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Abstract

Traditionally, software requirements engineering involved users through work-
shops, interviews, and observations in the early software development phases.
Although beneficial to software teams, these approaches are challenging to carry
out continuously and can involve only a limited number of users. In recent years,
requirements stakeholders started analyzing explicit user feedback, such as writ-
ten app reviews, and implicit user feedback like app usage data as continuous
sources for requirements-related information. Yet, research highlights that stake-
holders rarely use explicit and implicit user feedback in their decision-making
process because they receive it in large and unfiltered amounts, making a man-
ual analysis unfeasible. As user satisfaction is crucial for the success of an app,
stakeholders need automated approaches for analyzing user feedback to under-
stand user needs and to guide their decision-making. In an interview study, we
found that stakeholders need to know how their apps perform, to identify inno-
vative features efficiently, and to understand reported issues and bugs.
This dissertation introduces requirements intelligence, a framework that con-

tinuously collects, preprocesses, filters, as well as transforms and matches ex-
plicit and implicit user feedback to requirements. The framework aims to gen-
erate insights for stakeholders in an integrated interactive visualization. The
core enablers for requirements intelligence include two main analysis activities on
explicit and implicit feedback: Feedback filtering and feedback to requirements
analysis. Feedback filtering is the activity that identifies requirements-relevant
feedback, such as problem reports, inquiries, and feature requests. Feedback to
requirements extracts the software features users discuss and matches them with
the features as documented on, e.g., app pages. We developed and empirically
evaluated supervised machine learning approaches for both feedback types and
activities. Our approaches rely on crowdsourcing studies for training machine



learning models and benchmarking experiments to identify the optimal machine
learning models.
Based on our requirements intelligence framework, we iteratively developed the

prototype feed.ai. We evaluated feed.ai with a total of 15 stakeholders from a ma-
jor telecommunication company for 12 months. We found that the stakeholders
agreed with 92% of the automated filtering results indicating high accuracy. The
stakeholders found requirements intelligence beneficial for departments working
with user feedback like customer care, marketing, and technology innovation. In
a final survey, ten stakeholders anonymously rated feed.ai ’s functionality, on av-
erage, with 4.1/5 and its usability with 4.3/5. They further reported that feed.ai
helped them to reduce 70% of their time spent on analyzing user feedback, indi-
cating a high effectiveness of our approach.



Kurzfassung

Traditionell werden Nutzer im Anforderungsmanagements in Workshops, Inter-
views und Beobachtungen in den frühen Projektphasen eingebunden. Obwohl das
Anforderungsmanagement von der Einbeziehung der Nutzer mit diesen Ansätzen
profitiert, ist es eine große Herausforderung, diese kontinuierlich durchzuführen.
Nur eine begrenzte Anzahl an Nutzern können auf diese Weise eingebunden wer-
den. In den letzten Jahren haben Stakeholder deswegen damit begonnen ex-
plizites Nutzerfeedback, wie z.B. App-Reviews und implizites Nutzerfeedback, wie
z.B. Nutzungsdaten von Apps zu betrachten. Beide Arten von Feedback dienen
als kontinuierliche Quellen, die wertvolle Informationen für das Anforderungs-
management bereitstellen. Die Forschung zeigt jedoch, dass Stakeholder nur
selten explizites und implizites Nutzerfeedback in ihren Entscheidungsprozess
berücksichtigen. Der Grund ist, dass Nutzerfeedback in großen und ungefilterten
Mengen auftritt, weshalb eine manuelle Analyse erschwert ist. Da die Zufrieden-
heit der Nutzer aber über den Erfolg einer App entscheidet, benötigen Stake-
holder automatisierte Ansätze für die Analyse des Nutzerfeedbacks, die sie dabei
unterstützen, die Bedürfnisse der Nutzer zu verstehen und Entscheidungen zu
treffen. Durch eine Interviewstudie konnten wir belegen, dass Stakeholder wis-
sen müssen, wie ihre App wahrgenommen wird, welche innovativen Funktionen
Nutzer diskutieren und wie sie gemeldete Fehler reproduziert werden können.
Diese Dissertation führt ein Requirements Intelligence Framework ein, das ex-

plizites und implizites Nutzerfeedback kontinuierlich sammelt, verarbeitet, filtert,
sowie transformiert und vergleicht. Ziel des Frameworks ist es, Stakeholdern
neue Erkenntnisse in einer integrierten interaktiven Visualisierung aufzuzeigen.
Die Analysen des expliziten und impliziten Feedbacks sehen dabei zwei Ak-
tivitäten vor. Die Aktivität „Feedback filtern“ identifiziert anforderungsrele-
vantes Feedback, wie zum Beispiel Problemberichte, Anfragen und Wünsche
für neue Funktionen. Die Aktivität „Feedback zu Anforderungen“ identifiziert



Software-Funktionen die Nutzer beschreiben und gleicht diese mit den von Stake-
holdern dokumentierten Funktionen ab. Wir haben beide Aktivitäten durch
maschinelles Lernen umgesetzt und empirisch evaluiert. Hierbei basieren unsere
Lösungsansätze für beide Aktivitäten auf Crowdsourcing-Studien, mit denen wir
die maschinellen Ansätze trainiert haben. Außerdem haben wir durch die An-
wendung von Benchmarks identifiziert, wie wir die maschinellen Ansätze optimal
konfigurieren können.
Basierend auf dem Requirements Intelligence Framework und unseren An-

sätzen haben wir dann den Prototypen feed.ai iterativ entwickelt. Wir haben
feed.ai über 12 Monate zusammen mit insgesamt 15 Stakeholdern eines großen
Telekommunikationsunternehmen evaluiert. Wir fanden heraus, dass die Stake-
holder den Ergebnissen des automatisierten Filteransatzes zu 92% zustimmten.
Die Stakeholder berichteten außerdem darüber, dass die Abteilungen am meis-
ten von feed.ai profitieren können, die mit Nutzerfeedback arbeiten, z.B. das
Marketing oder das Customer-Relationship. In einer abschließenden Befragung
bewerteten zehn Stakeholder die Funktionalität von feed.ai mit 4,1/5 und die
Benutzerfreundlichkeit mit 4,3/5. Weiterhin konnten sie mit feed.ai 70% ihrer
Zeit für die Analyse des Nutzerfeedbacks einsparen.
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Chapter 1

Introduction

A painter should begin every canvas with a wash of black,
because all things in nature are dark except where exposed
by the light.

Leonardo da Vinci

1.1 Problem Statement

Requirements define a potential new system that must be capable of solving a
specific problem or need [114]. These requirements are defined by Stakeholders—
a group of people that are involved in deciding the system requirements—such as
users, customers, developers, and project managers [85]. Stakeholders typically
express their needs for that system in natural language, although that language
may be ambiguous as each stakeholder has a different perspective and background
[60]. Requirements engineering is the process of formulating, documenting, and
systematically maintaining software requirements [131]. However, as technical
issues may arise during the development or the needs of stakeholders may evolve,
requirements engineering is not a single-phase process. On the contrary, require-
ments engineering is a continuous process that must adapt to change [60]. Re-
quirements elicitation is the step that identifies requirements from stakeholders.
Originally, requirements elicitation included users in the software development
life cycle by, e.g., performing face-to-face interviews, workshops, and A/B testing
[179, 198, 261, 269]. Although these approaches are helpful in early development
phases, they only have limited value when trying to continuously identify user
needs because they can only involve few users and are only carried out from time

1



Chapter 1 Introduction

to time [47, 148]. In this work, we distinguish between the term stakeholder (e.g.,
developer and project manager) and the term user, who is the end-user of the
system. In the following, we illustrate the risk of not continuously involving users
in the area of mobile app development.

As of today, it is hard to imagine a business or a service that does not have
any app support—may it be a native, a cross-platform, or a responsive web app.
However, the market for mobile apps is highly competitive and dynamic. In
the third quarter of 2018, the two leading app stores, the Google Play Store
and the Apple AppStore, count over 4 million apps [239]. About 94% apps in the
Google Play Store and about 88% apps in the Apple AppStore are freely available
[238]. With that many free apps and services such as one-click installations from
a desktop computer, the hurdle to download and test any app is low. As a
side-effect, the total number of app downloads count as high as hundreds of
billions over the last years. The number of existing apps and the number of their
downloads are only a glimpse toward the market and its competition created in
recent years.

App development organizations face many, but two major challenges to be suc-
cessful or even survive in the market. One major challenge is visibility—or, in
other terms, a high rank in search results. When users search for a new app,
they see many alternatives. For example, when searching for “email client” in
the Google Play Store, the store returns and shows 250 apps1. As comparing
all the results of a search query is tedious, users usually only pay attention to
the first few visible results [116, 226, 233]. The second major challenge is user
satisfaction. Users who are unsatisfied with certain aspects of an app are likely to
look for alternatives [14, 74, 256]. Therefore, dissatisfaction can lead to the fall of
even previously popular and successful apps [139, 256]. In this environment, con-
tinuously monitoring and understanding the changing needs and habits of users
is indispensable for the successful survival and evolution of the app. Stakeholders
can retrieve and analyze user satisfaction in explicit and implicit user feedback
[119, 153, 184].

Explicit user feedback is written feedback about the users’ perception and opin-
ion of an app. It is an essential source of information for stakeholders for two
reasons. First, besides users considering only the first few apps in the search

1as of the 15th of September
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results, they also consider the reviews of other users when comparing alterna-
tives [139]. App stores allow users to review apps with a freely-written text and
by attaching a rating of one to five stars. Second, user feedback is a helpful
resource for stakeholders to understand the users’ opinions as it usually contains
information such as user experience, problem reports, and feature requests [99,
187]. Apps with more and highly rated reviews get a better ranking in the app
stores leading to more visibility and an increased potential in sales and download
numbers [73]. User reviews are not a scarce source. As of September 2019, the
app WhatsApp [254] counts more than 90 million app reviews considering both
major app stores. In general, popular apps such as Facebook ’s main app [66],
receive about 4,000 reviews daily [187]. Therefore, if stakeholders collect user
feedback over a long period, they can not only learn the users’ current opinion
but also understand how it developed over time. Alas, the amount of user re-
views makes a manual analysis for stakeholders unfeasible. Nevertheless, their
number and rich content make them a promising candidate for automated anal-
ysis. By addressing user feedback in the development life cycle, stakeholders can
improve user’s satisfaction with the app and therefore foster more and highly
rated reviews [12, 107].
Implicit user feedback collects the usage data of apps and reports on the real

behavior of the user. State of the art approaches either log low-level execution
events (e.g., stack traces and method calls to augment crash reports) [108], or
collect and visualize general high-level usage information (such as the app acti-
vation time, location, and device) [27, 251, 259]. However, if we combine usage
data with context information such as the location, the name of the current view,
and version of the currently running app, stakeholders can use that information
to gain insights into app usage behavior. These insights stretch from simple ideas
such as when and how often the app is used to more advanced insights such as
what are the steps to reproduce for crashing and non-crashing bugs [22, 157].
However, identifying and understanding user needs and satisfaction is a difficult

task which, among others, faces the following challenges:

1. High amount of unstructured and noisy user feedback. Pagano and
Maalej [187] analyzed the 25 top free and 25 top paid apps from each of the
22 categories in Apple AppStore (as of 2012)—1,100 apps in total. When
considering these top apps, they receive, on average, 22 reviews per day.
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Free apps receive a significantly higher amount of reviews (∼37 reviews/-
day) than paid apps (∼7 reviews/day); popular apps such as Facebook
receive about 4,000 reviews each day. Further, when looking into user feed-
back apps receive on Twitter, Guzman et al. [99] show that popular apps
receive about 31,000 daily user feedbacks on average. Such numbers make
it difficult for stakeholders, particularly those with a popular app in the
market, to employ a manual analysis on user feedback to understand their
users’ needs [98]. Pagano and Maalej [187], as well as Guzman et al. [99]
show that more than 70% of the user feedback is not related to requirements
engineering and therefore considered as noise.

2. Diversity of feedback channels and sources. Users can express feed-
back explicitly and implicitly. For explicit user feedback, app reviews on
app distribution platforms are the most crucial source for requirements en-
gineering as their rating and amount have a direct impact on the rank and,
therefore, the visibility of the app [73, 139]. Nevertheless, there are other
channels, such as Twitter or forums, where users give informative feedback
[99, 176, 180, 257]. Similar to the findings of Pagano and Maalej [187], who
analyzed app stores, Guzman et al. [100] show that about 42% of tweets
addressing an app are improvement requests and are, therefore, relevant
information for stakeholders. In contrast, implicit user feedback consid-
ers app usage data that represents the real behavior of the users. Usage
data is a series of event-based data triggered by user interactions with a
device that we can enrich with context data. We can gather this type of
feedback with hardware sensors such as the GPS signal or software sensors
that can track information like clicks and scrolling [117]. Therefore, while
explicit user feedback is natural language, implicit user feedback is a series
of events. As a consequence, we need different analysis methods for both
types of feedback to cope with the diversity of the data.

3. Different stakeholders need different types of feedback analysis.
Research shows that stakeholders long for automated analysis of user feed-
back [59, 115, 119, 151, 184, 234, 249] as they see many opportunities.
These opportunities encompass, for example, less manual effort, quicker
identification and resolution of bugs, and getting inspiration for new fea-
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tures. However, software projects often have diverse stakeholders and roles,
such as developers, project managers, product owners, and users. When
analyzing user feedback to integrate the analysis results in the development
life cycle, each stakeholder may have different information needs. In a pub-
lished study [151], we interviewed nine stakeholders covering different roles,
such as software developers, requirements engineers, and project managers,
to understand how we should present user feedback. All of the intervie-
wees agreed that they need help to filter noisy user feedback (e.g., “great
app.”), but they have different needs when it comes to the representation
of detailed analysis results. For project managers, it is more important to
see a few charts summarizing the overall performance of the software and
to compare it with, e.g., previous releases or versions on different platforms
(e.g., Android vs. iOS). Stakeholders in the requirements engineering pro-
cess want inspiration for the release plan by understanding requests for new
features but also want to know what to improve based on problem reports.
Software developers, on the other hand, are more interested in the details
of each app review, including information like a description of a problem
attached with details about the affected hardware and software version.

1.2 Objectives and Contribution

In this work, we aim to support stakeholders to understand their users’ needs
and in their decision-making process by automatically analyzing user feedback.
We analyze explicit and implicit user feedback to provide analytics insights into
users’ opinions and needs. For this, we introduce requirements intelligence, a
framework about the analyses of both feedback types, and an integrated interac-
tive visualization. Based on qualitative studies, we identified stakeholder needs
for automated analysis of user feedback and developed the feed.ai prototype. We
evaluated feed.ai with a major telecommunication company for over 12 months.
In the following, we summarize our contributions in more detail:

Requirements intelligence. As to the best of our knowledge, there is no
standard definition of requirements intelligence we attempt to define and scope
that term in Chapter 4. For defining the term, we look into the related work of re-
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quirements engineering, software analytics, and business intelligence & analytics,
which we consider closely related fields. We then draw parallels to requirements
intelligence and distinguish more clearly between these fields.

Besides defining the term, we also introduce a requirements intelligence frame-
work. The core enablers for the framework are the analysis of explicit and im-
plicit user feedback, which we realized with machine learning approaches. As the
analysis of both feedback types follows a similar machine learning approach, we
contribute with the description of our machine learning pipeline. The framework
includes three activities for each type of user feedback. The first activity is about
data collection and preprocessing. Part of this activity is getting a quantitative
and qualitative understanding of the data. The second activity, feedback fil-
tering, extracts requirements-relevant user feedback for stakeholders. The third
activity, feedback to requirements, extracts features users write about and use,
and matches them with requirements (features) stakeholders document. Finally,
stakeholders can get analytical insights into user feedback in the integrated in-
teractive visualization that combines the analysis results of both feedback types.

In Chapter 3, we motivate the requirements intelligence framework with two
qualitative studies that explore stakeholder needs for analyzing user feedback. We
summarize related work and report on an interview study, both investigating user
feedback usefulness and challenges for stakeholders for including user feedback in
their work. The studies encompass, in total, the opinions and experiences of 90
stakeholders who generally agree that they need an automated analysis of user
feedback to improve their app continuously and to stay competitive in the market.

Automated analysis of explicit user feedback. As stated earlier, popu-
lar apps receive written user feedback thousandfold daily. As this feedback can
come from different platforms, in different languages, in diverse quality, and as
it is usually noisy, stakeholders need automated approaches to get access to the
feedback that is relevant for them.

Chapter 5 concerns the second requirements intelligence activity, feedback fil-
tering, and presents an approach that filters user feedback from app stores and
twitter in the English and Italian languages. In total, we collected more than
six million app reviews and tweets, out of which we sampled about 6,000 English
app reviews, 10,000 English tweets, and 15,000 Italian tweets. Participants in a
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crowdsourcing study then labeled the sampled data into the categories problem
report, inquiry, and irrelevant. We then applied traditional machine learning and
deep learning to find the best configuration for the automated categorization.
Our study shows that there is no single best approach for the categorization and
that if stakeholders want to support multiple languages, they have to put more
effort into machine learning feature extraction. After checking the results against
a test set, we achieved F1 scores of up to .89 with a ROC AUC score of .86,
confirming the validity of the results.

Chapter 6 addresses the third requirements intelligence activity, which maps
the requirements-relevant user feedback to features. In this chapter, we present
an approach that identifies the features users discuss in feedback and the features
stakeholders document on app pages. In a final step, the approach matches the
features users discuss with those stakeholders document to generate indicators,
for example, for popular and missing features. For identifying the stakeholder
documented features, we created an evaluation set of ten app descriptions cov-
ering 197 manually extracted features in total. For identifying features users
discuss, we selected the 400 most recent reviews from five apps in our data set
and manually extracted 244 features. We compared our automated approach
to state of the art and found that for the extraction from app descriptions, we
achieve an F1 score of .46. For extracting features users address in app reviews,
we achieve an F1 score of .35. Both approaches improve the state of the art.

Automated analysis of implicit user feedback. Besides the written opin-
ion of users, they can also provide feedback in the form of their usage behavior.
Implicit user feedback analyzes user interactions with a device and the usage
context. In contrast to explicit user feedback, implicit user feedback does not
report on the subjective perception of users but their real behavior. Therefore,
this feedback type can provide truthful and rich insights into how users use apps.
However, already a few users can generate a million interaction events, making a
manual analysis of this feedback unfeasible.

Chapter 7 concerns the second requirements intelligence activity, feedback fil-
tering, and presents a study that filters user implicit feedback for the usage con-
text. The approach focuses on a rather hard problem for identifying the usage
context, which is an automated identification of private and professional device
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usage. More straightforward context filters can be, e.g., identifying the user’s
location, which some APIs like the Google Maps API already provide. We per-
formed a crowd-study with 18 participants, who labeled their mobile device usage
for two weeks. The participants generated more than 88,000 context events and
6,486 labeled sessions. We then applied machine learning based on the collected
and labeled context data to find the best configuration for the classification into
private and professional device usage. We further experimented with a mini-
mization of the context event types to foster user privacy. For the within-users
analysis, we achieved an F1 score of .94 using a simple Decision Tree classifier.
In our between-users analysis, we achieved an average F1 score of .95 using all
context events and .87 using the minimized number of context types.

Chapter 8 addresses the third requirements intelligence activity, which maps
the requirements-relevant user feedback to features. The approach aims to iden-
tify the app features user use automatically based only on their interactions with
the device. For that, we ran a crowd-based study for 18 days, including 55 partic-
ipants, to get a labeled dataset for a machine learning-based approach. We found
that depending on the app and the number of labeled data, we can achieve an
average F1 score of .70 with an ROC AUC of .61 for the within-app analysis. For
some apps, we reached a score of about .85 for both metrics. In the between-apps
analysis, we combined the labeled data of multiple apps to check if the feature
usage is similar. Our results go up to an F1 score of .86 and an ROC AUC of
.91 for the feature listen to music. The average scores are similar to those of the
within-app analysis. We further analyzed the most significant machine learning
features to check whether humans can understand how the classifiers came to
their solutions. Our results show that with a few human-readable machine learn-
ing features, we can reach explainable and accurate conclusions (e.g., frequent
text edits reveal writing a message).

Integrated interactive visualization. The integrated interactive visualiza-
tion, as part of the requirements intelligence framework, is the interface for stake-
holders to get analytics insights from user feedback. In Chapter 9, we combine
our contributions into the web-based prototype feed.ai that is an implementation
of the requirements intelligence framework. We detail on the architecture and
the dynamic models of feed.ai. For the prototype, we contribute with an open-
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source implementation that interested parties can use and extend. In total, the
prototype consists of more than a dozen microservices, for which we provide the
source code, technical documentation, endpoint description, and give hints for
developers who want to work on the microservices.

Chapter 10 evaluates the prototype. One aim of this work is to provide a pro-
totype that stakeholders can use, which makes sense in their workflow. For this,
we cooperated with a major Italian telecommunication company that used the
prototype for 12 months. We developed the prototype iteratively and evaluated
it in five iterations by either using surveys, interviews, or performing phone meet-
ings. In a final survey, the telecommunication company invited ten stakeholders
from different departments, such as marketing and customer care, to evaluate the
latest iteration of the prototype. The stakeholders found the prototype useful for
their workflow and highlighted that it was easy to use and supported them to get
meaningful insights. They further reported that feed.ai helped them to reduce
70% of their time spent on analyzing user feedback.

1.3 Scope

We discuss the scope of this work by describing the following topics.

Domain focus. In this work, we support stakeholders in requirements engineer-
ing in involving users by analyzing user feedback. We do not support traditional
requirements engineering activities and methods for involving users, although we
introduce them briefly to differentiate ourselves from them.

We further decided to focus on the app development domain for our analysis
activities to show one coherent approach. However, we evaluated our developed
prototype in the telecommunication domain, as we had access to the stakeholders
of a cooperation partner for 12 months.

Requirements documentation. Our user feedback analysis focuses on soft-
ware features and, therefore, functional requirements. We simplify the reading of
this work by using both terms interchangeably.

One of our objectives is to match features users address in feedback with the
features stakeholders documented. As we focus on the app development domain,
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we only include app pages (i.e., the app description) as a requirements documen-
tation source. We do not cover other sources for requirements like requirements
specifications, issue trackers, or media and news articles.

User feedback. For the explicit user feedback analysis, we cover app reviews
and tweets. Therefore, we include representatives for the native review platforms
of apps, as well as a representative from social media. We did not include other
sources of explicit user feedback such as emails, Facebook, Reddit, or news media
comments. Further, we do not consider other types of explicit user feedback, such
as oral feedback (e.g., phone calls, interviews, and brainstorming).
In particular global organizations receive explicit user feedback in multiple

languages. The challenge with different languages is that the effort for their
analysis may differ. Therefore, we decided to cover English, which is the most
analyzed and one of the most spoken languages, as well as Italian, because we
cooperated with a major Italian telecommunication company. We do not cover
other languages in this work.
Implicit user feedback is about the interactions with a device and the usage

context. We can collect and analyze that feedback from many different platforms,
such as smartphones, tablets, TVs, desktops, and web browsers. We decided
to focus on mobile devices as it allows us to align the analysis results for both
feedback types (i.e., app reviews for explicit user feedback). We further scope the
implicit user feedback analyses on feedback collected from the Android platform,
which is less restrictive than, e.g., iOS, and because of its high market share.

1.4 Structure

We structured the remainder of this work into the following three parts.

Part I Problem. The idea of this part is to motivate and scope the problem this
work addresses in detail.

In Chapter 2, we first introduce the foundations that discuss the challenges
stakeholders in requirements engineering face when involving users. In the
same chapter, we also describe the definitions and conceptual models of
explicit and implicit user feedback.
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Chapter 3 presents two qualitative studies that identify stakeholder needs
for analyzing user feedback.

In Chapter 4, we propose requirements intelligence, a framework that ad-
dresses stakeholders’ needs to support their decision-making process based
on user feedback analytics.

Part II Core Enablers for Requirements Intelligence. The second part of this
work is about the analyses of explicit and implicit user feedback, which are
the core enablers for requirements intelligence. Requirements intelligence
defines the two activities feedback filtering and feedback to requirements for
both the explicit and implicit user feedback analysis.

Explicit user feedback analysis.

In Chapter 5, we introduce an approach to filter explicit user feedback for
the categories irrelevant, problem report, and inquiry.

Chapter 6 presents an approach that extracts features (requirements) from
user feedback and app pages and matches them.

Implicit user feedback analysis.

In Chapter 7, we describe an approach that filters implicit user feedback
based on the usage context of an app.

Chapter 8, reports on an approach that helps stakeholders to learn which
features users use.

Part III Evaluation. Here we focus on implementing and evaluating a require-
ments intelligence prototype based on the findings of Part I and Part II.

In Chapter 9, we report on feed.ai, our requirements intelligence prototype.
We discuss its technical details like the architecture, including the dynamic
models, and detail on the integrated interactive visualization, which is part
of the requirements intelligence framework.

Chapter 10 discusses our 12-month evaluation of feed.ai with a major telecom-
munication company.

Chapter 11 concludes the work by summaries our contributions and by
stating ideas for future work.
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Chapter 2

Foundation

Study hard what interests you the most in the most
undisciplined, irreverent and original manner possible.

Richard Feynman

We summarize the foundation and the two core concepts of this work. First,
we introduce requirements engineering in Section 2.1, where we define the term
requirements, the requirements engineering process and its activities, and user
involvement. Then, we introduce explicit user feedback in Section 2.2. It is
one of the main concepts and core enablers for requirements intelligence. We
define the term, discuss the conceptual model of explicit feedback, and conclude
with a summary of platforms that we consider in this work for collecting explicit
feedback. After that, we follow the same structure for implicit user feedback
in Section 2.3. We define the term, discuss the conceptual model of implicit
feedback, and conclude with the platform we consider in this work to collect
implicit feedback. Eventually, we summarize our conclusions of the chapter in
Section 2.4.

2.1 Requirements Engineering

In this work, we aim at supporting the decision-making process of stakeholders
by providing analytical insights into user feedback. Users are, among other roles,
one specific type of a stakeholder that impacts the development of a system such
as software. As requirements engineering is the process of deciding what to build,
and stakeholders are those making these decisions, it is the field on which this
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work has the biggest effect. Therefore, the goal of this section is to provide a
brief introduction to the field of requirements engineering. For this, we start
by defining the terms requirement, stakeholder, and requirements engineering.
We follow by explaining the activities in the requirements engineering process
in Section 2.1.1. Then, we discuss user involvement in requirements engineering
and explain why it plays a crucial role in the success of software apps in Section
2.1.2.

2.1.1 Definition

Requirements define what a potentially new system must be capable of to solve
a specific problem or need [114]. Literature separates requirements into functional
and non-functional requirements [31, 43, 131, 154, 212]. Functional requirements
are "[...] a function that a system or system component must be able to perform."
[114] as the IEEE standard states. In the literature, there is a broad consensus
about this term, as Glinz [84] found. For example, Glinz shows literature that
provides similar definitions, such as requirements are "what the product must
do" [206] or "what the system should do" [229]. In the Book “Managing Require-
ments Knowledge”, Maalej and Thurimella state that the term requirement is
similar to features, but that it has a larger scope and more technical focus [154].
For non-functional requirements, there is no agreed-on definition, as Glinz [84]
showed in 2007. In this work, we follow the definition given by Glinz, which is
“A non-functional requirement is an attribute of or a constraint on a system” [84].

Stakeholders are a group of people that are involved in deciding the require-
ments of a system. Typical stakeholders are, among others, customers, develop-
ers, project managers, and users [85]. The decision-making process of stakehold-
ers is often about choosing between alternative requirements that can apply to
solve a specific issue [154, 196]. Stakeholders have various backgrounds as they
can come from, e.g., business, marketing, law, project management, design, and
development, and therefore, have diverse roles and tasks [154]. Stakeholders typi-
cally express their needs for a system in natural language, although that language
may be ambiguous as the stakeholders’ perspectives and backgrounds differ [60].

Requirements engineering is the process of formulating, documenting, and
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systematically maintaining software requirements [131]. Similarily, Sawyer, Som-
merville, and Viller define requirements engineering as “Requirements engineer-
ing is concerned with the discovery of required properties (the requirements) and
their transformation into a form which will serve as the basis for development
of a product which will exhibit those properties.” [219]. However, as technical
issues may arise during the development or the needs of stakeholders may
evolve, requirements engineering is not a single-phase process. On the contrary,
requirements engineering is a continuous and iterative process that must adapt
to change [26, 60, 219]. The literature highlights the importance of change man-
agement [154] as requirements engineering is a complex process that might not
get all of the necessary requirements right from the start of a project. Reasons
for this are, among others, that clients are unsure what the final product should
be, stakeholders have tacit knowledge, or any event or wrong decision during
the project may impact the solution. Poorly managed requirements lead to risks
in the project, such as exceeding the budget or failing the project, making re-
quirements engineering one of the most critical processes in projects. Boehm and
Basili [25] found that identifying and fixing a problem in the software after its de-
ployment often costs 100 times more than identifying it during the requirements
and design phase [25]. Second, the authors also show that projects spend about
40-50% of effort in avoidable reworking, which again highlights the importance
of requirements engineering.
Requirements engineering is a process composed of activities. Kotonya and

Sommerville define the activities of the requirements engineering process as re-
quirements elicitation, requirements analysis and negotiation, requirements doc-
umentation, and requirements validation [131]. Ramesh and Cao [202], as well as
Martin et al. [160] highlight that the initially proposed requirements engineering
process is linear, which is in contrast to the idea that requirements engineering
must adapt to change. In a later publication, Sawyer, Sommerville, and Viller
[219] introduced potential improvements to the requirements engineering pro-
cess, suggesting a cyclic representation of the activities. We cite the authors’
suggestion, which determined the following three activities as part of the cyclic
representation [219].

1. Requirements elicitation. Given a statement of organisational needs and
other inputs, different requirements sources (stakeholders, domain experts,
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operating regulations etc.) are consulted to understand the problem and
the application domain. The resulting requirements may be incomplete,
vaguely expressed and unstructured.

2. Requirements analysis and validation. The requirements discovered
during the elicitation phase are integrated and analysed. This is designed
to identify problems such as missing information, inconsistencies and re-
quirements conflicts.

3. Requirements negotiation. Problems discovered during analysis need to
be resolved. The analysts and stakeholders clarify their understanding and
consider possible solutions. This may require negotiation to establish the
necessary trade-offs. The elicitation of further requirements information
and the initiation of a further cycle may be necessary.

Besides these cyclic activities, the authors suggest adding requirements man-
agement as a cross-section activity that also stretches over the whole develop-
ment process. It is the activity that is responsible for handling both new emerging
requirements and general changes to exiting requirements. Requirements man-
agement ensures requirements traceability and the enforcement of the change.
The overall goal of representing the requirements engineering process cyclic is
to cope with the three challenges of the difficulty of elicitation, changes to re-
quirements, and the limitations of time and costs [219]. The literature agreed
on the importance of change management in requirements engineering, which led
to several publications supporting a cyclic representation of the process [26, 111,
199]. Yet, the suggested cyclic representation is difficult to include in modern
agile project management and development as the activities do not map to the
agile concept [202].

Agile requirements engineering is the consequence of the non-sequential pro-
cess of requirements engineering in modern agile projects. Its goal is to be highly
adaptive to change in agile projects, which are iterative by nature. Ramesh,
Cao, and Baskerville [202] present an empirical study discussing how the four
requirements activities requirements elicitation, requirements analysis and nego-
tiation, requirements documentation, and requirements validation of Kotonya and
Sommerville [131] can be used in agile projects. Ramesh et al. [202] suggest the
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following. Perform requirements elicitation iteratively with face-to-face meet-
ings with stakeholders instead of collecting requirements once before the start
of the development. Similarly, requirements analysis and negotiation are also
iterative and should be carried out with face-to-face meetings, constant plan-
ning, and extreme prioritization. The authors further suggest that requirements
documentation is not a formal process but that requirements are documented
informally as, for example, a list of features or stories. Requirements validation
includes the users of the system to validate if the requirements reflect the users’
current needs. Table 2.1 summarizes and compares the agile and traditional
requirements engineering process.

Table 2.1: Traditional and agile approach for requirements engineering (RE) ac-
tivities (taken from Ramesh et al. [202]).

RE activities Traditional RE Agile RE Agile practices to
support RE activities

Requirements
elicitation

Discovering all the
requirements upfront

Iterative:
requirements evolve
over time and are

discovered throughout
the development

process

Iterative RE,
face-to-face

communication

Requirements
analysis and
negotiation

Focus on resolving
conflicts

Focus on refining,
changing and
prioritizing
requirements
iteratively

Iterative RE,
face-to-face

communication,
constant planning,

extreme prioritization
Requirements
documentation

Formal documentation
contains detailed
requirements

No formal
documentation

Face-to-face
communication

Requirements
validation

The consistency and
completeness of
requirements
document

Focus on ascertaining
whether the

requirements reflect
current user needs

Review meetings,
face-to-face

communication

Conclusion 1. Requirements define what a potential system must be capable
of to solve a specific problem or need. Functional requirements are sometimes
also called the features of the system. Stakeholders, for example, the users of the
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system, decide about the requirements. Requirements engineering is a crucial
process in projects as poorly managed requirements lead to major risks such as
exceeded budgets or the failure of a project. These risks include, for example,
requirements not known prior to the project or tacit knowledge of stakeholders.
Projects can cope with the risks if the requirements engineering process can
adapt to change. Therefore, researchers suggested a cyclic representation of the
process, which later led to agile requirements engineering, which better integrates
into modern agile projects. Agile requirements engineering constantly involves
the users to validate if the requirements match the users’ needs. Still, the research
discussed suggests interacting with users in physical face-to-face meetings, which
lead to significant issues as we elaborate in the following.

2.1.2 User Involvement

We introduced requirements engineering, its activities, and concluded that it is
an iterative and continuous process. Stakeholders decide about the features/re-
quirements of a software system. To understand if stakeholders build the right
system, they have to validate the requirements with users frequently. The users
in this context are the end-users that are interacting with the system. Users are
often an underestimated stakeholder, although probably the most crucial for the
project’s success because they decide about its rise and fall [132, 139, 140, 256].
The objective of user involvement is to identify and address user needs, such as
the features they need, as early and frequently as possible, for continuously im-
proving the software [44, 63, 132]. User requirements describe how the software
can help users achieving their goals and how it satisfies their needs in the context
of use [132]. Therefore, when involving users, we have to understand their needs
and their context [44, 132].

Traditional user involvement. Projects that involved users in their require-
ments engineering process typically elicited user needs by performing workshops,
surveys, observations, or interviews [179, 198, 221, 261, 269]. For example, work-
shops and semi-structured interviews are methods that can help understanding
user needs as they allow to interact with the users and allow for asking follow-up
questions. Observations, on the other hand, are a method that aids in identifying
the context of use and how the users interact with the system. Although research
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shows that these methods are helpful, they usually apply in the early stages of
the project and are challenging to perform continuously [15, 47, 265]. There are
local challenges of the methods, such as time limitations in observations, no in-
depth responses in surveys, or emphasizing the opinion of extroverts in workshops
[221]. To overcome the local challenges, research suggests using various elicita-
tion methods [221]. Besides the local challenges, there are also global challenges
that apply to multiple requirements elicitation methods. These challenges are,
for example, reaching a representative sample of users [47] and time and budget
constraints to perform them repeatedly [221].

Modern user involvement. With the rising popularity of the internet, many
organizations started publishing their software products online, either on their
own website or app distribution platforms like app stores. In parallel, users dis-
covered internet platforms, such as forums and blogs, to write and discuss their
opinions online. Nowadays, app distribution platforms provide feedback mecha-
nisms on which users also write their opinion about software products by, e.g.,
reviewing and rating them [74, 187]. Besides writing reviews on app stores, users
also discuss software products on social media channels like Twitter [99, 257].
Research shows that the explicit feedback stated on these platforms is valuable
for stakeholders as users vividly report problems they have and features they
wish [78, 99, 112, 187, 191]. Involving users by including user feedback in the
requirements engineering process helps to increase user satisfaction and, conse-
quently, influences the product’s success positively [74, 107, 140, 190]. We call
the written opinion of users explicit user feedback.

Kujala et al. [132] and Bettenburg et al. [22] highlight that requirements
engineering should also consider the context of use. If the deployed software
collects information about the context, such as the operating system version or
the app version, stakeholders can use that information to, e.g., understand if only
a specific version is affected. Martens and Maalej [157] show that users sometimes
also state context information in explicit user feedback. When also collecting the
interactions with the software, we can create an understanding of under which
circumstances users provide feedback and which steps within the software led to
either a crashing or non-crashing bug [148, 153]. Studies also show that context
and interaction data help improve usability by conducting usability testing [54,
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55, 146, 150, 153]. We call the context and interaction data implicit user
feedback.

Research shows that combining explicit user feedback from app distribution
platforms and social media channels like Twitter help to understand users better
[176]. Further, leveraging the combination of explicit and implicit user feedback
can lead to either new requirements or requirements of better quality [119, 153,
184]. The strength of explicit and implicit user feedback is that it comes con-
tinuously after the deployment of the app, covering a wider range of users than
traditional methods can. We also cover the user perception with explicit user
feedback and the real usage behavior and context with implicit user feedback.

Although continuously involving users by analyzing explicit and implicit feed-
back is a valuable source of information, it comes with challenges. Here, we want
to highlight two frequently stated challenges. First, users write their opinion
about popular software thousandfold a day [99, 187]. Similarly, collecting im-
plicit user feedback generates a million data points with only a few users [184].
These amounts of feedback make a manual analysis unfeasible [99, 184, 187].
Second, the majority of user feedback is rather uninformative and of low qual-
ity [180]. Regarding explicit user feedback, such uninformative feedback is often
spam, praise for the app, insulting comments, or a repetition of the star rating
in words [109, 187]. As a consequence, practitioners seek automated support
to filter the feedback and to identify the requirements-relevant information [151,
234, 249].

Conclusion 2. User involvement plays a critical role in requirements engi-
neering because user satisfaction decides about the rise and fall of the software.
Successfully involving users in requirements engineering means to understand user
needs and the context of use. Involving users with only traditional requirements
elicitation methods limits the positive impact users can have on the app. Tra-
ditional methods are hardly representing the whole userbase and are too costly
and time-consuming to be employed continuously. Projects that carefully include
explicit user feedback from app distribution platforms and social media can foster
the success of the app. Users use these platforms to state their opinion, including
the problems they face and the features they wish. Besides analyzing the written
opinion of users, research shows that requirements engineering must also consider
implicit user feedback. Again, traditional methods to understand the context of
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use, such as observations, come with many challenges. To continuously under-
stand how and in which context users use the app, stakeholders need to involve
users by analyzing their behavior from within the software. So far, stakeholders
do not have automated tool support for analyzing explicit and implicit user feed-
back continuously. That gap makes it unfeasible to include users continuously on
a large scale and misses many opportunities to foster the project’s success.

In the next sections, we detail on explicit and implicit user feedback by defining
the terms and by introducing their conceptual models.

2.2 Explicit User Feedback

The goal of this section is threefold. First, we define the term Explicit User Feed-
back. Then, we introduce its conceptual model and detail the concepts. Finally,
we describe the platforms providing explicit user feedback that we consider in
this work.

2.2.1 Definition

Originally, requirements engineering considered users in the software development
lifecycle by, e.g., interviewing them face-to-face, performing workshops, and A/B
testing [179, 198, 261, 269]. Although these approaches are helpful in the early
phases of development processes, such as the design phase, they only have a
limited value after the deployment of the software. As soon as the software
is available on the market, the userbase might become diverse and enormous,
making it challenging to identify the changing needs of most users with, e.g.,
physical workshops [47, 265].
However, with the rise of social media and app distribution platforms, there

are plenty of options for users to discuss, review, and rate software apps online.
Research states that users use these platforms actively for this purpose. Pagano
and Maalej [187] highlight that popular apps receive about 4,000 reviews daily.
Iacob and Harrison found that free apps receive, on average, 45.5 daily reviews
[112]. Further, Guzman et al. [99] show that popular apps receive, on average,
about 31,000 daily tweets. Besides users providing such an amount of feedback,
that feedback contains valuable information for stakeholders, as users tend to use
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these platforms to report bugs, request new features, or describe their overall
experience with the app [4, 99, 187]. The following shows an example for a bug
reported by a user in an app review:

“[...] I loved SoundHound before the last update. Now I can’t view
my history. I’ve tried several times [...] I just give up. Back to using
Shazam. I hope this gets fixed.”

This written feedback not only reports the problem faced (cannot open the history
view) but also states that the user considers the app of a competitor, though still
hoping that the issue gets fixed. In this example, we learn about the issue itself
and the importance of the feature for the user [134]. Identifying such feedback
helps stakeholders to resolve them quickly [107].
The following shows an example of a feature request in an app review:

“You can’t even view you sorted contact groups. That needs to change.
What’s the point? ”

Here, the user addresses a feature (sort contact groups) that seems to be without
value if not used by a not yet implemented feature (view sorted contact groups).
Stakeholders can take such feedback as an inspiration for new requirements and
may add them to one of the following releases of the app [175, 249]. Besides the
high-level identification of problems and feature requests, research shows that
identifying the concrete features users address in their feedback helps stakehold-
ers to improve their requirements [48, 218]. If stakeholders match the features
addressed by the users with their internal or publicly documented requirements,
they can, for example, better identify popular or missing features.
Stakeholders understood that user feedback contains valuable information and

started to manually and automatically extract that information to improve their
apps during the full development lifecycle [119, 151, 153]. If stakeholders use this
feedback, they can increase the overall satisfaction with the app and therefore
foster its success in the market [74, 140, 256].
Online user feedback has the advantage that it comes continuously. Therefore,

organizations can analyze the performance of their apps from the perspective
of their users, either after each release, daily, weekly, or according to any time
period. The disadvantage of such feedback is that users are typically no technical
experts and are often vague about encountered problems. They do not know
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what technical information a developer needs to work on the reported issue [157].
Another disadvantage is that reviews are opinions about the perceived experience
and, therefore, prone to emotions, which leads to often uninformative feedback
such as: “I hate this app” [101, 158, 187]. Therefore, the major challenge in
analyzing explicit user feedback is to filter for requirements-related information.

Definition 2.1: Explicit User Feedback

Explicit User Feedback is the written opinion of a user. In its base-form,
it is freely-written text addressing any aspect of a software or service
provided by an entity (e.g., company or single developer). It may have
a numerical rating attached that expresses the users’ overall satisfaction
and experience.

Conclusion 3. Explicit user feedback is a continuous source of valuable,
requirements-related information. Users report problems and feature requests
that, if addressed by stakeholders, can improve the overall satisfaction with the
app. Users address features in their feedback that stakeholders can match with
the requirements of the app to understand if users, e.g., address existing features.

2.2.2 Conceptual Model

We describe the overall conceptual model and detail its key concepts.
Figure 2.1 shows the conceptual model for explicit user feedback. The Explicit

Feedback concept is the core of the model. A user can write explicit feedback
directed at exactly one particular app. Apps typically have a description that
reports on the features (requirements) they offer. The feedback can come from
different sources, such as social media or app stores. Feedback generally contains a
submission date, is written in a particular language, and has a freely-written Body
Text. Usually, feedback platforms allow users and developers to communicate
with each other by replying to feedback. Depending on the feedback platform, it
may also contain a picture (e.g., in tweets) or a video (e.g., in Amazon reviews
and tweets). A review posted on any app store must contain a star rating (one
to five stars). If being more specific about the platform, the Google Play Store
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Figure 2.1: Conceptual model for explicit user feedback.

also allows writing a Title Text for the review. Further, other users can rate a
review as helpful, whereas it may also contain a Helpfulness score. Social media,
on the other hand, was not originally designed as a platform for explicit user
feedback, but users express their opinions about apps on these platforms, too.
Tweets are the concept on Twitter in which users write their feedback. Tweets do
not contain a star rating but a Body Text, a Submission Date, potentially Replies,
a Picture, a Video, as well as a counter for how often other users liked the Tweet
or re-tweeted it.

Conclusion 4. The conceptual model of explicit user feedback highlights that
there are different platforms on which users can submit feedback. The content
of the feedback varies with the platform. The ability to write a freely-written
text (Body Text) is a shared feature among all platforms. Therefore, this work

26



2.2 Explicit User Feedback

focuses on analyzing the written feedback of users, ignoring additional concepts
such as videos or pictures.

Conclusion 5. The conceptual model of explicit user feedback shows that we
distinguish between social media comments, app store reviews, and other plat-
forms. Although the conceptual model gives several examples for these platforms,
we decided to focus on Twitter and app stores (Apple AppStore and Google Play
Store). We decided to focus on only some platforms, as each platform needs
a custom analysis because the language and the (meta) data available differs.
We cover representatives for the native review platforms of apps, as well as a
representative from social media.

2.2.3 Platforms for Explicit User Feedback

We decided to include the two app stores (Apple AppStore and Google Play Store)
and Twitter as the platforms for user feedback in this work. As the conceptual
model for explicit user feedback shows, the data available on these platforms
differ. Therefore, we explain these platforms in more detail.

Google Play Store

One of the major app stores is the Google Play Store [88]. It is the primary
app distribution platform for Android and contains about 2.5 million apps [239].
Each app has a dedicated app page, which contains the features (requirements)
it provides, as well as some describing information. The combination of Figure
2.2, 2.3, and 2.4 show an example of a complete app page. In this section, we
chose to create the figures from the web view of the Google Play Store. Although
the visualization is different on mobile devices, both versions contain the same
information.
The top part of an app page contains descriptive information, as shown in

Figure 2.2. Figure 2.2-A contains meta-information such as the name of the app,
its average rating, the number of ratings, the USK, as well as a status indicating
if the user already installed the app (otherwise, the user can install it via this
button). In Figure 2.2-B, stakeholders can upload an introductory video, as well
as screenshots showcasing the app. Figure 2.2-C shows the description of the app,
which usually describes the features it offers. Stakeholders can fill the description
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of their app with free-written text and minimal visual supportive elements such as
bullet points. Features are often presented with bullet points [118]. The following
is an excerpt from the app description of Wunderlist [258] detailing the features
it provides:

• Create all the lists you need and access them from your phone,
tablet and computer

• Easily share lists and collaborate with family, friends and colleagues

• Start conversations about your to-dos

• Attach photos, PDFs, presentations and more

• Share the work and delegate to-dos

• Setting a Reminder ensures you never forget important deadlines
(or birthday gifts) ever again

• Organize your projects for home, work and everywhere in between
with Folders

On the right side of an app page (Figure 2.2-D), Google automatically generates
a list of similar apps.

A

B

C

D

Figure 2.2: App page—descriptive information on the app Gmail found on the
Google Play Store.
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When scrolling below the app description, the user can read app reviews of
other users. Figure 2.3 gives an example of that part. On top (Figure 2.3-E), it
shows the overall average rating, the total number of ratings, as well as the rating
distribution. Below that (Figure 2.3-F), the user can see a list of user reviews.
A user review usually contains an avatar, the username of the review authors,
the helpfulness score (on the right), as well as the written body text. Previously,
the Google Play Store also allowed users to write a title associated with their
reviews, but they removed that feature. However, as the title is still part of older
reviews, they are often part of scientific studies.
Sometimes, stakeholders reply to user feedback, which would also be visible

in this part. On app distribution platforms, stakeholders can give exactly one
reply per review, but both the user and the stakeholder can update their text at
any time. The consequence is that these platforms do not record and show the
whole history of the conversation between the user and the stakeholder but only
the most recent snapshot of it. Replies on app distribution platforms have been
proven as a powerful tool, as users tend to update their review and rating when
their issues got recognized and addressed. Stakeholders often use replies to either
ask for more details or to promise a fix in the future [107].

E

F

Figure 2.3: App page—user reviews on the app Gmail found on the Google Play
Store.

User reviews on app stores are a potential source for the requirements engineer-
ing process, as they contain valuable information, as described earlier. Addition-
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ally, users also use reviews to address app features directly. As a consequence,
we have available the app page, which documents the features and the reviews
that discuss them [3, 118, 126, 217].
The bottom of an app page (see Figure 2.4) presents additional meta-information.

In Figure 2.4-G, stakeholders can add information about what changed in the
recent update of the app. That field usually addresses the features that were
previously broken or are newly added. Figure 2.4-H contains information about
the app and the organization, such as the date of the last update, the estimated
number of installations, and the address of the organization.

G

H

Figure 2.4: App page—additional meta-information on the app Gmail found on
the Google Play Store.

Conclusion 6. App pages contain two important types of information for
stakeholders. First, they document and advertise the features, and therefore the
requirements, of the app. Second, they contain user reviews that address either
the existing or missing features. Stakeholders can use that information to identify,
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for example, popular (often discussed) features, problematic features, or feature
requests. Further, they can also use the reviews to update the description of the
app to create awareness for certain features. As stakeholders can reply to user
reviews, they can influence the review and the rating of the user if they address
their concerns.

Apple App Store

The Apple AppStore is the second largest app distribution platform and the main
platform for iOS devices, containing about 1.8 million apps [239]. Similar to the
Google Play Store, the Apple AppStore also has dedicated app pages. Both
app stores contain very similar information for users. Nonetheless, we detail on
the information available in the Apple AppStore by presenting the same app
example as for the Google Play Store. The combination of Figure 2.5, Figure 2.6,
and Figure 2.7 represents one complete app page as it is visible to users.

B

A

C

Figure 2.5: App page—descriptive information on the app Gmail found on the
Apple AppStore.

Figure 2.5 shows the top part of an app page. In Figure 2.5-A, we see the
app name, its average rating, the total number of ratings, its price, as well as
the name of the organization developing the app. In Figure 2.5-B, stakeholders
can showcase screenshots to advertise specific parts of the app. Also, similar to
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the Google Play Store, the Apple AppStore contains a description of the app,
as well as release information for the most recent update (see Figure 2.5-C).
Organizations use this part to describe and showcase the features of the app to
give users an impression of what they can expect from it. The app description
is a freely-written text, which can use simple text structures like bullet point
listings.

Figure 2.6: App page—user reviews and meta-information on the app Gmail
found on the Apple AppStore.

Figure 2.6 shows the average rating, the distribution of the ratings, the total
number of ratings, as well as written reviews by the users (Figure 2.6-D). The
displayed information is, again, similar to what the Google Play Store shows.
The main difference is the style of presentations. Figure 2.6-E shows general
information of the app and the organization developing the app, such as the size
of the app, its category, as well as the address of the organization. Users can
utilize this part to check whether their devices are compatible with the app or to
visit the website of the organization to get more information.

On the bottom of the app page, the Apple AppStore shows which third-party
features of Apple it supports (Figure 2.7-F) like the wallet feature to store tickets
or family sharing options. Figure 2.7-G contains some other apps from the same
organization and allows users to browse their full list of apps. In Figure 2.7-H,
users can see similar and other apps recommended by Apple that they might be
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interested in using.

Conclusion 7. Similar to the Google Play Store, the Apple AppStore also
provides app pages that contain, among others, the features the app provides
and user reviews that discuss the app and its features. As a consequence, we can
use app pages as features (requirements) documentation for apps and analyze the
user reviews concerning the features.

Figure 2.7: App page—references on the app Gmail found on the Apple AppStore.

Twitter

Twitter describes itself as a platform that is about “what’s happening in the
world and what people are talking about right now.”[247]. It is a social media
platform on which users can have a profile (account) and send public messages
with hashtags or private direct messages to other users. Some organizations
advertise their app on Twitter and provide support via dedicated support profiles.
One example is Snapchat Support [228]. A profile, such as Snapchat Support, has
a public name, a unique identifier, a place for a description, and some other meta-
information. The meta-information is about the location of the profile owner (in
this case, the primary location of the Snapchat organization), a link to their
website, the number of profiles followed, and the number of followers (see Figure
2.8a).
Users can send messages to these support profiles, as depicted in Figure 2.8b.

The figure shows the conversation between a user of Snapchat and the support
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(a) Twitter profile.
(b) Twitter conversation.

Figure 2.8: A profile and conversation example from Snapchat’s Twitter support
profile.

profile. In that example, the user reports a problem, and the support account
replies to that message to offer help. On Twitter, the reply functionality allows the
user and the support profile to write several replies, which leads to a conversation
of any length. The whole conversation history is publicly available as long as
no involved party deleted a message. Twitter conversations follow a tree-like
structure. In addition to the two involved parties, any other user can participate
and contribute to public conversations. For that, the user may answer the main
conversation or starting a sub-conversation by answering a specific tweet. Figure
2.9 illustrates an example of a real Twitter conversation. The figure shows that
the support profile sent a public tweet that addressed no particular user. Then,
two different users replied to that tweet, each reporting a problem they face. The
support profile then replies to each user individually, which initiates two distinct
conversations.

Conclusion 8. Organizations that have a support profile on Twitter have the
unique opportunity to interact with their users. Usually, users message these
profiles in case they encountered a problem with the app and cannot solve it on
their own. Another advantage of Twitter is that stakeholders can involve users
by starting a conversation with them. As Twitter allows for conversations of any
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Good news! Everything is good 
to go and looking happy. Still 

having issues? Send us a tweet.

Initial tweet

My 2018 wrapped is 
not working :(

Hey there! We've just 
sent you a DM. We'll 

carry on helping there 
/MZ

Hey. It seems that most of my 
music that I’m featured on, 

doesn’t connect directly to my 
artist page, any way I can 

change that?

Hi, sorry about that! We’d 
recommend reaching out to 
your distributor/aggregator. 

They'll work with our team to 
make sure your artist page gets 

  

For sure! Thanks!

No worries! Let us know if you 
ever need us again. We'd be... 
(link: https://spoti.fi/1zc9tCX) 

spoti.fi/1zc9tCX /MG
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Figure 2.9: Example of a tweet conversation tree between a support profile and
users.

length, stakeholders can ask for details like context information to get a better
idea of their users’ problems.

2.3 Implicit User Feedback

The goal of this part is threefold. First, we define the term Implicit User Feedback.
Then, we introduce its conceptual model, including the description of its main
concepts. Finally, we discuss the Android operating system as a platform for
collecting implicit user feedback.

2.3.1 Definition

As introduced earlier, explicit user feedback is the written opinion of users. There-
fore, users submit that feedback type to report their subjective perception of an
app and its features. Though that feedback provides insights for stakeholders,
such as understanding problems, that feedback is noisy [99, 187], emotional [101,
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158], and often misses information about the usage context [157]. For stakehold-
ers, it is crucial to understand the opinion of the users and to know about the
usage context [22, 132] and how users interact with a device and app [153]. That
is essential because it provides objective feedback that reports the actual usage.
Traditionally, stakeholders gathered this feedback with observations. Yet obser-
vations have several disadvantages as they do not scale to the extent that covers
a representative set of users [120, 201, 263], are hard to perform continuously
[47, 265], and may introduce bias because the users feel observed and are not
necessarily in their natural environment [13, 221]. Stakeholders have the unique
opportunity to use monitoring approaches within their apps. Monitoring is an
unobtrusive way of capturing, e.g., event logs in a software system by inserting
code in their running system [71]. Requirements monitoring is one particular field
that monitors the execution environment of an app or the interactions and the
context of the users to, e.g., validate requirements and to identify the changing
needs of the users [45, 71, 207]. Two questions that this field addresses are “when
do our systems need to change?” and “how can we use monitored data to orches-
trate the change?” [71]. By employing monitoring approaches, stakeholders can
identify user interactions with a device in the given context.
User interactions, such as clicking, scrolling, and changing views, are an objec-

tive way to report how users interact with apps. The advantage is that provides
an unbiased view and chain of events that stakeholders can analyze to gain in-
sights into, e.g., the features used [75, 119]. Analyzing user interactions has many
benefits, such as:

• Extract steps to reproduce for (non-) crashing bugs [86, 209, 210].

• Identify popular, inefficient, and frustrating navigation paths [53–55].

• Understand session durations and which views users stay longest [16, 21,
27, 55].

• Discover types of users [16, 122, 267].

• Learn usage behavior [68, 122].

However, to fully understand app usage, stakeholders also have to analyze the
context of the user and the device itself. Context data such as the location of the
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user or software specifics, such as the version of an app, are essential information
to learn about usage scenarios [22, 40, 157]. For example, if stakeholders want to
extract steps to reproduce a problem from the interactions with the app, they also
need to know the app version and the platform as they may have a different design
and navigation flow [169, 268]. We look at two definitions of context. Maalej
defines context as “the set of all events and information, which can be observed
and/or interpreted in the course of the work, except those events and pieces of
information that constitute the change (i.e. the main output of the work).” [149].
Pagano defines context as “refers to all current and past conditions and events
which influence the interaction of a user with an application or the execution
of an application on a system” [185]. In this work, we further summarize the
aggregation of context data (e.g., location and app version) for one particular
user interaction as the usage context. The usage context is a higher abstraction
and describes, for example, the device (smartphone vs. smartwatch, including
the operating system) or private vs. professional use.
Similar two the two authors, we also distinguish between user interaction and

context. As a consequence, we understand implicit user feedback as the aggrega-
tion of interaction data with the describing context from both the user and the
device.

Definition 2.2: Implicit User Feedback

Implicit User Feedback is the aggregation of user interaction events with
a computing device which is enriched with context information about
the user and the device for every recorded interaction event.

Conclusion 9. Implicit user feedback is objective feedback that reports on the
actual usage of a user with a device. Stakeholders can analyze user interactions
with a device and the usage context to understand how their users are using
the apps and their features. They can use that information to derive either new
requirements or improvements to existing requirements.

2.3.2 Conceptual Model

We describe the overall conceptual model as well as the details for its key concepts.
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Figure 2.10: Conceptual model for implicit user feedback.

Figure 2.10 shows our conceptual model for implicit user feedback as a domain
model. On the top left, the figure shows that the underlying assumption of the
model is a user interacting with a device. The device can be anything running
software, ranging from, e.g., smartphones, laptops, smartwatches, or smart TVs.
In this work, we focus on mobile apps and therefore consider smartphones and
tablets (mobile devices).
Sensors observe the interactions with the device and its state. In particular,

we distinguish between hardware and software sensors, as well as push and pull
sensors, as described in the following.

a) Hardware and Software Sensors determine the source of the context event.
Hardware sensors provide their data by hardware, such as a built-in GPS
sensor or an integrated accelerometer. Software sensors provide data through
the operating system (OS). A typical software sensor is, e.g., collecting in-
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formation about the currently running software like the visible app or the
current time and date.

b) Push and Pull Sensors describe how we observe the changes to the user’s
and device’s state to generate context events. Pull sensors request informa-
tion from the operating system in a defined interval. The before mentioned
example of a software sensor that identifies the currently displayed app is
also a pull sensor since we have to ask the operating system for such infor-
mation. Push sensors, on the other hand, subscribe to certain events of the
operating system like a change in the network connection.

User interactions with the device create Interaction Events. Interaction events
contain a type, timestamp, the name of the view it appears in, as well as an
interaction value. For example, if a user clicks on a send button in an email client,
the interaction type is “click”, the interaction value could be “send mail” (the text
visible on the button), the view of the event may be called “ComposeMail”, and
the timestamp of the event could be “2019-10-30 T 10:45:00 UTC”. For each
interaction event a sensor observes, it creates a single Implicit Feedback.

Conclusion 10. Sensors can observe user interactions and the usage context.
We either need push or pull sensors depending on how the sensor can access the
context and interactions (observation strategy). The particular context data and
interaction event decide if the sensors can pull or push data. As a consequence,
the implementation of a sensor depends on how and what it shall observe.

The implicit feedback created by a sensor contains exactly one interaction
event and one Usage Context. The usage context is a collection of context data
that describes the complete state of the device and the user for one particular
interaction event. Therefore, the usage context holds one to many contexts.
For example, if a user sends an email (interaction event), the usage context may
contain several context information, such as the name of the app, the app version,
the location of the user, as well as the operating system. The concept context
holds a context value for one particular context type. For example, a context
type can be the operating system, while the context value is Android.

Conclusion 11. Usage context describes the whole state of the device and user
by aggregating all available context data for one particular interaction event.
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2.3.3 Platforms for Implicit User Feedback

We can collect implicit user feedback from any software platform that runs an
operating system that either provides APIs for collecting interaction events and
context, or that pushes this data (push and pull sensors). In this work, we
focus on mobile apps, and therefore, we consider a mobile operating system for
collecting implicit user feedback. For several reasons, we consider Android as
the operating system for deploying a monitoring app for the data collection.
First, it allows us to collect implicit user feedback for any app in the background
unobtrusively; besides granting permissions to the monitoring app, the user will
not be disturbed by it. Second, Android provides various APIs that allow us to
collect a wide range of different context types. Third, the accessibility framework
of Android [92] enables us to collect fine-grained user interaction events such as
clicking, scrolling, and focussing a view. Fourth, Android’s market share ranges
around 87% in 2019, allowing us to cover a high proportion of mobile users [113].

In the following, we summarize the interaction types and context types that
we can collect on the Android platform. The summarization of these types is not
exhaustive for the operating system but lists all the types we analyzed throughout
this work.

In contrast to, e.g., app pages, the data available is not directly visible but
documented in the API references of the operating system. Table 2.2 shows nine
different interaction types that we collect with Android’s accessibility framework
[92]. For each of the nine interaction types, we added a description to the table
that explains when a sensor generates an interaction event for that particular
type. The table highlights that we can collect coarse-grained interaction events
like clicking, but also fine-grained interactions involving clicking, such as focussing
a view or selecting and item in a list.

Table 2.3 gives examples of context types and values we can collect on Android
devices. Again, we limited the number of elements in the table to what we analyze
in later chapters. The table shows that we can, for example, identify the current
foreground app and its version. That information is helpful for understanding in
which app user interactions occur. Further, the table shows examples of context
types related to connectivity, such as how the device is connected (e.g., mobile
internet or Wi-Fi) and the number of available Wi-Fi networks. The combination
of these context types and values define the usage context.
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Table 2.2: App-independent interaction events in the Android accessibility frame-
work.

# Interaction Type Description

1 Click View Gets fired whenever a participant clicks on any kind of view ele-
ment, such as a button. This event also covers long pressed clicks

2 Notification Records the appearance of either a notification (typically shown
in the top bar) or toast message (short lasting notification shown
on the bottom of the phone).

3 Edit Text Reports whenever a text within an input field (“EditText” field)
is changing.

4 Select Text Fired when a user is changing the currently selected text.
5 Scroll View Triggered, whenever the user is scrolling through a list of items or

on a web page
6 Change Content Reported whenever any content of a window changes (e.g., a user

archives an email and it gets removed from the list of received
emails).

7 Focus View Triggered when the user or the app sets the focus on a view ele-
ment, e.g., the app automatically focuses on the input field.

8 Change Window Fired whenever a section of the user interface changes to some-
thing visually distinct (e.g., clicking on a tab that exchanges the
main content of the view).

9 Select View Triggered when a user is selecting an item in a list.

As part of the EU FP7 project MUSES (Multiplatform Usable Endpoint Secu-
rity) [174], we developed an opensource library to collect interaction events and
context data on Android [172]. The overall goal of MUSES was to foster cor-
porate security by reducing the risks introduced by user behavior. The project
observes mobile device usage to enforce company security policies. The project’s
GitHub page [173] contains several repositories for collecting and analyzing im-
plicit user feedback. It also contains repositories for collecting context data on
iOS and Windows. These repositories are limited in the data they can collect
and are therefore not further considered in this work.

Conclusion 12. Android is the mobile operating system with the highest mar-
ket share and the highest flexibility for collecting interaction events and context
data. On Android, we can collect implicit feedback unobtrusively by deploying
an app that collects the feedback in the background.
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Table 2.3: Excerpt of app-independent context data accessible on Android.
# Context Type Context Value (example)

1 Operating version Android
2 Operating system version 4.0
3 System language English
4 Active app identifier com.google.android.gm
5 Active app version 5.0.1.1
6 Latitude and longitude [53.551086,9.993682]
7 Date and time 2019-10-30 T 10:45:00 UTC
8 Running background services [com.waze,de.blitzer.plus,com.whatsapp]
9 Airplane mode false
10 Connected via Bluetooth true
11 Network status (off, Wi-Fi, mobile) mobile
12 No. of available Wi-Fi networks 12
13 Wi-Fi encryption WPA-PSK-TKIP
14 BSSID of the current connection d8:c7:c8:44:32:40

2.4 Summary

We summarize the conclusions of this chapter.

Requirements engineering. Requirements define what a potentially new sys-
tem must be capable of to solve a specific problem or need. Stakeholders, such as
customers, developers, and users, define these requirements. They do so in the
requirements engineering process that formulates, documents, and systematically
maintains requirements. Poorly managed requirements can lead to major risks
such as exceeding the budget or failing the project. In requirements engineering,
one way of coping with the risks is to include change management. Adapting to
change is crucial, as the needs of the users may change or the evolution of the
software requires changes. Moreover, user satisfaction decides about the rise and
fall of the software in the market. As a consequence, requirements engineering
must involve users to identify their changing needs.

User involvement. Traditional approaches, such as workshops and observa-
tions, help in understanding features users want and how they use them. How-
ever, those approaches are usually part of the early development phases and are
challenging to perform continuously with a representative sample of users. There-
fore, stakeholders must consider new and modern approaches to involve users.

42



2.4 Summary

With the increasing popularity of social media and app distribution platforms,
users started to write their opinion about software by reviewing and rating them
online (explicit user feedback). Explicit user feedback contains valuable informa-
tion for requirements engineering, such as encountered problems and requests for
new features. Users state their opinion regularly, making explicit user feedback
a continuous source for information. Research shows that considering the usage
context, in addition to the users’ opinion, is vital for user involvement. If the
deployed software collects interaction events like clicks and context data, such
as the app and operating system version, stakeholders can, e.g., leverage that
information to narrow down the location of bugs (implicit user feedback). The
combination of explicit and implicit user feedback can lead to either new require-
ments or requirements of better quality.

Challenges. Including explicit and implicit user feedback in the requirements
engineering process comes with challenges. Popular apps receive explicit user
feedback thousandfold daily. Similarly, collecting implicit user feedback generates
a million interaction events with only a few users. Both feedback types generate a
large amount of noisy data that is unfeasible to analyze manually. Therefore, we
need to support stakeholders by automatically and continuously collecting and
filtering requirements-relevant feedback. Requirements-relevant feedback is, for
example, feedback that describes problems, has inquiries to the stakeholders, or
includes requests for features.

Analyzing and matching features. Stakeholders need to analyze the filtered
user feedback to understand if users address already existing features or request
new features. If stakeholders can extract the particular features users mention
in their feedback, they can understand the problem and feature requests better.
They can also gain insights like what the popular features are and how often
users address them to understand their impact on user satisfaction. For exam-
ple, a feature that occurs in many problem reports may have a higher impact on
the app’s success than a feature that only one user reported. For an automated
understanding, if users discuss existing features, we have to match them with
the features in the requirements documentation. Stakeholders document and ad-
vertise the features of apps on app pages. App pages contain a description that
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typically lists and describes the features of the app. As a consequence, we can
identify and match the features mentioned in user feedback with the documented
features on app pages.

Stakeholder needs. So far, stakeholders do not use automated tools as they are
not available in the described sense, although, they seek for automated support.
In the next chapter, we present two qualitative studies detailing on stakeholder’s
needs for analyzing both types of feedback. Then, we introduce requirements
intelligence, a framework to automatically collect, filter, and match features from
user feedback with the documented features from app pages. The framework
provides an integrated interactive visualization to support stakeholders in their
decision-making process.
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Chapter 3

Stakeholder Needs for Automated
User Feedback Analysis

Some people don’t like change, but you need to embrace
change if the alternative is disaster.

Elon Musk

Publication. This chapter is partly based on our 2016 publication “On the au-
tomatic classification of app reviews”[151] and extends its interview study. My
contributions to this publication were to co-design the interviews, interviewing
stakeholders, creating tool mockups, and to help analyzing and discussing the
paper’s results.

Contribution. This chapter contributes with two qualitative studies to investi-
gate how stakeholders perceive the usefulness of user feedback and their needs for
automated analysis of that feedback. We present a review of related discussing
automated user feedback analysis approaches and an interview study, which fur-
ther aims to evaluate an app review analytics mockup with stakeholders.

3.1 Motivation

In the previous chapter, we concluded that continuously involving users by an-
alyzing explicit and implicit user feedback is crucial for the success of apps. In
this chapter, we aim to investigate the usefulness of user feedback from the per-
spective of stakeholders and how they include it in their processes. We distin-
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guish between the term stakeholder (any practitioner involved in the
decision-making process for the software development) and the term
user, who is the end-user of the system.
In Chapter 1, we briefly discussed the need for automated tool support when

analyzing explicit and implicit user feedback. More specifically, in Chapter 2, we
argued from a data-driven perspective as research highlights the large amount of
feedback stakeholders receive. This chapter focuses on the industry perspective
and investigates whether stakeholders require automated feedback analyses by
performing qualitative research. We reviewed studies on user feedback usefulness
and performed interviews to understand stakeholder needs. In total, our studies
include the aggregated perspective of 90 stakeholders.
The chapter is structured as follows. First, we describe the research questions

and methods followed in Section 3.2. Section 3.4 discusses the results of the
interview study. Then, Section 3.3 extends the interviews by summarizing sci-
entific evidence of stakeholder needs from related work. After that, we discuss
and compare opportunities and challenges stated by stakeholders in Section 3.5.
Eventually, we summarize the findings of this chapter in Section 3.7.

3.2 Study Design

This section describes the overall research methodology. First, we discuss the
research questions. Then, we detail the overall study design, including the steps
we followed. Eventually, we describe the research methods used.

3.2.1 Research Questions

We aim to understand the usefulness of user feedback from the perspective of
stakeholders. We further want to explore if and how stakeholders integrate feed-
back in their work and summarize the opportunities and challenges they see.
Therefore, we formulate the following research questions:

RQ3.1 User feedback usefulness. How do stakeholders perceive user
feedback, their usefulness, and how do they include it in their work?

RQ3.2 Use cases for automated user feedback analyses. What are
the main use cases for automated user feedback analyses?
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RQ3.3 Integration into workflows. What kind of automated user feed-
back analysis integrations do stakeholders need?

3.2.2 Study Process

Figure 3.1 summarizes the overall study process. It shows that this study contains
three main parts (the columns of the figure). The first part reviews related work
about feedback usefulness studies. For that part, we first describe the search
strategy and the selection criteria for the papers in Section 3.2.3. Then, we
present a summary of the results for each selected paper in Section 3.3.
In the second part, we performed semi-structured interviews with 12 stakehold-

ers. We prepared an app review analytics mockup for the interviews that show-
cases some feedback analysis results. In Section 3.2.4, we introduce the mockup,
followed by our interview setting, including a description of the stakeholders in
our interview study. In Section 3.4, we discuss the results of the interview study.
In the third part, we compare the results of both qualitative studies. There, our
focus is on the critical discussion of the opportunities and challenges stakeholders
see in Section 3.5.

Result Comparison

Selection Criteria

Feedback Usefulness 
Studies Results

Search Strategy Opportunities

Interview Study

ChallengesInterview Setting

Interview Results

Review of Feedback 
Usefulness Studies

Discussion of 
Empirical Findings

Review Analytics 
Mockup

Figure 3.1: Study process.

3.2.3 Review of Feedback Usefulness Studies

We discuss the paper sampling for our related work analysis. In this qualitative
analysis, we did not aim at completeness, i.e., finding all papers related to our
research questions, but we aimed to cover studies regarding both feedback types.
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Search strategy. Our research questions contain the major search terms user
feedback, stakeholder, and usefulness. After reviewing the search results and pa-
pers previously known to us, we decided to include alternative terms for each
major term. Further, as this work focuses on apps and app pages, we also in-
cluded the term app in the search. As a result, we got the following search string:

((app OR software) AND (interview OR case study OR workshop
OR survey) AND ("user feedback" OR "user review" OR "user in-
volvement" OR feedback OR "app review" OR "explicit feedback" OR
"implicit feedback" OR requirement OR feature) AND (automat* OR
monitor* OR collect* OR elicit*) AND (stakeholder OR practitioner
OR developer)).

The search string contains the following elements: ((target) AND (stakeholder
evaluation type) AND (feedback) AND (approaches) AND (stakeholder). We
used the search string on Google Scholar.

Selection criteria. After we received the search results, we filtered out ir-
relevant studies with the following exclusion criteria.
Exclusion criteria. 1) Non-English studies. 2) Studies that are not in the do-
main of IT/CS/SE/IS/RE. 3) Non-peer reviewed studies. 4) Studies not following
empirical methods.

We included papers that fulfilled the following criteria.
Inclusion criteria. 1) Studies that either report on automated approaches for
explicit and implicit user feedback (including tool evaluations). 2) Evaluation
with at least two stakeholders. 3) Published between 2013 and 2019.

In total, we discuss seven papers in detail, which cover approaches for explicit
and implicit user feedback, as well as tool evaluations. We selected these papers
so that we have at least two papers per approach. We also tried stratifying the
papers for the selected time frame to include early and recent research approaches.
We also limited the study to seven papers to focus on qualitative insights to better
understand the stakeholder needs.

We report our results following the same procedure for each paper. First,
we give a brief and structured overview of the paper stating 1) its title, target,
research questions, and the overall evaluation setting. After that, we summarize
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the papers by describing the overall objective of the work, explaining in more
detail the evaluation setting, and conclude with the results of their evaluation.
This template fosters the readability of the results, which we later discuss in
Section 3.5.

3.2.4 Interview Study

We interviewed 12 stakeholders using semi-structured interviews. The reason for
selecting semi-structured interviews as our method is that we aim to gain in-
depth, qualitative insights. This research method allows us to cover a fixed set
of questions but also gives us the freedom to follow up on the answers to better
understand the stakeholders’ reasoning.
Based on our insights from Chapter 2, we created a mockup of a tool for

app review analytics. The app review analytics mockup presents scenarios for
filtering user feedback automatically. It filters app reviews into problems report
and feature requests. We decided to create this mockup to propose a possible
solution to stakeholder challenges introduced in Chapter 2. In the interviews,
we first asked the stakeholders if they find user feedback useful and about how
they include it in their work. Later, we presented the mockup and asked the
stakeholders if they find that mockup helpful.
In the following, we present and explain the capabilities of the mockup. Then,

we describe the interview setting, including a description of the interviewed stake-
holders.

App Review Analytics Mockup

Figures 3.2, 3.3, and 3.4 show the web-based mockup for app review analytics.
The objective of the mockup is to show stakeholders a potential solution on
automatically filtering explicit user feedback. The mockup is the basis of our
discussion in the semi-structured interviews.
All figures of the mockup have the top bar in common. On the top bar, stake-

holders can navigate through the mockup and can log in to an existing account.
If logged in, stakeholders can see personalized notifications. Personalized noti-
fications are about updates in the analysis but also about “watched users” that
update their feedback. If, for example, a stakeholder replies to an app review,
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the user might update their review in return. That update triggers a notification
that allows the stakeholders to react on the update timely.

The landing page of the mockup is shown in Figure 3.2. It contains features
such as an import for existing explicit user feedback. Stakeholders can download
user feedback from the dedicated platform, such as the app reviews from the
Google Play Store, and import them. Alternatively, stakeholders can develop
crawlers that retrieve data periodically, in case the platform provides APIs. App
stores, for example, usually do not provide these APIs, which makes crawling
them cumbersome.

Figure 3.2: Mockup of a review analytics tool: review types over time.

As soon as the stakeholders imported app reviews, they see a trend analy-
sis. Figure 3.2 shows an example for a trend. The mockup prototype creates
trends around the four user feedback categories bug reports, rating, feature re-
quest, and user experience. The trend analysis visualizes the occurrences of the
four categories in user feedback for each app release. Therefore, the analysis helps
understanding if, for instance, a new release either introduced more bugs or if
users report fewer bugs after the release. From that view, project managers can
get inspiration for what to focus on next. For instance, if there is a peak of bug
reports, the development team may want to switch the focus to fixing bugs before
introducing new features. In case there are unusually many feature requests, the
stakeholders of the project may want to discuss them and eventually turn them
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into official requirements.

Figure 3.3: Mockup of a review analytics tool: app store comparison.

Software companies of popular apps usually support both major mobile operat-
ing systems—Android and iOS. In the next widget, we want to monitor how apps
perform per platform because each operating system requires different program-
ming languages, different development teams, and other factors such as operating
system fragmentation. We illustrate the widget for this comparison in Figure 3.3.
The comparison view shows for each app distribution platform the total number
of occurrences per user feedback category, as well as their relative size among each
other. In each pie chart (app distribution platform), the stakeholders can see if,
e.g., the Android app has more bug reports than other apps. Additionally, the
pie chart depicts if any user feedback category currently dominates. Therefore,
Figure 3.3 shows a general overview to compare the overall performance of each
app to enable individual decision making.
The previously discussed views give a general impression of the app’s perfor-

mance. However, stakeholders need to look at the actual user feedback to allow
discussions about, e.g., feature requests or to learn from it for fixing bugs. For
that purpose, we provide a third view in the mockup. Figure 3.4 shows the review
details tab of the mockup. It contains the aggregated analysis results of the app
review filtering. For instance, an approach classifies user feedback into the four
categories bug reports, rating, feature request, and user experience. Stakeholders
interested in discussing, e.g., feature requests, can use this view to filter all user
feedback for this category. We further added additional filters to narrow and
focus the results. One additional filter is the app distribution platform, as the
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Figure 3.4: Mockup of a review analytics tool: review details.

Android development team most likely wants to discuss bug reports on their app
while the iOS development team wants to focus on their platform. Further, the
view allows filtering for the user feedback language, which helps organizations
that distribute apps in several countries.

We display the filtered user feedback below the filter bar (see Figure 3.4).
The left side of the figure shows a pie chart illustrating the overall distribution
of the user feedback categories. The chart further allows filtering for the user
feedback categories. The right side of the figure shows a list of the user feedback
that matches the filter options. This list of user feedback shows the available
information like the user name, the star rating the user gave the app, as well as the
feedback text body. Next to the list of feedback, the stakeholders can perform two
actions. First, there is a dropdown menu that shows the classification result for
the user feedback categorization. Therefore, if stakeholders filter for bug reports,
all listed feedback will have “bug report” as the default selection in the dropdown
menu. In case stakeholders disagree with the classification result, they correct it
manually. These manual updates are fed back to the machine learning algorithm
to help improve it. The second action is a button that allows stakeholders to
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watch certain users. If, for example, a user gave feedback, but the stakeholders
may need more information, they can contact that user and get notified as soon
as the user got back to them. Alternatively, the user may have given a bad star
rating because of a frustrating bug. Stakeholders can then reply to, e.g., showing
appreciation for the feedback or informing the user that the team is working on
it. Finally, if the user updates the feedback, the stakeholders get notified.

Interview Setting

We describe the interview setting in more detail by stating how we performed
the interviews and by describing the interviewed stakeholders.

Table 3.1: Overview of the interview participants.
# Role Company

P1 Senior app developer German SME, app development
P2 Senior tester, quality manager Large European social media company
P3 Lead engineer European telecommunication company
P4 Project manager for apps Global market research company
P5 Lead architect, project manager Mac solutions software development
P6 RE Researcher with practice experience University
P7 Usability/Requirements engineer Large software development company
P8 Project manager, requirements analyst Danish SME, app development
P9 Project manager, requirements analyst Danish SME, app development
P10 Technology enterprise architect Italian telecommunication company
P11 Technology innovation manager Italian telecommunication company
P12 Research and Innovation Senior Manager Italian telecommunication company

Participants. We interviewed twelve stakeholders. Table 3.1 gives an overview
of the interviewed stakeholders. In the stakeholder selection process, we tried
increasing diversity concerning roles, company size, and domains. The reason
for varying the stakeholders’ roles is that the review analytics mockup provides
different levels of abstraction regarding the information it displays. As the ta-
ble reveals, some stakeholders had several roles. Of the twelve stakeholders, six
stated that they have management responsibilities. The review detail view of the
review analytics mockup contains actual app reviews, which, e.g., developers can
use as a direct input for understanding bugs, but also to gather feedback that
suggests new ideas for features. Therefore, we not only wanted to rely on the
management perspective but also interview stakeholders, such as developers who
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have experience in app development. Regarding the company size, we aimed at
diversity because we want to understand if also smaller companies, which poten-
tially receive less feedback, can benefit from the approach. We cover companies
from small and medium-size to enterprises operating in the global market. Among
the stakeholders, there is one researcher from a university who previously worked
in a small iOS app development company in the role of an app developer. The
domains of the companies are also diverse. We cover more general app develop-
ment companies that work on commissions but also others that run their own
product.

Interview details. We performed semi-structured interviews as we needed some
questions to be answered directly but allowed open questions as we were also in-
terested in more details such as potential use cases of our approach. Further,
we aim at getting in-depth qualitative insights, which we can receive by asking
follow-up questions. Therefore, we selected semi-structured interviews as our
research method. The interviews with P1 to P9 took place in January 2016,
while the interviews with P10 to P12 took place in March 2019. The reason for
these two time frames is that in 2016, to the best of our knowledge, there had
been no qualitative study, including interviews with stakeholders asking about
the usefulness of software requirements intelligence with a focus on app stores.
In 2019, we conducted a second interview study to not only extend our existing
interviews but also to enrich them by including social media as a data source for
the feedback analyses. The interview setting was similar, and each of them lasted
about 30-45min. At least two researchers conducted each interview to avoid bias
introduced when a single interviewer documents and leads the interview. There-
fore, we had dedicated roles in the interview for leading and note-taking. One
difference between the two interview iterations is that for the 2019 interviews, we
could also make voice recordings, which we later transcribed. Additionally, we
performed the 2019 interviews face to face while we conducted the 2016 interviews
over the phone.
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3.3 Review of Feedback Usefulness Studies

Results

We summarize the publications of the feedback usefulness studies from the related
work. We discuss seven papers evaluating approaches for analyzing explicit or
implicit user feedback or automated tool support for the feedback types. All
papers address explicit user feedback, two of them implicit user feedback, and
six papers evaluated a tool approach. From a methodology perspective, three
papers performed semi-structured interviews, two performed case studies, and
two conducted surveys—one of these studies combined a case study and a survey.
The paper summaries may state research questions that we extracted or simplified
from the paper if no research question was presented or did not fit the format
of the summary. Further, we may not list all of the authors’ research questions,
but those meaningful for this study. We cited all papers in their summary for
fostering their quick identification to get more details from them.

Paper User involvement in software evolution practice: a case study
By Pagano and Brügge [186]. Published 2013.

Target � Implicit Feedback
�X Explicit Feedback
�X Tool

Relevant RQs RQ1. How, where, and when do users provide feedback?
RQ2. How and why do stakeholders work with user feedback?
RQ3. What are stakeholders’ needs for an automated tool support?

Setting • Case study with semi-structured and open interviews.
• Five interviewees (developer).
• Interviewees from five different companies (software development).
• Recorded and transcribed.

Approach. In 2013, Pagano and Brügge [186] published a case study about
stakeholders involving users in the post-deployment scenario. The authors have
three high-level goals. First, understanding how, where, and when users provide
feedback. Second, exploring stakeholders’ motivation for analyzing user feedback,
how they do it, and what challenges they face. Third, identifying stakeholder’s
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expectations and needs toward tool support for analyzing user feedback. In their
study, Pagano and Brügge focus on developers, software architects, and product
managers as stakeholders. For achieving their goals, the authors performed a
case study, following the three-phased guide of Runeson and Höst [213] within
which they conducted semi-structured and open interviews. They prepared 20
interview questions and seven additional meta-questions about the stakehold-
ers’ background. In total, they interviewed five stakeholders from five small to
medium-sized companies. The study covers stakeholders working on mobile and
desktop apps and have a work experience of three to ten years.

Findings. In total, the authors summarize 17 hypotheses, of which we selected
findings related to our research questions. The top three platforms for users to
provide feedback are emails, app stores, and integrated feedback mechanisms of
the app. Users provide feedback frequently and intentionally chose public chan-
nels for critical feedback, but they do not always reach the stakeholders. The
stakeholders state that feedback supports the continuous assessment of the app
and that it helps to improve the quality of the app. They also say that feedback
helps to identify feature requests but that it is hard to understand how many
users may benefit from that feature. Positive ratings of the app create trust in
other users, and therefore, help to advertise the app in the market. Stakehold-
ers use frequent similar feedback to prioritize their requirements. However, the
stakeholders also state challenges for analyzing user feedback, such as low quality
and contradictory feedback. Stakeholders read feedback manually and sometimes
need to read them several times, making it difficult to understand how many users
the feedback affects. They need tool support for collecting and analyzing high
amounts of user feedback automatically. Such a tool should categorize feedback
(e.g., problem reports vs. feature requests), group similar feedback, count the
feedback, and identify the affected features.
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Paper Release planning of mobile apps based on user reviews.
By Villarroel et al. [249]. Published 2016.

Target � Implicit Feedback
�X Explicit Feedback
�X Tool

Relevant RQs RQ1. Do stakeholders analyze user reviews for their release planning
activities?
RQ2. Is the categorization of reviews into bug report and suggestion
for new feature sufficient for release planning?
RQ3. Would stakeholders use the developed approach in their release
planning?

Setting • Three semi-structured interviews.
• Three interviewees (project managers).
• Three software companies (app development).
• Neither recorded nor transcribed.

Approach. Villarroel et al. [249] developed CLAP, a prototype to classify,
cluster, and prioritize app reviews. In their classification part, they utilize the
categories bug report, request for a new feature, and others. After the classifica-
tion, they applied clustering to find sets of similar app reviews. Eventually, they
prioritize app review clusters with their algorithm, which utilizes factors such as
the size of the clusters and their average rating. They developed a prototype of
that approach, showed it to three stakeholders, and interviewed them to evaluate
the approach. For the evaluation, the authors performed three semi-structured
interviews with project managers. The interviewed stakeholders come from three
different app development companies. Two of the companies develop their own
apps, while the third one develops apps on commission. The authors do not state
whether they recorded or transcribed the interviews.

Findings. Two of the stakeholders found CLAP very helpful because, so far,
they only analyze app reviews manually but know that they contain valuable
information. Both agree that their manual approach is time-consuming and that
any tool support would be helpful in their processes. One of the stakeholders
detailed that for analyzing 1,000 app reviews, a developer of their team spent
two full days to analyze them. The second stakeholder argued that, in total, they
analyzed 11,000 app reviews manually by dedicating 6-7 hours each week to that
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task. The stakeholders deem classified and grouped app reviews as helpful for
planning their releases. One stakeholder also suggested classifying app reviews
into the category “reviews to the app sales plan” in addition to the categories
problem report and feature request. In the case of this stakeholder, they provide
a free and paid version of their app. The stakeholder motivates the additional
feedback category with users who explicitly stated that they would pay for cer-
tain features. The third interviewee stated that their company does not consider
user feedback at all as they are commission-based app developers.

Paper SURF: Summarizer of User Reviews Feedback.
By Di Sorbo et al. [59]. Published 2017.

Target � Implicit Feedback
�X Explicit Feedback
�X Tool

Relevant RQs RQ1. How useful are user feedback summaries for stakeholders gen-
erated by the suggested approach?

Setting • Manual evaluation of the developed app review summarization ap-
proach based on 2,622 app reviews from 12 apps and three app stores.
• Survey about the perceived usefulness of the approach.
• Evaluation and Survey with 12 stakeholders (including developers,
software engineers and testers, and four academics).

Approach. Based on an approach developed in [58], Di Sorbo et al. present
SURF, a summarizer of app reviews [59]. In their work, the authors stress that
stakeholders need too much effort to get meaningful information from user feed-
back. To reduce the effort, they introduce SURF, an approach that generates
summarizes of categorized app reviews. These categories, also called user inten-
tions, are either information giving, information seeking, feature requests, problem
reports, or others. Additionally, their approach extracts the topics of the feed-
back. The authors list twelve topics, such as GUI, improvement, and security,
that they can assign to the reviews. SURF outputs an XML file that tools can im-
port but also provides the functionality to visualize them on its own. To evaluate
their approach and tool, Di Sorbo et al. surveyed twelve stakeholders. In their
evaluation, they report on the study results based on 2,622 app reviews extracted
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from twelve apps from three different app distribution platforms. For each of the
twelve apps, they generated the app review summarizes with SURF and assigned
them to the study participants. The stakeholders have diverse roles; three were
app developers, three software engineering postdocs, two software testers, three
software engineers, and one software engineering master student. The task of the
stakeholders was to check if the review summaries were classified correctly. Then,
the authors invited them to a survey containing nine questions about the general
usefulness of the approach and tool.

Findings. Nine of the stakeholders state that it is challenging to analyze app
reviews without having them summarized. The reason is that there can be dozens
and more reviews discussing similar issues. Further, the summaries focus on only
the important parts of the feedback and foster the understanding of user needs.
Three of the stakeholders state that using SURF’s user feedback summarization
helps them to save between 33% to 50% of their time, whereas eight stakeholders
state that they saved more than 50% of their time. Seven stakeholders say that
they do not feel to miss out on any information when only seeing the generated
summaries. Only one participant states that crucial information is lost when not
having the original feedback attached.
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Paper Feedback gathering from an industrial point of view.
By Stade et al. [234]. Published 2017.

Target � Implicit Feedback
�X Explicit Feedback
� Tool

Relevant RQs RQ1. How do software companies gather feedback from their
end-users?
RQ2. What is the quantity and quality of feedback that software
companies receive?

Setting • One case study with four stakeholders (CTO, user, helpdesk agent,
and manager) from one German company.
• The case study was a one and a half days onsite workshop.
• Online survey with 18 stakeholders knowledgable in requirements
engineering from German-speaking countries.

Approach. Stade et al. [234] conducted a case study and an online survey to
better understand the user feedback gathering processes in the industry. The
objective of the case study is to get in-depth insights into the experience of
companies when gathering user feedback. The authors realized the case study
as a one and a half days onsite workshop. The goal of the workshop was to
look ad available feedback channels and to highlight aspects they deem impor-
tant. Four stakeholders participated in the workshop. The stakeholders were
one user, the CTO of the company, a helpdesk agent, and a manager. The
authors audio-recorded the workshop was audio-recorded and photographed all
taken notes. Two researchers later transcribed the audio and wrote short de-
scriptions of demonstrated artifacts. Later, they sent the analysis results to the
participating company to let them check if they agree or disagree with the results.
The survey included German-speaking countries and targeted quantifiable results
to validate the insights of the case study. The authors got complete answers from
stakeholders of 18 companies that cover different sizes ranging from less than ten
employees to companies with up to 100,000 employees.

Findings. The helpdesk agent of the workshop analyzes user feedback man-
ually to prepare a report for their monthly meeting. However, that process is
time-consuming, and the helpdesk agent desires a tool that creates alerts for ur-
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gent user feedback. All 18 companies use explicit feedback coming from hotlines
and emails. Seventeen companies gather feedback directly at the customer site,
while 15 companies gather feedback via contact forms. Eleven of the 18 compa-
nies gather feedback from ticket systems and forums. Ten surveyed companies
gather user feedback from social media, whereas five use app stores as a feedback
channel. Generally speaking, the surveyed companies provide at least three and
up to 13 feedback channels to their users. While the company of the case study
stated that user feedback they receive is of high quality, the survey participants
were more diverse in their answers. Five companies are satisfied with the qual-
ity of user feedback. However, nine companies neither agree or disagree if they
are satisfied with the quality of user feedback; no company strongly disagrees.
The majority of the surveyed companies agreed that the received user feedback
is relevant for software evolution but also stated that often, user feedback lacks
information to understand it fully. Therefore, Stade et al. also shows the impor-
tance of analyzing user feedback and shows that tool support is appreciated even
in companies that do receive less than 200 user feedback per month.

Paper FAME: supporting continuous requirements elicitation by combining
user feedback and monitoring.
By Oriol et al. [184]. Published 2018.

Target �X Implicit Feedback
�X Explicit Feedback
�X Tool

Relevant RQs RQ1. Can the combination of explicit and implicit user feedback
support stakeholders to elicit new requirements?

Setting • Case study with a German software development company perform-
ing a two-phase workshop.
• The workshop involved one software developer and one researcher.

Approach. Oriol et al. [184] argue that for successful continuous requirements
elicitation, it is important to perform and combine both explicit and implicit
user feedback. They base their arguments on existing literature [29, 153, 253].
They developed an approach called FAME in cooperation with a German SME
company within the European Horizon 2020 project SUPERSEDE (same project
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as in the study of [234]). The focus of the approach is to combine explicit and
implicit user feedback to foster the elicitation of new requirements. More con-
crete, the authors state the following research objective: “To provide a unified
framework capable of gathering and storing both feedback and monitoring data,
as well as combining them using an ontology, to support the continuous require-
ments elicitation process” [184]. Instead of relying on the feedback coming from
social media or app stores, they developed a custom feedback mechanism, which
they included on the website of their industry collaborator SEnerCon. Similar to
app store reviews, users can use their feedback mechanism to give a star rating
and to write feedback. Moreover, users can add screenshots, audio recordings,
and select a feedback category such as bug reports. The authors collected feed-
back over four months. They then analyzed the gathered feedback in a two-phase
workshop with two stakeholders—one researcher and one software developer. In
the first phase, the developer had to elicit requirements from only explicit user
feedback. In the second phase, the developer could elicit new requirements or
refine the previously created, also using implicit feedback. About 5,000 users
logged in during the feedback collection time frame.

Findings. From the logged in users, 24 created 31 explicit user feedbacks entries.
The implicit feedback component recorded about one million clicks and 160,000
navigation actions. From the 31 user feedbacks, the stakeholder identified 16 as
relevant, which eventually led to nine new requirements. As the study focuses
on the identification of new requirements, they considered problem reports as
irrelevant. The remaining 15 out of 31 explicit user feedback entries were either
problem reports or issues related to customer service. In three cases, a single user
feedback entry led to two requirements. By using the combination of explicit and
implicit feedback, the stakeholder found one additional requirement and refined
four previously elicited requirements. However, as analyzing about one million
implicit feedback entries is too much to perform, the authors limited the number
of analyzed clicks to 2,164. Therefore, similar to explicit user feedback, implicit
user feedback comes in huge amounts unfeasible to analyze manually. However,
if filtered purposefully, the combination of both feedback types can either lead
to new requirements of help improving requirements extracted from only one
feedback type.
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Paper Generating Requirements Out of Thin Air: Towards Automated Fea-
ture Identification for New Apps.
By Iqbal, Seyff, and Mendez [115]. Published 2019.

Target � Implicit Feedback
�X Explicit Feedback
�X Tool

Relevant RQs RQ1. What are contemporary practices and challenges requirements
elicitation for developing new apps?
RQ2. Do practitioners already analyze crowd-generated data or
information provided by the crowd e.g. app store data and if so,
how?

Setting • Eleven semi-structured interviews.
• Eleven interviewees (e.g., software engineer and project manager).
• Interviewees from eleven companies (app development).
• Recorded and transcribed.

Approach. In their 2019 published work, Iqbal et al. [115] focus on require-
ments elicitation for new mobile apps rather than the evolution of existing apps.
For that, they performed eleven semi-structured interviews, including steps in the
interviewee participation selection, to foster diversity. Their inclusion criterium
was that the stakeholders have an overview of the requirements engineering pro-
cess of their company and experience in mobile app development. Further, the
stakeholders must be either requirements engineers, business architects, project
managers, consultants, or software engineers. On average, the stakeholders have
about six years of work experience.

Findings. Traditional requirements elicitation approaches, such as interviews
and workshops, are the most common among the stakeholders. However, eight
of the eleven stakeholders state that they use user feedback from the app stores,
while three say that they also consider user feedback from social media. The
remaining five stakeholders state that they do not analyze feedback from social
media as it takes too much time and effort to get information from that feedback
channel. While eight out of eleven stakeholders state that user feedback is the
primary source to understand users better, three explicitly state that user feed-
back is not reliable as there is a lot of fake and auto-generated feedback. Eight
stakeholders say that user feedback is the main source for understanding users of
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particular app features. The stakeholders have an interest in negative feedback
because they help them in identifying gaps in the market. Negative feedback
also helps in the feature selection process and to improve their own apps. The
stakeholders are not aware of an automated tool for extracting information from
app reviews such as feature requests and agree that they need an automated tool.
That tool should analyze app stores to suggest a set of features for new apps.

Paper How do Practitioners Capture and Utilize User Feedback during
Continuous Software Engineering?
By Johanssen et al. [119]. Published 2019.

Target �X Implicit Feedback
�X Explicit Feedback
�X Tool

Relevant RQs RQ1. Which user feedback do practitioners consider?
RQ2. How do practitioners capture user feedback?
RQ3. How do practitioners utilize user?

Setting • 20 semi-structured interviews.
• 24 interviewees (e.g., developer and project manager).
• Interviewees from 17 companies (development and consultancy).
• Recorded and transcribed.

Approach. In their paper, “How do Practitioners Capture and Utilize User
Feedback during Continuous Software Engineering?” [119], Johannsen et al. con-
ducted a total of 20 semi-structured interviews with 24 stakeholders from 17
different companies in 2017. Their goal was to understand how the industry cap-
tures and utilizes user feedback. For that, they formulate three main research
questions that cover 1) what kind of user feedback stakeholders consider (explic-
it/implicit), 2) how (and how often) they capture user feedback, and 3) how they
use user feedback. The authors focussed on diversity when selecting the inter-
viewees by varying the size of the companies (small to enterprise), stakeholder
roles, as well as the project domains. The authors recorded and transcribed the
interviews in their analysis process.
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Findings. Their results show that all stakeholders consider explicit user feed-
back. Twelve of their stakeholders consider only explicit user feedback, and eight
consider both implicit and explicit user feedback. No stakeholder solely considers
implicit user feedback. Thirteen stakeholders use tools support for capturing user
feedback. In such cases, the stakeholders rely on standard software provided by
major companies such as Google, Microsoft, and Adobe like Redmine and JIRA.
Five stakeholders exclusively perform manual analyses, such as reading emails,
performing workshops, or interviewing users. However, the tools analyzing ex-
plicit user feedback do not cover the automated aggregation and analysis of user
feedback. Five stakeholders developed custom tools for the capturing process
of user feedback. The reason for capturing user feedback is different for the in-
terviewed stakeholders. Again, five stakeholders use user feedback for multiple
purposes, while four exclusively use it in the planning phase, two exclusively use
user feedback for support, and one stated that they use it exclusively for im-
provements. It is important to note that in that paper, the definition of explicit
feedback also covers verbal interactions such as workshops with users, as well as
company internal communication.

3.4 Interview Results

We summarize the results of our interviews, as described in Section 3.2.4.

Stakeholders value user feedback but rarely use it in their decision-
making process. Nine stakeholders agree that explicit user feedback is gener-
ally useful, but only three of them look at it regularly. One challenge is that user
feedback comes from multiple channels like the app stores, email, the customer
care department, or as well as from internal employees. The stakeholders do not
have a single place to collect and analyze user feedback, although four of them
state that it impacts the development process—but only if a certain amount of
users reported the same issue or feature request. For instance, if only one user
reports an issue that happens on a particular and rarely used device within the
customer base, stakeholders are more likely to ignore or delay that issue in their
planning. P2 looks into the received user feedback daily but estimates the major-
ity of the received feedback as rather uninformative and, therefore, not helpful.

65



Chapter 3 Stakeholder Needs for Automated User Feedback Analysis

Most of the time, the stakeholders try reproducing the bugs reported but have a
difficult time as essential information such as the steps to reproduce are missing.
Often feedback only contains praise (e.g., “Great app!”) or insults (e.g., “I hate
the app so much.”), which is tedious to filter, especially considering the cases
when the participants receive much feedback. The stakeholders in our study do
not have tool support for extracting information from user feedback but do this
manually by looking at individual reviews, by inviting test groups, or by directly
asking users. P10 to P12 state that user feedback is very useful but not yet part
of the company’s decision-making process because decisions about the product
roadmap, so far, were decided top-down. Nonetheless, the company acknowl-
edged the usefulness of user feedback recently and tried to integrate it into their
processes as an enabler for innovation.

Analyzing the received feedback is not enough; stakeholders also con-
sider feedback users send to their competitors. The general use case all
stakeholders state is to better understand their users. More specifically, eight
stated that they would like to analyze user feedback for identifying problems
with the software and services provided. Further, eight participants stress that
user feedback can be helpful to identify new features to foster innovation, which
may help to either stay competitive or to get an edge over the competitors in
the market. To find innovation, the stakeholders suggested to not only analyze
the feedback of their own product but also look into the feedback of competitors.
P3, for instance, stated that for their company, it is uttermost important to react
to user feedback because otherwise, the image of the company may be damaged.
Two stakeholders explicitly state that one use case should be the aggregation of
user feedback from several channels to minimize places to look for and analyze
user feedback. Therefore, most of the stakeholders wish automated tool support
for extracting information from user feedback collected from several channels and
their competitors.

Stakeholders need to combine and filter implicit and explicit user feed-
back and to quantify analyses results. P1 argues that only analyzing explicit
user feedback is not enough and emphasizes that for fixing bugs, it is important to
also analyze and attach implicit user feedback to the explicit user feedback. That
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way, context information such as steps to reproduce, as well as the used hard-
ware and software version affected, can accelerate the bug fixing process. The
stakeholders P2, P3, P6, and P7 state that a tool should filter non-informative
feedback. Furthermore, P2, P4, P5, and P6 suggest to quantify and group fea-
ture requests and bugs to better prioritize them in the development phase. Five
stakeholders find it helpful to see trends in user feedback to better understand
the overall user satisfaction with the app to answer questions like “were we able
to receive fewer problem reports?”.

Stakeholders found our mockups review analytics tool helpful but miss
key features like context data from implicit feedback and the aggrega-
tion of similar explicit feedback. All stakeholders agree that the app review
analytics mockup is helpful and improves the current state of the art. Gener-
ally, they describe the mockup as clearly designed and well packed with features.
Five stakeholders agree that the information in the trend widgets is meaningful
for them. Four stakeholders highlight the presence of the single reviews, as this
helped them to understand what users talk about in detail. Also, four stake-
holders found the store comparison helpful because their company owns apps in
multiple stores, and so far, they do not systematically compare their performance.
However, the stakeholders made the following suggestions for improvement.

• Show numbers that indicate how much of the feedback is relevant and how
mus is irrelevant.

• Display irrelevant feedback to allow checking whether feedback was miscat-
egorized.

• Show the date of the feedback.

• Add a summarization highlighting the app features users address.

• Group/cluster similar user feedback.

• Add context information such as the hardware and software version.

• Attach implicit user feedback to explicit user feedback.

• Add a sentiment analysis to understand the overall mood/opinion of the
users.
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• Include competitors in the analysis to allow a comparison regarding the
performance.

P1 and P2 highlight that attaching implicit user feedback would be the most
important feature because that data would help in the bug fixing process. With
the implicit user feedback, developers could understand the steps that led to the
issue, and also, if it had been a non-crashing bug, see how the user and the app
behaved afterwards. A dashboard should summarize and show the most impor-
tant information to highlight major issues.

The role of the stakeholders influences the type of information they
need. We found some relations between the role in the company and the most
liked views of the prototype. Project managers found the trend analysis and the
store comparison most helpful (see Figure 3.2 and Figure 3.3). The reason is
that they usually do not have the time to check every single user feedback but
instead need a quick overview of the current state of the product to make deci-
sions. One stakeholder detailed that they would use such a tool with a dashboard
on a monitor in the office so that the development team can get an impression of
the current status every morning. Developers and testers found the actual user
feedback most helpful (Figure 3.4 because rather than knowing that there are
problems in the app, they want to know more details. In particular, P1 and P2
are interested in getting a description of the problem.

Analytics integration scenarios depend on the company’s infrastruc-
ture. The answers on how to integrate feedback analytics vary and depend on
the infrastructure used in the companies. However, we could identify three groups
of suggestions for integration. The first group (six stakeholders) would use the
tool as a standalone product. The standalone tool should come as a web-based
solution that they can access anywhere, including mobile devices. A web-based
solution enables the stakeholders to stay informed at any given time and place.
Four stakeholders suggested adding the results of this tool into elaborated issue
tracker systems such as JIRA. The most comfortable integration would be to
auto-generate new issues for the issue trackers so that stakeholders could imme-
diately discuss or even work on them. However, if the tool automatically creates
the issues, some stakeholders argue that there should also be a human who edits
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them before they are visible to the team. Two stakeholders wish to integrate
the tool into crash tracker systems such as crashlytics [89], which reports the
stack trace of occurred crashes. Consequently, being able to observe crashing
and non-crashing bugs would provide a complete view of current problems in one
place. Five stakeholders additionally stated that export functionality is essential
to back up the analysis results and to use the analysis results in other tools.

3.5 Discussion of Empirical Findings

Here we discuss the outcome of the literature review in Section 3.3 and our
interview study from Section 3.4. Our discussion relies on a total involvement
of 90 stakeholders in either interviews, surveys, case studies, or workshops. We
discuss the findings by presenting the opportunities and challenges stakeholders
see for analyzing explicit and implicit user feedback, as well as for automated
tool support. We highlight the key findings with a bold font.

Explicit user feedback

The seven studies from the literature review, as well as our conducted interviews,
address explicit user feedback. Research in that area is very active, as Martin et
al. [162] show in their survey of app store analyses. In our interview study as
well as in the seven research papers, all authors created approaches to analyze ex-
plicit user feedback. However, the actual use cases of the approaches vary. Some
papers focus on categorizing app reviews into requirements related information
like bug reports and feature requests, others focus on helping to prioritize issues,
and some had the goal to aggregate information from categorized user feedback.

Stakeholders highlight that user feedback contains a lot of noise, re-
sulting in a high effort for a manual analysis, which does not help to
improve the software product. In all studies, the involved stakeholders agree
that the analysis of explicit user feedback is needed. In the study of Villarroel
[249], one stakeholder state that he spent two full workdays to analyze 1,000 app
reviews, while a second argued that he analyzed 11,000 app reviews manually by
dedicating a weekly 6-7 hour slot for that purpose only. However, stakeholders
know that there is feedback, which is valuable for prioritization tasks.
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Stakeholders see the opportunity to utilize automated approaches to
reduce manual effort, remove irrelevant feedback, and include multiple
feedback channels in a single place. A second challenge in analyzing user
feedback is that it comes in different forms from different platforms. Depending
on the company, they may have more than three feedback channels, including
traditional channels like phone and email, or modern feedback channels such as
Twitter and the app distribution platforms. This situation makes it cumbersome
to aggregate the information as there is no single place in which stakeholders can
collect and visualize feedback. Although an automated analysis of explicit user
feedback brings opportunities, stakeholders also see challenges with the suggested
approaches.

In particular, we have to convince stakeholders that the results of
the automated analysis are truthful and, to some extent, complete. As
automated approaches are not perfect, they may miss valuable feedback that a
manual analysis would discover. When considering the SURF approach by Di
Sorbo et al. [59], which summarizes similar user feedback, most stakeholders
state that they do not feel to miss out on information. Nevertheless, one stake-
holder states that these summaries miss crucial information, which suggests that
the possibility of seeing the original user feedback might be a good step towards
increasing trust in the developed approaches. Our interview study supports that
finding as stakeholders state that they want to see all classification results and
want a mechanism to correct them.

Stakeholders want to know the features user discuss and the features
similar apps provide. Our interview study shows that stakeholders want to
identify new features to foster innovation. In a tool, they want a summarization
highlighting the features users address. Two publications from our related work
review agree with this finding. They further say that stakeholders want to under-
stand the users of particular features and that app store analyses shall suggest
a set of features from similar apps for either improving an existing app or for
developing a new one.
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Implicit user feedback

There are only a few approaches that analyze and evaluate implicit user feedback
for requirements engineering with stakeholders. In this chapter, we introduced
two papers that evaluated approaches for implicit feedback. Additionally, in our
interview study, two stakeholders state that they wish to have access to that kind
of data.

Stakeholders suggest adding implicit user feedback to explicit user
feedback to help developers understanding, e.g., what hardware and
software versions are affected and what interactions in what context
led to the issue reported. Our interview study, which initially targeted ex-
plicit user feedback, reveals the need for implicit user feedback. Though most
stakeholders state that explicit user feedback is useful, some stakeholders declare
the need to have context and usage data attached to the written feedback. In
particular, problem reports rarely include technical information such as context
data, which in previous studies also show [157, 187]. However, without context
data, bugs are challenging to reproduce. The study of Johanssen et al. [119] fur-
ther highlights the need for combining both feedback types as eight stakeholders
stressed this fact. Therefore, they agree with the stakeholders from our interview
study but further, add more use cases such as monitoring implicit user feedback
to evaluate A/B testing and to collect general usage statistics. Another oppor-
tunity stakeholders state is that this kind of user feedback can help to improve
specific parts of their software. For example, monitoring interaction data can
help to learn how users use the app features, in particular, to identify the most
frequently used features and the feature users address most often in problem re-
ports. Further, stakeholders can monitor interaction data to identify unintended
navigation flows and optimize them accordingly. Finally, the workshop of Oriol
et al. [184] shows that stakeholders can use implicit feedback to elicit either new
requirements or to refine existing ones.

As already a few users generate a million of implicit user feedback,
stakeholders need an automated aggregation and filtering of the feed-
back before they can analyze it. In the analyzed studies, no stakeholder
is stating that they solely rely on implicit user feedback. Usually, stakeholders
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combine it with explicit user feedback as they require an explanation from the
user perspective of, e.g., what happened during a non-crashing bug. Oriol et
al. [184] highlight that one challenge of collecting and analyzing implicit user
feedback is the amount of data generated. The amount of generated data highly
depends on the software, what stakeholders monitor, and how many users use
the tool over what time frame. Nonetheless, their study shows that even 5,000
thousand logged in users generated about a million click events in four months.
Though these numbers do not say much without knowing how long the users
stayed on the website, they already suggest that getting meaningful information
from implicit user feedback is only feasible if stakeholders can aggregate it.

Automated tool support

Five studies from the literature and our interview study included the evaluation
of a tool with stakeholders. As the developed approaches differ, the tools differ,
too. In the following, we compare the feedback from the stakeholders.

Most of the 90 studied stakeholders do not have dedicated tool support
for feedback analytics yet, though most desire such. The majority of
them state that “any” tool support would already be helpful. There
are tools that stakeholders use, but they focus on collecting user feedback or
documenting requirements in, e.g., issue trackers. Automatically analyzing user
feedback is already a good step toward improving the current state in the indus-
try, but often scripts and raw data are not sufficient to effectively analyze user
feedback. Stakeholders, therefore, need automated approaches that visualize the
results. Another opportunity is that with a web-based tool, stakeholders can stay
informed about their product at any given time and place, which gives them the
feeling of being informed and in control.

Stakeholders see the opportunity in tools to have a quick overview
of the current situation in the user feedback, such as seeing how many
bug users reported since the last release. This opportunity is particularly
important for project managers, who are more interested in seeing the overall
performance of the app instead of detailed feedback. These stakeholders further
highlight that they need to feel in control and informed all the time. Therefore,
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they suggest having a dashboard available on the web, which they can access
from different devices.

To gain trust in the results of the developed approaches, stakeholders
also want to have the possibility to see the original, unprocessed user
feedback. Another advantage of exploring the original user feedback, especially
for developers, is to get a complete overview of the particular issues or requests
of their users. However, as the explicit and implicit user feedback challenges
suggest, user feedback is often noisy and uninformative. Therefore, stakeholders
see the opportunity to have a reduced effort in analyzing user feedback if the
tool is capable of hiding irrelevant user feedback. In Di Sorbos et al. [59], eight
stakeholders state that using their tool to summarize user feedback helps them
to save more than 50% of their time.

Tools have to give stakeholders control over the analysis results. Gen-
erally speaking, stakeholders see any tool support as an improvement over the
current situation. Despite usability aspects specific to the tools developed in the
summarized studies, most challenges lie in the underlying analysis of user feed-
back, which the tools need to mitigate. For instance, the developed approaches
are not perfect, and as such, do make mistakes. The tool should have the ca-
pability to handle these mistakes by, e.g., giving the stakeholders the chance to
correct machine learning-based results. Integrating human feedback in the tool
increases trust and allows the underlying algorithms to improve over time.

Another challenge is the diversity of the infrastructure landscape as
each company has different tools for, e.g., tracking issues, and docu-
menting requirements. Therefore, stakeholders see diverse ways of integrating
requirements intelligence into their current workflows. While some wish for a
standalone tool, others would like to see it integrated into their existing tools.
The conclusion is there is not a single solution to the stakeholder’s needs, and
therefore, such a tool looks differently, use different approaches, and is integrated
differently in every company that may use it.
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3.6 Limitations and Threats to Validity

We discuss the internal and external threats to validity.

Internal threats to validity. Regarding the internal validity, we might have
missed some insights from the interviews or wrongly interpreted the answers as
we could record only three of the interviews. We mitigated that threat by con-
ducting the interviews with two researchers. One of the research was responsible
for leading the interview, while the other was responsible for note-taking. Fur-
ther, we performed semi-structured interviews that allow follow-up questions for
more details in case the answer was unclear.
Regarding the review of related work, the authors of the papers, and we might

have misinterpreted the answers of the stakeholders. We only included peer-
reviewed empirical studies that performed measures to ensure the evaluation
quality, such as recorded interviews, the triangulation of data sources, and the
number of researchers that analyzed the answers. Additionally, to mitigate the
threat of only covering insights that are due to popular research topics of specific
years, we included papers ranging from 2013 to 2019.

External threats to validity. We cannot claim that our results generalize
because our interview study included only 12 stakeholders and because we did
not perform a systematic literature review for our second study. However, we
tried mitigating the threat in our interview study by increasing diversity in the
stakeholders’ roles, company sizes, and the location of the companies. We cover
eight unique stakeholder roles, nine different small to enterprise companies in di-
verse European countries. Still, as we have for some roles, only one stakeholder,
the generalizability is limited. However, after 12 interviews, we did not gain ad-
ditional insights. Further, our interviews and the review study share many of the
findings. Regarding the review of related work, we tried mitigating the threat
to external validity by covering the evaluation with 78 stakeholders, which have
diverse roles in the requirements engineering and software development processes.
We are confident that the evaluation of 90 stakeholders led to meaningful insights.
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3.7 Summary

We explored stakeholders’ perceived usefulness of user feedback, use cases for
automated feedback analysis, and possible integrations into their workflow. We
applied qualitative research by reviewing seven papers from related work and by
conducting an interview study with twelve stakeholders. In total, our qualitative
analysis encompasses the evaluation of 90 stakeholders from the industry. We
summarize the findings of this chapter.

User feedback usefulness. Stakeholders value user feedback but rarely use
it in their decision-making process. They argue that both explicit and implicit
user feedback comes in amounts that are unfeasible to analyze manually. They
are not aware of tools that analyze user feedback automatically and, therefore,
rely on the manual analysis. One stakeholder said that for analyzing 1,000 app
reviews, their team spent two full days, but as research shows, popular apps re-
ceive about 4,000 app reviews and about 32,000 tweets daily. Still, many of the
stakeholders in our qualitative research state that they try analyzing the feed-
back manually. They realized that user feedback could lead to quicker bug fixes,
increase the requirements quality, and can contain information for finding inno-
vative features. Stakeholders do not consider their feedback useful but also the
feedback their competitors receive to identify gaps in the market.
So far, some stakeholders have tools to collect user feedback, but most do not

have any tool support that helps them to get meaningful information such as
ideas for new requirements. Depending on the stakeholder’s role, they either seek
for more general data representation about the overall app performance or more
detailed summaries hinting toward the actual pain points and requests.

Use cases for automated user feedback analyses. Stakeholders stated that
feedback is most useful if automated approaches filter it so that only relevant feed-
back is visible. Additionally, if irrelevant feedback is filtered and only feedback
describing, e.g., problem reports and feature requests, is available, the amount of
feedback is sometimes still too high. Therefore, they wish for further aggregations
like grouping similar feedback.
Typically, the majority of user feedback comes from non-technical users. There-

fore, if stakeholders solely analyze explicit user feedback, they do not have access
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to interaction and context data, which are essential to understand described prob-
lems. Alternatively, if stakeholders only have access to implicit feedback, they
can understand “what” users did but now “why”. They do not know the reasoning
of the user. Our study shows that combining explicit and implicit user feedback
allows for generating new and improving existing requirements. In the ideal case,
stakeholders have filtered explicit feedback available that describes, e.g., a prob-
lem and have access to the interaction and context data that led to the problem.
Therefore, the combination of both feedback types can lead to quicker bug fixes.
Nonetheless, some stakeholders stated that they would not necessarily trust

automated approaches. For example, a stakeholder stated that they would like
to see the filtered feedback, too, to understand if they miss important informa-
tion. They want to correct wrongly categorized feedback and include it in the
analysis. Therefore, it is essential to give stakeholders a control mechanism in
the tool to correct and improve the underlying algorithms.

Integration into workflows. The available IT infrastructure is different or
even unique for most companies. Therefore, there is no single integration scenario
that fits the workflow of every stakeholder. Most stakeholders in our interview
study wish for a web-based standalone tool that they can access from anywhere
at any given time. Such a tool helps stakeholders to feel in control and to feel
informed about their app’s performance in the market.
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Chapter 4

Requirements Intelligence

It always seems impossible until it’s done.

Nelson Mandela

Contribution. This chapter contributes with the introduction of requirements
intelligence, a framework based on stakeholder needs. The framework leverages
the analysis of explicit and implicit user feedback. We detail the analysis activities
and the integrated interactive visualization, which visualizes the analysis results.

4.1 Motivation

In the previous chapter, we detailed on stakeholders’ needs and expectations
regarding automated analyses of explicit and implicit user feedback. We found
that they need automated tool support to collect and to filter the vast amounts
of user feedback they receive. The stakeholders further highlighted the need
to identify the specific features (functional requirements) that their and their
competitors’ users address. The stakeholders want to get an overview of their
app’s performance and detailed insights into the user feedback and the addressed
features in a web-based tool.
Following the insights of Chapter 2 and the results of Chapter 3, we propose

requirements intelligence, a framework to continuously collect, preprocess, filter,
transform feedback to requirements, and to interactively visualize explicit and
implicit user feedback. First, we define the term requirements intelligence in
Section 4.2. Then, we present the requirements intelligence framework and its
activities in Section 4.3. After that, we introduce our machine learning pipeline
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that we employ within the activities of the framework in Section 4.4. Section 4.5
summarizes the chapter.

4.2 Definition

The overall goal of Requirements Intelligence is to leverage user feedback to in-
form project managers, developers, and any stakeholder by providing analytical
insights into software features (functional requirements). We see user feedback as
a continuous source for information that stakeholders can use to either get inspi-
ration for new requirements, improve existing requirements, or to get analytics
insights into the app’s features and how users use them. Requirements intelli-
gence mainly targets software products, such as mobile apps, desktop, and web
applications. Although software apps are the primary target, the ideas and ap-
proaches of requirements intelligence, may also apply to other domains utilizing
instrumental products and services.
In the following, we establish our definition of requirements intelligence by

detailing both terms requirements and intelligence. For requirements, we look
at requirements engineering and its activities we affect. For intelligence, we look
into the closely related fields of business intelligence & analytics and software
analytics.

4.2.1 Requirements

The term “requirements” determines that the intended use of the framework is
within the area of requirements engineering. We understand requirements engi-
neering as a continuous process in software engineering that takes part before and
during the development of a software product, as well as after its deployment,
and that is capable of adapting to change (see Section 2.1.1).
We discussed that change management in requirements engineering is crucial

because user needs may change over time. Projects that do not adapt their re-
quirements may exceed their budget or eventually fail. User satisfaction decides
about the rise and fall of software in the market. Stakeholders can cope with
the risk of unsatisfied users by continuously involving them in their requirements
engineering activities. Requirements engineering is not a single-phased process
but cyclic and iterative. Traditionally, requirements engineering involved users
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primarily in the early phases of development to elicit requirements by performing,
e.g., physical workshops and interviews. However, these approaches are challeng-
ing to perform continuously and cannot easily cover a representative sample of
the users. With the increasing popularity of social media and app distribution
platforms, users started to state their opinion online. Online platforms are a
rich source for requirements-related and continuous explicit user feedback. Also,
software allows monitoring user interactions and the context of use, and there-
fore, provide valuable implicit user feedback. Stakeholders know that explicit
and implicit user feedback is valuable but rarely use it in their work due to high
amounts of noisy and irrelevant feedback.

Requirements. Requirements intelligence aims to make valuable user feedback
available automatically. As that kind of user feedback is a continuous source
for post-deployment information, it affects several requirements-related activi-
ties. In Section 2.1.1, we introduced typical requirements engineering activities
and showed how agile requirements engineering interprets them. We focus on
agile requirements engineering as we found it as the closest interpretation of re-
quirements engineering capable of continuously involving users.
In the requirements elicitation activity, requirements evolve and are discov-

ered in the whole development process. Requirements intelligence considers post-
deployment feedback and can, therefore, support the continuous discovery of new
requirements. Despite the suggestion of Ramesh et al. [202], requirements in-
telligence does not consider face-to-face communication but enables input from
explicit and implicit user feedback.
Our framework supports the requirements analysis and negotiation activity by

continuously providing input for refining and changing requirements by analyzing
the features documented on app pages and matching them with the features
addressed in user feedback. By quantifying the analyses results like knowing how
many users describe a problem with a feature, stakeholders can use that insight
for their prioritization process.
Requirements intelligence does not support the requirements documentation ac-

tivity in the traditional sense but provides an integrated interactive visualization
about the users’ opinions and the features they address.
Requirements validation in agile requirements engineering asserts whether the
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requirements meet the current user needs. Requirements intelligence allows fil-
tering user feedback for problem reports and inquiries (which contains feature
requests and questions towards stakeholders). Analyzing these two categories
helps stakeholders to understand the current needs of their users.

4.2.2 Intelligence

Intelligence describes the output of the framework. The definition of intelligence
is under constant change and debate, and yet, no standard definition exists [138].
Since we target a technical landscape, we do not follow the definition of human
intelligence but business intelligence & analytics and software analytics, which
we consider closely related fields.

Business intelligence & analytics is the most recent evolution of decision
support systems [38]. In the early 1960s, the industry started to transfer some of
its processes to computer-based systems to have support for tasks such as billing,
inventory records, or processing orders [136]. Decision Support Systems (DSS)
were officially introduced by Gorry and Scott Morton [94] in the 1970s. These sys-
tems were improved over the years to support the organizational management of
a company and single managers to get answers to predefined procedures [11, 225].
However, top management often needs to make nonroutine decisions that do not
rely on predefined procedures. Tools supported managers with data coming from
different sources [136, p. 78]. A major advancement is the introduction of multi-
dimensional modeling, allowing its users to view data from different perspectives
[11, 110].
Dedić and Stanier [52] define Business Intelligence as follows:

[...] includes the strategies, processes, applications, data, products,
technologies and technical architectures used to support the collec-
tion, analysis, presentation and dissemination of business information.

In the year 2000, Analytics became a key component of Business Intelligence
& Analytics [50]. Chen, Chian, and Storey [38] state that in the recent under-
standing of this term, big data and big data analytics play an essential role as
business data may come in terabytes or larger, and because modern systems col-
lect complex data from sensors and social media.
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Types of analytics. Analytics is the analysis, the use of data, and system-
atic reasoning to make decisions [49]. Analytics can deliver data-driven answers
to events that happened in the past, are happening in the present, and that may
happen in the future [34, 49]. We can categorize analytics into four types.
Descriptive analytics explains what happened and what is currently happen-

ing through existing data. It can summarize big amounts of data using statistical
measures like averages and percentages. Dashboards like Google Analytics are
an example that shows past and real-time descriptive statistics for stakeholders.
In requirements intelligence, descriptive statistics are summaries like heatmaps of
when users provide feedback and how much feedback they submitted over which
channels.
Diagnostic analytics aims at identifying why something happened. For ex-

ample, descriptive analytics identified that an app received unusual amounts of
problem reports. With diagnostic analytics, we try to understand what the ex-
act problem is and why it is a problem. In requirements intelligence, diagnostic
analytics empowers explicit user feedback to, for example, understand what the
problems are by identifying similar problems and relating the problem to specific
features.
Predictive analytics tries to answer what may happen in the future. For an-

swering forecasts, we need advanced techniques like machine learning algorithms
that can make predictions based on a model trained on historical data. In re-
quirements intelligence, we can, for example, use implicit user feedback to predict
the context of the user or to predict the features users use.
Prescriptive analytics provides directions for stakeholders to make decisions.

It aims at helping stakeholders to identify what the best next action is. Naviga-
tion apps that consider real-time traffic to find the best routes are an example of
predictive analytics. In requirements intelligence, we do not focus on this type
of analytics. However, stakeholders can use the analyses results of explicit and
implicit user feedback to derive decisions, for example, for their release plan by
looking at the most reported problems and inquiries.

Software analytics is about generating insightful and actionable information
for stakeholders [264]. The use of analysis, data, and systematic reasoning lead
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to insightful information [165] for stakeholders like developers, testers, and pro-
gram managers [167, 264]. Menzies and Zimmermann define the term as follows:
“Software analytics is analytics on software data for managers and software en-
gineers with the aim of empowering software development individuals and teams
to gain and share insight from their data to make better decisions.” [165]. Be-
sides the analytics target (software), the definition is very close to the idea of
business intelligence & analytics. Zhang et al. state that software analytics em-
ploys the three: technologies large-scale computing to handle large amounts of
data, machine-learning-based and data-mining enabled analysis algorithms, and
information visualization [264]. Further, the authors state that software analytics
affects the areas of system quality, user experience, and development productiv-
ity, which is also shown by Martínez-Fernández et al. [163]. Software analytics
creates insights such as problem reports from users, dependencies in source code,
analysis of documentation completeness, and the understandability of the source
code [34, 127].

4.2.3 Conclusion

Moving from business intelligence to business intelligence & analytics introduced
confusion in the literature, wherefore Chen et al. [38] treat business intelligence
and business analytics as synonyms. Following Chen et al., we use both terms
synonymously. Therefore, we did not add the term analytics to requirements
intelligence. In contrast to business intelligence & analytics, requirements intel-
ligence has a different target and addresses other processes. Software analytics,
however, is close to the definition of requirements intelligence. All three fields,
business intelligence, software analytics, and requirements intelligence, have the
same goal of providing meaningful and actionable information. To achieve that
goal, we apply machine learning to large datasets and visualize the results for
stakeholders. The term intelligence in our understanding represents, similar to
business intelligence & analytics, the collection, analysis, presentation, and dis-
semination of (requirements-related) information.
We define requirements intelligence as follows:
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Definition 4.1: Requirements Intelligence

Requirements Intelligence is a framework that continuously collects, pre-
processes, filters, as well as extracts and matches explicit and implicit
user feedback to requirements to generate analytical insights for stake-
holders in an integrated interactive visualization.

A consequence of the stakeholders’ needs and the definition of requirements
intelligence is that we have to perform advanced analytics techniques to gain
meaningful insights from user feedback. We can achieve the objective of re-
quirements intelligence by applying machine learning approaches to both types
of feedback. Therefore, the next section will introduce the framework and its
activities. After that, we introduce the machine learning pipeline and practices
that we rigorously followed in the later chapters presenting the approaches for
the framework activities.

4.3 Framework

This section describes the requirements intelligence framework depicted in Figure
4.1.

Preparation

Requirements Intelligence

Explicit User Feedback Analysis

Data Collection 
and Preprocessing

Feedback
Filtering

Implicit User Feedback Analysis

Data Collection 
and Preprocessing

Feedback to 
Requirements

Feedback
Filtering

Integrated 
Interactive 

Visualization

Feedback to 
Requirements

Figure 4.1: The requirements intelligence framework.

The requirements intelligence framework uses explicit and implicit user feed-
back to provide insights through an integrated interactive visualization. The
figure shows four grey boxes, each of them being a thematic container. The first
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grey box on the left is dedicated to the data preparation. It includes the activ-
ities Data Collection and Preprocessing, which the framework provides for both
types of user feedback. Then, there are two grey boxes, one for each type of user
feedback. Again, both include the same activities. The first activity is Feedback
Filtering, which resolves the primary burden of stakeholders, which is the amount
of irrelevant and noisy user feedback. The second activity Feedback to Require-
ments uses the filtered feedback from the previous activity to extract the features
from the relevant feedback and matches them with the features stakeholders doc-
umented. The output of the explicit and implicit user feedback activities serves
as the input for the integrated interactive visualization, which provides analytics
insights for stakeholders for each feedback type and their combination. In the
following, we detail the activities and provide references to their dedicated chap-
ters that present approaches for implementation. We describe how we approach
the framework’s activities for explicit and implicit user feedback.

4.3.1 Data Collection and Preprocessing

We discuss the data collection and preprocessing of explicit and implicit user
feedback. The main difference between the activity for both feedback types lies
within the nature of the data. Explicit user feedback is written text gathered
from online sources. Implicit user feedback, on the other hand, is data collected
from within the app. In the following, we detail the differences.

Explicit user feedback collection and preprocessing. For explicit user
feedback, we focus on app reviews from the Google Play Store and the Apple
AppStore, as well as on tweets from Twitter. In Section 2.2, we discussed the
platforms and the information they provide in detail. To collect feedback from
these platforms, we either have to develop web scrapers or request information
via APIs.
Our conceptual model of explicit user feedback in Section 2.2.2 shows that

it contains a written (body) text, a timestamp, as well as a language as the
minimum. Depending on the platform, explicit feedback may contain additional
data, such as a star rating. Our preprocessing steps focus on the body text of the
feedback and, therefore, on natural language. Additionally, as we apply machine
learning for the activities feedback filtering and feedback to requirements, the
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preprocessing transforms the feedback to machine-readable data.
There is no dedicated chapter for this activity for explicit user feedback, but

we describe the activity in Chapter 5 and Chapter 6.

Implicit user feedback collection and preprocessing. For implicit user
feedback, we work with context and usage data collected from apps. In Sec-
tion 2.3.3, we discussed Android as a platform to collect implicit user feedback.
There, we presented examples of context data (e.g., app version) and interaction
events (e.g., clicks). We also perform machine learning for implicit feedback and,
therefore, have to transform it into machine-readable data.
There is no dedicated chapter for this activity, but both Chapter 7 and Chapter

8 explain the preprocessing steps necessary for their approaches in detail.

4.3.2 Feedback Filtering

This activity addresses the challenge of most stakeholders, which is facing large
amounts of irrelevant and noisy user feedback coming from several platforms.
Therefore, the main objective of this activity is to filter feedback irrelevant to
stakeholders. This step ensures that stakeholders need less effort to analyze user
feedback by only having requirements-relevant feedback available.

Explicit user feedback filtering. Chapter 5 introduces an approach for filter-
ing explicit user feedback from app stores and Twitter in the English and Italian
languages. The approach utilizes natural language processing and machine learn-
ing to filter irrelevant user feedback. We further filter the remaining feedback into
the categories problem report and inquiry. Problem reports describe any problem
that users encounter in the app like software bugs, or a service provided by an
organization. Inquiries are requests for new features and questions directed to
the stakeholders.

Implicit user feedback filtering. Chapter 7 introduces an approach that
filters implicit user feedback to the context of use. The approach can filter im-
plicit user feedback by automatically identifying private and professional device
usage. Private and professional are states describing the usage context (see Sec-
tion 2.3.2). Our approach only presents one example of how we can utilize context
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to filter implicit user feedback. Other, more simple context-based filtering ap-
proaches are, for example, the device a user is using (e.g., smartphone vs. TV),
a particular connection (e.g., Wi-Fi vs. mobile), or the location (e.g., nearby
places).

4.3.3 Feedback to Requirements

This activity is about gaining insights into the features users address in explicit
user feedback, and the features users use with implicit feedback. With this ac-
tivity, we can address stakeholders’ need to understand the particular features
users discuss. With that knowledge, they can better understand which features
cause problems and which features users wish. Stakeholders can compare the
addressed features with their requirements documentation to learn, e.g., which
of their features are popular or maybe not frequently used.

Explicit user feedback to requirements. In Chapter 6, we introduce an
approach that stakeholders can apply to extract the app features users address in
their feedback and to extract the documented app features from app pages. The
approach helps stakeholders identify frequently discussed features and automati-
cally matches the features users mention with those documented on the app page.

Implicit user feedback to requirements. Chapter 8 introduces an approach
that automatically detects the app features users currently use. The approach
performs the identification solely on interaction events. If stakeholders utilize the
approach based on the previously filtered usage context, they can get in-depth
insights like what features users use in a working context. Stakeholders can learn
more about how users use their apps if they compare the result of this approach
for diverse usage contexts.

4.3.4 Integrated Interactive Visualization

The explicit and implicit user feedback analysis activities are the core enablers for
the integrated interactive visualization. In Chapter 3, stakeholders stated that
they need a web-based automated tool visualizing the analysis results of explicit
and implicit user feedback. In particular, they need a tool with which they can
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stay informed and understand how their app generally performs. Depending on
the role of the stakeholders, they either need a general overview like a dashboard
or more details like the actual user feedback and the features users address.
The integration in the integrated interactive visualization stands for integrating

and combining both types of user feedback in one single place. It presents a
dashboard with descriptive analytics showcasing, for example, when and how
often users provide feedback. Besides dedicated views for the feedback types, the
visualization combines both by, e.g., enriching explicit user feedback with context
data like the app and operating system version. The underlying machine learning
models of the other activities and the combination of both feedback types allow
visualizations for all four types of analytics. We address the stakeholders’ need
for providing a single point of access for different feedback types, coming from
different platforms, which is available on the web.
The term interactive in the integrated interactive visualization stands for al-

lowing stakeholders to interact with the presented information. The visualization
allows stakeholders to, e.g., select filter mechanisms, to define time frames of in-
terests, and to correct the underlying algorithms of the feedback analyses activi-
ties. Here, we address the stakeholders’ need for being in control of the machine
learning models and the need for selecting and filtering information appropriate
to the role of the stakeholder.

4.4 Machine Learning Pipeline

The definition of requirements intelligence in Section 4.2 highlighted that to per-
form analytics techniques, we have to apply machine learning, specifically in the
case of predictive analytics. Before applying any type of analytics, we have to
follow the activities of the requirements intelligence framework. All activities
in the framework either prepare feedback for machine learning approaches, i.e.,
the activity data collection and preprocessing, or apply machine learning. This
work presents machine learning-heavy (and natural language process-
ing) approaches with rigorous benchmarking to find the optimal ma-
chine learning model configuration for the task of the approach. The
machine learning steps are similar for all framework activities and feedback types.
Therefore, we present an overview of the machine learning procedure we followed
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in this section. Each chapter applying a machine learning-based approach ex-
plains each step of the machine learning procedure in detail, including a brief
introduction to the techniques applied. This way, the reader learns about the
techniques when they apply.

Feature:
• Selection
• Extraction
• Normalization

Model:
• n-fold cross 

validation
• Configuration

Evaluation:
• Against test set
• Benchmarking

Data:
• Crowd labeling
• Quality check
• Cleaning

Machine Learning Pipeline

Data Collection 
and Preparation

Feature 
Engineering

Model Selection
and Training Model Evaluation Model for 

Predictions

(optionally) return for improvements

Figure 4.2: The requirements intelligence machine learning pipeline.

Figure 4.2 shows the overview of the machine learning pipeline we utilized for
the requirements intelligence approaches. The general idea of the pipeline is to
have a standard procedure to produce robust machine learning models for our
approaches. In every approach presenting machine learning-based solutions, we
performed a benchmark for finding an optimal model. For the benchmark, we
performed several machine learning feature extraction techniques and tested dif-
ferent feature combinations. We further selected several machine learning models,
tuned their hyperparameters, and tested them with an unseen test set.
The machine learning pipeline contains typical steps suggested by the litera-

ture [23, 32, 83, 203]. The developer and advocate at Google Cloud, Yufeng Guo,
summarizes the typical steps for machine learning similar to our approach [96].
In the following, we briefly introduce the pipeline steps of Figure 4.2.

Data collection and preparation. For creating supervised machine learn-
ing models, we have to collect and prepare the data as a first step. Supervised
machine learning models learn to make predictions based on a labeled input. For
example, a supervised machine learning approach for classifying user feedback
into either problem report or not a problem report (binary classification prob-
lem), we have to feed an algorithm with examples. Typically, humans take a look
at a sample of user feedback and label it to one of the two categories.
The quality of the data is one of the most crucial parts of machine learning

because models fed with, e.g., wrongly labeled data, cannot make accurate pre-
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dictions [250]. Either domain experts or the crowd (e.g., users, but not necessarily
domain experts) can label the collected data (e.g., explicit user feedback). No
matter if experts or the crowd perform the labeling task, both need training for
understanding the problem, the machine learning algorithm has to solve. We can
achieve a common understanding of the problem by performing training or by
writing a coding guide. In either approach, we clarify what the exact problem is,
what their boundaries are, and give positive and negative examples. By running
a prior pilot labeling, we can check if the labeling task is well understood. Our
studies rely on crowdsourcing studies for labeling the datasets.
Then, we perform cleaning techniques on the labeled data, such as handling

missing values and further split the data into a training and a test set. The train-
ing set is part of the model selection and training step, which includes the tuning
of the model and performance checking. The test set is only part of the last step
of the pipeline, the model evaluation, to ensure that our optimized model is not,
e.g., over-fitted and performs well on unseen data.

Feature engineering is the step that uses domain knowledge to create meaning-
ful data representations (features) for machine learning models [222]. Typically,
a feature can either be numerical (continuous or discrete) and categorical (ordi-
nal or nominal). Depending on the machine learning algorithm, we can create
features of both types or only one of the two types. However, we can transform
features from one type to the other. For example, the context data “internet
connection” can be any of the categories “Wi-Fi”, “mobile”, “not connected” (cat-
egorical feature). However, most machine learning algorithms can work with
numerical features. For that reason, we can either one-hot encode features or
assign a number to each categorical value [208]. We can prepare the usage con-
text data and interaction events into a set of features (feature vector). In natural
language processing, we also have to transform the text into feature vectors us-
ing techniques like bag-of-words [42], tf-idf [232], or fastText [123]. The chapters
employing those techniques describe them in more detail.
Besides transforming the data into feature vectors (feature extraction), fea-

ture engineering also concerns the selection of features. Sometimes, we do not
want to include all possible features (e.g., all context data) but select some of
them. The reasons for limiting the number of features are, among others, privacy
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concerns regarding the collected data [243], the decreasing performance of the
model, and longer times for training the algorithms. Therefore, we can perform
feature selection approaches like the attribute evaluator CfsSubsetEval and the
search method BestFirst [102]. Feature selection techniques return the features
that have the highest impact on the machine learning model’s accuracy.
One final step is the normalization of features, sometimes called feature scaling

[2]. Data often comes in different scales or different units like counts and percent-
ages. We include feature normalization in our benchmark experiments because
normalizing features can improve the machine learning model [30].

Model selection and training. The model selection and training step of the
machine learning pipeline is about selecting and optimizing the machine learning
models for the train set, which we created in the first step (data collection and
preparation).
Our goal is to find the best machine learning algorithm and configuration for

each approach of the requirements intelligence framework activities. Therefore,
we selected several algorithms available in either the Python Scikit-learn library
[194] or the Java Weka data mining software [103]. Most machine learning algo-
rithms allow hyperparameter tuning, which can improve performance [19, 20].
For each selected machine learning algorithm, we run n-fold cross-validation

[33, 130, 188] to validate the performance of our models on the train set. Cross-
validation splits the train set into a train and validation set for each of the
n-folds. This technique then trains a model using the train set and checks its
performance using the validation set. After the nth fold, all data points were
once part of the validation set. We selected the n-fold parameter based on the
number of available training samples. We detail more on our decision in each
chapter using n-fold cross-validation. We chose grid search for hyperparameter
tuning to find the optimal values for various parameters. Grid search exhaustively
samples hyperparameter combinations for a defined grid of configurations [20].
Performing this method gives us full control over the hyperparameters.
In case, we thought that the performance of the classification model could be

improved, we either changed the hyperparameter grid or went back to the feature
engineering step.
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Model evaluation. In the last step of our machine learning pipeline, we per-
form a final test of our trained machine learning model from the previous step.
Therefore, the input for this step is the best performing model of the n-fold cross-
validation, including hyperparameter tuning. The goal of this step is to check
how our model performs on unseen data. For that reason, we created a train
and a test set in the data collection and preparation step. The test set usually
compares the performance of competing models. It is a curated sample, which
includes a real-world representation of the data (i.e., realistic distribution of the
classes) [220]. As it is unseen to the trained model, we can make assumptions
about the model’s performance and compare the results of several models. If the
evaluation of the model is unsuccessful, we might have overfitted the model and
have to go back to either the second or third step of the pipeline.
We use the evaluation on the test set to create our benchmarks, which are tables

describing the performance of each selected machine learning algorithm and its
hyperparameters. We only report on the best configuration for each algorithm
as sometimes we performed hundreds of machine learning experiments to find an
optimized model.
The final result is a machine learning model that we can use to make predictions

on new data points (i.e., newly received user feedback).

4.5 Summary

This section introduced the requirements intelligence framework.

Requirements Intelligence is a framework that continuously collects,
preprocesses, filters, and transforms explicit and implicit user feed-
back to requirements to generate analytical insights for stakeholders
in an integrated interactive visualization. We defined the term require-
ments intelligence by looking into the fields of requirements engineering, business
intelligence & analytics, and software analytics. We further based the definition
on the stakeholder needs we identified in Chapter 3. The definition of require-
ments intelligence serves as a guide throughout this work.
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The explicit and implicit feedback analyses are the core enablers for
requirements intelligence. As discussed in Chapter 3, stakeholders find user
feedback valuable but rarely utilize it for several reasons like the high amount
of received feedback and the amount of irrelevant feedback. We, therefore, pro-
pose a framework that continuously collects explicit and implicit user feedback.
Then, it filters the collected feedback to only show feedback that is valuable for
stakeholders, i.e., requirements-relevant feedback like problem reports. Then, the
framework analyzes the features users address in explicit feedback and analyzes
how they use it with implicit feedback. Finally, requirements intelligence extracts
and matches the documented features with those from the user feedback to en-
able advanced analytical insights in the integrated interactive visualization.

Requirements intelligence applies rigorous machine learning for its core
enablers. The core enablers for requirements intelligence are the analyses of ex-
plicit and implicit user feedback. For each feedback type, we perform the three
activities data collection and preprocessing, feedback filtering, and feedback to re-
quirements. The data collection and preprocessing activity prepare the data for
the feedback filtering and feedback to requirements activities that apply machine
learning.
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Core Enablers for Requirements
Intelligence
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Chapter 5

Explicit User Feedback Analysis:
Feedback Filtering

Everything we hear is an opinion, not a fact. Everything we
see is a perspective, not the truth.

Marcus Aurelius, Meditations

Publications. This chapter is based on and extends our publications “On the
automatic classification of app reviews” [151]. My contributions to this publi-
cation were co-designing the interviews, interviewing stakeholders, creating tool
mockups, and helping to analyze and discuss the paper’s results. Further, this
chapter is also based on “Classifying Multilingual User Feedback using Traditional
Machine Learning and Deep Learning” [235]. My contributions to this publica-
tion were conducting the research, developing the traditional machine learning
part, and leading the analysis and writing.

Contribution. The approach, we introduce in this study concerns the first
activity of the explicit user feedback analysis of the requirements intelligence
framework (see Figure 4.1), feedback filtering. The overall idea of the feedback
filtering activity is to identify the user feedback containing requirements-relevant
information automatically. For example, if stakeholders are interested in using
this activity to find problems for resolving them quicker, the approach imple-
mented for this activity must extract all user feedback that reports problems or
hints toward them. Our approach can filter irrelevant feedback and categorize
the remaining feedback into problem reports and inquiries. We look into user
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feedback in different languages coming from two different platforms.

Addressed stakeholder needs. In Chapter 3, we found that stakeholders value
user feedback but rarely use it in their decision-making process. The reasons are
that user feedback comes in large amounts, from diverse platforms/channels and
often contains irrelevant and noisy information. As stakeholders do the analysis
manually, they need an automated approach to filter irrelevant user feedback,
allowing them to focus on requirements-relevant feedback.

5.1 Motivation

Research has shown the importance of extracting requirements related informa-
tion from explicit user feedback to improve software products and user satisfaction
[140, 190]. Apps with better ratings and frequent feedback get a higher rank in
the app distribution platforms, leading to more visibility, and therefore, higher
download numbers [73]. But as user feedback on social media or app stores can
come a thousandfold daily, a manual analysis of that feedback is cumbersome
[187]. However, analyzing this feedback brings opportunities to understand user
opinions better because it contains valuable information like problems users en-
counter or features they miss [78, 99, 112, 187, 191]. Although user feedback con-
tains valuable information for requirements engineers, the vast amount of user
feedback is rather uninformative and of low quality [180]. Such uninformative
feedback is often spam, praise for the app, insulting comments, or a repetition
of the star rating in words [109, 187]. When analyzing explicit user feedback, we
typically face the following challenges:

Uninformative Feedback: Pagano and Maalej [187], as well as Guzman
et al. [99] show that more than 70% of the user feedback is not related to
requirements engineering and therefore considered as noise.

Feedback Channels: User feedback is provided on many different chan-
nels, such as social media and app distribution platforms. Development
teams have to identify the channels by which users provide feedback, then
aggregate that feedback, and analyze it to extract the desired information.
As these channels have different purposes, the language of the users may
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differ. Tweets, for example, have a fixed and limited length and are usually
used to state a general opinion or to request support. The purpose of app
reviews, on the other hand, is to provide a review and rating of the app
itself.

Language Diversity: Apps are usually not restricted to a single coun-
try nor a single language. In particular, popular apps have users all over
the world and provide their interface in many languages. When users give
feedback, they often do so in their native language. Organizations such
as Spotify are aware of that situation and have dedicated support profiles
on Twitter to help their users in their native language. When automat-
ically classifying user feedback, machine learning algorithms usually use
language-dependent models for text representations. Therefore, when de-
signing automated approaches and trying to be inclusive to other than
English speaking users, it is important to consider the implications of those
languages on the machine learning models.

Researchers have applied supervised machine learning to filter noisy, irrelevant
feedback, and to extract requirements related information [69, 100, 151]. Most re-
lated works rely on traditional machine learning approaches that require domain
experts to represent the data with hand-crafted features. In contrast, end-to-end
deep learning approaches automatically learn high-level feature representations
from raw data without domain knowledge, achieving remarkable results in differ-
ent classification tasks [87, 230, 262].
This study’s overall objective is to develop approaches that automatically ex-

tract requirements-related information from explicit user feedback and to filter
uninformative feedback. We develop these approaches by carefully addressing
the described challenges. In this work, we aim at understanding if and to what
extent deep learning can improve state-of-the-art results for classifying user feed-
back into problem reports, inquiries, and irrelevant. We focus on these three
categories because practitioners seek for automated solutions to filter noisy feed-
back (irrelevant), to identify and fix bugs (problem reports), and to find feature
requests as inspiration for future releases (inquiries) [151]. We consider all user
feedback as problem reports that state a concrete problem related to a software
product or service (e.g., “Since the last update the app crashes upon start”). We
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define inquires as user feedback that asks for either new functionality, an im-
provement, or requests information for support (e.g., “It would be great if I could
invite multiple friends at once”). We consider user feedback as irrelevant if it does
not belong to problem reports or inquires (e.g., “I love this app”).
To fulfill our objective, we employ supervised machine learning fed with crowd-

sourced annotations of 10,000 English and 15,000 Italian tweets from telecommu-
nication Twitter support accounts, and 6,000 annotations of English app reviews.
We apply best practices for both machine learning approaches (traditional and
deep learning) and report on a benchmark.
The remainder of this chapter is structured as follows. In Section 5.2 reports

on our study design by stating our research questions, our study process, and the
dataset the study relies on. In Section 5.3 we detail on how we applied traditional
machine learning. Section 5.4 shows our approach to using deep learning. In Sec-
tion 5.5 we report our classification results. Section 5.6 discusses the implications
of the study, while Section 5.7 summarizes the overall work.

5.2 Study Design

We discuss the research questions, our study design, and the data our analysis
relies on.

5.2.1 Research Question

The goal of this work is to identify the top-performing model to classify user
feedback (tweets and app reviews) into problem reports, inquires, and irrelevant
by comparing the traditional machine learning approach with deep learning. We,
therefore, state the following research questions:

RQ5.1. To what extent can we extract problem reports, inquires, and irrel-
evant information from user feedback using traditional machine learning?

RQ5.2. To what extent can we extract problem reports, inquires, and
irrelevant information from user feedback using deep learning?

RQ5.3. How do the results of the traditional machine learning approach
and the deep learning approach compare, and what can we learn from it?
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5.2.2 Study Process
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Figure 5.1: Overview of the study design.

Figure 5.1 shows the overall study design. Each white box within the four
columns describes a certain step that we performed while the grey boxes show
the result that each column produced. The first part of the paper is about the
Study Data, which we describe later in this section. In the second part, Traditional
Approach, we perform traditional machine learning engineering, including feature
engineering and hyper-parameter tuning. In part Deep Learning Approach, we
design a convolutional neural network architecture, apply transfer learning for
the embedding layer, and finally evaluate the fine-tuned models. In the fourth
part Result Comparison, we report on the results of our classification experiments
(benchmark) comparing the traditional and the deep learning approaches.

5.2.3 Study Data

We collected about 5,000,000 English and 1,300,000 Italian Tweets addressing
Twitter support accounts of telecommunication companies. From that corpus,
we randomly sampled ∼10,000 English tweets and ∼15,000 Italian tweets that
were composed by users. As the annotation of so many tweets is very time-
consuming, we created coding tasks on the crowd-annotation platform, figure
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Table 5.1: Overview of the study data.
App Reviews Tweets

English English Italian

n_problem_report 1.437 2.933 3.414
n_inquiry 1.100 1.405 2.594
n_irrelevant 3.869 6.026 9.794

TOTAL 6.406 10.364 15.802

eight [72]. Before starting the crowd-annotation, we first wrote a coding guide to
describe our understanding of problem reports, inquiries, and irrelevant tweets
with the help of the innovation center of a big Italian telecommunication company.
Second, we run a pilot study to test the quality of the coding guide and the
annotations received. Both coding guides were either written or proof-read by at
least two native speakers, and we required that the annotators are natives in the
language. Each tweet can belong to exactly one of the before mentioned classes
and is annotated by at least two persons, three in case of a disagreement. As for
the annotated app reviews, we rely on the data and annotations of Maalej et al.
[151]. Table 5.1 summarizes the annotated data for both languages.
Replication package. To encourage replicability, we uploaded all scripts,

benchmark results, and provide the annotated dataset upon request [204].

5.3 The Traditional Machine Learning Approach

5.3.1 Preprocessing

We preprocessed the data in three steps to reduce ambiguity. Step 1 turns the
text into the lower case; this reduces ambiguity by normalizing, e.g., “Feature”,
“FEATURE”, and “feature” by transforming it into the same representation “fea-
ture”. Step 2 introduces masks to certain keywords. For example, whenever an
account is addressed using the “@” symbol, the account name will be masked as
“account”. We masked account names, links, and hashtags. Step 3 applies lemma-
tization, which normalizes the words to their root form. For example, words such
as “see”, “saw”, “seen’, and “seeing” becomes the word “see”.
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5.3.2 Feature Engineering

Table 5.2: Extracted features before scaling. If not further specified, the number
of features applies to all data sets.
Feature Group Value Boundaries Number of Features

n_words N 1
n_stopwords N 1
sentimentneg {x ∈ Z | − 5 ≤ x ≤ −1} 1
sentimentpos {x ∈ N | 1 ≤ x ≤ 5} 1
keywords {0, 1} 37 (IT), 60 (EN)
POS tags N 18 (IT), 16 (EN)
tense N 4 (IT), 2 (EN)
tf-idf {x ∈ R | 0 ≤ x ≤ 1} 665 (app reviews, EN)

899 (tweets, EN)
938 (tweets IT)

fastText {x ∈ R | 0 ≤ x ≤ 1} 300

TOTAL 1.047 (app reviews, EN)
1.281 (tweets, EN)
1.301 (tweets IT)

Feature engineering describes the process of utilizing domain knowledge to find
a meaningful data representation for machine learning models. In NLP it encom-
passes steps such as extracting features from the text, as well as selection and
optimization. Table 5.2 summarizes the groups of features, their representation,
as well as the number of features we extracted for that feature group. For in-
stance, the table shows that the feature group “keywords” consists of 37 keywords
for the Italian language, each of them being 1 if that keyword exists or 0 if not.
We extracted the length (n words) of the written user feedback as Pagano and

Maalej [187] found that most irrelevant reviews are rather short. One example
of such a category is rating, which does not contain valuable information for
developers as most of the time, such reviews are only praise (e.g., “I love this
app.”). Excluding or including stop words, in particular in the preprocessing phase
is highly discussed in the research. We found papers that reported excluding
stop words as an essential step (e.g., [101]), papers that leveraged the inclusion of
certain stop words (e.g., [118]), and others that tested both (e.g., [151]). However,
the decision for exclusion and inclusion depends on the use case. We decided to
use them as a feature by counting their occurrence in each document.
Further, we extracted the sentiment of the user feedback using the sentistrength

library [244]. We provide the full user feedback (e.g., a tweet) as the input for
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the library. The library then returns two integer values, one ranging from -5
to -1, indicating on how negative the feedback is, the other ranging from +1 to
+5 indicating how positive the feedback is. The sentiment can be an important
feature as users might write problem reports in a neutral or negative tone, while
inquiries tend to be rather neutral to positive [101, 151, 187]. Keywords have
proven to be useful features for text classification [104, 151, 249] as their extrac-
tion allows input of domain experts’ knowledge. However, keywords are prone
to overfit for a single domain and, therefore, might not be generalizable. In this
work, we use the same set of keywords for the English app reviews and tweets.
We extracted our set of keywords by 1) looking into related work [112, 151, 249],
and 2) by manually analyzing 1,000 documents from the training set of all three
datasets following the approach from Iacob and Harrison [112]. Kurtanović and
Maalej [133, 134] successfully used the counts of Part-of-speech (POS) tags for
classification approaches in requirements engineering. Therefore we also included
them in our experiments.
Maalej et al. [151] successfully utilized the tenses of sentences. This feature

might be useful for the classification as users often write problem reports in the
past or present tense, e.g., “I updated the app yesterday. Since then it crashes.”
and inquiries (i.e., feature requests) in the present and future tense, e.g., “I hope
that you will add more background colors”. When extracting the tense using
spaCy [231] the Italian language model supported four tenses while for the English
language, we had to deduce the tense by extracting the part-of-speech tags. Tf-idf
(term frequency-inverse document frequency) [232] is a frequently used technique
to represent text in a vector space. It increases proportionally to the occurrence
of a term in a document but is offset by the frequency of the term in the whole
corpus. Tf-idf combines term frequencies with the inverse document frequency
to calculate the term weight in the document.
FastText [123] is an unsupervised approach to learn high-dimensional vector

representations for words from a large training corpus. The vectors of words that
occur in a similar context are close in this space. Although the fastText library
provides pre-trained models for several languages, we train our own domain-
specific models based on 5,000,000 English app reviews, 1,300,000 Italian tweets,
and 5,000,000 Italian tweets. We represent each document as the average vector
of all word vectors of the document, which is also a 300-dimensional vector. We
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chose fastText for our word embedding models as it composes a word embedding
from subword embeddings. In contrast, word2vec [166] learns embeddings for
whole words. Thereby, our model is able to 1) recognize words that were not in the
training corpus and 2) capture spelling mistakes, which is a typical phenomenon
in user feedback.

5.3.3 Configuration

For the experiment setup, we tried to find the most accurate machine learning
model by varying five dimensions (no particular order). In the first dimension, we
target to find the best-performing features of Table 5.2 by testing different combi-
nations. In total, we tested 30 different feature combinations such as “sentiment
+ fastText” and “n_words + keywords + POS tags + tf-idf”.
The second dimension is testing the performance of (not) applying feature

scaling. Tf-idf vectors, for example, are represented by float numbers between 0
and 1, while the number of words can be any number greater than 0. This could
lead to two issues: 1) the machine learning algorithm might give a higher weight
to features with a high number meaning that the features are not treated equally.
2) the machine learning model could perform worse if features are not scaled.
In the third dimension, we perform Grid Search [20] for hyper-parameter tun-

ing. In contrast to Random Search, which samples hyper-parameter combinations
for a fixed number of settings [19], Grid Search exhaustively combines hyperpa-
rameters of a defined grid. For each hyper-parameter combination, we perform
5-fold cross-validation of the training set. We optimize the hyperparameters for
the F1 metric to treat precision and recall as equally important.
The fourth dimension checks whether sampling (balancing) the training data

improves the overall performance of the classifiers. For unbalanced data, the
machine learning algorithm might tend to categorize a document as part of the
majority class as this is the most likely option. In this work, we test both,
keeping the original distribution of documents per class and applying random
under-sampling on the majority class to create a balanced training set.
Finally, the fifth dimension is about testing different machine learning algo-

rithms. Similar to our reasoning for the feature selection, we tested the following
algorithms frequently used in related work: Decision Tree, Random Forest, Naive
Bayes, and Support Vector Machine [100, 151, 257]. As for the classification, we
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follow the insights from Maalej et al. [151] and employ binary classification (one
for each: problem report, inquiry, and irrelevant) instead of multiclass classifica-
tion.

5.4 The Deep Learning Approach

Traditional classification approaches require a data representation based on hand-
crafted features, which domain experts deem useful criteria for the classification
problem at hand. In contrast, neural networks, which are used in deep learning
approaches, use the raw text as an input, and learn high-level feature represen-
tations automatically [87]. In previous work, researchers applied them in diverse
applications with remarkable results to different classification tasks, including ob-
ject detection in images, machine translation, sentiment analysis, and text clas-
sification tasks [46]. However, neural networks are not a silver bullet, and they
have also achieved only moderate results in the domain of software engineering
[67, 76, 97].
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Figure 5.2: Neural network architecture for the classification.

5.4.1 Convolutional Neural Networks

Although convolutional neural networks (CNNs) have mainly been used for image
classification tasks, researchers also applied them successfully to natural language
processing problems [128, 147]. In most cases, deep learning approaches require
a large amount of training data to outperform traditional approaches. Figure 5.2
shows the architecture of the neural network that we used for the experiments
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in this study. Haering et al. [104] used this model to identify user comments
on online news sites that address either the media house, the journalist, or the
forum moderator. They achieved promising results that partly outperformed a
traditional machine learning approach. The input layer requires a fixed size for
the text inputs. We choose the size 200, which we found appropriate for both
the app review and the Twitter dataset as tweets are generally shorter, and we
identified less than 20 app reviews that exceed 200 words. We cut the part, which
is longer than 200 words and pad shorter input texts, so they reach the required
length. After the input layer, our network consists of an embedding layer, a 1D
convolution layer, a 1D global max-pooling layer, a dense layer, and a concluding
output layer with a softmax activation. For the previous layers, we used the tanh
activation function. During training, we froze the weights of the embedding layer,
whereby 15,000 trainable parameters remain.

5.4.2 Transfer Learning

Transfer learning is a method often applied to deep learning using models pre-
trained on another task [87]. In natural language processing, a common applica-
tion of transfer learning is to reuse word embedding models, e.g., word2vec [166]
or fastText [123], which were previously trained on a large corpus to pre-initialize
the weights of an embedding layer. We applied transfer learning to pre-initialize
our embedding layer with three different pre-trained fastText models [123]. Dur-
ing training, we froze the weights of the embedding layer.

5.4.3 Hyperparameter Tuning

The network architecture and the hyperparameter configuration can be a crucial
factor for the performance of the neural network. Therefore we compared varia-
tions of both our CNN architecture as well as training parameters and evaluated
the best-performing model on the test set. We performed a grid search and var-
ied the number of filters and the kernel size of the 1D convolutional layer, the
number of units for the dense layer, the number of epochs, and the batch size
for the training, and the number of units for the final dense layer. Due to the
small size of our training set, we conducted a stratified 3-fold cross-validation on
the training set for each hyperparameter configuration to acquire reliable results.
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Subsequently, we evaluated the model with the best-performing hyperparameter
configuration on the test set. We trained the models with seven epochs and a
batch size of 32. We used the Python library Keras [41] for composing, training,
and evaluating the models.

5.5 Results

Table 5.3: Classification benchmark for the traditional machine learning approach
(Trad.) and the deep learning approach (DL). The best F1 score per
classification problem and dataset are in bold font.

app review EN tweet EN tweet IT
p r F1 auc p r F1 auc p r F1 auc

T
ra

d. problem report .83 .75 .79 .85 .46 .82 .59 .72 .51 .88 .65 .83
inquiry .68 .76 .72 .85 .32 .70 .43 .73 .47 .82 .60 .82
irrelevant .88 .89 .89 .86 .73 .75 .74 .69 .78 .89 .83 .73

D
L

problem report .46 .60 .52 .82 .51 .42 .46 .74 .62 .57 .59 .84
inquiry .69 .79 .74 .94 .40 .40 .40 .75 .51 .57 .54 .83
irrelevant .78 .93 .85 .90 .74 .70 .72 .75 .85 .77 .81 .86

In this section, we describe and discuss the results of the classification ex-
periments. We first explain the evaluation metrics. Then, we report on the
benchmark in Table 5.3, showing the top accuracy. Finally, we explain the con-
figuration of the models leading to the best results from Table 5.4.
For this work, we report on the classification metrics precision, recall, and

F1 as presented in related work [101, 151, 249]. For the calculation of these
metrics, we used sklearn’s strictest parameter setting average=binary, which is
only reporting the result for classifying the true class. Additionally, we report
on the Area Under the Curve AUC value, which is considered a better metric
when dealing with unbalanced data as it is independent of a certain threshold
for binary classification problems. In machine learning, Area Under the Receiver
Operating Characteristics ROC AUC is a metric frequently used to address class
imbalance. Davis and Goadrich [51] argue that Precision-Recall AUC (PR AUC)
is a more natural evaluation metric for that problem. We optimized and selected
the classification models based on F1, the harmonic mean of precision and recall.
Thereby either precision or recall can have a rather low value compared to the
other.
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Table 5.3 shows the classification results of the best model for each of the
three data sets and each classification problem. For the English app reviews,
traditional machine learning generally performs better than deep learning when
considering the F1 score. One reason for this difference might be that for the app
reviews, we have only about 6,000 annotated data points, while for tweets, we
have about 10,000 for English tweets and about 15,000 for Italian tweets. For the
English tweets, both approaches perform quite similar. While the F1 score seems
to be lower for the deep learning approach, the AUC values are similar for both
approaches. The results for the Italian tweets show when optimizing towards F1,
that deep learning reaches a higher precision, while the traditional approaches
achieve a higher recall. The F1 score reveals again that both approaches per-
form similarly. Based on our results, which are generated by a large series of
experiments, we cannot say that for our setup, either of the approaches performs
better.

Table 5.4: Configuration of the best performing classification experiments for the
traditional machine learning and the deep learning approaches. RF =
Random Forest, DT = Decision Tree. CNN = Convolutional Neural
Network.

T
ra

di
ti
on

al
M

ac
hi

ne
Le

ar
ni

ng

app
review
(EN)

problem report RF(max_features:None, n_estimators:500).
features:sentiment, tfidf, sampling:true, scaling:false

inquiry DT(criterion:gini, max_depth:1, min_samples_leaf:1, min_samples_split:4, splitter:random).
features:tfidf, keywords, sampling:false, scaling:false

irrelevant DT(criterion:gini, max_depth:8, min_samples_leaf:2, min_samples_split:4, splitter:random).
features:n_words,n_stopwords, n_tense, n_pos, keywords, tfidf, sampling:false, scaling:false

tweet
(EN)

problem report RF(max_features:auto, n_estimators:1000).
features:sentiment, tfidf, sampling:true, scaling:true

inquiry DT(criterion:gini, max_depth:1, min_samples_leaf:1, min_samples_split:2, splitter:best).
features:n_words,n_stopwords, n_tense, n_pos, keywords, tfidf, fastText, sampling:true, scaling:true

irrelevant RF(max_features:none, n_estimators:1000).
features:n_words,n_stopwords, n_tense, n_pos, keywords, fastText, sampling:true, scaling:false

tweet
(IT)

problem report RF(max_features:log2, n_estimators:1000)
features:sentiment, n_words,n_stopwords, n_tense, n_pos, tfidf, sampling:true, scaling:true

inquiry DT(criterion:entropy, max_depth:8, min_samples_leaf:10, min_samples_split:6, splitter:random)
features:n_words,n_stopwords, n_tense, n_pos, keywords, sampling:true, scaling:false

irrelevant DT(criterion:entropy, max_depth:8, min_samples_leaf:8, min_samples_split:2, splitter:random)
features:sentiment, n_words,n_stopwords, n_tense, n_pos, tfidf, keywords, sampling:false, scaling:true

D
ee

p
Le

ar
ni

ng

app
review
(EN)

problem report CNN(dense_number_units:32, kernel_size:3, number_filters:16). sampling:true, scaling:true
inquiry CNN(dense_number_units:32, kernel_size:5, number_filters:16). sampling:true, scaling:true
irrelevant CNN(dense_number_units:32, kernel_size:5, number_filters:16). sampling:true, scaling:true

tweet
(EN)

problem report CNN(dense_number_units:32, kernel_size:5, number_filters:16). sampling:true, scaling:true
inquiry CNN(dense_number_units:16, kernel_size:5, number_filters:16). sampling:true, scaling:true
irrelevant CNN(dense_number_units:32, kernel_size:5, number_filters:16). sampling:true, scaling:true

tweet
(IT)

problem report CNN(dense_number_units:32, kernel_size:5, number_filters:16). sampling:true, scaling:true
inquiry CNN(dense_number_units:32, kernel_size:5, number_filters:16). sampling:true, scaling:true
irrelevant CNN(dense_number_units:32, kernel_size:5, number_filters:16). sampling:true, scaling:true
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5.6 Discussion

5.6.1 Implications of the Results

In this work, we classified user feedback for two languages from two different
feedback channels. We found that when considering the F1 score as a measure,
traditional machine learning performs slightly better in most of the examined
cases. We expect that our approaches can also be applied to further feedback
channels and languages, although some features are language-dependent and need
to be updated. For example, our deep learning model requires a pre-trained word
embedding model on top of a training set for each language, such as the English
and Italian fastText models. Word embeddings capture the similarity between
words depending on the domain and language. They are highly adaptable to
language development by retraining the model regularly on current app reviews
and tweets. It can capture the meaning of transitory terms like Twitter hashtags
or emoticons. In traditional approaches, the language-dependent features are
keywords, sentiment, POS tags, and the tf-idf vocabulary. This requires more
effort to create models for multiple languages. The rest remains language and
domain-independent.
Traditional approaches often perform better on small training sets as domain

experts implicitly incorporate significant information through hand-crafted fea-
tures [41]. We assume that for these experiments, the hand-crafted features de-
rived from the domain experts lead to considerably better classification results.
Deep neural networks derive high-level features automatically by utilizing large
training samples. We presume that with more training data, a deeper neural
network would outperform the traditional approach.

5.6.2 Field of Application

Classifying user feedback is an ongoing field in research because of the high
amount of feedback organizations receive daily. In particular, Pagano and Maalej
[187] show that popular apps such as Facebook receive about 4,000 reviews each
day. When considering Twitter as a data source for user feedback for apps,
Guzman et al. [99] show that popular app development companies receive, on
average, about 31,000 daily user feedback. Such numbers make it difficult for
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stakeholders to employ a manual analysis of user feedback [98]. Recent advances
in technology and scientific work enable new ways to tackle these challenges. Our
results show that we achieve the best classification results for identifying irrele-
vant user feedback. For that feedback category, we achieved F1 scores of .89 for
English app reviews, .74 for English tweets, and .83 for Italian tweets. Therefore,
we can reduce the effort for stakeholders applying our approach to filter the user
feedback they receive. However, the results are yet not good enough to ensure
that stakeholders do not miss important feedback. As a consequence, we suggest
including a human control mechanism. That control mechanism should allow
stakeholders to correct the output of the approach to continuously improve it
over time.
Stakeholders can use the results of our approach to investigate the feedback

categories further. For example, if stakeholders want to understand if there are
problems several users report, they can apply approaches like topic modeling.
If they apply topic modeling on the feedback our approach classified as problem
reports, stakeholders already know that all topics are related to problems. If they
apply topic modeling on feedback classified as inquiries, they can find common
feature requests.

5.6.3 Alternative Implementations from Related Work

We presented a study giving one example of how to implement the requirements
intelligence framework’s feedback filtering activity. However, there are several
alternatives possible. Here we describe some alternatives found in the literature.
In our study, we focussed on the three categories problem report, inquiry, and

others. Research shows that we can find many more categories in explicit user
feedback. Pagano and Maalej [187] found 17 topics in app reviews, which they
further summarized into the four categories rating, user experience, requirements,
and community. Depending on our goals in the requirements engineering process,
we could consider including other categories than those identified in our study.
For example, if we consider the topic helpfulness, which is about scenarios where
the app has proven helpful, we could train a machine to identify this topic. This
topic may be particularly interesting to understand how our users perceive our
use cases if we cover all intended use cases and if they found unintended use
cases. When we understand which of our use cases are perceived as the most
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helpful, we can leverage this information in our decision-making, e.g., by giving
more attention to it in the bug fixing or improvement process.
In our study, we considered explicit user feedback as static entities. However,

depending on the platform, user feedback may be updated or evolve in lengthy
discussions [107, 124, 157]. App stores, for example, allow users to write feedback
and developers to answer on it. Both the feedback and the answer can be updated.
In forums or on Twitter, you may have a full conversation. In our study, we did
not consider these dynamics, although they can include useful information. For
example, Martens and Maalej [157] show that users who give feedback on Twitter,
often do not include much information in case of a problem report. The support
team on Twitter will reply to those messages asking, for example, for context
information, such as the version of the software and steps to reproduce. This
information is particularly crucial if we want to use the feedback to create an
issue tracker entry for developers [22, 28, 170]. Therefore, a possible alternative
for the feedback filtering activity is to bundle messages from a conversation to
one that contains all stated information.

5.6.4 Limitations and Threats to Validity

We discuss the internal and external validity of our results as well as the limita-
tions of the approach.

Internal threats to validity. Concerning the internal validity, one threat for
conducting crowdsourcing studies to label data is that human coders can make
mistakes, resulting in unreliable classifications. We took several measures to miti-
gate this threat. First, we wrote a coding guide that described our understanding
of the feedback categories problem reports, inquiries, and irrelevant. Second, we
run a pilot study to test the quality of the coding guide and the annotations
received. Third, both coding guides were either written or proof-read by at least
two native speakers. Fourth, we further required that the annotators are natives
in the language. Fifth, we employed peer-coding, which involved at least two
persons, and three in case of a disagreement.
Additionally, there are many more machine learning approaches an, in par-

ticular, classifiers we could have included. Specifically, the deep learning part
discusses only one approach. To mitigate the threats, we selected several clas-
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sifiers from the related work that had similar objectives to us. Future research
might want to extend the benchmarks by including other deep learning like BERT
[57].

External threats to validity. Concerning the external validity, we are confi-
dent that our results have a high level of generalizability. We mitigated the threat
regarding generalizability by performing rigorous machine learning experiments
that report their results on an unseen test set. Therefore, our approach is not
prone to overfitting.
Further, we addressed the issue of classifying feedback in different languages.

Our approach only considers two languages and, therefore, might not generalize
to other languages. We mitigated this threat by describing in detail the effort
stakeholders have to invest in creating machine learning approaches for other
languages.

5.7 Summary

This chapter introduced an approach to filter explicit user feedback by categoriz-
ing English and Italian tweets and English app reviews into irrelevant, problem
reports, and inquiries. Therefore, the approach addresses the stakeholder need
for automated identification of requirements-relevant user feedback to reduce the
amount of feedback they have to analyze. We summarize our main findings.

Traditional machine learning and deep learning achieve similar results.
We performed a series of traditional machine learning and deep learning exper-
iments to compare their performance. Due to the number of time-consuming
experiments, existing algorithms, and techniques, we had to scope our study.
However, this study is the most extensive for user feedback classification to the
best of our knowledge. Based on the assumption that deep learning approaches
perform better if they have access to large amounts of data, we conducted a
crowd-based labeling study that, in total, led to 31,000 labeled feedback. In
most cases, we found that the traditional machine learning approach achieved
slightly better results than deep learning (the F1 score average median difference
is 0.04). We assume that this is the case because, in the feature engineering step
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of traditional machine learning, we can leverage the domain experts’ knowledge
for extracting and selecting machine learning features. We further assume that
selecting other deep learning approaches could make a difference, too.

The manual effort for applying traditional machine learning is higher
than for deep learning. Global organizations have users across the world,
meaning that they receive feedback in diverse languages. We selected the En-
glish and Italian language to analyze how much effort stakeholders need in con-
figuring and creating a multi-language approach. We further wanted to under-
stand how well we can perform the classification in different languages. The
feature engineering step in traditional machine learning requires domain experts
because knowledge about the domain guides the extraction and selection of ma-
chine learning features. Our study shows that for each language, stakeholders
put more effort into feature engineering, as many machine learning features are
language-dependent. For example, the terms users use to describe a problem
may differ between the languages, and if stakeholders want to include keywords
as a machine learning feature, they have to understand the language specifics.
Deep learning, on the other hand, does not require a domain expert as it extracts
machine learning features automatically. Therefore, the effort for domain experts
to apply deep learning is lower.

Irrelevant user feedback identification achieves the best results. One
of the stakeholders’ primary concern with analyzing user feedback is the large
amount of irrelevant feedback (see Chapter 3). To reduce the amount of user feed-
back stakeholders analyze manually, stakeholders require automated approaches
that extract requirements-relevant feedback. Our approach works best for iden-
tifying irrelevant user feedback by achieving F1 scores of .89 for English app re-
views, .74 for English tweets, and .83 for Italian tweets. Therefore, our approach
can reduce the effort for stakeholders. Further categorizing requirements-relevant
user feedback to problem reports and inquiries is possible with our approach. We
achieve an average F1 score of .68 for identifying problem reports and an average
F1 score of .59 for inquiries (both are averages across platforms and languages).
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Chapter 6

Explicit User Feedback Analysis:
Feedback to Requirements

Look deep into nature, and then you will understand
everything better.

Albert Einstein

Publication. This chapter is based on our publication “SAFE: A SimpleApproach
for Feature Extraction from App Descriptions and App Reviews”[118]. My con-
tributions to this publication were creating and evaluating the app feature ex-
traction approach, including all steps, performing the analyses, and supporting
the writing.

Contribution. This chapter concerns the second activity of the explicit user
feedback analysis of the requirements intelligence framework (see Figure 4.1),
feedback to requirements. We introduce an approach in this study that extracts
app features users address in their feedback and that stakeholders document on
app pages. Further, the approach can match the app features addressed in the
feedback with the documented features on the app pages.

Addressed stakeholder needs. In Chapter 3, we found that stakeholders
need to know the features user discuss and the features similar apps provide. In
particular, they want to foster innovation and improve the app’s quality by un-
derstanding the features users address and the features similar apps documented
on their app page.
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6.1 Motivation

App stores are particularly interesting to the software and requirements engi-
neering community for two main reasons. First, they include millions of apps
with the possibility to access hundreds of millions of users [187]. Second, ag-
gregate information from the customer, business, and technical perspectives [73].
Each app in the store is presented by its own app page. This typically includes
the app name, icons, screenshots, previews, and the app description as written
and maintained by the stakeholders. Users rely on this information to find and
download the app they are looking for. Later, some users review the app and
comment on its features and limitations. Some apps might receive even more
than a thousand reviews per day [187], some of which include hints and insights
for the stakeholders.
Over the past years, we observed a “boom” of research papers, tools, and

projects on app store analytics [162]. Most of these works focus on mining a
large amount of app store data to derive advice for analysts, developers, and
users. One popular analytic scenario is to mine app reviews for identifying pop-
ular user complaints or requests [78, 112, 152] and assisting release planning [39,
101, 249]. We can analyze the impact features have on the success of an app if
we can identify the specific feature users want, or the feature being affected by
a problem [48, 218]. Another scenario is to mine the app pages [93, 106] and
their evolution over time [217] to derive recommendations for users or to identify
combinations that increase download numbers [105, 178].
A common and elementary step that these approaches share is the following:

how can the app features included in the natural language text be automatically
and accurately identified, in particular since the text is unstructured, potentially
noisy, and uses different vocabulary. Previous approaches focus on mining the
features from a particular artifact in the store, typically either from the pages
or from the review. However, app vendors are likely interested in a holistic
approach that works for multiple types of artifacts to be able to combine the
customer, business, and technical information.
In this paper, we introduce SAFE, a simple, uniform approach to extract and

match the app features from the app descriptions (written by stakeholders) and
the app reviews (commented by users). Our approach neither requires an a-
priori training with a large dataset nor configuration of machine learning features
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and parameters and works on single text elements such as a single app review.
Based on deep manual analysis, we identify a set of general textual patterns
that are frequently used in app stores to denote app features This includes a)
18 part-of-speech patterns (such as Noun_Noun_Noun to represent a feature
like “Email chat history”), b) five sentence patterns (indicating enumerations and
conjunctions of features), and c) several noise filtering patterns (such as filtering
contact information). After preprocessing the text in a single app description or
a review, we apply those patterns and extract a list of features: each consists of
two to four keywords. Finally, we match the extracted features from the reviews
to those extracted from the descriptions.
We implemented our approach and applied it to the descriptions and the re-

views of 10 popular apps from the Apple App Store. We also reimplemented
two frequently cited state-of-the-art approaches: one focuses on app pages [106],
the other on reviews [101]. We evaluated and compared the feature extraction
accuracy as well as the matching between the features in the reviews and the
descriptions.

6.2 The SAFE Approach

Features have manifold definitions in Requirements Engineering. According to
Wieger and Beatty a feature denotes “one or more logically related system ca-
pabilities that provide value to a user and are described by a set of functional
requirements” [255]. Kang et al. define a feature as “a prominent or distinctive
user-visible aspect, quality, or characteristic of a software system or systems”
[125]. Harman et al. state “a feature to be a property, captured by a set of words
in the app description and shared by a set of apps" [106].
Features of software represent an important way to communicate its capabili-

ties to internal and external stakeholders. Features can help users to understand
what the software is about and what they can and can’t do with it. Features are
also important for stakeholders and vendors to structure their software projects
and artifacts. They are frequently used in release planning and in issue trackers.
Features can also be used in requirements and design artifacts and are also often
traceable to source code and APIs.
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We focus on high-level features that describe the essential functional capabilities
of the software and which are both understandable to stakeholders and users. For
instance, the app Dropbox has the following features described in its app page:
"back up files", "send large files", "access files online", "access files offline", "cre-
ate microsoft office files", "edit microsoft office files", "share links to files", and
"includes storage". In contrast, low-level features contain only a set of words,
e.g., Internet, Wi-Fi, Connectivity or photo, picture, upload
There is no uniform way of how stakeholders describe the features of their

app, but we recognized some patterns. Descriptions often contain continuous
texts, which describe the features and purposes of an app. In addition, features
are often summarized in a bullet-point list. In app pages, features from the
continuous texts are often repeated within the bullet points.
We exclude games from our analysis (and the evaluation) since we assume

that they represent a special type of software [101], where requirements and
features are described and handled differently. Murphy-Hill et al. [171] studied
game development at Microsoft and found that game developers are “designing
[...] an emotional experience [...] which is very subjective [...] and is an artistic
achievement.” The authors gave the example: “in an e-commerce application, a
user has a task to complete that typically takes only a few minutes. In contrast,
in some games, people play for hours straight on a daily basis over the course of
months. As a result, the requirement for games is that the user should be able
to stay engaged on multiple timescales, and the mechanism to achieve that will
vary from game to game”.
Our approach includes three types of patterns to extract features from app

pages and app reviews. First, it defines a set of text patterns that frequently
describe features. We identified these patterns based on a manual analysis of
real app pages and reviews. Second, we apply these patterns on app pages and
app reviews with some pre- and post-processing of the text. Finally, we use text
similarity algorithms to match the extracted features from multiple app artifacts.

6.2.1 Identifying the SAFE Patterns

The SAFE patterns consist of two types of text patterns that are frequently used
to describe features in app stores: SAFE Part-of-Speech (POS) patterns and
SAFE sentence patterns.
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SAFE POS Patterns

In a first step, we analyzed app descriptions to identify commonly used POS pat-
terns to denote app features. For this, we crawled the descriptions of 100 apps
from the Google Play store. We then POS-tagged the text using the Natural
language Tool Kit (NLTK) and extracted all sentences. Afterwards, we rendered
each sentence in a tool. One researcher manually looked at the sentences to find
those patterns. Figure 6.1 shows an example of this task: the upper part shows
the sentences in the tool including the POS tags; in the lower part, the researcher
can enter the POS pattern (that is the list of POS tags) that describe a feature
and insert that pattern to the pattern catalog. In Figure 6.1, the POS pattern
is VB NN NN (verb, noun, noun) [195]. It describes the feature use incognito
mode. Table 6.1 summarizes the most frequent POS patterns in our sample that
we use in SAFE. We cut off all POS patterns that occurred less than 10 times.
The most frequently used SAFE POS patterns include two words. The remaining
patterns include up to four words such as “choose from popular versions”.

Figure 6.1: Tool to identify POS tag patterns used to denote app features.

SAFE Sentence Patterns

Existing approaches often miss app features, if a single sentence contains a lot
of independent features. For example, the sentence: “send and receive images,
videos and sticker” contains the following six app features: “send images”, “send
videos”, “send stickers”, “receive images”, “receive videos”, and “receive stickers”.
As language has a high ambiguity, we do not cover all possible cases but those we
frequently found in the app descriptions. To extract all app features, we analyze
the sentence structure and handle five different sentence patterns illustrated in
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Table 6.1: Overview of the SAFE POS patterns.
# POS Pattern Freq. Example

1 Noun Noun 183 Group conversation
2 Verb Noun 122 Send message
3 Adjective Noun 119 Precise location
4 Noun Conjunction Noun 98 Phone or tablet
5 Adjective Noun Noun 70 Live traffic conditions
6 Noun Noun Noun 35 Email chat history
7 Verb Pronoun Noun 29 Share your thoughts
8 Verb Noun Noun 28 Enjoy group conversations
9 Verb Adjective Noun 26 Perform intuitive gestures
10 Adjective Adjective Noun 20 Super bright flashlight
11 Noun Preposition Noun 18 Highlight with colors
12 Verb Determiner Noun 14 Share an image
13 Verb Noun Preposition Noun 14 Use depth of field
14 Adjective Noun Noun Noun 12 Fast system virus scanner
15 Adjective Conjunction Adjective 12 Pre-installed and user-installed
16 Verb Preposition Adjective Noun 11 Choose from popular versions
17 Verb Pronoun Adjective Noun 11 Create your greatest album
18 Noun Conjunction Noun Noun 10 Song and artist album

the following, with real examples from app descriptions:

• Case 1: “send and receive attachments”.

• Case 2: “View documents, PDFs, photos, and videos”.

• Case 3: “Discuss and annotate notes and drafts”.

• Case 4: “Use camera capture to easily scan and comment on pieces of pa-
per, including printed documents, business cards, handwriting and sketches”.

• Case 5: “Write, collect and capture ideas as searchable notes, notebooks,
checklists and to-do lists”.

SAFE identifies enumerations (comma-separated text), conjunctions, and fea-
ture identifiers (words might be used to construct a feature) within each sentence
(1). Then SAFE searches for occurrences and the placement of conjunctions
within the sentence (2). Afterwards, the text parts of the left and the right side
of each conjunction are analyzed to identify the placement of possible enumera-
tions and feature identifiers (3). Finally, the feature identifiers are combined with
the remaining list of app features (4).
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Case 1 is rather simple. It is identified by the single conjunction “and” as well
as the feature identifiers to the left and the right side of the conjunction. SAFE
combines the feature identifiers to the app features “send attachments” and “re-
ceive attachments”.

In Case 2 SAFE identifies a conjunction on the right side of an enumeration
so that the approach can extract “view documents”, “view PDFs”, “view photos”,
and “view videos” as app features.

Case 3 contains two conjunctions and four feature identifiers. Based on the sen-
tence structure, SAFE creates the cross product of the feature identifiers leading
to the app features “discuss notes”, “discuss drafts”, “annotate notes”, and “anno-
tate drafts”.

For Case 4 SAFE first identifies two conjunctions. Then, it finds the two feature
identifiers “scan” and “comment” besides the first conjunction in the sentence.
At the second conjunction, there is an enumeration on the left side and a fea-
ture identifier on the right side, which will be combined to a list of the five
feature identifiers “paper”, “printed documents”, “business cards”, “handwriting”
and “sketches”. In a final step, SAFE combines the first set of feature identifiers
“scan” and “comment” with each element of the list resulting in the features “scan
paper”, “comment paper”, and so forth.

Case 5 also contains two conjunctions. SAFE looks at the first conjunction
and identifies an enumeration on its left and a feature identifier on its right. The
second conjunction also has an enumeration on its left and a feature identifier
on the right side. The final step combines each feature identifier of both lists to
create app features such as “write notebooks” and “collect to-do lists”.

6.2.2 Automated Feature Extraction

Figure 6.2 illustrates the overall steps of SAFE.
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Feature Matching
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Figure 6.2: The main steps of the SAFE approach.

Text Preprocessing

The input of the preprocessing is either a single app description or a single re-
view. First, SAFE performs sentence tokenization. Then, all brackets and the
text in between are removed as we observed that app features are prominently
stated and that text in brackets often simply contains additional explanations.
Next, SAFE filters three types of sentences: 1) sentences that contain URLs and
2) sentences that contain email addresses, as those are used to provide contact
information, and 3) sentences that contain quotations, as they are most likely
to be quoted reviews. Those types of sentences are removed from the data set.
Further, we removed all bullet points and multiple symbols (such as ’*’ or ’#’)
in the remaining sentences. Stakeholders often use these symbols to highlight
different parts of the descriptions visually.
Within the clean sentences, SAFE searches for keywords that introduce a sub-

ordinate clause. We cut off subordinate clauses because they do not describe
features (what the app is doing) but give reasons of why they are useful (how
the app is behaving) as the following sentence shows: “The app let you upload
images, so that you don’t have to worry about losing them”. Next, SAFE word-
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tokenizes each sentence without changing the order of the words. Thereafter, it
removes stop words and the name of the app from each tokenized sentence to
reduce the number of words that might introduce noise in the feature extraction
[101]. The final step of the preprocessing is to attach Part-of-Speech tags to each
word token.

Application of SAFE Patterns

This part starts with analyzing and decomposing the sentences based on the
conjunctions, enumerations, and feature identifiers, as described in the SAFE
patterns. Then, SAFE applies the sentence patterns on the decomposed sen-
tences to extract raw app features. The raw app features and the remaining
sentences that did not match any sentence pattern represent the input for the
next step. That step uses the SAFE POS patterns from Table 6.1 to extract a
list of feature candidates. Finally, SAFE iterates through all extracted feature
candidates, removes duplicates and noise such as identical word pairs (e.g., “email
email” which matches the SAFE POS pattern Noun Noun).

6.2.3 Automated Feature Matching

The input of this step is a list of feature candidates extracted from a single app
description and the extracted feature candidates from the related user reviews.
SAFE matches the feature candidates from both the app description and the
related user reviews. The matching is based on a binary text similarity function
at sentence level that is inspired by approaches presented by Guzman and Maalej
[101] and Li et al. [141].
Overall, SAFE performs three steps (see Figure 6.2) , each representing a

different approach to identify matching features, starting with the most restrictive
approach. First, SAFE performs the matching on a single term level. This means
that two feature candidates are matching if every single term of them is equal,
ignoring the order of the terms. For instance, “send email” and “email send”
are considered matching features. Second, SAFE uses the synonym sets of the
words captured from WordNet to perform the second step of finding matching
features. In this approach, we consider two app features as a match if their
terms are synonyms. For instance, "take photo" and "capture image" represent
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a match. However, the accuracy of this step declines when the number of words
of both candidate features is not equal. Hence, we also use a semantic similarity
matching at sentence level introduced by Li et al. [141] as our third step. This
approach incorporates two similarity metrics: on the one hand, the semantic
similarity employing statistical characteristics of a lexical corpus that can be
inferred as a domain knowledge base; on the other hand, the order similarity
of word order vectors extracted from the sentences. Since we assume that the
ordering of the words does not affect the meaning of the features, we skip the
word order similarity metric.
Finally, to deal with the candidate features that have an unequal number of

words, we utilized cosine similarity calculated between two feature candidates
through the semantic similarity algorithm introduced by Li et al. [141]. We set
the threshold of the similarity to .7 based on experiments we performed while
creating the feature matching approach. Correlation factors between .7 and 1 are
considered significant. Some examples of the calculated similarities of candidate
features are shown on Table 6.2.

Table 6.2: Cosine similarity of exemplary candidate features.
Feature 1 Feature 2 Cosine Similarity

compose new email create new email 0.85
taking image capture image 0.73
send attachments send attached files 0.63
add image delete image 0.38
send new email receive emails 0.35

6.3 Empirical Evaluation

We introduce our evaluation goals, evaluation questions, and data used. We then
describe the methodology followed.

6.3.1 Evaluation Goals and Data

We implemented and tested SAFE as a python library and conducted an empirical
evaluation to assess the approach’s effectiveness and accuracy to extract and
match features. We focused on the following evaluation questions:

122



6.3 Empirical Evaluation

RQ6.1 How precise is SAFE when extracting features from app descriptions
and from app reviews?

RQ6.2 How does SAFE perform compared to other state-of-the-art ap-
proaches?

RQ6.3 How accurate can SAFE match the extracted features from the app
descriptions and the reviews?

For the evaluation, we created a dataset by crawling descriptions and reviews
of 10 apps from the Apple App Store. We selected the top five free and top
five paid apps (January 2017) from the category Productivity of the Apple App
Store. We chose the storefront of the United States to obtain reviews in English.
For each app, we gathered its description page using the iTunes Search API [10].
From the app description page, we extracted metadata consisting of 44 values,
such as the name, version, description, category, or price. The app reviews were
programmatically scraped using a self-developed tool, which accesses an internal
iTunes API. A review consists of 10 values, including the reviewer’s name, title,
description, rating, and date. For further analysis, the data was persisted inside a
MongoDB database. To enable replication, we publish the dataset on our website
[205].
We also reimplemented two recent, frequently cited approaches for extracting

features from app store data: the approach of Harman at al. [106] (also used by
Al-Subaihin et al. [3]) focuses on app descriptions and the approach by Guzman
and Maalej [101] focuses on for app reviews.
The feature extraction approach by Harman et al. includes four main steps

[106]. First, it extracts coarse features by analyzing app descriptions of multiple
apps to find the part of the description that contains app features. Then, it
removes stop words to filter out noise. Afterwards, word frequencies and trigram
collocations are computed, which leads to featurelets. Finally, the authors use a
greedy clustering algorithm to group featurelets that share at least two words.
The approach of Guzman and Maalej focuses on feature extraction on a large

set of reviews. The authors gather the title and the comments of each review of
an app. Then, they perform several preprocessing steps to extract nouns, verbs,
and adjectives, to remove stop words, and to perform lemmatization and group
inflected words. Afterwards, the authors perform bigram collocation finding by
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means of a likelihood ratio test [155]. Thereafter, they filter the collocations by
keeping those that appear in at least three reviews while ignoring the order of the
words within the collocations. As users might use different terms for the same
app feature, the authors group the remaining collocations which have the same
synonyms. Finally, they choose the collocation with the highest frequency to be
the representation of its group.

6.3.2 Evaluation Method

To evaluate the accuracy of SAFE and compare it with the two other approaches,
we first created three evaluation sets: for the extraction from app descriptions,
for the extraction from app reviews, and for the feature matching. Then we in-
structed human coders to verify the results of the three approaches. The creation
of the evaluation sets are described in each of the following subsections.
The evaluation was performed in two parts. First, we evaluated the app fea-

ture extraction on app descriptions and then on app reviews. The benchmark
approaches had been replicated to the best of our knowledge. As the approach
of Harman et al. focuses on app descriptions, we used it as a benchmark to
evaluate the feature extraction from app descriptions. Likewise, as the Guzman
and Maalej approach was developed for app reviews we applied their approach as
a benchmark for extracting features from reviews. In the following, we explain
both procedures.

App Descriptions

For the creation of the evaluation set, two authors independently and manually
extracted app features from the description of each app. We compared the ex-
tracted app features of both authors and agree on what features should be in the
evaluation set. In case of disagreements, a third person was involved. However,
this was only necessary in 2 cases.
We then extracted the app features using Harman’s et al. approach and SAFE

and checked the results with the manual extraction. For this, we implemented a
coding tool shown on Figure 6.3. The tool shows the app description on the left
side and asks two independent coders to carefully check the manual set and state,
on a binary scale, if the extracted app features are part of the app description.
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Figure 6.3: Coding tool for evaluating the feature extraction from app descrip-
tions. A: The app to be coded. B: The raw app description. C:
A feature extracted by an automated approach (i.e., either SAFE or
Harman et al.). D: Code if C is a feature and part of the description.
E: Navigation. F: Progress bar.

The coding tool displays one extracted app feature at the time. We randomized
the extracted app features of both approaches to reduce possible bias that might
be introduced if the results of each approach would be shown one after another.
Finally, we use this evaluation set to calculate precision, recall, and the f-measure
by comparing the coding results with the evaluation set.
For the manual feature extraction, we agreed on the following rules:

1. Focus on functional aspects and omit quality aspects: “Quickly search
emails” becomes “search emails”.

2. Focus on the essential feature: “Upload your family photos” becomes “up-
load photos”.

3. Remove the benefit gained from a feature: "Undo Send, to prevent embar-
rassing mistakes" becomes "undo send”.
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Figure 6.4: Coding tool for evaluating the feature extraction from reviews. The
app to be coded. B: The raw app review. C: The features extracted
by both approaches (SAFE and Guzman and Maalej with random
order). A checked box marks a correctly identified feature. D: Text
field to add features that the approach might have missed.

4. “Open, edit, and save documents” is split to “open documents”, “edit docu-
ments”, and “save documents”.

App Reviews

For the evaluation of the feature extraction from the reviews, we selected the 80
most recent app reviews of five apps from our data set. We compared the feature
extraction by Guzman and Maalej and SAFE. As the approach of Guzman and
Maalej expects a big set of app reviews, we fed it with a random sample of 5000
reviews for each app (except for one app, which only had a total of 3,742 app
reviews). In contrast, SAFE expects single app reviews as input.
We also adjusted the coding tool to match the review evaluation, as shown in

Figure 6.4. Other than for the app description, the creation of the ground truth
was during the coding by manually adding missing features. On the left side of
the tool, a single app review is displayed. On the right side, all extracted app
features from both approaches are listed randomly. Two independent coders have
a binary choice to check if a feature was correctly extracted. To reduce a possible
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coder bias, the order of the approaches is randomized for each app review. In
addition, the coder added the app features each approach missed by writing them
down in the appropriate text box below the correlating approach.

6.3.3 Feature Matching

We evaluated the feature matching by using the true positive features extracted
from the app descriptions and the true positives from the app reviews. We took
the extracted app features from the five apps we used for coding the reviews.
We then ran the feature matching of SAFE and created a table containing the
results. Table 6.3 shows a simplified example of the evaluation. It includes the
app features extracted from the reviews, the app features extracted from the
description, as well as the matching result of SAFE and a column in which the
coder evaluates the result. Two human coders evaluated the matching results.
During the evaluation, the coders also had access to the list of all true positive
extracted app features from the descriptions. This enabled the coders to verify if
app features for which SAFE could not find a match, really did not contain any.
There are three main use cases for the matching: First, we can identify app

features users refer to. Second, we can use this information to identify app fea-
tures that users refer to but are not described in the app page. Finally, we might
be able to extract app feature requests from mismatches. After all extracted app
features of a review have been evaluated, the coder will be asked if the approaches
missed any feature. This additional step allows us to calculate the recall because
we have not created an evaluation set for the app reviews.

Table 6.3: Simplified example of the feature matching evaluation.
Feature (review) Feature (desc.) Matching Result Coder’s Statement

send email send emails match found True
month view week view match found False
retrieve images retrieve pictures no match False
email notification no match True
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6.4 Evaluation Results

We separately evaluated the feature extraction of the SAFE approach for descrip-
tions, reviews, and feature matching. We compared the results of the feature
extraction with two recent approaches. We chose the approach of Harman et al.
[106], which was designed for feature extraction from descriptions. For feature
extraction from reviews, we chose the approach of Guzman and Maalej [101].
We calculated precision and recall for feature extraction from descriptions and
reviews as well as for the feature matching as in 6.1 and 6.2.

Precision =
tp

tp+ fp
(6.1)

Recall =
tp

tp+ fn
(6.2)

For the feature extraction steps, the precision is the fraction of retrieved fea-
tures that are part of our manual evaluations set. Recall is the fraction of features
that are part of our evaluation set and are retrieved by the respective approach.
The true positives (tp) are the number of features that are correctly extracted by
the approaches (those that are part of the evaluation set). The false positives (fp)
are the number of features extracted by the approaches but are not considered a
feature (not part of the evaluation set). The false negatives (fn) are the features
that are not extracted by the respective approach but are part of the evaluation
set.

6.4.1 Feature Extraction from the App Descriptions

We evaluated the features extracted from the descriptions by our approach and by
the approach of Harman et al. SAFE extracts features from the whole description,
whereas Harman et al.’s approach only uses texts from the bullet lists of the app
page. Table 6.4 shows the results. The evaluation is based on ten apps and
contains 197 features (∼20 per app). The Harman et al.’s approach extracted
208 and SAFE 161 feature candidates.
SAFE achieved an overall average precision of .559 and a recall of .434. Respec-

tively, our implementation of the Harman et al. approach achieved an average
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precision of .278 and a recall of .292. This results in an increase of about 100%
in precision and 48% in recall between both approaches. The results are highly
dependent on the analyzed app (standard derivation of precision: .21 and recall:
.12 for SAFE; .15/.13 for Harman et al.). Both approaches have the highest pre-
cision for the Google Drive app and the lowest for the Printer Pro app. Highest
recalls are achieved for Fantastical 2 (SAFE) and Cloud App Mobile (Harman).
The low performance for the Printer Pro app is because the verb “print”, which
is needed to construct app features in this case, occurred outside of the bullet list
in the description.

Table 6.4: Evaluation results for app descriptions. # (count), P (precision), R
(recall). Highest values in a column are in bold.

Approaches
App Name # Reviews Evaluation Set Harman et al. [106] SAFE

Feature # # P R F1 # P R F1

Forest: Stay focused, be present 913 13 15 .266 .286 .275 13 .462 .400 .429
Yahoo Mail 29,186 34 25 .400 .294 .339 19 .737 .389 .509
Printer Pro 6,377 11 2 .000 .000 - 14 .214 .250 .231
Gmail 57,212 24 19 .474 .391 .429 14 .714 .400 .513
Google Drive - free online storage 21956 17 10 .500 .357 .417 8 .875 .389 .538
CloudApp Mobile 111 26 41 .317 .464 .377 18 .722 .481 .578
Google Docs 18,766 12 13 .231 .231 .231 9 .667 .462 .545
Dropbox 12,563 9 6 .333 .200 .250 10 .300 .300 .300
Fantastical 2 for iPhone 3,724 30 65 .123 .258 .167 46 .500 .697 .582
iTranslate Voice 11,834 21 12 .333 .211 .258 10 .500 .278 .357

Overall 197 208 .278 .292 .27 161 .559 .434 .458

6.4.2 Feature Extraction from the App Reviews

Similarly, we evaluated the feature extraction from reviews. Users also describe
the misbehavior of apps, which are syntactically very similar to a feature descrip-
tion. For example, “The app deleted all my notes". We used the SAFE approach
and replication of the Guzman and Maalej’s [101] approach to extract features
from reviews. Table 6.5 shows the results for the extractions. Both approaches
achieved a comparably low precision whereas the SAFE approach has a signif-
icantly higher recall (.709) compared to the approach of Guzman and Maalej
(.276), which is a difference of about 157%. The low precision of the approaches
can be traced back to the fact that user reviews are very noisy and do not always
refer to features as it is often the case in app descriptions.
In contrast to descriptions, reviews often contain slang, typos or incorrect gram-

mar and thus represent a more challenging input for feature extraction. The aver-
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age recall of .709 means that SAFE does not miss too many features. In practice,
it might be more relevant to extract most of the features than the reduction of
the noise.

Table 6.5: Evaluation results for app reviews. F (number of features), # (total
features extracted), P (precision), R (recall).

Approaches
Manual Guzman & Maalej [101] SAFE [118]

App Name #F # P R F1 # P R F1

Yahoo 46 147 .260 .283 .271 74 .238 .761 .363
Gmail 53 158 .224 .283 .250 104 .247 .736 .370
Dropbox 52 154 .237 .280 .257 90 .260 .727 .383
Fantastical 65 196 .189 .274 .224 146 .230 .652 .340
iTranslate 28 89 .189 .250 .215 60 .213 .679 .325

Overall means 244 744 .218 .276 .244 474 .239 .709 .358

6.4.3 Matching Features in the Descriptions and the

Reviews

Finally, we report the results of our evaluation of the matching of the extracted
features. The evaluation of the app reviews showed that in total, 178 app features
had been extracted correctly by SAFE from reviews. The data set contains these
178 true positives. The feature matching approach of SAFE uses the data set
to look for matches in the true positive extracted app features from the app
descriptions. SAFE could identify 27 matches of which the coders found that 19
are correct. SAFE was able to achieve a recall of .560 and a precision of .704
to identify matches correctly. On the other hand, SAFE’s precision to identify
non-matches correctly is .900. Additionally, we calculated the accuracy as it also
contains the true negatives and the false negatives, as shown in Equation 6.3.
SAFE had a promising accuracy of .870.

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(6.3)
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6.5 Discussion

We discuss how researchers and tool vendors can use SAFE and similar ap-
proaches to help software engineering teams analyze and exploit app store data.
We then discuss how SAFE can be combined with other approaches to overcome
its limitations. Finally, we discuss the threats to the validity of our research and
the measures we used to mitigate these threats.

6.5.1 Implications of the Results

Feature extraction is an elementary step for implementing many app store an-
alytic scenarios in practice [151, 153]. Perhaps the most intuitive scenario is
monitoring app features’ health, identifying and continuously measuring which
app features are mentioned in user comments, how frequent, and which senti-
ments are associated with which feature [101]. Moreover, app store analytics
approaches that aim at classifying the reviews as informative or not [39] and
those that aim at classifying feedback like bug reports, feature requests, rating,
and user experience [152] would profit from organizing the results based on app
referred features. For instance, bug reports associated with certain features might
help stakeholders to faster trace the bugs to the relevant software components or
to find other bug reports related to the same feature, which include additional
information for the bug reproduction.
The next analytic scenario enabled by feature extraction is the identification

of the features’ delta and new insights that is identifying the differences
between features described by stakeholders and those described in the user re-
views. The features’ delta can even distinguish between different reviews (and
thus users’) subpopulations, such as features mentioned by certain users, in cer-
tain regions, stores or channels (e.g., forums or social media).
Such a difference can reveal two insights: either users apply a different vocab-

ulary or the features discussed in the reviews are missing in the app. In the first
case, stakeholders and users might learn how to communicate better and bridge
their “vocabulary gap”. In the second case, stakeholders can easily get the list
of suggested features or at least those that are associated with their apps but
not included in them: useful information for requirements identification, scop-
ing, and prioritization. As opposed to analytic approaches that allow identifying
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reviews with feature requests (e.g., by Iakob and Harrison [112] or by Maalej et
al. [152]), feature extraction also allows filtering the relevant review parts
(e.g., sentences), which include the relevant information – something particularly
useful as the quality and structure of the reviews are heterogeneous. Relevant
insightful information about the feature request might be in the first or in the
last sentence of a review. This will also enable the clustering and aggregation
of artifacts (such as comments) based on features as well as identifying feature
duplicates in these artifacts.
Finally, feature extraction is the preliminary underlying step in many, if not

all, feature recommendation and optimization scenarios [105, 178, 217].
Feature recommendations might target both users and stakeholders. For users,
feature extraction can help building recommender models that learn dependencies
of reported and used features. From the app usage, such models can also derive
which features users are interested in. When combining features mentioned in
the pages of many apps (e.g., apps within the same category), a predictor model
could derive the optimal combination of features, and answer questions such as
“which dependencies of features get the best ratings”. This might also help to
identify which features are missing in a particular app release from the “feature
universe”.

6.5.2 Field of Application

SAFE has one major advantage since it is uniform: that is, it can be applied
to multiple artifacts, in particular on app descriptions and app reviews. SAFE
automatically identifies app features in the descriptions and maps those to the
app features in the reviews. It identifies fives feature sets:

• App features mentioned in the description.

• App features mentioned in the reviews.

• App features mentioned in the description and in the reviews (intersection).

• App features mentioned only in the description (probably unpopular fea-
tures).

• App features mentioned only in the reviews (probably feature requests).
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Another major advantage of SAFE is that it does not require a training or
a statistical model and works “online” on the single app pages and the single
reviews. This enables processing the pages and the reviews immediately during
their creations. This also reduces the risk for overfitting a particular statistical
model to certain apps, domains, or users.
Nevertheless, we think that the achieved accuracy of SAFE—even if it out-

performs other research approaches—is not good enough to be applied in prac-
tice. We think that a hybrid approach (a simple, pattern, and similarity-based as
SAFE together with a machine learning approach) is probably the most appropri-
ate. For instance, machine learning can be used to pre-filter and classify reviews
before applying SAFE on them. Indeed, we think that this is the main reason
why our accuracy values were rather moderate: because we were very restrictive
in the evaluation and applied SAFE on “wild, random” reviews.
SAFE can also be extended by a model that is trained from multiple pages

and multiples users. This might, e.g., be used to support users to improve their
vocabulary by auto-completing feature terms.
Also, stakeholders should be able to correct the extracted features, e.g., follow-

ing a critique-based recommender model, or simply building a supervised classifier
based on SAFE and continuously improving the classifier model based on stake-
holders’ feedback (identifying false positives and true negatives). This can either
be used to persist the list of actual app features or to train a classifier to learn
or adjust patterns per app.

6.5.3 Alternative Implementations from Related Work

Our study focused on identifying the app features either organizations describe, or
users address in their feedback. The feedback to requirements activity, however,
covers the full spectrum of analyzing requirements-relevant user feedback. The
overall idea of this activity is to take the feedback that is relevant for requirements
engineering and to perform advanced analysis of this text to gain deeper insights
tailored to the needs of the company using requirements intelligence. We there
suggest the following examples for alternative implementations of the feedback
to requirements activity.
Once we identified the relevant feedback for requirements engineering, we could

consider performing aggregation and summarization tasks. For example, a com-
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pany wants to analyze all feature requests they received since the release. That
company received 1,000 app reviews that the feedback filtering activity identified
as feature requests. A person needs to read through all of the feedback to get an
understanding of the data, and afterwards, may have to apply qualitative meth-
ods, such as a thematic analysis to understand topics and clusters within the
data. If done correctly, the analysis takes several iterations and quality metrics
like peer coding. Automated approaches can support the company by automat-
ically identifying frequently discussed topics, which is an improvement to the
previous situation as we were able to split the 1,000 reviews into smaller chunks
based on semantic similarity. If we continue the example, the just-described
procedure may lead to three semantically different chunks of app reviews, each
having a size of about 333. To further ease the effort for the company of what
their users discuss, we could perform summarization techniques [95, 100, 257].
With summarization, we could, for example, take each of the three chunks and
select one representative review. Other techniques may return common keywords
or try to compose a synthetical text made from the whole chunks of reviews.
These techniques allow companies to get a quick overview of what their users
are saying, and if they find that interesting, they can dig deeper by reading the
reviews related to the topic.
In a second example, we consider a company that introduced a new feature

in its software and collects user feedback from Twitter. The company aims to
understand the users’ opinion about that feature and how it is generally perceived.
For that, the feedback to requirements activity uses the results of this study as
a first step and extracts the features addressed in the tweets. Then, we take the
tweets addressing the newly integrated feature and perform sentiment analyses
[1, 189, 214]. Guzman and Maalej [101] performed a study in 2014 that is closely
related to this idea. From analyzing app reviews, they were able to extract fine
and coarse-grained app features and assigned a sentiment score to each feature
in the reviews. They suggest that using the extraction and the assignment of
the sentiment could help get an overview of the features addressed and decide if
there are necessary changes to the requirements.
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6.5.4 Limitations and Threats to Validity

As for every study that includes manual coding, the coders in our evaluation
might have done mistakes a) indicating wrong features in the descriptions and
reviews or b) wrongly assessing the extraction of the SAFE or the two reference
approaches. To mitigate this risk, we conducted a careful peer-coding based
on a coding guide (e.g., stating what a feature is) and using a uniform coding
tool. Therefore, we think that the reliability and validity of the app description
and feature matching evaluations – both involving peer-coding – is rather high.
For the reviews, we decided to have one single coder for two reasons. First,
the large number of reviews would require more resources. Second, the coders
were well-trained from the first phase of coding app descriptions. In the future,
manually pre-extracting review features, as we did for the features from app
descriptions, would improve the reliability. As we share the data, we encourage
follow researchers to replicate and extend the evaluation.
Concerning the sampling bias [161], our evaluation relies only on Apple App

Store data and apps from one category. While this helped to concentrate the
effort and to learn more about the evaluation apps, it certainly limits our results’
external validity. However, it is important to mention that the SAFE patterns,
the core “idea” of the approach, were identified from Google Play Store data of
100 apps from multiple categories. Since SAFE also works on Apple Store data,
we feel comfortable to claim that our approach is generalizable to other apps,
except for games which, as described, we ignored on purpose.
As for the accuracy and benchmark values, we refrain from claiming that these

are exact values, and we think that they are rather indicative. We think that
the order of magnitude of precisions and recalls calculated and the differences
between the approaches are significant. We carefully selected our measures to
conduct a fair and non-biased comparison. For instance, during the evaluation
of the extraction, the tool randomly showed the extracted results in the same
layout, without mentioning which approach extracted which features.
Finally, when replicating the reference approaches, we might have made mis-

takes. We tried to conduct the comparison as fair as possible and implemented
all steps described in the papers to the best of our knowledge. In some cases
(e.g., list of stop words), we tried rather be spacious and fine-tuned the reference
approach to have results comparable to those reported on the papers.
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6.6 Summary

This chapter introduced an approach to extract features discussed in explicit
user feedback and features documented on app pages. The approach can further
match features discussed in the reviews with those documented. Therefore, we
created an approach that can address the stakeholder’s needs to know the features
user discuss and the features similar apps provide. If stakeholders combine this
approach with the feedback filtering approach of Chapter 5, they can understand
the features users request in inquiries and the features user address in problem
reports. We summarize our main findings.

Grammatical rules allow us to extract features from app reviews and
app pages. By applying grammatical rules on app reviews and the app’s de-
scription on the app page, we can identify features without leveraging machine
trained models. Stakeholders use the app description of app pages to document
their features. They do this in a more structured way than users, by, e.g., utilizing
bullet points. Therefore, we achieved better results for extracting features from
app pages. The F1 score for that extraction averages at .46, while the average
F1 score for extracting features from feedback is at .36.

Feature matching is difficult with few words. Users do not necessarily
use the same terms for describing the same features as stakeholders do. For
example, take photo, capture photo, take selfie, and photograph landscape, which
may describe the same feature on a certain abstraction. Therefore, we cannot use
simple word matching. As a consequence, we introduced a three-step matching
approach. First, we checked on a single term level. Second, we checked synonyms.
Third, we perform a semantic similarity matching algorithm. By applying these
steps, we achieved an accuracy of .87.
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Chapter 7

Implicit User Feedback Analysis:
Feedback Filtering

One can state, without exaggeration, that the observation of
and the search for similarities and differences are the basis
of all human knowledge.

Alfred Nobel

Contribution. This chapter concerns the first activity of the implicit user feed-
back analysis of the requirements intelligence framework (see Figure 4.1), feed-
back filtering. We introduce an approach in this study that can identify the usage
context of mobile device users automatically. In particular, we distinguish be-
tween private and professional device usage. Based on a crowdsourcing labeling
study, we apply machine learning for a within-users and between-users analysis.
The within-users analysis gives insights about how well machine learning can
identify the usage context if a user labels their own machine learning model. The
between-users analysis investigates how well a single machine learning model can
perform if we train it with a set of users and apply it to new users. The study
further elaborates on how we can minimize the context data we need to feed the
machine learning algorithm.

Addressed stakeholder needs. In Chapter 3, we found that already a few users
can generate a million clicks. Stakeholders are overwhelmed with the amount of
data and the data representations because, in contrast to the natural language in
explicit user feedback, implicit user feedback consists mainly of numerical data.
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Further, we found that the usage context is an important type of information to
better understand how and when users use the app.

7.1 Motivation

Mobile apps are our everyday companion, supporting us in many situations such
as socialization, navigation, health care, or entertainment [121]. Besides private
usage scenarios, smartphones are useful productivity tools in many professional
situations [129, 197], for instance, to manage tasks and meetings, to plan and
track business trips, to handle deadlines and urgent requests, or to simply com-
municate with colleagues.
Professional organizations are increasingly relying on mobile apps and de-

vices, too. They either offer their employees smartphones and tablets as part
of their technical equipment or allow employees to use their private devices—a
phenomenon called Bring Your Own Device (BYOD). The aim is often to re-
duce the overall equipment costs and to increase the flexibility, productivity, and
availability of employees [65].
Regardless of these advantages, the blurring boundary between private and

professional usage of mobile devices introduces risks [24]. Mobile devices are
often less protected than computers [5, 211, 252, 260], which might threaten
private and company sensitive data like emails and work documents. Further,
users might behave differently, giving less attention to guidelines and organization
security policies on mobile than when using office infrastructure. In contrast, if
organizations control the mobile devices of their employees with, e.g., Device
Management Systems (DMS), there is a significant risk that private data will be
collected with corporate data, which threatens the employees’ privacy [35, 227].
The main goal of this work is to study the feasibility of using supervised ma-

chine learning to classify private and professional device usage automatically.
This approach enables stakeholders to filter implicit user feedback based on the
usage context, while the usage context, in this case, is private and professional.
To achieve this goal, we first conducted a crowdsourcing study to understand

how and when users are using their devices privately and for work. We then
use the crowdsourced data to create machine learning models that automatically
classify mobile device usage. We performed a series of experiments to create a
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benchmark that compares the results of machine learning algorithms frequently
used in related work. This benchmark reports on a within-users analysis.
As privacy begins with the question of what data to collect, we investigated

how we can minimize the variety of data used in the machine learning models.
To understand what data is necessary to achieve an accurate classification for
private and professional usage, we performed feature selection and created a sec-
ond benchmark. We found that for the within-users analysis, we achieve similar
performance for the full and the minimized feature set with precision and recall
values up to .99 for all study participants.
Our approach relies on supervised machine learning models. Hence, users have

to label data before we can train a machine learning model. The need for labeling
data introduces a barrier for new users who want to benefit from the approach.
Therefore, we look into the generalizability of the machine learning models by
reporting on a between-users classification benchmark that creates a machine
learning model from a subset of users and provides it to new users. For the
between-apps analysis, we found that using the full feature set leads to an average
F1 score of .95, while the minimized feature averages at .87.
The remainder of the study is structured as follows. In Section 7.2, we de-

scribe our study design, including important terms and the data collection in a
crowdsourcing study. Section 7.3 and Section 7.4 presents the privacy benchmark
along with a within-users and between-users analysis. Section 7.5 discusses the
results and provides insights on how to use the approach. Section 7.6 concludes
the study.

7.2 Study Design

We discuss the research questions, our study design, and the data our analysis
relies on.

7.2.1 Research Questions

In this work, we answer the following research questions.

RQ7.1 To what extent can we automatically classify private and
professional mobile device usage? Several classification algorithms sup-
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port supervised machine learning, but they may have different results in
terms of accuracy (precision, recall, and F1-score). Therefore, we com-
pare conventional classifiers to search for the best result by performing a
benchmark. We answer this research question in Section 7.3.1.

RQ7.2 What is the minimal feature set for an accurate and re-
liable classification? We study the accuracy of the classification under
the consideration of data minimization. We use as few features (i.e., data
collected) as possible for two reasons: (1) to reduce the privacy concerns
of the approach and (2) to increase the computing performance and lower
battery consumption. To answer this research question, we create a second
benchmark that compares the accuracy of four classifiers with a minimized
feature set. We explain our results in Section 7.3.2.

RQ7.3 To what extent can we use a trained classification model
across multiple users? One challenge is to create a classification model
that we can use without new users having to label data. In this study, we
analyze the accuracy and the features to generalize our approach by creating
a single classification model made of the data from different persons and
test it with data that is unseen to the model. We compare the performance
of the full and the minimized feature sets of RQ7.1 and RQ7.2. We answer
RQ7.3 in Section 7.4.

7.2.2 Study Process

Figure 7.1 depicts our overall research process. The figure includes two thematic
columns that correspond to our main phases: Crowdsourcing Study and Machine
Learning Experiments.
The crowdsourcing study had the goal of collecting labeled data for the machine

learning approach (first column). We first developed an Android app for the
labeled data collection. Then, we ran a pre-study to check that the app can
collect the data we need and to confirm the feasibility of the approach. Finally,
we conducted a two-week crowdsourcing study with 18 participants to get labeled
data. The result of the crowdsourcing study is the labeled data (our raw study
data).
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Pre-study dry run

Study data

Development of data 
collection app

3. Benchmark

Machine Learning Experiments

Qualitative analysis

Feature 
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Within-apps 
analysis results

2. Benchmark

Crowdsourcing Study
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analysis results

1. Benchmark

Crowdsourcing study

Figure 7.1: Steps of the study.

The machine learning experiments are the core of classifying the labeled data
into private and professional device usage. The automatic classification considers
two perspectives, the within-users analysis, which is about one user collecting
context-data, and a personalized classification for that user. We created the first
benchmark using all collected context types. Then we minimized the number
of context types and created the second benchmark. The output of these steps
is the within-apps analysis results in Section 7.3. The between-users analysis
builds a classification model from a subset of people and applies that model to
others, unseen people (test set). We create the third benchmarking reporting the
between-users classification results and then qualitatively discuss why some cases
performed better than others.
The remaining part of this section focuses on the crowdsourcing study. We

describe the crowdsourcing study, the participants, and the collected implicit
user feedback (the labeled dataset).

7.2.3 Study Data

Here we describe how we collected our study data for the machine learning ex-
periments.
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Data Collection App

For the machine learning experiments, we had to collect real-world (not synthetic)
labeled implicit user feedback. For the data collection, we developed an Android
app that is capable of collecting the context types that we introduced in Table
2.3 of Chapter 2. We decided to target Android because of its high market share
[113] and its powerful APIs, which are less restrictive than those of iOS.
As a reminder, we describe the context and interaction data we collected.

The App Sensor[software|pull] identifies the current foreground app that the
user sees. The Interaction Sensor[software|push] monitors touch events like
clicking, scrolling, and writing, but also reads the text of the interacted element.
The Location Sensor[hardware|push] retrieves the longitude and latitude of the
user’s location. The Connectivity Sensor[software|push/pull] is a sensor that
bundles several sub sensors collecting, e.g., the BSSID or the encryption of the
current network. The System Sensor[software|pull] gathers general information
such as the time, date, and running background services.

Crowdsourcing Study

First, we conducted a dry run with four participants to check the feasibility of
our approach and to confirm that the app is collecting all the necessary data.
The result was a refined version of the data collection app, which we used for the
crowdsourcing study.
Afterwards, we run the crowdsourcing study. In the crowdsourcing study, we

collected context data to analyze and understand if we can automatically detect
private and professional device usage. For this purpose, we developed an Android
app that uses the sensors previously described.
After the installation of the app, a dialogue opens that asks the users about

their consent, as well as whether he/she is currently at home or work, as shown
in Figure 7.2 a). Afterwards, the app runs in the background and collects context
data in real-time. Whenever the screen of the device is unlocked, the app asks
the user about the usage purpose, as shown in Figure 7.2 b). The dialogue
has three options: Privately, For work, and Ask me later. If the purpose of the
usage is unclear, users could choose Ask me later, which re-opens the dialog when
the screen turns off. In some cases, a user might also want to switch between
private and professional usage during a session. For instance, a user chats with
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b)	Dialog	for	supervised	learning

c)	Notification	to	update	the	usage	typea)	Initial	installation	dialog

Figure 7.2: Screenshots of the study app.

her partner and receives an important email from the office and starts reading
it. In such a case, the participants were able to adjust the current usage in
the notification bar, as shown in Figure 7.2 c). A session is the time between
unlocking the device and locking it again.
Before we started the crowdsourcing study, we distributed a manual to the

study participants that explained the process of the crowdsourcing study. Af-
ter these preparation steps, we started the two-week crowdsourcing study with
18 participants from six different countries, of whom six were female, and 12
were male (demographics in Table 7.1). Nine participants were from academia,
employed by universities and research institutes, while the remaining nine par-
ticipants were from private companies of different sizes. From the 18 initial par-
ticipants, six either participated for less than a week or did not enable all sensors
as described in the manual; e.g., the accessibility sensor needs manual approval
from the user. As a consequence, we removed these participants from the data
analysis. Since we anonymized the data and did not track the users’ identities,
we cannot determine which participants of Table 7.1 we had to remove. From the
12 participants who submitted complete data, we collected 88,596 context events
that occurred in 6,486 sessions. In total, the participants labeled 1,268 sessions
as professional and 5,205 sessions as private. Therefore, about 80% of the data
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Table 7.1: Overview of the study participants.
# Gender Age Country Position Affiliation Experience

P1 M 25-34 Germany Researcher University 2 years
P2 F 25-34 Germany Researcher University 3 years
P3 M 25-34 Germany Researcher University 2 years
P4 M 25-34 Germany App Developer Health App Company 4 years
P5 F 35-44 Germany Lead Engineer Telecommunication Company 10 years
P6 F 25-34 Austria Researcher Research Institute 1 year
P7 M 25-34 Austria Researcher Research Institute 4 years
P8 M 25-34 Austria Researcher Research Institute 5 years
P9 F 25-34 Spain Researcher University 3 years
P10 M 35-44 Spain Associate Professor University 1 year
P11 M 35-44 Spain Software Engineer Information Security Company 12 years
P12 M 35-44 Spain Chief Product Officer Information Security Company 12 years
P13 M 65-74 Spain Project Manager Information Security Company 24 years
P14 M 35-44 Spain Chief Operating Officer Information Security Company 5 years
P15 F 55-64 Italy Project Manager Telecommunication Company 20 years
P16 M 55-64 Italy Project Manager Telecommunication Company 20 years
P17 F 25-34 Tunesia Software Engineer Intern ERP & Health App Company 2 years
P18 M 25-34 Switzerland Student Assistant University 1 year

belongs to private sessions and 20% to professional sessions. On average, each
participant had 540 sessions with a standard deviation of 475.

7.3 Results: Within-Users Analysis

This section describes the results for RQ7.1 and RQ7.2 by performing a bench-
mark between different classifiers, namely: Decision Tree (J48), Decision Table,
Naive Bayes, and Support Vector Machine (LibSVM). We also report on the
feature selection experiments to reduce the number of collected features.
We chose the classifiers based on related work and our own experience. Shin

et al. [224] used several Naive Bayes models for predicting mobile app usage on
smartphones. They also compared their results with the Decision Tree classifier,
which Guo et al. [18] employed as a Regression Tree in. The Support Vector
Machine is a widely used classifier for two-class classifications that can handle
unbalanced data [18].
We report on our results using precision, recall, and F1-score, which we cal-

culated for each classifier. The precision represents how many of the classified
instances are correct. The recall is the percentage that shows how many true pos-
itives we identified correctly. The F1-score is the harmonic mean of the precision
and the recall. In our study, precision and recall are equally important because if
our approach would be used for, e.g., real-time classifications, each misclassified
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could harm the application that relies on our approach. Therefore, we are also
reporting on the F1-score, which takes both values into account.

Table 7.2: Mean accuracy of evaluated classifiers for all participants using the
full feature set with 10-fold cross validation.

Classifier Usage Type Precision Recall F1

Private 0.978 0.987 0.983Decision Tree Professional 0.951 0.873 0.908
Private 0.952 0.985 0.968Decision Table Professional 0.902 0.734 0.797
Private 0.919 0.880 0.898Naive Bayes Professional 0.581 0.735 0.626
Private 0.946 0.949 0.946LibSVM Professional 0.752 0.591 0.639

7.3.1 Classification Benchmark

The first research question RQ7.1 aims to study the extent to which different
classifiers can determine if the device usage is private or professional. Table 7.2
shows the results of the classification using 10-fold cross-validation and using all
context data described in Table 2.3 as features. The results shown in the table are
the mean values across all participants. We attached the detailed classification
benchmarks per participant in the appendix. The table highlights the highest
F1-score across the classifiers in bold font. We report on the precision, recall,
and F1 score of a binary classifier deciding whether the current device usage is
private or professional. We present our metrics on both classes to avoid reporting
an accuracy paradox [248] due to our previously discussed data imbalance. In
the full feature set, we used all the collected context data to see how accurate
our potential results in classifying private and professional usage can be.
When comparing the classifiers in Table 7.2, we found that all classifiers per-

form better than a random classification. The Decision Tree classifier achieves
the best results for both usage types and across all participants. This classifier
has mean F1-score values of >0.980 for private and >0.900 professional usage.
Table 7.2 reveals that the Decision Table classification has similar results to the
Decision Tree for classifying private usage, but detecting professional usage is
about 0.11 worse. In Appendix A.1, we show the complete benchmark results
for each participant. It shows that, e.g., the Decision Table classifiers’ minimum
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and maximum F1-scores are 0.197-0.954 for professional and 0.895-0.997 for pri-
vate usage, while the Decision Tree classifiers’ F1-scores range from 0.738-0.995
for professional and 0.944-0.999 for private usage. The Naive Bayes and SVM
classifiers seem to have difficulties for classifying professional sessions with a com-
parably low and wide range of the F1-score. We were able to increase the accuracy
of the Naive Bayes classifier during our experiments by using the supervised dis-
cretization of Weka [103]. As shown by Dougherty et al. [62], the discretization
of continuous features can improve the overall accuracy. In our case, we could
improve the accuracy of the Naive Bayes classifier by up to 15% for professional
usage. Nevertheless, as shown in Table 7.2, the accuracy of Naive Bayes falls
behind the other classifiers. The mean values show that all classifiers have high
precision, recall, and F1-score for classifying private sessions with values greater
than 0.890. The mean values of the F1-score of all classifiers range from 0.898-
0.983 for private usage, while professional usage ranges from 0.626-0.908. We
found that balancing the datasets achieved the best classification results when
we looked at each participant.

7.3.2 Feature Set Minimization

The second research question RQ7.2 aims to investigate which and how many
features we need for accurate classification. The reason for reducing the number
of features is twofold. First, we want to minimize the data collection of sensitive
and private data as this can increase the trust in such a system [145]. Sheth
and Maalej [223] found that users’ privacy concerns are data breaches and data
sharing. Van der Sype and Maalej argue from the legal perspective that collected
data should always be proportionate to the original purpose of a system [243].
Furthermore, we want to reduce the use of resources as this approach should solely
run locally to avoid potential data leakage. In the following, we first explain the
process of minimizing the number of features and then report on the results of
the second classification benchmark.
First, we executed the default feature selection algorithm of Weka (attribute

evaluator CfsSubsetEval [102] and the search method BestFirst). We ran the
feature selection separately across all participants and looked at the most infor-
mative features that the algorithm calculated for at least three participants. We
then made different combinations of these features by using as few features as
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Table 7.3: Mean accuracy of evaluated classifiers for all participants using the
minimized feature set (app, day of the week, time of the day, Wi-
Fi encryption, and number of available Wi-Fi networks) with 10-fold
cross validation.

Classifier Usage Type Precision Recall F1

Private 0.977 0.987 0.982Decision Tree Professional 0.950 0.864 0.901
Private 0.952 0.982 0.967Decision Table Professional 0.890 0.735 0.792
Private 0.920 0.920 0.920Naive Bayes Professional 0.685 0.655 0.661
Private 0.957 0.959 0.957LibSVM Professional 0.920 0.681 0.739

possible to check which combination achieved the best result. Table 7.3 illustrates
the resulting benchmark. The final features of this process are the app, day of
the week, time of the day, the number of available Wi-Fi networks, and Wi-Fi
encryption. The most informative feature is the app (for 9 participants). The
second most informative feature is the hour of the day, which the feature selec-
tion calculated for 8 participants. This process eliminated the privacy-intrusive
features location and the interaction data. We assume that the location clusters
have no high impact because we found that especially private sessions are done
independently of the location. On the other hand, information of the Wi-Fi con-
nection such as the BSSID, the number of available Wi-Fi networks and the Wi-Fi
encryption could also indicate a rough location, because these features do not fre-
quently change in common places like home and the office. Touch interactions
also do not improve the classification accuracy, because this information might be
too detailed as, e.g., touch events on specific elements like buttons dependent on
the app used. The table in Appendix A.1 shows the complete benchmark results
for every participant.
In the following, we compare the classifiers and their results for the minimized

feature set described in Table 7.3. With the minimized feature set, we were
able to get close to the results of the full feature set. Again the Decision Tree
classifier performed best. For the Decision Tree and the Decision Table classifier,
the mean F1-score differs by less than 1% compared to the full feature set. For
professional usage, the Decision Tree outperforms the other classifiers as the
Decision Tree’s mean F1-score is 0.901 while the second-highest mean is 0.792.
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By looking at the mean values of the Naive Bayes and LibSVM, we can see that
compared to the full feature set, the accuracy increased in the minimized set of
features. In this case, we assume that the variety of features negatively influenced
the classification. The Naive Bayes classifier performance improved for private
usage by 0.022 for the F1-score, which was due to the 0.040 rise in the recall.
For professional usage, the Naive Bayes classifier improved its mean F1-score by
0.035, the precision increased by 0.104 while the recall decreased by 0.080. The
LibSVM classifier improved its mean F1-scored by 0.011 for private usage and
by 0.100 for professional usage.
From these results, we conclude that it is possible to focus on the most in-

formative features and to remove the privacy-intrusive ones to keep high overall
accuracy.
Concluding the section Within-User Analysis, we found that the classification

of private and professional usage has promising results. Further, our feature
selection section highlighted that reducing the features for the classification can
still achieve results with an accuracy of above 90%. We were able to remove
the two privacy-intrusive features location and interaction data because other
features like the package name or the time of the day have a high information
gain.

7.4 Results: Between-Users Analysis

We present the results of RQ7.3 with a between-user analysis, in which we cre-
ated a classification model from a subset of people and re-used that model for
others. This way, we reduce/remove the effort of new users to label their own
usage sessions, decreasing the hurdle for users actually to use this approach. In
the following, we describe how we build and test the classification models. After-
wards, we do a qualitative analysis of the outliers of the classification to create a
better understanding of the difficulties.
In our study, we are limited by the data from 12 participants. As data mini-

mization is important to this work, we test the between-user analysis on the full
and minimized feature set. For this, we combined the labeled data of 11 partici-
pants to train the model and then tested it for the remaining participant. We did
not include the labeled data of the test set in the classification model to simulate
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Table 7.4: Between-user classification: Accuracy of J48 Decision Tree with full
and minimized feature sets. Difference values relate to the results of
the within-user analysis for the tested/unseen participant.

Test Set Full Feature Set Min. Feature Set
(Unseen P) Usage Type F1 Diff. F1 Diff.

P1 Private 0.997 − 0.001 0.993 − 0.005
Professional 0.871 − 0.034 0.707 − 0.198

P2 Private 0.999 + 0.001 0.998 ± 0.000
Professional 0.974 + 0.019 0.959 + 0.010

P3 Private 0.986 + 0.024 0.979 + 0.022
Professional 0.991 + 0.015 0.987 + 0.013

P4 Private 0.969 + 0.025 0.959 + 0.017
Professional 0.898 + 0.101 0.866 + 0.072

P5 Private 0.984 − 0.007 0.986 − 0.001
Professional 0.670 − 0.164 0.745 + 0.005

P6 Private 0.990 − 0.003 0.989 − 0.005
Professional 0.674 − 0.064 0.653 − 0.114

P7 Private 0.985 + 0.003 0.967 − 0.012
Professional 0.913 + 0.038 0.802 − 0.072

P8 Private 0.996 + 0.008 0.996 + 0.008
Professional 0.986 + 0.026 0.985 + 0.028

P9 Private 0.982 + 0.031 0.979 + 0.023
Professional 0.990 + 0.016 0.989 + 0.012

P10 Private 0.999 + 0.001 0.999 + 0.001
Professional 0.976 + 0.009 0.976 + 0.015

P11 Private 0.995 − 0.004 0.993 − 0.004
Professional 0.979 − 0.019 0.974 − 0.013

P12 Private 0.995 + 0.007 0.996 + 0.004
Professional 0.963 + 0.060 0.969 + 0.036

Mean Private 0.990 + 0.007 0.970 − 0.012
Professional 0.907 + 0.001 0.775 − 0.126

a new user. We repeated these steps in a way that each participant was the test
set once (simulated as a new user). We trained the model with the J48 Decision
Tree, as this classifier outperformed other classifiers within our study. Table 7.4
reports on the calculated F1-scores. Further, it reports on how this classifica-
tion model performs in comparison to the results we reported in the Within-User
Analysis. For instance, Table 7.4 shows that the difference for participant P1
in the full feature set for professional sessions is -0.034. The difference shows
that the performance of this participant decreased by -0.034 with classification
model because of the F1-score in Table 7.2 (full feature set) of P1 is 0.905 for
professional sessions while the F1-score of this classification model is 0.871.
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Table 7.4 shows that for the full feature set, classifying private usage achieves a
mean F1-score of 0.990, which is an improvement of 0.007 compared to the mean
in Table 7.2 of the Within-User Analysis. The classification of professional usage,
on the other hand, has a mean F1-score of 0.907, which is a decline of 0.001. The
performance of the minimized feature set declined by 0.012 with a mean F1-score
of 0.970 for private and declined by 0.126 to 0.775 for professional usage. From
these results, we conclude that having a classification model of multiple persons
can free a new user of labeling a dataset on their own when using the full feature
set. The results for classifying professional usage, based on the minimized feature
set, might be too low for being practical.
To understand why some classification models work better than others, we also

analyze the outliers. As classifying private usage achieves high results for the full
feature set (>0.969) and >0.959 for the minimized feature set, we concentrate
on the professional usage. Participant P6 has a low F1-score for classifying pro-
fessional usage in both feature sets. Taking a closer look at the data of this
participant, we found that for both feature sets, the Decision Tree uses the Wi-
Fi encryption on the first level. About 90% of the misclassified instances in
the minimized feature set for professional usage are using the Wi-Fi encryption
[WPA-PSK-TKIP][WPS][ESS]. The lower F1-score results from the fact that both
classification models used this Wi-Fi encryption solely for private usage. Partic-
ipant P5 losses 0.164 of the F1-score for classifying professional usage in the full
feature set. Again, after checking the classification model, we found that similar
to the previous case, the model uses the Wi-Fi encryption on the first level. In
67% of the misclassified instances, the Wi-Fi encryption of P5 is unknown, which
means that the device had no connection to any Wi-Fi network. Therefore, there
is no BSSID. However, as the BSSID is part of the second level, the model goes
to the third level of the Decision Tree, which is the used app. P5 used Google
Now ’s search field professionally, although, in this specific combination of features
(Wi-Fi encryption, BSSID, and app), the training set contains 1,000 private us-
ages associated to this app. Because this participant used Google Now’s search
field for professional usage when no Wi-Fi connection was available, the F1-score
decreased.
Summarizing the results, training a single classification model based on par-

ticipants from different countries and job positions can lead to a reasonable ac-
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curacy when used for new users. We are aware that these results are limited to
our dataset and might not be generalizable. A further study might focus on the
generalizability of this approach by looking into specific groups of people such as
colleagues in the same office or grouping job positions such as consultants.

7.5 Discussion

We discuss the implications of the results, the field of applications, and present
related wor for alternative implementations regarding feedback filtering.

7.5.1 Implications of the Results

Our benchmark results show that we can classify the usage of mobile devices into
private and professional with high precision and recall values automatically. The
average F1 was about 0.90 for professional usage and .098 for private usage. We
also found that we can train the classification models based on a subset of people
and apply it to new users. This finding is very encouraging, given the main hurdle
of supervised machine learning approaches, which is to label data (for training
the model) before it can be deployed and used.
Another encouraging finding is that we were able to minimize the number of

needed context types for accurate classification. We found that the minimal set
of features needed is: the app name, day of the week, time of the day, number
of available Wi-Fi networks, and Wi-Fi encryption. We consider this list of
context types less privacy-intrusive than the full feature set. Moreover, we can
capture these context types at the session start, which allows for an immediate
classification. In this case, we can also consider the classification as automated
identification or prediction of the session’s context usage.

7.5.2 Field of Application

The main use case for this approach is filtering implicit user feedback for stake-
holders who want to analyze user feedback. Filtering implicit user feedback based
on the usage context allows stakeholders to learn when and how users use the
app in which context. Stakeholders can either focus on a particular context or
compare different usage contexts.
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Further, we can use the approach to user enhance privacy. For example, if we
develop the approach as a background app on Android devices, we can control
what data other apps can access, send to a corporate server, or share with third-
party apps, even if its a company-owned device.
The third field of application addresses data security. Security policy enforce-

ment frameworks such as the MUSES project [174], who aim at preventing and
avoiding information security risks introduced by the behavior of users, can ben-
efit from our approach. Such policy enforcing systems often process the usage
and context data on servers in the cloud. Our approach allows on-device classi-
fication without the need to share sensitive data. Further, we can limit the data
collection of policy enforcement systems to professional usage sessions.
If Android would include our approach in the operating system, we can improve

and automate functionality like Android for Work [90]. In Android for Work
and other Device or Space Management Solutions, users have to explicitly select
whether they want to perform private or work-related tasks by, e.g., opening
specific apps or by specifying it beforehand. Our approach can automate this
step. Further, we could leverage the data from Android for Work, and similar
systems to continuously train and improve our machine learning model.
The next field of application is the development of time management systems

that automatically log private and professional activities helping to create pro-
ductivity, billing, time tracking, and overtimes reports. Such a system could
understand the distribution of work and create a more accurate overview of the
total worked hours. Employers can use that field of application, too, to get a
better overview of the workload of their employees.
Finally, our approach can help to personalize advertisements. Apps can use

our approach to show advertisements that are related to the current usage pur-
pose. During professional-related tasks, we can show advertisements related to
the work, while we can show ads for personal interest can as soon as the device
detects private usage.

7.5.3 Alternative Implementations from Related Work

Our study focused on privacy and security scenarios by analyzing context data to
understand if a device is used privately or for work. However, the analysis may
look completely different depending on the domain that needs to analyze context
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data. Here, we present two alternative ideas for analyzing user context data.
Our first example is an analytics tool that provides information about the

performance of the software (computing environment context). Mobile app mon-
itoring is a field in research that targets the performance of apps in terms of, e.g.,
CPU, memory, and battery usage [192, 200] or response times for apps relying
on online services [242]. This kind of analysis can find weak spots in the soft-
ware that either slow down its performance or unusually drains the energy of the
device. Identifying these weak spots can be useful in requirements engineering
to understand how well certain aspects of an app perform, and in case it has a
bad performance, maybe re-worked in a future iteration. For example, we may
find that sending chat messages takes five seconds on average, although, the non-
functional requirements envision a performance of less than 1 second. Continuous
monitoring performance indicators could help for improving an existing software
early; in the best case, before users write negative reviews [216].
In the second exemplary scenario, we are a company providing a service for

taxi drivers that helps them finding customers, navigates them to the customer,
and to the customer’s target location (physical context). In this example, we
want to analyze the location of the user (the taxi driver) to support insights for
the driver and the company the driver belongs to [56]. Both parties want to
optimize their routes to have short travel times without a customer to maximize
the earnings [37]. Besides, the driver and the customer may have personalized
preferences [137, 168]. The driver might want to stop working soon, while the
customer might either want to be at the target location as quick as possible or
needs more than four seats. By analyzing the location of the driver and the
customer either with GPS or with Wi-Fi-based data, we can receive their exact
position and optimize their routes [142]. In requirements engineering, we can
use this detailed feedback on the people’s locations to test and simulate different
algorithms and options for finding the best routes. Further, we can check their
performance results against our non-functional requirements metrics.

7.5.4 Limitations and Threats to Validity

We discuss the internal and external validity of our results as well as the limita-
tions of the approach.
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Internal threats to validity. Concerning the internal validity, one potential
threat is related to the comparison of the classifiers. As the number of the used
classifiers is limited to four, we might have missed one that could have better
results than the Decision Tree. We might improve the approach by extending the
performed benchmark with further classifiers, by further tweaking the parame-
ters of the chosen classifiers, and by considering other techniques like association
rules.
The reported results rely on the crowdsourcing study, we could think of pos-

sible participants’ bias, as the participants might have selected the wrong label
or forgot to update the label during the usage. To avoid bias by unintentional
wrong labels, we have shown the currently selected usage in the notification bar
of Android, so that the participants were aware of what is currently selected.
Furthermore, we created a manual for the app that created awareness of how to
use the application, the possibility to change the label at any time, as well as the
information, that the currently selected label is visible in the notification bar.

External threats to validity. The number of participants might have in-
fluenced the reported results. We tried to mitigate the side effects by choosing
participants with different demographics to avoid the possible bias of focusing on
a specific group of persons. However, since we had only a few participants, there
is a threat to the generalizability of the approach.
Although the Decision Tree classifier performed best in our study, we cannot

guarantee that this will be the case for different participants. Therefore, our
results are rather indicative. For instance, the Decision Table often has similar
results to the Decision Tree and might generate better results for other partici-
pants outside this study.
Our approach works on Android devices. The feasibility of our approach might

differ on other devices, like computers and laptops, and platforms, such as iOS.
Although we focused on Android, we think that we cover many mobile devices
because of the high market share of Android, which is about ~87%.
Finally, after creating a classification model, the accuracy might change or

decrease over time. Since users might install and uninstall applications, change
their jobs or interactions with the device in general. The classification accuracy
might decrease if the model does not adapt to such changes.
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7.6 Summary

This chapter introduced an approach to identify the usage context automatically.
In this study, we automatically distinguish between private and professional usage
contexts based on 88,596 labeled context events from 12 participants.
Therefore, we created an approach that can address the stakeholder need to

filter the amount of implicit user feedback, because already a few users can gen-
erate a million clicks and gigabytes of data. Further, stakeholders want to know
the usage context as it helps to understand better how and when users use the
app. We summarize our main findings.

Excluding privacy-intrusive context data has little impact on the per-
formance of the approach. First, we performed a benchmark with all collected
context data (see Section 2.3.3) and achieved a promising result of an average F1
score of .945. After we reduced the included number of context types by exclud-
ing privacy-intrusive context types, we still achieved an average F1 score of .941,
which is a small difference of 0.004 compared to the full feature set.

The between-users analysis shows that we do not have to train a ma-
chine learning model for each user. If we train the machine learning model
with only a subset of users and apply it to unseen users, we achieve a high average
F1 score of 0.95 using all context types and an average F1 score of .87 using the
limited set of context types. Therefore, we do not need every user to provide
labeled data for creating this machine learning model.
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Chapter 8

Implicit User Feedback Analysis:
Feedback to Requirements

All truths are easy to understand once they are discovered;
the point is to discover them.

Galileo Galilei

Contribution. This chapter concerns the second activity of the implicit user
feedback analysis of the requirements intelligence framework (see Figure 4.1),
feedback to requirements. We introduce an approach in this study that, based on
crowd-labeled interaction events, automatically learns the features users use. In a
within-apps analysis, we identify the features users use within one particular app
by taking all the labeled interaction events of that app and train and evaluate
a machine learning model based on that data. In a between-apps analysis, we
combined the labeled data of all apps to understand if the user interactions per
feature are similar between different apps. We further analyze how the machine
learning models automatically identified the feature usage and found that with
a few human-readable machine learning features, we can reach explainable and
accurate conclusions.

Addressed stakeholder needs. In Chapter 3, we found that stakeholders
want to understand which interactions, in which context, led to the particular
problems users reported. With the interaction events, they want also to create
steps to reproduce, helping them to fix problems quicker.
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8.1 Motivation

The market for mobile apps is highly competitive and dynamic. The two major
app stores, Apple App Store and Google Play Store, include ∼4 million apps
[239]. To fix bugs and try out new features, 14% of the app vendors release a new
version at least bi-weekly [164]. Users who are unsatisfied with certain aspects
or features of an app are likely to look for alternatives [14, 74, 256]. This can
quickly lead to the fall of even previously popular and successful apps [139]. In
this environment, continuously monitoring and understanding the changing needs
and habits of users is indispensable for the successful survival and evolution of
the app.
Emerging app analytics tools aim at coping with this challenge. They collect

and process user or issue tracker data to derive actionable insights for stakehold-
ers and vendors and to inform future decisions, e.g., on what to release next
[80, 153, 163, 175, 249], App analytics tools can be divided into two categories
based on what data they collect and analyze: user feedback or usage data [153].
User feedback analytics tools focus on what users say or write about the app and
its features, e.g., in review platforms or social media. In recent years software
engineering researchers and vendors have suggested many tools in this category,
ranging from tools to classify comments into bug reports, feature requests, or
uninformative text [39, 81, 151, 159, 249] to tools [8, 245] summarizing the user
opinions about the various features of the apps [101, 143, 156]. Usage data ana-
lytics tools focus on how users actually use the app. State-of-the-art approaches
either log low-level execution events (e.g., stack traces and method calls to aug-
ment crash reports) [89, 108], or collect and visualize general high-level usage
information (such as the app activation time, location, and device) [27, 55, 61,
91, 251, 259]. Other studies use interaction data to make predictions about the
next app used [241, 266] or tasks within one application [240].
This work targets an intermediate level of usage analytics, which focuses on app

features, use cases, or other user-perceivable aspects of an app. These features are
communicated to users, e.g., in release plans and app pages, [118] and discussed by
them in review platforms and social media [107, 144]. They are often implemented
across multiple components, classes, and methods. It is thus hard for stakeholders
to precisely scope what (e.g., from the UI) exactly belongs to certain features such
as “browse a catalog” or “send a message” as it can be used in many different ways,
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following many different execution paths. This makes it hard for stakeholders
to monitor single events, denoting the usage of features. On the other hand,
understanding how app features are used, whether they are used at all, by whom,
and in which context can be informative to developers, analysts, and managers to
scope the development work, understand users’ requirements, and set up release
priorities.
We suggest a novel, app-independent approach to enable app feature analytics.

The main idea is simple: we log general user interaction events such as scroll
view or get a notification and use them for training a machine learning model
that relates the app features to the interactions. We conducted a crowdsourcing
study with 55 participants who shared 55GB of interaction data and manually
labeled 5815 feature usages of 170 unique apps for 18 days.
Our within-apps evaluation shows that we can achieve encouraging precision

and recall values already with ten labeled feature usages. For certain popular
features such as “browse newsfeed” or “send email” we achieved F1 values above
0.88, between-apps feature learning also seems feasible with F1 values up to 0.82.
The remainder is structured as follows: In Section 8.2, we introduce the overall

research methodology, including the terminology, crowdsourcing study, research
data, and machine learning experiment setup. In Section 8.3, we present a within-
apps analysis, which details our results to RQ8.1. Section 8.4 answers RQ8.2 by
reporting our between-apps analysis. Section 8.5 discusses the impact of our
results on software engineering and shows the limitations. Section 8.6 concludes
the paper.

8.2 Study Design

The main terms underlying this work – “interaction” and “features” – have been
frequently used in literature with multiple definitions and interpretations. In
this work, the term app feature denotes a label or a short English phrase that
represents a user-visible aspect, a certain characteristic, or functionality of the
app [125]. Particularly, we consider verb-noun pairs from the app pages such
as “send email” and “watch video” as app features [73, 101, 105, 118]. A verb
can be a verb-phrase or two-term verb or, e.g., “dial-down”, and similarly for a
noun, e.g., “tv-episode”. Typically, app features are either listed by the vendors
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as bullet points or screenshots in the store’s app pages or referred to in reviews
and tweets by users [118, 177]. In this work, we defined interaction events as
the interaction of a user with a mobile device (e.g., click and swipe on the screen),
which can automatically be observed and which are not specific to certain apps
(to enable an app-independent solution). In Chapter2 Table 2.2, we summarized
common types of mobile interaction events, which can, e.g., be monitored using
the Android accessibility framework or other generic UI frameworks. These are
the interaction types we consider in this approach.

8.2.1 Research Questions

The main goal of our research is to learn app feature usages from the interaction
events. This requires a large-enough dataset of app interaction data submitted
by real app users and augmented with the names of the app features which have
been used. We formulate the following research questions.

RQ8.1 To what extent can we identify the usage of certain app features based
on interaction data of different users of an app? (within-apps analysis)

RQ8.2 Can we learn app feature usages between apps? (between-apps analysis)

8.2.2 Study Process

To answer our research questions, we followed a three-phased research method-
ology, as shown in Figure 8.1. In the first phase, we conducted a crowdsourcing
study to collect research data. We developed a data collection and labeling app,
conducted a pre-study to select the study participants on a crowdsourcing plat-
form carefully, and finally executed the study. The second phase was concerned
with machine learning experiments, including the understanding and analysis of
the collected data, the clean-up and filtering of data useful for machine learning,
as well as the implementation and testing of the machine learning pipeline and
models, baselines, and evaluation metrics. Finally, in the third phase, we con-
ducted a series of benchmark experiments, comparing multiple machine learning
algorithms and configurations to answer RQ8.1 (within-apps analysis) and RQ8.2
(between-apps analysis). For all benchmark experiments, we perform a quanti-
tative and qualitative analysis of the results.
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Figure 8.1: Overview of the research methodology.

8.2.3 Crowdsourcing Study

Relying on supervised machine learning to predict app feature usage requires
training a model with labeled data (truth/training set). To the best of our
knowledge, no comparable dataset exists from literature. For gathering such
data, we chose to ask crowd workers to label and share their interaction data with
apps they regularly use without imposing any restrictions on them. Another app
users’ study would have been reasonable only if we had had direct access to many
users of various apps – in order to get enough interaction data with enough labels
(to train the model) corresponding to multiple apps with multiple features (for a
realistic and generalizable setting). A synthetic dataset collected in experimental
setups, e.g., with students or volunteers, would have seriously threatened the
reliability and validity of our results as the user behavior should be as natural,
spontaneous, and unbiased as possible.
We developed an Android app, which we distributed on the crowdsourcing

platform Amazon Mechanical Turk (AMT). AMT is one of the largest crowd-
sourcing platforms, allowing access to a large sample of crowdworkers [6]. The
app collects the interaction events listed in Table 2.2 of Chapter 2 based on An-
droid’s Accessibility Framework. It also allows users to label their usages with
the app features they just used, as shown in Figure 8.2. The labeling dialog can
either be activated by the users at any time or shown to them when they try
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to lock the screen or change the app. We targeted Android because of its high
market share, particularly on the AMT, and of its APIs, which are less restrictive
than those of iOS. Nevertheless, our approach can be used in iOS apps, too, based
on UIKit APIs [9].

Figure 8.2: Study app to label interactions with features used.

The study participant selection is crucial for getting real, high-quality, re-
liable data. As a first step, we restricted the number of countries in which the
study was available on ATM to 12, as we found that for some countries (such
as India), it was difficult to retrieve data due to an unstable internet connec-
tion. We also allowed only crowdworkers with the highest rating (showing their
past performance) to participate. Second, we distributed a questionnaire to the
participants to understand which apps they are frequently using. This step is
important as we had to manually extract the app features from app descriptions
before starting the labeling study. Third, the participants installed the data col-
lection app and used it in a pre-study for two consecutive days. This enabled
us to test not only the app robustness but also a participant’s ability to provide
useful data. For this, we evaluated the following criteria:

Trustworthiness. The crowd-worker must use daily at least 70% of the
frequently used apps stated in the questionnaire (must list apps). Moreover,
at least ten unique apps should be used.

Datapoints. The mobile phone should be used at least five times a day,
and the usage time should be at least 30 minutes daily.

App Features. The size of the intersection between installed apps and the
master app list should be at least ten. Moreover, the number of intersection
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between their used apps during the trial and the master app list should be
at least four.

By applying those selection criteria on 2-days to the pre-study participants, we
sampled a total of 55 participants for the real study.
In the real study which we conducted in April 2017, each participant was paid

a base fee of 2.50 USD and got an additional 0.05 USD for each label provided
during the study. To ensure that a participant does not perform dozens of labels
per day just to get a big payment, we have set an upper limit of 16 daily labels
for which the participant will get paid. Therefore, each participant can earn a
maximum of 16.90 USD. We also explained to participants that it is most efficient
for them to simply use their phones as usual and label after each session. Trying
to fake the usage would instead lead to more work since too short usage sessions
were also not accepted (at least 1 minute). To get paid, the participants also had
to provide at least 30 labels per week and at least 90 labels for the whole time
frame. Figure 8.3 provides an overview of the crowdsourcing study setup. During
the 18-day field study, the 55 sampled participants used the data collection app to
label their device usage. Technically, the app referenced each label (app feature)
with the collected interaction data. Whenever the participants used an app on
their smartphone, we showed a dialog in which the participants were able to
select the app features they used, or, if not specified in the list add app features
by themselves.

Figure 8.3: Design of the crowdsourcing study.

163



Chapter 8 Implicit User Feedback Analysis: Feedback to Requirements

8.2.4 Study Data

The study resulted in a total of 55 GB of raw data. The participants used 170
unique apps and produced 27,569 sessions, of which 5,815 were labeled. We have
about 4.7 times more sessions without labels, as we only allowed the participants
to perform a certain amount of labels per day. We enforced this behavior as
a quality criterion as the participants might otherwise be tempted to perform
all required labels within one day—leading to many fake labels. On average,
the participants used 6.85 apps during a single phone usage, which, on average,
lasted about 7.6 minutes. The 170 apps in our data set cover 53 app categories,
of which 29 belong to gaming subcategories.
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Figure 8.4: Interaction events per app in the study data.

Table 8.1: Mean number of interaction events per app session.
App Name Click View Notific. Edit Text Sel. Text Scroll View Ch. Content Foc. View Ch. Wind. Sel. View

Facebook 9.34 4.51 99.09 57.76 306.11 408.80 9.64 29.66 13.33
Gmail 6.17 6.12 38.22 116.29 99.01 116.33 4.01 11.09 4.14
Fb Messenger 4.53 6.07 109.40 114.61 31.98 61.51 5.96 9.62 5.09
Snapchat 10.26 5.37 83.50 90.70 101.61 146.91 21.39 16.88 8.79
Google Drive 6.49 3.60 8.25 10.38 33.99 38.65 2.48 11.22 4.05
YouTube 6.37 14.97 38.70 44.51 74.67 96.19 8.90 13.38 7.63
Instagram 11.38 4.02 49.56 33.45 22.72 122.76 23.28 12.90 9.64
Twitter 9.44 3.19 93.96 53.09 94.77 248.91 7.04 18.49 18.88
Yahoo Mail 5.32 3.05 31.62 133.92 41.52 68.40 8.61 14.40 5.82

In total, we count 721 raw app features. As stakeholders describe similar
app features differently (e.g., “take photo” and “capture photo”), and because
we allowed the participants to add app features that were not covered by the
label dialog the data set contains many noisy app features that are, for example,
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duplicates. After a manual analysis of the app features, we reduced the amount
to 32 high-level app features.
Figure 8.4 depicts the number of interaction events per app. The figure shows

that the most occurring interaction types are “scroll view” (median 4,119) and
“change content” (median 9,754). The remaining interaction types are less fre-
quent within the single apps. For example, the median number of “click view”
events is 465.
Figure 8.5 shows the number of labels per app and high-level app feature over

the whole dataset of 170 apps. Each dot on the y-axis represents one app feature
for a certain app. Its position on the y-axis represents the number of labels we
have for that certain app feature. The figure reveals that for the majority of
apps, we have less than 50 labels per app feature. For nine apps, we have app
features that have at least 50 labels. For instance, Gmail has 403 labels for “read
email”, 74 labels for “send email”, 12 for “delete email”, and 9 for “write email”.
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Figure 8.5: Frequency of app features labeled in the dataset.

8.2.5 Machine Learning Experiments

This section summarizes the use of the collected interaction data by explaining
all technical steps, including the data pre-processing, feature engineering, and
classification experiments.
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Data Pre-Processing. One of the most extensive tasks in machine learning
is the preparation of the input data before a machine learning model can learn
from it. We performed several pre-processing steps for our supervised machine
learning experiments. First, we removed the data of participants that did not
match the quality criteria described in Section 8.2.3. Second, we merged the
scroll view events because the accessibility framework fires this event every few
milliseconds leading to dozens and sometimes hundreds of scroll view events,
when, in fact, the participant only scrolled once. Third, we manually looked
into the labels (app features) and found that we had to unify most of them
because they were either (1) semantically identical (e.g., “capture photo”, “take
photo”, “take picture”, “make photo”, “shot photo”), (2) duplication due to spelling
mistakes, and (3) for some features we have too few, sometimes single labels
which makes a classification approach impossible. To resolve the labeling issues,
we manually iterated the list of all labels by resolving spelling mistakes grouping
semantically similar features and extracting high-level features. As an example,
“view picture”, “view photo”, and “view image” become the high-level feature “view
photo”.
Feature Engineering. Feature engineering is the process of using domain

knowledge to represent data in a meaningful way for a specific machine learning
task. In this paper, we classify which app feature a user uses during an app
session. An app session comprises all interaction events that a user-triggered
during the usage of a single app. For our classification experiments, we represent
each app session as a machine-readable vector. The feature vector consists of nine
numerical values based on the event types in Table 2.2. Each value describes its
occurrence proportion of the whole app session. For example, if a participant
uses an email client and triggers nine clicks and one scroll event during an app
session, the machine learning feature value for click view is 0.9, for scroll view, it
is 0.1, and 0.0 for all other machine learning features. As our machine learning
features represent the proportion of each event type within an app session, all
values are between 0 and 1. Therefore, we do not need to scale the feature values
manually.
Classification Experiments. We describe how we created the classification

experiments we conducted. For the within-apps app feature classification, we
conducted experiments considering the four dimensions: (1) app, (2) app fea-
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ture, (3) classifier, and (4) training data balancing strategy. The first dimension
represents all 170 apps in our dataset. The second dimension concerns all high-
level app features per app (varies per app). In the third dimension, we train seven
different machine learning algorithms, which the Python sklearn library scikit-
learn [194] supports: LinearSVC, GaussianNB, DecisionTreeClassifier, and the
ensemble classifiers AdaBoostClassifier, GradientBoostingClassifier, RandomFor-
est, and the VotingClassifier using soft voting. In the fourth dimension, we tested
non-sampling vs. random undersampling before training the classifier, because a
machine learning model tends to classify only the majority class when trained on
a highly unbalanced training set. The combination of all four dimensions led to
844 experiments for the within-apps analysis.
For the between-apps analysis, we performed 448 experiments (32 high-level

app features · 7 classifiers · 2 balancings). In total, we ran 1,292 experiments for
this study. For each experiment, we performed 10-fold cross-validation and com-
pared the results according to well-established metrics in related work—precision,
recall, F1, and ROC AUC.

8.3 Results: Within-Apps Analysis

We report on the within-apps analysis, which automatically identifyies app fea-
ture usage for a particular app. We run our experiments on the top 30 apps
(the most labeled) and report on the results in Table 8.2. Table 8.2 shows only
the results of the nine apps for which we have enough labeled data to perform
classification benchmarks for at least three app features. We decided for at least
three app features because otherwise, we would not be able to show if we can
distinguish between different features of an app. The table shows for each app
the total number of app features it encompasses (n_features), the app features
for which we have enough labels for performing 10-fold cross-validation, the best
working machine learning algorithm (estimator), the evaluation metrics, as well
as the number of labels used for training and evaluating the classifier. For ex-
ample, Facebook counts a total number of 13 app features in our dataset, out of
which we can identify the usage for seven. For all seven app features, balancing
(n_true vs. n_false) the dataset leads to the best performing results. One addi-
tional observation is that having many labels does not necessarily lead to better
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Table 8.2: Within-apps analysis: machine learning results for app feature usage
identification.

App Name n_features App Feature Estimator Precision Recall F1 ROC AUC n_true n_false

Facebook 13 browse newsfeed Gradient Boosting 0.85 0.92 0.88 0.85 12 12
read post Voting Classifier 0.63 0.88 0.74 0.68 49 49
view event Naive Bayes 0.55 0.83 0.66 0.53 109 109
share media Ada Boost 0.62 0.70 0.65 0.60 53 53
get notification Linear SVC 0.51 0.90 0.65 0.47 143 143
like post Linear SVC 0.49 0.89 0.63 0.46 94 94
write comment Random Forest 0.61 0.55 0.58 0.61 40 40

Fb Messenger 11 send message Voting Classifier 0.79 1.00 0.88 0.61 252 69
play game Voting Classifier 0.75 0.86 0.80 0.71 14 14
read message Voting Classifier 0.62 0.88 0.73 0.55 17 17
view media Voting Classifier 0.64 0.69 0.67 0.65 36 36

Gmail 8 read mail Linear SVC 0.68 1.00 0.81 0.51 354 170
send mail Ada Boost 0.65 0.65 0.65 0.66 69 69
delete mail Linear SVC 0.50 0.92 0.65 0.58 12 12
search mail Linear SVC 0.60 0.67 0.63 0.43 48 48
get mails Naive Bayes 0.50 0.81 0.62 0.54 160 160

Google Drive 4 edit file Linear SVC 0.56 1.00 0.71 0.51 20 16
view file Linear SVC 0.47 0.90 0.62 0.54 10 10
save file Naive Bayes 0.39 1.00 0.56 0.83 7 29

Instagram 11 like photo Voting Classifier 0.85 0.81 0.83 0.85 21 21
watch story Random Forest 0.65 0.68 0.67 0.71 19 19
browse timeline Linear SVC 0.51 0.94 0.66 0.45 33 33

Snapchat 8 send message Naive Bayes 0.58 0.95 0.72 0.70 65 65
read message Naive Bayes 0.56 0.98 0.71 0.70 41 41
save message Ada Boost 0.67 0.73 0.70 0.65 11 11
watch story Linear SVC 0.53 0.75 0.62 0.37 12 12
capture photo Voting Classifier 0.73 0.50 0.59 0.64 22 22

Twitter 6 view feed Voting Classifier 0.55 0.85 0.67 0.46 13 13
read message/tweet Decision Tree 0.65 0.66 0.65 0.65 73 73
get live Linear SVC 0.53 0.64 0.58 0.30 50 50

Yahoo Mail 4 send mail Random Forest 0.94 1.00 0.97 0.97 16 31
read mail Decision Tree 0.86 0.90 0.88 0.88 20 20
get notifications Naive Bayes 0.65 1.00 0.79 0.60 11 11

YouTube 12 watch video Linear SVC 0.55 1.00 0.71 0.47 131 108
view latest videos Naive Bayes 0.58 0.83 0.68 0.57 18 18
browse recommendations Naive Bayes 0.57 0.80 0.67 0.60 20 20
rate video Decision Tree 0.57 0.62 0.59 0.57 21 21

Mean 0.62 0.83 0.70 0.61 56.65 47.00

results; for example Facebook “browse newsfeed” vs Facebook “get notification”.
For the machine learning algorithms, it is more important if the usage between
two app features is as diverse as possible. If a user is browsing through their
Facebook “newsfeed”, the interaction event scroll view may be more frequent and
important than the interaction event edit text or any other.
One finding of our experiments is that using an ensemble classifier—such as

Random Forest, which conducts several Decision Trees to conclude—does not
necessarily lead to better results. For the app Gmail, the best performing (F1)
app feature is “read mail”. That app feature achieves an F1 score of .81 and
is classified with Linear SVC. Generally speaking, in 15 out of 37 experiments,
ensemble classifiers performed best. On average, we can identify app feature
usage for 0.53 of all app features in Table 8.2.
However, the interpretation of the F1 score must be made with caution, as
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it might be misleading. Therefore, we also included the ROC AUC, which is a
measure that compares our results to a baseline and helps to interpret how much
better the models are compared to random models. In the following, we discuss
three distinct cases that foster the interpretation of our results when considering
F1 and ROC AUC.
Case 1: One example of a model with good classification results is Facebook

with the app feature “browse newsfeed”. It has a promising F1 score of 0.88,
which is an indicator of a good performing model. The ROC AUC score of 0.85
is very similar and confirms that the model will achieve much better results than
a random classifier (ROC AUC = 0.5).
Case 2: Gmail, on the other hand, has a misleading F1 score of 0.81 for the

app feature “read mail”. Its ROC AUC value of 0.51 reveals that the model is
performing similar to a random model. When taking precision and recall into
account, we find that the recall of 1.0 is the indicator for the misleading F1 score.
A recall of 1.0 means that the model simply classifies all instances as “read mail”
even though from the n_false columns, we can see that there are 170 labels for
the negative case (“not reading mail”).
Case 3: Twitter’s app feature “get live” has a rather low F1 score of 0.58

(precision 0.53, recall 0.64). The ROC AUC value of 0.30 indicated that the
model performs worse than a random classifier, which has a ROC AUC of 0.50.
However, since we employed binary classifiers, a ROC AUC value below random
indicates that the classification predictions could be inverted—resulting in a ROC
AUC of 0.70.
As a consequence, we conclude that interpreting classification results should

be done carefully by considering not only the F1 score but also the ROC AUC
value.
Figure 8.6 shows how many of the nine apps in our experiment reach a certain

threshold of the mean F1 and ROC AUC score across the app features we are able
to classify. For example, it shows that for all nine apps, we reach the threshold
of a mean F1 score of at least 0.60. In contrast, the mean ROC AUC values
show that for three apps, we do not achieve a mean value of 0.60. For the three
apps Instagram, Fb Messenger, and Yahoo Mail, the mean F1 scores of their app
features are at least 0.70, while for Yahoo Mail, the mean F1 score of all its
app features is at least 0.80. The colors on the heat map show for each app how
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Figure 8.6: Within-apps analysis: the ratio of app features for which we reach a
certain mean F1/ROC AUC threshold.

many of its app features we can successfully classify. For example, our models can
successfully classify half of Twitter’s app features with at least a mean F1 score
of 0.60 (In Table 8.2 it shows that Twitter has six app features in our dataset out
of which we can classify three). Figure 8.7 focuses on the max F1 and ROC AUC

Figure 8.7: Within-apps analysis: ratio of app features for which we reach a cer-
tain max F1/ROC AUC threshold.

score we reach for classifying app features. The figure helps to better overview
the best performing cases of Table 8.2. It reveals that for Yahoo Mail, we can
achieve a max F1 score of above 0.90. Further, we can report that for five out of
the nine apps, we have at least one app feature for which we achieve a high F1
score of 0.80. Similarly to the F1 score of Yahoo Mail, we achieve, for one app
feature, a ROC AUC score of at least 0.90.
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Table 8.3: Within-apps analysis: machine learning feature importance reporting
χ2 (chi-squared test).

App Name App Feature Click View Notific. Edit Text Sel. Text Scroll View Ch. Content Foc. View Ch. Wind. Sel. View

Facebook share media 0.16 0.29 2.17 0.92 0.06 0.07 0.01 0.38 0.10
Gmail send mail 0.38 10.19 0.01 8.49 0.00 0.27 0.24 0.48 0.14
Fb Messenger send message 0.05 0.06 2.26 2.49 1.26 1.05 0.01 0.83 0.01
Snapchat capture photo 0.20 0.12 0.28 0.22 0.17 0.00 0.49 9.55 0.05
Google Drive edit file 0.03 1.06 0.02 0.02 0.02 0.02 0.01 0.23 0.00
YouTube rate video 0.65 0.08 0.00 0.00 0.11 0.02 0.03 0.59 0.02
Instagram send post 0.00 0.01 1.29 1.32 0.16 0.13 0.00 0.31 0.00
Twitter read message 0.01 0.00 0.20 0.00 0.09 0.00 0.01 1.35 0.08
Yahoo Mail send mail 0.15 0.14 0.14 1.35 0.13 0.10 0.05 3.02 0.02

Machine Learning Feature Significance

We analyze the machine learning feature significance quantitatively and qualita-
tively to gain insights into our trained machine learning models. Table 8.3 shows
the significance (impact) of the machine learning features in our classification
experiments based on the χ2 scores [193]. The table lists the nine apps, which we
also used for our classification experiments. The table shows the app feature that
contains the highest χ2 score. It is important to note that a high significance does
not mean that this machine learning feature had the highest occurrence. Instead,
it means that it is crucial information to classify the app feature. A high χ2 score
could also mean that a small value of a certain feature is informative.
Figure 8.8 shows the feature distribution of the most significant features. For

example, the table reveals that the feature edit text is the most significant to
classify the app feature “share media” in the Facebook app (2.17). We can see
in the violin plot that users trigger the edit text event more often when they
“share media”. In the Gmail app, the feature notification reaches the highest χ2

score. It is highly significant for classifying the app feature “send email” with a χ2

score of 10.19. This could be the case as the notification event is triggered more
frequently through the toast message that indicates that the mail has been sent
successfully. For the app Snapchat, the change window event is highly significant
for classifying the “capture photo” feature. According to the violin plot, we can
see that the change window event occurs more frequently when users capture a
photo. We think that the switch between Snapchat and the camera app could
cause this imbalanced number of “change window” events. We conclude that the
significance scores and the distribution of the machine learning features can be
aligned with an intuitive human understanding.
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Figure 8.8: Within-apps analysis: violin plot for the apps with the most signifi-
cant machine learning features.

8.4 Results: Between-Apps Analysis

Table 8.4: Between-apps analysis: the five top and worst machine learning results
for app feature usage identification.

Estimator App Feature n_apps Precision Recall F1 ROC AUC n_true n_false

Linear SVC listen to music 4 0.82 0.91 0.86 0.91 44 44
Voting Classifier delete 4 0.77 0.89 0.83 0.82 19 19
Voting Classifier play game 10 0.75 0.75 0.75 0.80 85 85
Voting Classifier earn money 14 0.73 0.76 0.75 0.80 83 83
Gradient Boosting pay money 20 0.74 0.71 0.72 0.79 92 92

Naive Bayes share 19 0.51 0.79 0.62 0.47 123 123
Gradient Boosting search 37 0.62 0.61 0.62 0.65 308 308
Decision Tree manage items 13 0.62 0.61 0.62 0.61 92 92
Naive Bayes call 6 0.51 0.77 0.62 0.44 31 31
Decision Tree write message 29 0.59 0.57 0.58 0.58 205 205

Mean 15.6 0.66 0.74 0.70 0.70 108.2 108.02

The goal of the between-apps analysis is to understand if we can re-use the
labeled data, and therefore, the interaction data from multiple apps to identify
the usage of similar app features. For example, Gmail and Yahoo Mail are both
email clients that allow their users to draft, send, and receive emails. For example,
to send an email, the user has either to write one or to select a draft, choose the
recipients, define a subject, and eventually, click a send button. The combination
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of these steps describes the whole process to send an email, which may be similar
for apps that offer the same functionality, as depicted in the example above. We
run the between-apps analysis for all 32 high-level app features, which lead to
448 experiments as described in the experiment configuration.
Table 8.4 shows the results of the top-five and worst-five performing classifi-

cation experiments. Our following analysis will focus on these ten examples of
our results. In general, our classification results for the top-five app features look
promising as we are able to achieve values above 0.70 for both F1 and ROC AUC,
which is indicating a reliable classification model. The best performing app fea-
ture is “listen to music”, which achieved a high F1 score of 0.86 and a high ROC
AUC of 0.91 with only 44 true labels. In Table 8.4, we also report on the number
of apps in which the listed features are labeled. This number is important because
if e.g., there is only one app that implements a certain feature, we would report
a within-apps analysis instead of between-apps. For example, for the app feature
“listen to music” we count the four apps Amazon Music, Pandora - Streaming
Music, Radio & Podcasts, Spotify: Discover new music, podcasts, and songs, and
Deezer Music Player: Songs, Playlists & Podcasts. This shows that the model is
able to learn the app feature identification by combining the interaction events
of all four apps. In total, the mean number of apps that implement a certain
feature is 15.6, while the mean for the top-five is 10.4 and 20.8 for the worst-five
app feature classification experiments.

Machine Learning Feature Significance

We investigate the between-app feature classification also for the five best and
five worst machine learning classification results, which we listed in Table 8.4.
We highlight the most significant machine learning features for each app feature
from Table 8.5. Figure 8.9 shows the distribution of the machine learning feature
values in violin plots for each highlighted χ2 score, which we interpret in the
following. We can see that for the app feature “listen to music”, the machine
learning feature select view is strongly significant with the highest χ2 score of
45.99. The plots reveal that the select view event occurs more frequently when
users “listen to music”, as they might select the next songs. The app feature
“share” shows a high ratio of click events, as users have to select which content to
share, via which app, and with whom they want to share it, which could be the
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reason for this high ratio. The app feature “search” shows a high ratio of scroll
view events, which users might trigger by scrolling through the search result
lists. Significant for the feature “earn money” is a high number of click events,
which users might trigger by filling out surveys for which they get paid. When
users “manage items”, they trigger many click events, as they probably navigate
through different menus to, e.g., edit their shopping cart or adjust their account
settings. When users “call” on the phone, the ratio of notification is high, which
could be caused by the fact that Android shows a notification for incoming calls.
When users “pay money” or “write messages”, the ratio of edit text events is often
higher than usual. In the first case, users probably enter their payment details;
in the second case, users write and edit the text message they want to send.

Table 8.5: Between-apps analysis: machine learning feature importance reporting
χ2 (chi-squared test).

App Feature Click View Notific. Edit Text Sel. Text Scroll View Ch. Content Foc. View Ch. Wind. Sel. View

listen to music 0.28 0.55 1.52 1.69 4.18 0.42 0.15 0.17 45.99
delete 0.60 0.36 0.62 0.67 0.09 0.32 0.12 0.03 0.01
play game 0.08 0.82 1.57 1.96 2.03 0.68 0.20 0.93 6.90
earn money 4.84 0.06 1.52 1.44 0.38 0.05 3.13 0.12 4.44
pay money 3.41 0.12 3.47 2.69 3.05 0.36 0.01 1.64 0.00

share 0.72 0.11 0.12 0.49 0.14 0.01 0.01 0.62 0.19
search 1.87 0.22 3.71 2.19 7.79 0.05 0.00 1.08 0.26
manage items 0.72 0.00 0.58 0.26 0.05 0.00 0.14 0.02 0.46
call 0.00 1.11 0.62 0.00 0.65 0.03 0.22 0.36 0.26
write message 0.29 0.54 6.10 7.35 0.12 0.92 0.38 0.99 1.63

8.5 Discussion

We discuss the impact of our findings on the software engineering community, as
well as the strengths and limitations of our approach and study.

8.5.1 Implications of the Results

Based on a survey with 607 responses from software engineers, Begel and Zimmer-
mann reported [17] that the question “How do users typically use my application?”
is the most essential and worthwhile. Our results show that we can learn app
feature usages from high-level, app-independent interaction data: both by train-
ing classifiers with the data of other users of an app, or by using the usage data
of different apps providing similar app features. In the following, we focus the
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Figure 8.9: Between-apps analysis: violin plot for the app features with the most
significant machine learning features.

discussion on how this can be used to support stakeholders, including developers,
managers, and analysts. We summarize the following three main use cases for
the discussion.
Objective app usage analytics. App analytics tools do a good job in re-

porting the app’s “health” by analyzing the written reviews on either app stores
or social media [151, 176, 256, 257]. These analyses usually classify the written
reviews into bug reports, feature requests, or irrelevant [39, 81, 249]. They further
show the opinion of users about certain aspects of the app, such as app features
listed on app pages [79, 101]. However, these analyses only rely on the subjec-
tive experience of users, are non-representative (only those who submit feedback
are represented), and often contain emotional and uninformative text [82, 187].
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Based on our approach (analyzing the usage data), stakeholders can understand
the actual objective usage of an app, independently of users’ emotions. Usage
data analytics (interaction data + app feature usage) enables answering ques-
tions such as: How long is my app or particular features of it being used? By
whom? Which features are used together, and in what order? Depending on the
collected usage data, more questions can be answered. If focusing on only inter-
action data + labeling, we can perform feature usage analytics. When adding
additional context data such as location, device/hardware usage, and connectiv-
ity, we can answer questions such as: Where are our features being used? How
much do they stress the hardware?. When also collecting data like views names
and its content, we can answer advanced questions like: What views do our users
stay longest and shortest? Where and at which point do my users close the app?
The consequence of performing the suggested advanced analyses is to collect very
pervasive and privacy intrusive data.

8.5.2 Field of Application

Data-driven release planning. Stakeholders usually keep track of open bugs,
enhancement and feature requests in issue tracker systems. For release planning,
stakeholders have to decide what to develop for which release – often a decision
complex [36, 215]. Understanding popular, as well as unpopular app features, can
support making this decision. For instance, bugs affecting popular app features
might have a higher impact on users’ satisfaction with the app [153]. Therefore,
one recommendation to stakeholders could be to focus on bugs that affect popular
app features as they would negatively impact the user more frequently. Similarly,
feature popularity analysis can help prioritize testing, quality assurance, and
documentation work.
Combining subjective with objective feedback. Software engineers de-

scribe their app features in the stores’ app pages, which are also being addressed
by users in their feedback and reviews [107, 118, 144]. A promising future area
is the combination of both objective (what users do) and subjective (what users
say) feedback. Written user reviews often report bugs but rarely state important
information such as the affected device, software version, and steps to reproduce
[22, 187]. Our work enables mapping written reviews with usage data to provide
the missing information. For instance, spontaneous feedback mentioning a cer-

176



8.5 Discussion

tain app feature can be used to label the interaction data and create the training
set. On the other hand, if we precisely detect the feature the user has been using,
we can, for instance, associate the star ratings (at least in part) to that feature.
This combination of information can help resolve bugs quickly and better un-

derstand the meaning of the written reviews. It may also give insights for rather
uninformative reviews like “this app is trash!!” as the usage data could reveal pain
points such as non-crashing bugs, views on which the user stayed much longer
than others, or a view on which a user clicked several times on a button out of
frustration.

8.5.3 Alternative Implementations from Related Work

Our study aimed at identifying app feature usage, which helps, e.g., in under-
standing how users use app features. However, we can implement the feedback to
requirements activity for different ideas. In the following we summarize potential
alternative implementations.
In the domain of mobile apps, one of the most important success factors is the

user interface of the app. User interfaces designed in an intuitive fashion reduce
the risk of frustrated users, who, in the end, might uninstall the app based on their
negative experience. If we want to understand how users are using the UI in terms
of navigation paths, time stayed on a view, or the number of performed actions, we
can leverage user interaction data [55]. Deka, Huang, and Kumar [55] developed
ERICA, an approach that mines user interaction data of mobile devices, which
automatically detects, e.g., UI changes, records screenshots to create interaction
traces. With these interaction traces, we can identify weaknesses in the UI like
unintended navigation paths or gain insights into how to optimize the existing
and intended navigation paths. Using interaction data for UI performance testing
is helpful if we want to scale the tests. In particular, A/B testing, which aims at
testing different versions with users, is time and cost-intensive as a substantial
amount of users must be found to gain meaningful insights from the tests. With
user interaction mining, we can scale this process to potentially all users of an
app [54]. One of the next steps could be a data-driven design approach [53].
The data-driven design provides a database with example designs that helps
decision-makers finding a design that we can use in our product. We can use
the database to either identify best-practices or to get inspiration. With data-
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driven models, we can understand whether a design may be successful in achieving
the specified goals [53]. In their paper, Deka et al. introduce an approach that
leverages user interaction data and UI databases to enable applications like design
search, UI layout generation, UI code generation, user interaction modeling, and
user perception prediction. However, as Liu et al. [146] point out that these
approaches are rather black-boxes that do not expose the design semantics of the
UI. They, therefore, performed interactive coding to create a lexical database for
25 different types of UIs that allows us to understand what each element on the
UI means. In combination with user interaction data, we can not only understand
the semantic of the UI elements but also know how they are used. That kind
of analysis provides a rich source of information in the requirements engineering
process that we can use to test different UIs, optimize navigation flows, identify
navigation flaws, and understand what the user is doing in the app.

8.5.4 Limitations and Threats to Validity

We employed supervised machine learning for identifying app feature usage, which
depends on labeled data for training. Machine learning can only be as good as
these labels—wrong labels, e.g., fake or accidentally wrongly selected app features
in the label dialog introduce bias and noise to the algorithm. We mitigated this
threat by 1) carefully selecting the study participants in a pre-study and 2) by
limiting the number of labels participants can assign during the field study (see
Section 8.2.3). We have confidence in the collected data because of these measures
and our data, which includes many popular apps with reasonable labels.
The generalizability of this approach is another threat to the validity of our

results as we rely on data from 55 participants. However, we chose to perform
crowdsourcing instead of, e.g., student-based experiments to ensure real mobile
phone usage and selected participants from 12 countries to increase participants’
diversity.
Since app features are named in diverse ways, even though they are semanti-

cally or even technically the same, we rely on unifying these app features man-
ually. This manual process is prone to bias as its correctness depends on our
understanding of the app features. We address this potential bias with two steps.
First, one of the authors with more than eight years of experience in app devel-
opment performed and documented the first iteration of the unification. Second,
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two more authors checked the documented list of the unified app features and
discussed the disagreements leading to the final list.

8.6 Summary

This chapter introduced an approach that learns app feature usage from inter-
action events such as scrolling and clicks. We performed an 18-day long data
collection crowdsourcing study with a focus on collecting high-quality data. The
study had 55 participants who labeled 5,815 app feature usages for 170 mobile
apps. In total, we performed 1,292 machine learning experiments
Therefore, we created an approach that can address the stakeholder need to

understand which interactions led to the particular problems users reported. We
summarize our main findings.

We can learn app features with few interaction events. Our within-apps
experiments show that we can identify app features with encouraging F1 and
ROC AUC of ∼0.60-0.70 already only with about ten labeled feature usages. In
our experiments, we found that more labeled data does not necessarily increase
the classification result.

Apps require similar interactions to use their features. The between-
apps analysis achieved promising F1, and ROC AUC scores of up to 0.91, which
shows that for some apps, interaction events are similar between-apps when per-
forming the same feature. As a consequence, we may be able to reuse labeled
data for similar apps, which reduces the overall amount of needed labels.

We can reach explainable conclusions with a few human-readable ma-
chine learning features. We analyzed the machine learning feature significance
and found that a human interpretation of interaction events is often similar to
what the classifier model seems to find important. For example, when writing an
email, the edit text event is the most important machine learning feature.
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Chapter 9

feed.ai—A Prototype for
Requirements Intelligence

I enjoy thinking about ways to create something that other
people have not even thought about, something no one has
managed to achieve.

Shigeru Miyamoto

Publication. This chapter significantly extends our publication “Requirements
Intelligence with OpenReq Analytics” [236], which won the best poster and tool
demo paper award at the 27th IEEE International Requirements Engineering
Conference. My contributions to this publication were conducting the research,
developing the tool, and leading the writing.

Contribution. This chapter concerns the development of a requirements in-
telligence prototype, including its integrated interactive visualization of the re-
quirements intelligence framework (see Figure 4.1). We contribute by stating the
requirements for the prototype that we extracted from our two qualitative stud-
ies in Chapter 3. We further detail our technical decisions like the microservice
architecture of the prototype and provide the dynamic models for some of the
microservices. Eventually, we introduce the integrated interactive visualization
by depicting screenshots from the prototype and by relating its features to stake-
holder needs.

Addressed stakeholder needs. In Chapter 3, we found that stakeholders need
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automated tool support as the manual analysis of explicit and implicit user feed-
back is unfeasible. We also found that they do not know about automated tools
that provide user feedback analytics, but they use tools to collect feedback or
document it in, e.g., issue trackers. This chapter covers many of the stakeholder
needs, which we aggregate and explain in the prototype requirements section.

9.1 Motivation

In Chapter 3, we analyzed the need for software requirements intelligence from
the perspective of stakeholders. Stakeholders, as of today, feel overwhelmed when
analyzing explicit and implicit user feedback for several reasons. For instance,
stakeholders need much effort to understand their users because they receive
feedback in large amounts from different feedback channels. As research shows,
popular apps receive 4,000 reviews daily on app distribution platforms and about
31,000 daily feedback on Twitter [99, 187]. Analyzing that amount of user feed-
back is unfeasible, as the stakeholders in our study stated. In Villarroel et al.
[249], a stakeholder stated that he worked two full days to analyze 1,000 app
reviews, while a second stated that he dedicates 6-7 hours every week to analyze
user feedback. Overall, the stakeholders in Chapter 3 desire tool support for
automated analyses of user feedback.
We introduce feed.ai (user feedback analytics with artificial intelligence), a pro-

totype demonstrating the software requirements intelligence framework. Here,
we discuss the technical perspectives, such as the underlying architecture and
the frontend of feed.ai. In Section 9.2, we list the requirements for the proto-
type, based on our findings from the interview study and literature review from
Chapter 3. After that, we present the architecture of the prototype in Section
9.3 by starting with a general overview, followed by detailed sequence diagrams
for some microservices. Next, we illustrate and discuss the integrated interactive
visualization of the prototype by showing and explaining screenshots from the de-
ployed version in Section 9.4. Afterwards, we discuss the implementation of the
requirements intelligence framework in Section 9.5. Eventually, we summarize
the chapter in Section 9.6.
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9.2 Requirements

This section summarizes the requirements for feed.ai, which we based on our
results from Chapter 3. To report the functional requirements, we chose use
cases. Use cases are written text helping to discover and to record requirements
[135]. In Table 9.1, we show an overview of all considered use cases. We grouped

Table 9.1: feed.ai use case overview (grey rows mark sub-systems).
ID Name

— Feedback source configuration
UC1.1 Specify feedback source
UC1.2 Specify feedback language
UC1.3 Specify feedback collection intervall

— Performance indicators (frequencies)
UC2.1 See when users provide feedback
UC2.2 See trends in feedback
UC2.3 See the most urgent issues
UC2.4 See requirements-relevant feedback category distribution

— In-depth feedback analysis (categories)
UC3.1 Read original user feedback
UC3.2 Read filtered feedback by feedback category
UC3.3 Read feedback addressing a certain feature or topic
UC3.4 Read context and interaction data data attached to feedback

— Human control mechanisms
UC4.1 Evaluate automated filtering approaches

— Comparison of multiple apps
UC5.1 Compare feedback category distribution
UC5.2 Compare sentiment
UC5.3 Compare trends in feedback

the use cases into the following five major categories/sub-systems.

Feedback source configuration

Chapter 3 revealed that only a few organizations collect and analyze implicit user
feedback. However, all included stakeholders either try to utilize or want to ana-
lyze explicit user feedback. As some stakeholders stated opportunities in combing
both feedback types, the tool should work with either one or both feedback types.
When considering the individual feedback types, not every organization receives
feedback from the same channels or devices. An app development organization
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might be interested in app reviews for explicit user feedback and app interac-
tion data from smartphones, while a telecommunication organization might be
solely interested in explicit user feedback from social media. As a consequence,
the tool must be capable of handling both feedback types and multiple channels.
We formulate the following use cases for the configuration of the feedback sources.

UC1.1 - Specify feedback source. Stakeholders need the ability to spec-
ify the feedback source to allow customized analysis results. In particular, they
have to configure the explicit and implicit user feedback source. For example,
stakeholders who want to analyze tweets must specify the Twitter profiles they
are interested in analyzing.

UC1.2 - Specify feedback language. One challenge for global organizations is
that they have users from across the world that speak different languages. There-
fore, for explicit user feedback, stakeholders must specify the feedback languages
they want to analyze.

UC1.3 - Specify feedback collection interval. Automated approaches need
computation power and time for performing the analyses. In particular, ma-
chine learning intense systems need time to generate their results. Further, API
limitations may restrict how often stakeholders can collect feedback. Therefore,
stakeholders should be able to specify the interval for collecting and analyzing
user feedback.

Performance indicators (frequencies)

The idea is to get a quick overview of predefined metrics, which stakeholders
consider essential for the decision-making process. These metrics are individual
for the organization using the tool but mostly report descriptive analytics. For
example, if we consider the example of an app development organization, that
organization is likely interested in seeing how users generally think about the app
(for example, their sentiment), or the number of reported bugs since yesterday or
last week. These metrics are an indicator for stakeholders to learn if they have
to take immediate action. We formulate the following use cases for the overall
performance indicators.
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UC2.1 - See when users provide feedback. One challenge of stakeholders
is to gather feedback from multiple platforms and channels. They try to support
their users independent of the feedback channel they use. However, stakeholders
do not know when users provide how much feedback. That knowledge can help
to get time-related insights like when do users submit problem reports. Also,
they can use time-related analysis for planning when they have to provide more
support given they are interested in a quick resolution of user needs.

UC2.2 - See trends in feedback. One indicator of the product’s performance
is trend analysis. Trend analysis reports on a specified metric over time. For
example, a simple trend can be the number of user feedback received since the
last release. This information helps stakeholders in, e.g., understanding if they
improve over time. They can perform trend analyses on either historical data
only or empower it to predict future trends. In this requirement, the tool shall be
able to present trends for problem reports, inquiries (total number of user feed-
back belonging to this category), and the overall sentiment (average sentiment).
The trend shall cover the time frames since yesterday, since last week, and since
last month.

UC2.3 - See the most urgent issues. Although user feedback is individ-
ual to the person writing it, there may be a set of users stating similar opinions
or writing about the same topic. Therefore, it is important to show the most
discussed topics within the requirements-relevant user feedback. If there is an
unusual number of users reporting the same problem, the tool should highlight
this issue to create attention toward the problem.

UC2.4 - See requirements-relevant feedback category distribution. As
organizations may receive thousands of user feedback daily, they are interested in
understanding how many are relevant and worth investigating further. However,
there are different types of relevant user feedback. In this work, we focus on
problem reports and inquiries as relevant user feedback. The tool shall show the
number of received relevant user feedback for each feedback category.
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In-depth feedback analysis (categories)

Our app review analytics mockup in Chapter 3 included a view that let stakehold-
ers browse through actual user feedback. The interviews showed that stakeholders
perceive this feature as helpful, specifically if the automated approach filters ir-
relevant feedback. In particular, developers found the list of user feedback helpful
because users sometimes state information that allows the developers to isolate
the location of an issue. Further, some users include context information, such
as the software and hardware version, in their feedback. Therefore, the tool shall
include a view that allows browsing and discovering requirements-relevant user
feedback. We formulate the following use cases for the in-depth feedback analysis.

UC3.1 - Read original user feedback. Although stakeholders desire au-
tomated analyses of user feedback, they still need to read the original feedback.
The reason is that analytics results only show part of the feedback like often
addressed features and their count. But this kind of analysis results might miss
important information. Therefore, the prototype shall display the original (raw)
user feedback.

UC3.2 - Read filtered feedback by feedback category. For historical
and potentially real-time analyses, the prototype should allow to monitor and
analyze user feedback continuously. For example, agile software development
projects need to get current user feedback to better support their tight release
cycles as the feedback can either improve the release or help to understand the
perception of the user of the released version. Generally, in software projects,
continuously analyzing user feedback can help to identify and solve issues quicker
[107]. Nonetheless, user feedback comes in large amounts. Therefore, the pro-
totype shall provide a view only showing requirements-relevant (filtered) user
feedback.

UC3.3 - Read feedback addressing a certain feature or topic. Filter-
ing irrelevant user feedback helps stakeholders to concentrate on what they deem
relevant. However, the relevant user feedback may still be too cumbersome to
analyze as there is either too much or too long feedback to summarize it man-
ually. Also, manually summarizing feedback is not an easy task as, during the
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reading process, the stakeholder has to identify common topics or software fea-
tures addressed. For example, the tool identified 1,000 problem reports for the
current day. Although all of them are problem reports, the actual problems of
the user can be different. In this example, only one problem report is about the
registration form in an app, 200 discuss issues with network features, 600 describe
a crash on a specific view, and so on. This summarization helps to identify the
most urgent issues without reading through all of the user feedback. Therefore,
the prototype should be able to highlight the most discussed topics and features.

UC3.4 - Read context and interaction data attached to feedback. Chap-
ter 3 shows that none of the 90 stakeholders solely use implicit user feedback,
but all of them either consider explicit user feedback as useful or already analyze
it. However, stakeholders find implicit user feedback as a rich source for infor-
mation if attached to explicit user feedback. For example, if a user reports a
problem with the software, the user rarely states technical information such as
context data [157], which makes it hard for stakeholders to understand how the
issue occurred. If we attach implicit feedback like the software version or inter-
action events, the automated approach can help to narrow down the location of
the issue. This kind of information can help stakeholders in finding and solving
issues quicker. Consequently, the prototype shall be able to display implicit user
feedback attached to explicit user feedback.

Human control mechanisms

Machine learning algorithms are often a black box, and their predictions are often
not traceable or human-understandable. The result is that stakeholders need to
trust the output of the deployed machine learning models. However, machine
learning models do not achieve 100% accuracy, which leaves space for wrong clas-
sification results. Therefore, stakeholders cannot trust these models completely
and request control mechanisms that allow experts to check, and if needed, cor-
rect the machine learning model output. Another issue of, in particular, text-
based machine learning models is that their performance may decay over time
as the language of people or the product and service portfolio of an organization
changes. These changes may introduce sentence structures, phrases, or words
unknown to the machine learning model, which can result in a reduced accuracy
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over time. We formulate the following use case for the human control mechanism.

UC4.1 - Evaluate automated filtering approaches. Stakeholders do not
completely trust automated approaches as they make errors or are generally not
aligned with the stakeholders’ opinions. Therefore, the prototype shall allow
stakeholders to evaluate the machine learning models to improve them continu-
ously.

Comparison of multiple apps

The use cases so far focussed on an introspective—the analysis of the products
and services owned by the organization—but they do not consider potential com-
petitors in the market. Our interviews in Chapter 3 revealed that stakeholders
have to explore how their competitors perform in terms of the number of relevant
feedback received, problems they have, and features requests their users have.
The information gained from that analysis may be helpful to, e.g., find often
requested features that could be part of the own product or to learn from their
mistakes. They further want to understand how their own apps compare to each
other. We formulate the following use cases for the comparison of multiple apps.

UC5.1 - Compare feedback category distribution. Our interviews in Chap-
ter 3 showed that stakeholders, in particular, project managers, were interested
in seeing how their own apps compare in terms of the number of problem reports
and inquiries. The review of the literature further showed that stakeholders are
also interested in understanding how their competitors perform. Therefore, the
prototype shall compare the feedback category distribution of multiple apps.

UC5.2 - Compare sentiment. Similar to the distribution of feedback cat-
egories, stakeholders want to see how their users generally perceive the apps.
With that information, they can answer questions like “are our customers hap-
pier than those of our competitors?”. Therefore, the prototype shall compare the
sentiment of multiple apps.

UC5.3 - Compare trends in feedback. Besides seeing the distribution of
the feedback categories, stakeholders are interested in seeing how these categories
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developed over time. For example, they can get time-related insights like identi-
fying negative or positive trends in each of the feedback categories. They can get
these insights either for the feedback categories or for certain topics. Therefore,
the prototype shall compare the trends in user feedback.

9.3 Architecture

This section describes the architecture of the requirements intelligence prototype
feed.ai.
Overall, we decided in favor of a microservice-based architecture. As described

on the Amazon technical blog post [7], microservices offer many benefits over
monoliths. Microservices are autonomous, meaning that we can develop, deploy,
operate, and scale them individually without affecting the other services. Further,
microservices focus on solving one specific problem, which ensures that they have
low complexity and are, therefore, easier to maintain.
We split the remaining architecture section into two parts. In the first part,

we discuss the overall architecture and presenting an overview figure that high-
lights the communication flow of the microservices. The figure also marks some
microservices which we describe in more detail in the second part of this section.

9.3.1 Overview

We group the requirements intelligence microservices into the following five con-
ceptual layers:

Application Layer (AL). This is the topmost layer, and its purpose is to
provide the graphical interface to the stakeholders using the prototype. feed.ai
is a web-based application that is accessible from any browser and responsive
for most of its features, which enables stakeholders also to use the prototype on
mobile devices. The integrated interactive visualization of the requirements in-
telligence prototype is part of this layer.

Data Orchestration Layer (DOL). All microservices are accessible via well-
defined APIs. The microservices in this layer are responsible for managing the
communication flow between the microservices. The orchestrators are aware of
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Figure 9.1: feed.ai–architecture overview.

the other services and define the order, in which they have to call them. As per
definition, we can use all microservices as standalone services in case third parties
are interested in using only particular functionality, such as the app review fil-
tering classification. However, feed.ai is a prototype showcasing the combination
of all developed microservices and, therefore, needs orchestration for managing
the communication flow. We designed the architecture in a way that there is one
responsible orchestration microservice for each platform, i.e., Twitter and app
stores. The idea is to reduce the framework’s complexity by introducing concep-
tual groups of microservices that belong together.
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Data Analytics Layer (DAL). This layer is a collection of microservices that
processes raw user feedback. As for the microservices of the DOL, the DAL layer
includes microservices dedicated to each single data domain. Despite having mi-
croservices for each domain, we further created a microservice per requirements
intelligence activity. Therefore, the DAL contains microservices for filtering user
feedback and for transforming feedback to requirements (e.g., extracting topics)
per domain.

Data Collection Layer (DCL). The goal of this layer is to collect explicit
and implicit user feedback. We collect explicit feedback with crawlers while mon-
itoring implicit feedback from within the software, such as sensors (see Section
2.3). We have to develop custom data collection microservices and libraries for
each data source and each type of user feedback.

Data Storage Layer (DSL). The goal of this layer is to persist data. For
that, we store data not only coming from the collection layer but also store it for
each processing step to avoid a potential loss of information. As explained in the
DAL, we split the microservices based on their domain. For that reason, Figure
2 shows three microservices.

Figure 9.1 depicts one full-stack example for a single domain—highlighted by
the box with the dashed line. Again, the example highlights that we designed
the architecture in a way that we group the microservices per data domain.
Within each domain and layer, there can be several microservices. For example,
the analytics layer may perform several different machine learning approaches to
generate insights from explicit user feedback. Following the idea behind microser-
vices, there is one dedicated microservice for each machine learning approach. By
following this procedure, the microservices are easier to maintain as the technical
processes are different for each data source and feedback type (see Chapter 5).
Further, we can support horizontal and vertical scaling, which is vital because
by experience computation-heavy machine learning intense microservices need to
scale earlier than, e.g., data storage based microservices.
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9.3.2 Dynamic Models

In this section, we continue the example depicted in Figure 9.1 and present the
sequence diagrams of the microservices for the Twitter domain. Here, we focus
on briefly summarizing the microservices and their sequence diagram. A com-
plete description of all dynamic models [64] will be published by the European
Commission as part of the European Horizon 2020 project OpenReq [182]. The
project further provides a detailed description of the APIs [181]. We show the
sequence diagrams in the same order, as illustrated in Figure 9.1 (from top to
down).

Overall Communication Flow

Figure 9.2: feed.ai–overall microservice communication flow.

Figure 9.2 summarizes the overall communication flow of the microservices for the
Twitter domain. It highlights that the Tweet Orchestrator is the main respon-
sible microservice for managing the communication between all Twitter-related
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microservices. Starting the Tweet Orchestrator initiates requesting all config-
ured Twitter profiles that we want to analyze continuously. The next step sets
up a cron job for each observable Twitter profile that triggers every two hours.
Stakeholders can configure the observation interval for each Twitter profile indi-
vidually so that the orchestrator asks the data collection microservice to crawl
popular Twitter profiles more often. For describing this example, we decided on
a two-hour interval cron job, which triggers the following process.

1. The Tweet Orchestrator requests a list of newly posted tweets from the
Tweet Data Collector.

2. Store the retrieved tweets in a database by sending them to the Tweet Data
Storage microservice.

3. Classify (filter) tweets to either problem report, inquiry, or irrelevant.

4. Store the filtered tweets.

5. Extract concrete topics and features such as “network”.

6. Store the extracted topics.

This process happens in a continuous background task and does not affect the
performance of the prototype’s dashboard because it only accesses the processed
data from the database and does not rely on, e.g., synchronous machine learning
tasks.
Additionally, the bottom of Figure 9.2 highlights that stakeholders can access

the dashboard only with a valid access key. If the stakeholder enters a valid access
key, the dashboard requests a configuration file that includes the data sources the
prototype analyzes and visualizes.
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Tweet Data Orchestrator

Figure 9.3: Tweet orchestrator communication flow.

The Tweet Orchestrator is the microservice responsible for managing the com-
munication between other microservices. Though, each microservice exposes its
own API, and is therefore accessible as a standalone service, the idea of feed.ai
is to bundle all microservice. As we bundle the microservices and make them
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accessible on a dashboard, we reduce the effort for stakeholders to interact with
only one point of access. As Figure 9.3 shows, the orchestrator has two main
communication flows. On top of the figure, we visualize the initialization of the
microservice, which triggers automatically upon startup. The initialization pro-
cess first loads all observables, which in this exemplary case are all configured
Twitter profiles. For each observable, the Observer class will create a cron job
based on the configuration of the observable (target Twitter profile, the language
of the feedback, and interval). Whenever a cron job triggers, it performs the
same steps as described in the Overall Communication Flow. To summarize, the
process crawls tweets from the configured Twitter profiles, then classifies them
into problem reports, inquiries, and irrelevant, and finally, extract the tweet top-
ics. There is an intermediate step that stores the result of each step. We decided
to store the results of each step to avoid losing data in case any microservice is
unreachable. At midnight, the microservice checks if there are tweets that did
not run through the full process and performs all missing steps if needed.
Additionally, the orchestrator provides endpoints for adding and removing ob-

servables to cover the stakeholders’ changing needs. Figure 9.3 depicts the process
of adding a new observable. If we add a new observable, the microservice stores
it in the database first. Afterwards, if storing the observable was successful, the
service creates a new cron job based on the configuration in the initial request.
The added observable is then automatically part of the loop in Figure 9.3; there-
fore, it will undergo the same procedure to get and process feedback sent towards
that observable.
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Tweet feedback Filtering

Figure 9.4: Tweet feedback filtering communication flow.

Figure 9.4 depicts the sequence diagram for applying machine learning on tweets
to extract requirements related information, i.e., bug reports, inquiries, and irrel-
evant tweets. The microservice expects a list of tweets as a payload containing
at least the tweet text body, as this is the input for the machine learning model.
After ensuring that the text is in the UTF-8 format, the microservice iterates over
each tweet and classifies it. For each tweet, the first step is to create a machine
learning feature vector. Then the microservice processes it with one and up to
three binary classifiers. As the binary classifier for identifying irrelevant tweets
has much higher accuracy than the other classifiers, we perform this classification
first. In case the model classifies the tweet as irrelevant, and the classifier has a
confidence score of above 75%, the code immediately returns that classification
result for this tweet. Otherwise, we insert the feature vector of this tweet to the
problem report binary classifier and evaluate its result based on the same metrics
mentioned above. Again, if the irrelevant and the problem report classifier both
output that the currently processed tweets do not belong to these classes, the
code employs the inquiry classifier. However, if the inquiry classifier returns that
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the input tweet is not an inquiry, we assign the irrelevant class as the default.
We decided on this approach to avoid misclassifications based on the lower ac-
curacy of the problem report and inquiry classifiers and to increase computation
performance by performing fewer classification tasks.

Tweet Feedback to Requirements

Figure 9.5: Tweet feedback to requirements communication flow.

Tweets may come in large amounts, which makes it difficult to analyze and un-
derstand them manually. This microservice aims at identifying topics in tweets
by employing a supervised machine learning model. Therefore, we perform the
requirements refinement step of the requirements intelligence framework in this
service. For identifying topics, we provide the service with requirements-related
tweets. As this service employs supervised machine learning, it only supports a
fixed set of topics. Currently, the service is available for Italian tweets and sup-
ports the topics "billing", "churn", "network", and "offer". The machine learning
model handles tweets as a multi-label problem, which means that a tweet can be-
long to multiple topics. For example, the tweet: “@Profile I cannot connect to
the network anymore. This is a frustrating issue I face for several months. This
is not what the contract and my bill state, and I want to cancel it!!!” may belong
to the topics “network” and “billing”. The endpoint of this microservice expects a
single tweet as an input and returns a JSON array, which contains the name two
topics that have the highest probability, as well as the probability score itself.
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Tweet Data Collector

Figure 9.6: Tweet data collector communication flow.

The Tweet Data Collector microservice provides a simplified interface to the
official Twitter API. As it used the official Twitter API, we first have to get the
API keys from the official Twitter developer website. Therefore, before we can
this service, we have to configure it with the Twitter API keys as environment
variables or add them directly in the config file located in the codebase. Twitter
provides different types of API keys, each coming with different limitations and
rules. For example, we can either choose between Twitter’s premium or free
features. There are multiple versions of the premium API key, and depending
on which premium version we select, the API allows us to crawl more tweets at
once and further back into the history of the Twitter profile. The official Twitter
website contains more information about the API limitations [246]. The API of
this microservice expects the language of tweets we are interested in, as well as
the Twitter profile name, which contains the tweets we are interested in (e.g., a
support account as shown in Section 2.2.3). The microservice will then crawl as
many tweets as the API key allows and returns a list of the crawled tweets.
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Tweet Data Storage

Figure 9.7: Tweet data storage communication flow.

This microservice is an API interface to a MongoDB instance. Based on the data
that the endpoint receives, the microservice decides in which collection (table)
to store the data. We decided for MongoDB as this technology allows us to
better store and retrieve unstructured data. The advantage here is that if the
Twitter platform may change the metadata or any other field we can receive
from the endpoint, we do not have to find a solution for all historical data entries
immediately, but can continue working with the data we have.

9.4 Integrated Interactive Visualization

This section describes the integrated interactive visualization, which visualizes
the analysis results of the microservices introduced in the previous sections. It
is the single point of access for stakeholders using the requirements intelligence
prototype.
In the following, we present a subsection for each of the views the integrated

interactive visualization provides. In each subsection, we show a screenshot and
describe what it shows. We further detail our reasons for the illustrations as well
as give insights into how stakeholders can use the widgets of the prototype.
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9.4.1 Access to the dashboard

Figure 9.8: feed.ai—access key.

Figure 9.8, shows a view presenting an input form that requests an access key.
It is the first view a stakeholder sees when using the prototype. The access key
is mandatory and, therefore, the prototype does not allow to open any other
view before the access key was validated. We introduced this view for several
reasons. First, it provides preliminary protection of the underlying data. This
functionality is an essential non-functional requirement from stakeholders, as they
cannot allow other organizations to access their data and analysis results. Second,
using access keys, we can create shared accounts for organizations that have the
same configuration. For example, an organization decides using this prototype
and requests access for several stakeholders that analyze the same data. Instead
of including a user management system for individual stakeholders, we decided to
simplify this process with access keys. Access keys, therefore, allow us to create
shared configuration files for groups of stakeholders, although we can also create
an access key for individual stakeholders. The third reason, which is related
to the first, is that the prototype includes human control mechanisms for the
machine learning models. With access keys, we can define who can correct the
classification results of the machine learning models.
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9.4.2 Dashboard

Figure 9.9: feed.ai—dashboard.

The core of the integrated interactive visualization is the dashboard, whose goal
is to give a quick overview of how an organization performs with respect to the
opinions of its users. The dashboard in Figure 9.9 has four horizontal layers that
we describe in the following.
The top layer shows a heatmap that visualizes when users write feedback

(use case UC2.1). The goal of this widget is to understand when users pro-
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vide requirements-related feedback (such as bug reports and inquiries), when the
organization’s customer support needs to be more active, and when problems
appear.
The second layer shows three distinct trend reports (use case UC2.2). Each

trend report has the goal to show changes concerning different times in the
past—i.e., changes since yesterday, last week, and last month. These views are
particularly helpful to grasp if, for example, a new release of a feature intro-
duced problems or the general performance increases or decreases. The outer
right trend widget shows the overall sentiment of the user base. Values above 1.0
mean that users write positive feedback, while values below -1 means that users
are unsatisfied—values between 1 and -1 indicate a neutral sentiment.
The third layer shows the three most discussed topics in the current week

(use case UC2.3). Attached to the topic names are the number of inquiries and
problem reports associated with that topic. If the number of reports reaches a
specified threshold, they are marked in red to raise attention. For instance, the
left-most topic is called “network”. There had been three inquiries regarding the
network topic in the current week, as well as 200 problem reports associated with
it. As in this example, we set the threshold for raising an alert to 20 mentions
of the topic or feature, the widget displays the lower right part of the card in
red. Therefore, the organization may want to pay attention to that topic and
analyze it further in one of the other views of the prototype that shows the actual
feedback related to the topic.
The bottom layer shows two widgets. The left widget shows the proportions

of how often users give either problems, inquiries, or irrelevant feedback (use
case UC2.4). On the right, there is a user sentiment analysis. This analysis
helps to visualize the sentiment for single days and puts it in relation to a given
time frame. For example, if a newly released app feature contains a critical bug
affecting many users, the sentiment is most likely to be negative. Therefore, we
can use this chart to understand how urgent an issue may be, and when users are
again in good standing with the organization. Both widgets on that layer enable
the stakeholders to filter for specific time frames, such as the last seven days, 30
days, 90 days, this year, all time, or a custom time frame.
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9.4.3 Focus Views

Figure 9.10: feed.ai—focus view.

The requirements intelligence prototype supports stakeholders in identifying user
needs, such as the problems they face and the requests they have. While the
dashboard provides a rather general view on how the organization performs, the
focus view helps to browse and discover the written feedback. As described in
Chapter 3, stakeholders need the functionality for browsing actual user feedback,
as otherwise, they cannot understand act upon feedback. Therefore, we intro-
duced two focus views for requirements-related feedback, one for problem reports
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and one for inquiries (use case UC3.2). Both focus views look the same and
contain the same functionality. They only differ in the user feedback they show.
Therefore, we only show and describe one of the focus views, as depicted in Figure
9.10. Each focus view has three horizontal layers.
On the top, there is a filter bar in which stakeholders can select the organiza-

tions and software products for which they want to analyze user feedback. The
filter bar also allows filtering user feedback for specific releases, days, or custom
time frame.
The second layer contains two widgets. On the left, there is a radar chart

that summarizes the number of mentions of certain aspects such as topics, soft-
ware features, or services with respect to the selected filters (use case UC3.3).
The chart gives a brief overview of the trending aspects of user feedback and
helps summarize the overall discussion (use case UC3.3). For instance, Figure
9.10 shows that the“network” topic and the features “send message” and “call”
are the most discussed aspects. Since it is the problem report focus view, this
example raises attention to a network issue that affects features associated with
the network. The right side of the second layer shows predefined topics that are
part of the access key configuration, as discussed in Section 9.4.1. The widget
presents, for each topic, its name and its amount of user feedback available in the
prototype. Stakeholders can click on the topics to further filter the list of user
feedback they are interested in reading.
The bottom shows a table of user feedback that allows for browsing and discov-

ering feedback with a keyword search (use case UC3.1). The table also supports
pagination to not overwhelm stakeholders with a list of thousands of rows of user
feedback. Each row contains the date of the user feedback, the feedback text
body, and two buttons in specific cases. As this view is about problem reports, it
shows the user feedback classified as such, using state-of-the-art approaches. As
machine learning-based classification approaches do not provide perfect results
and sometimes differ from what a human domain expert thinks, we introduced
two buttons to either agree or disagree with the classification. To not overwhelm
the stakeholders and to give meaningful input for the classification algorithm,
we only show the buttons for the user feedback for which the classification algo-
rithm is less than 70% confident. We chose this confidence threshold to balance
the labeling effort of the stakeholders to improve the model and the impact the

206



9.4 Integrated Interactive Visualization

labeled data has on the machine learning model. We developed the prototype
iteratively and evaluated it with a major telecommunication company. In each
iteration, we updated the classification models utilizing the input of the human
domain expert (use case UC4.1). If a stakeholder clicks on one of the problem
reports, the row expands to show some analysis results of the implicit user feed-
back analysis if available. On the bottom of Figure 9.10, the example shows that
the expanded row includes the order of interaction events on the left and further
provides context information on the right side. This information can be valuable
to understand, e.g., steps to reproduce, and to narrow down the location of an
issue such as the view in the software on which a problem occurred (use case
UC3.4).

9.4.4 User Interaction Data Insights

Figure 9.11: feed.ai—user interaction data insights.

The user interaction data insights view focuses on implicit user feedback. Figure
9.11 shows the screenshot of this view, which has four horizontal layers. As the
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top layer contains the same filter bar as the focus views, we do not describe it
again (see Section 9.4.3).
The second layer contains two widgets. The first widget is a filter for the user

context. In Chapter 7, we presented a study that analyzes context information,
such as the used apps and the location of the user, to distinguish between pri-
vate and professional device usage (use case UC3.2). This classification helps
stakeholders to analyze features and requirements for specific situations. The
stakeholders can use the widget to either filter one context type or keep both. In
future studies, we could consider other context types such as sitting, walking, or
driving, which is useful information for an organization focussing on navigation
apps. The second widget is a list of software features. Stakeholders can either
manually create the list and enhance or entirely create it with the SAFE approach
from Chapter 6. Ultimately, the list is also a filter for the analysis of concrete
user interactions and features. The selection in both widgets impacts the data
visualization of the lower layers.
The third layer shows a group of box plots for each software feature we selected

in the previous layer. Figure 9.11 depicts the box plot groups for the software
features “login”, “send a message”, and “make a call” (use case UC3.1). Within
each group, there is a box plot for each recorded user interaction event. It gives
insights into how users are using the software features. For instance, a simple
login view typically contains three control elements—two input fields (username
and password), as well as a button to send the login information to a server.
If users, on average, click more than once or twice per control element, there
may be some issues related to the UI. Similarly, if users try to scroll often on a
view which should contain its information directly visible on the device’s screen,
stakeholders need to investigate the issue further.
The bottom layer shows three cards, each belonging to a specific software

feature (use case UC3.3). The idea of these cards is to show the number of
reported problems for the filtered software features. Each card states the name
of the software feature, indicates the most affected view of the software on which
the problem occurred, as well as the number of users who wrote a problem report
concerning this software feature. The most affected view is the result of the
implicit user feedback analysis, while the number of problem reports comes from
the explicit user feedback analysis. The card can raise an alert in case a specified
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number of problem reports toward this feature exist. Stakeholders can specify
that threshold. Like the alert in the dashboard (Section 9.4.2), the number of
problem reports is marked in red if the number of problem reports exceeds the
specified threshold. In this example, the prototype shows the three software
features from the selected filters and two cards that contain an alert, as more
users reported problems as defined by the threshold.
In general, the widgets presented in the user interaction data insights view are

indicative and may require further and more detailed analyses.

9.4.5 Competitor Comparison

The competitor comparison view arose from the need of stakeholders to learn how
their product performs compared to the market. In feed.ai’s competitor compar-
ison view, we provide stakeholders with similar functionality as we presented
in the focus views, but it also allows us to put the analysis results of several
organizations and apps in one chart.
Figure 9.12 shows the competitor comparison. On the top left, the stakeholders

can see the sentiment trend for different organizations and products (use case
UC5.2). It helps in understanding how users perceive and discuss the products.
For example, if a telecommunication organization faces a network outage, we
can see if it also affected the competitors. If a network outage affected several
organizations, the issue might be outside the own organization, while it is most
likely within the organization if only they are affected. Further, stakeholders can
use the view to track, e.g., the effect of advertisement campaigns like giveaways.
On the top right, the user can compare the number of problem reports, inquiries,
and irrelevant feedback users report (use case UC5.1). The bar charts allow
understanding which organization receives more inquiries or problem reports. By
combining the three bars of the feedback categories, we can see which organization
receives more feedback in general. If an organization owns multiple products or
apps, stakeholders can also use the competitor comparison view to compare their
own products’ performance.
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Figure 9.12: feed.ai—competitor comparison.

Below the sentiment and feedback category charts, the prototype shows addi-
tional layers. The third layer with the title overall is always visible and reports
on the problem reports and inquiries trends. However, sometimes, this catego-
rization may be too coarse-grained for stakeholders and needs additional insights.
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Therefore, the filter bar on the very top allows selecting more fine-grained topics
of interest. If, for example, a classification model for identifying network-related
issues exists, stakeholders can select it in the filter bar. For each selected topic,
the prototype generates one additional horizontal layer on the bottom. These
analysis layers allow stakeholders to switch between a table and a multi-line chart
widget. The layer contains the trend analysis for the selected topic regarding the
number of problem reports and the inquiries users reported (use case UC5.3).

9.4.6 Settings

Figure 9.13: feed.ai—settings.

Although the stakeholders using feed.ai may know what user feedback types and
channels they want to analyze, their needs may change over time. For that
reason, we introduced a view allowing stakeholders to update the configuration
of the access key. The settings view (see Figure 9.13) allows adding new feedback
channels by specifying the name of the Twitter profile (use case UC1.1), the
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language of the feedback (use case UC1.2), and the interval specifying how often
the prototype crawls and processes user feedback (use case UC1.3). The example
in the figure shows that the stakeholders can add, edit, and remove Twitter
profiles they want to monitor. Therefore, the settings view lists all Twitter profiles
that are currently part of the access key. Whenever a stakeholder adds a valid
Twitter profile or removes an existing profile, the prototype updates the access
key. In case stakeholders have several access keys, they can change it on the
bottom of the page.

9.5 Discussion

As discussed earlier, the requirements intelligence framework (see Chapter 4)
contains a set of activities. In this chapter, we transformed the results of our sci-
entific studies into one possible requirements intelligence prototype. The feed.ai
prototype automatically analyzes implicit and explicit user feedback to support
stakeholders such as project managers and developers. In practice, users of feed.ai
only have to incorporate the data sources of interest, such as the configuration of
Twitter profiles shown in Section 9.4.6. Then, the underlying microservices per-
form the data preparations and analyses that the web-based integrated interactive
visualization presents. feed.ai covers various stakeholder needs, such as a dash-
board that summarizes the overall product health. In Chapter 3, we discuss that,
in particular, project managers are interested in getting a quick overview of the
product’s performance to understand if they have to consider immediate actions.
Despite the dashboard, we showed views that provide more in-depth results by,
e.g., including machine learning supported filters to omit irrelevant feedback and
to discover frequently discussed topics and features. Two views focus on either
problem reports or inquiries. They are particularly interesting for developers and
other stakeholders that have to read user feedback. The view concerning user
interaction data gives insights into how users use the software, e.g., an app or
website, and reports on how the usage is composed. Further, we show examples of
combining implicit and explicit user feedback by, e.g., attaching user interactions
and context data to explicit feedback to better understand how an issue arose.
Most views cover an introspective perspective, which focuses on the own products
and services, but we also show how an extrospective perspective by illustrating
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an example for competitor analysis. As feed.ai is only a prototype demonstrating
how we can implement the requirements intelligence framework, we also pro-
vided a reference architecture helping interested parties in either extending or
re-implementing the framework. We further foster using, extending, and im-
plementing microservices of the requirements intelligence framework as they are
open-source. The open source repositories contain documentation for explaining
the deployment, and if necessary, provide hints for developers for extending the
service. The repositories are available on the GitHub page of OpenReq [183].

9.6 Summary

This chapter introduced feed.ai, a prototype based on the requirements intelli-
gence framework from Section 4.3. After motivating the prototype, we summa-
rized the requirements for feed.ai, which we based on our results from Chapter
3. In total, we defined five sub-systems and formulated 15 functional require-
ments in the form of use cases. We presented an overview of the requirements
and detailed them afterwards. Then, we discussed the overall microservice ar-
chitecture of feed.ai, which we split into five layers. The architecture contains
microservices for each requirements intelligence activity. After that, we gave an
example of how we implemented the microservices for the Twitter platform by
illustrating and describing their dynamic models. Our intention of showing the
overall architecture and describing a complete example for one feedback domain
is to help understanding how feed.ai works, as well as how others can use and
extend it. Afterwards, we presented screenshots of the integrated interactive vi-
sualization, explained them, and described how they cover feed.ai’s requirements
and stakeholder needs. Eventually, we discussed the implications of the feed.ai.
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Chapter 10

feed.ai in Practice

I have always believed that technology should do the hard
work - discovery, organization, communication - so users can
do what makes them happiest: living and loving, not
messing with annoying computers! That means making our
products work together seamlessly.

Larry Page

Contribution. This chapter concerns the evaluation of the requirements intel-
ligence prototype feed.ai in a case study. We developed feed.ai in five iterations
in cooperation with a major Italian telecommunication company over 12 months.
After each iteration, we employed methods like semi-structured interviews and
surveys to receive feedback from stakeholders. We report on the feedback and
give insights about how feed.ai helped stakeholders in their work with user feed-
back.

Addressed stakeholder needs. This chapter addresses stakeholder needs re-
garding the analysis of explicit user feedback. We cover the need for automated
tool support for continuously collecting and preprocessing tweets from Twitter,
feedback filtering, and identifying topics and features users address. The inte-
grated interactive visualization provides a web-based interface for stakeholders.
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10.1 Motivation

In Chapter 3, we described the need of stakeholders for software requirements
intelligence. Our qualitative studies show that stakeholders anticipate less man-
ual effort for analyzing user feedback. They desire tool support for automatically
analyzing user feedback to understand user needs and support their decision-
making process. The requirements intelligence bases its analyses on explicit and
implicit user feedback, as described in Chapter 4. We presented approaches for
the explicit and implicit user feedback analysis activities feedback filtering and
feedback to requirements. Chapter 5 (activity feedback filtering) and Chapter 6
(activity feedback to requirements) are dedicated studies introducing approaches
for analyzing explicit user feedback. For analyzing implicit user feedback, we also
present evaluated approaches in Chapter 7 (activity feedback filtering) and Chap-
ter 8 (activity feedback to requirements). We empirically evaluated all studies in
this work in their dedicated chapters. However, the research results of the chap-
ters are standalone studies. To understand if their results are useful, we created
the requirements intelligence prototype feed.ai, which combines the approaches
and visualizes user feedback insights in an integrated interactive visualization.
The feed.ai prototype provides automated tool support for the activities pre-
sented in the requirements intelligence framework in Chapter 4. In Chapter 9,
we presented our envisioned requirements intelligence prototype. In this chapter,
we present an iteratively and fully implemented requirements intelligence proto-
type. The prototype development was part of the Horizon 2020 project OpenReq
[182]. We evaluated the prototype with a major telecommunication company for
12 months. This chapter summarizes the evaluation process of the prototype and
its results. In Section 10.2, we discuss the design of the evaluation, including a
description of the evaluation context, setting, and evaluation questions. Section
10.3 reports on our results for each of the five iterations. In Section 10.4, we
discuss the results of the evaluation and summarize the chapter in Section 10.5.

10.2 Design

Here, we describe the overall evaluation design. First, we detail the context of the
evaluation in Section 10.2.1. Then, we present the evaluation setting in Section
10.2.2. In Section 10.2.3, we state our evaluation questions, while Section 10.2.4
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describes our research methodology.

10.2.1 Evaluation Context: OpenReq

We introduce the Horizon 2020 project OpenReq [182], which is the evaluation
context.
OpenReq is about researching, developing, and evaluating intelligent recom-

mendations and decision technologies to support communities and individual
stakeholders in the gathering and management of software requirements. Open-
Req bridges the gap between the development and usage of software-enabled
products and services: by taking the user community as part of the innovation
process and by continuously observing and involving stakeholders and users and
tightening their commitment in the decision-making. OpenReq aims at develop-
ing an integrated approach that continuously monitors and adjusts requirements
knowledge instead of having a waterfall process. The project encompasses the
following objectives and activities.

Requirements gathering, reuse of requirements & stakeholder manage-
ment. Stakeholders gather requirements in the early project phases. OpenReq
supports stakeholders in effectively gathering and cooperatively screening the rel-
evant requirements. The gathering activity is a continuous process over the whole
project’s lifetime. The project further screens the previous requirements knowl-
edge of users and their communities for identifying reusable requirements. Open-
Req further helps to identify stakeholders who should work together on certain
requirements and supports new stakeholders in effectively acquiring knowledge
about already existing requirements. The project also assists users in participat-
ing in the requirements engineering process.

User needs & screening. The project involves users implicitly and explicitly
during the whole project’s lifecycle. We acquire implicit feedback by observing
the actual usage of the software at run-time through OpenReq. Software or-
ganizations and service providers will better and easier assess the priorities of
particular features and requests. We further collect explicit feedback through so-
cial media channels and specialized E-Participation platforms to derive emergent
needs, usage trends, and new requirements.
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Analysis, dependency detection & diagnosis. The screened requirements
are analyzed and documented in detail. OpenReq supports stakeholders in iden-
tifying and managing dependencies between requirements and identifying (pre-
ferred) adaptations in the case of inconsistencies. We identify dependencies on a
semantic level based on different types of natural language processing techniques.
OpenReq supports easy requirements adaptation after changing a requirement by
automatically identifying related requirements that presumably have to change
as well.

Intelligent release planning. Openreq supports the creation of release candi-
dates and the group-based decision-making about candidates that stakeholders
should consider in the requirements negotiation phase. The project filters rele-
vant requirements based on the stakeholders’ preferences, user preferences, time
constraints, and budget. These filtered requirements are candidates in the release
planning activity, which stakeholders decide about in a guided discussion.
This work addressed the user needs & screening activities of OpenReq.

10.2.2 Evaluation Setting

We performed the evaluation in cooperation with a leading Italian telecommuni-
cation company that serves about 30 million customers (in the following called
users) for both mobile networks and fixed-lines. They have an annual revenue of
5.6 billion euros and about 6,800 employees. The company owns the following
three brands:

• Brand A1. It targets the consumer segment (mainly families) by providing
services for mobile and fixed-lines. The brand stands for two characteristics.
First, it aims at being as close as possible to its users. Second, it intends
to offer clearly and easily described plans.

• Brand B. Addresses younger people who need more flexibility in their plans
and frequently updated services. The brand focusses on mobile services and
fosters innovative solutions, diverse features, and high performance.

1anonymized
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• Brand C. The business segment covers both human and machine to ma-
chine (M2M) SIMs. The vision of the brand is to be a trusted partner
for business clients supporting their daily business operations and offering
innovative solutions to them.

The goal of our evaluation partner is to address the increasing popularity of
social media and the pervasiveness of connected devices. In particular, the com-
pany strives to attract and retain users that are socially connected and highly
informed. For attracting and retaining users, they want to offer new innovative
and software-enabled products and services corresponding to the users’ expecta-
tions. They, therefore, look for automated solutions helping them to understand
their users better. They further want to use such a tool to increase the interac-
tions between them and their users.
In discussion with the evaluation partner, we decided to focus on the explicit

user feedback analysis activities of the requirements intelligence framework. We
excluded the implicit user feedback analysis activities in the evaluation as the
evaluation partner’s policies do not allow us to collect and analyze implicit user
feedback from their apps.

Preparation

Requirements Intelligence

Explicit User Feedback Analysis

Integrated 
Interactive 

Visualization
• Two Twitter 

profiles
• Italian user

feedback

Data Collection 
and Preprocessing

• Irrelevant
• Inquiries
• Problem 

reports

• Trend analysis
• Frequent topics
• User sentiment

Feedback
Filtering

Feedback to 
Requirements

Figure 10.1: The evaluated activities of the requirements intelligence framework,
including an overview of the evaluated activity results.

Figure 10.1 details the scope of the evaluation. For the Data Collection and
Preprocessing activity, we target the social media platform Twitter. The reason
for that decision is that the evaluation partner identified it as the most actively
used platform of their users. They own two Twitter profiles that they actively use
to provide support to their users and to advertise current and upcoming products
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and services. The first Twitter profile has about 166,000 followers and targets
Brand B. The second Twitter profile has 122,000 followers and targets Brand A.
As the evaluation focuses on the Italian market, we only consider Italian tweets.
The activity feedback filtering uses the approach introduced in Chapter 5. The

telecommunication company in our evaluation required the automated identifica-
tion of relevant and irrelevant user feedback from Twitter. We further classify the
requirements-relevant user feedback to problem reports and inquiries. Therefore,
we introduce a two-step filtering approach, which first filters irrelevant feedback
and then performs the second classification.
In the feedback to requirements activity, we identify frequently discussed fea-

tures and topics around the product and services of the company, such as network
availability and product offers. Further, the evaluation partner required a trend
and sentiment analysis, which gives an overview of the company’s performance in
social media. Eventually, the experts at the evaluation partner’s side requested
a mechanism to correct the analysis results. The further asked for analytics in-
sights, such as how many users report a particular feature/topic and to browse
and filter the actual tweets. They need this functionality so that they can export
the user feedback to another tool that supports the discussion and prioritization
of requirements-relevant tweets.
Finally, the integrated interactive visualization should be a web-based dash-

board that visualizes the analysis results and the original tweets.

10.2.3 Evaluation Questions

The objective of the evaluation was twofold. First, we wanted to iteratively
develop a prototype of the requirements intelligence framework that integrates
state-of-the-art research results, which stakeholders can use in practice. Second,
we wanted to understand the overall usefulness of the developed prototype from
the perspective of stakeholders. To achieve this, we collaborated with a major
telecommunication company that used the prototype in their daily workflow. We
aligned their needs with the idea of requirements intelligence and adapted the
prototype based on frequent feedback loops.
We formulate the following evaluation questions to validate our objectives.

RQ10.1 Usefulness: How do stakeholders assess the usefulness of each
activity and visualization of the requirements intelligence prototype?
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RQ10.2 Improvements: What visualization needs improvements? Why
does it need improvements, and how should we improve it?

RQ10.3 Impact: Which department can benefit from the requirements
intelligence prototype? How does it help stakeholders in their daily work?

10.2.4 Evaluation Methods and Timeline

We developed the prototype in five iterations and evaluated each iteration with
either a survey (including open and closed questions) or semi-structured inter-
views. Table 10.1 depicts the timeline of the evaluation process. It shows that

Table 10.1: Timeline of the evaluation and the used evaluation methods. Each
row represents the evaluation of one developed iteration.

OCT 18 • Survey (2 participants)

DEC 18 • Survey (3 participants)

MAR 19 • Interviews (3 participants)

JUL 19 • Email/phone (2 participants)

SEP 19 • Survey (10 participants)

we developed and evaluated the prototype for 12 months. Depending on the
state of the prototype, we employed the evaluation method for feedback that
was most useful for us. Before we started the development of the first iteration,
we discussed intensively with the evaluation partner what their needs are. We
documented and used their challenges and envisioned solutions as a basis for the
prototype. Beginning of October 2018, we finished the first prototype iteration,
which was also the first subject for our evaluation. For the evaluation of the
first iteration, we designed closed and open questions about every single widget
visible in the integrated interactive visualization. Each widget represents one
result of the requirements intelligence activities and the extracted analytical in-
sights. Based on the survey results, we improved the prototype and created a
second iteration. In the second iteration, we had one additional participant from
a different department (as detailed in the results). Afterwards, we decided to
perform interviews with the third iteration to gain in-depth qualitative insights
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by talking to three stakeholders using the prototype. We used closed questions
to get more information about their role in the company and the department
they work for. With open questions, we aimed at 1) getting more detailed use
case scenarios and 2) to better understand the pain points they had when using
feed.ai. In July 2019, we deployed our fourth iteration of the prototype, which
was the basis for an agile development process utilizing direct contact with the
evaluation partner via phone and email. The result of this agile development
process is the final evaluated prototype (see Figures in Appendix B.5). For the
evaluation of the final iteration, the partner distributed a survey to 10 potential
stakeholders within the company who anonymously answered the survey.

10.3 Results

Chapter 3 focuses on the general needs of stakeholders for analyzing user feed-
back, while Chapter 9 reports the technical aspects of the envisioned prototype.
Here, we report on a fully implemented open-source prototype that helped us
creating the feed.ai prototype in Chapter 9. This section shows screenshots of
the integrated interactive visualization of the developed prototype. Each step
in the timeline in Figure 10.1 evaluated a single iteration of the prototype. For
each iteration, we summarize its functionality and give a brief overview of the
evaluation feedback we received. For each iteration, we discuss the findings to
the evaluation questions from Section 10.2.3.

10.3.1 Iteration 1

Iteration 1 (OCT 18)
Screenshots Appendix B.1
Method Survey

Participants
• Senior Innovation Manager (P1)
• International Relations and Assistant Innovation Manager (P2)

Functionality. In the first iteration, we developed a requirements intelligence
prototype that analyzed one single Twitter profile. The prototype included mi-
croservices for continuously collecting the tweets from the given Twitter pro-
file. A second microservice employed the feedback filtering activity to identify
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requirements-relevant tweets. The integrated interactive visualization presented
three analysis widgets. First, it showed a bar chart that displayed the propor-
tion of problem reports, inquiries, and irrelevant user feedback. Second, the tool
showed a sentiment line chart that depicted the average sentiment per day of all
user feedback in the current week. Third, it contained a table with three columns.
Each column had a list of the original tweets belonging to either problem reports,
inquiries, and irrelevant.

Feedback. We evaluated the first iteration with a survey. We had two partici-
pants, a senior innovation manager (P1) and international relations and assistant
innovation manager (P2). Both survey participants stated that they used the
prototype for about one hour while P1 used it on two days, P2 used the tool
on a total of six days. Both agree that filtering the tweets is useful for them.
P1 highlighted the usefulness of filtering irrelevant user feedback, while P2 also
found the user feedback belonging to inquiries as most useful at this stage. How-
ever, both agree that the high-level filtering approach had only limited value for
them. P2 stated that it would be more helpful to focus on specific topics and
features like problems regarding the network. P1 said that tags summarizing
the user feedback would help to grasp the tweet’s central message quicker. Both
participants reported that the first iteration could have a significant impact on
the company but that they could not benefit from it.

10.3.2 Iteration 2

Iteration 2 (DEC 18)
Screenshots Appendix B.2
Method Survey

Participants
• Senior Innovation Manager (P1)
• International Relations and Assistant Innovation Manager (P2)
• Data Scientist (P3)

Functionality. Based on the feedback, we re-designed and re-implemented the
prototype for the second iteration. We developed a dashboard for the integrated
interactive visualization (see B.2), which included four types of widgets for the
analysis. First, it included a heatmap to detail on when users tweet to the com-
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pany. Second, we kept the bar chart for the three filtered feedback categories.
Third, we extended the sentiment line chart with a comparison of the users’ per-
ception of the current and the last week. Fourth, we developed widgets showing
trends for problem reports, inquiries, and users’ sentiment. The widgets report
descriptive analytics concerning predefined time frames. In particular, they show
the delta from today, compared to yesterday, last week, and the last month. Be-
sides the dashboard, we further introduced a comparison view (see Figure B.3),
which allowed filtering user feedback based on selected time frames. The compar-
ison view also included the proportions of the tweet categories, as well as basic
sentiment analysis. Further, we re-designed the tweet list (see B.4) to include
the date of the tweets, as well as additional filters like time frames and keyword
searches. As the evaluation partner criticized the performance of the automated
filtering approach, we included a human control mechanism allowing the partner
to correct the machine learning results (see B.5). We used corrections of the eval-
uation partner to improve the classification models incrementally in the future
iterations.

Feedback. In addition to P1 and P2, a data scientist (P3) joined the evalu-
ation. All stakeholders agreed that the control mechanism to correct the filtering
approach is very helpful and that they see that their input improves the machine
learning model’s performance. The stakeholders evaluated the usefulness of the
heatmap differently. P2, who also worked in public relations, found this informa-
tion very helpful (5 out of 5 points), while P1 and P3 did not find the information
helpful for their work. The stakeholders did not find much value in the sentiment
analysis as it was neutral for the whole time of the evaluation (they could not
observe any positive or negative peaks). One of the reasons for that was that the
underlying approach averaged the sentiment of all tweets. After we updated the
classification models, the participants perceived this feature more positive. The
new views, specifically the comparison view and the tweet list view, were seen as
helpful to very helpful. The stakeholders stated that adding user information to
the tweets such as the number of followers and, as users with more followers, may
have a bigger impact (P3) as a point for improvement. However, P1 mentioned
in the first iteration, that user information should be anonymized. Overall, the
stakeholders saw more potential in the tool and agreed that it improved compared
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to the previous iteration. For instance, P1 stated: “I think the tool overall has
potential, however it needs refinement in the way information is conveyed. For
example I would exclude irrelevant tweets from most views and neutral tweets
from sentiment analysis barchart. I think the tool will benefit the most Market-
ing and CVM departments. Users from those departments should/could request
customized dashboards and classification categories for very specific needs”. The
stakeholders gave at least 4 out 5 points for the usefulness to keep the machine
learning models up-to-date (Figure B.5). However, the stakeholders also stated
that continuously labeling all user feedback is unfeasible. The stakeholders found
that the second iteration of the prototype may create the most benefit in the
marketing, operations, customer value management, and big data departments.

10.3.3 Iteration 3

Iteration 3 (MAR 19)
Screenshots Appendix B.3
Method Semi-structured Interviews

Participants
• Senior Innovation Manager (P1)
• Technology Enterprise Architect (Big Data and Cloud) (P4)
• Technology Innovation Manager (P5)

Functionality. The third iteration included minor changes to the dashboard and
two major changes. Regarding the changes in the dashboard (see Figure B.6, we
introduced new filtering mechanisms by including two switches in the heatmap.
The first switch toggled between highlighting all user feedback or showing only
requirements-relevant user feedback. The second switch could toggle between
showing or hiding the absolute number of user feedback for any given time and
day. Additionally, we changed the sentiment analysis by only showing one line
for a defined time frame instead of comparing two weeks. Both the bar chart
for the feedback categories and the sentiment line chart introduced time frame
filters. Each widget could have its own time frame.
The first major change in this iteration was the introduction of focus views for

problem reports and inquiries (see Figure B.7). The reason behind that decision
was to make clear what kind of analytics insights the stakeholders see. This
change merged the feedback list and the feedback labeling task list from the
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previous iteration. Within the focus view, the stakeholder could filter for different
Twitter profiles, time frames, and search for keywords of interests. Further,
stakeholders do not have to correct all machine learning results in the human
control mechanism, but only the user feedback for which the machine learning
approach is uncertain. This decision had two benefits. First, it reduced the effort
for the stakeholders. Second, machine learning models improve most if they get
new labeled data for uncertain cases.
The second major change is the introduction of the access key view. The pur-

pose of this view was to define profiles for the stakeholders. Stakeholders could
decide from which Twitter profile they wanted to get analysis results. For exam-
ple, the development team may only have and interest in their own app. The
marketing department, however, might like to compare their app with those of
the competitors. Both could define their own access key, which is associated with
a configured profile customized to the stakeholders’ needs.

Feedback. P4 is a technology enterprise architect whose department is in close
contact with the marketing and product development department. The tech-
nology enterprise architects of the evaluation partner are particularly interested
in products introduced within the next six to twelve months and, therefore, are
mostly using the inquiry focus view. P5, who is a technology innovation manager,
was interested in innovative products that are being introduced in the next five
to ten years. Therefore, P5 was interested in analyzing both problem reports and
inquiries. Problem reports are a good indicator to validate if the current products
meet the needs of the users. The stakeholder found the inquiry focus view useful
because it helped her understanding if the mentioned features already exist in the
products. It further helped her identifying if the features were part of the prod-
ucts, but their users did not know about them. However, the prototype did not
allow them to filter user feedback for fine-grained topics and features and relate
them to specific products or services. The stakeholders stated that getting that
kind of granularity is necessary to reduce the effort of reading all user feedback
or finding the right keywords to filter the list of feedback. All participants again
highlighted the importance of continuously updating the machine learning mod-
els. In particular, they liked that they do not have to label all user feedback (see
Figure B.7), as this reduces their effort and makes the approach more feasible.
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10.3.4 Iteration 4

Iteration 4 (JUL 19)
Screenshots Appendix B.4
Method Email/Phone

Participants
• Senior Innovation Manager (P1)
• Data Scientist (P3)

Functionality. The fourth iteration included two major changes. First, the
focus views introduced the opportunity for filtering user feedback by predefined
topics. For instance, the evaluation partner was particularly interested in iden-
tifying issues related to the network, the billing system, and offers. For that, we
included cards in the focus views, stating the topic, the number of users report-
ing it, and its average sentiment. Stakeholders could click on any of the topics
to filter the user feedback list below. Identifying features and topics belongs
to the third activity of the requirements intelligence framework, feedback to re-
quirements. The second major change was the introduction of the settings view,
which allowed the evaluation partner to add, remove, or update Twitter profiles
for their analyses. The settings view allowed stakeholders to define the Twitter
profiles they are interested in, the language of the user feedback, as well as the
data collection and analysis interval.

Feedback. This iteration did not follow an empirical method to evaluate the
prototype, but it embraced agile communication to include improvements and
changes to the prototype quickly. The goal was to prepare the prototype for the
final evaluation with multiple stakeholders from the evaluation partner. During
the period of one month, we had frequent contact with two stakeholders in the
form of phone calls and email exchanges. The communication led to many per-
formance improvements. Besides that, the participants stated that they found it
difficult to compare the analytics results of both specified Twitter profiles. The
prototype was limited to either aggregate the analyses results of all defined Twit-
ter profiles or to present the results of one Twitter profile. The first case made
the comparison impossible, while the latter was cumbersome as the stakehold-
ers could only see the analysis results of one Twitter profile at the time. The
stakeholders, therefore, suggested introducing a view for comparing the feedback
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analysis results of multiple Twitter profiles. One stakeholder said that using
feed.ai helped them to save 70% of their time for analyzing user feedback.

10.3.5 Iteration 5

Iteration 5 (SEP 19)
Screenshots Appendix B.5
Method Survey

Participants

• 10 anonymous participating stakeholders
• Three from the marketing department
• Four from the customer care department
• Thee from the architecture department

Functionality. Based on the previous feedback, we included a competitor com-
parison view in the fifth and final iteration of the evaluation. In combination
with the settings view of the previous iteration, the stakeholders of the prototype
could add competitors to analyze and compare their performance in the newly
introduced view. The competitor comparison view (see Figure B.16) allowed
stakeholders to compare the overall sentiment of their users with a line chart
covering a predefined time frame. A bar chart allowed stakeholders to compare
the feedback filtering categories (problem report, inquiry, and irrelevant). Fur-
ther, the stakeholders could see and compare the trends for the feedback filtering
categories and the topics across multiple Twitter profiles. For example, if the
company has a network issue, they could check if they were the only company
experiencing this issue or if others were facing the same problem.

Feedback. The final survey included nine closed questions to rate the func-
tionality and usability of the final prototype (see Appendix B.5. We constructed
all nine questions as a 5-point Likert scale (I fully disagree to I fully agree). The
results of this survey are shown in Figure 10.2. We anonymized the roles and the
name of the participating stakeholders but asked them in which department they
work. Three stakeholders were part of the customer care department, four belong
to the marketing department, and three are part of the architecture department.
The overall impression of the participants was positive. The evaluation shows
that they evaluated the sentiment analysis with 3 out of 5, meaning that it did
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not provide meaningful insights for most of the stakeholders. As the sentiment
analysis presents the average score of all user feedback per day, the sentiment was
often neutral and did not provide much information. We tried to mitigate this
effect by allowing stakeholders to remove neutral tweets from the analysis, which
increased the impact of positive and negative tweets. The focus views were the
most positive perceived feature of the integrated interactive visualization. The
focus views allowed stakeholders to browse and filter actual user feedback. Re-
garding usability, all participants agree that the prototype was easy to use. Most
were satisfied with the design of the dashboard and agreed that they would use
the tool frequently. However, the features of the tool could have been better
integrated, but as the survey only considered closed questions, we cannot derive
the rationale.
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Figure 10.2: Final survey results.
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10.4 Discussion

In the following, we aggregated the findings of the evaluation, including all iter-
ations.

The stakeholders think that the requirements intelligence prototype
can benefit diverse departments. During our evaluation, the stakeholders
stated that the requirements intelligence prototype could benefit the departments:
marketing, customer relationship, customer value management, operations, and
big data. All of the mentioned departments include user feedback in their work-
flow. One stakeholder revealed that the company currently moves from water-
fall product development to agile product development. In particular, the agile
teams started looking at user feedback from social media to get inspiration for
innovations and to find problems with existing products. The customer relation-
ship management can benefit from the prototype by reporting on the descriptive
statistics of the dashboard and enrich that report with examples from actual
tweets. The marketing department can analyze if, for example, advertisement
campaigns improved the sentiment of the users or to check how many users are
discussing them.

Requirements intelligence can support the discovery of innovation. The
prototype was evaluated and used in departments that are responsible for creat-
ing innovative products. In particular, P4 searches for innovative features and
products the company can release within the next six to twelve months. This
stakeholder was particularly interested in the inquiry focus view, which helped
him identify what their users wish. He reported that he was looking at the focus
view regularly to check if users came up with new ideas or to check if some ideas
got reported repeatedly. P4 used the dashboard as an indicator to see how many
inquiries were added since the last time he checked them to understand if it is
worth reading them.

Requirements intelligence helps to validate if the existing products
meet user needs. Once a feature, product, or service got released in the mar-
ket, it is crucial to understand how users perceive that release. For example, P5
is a technology innovation manager who is responsible for developing innovation
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in the course of five to ten years. In that long-term perspective, the stakeholder
said that they look at both focus views that the requirements intelligence proto-
type offers. In particular, the stakeholder found the problem report focus view
valuable as it helped her validating if existing products meet the needs of the
users. From these insights, she can get ideas for long-term improvements or new
products.

The dashboard helps to understand the general performance of the
company quickly. Stakeholders found that the dashboard, we introduced in
the second iteration, is meaningful for getting a quick overview of how the com-
pany performs from the perspectives of their users. They generally liked the
descriptive statistics we displayed in the trends, as well as in the bar charts to
indicate how many additional problem reports and inquiries they received. How-
ever, stakeholders criticized the sentiment analysis, which could not provide any
meaningful insights as the general user sentiment was neutral most of the time of
the evaluation. A more fine-grained sentiment analysis that considers emotions
like anger or joy could provide meaningful insights.

Including a human control mechanism is meaningful if stakeholders
do not get overwehlmed. Multiple stakeholders stated that filtering the user
feedback into irrelevant, problem reports, and inquiries are valuable for them.
They particularly highlighted that having control over the machine learning ex-
periments is vital, as they do not agree with all of the classification results.
However, the stakeholders felt overwhelmed with the human control mechanism
we introduced in the second iteration. The reason was that the tool asked the
stakeholders to either agree or disagree for all collected tweets. Therefore, lim-
ited the number of tweets stakeholders should label to those that have the biggest
impact on improving the machine learning model. The stakeholders found that
change crucial and found that it made the approach feasible for them.

Improving machine learning models over time, based on stakeholder’s
input, improved their acceptance of the automated approach. The stake-
holder stated that they like that they are in control of the machine learning
models. In particular, they stated that they could see that the machine learning
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models were improving over time, which gave them higher confidence in the ap-
proach. The prototype tracked if the stakeholders agreed or disagreed with the
classification results and found that with the first machine learning model, they
agreed with 74% of the classifications. Based on their corrections, we re-trained
the machine learning model and integrated the improved version in the proto-
type. The stakeholders agreed with 82% of the classifications of the improved
machine learning models. In the 12 months evaluation period, the stakeholders
provided 1,800 labels for the machine learning results. In the final machine learn-
ing model, which included all 1,800 corrections, the stakeholders agreed with 92%
of all classifications. Therefore, we could improve the models by 18% compared
to the first deployed machine learning model, that we trained with crowd-labeled
data (for more information see Chapter 5).

10.5 Summary

This chapter aimed to report on the evaluation of the requirements intelligence
prototype feed.ai, which we based on the stakeholder needs reported in Chapter
3. We evaluated the prototype with a major telecommunication company for
over 12 months. We developed five iterations of feed.ai based on the feedback
of the evaluation partner’s stakeholders. We gathered their feedback by either
using surveys, performing semi-structured interviews, or phone meetings. The
stakeholders had diverse roles and came from different departments, like public
relations and innovation management.
Based on the stakeholder needs and their privacy policies, we limited feed.ai’s

evaluation to the explicit feedback analysis activities and the integrated interac-
tive visualization. The prototype continuously collected explicit feedback from
the two Twitter profiles our partner operates. These two profiles provide support
to their users and advertise its product portfolio.
We evaluated the final iteration in a survey with ten stakeholders working

in customer care, marketing, and the architecture department. Overall, they
perceived the prototype positively in both its functionality and usability. In the
following, we highlight some findings.

• Requirements intelligence benefits departments working with user feedback.
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• The dashboard helps to get a quick overview of the overall performance of
the company.

• Identifying inquiries can foster the innovation process.

• Problem reports can support stakeholders to see if the company meets users’
needs.

• Enabling stakeholders to correct the automated approaches increases stake-
holder’s trust in them and improves the approach over time.

• feed.ai’s user feedback analytics insights helped the evaluation partner to
save 70% of their time.

Generally, we were able to develop a prototype that meets stakeholder needs.
We could also confirm that implementing an approach for the stakeholder needs
from Chapter 3 is useful for them in their actual work.
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Chapter 11

Conclusion

The aim of an argument or discussion should not be victory,
but progress.

Joseph Joubert

This chapter summarizes the contributions of this work by detailing topics
around requirements intelligence. The chapter further discusses directions for
future work.

11.1 Summary of Contributions

Here we discuss the contributions of this work for the topics requirements intel-
ligence, core enablers for requirements intelligence, and the feed.ai prototype.

11.1.1 Requirements Intelligence

We present our findings and conclusions from Chapter 3, which clarifies stake-
holder needs for automated analyses of user feedback and Chapter 4, which in-
troduces requirements intelligence.

Stakeholder Needs for Automated User Feedback Analysis. Traditional
user involvement in requirements engineering encompasses approaches like work-
shops, interviews, and observations. Stakeholders often perform these approaches
in the early phases of a project. Although requirements engineering activities such
as the elicitation activity benefit from involving users with these approaches, they
are challenging to carry out continuously and involve only a limited number of
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users (See Section 2.1). In recent years, stakeholders discovered that written on-
line user feedback, as well as usage data of an app, are continuous sources for
requirements-related information. Yet, stakeholders rarely use these sources in
their decision-making process because manually analyzing user feedback is unfea-
sible. Written online user feedback (explicit user feedback) and usage data (im-
plicit user feedback) come in large, unfiltered, noisy amounts. Stakeholders need
automated approaches to guide their decision-making based on user feedback.
For that, they desire tools that filter user feedback to reduce its overwhelming
amount. Further, stakeholders see the most potential if they can combine explicit
and implicit user feedback because usually, non-technical users write this feedback
and, therefore, misses important information like the usage context. Stakehold-
ers want to stay informed all the time and desire a web-based standalone tool.
Within the tool, they want to be in control over the automated approaches and
correct them if needed. There are more details on the contributions in Chapter 3.

Requirements Intelligence Framework. Requirements Intelligence is a frame-
work that continuously collects, preprocesses, filters, and transforms explicit and
implicit user feedback to requirements to generate analytical insights for stake-
holders in an integrated interactive visualization.
We motivated the definition of requirements intelligence from the fields of re-

quirements engineering, business intelligence & analytics, as well as software an-
alytics. These three fields have similar goals in mind Business intelligence &
analytics and software analytics are well-established fields to provide support in
the decision-making process with analytical insights into data. Requirements in-
telligence is a framework that generates analytics insights for requirements stake-
holders based on explicit and implicit user feedback. The two core enablers of
the framework, the explicit and implicit user feedback analyses, are composed of
the activities data collection and preprocessing, feedback filtering, and feedback to
requirements. The framework continuously collects user feedback and prepares
it for machine learning-based activities, feedback filtering, and feedback to re-
quirements. Stakeholders have access to the results of the core enablers in an
integrated interactive visualization. There are more details on the contributions
in Chapter 4.
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11.1.2 Core Enablers of Requirements Intelligence

We summarize our findings regarding the explicit and implicit user feedback anal-
yses activities, feedback filtering and feedback to requirements. For the explicit
user feedback analyses, we address Chapter 5 and Chapter 6. For the implicit
user feedback analyses, we address Chapter 7 and Chapter 8.

Explicit user feedback analysis: feedback filtering. The objective of this
activity is to filter the large amounts of written user feedback. Research shows
that popular apps receive daily about 4,000 app reviews and about 31,000 tweets.
This feedback contains valuable, requirements-related information like problem
reports and inquiries. However, most of the feedback is noisy and irrelevant
to requirements stakeholders. Therefore, we propose feedback filtering, which
is a requirements intelligence activity that automatically classifies explicit user
feedback into the categories problem report, inquiry, and irrelevant. In a crowd-
based study, we labeled a total number of 31,000 explicit user feedback entries.
After extensive machine learning experiments, we achieved F1 scores of up to
.89. Stakeholders can use this approach to filter irrelevant feedback and to dis-
tinguish between the two requirements-relevant categories problem report and
inquiry. Chapter 5 provides more information about our results.

Explicit user feedback analysis: feedback to requirements. This ac-
tivity performs analyses of the previously filtered user feedback, which reduces
the manual analysis effort for stakeholders. Although we filtered the explicit user
feedback into the requirements-relevant categories problem report and inquiry,
the amounts of feedback within these categories remain challenging to analyze
manually. We, therefore, introduce an approach that can do two things. First, it
can extract the features (requirements) users address in explicit user feedback, as
well as the features stakeholders, document on app pages. The extraction allows
stakeholders to identify the particular features users address and, in combination
with the filtering activity, know if the feature belongs to a problem report or an
inquiry. Second, we can match the features from the app reviews with the fea-
tures documented on app pages, which allows stakeholders to understand if users
address existing or potential new features. We an extract the stakeholder docu-
mented features with an F1 score of .46, and the user described features with an
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F1 score of .36, both outperforming existing approaches from the literature. For
the matching of the user feedback, we achieved an F1 score of .63 for identifying
true positives, and an F1 score .90 for the true negatives. Chapter 6 provides
more information about our results.

Implicit user feedback analysis: feedback filtering. Implicit user feed-
back reports how the user is interacting with an app and puts that interaction
into the context. A few users can already generate gigabytes of data and mil-
lions of, e.g., click events within an app. In contrast to explicit user feedback,
implicit user feedback is not natural language but a collection of categorical and
numerical values and, therefore, difficult to interpret by humans. This feedback
filtering activity allows stakeholders to filter the feedback based on the usage
context, such as the device (e.g., smartphone vs. TV) or the connection (e.g.,
Wi-Fi vs. mobile). We presented an approach that distinguishes between private
and professional device usage automatically. Stakeholders can use this approach
to gain insights on how users are using their apps in different contexts. In a
crowd-based labeling study, we collected 88,000 implicit user feedback containing
context data. Our supervised machine learning approach achieved an F1 score of
.94 in a within-users analysis (one classification model per user). For our between-
users classification (one classification model trained with several users which we
applied on new users), we achieved an F1 score of .95. Chapter 7 provides more
information about our results.

Implicit user feedback analysis: feedback to requirements. The next
activity of the implicit user feedback analysis is an approach that focuses on
user interactions to learn about how users use features. Again, we performed a
crowd-based labeling study, in which users provided us the list of features they
used within each app session. We performed a within-apps analysis that takes
all the labeled interaction events of the users for one app to train and evaluate
a machine learning model. We found that depending on the app and the num-
ber of labeled data we have, we achieve, on average, an F1 score of .70. The
between-apps analysis combined the labeled data of all apps to understand if the
user interactions per feature are similar between apps. We found that combining
the training data of the apps enabled us to identify the features users use with
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an F1 score of up to .86. Stakeholders can use the output of the previous, and
this activity to understand how users use features in different contexts. Chapter
8 provides more information about our results.

11.1.3 feed.ai

We summarize our contributions regarding the feed.ai prototype (Chapter 9), the
integrated interactive visualization (Section 9.4), and its evaluation (Chapter 10).

The requirements intelligence prototype feed.ai. feed.ai is the prototype
that we developed based on the requirements intelligence framework. We based
the development of feed.ai on requirements that we extracted from Chapter 3,
in which we performed qualitative studies to understand stakeholder needs. We
documented the requirements in the form of use cases. Besides presenting the re-
quirements, we contribute with an architectural overview of feed.ai, which shows
how we realized the requirements intelligence framework. It explains how we can
leverage microservices to, e.g., support multiple programming languages that were
necessary for feed.ai’s development. We further detail on the dynamic models of
the microservices for the feedback platform Twitter to illustrate the communica-
tion flow between and within the microservices that allow continuous analyses.
Stakeholders can extend and deploy the prototype on their own infrastructure
(as explained in Chapter 10) as the whole source, and the microservice docu-
mentation is open-source [183]. Chapter 9 documents all technical decisions and
outcomes of feed.ai.

Integrated interactive visualization. The integrated interactive visualiza-
tion is the interface for stakeholders using the requirements intelligence prototype
feed.ai. The integrated interactive visualization stands for combining both types
of user feedback in one single place (integrated), which allows stakeholders to
filter for, e.g., specific time frames or the usage context (interactive) in a stan-
dalone web-based tool (visualization). The main features are a dashboard, focus
views, a user interaction view, as well as a competitor comparison. It presents
a dashboard with descriptive analytics showcasing, for example, when and how
often do users provide feedback. We also included one view dedicated to problem
reports and one dedicated to inquiries (focus views) to allow stakeholders getting
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in-depth analytics insights into, e.g., the original user feedback, the features users
mention, and control mechanisms to correct the automated approaches. In the
user interaction view, stakeholders can filter for the usage context (implicit user
feedback filtering activity) and automatically extracted features (explicit user
feedback to requirements activity) to analyze how users use certain features. The
competitor comparison view allows stakeholders to compare multiple apps to un-
derstand how users perceive the apps by presenting descriptive analytics results.
Stakeholders can either compare multiple apps of their organization or compare
their apps with those of competitors. The integrated interactive visualization of
Section 9.4 is not fully implemented and an extension of the prototype presented
in Chapter 10, which is completely open-source.

Evaluation of feed.ai. Chapter 10 presents the evaluation of feed.ai within
the European Horizon 2020 project OpenReq. Within that project, we iter-
atively developed and evaluated the feed.ai prototype over 12 months with a
major telecommunication company based in Italy. During that time, we were
able to improve feed.ai in five iterations and evaluated it with methods like sur-
veys and interviews. In total, we could include 15 stakeholders in the evaluation
(depending on the iteration, we had two to ten stakeholders available). During
the evaluation, we focused on getting qualitative insights to understand why the
stakeholders liked or disliked particular features of feed.ai. After the fifth iter-
ation, we report the quantitative results of a survey, including ten anonymous
stakeholders from the marketing, customer care, and network departments. The
survey results show that the stakeholders rated feed.ai ’s functionality, on aver-
age, with 4.1/5 and its usability with 4.3/5. Overall the stakeholders found that
feed.ai presents meaningful information. The stakeholders agreed with 92% of
the automated filtering results indicating high accuracy. They further found re-
quirements intelligence beneficial for departments working with user feedback like
customer care, marketing, and technology innovation. As a result, feed.ai helped
stakeholders to reduce 70% of their time spent on analyzing user feedback, indi-
cating a high effectiveness of our approach. We describe the evaluation context,
setting, and its results for the five iterations in more detail in Chapter 10.
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11.2 Future Work

We introduce some ideas for future work concerning research directions and pro-
totype improvements.

Research directions. Requirements intelligence arose from requirements stake-
holder needs. Future work could research how stakeholders can combine tradi-
tional requirements engineering and requirements intelligence. We discussed how
stakeholders could use requirements intelligence in agile requirements engineering
activities but did not research if that integration is feasible nor if stakeholders
find that beneficial.

The chapters concerning the explicit and implicit user feedback activities uti-
lized crowdsourcing studies and machine learning approaches to achieve their
objectives. For each activity, we presented one empirically evaluated approach,
which future work can improve by, e.g., implementing new techniques. Yet, there
are several ways to achieve these activities. For that reason, we discussed alter-
native ways of realizing the activity found in related work.

For filtering explicit feedback, we can imagine automated approaches that cat-
egorize user feedback into other categories than problem reports and inquiries,
such as user experience and rating. Alternatively, future work could introduce
more fine-grained categories or topic analyses. Researchers could also investigate
the usefulness of feedback from other platforms like blogs, forums, and Reddit
comments.

For filtering implicit feedback, future research could consider other user context
scenarios meaningful for stakeholders. One example is to distinguish between
computing environment contexts like filtering feedback regarding software’s per-
formance under stress. Stakeholders could then analyze how the software per-
forms and how users experience it during sales or holidays.

The activity explicit feedback to requirements focuses on functional requirements
in user feedback and app stores. Future research could integrate automated ap-
proaches for non-functional requirements and matching the features addressed in
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user feedback with sources like issue trackers or requirements specification docu-
ments.

For the implicit feedback to requirements approach, future research could further
develop and integrate automated approaches for UI performance testing, which
would provide insights into non-functional requirements like usability. These
approaches could generate automated reports validating non-functional require-
ments.

Prototype improvements. The current state of the open-sourced prototype
does not include all the features we introduced. Future work can extend the
feed.ai by, for example, completing the implementation and including the pre-
viously reported examples for alternatives implementations we discussed in the
part Core Enablers for Requirements Intelligence.

We evaluated feed.ai with a major telecommunication company instead of an
app development company as we only had long-term access to stakeholders from
that domain. We applied requirements intelligence in that domain successfully.
Nonetheless, the consequence of that decision is that we could not evaluate all
facets of the requirements intelligence framework, i.e., the implicit user feedback
analyses. Future work should apply the requirements intelligence framework in a
company that can use the whole framework for a more complete evaluation.
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A.1 Complete Machine Learning Benchmarks
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Appendix B

Evaluation

B.1 First Prototype Iteration

Screenshots

Figure B.1: First iteration of the requirements intelligence prototype.
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Appendix B Evaluation

B.2 Second Prototype Iteration

Screenshots

Figure B.2: Second iteration: dashboard view.
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B.2 Second Prototype Iteration

Figure B.3: Second iteration: comparison view.
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Appendix B Evaluation

Figure B.4: Second iteration: tweet list view.
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B.2 Second Prototype Iteration

Figure B.5: Second iteration: human control mechanism.
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B.3 Third Prototype Iteration

Screenshots

Figure B.6: Third iteration: dashboard view.
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B.3 Third Prototype Iteration

Figure B.7: Third iteration: problem report focus view.

Figure B.8: Third iteration: inquiry focus view.
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B.4 Fourth Prototype Iteration

Screenshots

Figure B.9: Fourth iteration: access key view.
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B.4 Fourth Prototype Iteration

Figure B.10: Fourth iteration: dashboard view.
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Figure B.11: Fourth iteration: problem report focus view.
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B.5 Fifth Prototype Iteration

Figure B.12: Fourth iteration: feedback source configuration view.

B.5 Fifth Prototype Iteration

Screenshots

Figure B.13: Fifth iteration: access key view.
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Figure B.14: Fifth iteration: dashboard view.
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B.5 Fifth Prototype Iteration

Figure B.15: Fifth iteration: problem report focus view.
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Figure B.16: Fifth iteration: competitor comparison view.
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B.5 Fifth Prototype Iteration

Figure B.17: Fifth iteration: feedback source configuration view.
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