-
tions (7.17). However, a procedure to find the critical points can be defined by performing
a Landau expansion of the effective nonequilibrium potential E(γ). Moreover, Landau the-
ory allows to classify the order of the phase transition by evaluating the Landau expansion

3This width is a possible solution of equation (7.17b) as the term in the brackets vanishes.
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coefficients of the present nonequilibrium potential.

7.2.3 Landau Expansion of the Nonequilibrium Potential

In order to verify whether figure 7.3(b) really shows a first-order phase transition, we expand
the nonequilibrium potential E(γ) around the order parameter γ0 = 0. Due to the asymme-
try in the coupling, the Taylor expansion takes in general the form E(γ) = a0 +

∑
n≥2 anγ

n,
allowing also odd orders in n. In order to fix the condensate width to its value σ0(γ), we
define the auxiliary function

F[σ, γ] = Ve−σ
2
σ+

4Nλ2

Ω′m

[
χγ2 + γ

√
1− γ2

]2
e−2σ2

σ− ωR

σ3 −
Ng√
8πσ2

, (7.19)

which is nothing else but the first derivative of the nonequilibrium potential with respect
to σ. Hence, the width is fixed by the condition F[σ0(γ), γ] = 0. In the following, we omit
the γ-dependence of σ0 and, since the Landau expansion is performed around γ = 0, the
equilibrium value is understood as σ0 ≡ σ0(γ = 0). The zeroth- and second-order expansion
coefficients are determined straightforwardly to

a0 =− Ωa

2
+
ωR

2σ2
0
− V

2
e−σ

2
0 +

Ng√
8πσ0

, (7.20a)

a2 =Ωa

[
1−

(
λ

λs2

)2
]

. (7.20b)

Note that in order to evaluate a2, we have used that F[σ0, 0] = 0 and (∂γF[σ, γ])σ=σ0,γ=0 = 0.
To evaluate the higher-order Landau coefficients, we first perform the derivatives of the
steady-state width σ0 with respect to the order parameter γ. This is done by means of the
theorem of implicit functions for which we use the auxiliary function F[σ, γ], given in equa-
tion (7.19). For instance, the first derivative is given by the expression σ′0 = (∂σ0/∂γ)γ=0 =

−(∂γF[σ, γ])/(∂σF[σ, γ])|σ=σ0,γ=0. Keeping this in mind, we find the implicit derivatives

σ′0 =0 , (7.21a)

σ′′0 =− 8Ωa

(
4ωR

ω2
σ

)(
λ

λs2

)2

σ0 , (7.21b)

σ′′′0 =6χσ′′0 , (7.21c)

σ
(4)
0 =

(
3− 12σ2

0
σ0

) (
σ′′0
)2 − (12− 6χ2)σ′′0 , (7.21d)

where we have defined the frequency of the atomic breathing mode

ω2
σ = 4ωR

[
3ωR

σ4
0

+
Ng√
2πσ3

0

+ V(1− 2σ2
0)e
−σ2

0

]
. (7.22)
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With these relations, the Landau coefficients an = (∂n
γE/n!)γ=0 up to sixth-order are given

in the compact form

a3 =− 2Ωa

(
λ

λs2

)2

χ , (7.23a)

a4 =Ωa

(
λ

λs2

)2 [
1 + σ0σ

′′
0 − χ2] , (7.23b)

a5 =Ωa

(
λ

λs2

)2 [
1 + 4σ0σ

′′
0
]
χ , (7.23c)

a6 =
Ωa

6

(
λ

λs2

)2 [(
1− 4σ2

0
)(
σ′′0
)2 − 12σ0

(
1− 3χ2)σ′′0

]
. (7.23d)

As the second derivative of the width σ′′0 is always smaller than zero, the sixth-order ex-
pansion coefficient consequently fulfills a6 > 0 for any set of parameters other than λ = 0.
Hence, in order to describe a first-order nonequilibrium quantum phase transition in the
symmetric coupling regime (χ = 0), it is sufficient to consider the Landau coefficients up to
sixth-order.

7.2.3.1 The Symmetric Coupling Regime

For a symmetric atom-membrane coupling (χ = 0), the odd Landau coefficients vanish,
since a2n+1 ∼ χ for all n ∈ N. This fact is intuitive as the nonequilibrium potential is
symmetric in γ for χ = 0, i.e., E(γ) = E(−γ). Hence, the Landau expansion takes the form

E(γ) = a0 + a2γ
2 + a4γ

4 + a6γ
6 +O(γ8) . (7.24)

In order to quantify the order of the phase transition, we have to look at the sign of the
expansion coefficient a4. The phase transition is continuous when a4 > 0 and discontinuous
for a4 < 0 at the critical point. Indeed, the coefficient exhibits a point at which it changes
its sign. From equation (7.23b), it directly follows that this point is given by the relation
1 + σ0σ

′′
0 = 0. For a4 = 0, the phase transition occurs for a2 = 0, or, in other words, when

λ = λs2. Hence, we can insert this expression for the atom-membrane coupling rate to find
the relation

Ωc =
ω2
σ

32ωRσ
2
0
=

ω2
σ

32ωR log(λs2/λΩ)
, (7.25)

which defines a critical atomic transition frequency, or alternatively a critical potential depth
Vc or atomic interaction strength Ngc. BelowΩa ≤ Ωc, the phase transition is continuous and
becomes discontinuous for transition frequencies satisfyingΩa > Ωc. This fact is depicted in
the two panels of figure 7.4. In 7.4(a), it is shown that by altering either the potential depth
V or the atomic transition frequency Ωa, the order of the phase transition can be tuned from
second- (blue region below dashed curve) to first-order (orange region). Alternatively, by
changing the atomic interaction strength Ng, the order may also be tuned, which is shown
in figure 7.4(b).
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FIGURE 7.4: The phase diagram of the NQPT is shown as a function of the atomic transition fre-
quencyΩa and (a) the lattice depth V or (b) the interaction strength Ng. While the phase
transition is a continuous PT in the blue regions, it is a discontinuous PT in the orange
regions. The dashed curves show the critical transition frequency Ωa = Ωc according to
equation (7.25). The fixed parameter in (a) is the interaction strength Ng = ωR and in
(b) the potential depth V = 100ωR.

In the second-order regime, the critical coupling λs2 is implicitly given by equation (7.18).
In order to define the critical coupling rate λs1 in the first-order regime, we make use of the
Landau expansion. By taking the Landau expansion up to sixth-order, the nonequilibrium
potential E(γ) exhibits 3 minima on the real axis if a4 < 0. The three local minima are located
at

γ1 = 0 , γ2
2,3 = − a4

3a6
+

√(
a4

3a6

)2

− a2

3a6
, (7.26)

if a2 > 0. The local minimum at γ = 0 has a value of E(0) = a0 and the critical coupling
rate λs1 is found by equating E(γ2,3)|λ=λs1 = a0. After some tedious algebra, this leads to the
defining relation for the critical coupling rate in the first-order regime

13a2a6|λ=λs1
= 4a2

4
∣∣
λ=λs1

, (7.27)

which has to be solved on the surface F[σ0, 0] = 0. With the definitions of the expansion
coefficients in (7.27), we find the relation

52

[
1−

(
λs1

λs2

)2
] [

2(1− 4σ2
0)

(
λs1

λs2

)2

+
3ω2

σ

4ωRΩa

]
σ2

0 = 3

[
ω2
σ

4ωRΩa
− 8
(
λs1

λs2

)2

σ2
0

]2

. (7.28)

By inserting the critical transition frequency Ωc in this expression, we can further simplify
this equation and find that the critical coupling rate for the discontinuous NQPT follows
from

13

[
1−

(
λs1

λs2

)2
] [(

log−1 λs2

λΩ
− 4
)(

λs1

λs2

)2

+ 12
Ωc

Ωa

]
= 24

[
Ωc

Ωa
−
(
λs1

λs2

)2
]2

, (7.29)

from which we can conclude that λs1 < λs2. In addition, we recover λs1 = λs2 in the limit
Ωa = Ωc.
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7.2.3.2 The Asymmetric Coupling Regime

In the case of asymmetric coupling (χ 6= 0), the Landau coefficients of odd order are finite.
This breaks the symmetry in the nonequilibrium potential with respect to γ = 0, in other
words, E(γ) 6= E(−γ). In order to determine the critical coupling rate λa1, we consider the
Landau expansion up to fourth order

E(γ) = a0 + a2γ
2 + a3γ

3 + a4γ
4 +O(γ5) . (7.30)

Hence, we restrict to the case a4 > 0. Then, the nonequilibrium potential E(γ) below the
critical point exhibits two local minima which are located at

γ1 = 0 , γ2 = −3a3

8a4
+

√(
3a3

8a4

)2

− a2

2a4
. (7.31)

For any set of parameters in the asymmetric coupling regime, we find that γ2 6= γ1 = 0.
Hence, the order parameter exhibits a jump at the critical point when the value of the
nonequilibrium potential E(γ2) at γ2 becomes smaller than E(0) and a discontinuous NQPT
occurs.

In a similar fashion as before, we equate E(γ2) = a0 and find the defining relation for the
critical atom-membrane coupling strength according to

4a2a4|λ=λa1
= a2

3
∣∣
λ=λa1

. (7.32)

Again, this equation has to be solved under the restriction that F[σ0, 0] = 0. It is straightfor-
ward to show that λa1 has to be smaller than λs2.

Note that if a4 < 0, the expansion to fourth order is not sufficient anymore. This is
for example the case when χ ≥ 1 + σ0σ

′′
0 or Ωa ≥ Ωc. Then, terms up to sixth-order have

to be taken into account and an analytic expression for the local extrema cannot be found.
Consequently, the calculation of the critical coupling rate can no longer be reduced to an
equation like (7.32).

7.2.4 Hysteresis in the First-Order Regime

A characteristic feature of a first-order phase transition is the existence of hysteresis when
the atom-membrane coupling λ is tuned adiabatically. In terms of the nonequilibrium po-
tential, this is included by the existence of two or more local minima. At a certain coupling
rate, these local minima become dynamically unstable and eventually turn into a maximum.
At this point, the system jumps to the neighboring local minimum and remains there until
this minimum becomes unstable. In the following, we consider the two generic cases of a
symmetric and asymmetric coupling to discuss this effect.

In order to describe the hysteretic behavior, we take the equations of motion (7.14) with
γ(t) = γ+(t) and adiabatically alter the atom-membrane coupling strength. Thus, we obtain
for each λ a long-time solution γ∞ = limt→∞ γ(t) which becomes time independent. In
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FIGURE 7.5: (a) Hysteresis curve (γ∞, solid) shown as a function of the coupling parameter λ for the
symmetric first-order phase transition. The dashed curve shows the stationary polariza-
tion γ0. (b) Curves of the effective nonequilibrium potential ∆E(γ) = E(γ)− E(γ0) are
shown for a coupling strength below and above the turning points, λ ≤ λB and λ ≥ λF,
and in the coexistence area λB < λ < λF. The colors of the potential curves in (b) mark
the associated configurations pointed to by the colored arrows in (a). The circled letters
indicate the minimum of the forward (F) and backward (B) path. The parameters were
chosen as in figure 7.3(b) according to Ωa = 5000ωR, V = 100ωR, gN = ωR, Ωm = 2Ωa
and Γm = 0.1Ωm.

figure 7.5(a) and 7.6(a), we show the hysteresis for the symmetric and asymmetric (χ = 0.25)
first-order phase transition, respectively. On the forward path, the coupling strength λ is
adiabatically increased and the system is initially placed in the minimum at γ = 0. The
system stays there until it becomes unstable at λ = λF and jumps to the adjacent minimum
at γ 6= 0. This point is defined by a2 = 0 and coincides with the critical coupling rate λs2

in the symmetric regime. Afterwards, the steady-state solution γ0 6= 0 is followed as λ
increases.

On the backward path, the system follows the steady-state minimum at γ0 6= 0 until this
point becomes dynamically unstable at λB and jumps to the solution at γ∞ = 0. For the
symmetric case in 7.5(a), this jumping point is given by the relation 3a2a6 − a2

4 = 0, whereas
it is given by the relation 32a2a4 − 9a2

3 = 0 for the asymmetric case 7.6(a).
In the picture of potential energy surfaces, the reason of the hysteresis behavior is the

existence of multiple stable local minima at γ = 0 and γ 6= 0 in the coexistence region
λB ≤ λ ≤ λF as indicated in figure 7.5(b). Here, the forward and backward minima are
indicated by the circled capital letters F and B, respectively. The same argumentation applies
to the asymmetric first-order phase transition. The structure of the effective potential surface
is shown in figure 7.6(b) for three different values of the atom-membrane coupling λ. The
colors of the potential curves in (b) mark the associated configurations pointed to by the
colored arrows in (a).

7.3 Outlook: Experimental Realization

Current state-of-the-art experiments use the motional coupling scheme [131, 132]. As we
have shown in Chapter 6, the occurring phase transition is always of second-order as both
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FIGURE 7.6: (a) Hysteresis curve (γ∞, solid) shown as a function of the coupling parameter λ for the
asymmetric first-order phase transition with χ = 0.25. The dashed curve shows the
stationary polarization γ0. (b) Curves of the effective nonequilibrium potential ∆E(γ) =
E(γ) − E(γ0) are shown for a coupling strength below and above the turning points,
λ ≤ λB and λ ≥ λF, and in the coexistence area λB < λ < λF. Again, different colors
correspond to different values of the atom-membrane coupling that are indicated by the
same colored arrows in (a). The circled letters indicate the minimum of the forward (F)
and backward (B) path. The parameters were chosen as in figure 7.3(c) according to
Ωa = 50ωR, V = 100ωR, gN = ωR, Ωm = 2Ωa and Γm = 0.1Ωm.

relevant energy scales are related to the potential depth, see equation (6.39) and the dis-
cussion below. In that sense, the internal-state coupling scheme overcomes this limitation.
Then, the transition between the first- and second-order is observable by either measuring
the membrane eigenfrequency or the condensate width σ0. In the case of the first-order
NQPT, these quantities exhibit a discontinuous behavior which appears as a jump at the
critical point. Another possible measure to observe the phase transition is the condensate
polarization γ0 (γ∞) which can detect the NQPT in a straightforward manner.

Concerning realistic experimental parameters, typical configurations operate with a
membrane of a frequency Ωm ' 70ωR [130, 132]. Then, for an atomic transition frequency
Ωa ' 20ωR and λ ' λex, the critical coupling constant is estimated to be

√
Nλc ' 29ωR.

Such a coupling may be reached by increasing the cavity finesse or the laser power of
these experiments by an overall factor of 10. Current setups accomplish the effective atom-
membrane coupling by utilizing 87Rb atoms. These atoms can readily be used to realize the
internal state coupling scheme. For this, the internal states |τ = +,−, e〉 may be chosen as
the hyperfine states |−〉 = |52S1/2, F = 2, m f = 2〉, |−〉 = |52S1/2, F = 2, m f = 0〉, and
|e〉 = |52P1/2, F = 2, m f = 1〉.

Clearly, the internal state coupling scheme is superior to the motional coupling scheme
from the perspective of storing quantum information. When encoded in discrete atomic
states rather than in continuous, motional states, the quantum information is less fragile to
fluctuations. Finally, let us note that the asymmetry parameter χ can be tuned by applying
an additional laser field perpendicular to the coupling beam which drives the transition
|−〉 to |+〉. This gives rise to an additional term of the form δ(γ∗+γ− + c.c.) in the potential
energy (7.13). By compensating an additional force on the membrane that scales with

√
Nλ,

tuning the parameter δ allows for an indirect variation of χ.
Measuring the offset of a second-order phase transition is experimentally challenging as
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all observables change continuously with the control parameter (here, the atom-membrane
coupling strength λ). In contrast to this, the detection of the quantum critical point for a first-
order phase transition is often easier to achieve, since the relevant measurable quantities
exhibit a jump at this very point. In addition to this, dissipative first-order phase transitions
have recently been proposed as an interesting tool for quantum sensing [235].

In the next chapter, we will discuss another possible application for the coupling of an
atomic gas to the motion of a nanomechanical oscillator. We will show that the mechanical
mode can be squeezed by the back-action of internal excitations of the atoms in the gas and
that this effect is enhanced by finite particle interactions in the condensate.





CHAPTER 8
Enhanced Mechanical Displacement
Squeezing Induced by Atomic
Interactions

A Bogoliubov approach reveals that the internal excitations form a fluctuating environment of
quasi-particle excitations for the mechanical mode with a gapped spectral density. Nanomechanical
squeezing arises due to quasi-particle excitations in the interacting atom gas when the mechanical
frequency is close to resonance with the internal atomic transitions. This nanomechanical squeezing
is enhanced by finite atom-atom interactions. The results presented in this chapter have been par-
tially published in:

N. Mann and M. Thorwart, “Enhancing nanomechanical squeezing by atomic interactions in a hy-
brid atom-optomechanical system”, Physical Review A 98, 063804 (2018).

In the preceding chapters, we have studied the nonequilibrium quantum phase transi-
tion in the mean-field regime. While it was found that tuning the interaction strength can
lead to a change of the NQPT from a first- to second-order phase transition, the effect of
the interaction led to no qualitative change in the features of the PT. In this chapter, we
will investigate the atom-optomechanical system, with the aim to determine possible effects
beyond the mean field approach of a finite atom-atom interaction.

For symmetric coupling (χ = 0), the effective Hamiltonian of the hybrid system in the
internal state coupling scheme takes the form

H =Ωma†a +
∑

τ=±

∫
dzΨ †

τ (z)

[
τ
Ωa

2
− ωR∂

2
z −

V
2

cos(2z) +
1
2

∑

τ ′=±
gττ ′Ψ †

τ ′(z)Ψτ ′(z)

]
Ψτ (z)

− λ

2
(a† + a)

∫
dz cos(2z)

[
Ψ †
+(z)Ψ−(z) + Ψ †

−(z)Ψ+(z)
]

.

(8.1)

The aim of this chapter is to identify a relevant feature induced by finite particle-particle in-
teractions in the atomic condensate. It is well known that squeezed states can be generated
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by such nonlinearities [152, 153], such as particle interactions. In addition to this, engineer-
ing the environment of an optomechanical setup can produce a squeezed-vacuum reservoir
and a transfer of squeezing to the movable mirror may occur [149]. For this purpose, we
describe the atom gas by a two-species Bose–Hubbard model. Under the assumption of not
too strong local atom-atom interactions, the quartic interaction terms are reduced to terms
that are quadratic in the bosonic ladder operators. This allows us to analytically solve the
problem and study the effect of finite moderately strong interactions beyond the mean-field
level.

8.1 Extended Bose–Hubbard Model for an Atom-Optomechanical
System

In the following, we assume a deep optical lattice for which we can expand the atomic field
operator Ψτ (z) =

∑L
j=1 w(z − zj)cjτ in terms of Wannier functions w(z − zj) at the lattice

sites zj = jπ. Moreover, cjτ is the bosonic ladder operator which annihilates an atom in the
internal state τ = +,− on site j and we consider a total number of L sites. Within this ansatz,
the effective Hamiltonian is reduced to a two-species Bose-Hubbard model extended by the
additional bosonic mode of the membrane vibration

Hlat =Ωma†a +
Ωa

2

L∑

j=1

∑

τ=±
τ c†

jτ cjτ − J
L−1∑

j=1

∑

τ=±

(
c†

jτ cj+1τ + H.c.
)
+

U
2

L∑

j=1

∑

τ ,τ ′=±
c†

jτ c†
jτ ′cjτ ′cjτ

− Λ√
2Ωm

(a + a†)
L∑

j=1

(
c†

j+cj− + H.c.
)

. (8.2)

For convenience, we assume only the leading order terms such as the on-site interaction,
nearest-neighbor hopping and on-site coupling of the atoms to the membrane. In addition,
we consider a state-independent interaction g ≡ gττ ′ , such that the local Hubbard interac-
tion strength is given by

U = g
∫

dz |w(z)|4 . (8.3)

Moreover,

J =
∫

dz w(z− zj)

[
ωR∂

2
z +

V
2

cos(2z)
]

w(z− zj±1) (8.4)

is the nearest-neighbor hopping rate and the effective atom-membrane coupling is rescaled
to

Λ = λ

√
Ωm

2

∫
dz cos(2z)|w(z)|2 . (8.5)

In the non-interacting case (U = 0 and Λ = 0), the Hamiltonian (8.2) is diagonalized
via Fourier transformation of the bosonic ladder operators. By introducing new operators



8.1. Extended Bose–Hubbard Model for an Atom-Optomechanical System 125

in momentum space ckτ =
∑L

j=1 e−ijkcjτ/
√

L, the Hamiltonian (8.2) can be written as

Hlat = Ωma†a +
∑

kτ

εkτnkτ +
U
2L

∑

kpq

∑

ττ ′
c†

k+qτ c†
p−qτ ′cpτ ′ckτ −Λqm

∑

k

(
c†

k+ck− + H.c.
)

, (8.6)

with the atomic energy dispersion εkτ = τΩa/2− 2J cos(k), nkτ = c†
kτ ckτ and the membrane

displacement operator qm = (a + a†)/
√

2Ωm. The sum over the spatial momentum index k
runs in equidistant steps of size 2π/L from −π to π and τ = ±

Already, the original effective Hamiltonian (8.2) at zero atom-membrane coupling ex-
hibits a rich quantum phase diagram [236] with different types of Mott and superfluid
phases, which immediately leads to the questions: What is the effect of an atomic conden-
sate in different phases on the membrane and what happens at the phase boundary when
the membrane is coupled to the condensate? Yet, in order to simplify this problem, we
will refrain to the special case of weak to moderate atom-atom interactions beyond the pure
mean-field regime. Hence, Mott physics will not be treated in the following and we assume
in addition a weak atom-membrane coupling such that Ωm,Ωa � NU/L,λ, where N is the
total number of atoms. In this limit, it is possible to apply a Bogoliubov approximation in
the mean-field ground state with quantum numbers (k, τ ) = (0,−).

8.1.1 Bogoliubov Approximation

In the Bogoliubov prescription, we isolate the fundamental mode (k = 0, τ = −) and treat
the remaining modes as non-interacting among each other. These excited modes form a
dissipative bath for the zero mode and, hence, we associate

c0−, c†
0− '

√
n0− , (8.7a)

c†
0−c†

0−c0−c0− =n0−(n0− − 1) , (8.7b)

n0− =N − n0+ −
∑

k 6=0

∑

τ

nkτ , (8.7c)

in a particle conserving manner via the relation (8.7c). For the first relation to be acceptable,
a larger number of atoms N � 1 is required to occupy the ground state. By inserting these
relations in the Hamiltonian (8.6), and expanding the terms to leading order in N, we find

HB =Ωma†a + E0N + (Ωa + nU)c†c +
∑

k 6=0,τ

(εkτ − ε0− + nU) c†
kτ ckτ −

√
2NΩaΛqmqa

−Λqm
∑

k 6=0

(
c†

k+ck− + H.c.
)
+

nU
2

∑

k 6=0

(c−k−ck− + H.c.) ,
(8.8)

with the replacement c ≡ c0+ and the atomic displacement operator qa = (c + c†)/
√

2Ωa.
The mean-field ground state energy is given by E0 = ε0−+nU/2 and n = N/L is the particle
density. In addition, the atomic transition frequency is slightly modified by the atom-atom
interaction strength to Ωa + nU ' Ωa.
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In order to diagonalize the excited modes, we introduce new quasi-particle modes1 dkτ

according to
dk− = φkck− + θkc†

−k− , (8.9)

and dk+ = ck+. The coefficients are given by the expressions

φk =
√
(εk− − ε0− + nU + ωk−)/2ωk− , (8.10a)

θk =
√
(εk− − ε0− + nU − ωk−)/2ωk− . (8.10b)

With these coefficients, the new defined modes fulfill bosonic commutation relations since
φ2

k − θ2
k = 1. Moreover, the mode frequencies are given by

ωk− =(εk− − ε0−)

√
1 +

2nU
εk− − ε0−

, (8.11a)

ωk+ =εk+ − ε0− + nU . (8.11b)

By inserting these relations, the effective Hamiltonian in the Bogoliubov prescription takes
its final form

HB =Ωma†a +Ωac†c +
∑

k 6=0,τ

ωkτd†
kτdkτ −

√
2NΩaΛqmqa

−Λqm
∑

k 6=0

(
φkd†

k−dk+ + θkdk−d−k+ + H.c.
)

.
(8.12)

We observe that the coupling to the quasi-particle modes involves two different processes:
The first process induces transition of quasi-particles between the states |−〉 and |+〉. The
second process involves the annihilation (creation) of two particles in different internal
states. The latter process is induced by particle collisions, where two atoms deplete out
of the condensate state. This is only present at finite U > 0 because 4θ2

k '
√

nU/J.

8.1.2 Fluctuations Induced by Quasi-Particle Excitations

Under these considerations, the coupling of the membrane to the excited modes appears
in a similar structure as two-phonon processes studied in open two-state dynamics [237].
Within an Euklidean path integral formalism, the harmonic quasi-particle modes can be in-
tegrated out and an analytic solution for the resulting effective action can be obtained. In
this approach, thermodynamic observables are expressed as sums involving bosonic Mat-
subara frequencies νn = 2πn/β with the inverse temperature β = 1/T. The corresponding
influence action of the quasi-particle modes acting on the eigenmodes q(·) = (q1(·), q2(·))

1This transformation also refers to the Bogoliubov transformation. For more details on the idea and assump-
tions in order to find the appropriate transformation coefficients see appendix D.
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takes the form

Sinfl[q(·)] = −
2∑

s,s′=1

ΛsΛs′

∫ β

0
dρ
∫ ρ

0
dς k(ρ− ς)qs(ρ)qs′(ς) . (8.13)

The kernel is given by k(ρ) =
∫

dω G(ω)Dω(ρ), where Dω(ρ) = 2n(ω) cosh(ωρ) + e−ωρ is the
free boson propagator in imaginary time and

G(ω) =
∑

k 6=0

{
φ2

k [n(ωk−)− n(ωk+)]δ(ω−∆k) + θ2
k [n(ωk−) + n(ωk+) + 1]δ(ω−Ωk)

}
(8.14)

is the spectral density of the effective harmonic bath of the quasi-particle modes. Moreover,
we have defined Ωk = ωk− + ωk+, ∆k = ωk+ − ωk− and the displacement coordinates qs,
which are the eigenmodes of the two bilinearly coupled harmonic oscillators. The eigen-
modes are obtained via the unitary transformation

(
q1

q2

)
=

(
cos ζ − sin ζ
sin ζ cos ζ

)(
qm

qa

)
(8.15)

with the angle

tan ζ =
(
Ω2

a −Ω2
m + sgn(Ωm −Ωa)

√
[Ω2

m −Ω2
a ]

2 + 8NΛ2Ωa

)
/
√

8NΩaΛ , (8.16)

leading to an effective rescaling of the coupling constants in the influence action with Λ1 =

Λ cos ζ and Λ2 = Λ sin ζ.
At zero temperature, in the limit of a large lattice, and under the restriction nU � J (see

footnote 2), the sum over the spatial momenta can be approximated by an integral and the
spectral density takes the form3

GT=0(ω) '
2L
π

(
nU
4J

)2 4J
|sinκ(ω)|

1
(ω−Ωa − nU)2 , (8.17)

where κ(ω) = 2 sin−1
√
(ω−Ωa − nU)/8J. From this expression, we find that the coupling

to the quasi-particle excitations scales with the number of states, namely
√

LΛ, rather than
the number of particles

√
NΛ, as it is the case for the zero momentum coupling.

The zero temperature spectral density exhibits two singularities at ωmin = Ωa + nU and
ωmax = Ωa + nU + 8J and is only defined between these two frequencies. Here 8J equals
twice the bandwidth 4J of the energy dispersion. In the vicinity of these singularities, the
spectral density behaves as GT=0(ωmin + δω) ∼ (δω)−5/2 and GT=0(ωmax − δω) ∼ (δω)−1/2.
Figure 8.1 shows examples of the zero temperature spectral density in (a) and at a finite
temperature βΩa = 1000 in (b) for different values of the interaction strength nU. The
cosine energy dispersion (8.11) leads to a very flat density of states in the vicinity of the
smallest and largest excitation frequency. As a consequence, the spectral density exhibits

2This condition is needed to assure a low condensate depletion.
3A detailed derivation of the zero temperature spectral density can be found in the appendix E.1.
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FIGURE 8.1: (a) The approximated zero temperature spectral density GT=0(ω) of the Bogoliubov
modes is shown for J = 0.2Ωa with different atomic interaction strengths nU, indicated
in the plot. (b) The spectral density G(ω) of equation (8.14) is shown for the inverse
temperature βΩa = 1000, J = 2Ωa, L = 1000 and various interaction strengths nU. In
each case, the spectral density exhibits two singularities, one close to ω ' Ωa and the
other shifted by 8J to higher frequencies. Only in between these two singularities, the
spectral density is defined.

van Hove-type singularities at the minimal frequency ω = ωmin and the maximal frequency
ω = ωmax.

8.2 Quantum Squeezing of the Nanomembrane

In order to estimate the effect of weak atom-atom interactions on the membrane displace-
ment variance 〈q2

m〉, we determine the partition function of the reduced system. It is ob-
tained via the imaginary time path integral Z(β) =

∫Dq(·) exp{−Seff[q(·)]} with the effec-
tive action

Seff[q(·)] =
1
2

2∑

s=1

∫ β

0
dρ
[
q̇2

s (ρ) +Ω2
s q2

s (ρ)
]
+ Sinfl[q(·)] , (8.18)

and the frequencies of the two harmonic oscillators Ω2
1 = Ω2

m + 2
√

2NΩaΛ tan ζ and Ω2
2 =

Ω2
a − 2

√
2NΩaΛ tan ζ. By using the influence action of equation (8.13), the displacement

variance of the membrane can be determined by the first derivative of the logarithm of
the partition function4 〈q2

m〉 = −(βΩm)−1∂Ωm ln Z. Then, quantum mechanical squeezing
occurs when 〈q2

m〉 ≤ 1/2Ωm.
In figure 8.2(a) is shown the variance of the membrane position displacement (solid) as

a function of the atomic transition frequency Ωa. As a consequence of two-mode squeezing,
the variance is strongly suppressed in the vicinity of the resonance condition when Ωm .

Ωa. On the contrary, the atomic displacement variance shows the opposite behavior, such
that both constituents exchange their role at Ωm = Ωa, and the atomic state is strongly

4The analytic evaluation of the partition function is discussed in the appendix E.2.
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FIGURE 8.2: (a) The variances of the membrane displacement 〈q2
m〉 (solid) and the associated atomic

displacement of the internal states 〈q2
a〉 (dash-dotted) is shown in dependence of the

atomic frequency Ωa at the interaction strength nU = 0.5Ωm. The other parameters
chosen are L = 200, N = 106, Λ = 2× 10−4 Ω3/2

m and J = 0.1Ωm. In addition, panels
(b) and (c) show the membrane displacement variance and the number of particles de-
pleted from the condensate as a function of the atom-atom interaction strength nU/Ωm,
respectively. The parameter chosen for panels (b) and (c) are J = 0.5Ωm, Ωa = 1.04Ωm,
L = 200, N = 103 and Λ = (0.015/

√
2)Ω3/2

m . The different colors mark different inverse
temperatures which are indicated in panel (a) and (b).

squeezed near the resonance when Ωa . Ωm. As a matter of consequence, only when quasi-
particle excitations above the spectral gap are possible, squeezing of the nanomembrane
displacement mode may occur. Note that for the chosen set of parameters in figure 8.2(a),
the effect of the quasi-particle excitations is negligibly small, due to the scaling ∼

√
LΛ.

In order to see an impact of finite atom-atom interactions on the nanomembrane observ-
ables, the effective coupling strength

√
LΛ has to be enhanced. Interestingly, we find that

these atom-atom interactions may have a positive effect for achieving a squeezed mechani-
cal state, which is shown in figure 8.2(b) for different inverse temperatures β. By increasing
the atom-atom interaction strength nU, the variance of the membrane displacement 〈q2

m〉
initially decreases and finally grows again. This leads to an optimal value of nU for which
the membrane displacement variance has a minimum, reaching maximal quantum mechan-
ical squeezing. However, the position and magnitude of the minimal variance depends on
temperature and is dominated by two processes: First, the dominant process in the weak in-
teraction limit is due to differences of the thermal excitation of the states with the same mo-
mentum, but opposite internal state, leading to a scaling ∼ n(ωk−)− n(ωk+) in the spectral
density. The second, predominant process for rather strong atomic interactions compared to
the thermal energy scale are excitations of Bogoliubov quasi-particles. These excitations are
induced by the interaction, leading to a scaling with (nU)2[n(ωk−) + n(ωk+) + 1].

As a consequence of the optomechanical coupling, the squeezing of the membrane vari-
ance is also reflected in the number of depleted atoms Nqntm =

∑
k 6=0,τ 〈d†

kτdkτ 〉 which are
excited from the mean-field ground state. The number of depleted particles is shown in
figure 8.2(c) as a function of the interaction strength, for which a similar behavior as the
membrane position variance is observed. Hence, squeezing is maximal when the atomic
depletion is minimal.

In the following chapter, we will again return to the subject of nonequilibrium quantum
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phase transitions. We provide a rigorous guide line, describing how the spectrum of the
collective excitations are determined for the internal state coupling scheme. We will fur-
ther show that a modified version of the Gaussian ansatz (6.23) can also be applied to the
nonequilibrium Dicke model of equation (4.14).



CHAPTER 9
Generalizations of the Cumulant
Expansion and Multi-Orbital Ansatz
Collective excitations in the vicinity of a quantum critical point show a characteristic behav-
ior. For instance, a second-order QPT associated with a spontaneous symmetry breaking
exhibits a mode softening of the low-energy excitation. In this chapter, we will first de-
rive linearized equations of motion for the excitation modes of the internal-state coupling
scheme. Second, we apply a two-site Gaussian ansatz to the nonequilibrium Dicke model
describing a BEC which is coupled to the optical mode of a cavity.

9.1 Excitation Spectrum and Generalized Cumulant Expansion for
a Multi-Species Condensate

In chapter 7, we have derived the mean-field equations of motion for the population ampli-
tude γ, the condensate width σ and the membrane amplitude α. These mean-field equations
in the Gaussian ansatz (7.14) lack an essential feature which becomes important when deter-
mining the collective excitation spectrum. As a matter of fact, it is not possible to describe
individual excitations of the breathing mode for the fraction of the condensate in either of
the internal states |−〉 or |+〉. Especially when the relevant energy scales1 are of the same
order, in combination with a weakly damped membrane, a stabilization analysis may not
provide the correct excitation spectrum. This is especially the case, for the scenarios consid-
ered in figure 7.3(a) and (c). However, we can still utilize an adapted Bogoliubov ansatz in
the manner of equation (6.57) with a universal width in order to avoid a tedious derivation
with different widths στ and phases ητ .

In the following, we outline the procedure and explain how the excitations out of the
mean-field steady state can be found. It is convenient to introduce the new field operators

ΨN(t, z) =
√

1− γ2
0Ψ−(t, z) + γ0Ψ+(t, z) , (9.1a)

Ψγ(t, z) =− γ0Ψ−(t, z) +
√

1− γ2
0Ψ+(t, z) , (9.1b)

1It means when the membrane frequency Ωm, the atomic transition frequency Ωa and the breathing mode
frequencies are of similar magnitude.
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where the first field contains the mean-field steady state, and the latter describes excitations
out of this steady state via internal transitions. For simplicity, we set our focus on the special
case of a symmetric coupling χ = 0 and non-interacting atoms with g = 0. Then, the
equations of motion for the newly introduced operators and the membrane ladder operator
are reduced to

i∂ta =[Ωm − iΓm]a− λ

2

∫
dz cos(2z)

[
(1− 2γ2

0)(Ψ
†
NΨγ + Ψ †

γΨN)

+ 2γ0

√
1− γ2

0(Ψ
†
NΨN − Ψ †

γΨγ)
]
+ iξth ,

(9.2a)

i∂tΨN =

[
−Ωa

2
(1− 2γ2

0)− ωR∂
2
z −

V
2

cos(2z)− λγ0

√
1− γ2

0(a + a†) cos(2z)
]
ΨN

+

[
Ωaγ0

√
1− γ2

0 −
λ

2
(1− 2γ2

0)(a + a†) cos(2z)
]
Ψγ ,

(9.2b)

i∂tΨγ =

[
Ωa

2
(1− 2γ2

0)− ωR∂
2
z −

V
2

cos(2z) + λγ0

√
1− γ2

0(a + a†) cos(2z)
]
Ψγ

+

[
Ωaγ0

√
1− γ2

0 −
λ

2
(1− 2γ2

0)(a + a†) cos(2z)
]
ΨN ,

(9.2c)

where we have also neglected the fluctuating forces induced by the light field. The mean-

field steady state Ψ− '
√
(1− γ2

0)Nψ0, Ψ+ ' γ0
√

Nψ0 is completely included in the field
operator ΨN . Hence, we can make the ansatz

ΨN(t, z) '
[√

Nψ0(z) + dσ(t)ψ2(z)
]

e−iµt , (9.3a)

Ψγ(t, z) ' [dγ(t)ψ0(z) + dρ(t)ψ2(z)] e−iµt , (9.3b)

where the orbitals ψn(z) have been defined in equation (6.58). Moreover, we assume the
linear displacement a(t) =

√
Nα0 + dα(t). Next, we derive the equations of motion for

the operators di with i ∈ {α, γ,σ, ρ} in the fashion of section 6.3. In order to derive the
equation for dγ , equation (9.2c) is multiplied by ψ0(z) and the space coordinate is integrated
out. To find the equation for dσ and dρ, we multiply equation (9.2b) and (9.2c) by ψ2(z)
and integrate over space, respectively. After a linearization to lowest order in the ladder
operators, the linearized equations of motion result in

i∂tdα =(Ωm − iΓm)dα −Λαγ(dγ + d†
γ) +Λασ(dσ + d†

σ) +Λαρ(dρ + d†
ρ) + iξth , (9.4a)

i∂tdγ =Ωγdγ −Λαγ(dα + d†
α) +Λγσdσ , (9.4b)

i∂tdσ =Ωσdσ +Λασ(dα + d†
α) +Λγσdγ +Λσρdρ , (9.4c)

i∂tdρ =Ωρdρ +Λαρ(dα + d†
α) +Λσρdσ , (9.4d)
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where the mode frequencies reduce to

Ωγ =Ωa
(
1− 2γ2

0
)
+ 2
√

Nλγ0

√
1− γ2

0(α0 + α∗0)e
−σ2

0 , (9.5a)

Ωσ =
2ωR

σ2
0

+ Ṽ
(
2− σ2

0
)
σ2

0e−σ
2
0 , (9.5b)

Ωρ =Ωa
(
1− 2γ2

0
)
+

2ωR

σ2
0

+ V
(
2− σ2

0
)
σ2

0e−σ
2
0 + (Ṽ −V)

(
1− 2σ2

0 + σ4
0

)
e−σ

2
0 . (9.5c)

In addition, we have defined the effective lattice depth Ṽ = V + 4Ωa(λ/λΩ)2γ2
0(1− γ2

0)e
−σ2

0 .
The coupling constants between the individual atomic modes and the membrane mode are
given by

Λαγ =

√
Nλ
2

(
1− 2γ2

0
)

e−σ
2
0 , (9.6a)

Λασ =
√

2Nλγ0

√
1− γ2

0σ
2
0e−σ

2
0 , (9.6b)

Λαρ =

√
2Nλ
2

(
1− 2γ2

0
)
σ2

0e−σ
2
0 , (9.6c)

Λγσ =

√
2Nλ
2

(
1− 2γ2

0
)
(α0 + α∗0)σ

2
0e−σ

2
0 , (9.6d)

Λσρ =Ωaγ0

√
1− γ2

0 −
√

Nλ
2

(
1− 2γ2

0
)
(α0 + α∗0)

(
1− 4σ2

0 + 2σ4
0

)
e−σ

2
0 . (9.6e)

In addition, we have used the steady-state equations (7.17) in order to show that there occurs
no direct coupling between the two excited modes described by dγ and dρ.

In similarity to the previous approach, we define the excitation vector x = (dα, dγ , dσ, dρ,
d†
α, d†

γ , d†
σ, d†

ρ) and rewrite the Bogoliubov–de Gennes equation (9.4) in terms of a vector-
matrix product iẋ = Mx + iξ. Then, the collective excitation spectrum is given by the
complex eigenvalues of the linear stability matrix M. The collective excitation spectrum
νi is shown in figure 9.1 for the case of a weakly damped vibrational mode. In (a), the
excitation frequencies ωi = Re(νi) are shown. Below the critical coupling rate λ < λc,
the breathing modes (red, green) are constant, while the low energy excitation frequency
(purple) exhibits a roton-type behavior and monotonically decreases to zero according to
ωi ' Ωa

√
1− (λ/λc)2. Simultaneously, the high energy excitation frequency (blue) in-

creases monotonically. Above the threshold λ > λc, the roton-type mode frequency in-
creases again. Eventually, this mode frequency saturates to Ωm and the membrane mode
decouples from the atomic transition modes, coupling only to the atomic breathing mode
viaΛασ. In addition, the other mode frequencies monotonically increase and exhibit avoided
energy crossings when close to another frequency. This behavior is a direct consequence of
the comparably weak membrane damping rate Γm = ωR. In addition, we show the corre-
sponding decay rates γi = −Im(νi) in figure 9.1(b). In the vicinity of the avoided crossings
in (a), the initially small decay rates are significantly increased, which indicates a strong
mixing of the membrane mode and the atomic modes. In fact, such a mixing can induce
entanglement between the membrane and the atomic modes as it was shown in figure 6.8.
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FIGURE 9.1: (a) The four collective excitation frequencies ωi = Re(νi) are shown as a function of the
atom-membrane coupling rate λ/λc in the weak damping limit. The different colors cor-
respond to different eigenmodes. Note that the energy difference between the green and
red curve in the non-displaced phase (α0 = 0) is Ωa. (b) In addition, the corresponding
collective decay rates are shown. The parameters used are V = 100ωR, Ωm = 100ωR,
Γm = ωR, Ωa = 50ωR, and g = 0, χ = 0. We note that due to the weak membrane
damping, most of the energy crossings are avoided, which is also reflected in the rich
structure of the collective decay rates.

9.2 Modified Expansion for the Nonequilibrium Dicke Model

Another possible application of the Gaussian ansatz is offered by the well-known Dicke
model. It is realized by a bosonic condensate in an optical lattice that is placed inside an
optical cavity with transversal optical pumping. The time evolution of this hybrid system
follows the set of equations (4.14), given by

i∂ta =

[
−∆C + U0

∫
dz cos2(z)Ψ †(z)Ψ (z)− iκ

]
α+ η

∫
dz cos(z)Ψ †(z)Ψ (z) , (9.7a)

i∂tΨ (z) =
[
−ωR∂

2
z +

(
Vcl + U0a†a

)
cos2(z) + η(a + a†) cos(z) + gΨ †(z)Ψ (z)

]
Ψ (z) , (9.7b)

where we introduced an additional conservative optical lattice with depth Vcl. This classical
lattice can be realized by a far off-resonant dipole trap (FORT) [114]. This FORT can be ex-
perimentally accomplished by a laser whose frequency is detuned by only very few spectral
ranges from the cavity frequency. Close to the cavity center, the cavity potential and FORT
field very well coincide, such that the same periodicity of the potential can be assumed. In
order to describe the essential feature of the phase transition, one has to consider at least
two lattice sites, because the NQPT leads to an imbalanced occupation between even and
odd lattices sites. In the two-dimensional experimental realization [115, 117, 201], this is
manifested in a checkerboard pattern. Hence, we consider the minimum of two lattice sites.
In the presence of a sufficiently deep classical potential (with depth Vcl), the condensate pro-
file in each lattice well is described by a Gaussian. The two-mode functions which satisfy∫

dzψi(z)ψ∗j (z) = δij are then given by

ψ±(z) =
(

δ2
±

4πσ2

)1/4 (
e−z2/2σ2 ± e−(z−π)

2/2σ2
)

, (9.8)
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with a stationary width σ, the normalization constants δ± = 1± e−ρ and the overlap expo-
nent ρ = π2/4σ2. Note that in order for equation (9.8) to be an appropriate variational ansatz
for the condensate profile, we assume that Vcl < 0. Then, the condensate field operator takes
the form

Ψ (z) = d+ψ+(z) + d−ψ−(z) , (9.9)

where d± are bosonic ladder operators which satisfy the usual bosonic commutation re-
lations, i.e.,

[
di, d†

j

]
= δij. The equations of motion have to be solved in the subspace

d†
+d+ + d†

−d− ≡ N, where N is the total number of atoms.
Within this ansatz, the equation of motion for the cavity mode operator simplifies to

i∂ta = (−∆C + U+n+ + U−n− − iκ)a + η′
(

d†
+d− + d†

−d+
)

, (9.10)

with the effective atom-light field coupling η′ = ηe−σ
2/4
√

1 + coth(ρ)/
√

2 and U± defined
below. Here, n± = d†

±d± is the number of atoms in the j = ± orbital. In order to de-
rive the equation of motion for the atomic mode operator d+ (d−), we have to multiply
equation (9.7b) by ψ+ (ψ−) and integrate over the space variable z. Then, the individual
equations of motion can be brought to the form

i∂td+ =Ω tanh(ρ/2)d+ + η′
(

a† + a
)

d− + U+nad+ + g+n+d+ + g′d†
+d−d− , (9.11a)

i∂td− =Ω coth(ρ/2)d− + η′
(

a† + a
)

d+ + U−nad− + g−n−d− + g′d†
−d+d+ , (9.11b)

where we have defined the following constants

Ω =
ωR

2σ2 ρ+
Vcl

2
e−σ

2
, (9.12a)

U+ =
U0

2

[
1 + e−σ

2
tanh(ρ/2)

]
, (9.12b)

U− =
U0

2

[
1 + e−σ

2
coth(ρ/2)

]
, (9.12c)

g+ = g′
(
[1 + sech(ρ/2)] [2− tanh(ρ/2)− sech(ρ/2)]− 2

)
, (9.12d)

g− =
g′

2

(
[1− tanh(ρ/4)]2 − 2

)
, (9.12e)

and g′ = g/
√

8πσ. Here, we note that the overlap exponent ρ > 0 is approaching infin-
ity, when the overlap between the Gaussians in the left and right well is becoming smaller.
Hence, coth(ρ) > tanh(ρ) will always be satisfied, such that the lowest energy state is ac-
tually given by the j = + orbital (when interactions are neglected). Moreover, na = a†a is
the number of photons in the cavity. In the following, we perform a stationary mean-field
analysis of this problem.

Therefore, we assume d+(t) '
√

Nγ+(t), d−(t) '
√

Nγ−(t), and a(t) =
√

Nα(t), with
the complex variational parameters γ±(t), α(t). In fact, within this ansatz, the dynamics of



136 Chapter 9. Generalizations of the Cumulant Expansion and Multi-Orbital Ansatz

the photon amplitude and the atomic polarization are determined by the equations

α̇ = −i∂α∗E− κα , (9.13a)

γ̇τ = −i∂γ∗τ E . (9.13b)

In addition, we have defined the effective energy functional according to E = E[α, γ−, γ+,σ]
with

E =−∆′C|α|2 +
ωR

2σ2 (1− ρ) +
[
Ω +

NU0

2
|α|2e−σ

2
] [

tanh(ρ/2)|γ+|2 + coth(ρ/2)|γ−|2
]

+

√
N
2
η(α+ α∗)

√
1 + coth(ρ)(γ∗+γ− + γ∗−γ+) +

Ng√
8πσ

Re
(
[γ∗−γ+]

2 + 2|γ+|2|γ−|2
)

+
Ng

2
√

8πσ
[1 + sech(ρ/2)] [2− sech(ρ/2)− tanh(ρ/2)] |γ+|4

+
Ng

4
√

8πσ

[
2 + {1− tanh(ρ/4)}2] |γ−|4 , (9.14)

with the shifted cavity detuning ∆′C = ∆C − NU0/2. Then, the stationary solution for the
variational parameters (α0, γ−,0, γ+,0, σ0) is found via the relations

∂α∗E =− iκα , (9.15a)

∂γ∗−E =0 , (9.15b)

∂γ∗+E =0 , (9.15c)

∂σE =0 . (9.15d)

By inserting the solution for α0 of equation (9.15a) in the effective potential E[α, γτ ,σ] and
using the normalization condition |γ+|2 + |γ−|2 = 1, the steady state problem reduces to a
minimization problem of the energy functional E[γ,σ] ≡ E[α0(γ,σ), γ,σ], with γ ≡ γ−.

Figure 9.2(a) and (b) show the energy functional as a function of the atomic parameter γ
and the atom-field coupling strength η for different values of the classical lattice depth Vcl.
For a better comparison, the energy functional is scaled according to E(γ) = [E(γ)− E(γ0)]

/ maxγ̄ [E(γ̄)− E(γ0)]. Below a certain value of η, the system relaxes to a steady state with
γ = 0, which is indicated by the dashed curves in (a) and (b). Moving away from this
minimum at a fixed η, the effective potential steadily increases with γ until it reaches a
global maximum roughly around γ = ±1/

√
2. At γ = ±1, local minima appear which are

energetically raised with respect to the minimum E(0). Above a critical threshold
√

Nηc, the
initial minimum at γ = 0 turns into a (local) maximum and the steady state occupation γ0

splits into two branches, indicating the nonequilibrium quantum phase transition. Hence,
the atom-field coupling is the important parameter that tunes the phase transition. In 9.2(a)
the phase transition appears to be continuous, while it appears to be discontinuous for the
deeper lattice in 9.2(b). Beyond the critical point, γ0 quickly saturates to γ0 ' ±1/

√
2.

In addition to the investigation of the energy surface, we show in figure 9.2(c) the pos-
itive steady state solution γ0 as a function of the pump strength η. Here, the results are
shown for various atomic interaction strengths that are indicated by the color bar and a
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FIGURE 9.2: (a), (b) The scaled energy potential is shown as a function of the atomic density order
parameter γ and the atom-field coupling η for interacting atoms with Ng = ωR. Dif-
ferent classical potential depths Vcl = −10ωR and Vcl = −20ωR have been considered
in the panels (a) and (b), respectively. Below a critical coupling strength the potential
surface exhibits a single minimum at γ = 0 (indicated by the dashed lines). At the
critical point, this minimum turns into a maximum and two new minima are formed
at γ 6= 0. Note that there are two other minima at γ = ±1 below the critical point.
However, these local minima are energetically higher than the global minimum at γ = 0
since coth(x) ≥ tanh(x) for x > 0. (c) The stationary value of the atomic parame-
ter γ0 is tracked as a function of the coupling constant

√
Nη/ωR with the lattice depth

Vcl = −15ωR. Here, only the positive solution γ0 > 0 is shown. Different colors corre-
spond to different atom interactions. Other parameters used are ∆C = −10ωR, κ = ωR
and NU0 = −ωR.

classical lattice depth Vcl = −15ωR has been considered. The critical point roughly scales
with the square root of the interaction strength

√
Ng. On the one hand, we find that for

rather strongly interacting atoms, the phase transition appears to be discontinuous which is
an indicator for the importance of Mott physics. On the other hand, for rather weakly inter-
acting atoms, the imbalance between the occupancy of odd and even sites grows seemingly
in a continuous manner. However, we have to emphasize that these indicators are by far no
criterion to deduce whether the phase transition really is of first- or second-order. On the
basis of a Landau expansion of the effective potential E[γ,σ] around γ = 0, this notion can
be clarified. Moreover, we are aware of the existence of two possible PTs in this system, one
from the normal phase to the self-organized superfluid phase and another from the normal
phase to the self-organized Mott phase. For instance, the two PTs have been investigated in
reference [116], where a slightly modified setup without the FORT has been considered. Yet,
to which extent these different phase transitions influence the presented mean-field analysis
has to be examined. This, however, we leave as an open question for further investigations.





CHAPTER 10
Summary
In this thesis, the effects of quantum statistical fluctuations and the resulting nonequilibrium
dynamics in different physical situations have been investigated.

Thermal and Nonequilibrium Fluctuations

In the first scenario, we have considered a molecular complex which is affected by thermal
fluctuations that induce geometrical variations of its dipole moments, leading to a chiral
effect which is not present in the isolated molecule. We have determined the linear and 2D
optical chiral spectra for the dimer system whose static dipole moments are orthogonal with
a connecting vector parallel to one of the dipole moments. In other words, the dimer is achi-
ral in its equilibrium configuration, no chiral signal is expected, and the dipolar coupling
vanishes. Yet, geometrical fluctuations are shown to induce finite average dipolar couplings
between the two dipole moments which causes a rather fast energy transfer as experimen-
tally observed. This fast energy transfer can be unambiguously assigned to angular fluctua-
tions around its orthogonal equilibrium configuration by investigating the chiral signals. As
long as the dimer configuration fluctuates around an orthogonal equilibrium configuration,
the linear chiral spectrum vanishes, but is non-zero for non-orthogonal configurations. In
fact, the nonlinear 2D spectrum also vanishes when chiral fluctuations are absent, however,
it has a finite signal when angular fluctuation are present. In turn, this signal can be uti-
lized to experimentally accurately determine the autocorrelation times, which may be used
to measure correlation times that are otherwise hardly accessible.

The second scenario falls within the same scope of qualitatively new effects induced by
fluctuations. Therein, we analyzed the real-time dynamics of a quantum two-state system
under the action of nonequilibrium quantum statistical fluctuations by taking the point of
view of electronic quantum transport through a single-level quantum dot that is coupled to
the quantum two-state system. When a finite transport voltage is applied, a nonequilibrium
electron current flows so that the quantum two-level system is exposed to nonequilibrium
fluctuations. Under the assumption of weak dot-lead electronic tunneling, a diagrammatic
perturbation method is utilized on the basis of sequential charge tunneling. The electronic
degrees of freedom can be integrated out such that the quantum dissipative dynamics of
the two-state system itself can be directly studied. We have concentrated on the relaxation
and dephasing processes at long times by calculating the smallest non-zero eigenvalues of
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the underlying Liouville operator. In the regime of sequential tunneling processes, the ac-
tion of the quantum noise is sufficiently weak such that the unperturbed energy spectrum
of the dot-plus-two-level-system is a useful starting point. Since the eigenvalues of the Li-
ouvillian rate matrix can easily be evaluated numerically, we have straightforward access
to the nonequilibrium quantum relaxation and dephasing rates as a function of all model
parameters. We find a rich structure in both of these observables, which can consistently
be traced back to the unperturbed energy spectrum. Furthermore, an analysis in terms of
Heisenberg–Langevin equations of motion allows us to extract the autocorrelation function
of the nonequilibrium quantum statistical noise in the limit of a Markovian approximation.
The zero-temperature limit allows us to obtain a simple spectral decomposition of the fre-
quency components of the nonequilibrium noise under the action of a static DC voltage.
Likewise, a generalized nonequilibrium fluctuation relation follows, which reproduces the
well-known equilibrium fluctuation-dissipation theorem at zero transport voltage. A gen-
eralization to time-periodic AC voltages is also provided, such that a generalized driven
fluctuation relation results, involving all higher harmonics.

Parametric Resonance for Driven Ultracold Atoms

This investigation is followed by a study of a driven one-dimensional Bose–Hubbard model
with a periodically modulated harmonic trap. This system describes a gas of interacting
bosonic atoms in a lattice which is placed in a parametrically modulated trapping potential.
Within this model, the interplay of strong atomic interactions in the Mott state of the lattice
and the external parametric drive can be investigated. We have analyzed the parametric res-
onance condition in the mean-field regime of weak atomic interactions. In the presence of
the lattice, the dynamics of the condensate width is governed by the Mathieu equation. The
resonance frequency of the condensate is shifted to lower values as the atomic interaction
is increased. Moreover, the stability diagram of stable and unstable dynamics is inherited
from the Mathieu equation but is altered due to the interaction. We compare numerically
exact results, obtained by the time-evolving block decimation algorithm, which expands the
wave-function in terms of matrix product states, in the transient regime with the aim to
check the resonance condition predicted by our mean-field ansatz. Although the mean-field
approach becomes invalid for stronger interaction, a good agreement is found. We note that
for even stronger interactions, the formation of a local Mott-insulator region in which the
movement of the atoms also in the presence of the driving becomes completely suppressed,
leading to a breakdown of our mean-field approach. Finally, we have demonstrated that the
global parametric modulation yields site-dependent hopping amplitudes which can be con-
trolled by the external drive. Interestingly, locating the onset of the instability allows us, in
principle, to determine the atom interaction strength. Thus, dynamically probing quantum
many-body systems with a periodic modulation of the global harmonic confinement pro-
vides a diagnostic tool, which warrants an experimental realization in the realm of ultracold
Bose gases.
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Nonequilibrium Quantum Phase Transitions in Hybrid Systems

Finally, we put our focus on a rather new type of quantum hybrid systems. We have shown
that a hybrid atom-optomechanical system possesses a nonequilibrium quantum phase tran-
sition between phases of different collective behavior. The interaction between the atomic
condensate and the optomechanical part is realized in two different ways which allow to
couple either the center-of-mass motion of the condensate or a certain transition between
the internal states of the atoms to the vibrational motion of a membrane in an optical res-
onator. According to the type of coupling, these schemes are labeled motional and internal
coupling scheme.

In the first coupling approach, the steady state of an ultracold atomic condensate in
an optical lattice, whose motion is coupled to a single mechanical vibrational mode of a
spatially distant membrane, has been analyzed based on an extended Gross–Pitaevskii like
mean field approach. The coupling between both parts occurs via the light field of a common
laser. Below the critical effective atom-membrane coupling λc , the atoms in the combined
atom-membrane ground state are symmetrically distributed around their lattice minima. At
the quantum critical point, this Z2 symmetry is spontaneously broken and a nonequilibrium
quantum phase transition to a symmetry-broken state occurs in which the atomic center-
of-mass and membrane displacements are all either positive or negative. Near the critical
point of the nonequilibrium quantum phase transition, the lowest excitation mode shows
roton-type characteristics, a mode softening of the excitation frequency and a bifurcation of
the decay rate, accompanied by a strong atom-membrane entanglement. This variational
ansatz was further generalized, which allows us to include fluctuating forces generated by
the light field and environment.

In the second coupling approach, where the membrane is coupled to an internal state
transition of the atoms in the gas, we have shown that this hybrid atom-optomechanical
system also undergoes a nonequilibrium quantum phase transition between phases of dif-
ferent collective behavior. Most interestingly, the order of the phase transition can be tuned
in a straightforward manner. Our investigation is based on an extended Gross–Pitaevskii-
like mean-field approach with a time-dependent Gaussian variational ansatz. Mediated by
the light field of a common laser, the atom-membrane coupling is tuned by changing the
laser intensity. Below a critical coupling λc , all the atoms occupy the energetically lower
atomic internal state |−〉 and at the critical point a nonequilibrium quantum phase transi-
tion occurs. This phase is characterized by a sizeable steady-state occupation of the ener-
getically higher atomic internal state |+〉 and a constantly displaced membrane. Its order is
determined by a state-dependent atom-membrane coupling and the size of the atomic tran-
sition frequency. For an asymmetric coupling, χ 6= 0, we have shown that an asymmetric
first-order phase transition occurs with a preferred polarization. Instead, for a symmetric
coupling, χ = 0, the phase transition is continuous for transition frequencies below a critical
value Ωc and discontinuous above. Moreover, the first-order transition is accompanied by
hysteresis. The crossover between the first- and second-order phase transition is observable
by tuning readily accessible parameters in the internal state coupling scheme.

Within the internal coupling scheme, we have further investigated the effect of finite
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atom-atom interactions in the two-component atom gas on the nanomechanical vibrational
state of the nanomembrane. In the zero temperature limit, the spectral density of the quasi-
particle excitations induced by atomic interactions can be determined within a Bogoliubov
approach. We isolate the fundamental mode and treat the higher modes in the limit that
they are non-interacting as a harmonic bath. The spectral density of the latter is gapped and
exhibits a two peak structure with a dominant peak at the atomic transition frequency and
a reduced peak at the largest attainable frequency in the reduced atomic system. We show
that, even at finite temperature, the quasi-particle excitations can be used to enhance the
two-mode squeezing of the displacement variance of the nanomembrane, thereby creating
highly nontrivial quantum many-body states that involve a squeezed nanomechanical mode
and an interacting atom gas coupled in a hybrid optomechanical setup. Squeezing of the
nanomembrane displacement only occurs when quasi-particle excitations are possible above
the spectral gap.

Finally, we have shown that even the Gaussian ansatz in the time-dependent variational
perturbation theory with a unified condensate profile width for atoms in the energetically
lower and higher internal state is capable of describing individual breathing mode excita-
tions in a straightforward manner. This approach may be used to determine correlation
functions and quantum entanglement in the steady-state regime. In addition, a modified
variational multi-mode ansatz is applied to the nonequilibrium Dicke model, which readily
allows one to study the nonequilibrium Dicke phase transition. A promising application
of this description is to find relations between the number of photons dissipated out of the
cavity and the condensate parameters. For instance, this would allow non-destructive mea-
surements of the condensate width rather than usual methods which rely on time-of-flight
measurements.



APPENDIX A
First-Order Integral Kernel of the
Diagrammatic Perturbation Series
To determine the dynamics of the quantum dot and the stationary current, we have to eval-
uate the integral I±α (ω) of equation (2.43). However, in order to find an analytical solution to
this integral, for instance by using the residue theorem, the integrand has to approach zero
faster than 1/E as E is sent to ±∞. In fact, this is only satisfied for one of these limits since
limE→±∞ f±α (E) = 0, while in the other limit limE→∓∞ f±α (E) = 1.

To circumvent this contradiction, we introduce a Lorentzian cut-off weight function
Dα(z) = ω2

c /[(z− µα)2 + ω2
c ] with the cut-off frequency (or band width) ωc. Then, we can

replace the integral
∫

dE → ∫
dE Dα(E). By choosing the cut-off frequency ωc large in com-

parison to the relevant energies in the system, the integrand remains almost unchanged on
the real axis and we can close the integration path over the upper or lower complex half
plane. In practice, we choose the path according to figure A.1 and average over the contri-
butions from contour A and contour B. Here, the dots indicate the poles of the integrand,
which are given by z0 = ω+ i0+, z± = µα±ωc. In addition, the Fermi-Dirac distribution has
poles at z = µα + νn with the fermionic Matsubara frequencies νn = iπ(2n + 1)/π, which
are located on the dotted line. Hence, the integral I±α (ω) is given by the contour integral

I±α (ω) =
1
2

[∮

A
dz g(z) +

∮

B
dz g(z)

]

=iπ


 ∑

Im(z)>0

Res(g, z)−
∑

Im(z)<0

Res(g, z)


 , (A.1)

with the function g(z) = i f±α (z)Dα(z)/(ω− z− i0+).
By inserting the residues of the function g(z), the integral is evaluated to be

I±α (ω) =− πDα(ω)

[
f±α (ω) +

ω− µα
2iωc

± i
2

tan(βωc/2)
]

± (π/β)Dα(ω)
∞∑

n=0

(
1

ω− µα − νn
− 1
ω+ νn

)

± (π/β)Dα(ω)
∞∑

n=0

(
1

νn − iωc
− 1
νn + iωc

)
.

(A.2)
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z0

z+

z−

µα + νn

Path A

Path B

Re(z)

Im(z)

FIGURE A.1: The contours A and B in the com-
plex plane are illustrated. The circles indicate the
positions of the singularities of the function g(z)
for the case ω < 0 and µα > 0. The singularities
of the Fermi-Dirac distribution are located on the
vertical dotted line.

The sum over the Matsubara frequencies can be reduced to a simple analytic expression
by making use of the properties of the digamma function ψ0(z), where ψ0(z1)− ψ0(z2) =∑∞

n=0[(n + z1)
−1 − (n + z2)−1]. Finally, we consider a very large cut-off frequency ωc, such

that the weight function satisfies Dα(ω) ' 1. Then, the integral simplifies

I±α (ω) = −π f±α (ω)± i log(βωc/2π)± 1
2i

[
ψ0

(
1
2
+

iβ
2π

[ω− µα]
)
+ ψ0

(
1
2
− iβ

2π
[ω− µα]

)]
,

(A.3)
where we have further used the asymptotic expansion ψ0(x + 1) = log(x) +O(x−1) of the
digamma function. In addition, we have used the identity

iπ tan(βωc/2) = ψ0

(
1
2
− βωc

2π

)
− ψ0

(
1
2
+
βωc

2π

)
. (A.4)

We note that due to the structure of the super-operators W and W I , many of the contribu-
tions include terms of the form ∼ I±α (ω) + [I±α (ω′)]∗ or ∼ I±α (ω) + I∓α (ω′) such that these
expressions under the summation over all terms become independent of the choice of ωc.



APPENDIX B
Numerical Solution to
Inhomogeneous First-Order
Differential Equations
Suppose that one wants to find the solution to the differential equation

∂tx(t) = Mx(t) + y(t) , (B.1)

where x and y are both n-dimensional vectors and M is a n× n matrix. In terms of analytic
expressions, the solution is simply given by

x(t) = eMtx(0) +
∫ t

0
ds eM(t−s)y(s) . (B.2)

However, the numerical solution of the analytic expression is rather tedious. The prob-
lem arises from the matrix exponential in (B.2) in combination with the fact that M is, in
general, non-normal. Hence, the matrix M has different left and right eigenvectors `(i)

and r(i), respectively, which are biorthogonal according to the scalar product (`(i), r(j)) =∑n
k=1 `

(i)
k r(j)

k = δij. The right eigenvectors are defined as column vectors satisfying

Mr(i) = mir(i) , (B.3)

where the left eigenvectors are defined as row vectors satisfying

`(i)M = mi`
(i) , (B.4)

with the same eigenvalues mi. It is then easier to express the evolution vector x in terms of
the left eigenvectors. That is, one defines the quasi-normal mode by qi(t) =

∑n
k=1 `

(i)
k xk(t).

By multiplying equation (B.2) with `(i) from the left, we arrive at the expression

qi(t) = emitqi(0) +
∫ t

0
ds emi(t−s)pi(s) , (B.5)
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with pi(t) = (`(i), y(t)) =
∑n

k=1 `
(i)
k yk(t). The original vector is then reproduced via x(t) =∑

i qi(t)r(i).
The left and right eigenvector decomposition is easily found with the usual numerical

packages, such as LAPACK (Linear Algebra Package) for instance. The only delicate point
is the biorthogonality condition `(i)r(j) = δij. Numerical methods usually choose the or-
thonormal sets independently according to the conditions r(i)†r(j) = δij and `(i)`(j)† = δij. In
general, such an evaluation is not compatible up to a matrix C, i.e., (`(i), r(j)) = Cij, with the
biorthogonality condition. In many cases, this matrix is diagonal and the eigenvectors can
simply be scaled by a factor of the norm. On the other hand, when this is not the case, one
can do the following.

By forming matrices L and R with the left and right eigenvectors, respectively, the inner
product becomes

LR = C . (B.6)

In order to arrive at the expression LR = 1, one can do a LU decomposition (lower-upper)
of the matrix C = CLCU . Here, CL is a lower triangular matrix and CU is a upper triangular
matrix. Then,

C−1
L LRC−1

U = 1 (B.7)

suggests the new biorthonormal vectors

L′ =C−1
L L (B.8a)

R′ =RC−1
U . (B.8b)



APPENDIX C
The Crank–Nicolson Scheme
In general, the Gross–Pitaevskii equation for an atomic ensemble in one dimension is given
by

i∂tψ(t, z) =
[
− ∂2

z
2m

+ V(t, z)
]
ψ(t, z) , (C.1)

where the potential V(t, z) includes the particle-particle interaction gN|ψ(t, z)| and m is the
mass of a single atom. In order to formulate a numerical scheme, let us denote the state after
the n-th time step in discretized space by

ψn
j = ψ(nδt, z0 + jδz) , (C.2)

with the grid spacing δz and the time step δt. By using the equivalent description for the
potential Vn

j = V(nδt, z0 + jδz), the equation of motion in the Crank–Nicolson scheme reads

i
ψn+1

j − ψn
j

δt
= −

ψn+1/2
j+1 − 2ψn+1/2

j + ψn+1/2
j−1

2mδz2 + Vn
j ψ

n+1/2
j , (C.3)

where ψn+1/2
j = (ψn+1

j+1 + ψn
j )/2. This average is essential for the Crank–Nicolson scheme.

In comparison to a backward time centered scheme and forward time centered scheme, where only
the updated state ψn+1

j or the initial state ψn
j on the right-hand side are taken into account,

the error is reduced by one order of magnitude to O(δt3) for the non-interacting case g = 0.
To find an equation which relates the updated state ψn+1

j to the initial state ψn
j , we in-

troduce a vector notation for the condensate function. The relation between the old and the
new vector can then be written in terms of a matrix-vector multiplication according to

ψn+1 =
(
1 + i

2 Hn
CNδt

)−1 (
1− i

2 Hn
CNδt

)
ψn , (C.4)

with the discretized Hamiltonian at time step n

Hn
CN = − 1

2mδz2




−2 1 ∆BC

1 −2 1

1
. . . . . .
. . . . . . 1

∆BC 1 −2




+




Vn
1

Vn
2

Vn
3

Vn
4

. . .




. (C.5)
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Here, the parameter ∆BC is either 0 or 1 for open boundary conditions or periodic bound-
ary conditions, respectively. By expanding the matrix product, one finds the replacement
(1 + iHn

CNδt/2)−1(1− iHn
CNδt/2) = Q−1 − 1, where Q = (1 + iHn

CNδt/2)/2. With this
relation, equation (C.4) reduces to

ψn+1 = Q−1ψn −ψn , (C.6)

which is the basis equation for the numerical time evolution.
In order to calculate the ground state or steady state for a given problem, the Crank–

Nicolson scheme can be used in imaginary time. Hence, the time step has to be exchanged
by δt → −iδτ . Then, the ground state can be estimated via equation (C.6) with the matrix
Qim = (1 + Hn

CNδτ/2)/2. Due to the non-unitary time evolution, the state ψ has to be
normalized after each time step.



APPENDIX D
Bogoliubov Transformation
In order to diagonalize the Hamiltonian of the excited modes

HB
exc =

∑

k 6=0

∑

τ=±
(εkτ − ε0− + nU) c†

kτ ckτ +
nU
2

∑

k 6=0

(c−k−ck− + H.c.) , (D.1)

we rewrite it in terms of a vector matrix product

HB
exc =

∑

k 6=0

(
c†

k− c−k−
)( Ek nU

nU E−k

)(
ck−

c†
−k−

)
+
∑

k 6=0

ωk+c†
k+ck+ , (D.2)

with Ek = εk− − ε0− + nU. The second term is already diagonal. For the first term, we
make the ansatz given in equation (8.9). Imposing canonical commutation relations for the
quasi-particle operators dk− leads to the relations

φkφ
∗
k − θkθ

∗
k =1 , (D.3a)

φkθ−k − φ−kθk =0 . (D.3b)

Under these restrictions, the eigenvalue problem reduces to

(
Ek nU
−nU −E−k

)(
φk

θk

)
= ωk−

(
φk

θk

)
, (D.4)

which includes a non-hermitian matrix. In general, the eigenvalues of this matrix can be-
come complex, but since εk−− ε0− > 0, this is not possible here. Moreover, these eigenvalues
always appear in pairs with ωk− = −ω∗k−, where only one of the corresponding eigenvec-
tors can fulfill the orthonormalization conditions (D.3). Consequently, we find that only the
eigenvalues ωk− = (εk− − ε0−)

√
1 + 2nU/(εk− − ε0−) and their corresponding eigenvec-

tors (8.10) allow canonical commutation relations for the quasi-particle modes.

149





APPENDIX E
Path Integral Formalism and
Displacement Variance
In order to find an analytic solution to our problem of equation (8.12), we will integrate out
the Bogoliubov quasi-particle modes. This is done in a path integral formalism for which
an analytical solution for two bilinearly coupled harmonic oscillators interacting with a har-
monic ’bath’ can be written down explicitly. Hence, we define the interaction Hamiltonian
according to

HB
I = (Λ1q1 +Λ2q2)

∑

k 6=0

(
φkd†

k−dk+ + θkdk−d−k+ + H.c.
)

. (E.1)

In this context, we follow the description of reference [237], which addresses a similar struc-
ture of the coupling Hamiltonian, yet in the context of two-phonon processes in a Caldeira–
Leggett model.

E.1 The Influence Functional and Spectral Density of Quasi-
Particle Excitations at Zero Temperature

The influence functional in imaginary time, describing the membrane-atom coupling to the
excited modes, takes the form

F [q(·)] = exp (−Sinfl[q(·)]) = Z−1
ex

∫
Dx exp (−Sex[x]− SI [q, x]) , (E.2)

where x and q denote the 2(L − 1) component vector of the Bogoliubov modes and the
mixed coordinates q1 and q2 of equation (8.15). Moreover, Zex = tr e−β

∑
k 6=0(ωk−nk−+ωk+nk+) is

the free partition function of the excited atomic modes at k 6= 0 and Sex[x] is the correspond-
ing action.

In order to integrate out the Bogoliubov modes, it is essential for the coupling Hamil-
tonian to fulfill 〈HB

I 〉β = 0 in the zero coupling limit Λ = 0 with 〈·〉β = Z−1
ex
∫Dx e−Sex(·).

Then, the right-hand side of equation (E.2) can be considerably simplified in two steps. First,
we expand the exponential

Z−1
ex

∫
Dx exp (−Sex[x]− SI [q, x]) =

∑

n

1
n!
〈(−SI [q, x])n〉β (E.3)
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and observe that only even terms in n contribute to the sum. By reordering the terms
under the sum, it can be shown [237] that the only relevant contribution is the correlator
〈HB

I [q(ρ)]H
B
I [q(ς)]〉β . Then, the influence action is simply given by the expression

Sinfl[q(·)] = −
∫ β

0
dρ
∫ ρ

0
dς 〈HB

I [q(ρ)]H
B
I [q(ς)]〉β . (E.4)

The correlator can be evaluated exactly and we find the expression

〈HB
I [q(ρ)HB

I [q(ς)]〉β =

[
2∑

s=1

Λsqs(ρ)

] [
2∑

s′=1

Λs′qs′(ς)

]∑

k 6=0

{
φ2

k [n(ωk−)− n(ωk+)]D∆k(ρ− ς)

+θ2
k [n(ωk−) + n(ωk+) + 1]DΩk(ρ− ς)

}

(E.5)

with the frequencies Ωk = ωk+ + ωk− and ∆k = ωk+ − ωk−, and the free boson propagator
Dω(ρ). With this in mind, we may write the influence action according to equation (8.13).

At zero temperature, the spectral density of the quasi-particle excitations reduces to

GT=0(ω) =
∑

k 6=0

(
εk− − ε0− + nU − ωk−

2ωk−

)
δ(ω−Ωk) '

∑

k 6=0

[
nU

4J sin2(k/2)

]2

δ(ω−Ωk) ,

(E.6)
where we have expanded the quasi-particle eigenfrequencies ωk− to second order in nU,
and used that εk− − ε0− = 4J sin2(k/2). Using that the delta distribution, composed with
a smooth function g(x), follows δ(g(x)) = δ(x− x0)/|g′(x0)|, when g(x) has only the root
g(x0) = 0 in the interval of integration, we may rewrite the delta distribution in equa-
tion (E.6). For this, we define g(k) = ω − Ωk ' ω − Ωa − nU − 8J sin2(k/2) and expand
it to lowest order in nU. The momentum, for which g(κ(ω)) = 0, is given by the ex-
pression κ(ω) = 2 sin−1

√
ω−Ωa − nU)/8J, and the derivative with respect to k is simply

g′(k) = −4J sin(k). Inserting these expressions in equation (E.6), the spectral density is
approximated by

GT=0(ω) '
(

nU
4J

)2∑

k 6=0

δ[k− κ(ω)]
4J|sin(k)| sin4(k/2)

. (E.7)

By replacing the summation over the momenta k with an integral, i.e.,
∑

k 6=0 → L
2π

∫ 2π
0 dk , we

arrive at the expression for the zero temperature spectral density, given in equation (8.17).

E.2 Analytic Solution for the Path Integral

The path integral with the effective action Seff[q(·)], given in equation (8.18), can be eval-
uated in a closed analytic expression. Therefore, we expand the path q(ρ) = q̄(ρ) + y(ρ)
around its extremal, classical path q̄(ρ) with the quantum-mechanical deviation y(ρ). By
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inserting this ansatz in the effective action, we find

Seff[q(·)] = Seff[q̄(·)] +
1
2

∫ β

0
dρ yT(ρ)Ky(ρ) , (E.8)

where the matrix K is defined according to

Kss′ys′(ρ) = δss′
(
Ω2

s − ∂2
ρ

)
ys(ρ)− 2ΛsΛs′

∫ β

0
dς k(ρ− ς)ys(ς) . (E.9)

The extremal path fulfills the relation ∂qSeff[q]|q=q̄ = 0. Via a Fourier expansion of the
kernel k(ρ) =

∑∞
n=−∞ k̂neiνnρ/2 and the deviations ys(ρ)

∑∞
n=−∞ ŷsneiνnρ/2, with bosonic

Matsubara frequencies νn = 2πn/β, the effective action takes the form

Seff[q(·)] = Seff[q̄(·)] +
1

2β

2∑

s,s′=1

∞∑

n=−∞

ŷsn

[
δss′(Ω

2
s + ν2

n)− 2ΛsΛs′ k̂n

]
ŷs′n . (E.10)

By performing the integration over the deviations, the partition function reduces to the ex-
pression

Z(β) = N e−Seff[q̄]
√

D0
∏
n>0

1
Dn

(E.11)

where N is a universal normalization constant, which drops out when evaluating expecta-
tion values. The denominators Dn are given by

Dn =
(
Ω2

1 + ν2
n
) (
Ω2

2 + ν2
n
)
− 2Λ2k̂n(Ω

2
1 sin2 ζ +Ω2

2 cos2 ζ + ν2
n) , (E.12)

where Λ2 = Λ2
1 + Λ2

2 is the atom-membrane coupling strength. Moreover, the Fourier ex-
pansion coefficients of the kernel are given by the expression

k̂n =
∑

p 6=0

{
φ2

p∆p

∆2
p + ν2

n
[n(ωp+)− n(ωp−)] +

θ2
pΩp

Ω2
p + ν2

n
[n(ωp+) + n(ωp−) + 1]

}
. (E.13)
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