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Zusammenfassung

In dieser Arbeit zeige ich mithilfe dreier erfolgreicher deep-sequencing Studien die

Wichtigkeit von gründlichen bioinformatischen Analysen als letzten und damit auch

entscheidenden Schritt in die Forschungskette auf, was uns erlaubt, verschiedene

experimentelle Setups in einem Schritt durchzuführen. Um die wertvollsten Inform-

ationen zu extrahieren, welche oftmals versteckt sind und dadurch von üblichen

Analysepipelines nicht ermittelt werden können, muss man spezifische Algorithmen

entwickeln, die exakt auf eine wissenschaftliche Frage oder Datentyp zugeschnitten

sind. Rasch entwickelte "Deep sequencing" Technologien erhöhen sowohl die Präzi-

sion als auch die Tiefe der Datenbestände, die weltweit produziert werden. Die

enorme Quantität an biologischen Daten in der Forschung resultiert in der Not-

wendigkeit für kontinuierlich neue bioinformatische Werkzeuge und Algorithmen,

um diese Daten zu prozessieren.
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Abstract

Rapidly developing deep sequencing technologies constantly increase both, the pre-

cision and the depth, of the datasets produced worldwide. The enormous amount

of big biological data in research causes the need for continuous integration of novel

bioinformatics tools and algorithms to process it. In order to extract the most valu-

able information, which is frequently hidden, and therefore escapes from the com-

mon pipelines of analysis, the specific algorithms fitting a particular scientific ques-

tion and data-type, has to be integrated. In this thesis, using three successful deep

sequencing-based studies, I am showing the importance of in-depth bioinformatics

analysis as the last and frequently the crucial step in the research pipeline, which

allows to combine various experimental setups into one flow.
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Chapter 1

Introduction

1.1 Background and aim of the thesis

The central dogma of molecular biology describes the flow of genetic information

from DNA into protein as a two-step process of transcription and translation (Crick,

1958) having RNA as an intermediate between protein coding gene and its protein

product.

Nowadays, emergent technologies allow to access a regulation of the protein biosyn-

thesis at each of its steps. The wast majority of the technics, which are widely used

for this purposes, based on the sequencing technologies. Though the variability of

available deep sequencing technologies increased dramatically over the last decades

(Koboldt et al, 2013), each of them is applicable to the particular scientific problem.

As DNA itself is a first molecule involved in the protein biosynthesis, the earliest

sequencing attempts and approaches corresponded to DNA sequencing, which has

been defined as a process of determining the nucleic acid sequence, e.g. the order

of nucleotides in DNA. The technology started from Sanger in 1955, who completed

a sequence of one protein - insulin (Ryle et al, 1955), and developed throughout the

years into the powerful whole genome sequencing technologies, which are currently

used worldwide.

Serving as a messenger between DNA and the ribosomes where the protein synthe-

sis occurs, this type of RNA is called a messenger RNA (mRNA). The number of

14



copies of mRNA corresponding to each particular gene (also called “transcripts” as

a product of transcription) plays a key role in the protein biosynthesis. The total pull

of mRNA transcripts expressed in the cell compile a transcriptome, which can be

explored with through RNA sequencing (RNA-Seq).

Besides mRNA the other types of RNA are widely present in the cell. These RNA

transcripts do not encode the proteins and therefore called non-coding RNAs (ncR-

NAs). The most abundant and functionally important types include ribosomal RNAs

(rRNAs), transfer RNAs (tRNAs), long non-coding RNAs and short RNAs, such as

microRNAs, siRNAs, piRNAs, snRNAs, snoRNAs. First two types are crucial for

the cell, as they are directly involved in the protein synthesis, while some of the

others are functionally important as well, since they are involved in the regulation

of RNA stability, protein translation and other essential functions. Though, many

of the ncRNA species and their functions remain unexplored, variety of the deep

sequencing approaches has been established to study the particular type of ncRNAs

(Motameny et al, 2010).

Ribosome profiling (Ribo-Seq) is another sequencing technology widely used nowa-

days. It is accessing the translation of RNA into proteins, as second step of the pro-

tein biosynthesis. This method has been developed by Nicholas Ingolia and Jonathan

Weissman (Ingolia et al, 2009) to allow detection of the actively translated mRNAs

by reporting on the positions of all the active ribosomes in the cell at any given

particular moment.

Besides the primary purpose of giving a “global snapshot” on translating ribosomes,

the technology has enormous potential to reveal the hidden translational features,

such as precise localization of the Translation Start and Stop Sites (Lee et al, 2012),

discovering of the novel Open Reading Frames (ORFs) (Mackowiak et al, 2015), mea-

suring Translation efficiency (McGlincy and Ingolia, 2017), Translation initiation and

termination rates (Baggett, 2017), the speed of translating ribosomes (Del Campo et

al, 2015), evaluating specific responses to the changing growth conditions, comparing

the expression levels, revealing the Gene Onthology terms (GO-terms) or pass ways
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involved and affected by the treatment and much more. All of these potential appli-

cations enable researchers to deeply understand the mechanisms of translation itself

and the changes occurring in response to different factors, such as various types of

stress, antibiotics treatment or presence of mutations in particular genes. However, it

requires constant developing of the novel pipelines and algorithms for the processing

and analysis of the data.

Many other deep sequencing technologies exist and continuously develop, such as

CLIP-Seq (High-throughput sequencing of RNA isolated by crosslinking immuno-

precipitation) that identifies protein–RNA binding sites or RNA modification sites,

or MeRIP-seq - method for detection of post-transcriptional RNA modifications, or

Oxford Nanopore Sequencing Technology, which allows to sequence DNA or RNA

directly without additional equipment.

The advantages of each given sequencing technic can be multiplied by using a com-

bination of different sequencing approaches in order to provide a generic view on

the processes occurring in the cell. However, this is not a straightforward task, as it

requires a deep understanding of both fields - molecular biology and statistics inter-

connected through the programming environment. This led to the development of

the bioinformatics as a field, where researchers analyze the big data, which is coming

from the deep sequencing. The need of the specialists in bioinformatics is increasing

every year along with an amount of data produced.

One of the major goals for the bioinformatician as the last researcher in the deep

sequencing pipeline is to interconnect to variety of outputs from the different se-

quencing technics in order to extract the most valuable and accurate information

that meets the objectives of the study. Therefore, the bioinformatics pipeline can-

not be standardized even on the level of preprocessing the raw sequencing data and

moreover not in the downstream analysis.

This issue leads to the primary aim of this dissertation - to develop the specific

bioinformatics algorithms and pipelines for processing and analysis allowing to in-

terconnect various deep sequencing datasets and to reveal the hidden features for
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each of the studies as well as to show the importance of this step for the research

outcome.

1.2 Structure of the thesis

The current dissertation is organized in six chapters and is based on the three differ-

ent studies, all of which include NGS datasets. While the research questions differ,

the studies are interconnected by the data analysis part, which aims to address the

potentially hidden applications of various NGS technologies, particularly, RNA-seq

and Ribo-seq.

Chapter 2, directly following the Introduction Chapter, describes the common pipeline

of the NGS data analysis, provides an overview of the available bioinformatics tools

and methods, which can be used at any of the steps of the data processing, as well

as discusses the selection of each particular program for the current studies included

in this thesis.

Chapter 3 corresponds to the study of post-transcriptional RNA modification — m6A.

The work has been performed in the collaboration with Maximilian Anders who led

the experimental part of the study and successfully defended his Doctoral thesis

on this topic while I was responsible for the analysis of the multiple sequencing

datasets and their combination. The results have been published with a shared first

authorship.

Anders, M.*, Chelysheva, I.*, Goebel, I., Trenkner, T., Zhou, J., Mao, Y.,

Verzini, S., Qian, S-B., & Ignatova, Z. (2018). Dynamic m6A methylation

facilitates mRNA triaging to stress granules. Life Science Alliance, 1(4),

e201800113. DOI: 10.26508/lsa.201800113

My contribution included data curation, formal analysis, investigation, and writing -

original draft.
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Chapter 4 reports on the collaborative research project with a group from Univer-

sidade Nova de Lisboa, Oeiras, Portugal. This study was related to the bacterial

RNA chaperone Hfq, where the RNA-seq and Ribo-seq provided a new insight on

the function of the protein. The results have been published with my contribution

comprised of the data analysis, writing the computational part of the “Materials and

methods” section and overall editing of the manuscript.

Andrade, J. M., dos Santos, R. F., Chelysheva, I., Ignatova, Z., & Arraiano,

C. M. (2018). The RNA-binding protein Hfq is important for ribosome

biogenesis and affects translation fidelity. The EMBO Journal, e97631. DOI:

10.15252/embj.201797631

Chapter 5 is related to another collaborative study, which mainly involved the col-

laboration with Dr. Thomas Gorochowski, University of Bristol, Bristol, UK. In this

study, we were using Ribo-seq and RNA-seq data to quantify the translational pro-

cesses and translational burden induced by stable RNA pseudoknot construct. This

work has been recently published.

Gorochowski, T. E., Chelysheva, I., Eriksen, M., Nair, P., Pedersen, S., &

Ignatova, Z. (2019). Absolute quantification of translational regulation

and burden using combined sequencing approaches. Molecular Systems

Biology, 15(5), e8719. DOI: 10.15252/msb.20188719

I processed the sequencing datasets, contributed to the data analysis, writing, editing

of the manuscript, producing the figures, tables and organization of the data.

All of the figures and data used in the current thesis, which have been previously

published with me as a coauthor, fall under the copyright CC BY 2.0 or CC BY 4.0

(https://creativecommons.org/licenses/) allowing me to use the material in the dis-

sertation.

I, hereby confirm, that I have read and understood the creative commons licenses

mentioned above and therefore the thesis contains correct scientific attribution of the

included content.
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Each of the Chapters from 3 to 5 has its own substructure, which includes the back-

ground, materials and methods, results and conclusion sections. After exploring

the different aspects of translation, gene expression, approaches, prospects and lim-

itations of data analysis throughout the thesis, the overall conclusion is shaped in

Chapter 6.
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Chapter 2

Bioinformatics tools and methods

2.1 Overview of the sequencing approaches and library pre-

paration

The deep sequencing approaches, such as RNA-seq, Ribo-seq and others, used in

the current thesis, are based on the Illumina sequencing technology workflows. The

studies followed the standardised protocols, which are typically used in the field,

unless mentioned specifically in the Materials and Methods section of each chapter

from 3 to 5.

The laboratory part includes the preparation of the library, which will be further

sent for sequencing. For RNA-seq, the total RNA is serves as an input, in Ribo-

seq - ribosome-bound RNA first undergoes digestion. When the RNA is extracted,

it is important to enrich the poll of RNA of interest out of all the RNA species

present in the library, which is especially crucial for RNA-seq, where the total RNA

is used. Considering that the rRNA is the predominant form RNA in the cell (up

to 90%) in order to enrich the mRNAs instead, two main strategies are used: the

rRNA depletion and polyA selection. The extracted RNA is fragmented and reverse-

transcribed to cDNA, then the specific Illumina barcodes and adapters are ligated.

The last step of the library preparation is an amplification of the cDNA by PCR. The

resulting library is purified and sent for the sequencing.

Deep sequencing of the cDNA, in the case of RNA-seq, provides the sequences of all

the RNAs in the cell, e.g. transcriptome; in Ribo-seq - only those RNAs, which are
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bound by ribosomes during translation, e.g. translatome; if PAR-CLIP-seq is used,

only those RNA species, which interact with a particular RNA-binding protein, are

present in the library (Spitzer et al, 2014).

In the studies described in the current thesis, the libraries were sequenced on a

HiSeq2000 Illumina machine. The typical output of the sequencing is a raw data-

file containing millions of sequences, the amount reads is variable across the samples

and called sequencing depth, which depends on the multiple factors, including the

quality of input material, the concentration of RNA, the exact model of the sequen-

cing system, used in the study.

Generally, the length of the sequencing fragments obtained from the sequencing may

vary between 20 to 200 nucleotides depending on the protocol. In the current studies,

unless mentioned, all the sequencing reads obtained during the sequencing have a

read length corresponding to the size of the ribosome (~20-35 nucleotides). The lib-

raries were generated following the smallRNA-seq protocol, which has been selected

considering that the Ribo-seq served as a central method for the studies. Choosing

the same range of read lengths for all the other approaches made them comparable

and allowed to perform additional meta-analysis including various types of datasets

(for example, to evaluate the translation efficiency via comparing the reads from the

Ribo-seq to those from the corresponding RNA-seq sample).

The DNA in the genome has two strands, both of which encode different proteins.

For each gene, one DNA strand always serves as coding strand and contains the

genomic sequence of this gene, while another strand is “antisense” and is comple-

mentary to the “sense” strand. Knowing from which strand each sequencing frag-

ment in the library has been delivered is important for the correct identification of

its location in the genome (when aligning the reads as a part of the downstream ana-

lysis). Depending on the protocol, the sequencing can be either non-strand specific or

strand specific. In our studies, the strand-specific (or stranded) protocol was clearly

a method of choice, since it allowed to increase the precision of the alignment, which

is crucially important for the library containing the fragments of the short length.
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2.2 Pipeline - processing of the sequencing data

The raw samples obtained directly from the sequencing are stored in the cloud and

received via the link from the sequencing facility. This is a starting point for the

bioinformatic pipeline of processing and analysing the datasets. The current chapter

describes the major steps of processing the data prior to any sample- or study-specific

downstream analysis is performed.

2.2.1 Preprocessing

First, the raw sequencing samples are received in the FASTQ format, which is a text-

based format, storing the sequences and their corresponding quality (Phred) scores

for each base. It is a standard format for NGS data from Illumina sequencing, which

serves as input for the further analysis with a variety of available tools (Cock et al,

2010).

The reasonable initial step of the pipeline is a preprocessing the FASTQ files before

mapping the sequences to the genome, since it allows to obtain better mapping res-

ults - higher percentage of the aligned sequences and higher accuracy of the mapping

if the low-quality sequences are removed or trimmed.

Therefore, initial quality control (QC) is performed on the preprocessing step and is

based on the quality scores obtained from the FASTQ files, which are represented

as ASCII characters. In this thesis, the FASTQ Quality Trimmer as a part of Fastx-

toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) is used for this purpose. While

various tools and scripts are available to perform the QC, the selected method has

been developed explicitly to trim the short reads and is the most suitable for our type

of libraries. Besides the quality scores of each base within the sequence, which are

considered and the threshold for accepted quality can be specified.

Along with a QC, the sequencing adapters, which tail the reads from both ends (3’

and 5’) in order to fill the read-length required to run the sequencing at the machine
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(in our case - 50 bases), have to be trimmed from the reads prior to the mapping to

the reference genome. While multiple existing programs contain this function, one of

the most common tools - Cutadapt (Martin, 2011), which is developed exclusively for

trimming the adapters, has been used in this thesis. Cutadapt allows to specify and

cut the adapters from both sides of the sequences (3’ and 5’) at the same moment.

The minimal read length can be added into the algorithm in order to exclude the

reads, which appeared to be too short after the adapter trimming. The short read

length does not allow to precisely align these reads to the reference genome and

a single mismatch or sequencing error can lead to the miss-alignment. Therefore,

unnaturally short reads should be excluded from the downstream analysis (in our

case the threshold is set to < 20 nucleotides).

Home-made shell script (.sh), combining the quality filtering with Fastx-toolkit and

adapter cutting with Cutadapt into one preprocessing step, is applied to each se-

quencing FASTQ file.

The script generates another FASTQ file containing only the reads, which passed the

quality control and in parallel were cleaned up from the adapter content at the ends

of the sequence.

At the next step, the preprocessed FASTQ files are checked with the quality con-

trol tool - FASTQC. It generates a detailed report on each sequencing file, which is

saved as several independent text files along with an intuitive representation in html

format. FASTQC html report includes a general information regarding the sequen-

cing quality per base along the read length, sequencing depth, read length distri-

bution, percentage of remaining adapters in the sample and possible contamination

through the statistics of overrepresented and duplicated sequences. In the case of

several FASTQ files being processed in parallel, multiple reports can be afterwards

combined into one .html file using another quality control tool - multiQC (Ewels et

al, 2016).

If some of the issues with quality of the preprocessed file are revealed on this QC

step, the detailed investigation and repetition of the previous preprocessing steps are
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required. In the case if the problem of low-depth or low-quality library remains, the

sample should not be considered for the further processing and has to be excluded

from the study.

2.2.2 Read mapping or alignment

The high-quality preprocessed FASTQ samples serve as an input for the next pro-

cessing step - read mapping (also called alignment). The goal of alignment is to map

short sequencing reads contained in the FASTQ sample to a large reference genome

via identification of the correct genomic location for each of the reads.

Multiple bioinformatics tools are available for the alignment of the short reads ob-

tained from RNA-seq and Ribo-seq. Each of the well known mapping tools, such as

Bowtie, Bowtie2, BWA, SOAP2, has its own strengths and weaknesses revealed by

benchmarking (Hatem et al, 2011). However, the first one - Bowtie - being released in

2009 (Langmead, 2010), has the best throughput and still remains the most efficient

for the particularly short reads (25-50 nt) and, therefore, is widely used in respect-

ive studies and serves a basis for the multiple other aligning tools, namely TopHat,

Cufflinks and others.

In the current thesis Bowtie has been generally a method of choice for the alignment

of all the sequencing datasets (unless explicitly specified).

The reference genomes (in this work - Homo Sapience and E. coli) are downloaded

from the open source databases in a FASTA format, which is a text-based format for

representing the nucleotide sequences with sequence names included (for example,

the number of the chromosome) (http://zhanglab.ccmb.med.umich.edu/FASTA/).

Then the genomes are indexed with Bowtie, which builds the Burrows-Wheeler index

to keep its memory footprint small. Along with the genomes, the corresponding

rRNA sequences are downloaded and indexed.

The alignment typically includes 2 steps:
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1. mapping of the FASTQ sequencing file to the rRNA sequences in order to exclude

the left-over rRNA in the sample;

2. mapping of the unmapped reads to the reference genome.

Both of the steps can be included into one mapping command, while the alignment

options can be specified for each of the mapping steps separately. The typical setup

includes the amount of mismatches allowed per read (-v parameter) and the max-

imum number of the locations in the reference genome where the particular read

can be reliably mapped (-m parameter). Through the unique mapping allowing only

those reads, which have one best matching location in the genome, to be reported

(-m 1) is generelly preferable, under some specific conditions the parameter has to

be adjusted and changed accordingly.

The main output of the 2-step mapping is a standard SAM (Sequence Alignment/Map

format) file (Li et al, 2009). This TAB-delimited text format consists of a header sec-

tion (optional) and an alignment section, reporting on all the reads and their genomic

alignments. SAM includes the detailed information on each particular read, such as

a presence of alignment, the direction of alignment, the mapping positions within

the reference genome, quality of mapping and presence of mismatches.

Additionally, if specified and requested by user, the basic text files reporting on the

mapping statistics, can be produced by Bowtie. The mapping statistics provides an

information on the total number and percentage of the reads, which were success-

fully aligned to the genome, those reads which are aligned to rRNA and excluded as

well as those reads which remained unmapped or were aligned but suppressed based

on the mapping parameters. This overview allows to estimate the quality of the in-

put RNA library - whether rRNA has been globally depleted or majorly remained

in the sample, while a high percentage of the unmapped reads may indicate on the

contamination in the sample if the reference genome has been chosen correctly.

Important to note that the initial SAM output contains both types of reads - those,

which were aligned to the reference genome, along with those which remained un-

mapped. Special flags in the alignment section of SAM file reports whether the

particular read has been aligned.
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The next processing step aims to clean-up the alignment file to prepare it for the

downstream analysis, where the number and positions of the mapped reads can be

accessed and counted. A command-line tool - SAMtools (Li et al, 2009) - is used to

manipulate with SAM files.

SAMtools allows to filter only the reads, which were mapped to the reference, based

on the flag, thereby reducing the size of the alignment file and shortening the running

time for the further analysis. Then, the alignments within the SAM file are getting

sorted by the names of the reference sequences (for example, chromosomes) and the

starting positions of alignments within the reference genome. Finally, the a text-based

SAM file is converted to another alignment format - BAM file, which is basically a

compressed binary version of a SAM file that is used to represent aligned sequences.

The produced BAM file is serving as an input for the multiple tools for the visualisa-

tion and analysis of the data.

Another round of QC, including FASTQC and multiQC (See 2.2.1 for the details),

should be introduced on this step. Accessing the parameters, such as quality, read

length distribution, sequencing depth, is necessary to understand the quality of the

data, which remains after the mapping and will undergo the analysis. The overall

FASTQC output of the sample is expected to show the better trends for the BAM file

compared to the preprocessed FASTQ file.

2.2.3 Counting and normalisation of the reads

Once the reads in the sequencing file have been successfully mapped to the refer-

ence genome and the output has been converted to the BAM format, the reads in

the sample can be quantified. The first general quantification issue is to count the

number of reads, which are mapped to each of the genes or features within the gen-

ome. Therefore, in addition to the alignment file, this step requires an annotation file,

containing the information on all the features of interest within the reference genome

including the starting and ending positions for each feature, coding strand, etc.
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Multiple annotation formats exist in the field; among the most common ones - BED

and GTF formats, both of them have been used in the current thesis. BED is the most

simple and easy-to-follow annotation format, which represents a tab-delimited text

file that defines a feature track (Kent et al, 2002). GTF format has a more complex

structure allowing to define sub-features within the existing ones. This is especially

relevant for the Human genome, where each gene is represented by multiple exons

having the introns in the between, which are usually should not be considered for

the counting of the reads.

Many tools manipulating with sequencing files have the function for this purpose.

BEDtools (Quinlan, 2010) is a one of the common toolsets for the genomics analysis,

which includes CoverageBed (or bedtools coverage). This command computes the

coverage of the sequencing alignments in BAM file across the annotated features in

the reference genome. As the tool is named after the BED format, the required an-

notation file is supposed to be formatted as BED file. The output of the CoverageBed

depends on the selected options and parameters and may contain one count per fea-

ture or one count for each position within the feature (when -d option is added).

The second option is particularly useful when the distribution of the reads along the

gene is questionable. Also, the strand-specificity of the reads - relevant for all of our

datasets - will be considered only when -s option is added.

Another widely used counting tool is a part of Htseq - Python-based framework for

the high-throughput sequencing data (Anders, 2015). Htseq count is a command-line

function allowing to count the reads, which are mapped to each gene or feature of

interest. The input requires an annotation file in GTF format along with an align-

ment file in BAM format. The output is a simple tab-delimited file containing the

features and their corresponding read-counts. Multiple additional parameters can be

included in order to provide more information about the input files, especially the

sequencing alignment file. Different ways of counting the reads, which got mapped

to the exon-intron junctions, can be added as well.

Both of the described tools have been used in the current thesis: coverageBed was

generally more suitable option for E.coli genome, because of its small size, simple
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structure and high percentage of overlapping genes; Htseq count has been a method

of choice for counting the reads in the Human sequencing samples, because of the

complexity and vast size of the human genome.

Once the output file containing the raw read counts for each feature is created, the

following step is the normalisation of the obtained counts. Since the downstream

analysis involves multiple sequencing samples, the main purpose of the normalisa-

tion is to make them comparable. Normalised expression units are necessary to

remove technical biases in sequenced data such as sequencing depth.

The first type of normalisation is RPM (Reads per million mapped reads), which is

calculated as follows, for each gene:

RPM o f a gene =
(Number o f reads mapped to a gene) ⇤ 106

Total number o f mapped reads in a sample
(2.1)

However, this normalisation does not take into account the length of the transcripts,

which has to be considered in order to compare the abundance of different transcripts

within the sample. RPKM stands for Reads Per Kilobase of transcript per Million

mapped reads and is calculated using the formula:

RPKM o f a gene =
(Number o f reads mapped to a gene) ⇤ 103 ⇤ 106

(Total number o f mapped reads in a sample) ⇤ (gene length in bp)
(2.2)

In the current thesis, the second way of normalisation is preferably used, unless

specified.

2.2.4 Downstream analysis

The correct selection of the most suitable tools for the each processing step, dis-

cussed in this chapter, is important for obtaining the reliable information from each
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particular sequencing dataset. However, the crucial and most challenging part is the

downstream analysis, where the ability to reveal the hidden features and mechan-

isms is highly dependent on the methods and approaches, which are applied to the

data. This is the demanding part of the current thesis and the major task for the

bioinformatician in general. Therefore, the exact tools and steps used for the further

processing of the data are discussed in details in the correspondent chapters for each

of the studies (See Materials and Methods sections, Chapter 3-5).
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Chapter 3

Dynamic methylation facilitates

mRNA triaging to stress granules

3.1 Background

Nucleotide modifications are one of the most evolutionarily conserved properties of

RNAs, which occur to a newly transcribed RNA transcript and therefore also called

post-transcriptional modifications. The structural diversity of modified nucleotides

allow them to play a key role in regulation of gene expression and cellular functions.

RNA modifications are present in all three phylogenetic domains (Archaea, Bacte-

ria, and Eukaryotes) and widely spread across all the RNA species, such as mRNAs,

tRNAs, rRNAs and non-coding RNAs (including lncRNAs, miRNAs, snRNAs, snoR-

NAs). To date, 172 various modification types have been documented; they are listed

in RNA Modification Database - Modomics database (http://modomics.genesilico.pl).

tRNAs are the most heavily modified RNA specie with an average of 13 different

modifications per molecule (Pan, 2018) meaning that every 4th base is modified.

Post-transcriptional modifications occur on mRNAs prior to their translation into the

protein products, they are present in varying levels in most of the protein coding

genes being one of the key regulatory mechanisms of RNA functions, where each

modification type plays a different role.

Among the variety of known modifications found in along the mRNA molecule

(Fig.3.1, from Fig.1 in Zaccara et al, 2019). N6-methyladenosine (m6A) is the most
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Figure 3.1: Overview of nucleotide modifications on mRNA (from Fig.1 in Zaccara
et al., 2019)

abundant post-transcriptional modification in mammalian mRNA, which affects fun-

damental aspects of RNA metabolism. The methylation of adenosine is reversible,

and its discovery revealed a new branch of post-transcriptional gene regulation.

The methylation is a complex reversible process, which involves three major groups

of the proteins: methylating enzymes - “writers” - install methylation, demethylases

- “erasers” - remove it, and binding proteins - “readers” - recognize the existing m6A

on the RNA and regulate the downstream molecular mechanisms (Fig.3.2, Fig.1 in Shi

et al, 2019). Knowledge about the proteins involved in the m6A life-cycle at each step

is constantly expanding, the increasing resolution of the cutting-edge technologies,

such as NGS and mass spectrometry, allow discovering the new effectors of m6A.

Up to date, the most recent an complete scheme of m6A cycle and the proteins in-

volved in it, has been published in September this year (Shi et al, 2019). The ef-

fectors include two types of “writer” proteins: complex of METTL3 and METTL14

with additional adaptor proteins WTAP, VIRMA, ZC3H13, HAKAI (Fig.3.2, top-left

- (1)); and independent “writer” protein - METTL16 (Fig.3.2, top-left - (2)). Three

classes of “readers” differently recognize and bind m6A: YTH-domain containing

proteins (YTHDF1-3, YTHDC1-2) directly recognize methylation by YTH-domain

(Fig.3.2, right - (1)); HNRNPC/G and HNRNPA2B1 can bind the methylated RNA

in presence of the local structure (Fig.3.2, right - (2)); other common RNA-binding

proteins have a potential to bind m6A, but the exact mechanism of this binding re-

mains unexplored (Fig.3.2, right - (3)). Two “erasers” - FTO and ALKBH5 (Fig.3.2,

bottom-left - (1) and (2)) - make the methylation process reversible and demethylate

the RNA.

Methylation had been shown to affect the stability of RNA (Wang et al, 2014), to
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Figure 3.2: m6A Effectors: Writers, Erasers, and Readers (Fig.1 in Shi et al, 2019)

play a crucial role in translation activity and efficiency (Wang et al, 2015), and to

be involved in other biological processes such as microRNA biogenesis and splicing.

Importantly, the exact function of each particular methylation site is dependent of its

localization along the mRNA transcript. In particular, m6A residues located within

the 5’UTR region initiate translation of mRNAs in a cap-independent manner (Meyer

et al, 2015), which is a crucial mechanism of translation under the stress conditions,

such as heat shock (Meyer et al, 2015; Wang et al, 2015; Zhou et al, 2015). From

the other side, the methylation sites localized in 3’ UTR are involved in the stability

of mRNA (Wang et al, 2014). Considering the variety of the functions of methyla-

tion, the distribution of m6A-modified residues along mRNAs becomes one of the

fundamental areas of investigation.

Novel sequencing approaches have been developed in order to study the m6A and

its functions, to access the methylation patterns and particular methylation sites. The

map of the methylation sites across the transcriptome is referred as epitranscriptome.

For instance, MeRIP-Seq, which maps m6A-methylated RNA, allows the researchers
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to successfully identify the location of the adenosines, which were methylated (Meyer

et al, 2012). In this approach, m6A-specific antibodies are used to immunoprecipitate

~100 nt-long RNA fragments, followed by NGS sequencing of the those fragments.

Being a widely used method to access the methylation patterns, it is also called m6A-

seq. This sequencing technic has been used in the current study as well. This method

generates m6A peaks, but does not identify the exact position of the methylation sites.

The other approach, which maps m6A locations with a single-nucleotide resolution

and precisely identifies their positions, is a miCLIP-seq, where anti-m6A antibodies

are crosslinked to mRNA sequences (Grozhik et al, 2017).

The first methylation profiles from mouse brain cells and human cells (HEK293T)

were published in 2012 and assessed using MeRIP-Seq technology. Under the normal

conditions, the enrichment of methylation has been detected around the STOP-codon

region and the following up 3’ UTR region. Even so, newly developed miCLIP-seq

allowed to increase the resolution of m6A mapping along the transcriptome, the first

findings remain relevant and consistent with the most recent research.

The utilization of sequencing technologies allowed to specify the exact sequence mo-

tif, which is associated with m6A. First, RRACH (Wang & Zhao, 2016) and later

DRACH motif (Zhang et al, 2019) has been discovered. The current studies suggest

that conserved DRACH motif, where D = A/G/U; R = A/G; and H = U/A/C, is

strongly referred to the occurrence of methylation.

While some functions of methylation have been well annotated, the effect of the

stress conditions on the methylation patterns as well as the involvement of the m6A

in the stress response remain majorly unexplored. While several studies have been

conducted on the involvement of m6A in the heat stress response (Zhou et al, 2015),

the role of methylation in oxidative stress has not been yet reported.

The stress causes global reprogramming of the cell activity, shuts down the transla-

tion and leads to the formation of the stress granules (SGs). SGs are dense cytoplas-

mic aggregations that contain RNA-binding proteins, translation initiation factors,
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large and small ribosomal subunit protein components, and mRNAs stalled in trans-

lation initiation. As the SGs are formed under the stress, they suppose to protect mR-

NAs from harmful conditions or serve as a decision point for untranslated mRNAs,

from where those can under-go degradation or re-initiation of translation. However,

not all of the mRNAs are sorted into the SGs, few of them remain translated under

the stress. The mechanism behind this specificity is currently unknown.

In this study we addressed the following questions:

From one side, what serves as a sorting mechanism for the mRNAs to be recruited

into the SGs? From the other side, whether the stress alters the methylation pattern

and which mechanism states behind the potential changes if they occur. Overall, if

these two features are interconnected then how exactly this is happening.

3.2 Materials and methods

3.2.1 Deep-sequencing: PAR-CLIP, RNA-Seq, Ribo-Seq, m6A-Seq

As the main focus of this dissertation is a computational part of the project, therefore

some experimental details omitted. Step-by-step sequencing protocols can be found

in the Materials and methods section of the original publication (Anders et al, 2018).

In brief, HEK293 cells expressing N-terminally FLAG-tagged TIA1 under doxycycline-

dependent promoter (Damgaard & Lykke-Andersen, 2011) were used in the study.

For the simplicity these cells are called HEK-TIA1. Oxidative stress was elicited by

adding sodium arsenite (AS) for 30 minutes at 37°C. Sequencing libraries were gen-

erated under one of the following conditions: unstressed HEK-TIA1 cells or stressed

with 200 or 500 µM AS. RNA-seq, Ribo-seq and PAR-CLIP libraries were obtained

from both, control and 200 µM AS; while following the exposure to 500 µM AS stress

no translation occurred after 30 minutes, therefore no Ribo-seq samples were gener-

ated under the harsh stress condition.
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Figure 3.3: Overview of the experimental setup. Numbers denote mRNAs identified
in each deep sequencing approach.

m6A-Seq libraries were generated under the control condition and after the exposure

to 500 µM AS for 30 minutes. Two samples have been produced for each experiment:

an m6A-Seq sample, where m6A-specific antibodies were used to immunoprecipitate

RNA, and a corresponding input RNA-seq sample, created with a standard RNA-seq

protocol (Fig.3.3).

m
6
A-Seq experiments and initial preprocessing of m

6
A-Seq datasets have been performed by

Jun Zhou and Yuanhui Mao, Division of Nutritional Science, Cornell University, Ithaca, NY,

USA.

All the libraries in this study were sequenced on a HiSeq2000 (Illumina) machine.

3.2.2 Preprocessing and mapping of sequencing data

Sequencing reads from RNA-seq, Ribo-seq and PAR-CLIP experiments were prepro-

cessed following a common pipeline. First, sequenced reads were quality trimmed

using fastx-toolkit version 0.0.13.2 (quality threshold: 20), sequencing adapters were

cut using cutadapt version 1.8.3 (minimal overlap: 1 nt), and processed reads were
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mapped to the human genome (version GRCh37, Ensembl) using Bowtie version 1.1.2

either uniquely or allowing multimapping with a maximum of two mismatches.

Parameter settings for unique mapping, used in most of the cases, have been set as

following -l 16 -n 1 -e 50 -m 1 –strata –best y. Parameter settings for multimapping,

used for processing of Ribo-seq data under stress, have been defined slightly differ-

ent: -l 16 -n 1 -e 50 -m 10 –strata –best y, where -m is referred to the number of

locations in the genome where particular read can be aligned with the same - highest

- probability. These settings were required to be applied to Ribo-seq samples under

the stress in order to receive a comparable coverage of the genome, since the trans-

lation was majorly shut down under thr stress compared to the control condition.

Reads aligning to rRNA and tRNA genes were excluded prior to the genome map-

ping, rRNA mapping has been done separately allowing no mismatches to only one

copy of the rRNA reference sequences.

Uniquely mapped RPF reads (Ribo-Seq), fragmented RNA reads (RNA-Seq) and

reads originated from PAR-CLIP were used to generate gene read counts with HT-

Seq 0.11.1 (htseq-count) or bedtools 2.28.0 (coverageBed function with -s parameter,

strand dependent counting of the reads). The annotation file containing the longest

transcripts corresponding to each protein coding gene has been created based on the

Ensembl GRCh37 annotation. Ambiguous reads were excluded by counting only the

number of reads whose middle nucleotide (or the 5’ nt of the middle position for

even read length) fell within the annotated feature. The reads were normalized as

reads per kilobase per million mapped reads (RPKM units) and the total mapped

reads per million (RPM units) (Mortazavi et al, 2008).

All sequencing experiments were performed in two biological replicates. Based on

the high correlation between the replicates for RNA-seq and Ribo-seq data (R2 > 0.9

for all datasets, Person correlation coefficient), reads from biological replicates were

merged together into metagene sets following the standard algorithm as described

earlier (Ingolia et al, 2009).

m6A-Seq reads and the corresponding input RNA-Seq reads (20–40 nt), which served

as a basal signal, were aligned to NCBI RefSeq mRNA sequences and UCSC genome
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Figure 3.4: Correlation between the total mRNA detected in the RNA-Seq and trans-
lated genes generating RPFs in the ribosome profiling under control growth. R²=

0.838, Pearson correlation coefficient.

sequences (version GRCh37, Ensembl) using Tophat version 2.1.1 (using the parame-

ters –bowtie 1 –no-novel-juncs -G) as described previously (Trapnell et al, 2009).

3.2.3 Processing pipeline and downstream statistical analysis

Under control condition most of the transcribed mRNAs (detected in RNA-seq) were

also translated (detected in Ribo-seq) (Fig.3.4).

The ribosomal density (RD) for each transcript (also known as “translation efficiency”

- TE), was determined by the density of ribosomes from Ribo-seq per mRNA from

RNA-seq dataset (Ingolia et al, 2009) and computed as follows:

RD =
RPF[RPM]

mRNA[RPM]
(3.1)

RD values of all protein coding genes were normalized to the RD of mitochondrial

genes as described (Iwasaki et al, 2016). Expression of the mitochondrially encoded

genes remained unchanged under stress and therefore their RD values served as

baseline for normalization of RD values of the nuclearly encoded genes (Fig.3.5).

Cumulative (also known as “metagene”) profiles of the read density for RPFs and

mRNA have been computed following the published algorithm (Gerashchenko et al,

2012). High ribosome occupancy at the start of the CDS under the oxidative stress
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Figure 3.5: Log-changes of the RD values between control cells and following 200
µM AS. Inset: RD values of the mitochondrially encoded genes, which remained

unaffected by stress and used for the normalization.

indicated that the ribosomes accumulate towards the 5’ end of the CDS instead of

being uniformly distributed over the CDS length (Fig.3.6). Therefore, not all RPFs

obtained in the sample reported on translation under stress. To distinguish between

genuinely translated transcripts and those whose translation was inhibited by stress,

the following ratio has been introduced:

Rt =
Total RPF reads o f initial stalled peak ( f irst 100 nt) [RPKM]

Total RPF reads over the f ull gene length [RPKM]
(3.2)

A threshold of Rt =0.5 has been defined, which allowed grouping all the transcripts

obtained from Ribo-seq sample under 200 µM AS. 108 mRNAs exhibited Rt0.5 and

were considered as actively translated, whereas for the others 2 104 genes detected

in the sample, the majority of the RPFs were stalled at initiation, which led to Rt>0.5.

Those transcripts were not translated under stress, so they were designated as triaged

for SGs.
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Figure 3.6: Cumulative (“metagene”) profile of the read density as a function of
position for RPFs (from Ribo-Seq) and mRNAs (from RNA-Seq) under 200 µM AS
stress. The expressed genes were individually normalized, aligned at their start

codons and averaged independently of their expression levels.

In PAR-CLIP experiments, SG clients in cells stressed with 200 µM AS or 500 µM

AS were selected based on a threshold of log2 = 2 enrichment over the control (un-

stressed) growth condition. The variability between biological replicates in PAR-CLIP

experiments (Pearson correlation coefficient) from cells exposed to mild or harsh

stress were R2 = 0.695 and R2=0.735, respectively. The replicates were merged to-

gether for the downstream analysis. Furthermore, the correlation between the se-

lected SG clients at both stress conditions was very high (Fig.3.7).

Taking into account Ribo-seq dataset at 200 µM AS, where 2 104 transcripts have

been considered as triaged for SG, the list of selected SG clients under mild stress

(200 µM AS) included both types of genes - detected in PAR-CLIP and triaged in

corresponding Ribo-Seq (Fig.3.8). Most of the transcripts identified in Ribo-Seq at

200 µM AS with halted translation and designated as triaged for SG were also found

among the SG clients from PAR-CLIP at harsh stress (500 µM AS). This compari-

son was relevant, as no Ribo-seq experiment could be performed under 500 µM AS
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Figure 3.7: Correlation of the SG transcripts detected under 200 and 500 µM AS stress
in the PAR-CLIP experiments (two merged biological replicates). R2 = 0.883, Pearson

correlation coefficient.

because of the absence of translation.

Thus, all selected transcripts (either enriched in PAR-CLIP datasets under the mild or

harsh stress or designated as triaged in Ribo-Seq under the mild stress) were merged

together into a metagene set of SG clients containing 6 020 transcripts in total. These

mRNAs found in SGs comprised a large range of expression in RNA-seq datasets,

which remained unchanged between the control condition and mild stress (Fig.3.9).

Gene function analysis (GO enrichment) among the mRNAs translated under stress

(108) was performed with the DAVID tool version 6.8.

Statistical analysis was mainly performed in R version 3.3.3 using RStudio environ-

ment (version 1.1.4) with a partial usage of the relevant Bioconductor

(https://www.bioconductor.org/) software packages.

3.2.4 Motif analysis

De novo search for DRACH motifs was performed using a command-line FIMO ver-

sion 5.0.5 (FIMO-MEME suite; http://meme-suite.org/doc/fimo.html), which allows

to scan a set of sequences for individual matches to the motif. The transcript groups

of interest and their corresponding sequences (e.g. 5’ UTRs, CDSs, 3’ UTRs) were

prepared with Ensembl Biomart. The threshold of the motif matches has been set at
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Figure 3.8: Venn diagram of the distribution of various transcript groups detected
under the mild (200 µM AS) stress. SG - mRNAs in SGs, detected in the PAR-CLIP;
degraded - mRNAs, identified from the RNA-Seq under stress degraded compared
to the control RNA-Seq; red circles - triaged and translated - two groups of mRNAs

with RPFs in the Ribo-Seq.

Figure 3.9: Identified SG clients spread large expression span. Total mRNAs – black,
mRNAs in SGs – blue, mRNAs generating RPFs under 200 µM AS – red.
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Figure 3.10: Distribution of the predicted DRACH motifs in different transcript seg-
ments of the SG clients and translated genes. Genes translated under the mild stress
(200 µM AS) contain more DRACH motifs in their 5´ UTRs compared with the 5´

UTRs of the SG clients, P = 1.4 × 10−3, Mann–Whitney test.

p-value < 0.001, only the coding strands of the given mRNAs have been considered.

For comparing the number of DRACH motifs in each transcript region, 5’ UTRs,

CDSs and 3’ UTRs were divided into equal bins of comparable length (10 equal seg-

ments each). The amount of motifs in each segment was averaged over the whole

set of genes in the selected group (Fig.3.10). Mann-Whitney test has been used for

comparison of two independent groups (variables) - subsets of population of total

mRNAs in the cell - translated genes vs. SG clients; the dependent variable was

represented by density of motifs in each of 10 segments along 5’ UTR (Fig.3.10).

A general search to discover novel motifs among the sequences of SG clients was per-

formed using a command-line MEME suite version 5.0.5. Any number of motifs per

sequence was allowed, the potential motif length till 10 nt has been considered. Typ-

ical motifs scoring for various RNA-binding proteins have been identified (Fig.3.11).
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Figure 3.11: The top-two abundant motifs among the SG clients found by MEME
motif search (rest was insignificant).

3.2.5 Identification of methylated sites

All full-length mapped reads were used to generate an m6A-Seq coverage profile for

individual protein coding genes. To compare metagene m6A profiles between control

and stress (500 µM AS) conditions, the raw coverage values were first internally

normalized by the mean coverage of each individual gene. The genes with maximal

coverage less than 15 reads were excluded from the further consideration. Next, the

corresponding RNA-Seq profiles for each sample were subtracted as a basal coverage

level from the normalized m6A-Seq profiles of the individual genes. This resulted in

generation of adjusted m6A-Seq profiles, where methylated regions of the transcripts

were detected as peaks in coverage from immunoprecipitated RNA relative to the

input RNA-Seq sample.

Since the m6A peaks in the m6A-Seq vary in length (with a median ~100 nt), in order

to increase the precision of the localization and exclude the potential false-positives,

the peaks were assigned to the predicted DRACH motifs. Peaks occurring in regions

covering at least one DRACH motif predicted by MEME (see above) were selected

for further analysis. If more than one DRACH motif was found within a given m6A

peak, in this case all of them have been considered as methylated.

Metagene profiles of m6A distribution used for the comparison between control ver-

sus stress condition (500 µM AS) were created following the similar strategy as de-

scribed above for the predicted DRACH motifs and were derived by averaging all
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Figure 3.12: Metagene profiles of distribution of m6A sites along different transcript
regions of SG mRNAs from control condition or under 500 µM AS (stress). P = 1.4 ×
10−3 for 5’ UTRs and P = 1.6 × 10−2 for 5’ vicinity of the CDSs; Mann–Whitney test

between stress vs. control.

adjusted m6A-Seq profiles of individually detected genes. Transcript regions were

binned for comparable lengths (10 segments within each region, such as 5’ UTR,

CDS, 3’ UTR). Next, the ratio between m6A-modified DRACH motifs detected in a

given m6A-Seq sample and total number of predicted DRACH motifs has been de-

termined for each transcript segment. Finally, all these ratios in each segment were

averaged for the given set of genes within the sample (Fig.3.12). Mann-Whitney test

has been used for comparison of two independent groups (variables) - subsets of

population of total mRNAs in the cell - genes detected under the control vs. genes

detected under the stress; the dependent variable was represented by density of mo-

tifs in each of 10 segments along 5’ UTR or in each of the first 3 segments along CDSs

- 5’ vicinity of the CDSs (Fig.3.12).

Box-plots of methylated sites represent the similar ratios with the difference that

the length was not taken into account and the whole transcripts were considered

(Fig.3.21 - left; Fig.3.22, Fig.3.25).
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Figure 3.13: Venn diagram of m6A peaks identified in HEK-TIA1 (HEK) cells in this
study compared to those in U2OS-G3BP1 (U2OS) cells from the previously published

study (quote), both at permissive control growth.

3.2.6 Connection with previous studies using publicly available data

For the comparison of methylation profiles between the different cell lines, m6A

peaks in HEK-TIA1 from this study have been compared to those of U2OS-cells from

a previously published m6A-Seq dataset (Xiang et al, 2017) (Fig.3.13). The compar-

ison has been performed on the transcript level and on the level of single methy-

lation sites, which have been detected. The m6A-Seq data for U2OS cells has been

downloaded from GEO database (https://www.ncbi.nlm.nih.gov/geo/), accession

number GSE92867.

SG clients identified in this study using combined sequencing approaches have been

compared to the mRNA clients of the each of three m6A readers (YTHDF1, YTHDF2

and YTHDF3) previously identified by PAR-CLIP (Wang et al, 2015) (Fig.3.14 and

Fig. 3.15). The PAR-CLIP data has been downloaded from GEO database (ht-

tps://www.ncbi.nlm.nih.gov/geo/), accession number GSE63591. The lists of the

target genes have been taken from Supplementary table 1 of the manuscript.

3.2.7 Data access

As part of the publishing process, deep-sequencing data from RNA-Seq, Ribo-Seq,

PAR-CLIP and m6A-Seq experiments were deposited in the BioSample database

(https://www.ncbi.nim.nih.gov/biosample/) under accession number SRP121376.
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Figure 3.14: Venn diagrams of mRNA clients of YTHDF1 (top) and YTHDF2 (bottom)
identified by PAR-CLIP in Wang et al (2015) compared with the SG transcripts iden-
tified in this study. P = 0.006 (YTHDF1), P = 3.9 × 10−4 (YTHDF2), hypergeometric

test.

Figure 3.15: Venn diagram of the common clients between the YTHDF3 PAR-CLIP
target genes (4 227) and total SG clients (6 020 mRNAs) - left; and the methylated
SG clients detected with in m6A-Seq (3 294 mRNAs) - right. P = 1.07 × 10−155 (for

PAR-CLIP, left) and P = 3.78 × 10−214 (for m6A-Seq, right), hypergeometric test.
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3.3 Results

3.3.1 Additional methylation in mRNAs under oxidative stress

In order to access the dynamics of methylation under stress, we used HEK-TIA1

(Damgaard & Lykke-Andersen, 2011) cell line, which expresses SG marker protein

TIA1. Being FLAG-tagged, this protein allows immunofluorescent detection of SGs.

Arsenite (AS) has been used to induce the mild (200 µM AS) or harsh (500 µM

AS) oxidative stress in cells. SGs were formed in a dose-dependent manner, which

has been detected by Maximilian Anders via fluorescent microscopy (Fig S1A in

the publication). Further, using m6A-antibodies to highlight the methylation, m6A-

modified RNAs have been detected co-localized with SGs under mild and harsh

oxidative stress as well as under the heat stress, which has been also tested (Fig. 1A

in the publication).

RNA-Seq did not reveal any global changes in the total mRNA levels even under the

maximal stress dose (500 µM AS) we used in the study (Fig.3.16). When compar-

ing with the total mRNAs detected under permissive growth (control), only a 6.5%

decrease in the total mRNAs under stress has been observed. The oxidative stress

has been exposed for 30 mins in our case and lacking of RNA degradation is con-

sistent with previous study, which reported that short AS does not trigger a global

transcriptional response while only a few specific mRNAs are affected (Andreev et

al, 2015).

We extracted a set of mRNAs, which were expressed under the control condition, but

were missing and therefore degraded under the harsh stress. Gene Ontology (GO)

enrichment analysis revealed the categories related to transcription (fold enrichment:

1.94; P = 7.88 × 10−8) being enriched (enrichment score: 7.67) in degraded gene-set.

The subcategories included “regulation of transcription” (fold enrichment: 2.01; P =

8.28 × 10−7), “transcription factor activity” (fold enrichment: 2.11; P = 3.12 × 10−5),

and “DNA binding” (fold enrichment: 1.64; P = 5.56 × 10−4).

47



Figure 3.16: Comparison between total mRNA from control and 500 µM AS stress
cells determined by RNA-Seq. Genes with significantly increased expression under

stress are designated. R2 = 0.978, Pearson correlation coefficient.

Besides a minor set of degraded mRNAs, the RNA expression of two other genes was

significantly up-regulated under stress: immediate early response protein 2 (IER2)

and FOS transcription factor. Both of these mRNAs are clearly associated with an

oxidative stress response, as they are usually up-regulated under the environmental

conditions, which increase intracellular levels of reactive oxygen species (Cekaite et

al, 2007) (Fig.3.16).

m6A has been shown to modulate mRNA stability (Wang et al, 2014; Mauer et al,

2017), therefore we used RNA-Seq to determine the effect of the silencing of “writer”

complex on the total mRNA abundance. Overall, comparing with the total mRNA

levels detected under control condition to those following the knockdown of “writer”

complex, which would lead to the absence of methylation, we did not detect signif-

icant changes in the global mRNA abundance (Fig.3.17), therefore the presence of

methylation itself does not affect the mRNA levels.

Then, we compared the level of the m6A under control and stress conditions. When

testing the total RNA, we observed an increased m6A signal under stress compared

to the permissive growth suggesting the methylation increasing under stress. It fol-

lowed a stress-dose-dependent manner, in analogy to the SG formation (dot-blot Fig

1D in the publication). However, as it has been shown previously, a large fraction

of non-coding RNAs (e.g. rRNAs) are also methylated (Pan, 2013) and therefore
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Figure 3.17: Comparison of total mRNA expression in control growth condition and
following a knockdown of the “writer” complex (-writers) determined by RNA-Seq.

R2 = 0.928, Pearson correlation coefficient.

can be recognized by the m6A antibodies. Thus, a large portion of the m6A signal

from the total RNA may correspond to the non-coding RNA species, which are more

abundant in the cell than mRNAs.

To extract the methylation pattern of mRNAs only, we performed m6A-sequencing

(Meyer et al, 2012; Zhou et al, 2015) under harsh oxidative stress (500 µM) and

permissive growth. Under control condition, 8 046 m6A peaks have been detected

in total at consensus DRACH motifs. Those peaks appeared within 4 488 unique

mRNAs. So, from 11 547 mRNAs identified in the RNA-Seq, 38.9% contained at least

one m6A peak. The number of m6A peaks increased significantly under oxidative

stress: from 8 046 under control condition to 9 142 under stress (P =2.8 × 10−6;

Fig.3.18, bottom diagram). The number of mRNAs, where m6A peaks have been

detected, increased as well (44.2% of 10 791 detected total mRNAs in the RNA-Seq, P

=2.8 × 10−6; Fig.3.18, top diagram). This findings support the previous observation of

the increased m6A levels under stress and suggest that mRNAs and not (only) other

RNA species exhibit stress-induced additional methylation.

Importantly, these additional m6A peaks appeared not only in mRNAs, which were

not modified under the control condition, but also on transcripts that were already

partly methylated under the control permissive growth (Fig.3.18).

All the sequencing experiments have been performed on HEK293 cells, but when
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Figure 3.18: Venn diagram of mRNAs with at least one m6A peak detected (top) and
venn diagram of all unique methylation sites identified in mRNAs (bottom) under

the control growth and following 500 µM AS stress.

comparing the response from the different human-derived cell lines, m6A modifi-

cations appeared largely overlapping between HEK293 and U2OS cells (Xiang et al,

2017) (Fig.3.19), which suggests a conserved methylation pattern.

3.3.2 Distinct m6A pattern of mRNAs in SGs

As a next step, we asked, whether the enrichment of m6A under stress was asso-

ciated with mRNAs, which were recruited into SGs. We used another sequencing

approach in addition to RNA-Seq, Ribo-Seq and m6A-Seq. We isolated the mRNAs

from SGs using photo-activatable ribonucleoside cross-linking and immunoprecipi-

tation approach (PAR-CLIP) (Hafner et al, 2010) (Fig.3.3). Briefly, SGs were stabilized

with 4sU-mediated cross-linking of mRNAs to RNA-binding proteins, and intact SGs

were isolated using previously described protocol (Khong et al, 2017).

To extract the set of mRNA clients segregated in the SGs in response to harsh AS

stress (500 µM), I defined a threshold of two-fold enrichment over PAR-CLIP control

(all sequencing reads were preliminary normalized to RPKM). 6 020 unique mRNAs

50



Figure 3.19: Venn diagram of mRNAs containing at least one m6A modification (top)
and unique m6A peaks detected in mRNAs (bottom) identified in HEK-TIA1 (HEK)

cells in this study compared with those in U2OS cells from Xiang et al (2017).

have been identified as associated with the SGs (Fig.3.20). The number of unique

mRNAs detected in SGs was much larger (6 020 of 10 791 total mRNAs from RNA-

Seq) than has been previously found in the SG cores (Khong et al, 2017), suggesting

that our approach allowed to capture the full-size SGs: not only the cores, but also

peripheries, which contained the other mRNAs.

Although we used specific anti-TIA1 antibodies in our PAR-CLIP experiments to

pull down the SGs, the motif search in our selected SG mRNA clients revealed the

Figure 3.20: Overlap of the SG clients from the PAR-CLIP and m6A-Seq experiments.
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Figure 3.21: Increased methylation of SG mRNAs under oxidative stress. Left - Box-
plot of m6A sites detected in SG transcripts of untreated condition (control) or under
the stress (500 µM AS) and presented as a ratio of the total m6A sites - predicted
DRACH motifs designated as A in the ratio m6A/A. P = 5.1 × 10−4 control vs. stress,
Mann–Whitney test. Right - Average number of m6A-modified DRACH motifs de-
tected in the SG mRNAs under stress compared with their methylation level under
control growth. P = 1.49 × 10−5 control vs. stress, Mann–Whitney test. The average

number of all predicted DRACH motifs per mRNA is included for comparison.

typical RNA-binding motifs, but not only the TIA1-binding motifs (Fig.3.10). This

suggests that through the approach we used - unspecific 4sU-mediated cross-linking

- we captured diverse mRNAs binding to different RNA-binding proteins.

Cross-comparing the mRNA clients in SGs extracted from PAR-CLIP with a set of

mRNAs with detected methylation sites from m6A-Seq under stress, we have found

that 54.7% of mRNAs in SGs were methylated (Fig.3.20). Those mRNAs had signifi-

cantly higher proportion of m6A peaks (Fig.3.21 - left) and higher number of methy-

lation sites per transcript (Fig.3.21 - right), both compared to the control condition.

Mann-Whitney test has been used for comparison of two independent groups (vari-

ables) - subsets of population of all SG-clients - SG-clients detected under the control

vs. SG-clients detected under the stress; the dependent variable was represented by

m6A/A ratio for each gene within the sets (Fig.3.21 - left) or by number of detected

m6A sites for each gene within the sets (Fig.3.22 - left).

Importantly, that even under the stress condition, when more methylation sites have
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Figure 3.22: Box-plot of m6A sites detected across all mRNAs of untreated condition
(control) or under the stress (500 µM AS) and presented as a ratio of the total m6A
sites - predicted DRACH motifs designated as A in the ratio m6A/A. P =2.8 × 10−6

control vs. stress, Mann–Whitney test.

been detected, not all of the predicted m6A sites (falling into consensus motif -

DRACH), were methylated (Fig.3.21 - right).

Moreover, the stress-induced m6A peaks, detected in mRNAs associated with SGs

(Fig.3.21 - left), displayed 96% of all mRNAs, which m6A signals increased in re-

sponse to stress (Fig.3.22). This observation suggests that most m6A-modified mR-

NAs were sorted into SGs. Mann-Whitney test has been used for comparison of two

independent groups (variables) - subsets of population of total mRNAs in the cell

- all mRNAs detected under the control vs. all mRNAs detected under the stress,

where the dependent variable was represented by m6A/A ratio for each gene within

the sets (Fig.3.22).

Next, we analyzed the distribution of m6A peaks along the transcripts and their local-

ization within the different segments, such as 3’ UTRs, CDSs and 5’ UTRs. The tran-

scripts corresponding to the set of mRNAs in SGs were binned to equal lengths for

comparison (Fig.3.12). On a global scale, we observed that following the stress expo-

sure, the number of m6A sites increased in the 5’ UTRs and 5’ vicinity of CDSs com-

pared to the distribution of methylation sites under the control condition (Fig.3.12).

53



Figure 3.23: An example of stress-induced increase in methylation in the SG mRNA
(TRIM65).

Same methylation trend remained on a single-gene level (Fig.3.23) Conversely, the

m6A pattern around the stop codons and the 3’ UTRs (Fig.3.12 and Fig.3.23), which

has been previously shown to control mRNA stability (Meyer et al, 2012; Wang et al,

2014), remained unaffected by stress. Our data suggests a region-specific methylation

pattern for the mRNAs, which were sorted into SGs under stress.

3.3.3 Translationally active mRNAs are methylated in the 5’UTRs under

control and stress conditions

As has been reported previously, m6A in the 5’ UTR is responsible for the cap-

independent translation of mRNAs under heat stress (Meyer et al, 2015; Wang et al,

2015; Zhou et al, 2015). The typical translation initiation in eukaryotes involves 5’ cap

structure, which is required for efficient binding of translation initiation factors and

this mode of translation is called cap-dependent. However, under the various stress

conditions cap-independent mode of translation is becoming prevalent (Sonenberg

& Hinnebusch, 2009).

We have also detected a greater m6A level in the 5’ UTR of mRNAs under the ox-

idative stress, thus, we conducted a separate analysis of the methylation pattern of
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transcripts remained translationally active under stress in order to reveal the differ-

ences with those sorted into SGs. Under harsh stress (500 µM AS) translation was

almost completely repressed. We observed it on the polysome profiling - there was

no apparent polysomal fraction, which was supposed to report on ribosomes un-

dergo translation (Fig. S1A of the original publication, performed by Maximillian

Anders).

Taking this observation into account, we selected a mild stress (200 µM) - the con-

dition when all three pools of mRNAs existed in the cytosol: actively translated

transcripts, mRNAs stalled at translation initiation (intermediate step - see below),

and mRNAs already sorted into SGs. To identify the mRNAs in each of these states

we combined various sequencing approaches - PAR-CLIP, RNA-Seq and Ribo-Seq

(Fig.3.3).

Based on the Ribo-seq data, under the mild stress (200 µM AS), some translation ac-

tivity still remained in the cell. However, a significant global reduction of translation

has been observed when comparing with control growth condition - median reduc-

tion of the ribosome density [RD] of log2 = 2.9 (See Materials and Methods - 3.2.3,

Fig.3.5). RNA-seq data perfectly correlated between the control and stress conditions

suggesting that transcription was unaffected (Fig.3.9 and Fig.3.16).

In Ribo-Seq under the mild stress, 2 212 unique mRNA transcripts generated se-

quencing reads - ribosome-protected fragments (RPFs); mRNAs with various ex-

pression levels were present in this gene-set (Fig.3.9). However, instead of being

distributed along the whole length of the transcripts, which would report on the

translation (Ingolia et al, 2009) (Fig.3.24 - top), under stress, most RPFs accumulated

at the beginning of the CDS (Fig.3.6 and Fig.3.24 - bottom). These mRNAs were

stalled at initiation and early elongation (~first 100 nt of CDS) and were not trans-

lated under stress despite being detected in Ribo-Seq. In analogy, similar observation

has been made in a previous study, but in relation to thermal stress (Liu et al, 2013).

To distinguish the mRNAs, genuinely translated under stress, and those stalled at

initiation, we introduced the translation ratio (Rt) allowing us to select mRNAs
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Figure 3.24: Representative example of a transcript (TUBB4B) genuinely translated
under stress and a transcript with stalled translation (PSMB1). The first nt of the

start codon is designated as 0.

with a uniform RPF distribution and define them as translated (See Matherial and

Methods - 3.2.3). Following the selection criteria, 108 mRNAs fallen into “trans-

lated” category (Fig.3.3 and Fig.3.8). Gene Ontology analysis of those genes revealed

the enriched terms (enrichment score 12.2) such as “translation” (fold enrichment

10.26; P =1.73×10−10), “nonsense-mediated mRNA decay” (fold enrichment 20.37; P

=1.43×10−13), and “rRNA processing” (fold enrichment 11.33; P =2.58 × 10−10).

Transcripts translated under stress were richer in DRACH motifs - predicted methy-

lation sites - in their 5’ UTRs compared to the set of transcripts sorted into SGs

(Fig.3.10). Most of these mRNAs were methylated under control condition (Fig.3.25),

which is in line with previous observations (Meyer et al, 2015; Zhou et al, 2015), then,

under stress condition, the m6A level in 5’ UTR of a set of translated mRNAs did not

change (Fig.3.25). Mann-Whitney test has been used for comparison of two indepen-

dent groups (variables) - subsets of population of genuinely translated transcripts

(108), which were detected under the control vs. those detected under the stress; the

dependent variable was represented by m6A/A ratio for each gene within the sets.
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Figure 3.25: Box-plot of m6A sites detected in the genuinely translated 108 transcripts
under the control growth or under stress, presented as a ratio of the total m6A sites
- predicted DRACH motifs designated as A in the ratio m6A/A. P = 0.97 control

versus stress, Mann–Whitney test.

The rest of the transcripts detected in Ribo-Seq under stress (2 104) showed the trans-

lation, which was stalled at initiation and/or early elongation, so the majority of the

RPFs raised from the beginning of CDS and their Rt > 0.5. Considering the PAR-CLIP

data, many of these mRNAs were already sequestered into SGs under the mild stress

(200 µM AS) or completely segregated in the SGs under harsh stress (500 µM AS;

Fig.3.7). 69.7% of these mRNAs showed an increase in m6A level in their 5’ termini

under harsh stress, which is consistent with our previous observations of enriched

methylation pattern sorting the mRNAs into SGs. However, the remaining 30.3%

did not have any m6A modifications, suggesting that their sequestering into SGs is

most likely driven by stalling at initiation/elongation itself, without the methylation

involved. Latter mechanism has been observed and described earlier (Sonenberg &

Hinnebusch, 2009; Kedersha et al, 2013).

Taking together, our data showed that mRNAs remained translationally active un-

der stress were highly methylated in their 5’ UTRs under the control condition al-
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ready, but stress did not induce additional modifications. Conversely, the majority

of mRNAs with stalled translation, which were triaged to SGs, represented a stress-

induced methylation in their 5’ UTRs and 5’ vicinity of the CDS, while few of those

were sorted into SGs via stalling of translation only.

3.3.4 Triaging of methylated mRNAs to SGs is mediated by “reader” -

YTHDF3

To unveil the mechanistic aspect of mRNA recruitment to SGs, we analyzed the

“reader” proteins, which selectively recognize m6A sites and mediate its’ functions.

YTH domain–containing proteins “reader” proteins are evolutionary conserved cell-

type–independent proteins (Edupuganti et al, 2017), which bind the m6A moiety

with their YTH domain (Dominissini et al, 2012). Thus, we first analyzed the local-

ization of three YTH domain–containing proteins (YTHDF1-3) under the harsh stress

(500 µM AS). YTHDF3 co-localized exclusively with the SGs, whereas YTHDF1 only

marginally co-localized with the SGs, and YTHDF2 remained in cytosol and did not

move to SGs (fluorescent microscopy by Max Anders - Fig 4A in the original publi-

cation). Similarly to the previous observations (Meyer et al, 2015; Zhou et al, 2015; Li

et al, 2017), under the control growth conditions, YTHDF1 and YTHDF2 have been

detected in cytosol and nucleus, whileYTHDF3 resided exclusively in the cytosol

(fluorescent microscopy by Maximilian Anders - Fig S4A in the original publication).

Then, we used a knockdown of the “writer” complex to prevent the occurrence of de

novo methylation, we detected that localization of the YTHDF3 in SGs was completely

abrogated while had no effect on YTHDF1 (fluorescent microscopy by Maximilian

Anders - Fig 4A in the original publication). Altogether, these observations proposed

a new role of YTHDF3 “reader” in recruiting m6A-modified mRNAs into SGs, while

the localization of the YTHDF1 in SGs was passive and has no mechanistic insight.

Importantly, performing the knockdown of the “writer” complex or YTHDF3 itself

led to the decreased amount of methylated mRNAs in SGs, while the amount of

non-methylated mRNAs was almost not affected (dot blot by Maximilian Anders -
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Fig 4C in the original publication) suggesting another recruiting mechanism taking

place in the case of absence of methylation in particular mRNA. This correlates with

the observation from the sequencing data, where we found 45.3% of all mRNAs in

SGs were not methylated (Fig.3.20).

Next, we analyzed our PAR-CLIP and m6A-Seq data in combination with previously

published PAR-CLIP data, where the specific mRNA clients for YTHDF1-3 have been

identified (Shi et al, 2017). We aimed to identify the specificity of YTHDF3 towards

mRNAs in SGS and to cross-compare those with the other two “readers”.

We detected a considerable overlap of YTHDF3 clients with mRNAs sequestered in

SG (Fig.3.15, left venn diagram - total PAR-CLIP and m6A-seq clients were included;

right venn diagram - only those mRNAs detected with m6A-seq were shown). While

the other readers, YTHDF1 and YTHDF2, had some clients in common with SG

clients, the overlap was much smaller compared to YTHDF3 (Fig.3.14).

Altogether, our results from experimental data and sequencing data analysis allowed

to conclude that YTHDF3 mediates the triaging of mRNAs, which were m6A modi-

fied in their 5’ termini, to SGs under oxidative stress.

3.4 Conclusions

In this study we revealed two modes of sequestering of mRNAs into SGs under

oxidative stress. The first, larger fraction of mRNAs (~55%), carry DRACH motifs in

the 5’ vicinity of the transcripts, allowing the stress to induce position-specific m6A

modifications, which then serve as a mechanism for triaging them into SGs (Fig.3.26).

The second fraction of mRNAs (~45%) are not methylated and most likely triaged

to the SGs via stress-induced stalling at initiation (Fig.3.26), which correlated with

previously suggested mechanisms (Sonenberg & Hinnebusch, 2009; Kedersha et al,

2013).

We found that m6A in the 5’ UTR and 5’ vicinity of CDSs are dynamic and induced by

oxidative stress, which is recognized by the YTHDF3 reader and allows it to relocate

those mRNAs to SGs (Fig.3.26).
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It has been shown previously that SGs are enriched with proteins, which contain

IDRs, allowing them to self-aggregate through hetero- and homotypic interactions

(Gilks et al, 2004; Lin et al, 2015; Jain et al, 2016). Structural predictions of the YTH-

domain “reader” proteins revealed Gln/Asn-rich IDRs in all three of them (YTHDF1-

3). Therefore, in our case, when YTHDF3 binds the stress-induced m6A on mRNAs,

it apparently relocates them to SGs through protein-protein interactions with its IDR

(Fig.3.26).

Considering the earlier studies (Decker & Parker, 2012; Kedersha et al, 2013) and

our observations of SGs formation in absence of methylation, the primary nucleation

and assembly of SGs happens in an m6A-independent manner involving the fraction

of translationally stalled mRNAs together with initiation factors. This is supported

by the detection of the fraction of non-methylated mRNAs in SGs (Fig.3.26). While

none-translating mRNAs stalled at initiation and/or early elongation form the core

of the SGs, we propose that the methylated mRNAs might be mostly located in the

more dynamic SGs peripheries (Fig 3.26), however, this feature is yet unexplored.

mRNAs remained genuinely translated under stress were enriched in methylation in

their 5’ UTRs, and their methylation pattern was stable under control and stress con-

ditions, in contract with SG-clients, which were additionally methylated under the

stress. It is still unknown what allows the YTHDF3 reader to discriminate those two

types of mRNAs while recruiting the second pool into SGs, however, the difference

in dynamics of methylation may play a crucial role in recognition. It is clear that

YTHDF3 relocate m6A-modified mRNA in SGs.

Overall, our study revealed an unexpected feature of YTHDF3 reader protein in se-

questering mRNAs into SGs under oxidative stress along with a specific methylation

pattern and stress-induced increase in m6A signal of the mRNAs, which are sorted

into SGs following the methylation-dependent mechanism (Fig.3.26).
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Figure 3.26: Proposed model of mRNA triaging into SGs: mRNAs are recruited into
SGs via stress-induced methylation in an YTHDF3-dependent manner (left side) or

via stress-induced translational stalling at initiation (right side).
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Chapter 4

RNA-chaperone Hfq is crucial for

ribosome biogenesis

4.1 Background

Ribosomes are ribonucleoprotein complexes, which are responsible for the protein

synthesis in the cell and where the translation of the mRNA into protein occurs,

therefore the ribosome are also called biosynthetic or translational machineries. The

ribosomes are composed of two major components: the small ribosomal subunit and

the large subunit. Each of the subunits contains of one or several ribosomal RNA

(rRNA) molecules and a variety of ribosomal proteins (r-proteins). The structure

and function of the ribosome during translation is relatively well described in the

literature (Mura, 2013), while the molecular events underlying the assembly of the

ribosomes is still under investigation. Ribosome biogenesis is a highly coordinated

cellular process of making ribosomes, which takes a major fraction of the cell’s energy

in bacteria and consists of multiple steps involving variety of factors.

As has been discussed in the previous chapters of this thesis, the rRNA is the most

abundant type of the RNA across all the domains of life, while the "sizes" of rRNA

molecules and the ribosomes (both measured in Svedberg units=S) are different be-

tween pro- and eukaryotes. Prokaryotes have 70S ribosomes while eukaryotic ribo-

somes are larger - 80S.
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Since the study described in this chapter involves Escherichia coli (also known as E.

coli) - gram-negative bacteria, more attention and details will be given to the structure

and biogenesis of the prokaryotic ribosome.

Prokaryotic ribosome is made up of a 30S small subunit, which contains 16S (1542 nt)

rRNA, and a large 50S subunit containing 23S (2904 nt) and 5S (120 nt) rRNA. Both

subunits include numerous r-proteins (54 in total described in E. coli, Chen, 2012)

and altogether compose a functional 70S ribosome (Shajani et al, 2011).

Ribosome biogenesis factors are proteins that transiently bind to assembling riboso-

mal particles and increase the efficiency of subunit maturation. Mutations affecting

many of these proteins cause dysfunctional ribosomes. Over 60 of such factors are

present in E.coli, they include GTPases, rRNA modification enzymes, helicases, and

other maturation factors, which assist rRNA folding and r-protein assembly pathway

(Davis & Williamson, 2017).

The bacterial Hfq protein is encoded by the hfq gene that has been initially discovered

as a host factor, essential for replication of the bacteriophage QB in E.coli and is called

accordingly. Up to date, it is clear that an Hfq is an abundant bacterial RNA-binding

protein from the Sm/ Lsm family of proteins (Wilusz & Wilusz, 2013) with multiple

important biological functions, which has homologues in all domains of life.

The RNA chaperone Hfq binds small noncoding RNAs (sRNAs) and facilitates inter-

actions their mRNA targets. By this, Hfq controls the expression of mRNAs and can

lead to their up- or down-regulation, which is a crucial mechanism for the forma-

tion of the response to the changing environmental conditions and various stresses

(Vogel & Luisi, 2011; Hajnsdorf & Boni, 2012; Updegrove et al, 2016). However, in

many bacterial species, Hfq is not an essential component of sRNA-dependent path-

way (Christiansen et al, 2006; Rochat et al, 2015), which suggests there are other yet

undefined functions of Hfq beyond its already described role in sRNA activity.

It has been shown already decades ago that Hfq interacts in vitro with the 16S rRNA

(de Haseth & Uhlenbeck, 1980), but the functional role of this interaction remained
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unknown. In E. coli, a cross-linking-based study identified an interaction of Hfq with

rRNA in vivo as well (Tree et al, 2014). Another study reported an interaction between

Hfq and S12 ribosomal protein (Strader et al, 2013). However, all of these interactions

have been described without any functional insights behind. The question remained:

whether this interactions are redundant or Hfq may be involved in rRNA processing

and formation of the ribosome?

In the current study, we have identified a novel role of Hfq in ribosome biogenesis

and proposed Hfq as a novel ribosome biogenesis factor, which is required for the

formation of the functional ribosomes in the cell.

4.2 Materials and methods

4.2.1 Deep-sequencing: RNA-seq and Ribo-seq

As in the previous chapter, the experimental details are described in brief, and the

detailed protocols, strain information and growth conditions can be found in the

Materials and methods section of the original publication (Andrade et al, 2018).

The study has been conducted in collaboration with the laboratory of Prof. Cecilia

M Arraiano (Universidade Nova de Lisboa), while all the sequencing-related exper-

iments and bioinformatics analysis have been performed in the laboratory of Prof.

Zoya Ignatova (Inst. of Biochemistry and Molecular Biology, University of Hamburg).

All E. coli strains used in this study were derived from strains MG1693 or MC1061

following up with the respective mutation for Hfq depletion mutant. Strains were

grown in LB medium and the cultures were collected at exponential (OD600 ~ 0.5) or

stationary phase (after ~ 14 h growth). Ribosome-protected fragments for Ribo-seq

and randomly fragmented mRNA for RNA-Seq were isolated following the previ-

ously described protocol (Del Campo et al, 2015) and sequenced on a HiSeq2000

(Illumina) machine.
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4.2.2 Preprocessing and mapping of sequencing data

Sequenced reads from Ribo-Seq and RNA-Seq experiments were processed with a

common pipeline. Preprocessing has been performed as described in previous chap-

ters: the reads were quality trimmed using fastx-toolkit (0.0.13.2; quality threshold:

20), and sequencing adapters were cut using cutadapt (1.8.3); minimal overlap: 1 nt).

Pre-processed samples were uniquely mapped to the E. coli genome (strain MG1655,

version U00096.3, downloaded from NCBI) using Bowtie (1.1.2) allowing a maximum

of two mismatches.

The number of raw reads was used to generate read counts for each gene, by counting

the number of reads whose middle nucleotide fell in the coding sequence (for even

read lengths the 5’ nucleotide from the middle position was used). CoverageBed

function from bedtools (version 2.28.0) has been run twice: to produce the gene-

wise read counts (-s parameter) as well as single-nucleotide resolution counts (-s -d

parameters), which have been used to create the profiles for each gene (Fig.4.1). E.coli

genome annotation files in BED format have been created and customized based on

the annotation version U00096.3. Gene read counts were normalized to RPKM (on

gene-level) or RPM (relevant for single nucleotide resolution). Additionally, total

RNA was spiked in with RNA standards (ERCC, Thermo, Germany): the mixture

containing the spike-ins in the known concentrations were added to the RNA-Seq

samples and used to set the detection threshold in each sequencing set. Similar

threshold has been applied to the corresponding Ribo-Seq samples.

4.2.3 Processing pipeline and downstream statistical analysis

In order to access the effect of Hfq depletion on translational efficiency, the density of

the ribosomes from Ribo-seq samples per mRNA from RNA-seq has been computed.

First, on a single-gene level, following formula 3 from the chapter 3 of this thesis,

which refers to the method described by Ingolia, 2009. Then, to compare the global

translational efficiency between the mutant and the wild-type strains, the density
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Figure 4.1: Representative examples of coverage profiles of down-regulated genes
affected by Hfq deletion (top) and genes, whose expression remained unchanged

upon Hfq deactivation (bottom).

plots of log10TE (also called RD) values have been created (Fig.4.2). The observed

reduction of the efficiency in Hfq-depleted strain was significant (Mann–Whitney

U-test or Wilcoxon rank-sum test, P = 0.0001996).

Considering the organisation E.coli genome, which contains a high number of over-

lapping genes, the initial filter was applied, so the overlapping genes were excluded

from this analysis. In these genes, the initiation of the downstream gene and ter-

mination of the upstream gene fall into the one genomic region, therefore the reads

in this region cannot be assigned to either gene, which would bias the RD analysis,

since each of the genes have different mRNA abundance.

The downstream analysis and visualisation have been performed in R (version 3.3.3)

using RStudio environment (version 1.1.4) partially with a help of the relevant pack-

ages from GitHub, R-cran and Bioconductor repositories.

Cumulative profiles of read density for RPFs have been computed as described (In-

golia et al, 2009); the overlapping genes have been excluded in order not to bias the

amount of the reads aligned the translation initiation region (Fig.4.3, 1 075 and 1 231

genes from wild-type and Hfq-depleted strains, respectively, were considered).
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Figure 4.2: Translation efficiency (Ribosomal density) of wild-type and Hfq-depleted
cells obtained by Ribo-Seq.

Figure 4.3: Cumulative (metagene) profile of the read density as a function of po-
sition for RPFs from wild-type and depletion mutant. The genes were individually

normalized, aligned at their start codons, and averaged.
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Differential gene expression analysis was based on fold-changes of RPKM values

between Ribo-seq datasets. The threshold of 2 has been used to define the set of

differently expressed genes, which have been assigned to the categories based on

gene ontology (GO) terms. GO enrichment including statistical analysis was per-

formed using the bioinformatics tools and gene lists (E.coli K12 genome) from Gene

Ontology Consortium (http://geneontology.org/).

4.2.4 Proving reproducibility using publicly available data

To prove the reproducibility of the obtained results, independent control RNA-Seq

and Ribo-Seq samples were taken from the previously published E. coli dataset

(Hwang & Buskirk, 2017). The strain and growing conditions were similar to those

used for the wild-type libraries in this study. Both RNA-seq and Ribo-seq datasets

from wild-type and Hfq depletion mutant were compared to the independent wild-

type samples, downloaded from GEO database, accession number GSE85540). The

mapping and normalization of the datasets were performed similar to those from

the current study (see 3.2.1-3.2.3). The reproducibility was very high, with R2 = 0.865

and R2 = 0.816 (Spearman correlation coefficient) for the RNA-Seq and Ribo-seq

datasets, respectively. Overall, published dataset, being a truly independent biologi-

cal replicate, correlated well with the wild-type from this study, which served as an

additional prove of the results and observations.

4.2.5 Data access

As a part of the publishing process, deep-sequencing data from RNA-seq and Ribo-

seq were deposited in the GEO database (https://www.ncbi.nlm.nih.gov/geo/) un-

der the accession number GSE100373.
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4.3 Results

While most of the laboratory experiments for this publication have been performed

by José Andrade and Ricardo dos Santos at Instituto de Tecnologia Química e Bi-

ológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal, the com-

bination of deep-sequencing approaches - RNA-Seq and Ribo-Seq and their down-

stream bioinformatics analysis conducted by me, were crucially important to shape

the conclusions and to provide a full picture of the overall outcome of the study. In

the current thesis, I have concentrated on that part of the results, which have been

raised from my own analysis on the deep-sequencing data, and its integration in the

overall picture. I am just briefly going through the results from the other experiments

instead of describing the whole story, which can be found in the publication itself.

4.3.1 Hfq is required for maturation of 16S rRNA

We observed that the correct processing and folding of the 16S rRNA is affected by

Hfq inactivation, resulting in the structural occlusion of the residues. Our observa-

tions indicate that Hfq interacts with 17S rRNA and this interaction is necessary for

the processing and folding of the mature 16S rRNA, and the absence of Hfq affects

the formation of the central pseudoknot of 16S rRNA. More details on the experi-

ments behind these conclusions can be found in the publication.

4.3.2 Inactivation of Hfq leads to defects in ribosome biogenesis

Our data clearly demonstrated that the inactivation of Hfq leads to a reduction in

the pool of 70S ribosomes, which is a result of defects in the 70S assembly, since

both of the sub-unites 30S and 50S were present in the cell in appropriate amounts

irrespective of the mutation in Hfq.

rRNA synthesis implies the synthesis of r-proteins (Scott et al, 2014). We performed

RNA-Seq and Ribo-Seq to assess the expression of the r-proteins at transcriptional

69



Figure 4.4: Translational down-regulation of r-proteins upon inactivation of Hfq.
Comparison of mRNA expression (top) from RNA-Seq and protein production (bot-
tom) from Ribo-Seq between the wild-type and Hfq-depleted strains used in this

study and another wild-type dataset (WT#2; Hwang & Buskirk, 2017).

and translational levels, respectively. Strikingly, we observed that all of the riboso-

mal proteins were significantly translationally down-regulated in the Hfq depletion

mutant compared to the wild-type, while the transcriptional level remained unaf-

fected by the depletion and the expression was similar in both strains (Fig.4.4). The

second wild-type control has been obtained from the previously published dataset

(See Materials and Methods, 4.2.4) and had similar trends when compared to the

Hfq depletion mutant. This observation supports the previous studies showing the

translational coupling of the expression of the r-proteins and rRNA synthesis (Jinks-

Robertson & Nomura, 1981).

Importantly, that even so we observe a translational response from r-proteins upon

mutation, the initiation of translation is not affected by the depletion of Hfq, since

the cumulative profiles of all expressed genes do not show any differences between

the wild-type and depletion mutant (Fig.4.3).

Altogether, our results showed that the depletion of Hfq leads to defect in ribosome

70



biogenesis, particularly reducing the pool of mature 70S ribosomes, which proposes

Hfq as an auxiliary factor regulating ribosome biogenesis.

4.3.3 Hfq copurifies with precursor 30S ribosomes

Hypothesising that Hfq would bind to immature 30S ribosomal subunits, since they

are enriched in 17S RNA, we used a knockout mutant of RbfA, which is a late assem-

bly factor that accumulates pre-30S particles (Jones & Inouye, 1996; Thurlow et al,

2016). Strikingly, Hfq was found to co-purify only with immature 30S isolated from

the rbfA depletion mutant but not with the mature 30S isolated from the wild-type

(Fig. 3B from the original publication). This result supports the idea of Hfq being a

novel ribosome assembly factor.

4.3.4 Translation efficiency is affected by Hfq depletion

Defects in ribosome biogenesis can lead to major deficiency in translation. First,

when assessed the translation of the depletion mutant by polysome profiling, we

observed a reduced polysome fraction compared to that one in the wild-type (Fig.4A

in the original publication). Then, we measured a global translation efficiency, which

was determined by the density of ribosomes from the Ribo-Seq per mRNA from the

RNA-Seq (See Materials and Methods, 4.2.3). It was was significantly reduced in

the mutant compared to the wild-type (Mann–Whitney U-test or Wilcoxon rank-sum

test, P = 0.0001996; Fig 4.2). Taking together, these results suggest that deactivation

of Hfq led to the defects in processing of rRNA precursor and ribosome biogenesis,

which resulted in the decreased translation volume and efficiency in comparison to

the wild-type E.coli.

Next we asked whether there were any genes, which did not follow the global re-

duction in translation efficiency. In order to assess it, we performed a fold-change

analysis based on the translational changes in Ribo-Seq dataset and considered only

those with stable mRNA expression from RNA-Seq. Two-fold enrichment threshold
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Figure 4.5: GO enrichment analysis of genes, translationally down-regulated upon
depletion of Hfq. The top three affected categories are in bold.

has been applied on both up-regulated and down-regulated gene-sets. Then, we per-

formed the Gene Ontology (GO) analysis of the genes, which were translationally

down-regulated upon the Hfq depletion. Several pathways showed significant GO

term enrichment, especially, the genes participating in ribosome biogenesis, trans-

lation, and amino acid metabolism, were mostly affected (Fig.4.5). Translational

profiles of representative examples on single-gene level are included: those genes,

which were down-regulated in the Hfq depletion mutant (Fig.4.1, top) those, which

remained unaffected (Fig.4.1, bottom).

4.3.5 Translation fidelity is affected by Hfq depletion

We compared the quality and accuracy of translation of the Hfq depletion mutant

to those the wild-type. The mutant showed an increase in all the kinds of transla-

tional errors, such as frameshifting, aberrant initiation from alternative start codon(s)

and read-through of a stop codon (Fig.5B in the original publication). This clearly

indicated that the accuracy of translation was severely affected by the depletion.

Our experimental data suggest that inactivation of Hfq enhances misreading of mRNA

and links together the effect of Hfq depletion on rRNA processing, ribosome biogen-

esis and translation fidelity.

72



4.3.6 The distal face of Hfq is crucial for ribosome biogenesis

Hfq assembles into a hexamer of a ring-like shape and therefore has at least three

RNA-binding surfaces. As shown in previous studies, sRNAs are preferably bound

to the proximal face of the hexamer, while the distal face binds to target mRNAs

(Mikulecky et al, 2004; Link et al, 2009; Sauer & Weichenrieder, 2011; Sauer et al,

2012; Zhang et al, 2013). We tested multiple Hfq mutations at the difference surfaces

(Zhang et al, 2013) in order to reveal the surface, responsible for the newly discovered

Hfq-dependent regulation of ribosome biogenesis. Strikingly, only mutations in the

distal face caused reduction in the levels of mature 70S ribosomes, similar to those

observed for the Hfq deletion mutant (Fig 2A and B in the original publication),

wehreas two other mutants (in the proximal or rim surface) showed the profile similar

to the wild-type.

This data allows to conclude that the distal face of Hfq is crucial for the rRNA matu-

ration and is responsible for the role of Hfq in ribosome biogenesis, which suggests

that the novel function of Hfq in the ribosome biogenesis might be independent of

its’ sRNA activity, since another surface is involved.

4.4 Conclusions

Our work unveils a novel role of Hfq in bacterial ribosome biogenesis with important

consequences for translation (Fig.4.6).

We demonstrated that Hfq is a new regulator of 16S rRNA maturation, which is

required for the correct processing of rRNA. We found that Hfq directly interacts

with the 17S rRNA, and its depletion results in the accumulation of unprocessed 17S

rRNA precursors. RNA-structure mapping showed that the formation of the central

pseudoknot of 16S rRNA is altered in cells lacking Hfq.

Following the inactivation of Hfq, we observed a significant reduction of r-proteins

synthesis on the translational level, along with reduction in the levels of mature 70S

ribosomes, and accumulation of immature 30S and 50S ribosomal subunits.
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Figure 4.6: Model for the Hfq regulation of ribosome biogenesis

Altogether, the major defects in ribosome biogenesis of Hfq depletion mutant led

to global translation deficiency with both, translation efficiency and fidelity being

compromised.

In summary, our study showed that Hfq is a new ribosome assembly factor (Fig.4.6).

This new role expands the functions of Hfq beyond the the mostly known activity of

this protein in the regulation of small non-coding RNA.
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Chapter 5

Absolute quantification of

translational regulation and burden

using combined sequencing

approaches

5.1 Background

The central dogma of biology explained in the first chapter of the current thesis is

not just a multistage process of protein expression, but also an important mecha-

nism, which allows the cell to function and adapt to the changing environmental

conditions. In order to fully understand the response on each of the steps, quantita-

tive methods to monitor the processes of transcription and translation are required

(Belliveau et al, 2018). Gene regulatory networks (or genetic circuits) regulate these

processes and control where and when they take place.

During the last years, the idea of using the synthetic genetic circuits for understand-

ing the functions of natural gene regulatory networks is spreading across the field

(Smanski et al, 2016; Wang et al, 2016). However, the construction of a genetic circuit

requires an assembly of multiple DNA-encoded parts controlling the initiation and

termination of transcription and translation. This brings in an additional challenge
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- necessity to predict how each part of large genetic circuits will function when as-

sembled with others (Cardinale et al, 2013) and how all of the parts will behave in

concert. Up to date, there are no approaches to simultaneously measure the perfor-

mance of multiple parts within a circuit, which prevents the method by itself from

reaching the initial goal of the study.

In order to overcome the problem of ambiguous interaction of different parts within

the circuit, fluorescent probes and proteins have been used for characterization of

the functions of genetic parts (Jones et al, 2014; Hecht et al, 2017). However, another

potential bias have been introduced by this approach, as there is a possibility that the

fluorescent tag itself affects a part’s function (Baens et al, 2006; Margolin, 2012).

The power of the deep sequencing technologies rapidly developing during the last

decades is applicable for characterization and debugging genetic parts and circuits.

It has clear advantages over fluorescent probes, since it does not require any modifi-

cation of the circuit DNA and provides a more direct measurement of the processes,

such as monitoring of transcription of specific RNAs. Finally, deep sequencing al-

lows to capture the information on the host response and the indirect effects on a

part’s function.

In 2017, Dr. Thomas Gorochowski, - the collaborator who conceived the study de-

scribed in the current chapter as well, - used RNA-Seq to characterize every transcrip-

tional component in a large logic circuit composed of 46 genetic parts (Gorochowski

et al, 2017). While that study was successful and demonstrated the ability to char-

acterize genetic part function and much more, the RNA-Seq alone as a method of

choice limited the approach to purely transcriptional elements, which did not allow

to move the quantification towards the physically meaningful units.

In the most recent study, to which this chapter is devoted, we used a combination of

deep sequencing methods to surpass previously obtained results. We developed an

approach combining Ribo-Seq with quantitative RNA-Seq, which enabled us to char-

acterize endogenous sequences and synthetic genetic parts controlling both levels -

transcription and translation - as well as to quantify them in absolute units. Since
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Ribo-seq provides position-specific information on translating ribosomes (See Mate-

rials and Methods for the precise allocation of ribosome-protected fragments 5.2.3),

this allows to calculate the genome-wide protein synthesis rates with a high degree

of accuracy, which is comparable to that in quantitative proteomics (Li et al, 2014). By

the addition of other experimentally measured cell parameters (such as total protein

concentration snd cell numbers), we generated transcription and translation profiles

that capture the flux of RNA polymerases (RNAPs) and ribosomes governing these

processes.

In this study we applied our method to E. coli and were able to demonstrate how

local changes in the profiles can be interpreted using mathematical models and to

represent the performance of genetic parts in absolute units. Our study illustrated

the genome-wide shifts in transcription and translation, which mark the burden that

synthetic genetic constructs place on the host cell.

My contribution to this work included a complete pre- and post-processing, de-

tailed analysis of all the sequencing data along with my participation developing of

a method itself and introducing the novel calculations to the datasets, which became

particularly challenging. The data analysis was a part of a bigger collaborative work,

where the modeling part of the study has been performed by Thomas Gorochowski,

and was based on the results obtained from deep sequencing in combination with

cellular features measured from the other experiments.

In the current thesis, I highlight that part of the study, which has been performed

by me, and concentrate on a characterization of synthetic pseudoknot, which in-

duced translational recoding/frameshifting, and cellular response to the induction

of pseudoknot expression. The details on the model itself including the genome-

wide calculations of the translation initiation and termination rates can be found in

the original publication (Gorochowski et al, 2019).
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5.2 Materials and methods

5.2.1 Deep-sequencing: RNA-seq and Ribo-seq

In analogy to the Chapters 3 and 4, the experimental details are partially omitted

and can be found in the corresponding section of the publication (Gorochowski et al,

2019).

Two E. coli strains have been used in the current study. Both derived from K12 strain,

[K-12, recA1 D(pro-lac) thi ara F’:lacIq1 lacZ:: Tn5 proAB+], by the addition of one

of the plasmids:

(1) a pBR322-derived plasmid containing lacZ with a fragment insert that contains

a truncated lac operon with the Ptac promoter and the wild-type lacZ under lacI

control - the strain and the corresponding samples latter called LacZ;

(2) a pBR322-derived plasmid containing a pseudoknot-lacZ (PK-lacZ) consisting of

gene10, a virus-derived RNA pseudoknot (Tholstrup et al, 2012), 22/6a, fused up-

stream of the lacZ - the strain and the corresponding samples latter called PK-LacZ.

Bacteria were grown in MOPS minimal medium for 10 generations or more at 37°C

to ensure stable exponential growth.

Libraries were generated under the normal growth - before the induction - and

following the induction of the LacZ and PK-lacZ expression. The expression was

induced with isopropyl b-D-1-thiogalactopyranoside (IPTG). cDNA library for Ribo-

seq and total RNA library for RNA-seq have been generated following the previously

described protocol Bartholomaus et al (2016). In addition, total RNA was spiked in

with RNA standards in predefined concentrations (ERCC RNA Spike-In Mix; Am-

bion), which were used to determine the threshold of detection for each sample and

latter to calculate the copy numbers of transcripts per cell (see below). All the li-

braries were sequenced on a HiSeq2000 (Illumina) machine.
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5.2.2 Preprocessing and mapping of sequencing data

RNA-seq and Ribo-seq datasets were preprocessed and aligned to the reference

genome following the algorithm described above. In brief, reads were quality trimmed

using fastx-toolkit version 0.0.13.2 (quality threshold: 20), sequencing adapters were

removed with cutadapt version 1.8.3 (minimal overlap: 1 nt).

The reference genome used for the mapping (E. coli K-12 MG1655 strain) has been

modified by masking the genomic regions that were similar to those in the plas-

mids (such as LacZ gene and other parts of LacZ operon) and adding the plasmid

sequences and ERCC spike-in sequences to the annotation. The preprocessed reads

were uniquely (-m 1) mapped to the modified version of genome using Bowtie (ver-

sion 1.1.2), allowing up to 2 mismatches. Reads aligning to more than one region

including tRNA and rRNA were excluded from the data.

The raw reads were used to generate read counts per gene using CoverageBed func-

tion from samtools, the initial E.coli annotation file has been modified by adding

plasmids and ERCC spike-ins. All the reads have been normalized to RPM and

RPKM (See Chapter 2-4).

Detection threshold in RPKM has been set using custom script written in R at values

with a linear correlation between the reads aligned from the spike-in controls and

their concentration in the mixture for each RNA-seq dataset separately (Fig.5.1). The

same detection limits have been applied to the corresponding Ribo-seq samples.

All the sequencing reactions have been performed in 2 replicates. Based on the high

correlation between the replicates (Fig.5.2), reads from both biological replicates were

merged together to form metagene sets as described Ingolia et al (2009), which have

been used for the downstream analysis.

5.2.3 Processing pipeline and downstream statistical analysis

The downstream data analysis was performed using custom scripts in R (version

3.4.4) using RStudio environment (version 1.1.4). Core R functions and statistical

packages have been used to perform the statistical tests.
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Figure 5.1: Expression of the RNA spike-in standards in the RNA-Seq libraries. Each
point represents a single RNA from the spike-in mix. Each of the biological replicates
are shown in red and black, respectively. Expression of each spike-in RNA is given in
RPKM; “n” denotes the number of RNA standards with linear dependence of their

concentration in the spike-in mixture (slope); R2, Pearson correlation coefficient.

Figure 5.2: Correlation of the RNA-Seq and Ribo-Seq data of two biological repli-
cates from induced and non-induced cells expressing LacZ or LacZ-PK; R2, Pearson

correlation coefficient.
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Differential gene expression on transcriptional (RNA-seq) and translational levels

was performed using DESeq2 package (version 1.20). While the transcriptional

changes have been accessed using RNA-seq data solely, for the translational differ-

ences, the translation efficiency values have been compared following the guidelines

from DESeq2 manual, which suggests to consider both Ribo-seq and corresponding

RNA-seq sample together.

First, the level of significance P = 0.01 have been considered for both comparisons -

in translational efficiency and mRNA expression. The genes with P< 0.01 have been

selected as differently expressed. Then, P-values were adjusted for multiple testing

using false-discovery rate (FDR) according to Benjamini and Hochberg. Since all of

the RNA-seq datasets had very high correlation and reproducibility - R2>0.99, the

more restrictive threshold has been applied - P < 0.001 and then we additionally

selected the 25th percentile of the most differently expressed genes from the resulting

gene-list.

GO enrichment analysis was performed on the differentially expressed gene lists us-

ing the bioinformatics tools and reference E.coli genome from Gene Ontology Con-

sortium (http://geneontology.org/). GO-terms with significant enrichment (P < 0.01)

have been selected.

In this study, we also used RNA-seq data and the spike-in controls within each RNA-

seq sample for the calculation of the absolute transcript copy numbers per cell. We

applied a method previously described by Bartholomaus et al (2016) and Mortazavi

et al (2008). In brief, the mapped reads for each transcript were related to the total

reads per sample (sequencing depth) and the length of the transcriptome, which has

been determined using the molecules of all the spike-in standards above the detection

threshold, and finally the value was normalized by the number of cells.

To obtain the precise single-nucleotide resolution from the Ribo-seq data, which is

especially crucial for the assessment of the initiation and termination rates, the posi-

tion of each read have to be adjusted in order to correspond to either P-site or A-site

of the ribosome. The central nt of the read cannot be taken blindly into the further
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Figure 5.3: Algorithm of estimating the ribosome P-site position from an RPF read.
Box shows different lengths used from 5’ and 3’-end of various RPF read length used

to calculate position of central nt in the P-site codon.

processing, since each of the samples contain the broad range of the read lengths

(~22-30nt) and as it has been shown previously, the offsets from the 5’ and 3’ ends of

each read vary greatly.

To overcome this variability and precisely allocate the reads, the following algorithm

have been applied:

First, RPFs were binned in the groups of equal read length, and each group was

aligned at the stop codons as previously described by Mohammad et al (2016). For

each read length, the distance between the point where the transcript leaves the

ribosome and the middle nucleotide at the P-site had been calculated. This distance

was used to determine a center of each P-site codon along each mRNA (Fig.5.3) and

calibrate the reads. As expected, the majority of sequencing reads were 23–28 nt,

which corresponds to the size of the prokaryotic ribosome, so these read lengths

were selected for the further analysis.

The ribosome occupancy per each codon over the whole transcriptome was calcu-

lated as described by Lareau et al (2014). In order to overcome the bias raised by

differences in expression levels between the genes, the reads for each position within

a gene were normalised to the average number of reads for this gene.

Metagene analysis of the ribosome occupancies of the START and STOP codon re-

gions was performed as described by Baggett et al (2017). Overlapping genes were
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excluded from this analysis, as the reads in the overlapping regions cannot be unam-

biguously referred to one of the genes. Only the genes, which had at least 5 reads in

the chosen window have been considered.

5.2.4 Data access

As a part of the publishing process, deep-sequencing data from RNA-seq and Ribo-

seq were deposited in the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/)

under accession number SRP144594.
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5.3 Results

5.3.1 Characterizing a synthetic pseudoknot that induces frameshifting

Proteins are translated by reading tri-nucleotides (=codons) on the mRNA strand,

from 5’ end of the mRNA to the 3’ end, when each codon is translated into amino

acid. A shift of nucleotides not divisible by 3 in the reading frame will result in the

different codons to be read and another protein product to be produced. This change

in the reading frame is known as translational recoding, also called translational

frameshifting.

Pseudoknots (PKs) are among the most prevalent folding motifs of RNA. These stable

nucleic acid secondary structures regulate gene expression. In combination with slip-

pery sequences they stimulate translational recoding/frameshifting in viral genomes

making them compact and allowing to produce several protein products from a sin-

gle gene (Tsuchihashi & Kornberg, 1990; Sharma et al, 2014).

PKs are the most common type of structure used to induce frameshifting, typically

to -1 frame (Atkins et al, 2016), but in rare cases they cause +1 frameshifting (Ivanov

et al, 2004). PK typically consists of a hairpin with an extra loop that folds back to

stabilize the hairpin through additional base pairing (Fig.5.4). In addition to inducing

frameshifting, PKs can also regulate translation initiation, via obstructing a ribosome-

binding site (RBS) with antisense sequences that base pair with it (Bordeau & Felden,

2014).

In order for the recoding event to occur, two elements are required. The first is a

slippery site consisting of a sequence in a form of XXXYYYZ (where X, Y, Z are nu-

cleotides). This site enables base paring in the A or P site of the ribosome outside of

the normal reading frame (zero frame), stimulating recoding events. The second ele-

ment is a PK, located 6–8 nt downstream of the slippery site. This distance between

the slippery site and the PK provides an extended time for frameshifting to happen

(Giedroc & Cornish, 2009).
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In this study, to assess the process of frameshifting and the affect of the PK on the

host, we created an inducible genetic construct (further referred to as PK-LacZ). We

incorporated a virus-inspired PK structure within the natural context (gene10 of bac-

teriophage T7) integrated to bacterial lacZ gene in a -1 frame (Fig.5.4) (Tholstrup et

al, 2012). Gene10 produces two proteins of bacteriophage capsid: first as a result

of translation in the natural zero-frame and another one - through a -1 frameshift.

Gene10 ends with a stop codon in a way that translation of a downstream-located

lacZ gene requires frameshifting event to occur at the PK. A slippery site (UU-

UAAAG) anticipated the PK.

We have chosen a PK variant (22/6a) with a lower frameshifting efficiency (~3%)

(Tholstrup et al, 2012) compared to the wild-type PK (~10% frameshifting) in the

natural context, as the latter one is known to heavily stall ribosomes in the cell and

induce a significant stress response of a host (Tholstrup et al, 2012). We were seeking

to perform a quantification of the frameshifting efficiency in our construct, but more

importantly to discover the reason of such a significant cellular stress observed.

Using the Ribo-Seq data before and after the induction of the PK expression, we gen-

erated translation profiles to assess ribosome flux along the entire construct (Fig.5.5).

We observed high translational levels until the position of the PK with a major drop

of 80–90% at the PK itself to the end of the gene10, and a further drop of ~97%

downstream of this region (Fig.5.5).

Next, we analyzed the frameshifting of gene10. The construct has been divided into

three regions:

(1) the gene10 segment up to the slippery site;

(2) the middle region (including the slippery site, the PK and until the gene10 stop

codon);

(3) the downstream lacZ gene in a -1 frame.

Although, Ribo-Seq is a precise method reporting on the positions of the translating

ribosomes, the single-codon or single-nucleotide resolution, which is required to as-

sess the frameshifting, becomes challenging in a context when the expression levels
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Figure 5.4: Genetic design of the PK-LacZ construct: the PK secondary structure,
the slippery site (underlined), gene10 and lacZ, which are in the differing reading

frames.
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Figure 5.5: Translation profiles for the PK-LacZ construct before (bottom) and after
the induction (top) with IPTG (1 mM). The gene10 (1), middle (2), and lacZ (3) regions
are labeled; shaded region denotes the PK, dashed lines denote the start and stop

codons of gene10 and LacZ.

are low because of the noise. In our case, significant drops in translation at the PK

and gene10 stop codon led to the low numbers of ribosome-footprints (RPFs) along

the last (3) region - lacZ gene. Therefore, the direct comparison of frame-specific

expression patterns was impossible.

To overcome this problem, we pooled together all the RPFs within each of the regions

(1)-(3) and calculated the fraction of RPFs in each frame (-1, 0, +1) from a total of

three possible frames. We detected the zero and -1 frames dominating in the gene10

(1) and lacZ (3) regions, respectively, with > 46% of all RPFs being found in these

frames (Fig.5.6, top). The middle region (2) showed a mixture of all three frames,

while the zero-frame further dropped in the lacZ region. Most likely, this illustrated

a combination of ribosomes that have successfully passed the PK and terminated in

zero-frame at the stop codon of gene10 and those ribosomes that have frameshifted.

We obtained similar distribution of the frames for both conditions - before and after

the induction by IPTG (Fig.5.6). To verify that the reading frames observed in Ribo-

Seq were reliable and no sequencing bias was introduced, we performed the same

analysis in RNA-Seq datasets (Fig.5.6, bottom). As expected, no specific frames were

prevalent in any of the regions, RNA-Seq before and after induction showed equal

fractions for each of the frames.

Next, we examined the possibility to recover the major translation frame from the
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Figure 5.6: Fractions of the total RPF (top) and mRNA (bottom) reads in each read-
ing frame for the gene10 (1), middle (2), and lacZ (3) regions, before and after the

induction of expression with IPTG.

entire genome based on the Ribo-Seq data. In order to assess this, we measured the

fraction of each of three frames for every gene. The natural zero-frame dominated

over the other two frames (Fig.5.7, top), while all the frames were equally distributed

when similar analysis was performed on RNA-Seq samples (Fig.5.7, bottom).

Lastly, we calculated the efficiency of frameshifting induced by the PK, by comparing

the density of RPFs per nucleotide for the middle (2) and lacZ (3) regions, before and

after frameshift, respectively. Using an equation described in the original publication

(See the original manuscript, equation (7)), we found that, in our case, PK caused 2–

3% of frameshifting. This result matched the previous measurement of 3% frameshift

for the same PK construct (22/6a) (Tholstrup et al, 2012).

5.3.2 Cellular response to a strong synthetic pseudoknot

It has been shown previously, that expression of strong PKs severely impact the cell

growth, however, the reason behind this remained unexplored (Tholstrup et al, 2012).

In our Ribo-Seq data, we observed a large number of RPFs in the gene10 region

(Fig.5.5). These reads could be raised from premature termination of ribosomes or
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Figure 5.7: Violin plots of the distributions of fractions of total RPFs and mRNA
reads in each of the reading frames for all transcripts in E. coli genome. Median
values shown by horizontal bars. *P = 0.049; **P = 1.6 × 10-9 (Mann–Whitney U test).

stalled translation at the PK itself. Previous characterization of the PK (22/6a) used

in this study showed that it sequestered ribosomes (Tholstrup et al, 2012), therefore,

it is likely that many of reads, we observed on the profile (Fig.5.5), illustrate stalled ri-

bosomes. Besides of the increased amount of partially synthesized protein products,

stalling also limits the availability of translational resources in the cell.

Considering these observation, we asked whether the expression of the PK-LacZ

construct causes a cellular stress by sequestering ribosomes. Along with PK-LacZ

construct used in the study, we introduced another dataset, carrying a LacZ plasmid,

which does not contain a PK, and, therefore, lacZ itself does not induce any of the

specific PK effects.

Next, we compared the burden that expression of lacZ and PK-lacZ caused in the host

cell in each of the cases. In order to do that, we compared the shifts in transcription -

based on RNA-Seq data - and translation efficiency, e.g. density of the ribosomes per

mRNA, - based on both, Ribo-Seq and RNA-Seq data (See the Materials and Methods

for the precise calculation). All genes in the genome have been used to calculate the
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Figure 5.8: Change in expression of E. coli genes following induction of PK-lacZ
expression. Each point denotes a transcript. Differentially expressed genes are high-
lighted in color and by an alternative point shape (transcriptional regulation: purple
cross; translational regulation: orange open circle). Right - Venn diagram of genes
significantly regulated transcriptionally and translationally after induction of the PK-

LacZ expression.

fold-changes of RPKM values between the non-induced and IPTG-induced samples

(Fig.5.8).

We have not observed any significant changes before and after the induction of the

LacZ construct (Fig.5.8). In opposition to that, the expression of PK-LacZ construct

led to significant shifts in the expression of 491 genes. From these genes, 341 were

transcriptionally (i.e., having significant changes in RNA-Seq) and 204 translationally

regulated (i.e., with significant changes in translational efficiency), containing a little

overlap of 54 genes between these two types of regulation (Fig.5.8, right).

Most of the genes being differentially expressed on the transcriptional level, showed

a drop in their mRNA counts (e.g. transcriptionally down-regulated). On the other

hand, translationally regulated genes were split between two groups showing either

an increased or a decreased translational efficiency. Gene ontology (GO) enrichment

analysis revealed that transcriptionally down-regulated genes fall into categories

mostly associated with translation, such as ribosomal proteins, amino acid biosyn-

thesis, amino acid activation, also containing some genes involved in respiration and

catabolism. Transcriptionally up-regulated genes were linked to ATP binding, also

included chaperones (ftsH, lon, clpB, dnaJK, groLS, htpG), ion binding, proteolytic
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activities (ftsH, prlC, htpX), and an endoribonuclease (ybeY).

The expression of all of these fell under r32 regulation, which is the most common

regulatory mode of response to the heat stress. r32 up-regulation is frequently ob-

served by expressing synthetic constructs, although the precise mechanism of r32

activation remains unclear (Ceroni et al, 2018). In the case of synthetic PK we in-

troduced, the peptides, which were incomplete, because of the stalled ribosomes

on the PK-LacZ, were most likely mis-folded and therefore generated mis-folding

stress similar to that in the heat shock response. Binding of the major E. coli chap-

erones (DnaK/DnaJ and GroEL/S) to the mis-folded proteins negatively regulates

the expression of r32. The shift of these chaperones to mis-folded proteins releases

r32, which induces the expression of heat shock genes (Guisbert et al, 2004). This

idea is supported by the fact that dnaJ, groL/S, and grpE were transcriptionally

up-regulated following the PK induction as well as ftsH gene, which encodes the

protease that is responsible for the degradation of r32.

Next, we examined whether the expression of PK-LacZ construct caused changes in

translation dynamics, such as ribosome pausing at specific codons. Using Ribo-Seq

datasets we computed the ribosomal occupancy at each codon (also called codon

occupancy) across the genome and compared it between the two conditions - be-

fore and after the induction of PK-lacZ expression (Lareau et al, 2014). We observed

an increased occupancies of the few codons: AGA, CTA, CCC, and TCC, encoding

Arginine, Leucine, Proline, and Serine, respectively (Fig.5.9). All of these codons are

rarely used in the genome, e.g. having a low genomic frequency in E.Coli, but all of

them were found in higher proportions across gene10. Along with a high expression

level of gene10, the stress, which is induced by this atypical demand on resources,

would be additionally boosted. Altogether, the broad shifts in regulation at a cel-

lular level and the changes in codon occupancies propose that PK-LacZ expression

significantly limits the availability of cellular resources.

We further compared the transcriptome composition (from RNA-Seq) and distribu-

tion of the ribosomes across cellular transcripts and plasmids (from Ribo-Seq) before
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Figure 5.9: Change in codon occupancies for cells with PK-LacZ construct after in-
duction, calculated from the Ribo-seq data. Each point corresponds to a codon, which
are ordered by amino acid and by abundance in the genome. Dashed horizontal line
denotes no changes. Outliers are labeled and highlighted in red (Tukey test: 1.5 times

the interquartile range below the first quartile or above the third quartile).

Figure 5.10: Fractions of mRNA and RPF reads mapped to each of the synthetic
expression constructs (LacZ and PK-LacZ) and genomic E. coli transcripts (divided
into three categories: ribosomal, metabolic, and other functions), before and after the

induction with IPTG.

and after the induction. This analysis revealed that following the induction, the PK-

LacZ construct represented 40% of all mRNA transcripts produced in the cell and

captured 47% of the whole ribosome pool engaged in translation (Fig.5.10). This il-

lustrates the global drop in translation and mis-folding stress induced by the partially

translated proteins from gene10 transcripts and explains the r32-mediated response

in the case of PK-LacZ induction.

From the other side, no notable changes in the distribution of the mRNA or ribosome

pools have been observed after the induction of LacZ plasmid itself. In addition, we

also noted a large difference in the number of transcripts for each construct after in-

duction: the number of LacZ transcripts was 43-fold lower than those for PK-LacZ (81

versus 3,504 transcripts/cell, respectively). This difference cannot be caused solely

by the increased transcription initiation at the promoter in the PK-LacZ construct.
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One of the potential explanations has been described in the previous studies: the

decay rate of the lacZ is highly dependent on the proportion of its transcription and

translation rates (Yarchuk et al, 1992). RNase E sites within the coding region of LacZ

become accessible to cleavage by RNase E in the case of the low translation initiation

rate, since fewer translating ribosomes are present to prevent degradation (Yarchuk

et al, 1992). This mechanism could reason the low lacZ transcript numbers, which

would lead to the reduced number of ribosomes sequestered for translating lacZ in

this construct. Altogether, this explain the lack of a stress response for this construct

compared to the PK-LacZ.

5.4 Conclusions

In this study, we assessed the behavior of a genetic construct that contains a strong

virus-inspired PK structure that induces a translational frameshift (Fig.5.4). We

demonstrated the ability to quantitatively assess various transcriptional and trans-

lational processes using a combination of deep sequencing technologies.

Following the induction of expression of PK-LacZ construct, the main reading frame

shifts with the same efficiency as measured in previous studies for the same PK using

another method (Tholstrup et al, 2012). PK-lacZ also causes a major burden to the

cell, sequestering a large portion of the shared ribosome pool from the host cell, in

contrast to the LacZ construct, which does not cause this effect (Fig.5.10).

Also, we observed transcriptome-wide increase in ribosome occupancies of the codons,

which are rarely present in endogenous E. coli genes, but more frequently occur in

the synthetic PK-LacZ construct. This suggests that the strong expression of the

construct leads to significant demands on the translational resources of the cell. This

burden also resulted in significant changes in gene regulation on both transcriptional

and translational levels. This response was mediated by the alternative polymerase

subunit - r32 - that has been shown to remodel the bacterial protein synthesis under

the thermal stress (Guo & Gross, 2014). In our case, r32 activation is most likely
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caused by a combination of strong over-expression of gene10 and mis-folding stress

raised from incompletely synthesized peptides (Guo & Gross, 2014).

The stress response induced by a strong pseudoknot has not been reported and de-

scribed previously, which suggests the novelty of our study where we revealed a new

branch of research for the future exploration.
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Chapter 6

Conclusions

The chapters 3 to 5 of the current thesis are based on the three different studies. All of

them used a combination of the various deep sequencing approaches, which served

as a crucial component for the successful research outcome. Those results would be

impossible to achieve without a specific bioinformatics analysis pipeline developed

uniquely for each of these studies.

I have shown that the correct interplay of the different types of sequencing datasets,

such as RNA-Seq, Ribo-Seq, PAR-CLIP-Seq and even more specific MeRIP-Seq, can

reveal multiple features of the cell biology and uncover the hidden aspects of the

processes taking place in the cell under the changing conditions.

I demonstrated how the integration of the analysis of the deep sequencing data into

the other experiments can serve as an additional evidence for the findings and unveil

the new hidden details on a single-gene level due to the high depth, specificity and

precision of the method compared to the other experimental technics.

Most importantly, the bioinformatics component in each of the studies included an

appropriate selection, usage and adaptation of variety of existing tools in combina-

tion with self-written scripts and pipelines. This part should not be underestimated,

since the depth of the information hidden in the sequencing data can be revealed

only through the algorithms, which in majority of the cases cannot be unified.

To conclude, the big data analysis is a necessary part of a cutting-edge research

process and not only a technical service provided by bioinformaticians to the other

scientists as often assumed.
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