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The first priority should be given to the study of basic physical mechanisms of
turbulence with the emphasis on qualitative aspects, keeping in mind a somewhat

old-fashioned view that curiosity drives better science than ‘strategies’. This priority
includes the study of turbulence itself (per se), rather than multitudes of its models.

From the basic point of view, it seems not justified to put too much (often futile) effort
into its modelling which mostly is mimicking it without much understanding, as the

former is not synonymous to the latter.

—- Tsinober (2009, p. 345)
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A B S T R A C T

Turbulent flows exhibit not only chaotic motion, but also coherent structures. In the
convective boundary layer (CBL), these structures take the form of circulation cells or
rolls on the scale of the boundary layer depth (referred to here as “large scale"). The
influence of these large-scale structures on the small-scale eddies embedded within them
challenges our understanding of the surface layer and of the entrainment process. Using
conditional analysis to isolate the behaviour within different parts of the large-scale
structures and direct numerical simulation to accurately represent the full range of
turbulence scales, we address three open questions regarding the influence of large
coherent structures on the surface layer and entrainment zone of the CBL.

The first question tackles the failure of Monin–Obukhov similarity theory (MOST)
in free convection. Surface-layer statistics have been found to deviate from the scaling
laws predicted by MOST and various hypotheses have been proposed to explain this.
We test the hypothesis that large-scale downdrafts are the primary culprit, as they
introduce non-local properties to the surface layer and thereby violate the assumption
of no interaction with the outer layer. We find that the buoyancy and vertical velocity
variance do not follow MOST within large-scale downdraft regions, but neither do
they in large-scale updraft regions. The updraft regions are at least as important as the
downdraft regions, if not more so, for determining the near-surface behaviour and hence
the cause of departures from MOST is not as straightforward as has been hypothesised.

The second question is whether more idealised flows with similar large coherent
structures to the CBL exhibit similar near-surface behaviour. In particular, we compare
surface-layer properties between the shear-free CBL and Rayleigh–Bénard convection. We
find that statistical properties in the near-surface region of Rayleigh–Bénard convection
have substantially different behaviour to those in the CBL. This is due to a difference of
sign and magnitude of the buoyancy flux at the top of the fluid layer: the small, negative
buoyancy flux at the top of the CBL generates weak, warm downdrafts, whereas the
large, positive buoyancy flux at the upper plate of Rayleigh–Bénard convection generates
strong, cold downdrafts that modify the near-surface region. However, we also find that
only a small change to the classical setup of Rayleigh–Bénard convection is needed for
surface-layer properties to behave in a similar way to the CBL. By substituting the cooled
upper plate for an adiabatic one, the downdrafts are weaker and warmer, resulting in
surface-layer statistics that are almost indistinguishable from those in the CBL.

Finally, we reconsider the causes of wind shear enhancement of the entrainment
buoyancy flux. The entrainment zone consists partly of non-turbulent, entrained air,
and partly of turbulent plumes, associated with the ascending branch of the large-scale
circulations, penetrating into the overlying stratification. Our third question asks how
wind shear modifies properties within these different regions and how important each
of these changes are for increasing the magnitude of the entrainment buoyancy flux.
We find that in both the shear-free and the sheared CBL, the buoyancy flux is strongest
within turbulent regions. However, wind shear does not increase the magnitude of the
flux itself within those regions, but can even weaken it. The important effect of wind
shear is that it substantially increases the turbulent area fraction in the entrainment zone,
thereby reducing the non-turbulent area where entrainment is much less efficient.
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Z U S A M M E N FA S S U N G

Turbulente Strömungen sind chaotisch, aber sie zeigen auch kohärente Strukturen. In
der konvektiven Grenzschicht haben diese Strukturen die Form von Zirkulationen, die
so hoch wie die Grenzschicht selbst sind. Hier bezeichnen wir diese Zirkulationen als
“großskalige” Strukturen. Der Einfluss von diesen großskaligen Strukturen auf die in sie
eingebetteten kleinskaligen Wirbel stellt unser Verständnis der Oberflächenschicht sowie
auch des Entrainments in Frage. Wir verwenden statistische Methoden um das Verhalten
in verschiedenen Teilen der großskaligen Strukturen zu isolieren und direkte numerische
Simulationen um eine genaue Darstellung von allen turbulenten Bewegungsskalen zu
haben. Damit adressieren wir drei offene Fragen, die den Einfluss der großen kohä-
renten Strukturen auf die Oberflächenschicht und Entrainmentzone der konvektiven
Grenzschicht betreffen.

Die erste Frage beschäftigt sich mit dem Versagen von Monin–Obukhov Ähnlichkeits-
theorie bei freier Konvektion. Vorherige Studien haben gezeigt, dass Statistiken in der
Oberflächenschicht von den von der Ähnlichkeitstheorie erwarteten Skalierungsgesetze
abweichen. Verschiedene Hypothesen wurden vorgeschlagen, um dies zu erklären. Wir
untersuchen die Hypothese, dass großskalige Abwinde dafür verantwortlich sind, da sie
nicht-lokale Eigenschaften in die Oberflächenschicht einbringen und damit der Annahme
wiedersprechen, dass es keine Interaktion zwischen der Oberflächenschicht und der
Außenschicht gibt. Wir zeigen, dass innerhalb der großskaligen Abwindregionen weder
die Varianz der Vertikalgeschwindigkeit noch die des Auftriebs der Ähnlichkeitstheorie
folgen. Dies gilt allerdings auch in der großskaligen Aufwindregionen. Die Aufwind-
regionen sind, wenn nicht sogar bedeutender, mindestens ebenso bedeutend wie die
Abwindregionen für die Bestimmung des Verhaltens in der Oberflächenschicht. Damit
ist die Ursache der Abweichungen von der Ähnlichkeitstheorie nicht so eindeutig wie
bislang angenommen wurde.

Die zweite Frage ist, ob idealiserte Strömungen mit der konvektiven Grenzschicht
ähnlichen großen kohärenten Strukturen auch ähnliches Verhalten in der Oberflächen-
schicht zeigen. Namentlich vergleichen wir die Eigenschaften der Oberflächenschicht der
scherungsfreien konvektiven Grenzschicht mit der der Rayleigh–Bénard Konvektion. Wir
zeigen, dass sich die statistischen Eigenschaften in der Oberflächenschicht der Rayleigh–
Bénard Konvektion wesentlich von der der konvektiven Grenzschicht unterscheiden. Das
liegt daran, dass sich das Vorzeichen und die Größenordnung des Auftriebsflusses am
oberen Rand der zwei Systemen unterscheiden. Der kleine negative Auftreibsfluss am
oberen Rand der konvektiven Grenzschicht erzeugt schwache warme Abwinde, während
der große positive Auftriebsfluss am oberen Rand der Rayleigh–Bénard Konvektion
starke kalte Abwinde erzeugt. Diese Abwinde in der Rayleigh–Bénard Konvektion haben
einen Einfluss auf die Oberflächenschicht. Dennoch zeigen wir auch, dass nur eine kleine
Änderung an dem klassischen Versuchsaufbau der Rayleigh–Bénard Konvektion nötig
ist, um ähnliche Oberflächenschichtseigenschaften wie die der konvektiven Grenzschicht
zu erreichen. Wenn man die gekühlte obere Platte durch eine adiabatische ersetzt, sind
die Abwinde schwächer und wärmer, was zu Oberflächenschichtsstatistiken führt, die
sich fast nicht von denen in der konvektiven Grenzschicht unterscheiden.

Zuletzt überprüfen wir, warum der Entrainmentauftriebsfluss durch Windscherung
erhöht wird. Die Entrainmentzone besteht teilweise aus turbulenten Fahnen, die mit
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dem aufsteigenden Teil der großskaligen Zirkulationen verbunden sind und durch
die darüber liegende stabile Schicht dringt, und teilweise aus nicht turbulenter Luft,
die durch Entrainment eingebracht wird. Wir beschäftigen uns mit der Frage wie
die Windscherung die Eigenschaften in diesen verschiedenen Regionen ändert und
wie wichtig diese Änderungen für den verstärkten Entrainmentauftriebsfluss sind.
Wir zeigen, dass der Entrainmentauftriebsfluss innerhalb der turbulente Regionen am
stärksten ist, sowohl in der konvektiven Grenzschicht mit als auch ohne Windscherung.
Während Windscherung die Stärke des Flusses innerhalb dieser Regionen nicht erhöht,
sondern sogar verringern kann, ist der entscheidende Effekt, dass die Windscherung
zu einer Vergößerung der turbulenten und einer Verkleinerung der nicht-turbulenten
Region führt, in der das Entrainment viel weniger effizient ist.
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Part I

U N I F Y I N G T E X T



1
T H E AT M O S P H E R I C B O U N D A RY L AY E R A N D I T S R O L E I N
W E AT H E R A N D C L I M AT E

The boundary layer is not only the physical interface
between the atmosphere and the surface. It also pro-
vides an intellectual interface between meteorology
and other branches of fluid mechanics. Ideas about
how to deal with the problems of turbulence pass
from one discipline to another.

— Stewart (1979)

1.1 what is the atmospheric boundary layer?

The term boundary layer owes its origins to Prandtl (1904), who was concerned with
the problem of a low-viscosity fluid flowing on the surface of a solid body. Given the
small viscosity, the typical approach was to use the equations governing the motion of
non-viscous fluids, but solutions of these equations did not match well with experiments.
Prandtl was the first to show that this mismatch was due to the existence of a thin
layer close to the body - the boundary layer - where the effects of viscosity could not be
ignored (Schlichting, 1979).

In principle, boundary layers can be laminar, though in many practical situations they
are turbulent. The essence of Prandtl’s idea also holds true of the Earth’s atmosphere.
Most of the atmosphere is occupied by essentially inviscid flow, known as the free
atmosphere, characterised by the general circulation and wave activity. Between the
Earth’s surface and the free atmosphere lies the Atmospheric Boundary Layer (ABL),
conspicuous for its turbulent nature.

Beyond Prandtl’s original concept, the ABL also has several additional features. One
distinguishing feature is the presence of density stratification. The ABL may be classified
as stable (heavier fluid below lighter fluid), neutral (no stratification) or unstable (lighter
fluid below heavier fluid). In the stable and neutral regimes, wind shear is the only
source of Turbulent Kinetic Energy (TKE) and buoyancy either plays no role (neutral case)
or is a sink of TKE (stable case). In the unstable regime, both wind shear and buoyancy
are sources of TKE. In the limiting case of free convection, motion is generated solely by
buoyancy differences within the fluid.

Another feature unique to the ABL is the presence of clouds. There are three main
types of boundary layer clouds: shallow cumulus, stratocumulus and stratus. Fog may
be classed as a branch of the stratus regime, where the cloud extends to the Earth’s
surface (Garratt, 1992). The situation is complicated by the presence of clouds as there is
a two-way interaction between the boundary layer and the cloud layer; the boundary
layer acts as a source of heat and moisture for the cloud, whilst the clouds affect the
temperature, humidity and growth of the boundary layer (Emmitt, 1978; Moeng, 1998;
van Stratum et al., 2014).

Qualitative differences between the ABL and the free atmosphere can result in a
tendency to think of the boundary layer as a standalone sub-system within the tropo-
sphere. Whilst sometimes practical to do so, it is worthwhile to remind ourselves that

2



the boundary layer is what couples the free atmosphere above with the surface beneath
and is therefore closely tied to both weather and climate.

1.2 influence of the abl on weather

Weather is a fundamentally atmospheric phenomenon. One important way in which
the ABL plays a role in the weather we experience has already been mentioned, namely
by modulating the presence of low-level cloud. Radiative cooling of the Earth’s surface
overnight can result in the development of fog if the cooling is sufficient to cause the
air near the surface to condense. During the day, the Earth’s surface warms, creating an
unstable layer in which thermals of air rise, transporting water vapour with them. As the
air parcels rise, they also cool and may become saturated, at which point they condense
and start to form low-level clouds. Particularly strong thermals may overcome the
inversion layer that caps the daytime boundary layer. If the environmental temperature
decreases faster with height than the moist adiabatic lapse rate, the saturated air parcel
becomes positively buoyant and continues to ascend, generating deeper cumulus clouds
(Siebesma, 1998). The moisture, temperature, wind speed and degree of inhomogeneity
in the boundary layer all play a key role in setting up favourable conditions for deep
convection to grow from shallow convection (Zhang and Klein, 2010) and in this way,
the boundary layer can exert its influence right up to the tropopause (Stewart, 1979).

A rather more dramatic way in which the boundary layer is relevant for weather
phenomena is in the genesis and intensification of tropical cyclones. Although the
precise mechanisms behind tropical cyclogensis and subsequent intensification are
fraught with controversy, all major theories acknowledge the importance of the boundary
layer (Charney and Eliassen, 1964; Ooyama, 1969; Emanuel, 1991) and its crucial role
is exemplified by the sensitivity of hurricane intensity and structure in models to the
boundary-layer parameterisation (Montgomery and Smith, 2014).

1.3 influence of the abl on climate

The ABL interacts with all physical components of the climate system: the atmosphere,
the ocean and the land. On land, evapotranspiration is affected by the near-surface
relative humidity and wind speed. A more humid environment makes it harder for
plants to transpire and for moist soil to evaporate than a dry environment. Wind advects
moisture away and helps maintain a moisture gradient between the soil or plant and the
overlying air (Bonan, 2008).

In the ocean, the exchange of momentum, heat and water at the air-sea interface are
important drivers of ocean circulation. The ocean receives kinetic energy from near-
surface winds, whilst heat fluxes and evaporation at the air-sea interface modify the
density of the surface waters, resulting in overturning (Barnier, 1998).

The distribution of boundary layer clouds modifies the planetary albedo, which is
important for determining the Earth’s climate sensitivity. In fact, one of the largest
contributions to inter-model spread in climate sensitivity is due to uncertainties in
feedbacks from marine boundary layer clouds (Bony et al., 2015). The prominent thinking
is that as surface temperatures increase under climate change, the boundary layer
deepens, resulting in more entrainment drying of the boundary layer. With the moisture
supply cut back, low cloud cover reduces, which leads to further warming (Rieck et al.,
2012). The rate of drying with increasing temperature depends on lower-tropospheric
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mixing, including that incurred in the boundary layer (Sherwood et al., 2014). Due to
the uncertainties inherent to convective and boundary-layer parameterisations, Global
Climate Models (GCMs) inevitably vary in the strength of their lower-tropospheric mixing
and thus in their climate sensitivity.

1.4 a way forward

If parameterisations are failing to give a consistent picture of what turbulent mixing does,
what can we do to see the picture more clearly? Or perhaps first and foremost: what does
the picture look like? Intuitively we assume the picture is one of chaotic, disorganised
motion and certainly there are some aspects of turbulence that comply with this view.
But on the other hand, this disregards the fact that coherent structures are ubiquitous to
turbulent flows. These structures interact with the more disorganised, smaller scales of
turbulence and the details of that interaction can change under different environmental
conditions. Understanding the implications of these interactions for turbulent mixing
requires knowledge of the full range of turbulence scales. Observations covering a vast
enough area at the required spatial resolution are scarce, if not absent altogether, though
upcoming campaigns such as EUREC4A (Bony et al., 2017) and the Field Experiment
on Submesoscale Spatio-Temporal Variability in Lindenberg (FESSTVaL) will begin to
address this issue. As will be discussed in Chapter 2, Direct Numerical Simulation
(DNS) already makes an understanding of scale interactions in the ABL possible, and
supplements observations by affording us an accurate and detailed view of the turbulent
exchange of heat, momentum and moisture that is vital for weather and climate-relevant
processes, but is buried by complex models under a veil of parameterisation.

The ABL undergoes structural changes throughout the day and encompasses a variety
of different regimes. A thorough investigation of them all is certainly beyond the scope
of a single dissertation. Partly for that reason, we restrict ourselves here to the cloud-free,
unstable regime, also known as the Convective Boundary Layer (CBL). A comprehensive
overview of the neutral and stably-stratified boundary layer is given by Ansorge (2017).
Whilst the cloud-topped boundary layer is arguably the more important regime in
terms of its influence on climate (Mellado, 2017; Schulz, 2019), the cloud-free, unstable
boundary layer presents a more tractable scenario that is still relevant for the cloudy
regime, as it serves as both a precursor of shallow clouds as well as a reference case,
which shapes our thinking about cloudy regimes.
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2
M O D E L L I N G T H E C O N V E C T I V E B O U N D A RY L AY E R

Even when a system is controlled by explicit laws of
evolution, it often happens that its qualitative behavior
is still not computable and predictable.

— Thom (1975)

The end result of a successful mathematical model
may be an accurate method of prediction. Or it may
be something quite different but not necessarily less
valuable: a new insight.

— Hirsch (1984)

2.1 why use direct numerical simulation?

Some of the errors in weather forecasts and biases in climate models are at least partly
attributable to the simplifying assumptions made about the behaviour of the flow on
scales smaller than the grid resolution. In some situations, these types of model are
useful, or even necessary. But for studying certain sub-systems within the atmosphere
and ocean, an accurate representation of a small number of processes can be a more
valuable asset than representing a great number of processes poorly.

We are fortunate that we already have available to us what is probably the best possible
model for fluid flow; very likely there is no simpler set of equations that can emulate
the Navier–Stokes Equations. We are unfortunate that even for the simplest turbulent
flows, those equations still present a formidable problem to which there is no known
solution. For want of analytic solutions, many have turned to solving the equations
numerically by means of DNS, though it is usually restricted to simple geometries
and other idealisations, and still comes at a high computational cost. Despite these
disadvantages, DNS also offers several rewards. We have measurement precision that is
far beyond what can be achieved in laboratory experiments or out in the field. We have
ideal conditions that we are completely in control of. But most of all, DNS provides us
with a unique opportunity to see the mechanics of turbulence in a level of detail that is
simply not possible by other means (Moin and Mahesh, 1998).

2.2 an idealised system

Representing the CBL in a model could be a daunting task. Even in the case without
clouds, the boundary layer is coupled to a heterogeneous surface with varying topogra-
phy and roughness and is forced by differential heating that varies in time. Moreover, the
full range of scales in the real ABL is on the order of 106; three-dimensional simulations
on a grid containing 106 points in each direction is well beyond the capacity of modern
computer simulations (Mellado et al., 2018). But are all of these complexities necessary
to have a reasonable model of the CBL? Naturally, it depends on what one wants to
achieve.

Whilst all of these aspects and more would be needed to reproduce atmospheric flow
exactly, we are typically not interested in the precise trajectory of individual fluid parcels,
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Figure 2.1: Snapshot from a direct numerical simulation of the sheared CBL showing the log-
arithm of the buoyancy gradient. Sketches of the mean velocity, mean buoyancy
and buoyancy flux profiles are also shown. In the buoyancy flux profile, the dashed
vertical line indicates the zero-line. A rough indication is given of where the surface
layer, mixed layer, entrainment zone and free atmosphere are.

but rather in statistical properties of the flow. Mercifully, the requirements for obtaining
realistic statistical profiles are far less stringent and we retain only those features that we
believe are necessary to investigate the aspects we are interested in.

We solve the Navier–Stokes equations under the Boussinesq approximation:

∂vvv
∂t

+∇ · (vvv⊗ vvv) = −∇p + ν∇2vvv + bk, (2.1a)

∇ · vvv = 0, (2.1b)
∂b
∂t

+∇ · (vvvb) = κ∇2b, (2.1c)

where uuu(xxx, t) is the velocity vector with components (u, v, w), xxx = (x, y, z) is the position
vector with z as the vertical coordinate, t is time, kkk = (0, 0, 1) is the unit vector in the ver-
tical direction and p is the modified pressure divided by a constant reference density. The
buoyancy, b, is related to the virtual potential temperature, θv, via b ≈ g(θv − θv,0)/θv,0,
where θv,0 is a constant reference value and g is the gravitational acceleration. The
parameters ν and κ are the kinematic viscosity and the thermal diffusivity respectively.

We represent the CBL as an incompressible fluid developing over a flat, aerodynami-
cally smooth surface that is forced by a constant and homogeneous surface buoyancy
flux, B0 (Fig. 2.1). The boundary layer grows into a free atmosphere characterised by a
mean buoyancy gradient, N2

0 . The sheared case can also be considered by initialising
the simulation with a wind velocity, U0, that, for barotropic conditions, is constant
with height in the free atmosphere. Over time, the CBL develops into a quasi-steady
state, where the growth of the boundary layer is slow compared to the turnover time of
boundary-layer scale circulations. Often, the structure of the CBL is regarded in terms of
three main layers: the unstable surface layer, the well-mixed layer and the stably-stratified
entrainment zone. This simple set-up is, perhaps surprisingly, sufficient to replicate
typical midday to mid-afternoon conditions over land (Caughey, 1982).
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2.3 dimensional analysis

2.3.1 Control Parameters

One of the advantages of considering this idealised system is that all of the control
parameters are known. For the shear-free CBL, there are four control parameters:
{B0, N0, ν, κ}. In the sheared CBL, there is one additional control paramter, U0. Through
non-dimensionalisation, we can eliminate redundancy by reducing the number of control
parameters to the minimum needed to fully characterise the system. Given n dimensional
control parameters and m fundamental dimensions, the Buckingham Pi Theorem implies
that n−m non-dimensional parameters are sufficient to capture the dependence of the
system on all n dimensional parameters (Buckingham, 1914). We have two fundamen-
tal dimensions: length and time. Hence, in the shear-free CBL, two non-dimensional
parameters are sufficient, namely the Prandtl number,

Pr ≡ ν

κ
, (2.2)

and the reference Reynolds number,

Re0 ≡
B0

νN2
0

, (2.3)

whilst in the sheared CBL a third is required, namely the reference Froude number,

Fr0 ≡
U0

N0L0
, (2.4)

where

L0 ≡
(

B0

N3
0

)1/2

(2.5)

is a reference Ozmidov length. The Ozmidov length,

LOz ≡
( ε

N3

)1/2
, (2.6)

represents the largest scale at which overturning of eddies is uninhibited by the stratifi-
cation (Dougherty, 1961; Ozmidov, 1965). In Eq. (2.6), ε is the viscous dissipation rate of
TKE and N = ∂z〈b〉, with angled brackets denoting a horizontal average. The Prandtl
number, Eq. (2.2), characterises how well momentum is diffused compared to heat and
is a property of the working fluid. The reference Reynolds number, Eq. (2.3) is analogous
to the buoyancy Reynolds number,

Reb ≡
ε

νN2 , (2.7)

which represents the scale separation between LOz and the Kolmogorov length, η ≡
(ν3/ε)1/4, since Reb = (LOz/η)4/3. The Kolmogorov length is one of the smallest turbu-
lence length scales, representing the scale at which TKE is dissipated into internal energy.
The reference Froude number, Eq. (2.4), is a measure of the strength of wind shear as it
compares the velocity in the free atmosphere with a velocity scale in the entrainment
zone.
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By considering typical values of the dimensional parameters in the CBL, we can
see what parts of the non-dimensional parameter space the CBL occupies. At 15 ◦C,
the kinematic viscosity of air is 1.47× 10−5 m2 s−1 and the thermal diffusivity is 2×
10−5 m2 s−1, yielding a Prandtl number of around one.1 For typical midday conditions
over land, one finds B0 ≈ (0.1− 1) × 10−2 m2 s−3, N0 ≈ (0.6− 1.8) × 10−2 s−1 and
U0 ≈ 0− 20 m s−1, yielding Re0 on the order of 105 − 107, L0 ≈ 10− 200 m and Fr0 in
the range 0− 85.

As an example of the utility of non-dimensionalisation, consider one day where
the free-tropospheric wind speed is U0 = 10 m s−1, the buoyancy frequency is N0 =

10−2 s−1 and the surface buoyancy flux is B0 = 2.5× 10−3 m2 s−3 and another day
where the free-tropospheric wind speed is U0 = 15 m s−1, the buoyancy frequency is
N0 = 0.75× 10−2 s−1 and the surface buoyancy flux is B0 = 4.2× 10−3 m2 s−3. One might
assume that wind shear is stronger on the day with the higher wind speed, but in fact,
both days correspond to the same shear condition as both days correspond to Fr0 = 20.
Only by performing the non-dimensional analysis can this insight be ascertained.

A key aspect of non-dimensionalisation is that flows with the same non-dimensional
parameter values may be considered similar and comparable. Of the non-dimensional
control parameters, Eq. (2.2-2.4), we can match all but one to typical atmospheric values.
The one parameter we cannot match is the Reynolds number as this determines the
range of scales present in the flow and hence the computing requirements to simulate
that flow. We therefore simulate a flow with a much smaller Reynolds number than
the real atmosphere. This, in combination with the idealised set-up, may cast doubt
on the applicability of DNS results to the real atmosphere. Fortunately, sensitivity
to the Reynolds number can be easily quantified and we already observe that for
many important quantities, Reynolds number effects are small, indicating a tendency
towards Reynolds number similarity (Garcia and Mellado, 2014; Mellado et al., 2017;
Haghshenas and Mellado, 2019). Uncertainty associated with the idealisations we make
necessitate comparisons to be made with other sources of inquiry such as Large Eddy
Simulation (LES), laboratory experiments and field measurements, and here too there are
promising signs of agreement across methodologies, despite the various uncertainties
inherent to each approach (Mellado et al., 2018).

2.3.2 Independent Variables

Statistical properties in the CBL are functions not only of the non-dimensional control
parameters, but also of some independent variables. Due to statistical homogeneity in
the horizontal directions, the only independent variables on which statistics depend are
height and time. These variables too can be non-dimensionalised, but in doing so, we
have to make a choice about the appropriate length and time scales to normalise by. This
depends on the specific problem one is addressing and in the following, we consider
various options.

1 The kinematic viscosity and thermal diffusivity of air depend slightly on temperature, but for the typical
range of temperatures exhibited on Earth, they remain of order 10−5 m2 s−1 and the Prandtl number
remains approximately one.
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2.3.2.1 Mixed-Layer Scales

The depth of the mixed layer in both the shear-free and sheared CBL is characterised
by the encroachment length scale (Carson and Smith, 1975; Haghshenas and Mellado,
2019):

zenc ≡
{

2N−2
0

∫ z∞

0
[〈b〉(z, t)− N2

0 z]dz
}1/2

, (2.8)

where z∞ is located far enough into the free atmosphere for the integral to be approxi-
mately independent of z∞. Through an integral analysis of the buoyancy equation, Eq.
(2.1c), one obtains

zenc

L0
= [2N0(1 + Re−1

0 )(t− t0)]
1/2, (2.9)

with t0 a constant of integration. Eq. (2.9) is an explicit expression for how the mixed
layer depth evolves with time. The non-dimensional variables z/zenc and zenc/L0 can
replace the independent variables z and t.

Garcia and Mellado (2014) showed that beyond zenc/L0 ≈ 10, the CBL is in a quasi-
steady state and there is a dominant balance in the TKE budget equation between
buoyancy production and viscous dissipation. In Section 4.3, in our discussion of the
entrainment zone, we will concentrate on this quasi-steady state and consider how
properties develop in the range 15 ≤ zenc/L0 ≤ 30, i.e. over a time period in which
the mixed-layer depth doubles. This could correspond, for example, to a CBL with
L0 = 30 m growing from 450 m to 900 m, or equivalently to a CBL with L0 = 50 m
growing from 750 m to 1500 m.

2.3.2.2 Diffusive Scales

In the surface layer, mixed-layer scales are inappropriately large and smaller scales
are required for normalised properties to be of order one. Directly adjacent to an
aerodynamically smooth surface lies the diffusive sublayer, where the molecular diffusion
of heat is equally or more important than the turbulent flux. One can define diffusive
length, velocity and buoyancy scales that give an appropriate measure of these properties
in the diffusive sublayer (Townsend, 1959; Mellado, 2012):

zκ = (κ3/B0)
1/4, (2.10a)

wκ = (κB0)
1/4 = (zκB0)

1/3, (2.10b)

bκ = (B3
0/κ)1/4 = (B2

0/zκ)
1/3. (2.10c)

The diffusive sublayer extends approximately up to 10zκ. The surface layer, which lies
above the diffusive sublayer, has a depth that increases with the Reynolds number. For
the Reynolds numbers considered in this work, the surface layer can be thought of as
lying roughly between 10 . z/zκ . 100. The non-dimensional variables z/zκ, w/wκ and
b/bκ will be used extensively in Section 4.1 in our discussion of the surface layer.

In the case of an aerodynamically rough surface, analogous scales to those defined by
Eq. (2.10) can be used simply by replacing the diffusive length with the roughness length,
z0. Properties in the roughness sublayer differ from those in the diffusive sublayer, but
beyond that, properties behave in a similar way regardless of whether the surface is
smooth or rough, provided the Reynolds number is large enough (Raupach et al., 1991).
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3
L A R G E C O H E R E N T S T R U C T U R E S A N D S M A L L - S C A L E
T U R B U L E N C E I N T H E C O N V E C T I V E B O U N D A RY L AY E R

It is a great pity that of the three concepts of turbu-
lence:

1. all eddies small compared to mean flow dimen-
sions (Boussinesq “eddy viscosity" hypothesis,
1877);

2. some eddies large but weak (Townsend’s hy-
pothesis, 1956);

3. some eddies large and strong, interacting with
smaller and weaker eddies (current view);

the most recent is both the most realistic and the most
complicated.

— Bradshaw (1972)

In Section 1 we discussed that turbulence is not just an amalgamation of randomly
moving vortices, but that coherent structures also emerge. In this section we elaborate
on what these structures are, how they interact with small-scale turbulence in the CBL
and what that interaction implies.

3.1 large coherent structures

Coherent structures in turbulent flows take many different forms, just as there are a vari-
ety of turbulent flows. For example, hairpin vortices and the somewhat unimaginatively
named “very-large-scale motions" are features of wall-bounded flows (Kim and Adrian,
1999; Adrian, 2007; Balakumar and Adrian, 2007), large-scale vortices are found in both
rotating flows and free shear flows (Koschmieder, 1979; Cantwell, 1981; Guervilly et al.,
2014), whilst convective flows organise into circulation cells or rolls (Hartlep et al., 2003;
Emran and Schumacher, 2015; Pandey et al., 2018).

Given the many different types of coherent structures, it is not easy to formulate
a rigorous definition. They have been described as "organized spatial features which
repeatedly appear [...] and undergo a characteristic temporal life cycle" (Berkooz et al.,
1993), and also as “a distinct large-scale fluctuation pattern which is regularly observed
in a given turbulent flow" (Wilczak, 1984). The recurring theme in these definitions is
that of something which is organised in space and persistent in time.

Large-scale coherent structures change from flow to flow due to changes in the
boundary conditions. In addition, these structures impose themselves on regions of the
flow otherwise characterised by small-scale motion. Hence, any change to the coherent
structures suggests that there may be an impact on the small-scale eddies embedded
within them. This puts into question the traditional view that “the motion of the smaller
eddies is related only weakly to the, possibly, inhomogeneous and anisotropic large
eddies and their motion should be nearly isotropic" (Townsend, 1976). Indeed, the view
of turbulence underwent a paradigm shift when it was recognised that large and small
scales interact (Kline et al., 1967; Rao et al., 1971; Dimotakis and Brown, 1976; Cantwell,
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Figure 3.1: Horizontal cross-section of the vertical velocity field at the height of maximum
vertical velocity variance, taken from direct numerical simulations of (a) the shear-free
CBL and (b) Rayleigh–Bénard convection. The vertical velocity is normalised by the
convective velocity scale, w∗ = (B0h)1/3, where h is the depth of the fluid layer.

1981) and the assumption of local isotropy of small-scales is often violated (Stewart, 1969;
Warhaft, 2000).

Despite changes to the boundary conditions modifying the large scales, flows in nature
often give rise to structures that bear a striking resemblance to those found in canonical
flows in fluid mechanics. Examples that lend themselves to visualisation are cloud streets
(Atkinson and Zhang, 1996), related to convection rolls, and solar granulation (Nordlund
et al., 2009), related to cellular convection. Even when not made visible to the naked eye
by the formation of clouds, circulation cells develop in the CBL that extend from the
surface to the boundary-layer top and are several times the CBL depth in width (Mellado
et al., 2016). These so-called Large-Scale Circulations (LSCs) are reminiscent of those
occurring in classical Rayleigh–Bénard Convection (RBC) (Fig. 3.1). Consisting of a fluid
layer heated from below and cooled from above, RBC stands as the simplest archetype
of free convective flow. Despite its simplicity, the study of RBC has lead to findings that
have had far-reaching implications, with one of the most pertinent examples being the
discovery of chaos by Lorenz (1963). The similarity of the coherent structures occurring
in RBC and the CBL thus leads to the tempting speculation that results obtained from
the former are applicable to the latter and can be transferred in a straightforward way.
Still, the issue of changes to the large scales is problematic and the impact of this on the
small scales of motion needs to be assessed.

3.2 small-scale turbulence

Small-scale turbulence occurs throughout the boundary layer, but only in some regions
is it especially important for mixing. The details of the small scales matter in regions of
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the flow where there are strong gradients, because the gradient determines the length
scale over which properties vary rapidly and thus the scale of the mixing. In the CBL,
the regions with the sharpest gradients are the surface layer and the entrainment zone
(Fig. 2.1). Typically these regions are no more than a few hundred metres in depth and
are thus small compared to the boundary layer as whole, which has a typical depth of
one or two kilometres. To understand the implications of structures on the scale of the
boundary layer depth (what we refer to as “large scale") superimposed upon the flow
in the surface layer and entrainment zone, it is necessary to review some fundamental
concepts.

3.2.1 The Surface Layer

Perhaps harder to define than the boundary layer itself is the surface layer. Loosely,
one can think of it as the bottom 10% of the boundary layer (Stull, 1988), but the
essential point about the surface layer is that it scales in a very distinct way to the rest
of the boundary layer. This means that surface-layer properties are of order one when
normalised using the appropriate scales, whereas different scales are needed in other
parts of the boundary layer for properties to be of order one there (cf. Section 2.3.2).

Compared to other regions of the boundary layer, the surface layer has probably
enjoyed the most theoretical treatment, albeit a semi-empirical one. The theory known
as Monin–Obukhov Similarity Theory (MOST) has been the cornerstone of investigations
into the Atmospheric Surface Layer (ASL) since its emergence (Monin and Obukhov,
1954). The fundamental tenet of MOST is that the surface layer and the outer layer
are decoupled and that surface-layer properties are determined exclusively by local
parameters, namely the friction velocity, u∗, the surface buoyancy flux, B0, and the height
above the ground, z. From these three parameters, one can form a non-dimensional
“stability parameter",

z
L
= − zkB0

u3
∗

, (3.1)

where L = −u3
∗/(kB0) is the Obukhov length and k is the von Kármán constant. The

theory states that all surface-layer properties depend only on z/L, with the functional
relationship needing to be obtained empirically. Observations have provided a proof of
concept for boundary-layer regimes that are close to neutral, i.e. for small z/L (Wyngaard,
2010). Limiting cases on the other hand, where z/L → ±∞, have proven to be more
problematic (Högström, 1996).

In a state of free convection, such as the shear-free CBL, z/L = −∞ and the friction
velocity drops out of the scaling. In this case, the theory predicts specific scaling laws to
hold: the variation with height of the n-th moment of velocity and buoyancy is derived to
be z±n/3 (positive sign applies to the velocity and negative sign to the buoyancy). Initially,
measurements made in Kansas (Businger et al., 1971) and Minnesota (Kaimal et al.,
1976) seemed to support these predictions, but since then, laboratory experiments and
numerical simulations have repeatedly found deviations from the predicted scaling laws
(Adrian, 1996; Khanna and Brasseur, 1997; Maronga and Reuder, 2017). These deviations
are understood to stem from the existence of LSCs, that violate the assumption of no
interaction with the outer layer (Mellado et al., 2016; Salesky and Anderson, 2018), yet
the precise mechanism by which LSCs introduce non-local effects into the surface layer
is still uncertain.

12



There are two main competing theories to explain the observed deviations from MOST.
The first speculates that z and B0 are insufficient to characterise surface-layer properties
in free convection, and that a velocity scale associated with the large-scale horizontal
flow near the surface is needed in addition. Businger (1973) supposed that this would
be proportional to the convective velocity scale, w∗, which would effectively substitute
for the friction velocity in the stability parameter. In this case, the theory again becomes
empirical and dependence on the modified stability parameter needs to be determined
through experiment. This idea seems to have been proposed in order to argue that the
mean temperature gradient does not switch to a −1/3 power law in free convective
conditions as predicted by MOST, but maintains the (z/L)−1/2 scaling measured by
Businger et al. (1971). However, more recent results have indicated that there is indeed a
transition to the −1/3 scaling under strongly unstable conditions (Mellado et al., 2016;
Maronga and Reuder, 2017), and as such the argument loses some of its grounding.

The second theory argues that the descending branches of the LSCs introduce non-local
properties to the surface layer by transporting free-tropospheric air down to the surface
- a theory which so far has mainly been supported by measurements of the specific
humidity variance (de Bruin et al., 1993; Lohou et al., 2010; van de Boer et al., 2014).
However, given that deviations from MOST have also been found for the temperature
and vertical velocity variance (Adrian, 1996; Mellado et al., 2016; Maronga and Reuder,
2017), the possibility that large-scale downdrafts may also cause deviations from MOST
in these quantities is still open.

3.2.2 The Entrainment Zone

Although there is no unique way to define the entrainment zone, a straightforward
definition that we will use is the region of negative buoyancy flux (see Fig. 2.1). It is
distinctive for being a region that is not entirely turbulent. Turbulence occurs where
strong thermal plumes, associated with the ascending branch of the LSCs, penetrate
into the overlying stratification, but these regions are surrounded by non-turbulent,
free-tropospheric air being pulled into the boundary layer (Sullivan et al., 1998). The
alternation of turbulent and non-turbulent patches is evident in the large-scale horizontal
variation of the vorticity magnitude across the entrainment zone (Fig. 3.2), a phenomenon
termed external intermittency.

The entrainment buoyancy flux that is responsible for the CBL growth is fundamentally
affected by external intermittency. The turbulent area fraction varies sharply across the
intermittent region and properties within turbulent and non-turbulent regions can differ
strongly (Pope, 2000). The magnitude of the buoyancy flux in the entrainment zone is
thus dictated by several factors: how large the turbulent area is, how strong the buoyancy
flux is in the turbulent regions compared to the non-turbulent regions, and how much
mean properties differ between the two regions.

The entrainment process is compounded not only by external intermittency, but also
by wind shear. It has been well documented that wind shear generates a stronger entrain-
ment buoyancy flux, which is commonly put down to the additional shear production
of TKE (Pino et al., 2003; Conzemius and Fedorovich, 2006; Pino and Arrellano, 2006;
Fedorovich and Conzemius, 2008). However, external intermittency implies that the
situation could be more nuanced. With more TKE, wind shear may well simply generate
stronger fluctuations in turbulent regions. But in addition, large-scale structures present
in the flow are changed by wind shear from cells to rolls (see Salesky et al. (2017)
and Fig. 3.2), which impacts the distribution of turbulent and non-turbulent patches.
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Figure 3.2: Horizontal cross-section of the enstrophy field at the height of minimum buoyancy
flux, taken from a direct numerical simulation of (a) the shear-free CBL and (b) the
sheared CBL at Fr0 = 20. The enstrophy has been normalised by a reference enstrophy
scale in the mixed layer, ω2

0 = 0.1B0/ν.

Moreover, wind shear has been shown to increase the amplitude of oscillations of the
Turbulent/Non-Turbulent Interface (TNTI) (Kim et al., 2003), which suggests the differ-
ence in mean properties between the two regions may change. The interplay between
these various wind-shear effects has yet to be disentangled.

3.3 research questions

We have seen that large coherent structures interact with small-scale turbulence in
the CBL and this interaction challenges our understanding of the surface layer and of
entrainment. From the previous discussion, the following questions arise:

Q1: Are deviations from Monin–Obukhov Similarity Theory in free convection
caused by large-scale downdrafts impinging into the surface layer?

When conventional statistics are taken in the ASL, they average over both the updraft and
downdraft regions of the LSCs. Updraft properties might be expected to comply with
MOST, because we think of updrafts as being formed from buoyant thermals rising from
the surface and merging together (Schmidt and Schumann, 1989). This suggests that
updraft properties are characterised by a local length scale (the height above the ground)
and the surface buoyancy flux, in agreement with MOST. Downdrafts, on the other hand,
stem from the outer layer and due to covering a significant area near the surface, may be
masking the behaviour inside large-scale updrafts regions when conventional statistics
are taken.

Q2: Do more idealised flows with similar large coherent structures to the CBL have
similar near-surface behaviour?
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Rayleigh–Bénard convection shares many commonalities with the CBL, from the qualita-
tive similarity of their large-scale structures, to more quantitative results, such as the
same scaling of the Nusselt number with the Rayleigh number (Mellado et al., 2016). But
RBC also offers many advantages over the CBL: it is symmetric, statistically steady and a
simpler experimental set-up. It is perhaps the most well-studied form of free convection,
for which many analytical results have been obtained (Chillà and Schumacher, 2012).
If surface-layer properties in the two systems also scale similarly, this could rapidly
advance our understanding of the unstable ASL.

However, differences in the boundary conditions between the two systems, namely the
cooled upper plate of RBC and the stable stratification bounding the CBL, weaken the
prospect of a straightforward transfer of results. To explore systematically how changes
to the boundary conditions and the large-scale structures affect the near-surface region, it
is useful to consider an intermediary case: Rayleigh–Bénard convection with an adiabatic
top lid, which we shall refer to as the LID case. This case may be interpreted as a CBL
capped by an infinitely strong inversion. The adiabatic upper plate prevents any heat
from escaping and the fluid thus constantly warms over time, as in the CBL, but because
the fluid depth does not change, many other properties do reach a statistically steady
state. The inclusion of the LID case allows us to interpret more easily why differences
occur and further assess to what extent idealised configurations are representative of the
unstable ASL.

Q3: How do wind shear-induced changes to turbulent and non-turbulent regions in
the entrainment zone contribute to shear-enhanced entrainment?

In a similar way to the surface layer, when conventional statistics are taken in the
entrainment zone, they average over large-scale regions with potentially vastly different
properties to each other, in this case, turbulent and non-turbulent regions. Changes in
the boundary conditions, in this case the addition of wind shear, modify the large scales,
which may in turn change the structure and properties of turbulent and non-turbulent
regions. Hence, any analysis that fails to distinguish these regions from one another may
be intermingling a number of different wind shear effects. This muddies our view and
suggests we may not yet have fully explained the causes of shear-enhanced entrainment.

3.4 beyond conventional statistics

The existence of large coherent structures in the CBL indicates that the use of conventional
statistics is not always appropriate. The large-scale variation between updraft and
downdraft regions, or between turbulent and non-turbulent regions, naturally calls for
the use of conditional analysis (Dopazo, 1977; Antonia, 1981). This allows us to isolate
the behaviour within different parts of the large-scale structure present in the flow.

Conditioning the CBL into updraft and downdraft regions is not a new idea. Aircraft
observations were employed to this end by Young (1988) and Williams and Hacker (1992)
and LES has also been a popular choice (Schumann and Moeng, 1991; Couvreux et al.,
2010). However, for a thorough investigation into MOST and the surface layer, these
methodologies pose problems. Flying an aircraft in the first few hundred metres above
the ground for a sustained period of time is difficult, whilst LES suffers from the catch-22

that the theory one is trying to test the validity of is itself used in the simulation to
provide boundary conditions. For this reason, DNS is becoming an ever more popular
choice for investigations into the ASL, although the focus has largely been on stable

15



(Chung and Matheou, 2012; Ansorge and Mellado, 2014; Shah and Bou-Zeid, 2014) or
mildly unstable conditions (McColl et al., 2017; Li et al., 2018), further motivating our
consideration of the free convective case.

Conditioning statistics on either side of the TNTI using DNS has seen a wide variety
of applications in canonical flows in fluid mechanics (Bisset et al., 2002; Mellado et al.,
2009; van Reeuwijk and Holzner, 2014), unstratified penetrative convection (Holzner
and van Reeuwijk, 2017) and gravity currents (van Reeuwijk et al., 2018). In terms of
atmospheric flows, this kind of conditional analysis has proven very effective in direct
numerical simulations of the stably-stratified Ekman layer (Ansorge and Mellado, 2016).
The first efforts to measure the turbulent area fraction in the entrainment zone of the
CBL were made by Deardorff et al. (1980) in their tank experiments. Our use of DNS in
this setting enables the accurate detection of small-scale fluctuations in the enstrophy
field needed for the partitioning into turbulent and non-turbulent regions.
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4
S U M M A RY O F R E S U LT S

We sometimes underestimate the influence of little
things.

— Chesnutt (1999)

The questions posed in Section 3.3 are dealt with thoroughly in the Appendices;
questions 1 and 2 in Appendix A and question 3 in Appendix B. In this section, we
provide an overview of the main results.

4.1 deviations from monin–obukhov similarity theory in free convec-
tion

In order to test the hypothesis that large-scale downdrafts cause deviations from MOST
in free convection, we condition the flow into large-scale updraft and downdraft regions
based on the sign of the low-pass filtered vertical velocity field. The filter size determines
the definition of “large scale" and in Appendix A we consider two alternative choices
based on characteristic length scales of the LSCs; a vertical scale and a horiztonal scale.
There it is shown that the response to our research question does not depend on the
choice of filter size and so here we only we only consider the vertical length scale, namely
the depth of the LSCs, as the filter size. We emphasise that the filtered vertical velocity
field is only used to determine the location of large-scale updraft and downdraft regions,
and the statistics themselves are obtained from the unfiltered, original DNS data.

By partitioning fields into large-scale updraft and downdraft regions, the mean of a
dependent variable, φ, may be expressed as:

〈φ〉 = au〈φ〉u + ad〈φ〉d, (4.1)

and the variance as:

〈φ′2〉 = au〈φ′2〉u + ad〈φ′2〉d + auad(〈φ〉u − 〈φ〉d)2, (4.2)

where au is the updraft area fraction, ad = 1− au is the remaining area fraction covered by
downdrafts, 〈φ〉u and 〈φ〉d indicate the mean inside updrafts and downdrafts respectively,
〈φ′2〉u = 〈φ2〉u − 〈φ〉2u and 〈φ′2〉d = 〈φ2〉d − 〈φ〉2d indicate the variance inside updrafts
and downdrafts respectively, and the final term on the right-hand side of Eq. (4.2) is the
“mean difference term".

Several conditional statistics from the shear-free CBL are shown in Fig. 4.1. Statistics
have been averaged in time to improve statistical convergence and have been normalised
by the scaling law predicted by MOST, such that if the profile is vertical, it indicates
agreement with the MOST prediction. The first point to note is that the large-scale
updraft area fraction varies by less than 5% with height within the surface layer (Fig.
4.1a). This indicates that any deviations from MOST that may occur are not due to
variations with height of the updraft area fraction.

Previous studies have found that the mean buoyancy gradient follows the predicted
scaling law of (z/zκ)−4/3 (Kader and Yaglom, 1990; Mellado et al., 2016; Maronga and

17



0.3 0.4 0.5 0.6
au

Updraft area fraction

100

101

102

103
H

ei
gh

t
z/

z κ

(a)

0.0 0.2 0.4 0.6 0.8 1.0
|∂z〈b〉|(zκ/bκ)/(z/zκ)−4/3

Mean buoyancy gradient

(b)

0.0 0.5 1.0 1.5 2.0 2.5(〈b′2〉/b2
κ

)
/(z/zκ)−2/3

Buoyancy variance

(c)

0.0 0.5 1.0 1.5 2.0(〈w ′2〉/w 2
κ

)
/(z/zκ)2/3

Vertical velocity variance

(d)
Unconditioned Updraft Downdraft Mean difference

Figure 4.1: Conditional statistics in the shear-free CBL. For the buoyancy and vertical velocity
variance, the updraft/downdraft area fractions are included, so that the sum of the
coloured lines equals the unconditioned profile. The grey markers on the right-hand-
side indicate (lower) 10% and (upper) 50% of the CBL depth.

Reuder, 2017). We find that this is true not only within updrafts between 40 . z/zκ . 100,
but also within downdrafts between 20 . z/zκ . 80 (Fig. 4.1b).

Deviations from MOST occur in the buoyancy and vertical velocity variance profiles
(Fig. 4.1c,d). Since the buoyancy variance profile leans to the left of a vertical line, this
indicates that it decreases with height faster than predicted by MOST. This behaviour is
maintained throughout the surface layer and right up to the centre of the CBL (shown
by the upper grey marker on the right-hand-side of Fig. 4.1c). The vertical velocity
variance on the other hand has a more complex behaviour. At around 10% of the CBL
depth (shown by the lower grey marker on the right-hand-side of Fig. 4.1d), there is a
stationary point, below which the vertical velocity variance increases with height faster
than predicted by MOST (the profile leans to the right of a vertical line) and above which
it increases more slowly with height than predicted by MOST (the profile leans to the
left of a vertical line).

The behaviour of the buoyancy and vertical veocity variance cannot be explained by
the mean difference term, which contributes the least to these properties in the surface
layer. In accordance with our hypothesis, deviations from MOST do occur within large-
scale downdraft regions. However, contrary to our hypothesis, strong deviations also
occur within large-scale updraft regions and are at least as important as downdrafts, if
not more so, for determining the near-surface behaviour. This suggests that even updraft
properties are not just determined locally, but also by outer scales.

4.2 rayleigh–bénard convection as a model of the unstable atmo-
spheric surface layer

In this section we consider the same properties as in Section 4.1, but now for the RBC
and LID cases (Fig. 4.2). We note that although statistical profiles in RBC are symmetric
in the vertical direction, this symmetry is not visible in Fig. 4.2a-d due to the logarithmic
scale and normalisation by the scaling laws predicted by MOST.

The updraft area fraction in both the RBC and LID cases behaves in a similar way as in
the CBL and is larger only by around 3% in the RBC case. Yet despite these similarities
in the updraft area fraction, other conditional statistics in RBC differ from the CBL in
several significant ways. All of these differences can be attributed to the colder, stronger
downdrafts in RBC.
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Figure 4.2: Same as Fig. 4.1 but for the RBC and LID cases. The grey markers on the right-hand-
side indicate (lower) 10% and (upper) 50% of the depth of the domain.

The first main difference from the CBL is that the mean buoyancy gradient in RBC
does not follow the scaling law predicted by MOST, neither in updraft nor in downdraft
regions (Fig. 4.2b). This is because the colder descending plumes in RBC result in the
air becoming well-mixed lower down in the cell compared to the CBL. Consequently,
the mean buoyancy profile has less space to develop the expected scaling behaviour
before its vertical gradient vanishes. However, at higher Reynolds number, where the
surface layer is deeper compared to the receding diffusive sublayer, the mean buoyancy
gradient may vanish higher up, and it is possible that the profiles in the RBC case then
tend towards those found in the CBL.

A further way in which RBC differs from the CBL is in the behaviour of the buoyancy
variance within large-scale downdraft regions. In the CBL, 〈b′2〉d decays continuously
with height in the surface layer faster than z−2/3. In RBC however, 〈b′2〉d begins to
decrease markedly slower than z−2/3 at a height of around 10% of the depth of the
domain, as the profile starts to leans to the right of a vertical line in Fig. 4.2c. In
the vicinity of the upper plate of RBC, cold tongues of air lead to a large buoyancy
variance. The increasingly slow decay with height of 〈b′2〉d near the surface indicates
that the buoyancy variance within downdraft regions starts to be affected by this cold air
descending from aloft. By contrast, the CBL has comparatively warm downdrafts and in
the surface layer of the CBL, 〈b′2〉d is primarily determined by a bottom-up contribution
associated with small-scale thermals embedded within the large-scale downdraft region.

A final difference is that the vertical velocity variance within large-scale downdrafts is
larger in RBC than in the CBL (Fig. 4.2d). This is due to the more vigorous downdraft
plumes reaching the surface layer that generate stronger vertical velocity fluctuations.

Whilst the cold, strong downdrafts of RBC substantially change the behaviour of
surface-layer properties compared to the CBL, it turns out that only a small modification
to the RBC set-up is needed for statistical profiles in the surface layer to closely match
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Figure 4.3: Probability density function of the enstrophy for (a) the shear-free CBL and (b) the
sheared CBL at Fr0 = 20. The black star indicates the approximate location of the
saddle point and the threshold on enstrophy that we use to distinguish turbulent
from non-turbulent regions.

those in the CBL. Instead of cooling the upper plate as in classical RBC, if the upper
plate is made adiabatic, i.e. no heat is allowed to escape, the downdrafts are no longer as
cold or as strong and their impact on the surface layer diminishes. This is evident in Fig.
4.2e-h, where the profiles in the LID case are almost indistinguishable from those in the
CBL. Although the LID case is not as commonly studied as classical RBC, it still offers
many of the same advantages, such as being a simpler experimental set-up than the CBL
and most statistical properties, other than the mean temperature, having a statistically
steady behaviour. This allows greater statistical convergence to be obtained through
long-time averaging.

4.3 implications of external intermittency for understanding shear-
enhanced entrainment

Having seen how large coherent structures in the form of circulations affect the surface
layer, we now turn our attention to the entrainment zone. Here, rising plumes associated
with the ascending branch of the LSCs penetrate into the overlying stratification and
spread outwards, creating a pattern of turbulent domes separated by regions of non-
turbulent fluid as depicted in Fig. 3.2. Hence, instead of conditioning on the vertical
velocity field, we now need to condition into turbulent and non-turbulent regions.

Doing so requires a definition of turbulence. One of the defining features of turbulence
is that it is characterised by vorticity magnitudes which are orders of magnitude larger
than those found in non-turbulent flow. In the CBL, this is apparent from the Probability
Density Function (PDF) of the vorticity magnitude (also known as enstrophy) which has a
dipole structure: one maximum in the PDF occurs within the free atmosphere at a certain
enstrophy value and another maximum occurs in the boundary layer at an enstrophy
value which, in our simulations, is two orders of magnitude larger than that occuring in
the free atmosphere (Fig. 4.3). To define turbulent regions, we place a threshold on the
enstrophy, which is chosen to be the saddle point in the enstrophy PDF, as it divides
between enstrophy values more likely to be found in the boundary layer and enstrophy
values more likely to be found outside of it.
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With this, we can now decompose the buoyancy flux in the entrainment zone as
follows:

〈b′w′〉 = aT〈b′w′〉T + aNT〈b′w′〉NT + aTaNT(〈b〉T − 〈b〉NT)(〈w〉T − 〈w〉NT), (4.3)

where aT and aNT = 1− aT are the turbulent and non-turbulent area fractions respectively,
〈b′w′〉T = 〈bw〉T − 〈b〉T〈w〉T is the buoyancy flux within turbulent regions, 〈b′w′〉NT =

〈bw〉NT − 〈b〉T〈w〉NT is the buoyancy flux within non-turbulent regions and (〈b〉T −
〈b〉NT)(〈w〉T − 〈w〉NT) is a contribution resulting from the difference in mean properties
between turbulent and non-turbulent regions.

As discussed in Section 3.2, there are several plausible hypotheses for how wind shear
may modify turbulent and non-turbulent regions in a way that increases the magnitude
of the buoyancy flux in the entrainment zone. These hypotheses can be expressed with
regard to the terms in Eq. (4.3):

1. Due to the larger amplitude oscillations of the TNTI, wind shear creates a larger
difference in mean properties between turbulent and non-turbulent regions, in-
creasing the term (〈b〉T − 〈b〉NT)(〈w〉T − 〈w〉NT).

2. Wind shear generates more vigorous fluctuations in turbulent regions, increasing
the term 〈b′w′〉T.

3. The large-scale structures in the CBL change when wind shear is added, which
alters the distribution of turbulent patches in the entrainment zone and thereby aT

and aNT.

By assessing the terms in Eq. (4.3) individually, we can test these different hypotheses.
To investigate wind shear effects, we consider two cases: a shear-free case, correspond-

ing to Fr0 = 0 (i.e. a free atmospheric wind speed of U0 = 0 m s−1) and a sheared case
corresponding to Fr0 = 20 (i.e. a free atmospheric wind speed of U0 = 10− 15 m s−1

for typical midday conditions over land). In Fig. 4.4a, we show how each of the terms
in Eq. (4.3) contribute to the total buoyancy flux for each Fr0. We see that the turbulent
contribution is by far the largest to the total buoyancy flux and wind shear does little to
modify the other two terms. We can therefore already eliminate the first hypothesis that
wind shear increases the mean difference term and write:

〈b′w′〉 ≈ aT〈b′w′〉T. (4.4)

To examine the second hypothesis, we show the entrainment flux ratio conditioned to
turbulent regions as a function of the CBL state of development, zenc/L0, in Fig. 4.4b.
Surprisingly, the buoyancy flux in turbulent regions is not stronger at Fr0 = 20, but is
even weaker than in the shear-free case. This is unexpected as wind shear is well known
to generate additional TKE in the entrainment zone, which ought to result in stronger
turbulent fluctuations. Indeed, we find that at the height of minimum buoyancy flux, the
buoyancy root-mean-square (r.m.s.) within turbulent regions at Fr0 = 20 is around 50%
larger than in the shear-free case (not shown). The reason that the entrainment flux ratio
within turbulent regions does not show a corresponding increase is due to the effect
of wind shear on the correlation between buoyancy and vertical velocity fluctuations.
In the shear-free case, this correlation is high because vertical velocity fluctuations are
induced by the buoyancy force acting in the same direction. When wind shear is added,
buoyancy is no longer the only external source of vertical velocity fluctuations and the
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Figure 4.4: (a) Contributions to the total buoyancy flux. (Dotted) f = 〈b′w′〉, (solid) f = aT〈b′w′〉T,
(dashed) f = aNT〈b′w′〉NT and (dash-dotted) f = aTaNT(〈b〉T−〈b〉NT)(〈w〉T−〈w〉NT).
The markers on the left-hand side indicate the height of minimum buoyancy flux,
zi,f. (b) Entrainment flux ratio conditioned to turbulent regions. (c) Correlation be-
tween buoyancy and vertical velocity fluctuations within turbulent regions at zi,f. (d)
Turbulent area fraction at zi,f.

correlation consequently decreases (Fig. 4.4c). By expressing the buoyancy flux in terms
of the correlation coefficient:

〈b′w′〉T = (ρbw)T(brms)T(wrms)T, (4.5)

it becomes clear that even though wind shear causes the buoyancy r.m.s. to become
stronger in turbulent regions at zi,f, the decrease in the correlation coefficient compensates,
or even over-compensates that increase, such that buoyancy flux remains similar or
weakens within turbulent regions under sheared conditions.

Our final and only remaining hypothesis relates to the effect of wind shear on the
turbulent area fraction. By Eq. (4.4), given that (〈b′w′〉T)zi,f is smaller in magnitude in the
sheared case, the turbulent area fraction at Fr0 = 20 must be substantially larger than
at Fr0 = 0. Qualitatively, the increase in the turbulent area fraction with wind shear is
visible in Fig. 3.2, but in Fig. 4.4d, we quantify this and show that (aT)zi,f in the sheared
case is around 70% larger than the shear-free value. Hence, the main reason that the
entrainment flux increases with wind shear is because entrainment takes place more
efficiently in turbulent regions than in non-turbulent regions and wind shear spreads
turbulence over a wider area in the entrainment zone.
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5
C O N C L U S I O N S A N D O U T L O O K

But much of science concerns not prediction so much
as understanding.

— Hirsch (1984)

The future for the study of the boundary layer
promises to be rewarding and exciting - but not cheap!

— Stewart (1979)

5.1 response to research questions

We began by discussing how the ABL is a special and distinct region of the atmosphere
that has consequences for both weather and climate, but that the necessity in low
resolution models to parameterise boundary layer processes, amongst other phenomena,
results in uncertainties that are difficult to quantify and interpret. We proposed DNS as
a tool that allows one to study the ABL in a way that is free from assumptions about
the underlying physics of turbulence and that affords us an opportunity to look at
turbulence in unmatched detail.

We explained that coherent structures on the scale of the CBL depth (referred to here as
“large scale") influence small-scale eddies embedded within them. This interaction opens
questions that challenge our existing understanding of the surface layer and entrainment
zone. Our findings for the open questions we addressed may be summarised as follows:

Q1: Are deviations from Monin–Obukhov Similarity Theory in free convection
caused by large-scale downdrafts impinging into the surface layer?

Although deviations from MOST do occur within large-scale downdraft regions, strong
deviations also occur within large-scale updraft regions and these are at least as impor-
tant, if not more so, for determining the near-surface behaviour. Hence, the cause of
departures from MOST is not as straightforward as some have hypothesised.

Q2: Do more idealised flows with similar large coherent structures to the CBL have
similar near-surface behaviour?

Surface-layer properties in RBC have several fundamental differences from the CBL.
All of these can be attributed to the colder and stronger downdrafts that occur in RBC
due to the large, positive buoyancy flux at the top of the fluid layer, as opposed to the
small, negative buoyancy flux at the top of the CBL. However, only a small change to the
classical RBC setup is required for surface-layer properties to behave in a similar way to
the CBL. By substituting the cooled upper plate for an adiabatic one, the downdrafts are
weaker and warmer, resulting in near-surface statistics that are almost indistinguishable
from those in the CBL.

Q3: How do wind shear-induced changes to turbulent and non-turbulent regions in
the entrainment zone contribute to shear-enhanced entrainment?
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Turbulent regions contribute by far the most to the entrainment buoyancy flux, but wind
shear does not cause the flux itself to become stronger within those regions. Rather, wind
shear spreads turbulence over a larger area in the entrainment zone, thereby increasing
the area in which entrainment takes place most efficiently.

5.2 looking back and ahead

In the process of answering questions, we uncover many more that remain to be answered.
We conclude by discussing potential avenues of exploration that this work could lead to
in the future.

Our findings from our first research question have eliminated one of the main hypothe-
ses for how LSCs cause MOST to fail in free convection. Still, understanding the causes
of deviations from MOST remains an open problem. One could consider continuing
in the line of thought of Businger (1973) by investigating possible “wind shear" effects
generated by the large-scale horizontal flow near the surface. The idea would be that
these strong near-surface horizontal winds create an internal boundary layer, where turbu-
lence is not buoyancy-driven, but shear-driven. Then, the predictions made by MOST for
free convective conditions could be expected to apply in the buoyancy-driven regions
(i.e. regions of strong vertical motion), but not in the shear-driven regions (i.e. regions
of strong horizontal motion). By defining shear-driven regions based on where the
magnitude of the large-scale horizontal velocity exceeds the magnitude of the large-scale
vertical velocity, this hypothesis could be tested.

Another possible extension of our work on the surface layer is to consider the sheared
CBL as well. Although there is no specific scaling law to test in this case, MOST predicts
that surface-layer properties depend only on the stability parameter, z/L (Eq. 3.1). A
number of studies have found that the near-surface region also depends on zi/L, where
zi is the CBL depth (Panofsky et al., 1977; Khanna and Brasseur, 1997, 1998; Johansson et
al., 2001). It has not yet been investigated whether other outer-layer parameters affect the
near-surface region of the sheared CBL, such as the stratification in the free atmosphere,
or the magnitude of the buoyancy flux at the CBL top. By adding wind shear to the LID
case considered in this dissertation, we have a basis for comparison, as it can be thought
of as a CBL with infinitely strong stratification and zero entrainment buoyancy flux.

With regards to the entrainment zone, our final result yielded a simple picture: fluxes
at the CBL top are primarily controlled by the turbulent area fraction. This demonstrates
the importance of taking the changing turbulence structure inside the entrainment zone
into account and suggests a number of ways to take this idea forward. One possibility
is to add further complexity to the system, for example with the addition of rotation.
Preliminary work on this has indicated that the Coriolis force counteracts the shear
enhancement of entrainment. Our work on the rotation-free CBL naturally suggests
the following questions: How does rotation affect the large-scale structures present in
the flow? Does it lead to a smaller turbulent area fraction in the entrainment zone that
can explain the reduced entrainment flux? Answering these questions should be fairly
straightforward, as we can perform the same kind of conditional analysis as we did to
answer our third research question, but here applied to a shear-free and sheared CBL
under rotation.

It would also be helpful to apply the conditioning into turbulent and non-turbulent
regions to properties other than the buoyancy flux. In particular, temperature and
humidity fluctuations caused by turbulent thermals in the entrainment zone generate
supersaturation fluctuations that are important in the early stages of cumulus cloud
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formation (Siebert and Shaw, 2017). Under what environmental conditions do these
supersaturation fluctuations occur? Considering the temperature and moisture variance
within turbulent regions in our idealised set-up can help to answer this question.
Moreover, given that external intermittency has mainly been considered in cloud-free
systems, it would be interesting to apply the conditioning method used here to the
cloud-top region and learn how radiative transfer, phase changes and microphysical
properties alter the entrainment process (Mellado, 2017). This would tie in well with
the recent Azores stratoCumulus measurements Of Radiation, turbulEnce and aeroSols
(ACORES) campaign, that obtained data at high spatial resolution within the entrainment
interfacial layer of marine boundary layer clouds (Siebert et al., n.d.), and would allow
us to further examine how well DNS compares to observations.

5.3 a final reflection

To quote Frisch and Orszag (1990): “Less is known about the fine scale of turbulence -
for example, the scale of 1 mm in the atmosphere - than about the structure of atomic
nuclei. Lack of basic knowledge about turbulence is holding back progress in fields as
diverse as cosmology, meteorology, aeronautics and biomechanics". Thirty years later
and it stings a little to think that these words might still hold true. So have we made any
progress since then?

The first part of the answer concerns the apparent difficulty of gaining information
about the small scales of turbulence. Although we are still far away from simulating
turbulent flows at the Reynolds numbers characteristic of the atmosphere, computing
facilities have advanced enough that statistics obtained from direct numerical simulations
show encouraging signs of convergence with increasing Reynolds number. This suggests,
as succinctly put by Moin and Mahesh (1998), that “DNS need not obtain real-life
Reynolds numbers to be useful in the study of real-life applications". Thus, whilst we
may not know for sure how the smallest scales of atmospheric motion behave, we have
good reason to believe that it does not differ wildly from what our simulations show.
Progress in high performance computing is giving us increasing confidence of this.

The second part of the answer concerns our fundamental understanding of turbulence.
Testing existing theories and ideas, and seeking explanations and alternatives for when
those theories and ideas fail, is essential for the progression of any science, but is
especially needed in areas of science where theoretical ideas are few and far between.
The application of this approach to turbulence is thus undoubtedly worthwhile and has
formed the basis of this dissertation. Though the advancement of our understanding of
turbulence may appear to be slow, advances are being made. It was a pleasure to be a
part of that.
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Part II

A P P E N D I C E S



A
O N T H E R O L E O F L A R G E - S C A L E U P D R A F T S A N D D O W N D R A F T S
I N D E V I AT I O N S F R O M M O N I N – O B U K H O V S I M I L A R I T Y T H E O RY
I N F R E E C O N V E C T I O N

The work in this appendix has been published with minor modifications as:

Fodor, K., Mellado, J.P. & Wilczek, M. (2019). “On the Role of Large-Scale Updrafts and
Downdrafts in Deviations From Monin–Obukhov Similarity Theory in Free Convection",
Boundary-Layer Meteorol. 172, pp.371-396. https://doi.org/10.1007/s10546-019-00454-3

The contributions of the authors to this paper are as follows:
K. Fodor ran the simulations, performed the analysis and wrote the paper. JP. Mellado
conceived the original idea for the work, helped set up the simulations, discussed the
results, gave direction on how to proceed and reviewed the manuscript. M. Wilczek
discussed the results and reviewed the manuscript.
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We investigate by means of direct numerical simulation how large-scale circulations
produce deviations from Monin–Obukhov similarity theory (MOST) in the limit of
free convection, disentangling the role of large-scale downdrafts from updrafts using
conditional analysis. We compare the convective boundary layer to two other free-
convective flows: Rayleigh–Bénard convection with an adiabatic top lid and classical
Rayleigh–Bénard convection. This serves a dual purpose: firstly, to ascertain how changes
in the upper boundary conditions and thereby in the large-scale circulations modify the
near-surface behaviour and secondly, to assess to what extent we can extrapolate results
from idealized systems to the unstable atmospheric surface layer. Using a low-pass filter
to define the large scales we find that, whilst deviations from MOST occur within large-
scale downdraft regions, strong deviations also occur within large-scale updraft regions.
The deviations within updrafts are independent of the filter length scale used to define
the large-scale circulations, independent of whether updrafts are defined as ascending
air, or as air that is both ascending and positively buoyant, and are not due to changes
with height of the updraft area fraction. This suggests that even updraft properties are
not just determined locally, but also by outer scales. Cold, strong downdrafts in classical
Rayleigh–Bénard convection notably modify the near-surface behaviour compared to the
other two systems. For the moderate Reynolds numbers considered, Rayleigh–Bénard
convection with an adiabatic top lid thus seems more appropriate than classical Rayleigh–
Bénard convection for studying the unstable atmospheric surface layer in the limit of
free convection.
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a.1 introduction

Much of our understanding of the atmospheric surface layer (ASL) has its roots in
Monin–Obukhov similarity theory (MOST), which assumes that all flow properties in
the ASL depend only on the friction velocity, the surface buoyancy flux and the height
above the ground (Monin and Obukhov, 1954). In the limit of free convection, the friction
velocity goes to zero and the only remaining scaling parameters are height, z, and
the surface buoyancy flux. Through dimensional analysis, MOST asserts that under
free-convective conditions, the nth-order moment of the velocity is proportional to zn/3

whilst the nth-order moment of the buoyancy is proportional to z−n/3 (Prandtl, 1932;
Priestley, 1954).

A key assumption in MOST is that surface-layer properties are determined locally,
with no influence from the outer layer. On the whole, early work has provided empirical
support for MOST under near-neutral (i.e. weakly stable or weakly unstable) condi-
tions (Wyngaard et al., 1971; Kaimal et al., 1976). However, under strongly unstable
and free-convective conditions, measurements of the root-mean-square (r.m.s.) of the
buoyancy fluctuation indicate power laws with exponents in the range [−0.5,−0.3]
(Adrian, 1996; Mellado et al., 2016; Maronga and Reuder, 2017), whilst both a power
law and a logarithmic law support measurements of the vertical velocity r.m.s. equally
well (Adrian, 1996; Khanna and Brasseur, 1997; Mellado et al., 2016). These deviations
from the predicted scaling laws are known to result from the interaction with large-scale
circulations (LSCs), defined as persistent circulatory structures in the velocity field that
extend across the whole boundary layer in convectively-driven systems (Chillà and Schu-
macher, 2012; Mellado et al., 2016; Salesky and Anderson, 2018). Still, there is conflict
about the mechanisms by which LSCs introduce non-local effects to the surface layer.

One proposed mechanism involves wind shear induced by the LSCs that may alter
scaling laws in the surface layer, since wind shear is not accounted for by MOST in free
convection (Kraichnan, 1962; Businger et al., 1971; Businger, 1973). Another proposed
mechanism is that large-scale downdrafts introduce non-local properties to the surface
layer by transporting free-tropospheric air down to the surface (de Bruin et al., 1993;
Lohou et al., 2010; van de Boer et al., 2014). The shear mechanism has been widely
discussed, not only in the context of the atmospheric boundary layer (ABL), but also
in studies of Rayleigh–Bénard convection, where it is supposed that LSCs induce the
laminar boundary layer to become turbulent and thereby modify scaling laws near the
surface at a sufficiently high Rayleigh number (van Reeuwijk et al., 2008; Shishkina et al.,
2015; Puits and Willert, 2016). This possibility is an on-going source of debate and here
we choose to focus on the downdraft mechanism, which has been less studied and where
we are able to isolate the role of downdrafts using conditional analysis.

Since downdrafts occupy a significant area fraction near the surface, we hypothesize
that when conventional statistics are taken, downdrafts mask the behaviour inside
large-scale updraft regions, where, conversely, properties are postulated to follow the
predicted scaling laws more closely. This hypothesis stems from an understanding of
updrafts as being formed from buoyant thermals rising from the surface and merging
together (Schmidt and Schumann, 1989; Mellado et al., 2016). From that point of view, it
seems reasonable to suppose that updraft properties are characterized by a local length
scale (the height above the ground) and the surface buoyancy flux, in agreement with
MOST. A decomposition into large-scale updraft and downdraft regions thus has the
potential to not only elucidate the mechanisms producing deviations from MOST, but
also simplify scaling laws in the free-convective regime to a combination of the MOST
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prediction, representing the updraft contribution, plus a scaling law for the downdraft
contribution based on outer scales.

Using conditional analysis, differences between updraft and downdraft properties have
previously been found in the bulk of the convective boundary layer (CBL - Young, 1988;
Schumann and Moeng, 1991; Siebesma et al., 2007) and in the cloud layer (Siebesma and
Cuijpers, 1995; Park et al., 2016). Here we extend this analysis into the surface layer by
means of direct numerical simulation (DNS). Although restricted to moderate Reynolds
numbers, DNS is an appropriate tool for investigations into the ABL, allowing detailed
study of the full range of turbulence scales in relatively large-aspect-ratio domains,
without the uncertainty associated with subgrid-scale modelling (Mellado et al., 2018).
With the exception of Mellado et al. (2016), DNS studies of the ASL dealing explicitly
with MOST have tended to focus on stable (Chung and Matheou, 2012; Ansorge and
Mellado, 2014; Shah and Bou-Zeid, 2014) or mildly unstable (McColl et al., 2017; Li et al.,
2018) conditions. This further motivates our consideration of the free-convective case.

One question that we also address is the extent to which classical Rayleigh–Bénard
convection constitutes a good model of the CBL. Both configurations share commonalities.
For example, the LSCs occurring in both systems closely resemble one another (Schmidt
and Schumann, 1989) and the scaling of the Nusselt number with the Rayleigh number is
the same in both systems (Mellado et al., 2016). These commonalities indicate a potential
for results from Rayleigh–Bénard convection to be extrapolated to the ABL, but it is
unclear how suitable Rayleigh–Bénard convection is for this purpose because differences
in the upper boundary conditions between the two systems modify the LSCs, which
in turn may affect surface-layer properties. To address this issue, we compare three
configurations: the CBL, Rayleigh–Bénard convection with an adiabatic top lid (LID)
and classical Rayleigh–Bénard convection (RBC). The LID case acts as an intermediary
step between the warm entrainment zone of the CBL and the cooled upper plate of
Rayleigh–Bénard convection (Sorbjan, 1996) and allows us to systematically explore how
changes in the upper boundary conditions and the large scales affect the near-surface
region. We can also thereby assess to what extent idealized configurations such as the
LID case, or the more commonly studied RBC case, are representative of the unstable
ASL.

Although the CBL, LID and RBC cases have previously been compared in studies by
Adrian et al. (1986) and Moeng and Rottuno (1990), only the former study addressed the
validity of MOST and concentrated on the LID case in that context. By comparing the
three systems using laboratory experiments and atmospheric measurements, Adrian et al.
(1986) concluded that all three systems are similar in many respects in the lower half.
Here, by using DNS to focus on the surface layer, we show that the LID case provides a
better model of the CBL than does the RBC case.

This paper is structured as follows: in Sect. A.2, we detail the numerical procedure
and provide a dimensional analysis of the problem that allows us to appropriately
compare the three configurations. In Sect. A.3, we explain our conditioning methods,
present results from the conditional analysis and consider how the results depend on
our definition of “large scale". Conclusions are given in Sect. A.4.
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a.2 formulation

a.2.1 Governing Equations

All three configurations considered are governed by the Navier–Stokes equations under
the Boussinesq approximation,

∂vvv
∂t

+∇ · (vvv⊗ vvv) = −∇p + ν∇2vvv + bk, (A.1a)

∇ · vvv = 0, (A.1b)
∂b
∂t

+∇ · (vvvb) = κ∇2b, (A.1c)

∂χ

∂t
+∇ · (vvvχ) = κ∇2χ, (A.1d)

where vvv(xxx, t) is the velocity vector with components (u, v, w), xxx is the position vector
with horizontal coordinates x and y, and vertical coordinate z, t is time and k = (0, 0, 1)
is the unit vector in the vertical direction. The variable p is the pressure divided by a
constant reference density and b is the buoyancy (which can be related to, e.g., the virtual
potential temperature θv via b = g(θv − θv,0)/θv,0, where θv,0 is a reference value and g
is the acceleration due to gravity). The parameters ν and κ are the kinematic viscosity
and the thermal diffusivity respectively.

The variable χ is a top-down scalar. This top-down scalar is a passive scalar that can
be considered as a reference non-dimensional moisture field that, in combination with
b, can be used to reconstruct several moisture statistics (Mellado et al., 2017). Here we
use it to better interpret the behaviour within downdrafts, since χ has no forcing at the
surface whereas b does.

a.2.2 Boundary Conditions

All simulations have periodic lateral boundary conditions and are statistically homoge-
neous in the horizontal directions. The surface is aerodynamically smooth. The boundary
conditions at the surface are no penetration, no-slip on the velocity and Neumann on
the scalars, such that a constant surface buoyancy flux is maintained,

Fb,s = −κ
∂b
∂z

∣∣∣∣
z=0

, (A.2)

and a zero surface flux is maintained for the top-down scalar,

Fχ,s = −κ
∂χ

∂z

∣∣∣∣
z=0

= 0. (A.3)

The three configurations differ in their upper boundary conditions, illustrated schemat-
ically in terms of some key properties in Fig. A.1 (symbols used are explained in Table
A.1). In the CBL case, the initial buoyancy field increases linearly with height as N2z,
where N is the buoyancy frequency in the free troposphere. The top-down scalar initially
decreases with height as −γχz, where γχ is the lapse rate of χ in the free troposphere.
The turbulent boundary layer that forms adjacent to the surface continuously penetrates
into this linearly stratified fluid layer. At the top of the computational domain, which is
placed far enough away such that it does not affect the turbulent boundary layer (see
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(a) CBL (b) LID (c) RBC

Fχ,s = 0 Fb,s

χ bg = - γ
χ z

b bg = N
2 z

Fb,sFχ,s = 0

Fb,t = 0 Fχ,t

Fb,sFχ,s = 0

Fb,t = Fb,sFχ,t

 hhh

Figure A.1: (a)-(c) Schematics of the three free-convective systems. (d)-(f) Profiles of (cyan) the
mean buoyancy, (orange) the mean top-down scalar, (green) the turbulent buoyancy
flux, and (purple) the turbulent top-down scalar flux. Note that in the CBL case, only
heights up to 1.2h are shown, but the full vertical domain extends up to 4.2h. Symbols
used in this figure are defined in Table A.1.

Garcia and Mellado (2014) for a sensitivity study), a Neumann boundary condition is
applied on the scalars, maintaining a constant buoyancy flux, Fb,t = −κN2, and constant
top-down scalar flux, Fχ,t = κγχ. An impenetrable, free-slip condition is used for the
velocity. The upper 25% of the computational domain contains a sponge layer, which
relaxes all profiles back to their initial state, so as to prevent the reflection of gravity
waves. After an initial phase of unsteady development, the CBL reaches a quasi-steady
state in which the growth of the CBL is slow compared to the turnover time of the LSCs.
For present purposes, we focus on this quasi-steady state.

In the LID case, the upper boundary condition on the velocity is no-penetration,
no-slip and on the buoyancy, zero flux is maintained, rendering the top lid adiabatic. The
top-down scalar has a constant flux at the upper plate. The LID case may be interpreted
as a CBL with infinitely strong stratification. The adiabatic upper plate prevents any heat
from escaping and the fluid thus constantly warms over time, but because the depth
of the fluid layer does not change, many properties do reach a statistically steady state
(Sorbjan, 1996).

In the RBC case, the same upper boundary conditions as in the LID case are used for
the velocity and top-down scalar, but for the buoyancy, the flux at the upper plate is
equal to that at the surface and the system is thus statistically steady for velocity and
buoyancy properties.

It is worth commenting here on the role of the boundary conditions in determining
the relative importance of the top-down and bottom-up contributions to the buoyancy
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Table A.1: List of symbols used in Fig. A.1. The symbol φ refers to any scalar.

Symbol Description

Fφ,s Flux of φ at the surface.

Fφ,t Flux of φ at the top of the computational domain (irrelevant for CBL).

Fφ,0 Reference flux of φ. Eq. A.5 for b and Eq. A.6 for χ.

φbg Background profile of φ in the free troposphere used as initial condi-
tions (CBL only).

φml Mixed layer value of φ, defined as: (h)−1
∫ h

0 〈φ〉dz.

∆φ Mean difference in φ across the convective region, defined by a positive
buoyancy flux.

〈φ〉 Horizontal plane average of φ.

φ′ Fluctuation of φ from the horizontal plane average, defined as: φ− 〈φ〉.
h Cell depth in the RBC and LID cases and boundary-layer depth in the

CBL case, defined by the height of maximum mean buoyancy gradient.

N Buoyancy frequency in the free troposphere (CBL only).

γχ Lapse rate of χ in the free troposphere (CBL only).

field. In the RBC and CBL cases, the buoyancy is both bottom-up and top-down. In the
RBC case, the bottom-up and top-down contributions are equal, since the surface flux
equals the flux at the top plate. In the CBL case, the bottom-up contribution dominates
as the magnitude of the entrainment flux is around 10% of the surface flux (Garcia and
Mellado, 2014). In the LID case, the buoyancy is purely bottom-up, as the flux at the
top plate is zero, and the LID case thereby acts as a limit in which the influence of
downdrafts on the buoyancy near the surface is minimized.

a.2.3 Dimensional Analysis

In order to define reference scalar fluxes, we approximate the flux of a scalar φ, Fφ =

〈φ′w′〉 − κ∂φ/∂z, as varying linearly with height from the surface to z = h (see Fig. A.1)
and take the integral over this linear approximation

Fφ,0 ≡
2
h

∫ h

0

[
(1− z/h)Fφ,s + (z/h)Fφ|z=h

]
dz. (A.4)

For the buoyancy, Eq. A.4 evaluates to

Fb,0 ≡


Fb,s, CBL,

Fb,s, LID,

2Fb,s, RBC,

(A.5)

where in the CBL, we have neglected Fb|z=h since −Fb|z=h/Fb,s ≈ 0.12 (Garcia and
Mellado, 2014). For the top-down scalar, Eq. A.4 evaluates to

Fχ,0 ≡


(γχL0)(L0N), CBL,

Fχ,t, LID,

Fχ,t, RBC,

(A.6)
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(a) CBL

(b) LID

(c) RBC

 log10(|∇b|/ b,s(F     /κ))

Figure A.2: Logarithm of the magnitude of the buoyancy gradient in each system. The dashed
white line in panel (a) shows the depth of the CBL, h. The full width of the domain
is shown, giving an aspect ratio of 11. The solid horizontal white lines show the LSC
width as determined from the wavelength of the peak in the azimuthally integrated
two-dimensional cospectrum between buoyancy and vertical velocity (see Table A.2).

where in the CBL, we have taken into account the entrainment flux of χ at the CBL top,
which is estimated by the product of a passive scalar scale, γχL0, and a velocity scale,
L0N, where

L0 ≡ (Fb,s/N3)1/2 (A.7)

is the reference Ozmidov length that characterizes the thickness of the entrainment zone
at the top of the CBL (Mellado et al., 2017). We note that the entrainment flux in the CBL
is not a control parameter, but an outcome of the flow.

a.2.3.1 Convective Scales

Once the flow is fully turbulent and the details of the initial conditions have been suffi-
ciently forgotten, statistical properties in the CBL case depend only on the control param-
eters {Fb,0, N, ν, κ} and the independent variables z and t, whilst in the non-penetrative
RBC and LID cases, the control parameters are {Fb,0, h, ν, κ} and the independent variable
is z. The outer length scale, h, is equal to the depth of the Rayleigh–Bénard cell and in
the CBL it is a measure of the boundary-layer depth, which may be defined in numerous
ways, though all are commensurate with one another (Garcia and Mellado, 2014). Here,
we define the top of the CBL as the point of maximum mean buoyancy gradient away
from the surface (see Fig A.2). Unlike the non-penetrative cases, where the depth of the
cell is a control parameter, the CBL depth increases in time.

Each system has four control parameters and two fundamental dimensions; length
and time. Dimensional analysis thus dictates that each system is governed by two non-
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dimensional parameters: the Reynolds number (or the Rayleigh number) and the Prandtl
number, Pr = ν/κ. We fix Pr to be equal to one in all our simulations, leaving the
Reynolds (or Rayleigh) number as the only non-dimensional control parameter.

The form of the Reynolds number depends on the choice of control parameters used
for non-dimensionalization. By choosing {Fb,0, h} in the LID and RBC cases, one finds
the following convective Reynolds number, Re∗, and related convective Rayleigh number,
Ra∗,

Re∗ =
hw∗

ν
=

(h4Fb,0)
1/3

ν
, (A.8a)

Ra∗ =
h4Fb,0

νκ2 = Re3
∗Pr2, (A.8b)

where w∗ in Eq. A.8a is an outer (or convective) velocity scale defined as (Deardorff,
1970a,b),

w∗ = (hFb,0)
1/3. (A.9)

In the CBL case, by choosing {Fb,0, N} to non-dimensionalize the system, one finds the
reference Reynolds number, Re0 ≡ L0(L0N)/ν = Fb,0/(νN2), as a control parameter. In
addition, the CBL case depends on the non-dimensional time variable Nt. The reference
Reynolds number employs the length scale L0 (Eq. A.7) and the velocity scale L0N. The
effect of Re0 near the surface can be neglected as a first approximation once the CBL
is in the quasi-steady regime considered here, as near-surface statistics only depend
weakly on Re0 (Mellado et al., 2016). Without loss of generality, the dependence on
time can be expressed in terms of the dependence on Re∗ (or Ra∗) defined in Eq. A.8
because the CBL depth, h, acts as a proxy time variable. Hence, the statistics of the three
systems, CBL, LID and RBC, can be expressed solely as functions of Re∗ (or Ra∗) and
normalized height, z/h. We match Re∗ in all three of our systems, such that Re∗ = 3258
and Ra∗ = 3.5× 1010.

Using outer length and velocity scales allows us to define a convective turnover time,
t∗,

t∗ =
h

w∗
=

(
h2

Fb,0

)1/3

. (A.10)

To remove the initial transient, we reject all data up to h ≈ 6.8L0 in the CBL case and up
to t ≈ 12t∗ in the non-penetrative cases. In order to improve statistical convergence, all
statistics are then averaged over a period t ≈ 6t∗ in the CBL case, and over t ≈ 16t∗ in
the non-penetrative cases. A shorter averaging time must be used in the CBL case so
that Re∗ does not change significantly as the CBL grows. The non-penetrative cases thus
have the advantage that greater statistical convergence can be achieved through long
time averaging.

a.2.3.2 Free-Fall Scales

If instead of Fb,0, one employs ∆b, the mean buoyancy difference across the convective
region (defined as the region of positive turbulent buoyancy flux), one finds the free-fall
Reynolds and Rayleigh numbers,

Ref =
hwf

ν
=

(h3∆b)1/2

ν
, (A.11a)

Raf =
h3∆b

νκ
= Re2

f Pr. (A.11b)
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In Eq. A.11a, the free-fall velocity scale, wf is

wf = (h∆b)1/2. (A.12)

Because we use a Neumann boundary condition on the buoyancy, ∆b is not a control
parameter and has to be obtained from the simulations, but within statistical convergence
it is steady in the non-penetrative cases and quasi-steady in the CBL case. Mean values of
Ref and Raf are ∼ 104 and 108 respectively in all simulations (see Table A.2). Employing
h and wf allows us to construct the free-fall time,

tf =
h

wf
=

(
h

∆b

)1/2

. (A.13)

In terms of tf, statistics are averaged over a period t ≈ 33tf in the CBL case and over
t ≈ 93tf in the non-penetrative cases.

a.2.3.3 Diffusive Scales

Using the parameters Fb,s and κ, one can define diffusive length, velocity and buoyancy
scales as

zκ = (κ3/Fb,s)
1/4, (A.14a)

wκ = (κFb,s)
1/4, (A.14b)

bκ = (F3
b,s/κ)1/4. (A.14c)

Diffusive scales characterize the region of the boundary layer where the molecular
diffusion of heat is equally or more important than the turbulent flux (Townsend, 1959).
For flow over an aerodynamically smooth surface, this region is known as the diffusive
layer and extends up to around 10zκ (Mellado, 2012). Because we match Re∗ in all three
of our systems, given Eq. A.5, Eq. A.8a and Eq. A.14a, the scale separation in terms of
the diffusive length scale, h/zκ, is a factor of 21/4 less in the RBC case than in the LID
and CBL cases. However, in terms of the Kolmogorov length, η = (ν3/ε)1/4, where ε is
the viscous dissipation rate of the turbulence kinetic energy (TKE), the scale separation,
h/η, is similar in all three configurations.

The surface layer comprises both the diffusive layer and a region above in which
MOST predicts distinct scaling laws to hold, though as discussed in Sect. A.1 the true
scaling laws are uncertain. This region above the diffusive layer is the region of interest
in this study, but a precise definition of its depth is elusive. Typically, the ASL depth
is taken to be 0.1h, which, for the Reynolds numbers considered here, is equivalent to
43zκ in the LID and CBL cases and 36zκ in the RBC case. However, an equally valid
definition is the depth over which scaling laws hold. This is found to be of order 0.1
of the LSC width (Mellado et al., 2016), which is defined here as the wavelength of the
maximum in the azimuthally integrated two-dimensional cospectrum between b and
w. Consistent with Mellado et al. (2016) and Pandey et al. (2018), we find that λLSC/h
is around twice as large in the RBC case compared to the CBL case (Fig. A.2 and Table
A.2). Other plausible definitions of the LSC width, for example based on the peak in
the vertical velocity spectrum, yield similar results (Mellado et al., 2016). Based on the
magnitudes of λLSC/h given in Table A.2, the region of the ASL on which we focus is
10zκ . z . 100zκ in all cases.
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Table A.2: Properties of the simulations considered in this study at Re∗ = 3258 (Ra∗ = 3.5× 1010).
The aspect ratio, Γ, is defined as the ratio between the width of the domain and h.
The turbulent Reynolds number, Ret, defined in Eq. A.15, is the maximum value. The
free-fall Reynolds number, Ref, defined in Eq. A.11a and the free-fall Rayleigh number,
Raf, in Eq. A.11b, are temporal mean values. Column 6 shows the mean integral length
over time, Li, defined in Eq. A.17, and column 7 the LSC width, λLSC, defined as the
wavelength of the peak in the azimuthally integrated two-dimensional cospectrum
between buoyancy and vertical velocity.

Case Grid Γ Ret Ref Raf Li/h λLSC/h

CBL 2560× 2560× 512 11 1206 1.8× 104 3.1× 108
0.16 2.8

LID 2560× 2560× 448 11 4498 1.8× 104 3.2× 108
0.27 3.7

RBC 2560× 2560× 448 11 4349 1.9× 104 3.7× 108
0.33 5.6

a.2.4 Numerical Method, Resolution Requirements and Domain Size

The governing equations are discretized on a structured grid using sixth-order, spectral-
like compact finite differences (Lele, 1992) and integrated in time using a low-storage,
fourth-order Runge–Kutta scheme (Carpenter and Kennedy, 1994). The divergence-free
condition, Eq. A.1b, is maintained by performing a Fourier decomposition of the Poisson
equation for the pressure in the periodic, horizontal directions and factorizing the
resulting set of equations in the vertical direction (Mellado and Ansorge, 2012). The grid
is uniform and isotropic in most of the domain. Stretching is used to increase the vertical
resolution near the walls in all cases, as well as to increase the domain depth in the CBL
case.

The grid spacings are chosen according to previous studies of the resolution require-
ments for convection-driven flows (Shishkina et al., 2010; Mellado, 2012; Garcia and
Mellado, 2014). The ratio of the vertical grid spacing, ∆z, to the Kolmogorov length
is ∆z/η . 1.5 everywhere, which is sufficient for statistical properties of interest to
depend less than 5% on the grid spacing. The vertical resolution near the walls in the
non-penetrative RBC and LID cases is increased to ∆z/η . 0.9 compared to ∆z/η . 1.1
in the CBL case near the surface. This increase in resolution is necessary because the
maximum value of the turbulent Reynolds number,

Ret =
e2

εν
, (A.15)

where e is the TKE, is reached near the upper wall in the LID case and near both walls
in the RBC case and is at least three times larger in the non-penetrative cases than in
the CBL case (see Table A.2). This is due to vigorous plume impingement and strong
horizontal velocity fluctuations in the non-penetrative cases, resulting in greater TKE
than in the CBL case where the large-scale horizontal motion is weaker (despite the
convective Reynolds number being the same in the three systems).

The aspect ratio, Γ, defined as the ratio between the width of the domain and h, is
equal to 11 in all three cases, which is at least twice as large as the typical LSC width
(Table A.2). We verified that the domain size does not restrict the horizontal extent of
the LSCs by performing simulations with a smaller aspect ratio of Γ ≈ 6.7 and obtained
similar results to the larger-aspect-ratio simulations (not shown).
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a.3 conditional analysis

In this section, we will look at how statistical properties of the flow behave within
large-scale updraft and downdraft regions. In order to do this, a large-scale field first
needs to be defined. The conditioned statistical properties we consider, however, come
from the original DNS data and the large-scale field is simply used as an indicator of
where the large-scale updraft and downdraft regions are located.

a.3.1 Defining a Large-Scale Field

We obtain a large-scale field by employing a low-pass Helmholtz filter in all three spatial
dimensions. The Helmholtz filter is defined implicitly as (Foias et al., 2001),

(1− α2∇2) φ = φ, (A.16)

where α = ∆/(2π), ∆ is the filter size, φ(xxx, t) is the unfiltered field and φ(xxx, t) is the
filtered (‘large-scale’) field. Equation A.16 is solved by performing a Fourier decomposi-
tion in the periodic, horizontal directions to obtain a set of finite difference equations
in the vertical direction. The boundary conditions are the same as those used in the
simulation, in particular, the Helmholtz-filtered fields satisfy the no-slip condition. Being
able to choose the boundary conditions that the large-scale field satisfies is a distinct
advantage of the Helmholtz filter over more traditional spatial filters such as the box (or
top-hat) filter, where each point is averaged over a volume specified by the filter size.
Failing to satisfy the no-slip condition results in an unphysical increase in the large-scale
TKE near the surface with the filter size (see Appendix A.A). For this reason, other, more
conventional filters were rejected.

Of the many detection techniques we could have used to identify the LSCs, we
favoured spatial filtering for the following reason. Other detection techniques, such as
time averaging, proper orthogonal decomposition and Lagrangian techniques, critically
rely on the choice of a finite time interval over which the structures are defined. This time
scale should be on the order of, or less than, the decorrelation time to avoid averaging out
the large-scale structures themselves. However, preliminary work using two-dimensional
simulations revealed that the decorrelation time in the CBL case can vary by up to one
order of magnitude depending on the initial time from which it is calculated, and this
variability does not reduce with increasing aspect ratio. This makes the choice of time
scale highly dependent on the time period considered. Hence, spatial filtering, which
instead utilizes a length scale, is a convenient choice.

The filter size, ∆, determines the definition of “large scale" and here we consider two
different characteristic length scales of the LSCs as candidates for ∆; a vertical scale and
a horizontal scale. For the vertical scale, we use h, which characterizes the depth of the
LSCs and for the horizontal scale, we use the following integral length (Salesky et al.,
2017),

Li =
∫ l0

0
ρw(s)ds, (A.17)

where ρw(s) is the radial autocorrelation function of the vertical velocity field at its
height of maximum variance and l0 is the zero-crossing point of ρw(s) (Fig. A.3a). The
radial autocorrelation function at a given height is defined as

ρw(s) =
〈w(r, t)w(r + s, t)〉

w2
rms(t)

, (A.18)
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Figure A.3: (a) Radial autocorrelation function of the vertical velocity at its height of maximum
variance. The solid line shows the time average and shading shows one standard
deviation away from the mean. (b) Integral length, Li, defined by Eq. A.17, as a
function of time, where t0 is the time at the beginning of the averaging period. In this
figure, we have extended the RBC simulation to demonstrate that it is in a statistically
steady state, but as stated in Sect. 2.3.2, all following statistics from the RBC case
shown herein are averaged over a time period t ≈ 93tf.

where r =
√

x2 + y2 and the subscript rms indicates the root-mean-square. Since Li

is a measure of the horizontal distance over which vertical velocity fluctuations are
correlated, it is a length scale characteristic of the large scales and naturally captures the
greater horizontal extent of the LSCs found in Rayleigh–Bénard convection compared
to the CBL (see Fig. A.3b). Moreover, Li/h is steady in time (the standard deviation is
less than 10% of the mean value in all cases), even in the CBL where h increases with
time, so unlike the decorrelation time, Li does not depend on the time period considered.
This result corroborates Roode et al. (2004) for the CBL and Hardenberg et al. (2008) for
Rayleigh–Bénard convection. The former study showed that a length scale based on the
vertical velocity spectrum in the mid-CBL remains steady in time, whilst the latter study
showed that for large enough aspect ratios and beyond the initial transient, the length
scale of the large-scale structures in Rayleigh–Bénard convection is also steady in time.
Mean values of Li/h are shown in Table A.2 and indicate that Li is 6 to 7% of the LSC
width, λLSC, determined by the wavelength of the peak in the cospectrum between b and
w.

In Table A.3, we show how the choice of filter length scale affects the proportion of
TKE remaining in the large-scale field. Using Li to define the large scales results in a
slightly greater decrease of TKE in the RBC case than in the CBL case, and vice versa
when using h. Either way, the partitioning of TKE between the systems is similar, despite
the factor of two difference in horizontal scale between the CBL and RBC cases. For
comparing the three configurations, it is thus irrelevant whether the LSCs are defined
using their vertical scale or their horizontal scale. For a given configuration however,
conditional statistics may well depend on the choice of filter length scale, and this is
tested in Sect. A.3.7. For the sake of clarity of figures, we only utilize the h-filtered fields
for the conditional analysis presented in Sect. A.3.3-A.3.6. The qualitative impact of
spatial filtering with a filter size of h is shown in Fig. A.4 for reference.
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Figure A.4: (a)-(c) Horizontal cross-sections of the h-filtered vertical velocity field at 0.1h. The

white horizontal line shows the length of h, which is the same in all three cases. The
short black line shows the integral length, Li and the long black line shows the LSC
width, λLSC. (d)-(f) Horizontal cross-sections of the unfiltered vertical velocity field
at 0.1h. (g)-(i) Zooms into the black boxes shown in panels (d)-(f).
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Table A.3: Percentage of vertically integrated TKE remaining in the filtered flow,∫ h
0 〈ui

′2〉dz/
∫ h

0 〈u
′2
i 〉dz, depending on the filter size, ∆. The integral length, Li, is

defined in Eq. A.17.

∆ TKE remaining (%)

CBL LID RBC

Li 63 55 51

h 11 15 17

III
III IV

w’

b’
III

III IV

w’

b’

Figure A.5: Schematic of the two conditioning procedures used in this study. Out of the four
quadrants, the domain is partitioned into two regions, as indicated by the colour
shading. Left: Partitioning into updrafts (quadrants I and II) and downdrafts (quad-
rants III and IV). Right: Partitioning into buoyant updrafts (quadrant I) and anything
outside of that region (quadrants II, III and IV).

a.3.2 Conditioning Criteria

We consider two different conditioning procedures. The first procedure conditions
statistics from the original, unfiltered fields into large-scale updraft and downdraft
regions based only on the sign of the large-scale vertical velocity field. For the second,
we constrain our definition of updrafts to only large-scale buoyant updrafts, which have
both positive vertical velocity and positive buoyancy fluctuation (see Fig. A.5). This
second, bivariate approach aims to test how sensitive surface-layer properties are to the
conditioning criteria. We emphasize that the filtered fields are only used to determine
the location of large-scale updraft and downdraft regions. The statistics themselves are
taken from the unfiltered fields.

By partitioning fields into two regions, the horizontal plane average of a dependent
variable, φ, may be expressed as

〈φ〉 = au〈φ〉u + ad〈φ〉d, (A.19)

where au is the area fraction covered by updrafts, ad = 1− au is the remaining area
fraction covered by downdrafts, 〈φ〉u is the mean inside updrafts and 〈φ〉d is the mean
inside downdrafts. Note that when we consider buoyant updrafts, where both w′ > 0
and b

′
> 0, “downdraft" regions contain negatively buoyant, ascending air (quadrant II

in Fig. A.5).
Using Eq. A.19 and the identity φ′ = φ− 〈φ〉, one can obtain the following expression

for the variance,

〈φ′2〉 = au〈φ′2〉u + ad〈φ′2〉d + auad(〈φ〉u − 〈φ〉d)2, (A.20)
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Figure A.6: Area fraction covered by (solid) updrafts (w′ > 0) and (dashed) buoyant updrafts
(w′ > 0, b

′
> 0).

where 〈φ′2〉u = 〈φ2〉u − 〈φ〉2u and 〈φ′2〉d = 〈φ2〉d − 〈φ〉2d. The respective terms on the
right-hand side of Eq. A.20 are contributions from the variance within updrafts, the
variance within downdrafts and the squared difference between the mean inside updrafts
and the mean inside downdrafts, hereafter referred to as the “mean difference term”.
We will consider the relative contribution of each of the three terms on the right-hand
side of Eq. A.20 to the buoyancy and vertical velocity variance. The contribution from
downdrafts or the mean difference term should be large if downdrafts are to explain the
significant deviations from MOST found in previous studies.

a.3.3 Area Fraction

Before we proceed directly onto the conditional analysis, it is first important to consider
the updraft area fraction, as strong variations of au with height could by itself partly
explain deviations from MOST. Previous studies considering the updraft area fraction
profile have shown that it approaches 0.5 near the surface, but did not have sufficient
data to analyze the near-surface behaviour in detail (Young, 1988; Schumann and Moeng,
1991; Sorbjan, 1996).

As shown in Fig. A.6, the updraft area fraction behaves in a similar way in the surface
layer across all three systems; au only varies by ∼ 3% in the interval 10zκ . z . 100zκ,
regardless of the conditioning criteria. When using the more restrictive buoyant updraft
definition, au is simply smaller by ∼ 10%. Therefore, the variation of au with height has
a negligible effect on the behaviour of updraft and downdraft properties in the surface
layer.

a.3.4 Buoyancy Statistics

The first property we consider is the mean buoyancy gradient. Several studies agree
that the mean buoyancy is consistent with MOST for sufficiently unstable conditions
(Kader and Yaglom, 1990; Mellado et al., 2016; Maronga and Reuder, 2017). In Fig. A.7,
we show the magnitude of the mean buoyancy gradient normalized by (z/zκ)−4/3, the
free-convective scaling given by MOST, such that if this scaling law is satisfied in the
surface layer, profiles will be constant in the vertical.

43



0.0 0.5 1.0 1.5 2.0 2.5
100

101

102

103
z/

z κ
(a) CBL

0.0 0.5 1.0 1.5 2.0 2.5
f /(z/zκ)−4/3

(b) LID

0.0 0.5 1.0 1.5 2.0 2.5

(c) RBC
f = |∂z〈b〉|(zκ/bκ) f = |∂z〈b〉u|(zκ/bκ) f = |∂z〈b〉d|(zκ/bκ)

Figure A.7: Magnitude of the mean buoyancy gradient normalized by free-convective scaling.
Thick solid lines indicate conditioning based only on w′ and thick dashed lines based
on both w′ and b

′
. Grey ticks on the right-hand side indicate 0.1h and 0.5h.

We find that the mean buoyancy gradient follows free-convective scaling not only
within updrafts, but also within downdrafts in the LID and CBL cases. For updrafts,
this is in the range 40zκ . z . 100zκ and for downdrafts between 20zκ . z . 80zκ. We
also find that the magnitude of the mean buoyancy gradient in downdrafts is ∼ 50% of
that in updrafts, demonstrating that updrafts primarily determine the mean buoyancy
gradient near the surface, but downdrafts make a non-negligible contribution. Moreover,
these results do not depend on whether conditioning is based on the vertical velocity
only, or on both the vertical velocity and the buoyancy.

In contrast to the LID and CBL cases, the mean buoyancy gradient does not follow
free-convective scaling in either updrafts or downdrafts in the RBC case for the Reynolds
numbers (equivalently Rayleigh numbers) that we reach in our simulations. The discrep-
ancy of the mean buoyancy with the MOST prediction in the RBC case is in agreement
with Pirozolli et al. (2017). We attribute this to a difference in the large-scale downdraft
regions between the systems. In the RBC case, cold air descending from the upper plate
results in the air becoming well-mixed lower down in the cell compared to the LID and
CBL cases, where there is no forcing from above. Consequently, the mean buoyancy
profile has less space to develop before its vertical gradient vanishes. This interpretation
is supported in Fig. A.7, where the minimum in the buoyancy gradient occurs lower
down in the RBC case compared to the other two systems, both in updrafts and in
downdrafts.

Our results for the mean buoyancy already give one indication of how changes in the
upper boundary condition can be felt near the surface. Although replacing a linearly
stratified atmosphere with an impenetrable, adiabatic lid appears to hardly affect 〈b〉 in
the surface layer, if downdrafts are comparatively cold, as in the RBC case, the behaviour
of 〈b〉 is greatly modified. However, at higher Reynolds number, where the surface layer
is deeper compared to the receding diffusive layer, the mean buoyancy gradient may
vanish higher up, and it is possible that the profiles in the RBC case may tend towards
those found in the LID and CBL cases.

Considering now the buoyancy variance, we first analyze the mean difference term in
Eq. A.20. Given that both 〈b〉u and 〈b〉d are of the form c1(z/zκ)−1/3 + c2 in the LID and
CBL cases, where c1 and c2 are empirical constants obtained from the mean buoyancy
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Figure A.8: (a)-(c) Contributions to the total buoyancy variance from updraft, downdraft and
mean difference terms. (d)-(f) Buoyancy variance normalized by free-convective
scaling. Thick solid lines indicate conditioning based only on w′ and thick dashed lines
based on both w′ and b

′
. Grey ticks on the right-hand side indicate 0.1h and 0.5h.

profiles, we are able to calculate the form of the mean difference term analytically. This
is

auad(〈b〉u − 〈b〉d)2 = α(z/zκ)
−2/3 + β(z/zκ)

−1/3 + γ, (A.21)

where α, β and γ are constants. MOST predicts the buoyancy variance to follow a
(z/zκ)−2/3 power law, so the mean difference term could explain part of the deviation
from this prediction. However, as shown in Fig. A.8a-b, the mean difference term
contributes the least to the total variance in the surface layer of the LID and CBL cases.
Moreover, Fig. A.8d-e demonstrate that the mean difference term is in agreement with
free-convective scaling (profiles are approximately constant with height) and is hence
dominated by α(z/zκ)−2/3 rather than β(z/zκ)−1/3. This confirms that deviations in the
buoyancy variance are not caused by the mean difference term.

Downdrafts strongly deviate from free-convective scaling (Fig. A.8d-e) and make a
contribution of ∼ 20− 30% to the total buoyancy variance in the surface layer (Fig. A.8a-
b). Whilst this is non-negligible, it is updrafts that most strongly determine the buoyancy
variance near the surface and despite expectations that updraft properties would comply
better with MOST, strong deviations from free-convective scaling occur within large-scale
updraft regions. This result is independent of whether we define updrafts based only on
the vertical velocity, or also on the buoyancy fluctuation.

45



0 2 4 6 8 10
100

101

102

103
z/

z κ
(a) CBL

0 2 4 6 8 10
f /χ2

∗

(b) LID

0 2 4 6 8 10

(c) RBC
f = 〈χ′2〉 f = au〈χ′2〉u f = ad〈χ′2〉d f = auad(〈χ〉u−〈χ〉d)2

Figure A.9: Top-down scalar variance normalized by the convective scale, χ∗ = Fχ,0/w∗.
Linestyles are as in Fig. A.8. Grey ticks on the right-hand side indicate 0.1h and
0.5h.

Compared to the other two systems, the buoyancy variance behaves in a similar
manner in the RBC case and again, much of the deviation from free-convective scaling
occurs within updraft regions (Fig. A.8c,f). The major difference is the behaviour of the
downdraft profile and this will be discussed in Sect. A.3.5.

In summary, the first- and second-order moments of the buoyancy are primarily
determined by large-scale updraft regions, but somewhat counter-intuitively, MOST is
not satisfied within those regions any better than in downdraft regions. Moreover, the
buoyancy field behaves very similarly in the LID and CBL cases, even within downdraft
regions. This is interesting because the buoyancy is a purely bottom-up scalar in the LID
case, but in the CBL case, the buoyancy also has a top-down contribution due to the
entrainment flux, and yet the signature of that remote air is not evident in near-surface
downdraft statistics. This suggests that even within downdrafts, the buoyancy in the CBL
is primarily determined by the bottom-up contribution. In order to test this hypothesis,
in the following section we consider the opposite limit of a purely top-down scalar, as
this represents the case in which downdrafts have the strongest impact near the surface.

a.3.5 Top-Down Scalar Statistics

The results of the preceding section indicate that the buoyancy scales similarly in
both large-scale updraft and downdraft regions. This seems to contradict the original
hypothesis that downdrafts would show a much stronger signature of the top-down
contribution than updrafts, and leads us to ask to what extent 〈b′2〉d near the surface
is determined by air descending from aloft (the top-down contribution), and to what
extent by thermals rising from the surface within the large-scale downdraft regions
(the bottom-up contribution). A strong bottom-up contribution could partly explain the
similarity to the updraft profile. To this end, we compare our buoyancy results to those
for the top-down scalar (Fig. A.9), which characterizes the contribution of air from aloft
since it has zero surface flux.

In all cases, the top-down scalar variance is larger in downdrafts than in updrafts, is
approximately constant with height near the surface, and above 0.1h (the lower grey
tick in Fig. A.9), 〈χ′2〉d begins to increase with height, indicating that top-down scalar
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variance from above is carried all the way to the surface layer by downdrafts. By contrast,
〈b′2〉d consistently decreases with height faster than z−2/3 in the LID and CBL cases
(profiles in Fig. A.8d-e lean to the left of the vertical line), indicating a negligible top-
down contribution to the buoyancy field near the surface. In the RBC case, the situation
is somewhat different (Fig. A.8f). Above 0.1h, the decrease in 〈b′2〉d becomes markedly
slower than z−2/3 (profiles lean to the right of the vertical line). This suggests that
the buoyancy variance within downdrafts already begins to be affected by cold air
descending from aloft into the surface layer of the RBC case, whereas for the LID and
CBL cases, 〈b′2〉d is mainly determined by the bottom-up contribution.

In Fig. A.9b-c, the larger normalized top-down scalar variance in the LID case com-
pared to the RBC case is at first sight surprising and calls for some explanation. The
reason is related to the scale at which scalar fluctuations are generated at the top of the
domain. Buoyancy fluctuations at the top of the domain in the RBC case are generated
at small scales and the dissipation is fast, but in the LID case, which has no buoyancy
forcing at the upper plate, buoyancy fluctuations are generated at larger scales by the
LSCs and the dissipation is comparatively slow (see Fig A.2). Since the buoyancy is an
active scalar, it modulates fluctuations in the velocity field, which the passive scalar
follows. Hence, 〈χ′2〉 is generated at small scales and is dissipated quickly near the
upper plate of the RBC case, but in the LID case, it takes longer to dissipate as it first
needs to be transferred to smaller scales via the turbulent cascade, so there is more time
for 〈χ′2〉 to be carried down to the surface and accumulate (Mellado et al., 2017).

In summary, the buoyancy variance near the surface scales similarly between updrafts
and downdrafts in the LID and CBL cases due to the dominating influence of the bottom-
up contribution, associated with thermals penetrating into the downdraft region. In the
RBC case, by contrast, the effect of the top-down contribution, associated with cold air
descending from aloft, is evident in near-surface downdraft buoyancy statistics.

a.3.6 Vertical Velocity Statistics

We now consider the vertical velocity field. Since the mean velocity is zero in free
convection, we only consider the variance. The vertical velocity variance confirms the
major results from the analysis of the buoyancy. Both updrafts and downdrafts are of
comparable importance to determining 〈w′2〉 near the surface (Fig. A.10a-c) and although
deviations from free-convective scaling do occur in downdraft regions, they also occur
in updraft regions (Fig. A.10d-f). Once again, the LID and CBL cases demonstrate
remarkably similar behaviour, whilst in the RBC case, 〈w′2〉d is larger than in the other
two cases due to the more vigorous downdraft plumes generating larger vertical velocity
fluctuations.

a.3.7 Dependence on Filter Size

When large scales are defined based on a filter length scale equal to h, our results
suggest that both large-scale updrafts and downdrafts contribute non-negligibly towards
deviations from MOST in the buoyancy and vertical velocity variance. In this section we
test the dependence of these results on the definition of updraft and downdraft regions.
We utilize the same approach as before, but now define updraft and downdraft regions
from three different vertical velocity fields with an increasing filter size: the unfiltered
field (filter size equal to 0), the Li-filtered field and the h-filtered field. For conciseness,

47



0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103
z/

z κ
(a) CBL

0.0 0.2 0.4 0.6 0.8 1.0
f /(〈w ′2〉/w 2

κ)

(b) LID

0.0 0.2 0.4 0.6 0.8 1.0

(c) RBC

0.0 0.5 1.0 1.5 2.0
100

101

102

103

z/
z κ

(d)

0.0 0.5 1.0 1.5 2.0
f /(z/zκ)2/3

(e)

0.0 0.5 1.0 1.5 2.0

(f)

f = 〈w ′2〉/w 2
κ f = au〈w ′2〉u/w 2

κ f = ad〈w ′2〉d/w 2
κ f = auad(〈w〉u−〈w〉d)2/w 2

κ

Figure A.10: (a)-(c) Contributions to the vertical velocity variance from updraft, downdraft
and mean difference terms. (d)-(f) Velocity variance normalized by free-convective
scaling. Linestyles are as in Fig. A.8. Grey ticks on the right-hand side indicate 0.1h
and 0.5h.

we only show the CBL case and conditioning based on the vertical velocity, but the
results are similar for the non-penetrative cases and the factor of two difference in Li

between the RBC and CBL cases is unimportant.
Fig. A.11 demonstrates that the larger the filter size is, the larger the downdraft

contribution is and the more similarly updrafts and downdrafts behave. For second-
order moments (Fig. A.11c-d), the increasing downdraft contribution comes at the
expense of the mean-difference term, indicating that mean properties within large-scale
updraft and downdraft regions become more similar to each other when larger filter sizes
are considered (e.g. Fig. A.11b). These order-of-one changes are not caused by differences
in the area fraction profile, which only changes by ∼ 2% in the surface layer between
∆ = Li and ∆ = h (Fig. A.11a), but rather by fluctuations that occur within downdraft
regions defined by a larger filter size. For filter sizes of order h, these fluctuations are
filtered out of the large-scale fields (see Fig. A.4). When statistics from the original
field are taken within those large-scale downdraft regions, they include the fluctuations.
Their presence strongly increases the variance within downdraft regions and also causes
downdraft properties to become more similar to those of updrafts. This behaviour is
consistent with the observation in Sect. A.3.5 that the variance within downdrafts near
the surface is mainly determined by the bottom-up contribution associated with thermals
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Figure A.11: Sensitivity of conditional statistics in the CBL case to filter size, ∆. (a) Updraft area
fraction, (b) mean buoyancy gradient, (c) buoyancy variance and (d) vertical velocity
variance. Colours are as in Fig. A.7-A.10. Colour shading indicates (light) ∆ = 0,
(medium) ∆ = Li = 0.16h and (dark) ∆ = h.

penetrating into the downdraft. For smaller filter sizes of order Li, the fluctuations are
not filtered out (not shown) and instead belong to the updraft regions. Their presence
does not greatly alter the behaviour in those regions, hence why updraft properties
demonstrate a weaker dependence on filter size.

Despite changes to the downdraft profiles, many of our conclusions in previous
sections are robust. Regardless of the filter size used to define LSCs, downdrafts are
partially responsible for the failure of the vertical velocity variance to comply with MOST,
either directly through the downdraft contribution, or through the mean difference term.
Most importantly, for both the buoyancy and the vertical velocity variance, strong
deviations occur within large-scale updraft regions, and these are at least as important
as downdrafts, if not more so, for determining the behaviour near the surface.

a.4 summary and conclusions

We have used direct numerical simulation and conditional analysis to explore how
large-scale circulations may lead to deviations from MOST in free-convective flows
ranging from the convective boundary layer to Rayleigh–Bénard convection. In all three
configurations, the Prandtl number is unity and the Reynolds number based on the
free-fall velocity is of order 104 (equivalently, Rayleigh number of order 108). We have
focused on the first- and second-order moments of the buoyancy and vertical velocity.
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Previous studies have indicated that compliance with MOST is not guaranteed when
large-scale downdrafts transport non-local, outer-layer air to the surface layer. Using a
spatial filter to define the large scales, we have found that, whilst downdrafts contribute
towards deviations from MOST, they are not the most important factor. Comparison with
a top-down scalar (a scalar with zero surface flux) reveals that within downdraft regions,
the buoyancy variance near the surface is predominantly determined by a bottom-up
contribution, suggesting that the transport of non-local air into the surface layer is of
little importance in causing deviations from MOST in this quantity.

Strong deviations from MOST also occur within large-scale updraft regions. These
deviations are not due to changes in the updraft area fraction with height, which varies
by no more than 5% in the surface layer, and occur regardless of the filter size used to
define “large scale" and regardless of whether updrafts are defined as ascending air, or
as air that is both ascending and positively buoyant. This indicates that near-surface
updraft properties are not only determined locally by the surface buoyancy flux and
the distance from the ground, but also by outer scales. The reasons for this are unclear.
Shear effects caused by the large-scale horizontal flow may play a role here, as suggested
before in studies of Rayleigh–Bénard convection, but this requires further investigation,
particularly in the convective boundary layer where the large-scale horizontal motion is
weaker.

A comparison of the CBL, LID and RBC configurations has shown that replacing a
linearly stratified atmosphere with an impenetrable, adiabatic lid has very little impact
on surface-layer properties, but if the upper plate is cooled, there are some notable
changes of behaviour. In particular, the RBC case differs from the LID and CBL cases in
the following ways: firstly, the mean buoyancy does not follow free-convective scaling.
Secondly, the buoyancy variance within downdraft regions is not only affected by
thermals rising from the surface, but also by cold air descending from aloft. Lastly, the
contribution from downdraft regions to the vertical velocity variance is more important. It
therefore seems that changes to the upper boundary conditions only result in significant
changes in the surface layer if downdrafts are sufficiently cold and strong to modify
properties there. Hence, we conclude that at the moderate Reynolds numbers considered
here, the LID case is a better model of the unstable atmospheric surface layer than is
classical Rayleigh–Bénard convection. The LID case has the advantage that it provides
a longer statistically steady state than the CBL case, allowing for greater statistical
convergence.

These findings also have implications for field measurements. For example, high- or
low-pass filters are sometimes applied to atmospheric measurement data to remove
mesoscale variations or inertial subrange turbulence. Whilst our results suggest that
such a procedure would have little effect on measurements taken within updrafts,
measurements taken within downdraft regions may be more strongly affected by the
filter size.
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appendix a .a

Top-hat filters are commonly used in the literature to define large-scale fields and
we originally considered a three-dimensional top-hat filter for our study (Pope, 2000).
However, the implementation of the top-hat filter near the top and bottom boundaries is
challenging for several reasons. First, the top-hat filter is typically implemented defining
the filter size equal to an integer multiple of the grid spacing, and because the grid
spacing is varying with height near the surface to satisfy the resolution constraints
as explained in Sect. A.2.4, the filter size is also varying with height. This artificially
introduces an inhomogeneity in the large-scale field that could affect some of the
properties that we are interested in, such as the variation with height of the area fractions
associated with large-scale updrafts and downdrafts. This problem is solved when using
the Helmholtz filter defined via Eq. A.16.

One could avoid this problem by interpolating the DNS data into a uniform grid
with a grid spacing equal to the smallest grid spacing in the vertical direction. However,
even in this case of a uniform grid, finding appropriate boundary conditions for the
filter operation when using a three-dimensional top-hat filter remains a challenge. We
considered ghost cells where the fields were defined based on a linear extrapolation
from the interior of the domain towards the exterior of the domain, applying then the
top-hat filter across the boundary. However, such an approach fails to satisfy the no-slip
boundary condition. In Fig. A.12, we demonstrate this by comparing a top-hat filter with
the Helmholtz filter in the RBC case. In the case of the top-hat filter, we obtain a non-zero
filtered velocity field at the lower and upper boundaries, causing the proportion of TKE
remaining in the filtered field to actually increase as the filter size becomes larger. The
Helmholtz filter alleviates this issue and results in a systematic decrease in remaining
TKE with increasing filter size.

To better understand the implicit definition of the Helmholtz filter via Eq. A.16, one
can consider this filter applied only in the horizontal directions, where the periodic
boundary conditions allow for Fourier analysis. In this case, one finds that

φ̂ =

[
1 +

(
k∆
2π

)2
]−1

φ̂, (A.22)

where ·̂ indicates the Fourier transform along the horizontal planes, and k is the corre-
sponding wavenumber. This expression shows that the filtered field is approximately
equal to the original field when k� 2π/∆, and that the filtered field is approximately
zero when k� 2π/∆. Hence, Eq. A.16 defines a low-pass filter operation with a filter
size ∆.
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Figure A.12: Comparison of the effect of the top-hat filter and the Helmholtz filter on the TKE
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Conventional analysis has shown that wind shear enhances the entrainment buoyancy
flux in the convective boundary layer. By conditioning the entrainment zone into re-
gions of turbulent and non-turbulent flow, some unexpected aspects of this process
are revealed. It is found that turbulent regions contribute the most to the entrainment
buoyancy flux, but that as wind shear increases, the magnitude of the buoyancy flux
in turbulent regions remains approximately constant, or even decreases, despite sub-
stantially stronger buoyancy fluctuations. The reason is that the correlation between
buoyancy and vertical velocity fluctuations decreases with increasing wind shear, to the
extent that it compensates the stronger buoyancy fluctuations. In free convection, this cor-
relation is high because the vertical velocity is mainly determined by the buoyancy force
acting in the same direction. Under strong shear conditions, buoyancy is no longer the
only external source of vertical velocity fluctuations and their correlation consequently
decreases. Hence, shear enhancement of the buoyancy flux in the entrainment zone is
primarily due to an increase of the turbulent area fraction, rather than a change of flux
inside the turbulent regions.
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b.1 introduction

Wind shear is well known to enhance fluxes at the top of the convective boundary layer
(CBL). This is commonly attributed to the additional shear production of turbulent
kinetic energy (TKE), which acts to increase the magnitude of fluctuations in both
the velocity field and thermodynamic properties (Pino et al., 2003; Conzemius and
Fedorovich, 2006; Pino and Arrellano, 2006; Fedorovich and Conzemius, 2008). The
growth of the CBL, as well as the evolution of boundary-layer clouds, depend crucially
on these changes.

One of the more important properties with regards to CBL growth and cloud dynamics
is the buoyancy flux. In order to understand the mechanisms behind shear enhancement
of the buoyancy flux, Kim et al. (2003) employed quadrant analysis and found that
buoyancy and vertical velocity fluctuations in each quadrant are increased by the large
amplitude oscillations of the CBL top induced by wind shear.

Whilst quadrant analysis is helpful in determining the sign of fluctuations that con-
tribute to entrainment (Sullivan et al., 1998), other aspects are more difficult to extract.
One important issue is external intermittency, which is the property that at the edge of a
free turbulent flow, the motion is in some places turbulent and in others not turbulent
(Pope, 2000). The alternation between turbulent and non-turbulent regions can be seen in
visualizations, for example, as a pattern of alternating regions of high and low vorticity
magnitude. In the entrainment zone, external intermittency arises due to the entrainment
of non-turbulent air from the free troposphere and the ascension of turbulent thermals
from the CBL interior. Whilst motion within the non-turbulent regions is primarily
downward, the turbulent motion within thermals is not uni-directional and hence quad-
rant analysis, which splits motion into ascending and descending air, is insufficient to
distinguish turbulent from non-turbulent regions. As a result, quadrant analysis may be
intermingling a number of different wind shear effects.

There are several plausible hypotheses for how wind shear could modify turbulent
and non-turbulent properties, such that it leads to a stronger buoyancy flux in the
entrainment zone:

1. Due to the larger amplitude oscillations of the turbulent/non-turbulent interface
(TNTI), wind shear creates a larger difference in mean properties between turbulent
and non-turbulent regions.

2. Wind shear generates more vigorous fluctuations within the turbulent region.

3. The large-scale structures in the CBL change when wind shear is added, which
alters the distribution of turbulent patches in the entrainment zone and thereby
the turbulent area fraction.

Each of these changes can contribute to a larger buoyancy flux, but currently their
individual contributions are unknown. Understanding these contributions could help
inform CBL models (Neggers et al., 2006; Siebesma et al., 2007; Mellado, 2017). In this
paper, we introduce the method of conditional analysis as a way to understand the
interplay between these different contributions towards wind shear enhancement of the
entrainment buoyancy flux.

Partitioning of the flow into regions of high and low vorticity magnitude requires the
detection of small-scale fluctuations in the enstrophy field. Direct numerical simulation
(DNS) has been used with success in this regard for classical flows of engineering
importance (Bisset et al., 2002; Mellado et al., 2009; van Reeuwijk and Holzner, 2014),
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as well as in studies of unstratified penetrative convection (Holzner and van Reeuwijk,
2017) and gravity currents (van Reeuwijk et al., 2018). Despite DNS gaining traction in
the study of sheared CBLs (Jonker et al., 2013; Haghshenas and Mellado, 2019), it has
not yet been applied in that context in combination with conditioning on turbulent and
non-turbulent regions. A further goal of this paper is therefore to assess whether the
Reynolds numbers we are able to achieve nowadays with DNS are sufficiently large for
this kind of conditional analysis to be useful in the CBL.

Conditioning statistics on either side of the TNTI has been used in a variety of
canonical flows in fluid mechanics, such as wakes, jets and turbulent boundary layers
(Corrsin and Kistler, 1955; Kovasznay et al., 1970; Silva et al., 2014). Deardorff et al.
(1980) first considered the use of this kind of conditional analysis in laboratory studies
of the CBL, noting that a description of the entrainment zone in terms of the turbulent
area fraction, rather than in terms of buoyancy profiles, would aid comparison with
mechanically-driven flows. In the stable boundary layer, partitioning of the flow into
turbulent and non-turbulent sub-volumes has indicated that properties within turbulent
regions remain similar with changing stratification strength (Ansorge and Mellado, 2016).
By considering the unstable boundary layer here, we help to bridge work across a variety
of atmospheric boundary layer regimes.

This paper is organized as follows. In Section B.2 we provide an overview of our
simulations and the basics of conditional analysis. In Section B.3 we explain the method
we use to partition the flow into turbulent and non-turbulent regions. We then explore
how wind shear modifies the turbulent area fraction in Section B.4 and the buoyancy
flux in Section B.5. A summary is given in Section B.6.

b.2 numerical simulations and analysis methods

We consider a barotropic CBL that is forced by a constant and homogeneous surface
buoyancy flux, B0, and that grows into a linearly stratified free atmosphere. Such
conditions are representative of the afternoon atmospheric boundary layer over land. We
consider the limit of zero Coriolis parameter. The velocity and buoyancy frequency in
the free atmosphere are denoted U0 and N0 respectively. Our set-up is identical to that
in Haghshenas and Mellado (2019), so here we only provide a brief overview and refer
the reader to the aforementioned work for further details. The only difference from that
work is that we have continued one of the simulations further into the quasi-steady state
of the CBL.

b.2.1 Governing Equations

We solve the conservation equations for mass, momentum and energy in the Boussinesq
approximation:

∇ · uuu = 0, (B.1a)
∂uuu
∂t

+∇ · (uuu⊗ uuu) = −∇p + ν∇2uuu + bkkk, (B.1b)

∂b
∂t

+∇ · (uuub) = κ∇2b, (B.1c)

where uuu(xxx, t) is the velocity vector with components (u, v, w), xxx = (x, y, z) is the position
vector with z as the vertical coordinate, t is time, kkk = (0, 0, 1) is the unit vector in the ver-
tical direction and p is the modified pressure divided by a constant reference density. The
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buoyancy, b, is related to the virtual potential temperature, θv, via b ≈ g(θv − θv,0)/θv,0,
where θv,0 is a constant reference value and g is the gravitational acceleration. The
parameters ν and κ are the kinematic viscosity and the thermal diffusivity respectively.

b.2.2 Simulations

The velocity field satisfies impermeable, no-slip boundary conditions at the surface and
impermeable, free-slip boundary conditions at the top of the domain, which is placed
sufficiently far above the CBL to not influence its evolution. An initial velocity field is
constructed that is zero at the surface and a constant value, U0, in the free atmosphere
that flows in the x-direction.

The buoyancy field satisfies Neumann boundary conditions at both the top and bottom
of the domain. At the surface, ∂zb = −B0/κ, and at the top of the domain, ∂zb = N2

0 .
The initial buoyancy field is set such that the buoyancy increases linearly with height
with gradient N2

0 in the free atmosphere.
The system is characterized by three non-dimensional control paramters: the Prandtl

number, Pr ≡ ν/κ, a reference buoyancy Reynolds number,

Re0 ≡
B0

νN2
0

, (B.2)

and a reference Froude number:

Fr0 ≡
U0

N0L0
, (B.3)

where

L0 ≡
(

B0

N3
0

)1/2

(B.4)

is a reference Ozmidov length. The Ozmidov length represents the largest scale at which
overturning of eddies is uninhibited by the stratification (Dougherty, 1961; Ozmidov,
1965).

The Prandtl number characterizes the properties of the working fluid, the Reynolds
number can be thought of as a measure of the scale separation present in the flow (see
Section B.3 for more details) and the Froude number characterizes how strong the wind
shear is. We fix the Prandtl number to be equal to one in all of our simulations as this is
similar to the Prandtl number of air. Most of our analysis is conducted at Re0 = 42, but
in Appendix B.B we assess the Reynolds number dependence of some flow properties,
for which we also consider simulations at Re0 = 25 and Re0 = 117 (see Table B.1). Our
analysis compares simulations at Fr0 = 0, a shear-free case, with a simulation at Fr0 = 20,
a strong shear case corresponding to wind speeds of around 10− 15 m s−1 for typical
midday conditions over land.

Because the horizontal directions are statistically homogeneous, statistical properties
of the system depend only on height and time. We non-dimensionalize height using the
encroachment length scale:

zenc ≡
{

2N−2
0

∫ z∞

0
[〈b〉(z, t)− N2

0 z]dz
}1/2

, (B.5)

where z∞ is located far enough into the free atmosphere for the integral to be approxi-
mately independent of z∞. In both the shear-free and the sheared cases, zenc characterizes
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Table B.1: Simulation Properties. The Reynolds number, Re0, is defined in Eq. (B.2) and the
Froude number, Fr0, is defined in Eq. (B.3). The fourth column shows the final time of
the simulations. The fifth column shows how the height of minimum buoyancy flux,
zi,f, varies between zenc/L0 = 15 and the final time of the simulation.

Re0 Fr0 Grid zenc/L0 zi,f/zenc

25 0 2560× 2560× 512 35 1.14− 1.14

42 0 2560× 2560× 896 33 1.14− 1.14

42 20 3072× 4608× 960 26 1.24− 1.16

117 0 5120× 5120× 1024 22 1.15− 1.15

the depth of the mixed layer. Rather than using a non-dimensional time as an indepen-
dent variable, it proves convenient to use the non-dimensional height zenc/L0, which
describes the temporal evolution of the CBL growth (Garcia and Mellado, 2014). By
means of integral analysis of the evolution equation for the buoyancy, Eq. (B.1c), one
obtains the following relationship between the encroachment length and time:

zenc

L0
= [2N0(1 + Re−1

0 )(t− t0)]
1/2, (B.6)

where t0 is a constant of integration.
The reason we analyze the system using non-dimensional variables is that it re-

moves redundancy, since various combinations of the dimensional parameters can yield
equivalent results. This implies that we need only one simulation to cover all possible
combinations of the dimensional parameters that yield the same non-dimensional param-
eters. Moreover, such an approach allows comparisons to be made between atmospheric
measurements, physical experiments and numerical simulations. For instance, a CBL in
the real atmosphere with a mixed-layer depth of zenc = 1 km, a surface buoyancy flux of
B0 = 0.5× 10−2 m2 s−3 and a buoyancy frequency of N0 = 0.8× 10−2 s−1 is comparable
to a tank experiment of a CBL with a a mixed-layer depth of zenc = 1 m, a surface
buoyancy flux of B0 = 1× 10−3 m2 s−3 and a buoyancy frequency of N0 = 4.6× 10−1 s−1

because both cases correspond to a state of development of zenc/L0 ≈ 10.
We can match typical atmospheric values of all non-dimensional parameters except

for the Reynolds number. Consequently, simulations at different Reynolds numbers are
required to assess the dependence of our results on this parameter (see Appendix B.B).

b.2.3 Structure of the Entrainment Zone

We define the entrainment zone as the region of negative buoyancy flux, which starts at
approximately zenc in all cases, and has a two layer structure (Garcia and Mellado, 2014;
Haghshenas and Mellado, 2019). The lower sublayer is located around zi,f, the height
of minimum buoyancy flux, and the upper sublayer is located around zi,g, the height
of maximum mean buoyancy gradient. Wind shear thickens the entrainment zone and
hence reference heights in the sheared case are higher up than in the shear-free case.
However, over time, shear effects diminish and the entrainment zone tends towards the
convection-dominated regime (see column 5 in Table B.1).

The entrainment flux ratio is defined as the minimum of the buoyancy flux normalized
by the surface flux: −〈b′w′〉zi,f /B0. Since we are seeking to explain how wind shear
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increases this quantity, much of our analysis will take place at the height of minimum
buoyancy flux.

b.2.4 Conditional Analysis Preliminaries

To investigate how properties differ between turbulent and non-turbulent regions in the
entrainment zone and how they evolve over time, we use conditional statistics (Dopazo,
1977; Antonia, 1981). The conditional mean of a dependent variable, φ, may be expressed
as:

〈φ〉 = aT〈φ〉T + aNT〈φ〉NT, (B.7)

where aT and aNT = 1− aT are respectively the turbulent and non-turbulent area fractions,
and 〈φ〉T and 〈φ〉NT are respectively the mean inside turbulent and non-turbulent regions.
From the definition φ′ ≡ φ−〈φ〉, one obtains the following expression for the conditional
variance:

〈φ′2〉 = aT〈φ′2〉T + aNT〈φ′2〉NT

+ aTaNT(〈φ〉T − 〈φ〉NT)
2,

(B.8)

where 〈φ′2〉T = 〈φ2〉T − 〈φ〉2T and 〈φ′2〉NT = 〈φ2〉NT − 〈φ〉2NT. The first term on the right-
hand side of Eq. (B.8) is the contribution from the variance inside turbulent regions,
the second term is the contribution from the variance inside non-turbulent regions
and the third term is caused by the difference between the mean inside turbulent and
non-turbulent regions, hereafter referred to as the mean difference term.

Similarly one can derive an expression for the vertical flux of φ as:

〈φ′w′〉 = aT〈φ′w′〉T + aNT〈φ′w′〉NT

+ aTaNT(〈φ〉T − 〈φ〉NT)(〈w〉T − 〈w〉NT).
(B.9)

In Section B.5, we will show how wind shear affects each of the contributing terms in Eq.
(B.9) for φ = b.

b.3 definition of turbulent and non-turbulent regions

In order to proceed with the conditional analysis, we need to define what is turbulent
and what is not. In studies of the TNTI, turbulent regions are typically defined based
on a low enstrophy threshold, below which the flow may be considered approximately
irrotational (Silva et al., 2014). In the real atmosphere, the scale separation between the
enstrophy values characterizing the boundary layer and those characterizing the free
troposphere is huge (of order 106, as explained below), but in our simulations, we can
only achieve a limited scale separation, which needs to be assessed.

Various methods for selecting an enstrophy threshold have been employed in past
studies of the TNTI. One method commonly employed in shear-driven boundary layers
takes into account the structure of the probability density function (PDF) of enstrophy,
which has two peaks connected by a plateau: one above the boundary layer at low
enstrophy values, indicating the non-turbulent region, and one within the boundary
layer at high enstrophy values, indicating the turbulent region (Borrell and Jiménez,
2016; Watanabe et al., 2018). A threshold is then chosen as the saddle point in the PDF,
because it divides between enstrophy values more likely to be found in the boundary
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Figure B.1: Probability density functions of enstrophy at zenc/L0 = 20 averaged over an interval
∆zenc/L0 = 2. The black dots indicate the maximum in the PDF at each height. The
star shows the approximate saddle point. The orange markers on the left-hand side
indicate (lower) zi,f and (upper) zi,g. The reference scale ω2

0 is defined in Eq. (B.13)
with cε = 0.1.

layer and enstrophy values more likely to be found outside of it. Since the CBL has a
similar structure to the shear-driven boundary layer in this regard, we employ a similar
method to identify a threshold.

We first define a reference enstrophy scale in the mixed layer in order to normalize the
PDFs. This can be derived from the relationship between enstrophy, ω2, and the viscous
dissipation rate of TKE, ε:

〈ε〉 = ν〈ω2〉+ 2ν
∂2〈w2〉

∂z2 , (B.10)

which simplifies to:

〈ε〉 ≈ ν〈ω2〉, (B.11)

because the second term on the right hand side of Eq. (B.10) is small in the mixed layer.
It then follows that:

〈ω2〉 ∼ 〈ε〉
ν
∼ B0

ν
, (B.12)

where the last relation follows from an integral analysis of the TKE evolution equation
in the quasi-steady regime of the CBL (Fedorovich et al., 2004). We therefore define a
reference enstrophy scale in the mixed layer as:

ω2
0 ≡

cεB0

ν
. (B.13)

This reference scale is verified in Fig. B.1 with cε = 0.1.
Under typical midday conditions in the real CBL, B0 ≈ (0.3− 1)× 10−2 m2 s−3 and

ν = 1.5× 10−5 m2 s−1, yielding enstrophy values in the mixed layer of order 10− 103 s−2

(for cε of order 0.1-1). In the free atmosphere, which is dominated by gravity wave motion,
the enstrophy scales with N2

0 ≈ (0.4 − 3.2) × 10−4 s−2. Hence, the scale separation
between the boundary layer and free atmosphere, ω2

0/N2
0 ≈ Re0, is of order 105 − 107,

demonstrating that the scale separation increases with increasing Reynolds number (see
also Appendix B.B). In numerical simulations however, the Reynolds number and the
corresponding scale separation in the flow determine how many grid points are required,
and thereby the size of the simulation. This is strongly constrained by computational
resources and we are therefore limited to Reynolds numbers much smaller than those
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Figure B.2: Logarithm of enstrophy at the height of minimum buoyancy flux, at time zenc/L0 = 20
and for (a) Fr0 = 0 and (b) Fr0 = 20 (mean wind from left to right). The colour scale
has black as the threshold indicated by the star in Fig. B.1. The full horizontal domain
is shown and is equal to 215L0 × 215L0 in both cases.

characterizing the real atmosphere (Mellado et al., 2018). As observed in Fig. B.1, in our
simulations at Re0 = 42, we only achieve a scale separation of order 102. Nonetheless,
this is sufficient to make a distinction between turbulent and non-turbulent regions, as
will be demonstrated in later sections.

To identify a reference threshold for our analysis, we find an approximation to the
saddle point in the enstrophy PDF as follows. First, we find the maximum in the PDF
at each height (the black dots in Fig. B.1). Then, we search along that set of points for
where there is a jump in enstrophy values between two consecutive grid points. The
size of this jump has to be tuned somewhat depending on the case. We choose the
size of the jump to be a factor of at least 1.5 ω2/ω2

0 in the Fr0 = 0 case and a factor of
at least 3 ω2/ω2

0 in the Fr0 = 20 case. The saddle point is then approximated as the
mean value between the points on either side of the jump (the star in Fig. B.1). To give
a visual impression of turbulence defined by this reference threshold, in Fig. B.2 we
show a horizontal cross-section of the enstrophy field at zi,f. Enstrophy values below the
reference threshold are blacked out and what remains has the characteristic features of
turbulent plumes in the shear-free case (Fig. B.2a) and of horizontal rolls in the sheared
case (Fig. B.2b).

One of the main effects of wind shear is to increase the height of the saddle point
from zi,f to zi,g. The correspondence of the saddle point to these references heights is
seen more clearly in Fig. B.3a. Whilst it is expected that the saddle point lies within the
entrainment zone, there is a priori no physical reason that the saddle point is closer
to one reference height or another. The saddle point is higher up in the sheared case
because the turbulence intensity only starts to decay around the height zi,f (Fig. B.1b).
In the shear-free case by contrast, turbulence already starts to decay upon entering the
entrainment zone (i.e. slightly above zenc, Fig. B.1a) and as a result, the saddle point in
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Figure B.3: Time evolution of (a) the height and (b) the magnitude of the saddle points indicated
by the stars in Fig. B.1. Here and in the following, lines indicate the average over an
interval ∆zenc/L0 = 2.

the enstrophy PDF occurs lower down. The magnitude of the enstrophy saddle point is
similar between the two cases, though slightly smaller in the sheared case due to the
saddle point being closer to the non-turbulent region (Fig. B.3b). The reference threshold
we use for each Fr0 case in the following sections is the mean value of the respective
curve in Fig. B.3b.

b.4 turbulent area fraction

One of the most important variables in the conditional analysis we perform is the
turbulent area fraction, aT (see Eq. (B.7)-(B.9)). As we will see, this property is also the
one most directly affected by the definition of turbulent and non-turbulent regions. We
therefore evaluate how changes to the enstrophy threshold impact the turbulent area
fraction, whilst still maintaining our primary goal of investigating wind shear effects.

In Fig. B.4, we show the turbulent area fraction, aT, as a function of height and
threshold. The structure of these profiles mirrors the structure of the PDFs considered
in the previous section. Turbulence starts to decay with height as soon as it enters the
entrainment zone in the shear-free case, and maintains a constant value up to zi,f in the
sheared case.

Around the height zi,f, where our analysis is focused, the turbulent area fraction is
sensitive to the threshold within a certain range, outside of which it no longer changes
significantly. When the threshold is too high, (aT)zi,f → 0 and when the threshold is too
low, (aT)zi,f → 1. In both of these circumstances, conditional statistics become equivalent
to the conventional statistics, as can be seen from Eq. (B.7)-(B.9). There is therefore only
a limited range of thresholds where the conditioning is meaningful. We can estimate this
range from Fig. B.4a to be −1.5 . log10(ω

2
th/ω2

0) . 0.5. Within that range, a comparable
threshold on enstrophy in the shear-free and sheared cases always results in a higher
turbulent area fraction in the sheared case at the same reference height. Thus, whilst
changing the threshold alters the magnitude of turbulent and non-turbulent properties,
the relationship between the shear-free and sheared cases remains qualitatively the same.
This is shown to hold in Appendix B.A for a number of different properties.

By considering properties at a single threshold, we can better see the effects of wind
shear. For our reference threshold defined in Section B.3, wind shear increases the
turbulent area fraction in the mixed layer by around 15%, but in the entrainment zone
the effects are more significant (Fig. B.5a). We see in Fig. B.5b that at Fr0 = 20, the
turbulent area fraction at zi,f has increased by around 70% of the shear-free value. Since
the thresholds used are comparable between Fr0 = 0 and Fr0 = 20, we attribute this
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The threshold used in each case is the mean value of the respective curve in Fig. B.3b.
The markers on the left-hand side in panel (a) indicate zi,f.

increase of turbulence coverage to the changing structure of convective plumes, which
undergo the well-known transition from cells to horizontal rolls with the addition of
wind-shear (see Fig. B.2 and Salesky et al. (2017)). Indeed, if the same threshold value
used in the Fr0 = 20 case were used in the Fr0 = 0 case, the turbulent area fraction at zi,f
would increase, but still not exceed that in the sheared case. Wind shear thus definitively
spreads turbulence over a wider area in the entrainment zone.

Fig. B.5b bears a strong resemblance to the evolution of the total buoyancy flux at
zi,f over time at different Fr0 (see Fig. 5a in Haghshenas and Mellado (2019)). This
already suggests that the turbulent area fraction may be a key variable in controlling the
magnitude of the entrainment flux under different shear conditions, lending support to
the third hypothesis in Section B.1. We explore this possibility further in the following
section.

b.5 wind shear effects on the buoyancy flux

Using the reference threshold defined in Section B.3, we show each of the three terms in
Eq. (B.9) as a function of height in Fig. B.6a for each Fr0. It is immediately evident that
the turbulent contribution is by far the largest to the total buoyancy flux and that wind
shear does little to modify the other two terms. We can therefore already eliminate the
first hypothesis posed in Section B.1 and write:

〈b′w′〉 ≈ aT〈b′w′〉T. (B.14)
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Figure B.6: (a) Contributions to the total buoyancy flux according to Eq. (B.9). The markers on the
left-hand side indicate zi,f. (b) Buoyancy flux within turbulent regions as a function
of height at zenc/L0 = 20. (c) Entrainment flux ratio conditioned to turbulent regions
as a function of time.

We have seen that, in the sheared CBL, the turbulent area fraction at zi,f increases by
around 70% of its shear-free value, whereas the increase in the magnitude of the total
buoyancy flux at zi,f between Fr0 = 0 and Fr0 = 20 is around 50%. By Eq. (B.14), this
suggests that 〈b′w′〉T should in fact become somewhat smaller with increasing Fr0 and
this is verified in Fig. B.6b,c. Even with a lower enstrophy threshold in the shear-free
case, the buoyancy flux in turbulent regions remains similar to that in the sheared case,
as shown in Appendix B.A, which would seem to eliminate our second hypothesis
that fluctuations become stronger in turbulent regions with increasing wind shear and
thereby enhance the entrainment buoyancy flux. Although the first two hypotheses posed
in Section B.1 were perhaps the more intuitive ones, our third hypothesis is confirmed: it
is the increase in the turbulent area fraction with wind shear that is the main reason for
the increase in the magnitude of the total buoyancy flux.

b.5.1 Why is the mean difference term so small?

It is not immediately obvious why our first hypothesis failed. In this section, we explore
why the mean difference term turns out to be so small.

Figure B.7 shows the mean buoyancy and the mean vertical velocity separately in
turbulent and non-turbulent regions. The mean buoyancy in non-turbulent regions tends
towards the background buoyancy profile N2

0 z. The mean buoyancy in turbulent regions
corresponds to air ascending from the mixed layer. As the turbulent thermals mix with
their environment, their mean buoyancy increases, resulting in a difference between 〈b〉T
and 〈b〉NT of approximately 0.1benc in the upper entrainment zone sublayer and free
atmosphere (benc ≡ N2

0 zenc).
The mean vertical velocity in non-turbulent regions is negative in the lower entrainment

zone sublayer due to entrained air moving down towards the boundary layer interior.
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Figure B.7: (a) Mean buoyancy as a function of height and (b) mean vertical velocity as a function
of height at zenc/L0 = 20. The scales benc and w∗ are defined as: benc ≡ N2

0 zenc and
w∗ ≡ (B0zenc)1/3. The markers on the left-hand side indicate zi,f.

Further up, 〈w〉NT becomes dominated by gravity wave motion, which, averaged over the
horizontal plane, becomes zero. The mean vertical velocity in turbulent regions decreases
to zero in the lower entrainment zone sublayer, which can be interpreted as a weakening
of turbulent plumes as they penetrate into the overlying stratification. This effect is
clearer in the shear-free case, as the vertical motion is stronger than in the sheared case.
Fluctuations about zero in the upper entrainment zone sublayer and free atmosphere are
due to limited statistical convergence as aT becomes small.

Despite there being a relatively large difference between 〈w〉T and 〈w〉NT in the
lower entrainment zone sublayer, the similarity between 〈b〉T and 〈b〉NT there results
in a negligible contribution from the mean difference term in Eq. (B.9). In the upper
entrainment zone sublayer, where the difference in the mean buoyancy between turbulent
and non-turbulent regions increases, the mean velocity tends to zero in both regions
and hence the mean difference term is also small there. This illustrates how nuanced
the situation is, in that the mean buoyancy and mean vertical velocity can differ quite
substantially between turbulent and non-turbulent regions, but the differences depend
on height and precisely where there is a large difference in one variable between the two
regions, it is cancelled out by an approximate equivalence between the two regions in
the other variable.

b.5.2 Why does the buoyancy flux in turbulent regions not increase with wind shear?

We have seen that the turbulent contribution dominates the buoyancy flux, but that as
wind shear increases, the magnitude of 〈b′w′〉T does not increase as one might expect
from the increase in TKE. This leads us to examine more closely the second hypothesis
posed in Section B.1 about whether wind shear generates more vigorous fluctuations
within the turbulent region.

In Fig. B.8, we show the buoyancy and vertical velocity root-mean-square (r.m.s.)
conditioned to turbulent regions. At the height of minimum buoyancy flux, (brms)T in
the sheared case is at least 50% larger than in the shear-free case (panel (b)), even though
the vertical profiles lie on top of each other (panel (a)). In contrast, the vertical velocity
r.m.s. in turbulent regions is hardly affected by wind shear (panel (d)), even though the
vertical profile changes (panel (c)). This behavior occurs because wind shear compounds
two effects; firstly, the change in the vertical profile and secondly, the change in the
height of zi,f. In the case of (brms)T, the profiles are increasing with height and as zi,f
moves up with shear, buoyancy fluctuations are larger at that reference height in the
sheared case. For (wrms)T on the other hand, the profile is decreasing in the shear-free
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Figure B.8: (Top row) buoyancy r.m.s. and (bottom row) vertical velocity r.m.s. in turbulent
regions as a function of (left column) height at zenc/L0 = 20 and (right column) time
at zi,f for Fr0 = 0 and Fr0 = 20. The markers on the left-hand side in panels (a) and
(c) indicate zi,f.

case, whereas it curves back on itself in the sheared case. Hence the change in the profile
and the change in the height of zi,f occur in such a way that they effectively cancel out.
This highlights the difficulty of ascertaining shear effects on entrainment zone properties,
as different effects can compensate each other.

It is perhaps surprising at first that the buoyancy flux within turbulent regions remains
unchanged, or even weakens with wind shear (Fig. B.6b,c), despite buoyancy fluctuations
becoming stronger in turbulent regions at zi,f (Fig. B.8b). However, as we have seen,
vertical velocity fluctuations in turbulent regions at the same reference height do not
increase with wind shear (Fig. B.8d). This suggests that the two signals are not in phase
with one another.

Kim et al. (2003) found that above zi,f, temperature fluctuations tend to advance
vertical velocity fluctuations with a phase difference of around π/2 and hence the
buoyancy flux weakens, even though fluctuations are strong. We see here that when
conditioned to turbulent patches, a phase difference must also exist at zi,f. We quantify
this by calculating the correlation coefficient between buoyancy and vertical velocity
fluctuations within turbulent regions, as shown in Fig. B.9. In the shear-free case, vertical
velocity fluctuations are induced by buoyancy forces and there is a negative peak in
the correlation due to warmer air moving down and cooler air moving up. When wind
shear is added to the system, buoyancy is no longer the only external source of vertical
velocity fluctuations and the correlation consequently decreases.

By expressing the buoyancy flux in terms of the correlation coefficient:

〈b′w′〉T = (ρbw)T(brms)T(wrms)T, (B.15)

it becomes clear that even though the buoyancy r.m.s. becomes stronger in turbulent
regions at zi,f, the decrease in the correlation coefficient compensates, or even over-
compensates that increase, such that the buoyancy flux remains similar or weakens
within turbulent regions under sheared conditions.
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Figure B.9: Correlation between buoyancy and vertical velocity fluctuations in turbulent regions
as a function of (a) height at zenc/L0 = 20 and (b) time at zi,f. The markers on the
left-hand side in panel (a) indicate zi,f.

b.6 summary and conclusions

The shear enhancement of the entrainment flux in the CBL is compounded by external
intermittency. Analysis tools employed in the past have not distinguished the various
effects that wind shear can have on properties within turbulent and non-turbulent
regions. Here we have employed conditional analysis on direct numerical simulations of
the shear-free and sheared CBL to investigate what this method can reveal about shear
effects on entrainment that is otherwise hidden by conventional statistics.

We have shown that even with the moderate Reynolds numbers we are able to
achieve in our simulations, a clear distinction between turbulent and non-turbulent
fluid is possible. Peaks in the probability density function of enstrophy representing the
turbulent boundary layer and the non-turbulent free atmosphere are separated by two
orders of magnitude. There is a similarly wide range of thresholds on enstrophy where
the conditioning is meaningful, in that the turbulent area fraction in the entrainment
zone is neither zero nor one and the conditional statistics differ from the conventional
statistics.

As a first application, we have demonstrated the utility of this kind of conditioning for
understanding shear effects on entrainment. We have found that the largest contribution
to the entrainment flux ratio, −〈b′w′〉zi,f /B0, comes from turbulent regions and not from
the difference in mean properties between turbulent and non-turbulent regions. Yet the
main reason that the entrainment flux ratio increases with wind shear is not because the
flux itself becomes stronger in turbulent regions, despite what might be expected from
the increase in turbulent kinetic energy. Although buoyancy fluctuations do become
stronger under sheared conditions, there is a compensating effect due to the decrease
in the correlation between buoyancy and vertical velocity fluctuations. Hence, the main
reason the entrainment flux increases with wind shear is simply due to there being
a larger turbulent area in which entrainment can take place more efficiently than in
non-turbulent regions.

The potential applications of this kind of conditional analysis need not be restricted to
the dry CBL. Cloud boundaries co-exist with the turbulent/non-turbulent interface, but
do not normally coincide (Moeng et al., 2005; Mellado et al., 2017). Whilst conditioning
on the liquid water content to distinguish between cloudy and non-cloudy air has been
used in the past to study various aspects of cloud mass transport, entrainment and
detrainment (de Roode and Wang, 2007; Jonker, 2008), further useful insights may well be
gained by conditioning statistics on either side of the turbulent/non-turbulent interface.
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appendix b .a : dependence on enstrophy threshold

To ascertain to what extent our results regarding wind shear effects on the buoyancy
flux, the buoyancy r.m.s. and the vertical velocity r.m.s. depend on the threshold chosen
to distinguish turbulent from non-turbulent regions, we examine these properties as
a function of threshold. In the following, we essentially answer the question: if the
threshold in the shear-free and sheared cases is comparable, and that threshold changes
within a given range, does the relationship between the two cases change?

Fig. B.10a,b shows the conditioned buoyancy flux at zi,f. As explained in Section B.4,
non-turbulent statistics (left column of Fig. B.10) in the limit of increasing thresholds
converge with turbulent statistics (right column of Fig. B.10) in the limit of decreasing
thresholds and this converged profile is equivalent to the conventional statistic. Within
the range of thresholds −1.5 . log10(ω

2
th/ω2

0) . 0.5 given in Section B.4, where the
turbulent area fraction is neither zero nor one and the conditioning may be considered
meaningful, 〈b′w′〉T at zi,f is similar, or smaller at Fr0 = 20 compared to Fr0 = 0. Hence
this result is not an outcome of the specific threshold we chose.

Fig. B.10c,d demonstrates that the increase of the buoyancy r.m.s. with wind shear is
also independent of the specific threshold chosen. Both (brms)T and (brms)NT are larger
at zi,f in the Fr0 = 20 case across the full range of thresholds considered. Fig. B.10e,f
shows that (wrms)T at zi,f remains similar between Fr0 = 0 and Fr0 = 20 for a comparable
threshold within the range −1.5 . log10(ω

2
th/ω2

0) . 0.5.

appendix b .b : reynolds number dependence

Since we are restricted to low-to-moderate Reynolds numbers, it is worthwhile to
consider the extent to which changes to the Reynolds number influence our results.
Reynolds number effects are strongest for the shear-free case so in this section, we only
show results relating to Fr0 = 0.

As expected, Fig. B.11 indicates that the scale separation between the boundary layer
and free atmosphere increases with Reynolds number. The scale ω2

0 characterizes the
enstrophy in the mixed layer for all Reynolds numbers considered and as the Reynolds
number is increased, the characteristic vorticity magnitudes in the free atmosphere
decrease in comparison, as seen by a shift in the upper lobes of the PDFs towards smaller
normalized enstrophy values. Correspondingly, the saddle point also moves to smaller
enstrophy values.
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Figure B.10: (a),(b) Buoyancy flux, (c),(d) buoyancy r.m.s. and (e),(f) vertical velocity r.m.s. at zi,f
conditioned to (left column) non-turbulent and (right column) turbulent regions as
a function of enstrophy threshold at zenc/L0 = 20. The dashed lines indicate the
reference threshold defined in Section B.3. The grey shaded areas indicate the range
of thresholds where the turbulent area fraction in the shear-free case is greater than
0.9 or less than 0.1.

The change in the PDFs with increasing Reynolds number is also reflected by the
turbulent area fraction in Fig. B.12. Contours indicating a non-zero turbulent area fraction
in the free atmosphere show a marked shift towards lower normalized enstrophy values
as Re0 increases from 25 to 117. The contours within the upper entrainment zone sublayer
(i.e. around the height zi,g) consequently flatten. This suggests that at the very high
Reynolds numbers that characterize the real CBL, the turbulent area fraction would
become very insensitive to the threshold in the upper entrainment zone sublayer.
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