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Abstract  

Learning sensorimotor skills from trial and error in unknown environments is an im-

portant ability for autonomous agents. Reinforcement learning (RL) is a powerful ap-

proach to provide this ability without manually programming the desired behavior or 

requiring any prior knowledge by learning a control policy–a direct mapping from a raw 

sensory input to a raw motor output that optimizes the task performance. In recent years, 

deep RL has been used to learn this mapping from self-collected experience data by uti-

lizing deep neural networks as function approximators. However, the performance of 

deep RL critically depends on the chosen exploration strategy. Random, undirected ex-

ploration is impractical in real-world robot learning where spending additional training 

time exploring known parts of the robot’s environment cannot be afforded and converg-

ing to an optimal policy with a minimal number of environmental interactions is neces-

sary. Deep RL also suffers from poor sample efficiency as it requires large amounts of 

self-collected training data to adjust the large number of learning parameters the deep 

networks typically have. This fundamentally limits how quickly a robot can learn useful 

control policies. Another issue inevitable in complex domains is using imperfect predic-

tive models of the environment for planning actions or simulating experiences, which 

results in a compounding of prediction errors when making multiple-step predictions 

with a learned model, leading to poor task performance. 

In this thesis, we propose behaviorally and neurally plausible approaches to better 

understand, analyze, and address these different challenges associated with improving 

deep RL for robot sensorimotor learning. We first present a directed, data-efficient ex-

ploration strategy, inspired by sensorimotor development in infants, which provides an 

intrinsic reward based on the progress in learning local world models, informatively 

shifting the interactions from well-explored to less-explored regions of the world. We 

then introduce a novel deep architecture for learning low-dimensional state representa-

tions that optimize a joint supervised reward prediction and unsupervised input recon-

struction loss. The learned representation is used as input to the policy and the world 

models whose predictions are used in deriving the intrinsic reward, effectively improv-

ing the sample efficiency of learning real-world pixel-level policies. We next show how 

the learning progress-based intrinsic reward can be used as an estimate of the reliability 

of model predictions to determine when to perform planning under the model and adap-
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tively arbitrate between model-based and model-free control in dual-system RL. We also 

leverage the learned model by augmenting the training set of real experiences with imag-

ined experiences generated with the model over regions where the model is reliable and 

use the intrinsic motivation to collect experience data that improves the model. Finally, 

we propose a dual-system motor learning approach that integrates arbitration with imag-

ination and enables an adaptive-length model rollout for plan optimization during model-

based control, and evaluate it on learning vision-based robotic grasping in simulation 

and the real world. The experimental results show that our approach learns better vision-

based grasping policies than baseline and state-of-the-art methods in dense- and sparse-

reward environments. 
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Zusammenfassung 

Das Erlernen sensomotorischer Fähigkeiten durch Versuch und Irrtum in unbekannten 

Umgebungen ist eine wichtige Fähigkeit für autonome Agenten. Reinforcement Learn-

ing (RL) ist ein leistungsfähiger Ansatz, um diese Fähigkeiten zu erlangen ohne das ge-

wünschte Verhalten manuell zu programmieren oder Vorwissen zu nutzen. Beim Rein-

forcement Learning wird eine Control Policy gelernt, eine direkte Abbildung von einem 

unvorverarbeitetem sensorischen Input zu einem motorischen Output, die eine gegebene 

motorische Aufgabe optimal ausführt. In den letzten Jahren wurde tiefes RL verwendet, 

um diese Abbildung auf Grundlage von selbst-gesammelten Erfahrungsdaten mit tiefen 

neuronalen Netzen als Funktionsapproximatoren zu lernen. Jedoch hängt die Performanz 

von tiefem RL entscheidend von der gewählten Explorationsstrategie ab. Zufällige, un-

gerichtete Exploration ist beim Lernen mit Robotern in der realen Welt unpraktisch. Un-

nötige Trainingszeit, in der bekannte Teile der Roboterumgebung erforscht werden, soll-

te vermieden werden. Eine optimale Policy sollte mit einer minimalen Anzahl von Um-

weltinteraktionen erlernt werden. Tiefes RL leidet zudem unter einer schlechten Daten-

effizienz; große Mengen an selbst gesammelten Trainingsdaten sind notwendig um die 

typischerweise große Anzahl von Parametern in den tiefen Netzwerken zu lernen. Diese 

schränkt grundsätzlich ein, wie schnell ein Roboter nützliche Policies erlernen kann. Ein 

weiteres Thema, dass in komplexen Umgebungen unvermeidlich ist, sind unvollkomme-

ne Vorhersagemodelle für die Planung von Aktionen oder die Simulation von Erfahrun-

gen. Vorhersagefehler können sich bei Mehrschritt-Vorhersagen mit gelernten Modellen 

aufsummieren und zu einer schlechten Performanz führen. 

In dieser Arbeit präsentieren wir psychologisch und neurologisch plausible Ansätze 

zum besseren Verständnis, zur Analyse und zur Lösung dieser verschiedenen Herausfor-

derungen des tiefen sensomotorischen RL für Roboter. Wir stellen zunächst eine geziel-

te, dateneffiziente Explorationsstrategie vor, inspiriert von der sensomotorischen Ent-

wicklung von Säuglingen, die eine intrinsische Belohnung auf Grundlage der Fortschrit-

te beim Erlernen lokaler Weltmodelle nutzt. Diese Strategie lenkt die Exploration von 

gut erforschten auf weniger bekannte Bereiche der Welt. Dann stellen wir eine neue tiefe 

Architektur für das Lernen von niedrig-dimensionalen Zustandsrepräsentationen vor, 

welche gleichzeitig eine überwachte Belohnungsvorhersage und eine unüberwachte Re-

konstruktion des Inputs realisiert. Die erlernte Repräsentation wird als Input für die Po-
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licy und die Weltmodelle genutzt, deren Vorhersagen in die Bestimmung der intrinsi-

schen Belohnung einfließen und somit die Dateneffizienz beim Erlernen von Policies auf 

Pixelebene verbessern. Als Nächstes zeigen wir, wie die auf dem Lernfortschritt basie-

rende intrinsische Belohnung als Schätzung der Zuverlässigkeit der Modellvorhersagen 

genutzt werden kann, um zu bestimmen, wann Planung mit diesem Modell durchgeführt 

werden soll um somit adaptiv zwischen modellbasierter und modellfreier Kontrolle in 

einem dualen RL-System zu wechseln. Wir nutzen die gelernten Modelle ebenfalls, um 

die Trainingsdaten aus realen Erfahrungen durch imaginäre Erfahrungen in jenen Regio-

nen zu ergänzen, in denen das Modell hinreichend zuverlässig ist. Gleichzeitig führt die 

intrinsische Motivation wiederum dazu, dass bevorzugt solche Erfahrungen gesammelt 

werden, die das Modell verbessern. Schließlich schlagen wir einen Ansatz für motori-

sches Lernen mit einem dualen System vor, welches einen adaptiven Wechsel zwischen 

modellbasierter und modellfreier Kontrolle mit imaginären Erfahrungen verbindet und 

modellbasierte Planung mit einer adaptiven Anzahl von Planungsschritten ermöglicht. 

Wir evaluieren den Ansatz mit robotischen Experimenten zu sichtbasiertem Greifen in 

simulierten und realen Umgebungen. Die experimentellen Ergebnisse zeigen, dass unser 

Ansatz eine bessere, auf sichtbasiertem Greif-Policy lernt als Basis- und modernste Me-

thoden in Umgebungen mit häufigen als auch spärlichen Belohnungen erlernen kann.  
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Chapter 1  
 

Introduction 

Reinforcement Learning (RL) enables artificial agents to learn how to perform sequen-

tial decision-making tasks from trial-and-error experience, without manually program-

ming the desired behavior. This involves online learning of a control policy–a direct 

mapping from a raw and often high-dimensional sensory input to a raw motor output that 

optimizes the task performance. In recent years, deep RL has been used to learn this 

mapping from self-collected experience data by utilizing deep neural networks as func-

tion approximators and has shown a great success in learning control behavior across 

different domains, achieving superhuman performance in a variety of Atari and board 

games (Mnih et al., 2015; Silver et al., 2016) and facilitating the acquisition of complex 

robotic manipulation skills (Levine et al., 2015; Levine et al., 2016; Gu et al., 2017).  

1.1     Problem Statement and Research Objectives 

The performance of deep RL critically depends on the chosen exploration strategy, par-

ticularly in continuous control tasks. Existing approaches to exploration are mostly 

based on adding noise to the policy output and therefore only search locally in the action 

space to improve the policy. Such random, undirected exploration is impractical in real-

world robot learning where spending additional training time exploring known parts of 

the robot’s environment cannot be afforded and converging to an optimal policy with a 
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minimal number of environmental interactions becomes necessary. Deep RL algorithms 

also suffer from poor sample efficiency, which is highly challenging in visuomotor con-

trol asks where real-time constraints and noisy observations are common. This funda-

mentally limits how quickly a robot can learn promising control policies. 

While these issues commonly exist for any deep RL approach to robot motor learn-

ing, model-based deep RL has another issue inevitable in complex domains, which is the 

use of an imperfect predictive model of the environment for action planning and experi-

ence generation. This is because model-based RL requires a reliable model. Making 

multiple-step predictions with a learned predictive model therefore leads to a compound-

ing of prediction errors, eventually resulting in poor task performance. 

In this thesis, we propose behaviorally and neurally plausible approaches to better 

understand, analyze, and address these different challenges associated with improving 

deep RL for robot sensorimotor learning. Particularly, we aim to achieve the following 

objectives: 

1. To provide a directed exploration strategy that enables RL agents to efficiently 

learn continuous control tasks in dense and sparse reward environments. 

2. To reduce the sample complexity of learning robotic control policies directly from 

raw visual input in simulation and in the real world. 

3. To design an unbiased estimate of the reliability of model predictions for adap-

tively deciding when to switch between model-based and model-free control in 

dual-system RL. 

4. To generate imagined experiences under a learned model of the environment dy-

namics based on the model reliability and use them as additional training data.  

5. To develop a dual-system motor learning approach that enables an adaptive-

length model rollout for plan optimization during model-based control. 

1.2     Actor-Critic and Intrinsic Motivation 

In this section, we will provide background on model-based and model-free RL and the 

use of neural networks as function approximators for RL in continuous state-action 

spaces, followed by an overview of actor-critic methods in RL. We will then discuss the 

concept of intrinsic motivation in the context of RL and review different approaches to 

designing intrinsic reward functions. 
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1.2.1    Actor-Critic Reinforcement Learning 

We consider a standard RL problem where an agent interacts with a fully observable en-

vironment over a series of time steps. At every time step t, the agent observes the state of 

the environment 𝑠𝑡 and performs an action 𝑎𝑡 that depends on the current state 𝑠𝑡. At the 

following time step t+1, the agent receives a scalar reward 𝑟𝑡+1 from the environment 

and observes a new state 𝑠𝑡+1, and the process is repeated. The goal is to find an optimal 

action policy that maximizes the long-term reward. The RL problem is typically formal-

ized using Markov decision processes (MDPs). A finite-horizon MDP is described as a 

tuple {𝑆, 𝐴, 𝑑, 𝑃, 𝑟, γ}, where S is the state space, A is the action space, 𝑑 is the distribu-

tion of start states, 𝑃 is the state transition distribution 𝑃: (𝑆 × 𝐴) × 𝑆 → [0,1], 𝑟 is the 

reward function 𝑟 ∶ 𝑆 × 𝐴 → ℝ, and 𝛾  is a discount factor γ ∈  [0,1]. The discounted 

sum of future rewards over time horizon T specifies the return 𝑅𝑡 = ∑ 𝛾𝑖−𝑡 𝑟(𝑠𝑖, 𝑎𝑖)
𝑇−1
𝑖=𝑡 . 

The agent’s behavior is defined by an action policy 𝜋 that maps from states to probabil-

ity distribution over actions 𝜋 ∶  𝑆 → 𝑃(𝐴). The value of a state given a policy is defined 

as the expected return starting from that state and following the policy: 

𝑉𝜋(𝑠) = 𝔼𝑎𝑖~𝜋,𝑠𝑖~𝑝[𝑅𝑡 | 𝑠𝑡 = 𝑠]. 

The solution to the MDP is the optimal policy 𝜋∗ that maximizes the expected return: 

𝜋∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜋

 𝔼𝑠0~𝑑 [𝑉
𝜋(𝑠0)].                                     (1.1) 

In discrete state and action spaces, Equation 1.1 is solved by first defining an action-

value function, called 𝑄-funcation, that computes the expected value of taking a particu-

lar action at a particular state and following a fixed policy 𝜋 thereafter, instead of the 

expected value of being at a particular state computed by V. The optimal 𝑄-function 𝑄∗ 

associated with the optimal policy 𝜋∗ can be recursively defined via the Bellman opti-

mality equation: 

𝑄∗(𝑠, 𝑎) = 𝔼𝑠′~𝑝(.|𝑠,𝑎) [𝑟(𝑠, 𝑎) +  𝑚𝑎𝑥
𝑎′∈𝐴

𝑄∗(𝑠′, 𝑎′)],                          (1.2) 

where 𝑠′ is the subsequent state after taking action 𝑎 at state s. The solution to the Bell-

man optimality equation is unique and can be found by solving the system of equations 

for all state-action pairs, as given by Equation 1.2. Once the solution is obtained, deter-

mining the optimal policy is straightforward: at each state, take the action with the high-

est Q-value. When the true transition dynamics 𝑃 and reward function 𝑟 are known to the 

agent, dynamic programming methods are guaranteed to converge to the optimal Q-

function 𝑄∗(. , . ) and, therefore, the optimal policy 𝜋∗ after enough iterations. For exam-
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ple, value iteration is a dynamic programming method that randomly initializes the Q-

function and then recursively updates it until convergence: 

𝑄(𝑠, 𝑎) = 𝔼𝑠′~𝑝(.|𝑠,𝑎) [𝑟(𝑠, 𝑎) +  𝑚𝑎𝑥
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′)].                       (1.3) 

However, if the agent has no access to true dynamics and reward functions, then one 

possibility is to learn from experience an approximate model of the environment that es-

timates the next state and reward given the current state and action, and then solve for 

the optimal policy using dynamic programming. This is known as model-based RL. 

Model-free RL, on the other hand, does not require a model of the environment but in-

stead learns to estimate the value function directly from experience by incrementally up-

dating its estimate of state values or action values (𝑄-values) after each interaction with 

the environment:  

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎)  +  𝛼 [𝑟 +   𝑚𝑎𝑥
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)],                (1.4) 

where 𝑟 is the observed reward and 𝛼 is the learning rate (0 < 𝛼 ≤ 1). This type of 

learning is called Temporal-Difference (TD) learning, since it updates the value estimate 

of a state or a state-action pair based on the difference between two consecutive estima-

tions; the expected value and the obtained value, which are 𝑄(𝑠, 𝑎)  and 𝑟 +

  𝑚𝑎𝑥
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′), respectively, as shown in Equation 1.4. This difference is referred to as 

the TD error, 𝛿 =  𝑟 +   𝑚𝑎𝑥
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′)  − 𝑄(𝑠, 𝑎) . Q-learning is a commonly used 

model-free RL algorithm that learns an approximation of the optimal 𝑄-function using 

TD learning (see Equation 1.4). It is an off-policy algorithm, meaning that the agent can 

follow an arbitrary exploration policy and is guaranteed to find the optimal policy given 

that every state-action pair is visited infinitely often. 

In continuous state spaces, it is infeasible to learn about every state and use a tabular 

representation of the value function to store and update state or state-action values and 

hence generalization of learning across states is necessary. Deep Q-learning (Mnih et al., 

2013; Mnih et al., 2015) is an example of performing this generalization by using a deep 

neural network, called the deep Q-network (DQN), to approximate the Q-function, and 

was the first algorithm to combine deep learning and Q-learning. The network, parame-

terized by 𝜃, is trained to minimize the loss between the current value estimate 𝑄(𝑠, 𝑎|𝜃) 

and the target value 𝑦 =  𝑟 +   𝑚𝑎𝑥
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′|𝜃−): 

ℒ𝑄(𝜃) =  𝔼(𝑠,𝑎,𝑟,𝑠′)~𝐵  [(𝑦 − 𝑄(𝑠, 𝑎|𝜃))
2
],                                (1.5) 
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ℒ𝑄(𝜃
𝑄) =

1

𝑛
 ∑ [( 𝑦𝑖 −  𝑄(𝑠𝑖, 𝑎𝑖|𝜃

𝑄))
2
]

𝑖
, 

 

 

 

 

 

 

𝜃𝑄
′
←  𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′
 

𝜃𝜇
′
←  𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′
, 

 

 

 

 

 

 

 

𝜃𝑡+1
𝜇

← 𝜃𝑡
𝜇
 +  

𝛽

𝑛
 ∑ 𝛻𝑎𝑄(𝑠, 𝑎|𝜃

𝑄)|𝑠= 𝑠𝑖,𝑎= 𝜇(𝑠𝑖|𝜃𝑡
𝜇
)

𝑖
𝛻𝜃𝑡

𝜇𝜇(𝑠|𝜃𝑡
𝜇
)|𝑠= 𝑠𝑖  , 

 

 

 

 

 

 

where 𝐵 is a replay buffer of previously observed transitions (𝑠, 𝑎, 𝑟, 𝑠′) and 𝜃− are the 

network parameters used to compute the target value 𝑦. The target network parameters 

are initially set to 𝜃 and only updated towards the new 𝜃 every specific number of time 

steps. This improves learning stability because it mitigates the issue of non-stationary 

targets, where the target value is computed using the same Q-network being updated. 

While deep Q-learning based algorithms allow for learning control policies in large, 

continuous state spaces, they require discrete actions and are, therefore, not applicable to 

continuous control problems. In contrast, actor-critic methods, a class of RL algorithms, 

are well suited for continuous control, since they learn function approximators for both 

the value function and policy. Actor-critic methods can be divided into two groups of 

approaches according to how the policy is updated: (i) in parameter space; or (ii) in ac-

tion space. Here, we will give an overview of Deep Deterministic Policy Gradient 

(DDPG) (Lillicrap et al., 2016) and Continuous Actor-Critic Learning Automaton 

(CACLA) (Van Hasselt and Wiering, 2007; Van Hasselt, 2012) algorithms as examples 

of the former and latter groups respectively. Both algorithms approximate the policy 

function using an actor neural network 𝜇(· |𝜃𝜇) parametrized by 𝜃𝜇 . DDPG approxi-

mates the 𝑄-function using a critic neural network 𝑄(·,· |𝜃𝑄) parametrized by 𝜃𝑄. Simi-

lar to Equation 1.5, the critic is trained to minimize the loss between the current value 

estimate 𝑄(𝑠𝑖, 𝑎𝑖|𝜃
𝑄) and the target value  𝑦𝑖 = 𝑟𝑖  +  𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃

𝜇′)| 𝜃𝑄′) for a 

minibatch of n samples: 

(1.6) 

where 𝑄′ and 𝜇′ are the target critic and actor networks parameterized by 𝜃𝑄′ and 𝜃𝜇′ 

respectively and updated slowly towards their corresponding 𝑄 and 𝜇 networks: 

(1.7) 

 

with 𝜏 ≪ 1. The actor is updated by minibatch gradient ascent on the approximate 𝑄-

function with respect to the actor parameters: 

(1.8) 

 

where 𝛽 is the gradient step size (0 < 𝛽 ≤ 1). On the other hand, CACLA approximates 

the state-value function 𝑉 using a critic neural network 𝑉(· |𝜃𝑉) parametrized by 𝜃𝑉 and 

trained to minimize the loss: 
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ℒ𝑉(𝜃
𝑉) =  

1

𝑛
 ∑ [( 𝑦𝑖 −  𝑉(𝑠𝑖|𝜃

𝑉))
2
]

𝑖
, 

 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑉′(𝑠𝑖+1|𝜃
𝑉′), 

 

 

 

 

 

 

 

(1.9) 

 

where 𝑉′ is the target critic network with parameters 𝜃𝑉′  slowly moving toward their 

corresponding parameters of the critic network, 𝜃𝑉
′
← 𝜏𝜃𝑉 + (1 − 𝜏)𝜃𝑉

′
, 𝑤𝑖𝑡ℎ 𝜏 ≪ 1. 

To update the actor, CACLA uses the error in action space between the current estimate 

of the optimal action 𝜇(𝑠|𝜃𝜇) and an exploratory action 𝑎 found to produce higher than 

expected value, as opposed to gradient ascent on the value function used in DDPG. This 

means that the actor is only updated towards an exploratory action 𝑎 for which the ob-

served TD error 𝛿 =  𝑟 +  𝛾𝑉′(𝑠′|𝜃𝑉′) −  𝑉(𝑠|𝜃𝑉) is positive. The reason for this is that 

when an action results in an increase in the value estimate of a given state (𝛿 > 0), then 

that action is believed to lead to higher future rewards and is thus made more likely to be 

selected in that state by driving the output of the actor towards that action. The actor pa-

rameters are updated by gradient descent on the loss 𝔼(𝑠,𝑎,𝑟,𝑠′)~𝐵,𝛿>0 [(𝑎 −  𝜇(𝑠|𝜃
𝜇))

2
]: 

𝜃𝑡+1
𝜇

← 𝜃𝑡
𝜇
 +  𝛽𝛻𝜃𝑡

𝜇  𝔼(𝑠,𝑎,𝑟,𝑠′)~𝐵,𝛿>0 [(𝑎 − 𝜇(𝑠|𝜃𝑡
𝜇
))
2

] ,                     (1.10) 

where (𝑠, 𝑎, 𝑟, 𝑠′) are experience tuples sampled from the replay buffer 𝐵 and 𝛽 is the 

update step size. 

1.2.2    Intrinsic Motivation for Reinforcement Learning 

Besides the need to learn in continuous action spaces, RL agents need to learn how to 

explore their environments to collect useful experience data, particularly when extrinsic 

rewards are delayed and sparsely available. In order to allow RL agents to efficiently and 

meaningfully explore in a sparse-reward world, intrinsically motivated RL methods have 

been proposed. These methods endow the agent with the ability to compute an intrinsic 

reward that models its curiosity to improve its internal knowledge of the world and learn 

about the consequences of its actions. Different learning measures have been defined to 

compute an intrinsic reward for the agent, including Bayesian surprise (Schmidhuber, 

2010), information-theoretic measures, such as mutual information (Houthooft et al., 

2016; Florensa et al., 2017; Barron et al., 2017), entropy of the state distribution (Hazan 

et al., 2019), and empowerment (Mohamed and Rezende, 2015), variance-based uncer-

tainty (Hester and Stone, 2015), prediction error of a learned world model (Chentanez et 

al., 2005; Pathak et al., 2017; Shelhamer et al., 2017), predictive learning progress 
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(Oudeyer et al., 2007; Oudeyer and Kaplan, 2007; Luciw et al., 2011; Gottlieb et al., 

2013; Forestier and Oudeyer, 2016), competence progress at achieving self-generated 

goals (Baranes and Oudeyer, 2013; Forestier et al., 2017; Mannella et al., 2018; Péré et 

al., 2018), and change in policy value (Özgür and Barto, 2006; Hafez and Loo, 2015).  

While most of these measures focus on the perceptual salience and novelty of visited 

states and, thus, can direct the exploration to states that are highly unpredictable and 

noisy, learning progress-based measures use the performance improvement in predicting 

future states over time as well as the novelty of the observed state when deriving an in-

trinsic reward. This is consistent with recent findings from developmental psychology 

that show curious exploration in infants to be based on both their own learning history 

and perceptual variability (Twomey and Westermann, 2015) and with the Goldilocks 

effect in infant cognition where stimuli of intermediate predictability drive optimal 

learning with too high or too low predictability being less conductive to learning (Kidd 

et al., 2012; Kidd et al., 2014). 

In addition to improving exploration in tasks with a single goal, intrinsic rewards 

have been effective in tasks involving a hierarchy or curriculum of goals. For example, 

intrinsic rewards were used in hierarchical deep RL to encourage a low-level controller 

to reach a goal state chosen by a high-level controller that learns a policy over intrinsic 

goals to optimize for an extrinsic reward (Kulkarni et al., 2016). Despite being limited to 

discrete actions, the proposed algorithm was shown to significantly outperform the DQN 

algorithm (Mnih et al., 2015) in sparse-reward tasks with a complex goal structure. More 

recently, intrinsic rewards have been applied in curriculum learning with self-play be-

tween two copies of the same agent (Sukhbaatar et al., 2018). The first periodically sets 

a goal for the second to achieve and is intrinsically rewarded proportionally to the time 

taken by the second to complete the task, while the second is rewarded inversely propor-

tional to the time taken to complete the task chose by the first, automatically generating 

a curriculum between themselves. After self-play, an increase in learning speed was 

shown when the second copy was deployed to solve the target task. 

1.3     Summary of Contributions 

This section gives an overview of the contributions of this thesis. In Chapter 2, we con-

sider the general problem of learning an exploration strategy in RL. The performance of 
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RL algorithms strongly relies on how the agent explores its environment to collect expe-

rience data to learn from. An undirected exploration behavior limits how fast the agent 

can learn the desired control policy. Existing approaches mostly involve adding random 

noise to the current policy, with the risk of spending large amount of valuable training 

time on exploring parts of the environment the agent has less uncertainty about. Instead, 

we propose a directed, data-efficient exploration method that integrates self-organization 

of sensory space with online learning of local predictive models of the environment’s 

dynamics to generate an intrinsic reward for guiding the exploration behavior of the 

agent. The intrinsic reward is derived from the learning progress in prediction computed 

locally in each self-organized sensory region using the local model, encouraging the 

agent to direct its exploration from states of highly predictable sensorimotor dynamics to 

states of less predictable dynamics. We combine the intrinsic reward with the sparse ex-

trinsic reward to efficiently learn continuous control tasks. Our experiments show that 

using our exploration method with actor-critic RL leads to significant performance gain 

in terms of average extrinsic reward and number of actions taken to solve a given task on 

simple and complex robotic control tasks. 

In Chapter 3, we consider the problem of reducing the sample complexity of RL in 

large-scale domains. Learning control policies from raw high-dimensional observations 

requires large amounts of training data the agent needs to actively collect online, which 

is impractical for real-world robot learning. We focus on learning informative low-

dimensional state representations to improve the sample efficiency of our intrinsically 

motivated continuous actor-critic learner on complex visuomotor control learning tasks. 

We make two main contributions. First, we propose to train the predictive world models 

as well as the policy in a low-dimensional state space learned unsupervised with hierar-

chical slow feature analysis (SFA). Our experimental evaluation shows that our SFA-

based approach can achieve near-optimal performance on learning vision-based robotic 

reaching policies in dense and sparse reward environments. Second, we present a novel 

deep neural network architecture for learning jointly optimized low-dimensional state 

representations. Our neural architecture is composed of a critic and an actor network. 

Both networks receive the hidden representation of a deep convolutional autoencoder 

which is trained to reconstruct the visual input, while the hidden representation is also 

optimized to predict the value of the state. This state representation captures task-

relevant information sufficient to reconstruct the original input and identify rewarding 
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states, since it is learned by jointly optimizing the combined reconstruction and value 

prediction loss. We show that training a small actor network on this task-relevant low-

dimensional state representations allows the policy to be trained with maximum efficien-

cy. The predictive models used to derive the intrinsic reward are trained in the learned 

representation space. We call the resulting algorithm deep intrinsically motivated con-

tinuous actor-critic (Deep ICAC). Our simulation and real-world robotic experiments 

show state-of-the-art performance of our Deep ICAC on learning-to-reach and learning-

to-grasp tasks from raw visual input in different reward settings. 

In Chapter 4, we introduce the Curious Meta-Controller (CMC), a novel approach for 

arbitrating between model-based and model-free control in deep RL. The arbitration is 

adaptively determined based on the model reliability estimated by the learning progress 

in predictions. The learning progress is used to derive an intrinsic reward representing 

the agent’s curiosity to seek data that improves its model of the world. When the model 

is found to be sufficiently reliable during arbitration, the model-based system performs 

gradient-based action optimization and the optimal action is used as a more informed 

exploratory action for the model-free learner. Unlike previous works, our CMC approach 

considers the reliability of the model when deciding on which of the model-based and 

model-free control systems to query for an action at each time step and does not require 

a predefined threshold to arbitrate between them. CMC can be combined with any off-

policy actor-critic method. We demonstrate that using CMC for meta-decision making 

leads to fast and stable performance on learning robotic reaching and grasping tasks 

from raw-pixel input. 

In Chapter 5, we consider the problem of experience imagination in deep RL. A pre-

dictive model of the world can generally be leveraged to provide additional experience 

data for training the RL agent without the need for expensive environmental interactions. 

Generating imagined data for visuomotor control tasks, however, requires learning per-

fect world models at the pixel level, which is infeasible in practice. We propose a novel 

learning-adaptive imagination approach that performs experience imagination in a 

learned latent space. In our approach, the learned latent space is self-organized into local 

regions with local world models, and a running average of model prediction error is in-

dependently computed for each region. The experience replay buffer is divided into pix-

el-space and latent-space buffers for storing real and imagined experiences respectively. 

Imagined rollouts are reliably generated with probability inversely proportional to the 
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average error of the current region, and the imagination depth is adaptively determined 

by the average error of the traversed regions. To encourage collecting data that improves 

future predictions necessary for imagination, we use an intrinsic reward based on the 

spatially and temporally local learning progress. Our experiments show that our ap-

proach to imagination makes learning pixel-level control policies for robotic grasping 

more efficient, particularly in sparse reward environments. 

In Chapter 6, we present a novel robot dual-system motor learning approach that is 

behaviorally and neurally plausible, data-efficient, and competitive with the state of the 

art. Our approach improves on the previously proposed curious meta-controller (CMC) 

approach by enabling an adaptive-length model rollout for plan optimization during 

model-based control. This is done by incrementally self-organizing the space of latent 

state representations and computing the reliability estimate locally for every region of 

the learned latent space. Rolling out the model until the estimated reliability is low, as 

opposed to using a fixed time horizon, ensures that no imperfect model predictions are 

used in computing the optimal plan and reduces the computational cost. Our approach 

also integrates online arbitration with offline experience imagination into a single learn-

ing framework where imagined experiences collected from model rollouts are used as 

additional training data for the control policy. We show that our approach learns better 

vision-based control policies than baseline and state-of-the-art methods in dense and 

sparse reward environments. Policy networks trained in simulation with our approach 

are shown to perform well on the physical robot without fine-tuning of the trained poli-

cies. 

1.4     Thesis Organization 

This section gives an overview of the following chapters that comprise the body of this 

thesis. Chapter 2 presents a directed, data-efficient exploration strategy inspired by sen-

sorimotor development in infants. It guides the robot’s choice of action by providing an 

intrinsic reward based on the rate of progress in learning a predictive world model, in-

formatively shifting the interactions from well-explored to less-explored regions of the 

world. In Chapter 3, we study the effect of state representation learning on the perfor-

mance of RL for robot motor control from raw visual input and describe a new neural 

network architecture for learning low-dimensional, task-relevant state representations. 
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The low-dimensional representation, which is jointly trained to optimize the supervised 

value prediction and unsupervised state reconstruction objectives, is used as a direct in-

put to the policy and the world models whose prediction errors are used in deriving the 

intrinsic reward, effectively improving the sample efficiency. Chapter 4 discusses differ-

ent hypotheses on how the brain arbitrates between model-based and model-free learning 

systems and shows how the learning progress-based intrinsic reward can be used as an 

estimate of model reliability to adaptively decide when to switch from model-free to 

model-based control and vice versa during robot motor learning. Chapter 5 establishes a 

bridge between intrinsic motivation and experience imagination in robot decision-

making, inspired by human mental simulation of motor behavior. The proposed ap-

proach augments the training set of real experiences with imagined experiences generat-

ed with a learned model over regions where the model is reliable and uses the intrinsic 

motivation to collect experience data that improves the model. In Chapter 6, we propose 

a new dual-system motor learning approach that integrates arbitration with imagination 

and enables an adaptive-length model rollout for plan optimization during model-based 

control and for generating imagined experiences. Finally, Chapter 7 concludes by sum-

marizing the thesis and discussing potential avenues for future research. 
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Chapter 2  
 

Spatially and Temporally Local 

Learning Progress 

2.1     Introduction 

The performance of RL algorithms strongly relies on the chosen exploration strategy, as 

it is the only way to discover more useful experience data and eventually better control 

policies. Existing approaches are mostly based on adding random noise to the policy 

output. While this undirected exploration might work in simple domains, it severely lim-

its how quickly the algorithm can converge to a promising policy in domains with con-

tinuous state-action spaces.  

Instead of the commonly used random exploration strategies, count-based exploration 

approaches apply the principle of optimism in the face of uncertainty by storing the 

number of times a state-action pair has been visited and assign a value inversely propor-

tional to the state-action visitation frequency to encourage exploring parts of the state-

action space that are less familiar (Brafman and Tennenholtz., 2002; Lihong et al., 

2009). More recently, extending count-based exploration, which is limited to tabular rep-

resentations of the environment, to problems with continuous high-dimensional state 

spaces has been proposed (Fu et al., 2017; Tang et al., 2017; Ostrovski et al., 2017; 

Machado et al., 2019). In (Stadie et al., 2015), an exploration bonus based on the predic-
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tion error of a learned dynamics model is added to the reward to encourage visiting nov-

el states. Other approaches use an estimate of the uncertainty in the 𝑄-values to improve 

exploration. For example, one approach approximates a distribution over 𝑄-functions by 

learning K bootstrapped 𝑄-value estimates using a deep neural network with shared body 

and K heads corresponding to the bootstrapped estimates (Osband et al., 2016). A boot-

strapping binary mask of length K is sampled and attached to each collected experience 

to determine which of the K heads the experience will be used to train during experience 

replay. Exploration is performed by uniformly sampling a 𝑄-function head at the start of 

each episode and following the action with the highest estimated 𝑄-value. In (Moerland 

et al., 2017), a Gaussian distribution over returns is learned by a neural network that out-

puts a mean and standard deviation of the 𝑄-value estimates and is used to represent re-

turn uncertainty. Both the return uncertainty and the uncertainty over the neural network 

parameters are propagated through the Bellman equation when updating value estimates. 

Exploratory actions are then directly chosen by Thompson sampling.  

While these approaches improve the exploration in complex environments with con-

tinuous state spaces, they are typically limited to discrete action spaces and cannot be 

applied to continuous-control robotic tasks. An alternative and behaviorally plausible 

line of work is to use intrinsic motivation to induce directed exploration behavior. Intrin-

sic motivation methods build an internal representation of how the world evolves over 

time as a function of the agent’s actions and derive an exploration behavior that im-

proves the representation. This is mostly done by learning a predictive model of the 

world that predicts the next state given the current state and action and encouraging ac-

tions that lead to data that improves model predations. Intrinsically motivated explora-

tion is particularly effective in situations where agents lack the important feedback on 

how to adjust their behavior during task learning, such as learning in environments with 

sparse or delayed extrinsic rewards.  

Most learning measures used to generate intrinsic rewards are based on the prediction 

error of the world model. However, simply using an error in predicting future states to 

derive an intrinsic reward is very likely to direct exploration towards noisy states that 

retain constant, large prediction error. Learning progress-based measures (Oudeyer et al., 

2007; Luciw et al., 2011; Gottlieb et al., 2013), on the other hand, use the change in 

model prediction error over time when computing the intrinsic reward and therefore 

avoid focusing the exploration on regions of inherently unpredictable dynamics. These 
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approaches usually learn a single global model of the world and cannot give accurate 

information on whether learning has progressed in particular regions of the agent’s sen-

sory space where the interaction with the environment actually happens. Instead, they 

only inform about the prediction performance over the entire sensory space, which is 

difficult to cover, and assume correct generalization of the learning progress from re-

gions where recent experience samples have been collected to novel regions. This gener-

alization cannot be guaranteed since the learning progress is locally non-stationary (pre-

diction errors keep changing as the model evolves). Moreover, learning a perfect global 

model requires large amounts of training samples that go beyond the agent’s lifetime. 

In this chapter, we propose a directed, data-efficient exploration approach. Our ap-

proach learns a growing ensemble of local world models by self-organizing the sensory 

space into local regions and training a separate model locally in each region. We use the 

time derivative of the average prediction error of the model over a window of recent 

predictions in each region to define spatially and temporally local learning progress. The 

local learning progress is then used to derive a noise-robust intrinsic reward, which is 

combined with the extrinsic reward to guide exploration. We integrate our directed ex-

ploration with an actor-critic architecture to learn continuous control policies more effi-

ciently and call the resulting algorithm Intrinsically motivated Continuous Actor-Critic 

(ICAC). Guiding exploration via spatially and temporally local learning progress resem-

bles how infants continually organize their interaction with the world as they learn about 

its dynamics, shifting their focus from well-explored to less-explored regions driven by 

their curiosity. Our learning progress-based intrinsic reward accords with surprise-

enhanced learning, where violation-of-expectation, quantified as the difference between 

the predicted and the observed stimulus, enhances children’s learning (Stahl and 

Feigenson, 2017), and the Goldilocks effect principle in infant cognition that states that 

stimuli of intermediate predictability are essential for optimal learning, as opposed to 

highly predictable or unpredictable stimuli (Kidd et al., 2012). Our experiments show 

significant performance gain of our ICAC algorithm, in terms of average extrinsic re-

ward and number of actions taken to solve a given task, compared to the actor-critic 

baseline on simple and complex robotic control tasks in sparse reward environment. 
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Figure 2.1: ITM network. The nodes of the incrementally built ITM network are the cen-

ters of the Voronoi cells. The Delaunay triangulation (dotted lines) connects the centers 

of the neighboring cells such that no center lies inside the circumcircle of any triangle. 

2.2     Growing Self-Organization of Sensory Space 

Similar to how an infant progressively learns about its environment, we want our learn-

ing agent to organize its interaction with the environment by changing the focus of ex-

ploration from regions where it has learned about the outcome of its motor actions to re-

gions where it expects to learn new effects of motor activity. To facilitate this, the senso-

ry space is incrementally partitioned into local regions with local world models by using 

a growing self-organizing network. Particularly, we use the Instantaneous Topological 

Map (ITM) network model (Jockusch and Ritter, 1999). This is because ITM is original-

ly designed for strongly correlated stimuli, which is the case here since the stimuli are 

generated by exploring the sensory space along continuous trajectories. ITM is an unsu-

pervised learning method for adaptively building a topology-preserving map of an input 

space by constructing the Delaunay triangulation of the generated nodes in the map 

(Figure 2.1). Unlike other common self-organizing maps such as the SOM (Kohonen, 

1989), Neural Gas (Martinetz and Schulten, 1991), and Growing Neural Gas (Fritzke, 

1995), ITM has fewer hyperparameters and is considered more computationally effi-

cient, with the number of nodes scaling linearly with the volume of the sensory space.  

The ITM network is defined by a set of nodes i, each having a weight vector 𝑤𝑖, and a 

set of edges connecting each node i to its neighbors N(i). The network starts with two 

connected nodes, and when a new stimulus s is observed, the following adaptation steps 

are performed: 
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〈𝑒𝑡,𝑛
𝑝𝑟𝑑〉 =

1

𝜎
∑𝑒𝑖

𝑝𝑟𝑑

𝜎

𝑖=1

|
𝑒𝑖
𝑝𝑟𝑑

 = ‖ℳ𝑛(𝑠𝑖,𝑎𝑖|𝜃
ℳ𝑛)− 𝑠𝑖+1‖2

2 , 

 

 

 

 

 

 

1. Matching: Find the nearest node n and the second-nearest node 𝑛′  to s: 𝑛 ←

argmin
𝑖

‖𝑠 − 𝑤𝑖‖2
2,  𝑛′ ← argmin

𝑗,𝑗≠𝑛
‖𝑠 − 𝑤𝑗‖2

2
. 

2. Edge adaptation: If n and 𝑛′ are not connected, add an edge between them. For all 

nodes 𝑚 ∈ 𝑁(𝑛), if 𝑛′ lies inside the Thales sphere through m and n (the sphere with 

diameter 𝑤𝑚𝑤𝑛), 𝑖. 𝑒. (𝑤𝑛 − 𝑤𝑛′) · (𝑤𝑚 − 𝑤𝑛′) < 0, remove the edge between m and 

n (non-Delaunay edge), and if m has no remaining edges, remove m. 

3. Node adaptation: If 𝑠 lies outside the Thales sphere through n and 𝑛′, 𝑖. 𝑒. (𝑤𝑛 − 𝑠) ·

(𝑤𝑛′ − 𝑠) > 0, and if ‖𝑠 − 𝑤𝑛‖2
2 > 𝑒𝑚𝑎𝑥, where 𝑒𝑚𝑎𝑥 is the desired mapping reso-

lution, create a new node 𝑣 with 𝑤𝑣 = 𝑠 and an edge with n. 

Each region n of the sensory space (node in ITM) is assigned a local world model 

ℳ𝑛(·,· |𝜃
ℳ𝑛) approximated by a neural network with parameters 𝜃ℳ𝑛 . The model is 

trained online from experience data to predict the next state, given the current state and 

action. When observing a new state 𝑠𝑡, the nearest node n of ITM to st is determined and 

the associated model ℳn is updated by minimizing the loss ‖ℳ𝑛(𝑠𝑡 , 𝑎𝑡|𝜃
ℳ𝑛) − 𝑠𝑡+1‖2

2
 

between the true and the predicted next state, 𝑠𝑡+1 and ℳ𝑛(𝑠𝑡, 𝑎𝑡|𝜃
ℳ𝑛) respectively.  

In the following section, we describe how the self-organized sensory space and the 

local world models can be used to derive spatially and temporally local learning progress 

and present our ICAC algorithm that generates an intrinsic reward based on the derived 

learning progress to direct exploration. 

2.3     Intrinsically Motivated Continuous Actor-Critic 

During task learning, a moving average of the model prediction error over a window of 

𝜎 recent predictions is computed and updated separately for each region 𝑛 of the state 

space (node in ITM): 

   (2.1) 

 

where 𝑒𝑖
𝑝𝑟𝑑

 is the prediction error related to the state transition (𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1). The change 

in average prediction error 〈𝑒𝑡,𝑛
𝑝𝑟𝑑〉 over time represents the learning progress (LP) the 

agent has made or expects to make and is then estimated using a time window 𝒲: 

𝐿𝑃𝑡,𝑛 = |〈𝑒𝑡−𝒲,𝑛
𝑝𝑟𝑑 〉 − 〈𝑒𝑡,𝑛

𝑝𝑟𝑑〉|.                                        (2.2) 
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Figure 2.2: ICAC learning system: The growing self-organizing network adaptively 

forms a topology-representing map of the agent’s sensory space, where each node is as-

sociated with a local world model capturing the dynamics in the region covered by the 

node. The world model associated with the nearest node to the observed state 𝑠𝑡 predicts 

the next state using both 𝑠𝑡 and the action 𝑎𝑡 and is updated using the true next state 

𝑠𝑡+1. An intrinsic reward is then generated from the perception error and the learning 

progress observed, combined with the extrinsic reward and sent to the critic to update its 

estimate of the utility of 𝑎𝑡. The actor is updated towards 𝑎𝑡, if the resulting TD error 

(𝛿𝑡) is positive. 

When action 𝑎𝑡 is taken at state 𝑠𝑡, the resulting next state 𝑠𝑡+1 is used to compute 

𝑒𝑡
𝑝𝑟𝑑

 and then 〈𝑒𝑡,𝑛
𝑝𝑟𝑑〉 and 𝐿𝑃𝑡,𝑛  associated with the best-matching node n of the ITM 

w.r.t. 𝑠𝑡  are updated. The updated 𝐿𝑃𝑡,𝑛  is combined with the perception error 𝑒𝑡
𝑝𝑒𝑟 =

 ‖𝑠𝑡+1 − 𝑤𝑚‖2
2 which is the distance between the state 𝑠𝑡+1 and the weight vector of the 

nearest node m to 𝑠𝑡+1, to give an intrinsic reward signal: 

𝑟𝑡
𝑖𝑛𝑡 = 𝐿𝑃𝑡,𝑛 + 𝑒𝑡

𝑝𝑒𝑟
 .                                                  (2.3) 

This intrinsic reward models the agent’s curiosity by directing its exploration towards 

areas that are perceptually novel and where maximum learning progress is expected. It 

facilitates moving from well-explored, where no learning progress is expected, to less-

explored regions of the sensory space, where large learning progress is expected. By re-

lying on the time derivative of the average prediction error instead of the average error 

itself, the intrinsic reward ensures that the agent is not attracted to states where it always
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gets inevitably high prediction error, due to noisy or non-deterministic dynamics. The 

intrinsic reward is then combined with the extrinsic reward:  

𝑟𝑡 = 𝑟𝑡
𝑖𝑛𝑡 + 𝑟𝑡

𝑒𝑥𝑡.                                                        (2.4) 

The combined reward 𝑟𝑡 is then passed to the critic to update its estimate of the value 

of 𝑠𝑡. Here, we use CACLA (Van Hasselt, 2012) as the base actor-critic algorithm. The 

two neural networks representing the actor and critic are 𝜇(𝑠|𝜃𝜇) and 𝑉(𝑠|𝜃𝑉) para-

metrized by 𝜃𝜇 and 𝜃𝑉 respectively. As discussed in Section 1.2.1, CACLA updates its 

actor towards an exploratory action that has been found to produce higher than expected 

value, which happens when the observed TD error (𝛿) is positive. To emphasize the ef-

fect of actions yielding better improvements to the expected value than usual, CACLA 

can further magnify the actor update. This is done by first keeping a running average of 

the TD error’s variance 𝑣𝑎𝑟𝑡 = (1 − 𝛽) 𝑣𝑎𝑟𝑡−1 +  𝛽𝛿𝑡
2
, with 𝛽 ≪ 1, and then the num-

ber of optimization steps performed for updating towards an action is determined by 

⌈𝛿𝑡 √𝑣𝑎𝑟𝑡⁄ ⌉, which shows how many standard deviations the obtained value is above the 

expected value, rounded up to the next nearest integer number. This is referred to as 

CACLA+Var to distinguish it from CACLA where at most a single optimization step is 

performed per update. CACLA is on-policy and the probability of selecting action a at 

state s is given by the chosen policy distribution, e.g. Gaussian centered at 𝜇(𝑠|𝜃𝜇) with 

standard deviation 𝜎: 𝜋(𝑎|𝑠) =
1

√2𝜋𝜎
𝑒−(𝑎− 𝜇(𝑠|𝜃

𝜇))
2
2𝜎2⁄  (see Appendix B). The learning 

system, including the actor-critic architecture and the growing self-organizing network, 

is shown in Figure 2.2. The proposed ICAC algorithm is detailed in Algorithm 1. 

2.4     Experiments 

In the following, we describe the experimental setup and present two robotic experi-

ments for learning increasingly difficult control tasks. All parameter values were empiri-

cally determined after preliminary testing on the environments considered. The experi-

ments were run using a discount factor γ of 0.9. This value did not correlate with the per-

formance. All actions were drawn from a Gaussian distribution with a mean at the ac-

tor’s output and standard deviation 𝜎 of 0.1. Both the actor and critic were represented 

by two-layer feedforward neural networks with 12 hidden neurons. Different numbers 

made no significant difference to the results. We used hyperbolic tangent and linear
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activation functions for the hidden and output layers respectively. The networks were 

trained using stochastic gradient descent with a learning rate of 0.01. To compute the 

running average of the variance of the TD error, we used a learning rate 𝛽 of 0.01. Vary-

ing 𝛽 did not affect the performance adversely.  

The desired mapping resolution 𝑒𝑚𝑎𝑥 of the ITM network was set to 0.9. Smaller val-

ues were found to increase the computation time without considerable performance gain. 

All local world models were two-layer feedforward neural networks with the same num-

ber of hidden neurons and learning rate as the actor and critic networks and with hyper-

bolic tangent activation in the hidden and output layers. The hyperbolic tangent at the 

output ensures that the input and output states are in [−1, 1] and that the prediction error 

remains bounded. The time windows σ and 𝒲 used in computing the local learning pro-

gress were set to 40 and 20 time units respectively. All inputs to the neural networks 

were normalized to the interval [−1, 1].  

 

Algorithm 1 Intrinsically motivated Continuous Actor-Critic (ICAC) 

1: Initialize actor and critic network parameters 𝜃𝜇 and 𝜃𝑉 

2: Initialize the ITM network 

3: for  𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 𝑡𝑜 𝐸 𝐝𝐨 

4: Sample initial state 𝑠1 

5: for 𝑡 = 1 𝑡𝑜 𝑇 𝐝𝐨 

6: Sample action 𝑎𝑡 ~ 𝜋: 𝜋(𝑎𝑡|𝑠𝑡) =
1

√2𝜋𝜎
𝑒−(𝑎𝑡− 𝜇(𝑠𝑡|𝜃

𝜇))
2
2𝜎2⁄  

7: Execute 𝑎𝑡 and observe 𝑟𝑡
𝑒𝑥𝑡 and 𝑠𝑡+1 

8: Update ITM and the local world model of the region covering 𝑠𝑡 

9: Compute intrinsic reward 𝑟𝑡
𝑖𝑛𝑡 using Equation 2.3 

10: Compute total reward 𝑟𝑡 using Equation 2.4 

11: 
Update 𝜃𝑉  to minimize the loss  

1

2
(𝑦 − 𝑉(𝑠𝑡|𝜃

𝑉))
2
,  where 𝑦 = 𝑟𝑡 +

 𝛾𝑉(𝑠𝑡+1|𝜃
𝑉) 

12: Compute TD error 𝛿𝑡 ← 𝑦 −  𝑉(𝑠𝑡|𝜃
𝑉) 

13: Update the variance of TD error 𝑉𝑎𝑟𝑡+1 ← (1 − 𝛽)𝑉𝑎𝑟𝑡 +  𝛽𝛿𝑡
2
 

14: if 𝛿𝑡 > 0 𝐭𝐡𝐞𝐧 

15: 
Update 𝜃𝜇 to minimize the loss 

1

2
(𝑎𝑡 −  𝜇(𝑠𝑡|𝜃𝑡

𝜇
))
2

 by perform-

ing ⌈
𝛿𝑡

√𝑣𝑎𝑟𝑡
⌉ optimization steps. 

16: end if 

17: end for 

18: end for 
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Figure 2.3: Goal reaching with 2-DoF robotic arm. The red curve outlines the reachable 

workspace for the arm. The green circle is the current goal zone. 

2.4.1    Reaching with 2-DoF Robotic Arm 

In this experiment, we test our ICAC algorithm on a simple control task of reaching a 

random goal in 2D space with a 2-DoF robotic arm, as shown in Figure 2.3. The state 

representation used in the actor and critic networks is four-dimensional real-valued vec-

tor with two components corresponding to the current joint values of the arm in degrees 

and another two corresponding to the Cartesian coordinates of the current goal position. 

The actions are two-dimensional real-valued vectors, containing the angular changes of 

the joints. The reward from the environment after taking an action is defined as follows: 

𝑟𝑡
𝑒𝑥𝑡  =   {

+50    𝑤ℎ𝑒𝑛 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑜𝑎𝑙 𝑧𝑜𝑛𝑒,
    0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                        

 

Both links of the arm are 1 unit length and the goal zone radius is 0.3 unit length. 

Learning is performed over 1000 episodes, and the agent is given a maximum of 50 

time steps to reach the goal, after which the agent resets to a random initial configuration 

and a new random goal is generated. The results are averaged over 20 random seeds. We 

compare our ICAC algorithm to CACLA and CACLA+Var. Figure 2.4 shows the aver-

age extrinsic reward obtained per episode of the three algorithms. Although the extrinsic 

reward was sparse, being received only when reaching the current goal zone, the ICAC 

agent was able to reach each new goal position more often than the agent running any of 

the other two algorithms. As expected, CACLA+Var showed slightly higher perfor-

mance than CACLA. Similarly, Figure 2.5 compares the three algorithms in terms of the 

average number of steps taken to reach the randomly generated goal. While CACLA and 

CACLA+Var converged to a policy of about 35 and 20 actions toward the goal respec-

tively, ICAC continued to learn and converged to a better action policy of just below 10 

actions on average toward the goal. The reason CACLA does not quickly find an optimal
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Figure 2.4: Average extrinsic reward on random goal reaching with 2-DoF robotic arm. 

 

Figure 2.5: Average number of steps to the goal on random goal reaching with a 2-DoF 

robotic arm. The average over 20 episodes is shown for readability. 
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Figure 2.6: Simulated NICO robot. Four joints in the right arm are used to learn to per-

form a reaching task in the 3D workspace. 

policy, as seen in Figure 2.4 and Figure 2.5, is that once a goal is reached, all future actor 

outputs will be largely influenced by the first action sequence found to lead to the previ-

ously reached goal and will hardly suggest other action sequences to be taken to reach 

other new goal positions. Conversely, the actor of ICAC chooses actions that maximize 

the learning progress. These actions keep changing as the perception error and the local 

world models evolve, allowing the discovery of new policies with higher rewards and 

fewer actions. 

2.4.2     Reaching with 4-DoF NICO Arm 

We evaluate here the three algorithms on our Neuro-Inspired COmpanion (NICO) robot 

(Kerzel et al., 2017) in 3D space. The task is to learn to move 4-DoF robotic arm to 

reach the desired goal region. The experiment was run in the V-REP robot simulator 

(Rohmer et al., 2013), as shown in Figure 2.6. The joints considered in the experiment 

are shown in Table 2.1. The states and actions are four-dimensional real-valued vectors 

of joint angles and angular changes respectively. The input to the actor and critic net-

works is 7-dimensional real-valued vector consisting of the 4D state representation and 

the Cartesian coordinates of the current goal position. We use a dummy point in the right 

lower arm to serve as the end-effector. For the goal region, a radius of 12.5% of the ro-

bot’s arm length is used. No extrinsic rewards are provided until the robot reaches the 

goal region in which it receives a positive extrinsic reward of 100: 
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Figure 2.7: Average extrinsic reward on random goal reaching with 4-DoF NICO arm. 

Table 2.1: The joints considered in the reaching experiment with 4-DoF NICO arm. 

𝑟𝑡
𝑒𝑥𝑡  =   {

+100    𝑤ℎ𝑒𝑛 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑡ℎ𝑒 𝑔𝑜𝑎𝑙 𝑧𝑜𝑛𝑒,
    0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                    

 

Each simulation experiment consists of 15K learning episodes in which the robot is 

given 50 action attempts to reach the goal before it is set to a random rest configuration, 

then a new random goal position is generated. We averaged the results over 20 random 

seeds. The average extrinsic reward obtained by the robot running each of the three algo-

rithms is shown in Figure 2.7. CACLA and CACLA+Var algorithms were able to reach

                                  

                

 

  

  

  

  

  

  

  

  

  

   

 
  

  
 
  
  
 
  
  
  
 
 
  

     

         

    

Joint Description Angle limit (in degrees) 

r_shoulder_z rotates around the z-axis of the local 

frame attached to the right shoulder. 

[−100, 125] 

r_shoulder_y rotates around the y-axis of the local 

frame attached to the right shoulder. 

[−180, 179] 

r_arm_z rotates around the z-axis of the local 

frame attached to the right arm. 

[−140, 75] 

r_elbow_y rotates around the y-axis of the local 

frame attached to the right elbow. 

[−100, 100] 
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Figure 2.8: Average number of steps to the goal on random goal reaching with 4-DoF 

NICO arm. The average over 300 episodes is shown for readability. 

only a maximum average reward of around 60 after 4.5K episodes, indicating that they 

failed to reach the goal in 8 out of 20 simulation runs (60% success). In contrast, the rate 

of successful simulations of the ICAC algorithm continued to increase with the learning 

episodes, reaching over 90% by the end of the learning process. Regarding the average 

number of steps to the goal, CACLA and CACLA+Var learned a policy of 30 and 20 

steps respectively, whereas ICAC needed only around five steps on average to reach the 

goal with the number sharply decreasing over the first half of the learning episodes until 

convergence, as illustrated in Figure 2.8. 

2.5     Conclusion 

In this chapter, we presented a directed exploration approach for continuous-action RL 

that is data-efficient, noise-robust, and compatible with infant sensorimotor development 

and proposed the ICAC algorithm that integrates our directed exploration with continu-

ous actor-critic RL architecture. In our approach, the sensory space is self-organized into 

local regions with local world models. The change in average prediction error of a 
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learned local model over time defines spatially and temporally local learning progress, 

which is used to derive an intrinsic reward to direct exploration from highly to less pre-

dictable areas of the sensory space. The derived intrinsic reward is combined with the 

extrinsic reward and fed as input to the critic of our ICAC algorithm to update its esti-

mate of the state value. The actor is updated towards actions found to produce higher 

than expected value. We evaluated our approach on increasingly difficult robotic control 

tasks in sparse reward environments. Our experimental results show that our ICAC algo-

rithm can learn goal-reaching policies substantially faster and with more stability than 

two continuous actor-critic baselines. The results also show that ICAC converges to bet-

ter action policies, in terms of average extrinsic reward and average number of steps tak-

en to reach a random goal, than the baselines. Overall, the results indicate that our local 

learning progress-based intrinsic motivation is effective in acquiring sensorimotor skills 

in sparse reward environments. This suggests a potentially important role for our ap-

proach in open-ended developmental learning systems where complex behavior incre-

mentally develop without heavily relying on the extrinsic feedback. 
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Chapter 3  
 

Intrinsically Motivated Actor-Critic 

with Efficient State Representations 

3.1     Introduction 

The ability to map raw and high-dimensional sensory input to motor output that optimiz-

es the task performance is essential for the acquisition of visuomotor skills in robots. 

Deep RL enables learning a policy function representing that mapping from trial and er-

ror experience in the environment, utilizing deep neural networks as function approxi-

mators. However, deep RL suffers from poor sample efficiency as it requires large 

amounts of self-collected training data to adjust the large number of learning parameters 

such deep architectures typically have, rendering it generally impractical for real-world 

robotic learning. 

To improve sample efficiency in deep RL, different approaches have recently been 

proposed. Some focused on improving experience replay in which data are drawn from a 

memory of recent experiences and used for training. Sampling experiences with proba-

bility proportional to reward prediction error instead of random sampling (Schaul et al., 

2016) and counting unsuccessful policy rollouts as successful ones by replaying experi-

ences with a different goal than the one the agent was trying to achieve (Andrychowicz 

et al., 2017; Levy et al., 2019) are two prominent examples. Another approach proposed 
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learning an estimate of the expected future state occupancy from any given state-action 

pair, called the successor representation (SR) (Kulkarni et al., 2016). This allowed for 

replacing the state-action value function, which estimates the expected long-term reward, 

with a function estimating only the immediate reward using SR, and thereby eliminating 

the need for the slow propagation of state-action values among visited states. In 

(Jaderberg et al., 2017), it was shown that maximizing auxiliary rewards that are propor-

tional to the perceptual changes in the raw observation as well as the learned feature 

spaces while learning the target task makes the training faster. To achieve this, auxiliary 

policies were learned that maximize the perceived changes in pixel values of input imag-

es and in neuron activations of each layer of the value and policy networks, optimizing 

the combined loss of the auxiliary and the base tasks. Learning a separate exploration 

policy was also found to increase the sample efficiency of learning the target policy by 

updating the exploration policy based on the amount of improvement in the target policy 

as a result of the experience data collected with the exploration policy (Xu et al., 2018). 

Similarly, the learning speed on novel tasks was found to be improved by using a task-

independent exploration policy updated between learning trials of different tasks (Garcia 

and Thomas, 2019). 

While these approaches offer a variety of techniques in which sample efficiency in 

deep RL can be improved, training state representations are limited to labeled data that is 

slowly collected and not always available, particularly when rewards are delayed or 

sparse. This prevents the convergence to near-optimal policies in a reasonable amount of 

time. In tasks that require learning control from high-dimensional sensory observations, 

such as raw images, it is helpful for the agent to learn low-dimensional abstract represen-

tations in an unsupervised manner to increase the speed of learning. State representation 

learning in RL has received considerable attention over the past decade. For instance, 

using autoencoders to learn compact low-dimensional state representations unsupervised 

for RL has been proposed (Lange and Riedmiller, 2010; Lange et al., 2012; Finn et al., 

2016). However, a common limitation to these methods is that they require a separate 

pre-training phase to adjust the autoencoder weights prior to learning the policy for the 

target task. Therefore, they learn features that are not relevant to the task and do not nec-

essarily identify rewarding states, leading to poor task performance.  

In this chapter, we address the sample complexity of learning continuous control from 

raw visual input by proposing two approaches corresponding to two different types of 
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unsupervised learning of abstract state representations. In the first approach, we use low-

dimensional state representations learned unsupervised with hierarchical slow feature 

analysis to train the actor and critic networks. Slow feature analysis (SFA) is an un-

supervised learning method that learns compact and temporally coherent features from 

an input sequence of observations (Wiskott and Sejnowski, 2002). The spatially and 

temporally local learning progress is used to derive an intrinsic reward for guiding ex-

ploration. The local world models used in computing the learning progress are trained on 

the slow features. We evaluate the approach on learning robotic reaching from raw-pixel 

data in a realistic robot simulator. The results show that the control policies learned with 

our approach are better both in terms of length and average extrinsic reward than the ac-

tor-critic baseline. In the second approach, we propose a jointly trained deep neural ar-

chitecture composed of a convolutional autoencoder, actor, and critic networks. The hid-

den representation of the autoencoder is trained to reconstruct the visual input and pre-

dict the expected state value. This low-dimensional representation captures the important 

task-relevant information, since it encodes features necessary to discriminate the state 

and predict its value by minimizing the joint unsupervised reconstruction and supervised 

value prediction loss. Therefore, it is used as an input to a small actor network to enable 

faster learning of the target policy. To efficiently direct the exploration of the actor-critic 

learner, we use an intrinsic reward based on the spatially and temporally local learning 

progress in the learned representation space. The resulting algorithm is called Deep In-

trinsically motivated Continuous Actor-Critic (Deep ICAC). Our experiments show that 

the control policies learned with our Deep ICAC algorithm can achieve better perfor-

mance than the compared state-of-the-art and baseline algorithms on vision-based learn-

ing-to-reach and learning-to-grasp tasks in simulation and in the real world. 

3.2     ICAC with Slow Features 

Slow feature analysis (Wiskott and Sejnowski, 2002) as an unsupervised method for 

learning slowly varying features from an input signal has been successfully applied to 

provide a low-dimensional feature vector for precise prediction of view-invariant attrib-

utes of objects, such as identity, position and orientation in the context of supervised 

learning (Franzius et al., 2011), for simultaneous learning of place and head-direction 

cells for potential robot navigation (Zhou et al., 2017), for human action recognition 
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(Zhang and Tao, 2012; Yousefi and Loo, 2016), and for detecting changes in facial ex-

pression from video sequences (Zafeiriou et al., 2013).   

In this section, we introduce our approach for learning vision-based continuous con-

trol polices with our local learning progress-based intrinsic motivation and using state 

representations trained unsupervised with slow feature analysis (SFA). We first provide 

a background on SFA and describe the architecture and training process of a hierarchical 

SFA network. We then show how the output of a trained SFA network can be used as a 

low-dimensional state representation in our Intrinsically motivated Continuous Actor-

Critic (ICAC) algorithm. 

3.2.1     Hierarchical Slow Feature Analysis 

The learning problem in SFA is an optimization problem of finding the most slowly var-

ying features in an input signal. Given an I-dimensional input signal 𝑥(𝑡), the task is to 

find a set of J input-output functions 𝑔(𝑥) =  [𝑔1(𝑥),… , 𝑔𝐽(𝑥)]
𝑇 such that the output 

signals 𝑦𝑗(𝑡) = 𝑔𝑗(𝑥(𝑡)) minimize 

∆(𝑦𝑗 ) ≔ 〈𝑦̇𝑗
2〉                                                         (3.1) 

under the constraints 

〈𝑦𝑗〉  =  0        (𝑧𝑒𝑟𝑜 𝑚𝑒𝑎𝑛),                                              (3.2) 

〈𝑦𝑗
2〉  =  1       (𝑢𝑛𝑖𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒),                                         (3.3) 

  ∀ 𝑖 < 𝑗 ∶  〈𝑦𝑖𝑦𝑗〉  =  0       (𝑑𝑒𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛)                                         (3.4) 

with 〈. 〉 and 𝑦̇ indicating temporal averaging and the time derivative of 𝑦 respectively. 

Constraints (3.2) and (3.3) avoid a trivial solution of constant output and constraint (3.4) 

ensures that different functions 𝑔𝑗 contribute different features. This is a variational cal-

culus optimization problem and is generally difficult to solve. If the functions 𝑔𝑗  are 

constrained to be linear combinations of nonlinear functions, then the problem is simpli-

fied. To obtain the optimal solution, SFA searches for the direction along which the time 

derivative of the input signal varies most slowly by performing the following steps: 

1. Nonlinear expansion: The input signal 𝑥 is normalized to zero mean and unit vari-

ance and then nonlinearly expanded by adding degree one and degree two monomi-

als including all mixed terms, such as (𝑥1𝑥2), using the function ℎ̃(𝑥). The resulting 

signal has the following form: 
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𝑣𝑗:        〈𝑧̇ 𝑧̇
𝑇〉𝑣𝑗  =  𝜆𝑗𝑣𝑗 

with 𝜆1 ≤ 𝜆2 ≤. . . ≤ 𝜆𝐽. 

 

 

 

 

𝑧̃(𝑡) = ℎ̃(𝑥(𝑡)) = [𝑥1(𝑡), . . . , 𝑥𝐼(𝑡), 𝑥𝐼(𝑡)𝑥1(𝑡), 𝑥𝐼(𝑡)𝑥2(𝑡), . . . , 𝑥𝐼(𝑡)𝑥𝐼(𝑡)]
𝑇. 

2. Sphering: The expanded signal 𝑧̃ is normalized to zero mean and unit covariance. 

This normalization is called sphering since it ensures the components of the signal 

are uncorrelated and have the same variance. Sphering, referred to here by function  

ℎ(x), is done by applying principal component analyses (PCA) on the covariance 

matrix 〈(𝑧̃ − 〈𝑧̃〉)(𝑧̃ − 〈𝑧̃〉)𝑇〉, resulting in the sphered signal 𝑧, 𝑧 = ℎ(x).   

3. Principal component analyses: PCA is applied on the covariance matrix 〈𝑧̇ 𝑧̇𝑇〉 to 

find the J eigenvectors 𝑣𝑗  that correspond to the J smallest eigenvalues 

(3.5) 

 

The eigenvectors 𝑣𝑗  are the directions of the smallest variations of the time derivative 

signal 𝑧̇ and specify the input-output functions 𝑔(𝑥) = [𝑔1(𝑥),… , 𝑔𝐽(𝑥)]
𝑇 as follows: 

𝑔𝑗(x) = 𝑣𝑗
𝑇ℎ(x).                                                     (3.6) 

To extract the J slowest features from any new signal 𝑥́, the function 𝑔(𝑥́) is computed, 

as shown in Equation 3.6, which projects the signal vectors onto the eigenvectors 𝑣𝑗 . 

In our approach, we apply SFA hierarchically. This is both computationally efficient 

and biologically realistic since hierarchical ordering requires only local communications 

similarly to how extensive connectivity is avoided in the neural circuits of the visual cor-

tex (Koulakov and Chklovskii, 2001). Our hierarchical architecture consists of three lay-

ers of SFA nodes (see Figure 3.1). Each node in the first layer has a receptive field of 

88 pixels in the original 6464 pixel input with 4-pixel overlap, resulting in 1515 

nodes with partially overlapping receptive fields. The second layer’s nodes have recep-

tive fields of 66 nodes in the lower first layer with 3-pixel overlap, resulting in 44 

nodes. The top layer has a single SFA node that covers the full image frame. We com-

pute 32, 32 and 16 SFA components for nodes in the lower, middle and top layers, re-

spectively. All connections are topologically organized such that each SFA node re-

ceives inputs from neighboring nodes in the preceding layer.  

Each individual SFA node implements four subsequent operations, as shown in Fig-

ure 3.1 First, a linear SFA is performed which reduces the effective dimension of the 

node input to 32; then the linear SFA output is quadratically expanded (original data 

with all quadratic combinations) to introduce non-linearities. White noise is then added 

to break unwanted redundancies nonlinear expansion might introduce. Finally, a second
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Figure 3.1: Hierarchical SFA network. The network consists of 3 layers of SFA nodes 

(left). Each node implements 4 sequential operations (right) on the data sequence inside 

its receptive field from the previous layer and sends its output to the next layer. 

linear SFA is performed on the noise-added output. For training the network, we used 

50K time points that correspond to a temporal sequence of input images (collected over 

3.2 hours on the simulator) generated by a random walk described in Section 3.2.3. The 

training is done sequentially from bottom to top, each layer at a time using the same 

training sequence. Once trained, the network is used to generate efficient state represen-

tations for our actor-critic learner, as discussed in the following section. 

3.2.2     SFA-based ICAC 

In Section 2.3, we proposed ICAC, an actor-critic RL algorithm that learns an optimal 

control policy by learning an ensemble of local predictive models of environment dy-

namics online and generates an intrinsic reward based on the learning progress of each 

model. ICAC has only been applied to low-dimensional inputs in non-visual control 

tasks. Here, we extend and evaluate ICAC on learning vision-based motor control tasks 

using state representations learned unsupervised with the hierarchical SFA network 

(Figure 3.1). ICAC, as shown in Figure 3.2, has two components: a growing self-

organizing network and a control module. The first incrementally partitions the sensory 

space into local regions with local predictive models using the Instantaneous Topologi-

cal Map (ITM) (Jockusch and Ritter, 1999). The network generates an intrinsic reward 

based on the learning progress of the local model corresponding to the current sensory 

region. The control module guides the action selection using the combined extrinsic and 

intrinsic reward as follows: We compute the change between two consecutive average 

prediction errors of the local model associated with the best-matching node n of the ITM
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Figure 3.2: SFA-based ICAC system. The ICAC learner takes an action chosen by the 

actor at the current state and the environment returns an observation. The SFA network 

takes the new observation and outputs a low-dimensional state encoding which the 

growing self-organizing network uses to adapt its topology. The learning progress of the 

local model corresponding to the best-matching node w.r.t. the current state is then com-

puted and used to derive the intrinsic reward that is combined with the extrinsic reward, 

if any, and fed to the critic to update its estimate of the expected value of the current 

state. Finally, the actor is updated towards the current action if it is found to lead to 

higher than expected value. 

w.r.t. the current state (the SFA output). This change represents the learning progress the 

agent has made or expects to make and is combined with the perception error, which is 

the Euclidean distance between the state encoding and the weight vector of n, to give the 

intrinsic reward. This reward encourages the agent to try actions that maximize its learn-

ing progress and lead to perceptually novel states. The Continuous-Actor-Critic Learning 

Automaton (CACLA) (Van Hasselt, 2012) is used as the base actor-critic algorithm for 

learning an optimal control policy based on the combined intrinsic and extrinsic reward. 

The actor is updated towards the current exploratory action, if it leads to a value higher 

than the critic’s estimate. Both the critic and actor are represented by feed-forward neu-

ral networks and updated online from the transitions the robot samples while interacting 

with the environment. 
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Figure 3.3: The 3D simulation environment with a 3-DoF robotic arm. The vision sensor 

output is shown in the upper left corner (the goal is not rendered in the input to the SFA). 

3.2.3     Experiments 

We evaluate SFA-based ICAC on a vision-based target reaching task with 3-DoF robotic 

arm shown in Figure 3.3 in the V-REP robot simulator (Rohmer et al., 2013). The arm’s 

joints can move within [
−𝜋

2
,
𝜋

2
 ]3 representing the joint values. The robot gets a reward of 

10.0 on reaching the goal region (green sphere in Figure 3.3) or, otherwise, a negative 

reward based on the Euclidean distance of the gripper tip to the goal. We also performed 

experiments on the more challenging sparse reward setup (reward of 10.0 on reaching 

the goal region or 0.0 elsewhere). To train the SFA network, we performed random walk 

of 50K steps (3.2 hours on the simulator). In each step the robot takes a random action 

(max of 1 degree per joint) in the simulator and records an image of the world. The im-

age sequence is then used as a single batch to train the network on three passes corre-

sponding to the three layers of SFA nodes (see Section 3.2.1).  

The actor and critic in ICAC and CACLA are represented by 2-layer, fully connected 

MLPs of 20 tanh hidden units. The output units are linear: three in the actor and one in 

the critic. The input to the actor and critic is the 16-dimensional slow features (the output 

of the SFA network) together with the goal’s Cartesian coordinates. The learning rate is 

set to 0.01. We store the most recent 1 million state transitions in an experience replay 

buffer and perform mini-batch stochastic gradient descent with batch size 1K for updat-

ing the critic during online training. The reward discount factor is set to 0.99. All actions 

(joint value changes) are drawn from a Gaussian distribution with a mean at the actor’s 

present output and standard deviation of 0.3 and are clamped to a max of |10.0| degrees
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Figure 3.4: Learning curves of ICAC and the baselines on vision-based robotic reaching 

with 3-DoF arm in two reward settings: (a) dense reward and (b) reward-sparse. The av-

erage over 50 episodes is shown for readability. 

Table 3.1: Mean extrinsic reward (upper half) and mean number of steps to the target 

(lower half) over the entire learning period (learning speed) and over the last 200 learn-

ing episodes (final performance). 

per joint. The local world models are 2-layer MLPs trained to predict future states (SFA-

output) from previous state-action pairs. The above values were determined empirically. 

In each learning episode, the robot is given a maximum of 1K steps to reach the current 

goal after which a new episode begins with a random goal position. 

(a) Dense reward environment

(b) Sparse reward environment

 Learning speed Final performance 

 Random CACLA ICAC Random CACLA ICAC 

Dense reward  -423.58 -85.93 -7.81 -434.70 -97.55 0.87 

Sparse reward  9.80 8.07 9.64 9.95 7.45 10.00 

Dense reward  198.15 58.17 15.20 201.08 63.26 10.63 

Sparse reward  198.15 236.58 57.65 201.08 250.50 30.82 
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We run ICAC and two baselines of CACLA and uniform random policy for 1K epi-

sodes and average the results over 10 random seeds. As shown in Figure 3.4, ICAC 

reached much better policies in a much smaller number of episodes in both reward set-

tings. While CACLA was able to converge to a relatively good policy in the dense re-

ward environment, it failed in the sparse reward environment where ICAC was converg-

ing to a near optimal policy after 600 episodes of learning. In Table 3.1, we give a more 

concise comparison. Again, the table shows that ICAC outperformed the baselines and 

that its performance was significantly higher in the difficult sparse reward setting, reach-

ing a success rate of 100% over the last 200 episodes. 

3.3     ICAC with Deep Convolutional Autoencoder 

In this section, we present our actor-critic approach for learning vision-based robot con-

trol using jointly optimized state representations and an intrinsic motivation based on the 

spatially and temporally learning progress for guiding exploration. We first describe our 

proposed deep learning architecture for jointly training low-dimensional state representa-

tions. We then present our Deep ICAC algorithm that uses state representations learned 

with our proposed architecture and the learning progress-based intrinsic motivation. Fi-

nally, we show the results of our robotic experiments in simulation and in the real world. 

3.3.1     Jointly Optimized Representations with Actor-Critic-Autoencoder 

Architecture 

In high-dimensional state spaces, the agent requires representations capable of recogniz-

ing states that lead to high rewards in order to learn a good value function that makes 

learning the target policy easier. To support this, we propose a multi-output deep archi-

tecture composed of a convolutional autoencoder, critic and actor networks. The autoen-

coder consists of a convolutional encoder 𝑓 and decoder 𝑔 parametrized by 𝜔 and 𝜔̃ re-

spectively. The critic 𝑉 is parametrized by {𝜔, 𝜃𝑉} and outputs an estimate of the ex-

pected value of a given state 𝑠𝑡. The actor 𝜇 is parametrized by 𝜃𝜇 and outputs an esti-

mate of the optimal action at a given state 𝑠𝑡. The bottleneck layer of the autoencoder is 

fully connected to the critic and actor networks. The low-dimensional hidden representa-

tion at the bottleneck layer 
𝑠𝑡
= 𝑓(𝑠𝑡|𝜔) is jointly trained to reconstruct the original 

input state and predict its value. The architecture is show in Figure 3.5. 
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Figure 3.5: The proposed learning architecture: The architecture consists of (1) a convo-

lutional encoder branch 𝑓𝜔 that takes in a raw image 𝑠𝑡 and extracts a feature vector 
𝑠𝑡

, 

(2) a convolutional decoder branch 𝑔𝜔̃ that produces a reconstruction 𝑠̂𝑡 of the input, (3) 

a critic branch 𝑉 with parameters 𝜃𝑉 that estimates the expected value using the features 


𝑠𝑡

, and (4) an actor branch 𝜇 with parameters 𝜃𝜇 that outputs a current estimation of the 

optimal action 𝜇(
𝑠𝑡
) with a dimensionality of dim(A), where A is the action space. 

The autoencoder learns the parameters {𝜔, 𝜔̃} that minimize the reconstruction loss 

between the original input 𝑠𝑡 and the reconstructed output 𝑠̂𝑡 = 𝑔 (
𝑠𝑡
| 𝜔̃):  

ℒ𝑐(ω, ω̃) =  ‖𝑔 (𝑠𝑡
|𝜔̃) − 𝑠𝑡‖

2

2

.                                           (3.7) 

The critic learns the parameters {𝜔, 𝜃𝑉} that minimize the value prediction loss between 

the target value 𝑦𝑡 = 𝑟𝑡 +   𝑉′ (𝑠𝑡+1
|𝜔′, 𝜃𝑉′) and the predicted value 𝑉 (

𝑠𝑡
|𝜔, 𝜃𝑉): 

ℒ𝑣(𝜔, 𝜃
𝑉) = (𝑦𝑡 − 𝑉 (𝑠𝑡

|𝜔, 𝜃𝑉))
2

,                                        (3.8) 

where 𝑉 ′ is the target critic network parametrized by {𝜔′, 𝜃𝑉′}. The target network pa-

rameters are slowly updated towards their corresponding parameters {𝜔, 𝜃𝑉} to provide 

more stationary targets, as discussed in Section 1.2.1. The actor learns the parameters 𝜃𝜇 

that move its output closer to an exploratory action 𝑎𝑡 found to lead to higher than ex-

pected value (i.e. positive TD error). This is done by minimizing the following loss: 

ℒ𝑎(𝜃
𝜇) = (𝑎𝑡 − 𝜇 (𝑠𝑡

|𝜃𝜇))
2

.                                             (3.9) 

The proposed deep architecture is trained online by sampling a minibatch of transitions 

(𝑠, 𝑎, 𝑟, 𝑠′) from the experience replay buffer and performing minibatch stochastic gradi-

ent descent to adjust the parameters {𝜔, 𝜔̃, 𝜃𝑉 , 𝜃𝐴𝐶} to minimize the joint loss: 
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ℒ(𝜔, 𝜔̃, 𝜃𝑉, 𝜃𝜇) =  ℒ𝑐(𝜔, 𝜔̃) + ℒ𝑣(𝜔, 𝜃
𝑉) + ℒ𝑎(𝜃

𝜇).                         (3.10) 

This is done by first updating the parameters {𝜔, 𝜔̃, 𝜃𝑉} to minimize the joint unsuper-

vised reconstruction and supervised value prediction loss ℒ𝑐(𝜔, 𝜔̃) + ℒ𝑣(𝜔, 𝜃
𝑉). After 

that, we fix {𝜔, 𝜔̃, 𝜃𝑉} and update the actor parameters 𝜃𝜇  to minimize ℒ𝑎(𝜃
𝜇) of the 

transitions for which the TD error is positive. This iteration ensures that no gradients are 

backpropagated from the actor branch to affect 𝜔. The state representation 
𝑠𝑡

 in the 

proposed architecture is learned to be state discriminator and value predictor by sharing 

the parameters 𝜔 between the encoder and the critic. Using this low-dimensional, task-

relevant state representation as a direct input to the actor network allows for more effi-

cient learning of the target policy. 

3.3.2     Deep ICAC  

Here, we describe how we extend our ICAC algorithm, presented in Section 2.3, to 

learning control policies from raw pixels using state representations learned with our 

proposed jointly trained deep neural architecture.  

Deep Feature-Space Self-Organization 

We incrementally partition the space of jointly learned deep feature representations 
𝑠𝑡

 

(Figure 3.5) into local regions using a growing self-organizing network. We use here the 

ITM (Jockusch and Ritter, 1999) network, which starts with two connected nodes 𝑛1 and 

𝑛2, with weight vectors 𝑤1 and 𝑤2 respectively, and performs the following adaptation 

steps each time a new stimulus 
𝑠𝑡

 is observed: 

1. Matching: Find the nearest node n and the second-nearest node 𝑛′  to 
𝑠𝑡

: 𝑛 ←

argmin
𝑖

‖
𝑠𝑡
− 𝑤𝑖‖

2

2

,  𝑛′ ← argmin
𝑗,𝑗≠𝑛

‖
𝑠𝑡
− 𝑤𝑗‖

2

2

. 

2. Edge adaptation: If n and 𝑛′ are not connected, add an edge between them. For all 

the nodes 𝑚 connected to 𝑛, if 𝑛′ lies inside the Thales sphere through m and n (the 

sphere with diameter 𝑤𝑚𝑤𝑛 ),  𝑖. 𝑒. (𝑤𝑛 −𝑤𝑛′) · (𝑤𝑚 − 𝑤𝑛′) < 0 , remove the edge 

between m and n, and if m has no remaining edges, remove m. 

3. Node adaptation: If 
𝑠𝑡

 lies outside the Thales sphere through n and 𝑛′, 𝑖. 𝑒. (𝑤𝑛 −


𝑠𝑡
) · (𝑤𝑛′ − 

𝑠𝑡
) > 0 , and if ‖

𝑠𝑡
− 𝑤𝑛‖

2

2

> 𝑒𝑚𝑎𝑥 , where 𝑒𝑚𝑎𝑥  is the desired 

mapping resolution, create a new node 𝑣 with 𝑤𝑣 = 
𝑠𝑡

 and an edge with n. 
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〈𝑒𝑡,𝑛
𝑝𝑟𝑑〉 =

1

𝜎
∑𝑒𝑖

𝑝𝑟𝑑

𝜎

𝑖=1

|
𝑒𝑖
𝑝𝑟𝑑

 =‖ℳ𝑛(𝑠𝑖
,𝑎𝑖|𝜃

ℳ𝑛)− 𝑠𝑖+1
‖
2

2 , 

 

 

 

 

 

𝑟𝑡 = 𝑟𝑡
𝑒𝑥𝑡 + 

𝑟𝑡
𝑖𝑛𝑡

1 +  𝐷 · 𝑡
 ̛ 

 

 

 

 

 

Learning Progress-based Intrinsic Motivation 

Each local region 𝑛 (node in the network) is assigned a distinct predictive model of the 

world ℳ𝑛, with parameters 𝜃ℳ𝑛 . The local models are trained in the space of deep state 

representations to predict the next representation given the current representation and 

action. A moving window average of the model prediction error is computed separately 

for each region n: 

(3.11) 

 

where 𝜎 specifies the length of the window of recent predictions in n. The improvement 

in model predictions, the change in 〈𝑒𝑡,𝑛
𝑝𝑟𝑑〉 over time, is then estimated by computing the 

learning progress (LP) locally in each region using a time window 𝒲: 

𝐿𝑃𝑡,𝑛 = |〈𝑒𝑡−𝒲,𝑛
𝑝𝑟𝑑 〉 − 〈𝑒𝑡,𝑛

𝑝𝑟𝑑〉|.                                          (3.12) 

After taking an action 𝑎𝑡 at state 𝑠𝑡 and observing the next state 𝑠𝑡+1, we update the local 

learning progress that corresponds to the region n to which the state representation 
𝑠𝑡

 

belongs using Equations 3.11 and 3.12. The updated learning progress 𝐿𝑃𝑡,𝑛  is then 

combined with the perception error 𝑒𝑡
𝑝𝑒𝑟

, which is the distance between the state repre-

sentation 
𝑠𝑡+1

 and the weight vector of the best-matching node m of the ITM w.r.t. to 


𝑠𝑡+1

, to give the intrinsic reward signal: 

𝑟𝑡
𝑖𝑛𝑡 = 𝐿𝑃𝑡,𝑛 + 𝑒𝑡

𝑝𝑒𝑟
.                                                (3.13) 

The intrinsic reward directs exploration towards perceptual novel regions of the space of 

deep state representations and where maximum learning progress is expected. To use the 

derived intrinsic reward in our actor-critic system, we gradually anneal it to account for 

the fact that with more interactions the agent becomes less uncertain about its world dy-

namics. We combine it with the extrinsic reward as follows: 

                                  (3.14) 

 

where D > 0 is a decay constant. At each time step t, an action at is drawn from a condi-

tionally Gaussian policy 𝜋(𝑎𝑡|𝑠𝑡) =
1

√2𝜋𝜎
𝑒−(𝑎𝑡− 𝜇(𝑠𝑡|𝜃

𝜇))
2
2𝜎2⁄  centered at the actor’s 

output 𝜇(𝑠𝑡|𝜃
𝜇) with a standard deviation 𝜎. Figure 3.6 shows the overall learning sys-

tem, demonstrating the interaction among the different components of our approach. The 

learning algorithm is detailed in Algorithm 2. 
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Figure 3.6: Deep ICAC learning system: The agent takes an action 𝑎𝑡 sampled from a 

Gaussian policy centered at the actor’s output, and the environment returns a new state 

𝑠𝑡+1 and a reward 𝑟𝑡
𝑒𝑥𝑡. The convolutional encoder of the jointly trained learning archi-

tecture then computes a feature representation 
𝑠𝑡+1

 which the growing self-organizing 

network ITM uses to adapt its topology. The learning progress of the local world model 

corresponding to the ITM’s best-matching node w.r.t. 
𝑠𝑡

 is then computed and used to 

derive an intrinsic reward 𝑟𝑡
𝑖𝑛𝑡. The intrinsic reward is combined with the extrinsic re-

ward 𝑟𝑡
𝑒𝑥𝑡 and fed to the critic to update its estimate of the utility of 𝑎𝑡. Finally, the actor 

is updated towards 𝑎𝑡 if it is found to lead to higher than the critic’s estimated value. 

3.3.3     Experiments 

We evaluate our approach on robotic learning-to-reach and learning-to-grasp tasks. In all 

the experiments, we compare the proposed Deep ICAC to Deep CACLA (CACLA with 

our proposed deep architecture) and the state-of-the-art DDPG (see Appendix B). We 

consider two environmental conditions for each task: dense and sparse reward settings.  

Parameters 

We employ a convolutional autoencoder that includes 7 zero-padded convolutional lay-

ers with ReLU activations, 2 dense layers with ReLU activations, and no pooling layers, 

as shown in the encoder and decoder branches of Figure 3.5. The figure also shows the 

number and size of the filters used in each layer. All convolutional layers have the same 

filter size (3×3) applied with stride 1 to maintain the size of the input image. The critic 

network consists of the encoder layers followed by a dense layer with 20 ReLU neurons
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Algorithm 2 Deep ICAC 

1: Initialize the parameters {𝜔, 𝜔̃, 𝜃𝑉 , 𝜃𝜇, 𝜔′, 𝜃𝑉′, 𝜏} 

2: Initialize the ITM network 

3: Initialize replay buffer R 

3: for  𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 to 𝐸 𝐝𝐨 

4:          Sample initial state 𝑠1 

5:       for 𝑡 = 1 to 𝑇 𝐝𝐨 

6:          Sample action 𝑎𝑡 ~ 𝜋: 𝜋(𝑎𝑡|𝑠𝑡) =
1

√2𝜋𝜎
𝑒−(𝑎𝑡− 𝜇(𝑠𝑡|𝜃

𝜇))
2
2𝜎2⁄  

7:          Execute 𝑎𝑡 and observe 𝑟𝑡
𝑒𝑥𝑡 and 𝑠𝑡+1 

8:          Update the ITM and the model in the deep feature-space region covering 
𝑠𝑡

 

9:          Compute the intrinsic reward 𝑟𝑡
𝑖𝑛𝑡 using Equation 3.13 

10:          Compute the total reward 𝑟𝑡 using Equation 3.14 

11:          Store the transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in R 

13:          Update {𝜔, 𝜔̃, 𝜃𝑉} on minibatch from R to minimize ℒ𝑐(𝜔, 𝜔̃) + ℒ𝑣(𝜔, 𝜃
𝑉) 

14:            Update 𝜃𝜇 on minibatch from R, following Equation 3.9 

15:          Update target network parameters  𝜃𝑉′ ← 𝜏 𝜃𝑉 + (1 − 𝜏)𝜃𝑉′, 𝜔′ ← 𝜏𝜔 + (1 − 𝜏)𝜔′ 

16:       end for 

17:    end for 

 and a dense output layer of a single linear neuron. The fourth layer of the encoder is a 

dense layer with 16 neurons whose output is used as a low-dimensional feature vector  

fed as input to the actor network. The actor network is a 2-layer fully connected MLP of 

20 tanh hidden neurons. The output neurons have tanh activations (to bound actions) and 

represent an action vector whose dimension depends on the task. We train the networks 

with proportional Prioritized Experience Replay (PER) (Schaul et al., 2016) using the 

Adam optimizer (Kingma and Ba, 2014) and a learning rate of 1e-3 for both the autoen-

coder and critic and 1e-4 for the actor (see Appendix B). We use a replay buffer of size 

100K and a minibatch size of 64 sampled using PER. The PER hyperparameters 𝛼 and 

𝛽0 are set to 0.6 and 0.4 respectively. The target value network’s update factor 𝜏 is set to 

1e-3. The reward discount 𝛾 is 0.99. We set the intrinsic reward decay constant D to 0.1. 

The intrinsic reward is normalized so that it remains in the interval [0, 1]. The ITM 

model has the threshold emax as its only hyperparameter, which we set to 6. Five nodes, 

i.e. predictive models, are generated on average. All predictive models used are 2-layer 

fully connected MLPs of 20 tanh hidden and 16 linear output neurons trained online with 

Adam optimizer. Exploratory actions are Gaussian distributed with a standard deviation 

of 20 degrees and a mean at the current actor’s output.  
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Table 3.2: Comparison between the number of learning parameters of the different deep 

architectures used in the experiments. 

 DDPG Deep CACLA/ICAC 

Actor network 36,077,399 403 

Critic network 36,077,585 935,716 

Total 72,154,984 936,119 

The above values were determined empirically based on preliminary experiments and 

the following findings were obtained. Different numbers for the dense layer neurons of 

the actor and critic networks made no significant difference to the results. For the bottle-

neck layer of the autoencoder, we tested the performance for 8, 16, 32, and 64 neurons. 

Reducing from 16, as finally used, to 8, the average reward decreased to below 2.5. In-

creasing from 16 to 32 and 64 did not significantly change the average reward. Different 

learning rates were evaluated and found to slightly affect the learning performance. 

However, learning rates below 1e-3 for training the autoencoder and critic caused slow 

learning convergence. Minibatch sizes larger than 64 did not lead to considerable per-

formance improvement. The value of 𝛾 did not correlate with the performance. Our own 

DDPG implementation for learning from pixels uses the same neural architecture de-

scribed in (Lillicrap et al., 2016) and the best-performing hyperparameters we empirical-

ly found, in addition to training with proportional PER. A comparison between the num-

ber of learning parameters used in the proposed neural architecture and that of DDPG is 

presented in Table 3.2. 

Parameter Choice Analysis 

While the structural and learning parameters of our proposed deep architecture is based 

on standard deep learning models and so their choice can be directly understood, some 

other parameters are less straightforward. Here, we particularly explain the role and 

choice of the PER, ITM and intrinsic reward decay parameters as follows: 

− In PER, transitions are sampled from a replay buffer with probability proportional to 

their priorities 𝑃(𝑖) = 𝑝𝑖
𝛼 ∑ 𝑝𝑘

𝛼
𝑘⁄  where 𝑝𝑖 is the priority of transition i represented by 

the absolute value of its TD error and the exponent 𝛼 determines the amount of priori-

tization used, with 𝛼 = 0 corresponding to the uniform random sampling. The larger 

the value of 𝛼 the stronger is the prioritization. The prioritization introduces a bias by 

changing the distribution of the transitions used for learning. To compensate for the 

bias, importance-sampling weights are used 𝑤𝑖
𝑃𝐸𝑅 = 1 (𝑁 · 𝑃(𝑖))𝛽⁄  where N is the 
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buffer size. Full compensation corresponds to 𝛽 = 1. These weights are multiplied by 

the TD error when updating the value function parameters. The bias is less significant 

prior to convergence, since the policy and state distribution are non-stationary. There-

fore, 𝛽 is usually annealed from some initial value 𝛽0 to reach 1 at the end of learn-

ing. We empirically found 𝛼 = 0.6 and 𝛽0 = 0.4 to yield stable results in all our ex-

periments. 

− In ITM, a new node is created when the stimulus is more than a given threshold 𝑒𝑚𝑎𝑥 

away from the nearest node. This means that 𝑒𝑚𝑎𝑥 determines the desired mapping 

resolution as it controls the growth of the ITM map. The choice of 𝑒𝑚𝑎𝑥 can influence 

the derived intrinsic reward by affecting the number of local predictive models gener-

ated. The results of setting 𝑒𝑚𝑎𝑥 to 6.0 were on average better than other values we 

experimented with. Smaller values increased the computation time without significant 

performance gain.   

− In the combined reward signal derived in Equation 3.14, the parameter 𝐷 controls the 

decay rate of the weight of the intrinsic reward component 𝑟𝑡
𝑖𝑛𝑡. Reasonably small 

values for 𝐷 keep the agent more intrinsically motivated during the early stages of 

learning while allowing it to become gradually less intrinsically motivated as it learns 

more about the world dynamics and its action values. We found 𝐷 = 0.1 as the best 

performing value in our experiments. 

Vision-based Learning-to-Reach 

We evaluate our approach on the learning-to-reach task using the V-REP robot simulator 

(Rohmer et al., 2013). The 3-D robotic environment used in the conducted experiments 

is shown in Figure 3.7. The environment consists of a 3-DoF robot arm with a gripper 

attached and a red cylindrical target object. A vision sensor is used and positioned verti-

cally above the scene to capture real-time 84×84 pixel RGB images of the states of the 

environment. Each joint of the robot can move in the angular range of [− π 2⁄ , π 2⁄  ]. A 

reaching attempt is considered successful when the gripper center is within a predeter-

mined radius from the center of the target object (the resulting target zone area is equiva-

lent to 9% of the total reachable area). The reward function used is as follows: 

𝑟𝑡
𝑒𝑥𝑡  =   {

    +10                      𝑖𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙,                        

   −‖𝑐𝑡 − 𝑐𝑔‖         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                               
 

where ‖𝑐𝑡 − 𝑐𝑔‖ is the Euclidian distance between the center of the target object 𝑐𝑡 and 
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Figure 3.7: The V-REP simulation environment for the task of learning-to-reach includ-

ing the 3-DoF arm with a gripper attached and a red cylindrical target. The vision sensor 

output is shown in the upper left corner. 

the center of the gripper 𝑐𝑔. In the experiment with sparse rewards, a reward of 0 is giv-

en for unsuccessful actions. We ran Deep ICAC, Deep CACLA, and DDPG on dense 

reward and sparse reward environments for 10K episodes with a maximum of 10 steps 

per episode, with the position of the target object varying randomly every episode. 

Training was done by sampling from the replay buffer with PER and performing a mini-

batch stochastic gradient descent optimization with Adam. For evaluating the learned 

policy, training was paused after every 250 episodes and a test trial was performed that 

includes running the policy without any updates for 20 episodes each with a different 

target position not included in the training. The average total (extrinsic) reward over the 

20 test episodes was then reported for every test trial. We ran all the experiments on a 

single Nvidia GTX 1050 GPU with an average runtime of five hours per run for each of 

the algorithms considered.  

Figure 3.8 shows the results of applying the algorithms to the environment in the dense 

reward and the sparse reward settings. The results shown are averages over 20 seeds.  

The performance of the learned policy was almost identical among the three algorithms 

during the first five test trials (1K learning episodes) in the dense reward setting and the 

first ten trials (2.5K learning episodes) in the challenging sparse reward setting. Howev-

er, only the policies learned with Deep ICAC and Deep CACLA continued to improve 

steadily with Deep ICAC converging faster to an average return of 7.1 in the dense re-

ward setting and over 8.0 (i.e. success rate of over 80%) just below the optimal policy 

(return of 10) in the sparse reward setting. Despite its good performance in the dense re-

ward setting, Deep CACLA suffered from a premature convergence to a locally optimal
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Figure 3.8: Performance curves of Deep ICAC, Deep CACLA, and DDPG on the robotic 

learning-to-reach task in different reward settings: (a) dense reward and (b) sparse re-

ward. 

Table 3.3: Learning statistics in the learning-to-reach experiment with dense rewards 

(upper half) and sparse rewards (lower half). 

 DDPG Deep CACLA Deep ICAC 

Learning speed 4.52 6.52 6.11 

Final performance 4.08 7.01 7.51 

Learning speed 5.34 7.25 8.14 

Final performance 5.1 6.8 9.0 

policy in the sparse reward setting. DDPG, on the other hand, showed poor stability una-

ble to reach a good policy by the end of the training process in both reward settings. We 

also report learning statistics in terms of the average reward per episode over the entire 

training process (learning speed) and over the last 100 episodes of training (final perfor-

mance) in Table 3.3. The data shown are averages over 20 runs. 

Vision-based Learning-to-Grasp 

In the second experiment, we consider robotic grasping as a learning task. Unlike reach-

ing, grasping requires more precise motor actions, handling of external collisions with 

the object to grasp, and finding correct finger placement. The robotic environment con-

sists of our Neuro-Inspired COmpanion (NICO) humanoid (Kerzel et al., 2017) facing a 

table on top of which a target object is placed. Figure 3.9 shows the V-REP simulation 

scene of the experiment. To avoid self-collisions while allowing for a larger task space 

for grasp learning, we consider a motor policy involving the right shoulder joint and the 

right-hand joints, as shown in Figure 3.10(a). NICO’s right arm has 6 DoF of which we 

control one in the shoulder. The shoulder joint can move in the angular range [-100,100]
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Figure 3.9: The V-REP simulation environment used in the learning-to-grasp experiment 

including the NICO robot sitting in front of a table on top of which a target object is 

placed. NICO learns to grasp the object with its right multi-fingered hand. 

(in degrees). NICO’s hand is 11-DoF multi-fingered with two index fingers and a thumb 

each of which can move in the angular range [-160, 160] (in degrees). The robot learns 

to control 2 DoFs: 1 DoF (shoulder joint) and 1 DoF (hand open/close). The only input 

to the learning algorithm is the raw data of 32×64 pixel RGB image, which is used as the 

state of the environment, obtained from the vision sensor output shown in Figure 

3.10(b). We use the following reward function: 

𝑟𝑡
𝑒𝑥𝑡  =   {

   +10                    𝑖𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙,           
     −10                     𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑖𝑠 𝑡𝑜𝑝𝑝𝑙𝑒𝑑,

      −‖𝑐𝑡 − 𝑐ℎ‖               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              

 

where 𝑐𝑡 is the center of the target object and 𝑐ℎ is the center of the robot hand. We de-

termine successful grasps by moving the shoulder joint 20 degrees in the opposite direc-

tion of the recently applied joint value and measuring the Euclidean distance ‖𝑐𝑡 − 𝑐ℎ‖ 

afterwards. If the distance remains below a grasp threshold of 0.04 m, the grasp is 

deemed successful. Otherwise, the hand is opened, the shoulder joint moves back to its 

previous value, and the robot continues the learning episode. In the sparse reward set-

ting, we use the following sparse reward function: 
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Figure 3.10: (a) The raw motor output and (b) raw sensory input considered in the learn-

ing-to-grasp experiment. Yellow cylinders in (a) refer to the axes of rotations of the 

joints controlled during grasp learning. 

𝑟𝑡
𝑒𝑥𝑡  =   { 

  +10             𝑖𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙,             
     −10             𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑖𝑠 𝑡𝑜𝑝𝑝𝑙𝑒𝑑,    
           0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                          

 

We run the algorithms for 10K episodes with a maximum of 50 actions per episode and 

with the target object randomly placed in a graspable position at the start of each epi-

sode. The episode terminates when the object is successfully grasped, the object is top-

pled, or a maximum number of 20 action steps is reached. 

The learning-to-grasp experiments were run on a single Nvidia GTX 1050 GPU with 

an average runtime of ~25 hours per run for all the algorithms in the dense reward set-

ting. In the sparse reward setting, the average runtime was 27.2, 33.8, and 35.5 hours for 

Deep ICAC, Deep CACLA, and DDPG respectively. Figure 3.11 shows the average to-

tal extrinsic reward per learning episode over five seeds. Gradual performance improve-

ment was observed for all the algorithms in the environment with dense reward setting, 

as shown in Figure 3.11(a). Starting at around an average total reward of -17, Deep 

CACLA and Deep ICAC reached a policy with an average return of 0 and 5 respective-

ly. The DDPG progress, on the other hand, was very slow, moving from -18 to -15 by 

the end of the learning process. In the sparse reward environment, the algorithms were 

unable to make notable progress for 3K episodes after which the learned policy of only 

Deep ICAC and Deep CACLA improved while DDPG’s remained the same. 

 

(a) (b)
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Figure 3.11: Learning curves of Deep ICAC, Deep CACLA, and DDPG on the robotic 

learning-to-grasp task in different reward settings: (a) dense reward and (b) sparse re-

ward. The average over 50 episodes is shown for readability. 

Vision-based Learning-to-Grasp on the Physical NICO 

Deep RL is well suited for research on physical, developmental robots (Cangelosi and 

Schlesinger, 2015). Enabling robots to learn increasingly complex sensorimotor abilities 

through interaction with the real environment would move the state of the art in robotics 

from laborious programming tasks that can only be realized by highly specialized ex-

perts into the realm of intuitive, human-like teaching scenarios, or even robots, that can 

carry out repetitive learning tasks autonomously. To realize this, several obstacles have 

to be overcome: Deep RL requires a large number of samples. Successful application of 

deep RL has been achieved for games (Mnih et al., 2015) and purely virtual environ-

ments (Lillicrap et al., 2016). In virtual environments, a large number of samples can be 

collected within a short time, without the danger of damaging the learner or the envi-

ronment and without human assistance or supervision. A simulation can be reset to its 

initial state, whenever an unwanted state occurs. Likewise, any required change to the 

environment or assistance can be automated. An example could be lifting up a toppled 

object and putting it back into the robot’s reach. For a developing child, these chores are 

usually realized by its caretakers: in a typical parent-child interaction, the child learns 

under the supervision of adults who provide a safe environment that enables suitable 

learning steps. Therefore, when moving to a real robot the research question is twofold: 

The core research question is the evaluation of the Deep ICAC algorithm on a real robot-

ic system. We analyze how real sensor and motor noise affect the learning outcome. The 

secondary research question is the design of an experimental setup that enables autono-

mous learning, i.e. learning without constant human assistance.  
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Figure 3.12: NICO experimental setup during learning including a red object for grasp-

learning and a top-mounted camera. The experiment starts with NICO’s hand at its start 

position (a). Using its shoulder joint, NICO grasps and moves the object to a random 

target position which is then recorded (b). Next, NICO moves back the hand to the home 

position (c). Learning starts by taking the image provided by the top-mounted camera as 

an input and producing an action output from the actor network of the Deep RL algo-

rithm. A sequence of actions is mostly required to reach and grasp the object since the 

maximum angle change of the joint is limited (d-f). NICO closes its hand when the algo-

rithm recognizes that the object has been reached (g). Once the object is grasped, the 

hand with the object grasped is moved to the home position and the learning cycle is re-

peated (h). In case of reaching a maximum of 50 action steps, the shoulder joint position 

is set to the recorded target position to grasp the object and move it to the home position 

before repeating the learning cycle. 

As a robotic platform, we use NICO (Kerzel et al., 2017), a child-sized humanoid devel-

oped by the Knowledge Technology group for research on neurobotic and cognitive 

learning models and on human-robot interaction. NICO is an open and highly customi-

zable platform. NICO's relevant functionalities for the experimental setup are its 6-DoF 

arms based on humanoid anatomy and range of motion. NICO has three-fingered hands 

that are robust and reliable. NICO's arm is articulated with Dynamixel servomotors. As 

the presented experiments only use the upper body functionality, the experiments are
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Figure 3.13: The image obtained from the top-mounted camera in the NICO experi-

mental setup. 

carried out on the torso version of NICO that is placed in a fixed position as if seated at a 

table, as shown in Figure 3.12. Though NICO has two integrated cameras in its head and 

can view its workspace on the table with its articulated head, an external camera was 

used to mimic the position of the virtual camera from the experiment with simulated 

NICO to ensure comparability and transferability.  

Our physical experimental setup follows the approach by (Kerzel and Wermter, 2017) 

in which a robot is able to manipulate its environment with simple, non-learned motor 

actions to provide suitable learning input. To learn to grasp, the robot executes a self-

learning cycle depicted in Figure 3.12. Initially, NICO moves the hand to its start posi-

tion and the grasp-learning object is put into NICO’s hand (a), NICO then grasps the ob-

ject and moves it to a random position on the table by using only its shoulder joint (b). 

The joint position is recorded and the object is released, the now empty hand moves 

back to the home position (c). So far, we have utilized basic robotic motor abilities, now 

the learning phase begins: The top-mounted camera provides an image to the learning 

algorithm (see Figure 3.13), and the output of the actor’s neural network is set as the 

next angular change of the shoulder joint. As a result, NICO moves its hand towards the 

grasp-learning object (d-f). As the maximum change in the joint angle is limited, mostly 

several steps are needed until NICO's hand reaches the object. Once the deep RL algo-

rithm recognizes that the hand has reached the grasp-learning object based on the dis-

tance between the current and target positions of the shoulder joint, a command to close 

the hand is generated (g). In the case of a successful grasp, the hand and the held object 

are moved back to the home position (h) and the learning cycle is repeated. If a maxi-

mum number of 50 steps is reached, the hand is opened and the shoulder is moved to the 
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recorded joint position to grasp the object which is then moved to the home position (a). 

We limit the joints’ speed so that we do not have cases where the object is pushed away 

from NICO’s hand or toppled over. In case the object is pushed, it stays inside NICO's 

open hand, which is then closed on the object, once the motion is finished, and moved to 

the home position (a). The advantage of this self-learning cycle is the complete inde-

pendence of external assistance. Basic robotic motion and recording abilities are used to 

provide learning instances by placing the object at a random position as well as resetting 

the experiment in the cases where the learned grasp is not successful. 

With regard to the learning algorithm, the experiment uses the same parameters as in 

the virtual environment. The algorithm was trained for 4K episodes with a maximum of 

50 actions per episode. A full training of the deep RL approach was conducted without 

human supervision for over 50 hours, during which about 15K samples were collected. 

During the self-learning cycle, the grasp-learning object is placed in a random graspable 

position within the same range of possible positions. 32×64 pixel RGB images from a 

top-mounted camera are used as visual input. We use the following reward function: 

𝑟𝑡
𝑒𝑥𝑡  =   {

   +10                    𝑖𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙,           
       −10                     𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑖𝑠 𝑝𝑢𝑠ℎ𝑒𝑑,   

      −‖𝑝𝑡 − 𝑝𝑐‖                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                              
 

where 𝑝𝑡 and 𝑝𝑐 are the target and current positions of the shoulder joint respectively. 

We define a successful grasp as having a distance in the joint space of less than 1.7 de-

grees. All hyperparameters for the learning algorithms remain unchanged from the ex-

periment presented on the simulated NICO. The results of the learning are presented in 

Figure 3.14. Compared to the training in simulation, the training on the physical robot 

shows a very similar learning curve. After 4K learning episodes, the Deep ICAC on the 

physical NICO is able to reliably grasp objects with 76% grasp accuracy (see Table 3.4). 

Time Complexity 

One main computational difference between DDPG and our proposed algorithms is the 

cost of the minibatch gradient descent step during experience replay. While all the algo-

rithms have relatively similar cost for updating the critic network, they have significantly 

different cost for updating the actor network. DDPG performs a product between the 

1𝑠𝑎 vector 𝛻𝑎𝑄(𝑠, 𝑎|𝜃
𝑄) and the 𝑠𝑎𝑠𝑤 Jacobian matrix 𝛻𝜃𝜇𝜇(𝑠|𝜃

𝜇) n times, where 𝑠𝑎 

is the action dimension, 𝑠𝑤 is the number of the actor network’s weights and n is the 



Chapter 3. Intrinsically Motivated Actor-Critic with Efficient State Representations 

52 

 

Figure 3.14: Learning curves of Deep ICAC for the vision-based learning-to-grasp task 

on the simulated and physical NICO robot. 

Table 3.4: Test results of running Deep ICAC using the networks trained on the physical 

NICO. 

 No. of Trials No. of Success Success Rate 

Deep ICAC on physical NICO 25 19 0.760 

minibatch size (see Equation 1.8). This gives a complexity of  𝑂(𝑛 · 𝑠𝑎 · 𝑠𝑤) . Deep 

CACLA and Deep ICAC, on the other hand, backpropagate the gradients of the loss in 

Equation 3.9 computed at the actor’s output layer to preceding layers with a complexity 

of 𝑂(𝑛∑ 𝑠𝑙
𝐿
𝑙=1 𝑠𝑙−1) =  𝑂(𝑛 · 𝑠𝑤), where L is the number of layers, 𝑠𝑙 is the layer size 

and the input is the feature vector 
𝑠
. Since 𝑠𝑤 36𝑀 in DDPG but 𝑠𝑤 400 for our ac-

tor (see Table 3.2), this means our actor is updated roughly 250K times faster than in 

DDPG when 𝑠𝑎 = 3 (even more if 𝑠𝑎 >3), benefiting from the small 2-layer architecture 

trained on the low-dimensional 
𝑠
. The overall cost of the minibatch update is linear in 

the minibatch size and in the number of networks’ parameters. 

It should be noted that Deep ICAC has an additional cost for updating the ITM net-

work each time a transition is observed. This involves the matching step that scales with 

the number of nodes and the edge adaptation step that scales with the average number of 

neighboring nodes. All other operations are independent of the number of nodes. The 

cost of updating the predictive model of the best-matching node is 𝑂(∑ 𝑠𝑙
𝐿
𝑙=1 𝑠𝑙−1), 
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which is the cost of a backpropagation pass on the 2-layer network and equals 640 per 

transition in our settings. This added complexity is minimal when the average size of the 

ITM network is small (5 ITM nodes in our experiments). Consequently, the data effi-

ciency of Deep ICAC does not come at the expense of a greater computational com-

plexity, and this is especially evident in the results of learning grasp policies in real time 

on the physical robot with Deep ICAC. 

Discussion 

The obtained results can be summarized as follows: First, Deep CACLA is significantly 

more stable and learns continuous control policies with high returns faster than DDPG. 

Second, Deep ICAC is inherently more sample-efficient than both Deep CACLA and 

DDPG and its superior performance is particularly pronounced in the challenging sparse 

reward setting. Third, DDPG suffers from poor sample efficiency as well as learning in-

stability, diverging from a good target policy multiple times. 

The observed difference in performance between Deep CACLA and DDPG mainly 

stems from the policy update mechanism and the learned state representation. While 

DDPG updates the policy by gradient ascent on the currently learned action-value func-

tion that is initially not well trained, Deep CACLA updates the policy towards the recent 

action only when an actual increase in the predicted value is observed. This conservative 

update results in more stable learning, preventing any significant divergence from the 

currently best-known policy, as shown in the results. The jointly optimized state repre-

sentation of Deep CACLA, which is used as an input to the actor, leads to fast learning 

of better control policies by providing state-discriminative and value-predictive features 

that are low-dimensional and more accurately recognize states with high expected val-

ues. It is clear from the results that both DDPG and, to a lesser extent, Deep CACLA 

have a slow convergence to a good policy and thus require more training samples. This 

is largely due to the exploration policy employed which is undirected and leads to more 

training time spent in parts of the sensory space that are more frequently explored than 

others. Deep ICAC, on the other hand, provides directed exploration through its learning 

progress-based intrinsic reward. The intrinsic reward in Deep ICAC prevents spending 

additional training time in well-explored regions of the sensory space and is more robust 

to noise and task-irrelevant stochasticity in the environment. This guarantees efficient 

exploration and fast convergence to near-optimal policies, which is evident in the ob-

tained results. 
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In the experiments with sparse reward environments, the robot lacks frequent feed-

back signals important for improving the learned policy, rendering the task more diffi-

cult. Therefore, Deep CACLA and DDPG exhibit slower learning performance in such 

environments than in the environments with dense rewards. Deep CACLA overcomes 

this difficulty by combining the sparsely available extrinsic reward with its exploration-

oriented intrinsic reward, enabling the robot to continue to learn driven by the intrinsic 

motivation to improve its knowledge about the world. 

What distinguishes the learning architecture of Deep CACLA and Deep ICAC is the 

use of a convolutional autoencoder, rather than a standard Convolutional Neural Net-

work (CNN) commonly used when learning control policies from raw images. A stand-

ard CNN requires either standard deep RL with reward-based losses, which is unrealistic 

given the sparse feedback, or supervised learning with labeled pairs of states and their 

optimal actions. Conversely, the convolutional autoencoder can be trained unsupervised 

from the available images with a rich error signal, allowing seamless integration of un-

supervised and RL training objectives, as detailed in Section 3.3.1. 

Our approach learns action policies purely end-to-end without any prior knowledge or 

assumptions about the geometry of the robot, its environment, or the appearance of the 

target object in all the conducted experiments. Also, no knowledge of the kinematics of 

the robot and the pose of the target object is assumed. Our intrinsic reward module is 

general enough to be potentially used in a variety of RL methods, including value-based 

methods and policy gradient methods (deterministic, e.g., DDPG or stochastic, e.g., A3C 

(Mnih et al., 2016)). Our experiments show that the Deep ICAC algorithm enables the 

physical robot to successfully learn a visuomotor skill without human assistance during 

the self-learning phase. The learned skill is limited to two degrees of freedom, but this 

limitation is in line with the developmental robotics paradigm of learning increasingly 

complex skills, which is also found in other areas of artificial neural learning (Elman, 

1993). Based on the acquired skill, more complex skills can follow as each learned abil-

ity adds to the toolbox of abilities that can be used in the next learning setups. 

3.4     Conclusion 

In this chapter, we proposed two neural architectures for learning efficient and task-

relevant state representations from high-dimensional observations. First, we presented 
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the SFA-based ICAC algorithm for learning visuomotor control policies using an intrin-

sic reward based on the spatially and temporally local learning progress and using state 

representations learned unsupervised with a hierarchical SFA network. The slow features 

learned with our SFA network provide a low-dimensional representation that encodes 

the important invariances in the raw observation. The results show that our SFA-based 

ICAC can achieve better performance than the actor-critic baseline and converge to a 

near-optimal control policy in a relatively small number of training episodes in dense 

and sparse reward environments. We then presented the Deep ICAC algorithm that uses 

state representations learned with our proposed jointly trained deep neural architecture. 

The architecture is composed of a convolutional autoencoder, actor and critic networks. 

The hidden representation at the bottleneck layer of the autoencoder is trained to mini-

mize the unsupervised reconstruction loss of the autoencoder and the supervised value 

prediction loss of the critic, and therefore, it captures the information necessary to recon-

struct the original input and recognize states that lead to high rewards. The actor network 

takes this jointly optimized low-dimensional representation as a direct input, which ena-

bles faster learning of the target policy. The algorithm trains local world models in the 

space of the learned state representations and uses their predictions in computing the 

learning progress-based intrinsic reward for directed exploration. We evaluated the Deep 

ICAC algorithm on learning robot reaching and grasping skills from raw pixels in simu-

lation and in the real world. The results show that Deep ICAC outperforms the state-of-

the-art and baseline algorithms in terms of learning speed and final performance in both 

dense and sparse reward environments. The real-world experiment demonstrates that 

Deep ICAC can effectively be used for vision-based control learning on a physical robot 

without pretrained policies. 
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Chapter 4  
 

Adaptive Arbitration between Model-

based and Model-free Control 

4.1     Introduction 

Recent success in deep RL for continuous control has been dominated by model-free ap-

proaches which, unlike model-based approaches, do not suffer from representational 

limitations, when the model representation imperfectly captures the environment dynam-

ics, and model errors inevitable in complex domains. However, they require lots of expe-

rience compared to model-based approaches that are typically sample-efficient. Combin-

ing model-free and model-based learning systems, therefore, allows learning complex 

control policies while also improving the sample efficiency. It is also consistent with a 

large body of behavioral and neural evidence showing that model-free and model-based 

learning systems both have an active role in human motor learning (Haith and Krakauer, 

2013; Lee et al., 2014). 

However, dual-system approaches fail to consider the reliability of the learned model 

when it is applied to make multiple-step predictions, resulting in a compounding of pre-

diction errors and performance degradation. In an effort to reduce the effect of the com-

pounding prediction error of the learned model during planning, the work of (Talvitie, 

2017) proposes a model-based RL algorithm where the model is trained via hallucinated 
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replay to predict the next world state, given its own predictions as input, continually cor-

recting itself. The algorithm has a theoretical guarantee on the error bound of the value 

of the target policy, but is limited to deterministic environments. More recent work has 

shown that forcing the latent variables to predict the long-term future using an auxiliary 

cost during model training makes planning in the latent space involve less prediction er-

rors (Ke et al., 2019). 

In this chapter, we will discuss in more detail dual-system motor learning and how it 

is applied to continuous control. We will then introduce the Curious Meta-Controller 

(CMC) approach that integrates the two learning systems in an adaptive, reliable and 

sample-efficient manner. CMC adaptively arbitrates between model-based planning and 

model-free RL. The arbitration is controlled online via a curiosity signal based on the 

learning progress of an evolving dynamics model. In contrast to previous dual-system 

approaches, our approach takes the reliability of the learned model into account before 

using it for planning. CMC can be combined with any off-policy RL algorithm with min-

imal changes and is in line with findings from neuroscience on the dual-system approach 

to human decision-making. We will evaluate popular deep continuous-action RL algo-

rithms with and without CMC and show that CMC improves the sample efficiency and 

achieves better performance. 

4.2     Dual-System Motor Learning 

Motor behavior can be divided into habitual behavior obtained by model-free learning 

and goal-directed behavior obtained by model-based learning (Daw et al., 2005). Several 

hypotheses were proposed to explain how the human brain arbitrates between model-

based and model-free learning systems. For instance, Cushman and Morris (2015) argue 

that when performing a sequential decision-making task, humans use the model-free sys-

tem to habitually select goals and then the model-based system to generate a plan to 

achieve a selected goal. Another study proposes a contrasting hypothesis called “plan-

until-habit”, in which planning is first performed by simulating the world up to a certain 

depth that decreases with increased time pressure and then model-free action values are 

exploited (Keramati et al., 2016). While this study attributes the change in behavior be-

tween model-based and model-free control to the availability of cognitive resources, par-

ticularly time, other studies have found that the behavior instead changes according to 
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the expected reward regardless of resource availability (Kool et al., 2018; Boureau et al., 

2015). Kool et al. (2018) support the latter by providing behavioral evidence that people 

with a perfect transition model of the task and an extended response deadline exerted 

less model-based control when its expected reward advantage was lower than the cogni-

tive cost involved. This finding was interpreted by suggesting that the brain estimates the 

value of using each control system but reduces that of the model-based system in propor-

tion to its increased cognitive cost. Similarly, Boureau et al. (2015) state that meta-

decisions including arbitration between model-based and model-free control are gov-

erned by a cost-benefit trade-off in which the brain constantly generates rough estimates 

of the costs and benefits of allocating cognitive resources for model-based control. The 

average reward rate, which is the reward expected for temporally allocating a particular 

resource, and the controllability, which measures how advantageous a carefully consid-

ered decision is over a fast habitual one in terms of rewards collected, are proposed as 

estimates for the opportunity cost and benefit respectively. The willingness to exert 

model-based control thus increases proportionally to how much larger the reward ob-

tained by controllability is compared to the average reward rate. The authors note, how-

ever, that modifying these estimates by including other decision variables like the uncer-

tainty about action outcomes might account for meta-decisions in specific behavioral 

contexts like exploration.  

Haith and Krakauer (2013) review the behavioral evidence for the existence of each 

of the model-based and model-free mechanisms of motor learning in humans and argue 

that both are employed in parallel by the motor system for movement control. They point 

out that while the two learning systems generate their own estimate of the value of a giv-

en action at a given state, the decision which action to take is made primarily based on 

the reliability of each of these two estimates. Imperfect predictions of an internal for-

ward model limit the reliability of model-based learning and, hence, in the later stages of 

learning, after extensive experience, model-free learning becomes more reliable, as the 

authors indicate. Another study provides neural evidence that the human brain encodes 

the reliability of model-based and model-free learning systems based on their prediction 

errors in the lateral prefrontal and frontopolar cortex and uses the reliability signals to 

dynamically arbitrate behavioral control between the two systems (Lee et al., 2014). The 

arbitration model the study proposes combines model-based and model-free value sig-

nals, weighted by the degree of reliability of each system, and uses this integrated value 
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signal for guiding behavior. To account for the cognitive complexity involved, the arbi-

trator incorporates a bias toward the less cognitively demanding model-free control. The 

arbitration between different learning systems was also found to drive human strategy 

selection where the goal is to learn when to use which strategy (Lieder and Griffiths, 

2015). The proposed context-sensitive strategy selection approach, which assumes a 

mental model predicting each strategy's accuracy and execution time from features of the 

current situation, was found to better explain how people adaptively choose strategies 

than previous accounts. However, it is based on choosing the strategy with the best pre-

dicted speed-accuracy trade-off rather than choosing the most reliable strategy. 

In contrast to previous works suggesting strict neural and behavioral division between 

model-based and model-free learning systems, Russek et al. (2017) propose a computa-

tional framework where the two systems are tightly coupled, motivated by evidence sup-

porting a role for dopamine in model-based learning besides its well-established role in 

model-free learning. In the framework, action values are estimated by applying model-

free temporal difference (TD) learning to successor representations (SR), which are the 

expected future state occupancies. This was found to explain the involvement of dopa-

mine in model-based learning, since the TD error is a reward prediction error thought to 

be mediated by phasic dopamine and SR is a predictive representation capturing 

knowledge of the transition model. Although the presented framework gives a neurally 

plausible computational account of the interaction between the two learning systems, it 

does not answer the question of how the brain prioritizes computations and arbitrates 

control between learning systems, as concluded by the authors. 

While these studies provide strong evidence for the dual-system approach to human 

motor learning that is distinguishable neurally and behaviorally and can be used in robot 

motor learning, they almost always assume a perfect internal model of the task. To relax 

this assumption, an intrinsic measure of the reliability in model predictions needs to be 

incorporated into the behavioral control system. This is most likely to guide the behavior 

to improve the learned model and eventually lead to better task performance. 

4.3     Dual-System Deep RL for Continuous Control 

Deep RL approaches are broadly classified into model-based and model-free ones. Mod-

el-based approaches facilitate transfer of learning across tasks, since a model learned in 
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the context of a task can be directly used to compute an appropriate control policy for a 

new task. They are also typically sample-efficient in that they allow for generating syn-

thetic experiences by making predictions about the future. On the other hand, model-free 

approaches are free from representational limitations that would prevent the convergence 

to a desired behavior if the model representation is insufficient to perfectly capture the 

environment dynamics. However, they require a lot of experience and hence have high 

sample complexity. This has motivated several works to address the problem of how to 

combine the benefits of model-based and model-free methods. 

Initializing the neural network policy of a model-free learner using rollouts of a mod-

el-based controller followed by model-free fine-tuning of the policy was found to lead to 

a higher sample efficiency compared to pure model-free learning with random policy 

initialization (Nagabandi et al., 2018). The model-based controller used is based on ran-

dom-sampling where several randomly generated action sequences are fed to the model 

and then the sequence with the highest expected reward is chosen. This limits the effec-

tivity of the approach to low-dimensional action spaces and short horizons. In a different 

work, Feinberg et al. (2018) decompose action-value estimation into two parts: one con-

tains the sum of future rewards predicted by a learned model over a limited horizon and 

one contains the cached model-free estimate of the long-term reward computed at the 

end of the horizon. While the method is shown to boost the sample efficiency, it assumes 

perfect model predictions for a fixed horizon, which is a strong assumption, because, in 

practice, the model generates noisy data early in learning, and a measure of model relia-

bility is therefore needed. 

Other works used information about the future provided by a trained world model as 

input to the model-free learner to improve its decisions (Racanière et al., 2017; Ha and 

Schmidhuber, 2018). In (Racanière et al., 2017), imagined trajectories generated by a 

model are processed by a recurrent neural network that outputs a rollout encoding for 

each trajectory. The encodings are concatenated and used as additional context for the 

model-free learner’s value and policy networks. Rather than training a feedforward mod-

el, Ha and Schmidhuber (2018) train a recurrent world model on random environment 

rollouts and use the hidden state of the trained model along with a learned abstract state 

representation as input to a model-free controller. The proposed approach achieves state-

of-the-art performance on an image-based car racing task. However, these works employ 

pretrained world models and abstract representations with the risk of encoding task-
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irrelevant features. Instead, Francois-Lavet et al. (2019) propose training the world mod-

el and an abstract state representation that minimizes both model-free and model-based 

losses during task learning. The abstract state is the input to both the model-free Q-

network predicting action values and the world model predicting the next states and re-

wards. Planning is done by performing one fixed-depth rollout of the model for each 

possible action at the current state and then taking the first action of the rollout with the 

highest overall estimated value. The approach has two major drawbacks: first, the com-

plexity of planning, which is performed at each time step, grows exponentially with the 

number of possible actions; second, if the model is inaccurate, as is the case in complex 

domains, a large fixed planning depth leads to a compounding of prediction errors that 

eventually impairs task performance. 

Learning a state representation and a dynamics model that make gradient-based plan-

ning generate actions that mimic expert demonstrations has been found to yield success-

ful action plans (Srinivas et al., 2018). The distance in the learned representation space 

between the predicted terminal state and the goal state is shown to provide a useful re-

ward for model-free RL in tasks with image-based goals. The approach however requires 

expert demonstrations to be available during training. In (Fard and Trappenberg, 2018), 

a control architecture is proposed that includes an arbitrator used to switch between ha-

bitual and planning systems by choosing between an action predicted by an actor of a 

model-free actor-critic system and that predicted by an inverse dynamics model. The ar-

bitration is managed by the reward prediction error and favors the actor's prediction if 

the error at the previous time step is below a predefined threshold. The approach does 

not address model imperfection and is applied to a significantly low-dimensional state 

space. As opposed to explicitly learning a dynamics model, Pong et al. (2018) propose a 

type of goal-conditioned value function called Temporal Difference Model (TDM) that 

implicitly learns a dynamics model and uses it for optimal control. In their approach, 

transitions collected off-policy are sampled from a replay buffer and relabeled with new, 

randomly sampled goal states and time horizons which the TDM uses as input along 

with the state-action pair. The TDM is learned model-free and updated to be the negative 

distance between the newly visited and goal states if the horizon is zero or, otherwise, 

the TDM value after decrementing the horizon and advancing the state. The information 

the TDM provides on the closeness to the goal after a given number of actions makes it 

resemble a model. Despite achieving high sample efficiency by relabeling collected tran-
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sitions with several goals and horizons, the approach is not applicable to domains where 

the goal representation is embedded in a raw-pixel observation and thus cannot be given 

as a separate input channel. 

4.4     Curious Meta-Controller 

In this section, we present our Curious Meta-Controller (CMC) approach for adaptive 

arbitration between model-free and model-based control. CMC consists of model-free 

and model-based control systems and a meta-controller deciding on which of the two 

systems to query for an action at each time step. We first discuss in more detail each of 

the two systems and then show how the reliability in model predictions is used to adap-

tively guide meta-decisions and provide an intrinsic reward to improve the model. Our 

objective is to train a policy neural network representing the desired control behavior 

more efficiently than when following a pure model-based or model-free approach. 

4.4.1     Model-free Control with Off-policy Actor-Critic  

To train a model-free controller from experience, we consider actor-critic methods which 

are well suited for continuous control by learning simultaneously a value function and a 

policy function (Section 1.2.1). We are particularly interested in off-policy actor-critic 

methods, since they allow for learning from actions coming from different systems, such 

as a model-based controller. Deep Deterministic Policy Gradient (DDPG) (Lillicrap et 

al., 2016) is a state-of-the-art off-policy actor-critic method that we use in our approach 

along with an off-policy variant of Continuous Actor-Critic Learning Automaton 

(CACLA) (Van Hasselt, 2012). 

Our actor-critic architecture is shown in Figure 4.1. The architecture consists of a 

jointly trained critic-autoencoder network (Figure 4.1(a)) and an actor network (Figure 

4.1(b)). The latent state representation 
𝑠
, which is the output of the convolutional en-

coder 𝑓(𝑠|𝜔), is learned to be state discriminator and value predictor by jointly optimiz-

ing the combined reconstruction and value prediction loss: 

ℒ𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝜔, 𝜃
𝑄 , 𝜔̃)  =  ⲗ𝑟𝑒𝑐ℒ𝑟𝑒𝑐(𝜔̃, 𝜔) + ⲗ𝑄ℒ𝑄(𝜃

𝑄 , 𝜔),                   (4.1) 

where ℒ𝑟𝑒𝑐(𝜔̃, 𝜔) = ‖𝑔 (
𝑠𝑡
|𝜔̃) − 𝑠𝑡‖

2

2

 is the reconstruction loss between the decoder’s 

output 𝑔(
𝑠𝑡
|𝜔̃) and the original input 𝑠𝑡, ℒ𝑄(𝜃

𝑄, 𝜔) = (𝑦𝑡 −𝑄(𝑠𝑡 , 𝑎𝑡|𝜔, 𝜃
𝑄))

2
 is the value
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Figure 4.1: Model-free control system: (a) Critic-autoencoder network consisting of a 

fully convolutional encoder 𝑓𝜔 that takes in a raw image 𝑠𝑡, a fully convolutional decod-

er 𝑔𝜔̃ that computes a reconstruction 𝑠̂𝑡, and a critic 𝑄 that estimates the Q-value given 

𝑠𝑡 and 𝑎𝑡; (b) Actor network taking in the latent state representation 
𝑠𝑡

, which is jointly 

trained to minimize the reconstruction and value prediction losses, and generating a con-

trol action 𝜇(
𝑠𝑡
) with a dimensionality of dim(A), where A is the action space. 

prediction loss between the expected value 𝑄(𝑠𝑡 , 𝑎𝑡|𝜔, 𝜃
𝑄) and the target value 𝑦𝑡 = 𝑟𝑡 +

 𝑄′ (𝑠𝑡+1, 𝜇′ (𝑠𝑡+1
|𝜃𝜇′) |𝜔′, 𝜃𝑄′), 𝑄′(·,· |𝜔′, 𝜃𝑄′) and 𝜇′(· |𝜃𝜇′) are the target critic and ac-

tor networks respectively, and ⲗ𝑟𝑒𝑐 and ⲗ𝑄 are weighting coefficients on the individual 

loss components. This jointly learned latent representation captures task-relevant infor-

mation sufficient to reconstruct the original input and recognize rewarding states and is 

therefore used as a direct input to the actor network, as shown in Figure 4.1(b). The actor 

is trained according to the chosen actor-critic algorithm. DDPG updates the actor param-

eters by minibatch gradient ascent on the Q-function:        

(4.2) 

 

where 𝑛 is the minibatch size and 𝛽 is the gradient step size (0 < 𝛽 ≤ 1), whereas off-

policy CACLA updates the actor only when the advantage 𝛿 of taking an action 𝑎 is posi-

tive by gradient ascent on the loss 𝔼(𝑠,𝑎,𝑟,𝑠′)~𝐵,𝛿>0 [(𝑎 − 𝜇(𝑠|𝜃
𝜇))

2

]: 

𝜃𝑡+1
𝜇

← 𝜃𝑡
𝜇
+ 𝛽𝛻𝜃𝑡

𝜇  𝔼(𝑠,𝑎,𝑟,𝑠′)~𝐵,𝛿>0 [(𝑎 − 𝜇(𝑠|𝜃𝑡
𝜇
))
2

] ,                       (4.3) 

where (𝑠, 𝑎, 𝑟, 𝑠′) are experience tuples sampled from a replay buffer B and 𝛿 = 𝑟 +

 𝛾𝑄′(𝑠′, 𝜇(𝑠′|𝜃𝜇′)|𝜃𝑄′) − 𝑄(𝑠, 𝜇(𝑠|𝜃𝜇)|𝜃𝑄)  is the action advantage, representing how 

better the observed value of taking 𝑎 is than the expected value 𝑄(𝑠, 𝜇(𝑠|𝜃𝜇)|𝜃𝑄). This 

moves the actor’s output towards an action 𝑎 that has a positive advantage. 

𝜃𝑡+1
𝜇

← 𝜃𝑡
𝜇
+
𝛽

𝑛
∑ ∇𝑎𝑄(𝑠, 𝑎|𝜃

𝑄)|𝑠= 𝑠𝑖,𝑎=𝜇(𝑠𝑖) 
𝑖

∇𝜃𝜇𝜇(𝑠|𝜃𝑡
𝜇
)|𝑠=𝑠𝑖 , 
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4.4.2     Model-based Control with MPC 

In our proposed approach, a predictive model of the world dynamics is learned simulta-

neously with the task. Instead of learning the model at pixel-level, which is noise sensi-

tive and infeasible in practice, the model is learned in the space of jointly trained latent 

representations (Figure 4.1(a)). This also ensures that the model is learned on task-

relevant latent representations, as opposed to representations learned only to minimize the 

pixel-level reconstruction error of an autoencoder, which includes no information on what 

features are useful for the task. The latent-space world model predicts the next latent state 

representation and extrinsic reward given the current representation and action and is 

trained to minimize the loss: 

ℒ𝑚𝑜𝑑𝑒𝑙(𝜃
ℳ , 𝜃ℛ)  = ‖ℳ (

𝑠𝑡
, 𝑎𝑡|𝜃

ℳ) − 
𝑠𝑡+1

‖
2

2
+ ‖ℛ (𝑠𝑡

, 𝑎𝑡|𝜃
ℛ) − 𝑟𝑡

𝑒𝑥𝑡‖
2

2
,       (4.4) 

where 𝑟𝑡
𝑒𝑥𝑡 is the extrinsic reward, ℳ(·,· |𝜃ℳ) and ℛ(·,· |𝜃ℛ) are two feedforward neu-

ral networks for predicting the next latent state representation and immediate extrinsic 

reward respectively (the two loss components are normalized to [0,1]). 

To perform planning with a learned latent-space world model, we use model predic-

tive control (MPC). In MPC, the model is rolled out multiple time steps into the future, 

starting from an initial state and provided with an action sequence. An objective function 

is measured at each time step, and then by backpropagation through time and gradient 

descent, an action sequence that optimizes the objective is computed. Only the first ac-

tion of the optimal action sequence is applied, and the process is repeated at the next 

time step with the updated state information in closed loop. In our approach, the initial 

action sequence is provided by the model-free RL actor (Section 4.4.1) at the initial and 

subsequent model-generated latent states and is optimized with MPC over a time horizon 

H by minimizing the loss: 

(4.5) 

 

where 𝑟̂ℎ = ℛ (̂𝑠ℎ
, 𝑎̂ℎ|𝜃

ℛ)  is the predicted reward at time step h, ̂
𝑠ℎ
=

ℳ(̂
𝑠ℎ−1

, 𝑎̂ℎ−1|𝜃
ℳ) is the latent state predicted by ℳ , 𝑎̂ℎ = 𝜇 (̂

𝑠ℎ
|𝜃𝜇) is the actor’s 

output, and 𝑅∗ is the desired return. We perform K gradient descent steps on ℒ𝑝𝑙𝑎𝑛 (Equa-

tion 4.5) with respect to each individual action in the initial plan: 
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Figure 4.2: Model-based control system: After observing the latent state 
𝑠𝑡

, the world is 

simulated H time steps into the future using the learned world model and an initial action 

sequence 𝑎̂𝑡:𝑡+𝐻−1
(0)

 proposed by the RL actor, resulting in a sequence of model-generated 

latent states ̂
𝑠𝑡+1:𝑡+𝐻−1

and rewards 𝑟̂𝑡:𝑡+𝐻−1 . The objective ℒ𝑝𝑙𝑎𝑛(𝑎̂) is then measured 

and optimized by performing backpropagation and K steps of gradient descent. The first 

action of the optimal plan 𝑎̂0
(𝑘−1)

 is applied to the environment and the optimization pro-

cess is repeated at the next time step. 

where 𝛼𝑝𝑙𝑎𝑛 is the learning rate for plan optimization. This results in an optimal plan 

𝑎̂(𝐾−1) whose first action only is executed in the environment. Figure 4.2 shows one iter-

ation of this optimization process in which an action plan that optimizes the objective 

ℒ𝑝𝑙𝑎𝑛(𝑎̂) given the model is inferred. 

4.4.3     Meta-Decision Making  

During task learning, we maintain a moving window average of the prediction error of 

the latent-space dynamics model: 

(4.7) 

 

where 𝜎 is a time window and 𝑒𝑖
𝑝𝑟𝑑

 is the model prediction error at time step i. We also 

monitor the performance improvement in prediction over time by continually measuring 

the model learning progress: 

𝐿𝑃𝑡 = 〈𝑒𝑡−𝒲
𝑝𝑟𝑑 〉 − 〈𝑒𝑡

𝑝𝑟𝑑〉                                                (4.8) 

where 𝒲 is a time window. The learning progress is used to derive an intrinsic reward 

𝑟𝑡
𝑖𝑛𝑡 = − 𝐿𝑃𝑡, which represents the agent’s curiosity to improve its knowledge of the 
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world, encouraging actions that yield data that improves the model. This is achieved by 

combining the extrinsic and intrinsic rewards: 

𝑟𝑡 = 𝑟𝑡
𝑒𝑥𝑡 + 

𝑟𝑡
𝑖𝑛𝑡

1+ 𝐷·𝑡
                                                        (4.9) 

where 𝑟𝑡
𝑒𝑥𝑡 is the extrinsic reward and 𝐷 > 0 is a decay constant used for annealing the 

intrinsic reward magnitude over time, since the uncertainty in the world dynamics is re-

duced with exploration. The combined reward 𝑟𝑡 is then used to update the critic. The 

learning progress is also used as an unbiased reliability estimator that underlies meta-

decisions. 

At each time step of the learning process, a standard model-free off-policy actor-critic 

method suggests an exploratory action that arbitrarily deviates from the actor’s output in 

the hope to find and learn better actions. Similarly, a model-based planning method finds 

an optimal action plan by simulating the world using a predictive model with the risk of 

employing highly imperfect predictions. CMC presents an integrated more efficient ex-

ploration method that adaptively decides which of the model-free and model-based con-

trol systems to query at each time step. This meta-decision is based on the learning pro-

gress of a latent dynamics model. If the learning progress at the previous time step 𝐿𝑃𝑡−1 

is positive, which indicates high prediction reliability, CMC queries the model-based 

control system for an optimal action (using an initial action sequence suggested by the 

model-free RL actor), providing a promising alternative to any arbitrary action. Other-

wise, a negative learning progress indicates low prediction reliability which increases the 

level of curiosity of the agent, motivating the selection of actions that improve the mod-

el. Since this curiosity is represented by the intrinsic reward used in combination with 

the extrinsic reward to train the critic of the model-free system, CMC queries the model-

free system’s actor for an optimal action. This action helps improve the learned model so 

that future planning with the model will become more accurate.  

In our approach, both the model-based and the model-free control systems are mutu-

ally improving, since the model-free system provides the model-based system with a 

good initial action sequence and the model-based system provides the model-free system 

with a more informed exploratory action. Figure 4.3 shows CMC with its two mutually 

improving components interacting with the world. The learning algorithm is summarized 

in Algorithm 3. 
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Figure 4.3: Curious Meta-Controller (CMC): At each time step t, CMC uses the adaptive 

learning progress 𝐿𝑃𝑡−1 to decide which controller to query for an action. If 𝐿𝑃𝑡−1 is 

positive, CMC queries the model-based control system which then performs planning in 

the learned latent space. After K optimization iterations performed on an initial action 

sequence from the model-free RL actor, the optimal plan’s first action 𝑎̂𝑡
(𝐾−1)

 is applied 

to the environment with exploration noise. If 𝐿𝑃𝑡−1 is negative, CMC queries the actor 

neural network of the model-free control system for its estimate of the optimal action 

𝜇 (
𝑠𝑡
|𝜃𝜇) which is then applied to the environment with exploration noise. 

4.5     Experiments 

We evaluate CMC when used with different off-policy actor-critic methods on learning 

continuous control tasks from raw pixels. In all experiments, we use the learning archi-

tecture shown in Figure 4.1, with the number and size of convolutional filters placed 

above the corresponding layers, for approximating the policy and Q-functions. All con-

volutional layers are zero-padded, have stride 1, and use ReLU activations. All dense 

layers use ReLU activations except for the actor’s and critic’s output layers that use a 

tanh and a linear activation respectively. The target networks’ update rate 𝜏 is 1e-3. The 

loss weighting constants ⲗ𝑟𝑒𝑐  and ⲗ𝑄  are set to 0.1 and 1 respectively. The dynamics 

model is a feedforward neural network with three dense layers: one hidden layer of 64 

tanh units and two output layers for predicting the next latent state and reward with 32
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Algorithm 3 Curious Meta-Controller (CMC) 

1: Input: Planning horizon H, no. of plan optimization iterations K, episode length T, 

            no. of episodes E, decay constant D  

2: Given: an off-policy actor-critic method 𝔸ℂ 

3: Initialize actor and critic-autoencoder network parameters {𝜔, 𝜔̃, 𝜃𝑄 , 𝜃𝜇, 𝜔′, 𝜃𝑄′, 𝜃𝜇′} 

4: Initialize model network parameters {𝜃ℳ , 𝜃ℛ} 

5: Initialize replay buffer B 

6: for  𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 to 𝐸 𝐝𝐨 

7:          Sample initial state 𝑠1 

8:       for 𝑡 = 1 to 𝑇 𝐝𝐨 

9:          Compute latent state encoding 
𝑠𝑡
=  𝑓(𝑠𝑡|𝜔) 

10:          if  𝐿𝑃𝑡−1 ≥  0 then 

11:             Query model-based control system with time horizon H (see Section 4.4.2) 

12:             𝑎𝑡 ← 𝑎̂𝑡
(𝐾−1)

: 𝑎̂𝑡
(𝐾−1)

 is the first action of the optimal plan 

13:          else  

14:             Query model-free control system (see Section 4.4.1) 

15:             𝑎𝑡 ← 𝜇 (
𝑠𝑡
|𝜃𝜇), where 𝜇 is 𝔸ℂ’s actor 

16:          end if 

17:          Add exploration noise 𝑎𝑡  ← 𝑎𝑡 +  𝒩(0, 1) 

18:          Execute 𝑎𝑡 and observe 𝑟𝑡
𝑒𝑥𝑡 and 𝑠𝑡+1 

19:          Compute learning progress 𝐿𝑃𝑡, following Equation 4.8 

20:            Compute intrinsic reward 𝑟𝑡
𝑖𝑛𝑡 = − 𝐿𝑃𝑡 

21:          Compute total reward, following Equation 4.9 

22:          Store (𝑠𝑡, 𝑠𝑡
, 𝑎𝑡, 𝑟𝑡, 𝑟𝑡

𝑒𝑥𝑡, 𝑠𝑡+1, 𝑠𝑡+1
) in B 

23:          Update {𝜃ℳ𝑛 , 𝜃ℛ𝑛} using (
𝑠𝑡
, 𝑎𝑡 , 𝑟𝑡

𝑒𝑥𝑡, 
𝑠𝑡+1

) to minimize ℒ𝑚𝑜𝑑𝑒𝑙 (Equation 4.4)  

24:          Update {𝜔, 𝜔̃, 𝜃𝑄} on minibatch from B to minimize ℒ𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑, (Equation 4.1) 

25:          Update 𝜃𝜇 on minibatch from B using 𝔸ℂ’s actor (see Equations 4.2 and 4.3) 

26:          Update target network parameters: 𝜃𝑄′ ← 𝜏 𝜃𝑄 + (1 − 𝜏)𝜃𝑄′,  

         𝜔′ ← 𝜏𝜔 + (1 − 𝜏)𝜔′,𝜃𝜇′ ← 𝜏 𝜃𝜇 + (1 − 𝜏)𝜃𝜇′, with 𝜏 ≪ 1 

27:       end for 

28:    end for 

and 1 linear units respectively. The discount factor 𝛾 and decay constant 𝐷 are set to 

0.99 and 0.1 respectively. The time windows 𝜎 and 𝒲 are set to 40 and 20 respectively. 

We scale the intrinsic reward to the interval [−1,1]. The planning horizon H and the 

number of plan optimization iterations K are set to 3 and 10 respectively. We train the 

networks using Adam optimizer (Kingma and Ba, 2014) with learning rate 1e-3 for the 

critic and the dynamics model and 1e-4 for the actor and a minibatch size of 256. We 

perform 15 optimization steps to update the critic and actor network parameters and 10 

steps for the model network parameters per time step. The replay buffer size is 100K.
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Figure 4.4: V-REP simulation environment for random target reaching. The vision sen-

sor’s output (upper-left) is fed as input to the learning algorithms. 

The actor’s output is multiplied by a maximum step of 20 units before being sent to the 

model-based control system or the environment. All hyperparameters were determined 

empirically through preliminary experiments. We compare the performance of DDPG 

and off-policy CACLA (hereafter referred to as just ‘CACLA’) with and without CMC 

on learning realistic robotic reaching and grasping tasks using V-REP robot simulator 

(Rohmer et al., 2013). We run the algorithms for 10K episodes and 50 steps per episode 

on a single Nvidia GTX 1050 Ti 4GB GPU. 

4.5.1     Vision-based Robotic Reaching 

We consider random target reaching using a 3-degree of freedom (DoF) robotic arm with 

a two-finger gripper and a red cylinder-shaped target object. The 3D robotic environ-

ment including the vision sensor’s output is shown in Figure 4.4. Real-time 84×84 pixel 

RGB images from a ceiling vision sensor are used as environment states. The angular 

range of movement of all arm joints is ± 
𝜋

2
. The radius of the target zone centered 

around the object is one-tenth of the arm’s total length and the zone area is approximate-

ly 2% of the total area reachable by the arm.  The reward function used in the dense re-

ward setting is: 

𝑟𝑡
𝑒𝑥𝑡  =   {

   +1                         𝑖𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙                        

   −‖𝑐𝑡 − 𝑐𝑔‖        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               
 

where ‖𝑐𝑡 − 𝑐𝑔‖ is the Euclidian distance between the centers of the target object 𝑐𝑡 

and the gripper 𝑐𝑔. In the sparse reward setting, the environment returns a reward of one 

when the target is reached and zero otherwise. In every episode, the position of the target 

object is initialized randomly within the reachable region. 
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Figure 4.5: Learning curves of DDPG and CACLA with and without CMC on random 

target reaching from pixel input in two reward settings: (a) dense reward and (b) sparse 

reward. 

Figure 4.5 shows the mean episode extrinsic reward of the algorithms over 5 random 

seeds. DDPG and CACLA converged to policies of an episode reward of about −10 and 

−4 respectively in the dense reward setting (Figure 4.5(a)), while their CMC-based 

counterparts converged to near-optimal policies, with CACLA+CMC reaching a reward 

peak in less than 4K training episodes. In the challenging sparse reward setting, DDPG 

showed unstable learning with no improvement in performance and CACLA reached a 

poor policy of an episode reward of below 0.5, as shown in Figure 4.5(b). Conversely, 

DDPG+CMC and CACLA+CMC showed a steady increase in the episode reward, con-

verging to 0.69 and 0.94 (i.e. >90% success rate) respectively. 

4.5.2     Vision-based Robotic Grasping 

In the second experiment, we evaluate the algorithms on vision-based robotic grasp-

ing. The need to perform multi-contact motions and to handle rigid-body collisions with 

a target object renders learning grasping skills more difficult than learning reaching 

skills. The grasping experiment here is conducted using our Neuro-Inspired COmpanion 

(NICO) robot (Kerzel et al., 2017). NICO is a child-sized humanoid developed at the 

Knowledge Technology institute, University of Hamburg, for research on cognitive neu-

rorobotics and on human-robot interaction. Figure 4.6(a) shows the V-REP simulated 

NICO in a sitting position in front of a table on top of which a red glass is placed and 

used as a target object for grasping. To prevent self-collisions while also providing a 

large workspace for learning grasping skills, we consider a control policy that involves 

the shoulder joint of the right arm and the finger joints of the right hand, as shown in

(a) (b)
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Figure 4.6: Vison-based grasp learning experiment: (a) V-REP simulation environment 

showing the NICO robot facing a table and a red glass as a grasping target, (b) the senso-

ry input, and (c) motor output (the axes of rotation of the controlled joints are depicted as 

yellow cylinders). 

Figure 4.6(b). NICO’s arm has a total of 6 DoFs of which we control one in the shoul-

der, that has an angular range of movement of ± 100 degrees. NICO’s hand is 11-DoF 

multi-fingered with 2 index fingers and a thumb, all of which have an angular range of 

movement of ± 160  degrees. The robot learns to control 2 DoFs: one for the right 

shoulder joint and one for the right hand (open/close). The learning algorithms take as 

input only the 64×32 pixel RGB images obtained from a vision sensor whose output is 

shown in Figure 4.6(c). The reward function used in the dense reward setting is as fol-

lows: 

𝑟𝑡
𝑒𝑥𝑡  =   {

   +1                    𝑖𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙           
     −1                    𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑖𝑠 𝑡𝑜𝑝𝑝𝑙𝑒𝑑 

−‖𝑐𝑡 − 𝑐ℎ‖             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

 

where 𝑐𝑡 and 𝑐ℎ are the centers of the target object and the hand respectively. To verify 

successful grasps, the shoulder joint is moved 20 degrees in the opposite direction to that 

of the last joint position with the hand closed and the distance ‖𝑐𝑡 − 𝑐ℎ‖ is measured. If 

the distance is below a threshold of 0.04 m, the last joint position update is considered 

successful. Otherwise, the hand is opened and the shoulder joint is moved back to its last 

position to complete the learning episode. In the sparse reward setting, the environment 

returns a zero reward for each action that does not result in the object being toppled or 

grasped. The target object’s position is randomly changed to a new graspable position at

(a)

(b)

(c)
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Figure 4.7: Learning curves of DDPG and CACLA with and without CMC on robotic 

grasping from pixel input in two reward settings: (a) dense reward and (b) sparse reward. 

the start of each learning episode. The episode ends when the target object is grasped, 

toppled, or the maximum episode length T is reached. 

The mean episode extrinsic reward of running the algorithms across 5 random seeds 

is shown in Figure 4.7. All the algorithms showed no considerable performance im-

provement over the first 2K episodes in the dense reward setting (Figure 4.7(a)). Only 

CACLA+CMC, however, was able to converge to a policy of mean episode reward of 

0.5 in less than 5K episodes, with the other algorithms converging more slowly. The ef-

fect of CMC was more evident in the results of the sparse reward setting (Figure 4.7(b)). 

CACLA+CMC showed a sharp increase in mean episode reward, reaching 0.81 (81% 

success rate) by the end of learning, while the figure of its CACLA counterpart remained 

below 0. Likewise, DDPG+CMC’s performance gradually improved to a policy of mean 

episode reward of 0.22, compared to its DDPG counterpart that was unable to improve 

its performance over the entire learning process. 

Figure 4.8 shows the average prediction error of the latent dynamics model over time, 

normalized to [0,1] and averaged over 5 random seeds in the sparse reward setting. As 

shown in the figure, the error norm of the model steadily decreased in both robotic 

reaching and grasping tasks. This shows how the curiosity feedback drives the robot to 

constantly collect experiences that improve its latent dynamics model and consequently 

improve the model-based controller’s output. The latent dynamics of the reaching envi-

ronment was learned easier than that of the grasping environment. This is due to a higher 

accuracy required in the grasping task, which in turn affects the learning speed of the 

reward prediction part of the model. 

(a) (b)
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Figure 4.8: The performance of the latent dynamics model of CMC in the sparse reward 

setting: (a) on the reaching task and (b) on the grasping task. 

We also evaluate the effect of using different values of the planning horizon H on 

learning performance. Figure 4.9 shows the mean episode extrinsic reward of 

CACLA+CMC on the grasping task with sparse rewards for different planning horizons, 

averaged over 5 random seeds. Going from a planning horizon of 1 to 3 steps signifi-

cantly improved the learned policy. For 4-step and 5-step horizons, the performance was 

already close to that of the 3-step horizon, but with a slight decrease, most likely due to 

the last model-generated states being outside the reliable sensory region over which the 

learning progress is computed. 

4.6     Conclusion 

We introduced Curious Meta-Controller (CMC), a novel curiosity-driven closed-loop 

controller that adaptively arbitrates between model-free and model-based control sys-

tems. The arbitration is determined by an adaptive curiosity signal based on the learning 

progress of a learned dynamics model in latent space. Unlike previous works, CMC con-

siders the reliability of the model when deciding which of the two control systems to 

query for an action at each time step and does not require a predefined threshold to arbi-

trate between them. We evaluated CMC on learning vision-based robotic reaching and 

grasping in dense and sparse reward environments. The results show that using CMC 

makes learning pixel-level control policies more sample efficient, particularly in tasks 

with sparse rewards. CMC can be combined with any off-policy actor-critic method, 

which we illustrated with DDPG and an off-policy variant of CACLA. 

(a) (b)
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Figure 4.9: Learning curves of CACLA+CMC on the grasping task with sparse rewards 

for different planning horizons. 
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Chapter 5  
 

Learning-Adaptive Imagination in 

Latent Space 

5.1     Introduction  

Combining model-based and model-free deep RL has shown great promise for improv-

ing sample efficiency on complex control tasks while still retaining high performance. 

Incorporating imagination is a recent effort in this direction inspired by human mental 

simulation of motor behavior. 

Predictive world models are typically known for their ability to boost the sample effi-

ciency of RL methods. In particular, they allow for imagining experiences by making 

predictions about future states and rewards which can then be used for policy learning, 

reducing the number of required real experiences of costly agent-environment interac-

tions. Moreover, using features extracted from a recurrent predictive world model as in-

put to an RL agent has been found to achieve state-of-the-art results on challenging RL 

tasks (Ha and Schmidhuber, 2018). This further confirms the significance of imagination, 

since the extracted features contain information about the future. 

Imagination, defined as mental simulation of motor behavior, is considered strong ev-

idence for cognitive synergy as it requires a combination of different cognitive functions, 

including abstract perceptual and motor representations, episodic and working memory, 
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and mental manipulation of representations (Moulton and Kosslyn, 2009). This imagina-

tion-centered synergy has been further distinguished neurally by examining the different 

brain regions activated during imagination, including cognitive and motor areas (Case et 

al., 2015; Ptak et al., 2017) and is a clear example of cognitive development in children 

where increasingly complex behaviors develop from the recombination of existing, less 

complex behaviors. Experience imagination is also essential to mental practice which is 

the cognitive rehearsal of physical skills and found to facilitate skill acquisition (Driskell 

et al., 1994). Besides, it is estimated that automating imagination has the potential of ad-

vancing deep learning beyond finding correlations in data as well as providing a means 

to broaden the focus of research from problem solving to problem creation through the 

imagination-supported ability to self-generate goals and pursue them (Mahadevan, 

2018). More recently, deep RL methods that employ imagination have been shown to 

share a number of similarities with human mental simulation, particularly the capacity to 

build mental models from remembered experiences and using them in decision-making 

(Hamrick, 2019). 

Based on how experience imagination is performed, the approaches for incorporating 

imagination into deep RL can be divided into two groups: (i) online imagination 

(Racanière et al., 2017; Nagabandi et al., 2018; Feinberg et al., 2018) and (ii) offline im-

agination (Gu et al., 2016; Kalweit and Boedecker, 2017). In online imagination ap-

proaches, generating imagined trajectories for planning with the world model is done at 

decision time. Offline imagination approaches, on the other hand, augment the memory 

of real experiences with model-generated imagined experiences, increasing the amount 

of data used to train the control policy offline with experience replay. A major issue in 

these approaches is that they assume a perfect world model. In complex domains, model 

prediction errors are inevitable and can quickly compound during multi-step action plan-

ning, leading to useless long-term predictions. This is one of the reasons model-based 

RL algorithms have failed to reach the performance of their model-free counterparts in 

such domains. 

In this chapter, we first review the approaches for incorporating imagination into deep 

RL. We then present the learning-adaptive imagination approach that performs experi-

ence imagination in a learned latent space. In our approach, the learned latent space is 

self-organized into local regions with local world models, and a running average of 

model prediction error is independently computed for each region. The experience replay 
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buffer is divided into pixel-space and latent-space buffers for storing real and imagined 

experiences respectively. Imagined rollouts are reliably generated with probability in-

versely proportional to the average error of the current region, and the imagination depth 

is adaptively determined by the average error of the traversed regions. we use an intrin-

sic reward based on the spatially and temporally local learning progress to encourage 

collecting data that improves future predictions necessary for imagination. Our experi-

ments show that our approach to imagination makes learning robotic grasping from raw 

pixels more efficient, particularly in sparse reward environments. 

5.2     Experience Imagination in Deep RL 

Combining model-free and model-based RL is a well-studied problem. One of the earli-

est works in this direction is Dyna-Q (Sutton, 1990) which learns an action-value func-

tion from both real and model-generated experiences. Over the last five years, there has 

been a growing interest in developing Dyna-like methods in deep RL. For example, Gu 

et al. (2016) augment the replay buffer of state transitions with imagined on-policy tran-

sitions generated under a learned model to speed up model-free RL. They iteratively refit 

a linear model to recently collected transitions and generate short imagined rollouts from 

states sampled from these transitions. While they attempt to reduce model bias by sam-

pling from regions where the model has recently been trained, the learned linear model is 

insufficient to perfectly capture complex environment dynamics and generate imagined 

rollouts in tasks involving learning from raw pixels, as the authors indicate. In contrast, 

Kalweit and Boedecker (2017) use imagined transitions for updating the value and poli-

cy functions only when the action-value estimates have high uncertainty computed via 

bootstrap. The approach is shown to improve the efficiency of learning continuous con-

trol tasks, but does not consider model prediction errors and requires training of addi-

tional critic networks for bootstrap uncertainty estimation. 

Racanière et al. (2017) follow a different path by using imagination as a context for 

model-free value estimation. This is done by encoding rollouts of imagined observations 

with a recurrent neural network. The encoded rollouts are concatenated and used as an 

additional input to the value and policy functions. In another work, a model-based con-

troller is used such that it randomly generates a number of candidate action sequences at 

each time step, simulates the imagined trajectories with a learned model, and executes 
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the first action of the trajectory yielding the highest reward (Nagabandi et al., 2018). The 

controller is then used to initialize the policy of a model-free RL agent with supervised 

data by providing it with target actions at some sampled states, which is found to make 

the chosen model-free RL method more sample-efficient. The use of a model predictive 

controller based on random sampling, however, limits the application of the approach to 

low-dimensional action spaces and short planning horizons. 

Unlike previous works, Feinberg et al. (2018) decompose value estimate into a part 

with imagined rewards predicted by a dynamics model over a short horizon and a subse-

quent part estimated by a model-free critic. Their method, called Model-based Value 

Expansion (MVE), is shown to boost the sample efficiency of learning, but on control 

tasks with low-dimensional observations (<20). MVE avoids issues related to learning 

from data generated with an outdated model by not using an imagination buffer. Howev-

er, it relies on the strong assumption that the model is accurate over a short, fixed hori-

zon. This is most likely to fail in practice, since the model can generate noisy data early 

in the learning process while still being trained jointly with the target policy, and a 

measure of model prediction accuracy becomes necessary. 

While these approaches incorporate imagination irrespective of the prediction error of 

a learned dynamics model, our proposed approach takes this error into account before 

initiating and while performing imagination by using spatially and temporally local es-

timates of prediction accuracy, as we will explain in the following section. 

5.3     Learning-Adaptive Imagination   

Generating imagined data for visuomotor control tasks requires learning perfect world 

models at the pixel level, which is infeasible in practice. Here, we instead propose to 

learn the model in latent space. In this section, we first describe our learned latent space 

and how the space is self-organized into local regions with local world models, based on 

the Deep ICAC algorithm (see Chapter 3). We show how the spatially and temporally 

local learning progress is used to compute an intrinsic reward that encourages collecting 

experience data that improves the model. We then present our imagination approach that 

generates training sequences of imagined experiences in local regions where the corre-

sponding local models retain high prediction accuracy. 
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ℒ𝑟𝑒𝑐(𝜔̃, 𝜔) =   ‖𝑔 (𝑠𝑡
|𝜔̃) − 𝑠𝑡‖

2

2

, 

ℒ𝑐𝑟𝑖𝑡𝑖𝑐(𝜃
𝑉, 𝜔) =  (𝑦𝑡  −  𝑉(𝑠𝑡|𝜔, 𝜃

𝑉))
2
, 

ℒ𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝜔, 𝜃
𝑉 , 𝜔̃) =  ⲗ𝑟𝑒𝑐ℒ𝑟𝑒𝑐(𝜔̃, 𝜔) + ⲗ𝑐𝑟𝑖𝑡𝑖𝑐ℒ𝑐𝑟𝑖𝑡𝑖𝑐(𝜃

𝑉, 𝜔), 

5.3.1     Latent Representation Learning  

We build upon the Deep ICAC algorithm which learns an ensemble of local dynamics 

models and generates an intrinsic reward based on learning progress. A latent representa-

tion is learned by jointly minimizing a combined convolutional autoencoder’s recon-

struction and value prediction loss: 

 

(5.1) 

 

 

where 
𝑠𝑡
= 𝑓(𝑠𝑡|𝜔) is the latent state representation at time step t, 𝑓(· |𝜔) and 𝑔(· |𝜔̃) 

are the encoder and decoder networks with parameters 𝜔 and 𝜔̃ respectively, 𝑦𝑡 = 𝑟𝑡 +

 𝑉′(𝑠𝑡+1, |𝜔′, 𝜃
𝑉′) is the target value with 𝑉′(· |𝜔′, 𝜃𝑉

′
) being the critic target network 

parametrized by (𝜔′, 𝜃𝑄′), and ⲗ𝑟𝑒𝑐 and ⲗ𝑐𝑟𝑖𝑡𝑖𝑐 are weighting coefficients on the individ-

ual loss components. By sharing the learning parameters between the encoder and critic, 

the latent representation is learned to be a good state discriminator and value predictor 

and therefore fed as input to the actor network. The actor parameters 𝜃𝜇 are updated to 

bring the output closer to an exploratory action 𝑎𝑡 found to lead to higher than expected 

value (i.e. positive TD error). This is done by minimizing the following loss: 

ℒ𝑎𝑐𝑡𝑜𝑟(𝜃
𝜇) = (𝑎𝑡 − 𝜇 (𝑠𝑡

|𝜃𝜇))
2

.                                       (5.2)                                              

The learning architectures of the critic and actor are shown in Figure 5.1(a) and Figure 

5.1 (b) respectively. 

5.3.2     Latent-Space Self-Organization 

In Deep ICAC, the space of learned latent representations is self-organized during explo-

ration into local regions with local dynamics models with the help of a growing self-

organizing network. Particularly, we use the Instantaneous Topological Map (ITM) 

(Jockusch and Ritter, 1999). The ITM is defined by a set of nodes i, each with a weight 

vector 𝑤𝑖, and a set of edges connecting each node i to its neighbors N(i). It starts with 

two connected nodes, and when a new stimulus 
𝑠
 is observed, the following adaptation 

steps are performed: 

1. Matching: Find nearest node n and second nearest node 𝑛′ to 
𝑠
: 
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Figure 5.1: Actor-critic and dynamics model architectures: (a) A fully convolutional au-

toencoder that takes in a raw image 𝑠𝑡 and generates a reconstruction 𝑠̂𝑡 is jointly trained 

with the critic and consists of 7 convolutional and 2 dense layers. The number and size 

of the convolutional filters used are shown above the corresponding layers; (b) The actor 

is a feedforward network with 2 dense layers whose output dimensionality is dim(A), 

where A is the action space. It takes as input the 16-D latent representation 
𝑠𝑡

 trained to 

minimize the combined critic and reconstruction loss; (c) The dynamics model is a feed-

forward network that takes as input the current state’s latent representation and the cur-

rent action. It has one hidden dense layer followed by a dense output layer that outputs a 

prediction of the latent representation at the next time step. 

 𝑛 ← argmin
𝑖

‖
𝑠
− 𝑤𝑖‖2

2
, 𝑛′ ← argmin

𝑗,𝑗≠𝑛
‖

𝑠
− 𝑤𝑗‖2

2
. 

2. Edge adaptation: Create an edge between n and n’ if they are not connected. Check, 

for all nodes m in N(n), if 𝑛′ lies inside the Thales sphere through m and n (the sphere 

with diameter 𝑤𝑚𝑤𝑛), 𝑖. 𝑒. (𝑤𝑛 − 𝑤𝑛′) · (𝑤𝑚 − 𝑤𝑛′)  < 0. If true, remove the edge 

between n and m, and then, if m has no remaining edges, remove m. 

3. Node adaptation: If 
𝑠
 lies outside the Thales sphere through n and n’, 𝑖. 𝑒. (𝑤𝑛 −


𝑠
 ) · (𝑤𝑛′ − 

𝑠
)  > 0, and if ‖

𝑠
− 𝑤𝑛‖2

2
> 𝑒𝑚𝑎𝑥, where 𝑒𝑚𝑎𝑥 is a given threshold, 

create a new node 𝑣 with 𝑤𝑣 = 
𝑠
 and an edge with n. 

An example of an approximate dynamics model ℳ(·,· |𝜃ℳ), which predicts the next 

state encoding given the current action and state encoding and is trained to minimize the 

loss ‖ℳ (
𝑠𝑡
, 𝑎𝑡|𝜃

ℳ) − 
𝑠𝑡+1

‖
2

2

, is shown in Figure 5.1(c). In our approach, in order to 

generate a complete imagined experience, we additionally learn a latent reward function 

ℛ(·,· |𝜃ℛ)  which predicts the immediate reward and is trained to minimize the loss 

‖ℛ (
𝑠𝑡
, 𝑎𝑡|𝜃

ℛ) − 𝑟𝑡‖
2

2

. Each region n of the latent space (node in ITM) is assigned a 

separate local dynamics model ℳ𝑛 and reward function ℛ𝑛. During learning, we main-
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〈𝑒𝑡,𝑛
𝑝𝑟𝑑〉 =

1

𝜎
∑𝑒𝑖

𝑝𝑟𝑑

𝜎

𝑖=1

|
𝑒𝑖
𝑝𝑟𝑑

 = ‖ℳ𝑛(𝑠𝑖
,𝑎𝑖|𝜃

ℳ)− 𝑠𝑖+1
‖
2

2
+‖ℛ𝑛(𝑠𝑖

,𝑎𝑖|𝜃
ℛ)− 𝑟𝑖‖

2

2 

tain a moving average of the combined prediction error of ℳ𝑛 and ℛ𝑛 of the region over 

a window of 𝜎 recent predictions: 

 

(5.3) 

 

where 𝑒𝑖
𝑝𝑟𝑑

 is the ith prediction error. We also monitor the change of average prediction 

error over time in each region: 

𝐿𝑃𝑡,𝑛 = |〈𝑒𝑡,𝑛
𝑝𝑟𝑑〉  −  〈𝑒𝑡−𝒲,𝑛

𝑝𝑟𝑑 〉|                                             (5.4) 

where 𝒲 is a time window. This change represents the learning progress (LP) the robot 

has made or expects to make. 

When action 𝑎𝑡  is taken at state 𝑠𝑡 , the resulting 𝑒𝑡
𝑝𝑟𝑑

 associated with the best-

matching node n of ITM (w.r.t 
𝑠𝑡

) is measured and the corresponding 〈𝑒𝑡,𝑛
𝑝𝑟𝑑〉 and 𝐿𝑃𝑡,𝑛 

are updated. The updated 𝐿𝑃𝑡,𝑛  is then combined with the perception error 𝑒𝑡
𝑝𝑒𝑟 =

‖
𝑠𝑡+1

− 𝑤𝑚‖
2

2

, where m is the nearest node to 
𝑠𝑡+1

, to produce an intrinsic reward sig-

nal: 

𝑟𝑡
𝑖𝑛𝑡 = 𝐿𝑃𝑡,𝑛 + 𝑒𝑡

𝑝𝑒𝑟
                                                (5.5) 

which encourages actions that maximize learning progress and lead to perceptually novel 

states. This is achieved by using the combined extrinsic and intrinsic reward to update 

the critic. The locally trained ℳ and ℛ provide informative predictions with accuracy 

estimated by the locally stored average prediction error that can be taken into considera-

tion when producing imagined rollouts, as explained next. 

5.3.3     Latent-Space Experience Imagination  

In our approach, we perform imagination in latent space. To facilitate this, we split the 

replay memory into pixel-space and latent-space replay buffers, 𝐵𝑝𝑖𝑥𝑒𝑙  and 𝐵𝑙𝑎𝑡𝑒𝑛𝑡  re-

spectively. 𝐵𝑝𝑖𝑥𝑒𝑙  contains transitions 𝑇𝑖
𝑝𝑖𝑥𝑒𝑙

of the form (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) , while 𝐵𝑙𝑎𝑡𝑒𝑛𝑡 

contains transitions 𝑇𝑖
𝑙𝑎𝑡𝑒𝑛𝑡 of the form (

𝑠𝑖
, 𝑎𝑖, 𝑟𝑖,𝑠𝑖+1). 

When the best-matching node n at time step t is identified, we generate an on-policy 

imagined transition with probability proportional to the current accuracy of ℳ𝑛 and ℛ𝑛. 

This is done by first scaling the average prediction error (Equation 5.3), which is an un-

biased estimate of how unreliable the recent local predictions are, to [0,1]. A random
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Algorithm 4 Learning-Adaptive (LA-) Imagination (
𝑠𝑡

, n) 

1: Input: Max. imagination depth 𝐷𝑚𝑎𝑥. 

2: Scale 〈𝑒𝑡,𝑛
𝑝𝑟𝑑〉 to [0,1] by its maximum over a window 𝒲 

3: 𝑖 ← 0,  
𝑠𝑖
← 

𝑠𝑡
,  〈𝑒𝑖,𝑛

𝑝𝑟𝑑〉 ← 〈𝑒𝑡,𝑛
𝑝𝑟𝑑〉 

4: Generate random number 𝑐 ~𝒰[0,1] 

5: while (𝑐 < 1 − 〈𝑒𝑖,𝑛
𝑝𝑟𝑑〉) and (𝑖 ≤ 𝐷𝑚𝑎𝑥) do 

6:           Generate imagined transition 𝑇𝑖
𝑙𝑎𝑡𝑒𝑛𝑡 = (

𝑠𝑖
, 𝑎𝑖 , 𝑟̂𝑖 , ̂𝑠𝑖+1)

 using ℳ𝑛 and ℛ𝑛, where   

        𝑎𝑖~𝜋(𝑠𝑖
) 

7:        Store 𝑇𝑖
𝑙𝑎𝑡𝑒𝑛𝑡 in 𝐵𝑙𝑎𝑡𝑒𝑛𝑡 

8:        𝑠𝑖
← ̂

𝑠𝑖+1
 

9:        Find best-matching node n to 
𝑠𝑖

 

10:        Scale 〈𝑒𝑖,𝑛
𝑝𝑟𝑑〉 to [0,1] 

11:        Generate 𝑐 ~𝒰[0,1] 

12:        𝑖 ← 𝑖 + 1 

13: end while 

number c is then drawn uniformly from [0,1] and an imagined transition is generated if 

𝑐 < 1 − 〈𝑒𝑡,𝑛
𝑝𝑟𝑑〉  is satisfied. The generated latent state transition 𝑇𝑡

𝑙𝑎𝑡𝑒𝑛𝑡 =

(
𝑠𝑡
, 𝑎𝑡 , 𝑟̂𝑡 , ̂𝑠𝑡+1)

, where 𝑟̂𝑡 = ℛ𝑛 (𝑠𝑡
, 𝑎𝑡|𝜃

ℛ), ̂
𝑠𝑡+1

=ℳ𝑛 (𝑠𝑡
, 𝑎𝑡|𝜃

ℳ), and 𝑎𝑡~𝜋(𝑠𝑡
), 

is added to 𝐵𝑙𝑎𝑡𝑒𝑛𝑡. The imagined ̂
𝑠𝑡+1

is used to identify the next best-matching node 

and the imagination process is repeated. The generation of imagined transitions fully 

adapts to the changes in learning the local ℳ and ℛ networks. Similarly, the length of 

the imagined rollout is adaptively determined by the average prediction error in the trav-

ersed latent-space regions and is bounded by a maximum imagination depth 𝐷𝑚𝑎𝑥  to 

limit the computational time. The imagination process is detailed in Algorithm 4. 

Both the RL controller and the imagination process in our learning system are mutu-

ally improving, since the former is motivated to take actions leading to data that im-

proves future predictions necessary for imagination through using Deep ICAC and the 

latter augments the available training experiences with imagined experiences in an adap-

tive manner to improve the sample efficiency of the former. Figure 5.2 shows an over-

view of our learning system, including the RL actor-critic controller and the latent-space 

experience imagination process. We summarize the overall procedure in Algorithm 5. 
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Figure 5.2: Overview of our system. Solid arrows indicate information flow. Dashed ar-

rows indicate neural network training. At each time step t, the robot observes a new state 

𝑠𝑡 which is then transformed into latent space with an encoder jointly trained to mini-

mize the combined reconstruction and value prediction loss, as shown in Figure 5.1. The 

latent encoding 
𝑠𝑡

 is used to update the growing self-organizing network ITM. The best-

matching node n (or the newly created node if the distance is greater than 𝑒𝑚𝑎𝑥) of ITM 

(w.r.t. 
𝑠𝑡

) determines the local dynamics model ℳ𝑛 and reward function ℛ𝑛 networks 

associated with the region of the latent space covered by n. ℳ𝑛 and ℛ𝑛 are then updated 

based on their respective predictions and the observed state transition. The combined 

prediction error 𝑒𝑡
𝑝𝑟𝑑

 is computed and used to update the average 〈𝑒𝑡,𝑛
𝑝𝑟𝑑〉. An intrinsic 

reward 𝑟𝑡
𝑖𝑛𝑡 is then derived and combined with the extrinsic reward 𝑟𝑡

𝑒𝑥𝑡 before it is fed 

to the critic. An on-policy imagined transition, including the predicted next encoding 

̂
𝑠𝑡+1

 and reward 𝑟̂𝑡, is generated with probability inversely proportional to 〈𝑒𝑡,𝑛
𝑝𝑟𝑑〉. This 

imagined transition 𝑇𝑡
𝑙𝑎𝑡𝑒𝑛𝑡 = (

𝑠𝑡
, 𝑎𝑡 , 𝑟̂𝑡 , ̂𝑠𝑡+1

) is added to the latent-space buffer of the 

replay memory. The imagined encoding ̂
𝑠𝑡+1

 is used to identify the next best-matching 

node whose dynamics and reward networks are used to generate the next imagined tran-

sition. This imagination process is repeated, adaptively controlled by the probability of 

generating imagined transitions, up to a maximum imagination depth 𝐷𝑚𝑎𝑥, as shown 

with red arrows. This is followed by updating the encoder network on a minibatch of 

transitions from the pixel-space buffer and the actor and critic networks on a minibatch 

of transitions from the latent-space buffer. Finally, the robot takes a new action sampled 

from the learned policy with a mean at the actor’s output and a new learning cycle starts 

with a new observed state. 

 

 

𝑖𝑡:𝑡+𝐷𝑚𝑎𝑥  
 

 ̂
𝑠𝑖+1

  


𝑠𝑡
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𝑠𝑖
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Algorithm 5 Deep ICAC + LA-Imagination 

1: Input: Target network’s update rate 𝜏, episode length T, no. of episodes E. 

2: Initialize learning parameters {𝜔, 𝜔̃, 𝜃𝑉 , 𝜃𝜇 , 𝜔′, 𝜃𝑉′} 

3: Initialize the ITM network 

4: Initialize replay buffers 𝐵𝑝𝑖𝑥𝑒𝑙 and 𝐵𝑙𝑎𝑡𝑒𝑛𝑡 

5: for  𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 to 𝐸 𝐝𝐨 

6:          Sample initial state 𝑠1 

7:       for 𝑡 = 1 to 𝑇 𝐝𝐨 

8:          Compute latent state encoding 
𝑠𝑡
=  𝑓(𝑠𝑡|𝜔) 

9:          Update the ITM network 

10:          Identify the best-matching (or newly created) node n 

11:          Sample action 𝑎𝑡 ~ 𝜋: 𝜋(𝑎𝑡|𝑠𝑡) =
1

√2𝜋𝜎
𝑒−(𝑎𝑡− 𝜇(𝑠𝑡|𝜃

𝜇))
2
2𝜎2⁄  

12:          Execute 𝑎𝑡 and observe 𝑟𝑡
𝑒𝑥𝑡 and 𝑠𝑡+1 

13:          Compute intrinsic reward 𝑟𝑡
𝑖𝑛𝑡 using Equation 5.5 

14:          Compute total reward 𝑟𝑡 = 𝑟𝑡
𝑒𝑥𝑡 + 𝑟𝑡

𝑖𝑛𝑡 

15:          Update ℳ𝑛 and ℛ𝑛 networks using the transition (
𝑠𝑡
, 𝑎𝑡, 𝑟𝑡 𝑠𝑡+1

) 

16:          Store (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝐵𝑝𝑖𝑥𝑒𝑙 and (
𝑠𝑡
, 𝑎𝑡, 𝑟𝑡 𝑠𝑡+1

) in 𝐵𝑙𝑎𝑡𝑒𝑛𝑡 

17:          Call LA-Imagination (
𝑠𝑡

, n) (see Algorithm 4) 

18:          Update {𝜔, 𝜔̃} on minibatch from 𝐵𝑝𝑖𝑥𝑒𝑙 to minimize ℒ𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 (Equation 5.1) 

19:          Update {𝜃𝑉, 𝜃𝜇} on minibatch from 𝐵𝑙𝑎𝑡𝑒𝑛𝑡 to minimize  ℒ𝑐𝑟𝑖𝑡𝑖𝑐 (Equation 5.1),   

         taking 
𝑠𝑡

 as input, and ℒ𝑎𝑐𝑡𝑜𝑟 (Equation 5.2) 

20:          Update target network parameters 𝜃𝑉
′
← 𝜏𝜃𝑉 + (1 − 𝜏)𝜃𝑉

′
, 𝜔′ ← 𝜏𝜔 + (1 − 𝜏)𝜔′ 

21:       end for 

22:    end for 

5.4     Experiments 

Deep ICAC (Hafez et al., 2019a) has been shown to be more stable and sample-efficient 

than CACLA (Van Hasselt, 2012) and DDPG (Lillicrap et al., 2016) on visuomotor 

tasks. Here we show the effect of incorporating learning-adaptive imagination on the 

sample efficiency. We evaluate our approach on learning vision-based robotic grasping.  

Parameters 

We use the learning architecture shown in Figure 5.1 for approximating the policy and 

value functions. All convolutional layers are zero-padded, have stride 1, and use ReLU 

activations. All dense layers use ReLU activations except for the actor’s and critic’s out-

put layers that use a tanh and a linear activation respectively. The target network’s up-
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date rate 𝜏 is 1e-3. The loss weighting constants ⲗ𝑐𝑟𝑖𝑡𝑖𝑐 and ⲗ𝑟𝑒𝑐 are set to 1 and 0.1 re-

spectively. The functions ℳ and ℛ of each region in the latent space are jointly modeled 

by a feedforward neural network with three dense layers: one hidden layer of 20 tanh 

units and two output layers for predicting the next latent encoding and immediate reward 

with 16 and 1 linear units respectively. The discount factor 𝛾 is set to 0.99. The time 

windows 𝜎 and 𝒲 are set to 40 and 20 respectively. We scale the intrinsic reward to the 

interval [−1,1]. The desired mapping resolution 𝑒𝑚𝑎𝑥 which controls the growth of the 

ITM map and the maximum depth of imagination 𝐷𝑚𝑎𝑥 are set to 6.0 and 7 respectively. 

We train the networks with proportional Prioritized Experience Replay (PER) (Schaul et 

al., 2016) using Adam optimizer (Kingma and Ba, 2014) and learning rate 1e-3 for the 

critic, ℳ and ℛ functions and 1e-4 for the actor. We use two replay buffers 𝐵𝑝𝑖𝑥𝑒𝑙 of 

size 60K and 𝐵𝑙𝑎𝑡𝑒𝑛𝑡 of size 200K, consuming 40% less memory space than the replay 

buffer of the Deep ICAC baseline which has a size of 100K, and a minibatch size of 64 

sampled by PER. The PER parameters 𝛼 and 𝛽0 are set to 0.6 and 0.4 respectively. We 

perform 15 optimization steps on the actor and critic networks and 10 steps on ℳ and ℛ 

per time step. We use a stochastic Gaussian policy with a mean at the actor’s output and 

a standard deviation of 0.35 radians. Actions are capped at 20 units before being sent to 

the environment. All hyperparameters were determined empirically through preliminary 

experiments. 

Results 

We compare the learning performance of Deep ICAC with and without imagination on 

realistic robotic grasping using V-REP robot simulator (Rohmer et al., 2013). We con-

sider two imagination types: static and learning-adaptive. The former generates imagina-

tion rollout of length 𝐷𝑚𝑎𝑥 at each time step regardless of prediction errors and the latter 

is our proposed approach. Grasp learning is a challenging control task due to the need to 

perform multi-contact motions and handle rigid-body collisions with a target object. The 

grasping experiment here is conducted on our Neuro-Inspired COmpanion (NICO) robot 

(Kerzel et al., 2017). NICO is a developmental humanoid built for research on neuroro-

botics and multimodal interaction. Figure 5.2 (top-left) shows the V-REP simulated NI-

CO in a sitting position facing a table on top of which a red glass is placed and used as a 

target object for grasping. To avoid self-collisions while still providing a large work 

space for learning grasping skills, we consider a control policy involving the shoulder 

joint of the right arm and the finger joints of the right hand, as shown in Figure 5.3(a).
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Figure 5.3: (a) Motor output and (b) sensory input for the grasp learning task. The axes 

of rotation of the controlled joints are depicted as yellow cylinders in (a). 

NICO’s arm has a total of 6-Degree of Freedom (DoF) of which we control one in the 

shoulder with an angular range of movement of ± 100 degrees. NICO’s hand is 11-DoF 

multi-fingered with 2 index fingers and a thumb, all having an angular range of move-

ment of ± 160 degrees. NCO learns to control 2 DoFs: one for the right shoulder and 

one for the right hand (open/close). Each algorithm takes as its only input the 64×32 pix-

el RGB image from a vision sensor whose output is shown in Figure 5.3(b). The reward 

function used is as follows: 

𝑟𝑡
𝑒𝑥𝑡  =   {

   +10                    𝑖𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙           
     −10                    𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑖𝑠 𝑡𝑜𝑝𝑝𝑙𝑒𝑑 

              0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

 

To verify whether an attempted grasp was successful, the hand is closed and the shoulder 

joint is rotated 20 degrees in the opposite direction to that of its newly attained position. 

The distance between the target object’s and the hand’s centers is then checked whether 

it is below a threshold of 0.04 m. If yes, the last joint position update is deemed success-

ful. Otherwise, the hand is opened and the shoulder joint is brought back to its last posi-

tion and the learning continues. 

We run the algorithms on a single Nvidia GTX 1050 Ti GPU for 10K episodes and 50 

steps per episode and with the target object’s position randomly changing to a new 

graspable position at the start of each episode. The episode ends when the object is 

grasped, toppled, or the maximum episode length is reached. The average training time 

(hours) per run is 29.3±4.1 over a total of 15 runs (5 for each algorithm). Figure 5.4 

shows the mean episode extrinsic reward of running the algorithms over five random 

seeds. Simply using imagination irrespective of state and reward prediction accuracy

(a) (b)
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Figure 5.4: Learning curves of Deep ICAC without imagination, with static imagination, 

and with the proposed learning-adaptive imagination on robotic grasp learning from pix-

els. The curves are smoothed by averaging over a moving window of 250 episodes. 

Shaded regions correspond to one standard deviation. 

Table 5.1: Learning speed (avg. reward per episode over the entire learning process) and 

convergence (avg. reward per episode over last 100 episodes). 

 Deep ICAC 
Deep ICAC + 

Imagination 

Deep ICAC + 

LA-Imagination 

Learning speed -2.039 -0.548 5.571 

Convergence 5.4 8.3 9.4 

resulted in poor performance, even worse than the Deep ICAC baseline, over half of the 

learning process, as shown in the figure. In contrast, using learning-adaptive imagination 

led to significantly better performance, reaching higher rewards early and converging to 

a near-optimal policy in less than 6K episodes. In Table 5.1, we compare the learning 

speed and convergence (final performance) of the algorithms. 

We also evaluate the effect of using different values of maximum imagination depth 

𝐷𝑚𝑎𝑥 on the learning performance. Figure 5.5 shows the mean episode extrinsic reward 

of Deep ICAC+LA-Imagination on the visual grasping task for different maximums of
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Figure 5.5: Learning curves of Deep ICAC+LA-Imagination for different values of max-

imum imagination depth. 

imagination depth averaged over five runs. A rollout of a single imagined step was 

enough to improve the performance over the baseline (no imagination). Similarly, going 

from a maximum of one to two imagined steps allowed faster learning in the early epi-

sodes and led to a better final policy. Seven outperformed two, reaching higher reward 

after just 2K episodes. Values greater than seven did not change the performance. This is 

because the length of the imagined rollout is often shorter than a large 𝐷𝑚𝑎𝑥, as it stops 

increasing when the model prediction error is high before reaching 𝐷𝑚𝑎𝑥. 

5.5     Conclusion  

This chapter establishes a bridge between intrinsic motivation and imagination in robot 

decision-making, inspired by human mental simulation of motor behavior. Our approach 

performs imagination in a high-level latent space, resembling human imagination operat-

ing on abstract representations, to provide additional training experiences and accelerate 

skill learning. Unlike previous works, our approach generates imagined experiences only 

when the learned dynamics model and reward function have high local prediction accu-
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racy, thus adapting to the learned underlying dynamics. In our approach, the imagination 

depth is adaptively determined using spatially and temporally local information provided 

by the average prediction error computed in different regions of the latent space over a 

recent time interval. We showed that integrating our approach to imagination with learn-

ing progress-based intrinsic motivation improves the sample efficiency of learning pixel-

level control policies and achieves better final performance than the no-imagination and 

static-imagination baselines, particularly for robotic grasping in sparse reward environ-

ment. 
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Chapter 6  
 

Integrated Imagination-Arbitration in 

Self-Organized Latent Space  

6.1     Introduction 

Dual-system approaches to robot motor learning have demonstrated how the advantages 

of model-based and model-free RL can be combined towards improving the sample effi-

ciency of learning to perform complex robotic tasks. This line of approaches is also sup-

ported by convergent neural and behavioral findings on how the human brain arbitrates 

between model-based and model-free learning systems (Haith and Krakauer, 2013; Lee 

et al., 2014; Domenech and Koechlin, 2015). One common limitation to current dual-

system robot learning approaches, however, is that they do not consider the prediction 

errors of the learned world model, which quickly accumulate when planning with the 

model and result in poor task performance.  

In Chapter 4, we presented the Curious Meta-Controller (CMC), a meta-control algo-

rithm that, unlike previous approaches, takes into account the reliability of model predic-

tions when arbitrating online between model-based and model-free control systems. The 

reliability is measured by the model learning progress, which is the time derivative of the 

average prediction error of the model. If the reliability is positive, the meta controller 

queries the model-based system for an action, which performs gradient-based model 
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predictive control, and if not, the model-free system is queried instead. While the results 

show that CMC can efficiently learn control policies from raw images, the approach re-

lies only on the temporal information when computing the learning progress. It also uses 

a fixed planning horizon. Furthermore, the time and space complexity of gradient-based 

planning that CMC and other dual-system approaches use to infer an optimal action se-

quence under the model is very high. This is due to performing backpropagation through 

time to optimize the planning objective every time the model-based controller is queried 

for an action. Amos et al. (2018) attempt to address this issue by implicit differentiation 

of the Karush-Kuhn-Tucker optimality conditions at a fixed point of the convex optimi-

zation solver.  

In this chapter, we propose a novel robot dual-system motor learning approach. Our 

approach improves on the previously proposed CMC algorithm by enabling an adaptive-

length model rollout for plan optimization during model-based control through incre-

mentally self-organizing the space of latent state representations and computing the reli-

ability estimate locally for every region of the learned latent space. Rolling out the mod-

el until the estimated reliability is low, as opposed to using a fixed time horizon, ensures 

that no imperfect model predictions are used in computing the optimal plan and reduces 

the computational cost associated with gradient-based planning. The reliability estimate 

is used in computing an intrinsic reward to encourage actions that lead to data that im-

proves the model. We also propose a unified learning framework that integrates online 

arbitration with offline experience imagination using the same underlying self-organized 

latent space, where imagined experiences collected from model rollouts are used as addi-

tional training data for the control policy. We evaluate our approach against baseline and 

state-of-the-art methods on learning vision-based robotic grasping in simulation and in 

the real world. The results show that our approach outperforms the compared methods 

and learns near-optimal grasping policies in dense and sparse reward environments. 

6.2     Intrinsically Motivated Meta-Controller 

Our dual-system motor learning approach consists of model-free and model-based con-

trol systems and a meta-controller deciding on which of the two systems to query for an 

action at each time step. We use the same model-free and model-based control systems 

presented in Section 4.4 (see Figure 4.1 and Figure 4.2). The model-free system is repre-
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sented by an off-policy actor-critic learner. The jointly trained latent representation at the 

bottleneck layer of the convolutional autoencoder (Figure 4.1(a)) is used as input to the 

actor network (Figure 4.1(b)), which is trained according to the chosen off-policy actor-

critic method; DDPG (Equation 4.2) or off-policy CACLA (Equation 4.3). The model-

based system is represented by model predictive control (Figure 4.2) which performs 

gradient-based action optimization under a learned world model in latent space (Equa-

tion 4.6). Our approach to arbitrating between model-free and model-based control sys-

tems is based on the spatially and temporally local reliability in model predictions. We 

define the reliability in model predictions according to the average prediction error of the 

model in latent space. To improve model predictions, we use the change in the average 

prediction error as an intrinsic reward. 

6.2.1     Local Reliability Estimation 

We incrementally self-organize the latent space into local regions with local world mod-

els using the Instantaneous Topological Map (ITM) (Jockusch and Ritter, 1999) during 

motor exploration. ITM was originally designed for strongly correlated stimuli, which is 

the case here where the stimuli are the latent states visited along continuous trajectories, 

and has only a few hyperparameters. However, any other growing self-organizing net-

work may also be used in our approach. The ITM network is defined by a set of nodes i, 

each having a weight vector 𝑤𝑖, and a set of edges connecting each node i to its neigh-

bors N(i). The network starts with two connected nodes, and when a new stimulus 
𝑠
 is 

observed, the following adaptation steps are performed: 

1. Matching: Find the nearest node n and the second-nearest node n’ to 
𝑠

: 𝑛 ←

argmin
𝑖

‖
𝑠
− 𝑤𝑖‖2

2
, 𝑛′ ← argmin

𝑗,𝑗≠𝑛
‖

𝑠
− 𝑤𝑗‖2

2
. 

2. Edge adaptation: If n and n’ are not connected, add an edge between them. For all 

nodes 𝑚 ∈ 𝑁(𝑛), if n’ lies inside the Thales sphere through m and n (the sphere with 

diameter 𝑤𝑚𝑤𝑛), 𝑖. 𝑒. (𝑤𝑛 − 𝑤𝑛′) · (𝑤𝑚 − 𝑤𝑛′) < 0, remove the edge between m 

and n, and if m has no remaining edges, remove m. 

3. Node adaptation: If 
𝑠
 lies outside the Thales sphere through n and n’, 𝑖. 𝑒. (𝑤𝑛 −


𝑠
) · (𝑤𝑛′ − 

𝑠
) > 0, and if ‖

𝑠
− 𝑤𝑛‖2

2
> 𝑒𝑚𝑎𝑥 , where 𝑒𝑚𝑎𝑥  is the desired map-

ping resolution, create a new node 𝑣 with 𝑤𝑣=
𝑠
 and an edge with n. 
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〈𝑒𝑡,𝑛
𝑝𝑟𝑑〉 =

1

𝜎
∑𝑒𝑖

𝑝𝑟𝑑

𝜎

𝑖=1

|
𝑒𝑖
𝑝𝑟𝑑

 = ‖ℳ𝑛(𝑠𝑖
,𝑎𝑖|𝜃

ℳ)− 𝑠𝑖+1
‖
2

2
+‖ℛ𝑛(𝑠𝑖

,𝑎𝑖|𝜃
ℛ)− 𝑟𝑖‖

2

2  , 

A moving window average of model prediction error is computed and updated separate-

ly for each latent-space region 𝑛 (node in ITM): 

    

(6.1) 

 

where 𝜎 specifies the length of the window of recent predictions in n, and ℳ𝑛 and ℛ𝑛 

are the model’s neural networks associated with n for predicting the next latent state and 

extrinsic reward respectively. The improvement in model predictions, the change in 

〈𝑒𝑡,𝑛
𝑝𝑟𝑑〉 over time, is then estimated by computing the learning progress (LP) locally in 

each region using a time window 𝒲: 

𝐿𝑃𝑡,𝑛 = 〈𝑒𝑡−𝒲,𝑛
𝑝𝑟𝑑 〉  −  〈𝑒𝑡,𝑛

𝑝𝑟𝑑〉.                                            (6.2) 

The learning progress is used to derive an intrinsic reward 𝑟𝑡
𝑖𝑛𝑡 = − 𝐿𝑃𝑡,𝑛, encouraging 

actions that yield data that improves the model. It is also used as an unbiased, spatially 

and temporally local reliability estimator that underlies meta-decisions, as detailed in the 

following section. 

6.2.2     Reliability-based Arbitration 

When a new latent state 
𝑠𝑡

 is observed, the ITM network is updated and the nearest node 

n to 
𝑠𝑡

 is identified. If the corresponding learning progress in the latent region covered 

by n is negative, which indicates low prediction reliability for the local model, the meta-

controller queries the model-free control system for an action. The model-free system in 

turn sends the output of the actor network 𝜇 (
𝑠𝑡
|𝜃𝜇) with exploration noise to the envi-

ronment. If, on the other hand, the learning progress is greater or equal to zero, the meta-

controller queries the model-based control system instead for an action. This initiates the 

plan optimization process (Figure 4.2). However, rather than using a predetermined plan-

ning horizon, the learning progress defined over the traversed latent regions the model-

generated states belong to adaptively sets the depth of planning, as illustrated in Figure 

6.1. This is done by terminating the model-generated rollout when the local learning pro-

gress is negative or a maximum depth is reached (see Algorithm 6). Rolling out the model 

until the estimated reliability is low ensures that no imperfect model predictions are used 

in computing the optimal plan and reduces the computational cost. The first action of the 

optimal plan is then sent to the environment with exploration noise. In either case and af-

ter performing an action 𝑎𝑡 , the newly collected experience tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 ),
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Figure 6.1: Adaptive-length model rollout for model-based control: Given an initial latent 

state, 
𝑠𝑡

, the world is unrolled using local models ℳ𝑛, where 𝑛 is the nearest node to the 

initial real (and, later, model-generated) latent states, until the local prediction reliability 

estimated by the learning progress associated with the current latent region 𝑛 is low or a 

maximum depth 𝐷𝑚𝑎𝑥 is reached. At each rollout step i, the nearest node n to the model-

generated latent state ̂
𝑠𝑖+1

 is identified and the corresponding 𝐿𝑃𝑖,𝑛 determines whether 

to complete (𝐿𝑃𝑖,𝑛 ≥ 0) or terminate (𝐿𝑃𝑖,𝑛 < 0) the rollout. The actions chosen in the 

rollout are the output of the actor network 𝜇(. |𝜃𝜇). The predicted latent states ̂
𝑠𝑖+1

and 

rewards 𝑟̂𝑖 are the outputs of the model’s networks ℳ and ℛ respectively (Section 4.4.2). 

When the rollout is terminated, plan optimization is performed over the computed horizon 

(𝐻 = 𝑖 − 𝑡), as illustrated in Figure 4.2. 

 

Algorithm 6 Planning Depth (
𝑠𝑡

, n, 𝐷𝑚𝑎𝑥) 

1: 𝑖 ← 0,  
𝑠𝑖
← 

𝑠𝑡
, 𝐿𝑃𝑖,𝑛 ← 𝐿𝑃𝑡,𝑛 

2: while (𝐿𝑃𝑖,𝑛 ≥ 0) and (𝑖 ≤ 𝐷𝑚𝑎𝑥) do 

3:           𝑎̂𝑖  ← 𝜇 (
𝑠𝑖
|𝜃𝜇),  ̂

𝑠𝑖+1
←ℳ𝑛 (𝑠𝑖

, 𝑎̂𝑖|𝜃
ℳ𝑛) 

4:        𝑠𝑖
← ̂

𝑠𝑖+1
 

5:        n ← best-matching node to 
𝑠𝑖

 

6:        𝑖 ←  𝑖 + 1 

7: end while 

8: return 𝑖 

where 𝑟𝑡  =  𝑟𝑡
𝑒𝑥𝑡 + 𝑟𝑡

𝑖𝑛𝑡, is added to the replay memory of recent experiences used to up-

date the actor, critic-autoencoder, and world model networks. Figure 6.2 illustrates the 

arbitration process of the intrinsically motivated meta-controller. 

 

𝑖𝑡:𝑡+𝐷𝑚𝑎𝑥

  
 

̂
𝑠𝑖+1

  


𝑠𝑡

 

  

 𝐿𝑃𝑖,𝑛  

 𝐿𝑃𝑖,𝑛 ≥ 0 

  

  
𝑇𝑟𝑢𝑒 

 
𝑠𝑖

 , 𝜇 (
𝑠𝑖

|𝜃𝜇) , 𝑟̂𝑖 , ̂𝑠𝑖+1
,   

ℳ𝑛 ,  ℛ𝑛  

 

 

ITM Network 

 

Model-generated rollout 
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Figure 6.2: Intrinsically motivated meta-controller: At each time step, the learning pro-

gress in the latent-space region the current latent state 
𝑠𝑡

 belongs to is checked. If great-

er or equal to zero, this indicates high reliability in model predictions and the meta-

controller queries the model-based control system for an action, which in turn performs 

plan optimization and returns the first action of the optimal plan 𝑎̂𝑡
𝐾−1. Otherwise, a neg-

ative learning progress indicates low prediction reliability and the meta-controller que-

ries the model-free system for an action, which returns the output of the actor network 

𝜇 (
𝑠𝑡
|𝜃𝜇). The selected action is then sent to the environment with exploration noise, 

and the environment returns the next state 𝑠𝑡+1 and extrinsic reward 𝑟𝑡
𝑒𝑥𝑡. 

In our approach, the model-free control system provides the model-based control sys-

tem with a good initial action sequence. Likewise, the model-based control system pro-

vides the model-free control system with a better-informed exploratory action when the 

model is locally reliable. Thus, the two control systems are mutually beneficial. The 

complete algorithm for learning visuomotor control policies with our intrinsically moti-

vated meta-controller is given in Algorithm 7. 

6.3     Integrated Imagination-Arbitration Learning 

Framework 

Besides planning, the predictive world models can be leveraged by generating imagined 

experience samples to augment real-world samples and improve the data efficiency of
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learning control policies. In Chapter 5, we demonstrated that performing imagined 

rollouts in a learned latent space and adapting the imagination depth to the improvement 

in learning a world model accelerates robotic visuomotor skill learning. Here, we propose 

Algorithm 7 Intrinsically Motivated Meta-Controller (IM2C) 

1: Input: max. planning depth 𝐷𝑚𝑎𝑥, no. of plan optimization iterations K, desired   

            mapping resolution 𝑒𝑚𝑎𝑥, episode length T, no. of episodes E 

2: Given: an off-policy actor-critic method 𝔸ℂ   

3: Initialize the learning parameters {𝜔, 𝜔̃, 𝜃𝑄 , 𝜃𝜇, 𝜔′, 𝜃𝑄′, 𝜃𝜇′} 

4: Initialize the ITM network with two connected nodes, 𝑛1 and 𝑛2, and the corre-

sponding model parameters {𝜃ℳ𝑛1 , 𝜃ℛ𝑛1 , 𝜃ℳ𝑛2 , 𝜃ℛ𝑛2} 

5: Initialize replay buffer B 

6: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 𝑡𝑜 𝐸 𝐝𝐨 

7: Sample initial state 𝑠1 

8: for 𝑡 = 1 𝑡𝑜 𝑇 𝐝𝐨  

9: Compute latent state encoding 
𝑠𝑡
=  𝑓(𝑠𝑡 |𝜔) 

10: Update the ITM network 

11: Identify best-matching node n 

12: if 𝐿𝑃𝑡,𝑛 ≥  0 then 

13: 𝐻 ← Planning Depth (
𝑠𝑡
, 𝑛, 𝐷𝑚𝑎𝑥) (see Algorithm 6) 

14: Query model-based control system with time horizon H (see Section 4.4.2) 

15: 𝑎𝑡  ←  𝑎̂𝑡
𝐾−1: 𝑎̂𝑡

𝐾−1 is the optimal plan’s first action 

16: else 

17: Query model-free control system (see Section 4.4.1) 

18: 𝑎𝑡  ←  𝜇 (
𝑠𝑡
|𝜃𝜇), where 𝜇 is 𝔸ℂ’s actor  

19: end if 

20: Add exploration noise 𝑎𝑡  ← 𝑎𝑡 +  𝒩(0, 1) 

21: Execute 𝑎𝑡 and observe 𝑟𝑡
𝑒𝑥𝑡 and 𝑠𝑡+1 

22: Update 𝐿𝑃𝑡,𝑛 using Equation 6.2, and compute intrinsic reward 𝑟𝑡
𝑖𝑛𝑡 = − 𝐿𝑃𝑡,𝑛 

23: 𝑟𝑡  ←  𝑟𝑡
𝑒𝑥𝑡 + 𝑟𝑡

𝑖𝑛𝑡 

24: Store (𝑠𝑡, 𝑠𝑡
, 𝑎𝑡, 𝑟𝑡, 𝑟𝑡

𝑒𝑥𝑡, 𝑠𝑡+1, 𝑠𝑡+1
) in B  

25: Update {𝜃ℳ𝑛 , 𝜃ℛ𝑛} using (
𝑠𝑡
, 𝑎𝑡 , 𝑟𝑡

𝑒𝑥𝑡, 
𝑠𝑡+1

) to minimize ℒ𝑚𝑜𝑑𝑒𝑙  (Equation 4.4) 

26: Update {𝜔, 𝜔̃, 𝜃𝑄} on minibatch from B to minimize ℒ𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 (Equation 4.1) 

27: Update 𝜃𝜇 on minibatch from B (Equation 4.2 or 4.3, depending on 𝔸ℂ) 

28: Update target network parameters: 𝜃𝑄
′
←  𝜏 𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′
,   

𝜔′ ←  𝜏𝜔 + (1 − 𝜏)𝜔′, 𝜃𝜇′ ←  𝜏 𝜃𝜇 + (1 − 𝜏)𝜃𝜇′, with 𝜏 ≪ 1  

29: end for 

30: end for 
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to integrate our learning-adaptive imagination (LA-Imagination) with the presented relia-

bility-based arbitration using the same underlying self-organized latent space. 

In LA-Imagination (Section 5.3), an on-policy imagined rollout is performed every 

time step with a probability proportional to the local model’s prediction accuracy. We 

modify the algorithm and instead use the adaptive-length model rollout (Figure 6.1), 

which is the input to plan optimization in our model-based control system, to provide a 

set of imagined transitions. To allow for learning from imagined latent-space transitions, 

we split the replay memory into pixel-space and latent-space replay buffers 𝐵𝑝𝑖𝑥𝑒𝑙 and 

𝐵𝑙𝑎𝑡𝑒𝑛𝑡  respectively. Real-world pixel-space transitions 𝑇𝑖
𝑝𝑖𝑥𝑒𝑙

 are stored in  𝐵𝑝𝑖𝑥𝑒𝑙  and 

used to learn the jointly optimized latent representation, while imagined latent-space 

transitions 𝑇𝑖
𝑙𝑎𝑡𝑒𝑛𝑡  are stored in 𝐵𝑙𝑎𝑡𝑒𝑛𝑡  and used to learn the policy and action-value 

functions and the local world models. This is performed by updating parameters {𝜔, 𝜔̃} 

with gradient descent on a minibatch from 𝐵𝑝𝑖𝑥𝑒𝑙 to minimize ℒ𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 (Equation 4.1) 

followed by updating parameters {𝜃𝑄} with gradient descent on a minibatch from 𝐵𝑙𝑎𝑡𝑒𝑛𝑡 

to minimize ℒ𝑄, taking 
𝑠𝑖

 as an input, and updating parameters {𝜃𝜇} by following Equa-

tion 4.2 or 4.3 according to the chosen actor-critic method. In our proposed framework, 

offline learning from imagined transitions with experience replay is coupled with online 

meta control (discussed in Section 6.2) based on the spatially and temporally local model 

reliability estimated by the learning progress. Figure 6.3 shows the overall learning 

framework. 

6.4     Experiments 

In Sections 6.2 and 6.3, we have described the Intrinsically Motivated Meta-Controller 

(IM2C) and the Integrated Imagination-Arbitration (I2A) framework for improving data 

efficiency of learning robotic vision-based control policies. Here, we will evaluate their 

performance compared to baseline and state-of-the-art methods on robot grasp learning 

in simulation as well as on a real robot. 

6.4.1     Evaluation in Simulation 

Here, we describe the experimental setup, including the learning parameters and robotic 

environment, and the results of applying our proposed approaches and the compared al-

gorithms to the simulated robot grasp-learning task. 
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Figure 6.3: Integrated Imagination-Arbitration (I2A) framework: At each time step t, the 

Intrinsically Motivated Meta-Controller uses the learning progress 𝐿𝑃𝑡,𝑛 associated with 

node n to arbitrate between model-based and model-free control systems (Figure 6.2). If 

𝐿𝑃𝑡,𝑛 is found to be greater or equal to zero, the model-based system is called and the 

model is unrolled in latent space until 𝐿𝑃𝑖,𝑛 is negative or a maximum depth 𝐷𝑚𝑎𝑥  is 

reached. The resulting model rollout is used to provide a sequence of imagined transi-

tions(
𝑠𝑖
, 𝜇(

𝑠𝑖
), 𝑟̂𝑖 , ̂𝑠𝑖+1

), as shown by the red arrow, which are then added to the la-

tent-space buffer 𝐵𝑙𝑎𝑡𝑒𝑛𝑡 and used in training the actor, critic and local model networks. 

It is also used as input to the plan optimization process of the model-based system. After 

arbitration, the action of the chosen control system is sent to the environment and the 

collected real-world transition {𝑠𝑡, 𝑎𝑡, 𝑟𝑡 , 𝑠𝑡+1} is stored in 𝐵𝑝𝑖𝑥𝑒𝑙 and used in training the 

autoencoder network to jointly optimize the reconstruction and value prediction losses. 

Parameter and Implementation details. 

We use the neural architectures shown in Figure 4.1 with the number and size of convolu-

tional filters placed above the corresponding layers for representing the actor and critic in 

the considered algorithms. No pooling layers are used. All convolutional layers are zero-

padded and have stride 1. ReLU activations are used in all layers except for the output 

layers of the actor and critic networks that use tanh and linear activations respectively. 

For representing the world model, we use a fully connected neural network with one hid-

den layer of 20 tanh units and two output layers of 32 and 1 linear units for predicting the 

next latent state and extrinsic reward respectively. The weighting coefficients ⲗ𝑟𝑒𝑐 and ⲗ𝑄 

of the combined loss function defined in Equation 4.1 are set to 0.1 and 1 respectively. 

We set the learning rate 𝛼𝑝𝑙𝑎𝑛 (Equation 4.6), the number of gradient descent steps K and 
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the maximum depth 𝐷𝑚𝑎𝑥 of the plan optimization of the model-based control system to 

1e-3, 10, and 6 respectively. A single replay buffer with a capacity of 100K transitions is 

used in all experiments except for the experiment with our proposed I2A method where 

we use two replay buffers 𝐵𝑝𝑖𝑥𝑒𝑙 and 𝐵𝑙𝑎𝑡𝑒𝑛𝑡 with capacities of 60K and 200K respective-

ly. All networks are trained from scratch using batch size 256 and Adam optimizer 

(Kingma and Ba, 2014) with learning rate 1e-3 for the critic-autoencoder and model net-

works and 1e-4 for the actor network. The discount factor 𝛾 and the update rate of the 

target networks 𝜏 are set to 0.99 and 1e-6 respectively. The desired mapping resolution 

𝑒𝑚𝑎𝑥 is set to 6 and the time windows used in computing the learning progress 𝜎 and 𝒲 

are set to 40 and 20 time units respectively. We train the networks using Tensorflow 

(Abadi et al., 2016) on a desktop with Intel i5-6500 CPU, 16 GB of RAM, and a single 

NVIDIA Geforce GTX 1050 Ti GPU. 

Simulation environment. 

All experiments are conducted on our Neuro-Inspired COmpanion (NICO) robot (Kerzel 

et al., 2017) using the V-REP robot simulator (Rohmer et al., 2013). NICO is a child-

sized humanoid developed by the Knowledge Technology group of the University of 

Hamburg. NICO is a flexible platform for research on embodied neurocognitive models 

based on human-like sensory and motor capabilities. It stands about one meter tall; its 

body proportions and degrees of freedom resemble that of a three- to four-year-old child. 

Figure 6.4(a) shows the configuration of the environment, including the simulated NICO 

robot sitting in front of a table on top of which a glass is placed and used as the grasping 

target. In order to prevent self-collisions while still allowing for a large workspace, we 

consider learning a grasping policy that controls the shoulder joint and finger joints of the 

right hand, as shown in Figure 6.4(c). The shoulder joint has an angular range of move-

ment of ± 100 degrees. The multi-fingered hand is tendon-operated and consists of 1 

thumb and 2 index fingers with finger joints having an angular range of movement of 

± 160 degrees. All algorithms take as input a 64×32 pixel RGB image obtained from the 

vision sensor whose output is shown in Figure 6.4(b). 

Results. 

We run the algorithms for 10K episodes. Each episode terminates when the target is 

grasped, toppled, or a maximum of 50 time steps is reached. The target position is ran-

domly set to a new graspable position at the start of each episode. 
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Figure 6.4: V-REP-simulated grasp-learning experiment: (a) NICO robot facing a table 

and attempting to grasp a glass randomly placed on the table, (b) the sensory input to the 

learning algorithm, and (c) the joints controlled by the grasping policy, depicted as yel-

low cylinders with one in the shoulder and 3 in each finger. 

The extrinsic reward function is defined as follows:  

𝑟𝑡
𝑒𝑥𝑡  =

{
 

 
+1                           target grasped,                   
−1                           target toppled,                    

−‖𝑐𝑡 − 𝑐ℎ‖          otherwise (dense),            

0                              otherwise (sparse),          

 

where 𝑐𝑡 and 𝑐ℎ are the center points of the target and the hand respectively. We compare 

the performance of off-policy CACLA and DDPG with and without our proposed IM2C 

on learning robotic vision-based grasping in dense and sparse reward settings. Figure 6.5 

shows the episodic reward averaged over 5 random seeds. (We use the term episodic re-

ward to refer to the sum of extrinsic rewards collected over one complete episode.) It can 

be observed that both CACLA+IM2C and DDPG+IM2C achieved a higher average epi-

sodic reward and a better convergence rate than their baseline counterparts at the end of 

training in both reward settings. The effect of IM2C is more evident in the results of 

learning from sparse rewards where CACLA+IM2C and DDPG+IM2C significantly out-

performed their baseline counterparts in learning speed and final performance, as shown 

in Figure 6.5(b) and Table 6.1. We compute the following scoring metrics: (i) Area-

under-Curve (AuC) is the area under the learning curve, normalized by the total area, and 

gives a quantitative measure of learning speed, and (ii) Final Performance (Final Perf) is 

the average episodic reward over the last 500 training episodes. The two metrics are re-

ported in Table 6.1. 

(a)

(b)

(c)



Chapter 6. Integrated Imagination-Arbitration in Self-Organized Latent Space 

104 

 

Figure 6.5: Learning curves of off-policy CACLA and DDPG with and without IM2C on 

robot grasp learning from pixel input in two reward settings: (a) dense reward and (b) 

sparse reward. The curves are smoothed using a sliding window of 250 episodes. Shaded 

regions correspond to one standard deviation. 

Table 6.1: Summary statistics of the simulation results for different experimental set-

tings. 

 CACLA CACLA+IM2C DDPG DDPG+IM2C 

Dense Reward     
AuC 0.379 0.815 0.214 0.554 

Final Perf. -0.5±0.5 0.8±0.1 -1.0±0.3 0.6±0.4 

Sparse Reward     

AuC 0.109 0.440 0.019 0.406 

Final Perf. -0.3±0.2 0.9±0.1 -0.9±0.0 0.6±0.3 

We also compare IM2C to previous methods for improving model-free value estima-

tion with model-based predictions, particularly the state-of-the-art Model-based Value 

Expansion (MVE) method (Feinberg et al., 2018) and the more recent Curious Meta-

Controller (CMC) method (Hafez et al., 2019b), presented in Chapter 4. We implement 

MVE-DDPG from (Feinberg et al., 2018) and DDPG+CMC from (Hafez et al., 2019b) 

with a prediction horizon H of 2 and 3 steps respectively, and find these values to produce 

the best results. Figure 6.6 shows the average episodic reward over 5 random seeds. The 

three methods have a comparable learning performance over 3K episodes in the dense 

reward setting (Figure 6.6(a)). The episodic reward of DDPG+IM2C and DDPG+CMC, 

however, continues to increase faster than that of MVE-DDPG, reaching 0.59 and 0.45 

respectively. In the sparse-reward setting (Figure 6.6(b)), MVE-DDPG shows no clear 

improvement in performance, while DDPG+IM2C and DDPG+CMC are able to improve

(a) (b)
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Figure 6.6: Learning curves of DDPG+IM2C, DDPG+CMC, and MVE-DDPG on robot 

grasp learning from pixel input in two reward settings: (a) dense reward and (b) sparse 

reward. The curves are smoothed using a sliding window of 250 episodes. Shaded re-

gions correspond to one standard deviation. 

their performance, converging to a policy of 0.62 and 0.24 episodic reward respectively. 

We believe the poor performance of MVE is primarily due to incorporating imperfect 

predictions in learning value estimates, as opposed to the reliability-driven model use of 

IM2C. Besides, CMC and MVE use fixed H, increasing the risk of compounding predic-

tion errors, while IM2C enables automatic selection of H that is fully adaptive to the local 

reliability of the model. 

Last but not least, we evaluate our proposed I2A framework, which combines experi-

ence imagination with reliability-based arbitration, by conducting an ablation study to 

analyze the influence of individual components of I2A, namely the arbitration and imagi-

nation components. This is performed by comparing I2A to IM2A that represents the ar-

bitration component and to LA-Imagination (see Section 6.3) that represents the imagina-

tion component. The average episodic reward of running the three algorithms over 5 ran-

dom seeds in the two reward settings is shown in Figure 6.7. It is clear that augmenting 

the replay memory with latent-space imagined transitions using LA-Imagination signifi-

cantly improves the data efficiency of DDPG that completely failed to show any progress 

(see Figure 6.5). Compared to DDPG+LA-Imagination, DDPG+IM2C leads to a higher 

episodic reward, which again confirms the effectiveness of the meta controller in adap-

tively arbitrating between model-based and model-free control systems and choosing 

more informed exploratory actions, progressing faster to a good grasping policy. 

DDPG+I2A, on the other hand, yields the best results through combining the advantages 

of the two approaches using the same underlying self-organized latent space. 

(a) (b)
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Figure 6.7: Learning curves of DDPG+I2A, DDPG+IM2C, and DDPG+LA-Imagination 

on robot grasp learning from pixel input in two reward settings: (a) dense reward and (b) 

sparse reward. The curves are smoothed using a sliding window of 250 episodes. Shaded 

regions correspond to one standard deviation. 

6.4.2     Evaluation on a Real Robot 

For the experiments with the physical NICO, the simulation environment was recreated 

as faithfully as possible: The simulation is based on a URDF model of NICO. Therefore, 

there is no difference in the simulated and the real robot. Both the table and NICO's seat 

have the same height as in the simulation, allowing for a direct transfer of the arm pose 

and, more importantly, the trained neural model. Furthermore, the color of the table is 

identical to the color in the simulation. A grasping object is slightly different in geome-

try, to allow for more stable grasps, but has the same color. To achieve the same per-

spective for the visual input, an external camera was mounted on the table with a view 

similar to the simulated camera. Figure 6.8 shows NICO in the experimental setup.  

While the grasping object’s position in the simulation environment can be manipulat-

ed directly and the virtual NICO is only used for grasp learning and execution, in the real 

environment, NICO is also used to place the object at an exact and known position on 

the table. Each grasping trial consists of the following steps: Starting from the initial po-

sition (shoulder at zero degrees), the grasping object is put into NICO's hand (if it was 

not already in the hand), the hand closes and NICO puts the object at a predetermined 

position on the table, the position is memorized and NICO moves the hand back to the 

starting position. Now the actual grasping trial starts by taking an image with the exter-

nal camera and feeding it into the actor network that outputs a motor command to NICO. 

After the movement is executed, either the object is grasped, or if the hand is too far

(a) (b)



6.4. Experiments 

107 

 

Figure 6.8: NICO experimental setup during a grasping test trial:  From left to right: the 

exocentric and the egocentric (inset) views of the initial, intermediate, and full-grasp 

configurations. 

from the object, another image is recorded, and the process is repeated. Up to eight con-

secutive grasping steps are performed before the attempt is categorized as failed, and the 

object is retrieved using its initially stored position. 

To compare the performance of the algorithms on the real NICO robot, we take the 

best-performing policy network of each algorithm, trained in simulation, and then deploy 

it on the real robot. We perform 25 test episodes, each with a random graspable position. 

To achieve a seamless simulation-to-real transfer of the trained policy networks and to 

compensate for the slightly different alignment of the simulated and real cameras, we 

force the encoder part of the critic-autoencoder network to map one image from the sim-

ulation environment and one image from the real world with the same joint configuration 

and environmental setup into a similar latent representation. This is done by minimizing 

the Euclidean distance between latent representations, at the output of the encoder, cor-

responding to images from the simulated and real-world environments with supervised 

learning over a training set of 2K simulated-real image pairs. The encoder then computes 

the latent state to be used as input to the policy network during testing. No fine-tuning of 

the trained policy networks is performed. We report the success rate (the proportion of 

the successful test episodes) for each algorithm in Table 6.2. 
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Table 6.2: Success rate of the trained policy networks on the real robot. 

Environment DDPG DDPG+CMC MVE-DDPG DDPG+IM2C DDPG+I2A 

Dense reward 16% 68% 48% 80% 88% 

Sparse reward 12% 44% 12% 76% 76% 
 

6.5     Conclusion 

We presented a novel robot dual-system motor learning approach that is behaviorally 

and neurally plausible, data-efficient, and competitive with the state of the art. Our ap-

proach adaptively arbitrates between model-based and model-free decisions based on the 

spatially and temporally local reliability of a learned world model. The reliability esti-

mate computed locally for every region of a learned latent space is used to make the me-

ta-decision as well as to enable an adaptive-length model rollout for plan optimization 

during model-based control. We derive an intrinsic reward using the reliability estimate 

to encourage collecting experience data that improves the model. To further improve the 

data efficiency, we leverage the reliable multi-step model predictions by combining arbi-

tration with experience imagination where imagined experiences collected from model 

rollouts are used as additional training data for the control policy. 

We show that our approach learns better vision-based control policies than baseline 

and state-of-the-art methods in dense and sparse reward environments. Policy networks 

trained in simulation with our approach are shown to perform well on the physical robot 

without fine-tuning of the policy parameters. Our results suggest that model reliability is 

essential for dual-system approaches involving online meta-decisions to determine 

which of the model-based and model-free systems to query for an action and for generat-

ing imagined experience data that includes less overall prediction error. Our approach 

can be used with any off-policy reinforcement learning algorithm, which we demonstrat-

ed with off-policy CACLA and DDPG. 
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Chapter 7  
 

Conclusion 

Developing mechanisms of intrinsic motivation to improve internal knowledge of the 

world dynamics and using them for learning complex robotic visuomotor skills is a chal-

lenging but important step forward on the path towards building truly autonomous ro-

bots. In this thesis, we proposed approaches that tackle some of the main issues in this 

area. Here, we particularly describe how each of these approaches addresses each of the 

research objectives of the thesis. 

To address the objective of providing a directed exploration strategy, we proposed a 

spatially and temporally local learning progress defined as the time derivative of the av-

erage prediction error of a local dynamics model, as presented in Chapter 2. The learning 

progress computed locally in each self-organized sensory region is used to derive an in-

trinsic reward to encourage the RL agent to direct its exploration from regions of highly 

predictable sensorimotor dynamics to regions of less predictable dynamics, resulting in 

directed and data-efficient exploration strategy. The directed exploration is then integrat-

ed with a continuous actor-critic architecture and shown to lead to fast and stable learn-

ing of control policies, particularly in environments with sparse rewards. 

To address the objective of reducing the sample complexity of learning vision-based 

control policies, we proposed in Chapter 3 two neural architectures for learning efficient, 

task-relevant state representations from high-dimensional observations. A hierarchical 
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SFA network is first proposed for unsupervised learning of low-dimensional state repre-

sentations that encode important invariances in the raw observations. The presented 

SFA-based ICAC algorithm, which uses the SFA-trained state representations and the 

spatially and temporally local learning progress, is shown to achieve near-optimal per-

formance on learning vision-based robotic reaching policies in a relatively small number 

of training episodes, reducing the sample complexity. Second, a novel jointly trained 

deep neural architecture for learning a low-dimensional state representation is proposed. 

This representation, which is trained to minimize the joint autoencoder’s reconstruction 

and critic’s value prediction loss, captures the information necessary to reconstruct the 

original input and recognize states that lead to high rewards and is therefore used as in-

put to the actor network. Training the actor directly on the low-dimensional representa-

tion allows for more sample-efficient learning of the target policy. The local world mod-

els whose predictions are used for computing the learning progress-based intrinsic re-

ward are trained in the space of the jointly optimized state representations. The resulting 

algorithm, which we call Deep ICAC, is shown to outperform the state-of-the-art and 

baseline algorithms on learning robot reaching and grasping skills from raw pixels in 

simulation and in the real world. 

To address the objective of designing an unbiased model reliability estimate for adap-

tive arbitration between model-based and model-free control, we proposed in Chapter 4 

to train a model of the world dynamics in a learned latent space and derive an intrinsic 

reward based on the learning progress of the model, representing the agent’s curiosity to 

take actions that lead to data that improves the model. The learning progress is used as 

an unbiased reliability estimator that underlies the decision which of the model-free and 

model-based control systems to query for an action at each time step, resulting in the Cu-

rious Meta-Controller algorithm. Unlike previous works, our algorithm considers the 

reliability of the model when arbitrating between the two control systems. The experi-

mental results show that using the curious meta-controller improves the efficiency of 

learning pixel-level robotic reaching and grasping policies. 

To address the objective of reliably generating imagined experiences, we proposed in 

Chapter 5 a learning-adaptive imagination approach that performs experience imagina-

tion in a learned latent space. In our approach, the latent space is self-organized into lo-

cal regions with local dynamics models, and a running average of model prediction error 

is maintained for each region. Imagined rollouts are generated under the current model 



Chapter 7. Conclusion 

111 

with probability inversely proportional to the average error of the current region, and the 

imagination depth is adaptively determined by the average error of the traversed regions. 

To encourage collecting data that improves model predictions necessary for imagination, 

we use an intrinsic reward based on the spatially and temporally local learning progress. 

In order to use the latent-space imagined experiences in the training, the experience re-

play buffer is divided into pixel-space and latent-space buffers for storing real and imag-

ined experiences respectively. As a result, the policy is trained on additional imagined 

data generated reliably by rolling out the learned models in regions of low average pre-

diction errors, meeting our objective. The results show that our approach achieves better 

final performance than the no-imagination and static-imagination baselines, particularly 

for robotic grasping in sparse reward environments. 

To address the last objective of developing a dual-system learning approach that ena-

bles an adaptive-length model rollout for plan optimization during model-based control, 

we proposed in Chapter 6 to improve upon the Curious Meta-Controller approach pre-

sented in Chapter 4 by incrementally self-organizing the space of latent state representa-

tions and computing the reliability estimate locally for every region of the self-organized 

latent space. Instead of using a fixed time horizon, rolling out the model until the esti-

mated reliability is low ensures that imperfect model predictions are not used in compu-

ting the optimal plan and reduces the computational cost associated with gradient-based 

planning. An intrinsic reward is derived using the reliability estimate to encourage col-

lecting experience data that improves the model. To further improve the data efficiency, 

we leverage the reliable multi-step model predictions by combining arbitration with ex-

perience imagination where imagined experiences collected from model rollouts are used 

as additional training data for the control policy. The results show that our dual-system 

approach learns better vision-based control policies than baseline and state-of-the-art 

methods in dense and sparse reward environments. Also, policy networks trained in sim-

ulation with our approach are shown to perform well on the physical robot without fine-

tuning of the policy parameters. 

While the approaches presented in this thesis have contributed towards reducing the 

sample complexity of learning motor skills purely from the raw visual input and with no 

pretrained control policies in simulation and the real world, they incur an increased 

computational cost. This cost is basically introduced by the process of updating the 

growing self-organizing neural network (the ITM network) each time a state transition is 
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observed, which is necessary for the computation of our local learning progress. Particu-

larly, this involves the matching step that scales with the number of nodes in the network 

and the edge adaptation step that scales with the average number of neighboring nodes. 

All other operations are independent of the number of nodes. This incurred cost is mini-

mal when the average size of the self-organizing network is small, which can be con-

trolled through the desired mapping resolution hyperparameter. 

All predictive models we used in this thesis as the basis for computing the learning 

progress and for performing action planning are single-step models. We believe that our 

proposed approaches can be extended to the case of a multi-step model, instead of the 

single-step model, by incorporating temporal abstractions, such as options (Sutton et al., 

1999; Precup, 2000). Similarly, the control policy and model neural networks used in 

our approaches do not have a hierarchical structure which is naturally present in human 

decision-making, particularly for planning high-level actions over long time horizons. 

Integrating such a structure into our approaches would allow for learning control at mul-

tiple time scales in hierarchically structured tasks. Another promising direction for future 

work is to generalize our approaches to environments with stochastic dynamics. 

Last but not least, our results suggest that model reliability is essential for dual-

system approaches involving online arbitration between model-based and model-free 

control systems. This indicates that our reliability-based arbitration approach could have 

an important role to play in other problem domains, such as controlling semi-

autonomous vehicles that pose strict safety constraints and require a mediator to arbitrate 

between the human driver and the automated system.  

Finally, the approaches presented in Chapters 5 and 6 build a bridge between intrinsic 

motivation and experience imagination in robot decision-making, which we have shown 

to significantly improve the sample efficiency of robotic visuomotor skill learning. We 

believe that this will stimulate future research to investigate the feasibility and potential 

of utilizing the approaches in other robot learning applications. 
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List of Abbreviations 

A3C  Asynchronous Advantage Actor-Critic 

AuC  Area-under-Curve 

CACLA  Continuous Actor-Critic Learning Automaton 

CMC  Curious Meta-Controller 

CNN  Convolutional Neural Network 

DDPG  Deep Deterministic Policy Gradient 

DoF  Degree of Freedom 

DQN  Deep Q-Network 

I2A  Integrated Imagination-Arbitration 

ICAC  Intrinsically motivated Continuous Actor-Critic 

IM2C  Intrinsically Motivated Meta-Controller 

ITM  Instantaneous Topological Map 

LP  Learning Progress 

MDP  Markov Decision Process 

MPC  Model Predictive Control 
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MVE  Model-based Value Expansion 

NICO  Neuro-Inspired Companion 

PER  Prioritized Experience Replay 

RL  Reinforcement Learning 

SFA  Slow Feature Analysis 

SOM  Self-Organizing Map 

SR  Successor Representation 

TD  Temporal Difference 

TDM  Temporal Difference Model 
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Appendix B  
 

Supplementary Algorithms 

Algorithm 8 CACLA (Van Hasselt, 2012) 

1: Initialize actor and critic parameters 𝜃𝜇 and 𝜃𝑉 

2: for 𝑡 ∈ {0,1,2,… } 𝐝𝐨 

3: Choose 𝑎𝑡 ~ 𝜋: 𝜋(𝑎𝑡|𝑠𝑡) =
1

√2𝜋𝜎
𝑒−(𝑎𝑡− 𝜇(𝑠𝑡|𝜃

𝜇))
2
2𝜎2⁄  

4: Perform 𝑎𝑡, observe 𝑟𝑡+1 and 𝑠𝑡+1 

5: 𝛿𝑡 = 𝑟𝑡 +  𝛾𝑉(𝑠𝑡+1|𝜃
𝑉) − 𝑉(𝑠𝑡|𝜃

𝑉) 

6: 𝜃𝑉 ← 𝜃𝑉 + 𝛼𝛿𝑡∇𝜃𝑉𝑉(𝑠𝑡|𝜃
𝑉) 

7: if 𝛿𝑡 > 0 then 

8:             𝜃𝜇 ← 𝜃𝜇 + 𝛽(𝑎𝑡 − 𝜇(𝑠𝑡|𝜃
𝜇))𝛻𝜃𝜇𝜇(𝑠𝑡|𝜃

𝜇) 

9: end if 

10:   if 𝑠𝑡+1 is terminal then 

11:             Reinitialize 𝑠𝑡+1 

12: end if 

13: end for 

 

 

 

 

 



Appendix B. Supplementary Algorithms 

116 

 

 

 

 

 

Algorithm 9 DDPG (Lillicrap et al., 2016) 

1: Randomly initialize critic network 𝑄(𝑠, 𝑎|𝜃𝑄) and actor 𝜇(𝑠|𝜃𝜇) 

2: Initialize target network 𝑄′ and 𝜇′ with weights 𝜃𝑄
′
← 𝜃𝑄, 𝜃𝜇

′
← 𝜃𝜇 

3: Initialize replay buffer 𝑅 

4: for episode = 1, M do 

5: Initialize a random process 𝒩 for action exploration 

6: Receive initial observation state 𝑠1 

7: for t = 1, T do 

8: Select 𝑎𝑡 = 𝜇(𝑠𝑡|𝜃
𝜇) according to the current policy and exploration noise 

9: Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and observe new state 𝑠𝑡+1 

10: Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝑅 

11: Sample a random minibatch of N transitions (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) from 𝑅 

12: Set 𝑦𝑖 = 𝑟𝑖 +  𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃
𝜇′)|𝜃𝑄′) 

13: Update critic by minimizing the loss 𝐿 =
1

𝑁
∑ (𝑦𝑖 − 𝑄(𝑠𝑖, 𝑎𝑖|𝜃

𝑄))
2

𝑖  

14: Update the actor policy using the sampled policy gradient: 

∇𝜃𝜇  𝐽 ≈
1

𝑁
∑ ∇𝑎𝑄(𝑠, 𝑎|𝜃

𝑄)|𝑠= 𝑠𝑖,𝑎=𝜇(𝑠𝑖) 
𝑖

∇𝜃𝜇𝜇(𝑠|𝜃
𝜇)|𝑠=𝑠𝑖 

15: Update the target networks (with 𝜏 ≪ 1): 

𝜃𝑄
′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′
 

𝜃𝜇′ ← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′ 

16: end for 

17: end for 
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Algorithm 10(a) Proportional PER (Schaul et al., 2016) for DDPG 

1: Input: minibatch 𝑘, step-size 𝜂, replay period 𝐾 and size 𝑁, exponents α and β 

2: Initialize replay memory 𝑅 = ∅, ∆𝑐= 0, ∆𝑎= 0, 𝑝1 = 1 

3: Observe initial state 𝑠1 

4: for t = 1 to T do 

5: Choose 𝑎𝑡 = 𝜇(𝑠𝑡|𝜃
𝜇) and observe 𝑟𝑡 and 𝑠𝑡+1 

6: Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝑅 with maximal priority 𝑝𝑡 = max
𝑖<𝑡

𝑝𝑖 

7: if 𝑡 ≡ 0 (mod K) then 

8: for 𝑗 = 1 to 𝑘 do 

9: Sample transition 𝑗~𝑃(𝑗) = 𝑝𝑖
𝛼 ∑ 𝑝𝑘

𝛼
𝑘⁄  

10: Compute importance-sampling weight 𝑤𝑗 = 1 (𝑁 · 𝑃(𝑗))𝛽⁄  

11: Compute TD-error 𝛿𝑗 = 𝑟𝑗 +  𝑄′(𝑠𝑗+1, 𝜇′(𝑠𝑗+1|𝜃
𝜇′)|𝜃𝑄′) − 𝑄(𝑠𝑗, 𝑎𝑗|𝜃

𝑄) 

12: Update transition priority 𝑝𝑗 ← |𝛿𝑗| 

13: Accumulate critic weight-change ∆𝑐← ∆𝑐 + 𝑤𝑗 . 𝛿𝑗 . ∇𝜃𝑄𝑄(𝑠𝑗 , 𝑎𝑗|𝜃
𝑄) 

14: Accumulate actor weight-change 

∆𝑎← ∆𝑎 + 𝑤𝑗 . ∇𝑎𝑄(𝑠, 𝑎|𝜃
𝑄)|𝑠= 𝑠𝑗,𝑎=𝜇(𝑠𝑗)∇𝜃𝜇𝜇(𝑠|𝜃

𝜇)|𝑠=𝑠𝑗  

15: end for 

16: Update weights 𝜃𝑄 ← 𝜃𝑄 + 𝜂. ∆𝑐, 𝜃
𝜇 ← 𝜃𝜇 + 𝜂. ∆𝑎, reset ∆𝑐= ∆𝑎= 0 

17: Update target networks 𝜃𝑄
′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′
, 𝜃𝜇′ ← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′ 

18: end if 

19: end for 

 

Algorithm 10(b) Proportional PER (Schaul et al., 2016) for CACLA 

1: Input: minibatch 𝑘, step-size 𝜂, replay period 𝐾 and size 𝑁, exponents α and β 

2: Initialize replay memory 𝑅 = ∅, ∆𝑐= 0, ∆𝑎= 0, 𝑝1 = 1 

3: Observe initial state 𝑠1 

4: for t = 1 to T do 

5: Choose 𝑎𝑡~𝜋: 𝜋(𝑎𝑡|𝑠𝑡) =
1

√2𝜋𝜎
𝑒−(𝑎𝑡− 𝜇(𝑠𝑡|𝜃

𝜇))
2
2𝜎2⁄  and observe 𝑟𝑡 and 𝑠𝑡+1 

6: Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝑅 with maximal priority 𝑝𝑡 = max
𝑖<𝑡

𝑝𝑖 

7: if 𝑡 ≡ 0 (mod K) then 

8: for 𝑗 = 1 to 𝑘 do 

9: Sample transition 𝑗~𝑃(𝑗) = 𝑝𝑖
𝛼 ∑ 𝑝𝑘

𝛼
𝑘⁄  

10: Compute importance-sampling weight 𝑤𝑗 = 1 (𝑁 · 𝑃(𝑗))𝛽⁄  

11: Compute TD-error 𝛿𝑗 = 𝑟𝑗 +  𝑉(𝑠𝑗+1|𝜃
𝑉) − 𝑉(𝑠𝑗|𝜃

𝑉) 

12: Update transition priority 𝑝𝑗 ← |𝛿𝑗| 

13: Accumulate critic weight-change ∆𝑐← ∆𝑐 + 𝑤𝑗 . 𝛿𝑗 . ∇𝜃𝑉𝑉(𝑠𝑗+1|𝜃
𝑉) 

14: Accumulate actor weight-change ∆𝑎← ∆𝑎 +𝑤𝑗. (𝑎𝑡 − 𝜇(𝑠𝑡|𝜃
𝜇))𝛻𝜃𝜇𝜇(𝑠𝑡|𝜃

𝜇) 

15: end for 

16: Update weights 𝜃𝑉 ← 𝜃𝑉 + 𝜂. ∆𝑐, 𝜃
𝜇 ← 𝜃𝜇 + 𝜂. ∆𝑎, reset ∆𝑐= ∆𝑎= 0 

17: end if 

18: end for 
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Algorithm 11 MVE-DDPG (Feinberg et al., 2018) 

1: Initialize targets 𝜃𝑄
′
← 𝜃𝑄, 𝜃𝜇

′
← 𝜃𝜇 

2: Initialize the replay buffer 𝛽 ← ∅ 

3: while not tired do 

4: Collect transitions 𝜏 = (𝑠, 𝑎, 𝑟, 𝑠′) from any exploratory policy 

5: Add observed transitions to 𝛽 

6: Fit the dynamics 𝑓 ← argmin
𝑓

𝔼
𝛽
[‖𝑓(𝑠, 𝑎) − 𝑠′‖2] 

7: for a fixed number of iterations do 

8: Sample 𝜏0~𝛽: 𝜏0 = (𝑠−1, 𝑎−1, 𝑟−1, 𝑠0) 

9: Update 𝜃𝜇 with ∇𝜃𝜇𝑄(𝑠, 𝜇(𝑠|𝜃
𝜇)|𝜃𝑄)|𝑠=𝑠−1  

10: Generate future transitions under the approximate model 𝑓 for 𝑡 ∈ [𝐻 − 1] 

𝜏𝑡 = (𝑠𝑡−1, 𝑎𝑡−1, 𝑟(𝑠𝑡−1, 𝑎𝑡−1), 𝑓(𝑠𝑡−1, 𝑎𝑡−1)): 𝑎𝑡−1 = 𝜇(𝑠𝑡−1|𝜃
𝜇′) 

11: Update 𝜃𝑄 by gradient descent on 

1

𝐻
∑ (𝑄(𝑠̂𝑡, 𝑎̂𝑡|𝜃

𝑄) − (∑ 𝑘−𝑡𝑟̂𝑘 + 𝐻
𝐻−1

𝑘=𝑡

𝑄(𝑠̂𝐻, 𝑎̂𝐻|𝜃
𝑄′)))

2

,

𝐻−1

𝑡=−1

 

𝑤ℎ𝑒𝑟𝑒 𝑠̂𝑡 = 𝑓̂(𝑠𝑡−1, 𝑎𝑡−1), 𝑎̂𝑡 = 𝜇 (𝑠̂𝑡|𝜃
𝜇′
) , 𝑟̂𝑘 = 𝑟(𝑠̂𝑘 , 𝑎̂𝑘) 

12: Update targets 𝜃𝑄
′
 and 𝜃𝜇

′
 with some decay 

13: end for 

14: end while 
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al-System Motor Learning with Intrinsically Motivated Meta-Control and Latent-

Space Experience Imagination. Submitted to Robotics and Autonomous Sys-

tems—arXiv preprint arXiv:2004.08830. 

 

• Hafez, M. B., Weber, C., Kerzel, M., Wermter, S. (2019). Deep intrinsically mo-

tivated continuous actor-critic for efficient robotic visuomotor skill learning. Pal-

adyn, Journal of Behavioral Robotics, 10(1), 14–29. 

 

Conference Papers 

• Hafez, M. B., Weber, C., Kerzel, M., Wermter, S. (2019). Efficient Intrinsically 
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• Hafez, M. B., Weber, C., Wermter, S. (2017). Curiosity-Driven Exploration En-
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