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Abstract

In this thesis we investigate two questions that shed new light on fundamental
properties of supersymmetric gauge theories.

Our first topic deals with the question, which implications results for N = 4 Super-
Yang-Mills have on theories with less symmetry. Specifically we conjecture that the
dilatation operator in the SU(2, 1|1) sector of any N = 1 superconformal gauge theory
can be found from the one forN = 4 Super-Yang-Mills by a redefinition of the coupling
constant. This implies its integrability. We prove this conjecture perturbatively up
to three loops for the vacuum of this sector and discuss generalizations to the whole
sector.

Our second investigation concerns the protected spectrum ofN = 2 superconformal
QCD. It is much richer than naively expected. In particular it contains states with
arbitrarily large spin, which has been shown by means of the superconformal index.
However their form was as of yet unknown. We present an algorithm that explicitly
constructs these states in terms of the fundamental fields of the theory.

Zusammenfassung

In dieser Arbeit befassen wir uns mit zwei Fragen, welche neues Licht auf fundamentale
Eigenschaften supersymmetrischer Eichtheorien werfen.

Im ersten Thema beschäftigen wir uns mit der Frage, welche Implikationen Resulate
für N = 4 Super-Yang-Mills auf weniger symmetrische Theorien haben. Insbesondere
stellen wir die Vermutung auf, dass der Dilatationsoperator im SU(2, 1|1) Sektor
einer jeden N = 1 superkonformen N = 1 Eichtheorie durch eine Umdefinierung
der Kopplungskonstante aus dem Dilatationsoperator von N = 4 Super-Yang-Mills
erhalten werden kann. Daraus folgt, dass er integrabel ist. Wir zeigen durch störungs-
theoretische Rechnungen bis zu drei Schleifen, dass diese Vermutung zumindest für
das Vakuum dieses Sektors zutrifft und diskutieren anschließend Erweiterungen auf
den gesamten Sektor.

In unserer zweiten Untersuchung betrachten wir das geschützte Spektrum von
N = 2 superkonformer QCD. Dieses ist viel umfangreicher als ursprünglich erwartet.
Insbesondere enthält es Zustände mit beliebig hohem Spin, was mithilfe des super-
konformen Indexes gezeigt wurde. Ihre Gestalt war bisher allerdings nicht bekannt.
Wir präsentieren einen Algorithmus, der ihre explizite Darstellung in Abhänigkeit der
fundamentalen Felder der Theorie konstruiert.
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Chapter 1

Introduction

1.1 Motivation

Gauge theories are arguably the most important framework to describe real world
phenomena in modern physics. Historically the concept of gauge symmetry was first
discovered in the theory of electromagnetism and since then gauge theories have
found applications throughout many areas of physics, most notably in the form of
Yang-Mills theories [1] in the Standard Model of particle physics, which describes
the fundamental interactions at high energies and small scales. Despite remarkable
success in calculating measurable quantities there are still many open questions about
the true nature of gauge theories as exemplified by the fact that for general compact
simple gauge groups the very existence of a non-trivial gauge theory is one of the
unsolved Millennium Prize Problems as defined by the Clay Mathematics Institute
[2].

However recent decades have seen a plethora of major developments in our un-
derstanding of these theories. A particularly exciting branch is the discovery of
hidden global symmetries that do not reveal themselves at the level of the classical
Lagrangian. In the most favorable cases a theory has as many symmetries as degrees
of freedom. This is loosely speaking the definition of an integrable model. Due to
this large amount of symmetry the theory is highly constrained and many problems
can be brought into the form of integral or even algebraic equations, which can be
solved exactly, at least in principle. This is in stark contrast to the usual methods
of perturbation theory, where only the first few of orders in a series expansion in
the coupling constant can be computed. It might seem unexpected that a system as
complicated as a four-dimensional gauge theory can be this constrained but indeed it
has been found that integrability emerges in very diverse contexts in these theories.
One example is the high-energy (Regge) limit of scattering amplitudes in ordinary
quantum chromodynamics (QCD) [3–6]. Another seemingly unrelated example is the

1
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scaling behavior of gauge invariant local operators in the maximally supersymmetric
gauge theory in four dimensions called N = 4 Super-Yang-Mills (SYM) in the planar
limit [7–10]. This scaling behavior is measured by the dilatation operator as defined
in eq. (1.6). Both of these are related by the fact that they turn out to be described
by integrable spin chains. A great review on many topics pertaining to integrability
in these contexts is [11].

On the one hand the first example shows that the emergence of integrability does
not necessarily require a large amount of supersymmetry, but instead might be a
somewhat universal feature in many different gauge theories. The second example on
the other hand only deals with a very particular, highly idealized theory. It is then a
natural and interesting question to ask, whether and how these restrictions can be
relaxed in order to accommodate more realistic theories. In other words:

Question 1: Is it possible to start with results for the dilatation operator in
N = 4 SYM and infer statements for the dilatation operator in theories with
less (super-)symmetry?

Some inroads have been made on the quest to answer this question. In [12–16] QCD
with gauge group SU(3) and pure N = 1, 2, 4 theories (i.e. without chiral multiplets
or hypermultiplets) with gauge group SU(N) were analyzed in a unified fashion
on the light-cone. It was found that at least in these four theories integrability of
the dilatation operator seems to be sensitive neither to conformal symmetry nor to
supersymmetry and only depends on the planar limit up to two loops. In [17] a
one loop analysis of large N QCD identified the sector of purely gluonic operators
constructed with self-dual field strengths and an arbitrary number of derivatives to
be integrable.

A very different approach was taken in [18]. Rather than looking at a specific
theory, a general argument for the integrability of a sector present in any N = 2
superconformal gauge theory was devised. The details of this are explained in the
following sections. Most of this thesis is devoted to the investigation, whether a
similar argument can be made for N = 1 superconformal gauge theories.

In order to infer properties of theories with little symmetry from more symmetric
ones it is advantageous to have a controlled way to produce one from the other. One
such method is the orbifolding of a theory. The importance of this technique in
the context of string and gauge theories was realised in [19]. This procedure breaks
the symmetry of a given theory in a prescribed way and often the orbifolded theory
behaves similarly as its mother theory [20, 21]. Important classes of theories that
can be obtained in this way are quiver gauge theories that are orbifolds of N = 4
SYM [22, 23], which get their name from the fact that their field content is succinctly
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N N 2N N

(a) (b)

Figure 1.1: Examples of N = 2 quiver theories. (a) shows the Z2 orbifold of
N = 4 SYM with gauge group SU(2N). Each blob stands for an SU(N) gauge
group and the corresponding N = 2 vector multiplet, while the lines correspond to
hypermultiplets in the bifundamental representation. (b) corresponds to N = 2
superconformal QCD, which has gauge group SU(N) and NF = 2N fundamental
hypermultiplets. This is obtained as the result of ungauging one of the gauge
groups in (a).

summarized in quiver diagrams. Figure 1.1 (a) shows the example of the Z2 orbifold
of N = 4 SYM. In fact ZM orbifolds of N = 4 SYM are N = 2 superconformal
gauge theories and provided the testing ground for the analysis in [18] mentioned
above. These theories can in turn be orbifolded to obtain N = 1 superconformal
gauge theories, for example by ZM × Zk orbifolds, which we will use as our main
examples.

In this way one obtains theories, where all fields are either in the adjoint or in
the bifundamental representation of the gauge groups. A further step that can be
taken to get more realistic theories is to ungauge one or more of the gauge groups.
This introduces a flavor symmetry and the corresponding fields will then transform
in the fundamental representation of one of the gauge groups. Thus this is a way to
introduce fundamental matter into the theory. A particularly important example of
this is shown in figure 1.1 (b), where the ungauging of one of the gauge groups of the
Z2 orbifold of N = 4 SYM leads to N = 2 superconformal QCD (N = 2 SCQCD),
which has NF = 2N fundamental hypermultiplets.

Our second line of inquiry deals with this theory. Specifically it deals with the
so-called protected spectrum in the theory. These are states that do not receive
quantum corrections (their symmetry protects them from it). Another way to phrase
this is that they are annihilated by some subset of the symmetry generators. This
implies that they organize in so-called short superconformal multiplets, that have
fewer members than generic long ones. A comprehensive treatment of superconformal
representation theory is given in [24].

These types of states are an interesting object of study, because many of their
properties can be computed exactly. In [25] it was shown that N = 2 superconformal
QCD has more protected states than is naively expected. In particular these new
protected states can have arbitrarily large spin.

This is the first interacting 4d superconformal field theory, where this has been
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observed and this fact is thus by itself highly notable. Soon after, a similar effect was
observed in certain 3d superconformal theories [26–28]. It also has important physical
consequences. One comes from the AdS/CFT correspondence [29, 30]. Namely it
implies that the low energy limit of the dual string theory of N = 2 SCQCD cannot
be a normal supergravity theory but instead it must be a higher spin theory. This
is in contrast to N = 4 SYM and to the interpolating theory, both of which have a
gravity dual, whose low energy limit is a supergravity theory. Secondly protected
states usually serve as vacua in spin chains, so the existence of such a tower of new
vacua has profound implications, which are worth to be investigated.

The first objective however is to understand the origin of these states. In [25] it was
observed that this can be understood by the relation between N = 2 SCQCD and the
Z2 orbifold of N = 4 SYM. Namely there is a theory that interpolates between those
two, aptly called the interpolating theory. It assigns two different coupling constants
g, ǧ to the two gauge groups. If they are equal g = ǧ, one recovers the orbifold theory.
In the limit where one of the couplings goes to zero ǧ → 0 the corresponding vector
multiplet decouples from the theory and one finds N = 2 SCQCD. The new protected
states must come from states that are unprotected in the interpolating theory and
become protected only in the limit ǧ → 0. The natural question to ask is

Question 2: What are these new protected states in N = 2 SCQCD?

This question is specified in section 1.5 and answered in chapter 9.

1.2 Statement of problem 1 and results

The result of the analysis in [18] is that any N = 2 superconformal gauge theory
possesses an integrable sector, called the SU(2, 1|2) sector, which consists of gauge
invariant local operators that are products of fields from the N = 2 vector multiplet
with an arbitrary number of covariant derivatives acting on them. This conclusion
was reached by realizing that the dilatation operator restricted to this sector is the
same as the dilatation operator in N = 4 SYM up to a redefinition of the coupling
constant. Since this redefinition has no effect on the integrability, the result follows.
We investigate, whether this can be extended to the analogous sector in N = 1
theories. This sector is called the SU(2, 1|1) sector and is composed of gauge invariant
local operators that are products of fields from the N = 1 vector multiplet and
covariant derivatives acting on them. A more precise definition of the sector will be
given in section 4.1.

In order to understand our main result, it is first necessary to introduce the spin
chain picture for gauge invariant local single trace operators. A comprehensive review
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of this and many other topics related to integrability can be found in the review
collection [11]. The idea is that the elementary fields in an operator are mapped to
the different sites of the spin chain. Since the trace is cyclic, the spin chains will be
closed. A fundamental consequence is that in this picture the dilatation operator
acting on the operators is mapped to the Hamiltonian acting on the spin chain. In
particular one can define the lowest energy states with respect to this Hamiltonian
as the vacuum of the spin chain and higher energy states will be excitations. In our
case the operator corresponding to the vacuum is a trace over a local product of the
supersymmetric field strengths W+, whose precise definition will be given later

Ovac = tr (W+ . . .W+) , (1.1)

Excitations are then given by acting with background gauge covariant derivatives
∇+,∇+α̇ on the field strength factors. A single such derivative is also called a magnon.
The Hamiltonian induces scattering processes of these magnons on the spin chain and
an interesting observable is the corresponding S-matrix. If the spin chain is integrable,
the S-matrix factorizes according to the Yang-Baxter equation [31–33]. This equation
implies that the scattering of any number of magnons can be reduced to the scattering
of only 2 magnons.

Our main result is that for the vacuum of this sector in any N = 1 superconformal
gauge theory the dilatation operator in the planar limit is indeed identical to the one
in N = 4 SYM up to a coupling redefinition

DN=1(g) = DN=4(f(g)) (1.2)

up to three loops. If this result also holds for up to two excitations instead of just the
vacuum, this would establish equality of the S-matrix of the two theories up to said
coupling redefinition. Since N = 4 SYM is known to be integrable [34], this would
imply integrability for the whole sector. We will present the current status of these
efforts.

It is worth mentioning that the redefinition of the coupling constant for N = 2
theories is universal in the sense that it does not only hold for the dilatation operator
but also for a host of other observables, namely Wilson loops, the Bremsstrahlung
function and the entanglement entropy [35, 36].

The following sections give an outline of the argument and introduce the necessary
formalism. It relies on the following features

• N = 1 supersymmetry,

• gauge invariance and the background field formalism,
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• the choice of the sector.

The first two of these will be discussed in section 1.3 and chapter 2 and the last one
is treated in section 4.1. We also demand

• planarity,

• conformality.

Planarity is demanded because this is the regime, in which DN=4 is known to be
integrable. It requires further investigation, whether conformality can be relaxed as
indicated by the treatment in [16].

1.3 Outline of the argument

Our argument rests on two main pillars:
Supersymmetric perturbation theory [37] ensures that supersymmetry is manifestly

preserved at all stages of the calculation. This is particularly convenient for calculations
in the SU(2, 1|1) sector, since all fields are related by supersymmetry transformations
and can thus be expressed by a single superfield V and (superspace) derivatives
thereof. In particular this implies that in superspace language there is only a single
wave function renormalization ZV .

The background field formalism [38, 39] in turn keeps background gauge invariance
manifest. After a suitable splitting of V into quantum and background fields VQ and
VB respectively, it ensures that the renormalization of the coupling constant and the
background vector superfield are related by

Zg(g)
√
ZVB(g) = 1 . (1.3)

A further consequence of the background field formalism is that quantum fields and
ghosts only appear in loops. This implies that the renormalization factors coming
from the vertices always cancel against the ones from the propagators. For a review
see [40, section 3.2].

The upshot is that the renormalization of vertices, which are already present
at tree level, is governed by a single counterterm Zg(g). In principle new vertices
can be produced in the effective action during the process of renormalization, which
require different counterterms. If one can show however that these new vertices
don’t contribute to the dilatation operator in the SU(2, 1|1) sector, this implies the
existence of a unique function f(g) in eq. (1.2). Our goal is to show just that.
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Composite operators will generically mix under renormalization

Oreni = Zj
iObarej . (1.4)

It is standard textbook material (see e.g. [41, 42]) that the anomalous dimensions
and therefore the dilatation operator are given by

γ ≡ µ
d

dµ lnZ , (1.5)

read as a matrix equation. Here µ is the energy scale introduced by the renormalization
scheme. We will use dimensional reduction [43] in d = 4− 2ε dimensions, where the
scale enters through g → gµε in order to keep the marginal couplings g = (g1, . . . , gn)
dimensionless. The explicit form of the dilatation operator is then given by

D = µ
d

dµ lnZ(gµε, ε) = lim
ε→0

(
ε x · ∂

∂x
lnZ(gx, ε)

)
x=1

. (1.6)

A direct consequence of the presence of the factor of ε and the limit ε→ 0 is that only
the first order pole in ε from Z can contribute. All higher order poles must cancel
in the logarithm to get a finite result for the anomalous dimensions. The derivative
with respect to x produces a factor of 2L, where L is the loop number.

The task is thus to compute the renormalization of operators in the SU(2, 1|1)
sector and show that the new vertices will never contribute. Since our argument
relies on the presence of both supersymmetry and background gauge invariance we
are naturally led to use a formalism called background covariant supersymmetric
Feynman rules [44, 45], which preserves both symmetries for most of the calculation.
A consequence of this preservation of symmetry is that far fewer terms appear in
the calculation and that many cancellations are automatic. The resulting terms are
generally less divergent. As was realized in [44] this method still needs to split up
space-time covariant derivatives into ordinary derivatives and background connections,
when performing the momentum integration. This breaks gauge invariance. This
problem was solved in [46] with a technique that maintains gauge invariance all the
way. We will explain both of these methods in chapter 2.
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1.4 New vs. old vertices

The background field formalism implies that the renormalization of all terms in the
expansion of 1

Sgauge = 1
2g2

∫
d6z Wα(x, θ)Wα(x, θ) = − 1

2g2

∫
d8z (e−V ∇αeV )∇̄2(e−V ∇αe

V )

(1.7)

is determined by the same factor Zg. Here d8z = d4x d2θd2θ̄ and d6z = d4x d2θ are the
measures of full and chiral superspace, respectively, Wα is the full superfield strength
and V is the quantum vector superfield. The interaction terms in this expansion
are the terms that we call old vertices. Some of these are quantum-background
interactions. A useful representation of these is given in terms of the background field
strength

W α = 1
2i[∇̄

α̇
, {∇̄α̇,∇α}] = Wα|V=0 , (1.8)

which comes from the complete field strength upon setting the quantum field V = 0.
This yields

Sgauge,W = 1
g2

∫
d8z W α(e−V ∇αe

V ) (1.9)

We see that their structure is highly restricted.
In the presence of local operators it is possible that new effective vertices are

produced in perturbation theory, which renormalize differently. These are called new
vertices. They must be Lorentz scalars and the background field formalism restricts
them to be gauge invariant, but other than that they are unrestricted. One example
of a possible new term in the effective action is

Snew,W 4 =
∫

d8z WαWαW̄
α̇W̄α̇ . (1.10)

Figure 1.2 shows examples of both old and new vertices. Diagram 1.2 (a) can be
identified with the structure

W αV (∇αV ) ⊂ Sgauge,W , (1.11)

which is part of the second order expansion of eq. (1.9). Gauge invariance requires

1We will go into more detail about superfields and supersymmetric actions, when we properly introduce
superspace in chapter 2.
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W α

∇α

W α W α

∇̄α̇

∇2∇̄α̇

(a) (b)

Figure 1.2: (a) Example of a vertex that is already present at tree level, (b)
Example of a new vertex

the presence of all the other terms as well. Diagram 1.2 (b) on the other hand is part
of the expansion of eq. (1.10)

1
2

∫
d8z W αW αV

{
∇̄α̇

V,∇2∇̄α̇V
}
⊂ Snew,W 4 (1.12)

and as such constitutes a new vertex.
Looking at eq. (1.9) it is immediately clear that any vertex, which contains two

or more background field strengths must be a new vertex. In fact all of the new
vertices that we will encounter in our calculations will have this feature. Our goal is
to show that these do not contribute to anomalous dimensions in our sector. These
calculations will occupy most of this thesis.

1.5 Statement of problem 2

Let us now turn back to the protected spectrum of N = 2 SCQCD. Let φ be the
scalar from the N = 2 vector multiplet and QIi the scalars from the hypermultiplets.
We use indices I,J = ± for the SU(2)R symmetry, i, j = 1, ...Nf for the flavor group
U(Nf ) and a, b = 1, ...N for the color group SU(N). We define the mesonic operators

MIa
J b = 1√

2
Q a
J iQ̄

I i
b (1.13)

Ma
1 b =M I

I (1.14)

M I
3J =M J

I −
1
2M

K
K δ JI (1.15)

The naive expectation for the protected spectrum in N = 2 SCQCD is then given by

trφk+2, tr
(
Tφk

)
and M3 (1.16)

with k ≥ 0 and T = φφ̄−M1. This guess comes from the knowledge that this is the
correct protected spectrum for N = 4 SYM. However in [25] the existence of a tower
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of higher-spin protected states in N = 2 SCQCD was shown. The tool that was used,
is called the superconformal index [47], see also the reviews [48, 49]. This index is
invariant under exactly marginal transformations and can thus be computed in the
free field limit.

The index vanishes on long multiplets and it counts equivalence classes of short
multiplets (i.e. protected states) in the following sense. Suppose there are three short
multiplets S1, S2, S3 and they recombine to some long multiplets L1, L2 as follows

L1 = S1 ⊕ S2 , (1.17)

L2 = S2 ⊕ S3 . (1.18)

Since the index vanishes on long multiplets we find

I(S1) = −I(S2) = I(S3) (1.19)

and we say that S1 and S3 are in the same equivalence class. In [25] it was found
that the superconformal index of N = 2 SCQCD does not match the result from
only taking into account eq. (1.16). From this mismatch they were able to extract
constraints on the quantum numbers of the lowest lying new protected states. Since
the index doesn’t separate between the equivalence classes, their quantum numbers
cannot be completely fixed in this way. We will briefly review this procedure in
chapter 9.

The next natural step is to fix the quantum numbers of the states completely and
to explicitly construct their representations in terms of the fundamental fields of the
theory. We did just that by using the complete one loop dilatation operator of N = 2
SCQCD, which was derived in [50]. The strategy for this is outlined in chapter 9 and
the main results are collected in section 9.3. This is joint work with Martin Sprenger.



Chapter 2

Supersymmetric perturbation
theory

In this section we explain the formalism that lies at the basis of our calculations. We
start by an introduction to standard N = 1 superspace, which is the natural language
for N = 1 supersymmetric theories. We then describe the basics of supersymmetric
perturbation theory and finally we introduce the covariant formalism.

2.1 N = 1 superspace

Supersymmetry, first described by Haag, Łopuszański and Sohnius [51], is a nontrivial
extension of Poincaré symmetry by new fermionic symmetry generators Qα, Q̄α̇. It
thus relates bosons and fermions. The fermionic generators imply that in contrast to
conventional symmetries it is not described by a Lie algebra but rather by a super Lie
algebra, thereby evading the Coleman-Mandula theorem [52]. The new non-vanishing
commutation relations are {

Q̂α, ˆ̄Qα̇
}

= P̂αα̇ , (2.1)[
Ĵαβ, Q̂γ

]
= 1

2iCγ(α Q̂β ) (2.2)

where P̂ and Ĵ are the generators of the Poincaré algebra and Cαβ = iεαβ is the
antisymmetric symbol. Our notation follows the conventions of [53]: The simplest
non-trivial representation of the (universal cover of the) Lorentz group SL(2,C) is
the Weyl spinor representation (1

2 , 0) and its complex conjugate (0, 1
2), which we label

by indices α and α̇ respectively. The combined index a = (αα̇) is thus an index of
the (1

2 ,
1
2) (i.e. vector) representation of the Lorentz group.

A theory is best described in a language that is tailored to its properties. Just as
relativistic theories have a natural description in Minkowski space, supersymmetry

11
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takes its most natural shape in superspace. The idea is to extend usual space-
time by fermionic directions θ, θ̄ in order to give a geometric interpretation to the
supersymmetry generators Q, Q̄. A point in superspace is thus labeled by

zA =
(
xαα̇, θα, θ̄α̇

)
(2.3)

and the action of the supersymmetry generators in terms of differential operators on
this space can be shown to be

Qα = i∂α + 1
2 θ̄

α̇∂αα̇ Q̄α̇ = i∂̄α̇ + 1
2θ

α∂αα̇ . (2.4)

Fields defined on this space, which transform covariantly under these transformations
are called superfields. The simplest example is the scalar superfield, which is invariant
under these transformations

A(x′, θ′, θ̄′) = A(x, θ, θ̄) . (2.5)

As in other nontrivial geometries it is possible to construct covariant derivatives,
which are invariant under the action of Qα and Q̄α̇ (and covariant under the Poincaré
generators). These are

Dα = ∂α + 1
2 θ̄

α̇i∂αα̇ D̄α̇ = ∂̄α̇ + 1
2θ

αi∂αα̇ . (2.6)

Their commutation relations are given by
{
Dα, D̄α

}
= i∂αα̇ . (2.7)

Any superfield can be expanded in the fermionic coordinates. Since they are fermionic,
this expansion will terminate. The coefficients of this expansion are fields on ordinary
spacetime, called component fields. Eq. (2.5) relates these component fields. This
is, what is meant, when people say, supersymmetry relates fermions and bosons.
The fields that are physically most important, are even more constrained. The
two examples we will deal with are the chiral superfield Φ and the real (or vector)
superfield V .

The chiral superfield is constrained by D̄α̇Φ = 0. Upon the coordinate transforma-
tion yαᾱ = xαᾱ + 1

2iθαθᾱ it becomes independent of θ̄ and its component expansion is
simply given by

Φ(y, θ) = φ(y) + θαψα(y) + θ2F (y) , (2.8)
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where φ is a complex scalar, ψ is a Weyl spinor and F is a complex auxiliary field.

The real superfield fulfills V = V †, which gives

V (z) =C(x) + θαχα(x) + θ̄α̇χ̄α̇(x)− θ2M(x)− θ̄2M̄(x) + θαθ̄α̇Aαα̇(x)

− θ̄2θαλα(x)− θ2θ̄α̇λ̄α̇(x) + θ2θ̄2D(x) . (2.9)

Since there is a real vector field Aαα̇, this is seen as a supersymmetric version of the
gauge field and indeed it posseses a huge amount of gauge freedom (see eq. (2.23)).
By a proper gauge choice, called Wess-Zumino gauge [54], it takes the form

V (z) =θαθ̄α̇Aαα̇(x)− θ̄2θαλα(x)− θ2θ̄α̇λ̄α̇(x) + θ2θ̄2D(x) , (2.10)

with the real vector field Aαα̇, the Weyl spinor λα and the real auxiliary field D.

As in the non-supersymmetric case V does not transform covariantly under gauge
transformations. Instead we define the gauge covariant quantity

Wα = iD̄2e−VDαe
V , (2.11)

which is called the supersymmetric field strength, because it contains the self dual field
strength fαβ of the component vector field Aαα̇. Similarly W̄α̇ contains the anti-self
dual part fα̇β̇. Note that this is a chiral field D̄α̇Wβ = 0.

The chiral part of the classical action for the vector field is then given by

Sgauge = 1
2g2

∫
d6z tr (WαWα) (2.12)

= − 1
2g2

∫
d8z (e−VDαeV )D̄2(e−VDαe

V ) . (2.13)

Here d8z = d4x d2θd2θ̄ and d6z = d4x d2θ are the measures of full and chiral superspace
respectively. When this action is written in components, it reduces to

Sgauge = 1
2g2

∫
d4x

(
−1

2f
αβfαβ + λ̄α̇i∇α

α̇λα +D2
)
. (2.14)

These are just the standard terms for a vector field and a Weyl fermion interacting
with it. The auxiliary field D has no dynamics.

Renormalizable gauge matter interactions take the form

SK = 1
g2

∫
d8z tr (Φ̄j

(
eV
)i
j
Φi) , (2.15)

where V i
j = V a(T a)ij and the form of the T a depends on the representation of the
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chiral fields. For example for fields in the adjoint representation this can be written as

SK = 1
g2

∫
d8z tr (e−V Φ̄eV Φ) , (2.16)

where now V = V aT a with the T a in the fundamental representation. In components
eq. (2.15) reads

SK =
∫

d4x Q̄i�Qi + ψ̄α̇i i∇α
α̇ψ

i
α + iQ̄i(λα)ijψjα − iψ̄α̇i (λ̄α̇)ijQj + Q̄i(D)ijQj + F iF̄i .

(2.17)

Again we find the standard kinetic terms for the component fields, minimally coupled
to the gauge field. however in this term there are also Yukawa interactions between
the components of the two multiplets. Finally there can be a superpotential for the
chiral field

SW =
∫

d6z W(Φ) , (2.18)

whereW is some holomorphic function. In renormalizable theories it has to terminate
after the third order

W(Φ) = m2Φ2 + λΦ3 . (2.19)

The name λ for the coupling is an unfortunate convention. It should not be confused
with the fermion in the vector multiplet. In components this reads

SW =
∫

d4x m
(1

2ψ
αψα +QF

)
+ λ

(1
2Qψ

αψα + 1
2Q

2F
)
. (2.20)

After integration of the auxiliary field F we can also write this as

SW =
∫

d4x
(
−m2Q̄Q+m(ψ2 + ψ̄2)− 1

2mλ
(
QQ̄2 + Q̄Q2

)
− 1

4λ
2Q2Q̄2 + λ

(
Qψ2 + Q̄ψ̄2

))
, (2.21)

which leads to mass terms for the fields, a cubic scalar coupling, a quartic scalar
coupling and Yukawa terms.

2.2 Feynman rules for superfields

Starting from the Lagrangians in the last section it is possible to derive Feynman
rules for superfields in just the same way as one does for ordinary fields. Since this
material is covered in the vast literature (see e.g. [53, 55–57]), we will not review the
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full details here.

The classical action for the vector field

Sgauge = 1
2g2

∫
d6z tr (WαWα) = − 1

2g2

∫
d8z (e−VDαeV )D̄2(e−VDαe

V ) (2.22)

is invariant under the gauge transformation

eV → eiΛ̄eV e−iΛ for D̄α̇Λ = 0 . (2.23)

As in non-supersymmetric QFT one has to introduce a gauge fixing function, which
in non-abelian theories leads to the introduction of two chiral Faddeev-Popov ghosts
c, c′. A suitable gauge fixing function is given by

F = D̄2V . (2.24)

We will skip the details of the Faddeev-Popov procedure, which is analogous to the
non-supersymmetric case and just cite the result. The extra term from gauge fixing is

SGF = − 1
αg2

∫
d8z tr (D2V )(D̄2V ) (2.25)

and the Faddeev-Popov term is

SFP = i
∫

d8z tr (c′ − c̄′)L1
2V

[
(c+ c̄) cothL1

2V
(c− c̄)

]
, (2.26)

where LXY = [X, Y ]. In Feynman gauge (α = 1) we find

Sgauge + SGF =
∫

d8z tr
(
−1

2V�0V + 1
2 [V,DαV ] (D̄2DαV ) + . . .

)
, (2.27)

with �0 = 1
2∂

αα̇∂αα̇.

In order to derive the Feynman rules one starts with the generating functional
with source terms∫

d4xd2θd2θ̄ JV +
∫

d4xd2θ jΦ +
∫

d4xd2θ̄ j̄Φ̄ , (2.28)

where J is real, j is chiral and j̄ is antichiral. We then take functional derivatives

δJ(x, θ, θ̄)
δJ(x′, θ′, θ̄′)

= δ4(x− x′)δ4(θ − θ′) , (2.29)

δj(x, θ)
δj(x′, θ′) = D̄2δ4(x− x′)δ4(θ − θ′) , (2.30)
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δj̄(x, θ̄)
δj̄(x′, θ̄′)

= D2δ4(x− x′)δ4(θ − θ′) . (2.31)

Note that the presence of D̄2 and D2 implies that whenever there is a chiral line
leaving a vertex, there is an extra factor of D̄2 acting on that line and similarly for
antichiral lines. For purely chiral vertices one of those factors is used to complete the
chiral superspace integral

∫
d6z D̄2 =

∫
d8z .

In total we find the Feynman rules for the propagators in the massless case

〈V V 〉 = − 1
p2 δ

4(θ − θ′) , 〈Φ̄Φ〉 = 1
p2 δ

4(θ − θ′) , (2.32)

and the vertices can be read from the action with the additional rule for chiral fields
described above. As an example the Φ̄V Φ vertex looks like

〈Φ̄V 2Φ〉 =

D2

D̄2

, (2.33)

where the arrows indicate the direction, in which the derivatives act. Each vertex
comes with a superspace integral.

One can see that a supersymmetric Feynman graph has the same structure as a
normal Feynman graph but is supplemented by superspace derivatives acting on the
propagators. This extra structure encodes the supersymmetry. In order to compute
supersymmetric Feynman graphs, one must know how to manipulate these derivatives.
This procedure is called the D-algebra. Let us outline its fundamental features.

The derivatives act on the δ4(θ1 − θ2) functions that come with the propagators.
One can move the derivatives along the lines by means of the transfer rule

D1αδ
4(θ1 − θ2) = −δ4(θ1 − θ2)←−−D2α (2.34)

and at the vertices one can integrate by parts to shift a derivative from one line
to another. Whenever the derivatives are collected one the same line one can use{
Dα, D̄α

}
= i∂αα̇ and D3 = D̄3 = 0 to reduce the number of superspace derivatives

and convert them to ordinary spacetime derivatives. One can show that

δ4(θ) = θ2θ̄2 , (2.35)
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and writing δ12 = δ4(θ1 − θ2) one then finds

δ12δ12 = δ12D
αδ12 = δ12D

2δ12 = δ12D
2D̄α̇δ12 = 0 , (2.36)

and only

δ12D
2D̄2δ12 = δ12 . (2.37)

If there are no derivatives acting on a product of δ-functions, we have the ordinary
rule ∫

d4θ δ4(θ′ − θ)δ4(θ − θ′′) = δ4(θ′ − θ′′) . (2.38)

The goal is now to free the lines of derivatives by the manipulations described above,
so that the θ integrals can be performed. This can be done successively for all lines
in a loop except until one reaches the situation where only two θ coordinates and two
δ-functions are left. Eqs. (2.36) and (2.37) imply that we need a factor of D2D̄2 in
the loop in order to get a non-vanishing result.

The end result of these manipulations is an ordinary Feynman graph without
superspace derivatives (they were all converted to spacetime derivatives or used in the
fermionic integration), which is local in θ, i.e. all vertices in the graph are evaluated
at the same θ coordinate.

This is the simplest version of supersymmetric Feynman rules. It keeps supersym-
metry manifest instead of splitting up the computation into components. This leads
to fewer diagrams than ordinary perturbation theory because many cancellations
between component fields are automatic, when they are packaged in superfields.

Despite these computational advantages there are some shortcomings. When one
deals with gauge theories one has to deal with the vector field V , which has scaling
dimension 0. Due to this Feynman graphs with external V fields have a notoriously
high degree of divergence. This is only cured, when all contributions are added and
gauge invariance is restored. These problems could be avoided, if we used a formalism
that doesn’t break gauge invariance in intermediate steps and instead is solely based
on gauge invariant quantities. In the next section we will introduce such a formalism.

2.3 Covariant D-algebra

In the last section we discussed ordinary supersymmetric perturbation theory. One of
the shortcomings this technique is that it doesn’t keep explicit gauge invariance. In non-
supersymmetric theories there is the well-known background field formalism, which
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splits the fields into quantum and background parts and only fixes the gauge symmetry
of the quantum part. Background gauge invariance is maintained throughout the
calculation. This formalism exists with minor modifications also in supersymmetric
theories. While the splitting in non-supersymmetric theories is usually linear this is
not suitable here, because the non-abelian gauge symmetry is highly nonlinear in V .
Inspiration for the correct splitting can be found by looking at the transformation
properties eq. (2.23)

eV → eiΛ̄eV e−iΛ for D̄α̇Λ = 0 . (2.39)

It turns out that a convenient splitting is given by

eV = eΩeVQeΩ̄ , (2.40)

where Ω is called the background prepotential and VQ is the quantum vector superfield.
We also define the background gauge covariant derivatives

∇α = e−ΩDαe
Ω and ∇̄α̇ = eΩ̄D̄α̇e

−Ω̄ . (2.41)

Then the classical action eq. (2.22) takes the form

Sgauge = − 1
2g2

∫
d8z (e−VQ∇αeVQ)∇̄2(e−VQ∇αe

VQ) . (2.42)

From now on we will drop the index and V = VQ will always denote the quantum field.
Since our goal is to only gauge fix the quantum part and keep explicit background
gauge symmetry, we have to choose a background covariant gauge fixing function. A
good candidate is given by the covariantization of eq. (2.24)

F = ∇̄2
V , (2.43)

which leads to the new term in the action

SGF = − 1
αg2

∫
d8z tr (∇2V )(∇̄2

V ). (2.44)

The Faddeev-Popov ghosts will now be background covariantly chiral ∇̄α̇c = 0 rather
than chiral. Since our gauge fixing function explicitly depends on the background,
it requires the introduction of another background covariantly chiral ghost b, called
Nielsen-Kallosh ghost [58, 59], which introduces a term

SNK =
∫

d8z tr b̄b . (2.45)
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It has no interaction with the quantum fields. The quadratic part of the gauge fixed
action can be brought in the form

(Sgauge + SGF)|V 2 =
∫

d8z V (�− iW α∇α − iW̄
α̇∇̄α̇)V , (2.46)

where � = 1
2∇αα̇∇αα̇ is the background covariant d’Alembertian and W α is the

background covariant field strength defined by [∇̄α̇,∇ββ̇] = Cα̇β̇W β.
For covariantly chiral fields in some background one can covariantize the identity

D̄2D2Φ = �0Φ → ∇̄2∇2Φ = �+Φ (2.47)

to find the kinetic operator

�+ = �− i

2(∇αW α)− iW α∇α (2.48)

and similarly for covariantly antichiral fields. See appendix A for more details.
Now that we have this background gauge covariant formulation at hand, the

strategy employed in [44, 45] is to perform the D-algebra directly with the gauge
covariant derivatives

(∇α, ∇̄α̇,∇αα̇) (2.49)

rather then splitting them up into ordinary superspace derivatives (Dα, D̄α̇, ∂αα̇) and
the superspace background connections (Γα,Γα̇,Γαα̇) , which are the supersymmetric
versions of Aµ. By working directly with the covariant derivatives, manifest gauge
invariance is maintained. This procedure is called the covariant D-algebra.

This improves the powercounting, because neither Ω nor the background connec-
tions Γα and Γα̇ (with mass dimension 1/2) will ever appear explicitly as external
fields. When this formalism was originally introduced in [44, 60] it was still necessary
to split ∇αα̇ at a later stage of the calculation, thereby breaking gauge invariance.
This was solved in [46], see section 2.4, so that gauge invariance can be kept all
the way and the only quantity that appears as external field is the gauge covariant
background field strength W α with mass dimension 3/2. This is a big improvement
over having the field V with dimension 0 as an external field.

The fundamental commutation relations of the covariant derivatives read

{∇α, ∇̄α̇} = i∇αα̇ , (2.50)

[∇α,∇ββ̇] = CαβW̄ β̇, [∇̄α̇,∇ββ̇] = Cα̇β̇W β , (2.51)

∇αW α = −∇̄α̇
W̄ α̇ . (2.52)
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These relations are more complicated than the simple
{
Dα, D̄α

}
= i∂αα̇, but they

turn out to be very useful in actual calculations. There is a plethora of relations that
follow from these definitions. Appendix A is devoted to their derivation. Two of the
most important ones are

[
∇α, ∇̄

2] = iW α − i∇αα̇∇̄α̇
,[

∇̄α̇,∇2
]

= iW̄ α̇ − i∇αα̇∇α ,
(2.53)

which will be used ubiquitously throughout this thesis.

Another feature of this calculation is that the D-algebra is performed before
expanding the kinetic operators, i.e. in the presence of the background. Let us see,
how this works: The kinetic operators for the vector and (anti-)chiral superfields in
the presence of the background are given by

�̂ = �− iW α∇α − iW̄
α̇∇̄α̇ ,

�+ = �− i

2(∇αW α)− iW α∇α ,

�− = �− i

2(∇̄α̇
W̄ α̇)− iW̄ α̇∇̄α̇ .

(2.54)

Rather than expanding the propagators in terms of the background field strengths
and then do the D-algebra we make use of the commutation relations (see appendix
A)

[
∇α, �̂

]
= 1

2(∇αα̇W̄
α̇)− i(∇αW β)∇β ,[

∇̄α̇, �̂
]

= 1
2(∇αα̇W α)− i(∇̄α̇W̄

β̇)∇̄β̇ ,
(2.55)

and

[∇α,�+] = (∇2W α) + W̄
α̇∇αα̇ + i(∇αW β)∇β ,[

∇̄α̇,�−
]

= (∇̄2
W̄ α̇) + W α∇αα̇ + i(∇̄α̇W̄ β̇)∇̄β̇

,

[∇α,�−] =
[
∇̄α̇,�+

]
= 0 .

(2.56)

These rules are used in conjunction with the general rule for computing commutators
of inverse operators

[
A,B−1

]
= AB−1 −B−1A = B−1BAB−1 −B−1ABB−1

= −B−1 [A,B]B−1 , (2.57)

to find the commutation relations for the propagators �̂−1 and �−1
± . They are
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significantly more complicated than [Dα,�0] = 0, which is used in ordinary D-algebra
but they have the advantage that the external background fields that they create
have much higher mass dimensions, which will lead to fewer divergent terms!

At the vertices one can use the Leibniz rule to transfer the derivatives from one
line to the others. Pictorially this is given by

∇α =
∇α

+ ∇α
, (2.58)

where the arrows indicate the direction in which the derivative is acting. The goal is
to collect multiple factors of covariant superspace derivatives in one place, use the
commutation relations to reduce them to spacetime derivatives and external fields
and to use the fact that as in ordinary D-algebra a factor of ∇2∇̄2 in every loop is
necessary to get a non-vanishing result.

At the end one still has to expand the propagators in terms of the background
fields. Writing �̂ = � + A with A = iW α∇α + iW̄ α̇∇̄α̇ its inverse is given by the
recursive expression

�̂−1 = �−1 − �̂−1A�−1 , (2.59)

which can be used to expand to any given order in the background fields. Eq. (2.59)
can be proved by writing

�̂(�−1 − �̂−1A�−1) = �̂�−1 − �̂ �̂−1A�−1

= (� + A)�−1 − �̂ �̂−1A�−1

= ��−1 + A�−1 −A�−1

= id . (2.60)

Graphically eq. (2.59) is represented by

�̂−1

= −i

W α

�̂−1 ∇α�−1

− i

W̄ α̇

�̂−1 ∇̄α̇�−1

+

W α W β

�̂−1 ∇α�−1∇β�−1

+ . . . .

(2.61)

The expansions for �−1
± follow analogously. As we will see in section 4.1 the terms

involving W̄ will not contribute in our sector and thus the expansions will simplify
drastically.



22 CHAPTER 2. SUPERSYMMETRIC PERTURBATION THEORY

∇̄2�−1
− ∇2

∇2�−1
+ ∇̄2

W α W α

Figure 2.1: Illustration of how superspace derivatives appear on chiral lines on
the example of the one loop self-energy of W

Note that the operator �1
2∇αα̇∇αα̇ still contains the connection Γαα̇.

� = �0 −
i

2∂
αα̇Γαα̇ − iΓαα̇∂

αα̇ − 1
2Γαα̇Γαα̇

def= �0 + B . (2.62)

Naively it is necessary to expand �−1 in a similar fashion as �̂−1 in terms of Γαα̇,
however in the next section we will see how to avoid this.

As explained for ordinary supersymmetric Feynman rules below eq. (2.29) taking
functional derivatives introduces a factor of (∇2)∇̄2 acting on (anti-)chiral lines.
This implies in particular that the (anti-)chiral kinetic operators always come in the
combination

∇2�−1
+ ∇̄2 and ∇̄2�−1

− ∇2 , (2.63)

which will have important implications later. Figure 2.1 illustrates this with an
example of a contribution to the one loop self-energy of the background field strength.

We summarize the strategy of computation as follows

1. draw all possible quantum vacuum graphs with �̂−1 propagators (possibly with
W emerging from the vertices but not from the propagators)

2. Bring all spinor derivatives to one place and convert them to spacetime derivatives
by using their commutation relations with the operators �̂ and �± and using
integration by parts at the vertices. This will produce factors of W and W̄

3. Expand

�̂−1 =�−1 + i�−1(W α∇α + W̄
α̇∇̄α̇)�−1

−�−1(W α∇α + W̄
α̇∇̄α̇)�−1(W α∇α + W̄

α̇∇̄α̇)�−1

+O(W 3) (2.64)

and similarly for �−1
± .
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4. Use

∇α∇β∇γ = ∇̄α̇∇̄β̇∇̄γ̇ = 0 , (2.65)

δ(θ1 − θ2)P (∇α, ∇̄α̇)δ(θ1 − θ2) = 0 (2.66)

for any polynomial P in two variables of degree smaller 2 in either variable and

δ(θ1 − θ2)∇2∇̄2
δ(θ1 − θ2) = δ(θ1 − θ2) (2.67)

to complete the D-algebra.

Steps 2 and 3 don’t have to be in this order. It might sometimes be convenient to
first expand the propagators and then commute the derivatives.

2.4 Diagrams with covariant spacetime derivatives

Many of the diagrams we are interested in contain background covariant spacetime
derivatives. A standard way of treating them is to split them up into an ordinary
derivative and the connection and compute both contributions separately. This
is inconvenient, because the individual contributions will not be gauge invariant.
It would be advantageous to find a way of computing these diagrams by working
with covariant derivatives directly. At the one loop level this was first achieved by
the Schwinger-DeWitt technique [38, 61], which has been successfully applied and
generalized, see e.g. [62–66]. For the discussion of higher loops we will follow the
method introduced in [46], whose essential features we will outline below. For an
alternative approach, see e.g. [67]. The main ingredients are the use of the so-called
parallel displacement propagator [38] and the covariant Taylor expansion [65].

After following the steps of the last section one is left with a diagram, where
the propagators are given by �−1, where � = 1

2∇αα̇∇αα̇, and there are external
background fields at the vertices and there might be covariant derivatives ∇ββ̇ acting
on the propagators. First we consider the propagators. We write the Green’s function
in terms of the heat kernel as

D�(x, x′) = i
∫ ∞

0
dsK(x, x′|s) , (2.68)

where

K(x, x′|s) = eis(�+iδ)δd(x− x′)1 , δ ↘ 0 . (2.69)

We will usually omit the δ, which is needed for the causal ordering in the Feynman
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propagator. The Fourier integral representation of δd(x− x′)1 is

δd(x− x′)1 =
∫ ddk

(2π)d e
ik(x−x′)I(x, x′) , (2.70)

where I(x, x′) is the parallel displacement propagator. It has the following defining
properties: It tranforms covariantly under gauge transformations, it satisfies the
boundary condition I(x, x) = 1 and it satisfies (x− x′)a∇aI(x, x′) = 0. From these
properties one can show that

∇(a1 . . .∇an ) I(x, x′)|x=x′ = 0 , (2.71)

I(x, x′)I(x′, x) = 1 , (2.72)

(I(x, x′))† = I(x′, x) . (2.73)

The Green’s function has the explicit expression

D�(x, x′) = i
∫ ∞

0
ds
∫ ddk

(2π)d e
is�eik(x−x′)I(x, x′)

= i
∫ ∞

0
ds
∫ ddk

(2π)d e
ik(x−x′)e

is
2 (∇a+ika)2

I(x, x′)

= i
∫ ∞

0
ds
∫ ddk

(2π)d e
−isk2

eik(x−x′)eis�−sk
a∇aI(x, x′) . (2.74)

When there are derivatives acting on the Green’s function one finds

∇a1 . . .∇anD�(x, x′)

= i
∫ ∞

0
ds
∫ ddk

(2π)d e
−isk2

eik(x−x′)(∇ + ik)a1 . . . (∇ + ik)aneis�−sk
a∇aI(x, x′) .

(2.75)

In order to evaluate the action of covariant derivatives we introduce the covariant
Taylor expansion. For a function φ(x) transforming in a certain representation of the
gauge group we can write down its covariant Taylor series as

φ(x) = I(x, x′)
∞∑
n=0

1
n! (x− x

′)a1 . . . (x− x′)an∇a1 . . .∇an φ(y)|y=x′ . (2.76)

In particular this can be applied to ∇bI(x, x′) considered as a function of x:

∇bI(x, x′) = I(x, x′)
∞∑
n=0

1
n! (x− x

′)a1 . . . (x− x′)an∇a1 . . .∇an∇b I(y, x′)|y=x′ .

(2.77)
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Using eq. (2.71) and [∇a,∇b] = −iF ab, with the background field strength Fab, it
can be shown that [64]

∇bI(x, x′) = iI(x, x′)
∞∑
n=1

n

(n+ 1)!(x− x
′)a1 . . . (x− x′)an∇′

a1 . . .∇
′
an−1F anb(x′) ,

∇bI(x, x′) = −i
∞∑
n=1

(−1)n
(n+ 1)!(x− x

′)a1 . . . (x− x′)an(∇a1 . . .∇an−1F anb(x))I(x, x′) .

(2.78)

Note that this means that we can express covariant derivatives acting on I(x, x′) in
terms of undifferentiated factors of I(x, x′) and derivatives of F ab. Manifest covariance
is thus preserved. Since the mass dimension of F is [F ]∆ = 2 this also improves
powercounting. We will also use

∫ ddk
(2π)d kb1 . . . kbm(x− x′)a1 . . . (x− x′)ane−isk2

eik(x−x′)

= (−i)n
∫ ddk

(2π)d kb1 . . . kbme
−isk2 ∂n

∂ka1 . . . ∂kan

(
eik(x−x′)

)
= in

∫ ddk
(2π)d

∂n

∂ka1 . . . ∂kan

(
kb1 . . . kbme

−isk2)
eik(x−x′)

= in
∫ ddk

(2π)d K
a1...an

;b1...bm(s, k) eik(x−x′) , (2.79)

where we introduced the notation

Ka1...an
b1...bm (s, k) = ∂n

∂ka1 . . . ∂kan

(
kb1 . . . kbme

−isk2)
. (2.80)

This way one can evaluate eq. (2.75) up to an arbitrary order in the derivative
expansion and the coordinates of the vertices appear only through explicit background
field dependence and factors of

eik(x−x′)I(x, x′) . (2.81)

We have now freed all of the propagators from explicit derivatives acting on them.
Let us now explore how to treat the explicit background fields at the vertices. More
details can be found in [46, Sec. 3]. The goal is to shift all of the background field
dependence to a single vertex by using the covariant Taylor expansion. Consider some
background field V(x) at the vertex at position x, that is connected to some other
vertex x′ by a propagator. Using eq. (2.76) we can write this as

V(x) = I(x, x′)
∞∑
n=0

1
n! (x− x

′)a1 . . . (x− x′)an∇a1 . . .∇an V(y)|y=x′ . (2.82)
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We have thus shifted the background field dependence from one vertex to another at
the cost of introducing an auxiliary factor of I(x, x′). This procedure can be repeated
to successively shift the background fields. We end up with a diagram consisting of a
background field dependence at a single vertex x0, a collection of propagators and
some auxiliary parallel displacement propagators coming from shifting the external
background fields. The structure of the parallel displacement propagators is now
given by

tr (I(x0, x)χ(x, x0)) , (2.83)

where x is some vertex that is connected to x0 by a propagator and χ(x, x0) is a
product of parallel displacement propagators and also contains the background fields
at x0. The dependence on the other coordinates is suppressed. Using the covariant
Taylor expansion this is

I(x0, x)χ(x, x0) =
∞∑
n=0

1
n! (x− x0)a1 . . . (x− x0)an∇a1 . . .∇an χ(y, x0)|y=x0

. (2.84)

We thus effectively delete the factor of I(x0, x) and introduce new background fields
at x0. The coordinate dependence can again be traded for derivatives with respect to
the corresponding edge momentum. This procedure can also be repeated until there
are only two vertices left. As argued in [46] it follows then from gauge invariance
that the product of all parallel displacement propagators reduces to the identity. The
complete dependence on the coordinates is then given by factors of

eik(xi−xj) , (2.85)

which after switching to momentum space reduces to momentum conserving δ-
functions. The edge momenta only come as products of Ka1...an

b1...bm (s, k) and thus
the momentum integrals are Gaussian and can be simply evaluated.

Let us summarize the main features of this formalism. Using the covariant Taylor
expansion one shifts the entire external background field dependence to one vertex.
This produces more derivatives on the external fields and propagators with higher
powers. Then one successively deletes the vertices until only two are left. This again
produces more background fields at the designated vertex. At the end one can perform
the momentum integrals, because they reduce to Gaussian ones. Due to the trivial
momentum structure only logarithmically divergent graphs will contribute.
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Diagram Mass Dimensions Superficial UV divergence

∇+α̇

O′′ V [V]∆ = [O′]∆ − 1 1
2I1O′′(x)(∇+α̇V(x))

∇+α̇

O′′ V [V]∆ = [O′]∆ − 1 −1
2I1O′′(x)(∇+α̇V(x))

∇+α̇∇+β̇

O′′ V [V]∆ = [O′]∆ − 2
I1O′′(x)

(
1
6

{
∇+α̇,∇+β̇

}
+ i

2 {∇+,W +}Cα̇β̇
)
V(x)

∇+α̇

∇+β̇

O′′ V β̇ [V]∆ = [O′]∆ − 2

I1O′′(x)
(
− 1

12

{
∇+α̇,∇+β̇

}
V β̇(x)

+ i
4 {∇+,W +} Vα̇(x)

− i
4Vα̇(x) {∇+,W +}

)

∇β̇+∇+α̇

V Vβ̇

O′′

[V]∆ + [Vβ̇]∆ = [O′]∆ −1
2I1O′′(x)V(x)Vα̇(x)

∇+γ̇∇+α̇∇+β̇

V Vγ̇

O′′

[V]∆ + [Vγ̇ ]∆ = [O′]∆ − 1
−I1O′′(x)

(
1
3(∇+α̇V)Vβ̇ + 1

6V(∇+α̇Vβ̇)

+ (α̇↔ β̇)
)

Table 2.1: Examples of diagrams with covariant derivatives and their UV diver-
gences. O′ is the part of the operator that takes part in the loop calculation, while
O′′ is the rest of the operator, which is external to the diagram and I1 = 1/ε is
the superficial UV divergence of the ordinary scalar two-point function.

2.5 Examples of diagrams with covariant derivatives

In this section we will discuss in detail some easy examples in order to clarify the
procedure outlined in section 2.4. We use the schematic notation O′ for the part
of the operator that takes part in the loop calculation, while O′′ is the rest of the
operator, which is external to the diagram. We discuss two examples in detail and
collect more results in table 2.1. The simplest example to consider is an integral of
the form

I
∇+α̇

O′′ V = O′′(x)(∇+α̇D�(x, x′))V(x′)D�(x′, x) , (2.86)

where the explicit background field dependence after performing the D-algebra is
given by O′′(x) and V(x′) and the mass dimensions fulfill the relation [V ]∆ = [O′]∆−1.
As always we concentrate on terms with superficial degree of divergence ω ≥ 0 (see
eq. (3.1)), which means that the background fields that are produced during the
expansion can have at most dimension 1. Let us first rewrite eq. (2.86) by means of
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eqs. (2.74) and (2.75) as

−
∫ ∞

0
ds
∫ ∞

0
ds′

∫ ddk
(2π)d

∫ ddk′
(2π)d e

−isk2
eik(x−x′)O′′(x)

(
eis�−sk

a∇a(∇ + ik)+α̇I(x, x′)
)

V(x′)e−is′k′2eik′(x′−x)eis
′�′−s′k′a∇′aI(x′, x) .

Due to eq. (2.78) the term involving ∇+α̇I(x, x′) will have ω < 0. The same goes for
the exponentiated kinetic operator acting on the parallel displacement propagators.
We are left with

−i
∫ ∞

0
ds
∫ ∞

0
ds′

∫ ddk
(2π)d

∫ ddk′
(2π)d e

−isk2−is′k′2ei(k−k
′)(x−x′)

O′′(x)k+α̇I(x, x′)V(x′)I(x′, x) . (2.87)

Using the covariant Taylor expansion the background field dependence can now be
shifted to the vertex at x. The expansion again has to terminate after the first order

−i
∫ ∞

0
ds
∫ ∞

0
ds′

∫ ddk
(2π)d

∫ ddk′
(2π)d e

−isk2−is′k′2ei(k−k
′)(x−x′)O′′(x)k+α̇I(x, x′)

I(x′, x) (1 + (x′ − x)a∇a,y) V(y)|y=x I(x′, x) . (2.88)

Since there are no derivatives acting on the parallel displacement propagators anymore
their product will reduce to the identity. The coordinate dependence can also be
rephrased by eq. (2.79), which leads us to

− i
∫ ∞

0
ds
∫ ∞

0
ds′

∫ ddk
(2π)d

∫ ddk′
(2π)d k+α̇e

−isk2
ei(k−k

′)(x−x′)O′′(x)(
e−is

′k′2 + i
∂

∂ka

(
e−is

′k′2
)

∇a,y

)
V(y)|y=x .

We can now switch to the momentum representation by integrating over the positions
of the vertices, which will lead to momentum conserving δ-functions.
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− i
∫

ddx
∫

ddx′
∫ ∞

0
ds
∫ ∞

0
ds′

∫ ddk
(2π)d

∫ ddk′
(2π)d k+α̇e

−isk2
ei(k−k

′)(x−x′)O′′(x)(
e−is

′k′2 + i
∂

∂k′a

(
e−is

′k′2
)

∇a,y

)
V(y)|y=x

= −i
∫

ddx
∫ ∞

0
ds
∫ ∞

0
ds′

∫ ddk
(2π)d k+α̇e

−isk2O′′(x)(
e−is

′k2 + i
∂

∂ka

(
e−is

′k2)∇a,y

)
V(y)|y=x . (2.89)

Since the integral over k is Gaussian, only the even terms can contribute. This reduces
the integral to

= −i
∫

ddx
∫ ∞

0
ds
∫ ∞

0
ds′ s′

∫ ddk
(2π)d k+α̇k

ae−i(s+s
′)k2O′′(x)(∇aV(x)) . (2.90)

Performing the integrals over s and s′ we see that this reduces to the ordinary
momentum space representation

=
∫

ddx
∫ ddk

(2π)d
k+α̇k

a

(k2)3 O
′′(x)(∇aV(x)) = 1

2

∫
ddx

∫ ddk
(2π)d

1
(k2)2O

′′(x)(∇+α̇V(x)) .

(2.91)

In the last step we used that under symmetric integration

k+α̇k
a → 2

d
k2δa+α̇ . (2.92)

Eq. (2.91) is the standard one loop two point integral evaluated at external momentum
p = 0. This introduces a new IR divergence, which has to be regulated. One way to
do this is to introduce a non-vanishing external momentum. This will not change the
UV divergence, because the superficial UV divergence of any logarithmically divergent
graph is independent of external momenta. The superficial UV divergence of this
graph is then given by

1
2I1O′′(∇+α̇V) . (2.93)

As a second example let us consider

III
∇+α̇∇+β̇

O′′ V = O′′(x)(∇+α̇∇+β̇D�(x, x′))V(x′)D�(x′, x) , (2.94)

where now [V]∆ = [O′]∆ − 2. The new feature that arises here is that fields of mass
dimension 2 can be produced, which means that there can now be field strength terms
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from the action of derivatives on I(x, x′). From eq. (2.78) one can show that

(∇ + ik)+α̇(∇ + ik)+β̇I(x, x′)

=
(
−k+α̇k+β̇ + i

2F +α̇,+β̇ −
1
2
(
k+α̇(x− x′)aF a,+β̇ + (α̇↔ β̇)

)
+ . . .

)
I(x, x′) ,

(2.95)

where the dots stand for higher dimensional background fields. Let us concentrate
on the last term. Since the background field strength F has dimension 2 no more
background fields will be produced. This implies that no more explicit factors of
(x− x′) or k are produced either. The integral will necessarily take the form

∫ ddk
(2π)d

∂

∂ka

(
k+α̇e

−isk2) ∝ δa+α̇ . (2.96)

This means, that we get contributions with external structure F +α̇,+β̇ + (α̇↔ β̇) = 0,
which vanish due to antisymmetry of the field strength. The first term in eq. (2.95)
can give an non-vanishing contribution only, if the momenta are properly contracted.
The only term that can achieve this is the second order expansion of the background
field

V(x′) ∝ 1
2I(x′, x)(x′ − x)a1(x′ − x)a2∇a1,y∇a2,y V(y)|y=x . (2.97)

The calculation is analogous to the one of the previous example, only instead of eq.
(2.92) one needs

k+α̇k+β̇k
a1ka2 → 4

d(d+ 2)(k2)2
(
δa1

+α̇δ
a2
+β̇ + δa2

+α̇δ
a1
+β̇

)
. (2.98)

The result is

1
6

∫
ddx

∫ ddk
(2π)d

1
(k2)2O

′′(x)
({

∇+α̇,∇+β̇

}
V(x)

)
. (2.99)

The second term in eq. (2.95) is even easier to evaluate, because there are no
further background fields produced. It immediately reduces to

i

2

∫
ddx

∫ ddk
(2π)d

1
(k2)2O

′′(x)
(
F +α̇,+β̇V(x)

)
. (2.100)

Putting the terms together and using eq. (A.19) the divergent part is

I1O′′
(1

6
{
∇+α̇,∇+β̇

}
+ i

2 {∇+,W +}Cα̇β̇
)
V . (2.101)



Chapter 3

Renormalization

The dilatation operator depends on the first order pole in ε of the counterterm Z. This
in turn is calculated by extracting the superficial UV divergence from a given Feynman
diagram. That’s the divergence that is left after subtracting all subdivergences. In
this chapter we will introduce the necessary machinery. All results will be collected
in appendix B.

3.1 The R-operation

The main tool of renormalization goes under the name R-operation [68–70]. This is a
method to systematically render a Feynman integral finite by successively subtracting
UV subdivergences. In order to understand the method let us first introduce the
necessary vocabulary.

Given a graph G its superficial degree of (UV) divergence is defined by

ω(G) = dL+N −D , (3.1)

where d is the space-time dimension, L is the number of loops and N and D are
the powers of loop momenta in the numerator and denominator, respectively. A
Feynman diagram G is called superficially divergent, if ω(G) ≥ 0, otherwise it is called
superficially convergent. Note that this formula counts the power of loop momenta.
If all loop momenta were rescaled by a factor x the leading power in x in the limit
x → ∞ of the Feynman integral would be xω(G). As an example the standard one
loop scalar two point function has ω = d− 4, as can be seen from

∫ ddk
(2π)d

1
k2(k − p)2

k→xk→ xd
∫ ddk

(2π)d
1

(xk)2(xk − p)2
x→∞→ xd−4

∫ ddk
(2π)d

1
k4 (3.2)

31
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and thus it has a UV divergence for d ≥ 4. Next consider the two loop graph

k1

k2

p1

p2

p3

=
∫ ddk1

(2π)d
∫ ddk2

(2π)d
1

k2
1k

2
2(k2 − k1 + p2)2(k1 + p3 − p1)2 . (3.3)

Simultaneous rescaling of k1 and k2 leads to ω(G) = 2d− 8 = 0 in four dimensions
but only rescaling k2 also leads to ω(γ) = d− 4 = 0. This signals a divergence of the
subgraph γ ⊂ G, which is indicated in blue. A one-particle irreducible (1PI) subgraph
γ with ω(γ) ≥ 0 is called a UV subgraph. Subgraphs that can diverge independently
of each other are called UV disjoint. A set of UV disjoint subgraphs is sometimes
called a spinney and finally the set of all spinneys is called a wood and indicated
by W (G). Note that W (G) also contains G itself. The reduced wood is given by
W̄ (G) = W (G)\{G}.

We are now in a position to define the R-operation. It is given by the so-called
forest formula

RG =
∑

S∈W (G)
∆(S) ∗G/S , (3.4)

where ∆(S) is the counterterm operation to be defined below and G/S is the reduced
diagram, constructed from G by contracting to points all subgraphs that are contained
in S. The ∗-operation is simply given by a product for logarithmic divergences. For
higher divergences it acts as an insertion operator. It inserts the momenta coming
from the counterterm into the reduced diagram. We also introduce the R̄-operation,
which subtracts the subdivergences but does not subtract the superficial divergence

R̄G =
∑

S∈W̄ (G)
∆(S) ∗G/S . (3.5)

For a spinney S = {γ1, . . . , γk} consisting of multiple UV divergent subgraphs the
counterterm factorizes

∆(S) =
k∏
i=1

∆(γi) . (3.6)

These graphs only have to be weakly disconnected, i.e. they can share a common
vertex. On these individual subgraphs there is ambiguity in the counterterm operation,
which reflects the choice of different renormalization schemes. We use the minimal
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subtraction scheme (MS-scheme) [71], where the counterterm operation is given by

∆(G) = −KR̄G , (3.7)

and the pole operator K, as the name suggests, extracts the poles of a function in ε.
The superficial divergence of a graph is then given by

KR̄G . (3.8)

Let us see eq. (3.4) in action for the simple two loop graph from above.

R

( )
= + ∆

( )
+ ∆

( )
×

= + ∆
( )

−KR̄
( )

× (3.9)

where

R̄

( )
= , (3.10)

because the one loop graph has no subdivergences that could be subtracted. We end
up with

R

( )
= + ∆

( )
−K

( )
× . (3.11)

The quantity that we are most interested in, is the superficial divergence of this graph.
Since the right hand side is renormalized, it is completely finite. This precisely defines
the counterterm of the two loop graph itself. This implies that

KR̄

( )
(3.7)= −∆

( )
= K

(
−K

( )
×

)
. (3.12)

In order to facilitate the computation of the counterterms it is important to note they
will always be polynomials in the external momenta of order ω(G). In particular most
of our graphs have ω(G) = 0 in d = 4, which implies that their overall divergence
is independent of the external momenta. This can be used for a technique called
infrared rearrangement: One can rearrange the external momentum structure in such
a way that the evaluation of the diagrams becomes simple. The only thing to be
careful about is that the momentum rearrangement should be done in an infrared
safe way, which means that it does not introduce new IR divergences. Look again at
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our favorite example.

KR̄


p1

p2

p3
 = KR̄


p

p

 6= KR̄

 p

p  . (3.13)

We find that the counterterms for the first two graphs are identical. Only the third
counterterm is different because that particular momentum rearrangement introduces
an infrared divergence due to the presence of a 1/k4 propagator. This can be remedied
by a proper generalization of the R-operation, called the R∗-operation [72, 73] (see
also [74] for a modern approach), which also subtracts IR divergences.

In practice we can always reduce the graphs to propagator type diagrams, i.e.
diagrams that only have one external momentum scale p2 and then set p2 = 1. Results
for the unrenormalized graphs are readily found in the literature, see e.g. [75] for
some of the graphs dicussed here. They can often be expressed through the functions

G(α, β) =
Γ(d2 − α)Γ(d2 − β)Γ(α + β − d

2)
(4π) d2 Γ(α)Γ(β)Γ(D − α− β)

, (3.14)

G1(α, β) = 1
2(−G(α, β − 1) +G(α− 1, β) +G(α, β)) , (3.15)

G2(α, β) = 1
2(−G(α, β − 1)−G(α− 1, β) +G(α, β)) . (3.16)

By I we denote the unrenormalized integrals themselves, evaluated at p2 = 1 and

I = KR̄I . (3.17)

Let us give some examples to illustrate how these computations are done. A complete
list of results can be found in appendix B.

The result for the one loop self-energy graph in this notation is

I1 = =
∫ ddk

(2π)d
1

k2(k − p)2

∣∣∣∣∣
p2=1

= G(1, 1) (3.18)

and the divergence can easily be computed by performing a series expansion in ε

I1 = K(I1) = 1
(4π)2

(1
ε

)
. (3.19)

Let us now turn back to the two loop diagram. We are free to choose the particularly
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simple momentum assignment

I2 =
p

p

∣∣∣∣∣∣∣∣∣∣∣
p2=1

=
∫ ddk1

(2π)d
∫ ddk2

(2π)d
1

k2
1k

2
2(k2 − k1 + p)2(k1 − p)2

∣∣∣∣∣
p2=1

= G(1, 1)G(3− d
2 , 1) , (3.20)

where the lsat line was taken from [75]. To reduce cluttering we will usually not
indicate the external momenta explicitly. We will thus just write

I2 = = G(1, 1)G(3− d
2 , 1) , (3.21)

Using this result and eq. (3.12) we can find

I2 = K (I2 − I1I1) = 1
(4π)4

(
− 1

2ε2 + 1
2ε

)
. (3.22)

At higher loops one generally has more subdivergences to deal with. Let us take a
look at the graph

I3 =
p

p ∣∣∣∣∣∣∣∣∣∣∣
p2=1

. (3.23)

We have again made use of infrared rearrangement to get the simplest possible
momentum structure. The explicit integral is then given by

I3 =
∫ ddk1

(2π)d
∫ ddk2

(2π)d
∫ ddk3

(2π)d
1

k2
1k

2
2k

2
3(k1 − p)2(k2 − k1)2(p+ k3 − k2)2

∣∣∣∣∣
p2=1

.

(3.24)

Again from [75] we find

I3 = G(1, 1)G(3− d
2 , 1)G(5− d, 1) . (3.25)

The forest formula can now be applied to yield

I3 = KR̄

( )
= K

(
+ ∆

( )
+ ∆

( ) )
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= K (I3 − I2I1 − I1I2) = 1
(4π)6

( 1
6ε3 −

1
2ε2 + 2

3ε

)
. (3.26)

As a final scalar example consider the graph

I3b =
p

p

∣∣∣∣∣∣∣∣∣∣
p2=1

. (3.27)

With this simple momentum assignement the explicit integral expression is

I3b =
∫ ddk1

(2π)d
∫ ddk2

(2π)d
∫ ddk3

(2π)d
1

k2
1k

2
2k

2
3(k1 − p)2(k2 − p)2(k3 + k2 − k1)2

∣∣∣∣∣
p2=1

(3.28)

We computed this integral in Mincer [76, 77], using its O4 topology, hence we do not
have an analytic expression. We find

I3b = N3
( 1

3ε3 + 7
3ε2 + 31

2ε + finite
)
. (3.29)

Note the conversion factor

N = (4π)−2 exp
(
−εγ + ε ln(4π)− ε2 ζ(2)

2

)
(3.30)

from Mincer’s MS-scheme to our MS conventions. The result of applying the rofest
formula is then

I3b = KR̄

( )
= K

(
+ ∆

( ) )

= K (I3b − I1I11) = 1
(4π)6

( 1
3ε3 −

2
3ε2 + 1

3ε

)
. (3.31)

Excitations introduce tensor structures, which require a new class of counterterms. A
useful modern reference for the renormalization of tensor diagrams is [74]. We should
mention that the literature on these kinds of counterterms is very scarce.

One might naively expect, that one can extract the counterterm of a tensor graph
from its tensor reduced version. This is wrong, because the K operation does not
commute with tensor contraction. The simplest case of tensor contraction is done by
multiplying with

P µν = gµν

d
, (3.32)
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and the presence of the factor d is the reason, why this operation in general does not
commute with K. The correct procedure is to write down the nested structure of the
forest formula explicitly and then perform the tensor reduction from the innermost
layer. Let us again go through a few examples. As a two loop example consider

KR̄


µ ν

 = K


µ ν

+ ∆


µ ν




= K

gµν
d

−K
(
gµν

d

) 
= K (I3b − I1I11) = 1

(4π)4

( 1
3ε3 −

2
3ε2 + 1

3ε

)
gµν . (3.33)

An example at three loops is

KR̄


µ ν

 = K


µ ν

+ ∆
 

µ ν

+ ∆
( )

µ ν


= K

(
gµν

d
−KR̄

  gµν

d

−KR̄
( ) gµν

d

)

= K
(
gµν

d
(I3 − I2I1 − I1I2)

)
= 1

(4π)4

( 1
24ε3 −

5
48ε2 + 11

96ε

)
gµν .

(3.34)

A few comments are in order. First note that for the computation of the superficial
divergence we do not need the explicit analytic expressions for the unrenormalized
tensor diagrams. Instead the tensor reduced versions are enough. Also note that all
of these graphs are logarithmically divergent and their counterterms are independent
of the momenta. The only available tensor structure for them is thus gµν . We list all
our results in appendix B.

3.2 Contributing diagrams

We are only interested in the first order pole in ε of the superficial UV divergence of
a given diagram, since this is the relevant part for the anomalous dimensions of the
local operators as explained below eq. (1.6).

An important result is the Weinberg-Dyson convergence theorem [78], which was
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Figure 3.1: Some examples of one-vertex-reducible graphs.

first proven in [79]. An elementary proof based on the R-operation can be found in
[80]. It states that a Feynman diagram G is absolutely (UV) convergent, if

1. ω(G) < 0

2. ∀γ ⊂ G : ω(γ) < 0.

A corollary of this theorem is that after replacing all subdiagrams with their renormal-
ized values, a superficially convergent Feynman diagram G is absolutely convergent.
This will give us one of the main tools to decide, whether a particular graph will
contribute: Since we are only interested in the superficial UV divergence, we only
have to look at diagrams with ω ≥ 0.

Consider a graph that can be separated into two graphs by deleting a single
vertex. Such graphs are called one-vertex-reducible (1VR), while the converse is called
one-vertex-irreducible (1VI). Some examples of 1VR graphs are given in figure 3.1.
Due to eq. (3.6) the counterterm factorizes to the counterterms of the subgraphs.
It should be mentioned that in general this doesn’t hold for tensor graphs due to
contraction anomalies. In [74] it is shown however that it still holds for the overall
UV divergence, which is relevant to us. A consequence is that the lowest order pole
of the overall UV divergence of a graph with C 1VI components starts is ε−C .

Since we are only interested in first order poles in ε we can discard all 1VR
diagrams. As we will see, these types of diagrams are produced during the D-algebra
by canceling propagators.

Discarding these diagrams on the spot saves a lot of effort in the computation of
the first order pole, since often they occur quite early during the D-algebra. Too late
did it become clear to the author, that this strategy deprives one of the very valuable
cross check of the cancellation of higher order poles. A future analysis should include
a reinsertion of these contributions and carefully check the cancellation.



Chapter 4

The SU(2, 1|1) sector

4.1 Field content and closedness

This sector comprises the local single trace operators that are composed out of
elementary fields from the vector multiplet with derivatives acting on them. Also the
index of the first copy of SU(2) in the Lorentz group is chosen to be α = +, thereby
picking the highest weight states. This choice avoids mixing with chiral matter fields.

The motivation for chosing this sector comes from comparing general N = 1
SCFTs to N = 4 SYM. The one sector that is expected to behave similarly and can
be compared to N = 4 is the one that is connected by supersymmetry to the gauge
field. The same reasoning has been employed in [18] for the case of N = 2 theories.

In the background covariant superspace language the gauge covariant building
blocks of this sector are the superfield strength W+ and the derivatives ∇+ and ∇+α̇

∇+, ∇+α̇, W+ . (4.1)

In the conventions of [81] (see table 1 there, see also [82] for details on the representation
theory) the scaling dimensions ∆, the U(1)r charges and the SU(2)α charge j of the
superfields are

[W +](∆,r,j) =
(

3
2 , 1,

1
2

)
, [W̄ α̇](∆,r,j) =

(
3
2 ,−1, 0

)
,

[∇+](∆,r,j) =
(

1
2 ,−1, 1

2

)
, [∇̄α̇](∆,r,j) =

(
1
2 , 1, 0

)
,

[∇+α̇](∆,r,j) =
(
1, 0, 1

2

)
,

[Q](∆,r,j) =
(
1, 1− NC

NF
, 0
)
, [Q̄](∆,r,j) =

(
1, NC

NF
− 1, 0

)
,

(4.2)

where Q are the chiral matter superfields. It is easy to check that the relation

∆ = r
2 + 2j at g = 0 (4.3)
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is fulfilled by all fields including the covariant derivatives, except for Q and Q̄ and
W̄ α̇. In contrast these violate the relation by at least 2/3 (we are in the conformal
window 3

2 ≤
NF
NC
≤ 3):

∆ ≥ r
2 + 2j + 2

3 at g = 0. (4.4)

It is worth emphasizing that these relations are not BPS-conditions. They are modified
when g 6= 0, but at small coupling they will not be modified enough to account for a
change of 2/3 in ∆. Thus they cannot mix. Since the ’t Hooft coupling expansion
is believed to converge [83], this statement is also true for any finite value of the
coupling constant in the planar limit.

At first glance it might be worrying that ∇̄α̇ fulfills relation (4.3) and thus can
mix with the sector, however since there are no anti-chiral fields it can act on directly,
it will always appear in one of the combinations

{
∇+, ∇̄α̇

}
= i∇+α̇ or

[
∇̄α̇,∇+β̇

]
= Cα̇β̇W + (4.5)

and thus reduces to fields and derivatives that are indeed present in the sector.

4.2 Simplifications in our sector

The fact that this sector is closed under renormalization to all loops has a couple of
important consequences for the computation. Without doing any explicit calculation
we can restrict all of the external fields to be in our sector. In particular the expansion
of the kinetic operators from eq. (2.54) simplifies to

�̂ = � + iW +∇+ ,

�+ = � + iW +∇+ = �̂ ,

�− = � .

(4.6)

From here one easily see that �̂∇2 = �−∇2. As mentioned at the end of section 2.3
the operator �−1

− will always be sandwiched like ∇̄2�−1
− ∇2 in the beginning of the

calculation. The computation in eq. (A.58) shows that

∇̄2�−1
− ∇2 = ∇̄2�̂−1∇2 , (4.7)
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Figure 4.1: Example of a closed spin chain with nine sites. Gluon lines indicate
the tree level without interactions between different sites. The interaction in the
red rectangle will be the focus of our perturbative calculations.

where the equality holds up to terms that leave the sector. There is thus effectively
only one kinetic operator �̂ and its commutation relations from eq. (A.35) simplify to

[
∇α, �̂

]
= iδ+

α (∇+W +)∇+ ,[
∇αα̇, �̂

]
= iδ+

α

(
(∇+α̇W +)∇+ + (∇+W +)∇+

α̇

)
,[

∇̄α̇, �̂
]

=
[
∇2, �̂

]
=
[
∇̄2

, �̂
]

= 0 .

(4.8)

More details can be found in appendix A.5.

4.3 Spin chain picture and graphical notation

Throughout the computation we will use a spin chain picture, which maps these single
trace operators to closed spin chains, where each site represents a field W+, possibly
with derivatives acting on it. The vacuum of this spin chain is

tr (W+ . . .W+) (4.9)

and the derivatives ∇+α̇ and ∇+ are treated as excitations. See figure 4.1 for an
example of a spin chain with nine sites. The red triangle indicates the interaction
that arises due to contributions from loops. The explicit expansion of W+ in terms of
the background fields is

W+ = 1
2i
[
∇̄α̇

,
{
∇̄α̇, e

−V ∇+e
V
}]

= i∇̄2

∇+ +
∞∑
k=1

1
n! [. . . [∇+, V ], . . . ], V︸ ︷︷ ︸

k

]


= W + + i(∇̄2∇+V ) + . . . . (4.10)

The first term is the tree level result and the next term will lead to perturbative
corrections. Higher orders will contribute in general, however at a given loop order
they are of shorter range and lead to very similar but simpler diagrams. One can
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→ →

Figure 4.2: Ordinary Feynman diagrams are constructed by closing the operator
above the diagram.

Figure 4.3: In the planar limit external fields can only come from the thick lines.

easily transfer the results from the longest range diagrams to the shorter ones and
hence we will not consider them further.

We give a brief explanation of our rather unconventional notation. See the leftmost
picture in figure 4.2 for a typical example of a diagram. The different sites of the
composite operator are denoted by big black dots. In an ordinary diagram notation
these points would coincide. The purpose of this notation is to declutter the diagrams
because a big part of the calculation happens graphically directly on them. A drawback
is that the external momentum structure is only obvious, when we go back to the
ordinary notation at the end of the computation. The diagrams are to be read in
such a way that the operator sits above the diagram as is shown in figure 4.2.

We will only look at theories with gauge group SU(N) in the planar limit [84]

N →∞ . (4.11)

For theories with matter in some representations the usual ’t Hooft limit has to be
generalized to the Veneziano limit [85], which also takes appropriate limits of the
number NR of fields in the representation R. The upshot is that in this limit only
planar diagrams contribute. This implies that in our diagrammatic notation the
external fields can only come from the lower lines. Figure 4.3 shows an example of
this, where only the thick lines can contribute external fields.



Chapter 5

One Loop

Our argument compares general Lagrangian N = 1 SCFTs to N = 4 SYM. For this
reason it is not necessary to compute all diagrams that contribute to the dilatation
operator, we will instead focus on those diagrams that can potentially be different.
This kind of strategy was first employed in the context of the calculation of Wilson
loops in N = 2 superconformal QCD in [86]. Other notable papers that rely on this
strategy are [18, 87, 88] and [89]. In the latter the term difference method for this
argument was coined. Since any diagram that only contains gauge fields and ghosts
will automatically be identical to N = 4 we do not have to consider them further. Also
since our sector does not contain chiral matter fields, they cannot appear as external
legs but only in closed loops. Since the one loop self-energy correction vanishes due to
conformality this implies that the first differences can appear at two loops. In fact a
more sophisticated argument in [90] shows that also at two loops there are no possible
diagram that can lead to a difference to N = 4 SYM. However in order to get used
to the formalism it is helpful to see, how it works for simple one-loop and two-loop
examples. To help navigate the calculations we indicate changes in the D-algebra in
blue.

5.1 The vacuum

The simplest example is the vacuum. We focus on the interaction that takes place in
the red rectangle in figure 4.1. At one loop these must always be interactions between
two neighboring sites, which we indicate by

W+ W+

. (5.1)
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The first term

W+ = 1
2i
[
∇̄α̇

,
{
∇̄α̇, e

−V ∇+e
V
}]

= W + + i(∇̄2∇+V ) + . . . . (5.2)

gives us the tree level result

W+ W+

. (5.3)

The first loop contribution comes, when both factors of W+ are expanded to first
order. There is thus a factor of i(∇̄2∇+V ) at each of the two sites. Wick contraction
of the two factors of V yields the propagator �̂−1 from eq. (2.54), which we denote
by a photon line. The derivatives act on the propagator. We end up with

W+ W+

= −
∇̄2∇+�̂−1∇+∇̄2

. (5.4)

We will start by commuting the factor of ∇+ from the left site of the operator through
the diagram using the commutation relation eq. (A.61)

[
∇+, �̂

]
= i(∇+W +)∇+ , (5.5)

which implies
[
∇+, �̂−1

]
= −�̂−1

[
∇+, �̂

]
�̂−1 = −i�̂−1(∇+W +)∇+�̂−1 . (5.6)

When the ∇+ commutes through the propagator, it hits the other ∇+ and we find
∇+∇+ = 0. This leads to

−
∇̄2∇+�̂−1∇+∇̄2

= i

∇+W+

∇̄2�̂−1 ∇+�̂−1∇+∇̄2

. (5.7)

Since the commutation relation for ∇+ is
[
∇+, �̂

]
= 0 , (5.8)
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we can immediately commute it to the right side of the diagram, where it combines
with ∇+ due to

∇2 = 1
2∇α∇α = ∇+∇+ . (5.9)

We find

i

∇+W+

∇̄2�̂−1 ∇+�̂−1∇+∇̄2

= i

∇+W+

∇̄2�̂−1 �̂−1∇+∇+∇̄2

= i

∇+W+

∇̄2�̂−1�̂−1∇2∇̄2

. (5.10)

Following this we can use the commutation relation eq. (A.61)
[
∇̄α̇, �̂

]
= 0 (5.11)

to commute the ∇̄2 through the diagram. Graphically this yields

i

∇+W+

∇̄2�̂−1�̂−1∇2∇̄2

= i

∇̄2∇+W+

�̂−1�̂−1∇2∇̄2

+ i

∇̄α̇∇+W+

�̂−1 �̂−1∇̄α̇∇2∇̄2

+ i

∇+W+

�̂−1 �̂−1∇̄2∇2∇̄2

.

(5.12)

In the last two diagrams we use the commutation relation

{∇α, ∇̄α̇} = i∇αα̇ (5.13)

to reduce the number of ∇α. As always in supersymmetric perturbation theory one
needs a factor of ∇2∇̄2 for every loop to get a non-vanishing result (see e.g. [53]). The
only place where extra factors ∇α can come from, is the expansion of the propagators
�̂−1 in terms of the W α.

�̂−1 = �−1 − i�−1W +∇+�−1 + . . . . (5.14)

This expansion will necessarily lead to diagrams with negative superficial degree of
divergence ω < 0 and will thus not contribute as discussed in section 3.2. This can
be seen by the fact that the external fields will have a higher dimension than the
operator itself

[W +(∇̄α̇∇+W +)]∆ > [W +(∇+W +)]∆ > [W +W +]∆ , (5.15)
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which does not leave enough momentum factors in the diagram to make it UV-
divergent. Thus the only diagram that has enough ∇2 is the first one and we
have

�̂−1 = �−1 , (5.16)

where the equality is understood up to terms that lead to finite diagrams. No new
superspace derivatives are produced after this point and we arrive at

i

∇+W+

∇̄2�̂−1�̂−1∇2∇̄2

= i

∇̄2∇+W+

�−1�−1∇2∇̄2

. (5.17)

In principle we have to expand �−1 in terms of the background connection Γαα̇, but
by the same argument as before only the ordinary d’Alembertian gives an infinite
contribution. Thus we have

�−1 = �−1
0 , (5.18)

and we arrive at

i

∇̄2∇+W+

�−1�−1∇2∇̄2

= i

∇̄2∇+W+

�−1
0 �−1

0 ∇2∇̄2

. (5.19)

As in figure 4.2 we can now bring this into the form of a standard Feynman diagram.
The result is

i

∇̄2∇+W+

= i(∇̄2∇+W +)I1 , (5.20)

where the superficial divergence I1 = 1/((4π)2ε) was introduced in chapter 3. The
external field structure of this diagram is

∇̄2∇+W + ≡
1
2
{
∇̄α̇

,
[
∇̄α̇, {∇+,W +}

]}
= 1

2
{
∇̄α̇

,
[{

∇̄α̇,∇+
}
,W +

]}
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= 1
2
{[

∇̄α̇
,
{
∇̄α̇,∇+

}]
,W +

}
= −i {W +,W +} , (5.21)

where we repeatedly used chirality of W +. Hence we find

W+ W+

= {W +,W +} I1 + finite . (5.22)

Note that the anticommutator is exactly the structure we expect from the dilatation
operator acting on two fermions at one loop. In our formalism this comes as a natural
consequence of the action of derivatives.

5.2 Excitations

5.2.1 D((∇+α̇W+)W+)

The next step is to compute excitations above this vacuum. Consider the case where
there is one derivative acting on one of the fields

∇+α̇W+ W+

= −
∇+α̇∇̄2∇+�̂−1∇+∇̄2

. (5.23)

The first steps are identical to the previous computation. There are again three terms

i

∇+W+

∇+α̇∇̄2�̂−1�̂−1∇2∇̄2

= i

∇̄2∇+W+

∇+α̇�̂−1 �̂−1∇2∇̄2

− i

∇̄β̇∇+W+

∇+α̇�̂−1�̂−1∇̄β̇∇2∇̄2

+ i

∇+W+

∇+α̇�̂−1�̂−1∇̄2∇2∇̄2

. (5.24)

As before the third term still vanishes. The second term however can be expanded as
in

�̂−1 = �−1 − i�−1W +∇+�−1 + . . . (in our sector) (5.25)
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and gives the contribution

− i

∇̄β̇∇+W+

∇+α̇�̂−1�̂−1∇̄β̇∇2∇̄2

=

∇̄β̇∇+W+

∇+α̇�̂−1�̂−1∇β̇β∇β∇̄2

= −i

∇̄β̇∇+W+W+

∇+α̇�−1∇+�−1 �−1∇β̇β∇β∇̄2

− i

W+∇̄β̇∇+W+

∇+α̇�−1 �−1 ∇+�−1∇β̇β∇β∇̄2

. (5.26)

These terms give

= +i

∇̄β̇∇+W+W+

∇+α̇�−1 �−1 �−1∇β̇+∇2∇̄2

− i

W+∇̄β̇∇+W+

∇+α̇�−1 �−1 �−1∇β̇+∇2∇̄2

, (5.27)

which according to table 2.1 results in

= −1
2 I1 [(∇+α̇W +),W +] . (5.28)

Meanwhile the first term evaluates to

i

∇̄2∇+W+

∇+α̇�̂−1 �̂−1∇2∇̄2

= 1
2I1 [∇+α̇, {W +,W +}] = I1 {(∇+α̇W +),W +} . (5.29)

We thus find

∇+α̇W+ W+

=
(
{(∇+α̇W +),W +} −

1
2 [(∇+α̇W +),W +]

)
I1

=
(1

2(∇+α̇W +)W + + 3
2W +(∇+α̇W +)

)
I1 . (5.30)

5.2.2 D((∇+W+)W+)

The first steps are similar to the computation above. First use the expansion of W+

to write the lowest order diagram

∇+W+ W+

= −
∇+∇̄2∇+�̂−1∇+∇̄2

(5.31)
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Then we commute the undotted derivative to the right

−
∇+∇̄2∇+�̂−1∇+∇̄2

= i

∇+W+

∇+∇̄2�̂−1�̂−1∇2∇̄2

. (5.32)

Commuting the dotted derivative again produces three terms

i

∇+W+

∇+∇̄2�̂−1�̂−1∇2∇̄2

=i

∇̄2∇+W+

∇+�̂−1�̂−1∇2∇̄2

+ i

∇+W+

∇+�̂−1�̂−1∇̄2∇2∇̄2

+ i

∇̄α̇∇+W+

∇+�̂−1�̂−1∇̄α̇∇2∇̄2

. (5.33)

This is where the differences start. Contrary to the last section all of these terms will
contribute. The first term gives

i

∇̄2∇+W+

∇+�̂−1�̂−1∇2∇̄2

=i

∇+∇̄2∇+W+

�̂−1 �̂−1∇2∇̄2

= 2I1 [(∇+W +),W +] . (5.34)

By means of eqs. (A.45) and (A.56) the second term becomes

i

∇+W+

∇+�̂−1�̂−1∇̄2∇2∇̄2

= i

∇+W+

∇+�̂−1 �̂−1�̂∇̄2

= i

∇+W+

∇+�̂−1∇̄2

, (5.35)

where the gray color indicates that the propagator belonging to that line has been
canceled. After this simplification we can again commute the undotted derivative
through the diagram. The commutator will only produce finite terms.

i

∇+W+

∇+�̂−1∇̄2

= i

∇+W+

�̂−1∇+∇̄2

. (5.36)
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Finally we can expand the propagator to arrive at

i

∇+W+

�̂−1∇+∇̄2

=

∇+W+W+

�−1∇+�−1 ∇+∇̄2

=

∇+W+W+

�−1 �−1 ∇2∇̄2

= I1W +(∇+W +) .

(5.37)

In the third term we first use eq. (A.11) to reduce the number of spinor derivatives

i

∇̄α̇∇+W+

∇+�̂−1�̂−1∇̄α̇∇2∇̄2

=

∇̄α̇∇+W+

∇+�̂−1�̂−1∇αα̇∇α∇̄2

. (5.38)

Then we commute the derivative to the right. The only term that gives a divergent
contribution is the one, where it actually combines with the other undotted derivative

∇̄α̇∇+W+

∇+�̂−1�̂−1∇αα̇∇α∇̄2

=

∇̄α̇∇+W+

�̂−1 �̂−1∇αα̇∇α∇+∇̄2

=

∇̄α̇∇+W+

�̂−1 �̂−1∇+α̇∇2∇̄2

= − i2I1∇+α̇∇ α̇
+ W +

(A.22)= −1
2I1 [(∇+W +),W +] . (5.39)

Since it commutes through an even number of spinor derivatives, no minus sign is
produced. The final diagram was computed in section 2.5. Hence in total we find

∇+W+ W+

= I1

(3
2 [(∇+W +) ,W +] + W + (∇+W +)

)
= I1

(
[(∇+W +) ,W +] + 1

2 {(∇+W +) ,W +}
)

= I1

(3
2 (∇+W +) W + −

1
2W + (∇+W +)

)
. (5.40)

5.2.3 D((∇+W+)(∇+W+))

We also have to consider the cases, when there are two excitations. We start with

∇+W+ ∇+W+

= −
∇+∇̄2∇+�̂−1∇+∇̄2∇+

. (5.41)
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As before we start by commuting the undotted derivative

−
∇+∇̄2∇+�̂−1∇+∇̄2∇+ = i

∇+W+

∇+∇̄2�̂−1�̂−1∇2∇̄2∇+ (5.42)

and then commute the dotted derivatives, thereby producing three terms

i

∇+W+

∇+∇̄2�̂−1�̂−1∇2∇̄2∇+ = i

∇̄2∇+W+

∇+�̂−1 �̂−1∇2∇̄2∇+

+ i

∇+W+

∇+�̂−1�̂−1∇̄2∇2∇̄2∇+

+ i

∇̄α̇∇+W+

∇+�̂−1�̂−1∇̄α̇∇2∇̄2∇+

. (5.43)

In the first term we can reduce the number of spinor derivatives by means of the
commutation relations, hence it will not contribute.

∇̄2∇+W+

∇+�̂−1 �̂−1∇2∇̄2∇+

= 0 . (5.44)

By means of eqs. (A.45) and (A.56) the second term becomes

i

∇+W+

∇+�̂−1�̂−1∇̄2∇2∇̄2∇+ = i

∇+W+

∇+�̂−1�̂−1�̂∇̄2∇+ = i

∇+W+

∇+�̂−1∇̄2∇+
, (5.45)

where the gray color indicates that the propagator belonging to that line has been
canceled. We can now commute the left derivative through the diagram

i

∇+W+

∇+�̂−1∇̄2∇+ =

∇+W+∇+W+

�̂−1∇+�̂−1 ∇̄2∇+ =

∇+W+∇+W+

�̂−1 �̂−1 ∇2∇̄2

. (5.46)
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The third term is

i

∇̄α̇∇+W+

∇+�̂−1�̂−1∇̄α̇∇2∇̄2∇+

= i

∇̄α̇∇+W+

∇+�̂−1�̂−1∇̄α̇

[
∇2, ∇̄2

]
∇+

(A.15)= −

∇̄α̇∇+W+

∇+�̂−1 �̂−1∇̄α̇∇ββ̇∇̄
β̇∇β∇+

=

∇̄α̇∇+W+

∇+�̂−1�̂−1∇+α̇∇̄2∇2

. (5.47)

Finally we can commute the leftmost derivative through the diagram. The only
contribution is

∇̄α̇∇+W+

∇+�̂−1�̂−1∇+α̇∇̄2∇2

=

∇+∇̄α̇∇+W+

�̂−1 �̂−1∇+α̇∇̄2∇2

= −1
2I1∇+α̇∇+∇̄α̇∇+W + = − i2I1∇+α̇∇ α̇

+ ∇+W +

= −1
2I1 [(∇+W +), (∇+W +)] = 0 . (5.48)

Hence we find

∇+W+ ∇+W+

= (∇+W +)(∇+W +)I1 . (5.49)

5.2.4 D((∇+α̇∇+β̇W+)W+)

Analogous computations lead to

∇+α̇∇+β̇W+ W+

=i

∇̄2∇+W+

∇+α̇∇+β̇�−1�−1∇2∇̄2
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+

W+∇+γ̇W+

∇+α̇∇+β̇�−1�−1 ∇+γ̇∇2∇̄2

−

∇+γ̇W+W+

∇+α̇∇+β̇�−1�−1 ∇+γ̇∇2∇̄2

=I1

(
−1

2(
[
∇+α̇,∇+β̇

]
W +)W + + 1

2W +(
{
∇+α̇,∇+β̇

}
W +)

+ 5
6(∇+β̇W +)(∇+α̇W +) + 5

6(∇+α̇W +)(∇+β̇W +)
)
,

(5.50)

where the results are again taken from table 2.1.

5.2.5 D((∇+α̇∇+W+)W+)

Finally we consider the most complicated one loop diagram

∇+α̇∇+W+ W+

=i

∇+∇̄2∇+W+

∇+α̇�−1 �−1∇2∇̄2

+

∇̄β̇∇+W+

∇+α̇�−1∇+β̇�−1∇2∇̄2

− i

∇̄β̇∇+W+∇+W+

∇+α̇�−1 �−1 ∇+

β̇
�−1∇2∇̄2

− i

∇+W+∇̄β̇∇+W+

∇+α̇�−1 �−1 ∇+

β̇
�−1∇2∇̄2

+ i

∇+∇̄β̇∇+W+W+

∇+α̇�−1 �−1 ∇+

β̇
�−1∇2∇̄2

+ i

W+∇+∇̄β̇∇+W+

∇+α̇�−1 �−1 ∇+

β̇
�−1∇2∇̄2

+

∇+W+W+

∇+α̇�−1�−1 ∇2∇̄2

=I1

(
1
3(∇+α̇∇+W +)W + + (∇+W +)(∇+α̇W +)

+ 5
12(∇+α̇W +)(∇+W +)− 4

3W +(∇+α̇∇+W +)
)
. (5.51)
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5.3 Results

In this section we collect the results for the one loop dilatation operator. Remember
that there is an extra factor of 2L = 2 in the dilatation operator. We consistently
omit a factor of g2/(4π)2. From the results in the previous sections we find

D(1)(W+W+) = 4W +W + , (5.52)

D(1)((∇+α̇W+)W+) = (∇+α̇W +)W + + 3W +(∇+α̇W +) , (5.53)

D(1)((∇+W+)W+) = 3(∇+W +)W + −W +(∇+W +) , (5.54)

D(1)((∇+W+)(∇+W+)) = 2(∇+W +)(∇+W +) , (5.55)

D(1)((∇+α̇∇+β̇W+)W+) = −(
[
∇+α̇,∇+β̇

]
W +)W + + W +(

{
∇+α̇,∇+β̇

}
W +)

+ 5
3(∇+α̇W +)(∇+β̇W +) + 5

3(∇+β̇W +)(∇+α̇W +) ,

(5.56)

D(1)((∇+α̇∇+W+)W+) = 2
3(∇+α̇∇+W +)W + + 2(∇+W +)(∇+α̇W +)

+ 5
6(∇+α̇W +)(∇+W +)− 8

3W +(∇+α̇∇+W +) . (5.57)

Remember that these are the same in any theory superconformal field theory. We
thus find

D
(1)
N=4 −D

(1)
N=1 = 0 . (5.58)

At one loop order the difference is trivial, i.e. the dilatation operator in any supercon-
formal gauge theory in the SU(2, 1|1) sector is identical to N = 4 SYM.



Chapter 6

Two Loops

6.1 The vacuum

At two loops we encounter the first diagram that can naively lead to a difference
between general N = 1 SCFTs and N = 4 SYM. Specifically there can be a chiral
loop. The corresponding diagram is the one we already used for illustratory purposes
in figures 4.2 and 4.3.

Due to the analysis in [90] also this diagram will not contribute to a difference
and will find

Z(2)
∣∣∣
diff

= 0 , (6.1)

for any superconformal gauge theory. This is due to the very restricted field content
and matter representations. We will still go through the computation, because many
of the features of the more complicated three loop computation appear already here
in a simpler way. In everything that follows we calculate the contribution coming
from a single chiral field.

The derivative structure at the beginning of the calculation is given by1

∇̄2�̂−1∇2

∇2�̂−1∇̄2

∇̄2∇+�̂−1 �̂−1∇+∇̄2

. (6.2)

We start by commuting the factor of ∇+ from the left site of the operator through
the diagram, making us of eqs. (2.58) and (A.61) and the fact that ∇3 = 0. We find

1Actually there are two distinct D-algebra structures on this diagram, however they are just mirrors of
each other and hence we consider only one of them explicitly.
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∇̄2∇2�̂−1

∇2�̂−1∇̄2

∇̄2∇+�̂−1 �̂−1∇+∇̄2

=

∇+∇̄2∇2�̂−1

∇2�̂−1∇̄2

∇̄2�̂−1 �̂−1∇+∇̄2

− i

∇+∇̄2∇2�̂−1

∇2�̂−1∇̄2

∇̄2�̂−1(∇+W+)�̂−1 �̂−1∇+∇̄2

.

(6.3)

Application of eq. (A.11) yields

= i

W+∇2�̂−1

∇2�̂−1∇̄2

∇̄2�̂−1 �̂−1∇+∇̄2

︸ ︷︷ ︸
A

−i

∇+α̇∇̄α̇∇2�̂−1

∇2�̂−1∇̄2

∇̄2�̂−1 �̂−1∇+∇̄2

︸ ︷︷ ︸
B

+

∇α̇+∇̄α̇∇2�̂−1

∇2�̂−1∇̄2

∇̄2�̂−1(∇+W+)�̂−1 �̂−1∇+∇̄2

︸ ︷︷ ︸
C

. (6.4)

Note that due to eq. (A.61) factors of ∇2 can be moved freely across propagators.
Application of eq. (2.58) on the right vertex allows us to move the factor of ∇2 away
from the lower line. First consider

A =

W+∇2�̂−1

∇2�̂−1∇̄2

∇̄2�̂−1 �̂−1∇+∇̄2

=

W+�̂−1

∇2�̂−1∇̄2∇2

∇̄2�̂−1 �̂−1∇+∇̄2

+

W+�̂−1

∇2�̂−1∇̄2∇α

∇̄2�̂−1 ∇α�̂−1∇+∇̄2
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+

W+�̂−1

∇2�̂−1∇̄2

∇̄2�̂−1 ∇2�̂−1∇+∇̄2

. (6.5)

In the first and second term one can use the commutation relations to reduce the
number of dotted derivatives. Since a factor of ∇̄2 in the inner loop is needed, these
terms will vanish. In the third term the factor ∇2 on the right line can again be
moved across the propagator, which yields ∇3 = 0. In total we find

A = 0 . (6.6)

Following the same arguments as above we see that the only contribution in B that
does not immediately vanish is the one, where the factor ∇2 splits onto two different
lines.

B =

∇+α̇∇̄α̇∇2�̂−1

∇2�̂−1∇̄2

∇̄2�̂−1 �̂−1∇+∇̄2

=

∇+α̇∇̄α̇�̂−1

∇2�̂−1∇̄2∇α

∇̄2�̂−1 ∇α�̂−1∇+∇̄2

= i

∇+α̇∇̄α̇�̂−1

∇2�̂−1∇̄β̇∇αβ̇

∇̄2�̂−1 ∇α�̂−1∇+∇̄2

= i

∇+α̇�̂−1

∇2�̂−1∇̄2∇αα̇

∇̄2�̂−1 ∇α�̂−1∇+∇̄2

. (6.7)

The factor of ∇α can now be commuted through the propagator on the right leg,
again producing two contributions

∇+α̇�̂−1

∇2�̂−1∇̄2∇αα̇

∇̄2�̂−1 ∇α�̂−1∇+∇̄2

= −

∇+α̇�̂−1

∇2�̂−1∇̄2∇ α̇
+

∇̄2�̂−1 �̂−1∇2∇̄2

︸ ︷︷ ︸
B’

−i

∇+α̇�̂−1

∇2�̂−1∇̄2∇+α̇

∇̄2�̂−1 �̂−1(∇+W+)�̂−1∇2∇̄2

︸ ︷︷ ︸
B”

,

(6.8)
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which we will consider in turn. The new vertices only come from B’ , which we

will calculate at the end of this section. First focus on diagram B” . The only
non-vanishing contribution is the one where the derivatives are commuted onto the
external leg. At this point we can complete the D-algebra in the inner loop. We use
the relationship

∂α̇+

∂+α̇

�−1
0 �−1

0 = 1
2

�−1
0 �0�−1

0
. (6.9)

between ordinary Feynman diagrams and commute the derivatives in an appropriate
way to make the subdiagram structure obvious. We find

B” = 1
2

(∇+W+)

∇̄2�̂−1 ∇+�̂−1∇+∇̄2

. (6.10)

A completely analogous computation, which we will not repeat here, shows that

C = 1
2

(∇+W+)

∇̄2�̂−1 ∇+�̂−1∇+∇̄2

. (6.11)

Both of these vertices have the structure (∇+W +)∇+, which is precisely the vertex
from the commutation relation of ∇+ with �̂−1 that stems from the tree level action.

Finally consider diagram B’ . The strategy for the computation of this diagram is
again to commute the leftmost factor ∇̄2 all the way to the right. This time however
there are potentially new vertices produced by[

∇̄β̇
,∇+α̇

]
= δβ̇α̇W + . (6.12)
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The two terms that arise are

B’ =

∇+α̇�̂−1

∇2�̂−1∇̄2∇ α̇
+

∇̄2�̂−1 �̂−1∇2∇̄2

= −i

∇̄β̇∇+α̇�̂−1

∇αβ̇∇α�̂−1∇̄2∇ α̇
+

�̂−1 �̂−1∇2∇̄2

+

∇̄2∇+α̇�̂−1

∇2�̂−1∇̄2∇ α̇
+

�̂−1 �̂−1∇2∇̄2

,

which by means of eq. (A.9) evaluate to

= −i

W+�̂−1

∇αα̇∇α�̂−1∇̄2∇ α̇
+

�̂−1 �̂−1∇2∇̄2

+

∇+α̇�̂−1

∇αβ̇∇α�̂−1∇̄2∇ α̇
+

�̂−1 �̂−1∇β̇γ∇γ∇̄2

+ i

W+�̂−1

∇2�̂−1∇̄2∇ α̇
+

�̂−1 �̂−1∇αα̇∇α∇̄2

.

At this point we have to expand the propagators in terms of the background field
strengths in order to have enough factors of ∇2 to get a non-vanishing result. In
the first term it is necessarily the propagator from the chiral loop that has to be
expanded, because otherwise the chiral loop does not have a factor of ∇2. We find

W+�−1W+�−1

∇+
α̇∇2�−1∇̄2∇ α̇

+

�−1 �−1∇2∇̄2

=

W+�−1W+�−1

∇2∇̄2

�−1 �−1∇2∇̄2

. (6.13)

Due to ∇+
α̇∇ α̇

+ = � the upper propagator is deleted and thus this a 1VR graph.
According to section 3.2 its overall UV divergence does not have a first order pole in
ε and will not contribute.

The second term has the expansion

∇+α̇�−1W+�−1

∇+

β̇
∇2�−1∇̄2∇ α̇

+

�−1 �−1W+�−1∇β̇+∇2∇̄2

−

∇+α̇�−1W+�−1

∇+

β̇
∇2�−1∇̄2∇ α̇

+

�−1W+�−1 �−1∇β̇+∇2∇̄2

. (6.14)

Note the relative minus sign between the two terms. This comes from the fact that in
the second diagram the factor of ∇+ from the expansion of �̂−1 has to be commuted
through the vertex containing the factor of W +. It is easy to see that their difference
is finite and we will not consider it further. Finally the third term gives
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W+�−1

∇2�−1∇̄2∇ α̇
+

�−1 ∇+
α̇�−1W+�−1∇2∇̄2

−

W+�−1

∇2�−1∇̄2∇ α̇
+

�−1W+�−1 ∇+
α̇�−1∇2∇̄2

+

W+�−1W+�−1

∇2�−1∇̄2∇ α̇
+

�−1 ∇+
α̇�−1∇2∇̄2

. (6.15)

The difference of the first two terms is again finite and the third term evaluates to

1
2 (I2 − I2 − I11) , (6.16)

with I11 = −I2
1 . Thus the overall UV divergence does not have a first order pole.

6.2 Results

According to the treatment of the last section we find that the only contributions to
the dilatation operator that contain a chiral field at two loops come from the diagrams
B” and C . These are given by

B” + C = I2 {W +,W +} . (6.17)

For the dilatation operator we have to multiply this result by 2L = 4 and extract the
first order pole. We again omit a factor of g4/(4π)4, which gives us

D
(2)
chiral(W+W+) = 4W +W + . (6.18)

Note again, that in a superconformal gauge theory the field content is very restricted.
In fact one finds that the combinatorical factor coming from the chiral loop must
always be identical to the one in N = 4 SYM. This is a consequence of the vanishing
of the one loop β function: The vector and and ghost contributions to the one loop
self-energy correction of the vector field are identical, hence the contributions of the
chiral fields also have to be the same. This leaves us with

D
(2)
N=4 −D

(2)
N=1 = 0 (6.19)

in the SU(2, 1|1) sector. The first non-vanishing contributions are found at three loop
order, which we will calculate in the next chapter.



Chapter 7

Three Loops

We trust that after consultation of the one and two loop computations the reader has
gained some familiarity with the structure of the computations. In order to keep the
three loop computation reasonably concise we will stop highlighting changes in blue
and often perform multiple steps at once.

7.1 Topology 1

7.1.1 The vacuum

We begin by considering the topology given by a chiral loop with a vector superfield
propagating inside the loop. First, as always, we commute the factor ∇+ from the
left

∇2�̂−1∇̄2 ∇2�̂−1∇̄2

∇̄2�̂−1∇2∇̄2�̂−1∇2

∇̄2∇+�̂−1 �̂−1∇+∇̄2

=

∇2�̂−1∇̄2 ∇2�̂−1∇̄2

∇̄2�̂−1∇2∇+∇̄2∇2�̂−1

∇̄2�̂−1 �̂−1∇+∇̄2

− i

∇2�̂−1∇̄2 ∇2�̂−1∇̄2

∇̄2�̂−1∇2∇+∇̄2∇2�̂−1

∇̄2�̂−1(∇+W+)�̂−1 �̂−1∇+∇̄2
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=

∇2�̂−1∇̄2 ∇2�̂−1∇̄2

∇̄2�̂−1∇2W+∇2�̂−1

∇̄2�̂−1 �̂−1∇+∇̄2

︸ ︷︷ ︸
A

+

∇2�̂−1∇̄2 ∇2�̂−1∇̄2

∇̄2�̂−1∇2∇+α̇∇̄α̇∇2�̂−1

∇̄2�̂−1 �̂−1∇+∇̄2

︸ ︷︷ ︸
B

+

∇2�̂−1∇̄2 ∇2�̂−1∇̄2

∇̄2�̂−1∇2∇α̇+∇̄α̇∇2�̂−1

∇̄2�̂−1(∇+W+)�̂−1 �̂−1∇+∇̄2

︸ ︷︷ ︸
C

. (7.1)

In the first term we can integrate by parts the factor of ∇2 away from the lower left
line. The derivatives cannot go on the upper right line because ∇3 = 0. We find

A =

∇2�̂−1∇̄2 ∇2�̂−1∇̄2

�̂−1∇2∇̄2∇2W+�̂−1

∇̄2�̂−1 �̂−1∇+∇̄2

+

�̂−1∇2∇̄2∇2 ∇2�̂−1∇̄2

∇̄2�̂−1∇2W+�̂−1

∇̄2�̂−1 �̂−1∇+∇̄2

+

�̂−1∇2∇̄2∇α ∇2�̂−1∇̄2

∇α∇̄2∇2�̂−1W+�̂−1

∇̄2�̂−1 �̂−1∇+∇̄2

, (7.2)

which, upon using the commutation relations, takes the form

=

∇2�̂−1∇̄2 ∇2�̂−1∇̄2

∇2W+�̂−1

∇̄2�̂−1 �̂−1∇+∇̄2

+

∇2 ∇2�̂−1∇̄2

∇̄2�̂−1∇2W+�̂−1

∇̄2�̂−1 �̂−1∇+∇̄2

︸ ︷︷ ︸
=0
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+

�̂−1∇2∇αα̇∇̄α̇ ∇2�̂−1∇̄2

∇α∇̄2∇2�̂−1W+�̂−1

∇̄2�̂−1 �̂−1∇+∇̄2

︸ ︷︷ ︸
=0

, (7.3)

where the second and third term vanish immediately by a lack of ∇̄2 in the left loop.
In the first term we integrate by parts the factor ∇2 at the right vertex, which yields

=

∇2�̂−1∇̄2 ∇2

W+�̂−1

∇̄2�̂−1 �̂−1∇+∇̄2

+

∇2�̂−1∇̄2 ∇2�̂−1∇̄2∇α

W+�̂−1

∇̄2�̂−1 ∇α�̂−1∇+∇̄2

+

∇2�̂−1∇̄2 ∇2�̂−1∇̄2

W+�̂−1

∇̄2�̂−1 ∇2�̂−1∇+∇̄2

=0 , (7.4)

where again the first and second term vanish due to a lack of ∇̄2, while the last term
vanishes because of

[
∇2, �̂

]
= 0 in our sector. We follow the same procedure for the

second term. The non-vanishing contributions in this case are

B =

∇2�̂−1∇̄2 ∇2�̂−1∇̄2

�̂−1∇2∇̄2∇2∇+α̇∇̄α̇�̂−1

∇̄2�̂−1 �̂−1∇+∇̄2

+

∇2�̂−1∇̄2∇α ∇2�̂−1∇̄2

∇α∇̄2�̂−1∇2∇+α̇∇̄α̇�̂−1

∇̄2�̂−1 �̂−1∇+∇̄2

=

∇2�̂−1∇̄2 ∇2�̂−1∇̄2

∇2∇+α̇∇̄α̇�̂−1

∇̄2�̂−1 �̂−1∇+∇̄2

+

�̂−1∇2∇αβ̇∇̄β̇ �̂−1∇2∇̄2∇+

∇α∇̄2�̂−1∇2∇+α̇∇̄α̇�̂−1

∇̄2�̂−1 �̂−1∇̄2
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+

�̂−1∇2∇αβ̇∇̄β̇ �̂−1∇2∇̄2∇+

∇α∇̄2�̂−1∇2∇+α̇∇̄α̇�̂−1

∇̄2�̂−1 �̂−1(∇+W+)�̂−1∇̄2

=

∇2�̂−1∇̄2 ∇2�̂−1∇̄2

∇+α̇∇̄α̇�̂−1

∇̄2�̂−1 ∇2�̂−1∇+∇̄2

+

�̂−1∇2∇̄2∇αα̇ �̂−1∇2∇+β̇∇̄
β̇

∇α∇̄2�̂−1∇2∇+α̇�̂−1

∇̄2�̂−1 �̂−1∇̄2

+

�̂−1∇2∇̄2∇αα̇ �̂−1∇2∇̄β̇∇+β̇

∇α∇̄2�̂−1∇2∇+α̇�̂−1

∇̄2�̂−1 �̂−1(∇+W+)�̂−1∇̄2

, (7.5)

where the first term vanishes again due to
[
∇2, �̂

]
= 0. This yields

=

�̂−1∇2∇̄2∇αα̇ �̂−1∇2∇+β̇∇̄
β̇

∇αγ̇∇̄γ̇�̂−1∇2∇+α̇�̂−1

∇̄2�̂−1 �̂−1∇̄2

+

�̂−1∇2∇̄2∇αα̇ �̂−1∇2∇̄β̇∇+β̇

∇αγ̇∇̄γ̇�̂−1∇2∇+α̇�̂−1

∇̄2�̂−1 �̂−1(∇+W+)�̂−1∇̄2

=

�̂−1∇2∇̄2∇αα̇ �̂−1∇2∇̄2∇β̇
+

∇αβ̇�̂−1∇+α̇�̂−1

∇̄2�̂−1 ∇2�̂−1∇̄2

+

�̂−1∇2∇̄2∇αα̇ �̂−1∇2∇+β̇

∇αβ̇�̂−1∇+α̇�̂−1

∇̄2�̂−1 �̂−1(∇+W+)�̂−1∇2∇̄2

.

(7.6)

The first diagram is the one that yields new vertices. Below we will show that these
contributions do not have a first order pole and thus have no effect on the dilatation
operator. The second term gives a contribution that is equivalent to the one from



7.1. TOPOLOGY 1 65

diagram C , which evaluates to

C =

∇2�̂−1∇̄2 ∇2�̂−1∇̄2

∇2∇α̇+∇̄α̇�̂−1

∇̄2�̂−1(∇+W+)�̂−1 �̂−1∇+∇̄2

+

∇2�̂−1∇̄2∇α ∇2�̂−1∇̄2

∇α∇̄2�̂−1∇2∇α̇+∇̄α̇�̂−1

∇̄2�̂−1(∇+W+)�̂−1 �̂−1∇+∇̄2

=

∇2�̂−1∇̄2∇αα̇ ∇2�̂−1∇̄2

∇β̇α∇̄β̇�̂−1∇2∇α̇+�̂−1

∇̄2�̂−1(∇+W+)�̂−1 �̂−1∇+∇̄2

=

∇2�̂−1∇̄2∇αα̇
∇2�̂−1∇̄2∇ββ̇

∇β̇α�̂−1∇α̇+�̂−1

∇̄2�̂−1(∇+W+)�̂−1 ∇β�̂−1∇+∇̄2

=

∇2�̂−1∇̄2∇αα̇
∇2�̂−1∇̄2∇+β̇

∇β̇α�̂−1∇α̇+�̂−1

�̂−1(∇̄2∇+W+)�̂−1 �̂−1∇2∇̄2

, (7.7)

which has the structure of a renormalized tree level vertex.

As mentioned above, the only diagrams that can contribute new vertices are
produced from

�̂−1∇2∇̄2∇αα̇ �̂−1∇2∇̄2∇ β̇
+

∇αβ̇�̂−1∇+α̇�̂−1

∇̄2�̂−1 ∇2�̂−1∇̄2

. (7.8)
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By commuting the leftmost factor of ∇̄2 through the diagram one finds

=

�−1∇2∇̄2∇+α̇ �−1∇2∇̄2∇+α̇

W+�−1W+�−1

�−1 ∇2�−1∇̄2

+ i

�̂−1∇2∇̄2∇αα̇ �̂−1∇βα̇∇β∇̄2∇ β̇
+

∇αβ̇�̂−1W+�̂−1

�̂−1 ∇2�̂−1∇̄2

+ i

�̂−1∇2∇̄2∇αα̇ �̂−1∇2∇̄2∇ β̇
+

∇αβ̇�̂−1W+�̂−1

�̂−1 �̂−1∇γα̇∇γ∇̄2

− i

�̂−1∇2∇̄2∇+α̇ �̂−1∇γ̇β∇β∇̄2∇+γ̇

W+�̂−1∇+α̇�̂−1

�̂−1 ∇2�̂−1∇̄2

+

�̂−1∇2∇̄2∇αα̇ �̂−1∇γ̇β∇β∇̄2∇ β̇
+

∇αβ̇�̂−1∇+α̇�̂−1

�̂−1 �̂−1∇γγ̇∇γ∇̄2

+ i

�̂−1∇2∇̄2∇+α̇ �̂−1∇2∇̄2∇ β̇
+

W+�̂−1∇+α̇�̂−1

�̂−1 �̂−1∇β̇γ∇γ∇̄2

+

�̂−1∇β
α̇∇β∇̄2∇αα̇ �̂−1∇2∇̄2∇ β̇

+

∇αβ̇�̂−1W+�̂−1

�̂−1 ∇2�̂−1∇̄2

+

�̂−1∇β

β̇
∇β∇̄2∇+α̇ �̂−1∇2∇̄2∇ β̇

+

W+�̂−1∇+α̇�̂−1

�̂−1 ∇2�̂−1∇̄2

+ i

�̂−1∇γ̇β∇β∇̄2∇αα̇ �̂−1∇2∇̄2∇ β̇
+

∇αβ̇�̂−1∇+α̇�̂−1

�̂−1 �̂−1∇γ
γ̇∇γ∇̄2

+ i

�̂−1∇γ̇β∇β∇̄2∇αα̇ �̂−1∇γ
γ̇∇γ∇̄2∇ β̇

+

∇αβ̇�̂−1∇+α̇�̂−1

�̂−1 ∇2�̂−1∇̄2

.

(7.9)

Now one has to expand the �̂−1 propagators. As an example we look at the third
term

�̂−1∇2∇̄2∇αα̇ �̂−1∇2∇̄2∇ β̇
+

∇αβ̇�̂−1W+�̂−1

�̂−1 �̂−1∇γα̇∇γ∇̄2



7.1. TOPOLOGY 1 67

= i

�−1∇2∇̄2∇αα̇ �−1∇2∇̄2∇ β̇
+

∇αβ̇�−1W+�−1

�−1 �−1W+�−1∇+
α̇∇2∇̄2

− i

�−1∇2∇̄2∇αα̇ �−1∇2∇̄2∇ β̇
+

∇αβ̇�−1W+�−1

�−1W+�−1 �−1∇+
α̇∇2∇̄2

︸ ︷︷ ︸
finite

+ i

�−1∇2∇̄2∇αα̇ �−1∇2∇̄2∇ β̇
+

∇αβ̇�−1W+�−1W+�−1

�−1 �−1∇+
α̇∇2∇̄2

+ i

�−1∇2∇̄2∇αα̇ �−1∇2∇̄2∇ β̇
+

∇αβ̇�−1W+�−1W+�−1

�−1 �−1∇+
α̇∇2∇̄2

.

(7.10)

Similar cancellations take place in the other terms. The result is

�̂−1∇2∇̄2∇αα̇ �̂−1∇2∇̄2∇ β̇
+

∇αβ̇�̂−1∇+α̇�̂−1

∇̄2�̂−1 ∇2�̂−1∇̄2

=

�−1∇2∇̄2∇+α̇ �−1∇2∇̄2∇+α̇

W+�−1W+�−1

�−1 ∇2�−1∇̄2

+

�−1∇2∇̄2∇αα̇ �−1∇+
α̇∇2∇̄2∇ β̇

+

∇αβ̇�−1W+�−1W+�−1

�−1 ∇2�−1∇̄2

−

�−1∇2∇̄2∇αα̇ �−1∇2∇̄2∇ β̇
+

∇αβ̇�−1W+�−1W+�−1

�−1 �−1∇+
α̇∇2∇̄2

−

�−1∇2∇̄2∇αα̇ �−1∇2∇̄2∇ β̇
+

∇αβ̇�−1W+�−1W+�−1

�−1 �−1∇+
α̇∇2∇̄2

−

�−1∇2∇̄2∇+α̇ �−1∇γ̇+∇2∇̄2∇+γ̇

W+�−1W+�−1∇+α̇�−1

�−1 ∇2�−1∇̄2

+

�−1∇2∇̄2∇αα̇ �−1∇γ̇+∇2∇̄2∇ β̇
+

∇αβ̇�−1W+�−1∇+α̇�−1W+�−1

�−1 �−1∇+
γ̇∇2∇̄2
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+

�−1∇2∇̄2∇+α̇ �−1∇2∇̄2∇ β̇
+

W+�−1W+�−1∇+α̇�−1

�−1 �−1∇+

β̇
∇2∇̄2

+

�−1∇2∇̄2∇+α̇ �−1∇2∇̄2∇ β̇
+

W+�−1∇+α̇�−1W+�−1

�−1 �−1∇+

β̇
∇2∇̄2

+

�−1∇+
α̇∇2∇̄2∇αα̇ �−1∇2∇̄2∇ β̇

+

∇αβ̇�−1W+�−1W+�−1

�−1 ∇2�−1∇̄2

−

�−1∇+

β̇
∇2∇̄2∇+α̇ �−1∇2∇̄2∇ β̇

+

W+�−1∇+α̇�−1W+�−1

�−1 ∇2�−1∇̄2

−

�−1∇γ̇+∇2∇̄2∇αα̇ �−1∇2∇̄2∇ β̇
+

∇αβ̇�−1W+�−1∇+α̇�−1W+�−1

�−1 �−1∇+
γ̇∇2∇̄2

+

�−1∇γ̇+∇2∇̄2∇αα̇ �−1∇+
γ̇∇2∇̄2∇ β̇

+

∇αβ̇�−1W+�−1∇+α̇�−1W+�−1

�−1 ∇2�−1∇̄2

.

(7.11)

All of these graphs reduce to the so-called Benz topology. The momentum contractions
can be reduced to usual scalar products of momenta. In usual Feynman diagram
notation the result is given by

= + + − + +

− + + − +

+ − − + −

+ − , (7.12)

where the two different kinds of arrows denote scalar products of the corresponding
momenta. These graphs can in turn be reduced to the basis of appendix B. For this
we use a reduction procedure similar to the one implemented in Mincer [76, 77]. Using
the explicit results from that section it is easy to see that this evaluates to

1
2 (I1I2 − I3 + I32t) + 3

2I3b (7.13)

which does not have a first order pole and will thus not contribute.
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7.1.2 Results

We thus find that the first order pole contribution to the counterterm from this
topology is given purely by eq. (7.7) and the last diagram in eq. (7.6). They give
identical results and upon reduction to our basis, they evaluate to

Z(3)
contr,Top1 = − 1

16I3n + 1
2I3t + 1

2I3bb −
37
16I3 . (7.14)

The contribution to the dilatation operator from this topology is thus given by

D
(3)
Top1(W+W+) =

(
6ζ(3)− 647

576

)
(W +W +) . (7.15)

7.2 Topology 2

7.2.1 The Vacuum

The next topology to consider is the one with a chiral loop and a chiral field propagating
inside, namely the one given by

,

with the appropriate derivatives acting on the propagators. In this case we have to
consider both D-algebra structures separately, because upon closing the diagram there
is no symmetry relating them. The computation is fairly similar to the last one. The
starting point are the two diagrams

∇2�̂−1∇̄2 ∇̄2�̂−1∇2

∇2�̂−1∇̄2∇̄2�̂−1∇2

∇̄2∇+�̂−1 �̂−1∇+∇̄2

and

∇̄2�̂−1∇2 ∇2�̂−1∇̄2

∇̄2�̂−1∇2∇2�̂−1∇̄2

∇̄2∇+�̂−1 �̂−1∇+∇̄2

.

(7.16)
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Their computation is quite similar to the previous toplogy and thus we will skip some
of the steps. The first one evaluates to

∇2�̂−1∇̄2 ∇̄2�̂−1∇2

∇2�̂−1∇̄2∇̄2�̂−1∇2

∇̄2∇+�̂−1 �̂−1∇+∇̄2

=

∇2�̂−1∇̄2 ∇̄2�̂−1∇2

∇2�̂−1∇̄2W+�̂−1∇2

∇̄2�̂−1 �̂−1∇+∇̄2

︸ ︷︷ ︸
A

+

∇2�̂−1∇̄2 ∇̄2�̂−1∇2

∇2�̂−1∇̄2∇+α̇∇̄α̇�̂−1∇2

∇̄2�̂−1 �̂−1∇+∇̄2

︸ ︷︷ ︸
B

+

∇2�̂−1∇̄2 ∇̄2�̂−1∇2

∇2�̂−1∇̄2∇α̇+∇̄α̇�̂−1∇2

∇̄2�̂−1(∇+W+)�̂−1 �̂−1∇+∇̄2

︸ ︷︷ ︸
C

.

(7.17)

The first contribution again vanishes

A =

∇2�̂−1∇̄β̇∇β̇α ∇α∇̄2�̂−1∇2

∇2�̂−1∇̄2W+�̂−1

∇̄2�̂−1 �̂−1∇+∇̄2

+

∇2�̂−1∇̄2 ∇2

∇2�̂−1∇̄2W+�̂−1

∇̄2�̂−1 �̂−1∇+∇̄2

= 0 (7.18)

due to the lack of ∇̄2 and
[
∇2, �̂

]
= 0. The next one is

B =

∇2�̂−1∇̄β̇∇β̇α ∇α∇̄2�̂−1∇2

∇2�̂−1∇̄2∇+α̇∇̄α̇�̂−1

∇̄2�̂−1 �̂−1∇+∇̄2

+

∇2�̂−1∇̄2 ∇2

∇2�̂−1∇̄2∇+α̇∇̄α̇�̂−1

∇̄2�̂−1 �̂−1∇+∇̄2

︸ ︷︷ ︸
=0



7.2. TOPOLOGY 2 71

=

∇2�̂−1∇̄2∇α̇α ∇αβ̇∇̄
β̇∇2�̂−1

�̂−1∇2∇̄δ̇∇+δ̇
∇+α̇�̂−1

∇̄2�̂−1 �̂−1∇̄2

+

∇2�̂−1∇̄2∇α̇α ∇αβ̇∇̄
β̇∇2�̂−1

�̂−1∇2∇̄δ̇∇+δ̇∇+α̇�̂−1

∇̄2�̂−1 �̂−1(∇+W+)�̂−1∇̄2

=

∇2�̂−1∇̄2∇α̇α ∇αβ̇∇̄
2∇2�̂−1

�̂−1∇2∇β̇
+

∇+α̇�̂−1

∇̄2�̂−1 �̂−1∇̄2

+

∇2�̂−1∇̄2∇α̇α ∇αβ̇∇̄
2∇2�̂−1

�̂−1∇2∇+β̇∇+α̇�̂−1

∇̄2�̂−1 �̂−1(∇+W+)�̂−1∇̄2

.

(7.19)

The first diagram in the last equation is the one that can potentially produce new
vertices. Finally contribution C only produces old vertices.

C =

∇2�̂−1∇̄2 ∇2

∇2�̂−1∇̄2∇α̇+∇̄α̇�̂−1

∇̄2�̂−1(∇+W+)�̂−1 �̂−1∇+∇̄2

︸ ︷︷ ︸
=0

+

∇2�̂−1∇̄2∇α ∇α∇̄2�̂−1∇2

∇2�̂−1∇̄2∇α̇+∇̄α̇�̂−1

∇̄2�̂−1(∇+W+)�̂−1 �̂−1∇+∇̄2

=

∇2�̂−1∇̄2∇αα̇
∇β̇α∇̄β̇∇2�̂−1

∇2�̂−1∇̄2∇α̇+�̂−1

∇̄2�̂−1(∇+W+)�̂−1 �̂−1∇+∇̄2

=

∇2�̂−1∇̄2∇αα̇
∇β̇α∇̄β̇�̂−1

∇2�̂−1∇̄γ̇∇+γ̇∇α̇+�̂−1

∇̄2�̂−1(∇+W+)�̂−1 �̂−1∇2∇̄2
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=

∇2�̂−1∇̄2∇αα̇ ∇β̇α�̂−1

∇2�̂−1∇̄2∇+β̇
∇α̇+�̂−1

∇̄2�̂−1(∇+W+)�̂−1 �̂−1∇2∇̄2

=

∇2�̂−1∇̄2∇αα̇ ∇β̇α�̂−1

∇2�̂−1∇̄2∇+β̇
∇α̇+�̂−1

�̂−1(∇̄2∇+W+)�̂−1 �̂−1∇2∇̄2

. (7.20)

Since the calculation of the other D-algebra structure is virtually identical, we will
skip it. The same diagram C also appears in that topology and the two diagrams,
which contain all the potentially dangerous contributions from these two topologies,
are

∇2�̂−1∇̄2∇α̇α ∇αβ̇∇̄
2∇2�̂−1

�̂−1∇2∇β̇
+

∇+α̇�̂−1

∇̄2�̂−1 �̂−1∇̄2

and

∇+α̇�̂−1∇̄2∇2 ∇ γ̇
+ �̂−1∇2∇̄2

∇αγ̇�̂−1∇αα̇�̂−1

∇̄2�̂−1 �̂−1∇2∇̄2

.

(7.21)

After finishing the D-algebra the first diagram yields

∇2�̂−1∇̄2∇α̇α ∇αβ̇∇̄
2∇2�̂−1

�̂−1∇2∇β̇
+

∇+α̇�̂−1

∇̄2�̂−1 �̂−1∇̄2

=

�−1∇2∇̄2∇αα̇ ∇αα̇∇̄2∇2�−1

W+�−1W+�−1

�−1 �−1∇2∇̄2

+

�−1∇2∇̄2∇αα̇ ∇+
α̇∇αβ̇∇̄

2∇2�−1

∇ β̇
+ �−1W+�−1W+�−1

�−1 �−1∇2∇̄2
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−

�−1∇2∇̄2∇αα̇ ∇αβ̇∇̄
2∇2�−1

∇ β̇
+ �−1W+�−1W+�−1

�−1 ∇+
α̇�−1∇2∇̄2

−

�−1∇2∇̄2∇αα̇ ∇αβ̇∇̄
2∇2�−1

∇ β̇
+ �−1W+�−1W+�−1

�−1 ∇+
α̇�−1∇2∇̄2

+

�−1∇2∇̄2∇αα̇ ∇+β̇∇αβ̇∇̄
2∇2�−1

W+�−1W+�−1∇+α̇�−1

�−1 �−1∇2∇̄2

+

�−1∇2∇̄2∇αα̇ ∇+γ̇∇̄2∇2�−1

∇ β̇
+ �−1W+�−1∇+α̇�−1W+�−1

�−1 ∇+
γ̇�−1∇2∇̄2

−

�−1∇2∇̄2∇αα̇ ∇αβ̇∇̄
2∇2�−1

W+�−1W+∇+α̇�−1

�−1 ∇+β̇�−1∇2∇̄2

+

�−1∇2∇̄2∇αα̇ ∇αβ̇∇̄
2∇2�−1

W+�−1∇+α̇�−1W+�−1

�−1 ∇+β̇�−1∇2∇̄2

+

∇+
α̇�−1∇2∇̄2∇αα̇ ∇αβ̇∇̄

2∇2�−1

∇ β̇
+ �−1W+�−1W+�

�−1 �−1∇2∇̄2

−

∇+β̇�−1∇2∇̄2∇αα̇ ∇αβ̇∇̄
2∇2�−1

W+�−1∇+α̇�−1W+�−1

�−1 �−1∇2∇̄2

+

∇+γ̇�−1∇2∇̄2∇αα̇ ∇+
γ̇∇αβ̇∇̄

2∇2�−1

∇ β̇
+ �−1W+�−1∇+α̇�−1W+�−1

�−1 �−1∇2∇̄2

−

∇+γ̇�−1∇2∇̄2∇αα̇ ∇αβ̇∇̄
2∇2�−1

∇ β̇
+ �−1W+�−1∇+α̇�−1W+�−1

�−1 ∇+
γ̇�−1∇2∇̄2

.

(7.22)

and analogously for the second topology. Reducing this to ordinary Feynman diagrams
leads to

+ + − + +

− + + − +

+ − + − +
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− + − + +

− + + − + . (7.23)

Similarly the other D-algebra structure yields

− − − + −

+ − − . (7.24)

which together evaluates to

= −I3 − I32t + 3
2I3b + 1

2I3bb . (7.25)

This has no first order pole and thus does not contribute to the dilatation operator.

7.2.2 Results

In complete analogy to topology 1 the total first order pole contribution to the
dilatation operator of this topology again comes only from eq. (7.20) and the last
diagram in eq. (7.19). Note that the momentum contractions are different from
topology 2. They evaluate to

Z(3)
contr,Top2 = 5

16I3 −
1
2I3bb + 17

8 I3n . (7.26)

The contribution to the dilatation operator from this topology is thus given by

D
(3)
Top2(W+W+) = − 9

64(W +W +) . (7.27)

7.3 Topology 3

Next we consider the two topologies where there is a chiral field propagating inside
the chiral loop. We have two different D-algebra structures

and .
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In our notation it looks like they are identical, however remember that the operator
sites are closed above the diagram, hence the symmetry is broken and these are indeed
two different diagrams. There are two more pairs of diagrams like these, which are
treated in the same way and hence we will not consider them further. They are

and ,

and .

Importantly the results for the topologies

, and

can also be directly inferred from these, because the computation is virtually identical.
The topology

(7.28)

is even simpler and will be discussed very briefly at the end of this section. All these
topologies turn out to be relatively simple to evaluate. We find

∇2�̂−1∇̄2

∇̄2�̂−1∇2

∇̄2�̂−1∇2

∇̄2�̂−1∇2

∇̄2∇+�̂−1 �̂−1∇+∇̄2

�̂−1
=

∇2�̂−1∇̄2

∇̄2�̂−1∇2

∇̄2�̂−1∇2

W+�̂−1∇2

∇̄2�̂−1 �̂−1∇+∇̄2

�̂−1

︸ ︷︷ ︸
= A
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+

∇2�̂−1∇̄2

∇̄2�̂−1∇2

∇̄2�̂−1∇2

∇+α̇∇̄α̇�̂−1∇2

∇̄2�̂−1 �̂−1∇+∇̄2

�̂−1

︸ ︷︷ ︸
= B

+

∇2�̂−1∇̄2

∇̄2�̂−1∇2

∇̄2�̂−1∇2

∇α̇+∇̄α̇�̂−1∇2

∇̄2�̂−1(∇+W+)�̂−1 �̂−1∇+∇̄2

�̂−1

︸ ︷︷ ︸
= C

(7.29)

The first contribution vanishes due to ∇3 = 0

A =

∇2�̂−1∇̄2

∇2

∇̄2�̂−1∇2

W+�̂−1

∇̄2�̂−1 �̂−1∇+∇̄2

�̂−1
=

∇2�̂−1∇̄2

∇̄2�̂−1∇2

W+�̂−1

∇̄2�̂−1 �̂−1∇2∇+∇̄2

�̂−1

= 0 . (7.30)

The second contribution is

B =

∇2�̂−1∇̄2

∇2

∇̄2�̂−1∇2

∇+α̇∇̄α̇�̂−1

∇̄2�̂−1 �̂−1∇+∇̄2

�̂−1

=

∇2�̂−1∇̄β̇∇ β̇
+

∇̄2�̂−1∇2

∇+α̇∇̄α̇�̂−1

∇̄2�̂−1 �̂−1∇2∇̄2

�̂−1
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+

∇2�̂−1∇̄β̇∇+β̇

∇̄2�̂−1∇2

∇+α̇∇̄α̇�̂−1

∇̄2�̂−1 �̂−1(∇+W+)∇+�̂−1∇+∇̄2

�̂−1
, (7.31)

where the first diagram is the only one that produces a new vertex and the last
contribution is

C =

∇2�̂−1∇̄2

∇2

∇̄2�̂−1∇2

∇α̇+∇̄α̇�̂−1

∇̄2�̂−1(∇+W+)�̂−1 �̂−1∇+∇̄2

�̂−1
=

∇2�̂−1∇̄2∇+α̇

∇̄2�̂−1∇2

∇α̇+�̂−1

∇̄2�̂−1(∇+W+)�̂−1 ∇+�̂−1∇+∇̄2

�̂−1
.

(7.32)

An analogous calculation for the other topology shows that the only graphs with new
vertices come from the two diagrams

∇2�̂−1∇̄2∇ α̇
+

∇̄2�̂−1∇2

∇+α̇�̂−1

∇̄2�̂−1 �̂−1∇2∇̄2

�̂−1 and

∇2�̂−1∇̄2

∇2�̂−1∇̄2∇ α̇
+

∇+α̇�̂−1

∇̄2�̂−1 �̂−1∇2∇̄2

�̂−1

.

(7.33)

After expansion in terms of the background fields and reduction of the scalar products
we find

− 1
2

�−1

�−1

W+�−1W+

�−1 �−1

�−1 +

�−1

�−1W+∇+α̇�−1

W+�−1

∇+α̇�−1 �−1

�−1 − 1
2

�−1

�−1W+�−1

W+

�−1 �−1

�−1
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+ 1
2

�−1

�−1

W+�−1W+

�−1 �−1

�−1

+ 1
2

�−1

W+�−1W+�−1

�−1 �−1

�−1

− 1
2

�−1

�−1

W+�−1W+�−1

�−1

�−1

=− I32t −
1
2I3 , (7.34)

which has no first order pole.

7.3.1 Results

As in the previous topologies the only contributions to the dilatation operator come
from eq. (7.32) and the last diagram in eq. (7.31) and they give

Z(3)
contr,Top3 = 1

2I3 −
1
2I3n . (7.35)

The contribution to the dilatation operator from this topology is thus given by

D
(3)
Top3(W+W+) = 25

8 (W +W +) . (7.36)

The same result also holds for

, , and .

The topology

Top 4 = (7.37)

is even easier. The D-algebra in this case is trivial and we immediately find that the
only contribution is

Z(3)
contr,Top4 = I3n , (7.38)

which yields

D
(3)
Top4(W+W+) = 9

4(W +W +) . (7.39)
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7.4 Other topologies

There are other topologies at three loops, which contain chiral loops. All of these have
in common, that there is no extra line propagating inside the loop. We are not aware
of any superconformal gauge theory, where they can contribute to the difference to
N = 4 SYM. It is nevertheless instructive to look at examples of such topologies. We
will consider the most intricate such topology, which is

.

It is also interesting because it is the only topology in our calculation that has an
interaction range of three sites instead of two. In this topology it turns out that the
most efficient way is to start at the site in the middle and commute the factor of ∇+

onto the chiral loop. We find

− i

∇2�̂−1∇̄2 ∇2�̂−1∇̄2

∇̄2�̂−1∇2

∇̄2∇+�̂−1

∇̄2

∇+

�̂−1

�̂−1∇+∇̄2

=

∇2�̂−1∇+α̇∇̄α̇ ∇2�̂−1∇̄2

∇̄2�̂−1∇2

∇̄2∇+�̂−1

∇̄2

�̂−1

�̂−1∇+∇̄2

=

∇β∇ α̇
β �̂−1∇+α̇ ∇2�̂−1∇̄2

∇̄2�̂−1∇2

∇̄2∇+�̂−1

∇̄2

�̂−1

�̂−1∇+∇̄2

+ i

∇2�̂−1∇+α̇ ∇2�̂−1∇̄2

∇̄2�̂−1∇2

∇̄2∇+∇̄α̇�̂−1

∇̄2

�̂−1

�̂−1∇+∇̄2
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= −i

∇βα̇�̂−1∇+α̇ ∇2�̂−1∇̄2

∇+β̇∇̄β̇�̂−1∇2

∇̄2�̂−1(∇+W+)�̂−1

∇̄2

∇β

�̂−1

�̂−1∇+∇̄2

︸ ︷︷ ︸
A

+

∇βα̇�̂−1∇+α̇ ∇2�̂−1∇̄2

W+�̂−1∇2

∇̄2�̂−1

∇̄2

∇β

�̂−1

�̂−1∇+∇̄2

︸ ︷︷ ︸
B

−

∇βα̇�̂−1∇+α̇ ∇2�̂−1∇̄2

∇+β̇∇̄
β̇�̂−1∇2

∇̄2�̂−1

∇̄2

∇β

�̂−1

�̂−1∇+∇̄2

︸ ︷︷ ︸
C

−

�̂−1∇+α̇
∇2�̂−1∇+β̇∇̄

β̇

∇̄2�̂−1∇2

∇̄2∇ α̇
+ �̂−1

∇̄2

∇2

�̂−1

�̂−1∇̄2

︸ ︷︷ ︸
D

+i

�̂−1∇+α̇
∇2�̂−1∇+β̇∇̄β̇

∇̄2�̂−1∇2

∇̄2∇ α̇
+ �̂−1

∇̄2

∇2

�̂−1

�̂−1(∇+W+)�̂−1∇̄2

︸ ︷︷ ︸
E

. (7.40)

Again we consider these contributions in turn. The first one gives

A = −i

∇βα̇�̂−1∇+α̇ ∇2�̂−1∇̄2∇+

∇+β̇∇̄β̇�̂−1

∇̄2�̂−1(∇+W+)�̂−1

∇̄2

∇β

�̂−1

�̂−1∇2∇̄2
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=

∇βα̇�̂−1∇+α̇ ∇2�̂−1∇+γ̇∇̄γ̇

∇+β̇∇̄β̇�̂−1

∇̄2�̂−1(∇+W+)�̂−1

∇̄2

∇β

�̂−1

�̂−1∇2∇̄2

= −

∇βα̇�̂−1∇+α̇
∇2�̂−1∇+β̇∇̄

2

∇+β̇�̂−1

∇̄2�̂−1(∇+W+)�̂−1

∇̄2

∇β

�̂−1

�̂−1∇2∇̄2

,

and after expansion of the propagators this is

= i

∇+α̇�−1∇+α̇
∇2�−1∇+β̇∇̄

2

∇+β̇�−1

�−1(∇̄2∇+W+)�−1W+�−1

∇̄2

∇2

�−1

�−1∇2∇̄2

− i

∇+α̇�−1∇+α̇
∇2�−1∇+β̇∇̄

2

∇+β̇�−1

�−1W+�−1(∇̄2∇+W+)�−1

∇̄2

∇2

�−1

�−1∇2∇̄2

. (7.41)
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The second contribution is particularly simple due to ∇3 = 0.

B =

∇βα̇�̂−1∇+α̇ ∇2�̂−1∇̄2

W+�̂−1

∇̄2�̂−1

∇̄2

∇β

�̂−1

�̂−1∇2∇+∇̄2

= 0 . (7.42)

For C we find

C =

∇βα̇�̂−1∇+α̇ ∇2�̂−1∇αγ̇∇̄γ̇

∇+β̇∇̄
β̇�̂−1

∇̄2�̂−1

∇̄2

∇β

�̂−1

∇α�̂−1∇+∇̄2

= −i

∇βα̇�̂−1∇+α̇ ∇2�̂−1∇αβ̇∇̄2

∇+β̇�̂−1

∇̄2�̂−1

∇̄2

∇β

�̂−1

∇α�̂−1∇+∇̄2

= −

∇βα̇�̂−1∇+α̇ ∇2�̂−1∇+β̇

∇+β̇�̂−1

∇̄2�̂−1

∇̄2

∇β

�̂−1

�̂−1(∇+W+)�̂−1∇2∇̄2

+ i

∇βα̇�̂−1∇+α̇ ∇2�̂−1∇ β̇
+

∇+β̇�̂−1

∇̄2�̂−1

∇̄2

∇β

�̂−1

�̂−1∇2∇̄2

,

which after expansion of the propagators evaluates to

= i

∇+α̇�−1∇+α̇ ∇2�−1∇+β̇

∇+β̇�−1

�−1W+�−1

∇̄2

∇2

�−1

�−1(∇̄2∇+W+)�−1∇2∇̄2
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+

∇+α̇�−1∇+α̇
∇2�−1∇+β̇

W+�−1W+�−1

∇̄2�−1W+�−1

∇̄2

∇2

�−1

∇+β̇�−1∇2∇̄2

+

∇+α̇�−1∇+α̇
∇2�−1∇+β̇

W+�−1

∇̄2�−1W+�−1

∇̄2

∇2

�−1

�−1W+∇+β̇�−1∇2∇̄2

. (7.43)

The fourth contribution is

D =

�̂−1∇+α̇
∇2�̂−1∇+β̇∇̄

β̇

∇̄2�̂−1

∇̄2∇ α̇
+ �̂−1

∇̄2

∇2

�̂−1

�̂−1∇2∇̄2

− i

�̂−1∇+α̇
∇2�̂−1∇+β̇∇γβ̇

∇̄2�̂−1

∇̄2∇ α̇
+ �̂−1

∇̄2

∇2

�̂−1

∇γ�̂−1∇̄2

= −i

�̂−1∇+α̇
∇2�̂−1∇+β̇∇̄

2

�̂−1

∇̄2∇ α̇
+ �̂−1

∇̄2

∇2

�̂−1

�̂−1∇+β̇∇+∇̄2

+ i

�̂−1∇+α̇
∇̄2∇2�̂−1∇+β̇∇+β̇

�̂−1

∇̄2∇ α̇
+ �̂−1

∇̄2

∇2

�̂−1

�̂−1∇+∇̄2
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= −i

�̂−1∇+α̇
∇̄2∇2�̂−1∇+β̇

∇̄+β̇�̂−1

∇̄2∇ α̇
+ �̂−1

∇̄2

∇2

�̂−1

�̂−1∇+∇̄2

= i

�̂−1∇+α̇
∇̄2∇2�̂−1∇+β̇

∇̄+β̇�̂−1

W+∇̄α̇�̂−1

∇̄2

∇2

�̂−1

�̂−1∇+∇̄2

= −

�̂−1∇+α̇
∇̄2∇2�̂−1∇+β̇

∇̄+β̇�̂−1

W+�̂−1

∇̄2

∇α

∇αα̇

�̂−1

�̂−1∇+∇̄2

−

�̂−1∇+α̇
∇̄2∇α∇̄αα̇�̂−1∇+β̇

∇̄+β̇�̂−1

W+�̂−1

∇̄2

∇2

�̂−1

�̂−1∇+∇̄2

,

and after expansion

=

�̂−1∇+α̇
∇̄2∇2�̂−1∇+β̇

�−1W+∇̄+β̇�−1

W+�−1W+�−1

∇̄2

∇2

∇+α̇

�−1

�−1∇2∇̄2

+

�−1∇+α̇
∇̄2∇2∇̄+α̇�−1∇+β̇

�−1W+∇̄+β̇�−1

W+�−1

∇̄2

∇2

�−1

�−1W+�−1∇2∇̄2

+

�−1∇+α̇
∇̄2∇2�−1∇+β̇

∇̄+β̇�−1

W+�−1W+�−1

∇̄2

∇2

∇+α̇

�−1

�−1W+�−1∇2∇̄2
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−

�−1∇+α̇
∇̄2∇2∇̄+α̇�−1∇+β̇

�−1W+∇̄+β̇�−1

W+�−1W+�−1

∇̄2

∇2

�−1

�−1∇2∇̄2

. (7.44)

Finally the last contribution is

E = i

�̂−1∇+α̇ ∇2�̂−1∇+β̇∇̄2

�̂−1

∇̄2∇ α̇
+ �̂−1

∇̄2

∇2

�̂−1

∇̄β̇�̂−1(∇+W+)�̂−1∇2∇̄2

= −i

�̂−1∇+α̇ ∇2�̂−1∇+β̇∇̄2

�̂−1

W+∇̄α̇�̂−1

∇̄2

∇2

�̂−1

�̂−1(∇̄β̇∇+W+)�̂−1∇2∇̄2

= −i

�̂−1∇+α̇ ∇2�̂−1∇+α̇∇̄2

�−1

W+�−1

∇̄2

∇2

�−1

�−1(∇̄2∇+W+)�−1∇2∇̄2

. (7.45)

Going through the same procedure as for the other topologies one finds that the
only diagrams, in which new vertices could contribute, are
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∇+α̇∇+α̇�−1 ∇+β̇�−1∇2∇̄2

W+�−1W+�−1

�−1W+�−1

∇̄2

∇2

�−1

∇+β̇�−1∇2∇̄2

+

∇+α̇∇+α̇�−1 ∇+β̇�−1∇2∇̄2

W+�−1

�−1W+�−1

∇̄2

∇2

�−1

∇+β̇�−1W+�−1∇2∇̄2

.

(7.46)

After reduction to our basis the dangerous diagrams take the form

1
2



�−1

W+�−1W+

�−1W+�−1

�−1

�−1

−

�−1

W+�−1

�−1W+�−1

�−1

W+�−1


.

(7.47)

These clearly cancel.
Let us reiterate that we do not know any N = 1 superconformal gauge theory, in

which this topology could contribute.



Chapter 8

Class Sk

It turns out that the issue of extending our calculation to the whole SU(2, 1|1) sector
is subtle. For the argument outlined in section 1 it is necessary to keep manifest gauge
invariance. This can be achieved by using the manifestly covariant formalism from
section 2.4. However since this formalism relies on shifting the external fields to a
single vertex it obscures the external structure of divergent subgraphs thereby making
it difficult idenfify the corresponding counterterms. This issue is as of yet unresolved.
As a first step towards the resolution of this problem in this section we present partial
results for a particular set of theories, called class Sk, which were introduced in [91]
and further studied in [92–100]. These allow for a simplified version of our argument.
At least up to three loops we can formulate the argument without referring to the
cancellation of new vertices. In principle we could even use a non-covariant formalism,
however as argued in section 2 this leads to a stark increase in the amount of diagrams
that have to be computed. In the following sections we will present those features of
theories of class Sk that are important for our computation and than give an overview
over the next steps of the calculation.

8.1 Theories of class Sk

These theories were introduced in [91]. In general they are given by twisted com-
pactifications of six-dimensional (1, 0) SCFTs on a Riemann surface. In this section
we are only interested in the subclass of these theories, which admit a Lagrangian
description. In particular we consider the set of quiver gauge theories obtained as
Zk orbifolds of elliptic N = 2 quivers. They are conformal by inheritance arguments
[20, 21, 23]. They are illustrated by the diagram in figure 8.1. Each blob stands for
an SU(N) gauge group with a vector superfield V(i,c) and the field representations
under these gauge groups are given in table 8.1.

87



88 CHAPTER 8. CLASS SK

(i− 1, c)

(i− 1, c− 1) (i, c + 1)

(i, c)

(i, c− 1) (i + 1, c + 1)

(i + 1, c)

Q̃(i−2,c−1)

Q̃(i−1,c−1)

Q̃(i,c−1)

Q̃(i−1,c)

Q̃(i,c)

Q̃(i+1,c)

Q(i−1,c−1)

Q(i,c−1)

Q(i+1,c−1)

Q(i−1,c)

Q(i,c)

Q(i+1,c)

Φ(i−2,c−1)

Φ(i−1,c−1)

Φ(i,c−1)

Φ(i−2,c)

Φ(i−1,c)

Φ(i,c)

Φ(i+1,c)

Φ(i−1,c+1)

Φ(i,c+1)

Φ(i+1,c+1)

Figure 8.1: Quiver diagram for a theory of class Sk with i ∈ {1, . . . , k} and
c ∈ {0, . . . ,M}. The nodes stand for gauge groups and their corresponding vector
multiplets and lines stand for chiral fields in the bifundamental representation of
the gauge groups they connect. We consider the sector made out of fields from the
vectormultiplet corresponding to the gauge group SU(N)(i,c) denoted by the red
blob. The figure is adapted from [94].

The superpotential is given by

LW =
k∑
i=1

M∑
c=1

tr
(
g(i,c)Q(i,c−1)Φ(i,c)Q̃(i,c−1) − g(i+1,c)Q̃(i,c)Φ(i,c)Q(i+1,c)

)
. (8.1)

In this sum cyclicity of the indices i and c is understood (k+1, c) = (1, c), (i, 0) = (i, c).
Notice that this can simply be read from the diagrams by following the triangular
paths. The sign is determined by the orientation of the path. In this section we will
use the rescaled fields V(i,c) → g(i,c)V(i,c) in order to make the coupling dependence
explicit and to get the conventional prefactors for the vertices. The gauge matter
interactions are then given by the Kähler potential

LK =
k∑
i=1

M∑
c=1

tr
(
e−g(i+1,c)V(i+1,c)Φ̄(i,c)e

g(i,c)V(i,c)Φ(i,c)

+ e−g(i,c)V(i,c)Q̄(i,c−1)e
g(i,c−1)V(i,c−1)Q(i,c−1)

+ e−g(i,c−1)V(i,c−1) ¯̃Q(i,c−1)e
g(i+1,c)V(i+1,c)Q̃(i,c−1)

) (8.2)

and together with

Lgauge =
k∑
i=1

M∑
c=1

Wα
(i,c)Wα(i,c) (8.3)
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SU(N)(i,c−1) SU(N)(i,c) SU(N)(i+1,c)

V(i,c) 1 adj. 1
Φ(i,c) 1 � �
Q(i,c−1) � � 1
Q̃(i,c−1) � 1 �

Table 8.1: Representations of the fields under the various gauge groups. It is
understood that SU(N)(k+1,c) = SU(N)(1,c). The table is adapted from [94].

Figure 8.2: Topoplogies that contribute to the difference between theories of class
Sk and N = 4 SYM.

the complete classical Lagrangian is given by

LSk = Lgauge + LK + LW . (8.4)

We will again make use of the difference method, only looking at diagrams that can
potentially be different from N = 4 SYM. As observed in [18, 90] for the case of N = 2
theories the only differences come from the presence of other gauge couplings. Say we
consider the SU(2, 1|1) sector that is made out of fields from the vector multiplet of
the gauge group SU(N)(i,c), then the only fields that can contribute to diagrams up
to three loops are the solid ones in figure 8.1. The shaded lines start contributing at
higher orders. As can be easily seen from the interaction terms in eqs. (8.1) and (8.2)
the diagrams that lead to differences either contain at least of the six neighboring
vector superfields V(i−1,c−1), V(i,c−1), V(i+1,c), V(i+1,c+1), V(i,c+1) or V(i−1,c) or at least one
of the four chiral fields Φ(i−1,c),Φ(i,c),Φ(i−1,c−1) or Φ(i,c+1). All of these diagrams have
the form of topologies 1, 2 and the simplified version of 3 in section 7. These are
shown in figure 8.2. In particular there are no contributions from one loop self-energy
corrections of the chiral fields inside the loop as in the original version of topology 3,
because these cancel. As an illustration consider all the diagrams that have the field
Φ(i,c) at the left vertex. These are listed in figure 8.3. Note that all of them come
with a prefactor g2

(i,c)g
2
(i+1,c) except for the last one, which has a prefactor of g2

(i,c)g
2
(i,c).

This prefactor is identical to N = 4 SYM and thus this diagram will not contribute
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Φ(i,c)

V(i,c) V(i,c)V(i+1,c)

Φ(i,c)

V(i,c) V(i,c)V(i+1,c)

Φ(i,c)

V(i,c) V(i,c)

V(i+1,c)

Φ(i,c) Q̃(i,c)

Q̃(i,c)
Φ(i,c)

V(i,c) V(i,c)Q(i+1,c)

Φ(i,c) Q(i,c−1)

Q(i,c−1)Φ(i,c)

V(i,c) V(i,c)Q̃(i,c−1)

Figure 8.3: All two loop subgraphs, where the chiral field that connects to the
left vertex is Φ(i,c). The first four topologies have a prefactor g2

(i,c)g
2
(i+1,c), while

the last one has a prefactor of g2
(i,c)g

2
(i,c).

to the difference. Analogous computations work for all the other chiral fields. After
collecting the diagrams according to the coupling constants one finds for the difference

Z(3)
∣∣∣
diff

=g4
(i,c)

(
4g2

(i,c) − g2
(i+1,c) − g2

(i−1,c) − g2
(i,c+1) − g2

(i,c−1)

)
×
(

+ 2 + 4 +
)

+ g4
(i,c)

(
2g2

(i,c) − g2
(i−1,c−1) − g2

(i+1,c+1)

)
×
(

+ 4 +
)
, (8.5)

where the diagrams in this equation are meant to be single flavor. We can now collect
the results from sections 7.1.2, 7.2.2 and 7.3.1. In total we find

D(3)
diff =g4

(i,c)

(
4g2

(i,c) − g2
(i+1,c) − g2

(i−1,c) − g2
(i,c+1) − g2

(i,c−1)

)
×
(
D(3)

diff,Top1 + 2D(3)
diff,Top2 + 4D(3)

diff,Top3 +D(3)
diff,Top4

)
+ g4

(i,c)

(
2g2

(i,c) − g2
(i−1,c−1) − g2

(i+1,c+1)

)
×
(
D(3)

diff,Top1 + 4D(3)
diff,Top3 +D(3)

diff,Top4

)
, (8.6)

which upon defining

A = −2g2
(i,c) + g2

(i+1,c) + g2
(i−1,c) + g2

(i,c+1) + g2
(i,c−1) − g2

(i−1,c−1) − g2
(i+1,c+1) ,

B = 6g2
(i,c) − g2

(i+1,c) − g2
(i−1,c) − g2

(i,c+1) − g2
(i,c−1) − g2

(i−1,c−1) − g2
(i+1,c+1) ,

(8.7)

takes the explicit form

D(3)
diff(W+W+) = g4

(i,c)

(
12ζ(3)B + 9

32A
)

(W +W +) . (8.8)

This can now related to the one loop result from eq. (5.52)

D
(1)
N=4(g2

(i,c))(W+W+) = 4g2
(i,c)(W +W +) . (8.9)
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From here we find

DN=1(g2)(W+W+) = DN=4(f(g2))(W +W +) (8.10)

with

f(g2) = g2
(i,c) + g4

(i,c)

(
A

9
128 + 3Bζ(3)

)
. (8.11)

Note that in contrast to the N = 2 case there is a term with subleading transcenden-
tality.

An important consistency check is that for k = 1 they should reduce to the result
for an N = 2 quiver. Setting k = 1 implies g(i,c) = g(j,c) = gc. Indeed upon this
substitution one finds

A = 0

B = 2(2g2
c − g2

c+1 − g2
c−1)

(8.12)

and thus

f(g)N=2 = g2
c + 6g2

c (2g2
c − g2

c+1 − g2
c−1) , (8.13)

which precisely matches the result from [35].
Since we omitted diagrams that only contribute higher order poles in our calcu-

lations we have unfortunately deprived ourselves of the chance to cross check the
cancellation of higher order poles. This should be remedied in future work.

8.2 Excitations

The argument in the preceeding section has a fairly straightforward generalization,
when derivatives are added. The topologies that contribute will be precisely the
same, only that there are extra derivatives acting on the propagators connected to
the operator insertion. It follows from powercounting that more terms can contribute.
Another feature is that similarly to the computations in section 5.2 the D-algebra
produces terms, where the dimensions of the external fields are smaller than the
dimensions of the fields of the operator participating in the interaction. In order to
treat these in a covariant fashion one has to use the formalism from section 2.4. In
order for this to be feasibly done at three loops, it has to be automated. The end
result of this computation are logarithmically divergent vacuum graphs with vector
indices. These are the central object of interest in [74], where they go by the name
LTVGs or logarithmic tensor vacuum graphs. This paper also introduces a method
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how to properly extract their overall UV divergences, which is the quantity needed
for the computation of the dilation operator. The UV divergences for some of the
graphs that occur in our calculation are collected in appendix B. Since our calculation
is not finished, neither is the list of counterterms.

As an illustration of what a result would look like, let us consider the action of
the dilatation operator on (∇+α̇W +)W +. Since our calculation preserves manifest
gauge invariance it follows that the only external field structures are (∇+α̇W +)∇+

and ∇+(W +α̇W +).

D
(3)
N=4(g2

(i,c))((∇+α̇W +)W +)−D(3)
N=1(g2)(∇+α̇W +)W +)

= h1(g)(∇+α̇W +)W +) + h2(g)(∇+(W +α̇W +)) . (8.14)

Compare this to the one loop dilatation operator, which is inferred from eq. (5.30)

D
(1)
N=4

(
g2

(i,c)

)
((∇+α̇W +)W +) = g2

(i,c) (((∇+α̇W +)W +) + 3(W +(∇+α̇W +))) .
(8.15)

In order for the difference argument to work the right-hand sides of these equations
have to match up to the redefinition g2

(i,c) → f(g2). This implies that

h2(g) = 3h1(g) = f(g) . (8.16)

This is by no means trivial and would provide a very strong check of the argument.
As mentioned above this calculation is currently work in progress.

Similar statements with checks along the same lines can be made for higher
excitations. As mentioned in the introduction, it is enough to look at diagrams with
up to two excitations, because this would establish equality of the S-matrix on the
spin chain of the two theories up to the coupling redefinition. Since integrability
in N = 4 SYM implies a factorization of the S-matrix, higher excitations can be
obtained from the Yang-Baxter equation.



Chapter 9

Extra protected states in N = 2
SCQCD

In this section we describe the calculation of the new protected states. In order
to do this we review some notions of superconformal representation theory, the
superconformal index and the emergence of equivalence classes of short multiplets
for the N = 2 superconformal algebra. We follow the conventions of [24]. We will
then briefly review the Sieve algorithm from [25] used to get the constraints on the
quantum numbers of the new protected states and finally we describe our strategy to
get their explicit forms.

9.1 Equivalence classes of short multiplets

Let us start by briefly discussing some properties of the representation theory of the
N = 2 superconformal algebra. For more details on the topics mentioned here the
reader should consult the classic reference [24]. The bosonic symmetries of the N = 2
superconformal group are the Lorentz group with spin indices (j, j̄) and the so-called
R-symmetry group SU(2)R ×U(1)r, for which we use the quantum numbers R and r,
respectively. A superconformal multiplet is formed by acting with the supercharges
and the raising operator for the SU(2)R group on the superconformal primaries. A
general such multiplet is denoted by A∆

R,r(j,j̄), where ∆ is the conformal dimension of
the superconformal primary.

It is possible to put constraints on these quantum numbers by demanding that
the action of some of the generators on the superconformal primary vanish. These are
called shortening conditions and the resulting multiplets have fewer members than the
general unconstrained A multiplet. They are denoted by B, B̄, B̂, C, C̄, Ĉ, D, D̄, E , Ē
depending on the specific shortening condition. Table 9.1 gives a complete overview
over the multiplets and their shortening conditions. When constraints like these
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Shortening Conditions Multiplet
B1 Q1

α|R, r〉h.w. = 0 j = 0 ∆ = 2R+ r BR,r(0,j̄)
B̄2 Q̄2α̇|R, r〉h.w. = 0 j̄ = 0 ∆ = 2R− r B̄R,r(j,0)
E B1 ∩ B2 R = 0 ∆ = r Er(0,j̄)
Ē B̄1 ∩ B̄2 R = 0 ∆ = −r Ēr(j,0)
B̂ B1 ∩ B̄2 r = 0, j, j̄ = 0 ∆ = 2R B̂R
C1 εαβQ1

β|R, r〉h.w.α = 0 ∆ = 2 + 2j + 2R+ r CR,r(j,j̄)
(Q1)2|R, r〉h.w. = 0 for j = 0 ∆ = 2 + 2R+ r CR,r(0,j̄)

C̄2 εα̇β̇Q̄2β̇|R, r〉h.w.α̇ = 0 ∆ = 2 + 2j̄ + 2R− r C̄R,r(j,j̄)
(Q̄2)2|R, r〉h.w. = 0 for j̄ = 0 ∆ = 2 + 2R− r C̄R,r(j,0)

F C1 ∩ C2 R = 0 ∆ = 2 + 2j + r C0,r(j,j̄)
F̄ C̄1 ∩ C̄2 R = 0 ∆ = 2 + 2j̄ − r C̄0,r(j,j̄)
Ĉ C1 ∩ C̄2 r = j̄ − j ∆ = 2 + 2R+ j + j̄ ĈR(j,j̄)
F̂ C1 ∩ C2 ∩ C̄1 ∩ C̄2 R = 0, r = j̄ − j ∆ = 2 + j + j̄ Ĉ0(j,j̄)

D B1 ∩ C̄2 r = j̄ + 1 ∆ = 1 + 2R+ j̄ DR(0,j̄)
D̄ B̄2 ∩ C1 −r = j + 1 ∆ = 1 + 2R+ j D̄R(j,0)
G E ∩ C̄2 r = j̄ + 1, R = 0 ∆ = r = 1 + j̄ D0(0,j̄)
Ḡ Ē ∩ C1 −r = j + 1, R = 0 ∆ = −r = 1 + j D̄0(j,0)

Table 9.1: Shortening conditions and short multiplets for the N = 2 superconfor-
mal algebra [24]. Table taken from [25].

are imposed on the general A∆
R,r(j,j̄) multiplet it was shown in [24] that the long

multiplet can be written as the sum of shorter multiplets. These relations are called
recombination rules and the important ones for us are

A2R+r+2j+2
R,r(j,j̄) ' CR,r(j,j̄) ⊕ CR+ 1

2 ,r+
1
2 (j− 1

2 ,j̄)
, (9.1)

A2R−r+2j̄+2
R,r(j,j̄) ' C̄R,r(j,j̄) ⊕ C̄R+ 1

2 ,r−
1
2 (j,j̄− 1

2 ) , (9.2)

A2R+j+j̄+2
R,j−j̄(j,j̄) ' ĈR(j,j̄) ⊕ ĈR+ 1

2 (j− 1
2 ,j̄)
⊕ ĈR+ 1

2 (j,j̄− 1
2 ) ⊕ ĈR+1(j− 1

2 ,j̄−
1
2 ) . (9.3)

The second ingredient for our argument is called the superconformal index introduced
in [47], see also the reviews [48, 49]. We are sepcifically interested in the so-called left
superconformal index which takes the form (see [25], eq.(5.3))

IL(t, y, v) = Tr(−1)F t2(∆+j)y2j̄vr−R , (9.4)

where the trace is over the Hilbert space of the theory. An important property is that
this object only receives contributions from states with

∆− 2j − 2R− r = 0 . (9.5)

In particular this implies that the index vanishes on long multiplets. From eq. (9.1)
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one can then see that

IL[CR,r(j,j̄)] + IL[CR+ 1
2 ,r+

1
2 (j− 1

2 ,j̄)
] = 0 . (9.6)

One can see that the index introduces equivalence classes of short multiplets. These
can be labeled by the invariants R̃ ≡ R + j, r̃ ≡ r + j, j̄ and the overall sign. The
corresponding class is denoted by [R̃, r̃, j̄]L+. A similar analysis can be done for the Ĉ
multiplets with the result that the invariant quantum numbers for the left index are
R̂ ≡ j + j̄, j̄ and the overall sign. Moreover r is fixed by r = j̄ − j. This equivalence
class is denoted by [R̂, j̄]L+. The explicit formulas for the indices of these equivalence
classes are

IL[R̃,r̃,j̄]L+ = (−1)2j̄+1t6+4R̃+2r̃v−2+r̃−R̃ (1− t2v)(t− v
y
)(t− vy)

(1− t3y)(1− t3

y
)

(y2j̄ + . . .+ y−2j̄) , (9.7)

IL[R̂,j̄]L+ = (−1)2j̄ t
6−2j̄+4R̂v−1+2j̄−R̂(1− t2v)

(1− t3y)(1− t3/y)
× (t(y2j̄+1 + . . .+ y−(2j̄+1))− v(y2j̄ + . . .+ y−2j̄)) . (9.8)

9.2 Review of the Sieve algorithm

To find the quantum numbers of the extra protected states, we employ the Sieve
algorithm as described in [25]. Let us restate the simplest example of this algorithm
here. We begin by expanding the difference between the true and the naive index in t,

IQCD − Inaive = −t
13

v

(
y + 1

y

)
+ . . . (9.9)

This discrepancy can be compared with the t-expansion of a general C-multiplet[
R̃, r̃, j̄

]L
±
,

IL[R̃,r̃,j̄] = −t6+4R̃+2r̃vr̃−R̃
(
y2j̄ + · · ·+ y−2j̄

)
+ . . . , (9.10)

from which we find
R̃ = 3

2 , r̃ = 1
2 , j̄ = 1

2 . (9.11)

Furthermore, using the definition of the left superconformal index from eq. (9.4), we
can read off some of the quantum numbers of the lowest extra protected state, namely

∆ + j = 13
2 , j̄ = 1

2 , r −R = −1. (9.12)

Note that from the relation r̃ = j̄ we see that this is a Ĉ-multiplet.
After having determined the lowest state, we subtract its full index to find the
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next-lowest discrepancy,

IQCD − Inaive − IĈ[ 3
2 ,

1
2 ]L+

= −t18 + . . . , (9.13)

from which we extract the constraints

∆ + j = 18
2 , j̄ = 0, r −R = 0 , (9.14)

and the state has to be fermionic. As before, we determine the multiplet to be of type
C with quantum numbers [2, 2, 0]L+. Continuing in this way, we can successively find
the constraints for all extra protected states, with the lowest ones given as in [25]:

• Ĉ-multiplets:
[
2, 1

2

]L
+
, [4, 1]L+ ,

[
4, 3

2

]L
+
, . . .

• C-multiplets: [2, 2, 0]L+ , [2, 3, 0]L+ , [2, 4, 0]L+ , . . .

Note that the superconformal index does not uniquely fix the multiplet in which the
extra proteced state appears. Indeed, the index vanishes on long multiplets. Therefore,
the sum of the superconformal indices which can recombine into a long multiplet
also vanishes. The index therefore fixes the extra protected multiplet only up to this
subtletly. However, so far, all states we obtained were immediately contained in the
multiplet the index suggests.

9.3 Results

In this section we describe the procedure for the determination of the extra states
for the first state before listing our current results. As reviewed above, the quantum
numbers of the first extra protected state have to obey the constraints

∆ + j = 13
2 , j̄ = 1

2 , r −R = −1 , (9.15)

and the state has to be fermionic. It immediately follows from these constraints
that the length of the operator is bounded from above by L = 6, since the lowest
possible dimension of a field is that of a scalar with dimension 1. The simplest way
of finding the wanted state then is to write down all possible operators of a given
length consistent with eq. (9.15) and act with the spin-chain Hamiltonian of [50]
on an arbitrary linear combination of these states. To simplify this procedure, we
start from a handful of states and act with the Hamiltonian repeatedly on the list of
so-generated operators until no new states are created. While this does not guarantee
that we find the full basis of states, it will certainly generate a closed subsector for us.
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Constraints Extra state Highest weight
∆ + j j̄ r-R Length ∆ j j̄ R r ∆ j j̄ R r R(j,j̄)

Ĉ
[
2, 1

2

]
13
2

1
2 −1 4 11

2 1 1
2

3
2

1
2

10
2

1
2

1
2 1 0 1( 1

2 ,
1
2 )

Ĉ
[
4, 3

2

]
19
2

3
2 −1 4 15

2
4
2

3
2

3
2

1
2

14
2

3
2

3
2 1 0 1( 3

2 ,
3
2 )

Ĉ [4, 1] 20
2 1 −2 6 17

2
3
2

2
2

5
2

1
2

16
2

2
2

2
2 2 0 2(1,1)

Ĉ
[
6, 5

2

]
25
2

5
2 −1 4 19

2
6
2

5
2

3
2

1
2

18
2

5
2

5
2 1 0 1( 5

2 ,
5
2 )

Ĉ [6, 2] 26
2 2 −2 6 20

2 2 2 2 0 2(2,2)

Ĉ
[
6, 3

2

]
27
2

3
2 −3 8 22

2
3
2

3
2 3 0 3( 3

2 ,
3
2 )

Ĉ
[
8, 7

2

]
31
2

7
2 −1 4 22

2
7
2

7
2 1 0 1( 7

2 ,
7
2 )

C [2, 2, 0] 18
2 0 0 6 15

2
3
2 0 3

2
3
2

14
2 1 0 2

2 1 1(1,0)

C [2, 3, 0] 20
2 0 +1 7 17

2
3
2 0 3

2
5
2

16
2 1 0 1 2 1(1,0)

C [2, 4, 0] 22
2 0 +2 8 19

2
3
2 0 3

2
7
2

18
2 1 0 1 3 1(1,0)

C [2, 5, 0] 24
2 0 +3 9 21

2
3
2 0 3

2
9
2

20
2 1 0 1 4 1(1,0)

Table 9.2: Table of currently known extra protected states.

For the constraints listed in eq. (9.15) this procedure successfully finds the wanted
state at length L = 4 with quantum numbers

∆ = 11
2 , j = 1, j̄ = 1

2 , R = 3
2 , r = 1

2 (9.16)

and the state is fermionic. The explicit form is quite ugly and will be listed at the
end of this section. To learn more about the multiplet in which this operator lives,
we determine the highest weight by acting with the conformal supercharges S, S̄ and
find a state with quantum numbers

∆ = 10
2 , j = 1

2 , j̄ = 1
2 , R = 1, r = 0. (9.17)

By acting on the highest weight state with the appropriate combination of supercharges
Q, Q̄ we have established that it satisfies the appropriate semi-shortening conditions
for a Ĉ multiplet.

We repeat the procedure explained above to determine more of the extra protected
states. We list the results in table 9.2. We write out the quantum numbers only
for the states that we have explicitly determined (i.e. we have only determined the
highest weight states for some of the higher extra multiplets). We see some nice
patterns emerging. Especially the structure for the Ĉ-multiplets seems to be clear. It
is apparently given by 1(n/2,n/2) for odd n.
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Finally let us give the explicit forms of the lowest new protected state and the
corresponding highest weight state. They come from the multiplet 1( 1

2 ,
1
2 ) and the

former takes the form

O1( 1
2 ,

1
2 )

=− 1
2tr (φ̄(D++̇λ+1)Q1Q̄1) + 1

2tr ((D++̇λ+1)φ̄Q1Q̄1)− 7
2tr ((D++̇Q̄1)φ̄λ+1Q1)

+ 7
2tr (Q1(D++̇Q̄1)λ+1φ̄)− 7

2tr (φ̄(D++̇Q1)Q̄1λ+1)− 7
2tr (φ̄λ+1(D++̇Q1)Q̄1)

− 2tr (φ̄λ+1λ+1λ̄+̇1) + 2tr (λ̄+̇1λ+1λ+1φ̄)− tr ((D++̇φ̄)Q1Q̄1λ+1)

+ tr ((D++̇φ̄)λ+1Q1Q̄1) + 6tr ((D++̇Q̄1)ψ+Q̄1Q1)− 7
2tr (ψ+(D++̇Q̄1)Q1Q̄1)

− 13
2 tr (ψ̃+Q1(D++̇Q̄1)Q1) + 2tr (Q1(D++̇ψ̃+)Q1Q̄1)− 7

2tr ((D++̇Q1)ψ̃+Q1Q̄1)

+ 6tr (Q1ψ̃+(D++̇Q1)Q̄1)− 13
2 tr (ψ+Q̄1(D++̇Q1)Q̄1) + 2tr ((D++̇ψ+)Q̄1Q1Q̄1)

− 1
2tr (F++λ̄+̇1Q1Q̄1) + 1

2tr (λ̄+̇1F++Q1Q̄1)− 7
2tr (ψ̃+λ̄+̇1λ+1Q1)

+ 7
2tr (Q1ψ̃+λ+1λ̄+̇1) + 7

2tr (λ̄+̇1λ+1ψ+Q̄1) + 7
2tr (λ̄+̇1ψ+Q̄1λ+1) , (9.18)

while the latter is given by

Oh.w.1( 1
2 ,

1
2 )

=− 7
2tr (φ̄φQ1(D++̇Q̄1))− 7

2tr (φφ̄Q1(D++̇Q̄1)) + 7
2tr (φ̄φ(D++̇Q1)Q̄1)

+ 7
2tr (φφ̄(D++̇Q1)Q̄1) + tr (φ̄(D++̇φ)Q1Q̄1)− tr ((D++̇φ)φ̄Q1Q̄1)

+ 2tr (λ+1φφ̄λ̄+̇1)− 2tr (λ+1φλ̄+̇1φ̄)− 2tr (φλ+1φ̄λ̄+̇1)

+ 2tr (φλ+1λ̄+̇1φ̄) + 7
2tr (φ̄λ+1ψ̃+̇Q̄1) + 7

2tr (λ+1φ̄ψ̃+̇Q̄1)

− 7
2tr (φ̄λ+1Q1ψ̄+̇)− 7

2tr (λ+1φ̄Q1ψ̄+̇)− tr ((D++̇φ̄)φQ1Q̄1)

+ tr (φ(D++̇φ̄)Q1Q̄1)− 6tr ((D++̇Q̄1)Q2Q̄1Q1) + 7
2tr (Q2(D++̇Q̄1)Q1Q̄1)

+ 13
2 tr (Q̄2Q1(D++̇Q̄1)Q1)− 4tr (Q1(D++̇Q̄2)Q1Q̄1) + 7

2tr ((D++̇Q1)Q̄2Q1Q̄1)

− 6tr (Q̄2(D++̇Q1)Q̄1, Q1) + 13
2 tr (Q̄1(D++̇Q1)Q̄1Q2)− 4tr ((D++̇Q2)Q̄1Q1Q̄1)

− 7
2tr (λ̄+̇1φQ1ψ̃+)− 7

2tr (φλ̄+̇1Q1ψ̃+)− 7
2tr (ψ̃+̇ψ̃+Q1Q̄1)

− 6tr (ψ̃+ψ̃+̇Q̄1Q1) + 13
2 tr (Q̄1ψ+Q̄1ψ̃+̇)− tr (λ̄+̇1λ+2Q1Q̄1)

− tr (λ+2λ̄+̇1Q1Q̄1)− 7
2tr (λ̄+̇1λ+1Q2Q̄1) + 7

2tr (λ+1λ̄+̇1Q2Q̄1)
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+ 7
2tr (λ̄+̇1φψ+Q̄1) + 7

2tr (φλ̄+̇1ψ+Q̄1) + tr (λ̄+̇2λ+1Q1Q̄1)

+ tr (λ+1λ̄+̇2Q1Q̄1) + 6tr (ψ̄+̇ψ+Q̄1Q1) + 7
2tr (ψ+ψ̄+̇Q1Q̄1)

+ 7
2tr (λ̄+̇1λ+1Q1Q̄2)− 7

2tr (λ+1λ̄+̇1Q1Q̄2)− 13
2 tr (ψ̄+̇Q1ψ̃+Q1) . (9.19)

All higher states have too many terms to write them down here. These forms are not
very informative and it would be good to understand the origin of their structure.





Chapter 10

Conclusion and outlook

The broad motivation for our work is to investigate, how the better understood
properties of highly symmetric and idealized theories can shed light on properties
of less symmetric and more realistic theories. Our two subjects of focus were the
dilatation operator in N = 1 superconformal gauge theories and the protected
spectrum of N = 2 superconformal QCD.

First we extended the perturbative argument of [18] to the vacuum of the SU(2, 1|1)
sector in N = 1 superconformal gauge theories. We have shown up to three loops
that the dilatation operator acting on the vacuum of this sector can be obtained by a
coupling redefinition of the one from N = 4 SYM. In doing so we made extensive
use of the closedness of the sector, the planar limit, background gauge invariance and
conformal symmetry. We explicitly calculated this redefinition for theories of class Sk
and checked that it equals the result for the corresponding N = 2 quiver theories for
k = 1.

One urgent question for further work is, if this result generalizes to the whole
sector. We presented the current status of this investigation. At least for three
loops this calculation seems attainable. However any reasonable treatment of this
requires the automation of the procedure in [46]. Adding only one excitation will
already provide a strong non-trivial check, whether this result generalizes. Adding
two derivatives would ultimately establish equality of the S-matrix in the two theories
(up to the redefinition of the coupling constant) and thereby prove integrability.

Another line of investigation is, whether our argument can be generalized to an all-
loop argument. Indeed this was one of the driving motivations for using the covariant
formalism, because it considerably improves powercounting and might lead to general
powercounting theorems, which historically have been essential for extracting all-loop
arguments from supersymmetric perturbation theory.

The unexpected universality of the coupling redefinition in N = 2 theories that
was observed in [36] hints at a deeper physical significance. It poses the question, if
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the same holds in N = 1 theories. It should be investigated, whether our coupling
redefinition also holds for other observables like Wilson loops, the Bremsstrahlung
function and entanglement entropy.

Finally it would be interesting to see, if a similar argument can also be devised
for theories without supersymmetry, which would then be very close to QCD. One
reason to be optimistic is the presence of integrability in scattering amplitudes in the
Regge limit and one loop integrability of the dilatation operator [17]. A perturbative
argument could obviously not rely on supersymmetry, however the covariant formalism
in [46] also works for non-supersymmetric theories, providing some hope that this is
possible.

Our second subject deals with the new protected states in N = 2 SCQCD that
were found in [25]. As a starting point we used the constraints on their quantum
numbers derived there. In order to explicitly construct them, we made a general
ansatz consistent with these restrictions and then found the states, that vanish under
the action of the Hamiltonian from [50].

The appearance of these higher-spin protected states has some profound physical
consequences that beg to be better understood. Via the AdS/CFT correspondence
they imply that the low energy limit of the string dual of this theory contains higher-
spin states. One step towards a more general understanding of this phenomenon is
the recent discovery of new protected spin 2 operators in a broader class of theories.
[101]. Also the spin chain picture of the dilatation operator in this theory seems to be
much more intricate than in other theories, because these new protected states serve
as candidates for possible vacua. The implications of this should be investigated.

On a more direct level the explicit forms of these states are quite intricate and
it is as of yet unclear, if there is a different formulation, which makes the structure
more tractable.

It is important to note that explicit multi loop calculations for dilatation operators
in the past have almost universally been restricted to chiral multiplets, e.g. [75],
whereas by necessity we consider the vector multiplet. These calculations tend to
be harder, because the D-algebra is much more involved. In order to facilitate these
calculations we were led to use background covariant supersymmetric Feynman rules
from [44] and [46] and modern concepts from renormalization, developed in [74] and
we have applied them in way that to our knowledge has not been done before. We
hope that our exposition of these topics might inspire other people to learn these
powerful tools and put them to good use.



Appendix A

Covariant derivatives and kinetic
operators

A.1 General properties

Derivatives obey the (graded) Leibniz rule:

(∂AXY ) = (∂AX)Y + (−)|AX|(∂AY ) , (A.1)

where (−)|AX| is −1 if both A and X are anticommuting and +1 otherwise. This
property is implemented in a clean way by considering the graded commutator

[A,B} = AB − (−)|AB|BA . (A.2)

Derivatives are then considered as acting via the graded commutator :

(∂AX) ≡ [∂A, X} . (A.3)

Together with the following general rules for the commutator

[a, bc] = [a, b]c+ b[a, c]

= {a, b}c− b{a, c} ,

{a, bc} = {a, b}c− b[a, c]

= [a, b]c+ b{a, c} ,

(A.4)

this consistently implements the graded Leibniz rule. We take (A.3) as the definition
for how any kind of derivative acts in general.

In order to define background covariant derivatives we first introduce the antisym-
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metric symbol Cαβ with the normalization

CαβC
γδ = δγαδ

δ
β − δ

γ
βδ

δ
α , (A.5)

which implies

CαβC
αβ = 2 . (A.6)

A specific representation is given by

C+− = C−+ = i ,

C−+ = C+− = −i .
(A.7)

Covariant derivatives fulfill

{∇α, ∇̄α̇} = i∇αα̇ , (A.8)

[∇α,∇ββ̇] = CαβW̄ β̇, [∇̄α̇,∇ββ̇] = Cα̇β̇W β , (A.9)

∇αW α = −∇̄α̇
W̄ α̇ . (A.10)

Two of the most important relations that follows from these definitions are
[
∇α, ∇̄

2] = iW α − i∇αα̇∇̄α̇
,[

∇̄α̇,∇2
]

= iW̄ α̇ − i∇αα̇∇α ,
(A.11)

which we use as an example of how to prove these identities. The honest way to
prove it is to let these operators act on something (which we call A) using the explicit
nested structure by which derivatives act. We start with

2∇̄2∇α(A) ≡
[
∇̄α̇

,
{
∇̄α̇, [∇α, A]

}]
Using the general commutator rules (A.4) we can disentangle these nested commuta-
tors:

= [∇̄α̇
, {∇̄α̇,∇α}]A+ 2{∇̄α̇,∇α}[∇̄

α̇
, A] + ∇α{∇̄

α̇
, [∇̄α̇, A]}

− A[∇̄α̇
, {∇̄α̇,∇α}]− 2[∇̄α̇

, A]{∇̄α̇,∇α} − {∇̄
α̇
, [∇̄α̇, A]}∇α .

Now they can be put back together as commutators again:

= [[∇̄α̇
, {∇̄α̇,∇α}], A] + 2[{∇̄α̇,∇α}, [∇̄

α̇
, A]] + [∇α, {∇̄

α̇
, [∇̄α̇, A]}]

= −2i[W α, A] + 2[{∇̄α̇,∇α}, [∇̄
α̇
, A]] + [∇α, {∇̄

α̇
, [∇̄α̇, A]}] . (A.12)
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It follows that

[∇α, ∇̄
2](A) = i[W α, A]− i[∇αα̇, [∇̄

α̇
, A]]

= iW α(A)− i∇αα̇∇̄α̇(A) , (A.13)

which is what we wanted to prove. Now that we have gained trust in the method let
us do the same calculation without the explicit nested structure of the derivatives.

[
∇α, ∇̄

2] (A.4)= 1
2

({
∇α, ∇̄

β̇
}

∇̄β̇ − ∇̄β̇
{
∇α, ∇̄β̇

})
= −1

2

{{
∇α, ∇̄β̇

}
, ∇̄β̇

}
= −1

2

[{
∇α, ∇̄β̇

}
, ∇̄β̇

]
−
{
∇α, ∇̄β̇

}
∇̄β̇

= iW α − i∇αα̇∇̄α̇
. (A.14)

We see that we can just use normal commutator rules and end up with the same
result. This implies

[
∇2, ∇̄2] = 1

2
[
∇α,

[
∇α, ∇̄

2]] A.11= 1
2
[
∇α, iW α − i∇αα̇∇̄α̇

]
= i

2(∇αW α)− iW α∇α − i

2 [∇α,∇αα̇]︸ ︷︷ ︸
−2W α̇

∇̄α̇ − i

2∇αα̇

[
∇α, ∇̄α̇

]
︸ ︷︷ ︸
i∇αα̇−2∇̄α̇∇α

= � + i

2(∇αW α)− iW α∇α + iW̄ α̇∇̄α̇ + i∇αα̇∇α∇̄α̇
. (A.15)

We also find
[
∇2,∇αα̇

]
= 1

2
[
∇β, [∇β,∇αα̇]

]
= 1

2
[
∇α, W̄ α̇

]
= 1

2
(
(∇αW̄ α̇)− 2W̄ α̇∇α

)
= −W̄ α̇∇α , (A.16)

and
[
∇̄2

,∇αα̇

]
= −W α∇̄α̇ . (A.17)

Another important result is

[
∇αα̇,∇ββ̇

] (A.8)= − i2
(
[∇αα̇, {∇β, ∇̄β̇}]−

[
(αα̇)↔ (ββ̇)

])
= − i2

(
({∇β, [∇αα̇, ∇̄β̇]}+ {∇̄β̇, [∇αα̇,∇β]})−

[
(αα̇)↔ (ββ̇)

])
(A.9)= − i2

(
({∇β,W α}Cα̇β̇ + {∇̄β̇, W̄ α̇}Cαβ)−

[
(αα̇)↔ (ββ̇)

])
.

(A.18)
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We thus found the explicit form of the field strength

F αα̇,ββ̇ = i
[
∇αα̇,∇ββ̇

]
= 1

2
(
{∇(α ,W β)}Cα̇β̇ + {∇̄( α̇, W̄ β̇ )}Cαβ

)
. (A.19)

In particular we have

[∇+α̇,∇+β̇] = −i {∇+,W +}Cα̇β̇ . (A.20)

Letting two contracted derivatives act on W + we find

C α̇β̇
[
∇+α̇,

[
∇+β̇,W +

]]
= C α̇β̇

[
∇+α̇,∇+β̇W + −W +∇+β̇

]
= C α̇β̇

([[
∇+α̇,∇+β̇

]
,W +

]
+
[
∇+β̇, [∇+α̇,W +]

])
= C α̇β̇

([[
∇+α̇,∇+β̇

]
,W +

]
−
[
∇+α̇,

[
∇+β̇,W +

]])
,

(A.21)

which yields

C α̇β̇
[
∇+α̇,

[
∇+β̇,W +

]]
= 1

2C
α̇β̇
([[

∇+α̇,∇+β̇

]
,W +

]) (A.20)= −i [{∇+,W +} ,W +] .

(A.22)

The covariant d’Alembertian is defined as

� = 1
2∇αα̇∇αα̇ (A.23)

and we can compute its commutation relations with the derivatives

[∇α,�] = 1
2
(
∇ββ̇

[
∇α,∇ββ̇

]
+
[
∇α,∇ββ̇

]
∇ββ̇

)
(A.9)= 1

2
(
∇ββ̇CαβW̄ β̇ + CαβW̄ β̇∇ββ̇

)
= 1

2
(
∇αα̇W̄

α̇ + W̄
α̇∇αα̇

)
(A.24)

and similarly
[
∇̄α̇,�

]
= 1

2 (∇αα̇W α + W α∇αα̇) . (A.25)

From eqs. (A.24) and (A.25) it follows that

[
∇2,�

]
= 1

2(∇α [∇α,�] + [∇α,�] ∇α) = 1
2 [∇α, [∇α,�]]
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= 1
2 {∇

α, [∇α,�]} − [∇α,�] ∇α

= 1
4
{
∇α,

[
∇αα̇, W̄

α̇
]}
− 1

2W̄
α̇ [∇α,∇αα̇]− [∇α,�] ∇α

= 1
2
{
W̄

α̇
, W̄ α̇

}
−
(1

2
[
∇αα̇, W̄

α̇
]

+ W̄
α̇∇αα̇

)
∇α , (A.26)

and analogously
[
∇̄2

,�
]

= 1
2 {W

α,W α} −
(1

2 [∇αα̇,W
α] + W α∇αα̇

)
∇̄α̇

. (A.27)

Using Fαα̇,ββ̇ from eq. (A.19) one can also show that

[∇+α̇,�] = − i2
[(

∇ββ̇F+α̇,ββ̇

)
+ 2F+α̇,ββ̇∇ββ̇

]
. (A.28)

A.2 The vector kinetic operator

Using the results of the previous section we can investigate the properties of the
kinetic operator for the vector field

�̂ = �− iW α∇α − iW̄
α̇∇̄α̇ (A.29)

and compute its commutation relations with the covariant derivatives
[
∇α, �̂

]
= [∇α,�]− i

[
∇α,W

β∇β

]
− i

[
∇α, W̄

α̇∇̄α̇

]
= 1

2
[
∇αα̇, W̄

α̇
]

+ W̄
α̇∇αα̇ − i

{
∇α,W

β
}

∇β + iW β {∇α,∇β}︸ ︷︷ ︸
=0

− i
{
∇α, W̄

α̇
}

︸ ︷︷ ︸
=0

∇̄α̇ + iW̄
α̇
{
∇α, ∇̄α̇

}
︸ ︷︷ ︸

=i∇αα̇

= 1
2
[
∇αα̇, W̄

α̇
]
− i

{
∇α,W

β
}

∇β

= 1
2(∇αα̇W̄

α̇)− i(∇αW β)∇β (A.30)

and analogously
[
∇̄α̇, �̂

]
= 1

2(∇αα̇W α)− i(∇̄α̇W̄
β̇)∇̄β̇ . (A.31)

From here one can show
[
∇2, �̂

]
= 1

2
(
∇α

[
∇α, �̂

]
+
[
∇α, �̂

]
∇α

)
= 1

2
[
∇α,

[
∇α, �̂

]]
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= 1
4
{
∇α,

[
∇αα̇, W̄

α̇
]}

︸ ︷︷ ︸
=0

− i2

[∇α,
{
∇α,W

β
}]

︸ ︷︷ ︸
=2∇2W β

∇β +
{
∇α,W

β
}
{∇α,∇β}︸ ︷︷ ︸

=0


− 1

2
[
∇αα̇, W̄

α̇
]

︸ ︷︷ ︸
=i(∇2Wα)

∇α + i
{
∇α,W

β
}

∇β∇α︸ ︷︷ ︸
=−δα

β
∇2

= − i2(∇2W α)∇α − i(∇αW α)∇2 , (A.32)

and
[
∇̄2

, �̂
]

= − i2(∇̄2
W̄

α̇)∇̄α̇ − i(∇̄α̇W̄
α̇)∇̄2

. (A.33)

We also find
[
∇αα̇, �̂

]
= − i2(∇α∇βα̇W β)− i

2(∇̄α̇∇αβ̇W̄
β̇) + i(∇αα̇W̄ β̇)∇̄β̇ + i(∇αα̇W β)∇β

− i(∇̄α̇W̄
β̇)∇αβ̇ − i(∇αW β)∇βα̇ . (A.34)

For reference we collect all of them here
[
∇α, �̂

]
= 1

2(∇αα̇W̄
α̇)− i(∇αW β)∇β ,[

∇̄α̇, �̂
]

= 1
2(∇αα̇W α)− i(∇̄α̇W̄

β̇)∇̄β̇ ,[
∇2, �̂

]
= − i2(∇2W α)∇α − i(∇αW α)∇2 ,[

∇̄2
, �̂
]

= − i2(∇̄2
W̄

α̇)∇̄α̇ − i(∇̄α̇W̄
α̇)∇̄2

,[
∇αα̇, �̂

]
= − i2(∇α∇βα̇W β)− i

2(∇̄α̇∇αβ̇W̄
β̇) + i(∇αα̇W̄ β̇)∇̄β̇ + i(∇αα̇W β)∇β

− i(∇̄α̇W̄
β̇)∇αβ̇ − i(∇αW β)∇βα̇ .

(A.35)

A.3 The (Anti-)chiral kinetic operators

The (anti-)chiral kinetic operators are

�+Φ = ∇̄2∇2Φ and �−Φ̄ = ∇2∇̄2Φ̄ . (A.36)

Making use of the commutation relations and the fact that Φ is chiral one can show
that the explicit form is

�+Φ = ∇̄2∇2Φ =
[
∇̄2

,∇2
]

Φ = 1
2
[
∇α,

[
∇̄2

,∇α

]]
Φ
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= (− i2 {∇
α,W α} − iW α∇α + i

2([∇α,∇αα̇] ∇̄α̇︸︷︷︸
∝0

+∇αα̇

[
∇α, ∇̄α̇

]
︸ ︷︷ ︸
∝−{∇α,∇̄α̇}

))Φ

= (�− i

2 {∇
α,W α} − iW α∇α)Φ . (A.37)

Thus

�+ = �− i

2(∇αW α)− iW α∇α (A.38)

and similarly

�− = �− i

2(∇̄α̇
W̄ α̇)− iW̄ α̇∇̄α̇ . (A.39)

The following commutation relations hold

[∇α,�+] = (∇2W α) + W̄
α̇∇αα̇ + i(∇αW β)∇β ,[

∇̄α̇,�−
]

= (∇̄2
W̄ α̇) + W α∇αα̇ + i(∇̄α̇W̄ β̇)∇̄β̇

,

[∇α,�−] =
[
∇̄α̇,�+

]
= 0 .

(A.40)

From the definition it is easy to see that

∇2�+∇̄2 = ∇2∇̄2∇2∇̄2 = �−∇2∇̄2 (A.41)

and

∇̄2�−∇2 = ∇̄2∇2∇̄2∇2 = �+∇̄2∇2 , (A.42)

which in turn implies

∇2�−1
+ ∇̄2 = �−1

− �−∇2 �−1
+ ∇̄2︸ ︷︷ ︸
chiral

= �−1
− ∇2�+�−1

+ ∇̄2 = �−1
− ∇2∇̄2 (A.43)

and

∇̄2�−1
− ∇2 = �−1

+ ∇̄2∇2 . (A.44)

This can also be used in D-algebra manipulations.

∇2∇̄2∇2 = �−∇2 , (A.45)

∇̄2∇2∇̄2 = �+∇̄2
. (A.46)
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By a similar calculation one shows that

∇2∇̄2∇α = (�− + iW β∇β + i∇βα̇∇̄α̇∇β)∇α , (A.47)

∇̄2∇2∇̄α̇ = (�+ + iW̄ β̇∇̄β̇ + i∇αβ̇∇α∇̄β̇)∇̄α̇
. (A.48)

A.4 Explicit forms of the background covariant derivatives

The explicit form of the background covariant derivatives in terms of the background
prepotential is

∇α = e−ΩDαe
Ω = Dα + e−Ω(Dαe

Ω) = Dα + (DαΩ) , (A.49)

∇̄α̇ = eΩ̄D̄α̇e
−Ω̄ = · · · = D̄α̇ − (D̄α̇Ω̄) . (A.50)

From ∇A = DA − iΓA we see

Γα = i(DαΩ) , (A.51)

Γα̇ = −i(D̄α̇Ω̄) . (A.52)

Furthermore

∇αα̇ = ∂αα̇ − i{D̄α̇,Γα} − i{Dα,Γα̇} − {Γα,Γα̇} , (A.53)

and hence

Γαα̇ = {D̄α̇,Γα}+ {Dα,Γα̇}+ i{Γα,Γα̇} . (A.54)

The covariant d’Alembertian is found to be

� = 1
2∂

αα̇∂αα̇ −
i

2∂
αα̇Γαα̇ − iΓαα̇∂

αα̇ − 1
2Γαα̇Γαα̇

= �0 −
i

2∂
αα̇Γαα̇ − iΓαα̇∂

αα̇ − 1
2Γαα̇Γαα̇ (A.55)

A.5 Simplifications in our sector

The general rules above simplify significantly in our sector. The fact that the only
undotted external indices are lowered + renders many commutation relations and
intricate relations between the different operators trivial. In this section we collect
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the results. From the definitions of the kinetic operators we see that in our sector

�+ = �̂ ,

�− = �̂− iW +∇+ .
(A.56)

From here we can see that

�+∇2 = �−∇2 . (A.57)

Since in the beginning of the calculation the �−1
− always appears in the combination

∇̄2�−1
− ∇2 we can use the above relation to write

∇̄2�−1
− ∇2 = ∇̄2�−1

− �−1
+ �+∇2 = ∇̄2�−1

− �−1
+ �−∇2

= ∇̄2�−1
+ ∇2 + ∇̄2 [�−1

− ,�−1
+

]
�−∇2

= ∇̄2�−1
+ ∇2 + i

2∇̄2�−1
+ �−1

− (∇+α̇W +)∇α̇+ ∇+�−1
− ∇2︸ ︷︷ ︸

=0

= ∇̄2�̂−1∇2 , (A.58)

where we used the relation
[
�−1
− ,�−1

+

]
= −�−1

+

[
�−1
− ,�+

]
�−1

+ = �−1
+ �−1

− [�−,�+]�−1
− �−1

+ (A.59)

and

[�−,�+] =
[
�,� + iW +∇+

]
= i

2
[
∇αα̇∇αα̇,W +∇+

]
= i

2
({

∇αα̇, [∇αα̇,W +]
}

∇+ + W +
{
∇αα̇,

[
∇αα̇,∇+

]})
= i

2(∇+α̇W +)∇α̇+∇+ , (A.60)

where the last equation holds up to terms that leave the sector. Eq. (A.58) implies
that effectively there is only the propagator �̂−1 in our sector. The eqs. (A.35)
simplify to

[
∇α, �̂

]
= iδ+

α (∇+W +)∇+ ,[
∇αα̇, �̂

]
= iδ+

α

(
(∇+α̇W +)∇+ + (∇+W +)∇+

α̇

)
,[

∇̄α̇, �̂
]

=
[
∇2, �̂

]
=
[
∇̄2

, �̂
]

= 0 .

(A.61)
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We sometimes also need the commutation relations for �, which reduce to

[∇α,�] = 0 ,[
∇̄α̇,�

]
= −W +∇+

α̇ ,[
∇2,�

]
= 0 ,[

∇̄2
,�
]

= −W +∇α̇+∇̄α̇ ,

[∇αα̇,�] = iδ+
α (∇+W +)∇+

α̇ .

(A.62)



Appendix B

Counterterms

In this appendix we collect results on the diagrams that appear in our calculations.
In particular we are interested in their superficial UV-divergences.

Following the discussion of section 3.1 we use infrared rearrangement to convert
the graphs to propagator type diagrams, then set their external momentum to p2 = 1.
In these graphs we always assume a momentum flow that does not introduce new IR
divergences.

Results for the unrenormalized graphs are readily found in the literature, see e.g.
[75] for some of the graphs discussed here.1 We list them explicitly below. They can
often be expressed through the functions

G(α, β) =
Γ(d2 − α)Γ(d2 − β)Γ(α + β − d

2)
(4π) d2 Γ(α)Γ(β)Γ(D − α− β)

, (B.1)

G1(α, β) = 1
2(−G(α, β − 1) +G(α− 1, β) +G(α, β)) , (B.2)

G2(α, β) = 1
2(−G(α, β − 1)−G(α− 1, β) +G(α, β)) . (B.3)

By I we denote the unrenormalized integrals themselves, evaluated at p2 = 1 and

I = KR̄I (B.4)

stands for the superficial UV divergence.

In those cases, where we don’t list the closed form formulas for the unrenormalized
scalar graphs, we have used their ε-expansion as produced by Mincer [76, 77]. For
example the graph I3b can be computed with the O4 topology in Mincer. The results
in Mincer are in the MS-scheme. In order to translate them to our conventions one

1There is a typo in the formula for I32t in [75].

113
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has to multiply the result by a factor

N = (4π)−2 exp
(
−εγ + ε ln(4π)− ε2 ζ(2)

2

)
(B.5)

for every loop. We list our results here and give some examples of the computations
in section 3.1

I1 = =
∫ ddk1

(2π)d
1

k2
1(k1 − p)2

∣∣∣∣∣
p2=1

= G(1, 1)

I1 = 1
(4π)2

(1
ε

)
(B.6)

I2 = =
∫ ddk1

(2π)d
∫ ddk2

(2π)d
1

k2
1k

2
2(k2 − k1 + p)2(k1 − p)2

∣∣∣∣∣
p2=1

= G(1, 1)G(3− d
2 , 1)

I2 = 1
(4π)4

(
− 1

2ε2 + 1
2ε

)
(B.7)

I11 = =
∫ ddk1

(2π)d
∫ ddk2

(2π)d
1

k2
1k

2
2(k1 − p)2(k2 − p)2

∣∣∣∣∣
p2=1

= G(1, 1)2

I11 = −I2
1 (B.8)

I2t = =
∫ ddk1

(2π)d
∫ ddk2

(2π)d
1

k2
1k

2
2(k1 − p)2(k2 − p)2(k1 − k2)2

∣∣∣∣∣
p2=1

= 2
d− 4G(1, 1)(G(1, 2) +G(3− d

2 , 2))

I2t = 0 (B.9)

I2n = =
∫ ddk1

(2π)d
∫ ddk2

(2π)d
1

k2
1k

2
2(p+ k2 − k1)2

∣∣∣∣∣
p2=1

= 1
(4π)d/2

Γ(2− d
2)Γ3(d2 − 1)

Γ(3(d2 − 1))

I2n = 1
(4π)4

(
− 1

4ε

)
(B.10)

I3 = =
∫ ddk1

(2π)d
∫ ddk2

(2π)d
∫ ddk3

(2π)d
1

k2
1k

2
2k

2
3(k1 − p)2(k2 − k1)2(p+ k3 − k2)2

∣∣∣∣∣
p2=1

= G(1, 1)G(3− d
2 , 1)G(5− d, 1)

I3 = 1
(4π)6

( 1
6ε3 −

1
2ε2 + 2

3ε

)
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I3t = =
∫ ddk1

(2π)d
∫ ddk2

(2π)d
∫ ddk3

(2π)d
1

k2
1k

2
2k

2
3(k1 − k2)2(k1 + k3 − p)2(k2 + k3 − p)2

∣∣∣∣∣
p2=1

= I2tG(5− d, 1)

I3t = 1
(4π)6

2ζ(3)
ε

(B.11)

I3b = =
∫ ddk1

(2π)d
∫ ddk2

(2π)d
∫ ddk3

(2π)d
1

k2
1k

2
2k

2
3(k1 − p)2(k2 − p)2(k3 + k2 − k1)2

∣∣∣∣∣
p2=1

= N3
( 1

3ε3 + 7
3ε2 + 31

2ε + finite
)

I3b = 1
(4π)6

( 1
3ε3 −

2
3ε2 + 1

3ε

)
(B.12)

I3bb = =
∫ ddk1

(2π)d
∫ ddk2

(2π)d
∫ ddk3

(2π)d
1

k2
1k

2
2k

2
3(k1 − p)2(k2 − k1)2(k3 − k1 + p)2

∣∣∣∣∣
p2=1

= G(1, 1)2G(3− d
2 , 3−

d
2)

I3bb = 1
(4π)6

( 1
3ε3 −

1
3ε2 −

1
3ε

)
(B.13)

I3n = =
∫ ddk1

(2π)d
∫ ddk2

(2π)d
∫ ddk3

(2π)d
1

k2
1k

2
2k

2
3((k1 − p)2)2(k2 + k3 − k1 + p)2

∣∣∣∣∣
p2=1

= N3
(
− 1

12ε2 −
7
8ε + finite

)
I3n = 1

(4π)6

( 1
6ε2 −

3
8ε

)
(B.14)

I32t = =
∫ ddk1

(2π)d
∫ ddk2

(2π)d
∫ ddk3

(2π)d
−k1 · k2

k2
1k

2
2k

2
3(k1 + p)2(k2 + p)2(k3 − k1)2(k3 − k2)2

∣∣∣∣∣
p2=1

= G1(2, 1)G1(4− d
2 , 1)G2(6− d, 1)

I32t = 1
(4π)6

(
− 1

3ε

)
(B.15)

Here and below it is understood that a line with an arrow has another factor of the
momentum of that line in the numerator. In I32t the two extra momenta are contracted.
Note that there is only one quadratically divergent graph I2n. Its superficial UV
divergence is a second order polynomial in its external momentum p2. This graph is
needed to compute the superficial divergence of I3n. We checked our results against
the literature, in particular the ancillary files of [102]. A very useful reference for
surveying the literature on Feynman diagrams is [103].
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We also list our results for the tensor counterterms, on which there is barely any
literature besides [74].

Iµν2a =

µ ν

=
∫ ddk1

(2π)d
∫ ddk2

(2π)d
kµ2k

ν
2

k2
1k

2
2(k1 − p)2(k2 − p)2(k2 − k1)2

∣∣∣∣∣
p2=1

Iµν2a = 1
(4π)4

(
− 1

8ε2 + 3
16ε

)
gµν (B.16)

Iµν2b =

ν

µ
=
∫ ddk1

(2π)d
∫ ddk2

(2π)d
−(k2 − k1)µkν2

k2
1k

2
2(k1 − p)2(k2 − p)2(k2 − k1)2

∣∣∣∣∣
p2=1

Iµν2b = 1
(4π)4

(
− 1

8ε2 + 1
16ε

)
gµν (B.17)

Iµν2c =

ν

µ =
∫ ddk1

(2π)d
∫ ddk2

(2π)d
−kµ1kν2

k2
1k

2
2(k1 − p)2(k2 − p)2(k2 − k1)2

∣∣∣∣∣
p2=1

Iµν2c = 1
(4π)4

(
− 1

8ε

)
gµν (B.18)

Iµν2d =

µ ν

=
∫ ddk1

(2π)d
∫ ddk2

(2π)d
kµ1k

ν
1

(k2
1)2k2

2(k1 − p)2(k2 − k1)2

∣∣∣∣∣
p2=1

Iµν2d = 1
(4π)4

(
− 1

8ε2 + 1
16ε

)
gµν (B.19)

Iµν1
3 =

µ ν

=
∫ ddk1

(2π)d
∫ ddk2

(2π)d
∫ ddk3

(2π)d
kµ1k

ν
1

(k2
1)2k2

2k
2
3(k1 + p)2(k2 − k1)2(k3 − k2)2

∣∣∣∣∣
p2=1

Iµν1
3 = 1

(4π)4

( 1
24ε3 −

5
48ε2 + 11

96ε

)
gµν (B.20)

Iµν2
3 =

µ

ν

=
∫ ddk1

(2π)d
∫ ddk2

(2π)d
∫ ddk3

(2π)d
kµ2k

ν
1

k2
1k

2
2k

2
3(k1 − p)2(k2 − p)2(k1 − k2)2(k3 − k1 + p)2

∣∣∣∣∣
p2=1

Iµν2
3 = 1

(4π)4

( 1
48ε −

1
24ε2

)
gµν (B.21)
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Iµν3
3 =

µ

ν

=
∫ ddk1

(2π)d
∫ ddk2

(2π)d
∫ ddk3

(2π)d
kµ2k

ν
1

k2
1k

2
2k

2
3(k1 − p)2(k2 − p)2(k1 − k3 − p)2(k3 − k2 + p)2

∣∣∣∣∣
p2=1

Iµν3
3 = 1

(4π)4

( 1
12ε

)
gµν (B.22)

Iµν1
3bb =

µ ν

=
∫ ddk1

(2π)d
∫ ddk2

(2π)d
∫ ddk3

(2π)d
kµ1k

ν
1

(k2
1)2k2

2k
2
3(k1 − p)2(k2 − k1)2(k3 − k1)2

∣∣∣∣∣
p2=1

Iµν1
3bb = 1

(4π)4

( 1
12ε3 −

1
24ε2 −

5
48ε

)
gµν (B.23)

Iµν1
3b =

µ ν

=
∫ ddk1

(2π)d
∫ ddk2

(2π)d
∫ ddk3

(2π)d
kµ2k

ν
2

k2
1(k2

2)2k2
3(k1 − p)2(k2 − p)2(k1 + k3 − k2)2

∣∣∣∣∣
p2=1

Iµν1
3b = 1

(4π)4

( 1
12ε3 −

1
8ε2 + 5

96ε

)
gµν (B.24)

Iµν1
32t =

ν

µ

=
∫ ddk1

(2π)d
∫ ddk2

(2π)d
∫ ddk3

(2π)d
kµ1k

ν
3

k2
1k

2
2k

2
3(k1 + p)2(k2 + p)2(k1 − k3)2(k2 − k3)2

∣∣∣∣∣
p2=1

Iµν1
32t = 1

(4π)4

( 7
48ε −

1
12ε2

)
gµν . (B.25)

There are many more counterterms that can be computed this way. For the three
loop counterterms we are not aware, that they have been published anywhere.
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