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ABSTRACT

A search for pairs of light bosons produced from decays of the 125 GeV Higgs boson
is presented. The search covers the light boson mass region where the particle could have
an enhanced decay rate to a pair of τ leptons, according to different models and scenarios.
The leptonic decay channels corresponding to the 4τ and 2µ2τ final states are used. The
search is based on proton-proton collisions collected by the CMS experiment in 2016 at a
center-of-mass energy of

√
s = 13 TeV. This dataset corresponds to an integrated luminosity

of 35.9 fb-1.
The analysis is motivated by many theories beyond the Standard Model that suggest

modifications in the Higgs sector. The prevailing tendency among these new models is to
extend the group structure of the scalar sector, thus resulting in an increased number of
physical states in their spectrum. The additional bosons could couple to both the 125 GeV
Higgs boson and the rest of the particles in the theory, which allows their detection through
different production and decay mechanisms.

Two different approaches used for the analysis of the data are presented. The first strategy
targets boosted event topologies, occurring for light bosons with masses between 4 and 15
GeV. The second method employs a modified event selection technique combined with a
more powerful final discriminant to be able to extend the mass range up to 21 GeV. In
both approaches, no significant deviation beyond the expectation from the Standard Model
is observed. Observed and expected upper limits at 95% confidence level on the product
of the Higgs boson production cross-section relative to that in the Standard Model and the
branching fraction into the 4τ final state are set. Interpretations of the experimental results
in the context of a specific theoretical model are also provided.
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ZUSAMMENFASSUNG

Diese Arbeit präsentiert eine Suche nach neuen leichten Bosonen, die paarweise im Zerfall
des 125-GeV-Higgs-Bosons entstehen. Die Suche deckt einen Bereich der Masse der leichten
Bosonen ab, für den man erwartet dass diese Teilchen mit grösserer Wahrscheinlichkeit in
ein Paar von τ Leptonen zerfallen, wie von verschiedenen Modellen vorhergesagt. Ereignisse
werden untersucht bei denen im Endzustand vier Leptonen auftreten, entweder vier τ Lep-
tonen oder zwei τ und zwei µ Leptonen. Für die Suche werden die vom CMS Experiment im
Jahr 2016 bei einer Schwerpunktsenergie von

√
s = 13 TeV aufgezeichneten Proton-Proton-

Kollisionen verwendet. Die analysierte Datenmenge enspricht einer integrierten Luminosität
von 35.9 fb-1.

Die Analyse ist dadurch motiviert dass in vielen Theorien neuer Physik ausserhalb des
Standardmodells Modifizierungen des Higgs Sektors vorhergesagt werden. Eine vorherrschen-
de Tendenz ist die Erweiterung der Gruppenstruktur des skalaren Sektors, die zu einer er-
höhten Anzahl von physikalischen Zuständen im Teilchenspektrum führt. Die zusätzlichen
Bosonen könnten sowohl an das 125-GeV-Higgs-Boson als auch an andere bekannte Teilchen
koppeln, was ihre Detektierung durch verschiedene Produktions- und Zerfallfsmechanismen
ermöglicht.

Zwei verschiedene Ansätze werden in der Analyse der Daten verfolgt. Die erste Strategie ist
es nach den neuen Teilchen in boosted (kollimierten) Ereignistopologien zu schauen, die man
für leichte Bosonen mit Massen zwischen 4 und 15 GeV erwartet. In der zweiten Methode wird
eine modifizierte Ereignisselektion mit einer speziellen schlagkräftigen multivariaten Signal-
zu Untergrunddiskriminierung kombiniert, die es ermöglicht den untersuchten Massenbereich
bis auf 21 GeV zu erweitern. Als Ergebnis stellt sich heraus dass für beide Ansätze die
Daten mit den Raten der Untergrundprozesse, die vom Standardmodell vorhergesagt werden,
übereinstimmen, d.h. es wird kein signifikanter Überschuss beobachtet der die Präsenz neuer
Teilchen anzeigen würde. Aus den Daten werden obere Ausschlussgrenzen auf 95% Confidence
Level auf das Produkt des Wirkungsquerschnittes für Higgs Boson Produktion relativ zum
Standardmodell und des Zerfalls-Verzweigungsverhältnisses in den 4τ Endzustand bestimmt
und mit den erwarteten Grenzen verglichen. Die erzielten experimentellen Resultate werden
auch im Kontext spezifischer Modelle neuer Physik erörtert und interpretiert.
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CHAPTER

1

INTRODUCTION

For many years the human being has been trying to conceive a theory of the universe that
is beautiful enough to be able to describe all phenomena existing in nature, and sufficiently
consistent to be repeatedly tested and verified by experimental results. After having deeply
studied the results of many experiments over the last centuries, scientists decided to take the
old route that invites to examine physical systems based on their elementary constituents.
This led to the emergence of the field of particle physics in the 20th century, a mathematical
formulation of the behavior of systems at fundamental level mostly based on theories also
born in this century such as Special Relativity (SR) [1] and Quantum Mechanics (QM) [2].
Within this branch of physics, for quite a long time, there has been a theory that, so far,
meets one of the two pillars mentioned at the beginning of this chapter. The name given to
that mathematical construction is the Standard Model (SM). Certainly, the SM has been a
remarkably successful theory that has had the bliss that no confirmed experimental evidence
has been found against it [3–6]. Just a few years ago, the already theoretically-predicted
missing piece of the SM was found at the Large Hadron Collider (LHC), when the two largest
collaborations announced the discovery of a particle with characteristics similar to those of
the Higgs boson [7,8]. That breakthrough further strengthened the credibility of the SM, and
once more demonstrated the high degree of predictivity of the theory. However, it is notorious
that the SM is an incomplete theory, due to the impossibility of incorporating all the forces
known in nature into its theoretical framework. The exclusion of gravity from the theory is
not the only drawback, there exists another variety of problems to be accounted for. The
list of limitations of the SM comprises the absence of an explanation for the dark matter and
the dark energy, the incapability to generate a sufficient amount of baryon asymmetry, the
hierarchy problem, and many others. All this, together with the inexplicable group structure
and number of parameters presented, leaves the SM far from being the ultimate theory of
the universe.

In pursuit of this goal, physicists have continued developing new models capable to reach
the magnificent experimental performance of the SM, but also with the possibility to solve
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Chapter 1. Introduction

some of its deficiencies. Novel approaches like supersymmetry, grand unified theories, quan-
tum gravity, and string theory offer diverse solutions for one or several problems [9,10]. One
of the SM sectors that mostly undergo modifications in the new models is that involving the
Higgs boson, partly due to the recent discovery of this scalar boson and its low production
rate at the LHC, which limits the possibilities of precisely measuring all the properties of the
particle. Additionally, the versatility presented by the scalar fields makes them very suitable
for new models willing to provide answers to the various unknown aspects. In particular,
the hierarchy problem is intrinsically related to the scalar nature of the SM Higgs boson,
therefore, any attempt to try to unravel it implies modifications in that sector.

The changes entailed by the design of the new theories are generally accompanied by
the inclusion of a larger number of scalars in their field content; in other cases, they bring
certain modifications in the interactions and properties of the discovered 125 GeV mass
eigenstate. For instance, most supersymmetric models require the presence of an additional
SU(2) doublet, in relation to the SM, in order to ensure holomorphy and help to cancel
anomalies [11], which is then reflected in a larger number of scalar physical states. At the
same time, these and other types of models allow the existence of mixing among the different
scalar components of the fields, thus altering the couplings of the SM-like Higgs boson with the
rest of particles, compared to those predicted in the SM. Those are parts of the reasons why,
currently, the search for additional bosons and the high-precision tests are the preferential
ways to probe the Higgs sector beyond the SM.

In the current context, there are still conditions that favor those models possessing a
light boson in their spectrum [12]. In the presence of coupling between the light bosons and
the SM-like Higgs, there may be exotic decays of the 125 GeV state into pairs of these light
particles, when kinematically allowed. The light bosons tend to couple to other SM particles
as well, so, in principle, they could be detected via these interactions, either in production
or decay mode. However, in most theories, the couplings of the light bosons to SM fermions
are significantly reduced due to a common small parameter, therefore, its detection through
direct production mechanisms becomes highly unfeasible. On the contrary, in decays, the
suppression is common to all partial decay widths, therefore, the small parameter does not
produce any effect on the branching ratios. All that constitutes a great incentive to look for
light bosons produced in decays of the SM-like Higgs boson. This thesis embarks on that
search using the decays of light bosons into pairs of leptons, specifically those involving taus
and muons.

The thesis is structured as follows. The next chapter is dedicated to reviewing the most
fundamental theoretical aspects concerning the field of particle physics. The third chapter is
devoted to the physics related to the Higgs sector. Aspects of the scalar sector are discussed
both within the SM framework and beyond. In turn, the introduction of the new theories
serves to explain in more detail the motivations for this work. The fourth chapter is intended
to present the experimental setup where this work is carried out, i.e., the CMS experiment at
the LHC. The fifth chapter introduces the physics analysis and describes the first approach
adopted in the search. A review of some statistics topics indispensable for data analysis and
processing is also included. The sixth chapter addresses an alternative approach designed to
increase the effectiveness of the search over a wider range of light boson masses. Also in this
chapter, interpretations of the experimental results in the context of a specific theoretical
model are provided. The last chapter is dedicated to summarizing the work presented in this
thesis, as well as discussing the perspectives for the future.
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2.3.2 Path Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 The Gauged Interactions . . . . . . . . . . . . . . . . . . . . . . . . 30
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The almost contemporaneous emergence of the SR and QM, two of the greatest physics
innovations of the last century, challenged our real knowledge of the universe. On the one
hand, SR allowed us to describe phenomena that manifest themselves at very high speeds
such as length contraction, time dilation, universal speed limit, relativity of simultaneity and
mass-energy equivalence. On the other hand, QM proposed a completely new understand-
ing of processes at very small scales, providing us with impressive predictions in subatomic
structures. New concepts like quantization, wave-particle duality and uncertainty principle
appeared to drastically change the way we used to understand the microscopic world.

Physicists did not take long to confront simultaneously both theories, and by doing so,
new phenomena that could not be explained by the physics at that time arose. Einstein
had taught us that mass and energy are concepts of identical nature, whereas Heisenberg’s
uncertainty principle [13] implied that the energy of a system can widely fluctuate over a
small interval of time. So, a substantial variation of the energy in a system could lead to the
appearance of new matter, and any naive attempt to construct a relativistic theory of the one-
particle Schrödinger equation [14] would fail. Several associated problems were found [15]
when Klein-Gordon and Dirac tried to promote the non-relativistic Schrödinger theory to
a relativistic one. The mere fact of giving a relativistic treatment to quantum mechanics
unequivocally led to a multi-particle relativistic quantum theory; this formalism was called
Quantum Field Theory (QFT).

This chapter is devoted to QFT, offering a glimpse into the most elementary aspects
that make this formalism the fundamental basis of modern particle physics. From the SM
of particle physics to most of the physics beyond the SM, all of them rely on QFT; so once
the fundamentals of QFT are known, one can build any particular theory. Being the small
theoretical review presented in this chapter a very well-known physics, it is worth emphasizing
that most of the elements here treated are part of the content of several textbooks [15–20].
Those books constitute the main bibliography utilized for this chapter, other more topic-
specific references will be included along the different sections.

2.1 Classical Field Theory

As the development of theoretical physics progressed, scientists realized that mathematical
models of reality, such as Maxwell’s theory of electromagnetism, could be compactified within
the same framework through a variational principle. Later, this was also implemented in the
special and general theories of relativity [21]. This mathematical construction was not only
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2.1. Classical Field Theory

useful in deriving the equations of motion, but also an important instrument for identifying
symmetries of the theory and, therefore, knowing the conserved physical quantities.

2.1.1 Lagrangian Field Theory

In the classical field theory, each point in space-time is associated with a continuous
physical quantity denoted as φ(xµ) (the real scalar field is chosen for simplicity). As it is
commonly used, xµ has been taken to denote the space-time four-vector. Any classical field
theory tends to be expressed mathematically by using a Lagrangian density that is subjected
to an action principle [16]

S =
∫
d4xL(φ(xµ), ∂µφ(xµ)). (2.1)

Now the principle of least action can be applied to obtain the equation of motion for the
field φ(xµ); the general form of this equation is the so-called Euler-Lagrange equation of the
calculus of variations, whose solutions make stationary the action S in an arbitrarily small
neighborhood of φ(xµ). Another important quantity, essential for the canonical quantization
formalism, is the canonically conjugate field defined as

π(xµ) = ∂L
∂φ̇(xµ)

. (2.2)

Taking the equal time Poisson bracket of the field φ(xµ) and its conjugate field π(xµ) yields
[17]

{φ(x, t), π(x′, t)}PB = δ3(x− x′),
(2.3)

{φ(x, t), φ(x′, t)}PB = {π(x, t), π(x′, t)}PB = 0,

where x indicates a spacial vector and {·, ·}PB refers to the classical Poisson bracket. The
Eq. (2.3) is analogous to the relation between xi and pi in classical mechanics, the one that
was then transformed into a commutation relation of two operators and gave birth to the
QM. Thus, it is not unreasonable to think that the same approach could be applied to the
field and its conjugate; and indeed, this procedure is known as canonical quantization and
will be treated later (see Subsec. 2.3.1).

2.1.2 Conservation Laws

As already mentioned, the Lagrangian density also allows knowing the different transfor-
mations that leave invariant the action. A mathematician named Emmy Noether came up
with one of the most elegant theorems of field theory; this directly links the symmetries found
in a Lagrangian density with the conservation laws that obey the system described by this
Lagrangian [22]. Mathematically, the theorem is based on assuming infinitesimal changes in
coordinates δxµ = x′µ−xµ and an infinitesimal variation in the field δφ(xµ) = φ′(x′µ)−φ(xµ).
The total variation of the Lagrange density is required to be equal to zero under these trans-
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Chapter 2. Elements of Theory

formations, then

∂fµ
∂xµ

= 0,

(2.4)

fµ = ∂L
∂(∂µφ)δφ− ( ∂L

∂(∂µφ)
∂φ

∂xν
− gµνL)δxν ,

where ∂µ ≡ ∂
∂xµ

and gµν is the metric tensor. The first equation is easy to associate with the
differential form of the continuity equation in electrodynamics. Just as in electrodynamics this
relation implies the conservation of the electric charge, in this case, it implies the conservation
of a quantity whose current density is given by fµ. Noether’s theorem then reveals itself: Each
continuous symmetry transformation leads to a conservation law. Some important particular
cases are highlighted below.

Translational invariance: Only translations in space-time x′µ = xµ + εµ are assumed.
In this case, being φ(xµ) a scalar, the variation of this is expected to vanish. Then Eq. (2.4)
takes the form ∂µTµνεν = 0. The magnitude Tµν is called the canonical energy-momentum
tensor and, since each εν represents an independent translation, there are four conserved
quantities (ν = 0, . . . , 3). These four quantities are the components of the energy-momentum
four-vector and correspond to the energy and momentum conservation law.

Lorentz (Rotational) invariance: Apart from pure translations, rotations also form an
important class of transformations in space-time. The most general form of these rotations in
Minkowski space involves mixtures between spatial and temporal coordinates. In differential
form, the transformation is expressed as: x′µ = xµ+δωµνxν , where ω is antisymmetric. Now,
when applying Eq. (2.4), the resulting expression reads ∂µMµνλδω

νλ = 0, where the tensor
Mµνλ, antisymmetric on indices νλ, plays the role of tensor of angular momentum. Due
to the fact that this tensor is antisymmetric, it contains six independent components, thus
implying six conserved quantities. Those are the three components of the orbital angular
momentum and three more components of the spin angular momentum.

Internal transformation invariance: Another type of symmetry transformation com-
pletely different from the previous two is the so-called internal symmetry transformation.
These symmetry transformations account for additional degrees of freedoms that the fields
possess; that could be the case of field components that transform into each other under
this type of transformations. A possible differential form for a field variation given such
a transformation (space-time translations or rotations are now ignored δxµ = 0) could be
δφa = iε

∑
b λabφb. Then, when plugging in this expression in Eq. (2.4), a constant of the

motion called Noether charge shows up. Some examples of Noether charges very often used
in particle physics are the electric charge, hypercharge, color charge, and isospin.

It is evident the important role that symmetries play in explaining the origin of the conser-
vation laws. The significance of symmetries in modern physics is enormous, and specifically
in QFT, symmetries become the backbone of its mathematical construction. That is why the
next section is especially dedicated to group theory, a crucial element in the formulation of
any theoretical model in particle physics.
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2.2 Review of Group Theory in QFT

Although group theory is a discipline of mathematics [23–28], it is a subject that concerns
any who is involved in the study of fundamental physics. Group theory is the mathematics
underlying the concept of symmetry, and as seen before, symmetry can provide information
about the constants of motion of a system. The notion of symmetry already appears in
classical physics with concepts like the principle of equivalence of inertial frames or the gauge
invariance of Maxwell’s equations, but it is in QM when this becomes even more important.
In QM, concepts like indistinguishability of identical particles or degeneracy of states are
profoundly related to the group structure embedded in a given physical system. Moreover,
the idea of fundamental constituents of matter is reflected in the indivisibility character and
classification power that irreducible representations provide to the group theory. The purpose
of this section is to go over the main ingredients of group theory, focusing particularly on Lie
groups, which have extensively been used in particle physics. The content of this section is
mainly based on the two references [25,28], although other references were also consulted for
specific topics.

Generally, a group is a non-empty set G equipped with one binary operation (represented
by ◦) that satisfies the following axioms:

1. Closure: If a ∈ G and b ∈ G, then a ◦ b ∈ G

2. Associativity: a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ G

3. There is an element e ∈ G called the identity such that a ◦ e = e ◦ a = a for any a ∈ G

4. For each a ∈ G, there is an element d ∈ G called the inverse of a such that a◦d = e = d◦a

Additionally, a group is said to be abelian if its operation is commutative: a ◦ b = b ◦ a for
all a, b ∈ G, and a group for which this is not true is said to be non-abelian. Groups can be
classified according to whether they are finite or infinite, discrete or continuous. An example
of a finite discrete group is the permutation symmetric group Sn, while the so-called “additive
group of integers” is part of the infinite discrete groups [24]. However, a continuous group is
necessarily infinite, since any infinitesimal change in the label (parameter) of the group would
give rise to a new group element. Among the continuous groups are the Lie groups, which are
the main subject of this section. In not strictly rigorous terms, one could say that a Lie group
is a continuous group whose elements are described by one or more real parameters. Lie groups
play an important role in subjects like infinite-dimensional representation theory, algebraic
topology, and Riemannian geometry [25]; and in physics, they have become a fundamental
tool to construct modern quantum field theories.

2.2.1 Group Representations

Since the definition of a group is quite abstract, it is natural to wonder how this concept is
handled algebraically. Part of the answer is contained in the concept of group representation.
A representation of a group provides a realization of the group action by means of the group
of transformations of a certain mathematical structure. More formally, one can say that a
group representation is a group homomorphism from the group to the group of invertible
linear maps on a vector space [28], such that the map π(g), where g ∈ G, satisfies the relation
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π(g1)π(g2) = π(g1 ◦ g2) for all g1, g2 ∈ G. If in addition, the map is isomorphic, that is,
one-to-one, then the representation is said to be faithful; otherwise, it is unfaithful.

It is easy to see now that the notion of representing group elements by matrices is intuitive,
due to the fact that these encode linear maps. The standard action of matrices on vectors in
a given vector space becomes a natural way to represent the group action. For example, when
thinking of rotation in the 3-dimensional space (3D rotation group, often denoted SO(3)),
one typically has in mind a 3×3 matrix. In this case, the 3×3 matrix is orthogonal since
a rotation is a distance-preserving transformation. When this case is generalized to any
dimension n, then such rotations are covered by the group of n × n orthogonal matrices of
determinant 1, the so-called special orthogonal group, denoted as SO(n).

In principle one can construct many different representations of a group, however, it is
important to focus on some specific type of representations that really capture the essence of
the group’s action. The next example shows how one can construct different representations
of the same group. The example makes use of the symmetric group S2, which can be viewed
as a group composed of two operations on two different objects: the first one swaps the objects
(non-identity element) and the second one leaves them as they are (identity element). Calling
the first group element S and the second E, a 1-dimensional representation of this group can
be easily constructed by assigning ρ(S) = −1 and ρ(E) = 1, where ρ(·) denotes a specific
representation of the element ·, and the group operation is the real number multiplication.
A 2-dimensional representation can be constructed as well if the elements ρ′(S) = ( 0 1

1 0 ) and
ρ′(E) = ( 1 0

0 1 ) are used under the matrix multiplication operation. As seen in this example,
many different representations of the same group can be built, and sometimes even an infinite
number of them. Coming back to the previous example, one can take two n × n matrices
being In (identity) the first one and −In the second one. Under matrix multiplication, these
two matrices will furnish an n-dimensional representation of the S2 group. So, by varying
the dimension n, an infinity of representations could be obtained. However, it will be seen
that this mere fact is not the real question that representation theory needs to answer.

2.2.1.1 Equivalent Representations

It is well known from linear algebra that two matrices related by a similarity transforma-
tion represent the same linear operator under two possibly different bases. It is easy to show
that a representation of a group element ρ(g) could be converted into another representation
by means of a similarity transformation. Let the matrix S be invertible, and

ρ′(g) = S−1ρ(g)S, (2.5)

then it can be proven through the group composition law that, in fact, ρ′(g) is also a rep-
resentation ρ′(g1)ρ′(g2) = ρ′(g1 ◦ g2). It can be thought of ρ(g) and ρ(g′) as being the same
representation with different choices of basis. In such a case, the representations ρ(g) and
ρ(g′) are said to be equivalent.

2.2.1.2 Irreducible Representations

Now, coming back again to the example of the S2 group. It was seen that a n-dimensional
representation of this group can be generated by constructing two block-diagonal matrices,
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namely ρn(S) = ρ(S)⊕ . . .⊕ ρ(S)︸ ︷︷ ︸
n

and ρn(E) = ρ(E)⊕ . . .⊕ ρ(E)︸ ︷︷ ︸
n

. But this does not reveal

anything new about the group structure, the same result could be simply obtained using
the building block representation ρ(·). The representation ρn(·) is known as reducible, and
it is usually expressed as a direct sum of the representations it reduces into. Since the 1-
dimensional representation ρ(·) can not be decomposed into smaller ones, it is clearly called
irreducible. The main task of representation theory is to determine whether a given represen-
tation is irreducible or not, and to enumerate all possible irreducible representations (irreps)
of a group.

One interesting fact that should not be overlooked is the role conferred to irreps in physics.
Introducing the term “irreducibility” in physics leads instantly to think of the concept of fun-
damental constituents. Both concepts were a matter of discussion within the physics com-
munity during the twentieth century; their unquestionable connection began to give mathe-
matical structure to the way the microworld behaved. The work of many decades trying to
make the math fit eventually gave rise to the emergence of fundamental particle physics.

2.2.1.3 Unitary Representations

Other interesting classes of representations on complex vector spaces are the unitary group
representations, which preserve the notion of length given by some inner product. These are
representations characterized by the group of complex matrices U that satisfy

UU † = U †U = I, (2.6)

where I is the identity matrix. This group of representations is particularly important for
QM, where they are extensively used.

2.2.1.4 Two Important Theorems

There are two theorems in representation theory that, because of their relevance, are
impossible to ignore.

Schur’s lemma: The first one is the so-called Schur’s lemma [28], which provides a
criterion that must be satisfied for a representation to be irreducible. It was developed within
the framework of the representation theory of finite groups, but it admits generalizations
to Lie groups and Lie algebras. The lemma states the following: If ρ(g) is an irreducible
representation of a finite group G and if there is some matrix A such that Aρ(g) = ρ(g)A for
all g, then A = λI for some constant λ. Schur’s lemma is very important in representation
theory to prove other theorems and to characterize irreps, but physics also benefits from it.
As mentioned before, physicists in the twentieth century where trying to find “good labels”
for what they called fundamental particles, and they found that properties like mass and spin
could represent a set of physical states1. As it is easy to realize, these “good labels” would
be related to identity operators multiplied by some constant (see later in Subsec. 2.2.2.3:
Casimir operators), and according to Schur’s lemma, the only requirement that should be
imposed for this to be so is that the states (particles) transform under some irreps of the

1This can be exemplified by the well-known equation for spin states S2 |s,ms〉 = s(s + 1) |s,ms〉, where s
labels all the states |s,ms〉, independently of the value of ms.
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group. In this way, fundamental particles can be directly associated with the irreps of the
symmetry groups present in the theory describing them.

Great orthogonality theorem: This is one of the theorems that can be proved with
the help of Schur’s lemma [29]. Let ρ(α)(g)nm be a matrix element of an irreducible unitary
matrix representation ρ(α)(·) of a finite group G with Ng elements, then

Ng∑
g∈G

ρ(α)(g)†nm ρ(β)(g)n′m′ = δαβδnn′δmm′
Ng

dα
, (2.7)

where α and β denote two possible different representations with dimensions dα and dβ, and
the sum is over all elements of G. Among other interesting aspects, this theorem allows
proving that the number of irreducible representations of a finite group is also finite. The
above constitutes a powerful tool for representation theory, whose main task is to find all of
those representations.

2.2.2 From Lie Group to Lie Algebra

In this subsection, the topic of Lie groups will be particularly addressed, due to its invalu-
able contribution to the particle physics field. Understanding the nature of groups such as
SU(2) and SU(3) was crucial in the identification of the elementary constituents. In partic-
ular, the irreducible representations of SU(3) led to the notion of quarks, whereas the SU(2)
group, at that moment, had already played its important role in describing the spin theory.
Furthermore, the group of symmetries of the space-time was accommodated in the Poincaré
group, also a Lie group, whose contribution is not only for particle physics, but also for special
relativity, classical electrodynamics, and several other branches of physics. Moreover, with
the development of the gauge theories, the Lie groups showed its great potential to describe
interactions among particles, and this resulted in a very important class of mathematical
formulations called Yang-Mills theories [30].

2.2.2.1 Exponential Mapping

As mentioned before, a Lie group is a continuous group, i.e. in which all elements g ∈ G
depend on a continuous set of parameters

g = g(α), α = {αa}, a = 1, . . . , N. (2.8)

The identity element e is commonly set such that e = g(α)|α=0, with the objective to make
any representation of ρ(α)|α=0 equal to the corresponding identity matrix I. Any group
element can then be expanded in Taylor series around the identity

ρ(δα) = I + iXaδαa + . . . , Xa ≡ −i
∂

∂αa
ρ(α)|α=0, (2.9)

where Einstein’s summation rule of repeated indices is being considered. The differential δα
denotes an infinitesimal change in the {αa} parameters, and the {Xa} are known as group
generators. Note that the factor i is included in order for the group representation to fulfill
the unitarity condition (2.6), which results in a hermiticity requirement for the generators
X†a = Xa. Now comes Lie’s profound idea: any finite change in the parameter αa can be
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treated as an infinite number of infinitesimal changes δαa. The above, equipped with the
group multiplication law, leads to the equality

ρ(α) = lim
k→∞

(
I + i

αaXa

k

)k
= exp(iαaXa). (2.10)

This is called the exponential map, and it is a crucial mechanism for passing information
between the Lie group and the Lie algebra.

2.2.2.2 Lie Algebra

Now, one can make use of the group multiplication law and the exponential map to get an
important characteristic of Lie groups. The elements of the group can be parametrized by as-
signing different sets of parameters to each of them; for instance, the parameters {βb} with b =
1, . . . , N serve to represent another group element ρ(β) distinct from ρ(α). The composition
of two elements ρ(α) and ρ(β) must result in another group element, which is parametrized
by parameters {γc} with c = 1, . . . , N , namely exp(iαaXa) exp(iβbXb) = exp(iγcXc). Now,
with the help of the properties of continuity and differentiability of the group elements, the
above expression can be expanded up to quadratic order

iγcXc = ln[1 + (exp(iαaXa) exp(iβbXb)− 1)]

= iαaXa + iβbXb −
1
2[αaXa, βbXb] + . . . ,

(2.11)

where [·, ·] is the commutator. Since the generators are linear operators, the linear terms can
be grouped together on one side, leading to the relation [αaXa, βbXb] = iεcXc. Taking into
account that the relation must hold for any choice of parameters, it is concluded that

[Xa, Xb] = ifabcXc. (2.12)

For unitary group representations (Subsec. 2.2.1.3), the factors fabc have to be real numbers
and, by construction, they are antisymmetric with respect to the indices a and b. The group
generators also satisfy the Jacobi identity

[Xa, [Xb, Xc]] + [Xb, [Xc, Xa]] + [Xc, [Xa, Xb]] = 0. (2.13)

The expression (2.12) is known as Lie algebra, and the numbers fabc are called structure
constants of the group. The structure constants determine the Lie algebra, which essentially
determines the Lie group. The structure of the infinite group has been reduced to a set of
finite number of generators obeying certain relation, therefore, it is only necessary to focus
on the algebra of the Lie group and not in its entire composition. This is the most important
characteristic of the Lie groups, and what makes them so well manipulable in algebraic terms.

2.2.2.3 Lie Group and Lie Algebra Representations

Due to this direct interrelation between the Lie group and the Lie algebra, a connexion be-
tween their representations is also expected. In fact, it turns out that every finite-dimensional
representation of a Lie group induces a representation of the corresponding Lie algebra. For
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instance, the existence of a unitary representation of the group will intermediately induce a
hermitian representation of the algebra.

Aside from the trivial representation, there are a couple of important representations
worth mentioning. One of those is the representation resulting from interpreting the ele-
ments of the group as operators acting by matrix multiplication on a vector space; this is
known as the fundamental or standard representation, sometimes used to refer to a smallest-
dimensional faithful representation. For instance, when dealing with SO(3), the fundamental
representation is known as the vector representation since the elements of the group act on
the vectors of the <3 vector space.

Another no less important representation is the adjoint representation, which is defined
by means of the structure constants. First, the N ×N matrices [Ta]bc ≡ −ifabc are defined,
being N the number of parameters (αa) required to specify a group element. It can be proven
with the help of the Jacobi identity (Eq. (2.13)) that the structure constants satisfy certain
relation, which can be rewritten in terms of the Ta matrices as

[Ta, Tb] = ifabcTc. (2.14)

So, in general, the structure constants furnish a representation, known as the adjoint, whose
dimension is given by the number of generators. The generator themselves can be chosen to
form a vector space on which can be acted via the adjoint representation. The action of the
algebra can be more formally defined as

adXa(Xb) = [Xa, Xb], (2.15)

where Xa and Xb are both elements of the Lie algebra, and the notation ad(·) is often
used to denote the Lie algebra representation. This action induces an action of the group
elements on the vector space, which is derived by making use of the Baker-Campbell-Hausdorff
formula [28], and it reads

Adg(Xa) = gXag
−1, (2.16)

with g ∈ G and Ad(·) denoting the adjoint representation of the group. A direct application
of the two representation mentioned above will be seen when discussing the topic of gauge
theories (Sec. 2.4) in particle physics.

An important characteristic of the so-called semi-simple Lie algebras is the existence
of Casimir invariants. Semi-simple Lie algebra refers to a direct sum of simple Lie algebras
(non-abelian Lie algebras whose only ideals are 0 and the algebra itself, see rigorous definition
in [28]). For those algebras, the second-order Casimir operator is defined as C = habTaTb,
with Ta being some matrix representation of this algebra and hab = (hab)−1 = (−facdfbdc)−1.
This Casimir operator happens to commute with all the generators

[C, Ta] = 0. (2.17)

Since this is true for all the representations, the use of Schur’s lemma allows concluding that
the Casimir operator is proportional to the identity C = C(r) I. A given algebra might have
more than one Casimir operator, and the number of these is related to the rank of the Lie
algebra, which is simply the number of simultaneously diagonalizable generators. A theorem
states that the number of independent Casimir operators is equal to the rank of the Lie
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algebra. The Casimir operators can increase in order, depending on how many generators
are being multiplied to construct them. In particular, the universal enveloping algebra [31]
provides a nice definition of generalized Casimir invariants, and treats them as homogeneous
polynomials Ck = di1...ikTi1 · · · Tik , with di1...ik symmetric invariant tensors of the adjoint
representation. Each of these generalized operators must commute with all the generators
[Ck, Ta] = 0. There are some publications describing how to construct generalized Casimir
invariants like [32].

The proportionality constant C(r) is associated with a given representation, so its value
is a distinctive feature of such a representation. Due to this fact, the Casimir operators are
said to characterize the irreducible representations of the group. This, together with the
discussion in Subsec. 2.2.1.4, helps to clarify why the Casimir operators are the fundamental
tool for classifying physical states when the system obeys certain symmetries transformations.

2.2.2.4 Tensor Product Representations

Generating high dimension representation using tensor products of smaller ones is very
useful in QM since it is very common having to deal with multiparticle physical states that
are composed of identical constituents. The addition of angular momentum is a very well
known case where this method can be applied. Some of the properties of tensors offer a very
practical way of generating new representations of a Lie group out of composing, for instance,
fundamental representations, which are generally quite known and studied.

Let ρ1(·) and ρ2(·) be two representations of a Lie group g; the tensor product represen-
tation of these is defined as

(ρ1 ⊗ ρ2)(g) = ρ1(g)⊗ ρ2(g), (2.18)

where the new representation acts on the vector space formed by the tensorial product of
the two subspaces. Let T1(·) and T2(·) be the representations of the Lie algebra X, then it is
straightforward to check using the exponential map that

(T1 ⊗ T2)(X) = T1(X)⊗ I + I⊗ T2(X), (2.19)

being I the identity operator. This shows that, while the tensor product rule for elements
of the group is multiplicative, for the elements of the algebra is additive; this has direct
implications in QM. One is that most of the physical observables that correspond to generators
in the Lie algebra are additive, and that is the case of the four-momentum and the angular
momentum, just to mention a few. In contrast, other operators that are elements of the
symmetry group, such as parity, are multiplicative quantum numbers.

Before continuing, it is worth recalling what a tensor is. A possible approach in defin-
ing a tensor is based on tensor products of vector spaces [33]. A type (r, s) tensor is de-
fined in this context as an element of the tensor product of vector spaces, which reads
Λrs(V ) = V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸

r times

⊗V ⊗ · · · ⊗ V︸ ︷︷ ︸
s times

, where V denotes a finite-dimensional vector space,

and V ∗ denotes its dual space. A representation of g on V ∗ is required to be specified,
the so-called dual representation, which in terms of matrix representation is just the inverse
transpose of the matrices representing g on the original vector space. Putting it all together
produces the general tensor product representation, which is just an active version of the
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tensor transformation law

[ρrs(g)Λ]m1...ms
n1...nr = [ρ−1(g)]k1

n1 · · · [ρ
−1(g)]krnr [ρ(g)]m1

l1
· · · [ρ(g)]msls Λl1...lsk1...kr

. (2.20)

It is important to be aware that even the tensor product of two irreducible representations
of a Lie group is usually not irreducible, so less will be the one given by the composition of
multiple irreps. Therefore, one often finds the problem of trying to decompose this tensorial
products into irreducible pieces. Fortunately, for semi-simple groups, the tensor product
representation ρ1(g)⊗ ρ2(g) is decomposable

ρ1(g)⊗ ρ2(g) = %1(g)⊕ · · · ⊕ %k(g), (2.21)

where the %i(g) are irreducible representations of g. There exist a couple of very famous
methods for decomposing tensorial products, such as the Young tableaux for SU(n), and
the Clebsch-Gordan decomposition, mainly used in SU(2) [34]. The Clebsch-Gordan decom-
position for the particular cases of SU(2) and SU(3) groups will be seen in more detail in
Subsecs. 2.2.3.1 and 2.2.3.2 respectively.

2.2.3 Lie Groups in Particle Physics

Modern particle physics is based primarily on gauge theories of Lie groups, but some
groups stand out for their particular importance; without these, none of the most currently
employed physical theories could even be conceived. The group of space-time transformations
known as the Poincaré group [35] is one of them, and not only does it play an important
role in theories such as the SM, but it also gives rise to the appearance of supersymmetric
theories. The SU(2) group [28] began to play an important role since the discovery of the
spin, and along with the U(1) group, it is also the basis of the electroweak theory. There is
also the group responsible for the “eightfold way”, the SU(3) group, which shapes the theory
of the strong interactions between quarks and gluons. All these groups will be reviewed in
this subsection individually, because of the importance that high energy physics confer on
them.

2.2.3.1 The group SU(2)

The group SU(2) (special unitary group of degree 2), consisting of the 2 × 2 complex
matrices U , such that U †U = UU † = I2 and detU = 1, is a three-parameter Lie group2. Its
algebra is

[Xa, Xb] = iεabcXc, (2.22)

where εabc represents the totally antisymmetric Levi-Civita symbol. The well-known Pauli
matrices (often multiplied by a factor) form the fundamental 2-dimensional representation

T1 = 1
2

0 1

1 0

 , T2 = 1
2

0 −i

i 0

 , T3 = 1
2

1 0

0 −1

 . (2.23)

2The dimension of a SU(n) Lie group is n2 − 1.
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This representation acts on 2-dimensional vectors known as SU(2) doublets (sometimes also
called spinors) ϕ′α = Uαβ ϕ

β, being Uαβ = exp(iγkTk)αβ , and α, β = 1, 2. In order to introduce a
scalar product, it is useful to define the spinor (with subscript) ϕα such that ϕ′αϕ′α = ϕαϕ

α.
Then, ϕα has to transform like ϕ′α = (Uβα )∗ϕβ, but this is just the complex-conjugate trans-
formation law for ϕα, so ϕ∗α tends to be identified with ϕα. For SU(2), it is easy to check that
these two representations (U∗ and U) are related by a similarity transformation, becoming
equivalent representations. However, this is not the case of higher degree SU(n) groups.

The adjoint representation is given by

(T (ad)
i )jk = −ifijk = −iεijk,

(2.24)

T
(ad)
1 =


0 0 0

0 0 i

0 −i 0

 , T
(ad)
2 =


0 0 i

0 0 0

−i 0 0

 , T
(ad)
3 =


0 −i 0

i 0 0

0 0 0

 .

As already seen in Subsec. 2.2.2.3, the Casimir operators serve to label a given irrep. Since
these are proportional to the identity operator, their eigenvalues may be used to label the
irreps of a Lie group. The eigenvalues of the diagonal generators (those simultaneously
diagonalized) can be used to label the basis vectors within a given irrep. In particular, for
SU(2), which is a rank 1 Lie algebra, only one Casimir operator exists. The eigenvalues
of this Casimir operator are denoted as j, and they are going to denominate the irreps.
The eigenvalues of the diagonal generator are denoted as m, so that in the Dirac bra-ket
notation the states can be labeled in the associated vector space basis as |j,m〉. Then, it is
convenient to define instead (see Cartan-Weyl basis [25]) the raising and lowering operators
J± := X1 ± iX2, for which it is not difficult to prove that

J± |j,m〉 =
√
j(j + 1)−m(m± 1) |j,m± 1〉 . (2.25)

In particular, J± |j,±j〉 = 0, implying that the values of m are bounded −j ≤ m ≤ j, and
that they label a (2j + 1)-dimensional representation. For each spin-j representation, the
Casimir operator is then given by C = 1

2
∑
iX

2
i = X3

2 + J2
+
4 + J2

−
4 , and since it is proportional

to the identity, one can take the trace and get the proportionality constant. Finally, the
Casimir operator reads

C(j) = 1
2j(j + 1) I2j+1. (2.26)

Summarizing, the irreps of SU(2) are (2j + 1)-dimensional, with j = 1
2 , 1,

3
2 , 2,

5
2 · ··.

Back to the topic of tensor product representations (Subsec. 2.2.2.4), now focusing on
SU(2), there exists a well-studied method called Clebsch-Gordan decomposition [34] that
allows performing an explicit direct sum decomposition of the tensor product of two irreps.
The general result of such a decomposition is

(2j1 + 1)⊗ (2j2 + 1) =
J=|j1+j2|⊕
J=|j1−j2|

(2J + 1). (2.27)
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For example, when adding two spin-1
2 particles the decomposition reads 2 ⊗ 2 = 3 ⊕ 1,

where “2” is indicating the dimension of the irrep. The previous example is the famous case
where two spin-1

2 states are added, resulting in one singlet and one triplet. The example
also suggests that the tensor product of two fundamental representations of SU(2) gives the
adjoint representation plus the trivial representation. This is a general feature of SU(n); the
tensor product of the fundamental representation and its complex conjugate (both the same
for SU(2)) decomposes into the adjoint representation plus the trivial representation.

2.2.3.2 The group SU(3)

The group SU(3), which corresponds to the set of 3 × 3 complex matrices U , such that
U †U = UU † = I3 and detU = 1, is an eight-parameter Lie group. The best known represen-
tation of this algebra is the one given by the Gell-Mann matrices (Ta, a = 1, . . . , 8), which
furnish the fundamental representation

T1 =


0 1 0

1 0 0

0 0 0

 , T2 =


0 i 0

−i 0 0

0 0 0

 , T3 =


1 0 0

0 −1 0

0 0 0

 , T4 =


0 0 1

0 0 0

1 0 0


(2.28)

T5 =


0 0 i

0 0 0

−i 0 0

 , T6 =


0 0 0

0 0 1

0 1 0

 , T7 =


0 0 0

0 0 −i

0 i 0

 , T8 = 1√
3


1 0 0

0 1 0

0 0 −2

 .

Already for SU(3), one has to distinguish two non-equivalent 3-dimensional representations;
the fundamental one, given by the transformation law ϕ′α = Uαβ ϕ

β, and the conjugate repre-
sentation ϕ′α = U∗βα ϕβ, with α, β = 1, 2, 3. These two transformations are commonly denoted
by 3 and 3̄ respectively. The adjoint representation is generated, as usually, through the
structure constants fabc of the Lie algebra (Eq. (2.12)). The structure constants can be
related to the Gell-Mann matrices via the formula [36]

fabc = 1
4iTr([Ta, Tb]Tc). (2.29)

As it can be noticed in Eq. (2.28), there are two diagonal elements, so there are also two
Casmir operators given by the equations

C2 = δabXaXb, C3 = gabcXaXbXc, (2.30)

where δab denotes the Kronecker delta, and the completely symmetric coefficient is given by
gabc = 1

4Tr({Ta, Tb}Tc). Consequently, the irreps can be labeled by two constants (m,n).
Following the corresponding Cartan-Weyl procedure leads to an expression relating the di-
mension D of the irrep and the two parameters (m,n)

D = 1
2(m+ 1)(n+ 1)(m+ n+ 2). (2.31)
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So, for instance, (1, 0) and (0, 1) label two 3-dimensional representations, namely 3 and 3̄
respectively. The adjoint is represented by (1, 1), clearly a self conjugate representation. The
irreps are identified by the eigenvalues of the two Casimir operators, whose diagonal forms
are

C2(m,n) = m2 +mn+ n2 + 3m+ 3n
3 ID,

(2.32)

C3(m,n) = (m− n)(3 +m+ 2n)(3 + n+ 2m)
18 ID.

To build higher-dimensional representations, irreducible representations are multiplied to-
gether using the tensor approach, as it was already seen. For SU(3), there is also an analytic
form of the Clebsch-Gordan decomposition [37] given by the combination of the two formulas
bellow

(m1, n1)⊗ (m2, n2) =
min(m1,n2)∑

i=0

min(m2,n1)∑
j=0

(m1 − i,m2 − j;n1 − j, n2 − i),

(2.33)

(r, r′; s, s′) = (r + r′, s+ s′)⊕
min(r,r′)∑
k=1

(r + r′ − 2k, s+ s′ + k)⊕
min(s,s′)∑
k=1

(r + r′ + k, s+ s′ − 2k).

From these, the following decomposition can be derived 3⊗ 3̄ = 8⊕ 1. In the case of SU(3),
the appearance of the adjoint (8) in this decomposition has been of great relevance for particle
physics, since, for example, in quantum chromodynamics, gluons are commonly thought of
as carrying both color and anticolor for some physical interpretations. Besides, at the time
of the “particle zoo” era, the 8 irrep was immediately associated with the observed octet of
pseudoscalar mesons, made of bound states of a quark and an antiquark. The Eq. (2.33) also
leads to another highly celebrated result in particle physics 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1; this
was another victory for the quark model, then able to explain the existence of the baryon
octet and decuplet.

2.2.3.3 The Poincaré group

The Poincaré group, known as the group of Minkowski space-time isometries, is a ten-
dimensional non-abelian Lie group. It is formed by two subgroups, the abelian group of
translations and the Lorentz group. The Lorentz group is the group of 4 × 4 matrix trans-
formations Λµν (µ, ν = 0, 1, 2, 3) that leaves the Minkowski metric ηµν = diag(1,−1,−1,−1)
invariant

Λµρ ηµν Λνσ = ηρσ. (2.34)

By applying the rule of multiplication of determinants to Eq. (2.34), the condition det Λ = ±1
is obtained. Expanding now Eq. (2.34) for ρ = 0 and σ = 0, a second condition for the first
diagonal element arises (Λ0

0)2 ≥ 1. As seen in Subsec. 2.2.2.1, to obtain a continuous Lie group
transformation, an expansion around the identity element is required. However, for certain
combinations of det Λ and Λ0

0 (det Λ 6= 1 or Λ0
0 ≤ −1), the Λµν is very far from resembling the

identity. This implies that the complete Lorentz group will not be connected in topological
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terms, therefore, it has to be divided in connected components in order to be able to study
its Lie algebra structure. The four different possibilities are presented in Tab. 2.1. Among
the four components, only the proper orthochronous transformations are a subgroup of the
Lorentz transformations. The other three elements, together with the identity, form a discrete
abelian subgroup3.

Table 2.1: Discrete transformations of the Lorentz group components

Λ0
0 ≥ 1 (orthochronous) Λ0

0 ≤ −1 (non-orthochronous)

det Λ = +1 (proper) I −η

det Λ = −1 (improper) η −I

To build a Poincaré Lie algebra, it is necessary to consider the product of the group of
translations and the proper orthochronous Lorentz transformations L(po), giving, as a result,
the transformation law

x′µ = Λµνxν + aµ. (2.35)

This algebra is going to be fundamentally governed by the Lie algebra of L(po), because of
the abelian nature of the translation group. So, it is then convenient to focus on the L(po)

group.
The L(po) group is generated by ordinary spatial rotations and Lorentz boosts under the

action of Λµν , and is usually denoted by SO+(3, 1). As the name indicates, this is a subgroup of
the special orthogonal group acting on a space with metric η and, therefore, is a 6 dimensional
Lie group. Let the following group, denominated SL(2,C), be

SL(2,C) :=


a b

c d

 | a, b, c, d ∈ C, ad− bc = 1

 , (2.36)

where L refers to linear transformations in a two-dimensional complex space, and S stands
for special (determinant equal to 1). It can be shown that, introducing the matrix X = σµx

µ

(σµ is the four-vector formed by the Pauli matrices in Eq. (2.23) and the identity matrix)
and applying the transformation X ′ = AXA†, where A is an element of the SL(2,C) group,
the Lorentz transformation condition x′2 = detX ′ = detX = x2 is recovered. The result
indicates that there exist a connection between the elements of SL(2,C) and SO+(3, 1). In
particular, it can be noticed that A and −A define the same transformation X ′ −→ X, thus
it is said that SL(2,C) double covers SO+(3, 1). To recover the natural exponential form of
Lie groups, the elements A are written as A = exp(B), transferring the condition detA = 1
into the requirement TrB = 0. The Lie algebra of SL(2,C) ∼= SO+(3, 1) results in

[Xa, Xb] = iεabcXc, [Ya, Yb] = −iεabcXc, [Xa, Yb] = iεabcYc, (2.37)

where a, b, c = 1, 2, 3. The 6 generators Xa and Ya form the basis of the Lie algebra, but it is
common to differentiate them in SO+(3, 1) to indicate that the first ones generate standard

3Not only the continuous Poincaré symmetries are relevant for particle physics, also the discrete symmetries
play an important role, being the most prominent ones, parity, time reversal, and charge conjugation [17].
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space rotations and the second ones generate Lorentz boosts. Nevertheless, one can define
the generators X±a := 1

2(Xa ± iYa), and Eq. (2.37) becomes

[X+
a , X

+
b ] = iεabcX

+
c , [X−a , X−b ] = iεabcX

−
c , [X+

a , X
−
b ] = 0. (2.38)

The above equation makes evident the presence of two independent Lie subalgebras in the
algebra of SL(2,C), and it says a little more; the two subalgebras are identical, each of
them shapes a SU(2) Lie algebra (Subsec. 2.2.3.1). It follows immediately that the irreps of
SL(2,C) can be labeled by the pair (j+, j−), where the j+ can take values completely indepen-
dent from those of j−. The values that each SU(2) component can take are j± = 0, 1

2 , 1 . . .,
and the dimension of the irreps are 2j± + 1. So, the dimension of the irreps of SL(2,C) are
given by (2j+ + 1)(2j− + 1), and they read

(0, 0) (1
2 , 0) (0, 1

2) (1, 0) (0, 1) (1
2 ,

1
2) (3

2 , 0) (0, 3
2) · · · . (2.39)

The 1-dimensional representation (0, 0) is clearly the trivial representation and is commonly
known as Lorentz scalar. The two 2-dimensional representations (1

2 , 0) and (0, 1
2) are called

Weyl spinor representations, and each furnishes a perfectly good representation of the Lorentz
group. The 4-dimensional representation (1

2 ,
1
2) is but the vector representation of the Lorentz

group. In Tab. 2.2, there is a summary of the most relevant cases for modern particle physics
of finite-dimensional irreps of the Lorentz group. It is important to point out that also the
two direct sum representations (1

2 , 0) ⊕ (0, 1
2) and (1, 0) ⊕ (0, 1), which frequently represent

the Dirac spinor and the antisymmetric electromagnetic tensor respectively, are occasionally
more used than their associated irreps.

Table 2.2: Some of the smallest irreps of the SL(2,C) group with their corresponding field

Representation Dimension Field Name

(0, 0) 1 φ scalar

(1
2 , 0) 2 χαL left-handed Weyl spinor

(0, 1
2) 2 χαR right-handed Weyl spinor

(1, 0) 3 +1
2εµνσλF

σλ self-dual antisymmetric 2-tensor

(0, 1) 3 −1
2εµνσλF

σλ anti-self-dual antisymmetric 2-tensor

(1
2 ,

1
2) 4 Aµ vector field

(1
2 , 1) 6 Ψµα

L left-handed Rarita-Schwinger field

(1, 1
2) 6 Ψµα

R right-handed Rarita-Schwinger field

(1, 1) 9 hµν symmetric traceless 2-index tensor

It is of relevance for physics to know the consequences of restricting the whole group to
a subgroup, for instance, the rotation subgroup. The generators of rotations (in this case
associated to Xa) are related to the X±a via the formula Xa = X+

a +X−a , but this is essentially
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the addition of two Lie algebras, represented in Eq. (2.19), which induces a multiplication
(tensor product) of the elements of the group. Thus, it means that one just needs to build the
tensor product of two irreps j+ and j− and decompose it into irreps through Eq. (2.27). Now,
for instance, the SL(2,C) irrep (1

2 , 0) decomposes under restriction to the rotation subgroup
into 2 → 2, while the vector representation does it into 4 → 3 ⊕ 1. That is the reason
why, in particle physics, spin-1

2 particles are represented by spinors, and spin-1 particles are
represented by 4-vectors.

Going back to the Poincaré group; a large part of its Lie algebra has already been covered
with the L(po) group, the remaining task is to incorporate the translation generators. In order
to be able to write down a covariant form of the Lie algebra, it is convenient to define the
antisymmetric tensor Mµν , with components Mab = −εabcXc and M0b = Y b. Denoting the
four remaining translation generators by Pµ, the Poincaré Lie algebra reads

[Mµν ,Mρσ] = −i(ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ),
[P ρ,Mµν ] = i(ηρµP ν − ηρνPµ), (2.40)

[Pµ, P ν ] = 0.

The task is now to construct the Casimir invariants so that the one-particle states can be
labeled. Unfortunately, when one turns to the full Poincaré group, the two Casimir operators
(one for each SU(2) algebra) of L(po) do not commute with Pµ, so they are not Casimirs
of the Poincaré group. In turn, the so-called Pauli-Lubanski pseudo-vector can be defined,
given by Wµ = 1

2εµνρσM
νρP σ. The two (pseudo-)vectors Pµ and Wµ, upon contraction with

themselves, will form the two possible Casimir invariants and, therefore, are going to label
the irreps

C2 = PµP
µ, C4 = WµW

µ. (2.41)

Additionally, there happens to be another difficulty, which is a feature of groups (like SL(2,C))
whose finite-dimensional representations might not be unitary. In fact, it is not difficult to
prove that an element of the group SL(2,C) can be written as the product of a unitary
matrix times a hermitian matrix, thus no finite-dimensional unitary irrep exists apart from
the trivial one. However, QM demands building unitary representations to preserve norms
and maintain the probabilistic interpretation. It is also common in QM to associate the gen-
erators Pµ with the energy-momentum operators and the generators Mµν with the angular
momentum generator, which leads to an inevitable hermitian representation of these physical
quantities. It was Wigner [38] the one who proposed a way to cope with this inconvenience,
the method of induced representations. In general, one has to appeal to the theory of projec-
tive representations [39] (a collection of operators that are only defined up to multiplication
by a constant) to be able to construct unitary representations of a certain symmetry group.

The eigenvalues of the two Casimir operators in Eq. (2.41) label the irreps of the Poincaré
group. The approach employed by Wigner considers a subspace of the full Hilbert space on
which PµPµ have a fix value m2 that can a priori be any real number; but only the values
m2 ≥ 0 are physically meaningful. The possible eigenvalues of WµW

µ can be obtained using
the Wigner trick. From Eq. (2.40), it is obvious that all the translation generators commute
with each other, so it is convenient to express physical states in terms of eigenvectors of the
translation generators. Secondly, the label σ is introduced to denote all other degrees of
freedom. Then, a general state having the same eigenvalue pµ of Pµ with different σ labels
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is represented by |p, σ〉. A general unitary representation of the Poincaré group U(Λ, a) can
be written in infinitesimal (Λµν ≈ δµν − ωµν , aµ ≈ εµ) form as

U(I − ω, ε) ≈ 1 + i

2ωµνM
µν − iεµPµ, (2.42)

where Pµ and Mµν represent now Hermitian operators. With the help of the composition
rule U(Λ̄, ā)U(Λ, a) = U(Λ̄Λ, Λ̄a+ ā), it can be proven that the operator Pµ transforms under
U(Λ, a) via

U(Λ, a)PµU−1(Λ, a) = ΛµνP ν . (2.43)

Taking into account the operator equation Pµ |p, σ〉 = pµ |p, σ〉, a pure translation can be eas-
ily identified with the unitary operation U(I, a) |p, σ〉 = exp(−iaµPµ) |p, σ〉. Given that the
action of U(I, a) on the states is already known, obtaining a complete Poincaré transformation
only requires to find out how a pure Lorentz transformation acts on |p, σ〉. Immediately af-
ter applying PµU(Λ, 0) |p, σ〉 and using the transformation properties of the four-momentum
operator (Eq. (2.43)) is found that U(Λ, 0) |p, σ〉 is the eigenstate of Pµ with eigenvalue
(Λp)µ ≡ Λµνpν . So, U(Λ, 0) |p, σ〉 can be written as a general superposition of such states

U(Λ, 0) |p, σ〉 =
∑
σ′

Cσσ′ |Λp, σ′〉 . (2.44)

The next step is to obtain the coefficients Cσσ′ in a block diagonal basis so that they can
be associated with the irreps of some symmetry group. In order to do that, the standard
four-momentum kµ and a standard proper ortochronous Lorentz transformation (Lp)µν are
defined, in such a way that pµ = (Lp)µνkν . If U(Lp) is the unitary representation of the above
Lorentz transformation, the states can be represented as |p, σ〉 = NpU(Lp) |k, σ〉, where Np

is some normalization constant. Later, it can be observed that ΛLp = (LΛp)(L−1
Λp · Λ · Lp),

where the second term is known as a Wigner rotation Wµ
ν := (L−1

Λp · Λ · Lp)µν . The effect of
this rotation on the four-momentum kµ is to leave it invariant

kµ = Wµ
ν k

ν . (2.45)

The Eq. (2.45) defines the so-called little group. Translating this into the action of unitary
operators yields U(Λ, 0) |p, σ〉 = NpU(LΛp, 0)U(W, 0) |k, σ〉, where the group composition law
has been used. SinceWµ

ν are elements of a group, they can be represented by matrices, which
are denoted by D(W ), and the final transformation becomes

U(Λ, 0) |p, σ〉 = Np

NΛp

∑
σ′

Dσσ′(W (Λ, p)) |Λp, σ′〉 . (2.46)

Comparing the above equation with Eq. (2.44) allows realizing that the problem of finding a
block diagonal form of Cσσ′ has been reduced to the one of encountering the irreps Dσσ′ of
the little group. Bellow, two important cases for particle physics are distinguished.

Massive representations: For this case, the standard four-momentum kµ in the parti-
cle’s rest frame kµ = (m, 0, 0, 0) may be taken as reference. This choice is obviously invariant
under spatial rotations generated by the SO(3) group. The irreps for massive particles can
thus be obtained from the irreps of SO(3) ∼= SU(2), which share the same Lie algebra. Then,
it is easy to anticipate that the labels of such states are going to be related to the quantum
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number s = 1
2 , 1,

3
2 · ··. Actually, coming back to the second Casimir operator, it is observed

that in this frame of reference its components are W 0 = 0 and W i = −mXi, being the
spacial components proportional to the SU(2) spin generators. Calculating the eigenvalues
of C4 conduces to the expression −m2s(s + 1), which explicitly shows that the irreps of the
Poincaré group correspond to states differing in mass and spin (m, s).

Massless representations: In this case, it is convenient to choose kµ = (k, 0, 0, k).
This form of the 4-momentum is preserved by the isometries of the Euclidean (x, y) plane,
which include rotations about the z axis and translations along x and y. These form the
group ISO(2). In this frame, the Pauli-Lubanski pseudo-vector components are given by
W 0 = kX3, W 1 = −k(X1 + Y 2), and W 2 = −k(X2 − Y 1), which also generate the ISO(2)
algebra. In this algebra, the generators W 1 and W 2 commute, so they can be simultaneously
diagonalized, and their corresponding eigenvalues used to label the states. However, it can
be proven that if one set of non-zero eigenvalues of W 1 and W 2 is found, then a whole
continuum spectrum is necessarily present. These representations have no physical meaning
since they would describe massless particles with continuous spin, and such a spectrum has
not yet been seen. The only physical case is that in which both eigenvalues are zero and,
therefore, the states are solely labeled by the 4-momentum and the W 0 = kX3 eigenvalues.
Since ~k = (0, 0, k) is the 3-momentum vector, X3 is the component of the angular momentum
in the direction of motion, and its eigenvalues h are called helicity.

2.3 Field Quantization

In this section, some of the most important aspects of field quantization will be briefly
addressed. As seen in Sec. 2.1, any classical field theory can be described in terms of a
Lagrangian density that has one or more fields associated with it, to which their respective
canonically conjugate fields are added. The objective of field quantization is to establish
certain rules of quantization, under which, a consistent theory of quantum fields can be
derived. Historically, two different approaches have been prominent in the task of quantifying
a given field theory: the canonical quantization and the path integral formulation. The two
methods will be discussed in this section, highlighting the importance of each of them, both
for the physical interpretation and for the practical realization.

2.3.1 Canonical Quantization

The quantization process that revisits the standard form of quantization using the com-
mutator (anticommutator) between a field and its conjugate momentum is called canonical
quantization [16, 18]. This procedure attempts to preserve the defining symmetries of the
classical theory to the greatest extent possible. The quantization tends to be rather field-
dependent, that is, each field must be treated differently at the time of quantizing it, accord-
ing to the type of excitation (irreps of the Poincaré group, see Subsec. 2.2.3.3) it contains.
Nevertheless, there is a fairly well-defined pattern, and it has to do with the spin-statistics
theorem [40], which says that fermions and bosons must obey different statistics. This implies
that all the bosonic fields must be quantized in a specific way (using commutators), whereas
all the fermionic fields have to be quantized in another specific way (using anticommutators).
Proceeding in any other manner would lead to rather undesired conceptual problems with
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systems lacking a stable ground state. Moreover, the causality of this theory would be also
facing difficulties, due to the cancellation of commutators outside the light-cone region.

The most important cases of field quantization will be reviewed in the following. Now,
when dealing with identical-multi-particle systems is necessary to define the Fock space, which
is basically the sum of a set of Hilbert spaces F =

⊕
k≥0H

⊗k
n . In this space, the classical

fields are going to be promoted to operator-valued quantum fields, assigning to each point
an operator. A quantum state is an element of the Fock space with a well-defined number of
particles, and the way to act on these states is through the quantum fields.

2.3.1.1 Scalar Field Quantization

The simplest example of a relativistic field theory deals with spin-0 particles described by
the Klein-Gordon Lagrangian density [17]

L = 1
2
(
∂µφ∂

µφ−m2φ2
)
. (2.47)

The real field φ usually corresponds to neutral particles; for charged particles a complex
field is normally used. The canonically conjugate momentum of the field φ(x) is given by
π(x) = φ̇(x). A general solution of the Klein-Gordon field can be expressed in terms of a
Fourier transform

φ(x) =
∫

d3p√
2Ep(2π)3

[
α(p)e−ipx + α∗(p)eipx

]
, (2.48)

where the relation Ep = +
√

p2 +m2 holds. Later, canonical quantization proceeds by re-
placing the coefficients α(p) and α∗(p) with operators α̂(p) and α̂†(p) acting on the Fock
space, which converts the classical field into a function of these operators. Then, the Poisson
brackets {·, ·}PB in Eq. (2.3) are replaced by commutators (this is a bosonic field) [·, ·]. The
above requirements result in commutator relations between the operators α̂(p) and α̂†(p)

[α̂(p), α̂†(p′)] = δ3(p− p′),
(2.49)

[α̂(p), α̂(p′)] = [α̂†(p), α̂†(p′)] = 0.

The Eq. (2.49) contains the typical canonical commutation relations of bosonic particles,
therefore, the operators α̂(p) and α̂†(p) are identified as a set of annihilation-creation oper-
ators creating states with well defined momentum p out of the vacuum |0〉. The occupation
numbers are determined with the help of the number operator N̂(p) = α̂†(p)α̂(p), whose
eigenvalues can be any non-negative integer n(p) = 0, 1, 2, . . . , . The important thing to
notice is how this formalism has made the concept of particle appear as a result of the
quantization of a classical field.

In QFT, taking products of operators (fields) is not only mathematically useful, but can
also lead to physical interpretations. For instance, the probability amplitude for a particle to
travel from one point to another follows from the multiplication of two space-time separated
fields. As far as the free scalar field theory is concerned, all relevant information is encoded
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in the time-ordered correlation functions

Gn(x1, . . . , xn) = 〈0| T
[
φ̂(x1) · · · φ̂(xn)

]
|0〉 , (2.50)

where T represents the time-ordered product, i.e. the operators are written in chronological
order with time in such a way that they “operate” in the order in which they occur in
time. Among these correlated functions, the most relevant for free fields are the so-called
propagators (two-point correlation functions), which are essential in perturbation theory. In
the scalar field case, the propagator is

∆(x1 − x2) := 〈0| T
[
φ̂(x1)φ̂(x2)

]
|0〉 =

∫
d4p

(2π)4
ie−ip·(x1−x2)

p2 −m2 + iε
. (2.51)

The term iε has to do with the poles appearing in the integration over p0, which must be
surrounded when performing the contour integral.

Some aspects of the complex scalar field case are worth mentioning. In Subsec. 2.1.2, it has
been pointed out that internal symmetries can also be part of a theory. Most of the internal
symmetries are related to Lie groups (Subsec. 2.2.2), in particular, the U(1) symmetry is
very often encountered in particle physics (electric charge, weak hypercharge, lepton number,
baryon number, etc.). To describe a system of spin-0 particles subject to a U(1) symmetry,
one reasonable way to proceed is to write down a Lagrangian with two identical Klein-Gordon
fields. However, a more effective way would be to introduce complex scalar fields, which also
have two degrees of freedom. The Lagrangian density of the complex scalar field is easily
obtained by replacing in Eq. (2.47) the terms ∂µφ∂µφ → ∂µφ

†∂µφ and φ2 → φφ†, where φ
and φ† must be thought of as independent fields. By imposing the canonical quantization on
these operators, two different sets of commutator relations of type (2.49) are obtained, hence
the resulting operators α̂(p) (α̂†(p)) and β̂(p) (β̂†(p)) should be interpreted as annihilation
(creation) operators of two types of particles.

2.3.1.2 Dirac Field Quantization

Even though the Lorentz (Poincaré) representation theory (Subsec. 2.2.3.3) suggests that
the “standard” irreps for spin-1

2 particles should be the Weyl spinors (see Tab. 2.2), one has
to deal very often with parity conserving theories such as quantum electrodynamics. It is a
known fact that under parity the Weyl spinor irreps are interchanged (1

2 , 0) ↔ (0, 1
2), so it

would be impossible to construct such theories with only one of the Weyl spinors. In that
sense, it is said that parity forces to stack two Weyl spinors together to form a Dirac spinor.

The Lagrangian proposed by Dirac to describe spin-1
2 particles is [16]

L = ψ̄(iγµ∂µ −m)ψ, (2.52)

where γµ are the known 4× 4 Dirac γ-matrices. The canonical conjugate momentum of the
ψ(x) field is π(x) = iψ†(x). A similar expression can be obtained for the Dirac conjugate
spinor ψ̄(x). As it is not difficult to notice, the Dirac spinor (also known as bispinor) is a 4-
dimensional representation, although a reducible one. Consequently, the equation of motion
derived from the Lagrangian (2.52) is expected to have four solutions, two with helicity s = 1

2 ,
and two with helicity s = −1

2 (usually it is more convenient to divide them in positive and
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negative energy solutions). Then, a general solution to the Dirac equation can be written in
terms of operators as

ψ̂α(x) =
∑
s=± 1

2

∫
d3p

(2π)3/2

√
m

Ep

[
uα(p, s)â(p, s)e−ip·x + vα(p, s)b̂†(p, s)eip·x

]
, (2.53)

with uα(p, s) being the components of a bispinor (α = 1, . . . , 4) for a given momentum p
and helicity s, and Ep =

√
p2 +m2. Unlike the real scalar field, the Dirac field is not

hermitian, so two independent annihilation (creation) operators, which have been denoted
by â(p, s) (â†(p, s)) and b̂(p, s) (b̂†(p, s)), are needed; the operators enter the solutions of ψ̂
and ˆ̄ψ. Later, imposing quantization conditions on those fields requires to take into account
that they represent spin-1

2 particles, and according to the spin-statistics theorem they must
be quantized using anticommutation relations. Therefore, for Dirac fields, the quantization
simply proceeds by replacing the Poisson brackets {·, ·}PB (Eq. (2.3)) with anticommutators
of operators {·, ·} and adding a Kronecker delta δαβ to account for the different components.
All this produces the following algebra

{â(p, s), â†(p′, s′)} = δ3(p− p′)δss′ , {b̂(p, s), b̂†(p′, s′)} = δ3(p− p′)δss′ ,
(2.54)

{â(p, s), â(p′, s′)} = {â†(p, s), â†(p′, s′)} = {b̂(p, s), b̂(p′, s′)} = {b̂†(p, s), b̂†(p′, s′)} = 0.

The Eq. (2.54) exhibits the ordinary canonical commutation relations of fermionic particles.
The two number operators are N̂(p, s) = â†(p, s)â(p, s) and ˆ̄N(p, s) = b̂†(p, s)b̂(p, s), and
because of their fermionic nature, the operators’ eigenvalues can only be 0 or 1.

Analogously to the case of the real scalar field, the time-ordered correlation functions
are also defined, now formed by products of both fields ψ̂(x) and ˆ̄ψ(x). The fermionic
correlation functions feature additional minus signs with respect to the bosonic ones. Those
are associated with the anticommutating character of the fields, which introduces a −1 factor
under the permutation of two of them. In particular, the two-point correlation function can
be computed using the field expansion in terms of creation-annihilation operators (/p ≡ γµpµ)

∆αβ(x1 − x2) := 〈0| T
[
ψ̂α(x1) ˆ̄ψβ(x2)

]
|0〉 =

∫
d4p

(2π)4

(
i

/p−m+ iε

)
αβ

e−ip·(x1−x2). (2.55)

This is the fermion propagator in position space, and it completely describes the transition
probabilities from point to point, as the other two-point time-ordered correlation functions
vanish 〈0| T

[
ψ̂α(x1)ψ̂β(x2)

]
|0〉 = 〈0| T

[ ˆ̄ψα(x1) ˆ̄ψβ(x2)
]
|0〉 = 0.

2.3.1.3 Vector Field Quantization

The last case of field quantization analyzed is that of a vector field. In terms of Lorentz
group representations, the vector field is associated to the irrep (1

2 ,
1
2). In Subsec. 2.2.3.3,

it was shown how this representation decomposes when restricted to the rotation group. It
was found that, apart from the trivial representation, the vector irrep decomposes into a
3-dimensional irrep of the rotation group, which is basically the spin-1 representation. So,
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vector fields represent spin-1 bosons, and they play a fundamental role in gauge interactions.
It was also seen that the unitary representations of the Poincaré group are totally different for
massive and massless particles, this fact turns out to be transferred to the quantization prob-
lem as well. The little group for a massive vector is the SO(3), whose spin-1 irrep possesses
three degrees of freedom, whereas for a massless vector is ISO(2) (one rotational degree of
freedom), which, along with the aforementioned parity invariance condition4, provides two
degrees of freedom. The above describes a small but significant difference between the two
cases, which is also reflected in the treatment at the level of fields.

The first case corresponds to that of a massless vector field. The classical Lagrangian
density describing Maxwell equations is

L = −1
4FµνF

µν , (2.56)

with Fµν = ∂µAν − ∂νAµ. Unlike the cases seen so far, here, the massless field Aµ is not
unambiguously defined since the action and the equations of motion are invariant under the
gauge transformations Aµ −→ Aµ + ∂µf . An implication of this invariance is that the theory
has less physical degrees of freedom than what would be expected for a vector field. Not
fixing the gauge causes, for instance, that the canonical quantization can not be carried
out, because the time component of the canonically conjugate momentum of the field Aµ(x)
vanishes π0(x) = 0. The way this problem can be tackled is by fixing the gauge, and this
can be done in several ways. The so-called Lorentz gauge ∂µAµ = 0 has the advantage that
maintains covariance in the fixing condition, this to the detriment of not fixing completely
the gauge freedom (still invariant under ∂µ∂µf = 0). A very elegant way to implement the
Lorentz gauge is to introduce the condition as a Lagrange multiplier term −χ

2 (∂µAµ)2 in
Eq. (2.56). However, for simplicity, it is set χ = 1 (Feynman gauge), which implies that the
equation for χ should be interpreted as a constraint on the solutions of Aµ(x). This yields

L = −1
2∂µAν∂

µAν , with ∂µA
µ = 0. (2.57)

The canonical quantization usually proceeds by putting aside for a moment the constraint.
Then, after having quantized the field, a “physicality” condition is applied to eliminate the
extra degrees of freedom. One approach is the well-known Gupta-Bleuler formalism [41, 42],
which successfully implements a constraint at the level of operators. One can nonetheless
infer the final result without having to go through the rigorous procedure. In principle, the
solutions of the field Aµ(x) can be expanded on a basis of four linearly independent real
polarization vectors εµ(p, λ), λ = 0, 1, 2, 3. However, two of them can be eliminated. The
first, by imposing the Lorentz gauge condition, which forces the polarization vectors to be
transverse εµ(p, λ)pµ = 0. The second, using the conditions p2 = 0 and ∂µ∂

µf = 0 to
eliminate time-like polarization vectors. Finally, just two physical independent transverse
polarizations λ = 1, 2 are left. The solution written in terms of operators is

Âµ(x) =
∫

d3p√
2Ep(2π)3

3∑
λ=0

εµ(p, λ)
[
â(p, λ)e−ip·x + â†(p, λ)eip·x

]
, (2.58)

4Under parity, spin remains unchanged, but helicity flips sign.
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with Ep = |p|. The reduction to the two physical degrees of freedom (λ = 1, 2) is nor-
mally carried out with the Gupta-Bleuler procedure after quantization. For the Lagrangian
in Eq. (2.57), the canonically conjugate momentum is πµ(x) = −Ȧµ(x) (no vanishing com-
ponents), thereby the quantization procedure for the vector boson field continues as usual,
replacing the Poisson brackets {·, ·}PB with commutators [·, ·]. Apart from an extra fac-
tor (−ηµν) that must be added to preserve covariance, the field commutation relations are
identical to those of four independent Klein-Gordon fields, thus obtaining

[â(p, λ), â†(p′, λ′)] = δ3(p− p′)δλλ′ζλ,
(2.59)

[â(p, λ), â(p′, λ′)] = [â†(p, λ), â†(p′, λ′)] = 0,

with ζ0 = −1 and ζ1 = ζ2 = ζ3 = 1. Again, the commutation relations of the operators
â(p, λ) and â†(p, λ) are easily recognized as the canonical conditions for bosonic particles.
The massless vector field propagator can also be obtained by computing the time-ordered
correlation functions. In this case, the two-point correlation function is

∆µν(x1 − x2) := 〈0| T
[
Âµ(x1)Âν(x2)

]
|0〉 =

∫
d4p

(2π)4
−ηµν
p2 + iε

e−ip·(x1−x2). (2.60)

This equation exhibits the contributions to the propagator from transverse, longitudinal and
time-like modes (more details in [17]).

On the other hand, the case of a massive vector field presents its particularities. After
having discussed the massless case, it is not necessary to deepen much in the mathematics
of the massive vector field, since in essence, both are very similar. However, there are core
differences in their physics, which are going to be stressed. The Lagrangian that leads to
the so-called Proca equation for a massive vector field is directly obtained if a mass term
1
2m

2AµA
µ is added to Eq. (2.56). The mass term explicitly breaks gauge invariance, so

it is not necessary to impose the Lorentz gauge fixing ∂µA
µ = 0, this naturally arises as

a consequence of the equations of motion. The constraint removes one of the four initial
degrees of freedom, leaving, therefore, three independent polarization modes. It can also
be checked that, just like for the massless field, the zeroth component has no canonical
conjugate momentum π0(x) = 0. However, such a requirement is not needed now, as it can
be proven that the A0(x) component is a dependent quantity and not a dynamical variable.
The solution for the field Âµ(x) is the same as in Eq. (2.58), with the only difference (apart
from Ep = +

√
p2 +m2) that now the sum runs over three polarization states λ = 1, 2, 3.

The canonical quantization is then achieved as usual. The same algebra as in Eq. (2.59)
is obtained for the creation-annihilation operators associated with the three polarization
components. Regarding the two-point correlation functions, the propagator of the massive
vector field is a little different compared to the massless case, for more information see [17].

2.3.2 Path Integrals

The previous subsection addressed the fundamental aspects of the canonical quantization
in QFT for free fields (non-interacting particles), in which the fields have been represented
by non-commuting operators. However, the canonical quantization becomes difficult to apply
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when dealing with non-abelian gauge theories (Subsec. 2.4.2), that is, theories in which the
interaction occurs by means of non-abelian Lie group transformations of fields. In such
cases, the alternative “path integral” formalism is particularly well suited. The path integral
method offers a very elegant way to determine all the properties of a system using tools
from functional analysis. It is also equipped with a nice physical interpretation of quantum
amplitudes, as it deals with an infinity of quantum-mechanically possible trajectories, instead
of a single classical trajectory. In spite of the above mentioned, it is important to point out
that both formulations are equivalent.

Feynman was one of the pioneers in introducing the non-relativistic formulation of QM
in terms of path integrals [43, 44]. In the non-relativistic theory, the systems have a finite
number of degrees of freedom, nevertheless, the results from the finite-dimensional case can
be transferred to field theory without difficulties. The standard term of the form eiS , where
S is the action (2.1), can be roughly viewed as a probability density function containing
the different field configurations. The physical observables are then obtained by computing
“expectation values” over the different operators. These computations are done employing
functional integrals [45]. The quantum character of this method is intrinsically related to the
fact that each of these alternative functions makes its coherent contribution to the integral,
thus giving rise to interference among the various trajectories.

In Subsec. 2.3.1, the concept of time-ordered correlation functions has already been intro-
duced. Those are basically the expected value of an operator formed by the multiplication
of several fields, so it is possible to use the method of path integrals to compute them. For
instance, in the case of the real scalar field φ(x), the correlation function in Eq. (2.50) can
be translated into a path integral of the form

Gn(x1, . . . , xn) =
∫
Dφ φ(x1) · · · φ(xn) exp(iS[φ])∫

Dφ exp(iS[φ]) , (2.61)

where Dφ denotes integration over all possible field configurations φ(x), with a phase given
by the classical action S[φ] evaluated in that field configuration. As indicated above, this is
the expectation value of an operator, this time the product of n fields φ. So, obtaining the
Green’s functions (correlation functions) is reduced to the calculation of path integrals.

There exists a method able to generate in a systematic way all the relevant Green’s
functions, namely all the correlation functions involving an arbitrary number of fields at
different space-time points. For the non-interacting field theory, all these correlation functions
are encoded in one main transition amplitude, called Generating Functional. The idea is to
introduce an arbitrary source J(x), in such a way that, performing functional derivatives
with respect to J(x), provides access to all possible Green’s functions. For the real scalar
field, the expression reads

Z[J ] =
∫
Dφ exp

{
i

∫
d4x[L(φ, ∂µφ) + J(x)φ(x)]

}
. (2.62)

It is not hard to check that when applying derivatives on Z[J ] and evaluating in J = 0, the
operation returns the Green’s functions

Gn(x1, . . . , xn) = i−nδnZ[J ]
δJ(x1) · · · δJ(xn)

∣∣∣∣∣
J=0

. (2.63)
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All the information is now contained in the generating functionals, which are hence the
primary objects to be calculated. This method can be easily applied to the Lagrangian (2.47)
for the scalar field. Proceeding with the first derivative produces a trivial result, G1(x1)
vanishes, which indicates that there is no such thing as a one-point correlation function. A
second-order derivative leads to exactly the same expression (up to a constant factor) as
Eq. (2.51), which is the propagator obtained via the two-point Green’s function G2(x1, x2).
Operating in a similar way, the rest of the higher order Green’s functions can be derived.
This explicitly shows that the quantization of the system can also be achieved using path
integrals.

The second-order G2(x1, x2) and all non-vanishing higher order Green’s functions regu-
larly depend on distances xi − xj , just like the propagator ∆(x1 − x2). Such functions are
conveniently represented by lines having end points xi and xj , as shown in the equation
bellow

G2(x1, x2) : x1 x2 ,

(2.64)

G4(x1, x2, x3, x4) :

x1 x2

x3 x4

+

x1 x2

x3 x4

+

x1 x2

x3 x4

.

These pictorial representations of the underlying mathematical expressions are the well-known
Feynman graphs. In perturbation theory, the Feynman graphs take a rich variety of forms,
especially in the context of the current physical models involving many types of particles and
several interactions among them. Now, it is also common to use, instead of the generic Green’s
functions Gn(x1, . . . , xn), the so-called n-point connected Green’s functions GCn (x1, . . . , xn),
which are obtained by taking derivatives δ/δJ(x) of logZ[J ] rather than Z[J ]. The resulting
graphs have all the n external legs connected among each other, so they are consequently
called connected Feynman graphs.

So far, only the case of the real scalar field has been treated for simplicity. For other
bosonic fields, the treatment is not too dissimilar, one just needs to take into account the
additional degrees of freedom and any possible gauge fixing (e.g., following the Fadeev-Popov
ansatz [46]). However, in the case of fermionic fields, the procedure becomes a bit peculiar.
It was said that the path integral formalism is handled with classical actions, but it is known
that fermion field operators are anticommuting quantum objects. Therefore, there is no way
that the path integral detects that it is dealing with a different class of fields obeying the
Pauli principle unless that condition is explicitly imposed on the fields. To do so, one has
to resort to the machinery of anticommuting numbers, the Grassmann algebra or exterior
algebra [47–49]. It is not the purpose of this subsection to delve much into the subject of
Grassmann algebra, but some important properties are worth mentioning. The basic property
of anticommuting numbers is, not surprisingly, that they anti-commute

{θi, θj} = 0. (2.65)

29



Chapter 2. Elements of Theory

As a consequence, the square and all higher powers of a generator are equal to zero θ2
i = 0.

Therefore, the most general element of a Grassmann algebra with n generators is a finite sum
of the form

g(Θ) = g(0) +
∑
i

g
(1)
i θi +

∑
i<j

g
(2)
ij θiθj + · · ·+ g(n)θ1 . . . θn. (2.66)

This algebra also possesses the integration and differentiation operations, although these turn
out to be rather odd compared to the usual differential analysis. For instance, the product
rule for derivatives now appears with a “−” sign instead of the standard “+” sign, which
induces an anticommutation algebra between the Grassmann variable and its corresponding
derivative, similar to the one between the creation and annihilation operator of fermionic
particles. But one of the most singular properties is that, for Grassmann variables, integration
and differentiation are the same.

All those properties, and many others, make the treatment of the path integral method
for fermionic fields a bit different from that of the bosonic fields. The Dirac field becomes a
space-time function whose values are anticommuting numbers, hence the reason to introduce
Grassmann-valued source fields for the construction of the generating functional. A quite
detailed explanation of the path integral quantization for the Dirac field can be found in [18].
Other references that include a fairly broad explanation on Grassmann variables are [16,17].

2.4 The Gauged Interactions

Even after Einstein expressed the need to describe the laws of physics in covariant terms,
no one, not even him, had realized the role that symmetries, and therefore group theory,
could play in this formulation. It was not until the concepts of mathematics were developed
and deeply condensed, especially the theory of Lie groups, that physicists began to link them
with the patterns that were being seen in nature. In 1954 Yang and Mills [50], inspired
by Einstein’s idea of covariance, included a space-time dependence in the parameters of the
SU(2) group to describe the conservation of isospin. Although the idea of Yang and Mills was
dismissed at the time, it was the trigger for a new conception within the framework of field
theories: the local gauge invariance. That formalism contained two important mathemati-
cal ingredients; the diffeomorphisms, which comprised the local symmetry transformations
manifested in the principle of general covariance, and the Lie groups, which accounted for
internal transformation invariance. With the help of those two pillars of modern physics, it
was possible to provide a description of the interactions between elementary particles and
give an explanation to some phenomena like asymptotic freedom [30]. There is no doubt that
Yang-Mills’ theories are very successful; nowadays, they are applied in several branches of
physics, and in particular for high energy physics, they are the cornerstone. In this section,
the topic of gauge field theories will be covered [51–53], its interrelation with Lie group theory,
and the way they both combine to give rise to modern particle physics.

2.4.1 Abelian Gauge Invariance

In Subsec. 2.3.1.3, it was seen that the equation of motion for a vector field is not uniquely
determined, indeed, the equation is said to be gauge invariant under the transformation
Aµ −→ A′µ = Aµ + ∂µf . On the other hand, it is not difficult to prove that the Dirac La-
grangian (2.52) is invariant under the internal symmetry transformation of the Dirac spinor
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ψ(x) −→ ψ′(x) = eiαψ(x), (2.67)

where α denotes, for the time being, a constant real parameter. Such transformation is
generated by one of the simplest unitary Lie group, U(1), the group of 1× 1 unitary complex
matrices, which are basically complex numbers with norm equal to 1. This group is evidently
abelian, and according to Schur’s lemma, all irreducible representations are 1-dimensional.
Later, the transformation (2.67) is allowed to become local α −→ α(x), but by doing so, the
Dirac Lagrangian is no longer invariant. Denoting by U the U(1) group representation, the
transformation of the terms with derivatives reads ∂µψ −→ ∂µψ

′ = U(∂µψ) + (∂µU)ψ. Such
a transformation helps to see that the problem arises when promoting U to be space-time
dependent. To solve that issue, the following ansatz is normally proposed. Instead of ∂µ, a
modified version Dµ ≡ ∂µ−igAµ (covariant derivative) is plugged into the Lagrangian, where
Aµ represents a field. The only requirement needed is that

ψ̄ /Dψ = ψ̄′ /D′ψ′ ⇔ D′µψ
′ = U(x)Dµψ. (2.68)

If D′µ = ∂µ − igA′µ and ψ′(x) = eiα(x)ψ(x) are inserted in the second equality, it follows that
Aµ should transform as

A′µ(x) = Aµ(x) + 1
g
∂µα(x), (2.69)

so that Eq. (2.68) is satisfied. The previous expression is recognized right away; it is the gauge
transformation of the vector field. Then, it is natural to take the vector field Lagrangian (2.56)
and combine it with the one for the Dirac spinor. Since the vector field Lagrangian is invariant
under the transformation (2.69), and the modified Dirac Lagrangian is already invariant under
the local transformations of its field, the full theory would be invariant. In turn, besides the
free-field terms, a new term in the Lagrangian of the form igψ̄ /Aψ pops up. This describes a
sort of coupling between the fermion and boson fields, so it can be said that their interaction
has been gauged. If electrons and positrons are taken as fermions, and photons as bosons,
the resulting abelian gauge theory is Quantum Electrodynamics (QED) [54]

LQED = ψ̄(i /D −m)ψ − 1
4FµνF

µν . (2.70)

The photon must be massless because a mass term like 1
2m

2
γAµA

µ would break gauge invari-
ance. This is a very important feature of gauge theories, and one of the biggest obstacles
faced by models with interactions mediated by massive gauge bosons.

Even when the above discussion was, to some extent, quite exhaustive, there is a tiny detail
difficult to notice in the context of the abelian gauge theory. Therefore, it is convenient to
leave the discussion for the next subsection, where the non-abelian case will be treated.

2.4.2 Non-Abelian Gauge Invariance

This case consists of a SU(n) Lie group and a Dirac field with n internal degrees of
freedom, the latter transforming under the fundamental representation of this group in a
local way

ψ(x) −→ ψ′(x) = V (x)ψ(x) ≡ eiαa(x)Taψ(x). (2.71)
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A priori, n could take any value, so the general construction comprises non-abelian Lie groups.
Again, the aim is to find a way to make the theory invariant under this local transformation
and thereby determining the interactions between fields that appear as a consequence of this
requirement. In that sense, the standard derivative must be replaced by a new covariant
derivative as for the abelian case. The inclusion of new terms in the redefinition of the
derivative could be done in a very general way, but it happens that, due to renormalizability
reasons, the principle of minimal substitution must be applied [55]. The incorporation of non-
minimalist interactions in field theories can be addressed within the novel approach adopted
by the Effective Field Theories (EFT) [56, 57]. As in Subsec. 2.4.1, the minimal term that
should be added in order to construct the covariant derivative is proportional to a vector field
Dµ ≡ ∂µ − igWµ. Imposing now the condition in Eq. (2.68) yields

D′µψ
′(x) = (∂µ − igW ′µ)V (x)ψ(x) = V (x)(∂µ − igWµ)ψ(x). (2.72)

The previous equation can be solved for W ′µ if it is multiplied on the right by V (x)−1, which
leads to the following expression

W ′µ = V (x)WµV (x)−1 − i

g
[∂µV (x)]V (x)−1. (2.73)

If the local transformations are neglected for a moment, the only term that survives is the
first one. Revisiting the topic of Lie group representations (Subsec. 2.2.2.3) allows recog-
nizing such transformation as that of the action of the adjoint representation of the group
(Eq. (2.16)). The term with derivative appears because the Lie group parameters αa(x) now
have a dependency on the space-time coordinates. The gauge field Wµ is in the Lie algebra,
and can therefore be expanded taking the generators as basis Wµ = W a

µT
a, where the sum

over a is implicit. The covariant derivative for SU(n) finally reads

Dµ = I∂µ − igW a
µT

a, (2.74)

where I is the identity matrix matching the size of the generators. Since theW a
µ (x) transform

like the adjoint representation, they form themselves an n2−1 dimensional multiplet of SU(n).
It is easy to check that Eq. (2.73) recovers the form of Eq. (2.69) for the abelian case, so it
represents a generalization of both cases.

So far, what has been shown is that the fermionic part of the Lagrangian is locally gauge
invariant if the gauge field is changed according to the adjoint representation. The missing
piece is the bosonic Lagrangian that remains invariant under the gauge field transformation.
The part of the QED Lagrangian corresponding to the vector field is visibly not invariant
under such transformation, at least with the former definition of Fµν . To construct this
new field strength tensor, the obvious fact that covariant derivatives transform covariantly
is used. The covariant object resulting from the commutation of two covariant derivatives
is computed, producing [Dµ, Dν ] = −igGaµνT a. The object Gaµν has been extracted out to
isolate the space-time transforming part

Gaµν := ∂µW
a
ν − ∂νW a

µ + gfabcW b
µW

c
ν , (2.75)

with fabc being the structure constants. The object GaµνT a is an element of the Lie algebra
since it is expressed as a linear combination of generators, which implies that Gaµν transforms
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under the adjoint representation. What is left then is to make use of the adjoint transfor-
mation to build a trivial-transforming object, and that can be done contracting the adjoint
irrep with itself. All that together produces the following locally gauge invariant Lagrangian

L = −1
4G

a
µνG

µνa︸ ︷︷ ︸
LYM

+ ψ̄(i /D −m)ψ︸ ︷︷ ︸
LF

. (2.76)

As in the abelian case, the general purpose of field gauging is achieved: a theory obeying
external and internal symmetry transformations, and providing interactions. However, in
the non-abelian case, an additional source term appears. The LYM depends only on the
gauge fields and contains terms of second and third-order in these and their derivatives.
Physically, this means that the gauge field quanta interact among themselves. The cou-
pling constant for those self-interactions is the same g as that for the coupling between the
fermionic and bosonic fields. One of those cases is the field theory involving quarks and
gluons, Quantum Chromodynamics (QCD) [58], in which the SU(3) symmetry is gauged in
the color space.

2.4.3 Breaking of Gauged Symmetries

Two deficiencies can be recognized in the formalism described so far. The first was
naively introduced when mentioning the concept of renormalizability. Despite the theory is
worked out in the minimal coupling scenario, some divergences have to be sorted out. Those
divergences come mainly from connected loop diagrams that lead to divergent integrals. This
issue will be briefly addressed in Subsec. 2.4.4.2. The second problem arises from the gauge
invariance condition, and it has already been spotted in the abelian case. It is more dramatic
in the non-abelian case, there is an additional term that further prohibits mass terms for the
gauge fields. It seems that there simply exists no mass term compatible with local gauge
invariance, but nature insists on an explanation for massive vector bosons. Apparently, for
those cases, the symmetry subject to gauging is not there, or at least it has not been there for
a while, since much earlier than when physicists knew about the existence of massive gauge
bosons. One way to solve this is to resort to some mechanism that breaks the symmetry,
which could explain the presence of mass terms for vector fields.

There are essentially two ways to break a symmetry. The first one is called explicit
breaking, and the second one is known as spontaneous symmetry breaking. The first method
simply consists of adding extra terms “by hand” to the Lagrangian, like δL = 1

2m
2
γAµA

µ,
to actively break the symmetry present in the theory. The addition of symmetry-breaking
terms makes the dynamical equations of fields not invariant under the symmetry group con-
sidered. Nevertheless, as the breaking term gets close to zero δL → 0 (e.g. mγ → 0), the
symmetry is restored in those equations. The second case is less trivial, since the Lagrangian
remains invariant under the symmetry group δL = 0 but the vacuum (ground) state does
not Û(αa) |0〉 6= |0〉 ⇐⇒ T̂a |0〉 6= 0. This is because the dynamics of the vacuum state is
degenerate, and a particular “choice” of one as the physical vacuum breaks the symmetry.
Every choice for the ground state is equal, which manifests the permanence of the hidden
symmetry. However, once a specific ground state is selected it gets transformed to another
ground state, which makes it not invariant under the symmetry.
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2.4.3.1 Goldstone’s conjecture

Spontaneous symmetry breaking was introduced in QFT by Nambu [59] in analogy with
the theory of superconductivity. A couple of years later Goldstone, Salam, and Wein-
berg [60, 61] studied the breaking of the symmetry with non vanishing vacuum expectation
values of scalar fields. They detected the appearance of a massless mode out of a degenerate
vacuum, corresponding to the so-called Nambu-Goldstone boson. That was then generalized
becoming the well-known Goldstone’s theorem. In rough terms the theorem says that: For a
quantum field system subject to an internal continuous global symmetry, when its ground state
spontaneously breaks this symmetry, there are massless excitations whose number is equal to
the number of broken generators of the symmetry. A proof of the Goldstone’s theorem for
classical field theories can be found in [18].

This theorem can be interpreted in the context of group theory if one considers a scalar
field φα(x) with potential V (φα) invariant under an internal symmetry generated by a rep-
resentation Uαβ (g) of a Lie group G. Classically

V (Uαβ (g)φβ) = V (φα), Uαβ (g)φβ0 6= φα0 , (2.77)

where φα0 represents the state that minimizes the potential, i.e. the vacuum expectation
value. One example of such a potential is the “Mexican-hat-like potential”, which is given
by V (φα) = µ2φαφ

α + λ(φαφα)2 for µ2 < 0 and λ > 0. Later, the symmetry does not have
to be broken completely, so there might exist a subgroup H ∈ G for which the ground state
is still invariant. So, the concept of little group appears again, this time referred to the
transformations that leave the ground state invariant Uαβ (h)φβ0 = φα0 . Consequently, the Lie
algebra of this little group H forms a subset with n − k generators ta of the Lie algebra of
G, which contains n generators T a. Then, by making a Taylor expansion of the potential to
extract the mass matrix M2

αβ (second-order partial derivatives), and using the invariance of
V (φα) in Eq. (2.77), it results in

M2
γαT

a
αβφ

β
0 = 0 ∀a ∈ {1, . . . , n}. (2.78)

This relation means that, when acting with the n − k generators of the little group, there
is no restriction on masses since taαβφ

β
0 = 0. In contrast, when acting with the remaining k

“broken” generators, the only possible solution is to have k states χaα ≡ T aαβφ
β
0 , for which the

mass eigenvalue vanishes. The above clearly reflects the content of the Goldstone’s theorem.
It is worth mentioning that the linear sigma model [62, 63] is a good example of application
of this theorem, as the pion can be regarded as an approximate Nambu-Goldstone boson.

2.4.3.2 Higgs mechanism

Goldstone’s conjecture did not help much in trying to get massive gauge bosons, at least
at first sight. In principle, it was only applicable to global symmetries, and the only thing
that supplied was massless particles. All that, added to the difficulties of Yang-Mills’ theory,
became a very unfavorable scenario for theoretical particle physics. Nevertheless, a physi-
cist named Peter Higgs discovered that when one incorporates locality to the theory, the
Goldstone’s theorem breaks down [64]. Besides, several independent groups, among them
Peter Higgs himself [65], Robert Brout and François Englert [66], and Gerald Guralnik, Carl
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Richard Hagen and Tom Kibble [67], managed to develop a relativistic model obtaining the
same result. This procedure describing the spontaneous breaking of a gauged continuous
symmetry was called the “Brout-Englert-Higgs mechanism”. Although the spontaneous sym-
metry breaking mechanism is essentially the same, when combined with gauge fixing, it allows
the gauge bosons to consistently acquire a nonzero mass.

The new terms appearing in the Lagrangian when incorporating gauge invariance are
shown in Eq. (2.79). The kinetic term of the scalar field is now accompanied by a covariant
derivative like (2.74), which includes all the gauge fields contained in the theory. For any
scalar field, real group representations can be used, so T a → iT a can be taken. The gauge-
invariant kinetic term then reads

1
2(Dµφα)(Dµφα) = 1

2(∂µφα)(∂µφα)+gW a
µ (∂µφαT aαβφβ)+ 1

2g
2W a

µW
b,µ(T aφ)α(T bφ)α. (2.79)

When the scalar potential φα is expanded around the ground state φα0 , the last term be-
comes 1

2m
abW a

µW
b,µ, where mab = g2(T aφ0)α(T bφ0)α. Thus, for each broken generator, a

mass term will appear for its corresponding gauge boson, contrary to the case with global
symmetry. Oppositely, the gauge bosons associated with some generator of the little group
will be massless. This explains very easily how the masses of the gauge bosons are generated,
however, it was mentioned in Subsec. 2.3.1.3 that massive spin-1 particles have three degrees
of freedom, whereas the massless ones have only two. It seems as if the vector field had ob-
tained an additional degree of freedom for free, but certainly not. At first glance, the massless
Nambu-Goldstone bosons do not seem to have anything to do with the mass of the gauge
fields, as they emerge from the spontaneous symmetry breaking driven by the potential, so
one would expect that they are still there. The explanation lies in the fact that the theory
is now gauge-invariant and, as previously seen, a gauge fixing should be chosen. There is
nothing prohibiting the implementation of the gauge fixing by conditions on distinct fields at
once. Differently from the standard procedure where the conditions are only applied on W a

µ ,
it is also possible to impose conditions on φα. In fact, Weinberg [68] proved that there always
exists a gauge, which was called “unitary gauge”, such that the scalar field components in
the direction of the Goldstone states are zero

φ̃α T aαβ φ
β
0 = 0 ∀a ∈ {1, . . . , n}. (2.80)

Here the φ̃α represents a suitable transformation of the fields φα in order to make them
orthogonal to the k Goldstone fields χaα. This demonstrates that the Goldstone bosons are
not physical particles, basically, they can be gauged away. Regardless of the chosen gauge,
physical massless states will never emerge. Now it is straightforward to deduce where the
additional degrees of freedom of the gauge fields came from; they are the Goldstone bosons
that were “rotated” away and transformed into the longitudinal polarization of the massive
spin-1 particles. The remaining n − k orthonormal set of states ηaα spanning the subspace
orthogonal to the subspace generated by all χaα will give rise to massive scalar particles. So,
the mechanism generates massive gauge bosons and a bunch of massive scalars, the latter
ones are referred to as the Higgs bosons. As it will be seen later, within the framework of the
SM, where the symmetry breaking materializes as SU(2)L×U(1)Y → U(1)EM , the remaining
unbroken generator suggests the existence of the famous SM Higgs boson. In other models
with a bigger internal symmetry group, the breaking can result in more that one Higgs boson.
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2.4.4 Perturbative Methods for the Interactions

It is clear that the gauge principle provides the basis for understanding the way different
types of particles interact. Such interaction is controlled by the coupling constant g introduced
in the covariant derivative when implementing the minimal substitution. Aside from the
interactions generated by the gauge couplings, other types of interactions might also take
place, such as interactions between scalar and fermion fields, and many others. The way
in which the physicists have been able to probe the existence and characteristics of these
interactions is by using experiments involving many of those kinds of particles. The particles
approach each other from macroscopic distances to a small area of interaction, which then
abandons the products of the interaction becoming distant again. The physical particles
before and after the interaction are so far from each other that they can be considered as
free particles; those which are described by the previously treated free fields. What can be
measured from these “scatterings” are transition probabilities between the initial and final
states. The magnitude that generally quantifies these transition probabilities is called “cross-
section”. In this subsection, two topics concerning the interactions that occur in a field theory
will be addressed; Perturbation Theory [16,18,19] and Renormalization [15,20,69,70].

2.4.4.1 Perturbation Theory

In QM, there are three well-known pictures used to represent the evolution of states and
operators. In the Schrödinger picture, the time dependence is carried by the states obeying
the Schrödinger equation, while the operators remain constant in time. By means of unitary
transformations, one can reach the so-called Heisenberg picture, which behaves the other way
around to the Schrödinger picture; the states are time-independent, and the operators are
the ones carrying the dependence. In this case, the evolution equation is a pure operator
equation involving commutators. The last one is the most relevant for QFT perturbation
theory since, in this context, the evolution of the free fields is well known and, therefore, the
only missing piece is the interaction part. Consequently, it is called the Interaction Picture
(or Dirac Picture), and it is an intermediate representation between the previous two, as both,
the states and the operators evolve in time. The main idea is to split the Hamiltonian into
two parts, H = H0 +HI . An unitary operator ÛI governs the evolution of the states |ψI(t)〉
by |ψI(t)〉 = ÛI(t, t0) |ψI(t0)〉. This operator can be expressed in terms of the interacting
Hamiltonian part as

ÛI(t, t0) = T
{

exp
[
−i
∫ t

t0
dt′ ĤI(t′)

]}
, (2.81)

with T denoting the time-ordered product. Now, a scattering process in which two initial
particles approach each other from a large distance outside the range of their interactions is
normally assumed, so, at times t→ −∞, the states are time-independent and are denoted as
|ψin〉. The same applies for a very long time after the scattering t → ∞, the states become
free and time-independent |ψout〉. As stated before, the evolution of the system from |ψin〉
to |ψout〉 is dictated by the operator ÛI , which then takes the form Ŝ := ÛI(∞,−∞). This
operator is called the S-matrix.

The Green’s functions defined in Sec. 2.3 can be regarded as those corresponding to the
Heisenberg picture since the quantum fields (the operators) have explicit time dependence,
and the states are generated by time-independent quantities (creator operators) out of the
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vacuum. Then, the Green’s functions can be brought to the interaction picture through
unitary transformations applied over the fields and the vacuum state. After doing that, a hy-
pothetical Green’s function containing interaction among different types of fields is expressed
as

Gµ...(w, . . . x, . . . y, . . . z, . . .) =
〈0| T

{
Ŝ φ̂(w) . . . Âµ(x) . . . ψ̂(y) . . . ˆ̄ψ(z) . . .

}
|0〉

〈0| Ŝ |0〉
, (2.82)

where Ŝ refers to the S-matrix, and all quantities are considered in the interaction picture.
In general, the expression (2.82) is very hard to compute analytically, so, if the interaction
term HI =

∫
d3xHI(x) is small enough, a power series expansion of Ŝ can be performed.

This usually occurs in gauge theories when the coupling constant g is small, like for instance
QED, where gQED ≈ 1/137. The power expansion is sometimes known as Dyson series [71],
and it reads

Ŝ =
∞∑
n=0

(−i)n

n!

∫
. . .

∫
d4x1 . . . d

4xn T
{
ĤI(x1) . . . ĤI(xn)

}
, (2.83)

with the integrations being over all space-time. The previous formula is the basis of pertur-
bation theory in QFT. As it can be seen, evaluating very high order terms would require to
compute very complicated time-ordered products. To simplify those calculations, Wick [72]
developed a method that is able to express a time-ordered product of fields as a sum of sev-
eral terms, each of which is a normal-ordered product [16] containing contractions of pairs of
fields (Feynman propagators) and the remaining non-contracted fields. The sum accounts for
all possible generalized normal products that can be formed out of contractions between two
fields. Then, using the S-matrix expansion (Eq. (2.83)) in conjunction with Wick’s theorem,
the Green’s functions can be evaluated in perturbation theory as well. The different terms
in this expansion are represented by Feynman diagrams, which are drawn according to some
rules that may vary depending on the interaction HI(x) among fields [54,73,74].

The importance of the path integral treatment for non-abelian gauge theories has already
been emphasized in Subsec. 2.3.2. As seen before, for those cases, it is useful to construct a
single object called generating functional, in which all the information is contained. Then,
it is convenient to apply the machinery of the S-matrix expansion to the generating func-
tional of an interacting theory, and thus simplify the complicated analytic calculations. This
would allow relating the interacting generating functional to the relatively easy case of the
free-field generating functional via a perturbation series. The free field theory is simple to
solve because only Gaussian integrals appear in the calculations. First, an interacting term
HI(x) = −LI(x) is considered, and then a fictitious source LS(x) that augments the interac-
tion Lagrangian density is added L′I(x) = LI(x) +LS(x). The modified S-matrix associated
with the augmented interaction Lagrangian L′I(x) is denoted by Ŝ′. Taking into account the
formulas (2.82) and (2.83), the interacting generating functional can be canonically defined
as

Z[J ] = 〈0| Ŝ
′ |0〉

〈0| Ŝ |0〉
, (2.84)

where J represents all the possible types of sources needed to construct the augmented
Lagrangian. The definition is constructed in such a way that, in the absence of sources, Z[J ]
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becomes equal to the unity Z[0] = 1. The expression (2.84) is already quite revealing as far
as the perturbation expansion is concerned, but it is in the path integral formalism where
this becomes even clearer. In order to formulate the path integral version of Eq. (2.84), one
can take as example the particular case of the real scalar field, for which an expression for
the free-field generating functional was already given in Subsec. 2.3.2. Next, the generating
functional (2.62) is denoted by Z0[J ], to stress the fact that it represents the free-field case.
The form of Z0[J ] easily reveals that the interacting generating functional is driven by the
augment Lagrangian L′ = L0 + L′I , being L0 the free field Lagrangian. Later, since the
path integral only contains classical fields, the exponential can be split into the free and
the interacting parts, so Z0[J ] would appear as an independent factor in the integration.
Furthermore, it can be checked that the external source inserts fields φ(x) inside the integral
through derivatives. Hence, it is reasonable to replace φ(x) with the functional-derivative
operator φ(x)→ i δ

δJ(x) wherever it enters in LI(φ(x)). What is left is to set a normalization
for the generating functional, then producing

Z[J ] =
exp

[
i
∫
d4xLI

(
−i δ

δJ(x)

)]
Z0[J ]

exp
[
i
∫
d4xLI

(
−i δ

δJ(x)

)]
Z0[J ]

∣∣∣
J=0

. (2.85)

It is evident now that if the exponential function is expanded into its power series, the
perturbation expansion for the generating functional is accomplished. The price to pay is
having to deal with complicated functional derivatives, but the great merit is to replace
integrals by derivatives.

Before concluding this subsection, it is important to mention that perturbation theory is
the basis of modern calculations in high energy physics. It sets the foundations to construct
the physical observables, and it establishes a logic of the physical process that goes through
the mathematical formulation, the physical interpretation, up to the final measurable quan-
tity. Unfortunately, there exist physical systems in which this theory does not apply and other
methods must be employed. That is the case of Lattice QCD [75,76], a non-perturbative ap-
proach to solving low-energy QCD. In this regime, nonlinearity and large coupling constants
predominate, which makes impossible any attempt to apply the standard perturbation ex-
pansion. In all other cases where the perturbation is appropriate, the procedure has been
tremendously successful.

2.4.4.2 Renormalization of Gauge Theories

The previous subsection reviewed a feasible way to access the computation of physical
observables via the perturbation expansion. However, it turns out that some of the integrals
appearing in such calculations are divergent, which represents a serious threat to the applica-
bility of the theory. Diagrammatically, these divergences are identified by graphs containing
some kind of loop, as shown in Fig. 2.1. They usually emerge in the calculation of important
physical quantities, such as the corrections to the coupling constants and the mass of the
particles. Nevertheless, the “bare” parameters included in the Lagrangian of any field theory
have no physical meaning, as they can not be measured. What is really measured is the
whole contribution of the quantum corrections to a given bare parameter. On top of that,
the measurement of a single “renormalized” quantity normally takes as input the values of
other parameters that would have previously been measured too. Therefore, the only phys-
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ically meaningful dependence is the relations between observables, which incorporates loop
effects to all orders in perturbation theory. For this reason, it is imperative to know the effect
that every new order in the perturbation expansion has on the value of the parameter. So, a
consistent way to extract finite predictions for physically observable quantities is needed; this
technique is called Renormalization [20,20,77]. With that method, infinities can be absorbed
in a mathematically consistent manner, such that local gauge invariance remains intact. Not

Figure 2.1: Some Feynman diagrams that lead to divergent integrals.

all field theories are renormalizable; if a Lagrangian contains combinations of field operators
of high enough dimension, the number of counterterms required to cancel all divergences is
infinite and, therefore, the theory would lose all predictive power [78]. In the case of the
Yang-Mills theory, a work carried out by ‘t Hooft [79] showed that such gauge theory was
renormalizable. It was essential to have absolute gauge invariance to be able to renormalize
the theory. Although, the experimental results leaned towards a possible scenario of spon-
taneous symmetry breaking, luckily, the Higgs mechanism was already there, and that led ‘t
Hooft to extend his findings to the case of spontaneously broken gauge theories [80]. Later,
the technique of dimensional regularization was developed [81, 82], one of the most used in
the field of renormalization.

It is useful to define a magnitude that quantifies the degree of divergence of certain
integral. It is called superficial degree of divergence D, and it is the difference between the
power of pµ in the nominator and the power of pµ in the denominator. Most of the divergent
integrals that appear in the perturbation theory have the simplified form

∫∞ pD−1dp, and
they characterize the ultraviolet divergence produced in the internal loops. For D > 0, the
integral will have a polynomial divergence, for D = 0, it will diverge logarithmically, and
for D < 0, it will not diverge. In principle, D can be computed for each diagram if certain
information is a priori known. A quite general formula is given by

D = 4−
∑
f

N
(E)
f (Sf + 1)−

∑
i

N
(V )
i ∆i, ∆i ≡ 4− di −

∑
f

N
(F )
if (Sf + 1), (2.86)

where N (E)
f is the number of external lines of field type f , Sf is the sum j+ + j− of the

corresponding irrep (j+, j−) in SL(2,C) of the field type f (see Tab. 2.2), N (V )
i is the number

of vertices of interaction type i, di is the power of the derivatives in the interaction of type
i, and N (F )

if is the number of fields of type f in the interaction of type i. The parameter ∆i

has been set apart because it identifies the dimensionality (in power of mass) of the coupling
constant of the interaction of type i. If a given theory has ∆i ≥ 0, an upper bound can be set
onD, namelyD ≤ 4−

∑
f N

(E)
f (Sf+1). This means that, for this case, only a finite number of
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diagrams will yield a divergent integral. On the other hand, if ∆i < 0 the term −
∑
iN

(V )
i ∆i

will grow as the number of vertices increases, therefore, D will become larger and larger when
including more vertices, and eventually, an infinite number of counterterms will have to be
introduced to cancel those infinities. Summarizing, the degree of renormalizability can be
classified as

• Super-Renormalizable: ∆i > 0

• Renormalizable: ∆i = 0

• Non-Renormalizable: ∆i < 0

These three cases can be translated as Relevant, Marginal and Irrelevant operators, respec-
tively, within the more general classification scheme provided by the EFTs. Now, to con-
sistently renormalize the ∆i ≥ 0 cases, the procedure requires that the divergences show a
well-defined pattern in all relevant orders in perturbation theory. A very simple argument
that illustrates why this happens is that, in every renormalizable theory, the interaction
terms in the Lagrangian obey certain symmetry principles, therefore, the form in which they
appear is limited. This could suggest that symmetries also impose restrictions on the type
of infinities occurring in the theory; indeed, for gauge theories, that is verified [83] under the
BRST formalism [84–86].

Taking into account the different elements mentioned, a “program” dictating the steps to
follow to renormalize the theories is commonly designed. It basically consists of two steps:
the Regularization and the Renormalization [16, 18]. The Fig. 2.2 contains a small scheme
summarizing, in a loose way, the general procedure to be carried out. Below, some of the
points referred to in the figure are going to be discussed.

Renormalization Program

Regularization:
- Identify the divergent graphs and the most frequent types of integrals.
- Introduce a “regulator” to remove the divergent part of the integral and make it finite.

Renormalization:
- Detect the different fields and a set of independent parameters in the Lagrangian.
- Construction of the counterterms to renormalize the quantities (parameters and fields).
- Choose some renormalization conditions to fix the counterterms.

Figure 2.2: A short outline of the renormalization procedure.

Regarding regularization, with the help of the superficial degree of divergence, the common
class of divergent diagrams can be identified. As illustrated in Fig. 2.1, in gauge theories,
most of them tend to have cycles (loops) that are responsible for the divergent integrals.
Among the regulators, perhaps the simplest one is the so-called momentum “cut-off”, which
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simply consists of imposing a finite upper bound Λ to the momentum running in the loop∫
d4pE −→

∫
p2
E
<Λ2

d4pE , (2.87)

where pE refers to the Euclidean momenta. However, this kind of cutoff leads to some
problems with unitarity. Other methods, like the lattice regularization, Pauli-Villars, and
higher-derivative regulators [77], could be considered more “physical”, although they entail
some other practical problems. But definitely, the most known and used method is dimen-
sional regularization. The basic idea is to take the space-time dimension d to be a continuous
parameter that can be modified as d→ d−ε. Then, the space-time dimension can be restored
by taking the limit ε→ 0. For instance, a common integral is∫

ddp

(p2 −m2 + iε)n = iπd/2(−1)nΓ(n− d/2)
Γ(n)

1
m2n−d , (2.88)

which has poles for some sets of parameters n and d, if the latter is taken to be an integer,
nevertheless, for continuous values of d, the integral is well defined. In four-dimensional
space and for n = 2, the integral diverges as ∼ 1

ε , so this term can be removed (absorbed
into a redefinition of the quantities), and the remaining finite part is kept. Physically, what a
regulator does is just introduce a new energy scale Λ into the theory, so that the physics can
be well established for energies far below that scale, whereas for energies above Λ the theory
is not valid anymore.

As stated in the renormalization box of Fig. 2.2, first of all, the types of fields and constants
appearing in a given Lagrangian need to be identified. The QED Lagrangian (2.70) can be
taken as a guide. This possesses two fields (ψ and Aµ), and two parameters (g ≡ e and
m ≡ me). The bare quantities are denoted with a superscript (0). Later, the renormalized
quantities can be defined by the following relations

ψ(0) =
√
Z2ψ, A(0)

µ =
√
Z3Aµ, m(0)

e = me + δm, e(0) = Z1
Z2
√
Z3
e, (2.89)

where Z1 = Z2 should hold in order for the covariant derivative to not change, and thus
maintaining gauge invariance in the Lagrangian. The bare Lagrangian (same as Eq. (2.70)
but with the bare quantities as arguments) then splits into two parts

LbareQED = LrenQED + LcounterQED , (2.90)

where LrenQED is the renormalized Lagrangian (renormalized quantities as arguments), and
LcounterQED = ψ̄(i/∂δ2 − δm − e /Aδ1)ψ − 1/4FµνFµν δ3 (δi = Zi − 1, for i = 1, 2, 3) is the coun-
terterm Lagrangian. The counter term factors (δi) are not defined yet at all unless one
exactly defines how much of the infinite parts of the divergent diagrams they must absorb.
As seen before, there are different ways (regulators) to do that and, to choose one, means
to choose a particular “renormalization scheme”. One physically motivated choice is the
on-shell scheme [87]. In this scheme, the pole in the exact fermion propagator (2.55) in mo-
mentum space is required to occur at the physical mass value. By using a geometric sum
over the one loop diagrams, it can be proven that the propagator of the fermion is modified
as i(/p−m)−1 → i(/p−m− Σf (p))−1, therefore, requiring the on-shell renormalization con-
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ditions means Σf (/p = m) = 0. Fixing the residue of the mass pole to the unity might also be
sought, which is easily done by imposing ∂Σf (/p)/∂/p|/p=m = 0. Those previous requirements,
plus two more conditions (photon propagator and electron charge), explicitly determine how
the counter-terms have to be chosen to cancel the divergent parts. There are other quite
used renormalization schemes, like the minimal subtraction (MS), or its close partner, the
modified minimal subtraction (MS) [87]. Unlike the on-shell scheme, they do not impose
any conditions on amplitudes, they rather make use of dimensional regularization to control
the divergences. In order to do that, a new energy scale parameter µ has to be introduced
to ensure that the natural dimension of integrals like (2.88) does not depend on d. As men-
tioned before, these integrals diverge as 1

ε , so in the case of the MS scheme, what all the
counterterms do is to subtract the pole ε = 0. In the MS scheme, they subtract the pole
plus some numerical constants that usually accompany the 1

ε term. With all that, the path
to be taken to renormalize a certain gauge theory is more or less condensed. In many of the
cited references, the topic is treated extensively.

Finally, mention should be made to the conceptual approach of the renormalization group.
The notion in the context of QFT was first introduced in QED [88–93], but due to its general
perspective, it has expanded to many modern theories. The method identifies itself through
the idea that the modifications in the renormalizable quantities are changes in a physical
system when viewed at different length (energy) scales. When the arbitrary renormalization
scale is changed, the parameters are simultaneously altered. Then, it is said that the pa-
rameters are “running” with the scale. The way these evolve is determined by the so-called
renormalization group functions (beta functions), which allow constructing the renormaliza-
tion group equations [94,95]. These equations not only have great applicability in the current
calculations in high energy physics, but the concept of renormalization group has also led to
novel interpretations in connexion with the Conformal Field Theories (CFT) [96].

42



CHAPTER

3

HIGGS PHYSICS WITHIN AND
BEYOND THE STANDARD MODEL

Contents
3.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 The Standard Model Higgs Boson . . . . . . . . . . . . . . . . . . . 47
3.1.1.1 Breaking the SU(2)L × U(1)Y Symmetry . . . . . . . . . . 47
3.1.1.2 Higgs Collider Phenomenology . . . . . . . . . . . . . . . . 50

3.1.2 The Standard Model Weaknesses . . . . . . . . . . . . . . . . . . . . 54
3.1.2.1 Absence of Gravity . . . . . . . . . . . . . . . . . . . . . . 54
3.1.2.2 Dark Matter and Dark Energy . . . . . . . . . . . . . . . . 54
3.1.2.3 Neutrino Masses and Mixing . . . . . . . . . . . . . . . . . 55
3.1.2.4 Matter-Antimatter Asymmetry . . . . . . . . . . . . . . . . 55
3.1.2.5 The Hierarchy Problem . . . . . . . . . . . . . . . . . . . . 55
3.1.2.6 The Strong CP Problem . . . . . . . . . . . . . . . . . . . 56

3.2 Higgs Beyond the Standard Model . . . . . . . . . . . . . . . . . . 56
3.2.1 Supersymmetric Models . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1.1 The Supersymmetric Algebra . . . . . . . . . . . . . . . . . 57
3.2.1.2 Constructing Superfields . . . . . . . . . . . . . . . . . . . 58
3.2.1.3 The Minimal Supersymmetric Standard Model . . . . . . . 59

3.2.2 Models with Additional Singlet Scalars . . . . . . . . . . . . . . . . . 60
3.2.3 Adding a Vector Field . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.4 Little Higgs Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.5 Two Higgs Doublet Models Plus a Scalar Singlet . . . . . . . . . . . 63

43



Chapter 3. Higgs Physics within and beyond the Standard Model

It is in the nature of a scientist to desire to understand the universe at its most fun-
damental level. This was what led physicists, for many years, to wonder where the mass of
elementary particles came from. Some time ago, the so-called Higgs mechanism was proposed
as an explanation of the phenomenon of mass acquisition of elementary particles, which in
the context of particle physics responds to spontaneous breaking of the symmetry. It was not
until just a few years ago, with the development of big particle accelerators and sophisticated
experimental facilities, that the theory of the Higgs boson could finally be proven, to some
extent. This further boosted the investigation related to the Higgs boson and the implications
that it entailed. Currently, there is a broad interest in discerning all the properties of that
particle, as well as ascertaining if it really is the boson that was once predicted.

This chapter is intended to make a review of some aspects of the SM, in particular,
the part concerning the Higgs sector, as well as introducing new theories beyond the SM
incorporating fresh and rich physics into this field of study. At the same time, that will help
to motivate the analysis that is being presented in this thesis, which involves novel hypotheses
concerning the Higgs sector.

The elements of theory that were reviewed in the previous chapter will be indispensable
to shorten and give basis to the expositions that will emerge throughout this chapter. The
first section of this chapter will be dedicated to the successful SM, and to enumerate some
of its shortcomings. The second part is conceived for Higgs physics beyond the SM; here the
most relevant models for the case study in this thesis will be addressed.

3.1 The Standard Model

The SM is a renormalizable gauge quantum field theory (see chapter 2) describing three
of the four known fundamental forces in the universe: the electromagnetic, the weak and
the strong interactions. It is responsible for giving a mathematical structure to the way in
which the elementary constituents of matter interact and group. The SM Lagrangian density
is constructed by assuming some basic principles that are going to be detailed below. Most
aspects of this section are based on the references [97,98].

Power Counting: According to renormalization theory (Subsec. 2.4.4.2), and in the
modern view of EFT, all operators of mass dimension four or less must be included in the
Lagrangian in order to ensure renormalizability. The dimension of the action [S] is zero,
appearing in exponentials such as eiS (Subsec. 2.3.2), therefore, the mass dimension of the
Lagrangian density has to be [L] = 4 and, correspondingly, that of each term that composes it.
Some examples of mass dimension of different components appearing in the SM Lagrangian
are

[φ] = 1, [ψ] = 3
2 , [Aµ] = 1, [∂µ] = 1, [m] = 1, [g] = 0, (3.1)

where φ, ψ and Aµ are scalar, fermion (Dirac or chiral) and vector fields respectively. The
other three represent partial derivatives, masses, and dimensionless couplings.

Symmetries: The complete Lagrangian must transform trivially under the whole sym-
metry group (Sec. 2.2), which includes internal and external (space-time) symmetries, i.e.
the Lagrangian should remain invariant under the symmetry transformations. The funda-
mental group of space-time symmetries in the SM is the Poincaré group (Subsec. 2.2.3.3),
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3.1. The Standard Model

and the group of internal transformations is determined by SU(3)C ×SU(2)L×U(1)Y (Sub-
secs. 2.2.3.1 and 2.2.3.2), which represent the color-, weak- and hypercharge-gauged symme-
tries (Sec. 2.4). The invariance associated with SU(3)C determines the physics of the QCD,
and the SU(2)L × U(1)Y group covers the Electroweak (EW) sector.

Field content: The two above conditions impose certain restrictions on the type of
fields that the theory may have and the way they can be coupled. The field content is then
determined by the multiple categorizations that the irreps (Subsec. 2.2.1.2) of the symmetry
group can confer to the fields involved in the theory. The fermionic representations of the
Poincaré group tend to transform under the fundamental irrep of the gauged groups that
act non-trivially on them, whereas the vector representations do it under the adjoint irrep.
The representations of the scalar under the gauged groups are chosen in such a way to favor
the spontaneous electroweak symmetry breaking (EWSB) (Subsec. 2.4.3) and to generate the
fermion masses. The Tab. 3.1 shows a summary of the SM field content.

Table 3.1: Field content of the Standard Model

Name Symbol SU(3)C SU(2)L U(1)Y Spin

Gauge fields

Gaµ 8 1 0 1

W a
µ 1 3 0 1

Bµ 1 1 0 1

Quarks

QL 3 2 +1
6

1
2

uR 3 1 +2
3

1
2

dR 3 1 −1
3

1
2

Leptons
LL 1 2 −1

2
1
2

eR 1 1 −1 1
2

Higgs H 1 2 +1
2 0

The symbol QL refers to left-handed quarks, uR to up-type right-handed quarks, and
dR to down-type right-handed quarks. The same applies to leptons, where now eR denotes
the down-type right-handed leptons. Note that one lepton species is missing, the up-type
right-handed leptons; those are the right-handed neutrinos, which are not present in the SM,
although they could be accommodated in the model in some scenarios (see Subsec. 3.1.2.3).

There are other types of symmetries participating in the SM, such as the set of discrete
symmetries given by charge conjugation (C), parity transformation (P), and time reversal (T)
[17]. However, the CPT combination is the only exact symmetry observed at the fundamental
level. This is connected with the CPT theorem [99], which states that all local Lorentz-
covariant field theories of point particles have CPT symmetry. Other symmetries appear as a
consequence of the flavor structure of the SM, in which coexist three generations of the group
representations presented in Tab. 3.1. These are global symmetries explicitly broken by the
Yukawa terms. This part of the Lagrangian must be there to allow the incorporation of the
fermion masses into the model. The kinetic term of the SM Lagrangian has a large global
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Chapter 3. Higgs Physics within and beyond the Standard Model

flavor symmetry given by U(3)3
q ×U(3)2

l [100]. This group is broken down to U(1)B ×U(1)3
L,

which expresses the conservation of the baryon and lepton numbers. That kind of symmetry
is conventionally referred to as “accidental symmetry” since it is simply there because one
can not write down renormalizable terms that break it. Furthermore, not all of the classical
symmetries also remain a symmetry at the quantum level, in that case, the symmetry is called
anomalous. An anomalous symmetry is hence not a symmetry of the full quantum theory.
Not only the exact symmetries are important, but there are also approximate symmetries
that “protect” some parameters from acquiring large quantum corrections. That is the case
of the chiral symmetry protecting the fermion masses and the custodial symmetry in the
Higgs sector [98].

The most general Lagrangian1 fulfilling the aforementioned formalities is

LSM =− 1
4G

a
µνG

aµν − 1
4W

a
µνW

aµν − 1
4BµνB

µν

+ iQ̄n
L
/DQn

L
+ id̄n

R
/Ddn

R
+ iūn

R
/Dun

R
+ iL̄n

L
/DLn

L
+ iēn

R
/Den

R

− [Y mn
(d) Q̄

m
L
Hdn

R
+ Y mn

(u) Q̄
m
L
Hcun

R
+ Y mn

(e) L̄
m
L
Hen

R
+ h.c.]

+ (DµH)†(DµH)− [−µ2H†H + λ(H†H)2],

(3.2)

where the covariant derivativesDµ include as many types of gauge fields as the number of non-
trivially acting groups for a given fermion field. The more general Dµ includes three coupling
constants g1, g2 and g3, one for each gauged group. The field strengths Xa

µν (X = G,W,B)
are in general defined according to Eq. (2.75), and for the abelian case, the structure constants
must be set to zero. Members of successive generations are denoted by a generation index
n,m = 1, 2, 3. It is important to point out that other indices labeling the irreps might be
hidden for simplicity, or they can be encoded in the notation. For instance, the Higgs and the
left-handed fermions are explicitly written in terms of SU(2) doublets. The Hc represents
the charge-conjugate doublet, which has hypercharge −1

2 , although this still transforms under
the fundamental representation of SU(2). The Higgs sector will be treated more in-depth
later.

The SM model Lagrangian (3.2) contains in total 182 physical parameters [101]. The
Lagrangian may be parameterized in different ways, however, the number of physical pa-
rameters does not change. Most of those parameters come from the breaking of the flavor
group. In general, on can relate the number of physical parameters to the number of broken
generators of the flavor group by Nphys = Ngeneral −Nbroken. Each class of Yukawa coupling
contains 18 general real parameters, while the number of generators of the U(3) Lie group is
9. From this is concluded that the flavor sector contributes to 54 − (45 − 4) = 13 physical
parameters, which are often chosen to be 3 lepton masses, 6 quark masses, and 4 parameters
(3 mixing angles and one phase) in the Cabibbo-Kobayashi-Maskawa (CKM) matrix [102].
The 5 remaining parameters are simply the 3 gauge couplings and the 2 parameters in the

1One may also include total derivatives of the form g2Θ
32π2 εµνρσX

aµνXaρσ for the three gauge fields, but it
turns out that only one of those has physical implications.

2Without considering the parameter related to the strong CP problem.
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Higgs sector (the Higgs mass and the strength of the self-interaction). All those 18 param-
eters can not be rotated away by performing phase transformations or flavor rotations, so
they are said to be physical. There is an additional parameter that is often included, the
strong CP angle ΘQCD. This has not been included in the classical analysis above since it
is a result of a quantum anomaly. As said before, the anomalous symmetries are not a real
symmetry of the theory, so they should be excluded from the classical counting. In QCD, the
axial symmetry U(1)A is anomalous, and that was a matter of discussion during many years
turning into the strong CP problem [103–105] (see Subsec. 3.1.2.6).

3.1.1 The Standard Model Higgs Boson

Unfortunately, nature does not exhibit having all the symmetries that are often im-
posed on the models describing it. That forced physicists to have to resort to mecha-
nisms that allowed to break the symmetries that were assumed a priori, and which are
not present in the universe that is currently described. That is the case of the untouchable
gauged symmetry in the electroweak sector of the SM, which becomes apparently broken
SU(2)L × U(1)Y → U(1)EM by having the bosons W± and Z0 a mass, in the same way as
the fermions do. Already in the previous chapter, it was seen how the Higgs mechanism
allows a spontaneous breaking of the symmetry (Subsec. 2.4.3.2) by circumventing the Gold-
stone’s theorem with the incorporation of locality. In the SM, the scalar SU(2) doublet has
the exact quantum numbers to perform two fundamental functions, induce the EWSB and,
as a consequence, generate masses for the fermions. But the significance of the Higgs is not
limited to that only. Without the Higgs boson, perturbative unitarity would be lost at high
energies [106], and the quantum corrections to the gauge boson self-energies would acquire
large divergences. Moreover, with the addition of a scalar particle with a mass around the
electroweak scale, the Standard Model is theoretically consistent and can be extrapolated up
to very high energy.

For many years, the absence of experimental evidence of the existence of such a particle
made many scientists worry. But all those concerns vanished when in July 2012 the ATLAS
and CMS collaborations announced the discovery of a Higgs-like particle with a mass around
125 GeV [7, 8]. That breakthrough has been considered a historic step in the understanding
of nature. Since then, many experimental results have shown that the particle behaves like
the SM Higgs boson, having spin 0 and positive parity, and making it the only elementary
scalar particle observed in nature [107–109]. However, more studies are needed to verify with
higher precision that the discovered particle has all of the properties predicted, or whether,
it is hiding some features of physics beyond the SM.

The way in which the Higgs mechanism is applied to the case of the EWSB, and the
associated mass generation process in the SM context will be reviewed in the next subsection.
The standard electroweak theory was first formulated in this way, independently, by Weinberg
in 1967 [110] and by Salam in 1968 [111].

3.1.1.1 Breaking the SU(2)L × U(1)Y Symmetry

It is worth ascertaining first that the properties of the Higgs field have to be the ones shown
in Tab. 3.1. In order to spontaneously break the internal symmetry without spoiling Lorentz
invariance, the field can not be other than a scalar with a non-zero vacuum expectation value
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Chapter 3. Higgs Physics within and beyond the Standard Model

(v.e.v.). Now, due to the fact that only an EWSB is present, i.e. the symmetry of the strong
sector remains intact, the Higgs field must carry no color charge and therefore, transform
trivially under SU(3) rotations. Before the EWSB, the SM Lagrangian must be invariant
under the complete gauged symmetry group. So, in order to produce invariant Yukawa
terms, the fermionic SU(2) doublets QL and LL must be coupled to another doublet3, which
should be, in this case, the Higgs field. Furthermore, the U(1)Y invariance must be respected
in the Yukawa sector as well, which along with the fact that after the EWSB the electric
charge conservation (U(1)EM symmetry) must hold exactly, supplies the Higgs with a value
of hypercharge equal to +1

2 . The labeling (Y ) of the U(1)Y representation is related to that
of the U(1)EM representation (Q) through the eigenvalues of the diagonal weak isospin SU(2)
generator (I3) via Q = Y + I3. This allows representing the Higgs doublet as

H =

h+

h0

 = 1√
2

h1 + ih2

h3 + ih4

 , (3.3)

where each component hi refers to a real field.

Now, the spontaneous breaking of the symmetry is caused by the Mexican-hat-like po-
tential (second term of the last line in Eq. (3.2)), which presents a minimum at values of
hi displaced from zero, as illustrated in Fig. 3.1. Therefore, as explained in Subsecs. 2.4.3.1
and 2.4.3.2, any choice of a vacuum will break the symmetry and will generate massive modes
called Higgs bosons. As it is easy to check, the breaking SU(2)L × U(1)Y → U(1)EM com-

Re(φ)
Im(φ)

V (φ)

Figure 3.1: Illustration of a Mexican-hat-like potential, in this case, for a hypothetical U(1)
symmetry that breaks upon selection of a vacuum state.

prises k = 3 broken generators, so only one generator will remain unbroken giving rise to one
Higgs boson: the SM Higgs boson. By choosing the unitary gauge h1 = h2 = h4 = 0, and

3Rather to a conjugate doublet, but in SU(2) they furnish the same irrep, see Subsec. 2.2.3.1.
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writing h3 = v + h(x), the vacuum state reads

H0 = 1√
2

 0

v + h(x)

 , (3.4)

with v being the v.e.v.. The field h(x) is part of the real component of the neutral complex
scalar h0, so it carries no electrical charge and is CP-even. It is easy to verify that the
three SU(2) generators (2.23), along with the hypercharge generator, rotate the vacuum
state (3.4) to another non-null state. However, the combination Q = Y + I3 rotates H0
to the null state since the vacuum has been chosen to be neutral. This means that only
three physical states out of the four initial gauge bosons (W1, W2, W3 and B) can acquire a
mass through the Higgs mechanism. The three massive gauge bosons emerge from two linear
combinations of W1 ↔ W2 and one linear combination of W3 ↔ B. The other component
(also a mixture ofW3 ↔ B) remains massless, which is interpreted as a gauge boson associated
with the invariance of U(1)EM . All this can be seen explicitly if the last two lines of the
Lagrangian (3.2) are expressed in terms of the vacuum state, yielding

L
((((((
SU(2)L×U(1)Y

= 1
2∂µh∂

µh− λv2h2 − λvh3 − λ

4h
4

+ 1
8(v + h)2[g2

2(W 1
µ − iW 2

µ)(W 1µ + iW 2µ) + (g1Bµ − g2W
3
µ)2]

− 1√
2

(v + h)[Y mn
(d) d̄

m
L
dn
R

+ Y mn
(u) ū

m
L
un
R

+ Y mn
(e) ē

m
L
en
R

+ h.c.].

(3.5)

The first line in the above expression contains terms involving only the Higgs boson field,
namely the kinetic part, the mass term with mh =

√
2λv, and the Higgs self-couplings. The

second line includes the Higgs couplings to gauge bosons, and the relevant mass terms for
the vectors. It can be noticed there that the two components W 1

µ and W 2
µ do not mix with

any other, so it is suitable to redefine the fields as W±µ ≡ 1√
2(W 1

µ ± iW 2
µ) in order to make

them match the irrep of the unbroken U(1)EM group. Those are the W± bosons, which have
received a longitudinal third-polarization component thanks to the EWSB, thus becoming
massive vector fields with mW± = g2v

2 . The third massive vector field is the one given
by the linear combination Z0

µ ≡ W 3
µ cos θW − Bµ sin θW , where θW is called weak-mixing

(Weinberg) angle, and is defined through the relation tan θW = g1
g2
. The mass of the Z0

vector boson is mZ0 = v
2

√
g2

1 + g2
2. The final mass eigenstate A0

µ ≡ W 3
µ cos θW + Bµ sin θW

is just the combination orthogonal to Z0
µ. This field does not possess a mass term in the

Lagrangian (3.5), thus becoming the massless photon field. Finally, the last line in Eq. (3.5)
comprises the interaction of the Higgs boson field with the fermions, as well as the mass
terms for these. The fermion mass terms induced by the Yukawa couplings are, in general,
not diagonal in the generation indices m,n. Nevertheless, they may be diagonalized to
diag(f1

(·), f
2
(·), f

3
(·)), with (·) = {(d), (u), (e)}, and fn(·) being real and non-negative, which

results in fermion masses of the form mn
(·) = 1√

2f
n
(·)v.

As already mentioned in the above discussion, the Lagrangian (3.5) also sheds light on
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Chapter 3. Higgs Physics within and beyond the Standard Model

the different ways in which Higgs interacts with the rest of the particles and itself. The
Higgs self-interaction comes from the cubic and quartic terms in h grouped in the first line
of Eq. (3.5). The interactions of the Higgs field with the gauge bosons are generated by
expanding the factor (v + h)2 in the second line. The Higgs couplings to fermions is due
to the last term in the Lagrangian involving the Yukawa sector. A summary of the various
couplings discussed can be seen in Fig. 3.2. The figure is a diagrammatic illustration of the
different types of interactions at tree-level in which the scalar particle is involved.

h

Vµ

Vν

2i
m2

V

v g
µν

h

h

Vµ

Vν

2i
m2

V

v2 g
µν

(a)

h

f

f̄

−i
m
f

v
(b)

h

h

h

−3i
m2

h

v

h

h

h

h

−3i
m2

h

v2
(c)

Figure 3.2: Representation in terms of single-vertex Feynman diagrams of the Higgs cou-
plings to gauge bosons ((a), with Vµ = W±µ , Zµ), couplings to fermions ((b), with f =
u, d, c, s, t, b, e, µ, τ), and its self-couplings (c).

3.1.1.2 Higgs Collider Phenomenology

Nowadays all the masses of the gauge bosons, the charged fermions4, and the Higgs itself
are known, so this knowledge can be exploited to detect any possible deviation from the
theoretical predictions within the Higgs sector. Such hypothetical incompatibility would
mean that some other effects not contained in the SM framework would be taking part in
the physics, therefore, it would justify the construction of models beyond the SM (BSM).
At the LHC, an extensive program intended to measure the properties of the new particle
found by ATLAS and CMS has been set up. So far, all the data show consistency with
the SM Higgs hypothesis, although many more collisions are needed to precisely determine
whether the nature of the 125 GeV particle is SM-like or not. Among those measurements is
the one of the Higgs boson mass [113–115]. The mh parameter enters in the calculations of
observables such as the production cross-section and the partial decay widths [116], and its

4Due to confinement [112], the masses of the quarks cannot be measured directly. However, they can be
inferred from the study of hadronic properties provided that one sticks to a particular renormalization scheme
(Subsec. 2.4.4.2).
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Figure 3.3: Representative diagrams for the four dominant Higgs production modes (a) ggF,
(b) VBF, (c) VH and (d) ttH.

precise determination is crucial for measuring the couplings. On the other hand, constraints
have been set on the Higgs boson decay width [117–119], as well as on its spin-parity nature
[120, 121]. Other parameters, like the couplings of Higgs with the rest of particles, have
been widely tested and all show compatibility with the SM predictions [109, 122–126]. In
particular, there has recently been evidence of the Higgs-boson Yukawa couplings with the
third generation of fermions [127–132].

All the previous results were obtained in the context of proton-proton collisions at the
LHC, where physics is highly dominated by QCD processes. The fact that protons are bound
states of quarks and gluons, together with the strong coupling being the largest one at the
common energy scales in hadron colliders, drastically favors the production of color-charged
particles over EW-only interacting particles at such experimental facilities. That is something
that directly affects the Higgs boson production at the LHC; loosely speaking, one needs to
collide 1 billion protons to produce a Higgs boson. The main production mechanisms at
the LHC are gluon fusion (ggF), vector-boson fusion (VBF), associated production with a
gauge boson (VH), and associated production with a pair of tt̄ quarks (ttH). Their respective
leading order Feynman diagrams can be seen in Fig. 3.3. At tree-level, the SM Higgs couples
to SM particles in proportion to their masses, so there is no such coupling to gluons due to the
colorless nature of the scalar. In the case of proton valence quarks u and d, their small Yukawa
couplings, along with the parton distribution function suppression for anti-quarks, reduce the
possibility of having a Higgs out of these. This leads to the most predominant process being
the one mediated by the exchange of a virtual heavy top quark, the ggF. The cross-section
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of this process has been calculated at the next-to-next-to-next-to-leading order (N3LO) in
QCD and NLO in EW corrections [116]. The next most significant production mechanism at
the LHC is VBF, where quarks from both protons radiate each a vector boson that combines
with the other to form a Higgs boson. The radiated-off Higgs boson is accompanied at least
by two quarks that generally form back-to-back jets. The computations of the VBF cross-
section have reached the precision of NNLO in QCD and NLO in EW corrections. The
third most important contribution is due to the VH production mechanism, also known as
Higgs-strahlung. The EW production of a W or a Z boson via the interaction of two quarks
from the protons can give rise to the radiation of a Higgs with another vector boson through
the interaction vertex shown in Fig. 3.2 (a). This process is in general very clean, as it
is dominated by the EW physics, which decreases the probability of having agglomerated
multi-jets signatures in the detectors. In recent publications, the full QCD corrections up to
NNLO order and the NLO EW corrections have been taken into account to compute both
the ZH and the WH cross-sections. Finally, the process with the smaller cross-section, out of
the four mentioned, is the ttH, which makes use of the top-quark-Higgs coupling to produce
a scalar boson in association with a tt̄ pair. The large dependence of the cross-section on the
renormalization scale for ttH makes this theoretical calculation very challenging. So far, a
precision of up to NLO in both QCD and EW radiative corrections has been achieved. The
Tab. 3.2 presents a summary of the cross-section values of the four main production modes,
and in Fig. 3.4 (left), one can see the dependence of these on the centre-of-mass energy for
mh = 125 GeV. The Higgs particle is also very unstable, decaying into other particles almost

Table 3.2: The SM Higgs boson production cross-sections in pp collisions at
√
s = 13 TeV

for the four main production processes [6].

Production cross-section (in pb) for mh = 125 GeV in pp collisions at
√
s = 13 TeV

ggF VBF WH ZH ttH

48.6+5%
−5% 3.78+2%

−2% 1.37+2%
−2% 0.88+5%

−5% 0.50+9%
−13%

immediately (the average lifetime is τh ≈ 16 × 10−23s [133]). Then, it is not only necessary
to copiously produce the boson in particle accelerators to detect it, but the state must also
be reconstructed from its final decay products. In order to determine the final states which
the boson is more likely to decay into, the partial widths for all possible decays need to
be known. Having already measured the remaining unknown parameter (mh) of the Higgs
sector, all the partial widths are exactly predicted within the SM theory. The predictions
for these decay widths (or branching ratios) are very important in the analysis of the LHC
Higgs data since what is measured is the multiplication of the production and decay rates in
individual channels σiBi. The measurements of the branching ratios also constitute a way to
test the SM nature of the Higgs boson. In the case of Higgs decays to fermion pairs, the ones
to the heaviest kinematically allowed fermion final states will have the largest partial widths,
as the Higgs-fermion interaction strength is proportional to the fermion mass. Therefore, in
the SM with mh = 125 GeV, the most dominant fermion final states are bb̄, τ τ̄ and cc̄, as
the decay to tt̄ is pretty off-shell for this mass. The leading-order expression for the h→ ff̄
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Figure 3.4: The SM Higgs boson production cross sections (left) as a function of the center-
of-mass-energy [116], and the branching ratios (right) as a function of the mass [135].

partial decay width is [134]

Γ(h→ ff̄) = Nc

8π
m2
f

v2 mh

[
1−

4m2
f

m2
h

] 3
2

, (3.6)

where the color factor is Nc = 3 for quarks and Nc = 1 for leptons. The current numerical
predictions [135] include QCD corrections up to N4LO, and NLO precision in the case of
electroweak quantum effects. The decay of Higgs to gauge bosons is quite significant as well,
and it is evidenced through the three-body and four-body decays, where one or both of the
vector bosons are off-shell respectively. The h → V V → ff̄f f̄ decay is currently known
up to NLO in QCD and electroweak quantum corrections including all interferences [134].
In particular, the decay of h → W ∗W possesses the second largest branching fraction after
the h → bb̄. There also exist loop-induced decays of the Higgs boson, such as h → gg,
h → γγ, and h → Zγ. They are not so frequent but they have special features that make
them important. For instance, the h → γγ decay is observed with a very clean signature in
the detectors, which gave it the possibility to become one of the two Higgs boson discovery
channels. The h→ gg decay is dominated by the top quark loop, whereas the other two are
dominated by a W boson loop. The loop induced decays of the SM Higgs are known at NLO,
nevertheless, some of them have been calculated beyond that order [6]. The SM predictions
for the branching ratios of the different decay modes of the Higgs in a low mass interval can
be observed in Fig. 3.4 (right).

Although the measurements of the Higgs properties are becoming increasingly accurate
due to the amount of data delivered by the LHC, there is still room for the existence of BSM
processes in the physics of the Higgs sector. The estimations of some of the parameters have
reached the percentage level, however, other measurements are far from completely excluding
models with more than one scalar particle, or simply with a non-SM interpretation of the
125 GeV Higgs boson. This fact, along with many other shortcomings of the SM that will
be addressed in the next subsection, constitutes one of the main motivations to investigate
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possible BSM scenarios comprising a new Higgs sector.

3.1.2 The Standard Model Weaknesses

Even though the SM presented above has been a remarkably successful theory, it is far
from being a complete description of nature. It has been said repeatedly that there is no
confirmed experimental evidence against the SM, and the recent discovery of Higgs came
to reaffirm that. However, the SM is theoretically very unsatisfactory, and not only that,
there are many experimental pieces of evidence that point to a post-SM theory. Even if one
accepted the odd group structure it possesses, there would not still be an explanation for
having at least 18 unknown parameters in a fundamental theory. Many other limitations like
this will be addressed below.

3.1.2.1 Absence of Gravity

As one can easily tell, the SM does not include gravity. Trying to build a QFT of
gravity [136] to incorporate it into the SM eventually leads to a non-renormalizable theory,
due to the spin-2 structure of the metric tensor [137]. The interaction of the “graviton” with
the stress-energy tensor of the matter fields would produce irrelevant operators, making then
impossible the application of renormalization procedures (Subsec. 2.4.4.2). But the need of
reconciling general relativity with quantum mechanics has pushed forward the emergence
of completely new theories such as string theory [138, 139], while other theories, like loop
quantum gravity [140], have taken the path of keeping the gravitational force separated from
the other three. The basic idea of string theory is to put aside the concept of point-like
objects (particles), and replace it with new extended one-dimensional entities called strings.
On the other hand, loop quantum gravity attempts to give a discrete description of the space-
time by imposing a quantization on it, then turning it into a network (spin network) made
out of loops. One of the problems more difficult to overcome when formulating a quantum
theory of gravity is that such gravitational effects occur at energies near the Planck scale
(ΛP ∼ 1019 GeV), energy far beyond the reach of modern accelerators, thus putting in risk
the falsifiability of those theories.

3.1.2.2 Dark Matter and Dark Energy

Cosmological observations [141, 142] suggest that the SM explains only about 5% of the
energy present in the universe, and about 26% should be dark matter, which is not included
in the SM. There are not enough hints to provide an explanation of how this dark matter
interacts, if it interacts, with the ordinary matter contained in the SM. If dark matter exists,
it must barely interact with ordinary baryonic matter and radiation. Models are proposing
that the dark matter is a weakly interacting massive elementary particle [143, 144] that has
not yet been discovered, but anyways, this particle does not exist in the SM, so it must be part
of a BSM theory. Many efforts have been done in order to provide a dark matter candidate
within supersymmetric theories [145, 146], but the results from dark matter experiments, as
well as the lack of supersymmetric partners in LHC searches, are destroying the last hopes.

In addition to the problem of dark matter is the dark energy mystery. Observations
indicating that the universe is expanding began to be explained by the presence of a dark
energy filling the space homogeneously [147, 148]. According to experiments, this energy
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should make up 69% of the total energy of the universe. In particle physics terms, the dark
energy is interpreted as the vacuum energy, which would imply that the non-zero vacuum
provided by the SM should match the value of the effective vacuum energy, directly related
to the Einstein cosmological constant [149]. It turns out that the mismatch can be as large
as 120 orders of magnitude.

3.1.2.3 Neutrino Masses and Mixing

According to the standard model, neutrinos are massless particles. However, neutrino
oscillation experiments [150–152] have shown that neutrinos do have mass and they mix
[153, 154]. They have to be massive so that the phases propagate differently and, therefore,
generate a change in the flavor eigenstate (linear combination of the mass eigenstates). They
have to mix since otherwise, flavor eigenstates are also eigenstates of the Hamiltonian and
do not evolve. Due to mixing, neutrino oscillations violate the flavor lepton number. If
neutrinos are Dirac particles [155, 156], the SM could be easily extended by adding a right-
handed neutrino that would allow generating a Dirac mass via a Yukawa-like coupling (at
least 7 more parameters). However, according to upper bounds on neutrino masses [157], this
Yukawa coupling must be extremely tiny compared to other fermions, which many theorists
consider unsatisfactory. On the other hand, if neutrinos are Majorana particles, their masses
could arise as an effective realization of a higher-energy theory, as proposed in the different
models based on the well-known see-saw mechanism [158,159].

3.1.2.4 Matter-Antimatter Asymmetry

It is evident that our universe (as far as it can be seen) consists predominantly of mat-
ter and not antimatter. There is a clear asymmetry between the number of baryons and
antibaryons, which implies that something must have happened in order to generate that im-
balance. Sakharov proposed [160] a set of necessary conditions that interactions must satisfy
to produce such asymmetry. It should include baryon number B violation, C-symmetry and
CP -symmetry violation, and be out of thermal equilibrium. In principle, all three Sakharov
conditions are satisfied in the SM. The B violation can be obtained with the hypothesized
Adler-Bell-Jackiw anomaly in electroweak interactions [161], the CP -violation is present in
the CKM matrix, and the fact that the universe is expanding (non-zero vacuum) makes pro-
cesses go out of equilibrium. However, no experimental evidence of sphalerons [162] has yet
been observed [163], the amount of CP -violation in the SM is not enough to account for the
measured baryon asymmetry, and the universe is not sufficiently out of equilibrium [164].
All the above said essentially means that there is no known mechanism in the SM able to
generate the total amount of baryon asymmetry required, so it is mandatory to go beyond.

3.1.2.5 The Hierarchy Problem

Among the theoretical problems is the so-called hierarchy problem of the electroweak
scale. From the EFT point of view, the SM is a low energy description of a more fundamental
theory that is defined at some high energy scale (∼ ΛP ) and, therefore, it should be valid up
to that scale [165]. If the SM is the only physics present up to such scale, the renormalization
machinery should be treated accordingly, and all the parameters should get contributions
up to ΛP . But it happens that the masses of scalar fields (relevant operators) receive large
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additive quantum corrections, namely corrections proportional to ΛP [166]. So, it seems
unnatural to have light scalars in the low energy effective theory, as their masses would have
to be very fine-tuned. This is the case of the SM Higgs boson with an EW-scale mass, for
which, at scales Λ >> 1 TeV, there must be a cancellation of several orders of magnitude to
reproduce the observed mass of 125 GeV.

This was part of the great enthusiasm of being able to enter into the TeV scale since a
theory like the SM based on a scalar Higgs is either correct and, there is new physics at the TeV
scale that makes the small mass natural, or something more exotic than a simple scalar Higgs
is responsible for EWSB. Several theories are proposing a solution to the hierarchy problem
such as supersymmetry [167], composite Higgs models [168], the anthropic principle [169],
and the relaxation mechanism [170], just to mention a few. Some of those will be treated in
more detail in the next section.

3.1.2.6 The Strong CP Problem

Another problem related to fine-tuning is the already mentioned strong CP problem [171].
Historically, this problem appeared as a consequence of a solution to the U(1)A problem [172].
The dilemma was given to the impossibility to explain the physical absence of the η′ me-
son; a Goldstone boson (Subsec. 2.4.3.1) engendered from the spontaneous breaking of the
global U(1)A symmetry by the quark condensate. One of the solutions to this problem
was the introduction of “instantons” [173, 174], but this allowed the presence of an addi-
tional term in the Lagrangian (∼ ΘQCD F̃

a
µνF

aµν) that violated CP . The CP -violating term
raised another issue, the observed tiny value of ΘQCD . The term contributes to observables
such as the neutron electric dipole moment, whose measurements imposed an upper limit of
ΘQCD . 10−10 [104, 175]. The unnaturalness of ΘQCD afflicts QCD, as there is no plausible
theoretical explanation within the SM framework to the fact that the strong sector preserves
the CP -symmetry. The most well-known solution to the problem is the Peccei-Quinn the-
ory [176]. In this model, ΘQCD is replaced by a dynamical field that can relax to zero giving
rise to a very light pseudoscalar particle called the “axion” [177,178].

3.2 Higgs Beyond the Standard Model

It is clear from the last section that the SM is not enough to describe all the physical
phenomena occurring in the universe. The SM is also far from being a “theory of everything”,
where, in some way, the interactions known can be unified and described under the same
formalism. There are countless new models that partly modify the SM structure or completely
change its theoretical basis in order to get closer to a more faithful description of reality.
Some of those trying to solve part of the problems encountered in the SM were mentioned
in Subsec. 3.1.2. The Higgs sector gets particularly impacted in some of the BSM theories,
typically in those addressing the hierarchy problem (Subsec. 3.1.2.5). Other models propose
that the Higgs field could provide a portal to dark matter [179], or may help to generate
electroweak baryogenesis of sufficient amount to explain the baryon asymmetry [180]. These
assumptions would be reflected as either a modification in the interactions and properties
of the 125 GeV Higgs boson or in the existence of additional scalars in the theory. All that
constitutes a huge motivation to look for new physics in the Higgs sector. In this section, the
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most interesting models that provide an incentive for searches such as the one presented in
this thesis will be reviewed.

3.2.1 Supersymmetric Models

In chapter 2, the relevance of symmetries when labeling particles and determining the
interactions among them was stressed. In the second half of the 20th century, scientists
started to wonder whether it was possible to add new fashions to the symmetry group of a
QFT. However, a very restrictive theorem derived by Coleman and Mandula [181] came up
to prove that it was only possible to combine external and internal symmetries in a trivial
manner, Poincaré ⊗ Internal, i.e. without mixing them. So, no new extravagant symmetry
could be imposed on a system unless the Poincaré or the internal Lie groups were individually
redefined. Then, physicists realized that a way around the theorem would be to “augment”
the Lie algebra of some of the components. Indeed, that was what Golfand and Likhtman
proposed for the external component of the symmetry group [182], a gradation of its Lie alge-
bra to also include fermionic generators. In mathematical terms, this is understood through
the formalism called graded Lie algebras [183], and the particular case concerning supersym-
metry (Z2 gradation) is known as Lie superalgebra. The above means that the Lie algebra
(Subsec. 2.2.2.2) is no longer necessarily commutative, but it can also have anticommutation
relations between generators. This powerful tool led Wess and Zumino to formulate the first
4-dimensional supersymmetric field theory (SUSY) in 1974 [184]. The following subsection,
meant to review some basic aspects of SUSY, is mainly based on the references [11,185–189].

3.2.1.1 The Supersymmetric Algebra

In standard supersymmetry, there are two fermionic generators Qα and Q̄α̇, corresponding
to the two irreps (1

2 , 0) and (0, 1
2) of SL(2,C)5 in Tab. 2.2, being α = 1, 2 (α̇ = 1, 2) spinor

indices. The graded Lie algebra of the Poincaré group in SUSY is obtained by complementing
the algebra in Eq. (2.40) with

[Qα,Mµν ] = i(σµν)βαQβ, [Qα, Pµ] = [Q̄α̇, Pµ] = 0,
(3.7)

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0, {Qα, Q̄β̇} = 2(σµ)αβ̇Pµ,

where σµ = (I2, σ
i), and σµν = 1

4(σµσ̄ν − σν σ̄µ). Now, since the Coleman-Mandula theorem
alludes only to bosonic generators commuting with internal symmetry generators, there is no
restriction on possible non-vanishing relations between Qα (Q̄α̇) and the internal generators.
It turns out that there exists one symmetry, called R-symmetry (U(1)), whose generator
has a non-trivial commutation with the fermionic generators, namely [Qα, R] = Qα and
[Q̄α̇, R] = Q̄α̇.

Later, the new graded algebra should, in general, generate different Casimir operators
compared to the ones in the nominal Poincaré group. In fact, the second Casimir (C4) in
Eq. (2.41) is not a Casmir operator of the SUSY algebra6, which means that the irreps of
the superalgebra are in principle different from the irreps of the standard Poincaré group.

5Note the analogy with Pµ ↔ ( 1
2 ,

1
2 ) and Mµν ↔ (1, 1)A .

6The new Casimir is given by C̃4 = CµνC
µν , with Cµν = OµPν −OνPµ and Oµ = Wµ − 1/4Q̄α̇(σ̄µ)α̇βQβ .
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The quantum number associated with the new Casimir invariant is called superspin, which
along with the other Casimir operator, allows labeling the SUSY irreps, the supermulti-
plets. It can be proven that in those multiplets the number of bosons and fermions must
be the same. In order to construct unitary representations of the super Poincaré group,
it is necessary to proceed similarly to the way Wigner did, that is, making use of the in-
duced representation method (Subsec. 2.2.3.3). As in the standard case of the Poincaré
group, two concrete types of representations make up the spectrum, the massless and the
massive representations. For the massless multiplet, both Casimir invariants vanish, so the
supermultiplet is represented by {|pµ,±λ〉 ; |pµ,±(λ+ 1

2〉}, where λ is the helicity. The two
more relevant supermultiplets are the chiral multiplet with λ = 0, containing the scalars
and helicity-1

2 fermions, and the vector multiplet λ = 1
2 , including helicity-1

2 fermions and
helicity-1 bosons. In the massive case, the multiplets are labeled by |m, y〉, and comprise the
states {2 × |m, j = y, pµ, j3〉 ; 1 × |m, j = y + 1

2 , p
µ, j3〉 ; 1 × |m, j = y − 1

2 , p
µ, j3〉} for y 6= 0,

where j denotes the spin. The case with y = 0 is a bit different but follows the same logic.

3.2.1.2 Constructing Superfields

Identically to the non-supersymmetric case, the construction of fields that later undergo
quantization and generate the field quanta is essential. According to the exponential mapping
(Subsec. 2.2.2.1), the most general element of the super Poincaré group will be determined by
an exponentiation of a linear combination of the group generators accompanied by continuous
parameters. Therefore, the new generators Qα (Q̄α̇) must also have parameters associated
with them. However, these parameters have to behave like Grassmann variables θα (θ̄β̇), due
to the fermionic nature of the supersymmetry generators. The space generated by the space-
time coordinates plus the additional Grassmann variables is known as superspace. Superfields
are then constructed as entities depending on the coordinates of the superspace. Having
functions depending on Grassmann variables provides the ease that they can be expanded in
powers of θα and θ̄β̇, as showed in Eq. (2.66). Then, the most general superfield Φ(x, θ, θ̄)
has a finite number of θ/θ̄ terms, and can be written as

Φ(x, θ, θ̄) = C(x) + θψ(x) + θ̄ψ̄′(x) + (θθ)M(x) + (θ̄θ̄)M ′(x)

+ (θσµθ̄)Vµ(x) + (θθ)θ̄λ̄′(x) + (θ̄θ̄)θλ(x) + (θθ)(θ̄θ̄)D(x),
(3.8)

where [ψ, ψ̄′, λ, λ̄′] are two-component spinor fields, [C, M , M ′, D] are scalar fields, and V
is a vector field. Due to the fact that the expression (3.8) has been obtained by applying an
expansion in θ/θ̄ only, it is clear that Φ(x, θ, θ̄) does not have necessarily to be an irreducible
representation of SUSY. The way to decompose Φ(x, θ, θ̄) into irreducible parts is to impose
supersymmetric invariant constraints on it. By doing so, one gets a group of superfields that
can be used to construct Lagrangian superfield theories. One of those is the so-called chiral
superfield, which is obtained by imposing D̄α̇Ψ = 0, where D̄α̇ ≡ ∂̄α̇ + iθβσµβα̇∂µ; analogously,
the anti-chiral superfield DαΨ′ = 0. These two are commonly reserved to represent the SM
fermions and their associated scalar supersymmetric partners, sfermions. Another important
superfield is the real (vector) superfield, obtained by the restriction V = V†, and which
typically incorporates SM gauge bosons and their superpartners, gauginos.

The above-mentioned superfields can serve to build renormalizable (mind
∫
d4xd4θ) gauge
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theories, in a pretty similar way to the non-supersymmetric case. SUSY is just an extension
of the external symmetry group, so for a supersymmetric realization of a gauge theory, the
internal symmetry group subject to gauging remains intact. One of the most cumbersome
parts when building such theories is the breaking of supersymmetry. Until the present day,
no experiment has observed the presence of the equally massive superpartners of the SM
particles, which requires a breaking of the assumed SUSY. That makes these theories even
more crowded in terms of unpredicted parameters. Nevertheless, SUSY gives an elegant
solution to some of the problems attached to the SM.

3.2.1.3 The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is a supersymmetric extension
of the SM that incorporates the minimum number of new particles in the theory keeping the
same internal group. All the fermionic fields of the SM are promoted to a chiral superfield
transforming under the same irreps of the group SU(3)C × SU(2)L × U(1)Y . As mentioned
before, the chiral superfield also incorporates the superpartner of the quarks and leptons,
which are respectively called squarks and sleptons. Accordingly, each gauge boson field of
the SM is promoted to a vector superfield containing the gauge bosons and the gauginos. The
three types of gauginos are the gluinos (SU(3)C), the winos (SU(2)L) and the bino (U(1)Y ).
But the biggest change is observed in the Higgs sector, since now the scalar doublet field
is replaced by two chiral superfields. The presence of a second Higgs doublet increases the
number of physical states to 5, as they comprise 8 degrees of freedoms instead of 4 like in the
SM.

Before briefly discussing the Higgs sector in the MSSM, it is worth mentioning the impact
of the R-parity on this. It was seen how in the SM the conservation of the baryon and
lepton numbers arises naturally. However, in the MSSM one must enforce this conservation
by imposing the R-parity symmetry (R = (−1)L+3B+2S), which basically confers to the SM
particles the quantum number R = 1, and to their superpartners the value R = −1. This
brings an important phenomenological feature, namely that sparticles are always produced
in pairs, thus ensuring that the lightest one (called LSP and a good dark matter candidate)
is stable. Typically, the LSP is neutral, a property that makes it pass through the detector
materials undetected. This is reflected as a “missing energy” signature, which is one of the
common ways to search for SUSY.

There are mainly two reasons for having two SU(2) Higgs doublets in SUSY. The first one
has to do with the fact that SUSY requires the presence of holomorphy in the Lagrangian,
due to some non-renormalization theorems [190], which precludes the presence of a chiral
complex conjugate field. The presence of a complex conjugated Higgs field was what made
possible to give mass to both up-type and down-type quarks in the SM Lagrangian employing
only one scalar field. However, now in the framework of SUSY, an additional chiral superfield
must be added, if the aim is to provide a mass term for both types of fermions via Yukawa
couplings. The distinction between the two doublets would be given by the hypercharge
quantum number, one would be charged under Y = 1

2 , whereas the other would have Y = −1
2 .

The second argument comes from the triangular Feynman diagram anomalies [191], the ones
that are driven by a chiral fermion running in the loop. In the SM, this type of anomalies
cancel, as the inclusion of a scalar field like the Higgs does not contribute to the anomaly.
In the MSSM, they also cancel in the gauge sector, but since chiral superfields are now the
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field entity, the inclusion of a Higgs superfield would bring a new fermion (higgsino) to the
particle content, thus causing some troubles. One way to annihilates its effect is to include
another fermion with opposite hypercharge value, as would happen with the inclusion of a
second chiral superfield. In order to generate the EWSB, both Higgs doublets will get a v.e.v.
(v1 and v2), whose values are going to be constrained by the relation v =

√
v2

1 + v2
2 ' 246

GeV. The five physical states consist of two charged particles, two neutral CP-even particles,
and a neutral CP-odd particle. More details of this type of Higgs sector will be given in the
subsection addressing the two Higgs doublet models, which generalize the MSSM case.

Finally, it is important to highlight the elegant way in which SUSY solves the hierarchy
problem concerning the Higgs boson (Subsec. 3.1.2.5). It was mentioned before that a type of
custodial symmetry, called chiral symmetry, protects the masses of the fermions form getting
large quantum corrections. Due to the fact that SUSY provides a link between bosons and
fermions, it is expected that some of the features involving fermions (like chiral symmetry)
be transferred to the bosons. This is what explains the cancellation of the large corrections
to the Higgs mass. Technically, what happens is that fermions also start to run in the
loop, generating opposite sign terms (with respect to bosons), which makes the quadratic
divergences cancel. The result is that the new physics scale Λ only enters logarithmically.
However, to avoid a considerably large fine-tuning, the masses of some sparticles should be
around the TeV scale. Such particles have not been found yet.

3.2.2 Models with Additional Singlet Scalars

These models are mainly motivated by dark matter considerations, as well as by baryo-
genesis in the electroweak sector [12, 192–194]. In general, one can consider the SM being
extended by the addition of N scalars transforming trivially under the SM internal symmetry
group. Imposing the scalars to transform under the fundamental representation of O(N), and
to have an odd Z2 symmetry ~φ = −~φ among them, produces the potential [192]

V (H, ~φ) = −µ2
HH

†H + λH(H†H)2 + 1
2µ

2
φ
~φ2 + 1

4!λφ(~φ2)2 + λxH
†H~φ2, (3.9)

where H is the SM SU(2) doublet. If 〈~φ〉 = 0, there is no mixing between ~φ and H, so the
mass of the 125 GeV particle (h125) remains unaltered, and its couplings to SM particles are
not modified. However, it turns more interesting for collider physics if the v.e.v. is different
from zero, for which it is necessary to dispense with the global O(N) symmetry to evade the
emergence of massless Goldstone bosons (Subsec. 2.4.3.1).

The above is easily done by promoting the parameters µ2
φ, λφ and λx to tensors with

indices differing for each component of ~φ while keeping the discrete Z2 symmetry, or imposing
a bigger one to reduce the number of free parameters of the theory; for instance [194]

V (H, ~φ) = −µ2
HH

†H + λH(H†H)2 + λijφiφj + λijklφiφjφkφl + λijHHφiφjH
†H. (3.10)

The non-zero v.e.v. makes possible the occurrence of mixing and, therefore, of new mass
eigenstates, being identified one of them with h125. In the literature, one can find the two
simplest cases, namely N = 1 [193] and N = 2 [194]. In both models, the presence of mixing
gives rise to changes in the couplings of h125, which tend to be reduced by the mixing angles.
In the scenario where one of the particles is light enough, the h125 scalar can decay to other
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scalar particles, materializing a non-zero B(h125 → BSM) via the decay h125 → hshs. In
general, the phenomenology of both cases can be regarded as very similar. However, in the
case of N = 2, apart from the h125 → hshs decay, there also are asymmetric decays, where
the h125 decay products differ from one another hs 6= hs′ .

That being so, it is clear that the precision studies at the LHC provide an excellent
way to test these models [195]. The production rates of h125 are affected by the mixing of
the SU(2) doublet with the singlet components, and the possibility of a h125 → hshs decay
could be highly constrained by refined measurements of the h125 couplings. Nevertheless, a
very effective approach is the search for additional light bosons within all possible scenarios,
including also the potential h125 → hshs exotic decay.

3.2.3 Adding a Vector Field

As seen in Subsec. 3.1.2.2, by today, there has not been a measurement that accounts
for a sizable interaction between the ordinary SM matter and the dark matter. This has
motivated the idea that the dark matter sector could be blind to the SM interactions, without
excluding the possible interaction of dark matter with itself [196,197]. A rather inclusive class
of theories with a hidden sector is the so-called “hidden valley” [198–201], in which models
are distinguished by a confining gauge interaction that creates a mass gap into the theory. In
such theories, a very rich phenomenology with regard to the Higgs sector can be integrated,
in particular, the one that has to do with exotic decays of h125.

Perhaps one of the simplest alternatives is to add an extra U(1)D (D refers to dark) in
the gauged group of the SM, allowing a renormalizable kinematic mixing term between the
hypercharge gauge boson Bµ and a new vector field Xµ [202,203]. The mixing does not break
gauge invariance, and its coupling is presumably small to have escaped detection thus far.
The smallness of the coupling would also be beneficial for some freeze-in scenarios of dark
matter [204]. Furthermore, adding the vector field Xµ implies a new contribution to the
anomalous magnetic moment of a lepton. That could potentially help to clarify the observed
discrepancy for the muon [205].

One of the models considers a spontaneously broken U(1)D symmetry, having an addi-
tional Higgs field HD in the hidden sector that couples to the SM Higgs. That is achieved
by including the following Lagrangian to the SM one [206]

LD =− 1
4XµνX

µν + χ

2XµνB
µν

+ (DµHD)†(DµHD) + µ2
DH

†
DHD − λD(H†DHD)2 − κH†HH†DHD.

(3.11)

In the above equation, the SM Higgs is a singlet under U(1)D, and the dark Higgs transforms
as the (1, 0, qD)7 representation under the augmented EW group SU(2)L × U(1)Y × U(1)D.
The U(1)D is spontaneously broken by 〈HD〉 = ξ/

√
2. Due to the tiny value of χ, the mass

of the SM Z boson is nearly unaffected by the kinematic mixing. Besides, the SM photon
remains massless, and the dark photon (dark-Z) Z ′ gets a mass by “eating” the Goldstone
boson associated to the pseudoscalar component of HD (Subsec. 2.4.3.2). In the Higgs sector,
both fields mix because of the coupling through the κ term, producing two massive bosons, one
of them being h125. The H −HD mixing enables the h125 → Z ′Z ′ decay, when kinematically

7Note that Bµ does not have to be U(1)D charged, as the group is abelian (see Sec. 2.4).
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allowed, followed by the consequent decay of Z ′ to SM fermions, if Z ′ is the lightest state in
the dark sector.

The exotic h125 → Z ′Z ′ decay competes with the asymmetric one h125 → ZZ ′ according to
the amount of mixing in the gauge and in the Higgs sector [12]. The mixings are respectively
driven by the coupling parameters χ and κ. If κ� χ, the h125 → Z ′Z ′ tends to dominate over
h125 → ZZ ′. However, if the spectrum of the dark sector is such that the dark massive boson
is below half the h125 mass, the decays of the SM Higgs boson into pairs of light scalars become
highly competitive. On the other hand, the decay of Z ′ to SM fermions is uniquely governed
by the kinematic mixing parameter χ. The interaction term is LI ⊃ gZ′ffZ

′µf̄γµf [12], with
gZ′ff being proportional to χ and to the gauge couplings. This means that the leptonic
branching ratios are nearly the same in the entire kinematic region where Z ′ can decay to
all leptons. Furthermore, the leptonic branching ratios prove to be not negligible at all
in comparison to those of the hadronic modes. For that reason, the exotic Higgs decays
h125 → Z ′Z ′ → 4l, especially those involving muons in the final state, constitute a very
interesting signature for searches at the LHC.

In this context and, despite not being the ideal leptonic decay modes for the model here
discussed (for experimental reasons), the decay channels on which the current thesis focuses
represent an additional possibility for testing the physics behind the dark sector.

3.2.4 Little Higgs Models

The introduction of scalar fields in a Lagrangian is always problematic since its relevant
operators, like those involved in the fields’ masses, always get corrections from the largest scale
in the theory (Subsec. 3.1.2.5). Because of that, some proposals are questioning the point-
like structure of the discovered scalar boson; they are known as composite Higgs models [166,
207,208]. Those models represent extensions of the technicolor theories [209–211]. It is very
well known from the chiral theory of QCD [212, 213] that the approximate chiral symmetry
SU(3)L × SU(3)R (explicitly broken by quark masses) is spontaneously broken down to
SU(3)V via the quark condensate. This gives rise to Goldstone bosons (Subsec. 2.4.3.1) with
small masses called pseudo-Nambu-Goldstone bosons, the eight light pseudoscalar mesons.
In analogy with the QCD case, the composite Higgs models attempt to explain the small
mass of the Higgs by associating it with a pseudo-Nambu-Goldstone boson coming from a
spontaneously broken global symmetry of a new strongly interacting sector. Similarly to
the pion decay constant fπ ≈ 93 MeV, in the chiral theory, the electroweak scale v ≈ 246
GeV would be the parameter of interest in the theory, so the Higgs would reveal itself to be
composite at Λ ' 4πv. In this scenario, the mass of the scalar would not be sensitive to
virtual effects above the Λ ' 4πv scale, hence the reason why the model would not be subject
to the annoying naturalness problem.

To construct such composite models, it is necessary to require the unbroken subgroup H
of the global symmetry group G to contain the SM electroweak group SU(2)L×U(1)Y [166].
However, if that condition is fulfilled, H is an unbroken symmetry, so the EWSB cannot be
accomplished at tree-level. On the other hand, the global symmetry G has to be only approx-
imate to generate a massive pseudo-Nambu-Goldstone boson, therefore, an explicit breaking
has to be introduced through gauge and Yukawa couplings. The quantum effects involving
the symmetry-breaking interactions produce a non-vanishing Higgs effective potential, which
in turn breaks the electroweak symmetry. All this fancy machinery starts to wobble when
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put under test with precision electroweak studies [214], originating a significant splitting be-
tween the compositeness and the EW scale. This little hierarchy problem is overcome within
the framework of the Little Higgs models [215], which introduce the mechanism of collective
breaking [216].

There is a construction called the littlest Higgs model [217] that is considered the smallest
extension of the SM in the context of composite Higgs. In this model, the spontaneous
symmetry is generated via the Lie groups SU(5)/SO(5), which have 24 and 10 generators
respectively. Such breaking structure then provides 14 Goldstone bosons. The explicitly
breaking of the global SU(5) is achieved by gauging (Sec. 2.4) a [SU(2) × U(1)]2 subgroup,
which is then broken down by the condensate to the SM electroweak group. The subsequent
breaking SU(2)L×U(1)Y → U(1)EM occurs by means of a radiative-induced Higgs potential.

Now, due to extrapolations from electroweak precision observables, one of the U(1) gauged
groups has been identified as problematic, so new ideas proposing just to keep the U(1)Y
gauged have shown up [218, 219]. The unwanted extra U(1) group has been conveniently
treated as an explicitly broken global symmetry, thus generating a massive (pseudo-)scalar a
particle [220]. The particle field can be perfectly coupled to the SM Higgs boson (∼ φ2

aH
†H),

by means of which there would be Higgs decays of the form h125 → a a for masses of a below
62.5 GeV. The decays of a to SM fermions have been studied in [219] for a particular model.
For some other scenarios with Yukawa-like couplings, a non-negligible fraction to the a→ ττ

decay mode in the very-low-ma region is conferred.
Although these types of models tend to be extremely complex in terms of new interac-

tions and parameters, they represent another possible alternative to solve the unnaturalness
mystery of the scalar sector. The kind of search carried out in this thesis constitutes one more
chance to detect any potential hint of compositeness in the structure of the Higgs boson.

3.2.5 Two Higgs Doublet Models Plus a Scalar Singlet

Without a doubt, one of the classes of models on which this work has more impact is the
extension of the standard two Higgs doublet model (2HDM) by an additional scalar singlet.
The 2HDMs are a very simple prolongation of the scalar structure of the SM, adding an
extra SU(2) multiplet in the fundamental irrep (Subsec. 2.2.3.1). Such extension is allowed
since it respects the custodial symmetry [6]. The 2HDMs are commonly found in SUSY
(Subsec. 3.2.1), like the already seen MSSM, which is a particular case of a more general
formulation for these models. It was seen in the review of SUSY how adding an extra SU(2)
doublet could solve two problems at once, namely maintaining holomorphy and canceling
anomalies. Another two motivations for 2HDMs come from axion models (Subsec. 3.1.2.6),
which sometimes require at least two Higgs doublets in their field content, and from baryo-
genesis (Subsec. 3.1.2.4), which could be fairly well triggered within the context of these
models [221].

The most general CP conserving scalar potential for two doublets H1 and H2 is [221]

V2HDM = m2
11H

†
1H1 +m2

22H
†
2H2 −m2

12(H†1H2 +H†2H1) + λ1
2 (H†1H1)2 + λ2

2 (H†2H2)2

+ λ3H
†
1H1H

†
2H2 + λ4H

†
1H2H

†
2H1 + λ5

2 [(H†1H2)2 + (H†2H1)2],
(3.12)

where m11, m22, m12, λ1, λ2, λ3, λ4, and λ5 are real parameters. After minimization, the

63



Chapter 3. Higgs Physics within and beyond the Standard Model

two doublets H1,2 get a v.e.v. v1,2, thus propitiating the EWSB. That results in five physical
degrees of freedom (eight in total, minus the three broken generators): two charged mass
eigenstates H±, one neutral pseudoscalar mass eigenstates A, and two neutral scalar mass
eigenstates, H0 and h125. One of the parameters of the model can be taken to be the rotation
angle tan β = v2/v1 that diagonalizes the charged scalar matrix. The neutral scalar matrix
is diagonalized by another angle denoted as α. These two parameters basically describe
the phenomenology of the 2HDMs in terms of couplings of the neutral Higgses with the
other SM particles (the charged scalars are sometimes ignored since they are assumed to be
heavy). Without flavor changing neutral currents (FCNC)8, there are four types of fermion
couplings [12]; those are summarized in Tab. 3.3. Once a type of fermion coupling is given, the

Table 3.3: The four standard types of fermion couplings in 2HDMs without FCNC [12]. Some
of the most used terminologies in the literature have been included.

2HDM up-type quarks down-type quarks charged leptons

Type-I H2 H2 H2

Type-II (MSSM-like) H2 H1 H1

Type-III (lepton-specific) H2 H2 H1

Type-IV (flipped) H2 H1 H2

couplings of the neutral mass eigenstates to SM fermions and gauge bosons are determined in
a two-dimensional phase-space spanned by the parameters α and β. Therefore, the couplings
at tree-level of those interactions relative to the SM values can be expressed as a function of
α and β. In the case of the gauge bosons, the three states couple with a relative strength
equal to sin(β − α) for h125, cos(β − α) for H0, and 0 for A, independently of the 2HDM
type. For fermions, the pattern is more complex, as there is an explicit dependence on both
the type of 2HDM coupling and the type of fermion. A summary based on [12, 221, 223] is
provided in Tab. 3.4.

It turns out that, by now, the 2HDMs are strongly constraint from experimental data
[224–228]. In particular, there is vast evidence suggesting that these variety of models should
be near to the so-called decoupling limit α → β − π/2 [229], where the lightest CP-even
scalar h125 becomes very SM-like, depending all its properties on the parameters α and β for
a given 2HDM type [12]. In this limit, the other massive eigenstates tend to be quite heavy
and decouple from the physics at the lower scale [230]. One can notice in Tab. 3.4, for instance,
how the heavier CP-even scalar H0 decouples from the gauge bosons in that limit, while the
SM-like Higgs boson gets couplings close to the unity. Despite the stringent restrictions on
the 2HDM, there is still enough parameter space to be viable near the decoupling limit.
However, there is another way to provide this class of models with larger flexibility: adding
a complex scalar singlet to the 2HDM

S = 1√
2

(SR + iSI). (3.13)

8Normally, this is achieved by imposing Z2 symmetries in the model [222].
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Table 3.4: Fermionic couplings (up/down-type quarks (u/d) and charged leptons (l)) of the
three neutral mass eigenstates (h125, H0 and A) normalized to those of the SM Higgs in the
four types of 2HDMs [221,223].

Eigenstate Coupling Type-I Type-II Type-III Type-IV

h125

ξuh125
cosα/ sin β cosα/ sin β cosα/ sin β cosα/ sin β

ξdh125
cosα/ sin β − sinα/ cosβ cosα/ sin β − sinα/ cosβ

ξlh125
cosα/ sin β − sinα/ cosβ − sinα/ cosβ cosα/ sin β

H0

ξuH0 sinα/ sin β sinα/ sin β sinα/ sin β sinα/ sin β

ξdH0 sinα/ sin β cosα/ cosβ sinα/ sin β cosα/ cosβ

ξlH0 sinα/ sin β cosα/ cosβ cosα/ cosβ sinα/ sin β

A

ξuA cotβ cotβ cotβ cotβ

ξdA − cotβ tan β − cotβ tan β

ξlA − cotβ tan β tan β − cotβ

This singlet is only allowed to couple to the H1,2 fields and to itself, then it has no direct
fermionic couplings, acquiring all of them through the mixing with the doublets. The resulting
model is known as the two Higgs doublet model plus a scalar singlet (2HDM+S) [231–233],
and it features seven physical states (one more CP-even H0

S and one more CP-odd a with
respect to the 2HDM). Thanks to the incorporation of a new possible mixing among the
components of the singlet and the doublets, the 2HDM+S can comfortably accommodate
an SM-like Higgs boson that easily satisfies all the experimental constraints9. Besides, the
requirement that the mixing has to be small, in order not to destroy the SM-like nature
of h125, allows for the existence of mostly-singlet-like light states whose production cross-
section would be suppressed by the tiny mixing angle, hence the reason why they would
have remained undetected thus far. In supersymmetric theories, there are also realizations
of the 2HDM+S that address problems of preexisting versions. That is the case of the
Next-to-Minimal Supersymmetric Model (NMSSM), a type-II 2HDM+S intended to solve
the “µ-problem” of the MSSM [234–236].

With the addition of the singlet, two more mass eigenstates are candidates to be the
lightest one, either a light scalar or pseudoscalar. The case of a light scalar is more difficult
to conciliate with the constraints giving rise to the decoupling limit since the mixing of the
three CP-even suggests that H0 and H0

S should be heavier than h125 [236]. This, however,
does not completely exclude the possibility of having an alignment without a decoupling
limit, which results in relatively light additional Higgs boson [233]. But the most interesting
scenario is the one with a mostly-singlet-like light pseudoscalar [12]

a = cos θaSI + sin θaA (3.14)

9In general, the larger the number of parameters, the easier to avoid the constraints.
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where θa � 1, indicating the smallness of the mixing. For masses ma < 62.5 GeV, decays of
the SM-like Higgs to a pair of a will take place. Searching for light pseudoscalars in decays of
the h125, with their consequent decay to SM fermions, is one of the more suitable approaches
to detect those particles, as the direct production of the boson would be diminished by its
reduced couplings to the SM fermions (proportional to sin θa). The insertion of the mixing
angle θa makes the phenomenology of decays h125 → aa → ff̄f ′f̄ ′ depend on three inde-
pendent parameters, aside from the type of 2HDM fermion coupling. A very comprehensive
analysis of such types of decays, including the values of the B(a→ ff̄) for different scenarios,
can be found in [12].

The leptonic decay a → ττ is highly favored for a considerable region of the parameter
phase-space in the 2HDM+S. Depending on the specific type of model, decays to pairs of
τ leptons could even exceed those to pairs of b-quarks for pseudoscalar masses above the
b-quark pair threshold. More details about this will be given in Sec. 6.2. This is the main
reason why, despite the experimentally challenging decay topology, it is worth looking for
pseudoscalars in the final states involving τ leptons.
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Chapter 4. Experimental Setup

The research presented in this thesis was carried out using the experimental data that
was delivered by the Large Hadron Collider and collected by the Compact Muon Solenoid
detector during the period of data taking corresponding to the year 2016. The purpose of
this chapter is to provide an overview of the experimental apparatus used to carry out this
work.

In the following, a relatively detailed description of the complex process that goes from
the generation of a collision to the point in which the experimental data becomes available
and ready to be analyzed can be found. The first section of this chapter is dedicated to the
description of the Large Hadron Collider and to the way it manages to achieve such high-
energy collisions and huge amounts of data. The other two sections are meant to outline
the main characteristics of the Compact Muon Solenoid detector and the main mechanisms
involved in the processing of the data originated by the collisions, as well as the fundamental
aspects of the modeling of the various physical processes derived from the theories.

4.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [237] is the largest and most powerful particle accel-
erator built to this day. The LHC is situated at the European Organization for Nuclear
Research (CERN), Geneva, across the border between Switzerland and France. The collider
is contained in a circular tunnel that previously hosted the Large Electron Positron Collider
(LEP) [238], with a circumference of 27 km and located 100 m underground. As its name
suggests, the LHC collides hadrons, accelerating them in opposite directions to near the speed
of light and then smashing the particles together; in practice, it accelerates protons or heavy
ions. The machine has already managed to collide protons at a nominal center-of-mass en-
ergy of 13 TeV, but after an upgrade, it is expected to reach the design value of 14 TeV in
the coming years. The purpose of the construction of the LHC and the surrounding experi-
mental facilities is to test the physics of the fundamental constituents described by the SM
(Sec. 3.1) and help to answer some of the open questions, which might require a new theory
(Subsec. 3.1.2). So far, one of the major contributions of the LHC was to the discovery of a
Higgs-like particle at CERN in 2012 (Subsec. 3.1.1).

4.1.1 The Accelerator Complex

To produce beams containing those high-energy hadrons, a large acceleration complex
capable of boosting the hadrons from near rest to speeds close to that of light is needed.
Since in this work only proton-proton collisions are considered, the following brief description
of the CERN accelerator complex is focused on the group of machines operated to accelerate
such particles.

The protons that later undergo the acceleration process are extracted from standard
molecular hydrogen, whose electrons are stripped away to produce an ionized gas feasible to
accelerate with electric fields. The first stage of acceleration takes place at LINAC 2 [240], a
linear accelerator equipped with radiofrequency cavities that are used to charge the cylindrical
conductors, through which the protons are going to get energies up to 50 MeV. After the
LINAC 2, the protons are injected into the Proton Synchrotron Booster (PSB) [241], which
raises their energy to about 1.4 GeV. The PSB feeds a larger circular accelerator with 628 m
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Figure 4.1: Accelerator complex at CERN [239]

simply called Proton Synchrotron (PS) [242], provided with 277 electromagnets that ensure
the circular movement of the protons, as well as a maximum energy of roughly 25 times the
rest mass of the proton. The Super Proton Synchrotron (SPS) [243] is the next accelerator
in the chain and the last step before injection to the LHC. The SPS is the second largest
machine in the CERN accelerator complex with a circumference of nearly 7 km, which makes
it capable of reaching the respectable value of 450 GeV. In Fig. 4.1, a comprehensive sketch
of the previous description of the accelerator chain, as well as of the various experiments
present at CERN can be found.

Once the two proton beams reach the LHC, they can be accelerated to a maximum design
energy of 7 TeV each one. Rather than having continuous beams, during the acceleration
process, the protons are bunched together into up to 2808 packets containing a hundred
billion protons that are separated in time by 25 ns. At 6.5 TeV (the operating energy in the
main period of 2016-2018), the protons give around 11245 turns in one second along the 27
km ring. This is possible due to radiofrequency cavities (8 per beam) inside the LHC that
are cooled down to 4.5 K using liquid Helium, being able to provide an alternating electric
field with a frequency of 400 MHz [244]. But it is also crucial to keep the beams on their
circular path and, in order to achieve that, the LCH requires 1232 dipole magnets of 15 m
long and 30 tons each [245] together with 392 quadrupole magnets used to keep the beams
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focused. The dipole magnets are superconductors that can be operated at a temperature of
1.9 K and can reach a magnetic field of 8.33 T. Magnets of higher multipole orders are used
to correct smaller imperfections in the field configuration.

At the moment a stable condition is accomplished for the two beams, they are made collide
at four interaction points along the ring. In each interaction point is located one of the “big”
experiments at CERN. ATLAS [246] (A Toroidal LHC ApparatuS) and CMS [247] (Compact
Muon Solenoid) are general-purpose detectors designed to perform precision tests within the
SM and searches for BSM physics studying proton-proton collisions. Although they both have
the same scientific goal, there are some technical features that differentiate them; for instance,
ATLAS has larger dimensions, while CMS has a higher weight condensed in a smaller volume.
The ALICE [248] (A Large Ion Collider Experiment) collaboration studies heavy ion (Pb-Pb
nuclei) collisions to gain knowledge about the very strong interacting environments subject
to high energy and density. The LHCb [249] (Large Hadron Collider beauty) experiment was
designed to investigate the b-quark physics via the production and decay of B-mesons, which
plays an important role in the phenomenon of CP violation.

4.1.2 Beam Parameters and Data Taking

A parameter of most importance when operating a collider is the instantaneous luminosity
L [250]. The number of events per unit time taking place (dN/dt), corresponding to a certain
physics process, is proportional to the cross-section σ of such process. The proportionality
constant in that relation is the instantaneous luminosity

dN

dt
= L · σ. (4.1)

The expression for the instantaneous luminosity of two head-on colliding Gaussian beams
(Gaussian profile in all dimensions) that contain roughly the same number of protons per
bunches and that are regularly spaced is [251]

L = N2nbf

4πσxσy
, (4.2)

where N is the number of protons per bunch, nb is the number of bunches per beam, f is
the revolution frequency, and σx/σy characterizes the rms transverse beam size in the x/y
direction. However, the formula (4.2) assumes only ideal collisions with uncorrelated particle
densities; in practice it has to be modified to account for corrections. Some of the effects that
have to be included are non-zero crossing angles, longitudinal dependence of the transverse
beam sizes, collision offsets, non-Gaussian beam profiles, and optical imperfections [251]. For
the LHC, the formula reads [252]

L = N2nbfγr
4πεnβ∗

F, (4.3)

where the modifications F (geometric luminosity reduction factor), εn (normalized transverse
beam emittance), β∗ (beta function at the collision point), and γr (relativistic gamma factor)
account for different corrections to the ideal case. The peak design LHC instantaneous
luminosity is L = 1034 cm-2s-1, which was first reached and later surpassed.
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One is often interested in the total number of events that a collider produces over a period,
for which the term integrated luminosity is used

L =
∫
dtL. (4.4)

The first phase of the LHC operation, usually referred to as Run 1, started in March 2010
with a center-of-mass energy of

√
s = 7 TeV; value that was afterward raised to

√
s = 8 TeV

in 2012. The LHC delivered around 6.1 fb-1 and 23.3 fb-1 of integrated luminosity in proton-
proton collisions at 7 and 8 TeV respectively [253]. That was enough for the ATLAS and the
CMS collaborations to discovery the Higgs boson. After 3 years of operation in Run 1, the
machine was stopped for a first long shutdown for 2 years (2013 to 2015). After receiving an
upgrade that made it capable of reaching the

√
s = 13 TeV, the machine was recommissioned

in 2015 and started the second period (Run 2) of data taking. This run continued until the
end of 2018 delivering more than 162 fb-1 of data, and after that, the LHC is in shutdown
complying with a second period (2019 to 2020) of upgrades. The LHC Run 3 should start in
2021 with collisions at

√
s = 14 TeV and a goal of 300 fb-1. In the future high luminosity run

of the LHC that is foreseen for 2027 [254], the total recorded luminosity is expected to reach
the 3000 fb-1 [255].

The analysis presented in this work uses data from pp collisions at
√
s = 13 TeV, recorded

during the 2016 data taking period and corresponding to an integrated luminosity of 35.9 fb-1.

4.2 The Compact Muon Solenoid

As it was mentioned above, the Compact Muon Solenoid (CMS) [247, 256] is one of the
two general-purpose detectors at the LHC located in a cavern near Cessy in France. The
detector is operated by the CMS collaboration, a group of around 4000 people representing
200 scientific institutes from more than 40 countries [257]. The CMS detector is 21 m long,
15 m in diameter, and weighs about 14000 tonnes.

4.2.1 Overview of the CMS Detector

Among the distinctive features of CMS is to have a great performance detecting and
measuring muons; partly from that derives its name. But muons are not the only objects
that need to be measured accurately, in general, good particle identification and momentum
reconstruction are required to precisely test the theory of the SM, and to detect (in case of
being within reach) any elusive evidence of new physics. Moreover, since most of the visible
byproducts of the collisions are either hadrons or particles subject to electromagnetic inter-
action, it is important to have good calorimeters capable to provide a high energy resolution.
All this is achieved with a series of sub-detectors organized in the form of layers, each one
with a specific function. The CMS detector has a cylindrical structure, symmetric around
the beam pipe and centered at the interaction point. The innermost layer is a silicon-based
tracker surrounded by a scintillating crystal electromagnetic calorimeter. Next, there is a
hadron calorimeter followed by the outermost layer, consisting of systems designed for the
detection of muons called muon chambers. A schematic representation of the CMS detector
and its various components can be found in Fig. 4.2.
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Figure 4.2: General view of the CMS detector structure. [258]

Regarding the coordinate system used by CMS, its origin is selected as the nominal colli-
sion point. The z-axis points in the anticlockwise direction of the proton beam, the x-axis is
placed radially towards the center of the LHC, and the y-axis is so that the cartesian coor-
dinate system is dextrogyral. The equivalent polar coordinate system is defined accordingly,
with the ϕ angle measured from the x-axis and the radius r being the radius in the x-y
plane. The angle θ identifies the polar angle in the r-z plane. Due to the fact that collisions
suffer from boosts in z-axis direction (longitudinal momentum fractions of partons), the use
of invariant quantities under Lorentz boosts along the z-axis is crucial. The quantity called
rapidity y has the property that the difference ∆y is invariant with respect to such Lorentz
boosts [259]. The rapidity is given by

y = 1
2 ln

(
E + pz
E − pz

)
, (4.5)

with pz being the z-component of the three-momentum ~p and E the energy. The high energy
nature of the collisions taking place at the LHC implies that the particles involved are typically
in the ultrarelativistic approximation (E ≈ |~p|), so it is convenient to use, instead, the
pseudorapidity

η = − ln tan θ2 . (4.6)

The pseudorapidity becomes almost equal to the rapidity in the ultrarelativistic limit and is
much easier to measure for highly energetic particles.
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4.2.2 Superconducting Magnet

To a large degree, the high efficiency that CMS exhibits in reconstructing tracks of charged
particles is due to its powerful magnet [247, 260]. The magnet, with an inner radius of 6 m
and a length of 13 m, is a superconducting solenoid providing a magnetic field of 3.8 T. Such
a field is generated by a complex structure of niobium-titanium coils capable of carrying a
nominal current of 19500 A and cooled down by liquid helium. The large inner radius allows
for the tracker and calorimeters to be fully contained within the solenoid. The magnet system
also includes a return yoke of 14 m surrounding the magnet coils.

4.2.3 Inner Tracking System

The inner tracking system [247,261] of CMS is meant to precisely determine the trajectory
of charged particles in association with the magnetic field, and to identify the primary and
secondary vertices of the event. The tracker consists of two subsystems; a pixel detector that
extends radially from 4.4 cm to 10.2 cm away from the beamline, and a silicon strip tracker
that covers the radii between 20 cm and 116 cm. The silicon modules take up a total active
area of more than 200 m2 and cover a pseudorapidity range |η| < 2.5.

The pixel detector is the closest component of the tracking system to the interaction point
and consists of 3 barrel layers and 2 end-cap disks on each side of the barrel. The barrel layers
(BPIX) are located at radial distances of 4.4 cm, 7.3 cm and 10.2 cm from the beamline, and
have a length of 53 cm. The endcap disks (FPIX) extend from 6 to 15 cm in radius and are
located at points z = ±34.5 cm and z = ±46.5 cm. The size of a pixel cell is 100× 150 µm2,
and they are arranged in modules; there are 768 of those modules in the PBIX and 672 in
FPIX. The intrinsic spatial resolution of the pixel detector is about 20 µm along the z-axis
and up to 10 µm in the r-ϕ direction.

The silicon strip tracker is located surrounding the pixel tracker. It is divided into two
parts: the inner strip tracker, formed by its respective tracker inner barrel (TIB) and tracker
inner disks (TID), and the outer strip tracker consisting of the tracker outer barrel (TOB) and
the tracker end-caps (TEC). The four different subsystems contain in total 15148 detector
modules carrying either one thin (320 µm) or two thick (500 µm) silicon sensors. The TIB
contains four concentric cylinders placed at radii of 25.5 cm, 33.9 cm, 41.9 cm and 49.8 cm
respectively covering the range |z| < 70 cm. The TID comprises 3 identical disks placed
within the segments 80 cm < |z| < 90 cm on each side of TIB, and spanning a radial region
from 20 cm to 50 cm. The TOB is a 218 cm long single mechanical structure with inner and
outer radii of 55.5 cm and 116 cm respectively, composed by four identical disks joined by
three outer and three inner cylinders. The TEC includes 18 disks (9 on each side) extended
radially from 22 cm to 113.5 cm and placed from ±124 cm to ±280 cm along the z-direction.

4.2.4 Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) is designed to measure with high accuracy the
energies of electrons and photons [247, 262]. The ECAL is a hermetic, homogeneous, fine-
grained scintillating calorimeter consisting of 75848 lead tungstate (PbWO2) crystals. Most of
those crystals (61200) form part of the central ECAL barrel, which covers the pseudorapidity
range |η| < 1.48; the rest are mounted in the two end-cap regions reaching up to |η| = 3.0.
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In the barrel section, the crystals are organized into 36 supermodules, each containing
1700 crystals with a length of 23 cm and an area of 2.2 × 2.2 cm2 and 2.6 × 2.6 cm2 at the
front and the rear face respectively. Each end-cap is divided into 2 halves containing 3662
crystals with rear face cross-section 3.0 × 3.0 cm2, front face cross-section 2.86 × 2.86 cm2

and length 22 cm.
The short-lived π0 mesons are particles that appear quite often during pp collisions and

they generally decay into two photons. Being so light, they tend to be very boosted (especially
in the high |η| regions), therefore, producing highly collimated γ-γ pairs, which turn difficult
to resolve by the ECAL. In order to improve the resolution for such processes, there is a
preshower detector with finer granularity in front of the ECAL end-caps. The preshower
detector is based on lead absorber and silicon strips sensors, and spans the fiducial region of
1.65 < |η| < 2.6.

4.2.5 Hadronic Calorimeter

The hadron calorimeter (HCAL) [247,263] is essential for measuring the energy of hadrons
and the missing transverse energy in an event. They exploit the nuclear interactions of
hadrons, like the case of inelastic collisions with atomic nuclei, which can produce the hadronic
showers. Hadron calorimeters are able to fully contain those low-energy particles, providing
then a hermetic coverage and also a detectable signal through an active medium.

The HCAL is located between the ECAL and the magnet coil (1.77 m < r < 2.95 m),
which restricts the amount of stopping material in the detector. To ensure the adequate
thickness in the central region (|η| < 1.3), an outer hadron calorimeter (HO) is placed outside
the solenoid. The remaining three components of the HCAL system are the inner barrel (HB),
the end-caps (HE), and the forward calorimeter (HF).

The HB covers the region with |η| < 1.3, its absorber material consists of thick tiles of
brass, and the active medium consists of thinner tiles of scintillating plastic with wavelength-
shifting readout fibers. The HO uses the same plastic scintillator as HB but also takes
advantage of the solenoid coil as an additional absorber. The HE covers the 1.3 < |η| < 3.0
range and utilizes the same materials as HB. Unlike the three other parts of HCAL, HF
uses quartz core and acrylic clad fibers as active medium, due to the fact that it is exposed
to high radiation doses coming from the large particle fluxes in this part of the detector
(3.0 < |η| < 5.0). The absorber chosen for HF is steel.

4.2.6 Muon Systems

The detection of muons is of great importance in high energy physics, as they provide
feasible access to the second generation of particles in the SM, and they also might be the
evidence of the decay of a potential new particle. Being the muons about 200 times heavier
than the electrons, they turn very difficult to be disturbed by electromagnetic fields when
passing through the materials, which makes the detection of these particles very hard. Be-
cause of that, the subdetector dedicated to the detection of muons in CMS is the outermost
system [247, 264]. In this region, muons are the only particles likely to have penetrated
through the calorimeters and, therefore, the only ones able to produce a signal.

The muon system consists of three kinds of gaseous ionization detectors, whose modules
are commonly referred to as chambers: drift tubes (DT), cathode strip chambers (CSC), and
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resistive plate chambers (RPC). Similarly to the subdetector systems described above, the
muon systems contain a barrel and two end-caps, where the barrel is interleaved with layers
of the steel flux-return yoke.

In the barrel region where the magnetic residual flux and the muon rate are low, there
are 250 drift tube chambers grouped into 4 stations forming concentric cylinders around
the beamline and extending radially from 4.0 m < r < 7.0 m. The DT chambers cover
the pseudorapidity region |η| < 1.2, and their arrangement is so that it provides a good
time resolution and a high efficiency in reconstructing the muon track from its hits in the
stations. Each cell contains a gas mixture of 85% Ar + 15% of CO2 surrounding a gold-plated
stainless-steel anode wire, which results in a drift time of 380 ns.

The muon system end-caps cover a region of 0.9 < |η| < 2.4, where the expected rate of
muons and neutron background is much higher than that in the barrel, requiring then the
use of CSC. The 468 trapezoidal CSC chambers are organized in 4 stations (rings) in each
end-cap. Each chamber consists of 6 anode planes interleaved among 7 cathode panels with
wires running azimuthally. The chambers are filled with a gas mixture of 50% CO2 + 40%
Ar + 10% CF4.

In addition to the DT and CSC detectors, RPC are interspersed in the barrel and end-cap
layers to complement the other two systems in the region |η| < 1.6. They are used to provide
a fast response with good time resolution (less than 25 ns) and an independent triggering
system for muons. The RPC chambers consist of two resistive Bakelite plates separated by
a gas volume.

4.2.7 Trigger System

The LHC provides a collision rate of about 100 MHz producing an enormous amount of
data, most of which is irrelevant for the CMS physics program and practically impossible to
store. The trigger system is responsible for selecting the small fraction of collision events that
are interesting for CMS. The CMS trigger system [247] consists of two stages: the Level-1
trigger (L1) [265], which is entirely hardware-based and filters events to an output rate of
∼ 100 kHz, and the software-based high-level trigger (HLT) [266] that reduces the rate further
down to ∼ 1 kHz.

The L1 trigger decision occurs with a latency of few microseconds using a simplified
readout of the calorimeter and muon subdetectors. The L1 trigger is organized into local,
regional and global components. The local components are based on energy deposits in
ECAL and HCAL, and hits and segments in the muon system. The regional components
rank the trigger candidate objects (muons, electrons, jets, photons, etc) in small regions,
combining the information from the local components using pattern recognition and track
finding. The next step is the determination by the global components of the highest-rank
objects, which are then transferred to the global trigger to make the decision of accepting
or not the event. Later, the information is passed to the HLT software (implemented in a
computing farm), which has access to more detailed information of the event. At a much
lower rate, the algorithm is able to perform more dedicated calculations to accept events with
the most interesting physics content.
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4.3 Event Reconstruction and Simulation in CMS

Once all the information provided by the different subdetectors in CMS for a given pp
collision is gathered, the next step is to proceed with the reconstruction and identification
of all the stable particles (electrons, muons, photons, charged hadrons, and neutral hadrons)
that make up the event. Other physics objects like jets, missing transverse energy, taus and
primary (secondary) vertices are built, identified or reconstructed from individual elements
that compose them.

On the other hand, a set of general-purpose event generators that possess implementations
of the various theoretical models are used with the objective of simulating pp collisions. The
generated events are subjected to a process of modeling within the CMS framework that goes
from basic detector simulation to total event reconstruction.

4.3.1 Physics Objects Reconstruction

The first stage of the event reconstruction is carried out by the particle flow algorithm
[267–269], which uses a combination of charged-particle hits, calorimeter clusters, and muon
tracks to identify each final-state particle. The reconstructed particle candidates are used to
build the physics objects and related quantities through specific high-level algorithms, thus
permitting to give a proper structure to the event information and facilitating the task of
performing a physics analysis. An illustration of different types of particles registering signals
in the subdetectors can be seen in Fig. 4.3.

4.3.1.1 The Particle Flow Algorithm

In CMS the particle flow (PF) algorithm can be arranged in a three-step process as
described in [270,271].

First, the fundamental elements, namely charged-particle tracks and calorimetric clusters,
are reconstructed using sophisticated techniques designed for each type of object. Finding
the trajectories of the charged particles mostly relies on the tracker system of CMS, as it
allows for a very good momentum resolution. The tracking algorithm of CMS is based on an
iterative approach [272], which has proven to be more efficient than the global combinatorial
track finder method [273]. The process starts by generating a seed that is generally related
to three hits in the pixel detector. Then, a track finding strategy based on the combinatorial
Kalman filter method is used [274] to reconstruct trajectories with certain quality criteria.
Finally, the trajectory is refitted using a least-squares method, with the peculiarity that it
has a smoother complementing the Kalman filtering. On the other hand, the measurements
of the energy deposits in the calorimeters are combined in a clustering algorithm that is
applied separately in the barrels and end-caps (including the preshower detectors) of ECAL
and HCAL [271]. Analogously to the iterative tracking, the calorimetric clustering is seeded
by imposing some initial conditions, in this case, calorimeter-cell energies above a given
threshold. Subsequently, topological clusters are built out of the seeds by adding cells with a
minimum amount of energy and at least one corner in common with the seed. The last step
reduces the identification of single clusters within each topological cluster with the help of a
mixture of Gaussian distributions as model.

Second, the linking algorithm is applied. This is conceived to link the elements of a
single particle throughout its trajectory inside the detector. It can be seen in the sketch of
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Figure 4.3: Sketch of a CMS transverse slice showing physics objects interacting with different
subdetectors. [271]

Fig. 4.3 how each particle gives rise to several PF elements in the various CMS subdetectors.
Starting from a pair of elements in the event, the link algorithm defines a distance between
them (typically is the distance in the (η, ϕ) or the (x, y) plane) and evaluates the quality of the
link itself; those linked elements are then grouped into blocks. Different kinds of links can be
established, according to the parts of the detector that they are connecting. A link between
a track in the central tracker and a calorimeter cluster is obtained via an extrapolation from
its last measured hit to any given cluster in the calorimeters. The energy of Bremsstrahlung
photons emitted by electrons is calculated employing the extrapolation of tangent lines to the
electron trajectory to the ECAL. Cluster-to-cluster links are formed if the cluster position in
the more granular calorimeter is within the cluster envelope in the less granular calorimeter.
Other types of configurations are also possible as shown in [271].

Third, the particle reconstruction and identification is carried out. This final stage is the
core part of the PF algorithm. It is the point at which a list of all the particles that have been
recognized by the PF algorithm is produced [270]. Global muons (track obtained from the
combination of hits in the inner tracker and the muon systems) with a momentum compatible
with the tracker-only measurement are identified as PF muons; the corresponding track is
removed from the block. Electrons are identified by their characteristic short tracks and by
the loss of energy when crossing the tracker due to the Bremsstrahlung; the associated tracks
and ECAL clusters are then eliminated. Charged hadrons are formed by the remaining tracks
in the block, using the track momentum to directly determine their energy and momentum.
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The remaining ECAL and HCAL clusters, either not linked to any track or with a link
incompatibility, are identified as PF photons and PF neutral hadrons respectively.

4.3.1.2 Primary Vertices

The primary vertex (PV) reconstruction aims at determining the position of every indi-
vidual pp interaction in each event using the available information about the reconstructed
particle tracks. Due to the large number of protons per bunch at the LHC (Sec. 4.1), multiple
pp interactions can take place in each bunch crossing, giving rise to a phenomenon called
pile-up (PU). The PV reconstruction is a three-step procedure [272]. The first is the selection
of the tracks. Those are chosen by imposing requirements on the transverse impact parame-
ter, the position with respect to the beam spot, the number of pixel and strip hits, and the
χ2 of the track fit. Then, the deterministic annealing algorithm [275] is used to cluster the
set of selected tracks to primary vertex candidates. Finally, the candidate vertices with at
least two tracks are refitted using the adaptive vertex fitter [276]. The one with the largest
value of the p2

T
sum of jets clustered with the anti-kT algorithm (Subsec. 4.3.1.5) is regarded

as the hard-scattering vertex, whereas the others are considered as PU [277].

4.3.1.3 Muons

In CMS the muons can be reconstructed by both the tracker and the muon systems with
the help of the PF algorithm (Subsec. 4.3.1.1). This leads to the existence of three possible
ways in which a muon can be reconstructed [278]:

• Standalone muon tracks are reconstructed exploiting only the information provided by
the muon subdetectors and using the Kalman filter method.

• Tracker muon tracks are built from the inner tracker trajectory reconstruction with
additional loose matching to DT or CSC segments.

• Global muon tracks are reconstructed by matching standalone-muon tracks with tracker
tracks.

Since each specific analysis might need a different balance of efficiency and purity, a number
of identification variables are incorporated to provide a way of tuning such quantities. Some
of those variables are the number of hits in the tracker and the muon chambers, the χ2 of the
muon track fit and the track impact parameters. They are introduced in an algorithm that
returns values ranging from 0 to 1, with 1 representing the highest degree of compatibility.
This results in three main types of identification (ID) for muons, refereed to as loose muon
ID, medium muon ID and tight muon ID. Each working point is optimized to identify muons
having some specific characteristics (low or high pT , prompt or non-prompt muon, etc.), as
described in [278].

4.3.1.4 Electrons and Photons

The electrons are reconstructed using the silicon tracker and the ECAL, taking advantage
of combined procedure based on the PF algorithm (Subsec. 4.3.1.1) and a stand-alone recon-
struction method [279,280]. To carry out the clustering in the ECAL two different algorithms
are implemented, the so-called hybrid algorithm in the barrel and the multi-5×5 algorithm in
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the end-caps; both techniques are described in [279]. For the track reconstruction, due to the
losses of energy by Bremsstrahlung, a modification of the Kalman filtering is employed. The
method is called gaussian sum filter [281] and makes use of a Gaussian mixture rather than
a single Gaussian distribution for the energy losses. In order to link the track and the ECAL
superclusters, a combination of ECAL-based and tracker-based seeding algorithms is applied.
Moreover, a set of variables is introduced into a boosted decision tree (BDT) classifier (see
Sec. 5.1 and Subsec. 6.1.3) to achieve the maximum possible performance in the identification
of electrons.

Photons, especially isolated ones, are of particular interest for some kind of signals or
signatures in CMS; for instance, the Higgs diphoton decay channel, which has significantly
contributed to the discovery and measurement of the properties of the scalar boson [282].
In CMS, electrons and photons are intrinsically linked to each other due to the presence of
processes like the Bremsstrahlung and the photon conversion. So, the fundamental aspects
of the reconstruction procedure, as well as the measurement of the energies for these two
particles are quite similar. Some differences come from the isolation applied for photons
with respect to tracks and calorimetric clusters, and from the presence of distinctive energy
patterns in ECAL and HCAL. A fairly detailed description can be found in [283], with special
emphasis on the selection made for photons in H → γγ decays.

4.3.1.5 Jets and Missing Transverse Energy

It is well known that only color singlet states are allowed to exist at relatively low energies
because of the phenomenon of QCD confinement. At the LHC, when a colorful object is
produced as a consequence of a collision, it creates out of the vacuum other color-charged
states and combines with them to form colorless particles in a process called hadronization.
All these hadrons tend to travel in the same direction in which the initial parton was produced,
forming collimated streams of particles called jets. The main goal of the procedure used in
CMS to reconstruct jets is to provide a good estimate of the initial energy and direction of
the particle that produced the jet. The jets are reconstructed by putting their components
together with the help of an algorithm that obeys the principles of collinear and infrared
safety [284]. This is because the reconstruction should not be sensitive to processes that can
not be resolved, such as the emission of a soft or a collinear parton.

Using different combinations of subdetectors leads to a variety of possible types of recon-
structed jets. The so-called “Calo jets” are obtained by using solely the calorimeter informa-
tion; analogously, the “Track jets” are clustered using only the inner tracker. A combined
version of the previous two has also been implemented, however, the best performance is
attributed to the method that reconstructs jets by clustering PF particles together, the “PF
jets”. The most widely used technique to reconstruct the PF jets is the anti-kT sequential al-
gorithm [285]. The anti-kT method is based on the clustering of pairs of particles (protojets)
defining a certain metric under which it is decided whether the two objects should be paired
or not. The metric makes use of two quantities: the distance dij between two protojets i and
j, and the distance diB between any entity i and the beamline; their expressions are

diB = (pti)−2, dij = min{(pti)−2, (ptj)−2}
R2
ij

R2 , (4.7)
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where pti is the transverse momentum of the object i, Rij =
√

(yi − yj)2 + (φi − φj)2, and R
is a parameter that controls the radius of the jet in the y-φ plane. All possible values of diB
and dij are calculated, then the smallest one is used to start the algorithm. If dij < diB, the
objects are recombined into a single object, while if dij > diB the object i is identified as a
jet and removed from the list of objects to be clustered. The procedure is repeated until all
PF candidates are clustered into jets.

Despite the good functionality of these algorithms, other effects, both in the real detector
and in its simulation, cause inconsistencies between the energy of the parton and that of the
clustered jet. This leads to the application of procedures for the correction of the energies,
such as those described in [284,286].

It might happen that, after all the PF candidates have been processed, a momentum
imbalance in the transverse plane shows up1. This is because the detector is not able to detect
a certain class of particles that possess very low interaction cross-section, such as neutrinos
and other BSM hypothetical neutral weakly interacting particles. So, the magnitude that
quantifies this imbalance is the missing transverse momentum ~EmissT , defined as the negative
vectorial sum of the transverse momentum of all reconstructed PF objects in the event. More
information about its reconstruction and performance in CMS can be found in [287,288].

4.3.1.6 Taus

The τ lepton is a charged lepton belonging to the third generation, with a lifetime of
2.9 × 10−13 s and a mass of mτ = 1776.86 ± 0.12 MeV [289]. Unlike the other leptons, the
τ lepton features an extended list of possible decay modes, including decays to hadrons; the
most likely ones are shown in Tab. 4.1.

Table 4.1: Decay modes of the τ lepton (only τ− is shown for simplicity) and their corre-
sponding branching ratios (B) [289–291].

Decay mode Meson resonance B [%]

τ− → e−ν̄eντ 17.8

τ− → µ−ν̄µντ 17.4

τ− → h−ντ 11.5

τ− → h−π0ντ ρ(770) 25.9

τ− → h−π0π0ντ a1(1260) 9.5

τ− → h−h+h−ντ a1(1260) 9.8

τ− → h−h+h−π0ντ 4.8

Other hadronic modes 3.3

Due to the short lifetime of the τ , electrons and muons originating from τ decays are diffi-
cult to distinguish from those produced in the primary proton-proton interaction, thus having

1The total transverse momentum of the colliding protons is supposed to be zero.
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to be identified via the standard techniques developed for each lepton. For the hadronic decay
modes τh, the CMS collaboration has designed a dedicated identification technique, which
has been named as the hadron plus strips (HPS) algorithm [290, 291]. This procedure uses
information from PF charged hadron tracks and from photons coming from π0 decays to
reconstruct the τh candidates. The π0 tends to convert to e−e+ pairs, which are bent in
opposite directions by the magnetic field, leaving a distinctive strip-like signature in the η-φ
plane. The HPS algorithm also exploits the relevant attributes of the various τh decay modes
to increase its effectiveness.

The next step is the adequate identification of τh leptons, which is related to procedures
capable of suppressing as much as possible the fake reconstructed taus emerging from different
physical processes. The major challenge of the τh identification is the discrimination between
true taus and QCD jets arising from quark and gluons. To reduce this huge background,
one uses the fact that taus tend to be more collimated, have lower track multiplicity, and
are more isolated than jets [292]. The fundamental isolation criterion has been implemented
using both cut-based and multivariate analysis (MVA) approaches (see Sec. 5.1); the MVA
discriminator has evidenced better performance. Not only jets but also isolated leptons have
a sizable, though smaller, misidentification rate in τ decays involving one charged hadron.
Two different anti-lepton multivariate BDT discriminators [293], one against electrons and
one against muons, have been developed to suppress the respective fake backgrounds.

In Run 1, the HPS algorithm maintained a τh identification efficiency in the range 50-
60 %, while keeping the misidentification rates between the per mille and the percent level.
For Run 2, some improvements with respect to Run 1 have already been achieved, as it can
be seen in [291].

4.3.2 Simulation

Testing theoretical models in high energy physics, or simply the interpretation of the
data provided by particle colliders, relies on the appropriate modeling of all involved physical
processes. Both in the extraction of the relevant parameters of a theoretical model and in
the inference from data of the existence of new physics, the simulation plays a fundamental
role. The process of event generation is based on the general-purpose Monte Carlo (MC)
event generators [294], which use numerical MC techniques [295] to produce collisions as
those obtained in particle accelerators. Once the physical events are generated with the
information primarily coming from the theoretical models integrated into the generator, the
effects that a detector, as in this case CMS, incorporates into the bare theory, must be taken
into account.

The MC event generators provide a complete picture of the collision process from the
initial to the final state, which comprises the strongly inelastic interaction, the radiation
process, the hadronization of partons, and the description of the underlying event. All this is
guaranteed on an event-by-event basis with the complete information regarding the particle
types and their momenta, as well as the values of the differential and integral cross sections
for a given process. The Fig. 4.4 shows an illustration of a pp collision event simulated with
a MC event generator.

When colliding protons (hadrons) at very high energies, there are at least two energy
scales mediating in the process: the hard scale Q and the proton scale mp ∼ 1 GeV, with
Q � mp. This allows to separate into two different regimes the dynamics of the process
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occurring at each scale, which is commonly called “factorization” [296]. The two domains are
referred to as the perturbative and the non-perturbative regime, for obvious reasons. The
dynamics happening at mp is encoded in non-perturbative objects, the so called collinear par-
ton distribution functions (PDFs) [297–299]. On the other hand, the hard scale Q interaction
is described by perturbation theory (Subsec. 2.4.4.1). Using the factorization theorem, the
cross-section of a hard scattering process p1p2 → n can be written as [18,300]

σ =
∑
a,b

∫ 1

0

∫ 1

0
dxadxb fa/p1(xa, µf )fb/p2(xb, µf ) σ̂ab→n(µf , αs(µr)), (4.8)

where xa and xb are the longitudinal momentum fractions of the respective proton momentum,
µf is the factorization energy scale, fa(b)/p1(2)(xa(b), µf ) are the PDFs, αs(µr) is the QCD
running coupling constant implicitly depending on the renormalization scale µr, and σ̂ab→n
is the partonic cross-section of the process ab→ n.

Both the initial interacting partons and the ones produced as a consequence of the hard
scattering can produce QCD radiation, resulting in dozens of additional partons in the event.
These branchings of the partons are known as parton showers [303], and can be regarded as
approximate higher-order corrections to the hard scattering via real emissions of radiation.
The radiation emission chain, i.e. the shower, is triggered by the fact that gluons interact
among themselves, so once a gluon is irradiated it will propagate emitting radiation itself.
As it is not feasible to compute all the higher-order contributions with the parton showers, a
simplified procedure including only dominant corrections through collinear or soft emissions
is carried out. These leading contributions can be written in such a way as to express the
probability for an emission [300]

dP = αs(Q2)
2π

dQ2

Q2 Pa→bc(z)dz. (4.9)

The Eq. (4.9) expresses the probability that parton a will split into partons b and c at a
scale Q2 and with b carrying a fraction z of the momentum of parton a. In order to avoid
the divergences for z = 0, 1 (too soft) and Q = 0 (too collinear), one usually introduces a
cutoff scale, which is physically justified, as such emissions are not resolvable for the detectors.
The unresolvable and virtual contributions are combined in the Sudakov form factor [301,304]
included in Pa→bc(z), which orders the emissions with respect to the evolution variable in such
a way that it gives the probability that no emissions occur from a given Q′2 to Q2. The most
commonly used evolution variables are the transverse momentum of the parton b(c) relative to
the direction of a, the virtuality of the splitting, and the angle between b and c. The showering
scheme has the advantage that it can be applied to both initial state and final state partons.
In modern MC generators, the initial state evolution starts at the scale of the process and
evolves backward to the proton, thereby being called “backward evolution” [305]. The final
state radiation concerns the outgoing partons of the hard subprocess. The parton starts at
high energy and evolves losing it because of the radiation until it reaches the resolvable scale,
then, giving way to the process of hadronization of partons.

Due to the renormalization scale dependence of αs (Subsec. 2.4.4.2), at some scale of the
order ∼ 1 GeV, the evolution perturbation theory becomes invalid. The evolution of the event
enters the non-perturbative regime and hadrons start to be formed as a consequence of color
confinement. The current non-perturbative techniques are not easy enough to handle to be
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Figure 4.4: Sketch of a proton-proton collision as simulated by a MC event generator. The red
blob in the center represents the hard collision, with red curly and straight lines representing
the final state parton showers; the analogous objects in blue are the initial state parton
showers. The purple blob and lines symbolize the underlying event. The hadronization
process and its consequent decays are illustrated by light and dark green blobs [301,302].

used for calculations, so the hadronization process is mostly described by phenomenological
models. One of the available models is the so-called “string model” [306], which makes use of
the linearity manifested (observed in lattice QCD simulations [307]) by the potential energy
of two color charges with respect to their separation. The string is thought to be generated
by a gluonic tube configuration that makes, for instance, that a quark and an antiquark
attract each other. As the quark and antiquark move apart, the energy stored in the string
grows, thus making favorable for the string to break at some point along its length. The
string breaking can be regarded as the creation out of the vacuum of a new quark-antiquark
pair, each one now connected to the respective original charged conjugated. This results
in the continued fragmentation of the new strings into smaller pieces as long as they have
enough energy, which brings about the emergence of multiple hadrons in the final state.
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Another model used is the “cluster model” [308, 309], a model that is based primarily on
the preconfinement properties of the QCD [310]. In the preconfinement stage, the partons
can be clustered into color singlet proto-hadrons qq̄ with masses independent of the scale
of the hard process the partons underwent, being only sensitive to the fundamental QCD
scale. Later, the clusters can be decayed isotropically into pairs of hadrons according to
the corresponding density of states. After the hadrons have been formed in the event, they
undergo subsequently decays into their possible decay channels.

The underlying event modeling is based on the need for characterizing the existence of
an extra hadron activity that can not be described by the above-mentioned methods. It is
formed by collisions that do not yield any relevant hard subprocess, such as multiple parton
interactions and beam-beam remnants. The existence of such phenomena is one of the main
causes of the enhancement of jet multiplicity in the event. For a more detailed description
see [301].

The MC generators that currently exist tend to focus on one or a few of the elements
described above. Some of them are listed below:

• Pythia [311] is a generator designed to handle a wide variety of processes within the
SM and beyond. The program includes all the main elements of the event generation
process that go from the hard scattering to the modeling of hadronization and the
respective decays. It provides matrix element calculations for the hard subprocess at
the basic LO precision. Pythia mostly relies on its powerful radiation model that is
currently implemented on a pT ordered dipole showering and includes initial and final
state radiation. It incorporates a highly developed simulation of the multiple parton
interactions as well as a model of hadronization using the Lund string approach.

• MadGraph5_aMC@NLO [312] is a generator mainly designed to automatically com-
pute the matrix elements of multi-partonic final states, such as 2→ n scatterings. The
showering, the hadronization and the multi-parton interaction are not implemented in
MadGraph5, therefore, it is commonly interfaced with Pythia for such purposes.
The additional package aMC@NLO [313] allows for matrix element calculations at
NLO accuracy and provides a method to match them to the parton showering.

• PowHeg [314,315] is a generator designed to produce calculations of the hard scattering
subprocess at NLO accuracy. It employs a method to match the matrix element to the
parton showers producing events with positive weights, a feature not present in other
approaches such as that of aMC@NLO.

Finally, the last step in the process of event modeling within CMS is to make the generated
processes (including the PU overlapping) pass through the detector response simulation. This
constitutes a transition from the description of the events at generator level to the desired
physical observables at detector level. The simulation of the CMS detector is carried out
using the Geant4 software [316]. The detector simulation comprises the detector geometry,
the interaction of particles with the various materials, the effects of the magnetic field, the
real conditions during the detector operation, the electronic readout, etc. With the detector
response at hand, the events are reconstructed using the same algorithms used for real data,
allowing for a consistent comparison between the data and the simulation.

Most of the aspects of the event reconstruction and simulation are generally integrated
into a common framework called the CMS software (CMSSW) [317].
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Many of the reasons that motivate the existence of theories beyond the SM were already
discussed in chapter 3. In particular, emphasis was placed on theories that partly or com-
pletely modify the Higgs sector, which is almost always accompanied by the inclusion of
additional scalars in the field content of the theory. Among those, models containing a light
boson (a) in the spectrum that can couple to the SM-like Higgs boson (h125), arouse great
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interest. If the a boson is light enough, decays of the form h125 → aa could take place,
providing the model with a rich phenomenology in exotic Higgs decays. Searching for such
possible exotic decays is the main objective of the work presented in this thesis.

After having gathered most of the necessary experimental and theoretical elements in
previous chapters, this chapter is intended to describe the part concerning the analysis of the
data obtained from the experiment. The first section focus on the main aspects of the sta-
tistical apparatus utilized to carry out the data analysis. All the concepts and methods that
are reviewed throughout this section form an indispensable basis for extracting meaningful
information out of the data. The second section comprises a general overview of the physics
analysis, as well as a brief discussion on the impact that might have on some of the theoretical
models introduced in Sec. 3.2. The third section is designed to give a detailed explanation
of the search performed with the experimental data available. The section focus on the first
approach adopted for the physics analysis, which primarily targets boosted event topologies,
occurring for very light bosons. This analysis uses a set of selection cuts that maximize the
signal-to-background ratio and exploits a 2D distribution of observables to extract the signal
from the data. The analysis described in this last section has been published in the journal
Physics Letters B [318].

5.1 Statistical Methods

5.1.1 Fundamental Concepts

There are various types of processes in physics that reveal an uncertain nature, that is,
they cannot be predicted with complete certainty. This could be due to several reasons,
such as the inaccurate reproduction of the phenomenon upon repetition, or because of intrin-
sic randomness of the process (like in QM). The degree of randomness that such processes
evidence can be quantified with the concept of probability. An axiomatic definition of prob-
ability can be found in [319], where a real number P (E) (called probability) is assigned to
every subset of elements of a given sample space S. Three axioms define all the properties
of probability [320]: P (E) is non-negative, P (∪ni=1Ei) =

∑n
i=1 P (Ei), with Ei being disjoint

subsets (Ei ∩ Ej = ∅ for i 6= j), and P (S) = 1. The variable that represents each of the
elements of the set S is called a random variable.

One of the most important theorems in probability theory is the Bayes’ theorem, which
makes use of the concept of conditional probability between to subsets A and B to formulate
the following relation [321]

P (A|B) = P (B|A)P (A)
P (B) , (5.1)

where P (A|B) is the probability of A given B (conditional probability), and analogously for
P (B|A). It is often convenient to express P (B) (or P (A)) as a linear combination of proba-
bilities of disjoint subsets Ai that cover the whole S, giving then P (B) =

∑
i P (B|Ai)P (Ai).

That is called the law of total probability.
There are two main different interpretations of the concept of probability resulting in two

distinct schools of thought: the frequentist and the Bayesian probabilities. The frequentist
approach defines the probability as the fraction of the number of occurrences of an event over
the total number of possible events, taking for granted that the experiment is repeatable and
so is performed a large number of times [322, 323]. On the other hand, the Bayesian school

86



5.1. Statistical Methods

associates the elements of S with hypotheses that are either true or false, conferring to the
concept of probability the capability of measuring the degree of belief that certain hypoth-
esis is true [324–326]. In high energy physics, the most commonly used is the frequentist
interpretation.

The elements of the set S can be discretely or continuously distributed, so the random
variable x that represents them can take on both possible type of values. If a variable x only
takes on discrete values xi, for i = 1, . . . , N , the probability to observe the outcome xi can
be expressed as

P (xi) = fi, (5.2)

with
∑N
i=1 fi = 1. This can be generalized for multidimensional continuous variables {~x =

(x1, . . . , xn) ∈ V ⊆ Rn} by associating to each point ~x a real non-negative probability
density function (p.d.f.) f(~x) = f(x1, . . . , xn). The probability to observe ~x in the region
A ⊆ V is

P (A) =
∫
A
dnxf(x1, . . . , xn). (5.3)

The transition from the continuous to the discrete case can be done using Dirac’s delta func-
tions δ(~x−~x0). The discussion of some other important concepts associated with probability
distributions, such as cumulative distribution, quantile, marginal p.d.f., expectation value,
variance, moment, covariance and correlation, skew and kurtosis, and many others can be
obtain from the references [327–329].

5.1.2 Elements of Parameter Estimation

One of the most common situations that appear when dealing with statistical problems is
that of having to estimate the defining parameters of a certain probability density function.
Inferring the properties of an unknown p.d.f. by sampling the values of the random variables
that obey such distribution is considered one of the central problems of statistics. The idea
is to take a set of independent observations of the random variables (sample) and construct
functions of the outcomes to estimate the parameters of the p.d.f. via the best fit [328]. Such
a function of the data sample that returns the estimated value of the parameters is called an
estimator.

There are several properties that are relevant to determine if an estimator is suitable
for a specific problem. The consistency reflects the capability of the estimators to converge
to the true unknown parameter values as the sample size tends to infinity. For the case of
a one-parameter p.d.f., the above can be written as limn→∞ P (|θ̂n − θ| < ε) = 1, where n
is the size of the sample, θ̂n is the estimator value of the parameter θ for a given sample,
and ε is an infinitesimal. Being an estimator a function of the measured values, it is also a
random variable, so it has an associated p.d.f. g(θ̂, θ) that, in principle, depends on θ [328].
From that, another important property of the estimators arises, the bias, which is defined
by b(θ) = 〈θ̂〉 − θ, with 〈θ̂〉 denoting the expected value of θ̂ obtained from g(θ̂, θ). The
variance is also an important quality criterion for an estimator, and specifically, for consistent
estimators, it gets a lower bound [330]. Some fairly well-known methods to obtain estimators
are the sample mean, the sample variance, the least-squares method, and the method of
moments [328]. But in particular, in high energy physics, the most frequently used is the
method of maximum-likelihood.

The maximum-likelihood method is based on finding the estimators of the parameters
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by maximizing the value of the likelihood function [331]. This method possesses very good
statistical properties with regard to the indicators mentioned above [329]. Let f(~x; ~θ) be the
p.d.f. describing certain statistical model, depending on n random variables (x1, . . . , xn), and
being parametrized bym parameters (θ1, . . . , θm). Let N be the number of repeated measure-
ments of the n random variables, yielding the sample x = {(x1

1, . . . , x
1
n), . . . , (xN1 , . . . , xNn )}.

Assuming independent measurements, the likelihood function of the sample can be written
as

L(x|~θ) =
N∏
i=1

f(xi1, . . . , xin; θ1, . . . , θm). (5.4)

Then, the maximum-likelihood estimators (θ̂1, . . . , θ̂m) are defined as those values of the
parameters which maximize the likelihood function [328]

L(x|θ1, . . . , θm)
∂θi

= 0, {i = 1, . . . ,m} ⇒ (θ̂1, . . . , θ̂m). (5.5)

It is often practical to perform the maximization process through the logarithm of the like-
lihood function, as it greatly facilitates the calculations. That strategy is employed by the
computer tool MINUIT [332], one of the most widely used numerical algorithms in high
energy physics.

A peculiarity of dealing with physical events in the context of high energy physics is that
sometimes the rate of the processes that produce such events is not known. This makes the
total number of events (normalization) N behave as a random variable too, with distribution
p(N ; ν), so an additional term must be included in the likelihood function to estimate the
parameter ν. The resulting likelihood function is known as the extended likelihood function
L(N,x|ν, ~θ) = p(N ; ν)L(x|~θ) [333], where the sample has also been extended, being now the
number N plus the N values x. In most cases, the p.d.f. p(N ; ν) is a Poisson distribution,
whose parameter ν might or might not depend on the m unknown parameters ~θ. If the
expected number of events ν is independent of the parameters ~θ, the estimated value is
identical to the observed value ν̂ = N . Otherwise, the extended likelihood only depends on
the parameters ~θ, therefore, their estimators are going to be able to exploit the information
from the augmented sample rather than merely the measurements x, thus providing a more
efficient estimation.

Very often, one faces the case where the data sample consists of two types of events,
namely signal and background. On these occasions, the p.d.f. of the model is a linear
combination of two distributions, one describing the signal events, and the other describing
the background events

f(~x; νs, νb, ~θs, ~θb) = νs
νs + νb

fs(~x; ~θs) + νb
νs + νb

fb(~x; ~θb), (5.6)

where fs and fb are normalized to the unity. The number of signal (Ns) and background (Nb)
events obey Poisson distributions with means νs and νb respectively. Having N = Ns + Nb

events, multiple situations can occur regarding the knowledge of the parameter values of both
the signal and the background components, as well as of their corresponding normalizations.

So far, the discussion of the maximum-likelihood method has focused on continuous (re-
ferred to as unbinned or parametric) distributions only. However, in the case of a very large
sample, the numerical calculation of the likelihood function may become unpractical. More-
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over, the construction of multidimensional parametric p.d.f. models is really non-trivial when
dealing with correlated random variables. That is the reason why it is often convenient to
use binned distributions of the random variables, realized in histograms [334] containing in-
formation of the number of entries in each single bin. The expected number of entries in each
bin νi is obtained by means of Eq. (5.3), performing the integration in a region A formed
by a hyperrectangle (bin), and multiplying that probability by the expected number of total
events ν. The resulting p.d.f. is given by

f(~n;~ν) =
B∏
i=1

νnii
ni!

e−νi , (5.7)

where B is the total number of bins, and ni is the observed number of entries for the bin
i. The total number of events is N =

∑B
i=1 ni, and the expected number of total events

is ν =
∑B
i=1 νi. The histogram obtained is then considered as a single measurement of

the B-dimensional random vector ~n [328], therefore, the extended likelihood function is the
p.d.f. (5.7) itself.

Finally, and to make way to the next subsection, it is worth mentioning the topic of sys-
tematic and statistical uncertainties. It happens from time to time that the model introduced
to estimate the values of the parameters ~θ can not provide an accurate description of the mea-
surements x, not even using the best possible estimator. In practical situations, that may
occur due to imperfections of the model caused by systematic effects, such as miscalibrations,
inefficiencies, incompatibilities, and many others. A very straightforward way to improve the
fitting is to introduce more parameters in the model, although these new parameters are not
going to be of intrinsic interest. The name given to such elements is nuisance parameters
~µ [329], and their incorporation into the likelihood function results in L(x|~θ, ~µ). The inclusion
of these new parameters may improve the fitting, but since they tend to be correlated with
the parameters of interest ~θ, aside from increasing the parameter phase space, their presence
can lead to larger statistical uncertainties for the estimates of ~θ. The statistical uncertain-
ties are closely associated with the relation between the amount of data and the number of
parameters. One way to reduce the impact of the nuisance parameters is to construct sub-
sidiary measurements y (increase information about ~µ) that allow to constraint the nuisance
parameter values [289]. If such a measurement is completely independent from the nominal
one x, the augmented likelihood function can be written as L(x,y|~θ, ~µ) = Lx(x|~θ)Ly(y|~µ).
The augmented likelihood function is then profiled with respect to the nuisance parameters
~µ [335], namely L(x|~θ) = L(x|~θ, ˆ̂

~µ(~θ)), where ˆ̂
~µ(~θ) indicates the values of the nuisance pa-

rameters ~µ that maximize the likelihood function for the specified ~θ. In high energy physics,
the profile likelihood is widely used in the branch of statistical tests.

5.1.3 Confidence Level of Statistical Errors

In the previous subsection, the maximum-likelihood method was presented as a very
effective way to estimate the parameters of a certain model. Once the parameters have been
estimated, the next natural step would be to give some measure of the statistical uncertainty
of the estimates. The reason behind it is that the estimators themselves also obey a certain
distribution, that is, repeating the experiment many times would give different values for
the estimates. So, in order to adequately report the estimated values for the parameters,
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one should take into account the level of uncertainty (error) when taking the fitted values as
reference.

One simple way of reporting the error of a given estimate is with the variance of the
corresponding estimator [328]. Depending on the complexity of the case in question, the
computation of the variance of estimators can be performed analytically, or using other
methods like MC. In very complicated scenarios, the Rao-Cramér-Frechet inequality [330] can
be used to provide a lower bound on the variance of the estimator. Another common method
is the one that carries out a local Gaussian approximation of the likelihood function [329],
based on the fact that L(x|~θ) can be approximated to a multivariate Gaussian distribution
in the limit of large number of events [336]. In this approximation, the estimator of the
covariance matrix takes the form

(Ĉ−1)ij = −∂
2 lnL(x|~θ)
∂θi∂θj

∣∣∣∣∣
~θ=~̂θ

, (5.8)

so the estimated variance for the parameter estimate θ̂i would be given by σ̂θ̂i =
√
Ĉii.

An equivalent approach is to expand the log-likelihood function in Taylor series about the
estimates ~̂θ up to second order (a parabola, as in the Gaussian case), and estimate the
variances from the contour formed by values of ~θ fulfilling [329]

lnLmax − lnL(~θ) = 1
2 . (5.9)

This last procedure provides for a given estimate, in general, asymmetric errors θ = θ̂
+∆θ̂+
−∆θ̂−

,
called negative and positive uncertainties respectively, whereas the local Gaussian approxi-
mation gives symmetric errors θ = θ̂ ± σ̂θ̂.

The above suggests that, in this context, the statistical errors are interpreted (indepen-
dently of the p.d.f.) as the standard deviation of the distribution of the estimates. However,
none of those methods guarantees an exact coverage of the statistical errors. A more ap-
propriate treatment of the statistical uncertainties lies within the framework of confidence
intervals [337]. The method relies on the knowledge of the distributions of the estimators
g(~̂θ; ~θ), which depends on the true parameter values ~θ. As already mentioned, the p.d.f. of ~̂θ
can be obtained in simple cases by means of analytic calculations or MC studies, but the real
advantage lies in the fact that knowing the values of ~θ allows knowing the p.d.f. of ~̂θ. For
a single-parameter distribution g(θ̂; θ) (for simplicity), one can construct the probabilities α
and β to observe θ̂ ≥ uα and θ̂ ≤ vβ for a fixed value of θ respectively, where uα and vβ are
functions of the true parameter θ defined as [328]

α = P (θ̂ ≥ uα(θ)) =
∫ ∞
uα(θ)

dθ̂ g(θ̂; θ), β = P (θ̂ ≤ vβ(θ)) =
∫ vβ(θ)

−∞
dθ̂ g(θ̂; θ). (5.10)

For fixed α and β, one can determine the behavior of the two functions uα(θ) and vβ(θ) by
scanning the parameter space allowed for θ. These two curves form a region in the θ̂−θ plane
called the confidence belt. Regardless of the value of θ, the probability of θ̂ to be inside the
belt is P (vβ(θ) ≤ θ̂ ≤ uα(θ)) = 1 − α − β, which, inverting the functions uα(θ) and vβ(θ),
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yields
P (a(θ̂) ≤ θ ≤ b(θ̂)) = 1− α− β, (5.11)

where the functions a(θ̂) and b(θ̂) can now be evaluated with the value of the estimate. The
resulting two values determine the so-called confidence interval [a, b] at the confidence level
1 − α − β. Such interval would contain the true parameter value θ in a fraction 1 − α − β
of the total number of times the experiment is repeated. The choice of the probability pair
α and β is in accordance with the type of confidence interval desired; for instance, central
intervals, one-sided intervals, or two-sided intervals [328]. One particular case is that of the
upper limits, for which one takes the probability P (θ ≤ θup) = 1 − β. The most commonly
used confidence level value in high energy physics is 95%.

Probably the greatest difficulty of using this method is the fact that the p.d.f. g(θ̂; θ) has to
be known, which is only plausible in very few cases. Nevertheless, in many ordinary cases, the
approximation of a Gaussian distribution perfectly works, which leads to very straightforward
estimations of the confidence intervals (e.g., at 68% confidence level, the interval θ = θ̂ ± σ̂θ̂
is covered). On other occasions, where the approximation is not good enough in the first
instance, a process of gaussianization is carried out with the help of a new estimator [328].
Even in the case of a non-Gaussian estimator, under fairly general conditions and in the large
sample limit, the maximum-likelihood estimators are going to obey a multivariate Gaussian
distribution, transferring to the likelihood function the Gaussian shape. Then, it can be
shown [289], analogously to Eq. (5.9), that a multivariate confidence region can be formed
by values of ~θ (m-dimensional) defining the contour

lnLmax − lnL(~θ) =
F−1
χ2
m

(1− α)
2 , (5.12)

with F−1
χ2
m

(1− α) being the chi-square quantile of order 1− α for m degrees of freedom, and
1−α representing the confidence level that the true vector ~θ is contained within that region.
In addition to those methods, there is another procedure [338] based on a statistical test
called likelihood ratio (see Subsec. 5.1.4), which assumes that the true parameters’ values are
~θ. The values of ~θ for which the hypothesis is rejected with size α or less are excluded, while
the remaining values make up the confidence region at level 1− α.

5.1.4 Testing Statistical Hypotheses

A key task in most of the physics measurements is to discriminate between two or more
hypotheses, basing the judgment on the agreement of the observed experimental data with
one of them. The objective of a statistical test is to provide a quantitative way to help make
the decision and draw conclusions. One example of testing the validity of certain hypotheses
is to check whether the observed data originate only from SM background processes, or if
they also contain events coming from physics beyond the SM, as it happens in the context of
this thesis.

When performing a statistical test, the hypothesis under consideration is traditionally
called the null hypothesis H0, which can be assigned, for instance, a p.d.f. f(~x) of the random
variables ~x. Testing the hypothesis H0 and drawing conclusions on it usually involves a
comparison with one or more alternative hypotheses H1, H2, . . . [327], specified by probability
density functions f(~x|Hi), for a given Hi. In order to quantify the level of agreement of
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a certain hypothesis with the data, a test statistic t(~x) that obeys the p.d.f. g(t|Hi) is
constructed and evaluated in the observed data ~xobs. This test statistic could be given as a
multidimensional quantity, however, due to the frequently limited amount of data, defining
a scalar function turns out to be more convenient. The decision whether to accept or reject
the null hypothesis H0 is made by defining the so-called critical region for t, chosen in such
a way that the probability to observe t there is α, where α is defined as the significance
level of the test. But even so, the critical region is not uniquely defined, so its selection is
based on the possible alternative hypotheses. Considering only one alternative hypothesis
H1, the decision boundary of the critical region could simply be a cut tcut applied to the
test statistic. Then, the value α =

∫∞
tcut

dt g(t|H0) gives the probability to reject H0 if H0
is true, whereas β =

∫ tcut
−∞ dt g(t|H1) is the probability to accept H0 if H1 is true [289]. The

magnitude 1−β quantifies the power of the test with respect to the alternative H1 for a given
significance level α. In principle, the optimal test statistic would be the one that achieves the
best possible separation of the distributions of t for H0 and H1. A lemma due to Neyman
and Pearson [320, 339] states that the maximum power for a given probability α is provided
by the likelihood ratio

t(~x) = f(~x|H1)
f(~x|H0) , (5.13)

with the critical region defined as t(~x) > c, where c is a constant whose value is determined
by α. If the observed data ~xobs falls into the critical region, the hypothesis H0 is rejected.
In high energy physics, the value of c (or tcut) is sometimes not completely fixed to allow
for a large flexibility in the selection criterion. This allows meeting certain particular needs
according to the required proportion of the so-called true and false positive rates, rather
known in this field as selection efficiency and misidentification probability respectively.

The most problematic aspect of Eq. (5.13) is that it can be really difficult in practice to
know the form of the multidimensional p.d.f.s f(~x|H0) and f(~x|H1), as they might depend
on hundreds of discriminating variables. Then, one has to resort to MC methods to generate
events that follow the p.d.f.s, and perhaps use multidimensional histograms to represent such
distributions [328]. However, as the number of dimensions gets larger, the number of bins
needed to construct the multidimensional histograms increases dramatically. For instance,
having b bins for each of the n variables will lead to bn total bins, which, for large n and
relatively reasonable b, requires a huge amount of data in order to fill each of them. This
exponential growth for the amount of the data needed with respect to the number of dimen-
sions is associated with the phenomenon known as the curse of dimensionality [340]. So, in
practice, the most common approach is to proceed by applying multiple cuts (cut-based) on
some components of ~x, and use one or a few powerful discriminating variables to construct
the test statistic. But nowadays, more powerful and sophisticated classification methods in
comparison to the rectangular cut selection have been developed: the so-called multivariate
classification algorithms (MVA) [341]. From the statistical point of view, these methods con-
sist in making an ansatz for t(~x) (e.g., linear function), so that it depends on fewer parameters,
and then adjust the parameters to obtain the best possible separation between g(t|H0) and
g(t|H1). The way to achieve so is closely related to what is called pattern recognition [342],
which uses information from the statistical distributions to optimally assign a definite class
type to the events. For instance, in experimental particle physics, two assignments could be
used for events depending on whether they belong to signal events or background events.

92



5.1. Statistical Methods

The performance of the classification algorithm carrying out the task of deciding whether the
event is signal-like or background-like can be estimated from the receiver operating charac-
teristic (ROC) curve, which basically encodes the relation between the signal efficiency and
the background rejection. Similarly to tcut, choosing a particular point on the ROC curve
corresponds to a definite selection of the proportion of signal and background events. In
order to efficiently determine such decision boundary, a large variety of existing algorithms
are subject to training using events known to pertain to specific classes. This supervised
training is known as machine learning [343, 344]. Several algorithms are currently available:
projective likelihood estimation, k-nearest neighbor, Fisher linear discriminant, artificial neu-
ral networks, support vector machines, (boosted) decision trees, and many more [329]. In this
thesis, the method of boosted decision trees (BDT) implemented in the TMVA package [345]
of Root [346] is utilized.

Often one is interested in tests that reflect the level of agreement between the data and H0
without specific reference to any H1. To quantify this level of agreement, a significance test
(goodness-of-fit) of the hypothesis H0 is constructed [289,347]. The significance of a possible
discrepancy is measured with the p-value, defined as the probability to find the statistic t in
the region of equal or lesser compatibility with H0 than the level observed with the data

p =
∫ ∞
tobs

dt g(t|H0), (5.14)

where tobs is the observed value of the statistic. Saying that a given data have less com-
patibility with H0 implies that it has more compatibility with some alternative hypothesis.
So, in this context, the hypothesis H0 is rejected if the data are found in the critical region
p ≤ α. One of the most common practices is to convert the p-value into an equivalent sig-
nificance Z = Φ−1(1 − p), where Φ is the cumulative standard Gaussian distribution; then,
a significance of Z = 5 (i.e. a 5σ effect) corresponds to a p-value of 2.87× 10−7. The previ-
ous definition is frequently used to quantify the expected sensitivity one would obtain with
certain measurements under the assumption of different hypotheses.

In particle physics, most of the time, the parameter of interest is the cross-section of the
signal process (or other proportional to this, denoted as µ), but almost always its measurement
has associated nuisance parameters ~ν, whose values are unknown and have to be obtained
from a fit1 to the data [348]. In order to overcome that difficulty, the test statistic t(µ) is
defined in such a way that its p.d.f. is independent of the nuisance parameters. A very good
approximation to accomplish that goal is obtained from the so-called profile likelihood ratio

λ(µ) = L(µ, ˆ̂~ν)
L(µ̂, ~̂ν)

, (5.15)

where L(µ, ˆ̂~ν) is the profile likelihood (Subsec. 5.1.2), and L(µ̂, ~̂ν) is the global maximum-
likelihood, with µ̂ and ~̂ν being its estimators. The quantity λ(µ) is defined so that it can take
values 0 ≤ λ(µ) ≤ 1, with higher values indicating greater compatibility between the data and
the hypothesized value of µ. It is convenient to use instead the statistic t(µ) = −2 lnλ(µ),
which, according to a theorem from Wilks [349], approaches a χ2 distribution in the large

1The increased flexibility offered to the model by the introduction of nuisance parameters leads to a loss
of sensitivity.
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sample limit under certain conditions. The advantage of this statistic is that its asymptotic
distribution is independent of ~ν. However, in practice, the amount of data is limited, so the
asymptotic behavior is not exact and, therefore, there exits a small dependence. For models
where µ has to be necessarily non-negative, an alternative definition of t(µ) can be used [348]

t̃(µ) =


−2 ln L(µ,ˆ̂~ν(µ))

L(0,ˆ̂~ν(0))
µ̂ < 0

−2 ln L(µ,ˆ̂~ν(µ))
L(µ̂,~̂ν(µ))

µ̂ ≥ 0
, (5.16)

where a explicit dependence of the nuisance parameters with respect to µ has been em-
phasized. After having constructed the test statistic t̃(µ), the level of disagreement of the
hypothesized value of µ can be quantified with the p-value of its distribution.

Two important special cases of the previous statistic t̃(µ) can be identified. The first
instance is when aiming for the discovery of a positive signal, for which the hypothesis that
undergo testing is µ = 0 (background-only hypothesis). If the µ = 0 hypothesis is rejected, a
new signal might have been discovered. The test statistic for this case then reads (q0 ≡ t̃(0))

q0 =


0 µ̂ < 0

−2 ln L(0,ˆ̂~ν)
L(µ̂,~̂ν)

µ̂ ≥ 0
. (5.17)

Large q0 means increasing incompatibility between the data and the µ = 0 hypothesis, and
the significance of such discrepancy is given by the approximate asymptotic equation Z0 =
Φ−1(1− p0) = √q0 [348]. An apparently statistically significant observation may arise when
looking for a signal in a very broad region without specifying in advance the location of
the signal. This phenomenon is known as the look-elsewhere effect and must be treated
carefully [350]. The second relevant case is the one dedicated to establishing an upper limit
on the strength parameter µ. The hypothesis to test is that of a signal with a given µ (signal-
plus-background hypothesis), and the corresponding test statistic q̃µ ≡ t̃(µ) (for µ ≥ 0)
is [348]

q̃µ =


0 µ̂ > µ

−2 ln L(µ,ˆ̂~ν(µ))
L(µ̂,~̂ν(µ))

0 ≤ µ̂ ≤ µ

−2 ln L(µ,ˆ̂~ν(µ))
L(0,ˆ̂~ν(0))

µ̂ < 0

, (5.18)

where the occurrence of data fluctuating upward (µ̂ > µ) is dismissed. As with the case of
discovery, the level of agreement between the data and the supposed value of µ is measured
with the p-value. The values of µ not rejected during such a test of size α (pµ > α) constitute
a confidence interval (upper limit) with confidence level 1 − α. However, there are some
regions of the parameter space, specially those with small µ, where the distribution of the
statistic being used is almost identical under the signal-plus-background hypothesis and the
background-only hypothesis. This type of situation corresponds to cases to which one has
little or no sensitivity, so it is questionable whether such parameter values should be regarded
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as disfavored. By construction, the probability to reject µ if µ is true is α and, since both
statistic distributions are very similar, the probability to reject µ if µ = 0 is true (the power
1 − β) is only slightly greater than α. So, there is a probability of value just above α to
exclude models that should not be excluded. One way of avoiding this spurious exclusion is
by using the CLs procedure [351], which is based on the quantity

CLs = pµ
1− pb

, (5.19)

where pb is the p-value of the background-only hypothesis. The signal-plus-background hy-
pothesis is then rejected if CLs ≤ α. Apart form this observed upper limit on the parameter
µ, it is common to provide as well the expected exclusion limit, i.e. the values of µ that
can be excluded if the signal is in fact absent. The procedure is very similar to that of
the observed limit, but instead of the actual data, an Asimov dataset generated with the
MC toy method under the background-only hypothesis is used [348, 352]. By means of this,
the median and the uncertainty bands (±1σ and ±2σ) for the expected signal strength are
computed. The actual data might contain statistical fluctuations, hence the reason why, in
general, the observed median will not be equal to the expected median.

Most of the statistical calculations presented in the context of this thesis were performed
with the Combine Tool package, developed by the LHC Higgs combination group [352,
353]. Other excellent implementations of the different statistical methods, like the RooStats
toolkit [354], are also available.

5.2 Search for Light Bosons in Exotic Decays of the 125 GeV
Higgs Boson

As discussed in Sec. 3.2, there is a wide variety of models that predict an extended scalar
sector, which certainly has the 125 GeV state h125 included in its mass spectrum. In such
context, there exist scenarios where a light boson a, namely with 2ma < 125 GeV, can be
produced from decays of the SM-like Higgs. Exploring the existence of such light bosons using
direct production modes tends to be highly limited, as in most models the couplings of a to SM
fermions are significantly reduced by a small parameter so that the SM-nature of the particles
involved is not spoiled. For instance, in the case of the “dark-photon” model (Subsec. 3.2.3),
the parameter of reference is χ, whose smallness guarantees that the mass of the SM Z

boson remains almost unaffected. On the other hand, in the 2HDM+S (Subsec. 3.2.5), the
parameter θa controlling the amount of mixing must be tiny in order to keep the SM Higgs
couplings nearly untouched. The same happens in models with additional singlets, where the
mixing parameter is preferred to be small to maintain the alignment limit (Subsec. 3.2.2),
and also in the case of little Higgs, where the symmetry breaking scale parameter suppresses
the couplings of the light bosons to fermions (Subsec. 3.2.4). For this reason, searches for
the a boson via the decay of the 125 GeV Higgs become immensely favored, as the relevant
quantities in the decays a → ff̄ are the branching ratios (B), which do not depend on the
tiny parameters2, unlike the production cross-section. That is additionally motivated by the
fact that the current upper limit for the B of h125 decaying into non-SM particles is about
34% [355], undoubtedly a non-negligible value for the presumed h125 → aa exotic decay.

2The given parameter is common for all the partial decay widths, so it does not appear in the Bs.
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For the scenarios where the a boson is very light (ma . 20 GeV), the leptonic channels
a → ll̄, to which are attributed very clean signatures in the detectors, become of special
importance when searching for possible a decays. Furthermore, the leptonic Bs may be also
considerably large for ma > 20 GeV in some regions of the parameter phase-space of the
models. There are models in which a specific leptonic mode could even dominate over other
types of decays. That is the case, for example, of the Type-III 2HDM+S for large tan β,
where the a → ττ dominates across the entire (kinematically allowed) mass range of the a
boson [12]. The study presented in this thesis primarily focuses on a search for very light
bosons in the decay channel h125 → aa→ 4τ , supplemented with possible events coming from
the h125 → aa→ 2µ2τ channel that enter the selection. The study is an update of a similar
search performed by the CMS collaboration in the Run 1 phase [356]. It also complements
several searches for light bosons performed by the CMS and ATLAS collaborations in different
final states (2τ2b, 2µ2b, 2τ2µ, 4µ, 2γ2g, 4γ, 4b, 4e and 2e2µ) and covering distinct mass ranges
during the Run 1 and Run 2 phases [357–369].

The results from this search could be interpreted in the context of several models, as
it was discussed in Sec. 3.2. However, the h125 → aa → 4τ channel offers much greater
potential for the 2HDM+S, compared to the rest of the mentioned possibilities. Models like
the dark photon benefits more from other decay channels (4µ, 2e2µ and 4e) possessing almost
identical Bs, and with a spectacular reconstruction at detector level, thus being way more
sensitive to this model than the 4τ channel [362, 368, 370]. In the case of both the model
with extra scalars and the little Higgs model, for ma above the b-quark pair threshold, the
4b and the 2τ2b channels can easily surpass the 4τ channel, and for masses below that limit,
decay modes like the 4c and the 2τ2c are way more promising [12, 219]. On top of that, the
combination of experimental results from precision tests and other types of searches applied
to those models allows excluding regions of the parameter space far beyond the reach of this
work. That is the reason why this analysis mainly examines the case of the 2HDM+S, which
has not been sufficiently probed yet. Having said that, it is necessary to clarify that the final
results that are going to be presented will be fundamentally linked to this particular model.
This is because, in order to perform the combination of the two channels, some assumptions
are made regarding the relation of their decay widths (see Eq. (5.20)), which are not always
true for all types of models. Aside from that, the search is performed on a completely model-
independent basis. Henceforth, the notation a1 refers to the mostly-singlet-like-pseudoscalar
of the 2HDM+S.

5.2.1 Analysis Strategy

In decays of the form h125 → a1a1 with relatively light pseudoscalars, the a1 are produced
with a large Lorentz boost, given the mass difference between these particles and the 125
GeV state. The smaller the mass of the light boson, the larger the velocity of the two a1
particles in the rest frame associated with h125. In addition to this boosting, related to the
decay of the h125, there might be other sources that generate a large momentum for the h125
itself, this time taking the laboratory system as reference. For the dominant ggF process
(Subsec. 3.1.1.2), an unbalanced momentum along the z-axis induced by a big difference in
the momentum fractions of the colliding partons can lead to a very high pz for the Higgs.
Besides, an event of initial state radiation triggering a hard gluon splitting on one of the
partons could produce a Higgs with a large transverse momentum pT . All these sources of
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boosting cause the decay products of the a1 bosons to be highly collimated, giving rise to
nearly overlapped fermion signatures in the CMS detector. The very high performance of
the reconstruction of muons in CMS allows resolving such complicated topologies for the
case of the a1 → µµ decay mode. However, for the case of a1 → ττ decays, the situation is
more complicated since the HPS algorithm (Subsec. 4.3.1.6) would not be able to efficiently
identify individual hadronic taus, due to the presence of additional components belonging to
the second τ lepton. That would also require the development and use of special triggers to
select those events, which becomes highly impractical within the current CMS program and
context. That is why, in this analysis, a special strategy meant to identify such collimated
di-tau topologies is designed.

The main idea is to consider the τ decay modes involving only one charged particle and
any number of neutral particles. These decay modes account in total for a larger branching
fraction compared to the purely hadronic decays that the reconstruction algorithm uses, as it
can be seen in Tab. 4.1. Then, one of the τs coming from the pseudoscalars can be identified
by its muonic decay, while the other can be identified via its one-prong (charged lepton or
one-prong charged hadron) decay, yielding the signature a1 → τµτone-prong. Such decays can
be recognized in the detector by the presence of one reconstructed muon surrounded by an
opposite-charge reconstructed track. That choice also allows identifying the a1 → µµ decay
without any trouble. The above-described topology is illustrated in Fig. 5.1. The figure shows
a1 bosons well separated in the η-φ plane, a case that corresponds to the main production
mechanism (ggF), in which the h125 tends to be produced with relatively small pT . The
analysis mainly targets the ggF process but also includes contributions from VBF, VH (WH
and ZH), and ttH. Besides, in the sketch of Fig. 5.1, the presence of two same-charge muons
originating from different a1 bosons is observed, which constitutes an essential requirement
in the selection, as it is one of the most effective ways to suppress background events.

5.3 Analysis Using Cut-Based Approach

This analysis covers the mass range corresponding to 4 ≤ ma1 ≤ 15 GeV, for which the
pseudoscalars are expected to be produced with a large boosting, especially for the lower
masses. The lower limit of the mass interval is selected to account for masses near the τ pair
threshold occurring atma1 ≈ 3.6 GeV, whereas the upper limit is based on the substantial loss
of signal acceptance for higher mass values. In this first approach, a selection of rectangular
cuts applied to the various variables, and optimized for the mass range probed has been
used. Most of the adopted values for these cuts are due to exclusive studies to maximize
the sensitivity of the analysis. The final discriminant in the final selected sample of events
consists of a 2D distribution of variables with strong separation power between the signal and
the background. These and other aspects of the analysis will be discussed in detail below.

5.3.1 Simulated Samples

The signal ggF production process is modeled with the general-purpose MC event gen-
erators (Subsec. 4.3.2) Pythia (v.8.212) and MadGraph5_aMC@NLO (v.2.2.2) for the
decay channels h125 → a1a1 → 4τ and h125 → a1a1 → 2µ2τ respectively. In both channels,
the pT distribution of the h125 is corrected with the help of the program HqT (v.2.0) [371]
interfaced with the NNLO NNPDF3.0 parton distribution functions [297], which accounts for
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Lorentz-boosted states

Well separated
same-charge muons

h125

Figure 5.1: Sketch representing the signal topology. The 125 GeV Higgs boson decays into
two a1 pseudoscalar bosons, with the consequent decay of one of the pseudoscalars into a
pair of τ leptons, and the decay of the second a1 into a pair of τ leptons or a pair of muons.
The final state considered is formed by one muon and an oppositely charged particle (µ, e or
h) in each a1 leg.

higher precision by means of resummation techniques at next-to-next-to-leading logarithmic
order. The contributions from the rest of subdominant processes (VBF, VH, and ttH) are
estimated using Pythia. For each signal process, samples corresponding to mass points from
4 to 15 GeV with a step of 1 GeV have been produced.

The main SM background processes have also been modeled with general-purpose MC gen-
erators. In the case of multi-jet events coming from QCD processes, event samples containing
at least one muon have been generated with the Pythia generator. The background events
arising from tt̄ and single-top production are simulated at NLO using the PowHeg (v.2.0)
event generator interfaced to Pythia. The inclusive production of Z and W vector bosons
(W/Z+Jets) is simulated with MadGraph5_aMC@NLO interfaced to Pythia. Events
from electroweak di-boson production (WW , WZ, and ZZ) are generated using Pythia as
well.

5.3.2 Event Selection

The main objective of the event selection is to efficiently identify the four final objects
(two muons and tow charged particles) while keeping low the background rate. That is
achieved by an appropriate choice of the online (trigger) and offline event selection strategies.
As explained in Subsec. 4.2.7, triggers are designed to keep as many events of interest as
possible, reducing at the same time the background contribution, and keeping the rate at
an acceptable level. According to the discussion on the signal topology (Subsec. 5.2.1), the
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Figure 5.2: Distributions of pT (upper) and η (lower) in the same-charge di-muon sample
for both leading (left) and subleading (right) muons. The data (dots) is compared with the
SM background expectation obtained from simulation (histograms). The contributions from
inclusive production of Z and W vector bosons (W/Z+Jets) and electroweak di-boson pro-
duction (WW , WZ, and ZZ) have been summed up into a single category (“Electroweak”).
The dashed histogram is the distribution of the signal in the h125 → a1a1 → 4τ channel for
ma1 = 10 GeV, which is normalized according to the benchmark scenario described in the
text. The signal has further been scaled (×100) to better see the full distribution.

signal events of the main 4τ channel are expected to have relatively soft muons since they
emerge from τ decays. Muonic τ decays always involve two neutrinos (Tab. 4.1), which tend
to carry away most of the τ momentum. On the other hand, the boosting of a1 pseudoscalars
leads to great proximity between the muon and the one-prong candidate. So, the standard
triggers using isolated leptons with relatively large pT thresholds would not be able to keep
a considerably good acceptance of signal-like events. In order to overcome that difficulty, a
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same-charge di-muon trigger without isolation requirements on muons, and with pT thresholds
of 17 GeV and 8 GeV for the leading (higher pT ) and the subleading muon respectively, is
used to select the events. Additionally, the trigger only selects pairs of muons that have the
same charge, which collaborates suppressing background events coming from tt̄, Drell-Yan
and di-boson productions. On top of that, the HLT requires the tracks of the two muons
to have points of closest approach to the beam axis within 2 mm of each other along the
longitudinal direction.

Regarding the offline selection, the analysis uses well-reconstructed muons and high purity
reconstructed tracks (charged PF candidates) as main physics objects (Subsec. 4.3.1). In
correspondence with the trigger choice, the events must contain at least two same-charge
muons fulfilling the following requirements:

• The pT of the leading (subleading) muon must exceed 18 (10) GeV.

• The pseudorapidity of both muons must be |η| < 2.4.

• The transverse (longitudinal) impact parameters of the muons with respect to the PV
must be |d⊥| < 0.05 (|dz| < 0.1) cm.

• The distance between the muons in the η-φ plane must be ∆R =
√

(∆η)2 + (∆φ)2 > 2.

The first requirement is intrinsically related to the trigger pT thresholds, which have to be
exceeded in a reasonable amount (close to the efficiency curve plateau) to maintain a good
trigger efficiency. The second condition is due to the pseudorapidity coverage of the CMS
detector, which, for some subdetectors like the tracker and muon system, is about |η| ∼ 2.4
(Subsecs. 4.2.3 and 4.2.6). The cuts on the impact parameters of the muons are designed to
suppress those background events in which a heavy-flavor hadron decays into a muon and
several charged particles, resulting in a displaced secondary vertex. The last requirement
has to do with the already mentioned fact that, in the ggF process, the h125 is produced
with relatively small pT , thus having the decay products of the pseudoscalars large angular
separation. After imposing those requirements, if more than one same-charge muon pair in
the event is found to satisfy them, the pair with the largest pSum

T = pµ1
T +pµ2

T is chosen. Some
of the kinematic distributions (pT and η) of the two muons after this selection can be seen
in Fig. 5.2. For the drawing of these plots, and throughout this section, a benchmark value
of the branching fraction B(h125 → a1a1)B2(a1 → ττ) = 0.2 is assumed, as well as that the
h125 production cross-section is the one predicted in the SM. As seen from the plots, in this
di-muon sample the dominant contribution is that from QCD multi-jets, which constitutes
∼ 95% of the total background. A simulation-based study, designed to identify the flavor of
the partons generating jets with muons inside, showed that the QCD multi-jet background is
dominated by events containing b-quarks. The above suggests that the same-charge di-muon
pairs would be being generated mainly from muonic decays of B-mesons in one b-quark jet,
and muonic decays of quarkonia or B-mesons in a second heavy-flavor jet.

The analysis also uses information about tracks, which serve to identify the τone-prong
and to construct an isolation criterion for the muon-track pair of each leg. Imposing isolation
requirements happens to be one of the most effective ways of reducing background events that
contain jets with muons inside, as the jets tend to have higher track multiplicity compared
to the chosen a1 → τµτone-prong candidates. The following definitions of track types are used:
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Figure 5.3: Distributions of ∆R (left) and invariant massm (right) of the muon-track pairs for
different mass points of the h125 → a1a1 → 4τ channel in the ggF process. The distributions
are obtained using generator-level information by selecting µ±π∓ pairs that emerge from the
a1 → τµτone-prong decay.

• The “isolation” tracks are utilized to construct the isolation criterion for the a1 candi-
date. They are defined by the following criteria: pT > 1 GeV, |η| < 2.4, |d⊥| < 1 cm,
|dz| < 1 cm.

• The “signal” tracks are a subset of the “isolation” tracks meant to represent the
τone-prong particles. They are defined by the following criteria: pT > 2.5 GeV, |η| < 2.4,
|d⊥| < 0.02 cm, |dz| < 0.04 cm.

• The “soft” tracks are a subset of “isolation” tracks designed to construct one of the
sideband regions used in the background modeling. They are defined by the following
criteria: 1 < pT < 2.5 GeV, |η| < 2.4, |d⊥| < 1 cm, |dz| < 1 cm.

In this approach (cut-based), a track is regarded as being nearby a muon if the angular
separation ∆R between them is less than some specified value. In Fig. 5.3, the distributions
of ∆R and invariant mass m of τµ-τone-prong pairs obtained through a generator-level study on
the simulated signal samples can be observed. In this study, µ±π∓ pairs have been selected
to mimic the reconstructed τµ-τone-prong candidates. The figure clearly shows the effect that
the boosting has on the lighter resonances. For the mass range 4 ≤ ma1 ≤ 15 GeV, an
optimized cut of ∆R = 0.5 was found, so a track is considered close to a muon if the distance
in the η-φ plane is ∆R < 0.5. This ∆R value is optimal for intermediate masses, while
it can maintain a good signal-to-background ratio for low masses and a reasonable signal
acceptance for higher masses. Other possible cut values were probed, but that resulted in a
deterioration of the overall performance. The track multiplicity distributions for each of the
muons, using nearby “isolation” tracks, and for a cone of ∆R = 0.5 with axis along the muon
momentum direction, are shown in Fig. 5.4. It can be seen how the background components,
specially QCD multi-jets, tend to have a higher track multiplicity with respect to the signal;
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Figure 5.4: Distributions of track multiplicity (number of nearby “isolation” tracks) associated
to the leading (left) and subleading (right) muons using a cone of ∆R = 0.5.

the latter gets the maximum value for Ntracks = 1, as expected. Then, the selection further
proceeds by requiring each muon to have one nearby “signal” track with a charge opposite
to its charge. This muon-track system is accepted as a a1 candidate if it has no additional
“isolation” tracks within the cone of ∆R = 0.5. The signal region (SR) of the selection is
defined as that possessing two a1 candidates. The event sample that this region comprises is
the one used to carry out the statistical inference procedure.

The number of events observed in data that are selected in the SR is 2035. The number
of expected background events obtained from simulation is compatible with that number,
though its uncertainty is very large due to limited size in the QCD multi-jet sample. That
is the main reason why the estimation of the background is addressed using a data-driven
approach, as described in Subsec. 5.3.4. The rest of the background components are known
with relative good accuracy from the simulation, and they amount to just a ∼ 1% of the
total background. In the case of the signal, the expected yield and signal acceptance values
for a few representative mass points are reported in Tab. 5.1. The yield contributions from
different production mechanisms (ggF, VBH, VH and ttH) of h125 have been summed up for
each of the two channels (h125 → a1a1 → 4τ and h125 → a1a1 → 2µ2τ). Now, since the
couplings at tree level of the neutral scalar sector to fermions in the 2HDM+S (Subsec. 3.2.5)
are proportional to the SM Higgs couplings, the equivalent expression to Eq. (3.6), for the
case of a pseudoscalar (3/2 → 1/2), can be used to relate the a1 → ττ and a1 → µµ partial
decay widths. Then, the ratio of the branching fractions of the a1a1 → 2µ2τ and a1a1 → 4τ
decay modes can be obtained via the ratio of the partial decay widths Γ(a1 → µµ) and
Γ(a1 → ττ) as

B(a1a1 → 2µ2τ)
B(a1a1 → 4τ) = 2B(a1 → µµ)

B(a1 → ττ) = 2Γ(a1 → µµ)
Γ(a1 → ττ) = 2

m2
µ

√
1−

(2mµ
ma1

)2
m2
τ

√
1−

(2mτ
ma1

)2 , (5.20)
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Table 5.1: Signal acceptance (fraction of accepted events for ggF process) and yield (number of
expected signal events including all processes) in the SR for some reference mass points. The
yields are computed using the chosen benchmark value (B(h125 → a1a1)B2(a1 → ττ) = 0.2)
for the 4τ channel, and by means of the relation (5.20) for the 2µ2τ channel.

ma1 [GeV] Acceptance ×104 Number of events

4τ 2µ2τ 4τ 2µ2τ

4 3.29 ± 0.16 89.3 ± 1.4 129.9 ± 6.2 54.7 ± 0.9

7 2.50 ± 0.14 69.0 ± 1.4 98.8 ± 5.5 22.5 ± 0.5

10 1.46 ± 0.11 47.1 ± 1.2 57.8 ± 4.2 14.2 ± 0.4

15 0.21 ± 0.04 3.5 ± 0.3 8.5 ± 1.1 1.0 ± 0.1

where the factor of 2 arises from the two possibilities a(1)
1 a

(2)
1 → 2µ2τ and a(1)

1 a
(2)
1 → 2τ2µ.

The formula (5.20) is employed to compute the expected signal yields in the 2µ2τ channel.
The partial decay width ratios were also used to estimate the possible contribution from the
h125 → a1a1 → 4µ decay channel. The latter was found to represent between a 0.4% and a
2% of the total signal yield (taking into account the 2µ2τ and the 4τ channels) depending on
the pseudoscalar mass, therefore, it was neglected in this analysis. In regard to the reported
values of acceptance in Tab. 5.1, it can be noticed how these decrease quite abruptly for
the samples corresponding to large ma1 . That is because, for those masses, the angular
distance of the muon-track system tends to be greater than the prescribed maximum value
of ∆R = 0.5 (see Fig. 5.3 (left)), thus existing a large number of events failing to fulfill the
requirement of having one “signal” track nearby the muon. This is the main reason why this
first approach is limited in sensitivity for relatively large masses of the a1 boson.

5.3.3 Final Discriminant

In this cut-based approach, the chosen distribution to discriminate between signal and
background is that formed by the two variables corresponding to the invariant masses of
both muon-track systems (a1 candidates). Due to the presence of neutrinos in both legs
(a1 → ττ) of the 4τ channel, the a1 resonances are poorly reconstructed, as it can be inferred
from Fig. 5.3 (right). This makes the construction of an analytic parametric model for the
signal infeasible, so the 2D distribution has been binned. For simplicity, the 2D histogram
has been filled for ordered values of the two invariant masses (m1,m2), so that m2 > m1.
The binning layout taken is illustrated in Fig. 5.5, where it is indicated that only bins (i, j)
with j ≥ i are filled, being j identified with m2 and i identified with m1. The bins (i, 6),
for i = 1, . . . , 5, comprise all the events with m2 > 6 GeV, while the bin (6, 6) includes all
events with m1,2 > 6 GeV. This 2D template is then translated (unrolled) into a 1D template
containing the 6(6 + 1)/2 = 21 bins in order to facilitate the work with the distributions and
to better illustrate them.

To carry out the statistical analysis, the binned likelihood function is constructed ac-
cording to Eq. (5.7) with νi → µsi + bi, where si and bi represents the expected signal
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Figure 5.5: Adopted binning scheme for the 2D distribution of invariance masses (m1,m2)
used as discriminant to extract the signal. The resulting 21 bins are labeled with the pairs
(i, j), for i, j = 1, . . . , 6 and with j ≥ i.

and background event yields for a given bin. Both si and bi are subject to multiple un-
certainties that are handled by introducing nuisance parameters; those are treated in more
detail in Subsec. 5.3.6. The compatibility of the data with the background-only and signal-
plus-background hypotheses is tested with the profile likelihood ratio test, as described in
Subsec. 5.1.4. The parameter of interest µ (signal strength modifier), in this case, is the
product of the cross-section and branching fraction relative to the SM inclusive production
cross-section of h125, µ = σ(pp → h125 + X)/σSM B(h125 → a1a1)B2(a1 → ττ). More de-
tails about the construction of the model and its individual components will be given in the
following subsections.

5.3.4 Background Modeling

The estimation of both the shape and normalization of the background distribution from
the MC simulation becomes almost impossible due to the small size of the MC sample cor-
responding to the largely dominating QCD multi-jet background. Therefore, a data-driven
method based on several sideband (control) regions has been designed to estimate the shape
(normalized 2D (m1,m2)) of the total background contribution in the SR. The construction
of the sideband regions focuses on both the derivation of the normalized 2D distribution and
on the validation of the data-driven estimation of the background shape. The definitions of
the full set of control regions utilized are shown in Tab. 5.2, with their corresponding number
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of observed events. All the control regions are built in such a way that their associated sam-
ple subset has null interception with that of the SR. This relies on the fact that the control
regions are constructed by relaxing the isolation requirement of either one or both of the
a1 → τµτone-prong candidates. The purpose of each of the sideband regions will be discussed
as progress is made in the description of the background model.

Table 5.2: Sideband regions used to construct and validate the background model. The
symbols Nsig, Niso and Nsoft denote the number of “signal”, “isolation” and “soft” tracks,
respectively, contained in a cone of ∆R = 0.5 around the muon momentum direction.

Sideband region First µ Second µ Observed events

N23 Niso = 1, Nsig = 1 Niso = 2, 3 62 438

Niso,2 = 1 Niso > 1, Nsig ≥ 1 Niso = 1, Nsig = 1 472 570

Niso,2 = 2, 3 Niso > 1, Nsig ≥ 1 Niso = 2, 3 1 766 790

N45 Niso = 1, Nsig = 1 Niso = 4, 5 52 437

Loose-Iso Nsig = 1, Nsoft = 1, 2 Nsig = 1, Nsoft = 1, 2 35 824

The normalized binned 2D distribution f2D(i, j) for the background is constructed as

f2D(i, j) =

 C(i, i)f1D(i)f1D(i) i = j

C(i, j)(f1D(i)f1D(j) + f1D(j)f1D(i)) j > i
, (5.21)

where f1D represents a 1D normalized distribution of the muon-track invariant mass, and
C(i, j) are factors that account for possible correlation between the variables m1 and m2.
The elements C(i, j) are referred to as “correlation factors” since a hypothetical consistency
of their values with the unity would imply the absence of correlation between m1 and m2.
The addition of the contents of the non-diagonal bins (i, j) and (j, i) is attributed to the
fact that each event enters the 2D distribution with ordered values of (m1,m2). The two
components of the background distribution f1D and C(i, j) are determined in two different
control regions as explained below.

The f1D distribution is derived in the sideband region N23. As seen in Tab. 5.2, the
events falling in this region only contain one a1 candidate, which is associated with a “first
µ”. The other muon (“second µ”) is required to be accompanied by either two or three
nearby “isolation” tracks. The f1D distribution is derived from the invariant mass of the
muon-track system corresponding to the a1 candidate. According to the MC simulation,
the control region N23 is dominated by QCD multi-jet events, making up more than 95% of
the total background. The signal contamination in bins of the f1D histogram is estimated
to be less than 0.7%. The basic assumption in constructing f1D from this control region is
that the invariant mass distribution of the a1 candidate is nearly unaffected by the isolation
requirement imposed on the second muon. This allows extrapolating the distribution f1D
derived in this region to the SR. In order to verify the above stated, two additional control
regions named Niso,2 = 1 and Niso,2 = 2, 3 are constructed. In both control regions, a
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Figure 5.6: The observed normalized invariant mass distributions of the first muon and the
softest (left) or hardest (right) “signal” track in control regions Niso,2 = 1 (red circles) and
Niso,2 = 2, 3 (blue squares).

first muon is allowed to have more than one “isolation” track (Niso > 1), of which, at least
one, must be a “signal” track. For the second muon, two types of isolation requirements
are considered; the isolation condition corresponding to a a1 candidate in the SR (sideband
region Niso,2 = 1), and the isolation specifications introduced for the second muon in N23
(sideband region Niso,2 = 2, 3). The next step is to compare the invariant mass distributions
obtained from the first muon-track pair in both control regions, and thereby assess the impact
that the type of isolation has on the kinematics of the other leg. Additionally, and due to
the fact that for the first muon more than one of the selected “isolation” tracks can be a
“signal” track, two scenarios have been studied. That is to say, the muon-track invariant
mass is calculated using both the lowest and the highest pT “signal” tracks (“softest” and
“hardest”). If only one “signal” track is found, this is regarded as both the hardest and
the softest “signal” track. The comparison between the sideband regions Niso,2 = 1 and
Niso,2 = 2, 3 for both scenarios is illustrated in Fig. 5.6. The results of this test show that
the muon-track invariant mass distributions in the control regions Niso,2 = 1 and Niso,2 = 2, 3
are compatible, differing by less than 6% in each bin of the histogram. This serves, to some
extent, to validate the assumption that the f1D distribution can be extrapolated from the
sideband region N23 to the SR. However, the existence of possible bias when considering N23
instead of any other isolation type must be taken into account too. One way to avoid such
potential effects is to consider systematic errors upon the choice of the sideband region. Those
uncertainties would be transferred to the final discriminant (f2D(i, j)) and taken into account
as nuisance parameters in the likelihood function. The possible dependence on the isolation
type imposed on the second muon is studied with a direct comparison between N23 and the
analogous control region N45 (see Tab. 5.2). The results of this study are shown in Fig. 5.7
(left). A slight deviation can be clearly seen, although an overall good agreement. The small
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Figure 5.7: The left plot shows the observed normalized invariant mass distributions of the
muon-track pair in control regions N23 (red circles) and N45 (blue squares). The right plot
shows the observed normalized invariant mass distribution of the muon-track pairs in the SR
(points with error bars), along with the background distribution obtained from N23 (blue line
with error bands), and a few signal (including 4τ and 2µ2τ) distributions (dashed histograms)
obtained from simulation.

difference is taken as a shape uncertainty in the f1D distribution, which is then propagated
to the final discriminant. The shape of the f1D distribution in the SR is superimposed to
that of the background model (N23) for comparison, as illustrated in Fig. 5.7 (right). The
level of agreement between the observed data and the background model is good within
their statistical uncertainties. At this point, the f1D distribution could also have served as
a discriminant between signal and background, nevertheless, exploiting the 2D distribution
obviously results in a better discriminating power. As can be observed from Fig. 5.7 (right),
for very low mass points (e.g. ma1 = 4 GeV), the separation power of f1D is still poor. This is
given to the fact that the lower the pseudoscalar mass, the greater the resemblance between
a muon-track pair produced from a a1 and one produced from a QCD jet.

In order to finally obtain the f2D(i, j) distribution, the elements C(i, j) have to be calcu-
lated. The correlation factor C(i, j) are derived in the Loose-Iso sideband region, in which at
least one of the muons is allowed to have one or two extra nearby “soft” tracks, apart from the
accompanying “signal” track. This region comprises about 36k data events, of which nearly
99% are expected to come from QCD multi-jet background, according to MC simulation.
The signal contamination is also estimated to be low, with an overall background-to-signal
ratio of one order of magnitude larger than in the SR. The event sample selected in Loose-Iso
is utilized to construct the f2D(i, j) distribution, and by means of Eq. (5.21), the C(i, j)
factors are calculated in this region. The values of the correlation factor obtained with this
data-driven procedure are shown in Fig. 5.8, along with their statistical uncertainty. The
higher-mass bins possess large uncertainties because only a few events fall in this region.
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Similarly to the case of f1D, the extrapolation of considering the C(i, j) in the Loose-Iso
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Figure 5.8: The observed values of the correlation factors C(i, j) (with statistical uncertain-
ties) obtained in the control region Loose-Iso.

sideband region identical to those in the SR must be validated. Now, in order to assess
such possible difference in C(i, j), rather than making the comparison in additional sideband
regions, a dedicated MC study has been performed. Since the QCD multi-jet background
largely dominates in the Loose-Iso control region, the QCD multi-jet MC sample has been
used to conduct that study. The main objective of the study is to provide a proper com-
parison between the C(i, j) in Loose-Iso and in the SR, overcoming somehow the problem
of the limited size of the QCD multi-jet sample. The idea is to derive the probabilities of
having muon-track pairs with distinct level of isolation (Loose-Iso or SR) as function of a
bunch of parameters that control the dynamics of the pairs inside the jet. The probabilities
are constructed as P (pparton, pµ/pparton, fparton, qµ · qparton,mµ,trk), where pparton is the parton
momentum, pµ/pparton is the ratio of the muon and parton momentum, fparton is the flavor
of parton, qµ · qparton is the muon-parton (quark) charge product, and mµ,trk is the invariant
mass of the muon-track pair in the jet. The evaluation is made for muons matching final state
partons within a cone of ∆R = 0.5. Since the derivation is made in the presence of only one
muon-track pair, the size of the selected sample is reasonably good. Once this procedure was
carried out and validated, the next step was to employ the derived probabilities to generate
the f2D(i, j) and f1D distributions from the same-charge di-muon sample (good size in the
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QCD multi-jet simulation) mentioned in Subsec. 5.3.2. The distributions are obtained for
both the SR and the control region Loose-Iso. Then, by making use of Eq. (5.21) again,
the correlation factors C(i, j) can be derived for both regions. The results of this simulation
study are shown in Fig. 5.9. The figure shows that the correlation factors obtained in the
two control regions are indeed quite similar. Nevertheless, in order to minimize any possible
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Figure 5.9: The values of the correlation factors C(i, j) (with statistical uncertainties) ob-
tained with the dedicated simulation study for the SR (left) and for the control region Loose-
Iso (right).

bias, the data-driven extrapolation from Loose-Iso to SR is compensated by applying transfer
factors via the relation

C(i, j)SR
data = C(i, j)Loose-Iso

data · C(i, j)SR
MC

C(i, j)Loose-Iso
MC

, (5.22)

where C(i, j)Loose-Iso
data are the correlation factors derived for the control region Loose-Iso in

data (Fig. 5.8), C(i, j)SR
MC are the ones derived for the SR in the simulated QCD multi-jet

sample (Fig. 5.9 (left)), and C(i, j)Loose-Iso
MC are the ones derived for the Loose-Iso in the

simulated QCD multi-jet sample (Fig. 5.9 (right)). Analogously to f1D, the small difference
observed from simulation between the C(i, j) in the SR and in the control region Loose-Iso
is taken as a systematic uncertainty to be propagated to the final discriminant.

5.3.5 Signal Modeling and Monte Carlo Corrections

The signal f2D(i, j) distributions are derived from the simulated samples of the h125 →
aa→ 4τ and the h125 → aa→ 2µ2τ channels. As mentioned before, the cross sections of the
various production mechanisms of h125 are taken as those of the SM, and the addition of the
contributions of the 4τ and 2µ2τ channels obeys the relation (5.20). The Fig. 5.10 illustrates
the unrolled f2D(i, j) distribution for the two signal channels obtained for two representative
mass points. The distributions of the two signal channels are normalized to their respective
event yields (see Tab. 5.1). The shapes of the two channels differ considerably due the peak
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structure of the a1 → µµ decay, in which one of the µ is identified with a reconstructed muon
in the detector and the other is associated with the reconstructed “signal” track.
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Figure 5.10: The unrolled f2D(i, j) distribution of both signal channels 4τ (red histogram)
and 2µ2τ (blue histogram) for two representative mass pintsma1 = 4 GeV (left) andma1 = 10
GeV (right). The notation of the bins follows that of Fig. 5.5.

It is clear that one has to rely on MC simulation to describe most of the features of
the signal model. However, the MC simulation is not able to fully reproduce all physical
aspects of the real data, so it is necessary to make use of some corrections. In general, all
the processes that are described by the MC simulation, whether signal or background, are
affected by these imperfections. Since in this particular case, the background modeling in
the SR was mostly carried out with a data-driven method, the signal modeling is the most
impacted. There are many factors that influence the deficient modeling of MC samples. Those
could be related to limitations of the MC generators (theoretical accuracy, computing power,
etc.), or to imperfections in the detector simulation (detector response, detector operation,
beam conditions, etc.). In this analysis, the handling of the first class of imperfections can
be reflected in the aforementioned corrections to the pT spectrum of h125 (Subsec. 5.3.1).
The signal acceptance is moderately dependent on the pT of h125 since a change in this
magnitude can lead to less or more boosted a1 bosons, thus modifying the angular distance
∆R of the muon-track pairs. To account for this, the simulated signal samples have been
subject to an event-by-event reweighting to match the higher-order predictions obtained for
the pT distribution of h125 in all production modes. Now, regarding the second class of effects
coming from the detector simulation, various corrections have been applied. One of those
corrections is due to the impossibility of exactly emulate the constantly changing pile-up
(Subsec. 4.3.1.2) conditions in real data taking. Although some estimates of the average
number of PU are usually made3, the exact distribution is very difficult to reproduce when
generating the MC samples. Hence, a PU reweighting on an event-by-event basis is applied
to the MC samples, so that the exact matching of the MC profile to the data is achieved.
Besides that, muon (Subsec. 4.3.1.3) reconstruction and identification efficiencies (in general,
most of the physics objects) also suffer from discrepancies between data and MC. So, weights
corresponding to the efficiency ratios, with pT and |η| dependence, are applied to the events
of the MC samples. On the same basis, the physics objects and quantities forming part of the
selection of the trigger (Subsec. 4.2.7) also introduce dissimilarities between the efficiencies
of the data and MC. The trigger efficiencies are measured relative to the offline selection

3In 2016, the average number of PU interactions per bunch crossing in data for pp collisions was about 27.
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in data and MC with the tag-and-probe technique [372], and their ratio in bins of pT and
|η| is used to reweight the MC samples. Another issue, more related to the context of this
analysis, is the inexact simulation of the isolation criteria imposed on the muon-track pairs.
The isolation might be affected by the presence of more (less) charged particles originating
from PU interactions or from the underlying event, so the profiles could slightly differ in MC
and data. To asses such potential inconsistency, a dedicated study performed on a sample of
Z → ττ was carried out. The selection exploits the Z → τµτone-prong decay mode, while trying
to mimic the same aspects of the selection of the one-prong track candidate (Subsec. 5.3.2).
The isolation efficiency is extracted as a function of the transverse momentum of the track in
four bins of pT through a maximum-likelihood fit (Subsec. 5.1.2) applied to the muon-track
invariant mass distribution. The study showed that, indeed, the isolation must be corrected
in MC. The results are shown in Fig. 5.11, which also includes the dependence obtained after
a linear fit applied to the measured values. The linear function was applied as a weight on
the events entering the SR of the signal sample.
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Figure 5.11: Scale factor associated with the isolation efficiency of muon-track pairs. The
measured values (points with error bars) in bins of track pT were fitted with a linear function
(blue line with cyan error band). The linear dependence was applied as a weight to the signal
sample on an event-by-event basis.
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5.3.6 Systematic Uncertainties

In Subsec. 5.1.2, the role that the nuisance parameters play when estimating the pa-
rameters of interest in the presence of imperfect models was mentioned. They are basically
introduced in the likelihood function to account for systematic biases in the model under
consideration, but in turn, that decreases the accuracy in the estimation of the parameters of
interest. To help constraint the nuisance parameters, auxiliary measurements are carried out
when possible. However, on certain occasions, this is not possible or results very difficult. In
this analysis, there are various sources of systematic uncertainties affecting both the signal
and the background distributions. One of the fundamental pieces of the background model

Table 5.3: Summary of the systematic uncertainties considered in the analysis and their effect
on the background and signal distributions.

Affected Distribution Source Value Type

Background

Stat. unc. in C(i, j) 3− 60% bin-by-bin

Syst. unc. in C(i, j) - shape

Syst. unc. in f1D(i) - shape

Signal

Integrated luminosity 2.5% norm.

Muon id. and trigger effic. (per µ) 2% norm.

Track id. effic. (per track) 4− 12% shape & norm.

MC stat. unc. 8− 100% bin-by-bin

µR,F variations (acceptance) 0.8− 2% norm.

PDF (acceptance) 1− 2% norm.

µR,F variations (ggF xsec.) 5− 7% norm.

µR,F variations (others xsec.) 0.4− 9% norm.

PDF (ggF xsec.) 3.1% norm.

PDF (others xsec.) 2.1− 3.6% norm.

is its normalization. But as it happens, due to the very limited size of the MC samples in
the SR, this parameter is unconstrained, and therefore it is assigned a flat distribution. For-
tunately, the modeling of the shape of the background is based on data, which makes it less
vulnerable to simulation effects, hence the reason why the background model requires fewer
nuisance parameters to properly describe it. The other few sources of uncertainties come from
the shape modeling itself, as discussed in Subsec. 5.3.4. A first uncertainty related to the
estimation of the f1D(i) distribution, as well as another one associated with the estimation of
C(i, j) are incorporated into the background model. Additionally, the statistical uncertainties
of the correlation factors C(i, j) (ranging from 3 to 60%), which are influenced by the size of
the observed Loose-Iso sample and the simulated QCD samples, are also included. The full
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set of systematic uncertainties considered in the analysis, along with their values and effect
on the distributions, is listed in Tab. 5.3; this also includes the signal uncertainties discussed
below. The most common choices of the p.d.f. (Gaussian, Log-normal, Gamma) describing
the various types of nuisance parameters listed in the table can be seen in [352].

The signal distribution is affected by various experimental and theoretical uncertainties.
Part of the uncertainty in the normalization of the signal distribution comes from the precision
in the measurement of the integrated luminosity, which for CMS reached a value of 2.5% [373]
for the 2016 data taking period. The applied corrections to the signal MC sample targeting
the imperfections on physics objects reconstruction also yield uncertainties. The estimated
value for the muon identification and trigger efficiency is 2% per muon, which is accounted for
via a nuisance parameter affecting the normalization of the signal. The study carried out for
the track isolation efficiency produced an uncertainty of 4− 12% per track, depending on the
track pT , so effects on both the normalization and the shape of the distribution were taken
into account. The overall small value of the signal acceptance (see Tab. 5.1) combined with
the limited sizes of the signal samples cause some bins of the distribution to have very few
events, provoking uncertainties as large as 100% in individual bins, and of up to 20% in the
total normalization. On the other hand, the theoretical uncertainties that are reflected in the
signal normalization are also taken into account by means of constrained nuisance parameters.
The corrections applied in the pT distribution of the h125 produce uncertainties of about 2%
in the acceptance upon changes in the PDFs and variations on the renormalization (µR) and
factorization (µF) scales. But the largest impact of these variations is on the cross-sections
of the h125 production processes, reaching uncertainty values of up to 9%, as observed in
Tab. 5.3.

5.3.7 Results

All the elements above discussed constitute the statistical model of this analysis, so the
remaining task is to carry out the procedure of statistical inference. The first step was to
subject the model to a maximum likelihood fit with the normalization of the signal and
the background freely floating. The signal normalization is left unconstrained to detect
any possible excess that can be described by the signal-plus-background model, whereas the
background normalization is unknown because of the explained reasons. The results of the fit
indicate that the background normalization tends to adjust to the number of observed events,
and the signal contribution for any mass hypothesis acquires a very low estimated value. That
allows promoting the fitting to the scenario where no signal is present. Accordingly, the ability
of the background-only model to fit the data is tested with a similar maximum likelihood
procedure. An illustration of the result of the background-only fit is shown in Fig. 5.12, where
the obtained post-fit distribution is compared to the data. One can observe with a naked
eye that there does not seem to be significant deviations of the data from the background
prediction, neither can be described the small fluctuations by any of the signal components
(normalized to their yields) that have been included in the figure. However, a simple look at
the plot can not provide a rigorous assessment of what the data is really describing, therefore,
it is prudent to resort to the analysis of test statistics.

As noted in Subsec. 5.1.4, one of the simplest options to test a given hypothesis without
having to reference any alternative proposition is to use a goodness-of-fit test. There are many
possibles types of goodness-of-fit measures that can be used. But in high-energy physics, the
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Figure 5.12: The final discriminant of the analysis. The observed number of events in each bin
is represented by data points with error bars. The background distribution (blue histogram
with shaded error bands) shown in the plot has been obtained after a background-only fit
to the data. The representative signal distributions (dashed histograms) include both the
4τ and the 2µ2τ channels, and they have been normalized using the event yield information
contained in Tab. 5.1. The notation of the bins follows that of Fig. 5.5.

“saturated” (Sat.) [374], the Kolmogorov-Smirnov (KS) [375], and the Anderson-Darling (AD)
[376] models are more commonly used, due to the fact that they very well suit the problem of
binned fits. First, the signal-plus-background model of this analysis with the strength modifier
(µ) floating in the fit (unspecified) was tested using those methods. The results of the tests
have been specified by their p-value, which corresponds to the probability of obtaining a value
of the test as high as the one observed, and where the corresponding distribution of the test
has been determined by Asimov data sets generated with toys. The Fig. 5.13 illustrates the
result using the saturated model for a mass hypothesis of ma1 = 10 GeV. The corresponding
p-values of this and of all the other tests are summarized in Tab. 5.4 for some representative
mass points. All the tests show that the signal-plus-background model is compatible with
the observed data. Based on the results of the maximum likelihood fit, the model is further
restricted to the background-only hypothesis (µ = 0) to test the robustness of this distribution
when trying to describe the data. The results of the three methods are also shown in Tab. 5.4.
It can be observed that the background-only model describes very well the data, reaching
p-values close to 0.5 for all tests. The above suggests that when confronting the background-
only hypothesis with an alternative signal-plus-background hypothesis by means of standard
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Figure 5.13: The result of the “saturated” test (based on a likelihood ratio) under the signal-
plus-background hypothesis for the mass point of ma1 = 10 GeV. The green histogram rep-
resents the distribution of the statistic obtained by means of toys. The arrow points to the
observed value of the statistic, and the red shaded area represents the p-value.

Table 5.4: Results of the three goodness-of-fit tests for both hypotheses expressed in terms
of p-values. In the case of the signal-plus-background hypothesis, representative mass points
were considered.

p-value

Hypothesis H0 signal-plus-background background-only

ma1 5 GeV 10 GeV 15 GeV -

Sat. 0.427 0.441 0.436 0.409

KS 0.480 0.486 0.481 0.478

AD 0.423 0.468 0.444 0.413
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procedures (Subsec. 5.1.4), for relatively large values of µ, the tendency is to accept the null
hypothesis. Therefore, no evidence of signal-like events is observed from the data, and upper
limits on the signal strength modifier can be set.
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Figure 5.14: The observed and expected upper limits at 95% confidence level on the signal
strength modifier µ = σ(pp → h125 + X)/σSM B(h125 → a1a1)B2(a1 → ττ). The green and
yellow bands indicate the central intervals that contain 68% and 95% of the distribution
of expected limits. The shaded area in blue (> 34%) indicates the excluded region for the
branching ratio of h125 decaying into non-SM particles [355].

The limit setting procedure follows the modified frequentist CLs criterion (Subsec. 5.1.4),
for a confidence level of 95%. The hypothesis under consideration is the signal-plus-background
for a given value of µ, and those values of the strength modifier that lead to a rejection of
the hypothesis are considered an excluded interval at 95% confidence level (Subsec. 5.1.3).
The observed upper limits for different mass points are compared with the expected limit
median and intervals (±1σ and ±2σ) obtained with the MC toy method. The results are
shown in Fig. 5.14. As seen in the figure, the observed limits are compatible with the ex-
pected limits within one standard deviation, which reaffirms the previous indication of the
absence of a signal, up to certain bound. The observed upper limits range from 0.022 at
ma1 = 9 GeV to 0.230 at ma1 = 4 GeV, whereas the median expected upper limits range
from 0.027 at ma1 = 9 GeV to 0.190 at ma1 = 15 GeV. The lower bounds for low and high
mass regions with respect to intermediate-mass points correspond to two different physical
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effects in the analysis. For very low masses, as was noted before, the similarity between
the invariant masses of signal muon-track candidates and those originating from a QCD jet
is quite large. This results in a poor discriminating power of the 2D (m1,m2) distribution
for the low mass hypotheses. In Fig. 5.12, the case of ma1 = 4 GeV is exemplified. One
can clearly see how this distribution and the background are more alike in shape than the
rest representing higher mass values. The fall in sensitivity for high masses is related to
the decrease in signal acceptance (Tab. 5.1) for these signal samples. The imposed cut of
∆R < 0.5 on the muon-track pair angular separation highly limits the selection of events
with less boosted a1 → τµτone-prong candidates (see Fig. 5.3), like those emerging from more
massive a1 pseudoscalars. The mass points that benefit most with the selection adopted in
this analysis are the ones in the intermediate region of the probed range since they possess
a good balance of discriminating power and event acceptance. The above motivated the
design of a new analysis strategy to improve the sensitivity of the analysis for low and high
pseudoscalars masses. This treatment can be found in the next chapter.
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In recent years, machine learning has become one of the most used tools to process data
containing a large number of variables as observable. In high energy physics, the use of
multivariate techniques has been increasingly growing as physical processes with a lower pro-
duction rate in the experimental facilities are explored. Previously, in the section dedicated to
the statistical methods (Sec. 5.1), some of the aspects of multivariate discriminants that are
derived from the statistical analysis were mentioned. And the fact is that, although machine
learning is built on the basis of very advanced algorithms and the most modern technologies,
in reality, the fundamentals of this methodology are purely statistical.

In this chapter, multivariate analysis techniques are put into practice, with the objective
to improve the results obtained for the search presented in the previous chapter. This will be
the main topic of the first section of this chapter, in which a second strategy attempting to
overcome some of the sensitivity limitations of the first approach are going to be presented.
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The principal ingredient of the new method is a multivariate classification algorithm as the
final discriminant combined with a more inclusive event selection intended to stabilize the
signal acceptance in the entire mass region. The second section is conceived to provide an
interpretation of the experimental results and to assess the impact of those on a specific
theoretical model. Here, the results obtained with this second experimental approach are
translated into constraints on the parameter space of the 2HDM+S.

6.1 Analysis Using MVA-Based Approach

This approach targets the same event topology discussed in Subsec. 5.2.1, but it extends
the pseudoscalar mass range up to 4 ≤ ma1 ≤ 21 GeV. The signal events belonging to
pseudoscalars with larger masses do not enter the selection used in the previous analysis
(Sec. 5.3), as the bosons tend to be less boosted, which makes their decay products fail the
requirement imposed on the ∆R between muons and tracks. This is now avoided with some
changes in the preselection cuts and type of isolation imposed on the various objects. As a
complement to the new selection, an MVA classifier (BDT) is employed to better separate the
signal and background events in the final sample (SR). The incorporation of new variables
into the final discriminant tackles the inconvenience of having relatively low sensitivity for
very light a1 bosons. Given the fact that many aspects of this approach coincide with those
of the previous one, the discussion here will be limited to mainly address the characteristics
that distinguish them.

6.1.1 Simulated Samples

In addition to the set of MC samples listed in Subsec. 5.3.1, a group of signal samples
corresponding to higher mass points was produced. Three mass points corresponding to 17,
19 and 21 GeV have been generated for all production processes and both decay channels.
The event samples for the h125 → a1a1 → 4τ channel were generated with the general-purpose
MC generator Pythia, whereas those for the h125 → a1a1 → 2µ2τ channel were produced
with MadGraph5_aMC@NLO.

Furthermore, a complete set (4, 5, 6, . . . , 15, 17, 19, 21 GeV) of same-charge di-muon en-
riched samples were produced for the 4τ decay channel in the ggF production mode, because
of the reasons explained in Subsec. 6.1.3. The samples were filtered at generator level by
requiring the presence of two same-charge muons with pT > 10 (20) GeV and separation
∆Rµ1,µ2 > 1.5. The MC event generator used for this task was also Pythia.

6.1.2 Event Selection

This analysis uses the same trigger strategy as the cut-based approach (Subsec. 5.3.2),
as it exploits the same a1 → τµτone-prong decay mode. The physics objects utilized are good
reconstructed muons and tracks as well. The only difference in the offline selection of same-
charge muons with respect to the cut-based approach is that the angular distance between
them is relaxed up to ∆Rµ1,µ2 > 1.5 since this variable is used in the MVA classification.
The distributions of this observable for a few signal samples are shown in Fig. 6.1 (right).
Concerning the tracks identifying the τone-prong candidate, the same classification of types of
tracks (“isolation”, “signal”, and “soft”) is used. The main difference appears in the selection
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Figure 6.1: Distributions of ∆R for muon-track pairs (left) and same-charge muon-muon
pairs (right) corresponding to high-mass points of the h125 → a1a1 → 4τ channel in the ggF
process. The distributions are obtained using generator-level information by selecting µ±π∓
and µ±µ± pairs.

of muon-track pairs, which now tries to include events with less boosted a1 bosons while
keeping, at the same time, those of very boosted pseudoscalars. A “signal” track is chosen
to accompany its muon partner (opposite charge) if the angular separation between them is
∆Rµ,trk < 1.5, and the reconstructed pT of the muon-track pair is pReco

T = |~pµ + ~ptrk|T > 10
GeV, so that they can represent a a1 → τµτone-prong decay of a1 masses up to ∼ 21 GeV,
see Fig. 6.1 (left). If more than one muon-track pair is found to fulfill the requirements, the
pair with the highest pReco

T is selected. That selection results in four objects; the leading
muon µL and its associated track trkL, and the subleading muon µS and its associated track
trkS . Then, additional cuts on the invariant mass of each muon-track pair (mµL(S),trkL(S) < 22
GeV) and on the total reconstructed invariant mass of the four objects (mµL,trkL,µS ,trkS < 125
GeV) are applied. The implementation of the previous cuts is quite self-explanatory. Once
these four objects are identified, a cone of ∆R = 0.5 with axis along the object’s momentum
direction is constructed around each of them. The number of tracks (track multiplicity)
nearby (∆R < 0.5) to each of the objects is counted, with the condition that the four
objects are excluded from that counting. Discarding the object’s tracks from being counted
avoids including the own object’s track or the surrounding partner’s track in the multiplicity
associated with a given object. This is fundamental upon establishing an isolation criterion
for each of the four objects. The four resulting distributions are shown in Fig. 6.2, where
the prediction from MC simulation is compared to the data. For the signal, the previous
benchmark value (B(h125 → a1a1)B2(a1 → ττ) = 0.2) is assumed here and throughout this
section. Then, a muon-track system is accepted as an a1 candidate if both the muon and
the track have no “isolation” tracks (zero track multiplicity) within the cone of ∆R = 0.5.
That is to say, the SR is defined as that having four isolated objects (two a1 candidates). In
this way, it is expected that the signal acceptance remain reasonably good in the entire mass
range 4 ≤ ma1 ≤ 21 GeV, while the background is kept at a very low rate.
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Figure 6.2: Distributions of track multiplicity (Ntracks) associated to each of the four selected
objects; µL (upper left), trkL (upper right), µS (lower left), and trkS (lower right).

The number of observed events with this selection in the SR is 1979. The number of
expected background events obtained from simulation is compatible with that number, but
the uncertainty is again large due the limited size of the QCD multi-jet sample. The QCD
multi-jet background is the dominant one, but the composition of the total background is
different compared to the previous selection. The Drell-Yan process now contributes to
roughly ∼ 8% of the total background, and the top-quark (tt̄ + Single top) and vector boson
(electroweak) production processes are estimated to represent ∼ 1% each. The values of the
signal acceptance with the new selection are reported in Tab. 6.1 for a few representative
mass points. These values are compared with those obtained with the previous selection.
It can be seen that the new selection tends to provide more uniform values of acceptance
while maintaining comparable performance for low and intermediate masses. Even so, the
acceptance in the 4τ channel for the mass point ma1 = 21 GeV is a factor ∼ 2.5 less than for
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ma1 = 4 GeV. This difference is expected to be compensated by better discrimination against
the background in terms of distributions, so that the sensitivity remains on an approximately
same level.

Table 6.1: Comparison between the signal acceptances (for ggF) obtained using the two
selection strategies employed for the cut-based and for the MVA-based approach respectively.

ma1 [GeV] Acceptance ×104

“This selection” (Subsec. 6.1.2) “Previous selection” (Subsec. 5.3.2)

4τ 2µ2τ 4τ 2µ2τ

4 2.64 ± 0.16 65.5 ± 1.2 3.29 ± 0.16 89.3 ± 1.4

10 1.63 ± 0.12 42.4 ± 1.1 1.46 ± 0.11 47.1 ± 1.2

15 1.49 ± 0.12 36.5 ± 1.0 0.21 ± 0.04 3.5 ± 0.3

21 1.09 ± 0.10 30.0 ± 0.9 - -

The new selection partially solves the problem for large masses, however, the low mass
points seem to have seen their acceptance reduced with respect to the previous selection. This
could potentially result in an even worse performance of the analysis for very low pseudoscalar
masses. The strategy to tackle this problem is to exploit a larger variable space, which,
with proper use, should produce greater discriminating power. In the next subsection, the
implementation of this scheme by means of MVA techniques is discussed.

6.1.3 Final Discriminant

Certainly, one of the most currently used techniques (MVA) to classify data with tremen-
dous efficiency relies on machine learning algorithms. The underlying reason is that the
way to optimize the parameters of the function t(~x) (see Subsec. 5.1.4) is, in general, ex-
tremely complicated. So, resorting to computational algorithms seems to be the best option
to achieve good performance. One of the simplest algorithms is the decision tree, a binary
classifier based on consecutive splits (yes/no) on one variable xi at time. The task is to de-
termine the best possible decision boundary between signal-like and background-like events
using event samples of known class (signal or background). First, a cut is applied on the
variable with the best separation between signal and background, then a second variable
(can be the same) is used to further separate the resulting regions into two sectors, similarly
with a third variable, and so on. The process stops when some predefined criteria are met.
By then, the variable space will be already divided into sectors that are classified as signal
or background, depending on the majority of training events encountered in that region;
sometimes just a sort of weight is given to each sector (leaf node). In Fig. 6.3, a simplified
illustration of a decision tree can be observed. The figure outlines the mechanism to grow a
decision tree from cuts in the discriminant variables. The foremost shortcoming of this simple
algorithm is that it tends to be unstable with respect to fluctuations in the training sample
(overtraining), so an improved version employing several decision trees (forest) has been de-
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Figure 6.3: Sketch representing the structure of a decision tree. The discriminating variables
xi,j,k,l,m are used to create nodes via decision cuts cn. The nodes are classified as more-signal-
like (green) or more-background-like (blue) depending on the proportion of training events
of each type that fall into them.

veloped [377]. The method is called boosted decision trees (BDT), and the main idea is to
classify an event according to the majority of individual tree “votes” in the forest. The BDT
method uses the so-called “boosting algorithms” to combine the response of the individual
trees, which turns it into a more powerful and stable classifier compared to a single tree. The
BDT method has received lately quite a bit of attention in particle physics due to its great
performance, sometimes even equating or surpassing that of the neural networks. The main
core of this MVA-based approach is the use of the BDT response as the final discriminant in
the statistical analysis.

First of all, upon increasing the dimension of the variable space, much more data is needed
in order to have a decent description of the multidimensional distribution. In the cut-based
approach, the ∼ 50− 300 simulated events falling in the SR for the signal samples (ggF-4τ)
were just enough to describe the 2D (m1,m2) distribution of the signal processes. However,
it is clear that this sample size is not sufficient to carry out a multivariate analysis in higher
dimensional spaces. The situation is not very different with the new selection, for which
the acceptance values remain of the same order of those in the previous selection. Although
the di-muon trigger was found to be the best option for the complicated signal topology,
already at the trigger level, the values of the acceptance are of the order of 10−3 for the 4τ
channel. This, along with the offline selection, means that signal samples with approximately
108 events would be required in order to have a reasonable number of events in the SR.
Submitting that huge amount of events to the lengthy simulation process (Subsec. 4.3.2)
turns out to be rather impractical. The solution was to utilize an event filtering method at
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6.1. Analysis Using MVA-Based Approach

generation level to mimic the selection of the same-charge di-muon trigger (Subsec. 6.1.1),
thereby managing to simulate samples of approximately the same size as the nominal ones
(without any filtering), but with much higher overall trigger efficiency. The same-charge di-
muon enriched samples have an overall trigger efficiency greater than 85%, and acceptance
values in the SR increased by a factor ∼ 250− 300 with respect to the nominal samples. The
resulting SR sample (25k-70k events, depending on the mass point) of the signal processes
would serve to train the BDT against the sample describing the background (derived from
data in a control region, see Subsec. 6.1.4).

Unlike the training procedure, the event classification can still be done using the nominal
signal samples, as the relevant distribution to describe is the binned 1D BDT response. For
the training, rather than building separate categories for each process or channel, all of them
are combined into a single signal category that contains weighted events from all components.
The events from each production mode or decay channel are weighted according to its relative
yield contribution in the SR with respect to that of the 4τ channel for the ggF process.
The training is individualized for each mass point, i.e. the combined event sample in the
SR for a particular mass point is used to train the BDT against the background sample
(same for all mass hypotheses), and the resulting classifier is only used to obtain the BDT
responses corresponding to that mass point. The above guarantees the maximum possible
discriminating power since a BDT training based on a combination of signal mass hypotheses
would lead to a complete loss of sensitivity.

The group of variables used for classification are common to all regions (SR and sideband
regions), and they are formed by kinematic quantities involving a few or all the four objects
(µL, trkL, µS , trkS) representing the a1 candidates. The SR was defined in Subsec. 6.1.2,
while definitions for the other control regions used for background modeling can be found in
Subsec. 6.1.4. In total 10 variables were used:

• ∆RµL,µS : distance in η-φ plane between the leading and the subleading muon.

• mµL,trkL : reconstructed invariant mass of the leading muon and associated track.

• mµS ,trkS : reconstructed invariant mass of the subleading muon and associated track.

• pReco
TµL,trkL

: reconstructed pT of the leading muon and associated track.

• pReco
TµS,trkS

: reconstructed pT of the subleading muon and associated track.

• ∆RµL,trkL : distance in η-φ plane between the leading muon and associated track.

• ∆RµS ,trkS : distance in η-φ plane between the subleading muon and associated track.

• ∆φ~p Reco
TµS,trkS

, ~EmissT
: difference in azimuthal angle φ between the reconstructed ~p Reco

TµS,trkS

(subleading muon and associated track) and the transverse vector of the missing mo-
mentum ~EmissT .

• mµL,trkL,µS ,trkS : reconstructed invariant mass of the four objects.

• mµL,trkL,µS ,trkS ,E
miss
T

: reconstructed invariant mass of the four objects plus the missing
four-momentum (assuming zero mass and zero z component).
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Chapter 6. Data Analysis with Machine Learning

From the previous group of variables, some pairs would seem to have a high correlation, which
would worsen the performance of the BDT. But in reality, the linear Pearson correlation
coefficients remain with absolute value below 20% for most pairs, and for those which exceed
that value in a given class (signal or background), the corresponding coefficients in the other
class acquire a low value. The most discriminating variables tend to be mµL,trkL and mµS ,trkS

for large a1 masses, and ∆RµL,trkL and ∆RµS ,trkS for low a1 masses. An example of the
signal and background distributions for ma1 = 10 GeV is shown in Fig. 6.4. The background
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Figure 6.4: Four of the distributions used in the BDT to discriminate between signal and
background. The normalized signal distributions (green) correspond to the combined event
sample in the SR for the mass hypothesis ma1 = 10 GeV. The normalized background dis-
tributions (blue) correspond to that of the control sample designed to model the background
in the SR, independently of the mass point (see Subsec. 6.1.4).

distribution used for training is the same for all mass hypotheses. However, the BDT response
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6.1. Analysis Using MVA-Based Approach

for the background is mass-point dependent since it is based on the algorithm resulting
from the training and, as already mentioned, in this analysis the training has been executed
individually for each signal hypothesis. That is the reason why the BDT output distribution
of the background model might differ quite a bit for distinct mass points.

The final discriminant of this analysis simply consists of the BDT output distribution (real
values between −1 and 1). The closer the BDT response to −1, the more likely it is that
the event belongs to the background class, and vice versa. The Fig. 6.5 is an example of the
above stated, and, at the same time, it represents an illustration of a standard overtraining
check of the classifier. The figure shows a comparison between the BDT response obtained
for the training and testing samples in both the signal class and the background class; the
BDT classifier is that corresponding to the mass hypothesisma1 = 10 GeV. For the rest of the
classifiers, the same procedure was performed and the results were satisfactory as well. The

BDT Output

0.6− 0.4− 0.2− 0 0.2 0.4 0.6

N
or

m
al

iz
ed

 to
 u

ni
ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
 = 10 GeV

1am                                   

Signal Testing Sample Background Testing Sample

Signal Training Sample Background Training Sample

 (13 TeV)-135.9 fb

CMS
Private work

 

Figure 6.5: Overtraining check of the BDT classifier. The BDT responses on the testing
(histograms) and training (points with error bars) samples are compared for both classes.
The classifier corresponds to the mass point ma1 = 10 GeV.

binning of the BDT output distribution is individually optimized for each mass hypothesis so
that the final discriminant provides the best possible separation. For a given mass hypothesis,
the signal distribution is completely determined by the simulation, with the normalization
adjusting to the value of the parameter of interest µ. In contrast, only the shape of the
background distribution can be known from the data-driven estimation, the normalization
remains unknown.
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Chapter 6. Data Analysis with Machine Learning

6.1.4 Background Modeling

Similarly to the cut-based approach, the estimation of the background in the SR via MC
turns out to be impossible due to the lack of simulated data. Therefore, it has been necessary
to resort to data-driven methods to model the background shape without any assumption on
its normalization. Again, the construction of control regions for both the estimation and the
validation of the background model is based on the relaxation of the isolation criteria imposed
on the four selected objects. The definitions of these sideband regions exclude any intersection
with the SR. That can be checked by looking at Tab. 6.2, which reports the way the different
sideband regions are constructed and their respective sizes. Any comparison of the data-

Table 6.2: Sideband regions used to construct and validate the background model. The
symbols Nsig, Niso and Nsoft denote the number of “signal”, “isolation”, and “soft” tracks,
respectively, contained in a cone of ∆R = 0.5 around a given object. The notation “µL and
trkL” (“µS and trkS”) means that both objects must satisfy the requirement.

Sideband region µL and trkL µS and trkS Observed events

Semi-Iso

Niso = 0 Niso > 0, Nsig > 0

106 592or

Niso > 0, Nsig > 0 Niso = 0

Leading-Iso Niso = 0 Niso > 0, Nsig > 0 62 324

Loose-Semi-Iso

Niso = 0 Niso > 0, Nsig = 0

13 998or

Niso > 0, Nsig = 0 Niso = 0

Loose-Leading-Iso Niso = 0 Niso > 0, Nsig = 0 7 707

driven background modeling with MC simulation, beyond a simple check of the background
composition of the various control region with respect to the SR, is almost impossible due to
the lack of MC events and the complexity of the multidimensional distribution. In fact, it
was verified from simulation that the composition of the background in all the control regions
defined in Tab. 6.2 is similar to that of the SR (dominated by QCD-multi-jets) within the
large statistical uncertainties of the latter, as well as that the signal contamination is less than
0.5% in all of them. In this case, the adopted strategy to validate the background modeling
is based on successive closure tests. In the above table, it can be noticed that as one moves
down in rows, the corresponding sideband region is closer to the SR (without ever reaching
it). So, the premise is that the background distribution shape must remain the same as one
gets closer to the SR, in order for the chosen region (the background model) to be a faithful
model of the background in the SR.

The control region designated to be a representation of the background shape in the SR
is the Semi-Iso. In this region, events are selected if they have one pair of objects (muon
and associated track) completely isolated, while the other two objects can have any non-zero
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6.1. Analysis Using MVA-Based Approach

number and type of tracks around them. The observed sample consists of 106 592 events,
which represent a rather good size for the multivariate analysis. The Semi-Iso control region
is employed both for BDT training in each mass scenario and for event classification, which
eventually serves to build the BDT output distribution for the background model. This BDT
response on the Semi-Iso sample is normalized to the unity and its normalization is kept as
unknown throughout the whole statistical inference procedure.

A first attempt to carry out the closure tests could be to compare the shape of individ-
ual distributions in the Semi-Iso control region with those of the rest of the control regions.
However, this would not yield any conclusive assertion about the similarity of the multidi-
mensional distributions since the simple comparison of marginal distributions overlooks any
possible difference in the correlation pattern that might exist between the distributions rep-
resenting the two compared regions. That is the reason why a direct comparison of the BDT
output distributions for the Semi-Iso and any other validation region is chosen to perform
the validation test.

The first comparison is done with the Leading-Iso control region. In this region, the
isolation conditions are restricted a bit more compared to the Semi-Iso, as only the leading
muon and associated track can be fully isolated. The subleading muon and associated track
must be completely anti-isolated. The events of this sample are classified using the BDTs
obtained through the individualized training specified in Subsec. 6.1.3, which uses the Semi-
Iso as background training sample and the SR for a particular mass point as training signal
sample. The result of the comparison between the Leading-Iso and the Semi-Iso control
regions is illustrated in Fig. 6.6 for two representative mass points. The figure shows a very
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Figure 6.6: Comparison between the BDT output distributions for the background model
(Semi-Iso) and the validation (Leading-Iso) control regions. The Semi-Iso (green) and the
Leading-Iso (blue) distributions are shown for two illustrative signal mass scenarios ma1 = 10
GeV (left) and ma1 = 21 GeV (right).

nice agreement between both distributions (Semi-Iso vs Leading-Iso), thus suggesting that
the relaxation condition weakly affects the distribution when applied on a muon-track pair
solely. A similar result is obtained for the rest of the mass points.
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The next comparison is then performed in the Loose-Semi-Iso control region. The region
comprises events that feature one pair of objects completely isolated, and a second pair having
any non-zero number of “soft” tracks, while the number of “signal” tracks is kept equal to
zero for all objects. The definition of this region is similar to that of the Semi-Iso control
region, but now the relaxation in the isolation only involves “soft” tracks rather than any kind
of them. The shape comparison is shown in Fig. 6.7. The agreement is still good, however,
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Figure 6.7: Comparison between the BDT output distributions for the background model
(Semi-Iso) and the validation (Loose-Semi-Iso) control regions. The Semi-Iso (green) and
the Loose-Semi-Iso (purple) distributions are shown for two illustrative signal mass scenarios
ma1 = 10 GeV (left) and ma1 = 21 GeV (right).

for some bins, one can notice a larger discrepancy compared to the previous case. The result
might be indicating that the choice on the type of tracks utilized in the relaxation condition
has a bigger impact on the distribution than the number of fully isolated muon-track pairs.
For the other mass scenarios, the observed tendency is the same.

The last comparison is done in a control region that incorporates the two above-mentioned
effects; the region is called Loose-Leading-Iso. The events are selected in this control region if
they possess a leading muon and associated track completely isolated, and a subleading muon
and associated track loosely isolated (i.e. with any number of “soft” tracks around them).
This region is analogous to the Leading-Iso, but now only “soft” tracks are permitted to
enter in the relaxation condition. It is also important to point out that the region comprises
a rather small sample (see Tab. 6.2) and is regarded as the “closest” (with regard to the
definition) to the SR. The result of the comparison is shown in Fig. 6.8. Similarly to the
previous case, a small discrepancy can be observed between the two distributions, although
larger bin errors are also present. The overall matching of the distributions is acceptable over
the whole mass range.

The previous set of results allows validating, to some extent, the choice of the control
region for the background modeling, which is primarily based on relaxation conditions in the
isolation criteria. The small variations observed in the distributions as the isolation criteria
are tightened allow concluding that the multivariate distribution is weakly affected by the
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Figure 6.8: Comparison between the BDT output distributions for the background model
(Semi-Iso) and the validation (Loose-Leading-Iso) control regions. The Semi-Iso (green) and
the Loose-Leading-Iso (red) distributions are shown for two illustrative signal mass scenarios
ma1 = 10 GeV (left) and ma1 = 21 GeV (right).

type of isolation imposed on the muon-track pairs. However, the agreement is not perfect
across the set of control regions considered, so a criterion to avoid any possible bias in the
selection of the background model must be taken into account. Analogously to the modeling
of the background in the cut-based approach (Subsec. 5.3.4), a shape uncertainty is assumed
for this distribution. The uncertainty is chosen to be that of the obtained difference between
the nominal background control region (Semi-Iso) and the “closest” validation region to the
SR (Loose-Leading-Iso), so that it covers the largest possible bin-by-bin deviation in the
BDT output distribution. This systematic uncertainty is individually derived for each mass
scenario, in accordance with the BDT training procedure adopted.

6.1.5 Signal Modeling

The signal BDT output distributions are derived using the simulated samples of the
h125 → aa → 4τ and the h125 → aa → 2µ2τ channel. Similarly to the cut-based approach,
the SM production cross-sections of h125 are assumed, and the relative contribution of 2µ2τ
channel is given by the relation (5.20). All the MC corrections mentioned in Subsec. 5.3.5
are applied to the simulated signal samples, and those affecting the shape of the BDT output
are consistently transferred to such distribution.

6.1.6 Systematic Uncertainties

In this approach, most of the sources of systematic uncertainties affecting the signal model
coincide with those of the cut-based approach (Subsec. 5.3.6). The only tiny difference comes
from the propagation of the uncertainty in the track isolation efficiency (see Tab. 5.3) to the
multivariate distribution, which is easily done with the help of an event-by-event reweighting
on the BDT classification process.
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In the case of the background model, the situation is a bit different since before several
uncertainties were considered when deriving the 2D distribution. However, all biases related
to the shape of the distribution are now integrated into the uncertainty derived with the
Loose-Leading-Iso control region (Subsec. 6.1.4). The difference between this region and the
Semi-Iso control region is meant to cover the largest possible bias in the selection of Semi-Iso
as the shape of the background model. The other relevant aspect of the background model
is the parameter associated with its normalization, which is kept unconstrained, identically
to the cut-based case.

6.1.7 Results

To carry out the procedure of statistical inference, a similar procedure as before is adopted.
First, the model for each mass scenario was subject to a maximum likelihood fit with the
normalization of the signal and the background freely floating. The results of these fits are in
accordance with the cut-based case, indicating that, if exists at all, the signal contribution for
all mass hypotheses is expected to be very low. The maximum likelihood fit is then applied
for the background-only scenario. The results for two representative mass points are shown
in Fig. 6.9, which is also a pictorial representation of the final discriminant used for this
approach. The better performance of the 4τ channel with respect to the 2µ2τ can be noticed
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Figure 6.9: The final discriminant of the analysis for two mass scenarios ma1 = 10 GeV (left)
and ma1 = 21 GeV (right). The observed number of events in each bin is represented by data
points (blue) with error bars. The background distribution (black histogram with shaded
error bands) shown in the plots has been obtained after a background-only fit to the data.
The representative signal distributions (dashed histograms) include both the 4τ (green) and
the 2µ2τ (red) channels, and have been normalized to their corresponding event yields.

in the plots, something expected since the training has been performed mainly focusing on
the 4τ channel. The comparison of the post-fit background distribution with the observed
data does not reveal any significant excess that can be explained by the addition of the signal
to the model. Then, to confirm the apparent absence of signal, the standard procedures of
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6.2. Interpretation of the Results in the 2HDM+S Context

hypothesis testing are used.
Goodness-of-fit tests were firstly used to check if the null hypothesis is favored by the

data. The background-only hypothesis (µ = 0) was tested for different mass scenarios with
the help of the “saturated” model. The results of the tests for some mass points are presented
in Tab. 6.3, where the p-values corresponding to each scenario have been reported. The

Table 6.3: Results of the goodness-of-fit test for the background-only hypothesis expressed
in terms of p-values. Representative mass points were considered.

p-value

Hypothesis H0 background-only

ma1 4 GeV 9 GeV 15 GeV 21 GeV

Sat. 0.137 0.240 0.571 0.707

background-only model seems to describe well the data, so when confronting this hypothesis
with the signal-plus-background hypothesis, the null hypothesis would likely be favored. The
above is consistent with the results obtained with the cut-based analysis.

Later, upper limits on the signal strength modifier are set following the same procedure
described in Subsec. 5.3.7. The upper limits are shown in Fig. 6.10. From the figure, it can
be seen that, for this analysis, the observed limits are also compatible with the expected
limits within one standard deviation. That is in agreement with the results obtained in
Subsec. 5.3.7. The observed upper limits range from 0.059 at ma1 = 8 GeV to 0.111 at
ma1 = 6 GeV, whereas the median expected upper limits range from 0.057 at ma1 = 9 GeV
to 0.119 at ma1 = 5 GeV.

The MVA-based approach improves the limits for very low masses and relative high
masses, while allows reaching with good sensitivity mass hypotheses of up to ma1 = 21
GeV. Clearly, in the intermediate-mass range, for which the cut-based analysis has been op-
timized, the new strategy slightly worsens the constraints imposed on the strength modifier.
This happens because, by increasing the maximum ∆Rµ,trk between muons and tracks up to
1.5, background elements of larger invariant mass (e.g. bottomonia) are allowed to enter in
the selection, thus leading to a poorer discriminating power for moderately heavy a1 bosons
(∼ 9 GeV). On the contrary, for very light pseudoscalars the incorporation of new variables in
the discrimination process seems to be the key to the improvement in performance, whereas
for heavy bosons the increase in signal acceptance plays a decisive role. Either way, both
analyses could be used as complementary to set the most stringent limits possible throughout
the entire analyzed mass range.

6.2 Interpretation of the Results in the 2HDM+S Context

As was seen in Subsec. 3.2.5, the phenomenology of the 2HDM+S is very rich, comprising
a great variety of possible scenarios. To a large extent, such a diversity is due to the existing
four types of fermion couplings (see Tab. 3.3), which primarily dictate the phenomenology of
h125 → a1a1 → ff̄f ′f̄ ′ decays. In the decoupling limit, once the type of fermion coupling has
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Figure 6.10: The observed and expected upper limits at 95% confidence level on the signal
strength modifier for this MVA-based analysis. The shaded area in blue (> 34%) indicates
the excluded region for the branching ratio of h125 decaying into non-SM particles [355]. This
result can be compared with the one shown in Fig. 5.14

been specified, the rest is determined by three independent parameters, which can be taken to
be B(h125 → a1a1), tan β, and ma1 . Along this section, as the different scenarios of the model
being used for interpretation are introduced, some details regarding their phenomenology are
going to be added. For more information, the references [12, 378] provide a quite exhaustive
discussion on the topic, including various decay width formulas at tree-level, and several
calculations for the respective branching ratios.

The search described throughout these last two chapters, given the fact that it did not
yield any concrete evidence of h125 → a1a1 decays, is used to constrain the parameter phase-
space of the different types of 2HDM+S. The upper limits imposed on the normalized produc-
tion cross-section times branching ratio (µ) of the process h125 → a1a1 → 4τ are translated
into restrictions for the model’s free parameters. The above relies on dedicated calculations
for the B(a1 → ττ), a quantity that depends on the type of fermion coupling, and on the free
independent parameters tan β and ma1 . The remaining component of the total cross-section,
i.e. σ/σSM B(h125 → a1a1), is consequently considered a free parameter as well. The scans
corresponding to the values of B(a1 → ττ) for different points in the phase-space are taken
from [379], which are based on the calculations performed in the reference [378]. Those com-
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putations include QCD corrections, possible mixing of the pseudoscalar with quarkonia, and
threshold effects. In principle, both approaches discussed in the analysis could be taken to
perform the interpretation of the experimental results, but for the purposes of this subsec-
tion, only the MVA-based approach will be considered. The upper limits shown in Fig. 6.10
were obtained for a series of generated mass points with a step of 1 or 2 GeV, so, for the
purpose of this section, the trend is interpolated to calculate the corresponding limits for a
larger number of mass points. That procedure is valid since the arrangement of generated
mass points was chosen in such a way that none of the distributions used for the statistical
inference is possible to resolve with a finer mass interval (< 1 GeV), that is, there is no
possibility that any signal coming from a hypothetical intermediate-mass point would have
escaped detection.

2−10

1−10

1

10

210 ) 1a 1a
→

12
5

h
 B

R
(

S
M

σσ
95

%
 C

L
 o

n 

6 8 10 12 14 16 18 20

 [GeV]
1am

1

2

3

4

5

6

7

8

9

10β
ta

n

Type I

) = 0.34
1

a
1

a→
125

h BR(
SMσ
σ

) = 1.00
1

a
1

a→
125

h BR(
SMσ
σ

(13 TeV)-135.9 fb           Private work  CMS

Figure 6.11: The observed upper limits at 95% CL on the parameter phase-space of the Type-
I 2HDM+S. The contours corresponding to σ/σSM B(h125 → a1a1) = 1.00 (cyan dashed line)
and to σ/σSM B(h125 → a1a1) = 0.34 (red solid line) are drawn in the plot as benchmarks.

The first type of 2HDM+S to consider is the simplest of all, the Type-I. As can be observed
in Tab. 3.3, in this scenario all fermions couple only toH2, so the couplings of the pseudoscalar
to fermions are uniquely determined by the couplings of those to h125 in the SM multiplied by
a common factor that is partially controlled by the mixing angle θa. That causes the Bs to be
independent of tan β, something easily deductible from Tab. 3.4, where a common coupling
to A (± cotβ) is observed for all fermions. For this type of model, the 4τ and the 2µ2τ

135



Chapter 6. Data Analysis with Machine Learning

channels are not particularly sensitive for a1 masses above the b-quark pair threshold (∼ 9
GeV), due to the already mentioned SM-like proportionality of the pseudoscalar couplings to
the square of fermion masses (see Eqs. (3.6) and (5.20)). Above this threshold, the decays
of a1 to b-quark pairs largely dominate. That is clearly reflected in the results obtained
for this type of model, which are shown in Fig. 6.11. The figure illustrates the observed
limits converted into constraints of the 3D phase-space for the Type-I case. The ranges of
the parameters tan β and ma1 shown in this, and in the following figures, correspond to
[0.5, 10]1 and [4, 21] GeV respectively. Note that for this case (Type-I), the axis associated
to the parameter tan β is also present in the plot for the sake of uniformity, but it plays no
role. Two benchmark scenarios for the parameter σ/σSM B(h125 → a1a1) have been added
to the plot to facilitate the interpretation of the results. It can be seen in Fig. 6.11 that,
for σ/σSM B(h125 → a1a1) = 1.00 (if σ = σSM this possibility is excluded by [355]), almost
all ma1 in the interval [4, 9] GeV are excluded, whereas for σ/σSM B(h125 → a1a1) = 0.34,
only two subintervals in that range (∼ [4, 5] GeV and ∼ [7.5, 9] GeV) are excluded; for the
first case, there are other small intervals excluded above 9 GeV too. Despite having the
experimental analysis (MVA-based approach) a very good sensitivity throughout the entire
mass range, the model-type-dependent constraints are weakened above ∼ 9 GeV, due to the
suppression of the a1 → ττ decays with the opening of the bb̄ channel.

The second model of interest is the so-called NMSSM-like version, namely, the Type-II
2HDM+S. According to Tab. 3.3, in this model, up-type fermions couple toH2, whereas down-
type fermions couple to H1. This kind of specific coupling introduces an explicit dependence
of the Bs on the parameter tan β, as now fermions couple with a different proportionality
factor to the pseudoscalar. For high values of tan β (> 1) the decays of a1 to up-type fermions
are suppressed, and for low values of tan β (< 1) these decays are enhanced; the other way
around for down-type fermions. This makes the decay channels used in this analysis relatively
sensitive for values of tan β > 1 since otherwise, decays such as a1 → cc tend to dominate over
a wide range of masses. For a given value of tan β > 1, the a1 decays involving τ leptons must
also compete with those yielding a pair of τ ’s down-type partners, so, for a1 masses above the
b-quark pair threshold, the leptonic decays are rarely produced, similarly to the Type-I case.
The above is manifested in the limits illustrated in Fig. 6.12. As expected, for this model, the
exclusion pattern is more complicated with respect to the previous one, although it is quite
clear what has been stated above, namely, that the analysis is not able to constraints phase-
space points with low tan β. For tan β > 1, the exclusion region is somewhat similar to that
of the Type-I model, with the difference that now the excluded sector, for the benchmark
scenarios considered σ/σSM B(h125 → a1a1) = 0.34 (1.00), depends on tan β. That gives
rise to the peak-like shape of the contours in the mass regions where quarkonium states are
supposed to be located. In the vicinity of these resonances, the a1-quarkonium mixing begins
to play a fundamental role, which traduces into an abrupt increase of the hadronic decay
width. Such an increase for the hadronic modes via non-perturbative effects leads to the
reduction of the Bs associated with decays to unbound systems, which evidently affects the
ττ decays. That is the reason why the limits are less stringent in the regions comprising the
qq̄ resonances. The same explanation applies to the band-type exclusion pattern observed
in Fig. 6.11 in these regions. Searches for a1 particles in channels involving, for instance,

1Since tan β directly enters into the fermion couplings of the neutral scalars, its value must be bounded from
below (tan β > 0.28) and from above (tan β < 140 (350)) to avoid conflicts with perturbative unitarity [380].
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Figure 6.12: The observed upper limits at 95% CL on the parameter phase-space of the Type-
II 2HDM+S. The contours corresponding to σ/σSM B(h125 → a1a1) = 1.00 (cyan dashed line)
and to σ/σSM B(h125 → a1a1) = 0.34 (red solid line) are drawn in the plot as benchmarks.

a1 → cc decays, would complement the results presented here for the Type-II model, as they
are able to probe the region of low values of tan β. Other alternatives using the a1 → bb

decay mode would serve as complementary for ma1 & 10 GeV.
Without doubt, the most interesting case for the search presented in this work is the

Type-III model. As its nickname suggests, in this model, leptons couple to one of the SU(2)
doublets (H1), whereas quarks are coupled to the other (H2). This introduces a nice feature
in this model, namely that, for relatively high values of tan β, decays of a1 to leptons can
dominate over decays to quarks in the entire allowed mass range. This makes the a1 → ττ

decay mode highly sensitive to this model, even for pseudoscalar masses above the b-quark
pair threshold. That is evidenced in the results shown in Fig. 6.13. It can be clearly observed
how, depending on the value set for σ/σSM B(h125 → a1a1), sectors of the phase-space with
tan β > 1 − 2 could be excluded for any value probed of the parameter ma1 . Besides, the
results for a1 masses greater than 15 GeV are competitive in comparison with those of other
dedicated analyses focusing on non-boosted topologies [359, 360]. However, for low values of
tan β, the analysis is not able to provide good constraints since, in this case, decays of a1 to
bb̄ and cc̄ are the ones that largely predominate. The above serves to motivate, despite the
experimentally challenging environment, searches in boosted heavy-flavor di-jet topologies.
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Figure 6.13: The observed upper limits at 95% CL on the parameter phase-space of the
Type-III 2HDM+S. The contours corresponding to σ/σSM B(h125 → a1a1) = 1.00 (cyan
dashed line) and to σ/σSM B(h125 → a1a1) = 0.34 (red solid line) are drawn in the plot as
benchmarks.

While the Type-III happens to be the model to which the analysis is most sensitive,
the Type-IV turns out to be totally the opposite. In this last scenario, up-type quarks
and charged leptons couple to H2, whereas down-type quarks couple to H1. This means
that, for tan β > 1, decays to down-type quarks are enhanced with respect to the rest of
fermions (see Tab. 3.4), so it is necessary to resort to decay modes such as dd̄ or ss̄ to be
able to effectively probe a1 masses below the b-quark pair threshold. Searches in channels
involving decays to leptons can barely explore the region with tan β < 1, although the ττ
decay mode may be as sensitive as the bb̄ for high a1 masses. The results for this analysis
are shown in Fig. 6.14. It can be noticed how the sensitivity to this model is in general
quite low for high values of the parameter tan β. Even for tan β < 1, with relatively low
values of the parameter σ/σSM B(h125 → a1a1), it would be practically impossible to exclude
any region throughout the probed mass interval. This encourages to continue improving the
results obtained in the 4τ and the 2µ2τ channels with the design of more efficient signal-vs-
background discrimination techniques, and with the addition of more experimental data in
the future.

All results shown so far are only based on the observed upper limits and, although they
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Figure 6.14: The observed upper limits at 95% CL on the parameter phase-space of the
Type-IV 2HDM+S. The contours corresponding to σ/σSM B(h125 → a1a1) = 1.00 (cyan
dashed line) and to σ/σSM B(h125 → a1a1) = 0.34 (red solid line) are drawn in the plot as
benchmarks.

are illustrated in the most general way possible (3D template), sometimes the plots become
a bit difficult to interpret. It is worth adding the expected limits to the results since they
somehow reflect the impact of uncertainties in a better way. Including the expected limits in
the previous figures seems to be rather impractical, as it would turn the plots too crowded.
On the other hand, to ease the interpretation of the 3D templates, constant benchmark values
have been assigned to the parameter σ/σSM B(h125 → a1a1), but the same could have been
applied to any other parameter. That is what has been implemented in the next set of plots,
some benchmark values have been set for tan β depending on the model type, while the
corresponding expected values of the parameter σ/σSM B(h125 → a1a1) have been included.
The Fig. 6.15 summarizes the results for all types of 2HDM+S considered. Now, the area
above the observed (expected) limits is regarded as excluded for a given type of model with
the corresponding fixed value of tan β. It can be seen from the figure that the expected
exclusion bands can vary the observed (expected) limit values for a given mass up to 100%.

Before concluding this section, it is pertinent to add some additional remarks. It is a
known fact that the constraints on 2HDM+S are becoming increasingly stringent as more
data is added. But the diversity presented by these types of models protects them from being
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Figure 6.15: The observed and expected upper limits at 95% CL projected on the 2D pa-
rameter phase-space (σ/σSM B(h125 → a1a1) vs ma1) for fixed benchmark values of tan β.
The constraints for the four types of 2HDM+S considered are shown: Type-I (upper left),
Type-II (upper right), Type-III (lower left), and Type-IV (lower right). The shaded area in
light blue corresponds to the region excluded by the observed limits.

completely excluded by only a few physical analyses. The inclusion of many decay channels
probing the entire possible mass range is required in order to further constraint the parameter
phase-space. The CMS and ATLAS collaborations have an extensive program dedicated to
the search for light pseudoscalars that comprises a wide spectrum of decay channels and
analysis strategies. However, this is still not sufficient to reach each point of the parameter
space, partly because the development of new experimental techniques is needed to discern
complicated signatures, such as those involving multiple overlapped jets. Hopefully, that
will motivate the emergence of fresh ideas and new efforts that help increase the variety and
effectiveness of these searches.
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7

SUMMARY AND OUTLOOK

Over the years, the SM has proven to be a fabulous theory of the subnuclear scale, capable
of demonstrating its validity in all types of experimental tests. However, it is still a model with
serious drawbacks, which prevents it from being considered a complete description of nature.
In an attempt to solve some of the limitations of the SM, many new theories have emerged
with elegant proposals to replace it as the standard theory of fundamental interactions. One
class of models simply modifies the symmetries or the field content of the theory in terms of
new group representations, whereas another class completely abandons the concept of point-
like particle and promotes it to another mathematically better-behaved entity. To this day,
no strong evidence supporting new theories beyond the SM have been found in the countless
measurements performed at the Large Hadron Collider.

Among the models preserving the concept of elementary particles, there is a group that
suggests changes in the relatively under-explored scalar sector of the SM. Those changes
generally result in an increased number of scalars in the theory, or in modifications of the
properties of SM-like Higgs boson. So, one way of probing the viability of those models is
looking for additional Higgs bosons through production or decay mechanisms induced by the
presence of other particles. This thesis has focused on an search for light bosons produced in
decays of the 125 GeV scalar, exploiting experimental signatures left by the decay of these to
leptons. The search has been optimized to target the light boson mass region where decays
to τ leptons could be enhanced, according to different models and scenarios.

Two different approaches have been considered to be able to experimentally resolve
boosted and semi-boosted topologies. The first analysis has been optimized for very light
bosons with masses between 4 and 15 GeV, for which a special technique for the identification
of decay products coming from highly collimated τ pairs has been used. This analysis makes
use of a 2D final discriminant to assess the possible presence of signal events in the observed
data. The two observables utilized correspond to the invariant mass of the two light bosons,
which is very well reconstructed in the case of muonic decays, and poorly reconstructed for
decays into pairs of τ leptons. The statistical inference procedure reveled no compelling rea-
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sons to discard the background-only hypothesis, therefore, limits were set on the production
cross-section times branching ratio at 95% of confidence level. The highest sensitivity of this
approach was reached for mass hypotheses around ∼ 9 GeV, for which a good balance between
signal acceptance and discriminating power was obtained. These results have been published
in [318]. The second analysis was motivated by the decrease in sensitivity of the previous
approach for masses outside the central region of the probed interval. It was determined that
a combination of improved selection and better statistical discriminant could stabilize the
sensitivity throughout the entire mass range, and that the latter could even be extended up
to 21 GeV. In this approach, the event selection was made more inclusive, being now able to
efficiently select events with boosted and not that boosted light bosons. To increase the sep-
aration power between hypotheses, a multivariate discriminant was utilized in this case. An
individualized training was performed for each mass hypothesis, which resulted in a algorithm
specially optimized for each instance. Once again, the results favored the background-only
hypothesis and limits were imposed, thus reaffirming the absence of evidence of exotic Higgs
decays into light bosons. This second approach managed to improve the limits obtained in
the first analysis for very low and high masses. Both analyses used data from pp collisions
at
√
s = 13 TeV, recorded by the CMS detector during the 2016 data taking period and

corresponding to an integrated luminosity of 35.9 fb-1.
The experimental results were further translated into constraints on the parameter phase-

space of the 2HDM+S. The four types of fermion couplings covered by this model were
analyzed. It was possible to corroborate the importance of the decay modes used in this
work for the interval of masses studied. In particular, for the Type-III model, the analysis
can exclude, depending on the benchmark scenario considered, regions of the parameter space
with tan β > 1 − 2 for any value probed of the boson mass. For other cases, the analysis is
mainly sensitive for masses below 10 GeV.

Despite having found no sign of exotic Higgs decays into light bosons, there is still a
lot of data to be analyzed and to be collected. Until this moment, the LHC has already
delivered more than 150 fb-1 of data, and in the next few years, this figure will be doubled.
In the future, the total amount of available data is expected to be about 3000 fb-1. Fur-
thermore, the implementation of new experimental particle identification techniques could
considerably improve the results. In particular, the design of an algorithm able to identify
pairs of (semi)collimated τ leptons could certainly boost the performance of the analysis since
it would provide a better reconstructed invariant mass for the light boson. Moreover, the
relevant theoretical models possessing a light boson in its spectrum still have enough param-
eter phase-space to be explored. That is the case of the 2HDM+S, which demands a large
number of studies in various decay modes to be totally excluded. For other models, like the
dark photon, it would be beneficial to include searches in the 4µ channel spanning the whole
mass range up to 62.5 GeV. The 4b channel and others decay modes involving jets turn out
to be of particular interest for the other two introduced models.

To conclude, it is essential to continue looking for new strategies and methods capable of
intensifying the hunting of light bosons. That seems to be a promising approach to search
for physics beyond the SM.
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