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Schäfer, M. Ruggenthaler, H. Appel, and A. Rubio. Interpretation and conclusion of

encountered obstacles and obtained results were discussed among all authors. J. Flick
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1 Deutsche Zusammenfassung

W
enn Licht durch Spiegel auf kleinem Raum, als Kavität bezeichnet, eingesperrt und

kontrolliert wird kann die Interaktion mit Materie so signifikant werden, dass sogar

neue
’
Teilchen’, die polaritonischen Quasiteilchen, erzeugt werden. Polaritonen,

weder ganz Licht noch ganz Materie, teilen essentielle Eigenschaften mit beiden

Spezies. So verfügen sie über die Flinkheit des Lichts, welche uns die unvergleichlich schnelle

Übermittlung von Informationen und Energie ermöglicht, und die Robustheit und Wider-

standsfähigkeit von Materie, uns schaffend und von uns geschaffen. Kontrolle über die Po-

laritonen hält gewaltige technologische Möglichkeiten bereit, sei es durch die Manipulation

der Regeln der Chemie oder die Eigenschaften von Materie. Innerhalb dieser Dissertation

werde ich den bahnbrechenden Fortschritt der aktuellen Forschung sowie meinen Anteil daran

beleuchten. Letzterer zeichnet sich zu allererst dadurch aus, dass er die Forschungsgemein-

schaft mit der unvoreingenommenen Perspektive ausstattet, die Notwendig ist, um die im

neuen Kontext unzutreffenden theoretischen Paradigmen zu überwinden.

Unsere Reise beginnt mit einer kurzen Einführung (Kapitel 3) in das neue Forschungsge-

biet um die starke Wechselwirkung eingeschlossener Felder mit Materie, auch bezeichnet

als Kavitäts-Quanten-Elektrodynamik (QED) oder QED Chemie. Von dort aus werden wir

Schritt für Schritt das notwendigste Wissen gewinnen um QED zu verstehen (Kapitel 4),

wie die zentrale nicht-relativistische Gleichung der QED, die Pauli-Fierz Gleichung, üblicher-

weise bearbeitet wird, und, dass es nicht trivial ist übliche Herangehensweisen mit dem neuen

Bereich zu verknüpfen. Letzteres ergibt sich aus der Tatsache, dass übliche Schritte, wie zum

Beispiel die Einschränkung auf nur wenige Zustände, die Drehwellennäherung und die Ver-

nachlässigung von quadratischen Anteilen in der Wechselwirkung hinterfragt werden müssen

wenn wir anstreben selbstkonsistent das korrelierte System ohne vorherige Annahmen zu

beschreiben. Dieser Prozess wird die Publikationen P1, P2 und Teile von P3 einführen, welche

in ihrem vollen Umfang in Kapitel 8 zu finden sind. Das darauf folgende Kapitel 5 beinhaltet

eine Einführung zu der (nicht-)Gleichgewichtsstruktur der Materie und insbesondere hierzu

entsprechende Methoden die zu ihrer Beschreibung konzipiert wurden. Dies wird ebenfalls

die quantumelektrodynamische Dichtefunktionaltheorie (QEDFT) beinhalten, welche eine Er-

weiterung der Dichtefunktionaltheorie (DFT) durch das Einbeziehen der photonischen Frei-

heitsgrade ist, sowie erste Schritte die in den Publikationen P4 und P5 unternommen wur-

den. Ausgestattet mit einem Werkzeug um realistische System zu beschreiben, dennoch

eingeschränkt in ihrer Größe, setzen wir in Kapitel 5.2 unsere Reise zu (semi)klassischen

und perturbativen Ansätzen fort. Diese Methoden könnten uns erlauben größere Systeme

zu beschreiben als zuvor. Dabei werden wir beobachten wie Ehrenfestmethoden angewen-

det werden können um photonische Felder zu beschreiben sofern die Phaseninformation let-

zterer weniger relevant ist (Publikation P6) und wie fortgeschrittene Ansätze diese teilweise

wiederherstellen (Publikation P7). Durch ausgiebige Vergleiche mit exakten und perturba-

tiven Ansätzen, welche der reduzierten Dichtematrixhierarchie (BBGKY) folgen, gewinnen

wir Einsichten, welchem dieser Wege in Zukunft besonderes Interesse entgegengebracht wer-



den sollte.

Methodik ohne den Gewinn physikalischer Einsichten ist brotlose Kunst und so sammelt

Kapitel 6 einige der aussichtsreichsten Anwendungen von Kavitäts-QED. Darin ist mitunter

enthalten wie Verschränkung, Ladung, und ihr Transfer zwischen Bestandteilen durch die

starke Licht-Materie Wechselwirkung modifiziert werden können (Publikationen P3, P4 und

P2). Die Kontrolle chemischer Reaktionen mittels vibronischer starker Kopplung (VSC),

die Manipulation von Materie durch chirales, kohärentes Treiben oder der Konstruktion

von Kavitäten, sowie kollektive ultrastarke Licht-Materie Wechselwirkung bieten vielver-

sprechende Aussichten. Kapitel 7 wird sich letztlich in aller Kürze mit Studien beschäftigen

die aus dieser Arbeit resultieren und sich bereits im Prozess der Ausarbeitung befinden.



2 Abstract

W
hen light is confined and controlled in a restricting geometry, referred to as cavity,

the way how light and matter affect each other reaches such significant levels that

even novel species, the polaritonic quasiparticles, are created. They inherit the

swiftness of light, incomparable speed of information and energy transfer, and the

tenacity of matter, shaping and being shaped by our existence. Control over the polaritonic

quasiparticles holds great technological promises, e.g. by altering the rules on which chemistry

evolves and materials are characterized. Within this work, I will highlight the breathtaking

progress of state-of-the-art research as well as my contribution. The latter foremost provides

the community with the highly demanded untainted perspective as many previous theoretical

paradigms render obsolete on the interface of quantum chemistry and optics.

The journey will start with a brief introduction (Sec. 3) into the novel field of research

around the strong interaction of confined fields with matter, often referred to as cavity quan-

tum electrodynamics (QED) or QED chemistry. From there on, we will little by little attain

the necessary knowledge to understand QED (Sec. 4), how the central equation of non-

relativistic QED, the Pauli-Fierz equation, is commonly approached and that interfacing the

most common approaches is entirely nontrivial. The latter arises from the fact that common

steps, such as the few-level approximation, the rotating-wave approximation and neglecting

quadratic interaction terms have to be scrutinized when we attempt to self-consistently de-

scribe the correlated system from first principles. This will introduce the publications P1,

P2 and parts of P3 that the reader can find in their full extent in Section 8. In the following

Section 5, we introduce the reader to the (non)equilibrium structure of matter and especially

the methodologies we design to enable their description. This will include quantum elec-

trodynamics density-functional theory (QEDFT), the extension of density-functional theory

(DFT) to include the photonic degrees of freedom, and the first steps that this method is

undertaking in publications P4 and P5. Equipped with a tool to describe realistic systems,

that we yet have to limit in size, we move our attention in Subsection 5.2 to semiclassical

and perturbative methods. Those might enable us to scale the size of systems that we will

be able to describe. We will see that Ehrenfest methods can be applied to describe the pho-

tonic fields when phase-information is of less relevance (publication P6) and how parts of this

information can be restored by advanced semiclassical methods (publication P7). By bench-

marking those semiclassical methods against exact and perturbative approaches, that follow

the reduced density matrix (BBGKY) hierarchy, we are able to highlight which path might be

most promising for future steps. Methodology without physical gain is fruitless science and

Section 6 collects a set of the most promising applications of cavity QED. This includes how

entanglement, energy, charge and their transfer among constituents can be modified by the

strong light-matter interaction (publication P3, P4 and P2). The control of chemical reac-

tions via vibrational strong coupling (VSC), the manipulation of matter via chiral, coherent

driving or cavity design and collective ultra-strong light-matter interaction provide exciting

perspectives. Section 7 briefly illustrates on-going studies originating from this work.





3 The emerging relevance of cavity quantum electrodynamics

I
magine a world electrified with renewable energy from highly efficient photo voltaic

installations. Light and efficient energy storage and a novel age of virtuous microstruc-

ture creation enabled by the pinpoint control of energy flow and the structure of matter

itself. A novel age of computation and communication, enabled by quantum informa-

tion, entanglement and topology. Delivering those desperately demanded tools into the right

hands, mankind would be equipped to tackle so many of the pressing issues holding back

this world. Understanding and controlling the interaction between light and matter will turn

imagination into reality, unfortunately an entirely nontrivial problem.

As fundamental theory of the electromagnetic interaction, quantum electrodynamics (QED)

is essential to describe and understand the interaction of charged particles. Its gauge boson,

mediator of the electromagnetic interaction, is the photon. QED is a relatively simple gauge

theory with U1 symmetry, i.e. it conserves charge. During its long existence, QED proved

to be exceptionally accurate and the best tested theoretical description of physics by pre-

dicting e.g. the anomalous magnetic dipole moment of the electron to breathtaking precision

(e.g. [11]). While part of its beauty is the covariant, i.e. relativistic, compatibility of Dirac’s

equation and Maxwell’s equations, within this work we will focus on the non-relativistic limit

of the corresponding quantized theory. This limit is justified as bound molecular systems

and field frequencies discussed in this work posses vanishingly small relativistic features.

We therefore approximate the description of matter with the Schödinger equation and the

photonic gauge field will give rise to interactions among the non-relativistic particles (see P1).

A variety of different approaches (gauges) are available to precisely characterize the occurring

photonic gauge field, the vector-potential Â(ri) [12]. Fixing a gauge is necessary to restrict

redundant degrees of freedom that arise from an invariance under here local transformations.

The probably most prominent choice in non-relativistic physics is the Coulomb gauge ∇ ·
A(rt) = 0 which is disentangling longitudinal and transversal components. As already implied

by its name, it gives rise to the longitudinal and instantaneous Coulomb interaction in addition

to retarded transversal fields which are able to prolong into free space. The corresponding

Pauli-Fierz Hamiltonian [13, 14] describing the coupled system of light and non-relativistic

matter without consideration of spin reads

ĤC =
1

2

Ne∑
i=1

1

me

(
−i~∇i − (−e)Â(ri)

)2
+

1

8πε0

Ne∑
i,j 6=i

(−e)(−e)
|ri − rj |

+
1

2

Nn∑
i=1

1

Mi

(
−i~∇i − (eZi)Â(Ri)

)2
+

1

8πε0

Nn∑
i,j 6=i

(eZi)(eZj)

|Ri −Rj |

+
ε0

2

∫
dr3

(
|Ê⊥(r)|2 + c2|B̂(r)|2

)
+

1

4πε0

Ne,Nn∑
i,j

(−e)(eZj)
|ri −Rj |

.

(1)
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The matter system is represented by Ne electrons with positions ri interacting among each

other with the bare mass me, the charge −e and furthermore interacting with the Nn nuclei

with mass Mi, positions Ri and charge eZi. The vacuum permittivity ε0 can be seen as

the conductance of the vacuum and relates together with the vacuum permeability µ0 to

the speed of light in vacuum c = 1/
√
ε0µ0. The electric field E(rt), with transversal ⊥ and

longitudinal ‖ component, and the transverse magnetic field B(rt) satisfy the microscopic

Maxwell equations

ε0∇ ·E(rt) = ρ(rt) ∇ ·B(rt) = 0

∇×E(rt) = −∂tB(rt) ∇×B(rt) = µ0 [j(rt) + ε0∂tE(rt)]
(2)

with the charge

ρ(rt) =

Ne∑
i=1

(−e)δ(r− ri(t)) +

Nn∑
i=1

(eZi)δ(r− ri(t))

and current

j(rt) =

Ne∑
i=1

(−e)ṙi(t)δ(r− ri(t)) +

Nn∑
i=1

(eZi)ṙi(t)δ(r− ri(t))

densities. Furthermore the fields relate to the, in Coulomb gauge purely transversal A = A⊥,

vector-potential A(rt) via 1

E(rt) = E‖(rt) + E⊥(rt) = −∇ 1

4πε0

∫
d3r′

ρ(r′t)

|r− r′|
− ∂tA(rt)

B(rt) = B⊥(rt) = ∇×A(rt) .

(3)

Sec. 4.1 will introduce the process of quantization A(rt)→ Â(r). The instantaneous Coulomb

interaction, last terms in all lines of (1), is of uttermost importance for the electronic struc-

ture and thus at the very heart of chemistry. It is the essential building block to describe

molecular reactions, the structure of condensed matter and biology. The transversal field on

the other hand was considered in chemistry, up until the very recent predecessors of this work,

dominantly as classical perturbation to the electronic structure. While quantum optics, and

nowadays quantum information, investigated the quantum character of light in conjunction

with matter, those considerations focused historically on clean atomic systems. They gave

rise to impressive technological possibilities rewarded with the Nobelprize for Haroche and

Wineland in 2012 [15, 16]. While the scattering of transversal light with matter gives rise

to such fundamental features as spontaneous and stimulated emission, for low intensity and

coupling strength this can be often adequately described by perturbation theory. Increasing

1 Or correspondingly their quantum-equivalence utilizing the Heisenberg equation of motion i~ d
dt
ÔH(t) =

[ÔH(t), Ĥ]− + i~∂tÔ(t)|H . Notice the slight difference of A↔ 1
c
A in relation to P1. We assume here full

R3 without boundary conditions (in contrast to a confining geometry) such that the longitudinal potential

φ(rt) solving the Poisson equation ε0∇ · (−∇φ(rt)) = n(rt) is given by the common Coulomb interaction.
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the field strength or coupling, as they became available with the development of compact

strong laser sources, opened up non-perturbative regimes of light-matter interaction, utilized

e.g. in high-harmonic generation.

Figure 1: Light-matter coupling in a nutshell. Illustrated are the three distinct and most relevant situations

for light-matter interplay. In free space infinitely many photon modes scatter with matter, leading to

lifetimes and physical masses. The cavity restricts the photonic spectrum to a set of allowed eigenmodes

with enhanced individual coupling. The coherent and resonant exchange between modes and matter

result in a hybridization of eigenstates and introduces new quasiparticles, the polaritons, that are of

mixed character. Losses (Q) and decoherences determine the width of resonances and define the cross-

over between strong coupling (polaritons can be resolved) and purely perturbative coupling (Purcell

effect, enhanced spontaneous emission). The strength of hybridization scales with the number of photons

(the vacuum fluctuations nph = 0 lead to nonzero splitting), the number of coherently participating

molecules/polarization Nmol (see Sec. 5.2) and the inverse of the cavity (quantization) volume Vcav. The

coherent driving of matter (e.g. via an external laser) leads to novel equilibrium (Floquet) states in

which the matter excitations are dressed and hybridized via the oscillating field. The major difference

to the quantized cavity interaction is the negative spectrum and that the Floquet hybridization is not

anharmonic (no
√
nph + 1).

Let us focus back on low field intensities but this time confine the light-field in a restricting

geometry, a cavity, as illustrated in Fig. 1. In its simplest case this cavity can consist of par-

allel plane mirrors, reflecting a light ray into itself. With each reflection, the transversal field

can scatter with the matter system of interest inside the cavity. How often this process takes

place, i.e. the quality of the cavity at hand, is given by the quality (Q) factor Q = ω/∆ω

which is defined by the ratio between frequency and full width at half maximum (FWHM) of

the resonance. If the interaction of the material inside the cavity and the light-field becomes

significant, they build a new quasiparticle, the polariton, of mixed light-matter character. The

higher the decoherence of matter excitations or loss of photons from the cavity, the stronger

dephasing effects will conceal the polaritonic features (for more details see Sec. 5.1.2). In the

extreme limit where the loss-rates dominate we will merely retain the enhanced spontaneous
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emission of a material close to a surface, the so called Purcell-effect [17]. State of the art

high-Q cavities vary depending on their design in mode-volume and quality-factor and can

reach Q-values of thousands up to tens of millions (see e.g. [18–28] and references therein).

How strong a single photon-scattering can interact with matter is given under those confined

conditions by the quantization volume of the cavity mode λ = 1/
√
ε0V and the inducible

current or dipole moment of the matter at hand. Strong interaction between an individual

particle and the field thus demands a small cavity volume, where the minimal possible vol-

ume should be naively restricted by half the wavelength of the smallest frequency (for more

details see Sec. 4). While conventional high-Q cavities are thus typically restricted to very

small coupling values, effective sub-wavelength confined fields in form of e.g. nanoplasmonic

devices can posses extraordinary small mode volumes of less than a nanometer [20, 29]. So far

nanoplasmonic cavities, in which the distinction between longitudinal and transversal modes

vanishes, suffer from high leakage and therefore low Q-values (∼ O(102)). It is now important

to realize that the photonic field is indeed quantized and thus features vacuum fluctuations.

It becomes apparent that we expect to observe polaritonic features even if we do not pump

the cavity, photons will be virtually present due to the basic principles of quantum mechanics.

A manifold of different realizations for cavity environments arose within the past decades.

Some of them utilize microwave cavities, excitonic solid state and quantum dot excitations,

and even superconducting qubits [25, 30], to name a few. Besides reducing the mode-volume

to increase the coupling strength itself, a further point of interest is to increase the currents,

thus dipole-moments, of the involved excitations and thus maximize the effective coupling

strength to the cavity. This idea is especially prominent in the domain of circuit quantum

electrodynamics, where not actual transversal fields couple to a material but rather a circuit

of capacity and inductance mimics the transversal photonic field. The corresponding coordi-

nates current and voltage couple to an artificial atom (qubit), represented by a mesoscopic

device, e.g. a superconducting island. The associated large dipoles, due to the significant

number of collectively moving charges, result in massive ’light’-matter couplings on the order

of the matter excitation itself and posses even relatively high quality factors [31, 32]. It can

be expected that the impressive light-matter coupling will further increase and without a

doubt non-perturbative features of light-matter-(like) interactions will become an essential

pillar of modern science. This marvelously quick development represents a great opportunity

for a variety of different physical and chemical processes. So is the high coherence and long-

range correlation (or entanglement) between different constituents, investigated in P3 and

Section 6, a promising route for quantum chemistry experimentally [20, 33–52], theoretically

(P3,[3, 53–55, 55–57]) and also for quantum information [19, 30, 58].

Those novel considerations that come hand in hand with non-perturbative features will give

rise to a demand for non-perturbative theoretical methods and it is precisely the goal of this

thesis to present a perspective on considerations that arise with this problem. Common prac-

tices, developed many decades ago for clean atomic systems interacting with the transversal

field, have to be revisited. We will elaborate on this problem in Section 4 and Publications
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P1, P2, P3 and P4.

In our previous considerations, we dominantly referred to effects that can be assigned to a

single matter-excitation, e.g. an atomic, molecular or excitonic excitation. The larger the

mode volume, the more constituents could potentially enter and participate. Indeed, con-

sidering an ensemble of N identical constituents will lead to two states with collective and

aligned excitations coupling to the light with an effective dipole amplified by
√
N , so called

superradiant or bright states. In addition N-1 states exist that will feature anti-symmetric

combinations and decouple from the cavity, called subradiant or dark states, all just valid in

a perturbative sense. It becomes apparent that this limit is especially relevant in chemical

considerations where a macroscopic number of various molecules seemingly magically result in

a large variety of desired or not desired products. This specific sub-section of cavity quantum

electrodynamics is often called polaritonic or QED chemistry [33, 53, 59–61], P2 and gained

recent interest due to experimental realizations that catalyze and steer chemical reactions,

solely by the presence of the cavity [43, 49–51]. Those exciting observations suggest that future

chemical reactions will be tunable by a completely non-intrusive knob, the surrounding cavity

parameters, without the need to provide external energy as e.g. via an external laser-field.

It can be however shown that the continuous driving with an external laser is structurally

very similar to the cavity QED environment, illustrated in Publications P2, Fig. 1 and Sec. 7.

This will allow us to use the elaborated computational methodology of Floquet physics in

this novel subject and vice versa provides the possibility to create physics similar to Floquet

physics without the need to drive and therefore heat the system.

Such a twist for chemical perspectives, where the transversal fields are typically expected to be

classical, will without doubt call for a reconsideration of successful quantum chemical meth-

ods in the context of cavity QED. Two important and successful ab initio quantum chemical

methodologies are (time dependent) density-functional theory [62] and semiclassical statisti-

cal methods such as surface hopping [63]. Further essential representatives are wavefunction

based methods such as configuration interaction (CI) [64, 65] and coupled cluster [66]. While

wavefunction based approaches are considered to be very accurate yet computationally ex-

pensive, density-functional theory avoids the utilization of a many-body wavefunction and

instead describes observables in terms of the electronic density, resulting in a massive compu-

tational simplification. Semiclassical methods on the other hand utilize the results that those

previous methods present for the electronic structure to predict the nuclear dynamics, i.e.

how chemical reactions evolve in time. In Section 5 and accordingly Publications P2, P3, P4,

P5, P6 and P7, we present how each of these methods can be projected onto the QED setting

and we furthermore not just provide various considerations but also first realistic calculations,

conclusions and future perspectives.

This thesis is structured such that it introduces and relates fundamental considerations that

appear in the novel domain of research (Sec. 4, P1 and P2). Following is a short introduction
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into the methodology developed and applied within this thesis, briefly illustrated in the con-

text of alternative approaches and applications (Sec. 5, foremost the contributions P2, P3,

P4, P5, P6 and P7). Section 6 (and especially P3, P4, P2) emphasizes a selected set of the

most important physical features that arise with cavity QED, presenting a brief introduction

into scientific literature and the therein obtained results. A short perspective on work that is

still in progress and originated from this thesis (Sec. 7) finalizes the introductory component

before the scientific contributions (Sec. 8) and subsequent conclusions (Sec. 9) are presented.



4 Perspectives on Quantum electrodynamics

QED in different limits

A
lthough one manages to write down the equations that define the minimal coupling

between light and matter, we will quickly realize that their solution is yet an entirely

intractable problem without the help of decades of active research. Performing small

steps, we will start with the quantization of the field degrees of freedom, then briefly

introduce the most prominent perspectives for the QED problem and lastly clarify that hell

breaks loose when we attempt to combine QED and electronic structure theory without very

careful scrutinizing every involved step. It will become clear how the so commonly applied

models, dominating this field of research, have to be reconsidered when we attempt to unify

the long history of quantum optics and quantum chemistry within one consistent approach,

the goal of this work.

4.1 Crash course on cavity QED

Before starting further investigations we have to specify what quantized fields are and how

the minimal coupling is transformed into more convenient formulations. We will give a very

short introduction disregarding most details and suggest the reader to investigate P1, P2 and

especially the various mentioned textbooks for further details. The question how to quantize

longitudinal and transversal fields is a rather extensive task, involving a manifold of very

fundamental problems such as mass-renormalization, cut-offs to avoid divergences for high

frequencies, various gauges suited for different situations and many more [12, 67]. Let us

at the start assume that we treat the photonic field in absence of any restricting geometry

and material. We can derive from Maxwell’s equations (2) together with the electromagnetic

fields (3), the differential equation

∇×∇×A(rt) = ∇(∇ ·A(rt))−∇2A(rt) = −µ0ε0∂
2
t A(rt) .

We choose to remain in Coulomb gauge such that the transversality of the vector potential

simplifies the above equation to the wave or d’Alembert equation[
∇2 − 1

c2
∂2
t

]
A(rt) = �A(rt) = 0.

Solving this equation, e.g. by a separation of variables, lets us express the vector potential in

eigenmodes of the corresponding Helmholtz-operator ∇2 + k2

A(rt) =
1√
ε0V

∑
k,ξ

√
~

2ωk

[
εkξakξ(t)e

ik·r + ε∗kξa
∗
kξ(t)e

−ik·r
]
.

The transversality condition allows for two linearly independent solutions per k with polar-

ization ξ ∈ {1, 2} represented by the polarization vector εkξ satisfying εkξ · k = 0 defined on
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the quantization volume V .2 The linear expansion coefficient akξ(t) satisfies the harmonic os-

cillator differential equation
[
∂2
t + ω2

k

]
akξ(t) = 0 with ωk = c|k| such that akξ(t) = akξe

−iωkt.

The set of plane waves eik·r manifests the spatial mode functions, eigenmodes of the Helmholtz

operator, and the time-dependent coefficients describe harmonic oscillations in time with the

frequency ω corresponding to mode k. If the photonic fields are driven by a current, i.e.

coupled to a polarizable material or they feel an external current, the harmonic equation

becomes inhomogeneous according to Maxwell’s equations (2). A driving that is ’classi-

cally’ coupled by expectation values gives rise to a coherent displacement. The quantum

eigenstates describing coherently displaced harmonic oscillators are referred to as general-

ized coherent states. The displaced ground or coherent state possesses the same minimal

uncertainty and Gaussian structure as the quantum ground state and represent the classical

limit of a quantized field. One could now follow the elaborate second quantization procedure

by identification of conjugate coordinates [67–69]. In Coulomb gauge they will turn out as

vector potential A(rt) and conjugate momentum Π(rt) = −ε0E⊥(rt), proportional to the

electric field, together with the classical Poisson bracket to quantum commutator promotion

{A(rt),Π(rt)} → −i/~[Â(r), Π̂(r)]− = δ⊥(r− r′). Important is here to realize the transver-

sal character, i.e. the polarization components satisfy
∑

ξ εkξ,iε
∗
kξ,j = δij − kikj/|k||k| and

define the transversal delta-function δij⊥(r) = δijδ(r) − δij‖ (r). Instead of following the full

quantization procedure, the harmonic structure might motivate us to simply assign the cre-

ation and annihilation operator algebra [âkξ, â
†
k′ξ′

]− = δkξ,k′ξ′ to the complex time-dependent

coefficients such that we arrive at the quantized equivalent

Â(r) =
1√
ε0V

∑
k,ξ

√
~

2ωk

[
εkξâkξe

ik·r + ε∗kξâ
†
kξe
−ik·r

]
. (4)

Plugging (4) into the field energy expression of (1) leads to the well known simplified result

Ĥ⊥em =
ε0

2

∫
dr3

(
|Ê⊥(r)|2 + c2|B̂(r)|2

)
=
∑
k,ξ

~ωk

(
â†kξâkξ +

1

2

)
. (5)

If now an arbitrary confining geometry restricts the allowed eigenmodes, it will promote

the simple plane wave expansion to an arbitrarily complicated mode structure where the

transversality is a non-trivial condition. The QED U(1) symmetry is restricted to a discrete

Z(n) symmetry as only discrete translations/group operations, e.g. ik·r→ ik·r+i2πn, n ∈ Z,

will retain the consistency among eigenmodes and boundary conditions.3 Modern nano-

fabricated resonantors can be of rather complicated structure and embody the possibility to

2 The appearance of the mode volume V , which is the domain on which the spatial eigenmodes are defined,

might be slightly concerning. The plane waves are not L2 functions but a rather special basis for which

the limit to free space
∫
V
dr3e+ik·re−ik·r = V → ∞ for V → ∞ is only defined when sending the number

of eigenmodes {k} equivalently to infinity 1/V
∑

k →
∫

1/(2π)3dk3. As one might expect, this will lead to

subtle questions such as how to take a sensible limit, when to cut off {k1, ...,kM} and indeed the selection

of this cutoff will describe what we consider as physical mass of a particle. For more details we refer the

reader to various excellent textbooks e.g. [12, 14, 67–69].
3 While it seems trivial at first glance, this realization drags with it a non-negligible amount of mathematical

subtleties, e.g. that the spectral basis-representation of scalar ∇2 and vectorial ∇ × ∇ kinetic operators
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support modes with more obscure features such as orbital angular momentum in combination

with various polarizations, see e.g. Sec 7 or the recent progress in the field of twisted light

[71].4 Most common in cavity QED is the simplified assumption of a single dimension of

relevance, e.g. {k} = {kez}, motivated by idealized parallel plane-mirror Fabry-Perot type

resonators5, clearly a rather crude approximation to realistic cavities. Often we will assume

that the matter-system of interest extends spatially very little around its center r0 such that

e.g. e±ik·r ≈ e±ik·r0 , k · r� 1, referred to as long-wavelength approximation. In conjunction

with the restriction to linearly polarized light εkξ = ε∗kξ and the introduction of canonical

harmonic variables

qkξ =

√
~

2ωk
(âkξ + â†kξ), pkξ = −i

√
~ωk

2
(âkξ − â†kξ); with [q̂kξ, p̂k′ξ′ ]− = i~δkξ,k′ξ′

we can remarkably simplify equation (4) to

Â =
∑
k,ξ

λkξ q̂kξ , λkξ =
1√
ε0V

εkξSk(r0) . (6)

The mode function Sk(r0), e.g. Sk(r0) = eik·r0 , incorporates the geometry of our cavity and

the respective position of our matter-system, for more details see footnote 5 and P1. One

should consider that Eq. (6) lost all spatial character and with it the possibility to trans-

fer momentum. The introduced dipole-field should be thought of as approximation to the

coupling components after all transformations and integrations for Eq. (5) are performed. It

should be noticed now that substituting this highly approximated Â into the minimally cou-

pled Hamiltonian (1) leads to bilinear coupling terms and quadratic components proportional

to Â · Â. The latter ones are, although they seem awkward at first glance [75], very funda-

mental and e.g. represent a diamagnetic shift of the mode frequency thus regularizing the low

frequency limit ωk → 0. The high-frequency limit is still not well defined and typically we

restrict ourself to a sensible set of most relevant modes inside the cavity. The large quantity

do not have the same eigenfunctions and hence combining them becomes non-trivial. Often enough, we

will brush over those fundamental mathematical non-trivialities, which can indeed matter [70], to obtain

a ’physically driven’ solution. This is well motivated by the fact that the boundary conditions themselves

are simplified representations of a real (reflective) material which will feature a finite penetration depth.
4 Where a distinction between transversal and longitudinal (mirror-charges) modes becomes non-trivial, a

solution in terms of Green’s functions might become beneficial. Macroscopic QED utilized such a con-

struction to describe quantized fields under effect of various linear or non-linear media, see e.g. [72, 73].

Reconsidering the following work in this context will be surely non-trivial but similarly beneficial to extend

the present insight and machinery towards truly realistic predictions in various state-of-the art topics.
5 The corresponding zero-boundary conditions then imply sine-type eigenmodes instead of plane-waves. In a

three-dimensional setup, special attention should be devoted to fulfill the transversality condition ∇ · Â(r)

in conjunction with the boundary conditions. Each mode-expansion should present a complete set of

orthonormal eigenmodes 1
V

∫
dr3Sk(r)Sk′(r) = δk,k′ , e.g. eik·r for periodic boundaries in full space would

transfer into
√

2 sin(kzz) for one-dimensional idealized plane parallel mirrors located at 0 and L = π/kz.

When our resonator itself is not stationary but subject to modulations in time, e.g. an oscillatory driving

that might be selected to precisely steer a chemical reaction, the above transversal basis is just a single

instantaneous realization and its time-dependent adjustment should be considered (see for instance [74]).
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of modes that are merely weakly affecting the matter-system of interest are then subsumed

into its effective mass, as common practice in quantum chemistry and physics, see also P1 and

P2. 6

For a large set of interesting matter-systems, such as e.g. molecules within chemical reac-

tions, it would be much more preferable to handle an operator that is well localized in space.

The dipole operator R̂ = −e
∑Ne

j=1 r̂j +
∑Nn

j=1 eZjR̂
j
n, who’s expectation value is easier to ob-

serve experimentally than the non-local momentum operator, manifests as reasonable choice.

Furthermore would it be beneficial if the gauge dependence of the vector potential could be

avoided and we would be able to express our theory in terms of manifestly gauge invariant

quantities. From those considerations, a very elegant yet non-trivial and easily misunderstood

reformulation developed, the unitary Power-Zienau-Wooley (PZW) transformation [68, 77–

79]. How this transformation Û = e−i
∑

k,ξ λkξ·R̂q̂kξ is designed, how it is connected to a gauge

transformation, what subtleties make it non-trivial and how we precisely arrive at the follow-

ing dipole approximated Hamiltonian (7), is in length and on alternative paths elaborated in

Publication P1, P2 and [9, 80]. 7

ĤD =
1

2

Ne∑
i=1

−~2

me
∇2
i +

1

8πε0

Ne∑
i,j 6=i

(−e)(−e)
|ri − rj |

+
1

2

Nn∑
i=1

−~2

Mi
∇2
i +

1

8πε0

Nn∑
i,j 6=i

(eZi)(eZj)

|Ri −Rj |

+
1

2

M,2∑
k,ξ

[
p̂2
kξ + ω2

k

(
q̂kξ −

λkξ

ωk
· R̂
)2
]

+
1

4πε0

Ne,Nn∑
i,j

(−e)(eZj)
|ri −Rj |

(7)

Of special interest is the fact that the interaction between light and matter is now com-

pletely absorbed into an effective photonic-like component
(
q̂kξ −

λkξ

ωk
· R̂
)

which relates to

the transversal electric field. The canonical operator q̂ in turn is now related to the displace-

ment field D̂⊥(r) = ε0Ê⊥(r) + P̂⊥(r) = ε0
∑

kξ ωkλkξ q̂kξ. Interaction is therefore mediated

through the projected transversal polarization P̂⊥(r) of the matter system and our novel field

quantities are transformed in accordance with the macroscopic Maxwell equations.

The bilinear coupling −ωkq̂kξλkξ · R̂ = −
√

~ωk
2 (âkξ + â†kξ)λkξ · R̂ gives rise to matter ex-

citation and deexcitation processes in combination with the creation â† and annihilation â

of photons. Let us express the dipole operator in a restricted 2-level basis of excitation and

deexcitation operators such that R̂ =
∑2

i,j=1 |i〉〈i|R̂|j〉〈j| = R01|0〉〈1| + R∗01|1〉〈0|, if R00 =

R11 = 0. We then assume a resonant interaction ε1 − ε0 = ω with a single cavity mode

ω. This simplification is known as the Rabi model, illustrated in Fig. 2, and its spec-

trum can be analytically obtained [81]. We notice that terms with an excitation and the

6 When investigating transfer on the length scales of the wavelength, the set of modes should be expanded as

otherwise unphysical superluminal transfer appears [76]. The spatial resolution encoded into the eigenmodes

Sk(r) guarantees that the speed of light remains the upper limit for information transfer.
7 When we closely inspect the different publications in this field, for instance even P1 and P2, we will notice

that the sign of the bilinear coupling fluctuates. Changing from
(
q̂kξ −

λkξ

ωk
· R̂
)

to
(
q̂kξ +

λkξ

ωk
· R̂
)

does

however not change any presented result. Instead it merely flips the sign of q̂kξ as the photonic Hamiltonian

is symmetric under inversion. The here presented convention is consistent with P1 and we suggest the reader

to follow this formulation.
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absorption of a photon are paired |1〉〈0|â (vice versa the reversed process) but further-

more terms appear in which an excitation takes place and a photon is created |1〉〈0|â†.
While the first components seem very intuitive as each scattering event would conserve

energy, the latter seem unintuitive, would they demand that the system somehow com-

pensates for the large demand of energy to excite photons and matter at the same time.

Figure 2: Schematic illustration of the

connection between full cavity QED,

the Rabi model featuring 2-levels ap-

proximating the structure of matter

and a single photonic mode, as well

as the Jaynes-Cummings (JC) model

that originates from the Rabi model

with subsequent RWA (see also table

1). Performing the RWA decouples the

excitations of photons into blocks that

can be easily analytically solved.

Considering the free evolution of those components (inter-

acting frame), the excitation processes attain a phase eiωt

while deexcitations obtain the reverse e−iωt. The counter-

intuitive components, called counter-rotating, such as

|1〉〈0|ei(ε1−ε0)tâ†eiωt superimpose then to a very fast os-

cillating phase e±i2ω that will barely be able to affect the

coupled system. A prototypical approximation in quan-

tum optics is now to ignore those counter-rotating com-

ponents and thus enter the ’secular’ or ’rotating wave ap-

proximation’ (RWA) which reduces the Rabi to the Jaynes-

Cummings (JC) model. This decouples each excitation

from subsequent ones which leads to a rather easy analytic

solution. For not too large light-matter coupling, this RWA

provides often satisfying results. We should note however,

that for larger couplings, stronger detuning (not on res-

onance) or multi-photon processes, the RWA will break

down.8 Notice further that the ground state is affected

just by the counter-rotating components, i.e. any theory

that aims to deliver a real-space and consistent treatment

of electronic, nuclear and photonic structure should con-

sider them. The JC model is the prototypical model shap-

ing the perception of strong light-matter coupling in cavity

QED. It will become apparent within this work how greatly

beneficial, yet limited this model is, and how we can de-

sign an approach to solve the correlated light-matter sys-

tem without the need for such drastic limitations. Another

common approximation is to omit and reabsorb the term
1
2(λkξ · R̂)2, named here self-polarization, into an adjusted

physical mass of the particles [69, 79]. It turns out how-

ever, that any self-consistent calculation, as desirable for

chemical and non-perturbative regards, will necessarily demand this component. We illustrate

in Publications P1, P2 and P3 how over-simplification in terms of restricted Hilbert spaces or

unbalanced approximations will inevitably result in unphysical predictions. Table 1 collects

8 Improved versions inspired by the adiabatic elimination can partially compensate for some of those failures,

e.g. account for a rescaling of energetic spacings. The interested reader is referred to [82–84] and references

therein.
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Approximation Model Coupling Valid if

Long-wavelength el. dipole QED ω2
k

(
q̂kξ −

λkξ

ωk
· R̂
)2

S(r) ≈ S(r0)

No R2 perturbative QED −ωkq̂kξλkξ · R̂ λ2
kξ/4ε

2
i � 1

2-level + 1 mode

(many 2-level)

Rabi

(Dicke)

−
√

~ωk
2 λkξR01(âkξ

+ â†kξ)(|0〉〈1|+ |1〉〈0|)
ε1 − ε0 − ωk ≈ 0 and√

1
2~ωk

λkξ|R01| < 1

Rabi + RWA

(many 2-level)

Jaynes-Cummings

(Tavis-Cummings)

−
√

~ωk
2 λkξR01(âkξ|1〉〈0|

+ â†kξ|0〉〈1|)

√
1

2~ωk
λkξ|R01| � 1

Table 1: Jacob’s ladder of light-matter interaction starting from the long-wavelength approximation.

The ideal description would feature the full (relativistic) minimal coupling. Indicated are subsequent

approximations, their respective models, light-matter coupling and validity. It is common to assume

R01 = R10 = 1. If coupling or frequency of the photonic field allow to reach higher excited states, a

2-level description is no longer valid (P3). Satisfactorily describing real-space observables will largely

prohibit any approximation beyond the electric dipole approximation (P1, P2).

the here illustrated steps and models. A highly convenient feature of the PZW transformed

Hamiltonian is that mirror-charges can be avoided for perfect conductor boundary conditions

[85]. The transverse fields merely have to obey the boundary conditions n∂V × Ê⊥(r) = 0

with the surface normal vector n∂V . The eigenmodes εkξSk(r) remain as only reference to

the boundary geometry. Let us turn our intention in the following to the question how we

theoretically predict something from here on.

4.2 Solving the Schrödinger equation

With the help of the Hamiltonian (7), we could now straightforwardly solve the corresponding

Schrödinger equation

i~∂tΨ(r1, ..., rNe ,R1, ...,RNn , qk1ξ1 , ..., qkM ξ2 , t) = ĤCΨ(r1, ..., rNe ,R1, ...,RNn , qk1ξ1 , ..., qkM ξ2 , t)

to determine the (non)-equilibrium structure of the correlated nuclei-electron-photon problem.

Unfortunately, the exponentially increasing number of dimensions for the configuration space

3Ne × 3Nn × (2 ×M) indicate a subtle issue, namely, that it is hopeless to expect the exact

solution for anything of realistic size, might it be with or without the transversal fields. This

issue is known in electronic structure theory as the exponential wall problem [62]. How fast

and large our computer might be, the cost is increasing so quickly that everything beyond a

handful of dimensions and therefore particles is out of scope.

Now the question arises, is all of this huge Hilbert space illustrated in Fig. 3 relevant and

do we actually need the full wavefunction? In the vast majority of physical and chemical
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Figure 3: Simplified illustration

of conceptually different ap-

proaches to describe the cou-

pled set of electronic, nuclear

and photonic Hilbert space H
and the according ground-state

solution Ψ0. The combined

ground state for interacting sys-

tems is usually not a product

of the individual ground states

but rather a correlated combi-

nation of eigenstates. Depend-

ing on how essential or inter-

esting we deem a specific sub-

space, we might want to explic-

itly consider it, may it be fully

quantum or in a simplified limit

(see Sec. 4.2.2 and 4.3), or sub-

sume its effect into an effective

bath that weakly affects the re-

maining system of interest (see

Sec. 4.2.1 and 5.1.2).

problems, the answer to this question is a confident no. Often, just a very specific subspace

might be of interest, e.g. the nuclear arrangement during a chemical reaction, and we might

attempt to subsume or even simplify the remaining degrees of freedom as efficiently as possible.

We might now take different paths to benefit from this knowledge according to Fig. 3, each

with individual advantages and limitations. Representing more than 60 years of research,

we will only motivate the main ideas to provide a fundamental context and set the stage

for further steps. The applicability of each method will highly depend on the problem of

interest, the degree of accuracy that we demand and how intricate the involved interactions

play out. An especially promising approach to describe many degrees of freedom is designed

around the density of the system rather than its wavefunction, implying its name density-

functional theory (DFT). This leads to an interpretation of electronic structure as a nonlinear

quantum fluid characterized by its density n(rt) rather than the linear Schrödinger equation.9

Rephrasing our problem in terms of reduced quantities will enable us to climb the exponential

wall and we merely have to find the right tool for the precise problem at hand, a not always

trivial problem as elaborated in Sec. 5.1.1 and P4, P5.

9 After inspecting the following sections, the interested reader is encouraged to investigate the close conceptual

similarity between fluid dynamics, density-functional theory and general relativity [86, 87]. Geometric

stresses originate for the electronic fluid as a consequence of their quantum mechanical interaction. This

realization allows to derive TDDFT in a Lagrangian rather than the Eulerian frame. While the Lagrangian

frame, co-moving with the electrons, holds great opportunities to derive non-adiabatic exchange-correlation

potentials [86, 87], the associated geometric equations are computationally demanding.
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4.2.1 System-Bath approach

Historically quantum optics focused on atomic systems under the influence of external fields.

The electronic structure can be satisfyingly calculated and its interaction with external fields

gives rise to rather clean excitations from one atomic state to another. Due to the high

energetic separations on the order of electron volts, processes of absorption and emission

can be assigned to few eigenstates and the evolution of population can be conveniently solved

when restricted to two levels. For molecular or extended systems, the high incoherence due to

electronic and nuclear scatterings calls for adjustments. The variable toolset of open quantum

systems, based on the density matrix

ρ̂(t) = |Ψ(t)〉〈Ψ(t)| =
∑
ij

ci(t)c
∗
j (t)|Ψi〉〈Ψj |

defined on the full Hilbert space via the many-body equilibrium wavefunctions Ψj and occu-

pations ci(t) = 〈Ψi|Ψ(t)〉, was designed to take dephasing and dissipating effects into account

(see Sec. 5.1 and 5.1.2). Starting from the Liouville (or von Neumann) equation for the

density matrix 10

i~∂tρ̂(t) = [Ĥ, ρ̂(t)]− ,

it is convenient to define projection operators P ρ̂ = (1−Q)ρ̂ = trB(ρ̂)⊗ ρ̂B which, according

to their name, project the correlated matrix into subspaces. Those components are defined

on a system ρ̂S , commonly the electronic system, and a bath ρ̂B, e.g. the eigenstates of

the nuclear vibrations or the photonic free-space modes [88]. Projecting the density matrix

into a subspace of the full Hilbert space will render it no longer pure, i.e. it can not be

represented by a single wavefunction such that trx(ρ̂2
x) < 1, if the states do not factorize (are

correlated) ρ̂ = ρ̂S⊗ ρ̂B+ ρ̂corr, ρ̂corr 6= 0. Assuming the bath to start in thermal equilibrium,

a convenient shift in energy of the subsystem, and most importantly assuming the initial state

to be uncorrelated ρ̂(t = 0) = ρ̂S(t = 0) ⊗ ρ̂B(t = 0), the Nakajima–Zwanzig equation (8)

[88–90] for the adjusted density matrix in interaction picture ρ̂′(t) is

∂tP ρ̂′(t) =

∫ t

0
dt′K(t, t′)P ρ̂′(t′) . (8)

The memory-kernel K(t, t′) in this integro-differential equation stems from propagating effects

inside the bath, i.e. the system will be driven by retarded interactions with itself via the bath

degrees of freedom. This implies that solving for t = T , we have to retain the full information

of the correlated movement starting from time t = 0. When this kernel becomes singular, i.e.

when the memory of the bath vanishes and it merely adjusts adiabatically, the evolution is

referred to as Markovian. Limiting to a given order in perturbation theory, performing the

Markovian limit and the RWA, one arrives at the highly used Lindblad master equation [88].

10 Notice the opposite sign in relation to the Heisenberg equation of motion i~ d
dt
ÔH(t) = [ÔH(t), Ĥ]− +

∂tÔ(t)|H .
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How quick information is exchanged between system and bath, i.e. how strong the bath affects

the system, depends on the spectral overlap and energy of the involved physical species. In

many situations a qualitative consideration of the bath degrees of freedom might be sufficient

when the dynamics of system and bath can be well distinguished (see Sec. 5.1.2 for an extended

discussion). Solving the (simplified) equations for the density matrix is unfortunately just in

a very restricted limit possible as the exponential wall problem prohibits us from accessing

the complete density matrix. It is thus common practice to consider a small number of

eigenstates to represent the system, e.g. we assume a molecule to posses a ground and a

single excited electronic state (2-level approximation). The possibility to conveniently solve

the 2-level system, representing it as spin/Bloch equations via Pauli matrices, in combination

with its intuitive interpretation and valuable insight in many situations renders this strong

limitation of the electronic Hilbert space the most common application. Many dynamical

features that give rise to a strong interaction between system and bath, such as strong light-

matter coupling in cavity QED, will question the representability of the infinite electronic

Hilbert space by just two states. We show in P3 that excitations into higher excited states

can even dominate the dynamics and it is part of the scientific responsibility of a theoretician

that the physical prediction and interpretation concluding from his research should not depend

on this number of states. By simplifying the system towards few states, we furthermore loose

a substantial amount of information as real-space observables are typically far less accurately

represented if at all, see P2 and Sec. 6. Special care has to be taken with the fact that the

highly limited Hilbert space introduces very fundamental issues if not considered with great

caution. Examples include breaking translational invariance, gauge independence, and the

interpretation of observables as illustrated in Section 4.3, P1, P2 and other recent publications

[91, 92].

4.2.2 Quantum chemical approach

Chemical processes involve the correlated dynamics of various interacting electrons under the

influence of nuclear evolution. The small but essential energetic changes in the meV range

decide which path a reaction will take and smallest geometric distortions of the molecule

can have a sizeable influence. So will the reorientation of methyl groups lead to energetic

changes on the order of eV, essential for the current research mentioned in Sec. 7. This

gave rise to a large set of accurate wavefunction techniques, such as configuration interaction

[64, 65] and coupled cluster theory [66], most of them based on the explicitly antisymmetric

Slater-Determinants

ΦSD(r1σ1, ..., rNeσNe) =
1√
N !

∣∣∣∣∣∣∣∣
φ1(r1σ1) ... φNe(r1σ1)

...
. . .

...

φ1(rNeσNe) ... φNe(rNeσNe)

∣∣∣∣∣∣∣∣
−

.

Slater-Determinants (SD) allow to represent an antisymmetric many-body wavefunction in

terms of single particle orbitals, i.e. φi(rjσj) describe the spatial plus spin dependent wave-
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function of a single indistinguishable electron. In general, a single SD is not sufficient to

describe interacting electrons due to correlation, which demands a superposition of multiple

such SDs. If we restrict ourself to a single SD, we arrive at the Hartree-Fock approximation,

or in different contexts often referred to as exchange only or mean-field approximation. In the

light-matter context we will use the terminology mean-field as equivalent to solving Maxwell’s

equations of motion. One should distinguish two fundamentally different origins of electronic

correlation, namely dynamic and static correlation. The former is of collective nature and

represents that two electrons do not feel just each other but always also the surrounding elec-

trons which effectively screen the interaction. Various approaches are tailored for this problem

ranging between perturbative extension on Hartree-Fock, most famous Møller–Plesset (MP)

[93, 94], exchange correlation kernels in density-functional theory [95], up to self-consistent

Green’s functions [96] and Quasi-particle corrections [97]. Static correlation on the other

hand can be reduced to the dissociation limit of molecules (see e.g. P3). To visualize static

correlation assume H2, initial very close and well approximated by a single SD, the more we

pull the hydrogens apart, the more the electrons will localize on atom 1 and 2 until their

Coulomb interaction vanishes but the many-body wavefunction will then be precisely one SD

per atom. With a few exceptions, such as multi-reference extensions [98] or reduced den-

sity matrix theory [99], static correlation and therefore bond-breaking is very cumbersome to

describe for any method based on a single SD. Providing a sufficiently accurate and compu-

tationally inexpensive method is still an active domain of research.

In conjunction with techniques to describe the nuclei, e.g. the Born-Oppenheimer approxima-

tion (Section 4.3), Ehrenfests equation of motion or semiclassical techniques such as fewest-

switches surface-hopping (Section 5.2.1), a methodology focused on the accurate solution

of ’small’ molecules arose. By embedding the calculation of small most relevant domains

with advanced techniques into a surrounding environment predicted with inexpensive, some-

times even classical (QM/MM [100]), techniques, it was possible to expand the ’small’ system

limit up to biomolecules. Sometimes however, the electronic interaction might be so strong

that correlation effects become non-perturbative. In those situations slightly improving a

single SD will not be sufficient and strong correlation methods are more desirable. One fa-

mous wavefunction based representative is the density-matrix renormalization group (DMRG)

[101] which gained increasing interest with the investigation of Hubbard-type models for low-

dimensional highly correlated applications. The multiconfiguration time-dependent Hartree

(MCTDH) [102, 103] method on the other hand is designed to capture correlated dynamics

by a variationally optimal set of single-particle wavefunctions. Both explicitly utilize the

knowledge that a small subset of the Hilbert space is physically relevant, resulting in sepa-

rating wavefunctions (and operators) such that they stay within their according subsets. So

far, those techniques are, however, limited by the scaling of correlation (the area law [101]).

DMRG is mostly used in one-dimensional calculations, e.g. chains of simplified atoms, and

MCTDH utilized for around 10 degrees of freedom of the wavefunction, where extensions such

as multilayer MCTDH might extend those limits.
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As we are actually interested in observables and not the wavefunction, why not design a

theory phrased in terms of a more minimalistic object? This realization leads into various

directions, two of them are part of this work, namely (time-dependent) density-functional the-

ory (TDDFT) and many-body perturbation theory (MBPT). We present a short introduction

into both methods in Section 5.1.1. The main difference to our previous considerations is that

instead of directly solving the exponentially scaling linear Schrödinger equation, we attempt

to solve equivalent low-dimensional but nonlinear equations. The very low cost of handling

e.g. the electronic density n(r, t) = Ne

∫
dr2...drNe |Ψ(r, ..., rNe , t)|2 and single particle orbitals

φ(r, t), in contrast to the high-dimensional wavefunction Ψ(r1, ..., rNe , t), lead to the success of

TDDFT in quantum chemistry and solid-state physics. The multicomponent formulation of

DFT can be conceptually easily extended to include photonic degrees of freedom as discussed

in Sec. 5.1.1 and thus renders itself as a promising approach to tackle the correlated nuclei,

electron, photon system.

It is apparent that quantum optics and quantum chemistry, although described by the very

same Hamiltonian (1), developed over the years in their methodological toolset and their

perspective on nature in far opposite directions. The novel interest in the modification of

materials and chemical reactions by quantum light, however, calls now for a combined and

consistent treatment. As a first step, we illustrate in Section 4.3 that an oversimplified

attempt to merge light and matter is doomed to deliver unphysical predictions. In Section 5

we present then different perspectives and tools connected to this work, all designed to tackle

different arising issues in the demanding field of ab initio cavity QED.

4.3 Treating light and matter on equal footing and what can go wrong

By stressing the need for a theory that is able to consistently treat the electronic structure to

great detail and especially spatially resolved, we open our self for a fair share of concerns. Fun-

damental considerations such as the relevance of the self-polarization or qualitative changes

when restricting the basis after unitary transformations demand special care. The success of

few-level systems is based on its simplicity, accurate predictions for spectral features and espe-

cially very intuitive application and interpretation. It however embodies always the demand

to test if the limited set of eigenstates considered is sufficient, thus converged. This concept

is often neglected and subsuming all but the lowest eigenstates by adiabatic elimination or

projection will only be applicable if the higher excited states are never truly of importance.

When aiming to merge quantum chemistry with quantum optics it is convenient to work

in a basis that is common in chemistry. We provided above a glimpse into possibilities

how the electronic problem can be solved, e.g. based on SDs and single particle orbitals.

The Hamiltonian (7) and its multi-dimensional wavefunction involve furthermore nuclear and

photonic degrees of freedom. It is common practice to separate the wavefunction into electrons

and nuclei via the Born-Huang expansion [104] and we present in publication P2 how this
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ansatz can be extended to include photonic coordinates as an additional species.

Our starting point is the realization that we can exploit the unitarity of our Hamiltonian to

expand any wavefunction into a basis of eigenstates with a parametric dependence such that

Ψi(Rn, r,q) =

∞∑
µ=0

χµi (Rn)Ψ̃µ({Rn}, r,q)

=

∞∑
µ,k=0

χµi (Rn)ψkµ(r, {Rn})Φk(q, {R}) ,

where Rn = {R1
n, ...,R

Nn
n }, r and q represent the full list of nuclear, electronic and photonic

coordinates and R the total matter dipole. The indexation ψkµ(r, {Rn}) indicates that the

electronic many-body wavefunction depends parametrically on the nuclear configuration and

each eigenstate µ is associated with the full set of photonic excitations k. This expansion is

defined in conjunction with the normalization condition

〈Ψi|Ψi〉 =
∞∑

µ′,k′=0

∞∑
µ,k=0

〈χµ
′

i |χ
µ
i 〉n〈ψ

k′
µ′ |ψkµ〉e〈Φk′ |Φk〉p

=
∞∑

µ,µ′=0

〈χµ
′

i |χ
µ
i 〉n

∞∑
k=0

〈ψkµ′ |ψkµ〉e =
∞∑
µ=0

〈χµi |χ
µ
i 〉n = 1 .

(9)

This is an exact expansion, while certainly infinite basis functions are computationally out of

scope and thus a converged limitation will be demanded. How well we can restrict this set of

eigenfunctions very much depends on the problem at hand and how suitable the basis is to ad-

dress this problem. From this separation of the wavefunction, a separation of the Schrödinger

equation into interacting sub-equations results naturally by applying the Hamiltonian (see

P2), i.e. the electronic equation reads in atomic units

Ĥ l
BO(r, {Rn})ψlµ(r, {Rn})−

1

2

∞∑
k=0

2∇lk ·
Ne∑
j=1

∇rj +Ne∆
lk

ψkµ(r, {Rn})

= Eµ({Rn})ψlµ(r, {Rn}) .

(10)

When utilizing this procedure we should consider that carrying out the integration over

the nuclear coordinates demands the completeness of the photonic and subsequently the

electronic eigenstates. For example the full electronic density would demand to integrate out

the parametric nuclear dependence

ni(r1) =

∫
dRn

∫
dr2...drNe

∫
dqΨi(Rn, r,q)Ψ∗i (Rn, r,q)

=
∞∑

µ,ν,k=0

∫
dRn

∫
dr2...drNeχ

µ
i (Rn)χν,∗i (Rn)ψkµ(r, {Rn})ψk,∗ν (r, {Rn})

6=
∞∑

µ,k=0

∫
dr2...drNe |ψkµ(r, {Rn})|2

∫
dRn|χµi (Rn)|2 ,
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from which follows that the parametric dependence has to be respected if we want to get

the ’true’ electronic average density which will include a nuclear average. Commonly this is

ignored such that the electronic density is considered to be parametrically depending on the

nuclear configuration, i.e. the nuclear ensemble is encoded in the parametric dependence of

the observable. In this sense the above braket-notation of Eq. (9) can be misleading when

this fact is forgotten, i.e. this short-hand form implies the stepwise integration from the right

towards the left.

Equation (10) is structurally very similar to the Floquet picture where a matter system is

coherently driven by an external field such that a time-periodic ansatz provides a quasistatic

solution. Floquet physics comprises a manifold of possibilities which are based on the concept

of stabilizing the system in an eigenstate with peculiar features, e.g. topological switching

of conical intersections [105]. The disadvantage is that the system is constantly subject to

strong illumination. This implies heating, strong decoherence and a demand for constant

supply of energy. The cavity on the other hand enables a path with very similar features

yet without the demand of pumping and subsequent drawbacks. Similarities, differences

and possible proposals to exploit the cavity for material design are elaborated in publication

P2 and Sec. 7.

The second-order differential structure of the non-relativistic Schrödinger equation

(∝ ∇2
r,∇2

R, p̂
2) results in components that mix different eigenstates µ whenever the so called

non-adiabatic elements ∇lk are non-zero, very similar to the hybridization of atomic orbitals

in molecules. If we assume that all ∇lk = 0, we enter the famous Born-Oppenheimer ap-

proximation.11 In this sense, the non-adiabatic couplings lead to novel eigenstates that carry

light, nuclei and electron character, representing the quantum interaction among the different

species. Those dressed eigenstates are the previously introduced polaritons, illustrated in

Fig. 4, quasiparticle states of mixed character. In addition to the linear couplings ∇lk, we

notice that quadratic couplings ∆lk arise in the expansion. Those components represent how

the curvature of subsystem-states ∆Φk affect the combined system. This clearly emphasizes

that the Schrödinger equation has to give rise to non-linear components, as a basic conse-

quence of the fact that it includes second order differentials. Those terms, as is illustrated

in P2 and P1, precisely reproduce the quadratic Â
2

term but furthermore lead to the so

called Debye-Waller contribution [111, 112]. Both effectively rescale the excitations according

to the involved nuclear/electronic displacements. Those rescalings are not just manifestly

rendering a quantum-system stable, i.e. preventing the bilinear coupling that favors a large

displacement from resulting in an ever increasing charge-separation, but furthermore are es-

11 It is indeed in principle possible to obtain a set of equations for which ∇lk = 0 and that exactly solve

the Schrödinger equation. The frame and corresponding transformations are referred to as diabatic [106].

Within this frame, coupling between surfaces will persist through energetic couplings (off-diagonals in the

photonic/electronic eigenvalues). Within the photonic context of P2, the diabatic transformations are

related to unitary transformations between Coulomb and PZW-gauge. The interested reader is suggested

to furthermore relate this to [107]. The interested reader might also refer to the exact factorization ansatz

[108], which explicitly enforces an exact factorization of components. Recently this ansatz was applied to

light-matter correlated systems [109, 110].
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Figure 4: Schematic of strong light-matter interaction giving rise to light-matter correlated eigenstates.

The strength of interaction can be characterized by the hybridization/splitting ∆En=0, often referred

to as the Rabi splitting (providing the beating frequency). In principle every state connected by non-

adiabatic coupling elements will be affected by the light-matter interaction, including vibrational and

electronic excitations. For sufficient energy separation, just one of the species (nuclei or electrons) will be

dominantly affected and we can define vibro- and exciton-polaritons. Notice that this distinction might

be questionable around avoided crossings and conical intersections of the electron-nuclei system.

sential to guarantee fundamental physical concepts such as translational invariance, gauge

independence and non-radiating eigenstates (see P1). Let us stress once more, any Hamilto-

nian that includes purely bilinear couplings between e.g. nuclei and electrons and/or photon

is manifestly limited to perturbative treatments, demands a restriction to a finite basis or an

underlying squeezing transformations with adaptive parameters (see e.g. [91, 113]). This is

clearly a contradiction to our goal of ab initio self-consistent calculations.

All complexity is merely rephrased in a hierarchy of coupled eigenvalue equations instead of

solving directly the Schrödinger equation, which nevertheless allows for convenient further

simplifications and interpretation of the various contributions as described above. The pho-

tons are now of special character as they do not interact among themselves but merely via

a polarizable material (and the Â
2

which is subsumed into the matter equations). We can

therefore solve the photonic sub-system equation analytically and all the complexity of the

light-matter interaction enters then in the aforementioned (non)-adiabatic couplings, known

also analytically (for details please refer to P2). The beauty of this approach is that the mat-

ter eigenstate can be expressed and calculated with typical quantum chemical methods, e.g.

in an CI sense expanded in SDs, while the coupling elements are mixing those eigenstates.

Following this concept in P2, one is then able to elegantly connect to few-level representations.

Solving the photonic equation analytically by introducing generalized coherent states cor-

responds amusingly to the unitary transformation that transfers the PZW gauge back into

the Coulomb gauge. The translation of photonic coordinates switches between the two most

common expressions of light-matter interaction and they are merely equivalent when the full

Hilbert space is considered (see Sec. 4.3.1 and especially P1). It furthermore illustrates the

connection of quadratic Â
2

and R̂
2

components, i.e. while they both effectively confine the
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coupled system and rescale excitations (light or matter), they are not equivalent. For spa-

tially well localized (finite) systems, the PZW gauge is typically converging faster with the

number of eigenstates (P2,[91, 114]) and therefore seems preferential when a reduced de-

scription is envisioned. However, the PZW gauge is accompanied with the demand to treat

R̂
2

self-consistently within the matter subspace and therefore gives rise to additional long

range matter-matter interactions. To be precise, it scales for larger distances identical to

the Coulomb interaction which leads to a cancellation of the two components (see P1 and

[13, 69]). So far just very few theoretical approaches such as QEDFT P4, photon adopted re-

duced density-matrix functional-theory (RDMFT) [99] and coupled-cluster theory [115, 116],

present feasible solutions for realistic systems.

Let us highlight at this point that we could have decided to merely perform the common

separation of ’fast’ electrons from the ’slow’ nuclei and consider similarly the photons as

’slow’. Then, we would need to solve the common electronic problem with parametric nu-

clear and photonic coordinates in addition to the R̂
2

term. This cavity Born-Oppenheimer

(cBO) ansatz [107] therefore implies that the photonic and nuclear excitation energies are on

comparable scale and well separated from the electronic excitations. Assuming we solve the

electronic problem under those conditions, the photon-nuclear problem can be diagonalized

which gives rise to well approximated ’vibro-polaritons’, i.e. the photon-nuclei quasiparticles

moving on adiabatic electronic surfaces. Describing the electron-photon hybridization would

however demand considering an expanded basis according to our description above. Never-

theless, for situations where dominantly nuclei and photons couple, this might present a very

effective approach, once functional solutions to R̂
2

are designed. It provides furthermore a

very illustrative tool to visualize the influence of the cavity onto molecular systems.

4.3.1 Limitations of few-level systems and the ambiguity of physical conclusions

The energy splitting between the two ’bright’ polaritons of the Tavis-Cummings model (recall

Tab. 1), with N identical 2-level emitters, scales as

∆ETCn=0 =

√
δ2 + (2

√
Ng)2, g =

√
ω

2
λ.

Here n = 0 indicates that the cavity is in the vacuum state and δ = ω − ε1 − ε0 is the

detuning between electronic and photonic excitation (recall Sec. 3, 4.1 and see 5.2). The above

framework however clarifies that the reduced model originating from Eq. (10) (see P2) and the

Tavis-Cumming model are not quite consistent for two reasons. First, the coupling elements

(dipole moments and non-adiabatic couplings) deviate from each other by a component ∝ δ/ω
such that they merely coincide in the case of resonant coupling, and second, even in the 2-

level restricted setup the adiabatic couplings ∆ll will give rise to rescaling of excitations. To

include this into the Tavis-Cummings splitting above, the detuning has to know about the

rescaling of energy levels. This naturally appears through an adjusted detuning δ̃ = δ + L
with the collective Lamb-shift L =

[√
N λ√

2ω

]2
. How impactful those differences turn out
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Figure 5: Excitation energies vs cavity frequency for N 2-level systems (ε1 − ε0 = 0.5, R01 = 1) coupled

to one cavity mode λ = 0.01. Plotted is the single-photon single-excitation limit of Eq. (10) in Coulomb

gauge (1p1ex) (Sec. IV(B) of P2) and the Tavis-Cummings solution in PZW gauge for N = 1 and N = 100.

The Rabi splitting for very small coupling and very few 2-level systems is in close agreement between

the two alternative formulations. The deviations in the matrix elements ∝ δ/ω and the collective shift

L are of minor influence as offside the resonance cavity and matter hybridize just weakly. Increasing the

number of 2-level systems amplifies the hybridization of the bright states and illustrates the deviating

behavior especially for δ 6= 0. The diamagnetic contribution that manifests here via L slightly shifts the

resonance and off-set of the excitations. The ground state of the TC model is constant.

depends foremost on the effective coupling between cavity and matter and is illustrated in

Fig. 5. While the Tavis-Cummings model provides often very valuable intuition, the fact

that even in this extremely fringe and simplified setup our approach indicates inconsistencies

signalizes that it might easily lead to tainted conclusions.

We have seen that the precious gauge invariance is lost once the Hilbert space is restricted.

Clearly, any approach that connects light and matter in a rather ad hoc fashion [117–121] will

need to verify that their predictions are not tainted or jeopardized by the underlying approxi-

mations that lead to this description. Omitting the self-polarization component, by restricting

the basis or the Hamiltonian itself, will for instance suggest that the permanent dipole plays

a crucial role for the equilibrium structure of molecules [120, 122] which is in strict contrast

to observations when the R2 part is considered (see P1). Similar ambiguities appear in the

ultra-strong coupling limit in which a phase-transition into a superradiant ground state is

suggested by some models. Depending on factors such as the underlying gauge, the inclusion

of quadratic components or Coulomb interaction, the size of the restricted basis and the ap-

plication of the RWA, many different predictions can be obtained (see P2 and [91, 123–130]).

While individual investigations (see P2 and [91, 114]) suggest that the PZW-gauge performs

superior when the matter basis is restricted, it is unclear to which extend this will be uni-

versally true and if certain subsequent modifications might not change this observations. In

addition, converging the coupled light-matter system will not always monotonically improve
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observables. We have shown in P2, that certain observables are resembled worse when the

basis for matter and photon excitations are not consistently improved. This can lead to the

point that qualitatively contradictory predictions are obtained for the electronic density and

mode occupation. Lastly but especially important, P2 illustrated that the amount of bare

matter eigenstates can become overwhelming for very strong interaction to the point that

convergence renders as a cumbersome task. Given the fact that typically just very few many-

body eigenstates can be obtained with reasonable effort, such a convergence scheme in bare

eigenstates will be unfeasible in many interesting situations in which substantial differences

can be observed. It becomes apparent that the future development of cavity QED will greatly

benefit from those conclusions (P1, P2, P3) and the development of ab initio techniques such

as P4, P5, P7 and P6. Let us emphasize here that this does not imply that common mod-

els should be abandoned. In contrast, they will remain a substantial component to obtain

physical intuition in a broad range of situations. It merely illustrates that they should be

considered as the approximate models that they are, limited to a perturbative treatment and

not suited for true ab initio self-consistent calculations.

Our considerations so far have been dominantly focused on equilibrium eigenstates but we

extended this point of view in publication P3. In Fig. 6 of P3, we show that for rather small

coupling values the effect of the self-polarization contribution will accumulate over time, lead-

ing to small quantitative deviations for short times. However, when amplifying the coupling

by a factor of 10 to a relative strength of g/~ω ≈ 5.8%, commonly still considered as strong

coupling, this picture completely changes and lacking the self-polarization will result in a

qualitatively different energy transfer. This qualitative change originates from the fact that

without self-polarization, charge transfer suddenly dominates the excitation transfer as large

(permanent) dipoles become energetically favorable. In combination with P1, P2 and recent

experimental observations which indicate that quadratic couplings give rise to enhanced su-

perconductivity [131], we consider it sufficiently proven that quadratic contributions are by

no means unphysical. On the contrary, they are essential to guarantee fundamental phys-

ical concepts and are often of non-negligible importance, especially when we aim to build

a self-consistent machinery, subject to following sections. The ’extension criterion’ λ2/4ε2
i

with i’th energetic eigenvalue εi defined in P1, allows to estimate the influence of quadratic

components and thus delivers very accessible yet essential insight for theoretical predictions.

The community, on both theoretical [91, 92] and experimental [131] side, increasingly realizes

the limitations of few-level systems and the impact of quadratic components with continuing

development towards an ab initio treatment.

4.3.2 Gauge invariance in restricted Hilbert spaces

Let us face the fact that not always an ab initio technique might be available or suitable

to cover a problem, e.g. the strongly correlated limit of electron-electron interactions. If

we restrict thus the applicable Hilbert space, we have seen in Sec. 4.3.1, P1 and P2, that
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this will break fundamental physical rules and the gauge invariance of the light-matter cou-

pled system. Attempts to understand this problem in the 2-level context illustrated that

restricting the dimensionality relates to an adjustment of the unitary transformations that

connect the Coulomb and PZW gauge [92]. Now the question still remains which of our

gauges is suited best, which basis converges quicker to the correct result and which fulfills

the previously mentioned conditions best (translational/origin invariance, stability, radiation

less eigenstates, gauge invariance and consistency among observables)? Clearly, this will de-

pend on the problem at hand and the form of dimensional restriction, e.g. a smart basis

might capture much more of the physics and converge quicker. Imagine for example we try

to describe a system with a permanent dipole in the PZW gauge. This in turn implies a

coherent shift of the canonical displacement q = λ
ω · Rperm and thus a large basis of states

(â†)n|0〉 would be needed to converge the results as a lot of photons have to be excited to

capture a coherent displacement (classical shift of the harmonic potential ’n → ∞’). On

the other hand, a basis with generalized coherent states, such as the Born-Huang basis in

P2, will capture the coherent shift trivially and merely the fluctuations around it have to be

approximated. Similarly, a specific basis that intrinsically accounts for gauge invariance and

e.g. the conservation of dipole moments, the Thomas-Reiche-Kuhn sum-rule, will be superior

over others. While the gauge theory at hand (QED) is actually rather simple with a single

gauge field, being abelian and usually coupling perturbatively to matter (α ∼ 1/137), Quan-

tum chromodynamics, the gauge theory for the interaction of quarks and gluons, features

coupling strengths around unity and a manifold of gauge bosons. The lattice gauge theory is

nowadays the method at hand to tackle non-perturbatively and intrinsically gauge invariant

the challenges that define quantum chromodynamics. The basic idea of lattice gauge theory

is to represent the system by a lattice consisting of small plaquettes which are all intrinsically

gauge invariant by construction as they allow for a closed loop (the Wilson loop eiq
∮
C Aµ(x)dxµ)

of the vector potential [132–135]. The action of those loops cancel when in contact to other

loops around them such that the connection of plaquetes allow a gauge invariant formulation

of any restricted space and the full action is given always correctly as a closed loop around

its surface. This conceptional approach was already in its early steps exemplified by applying

it to QED and scrutinizing it in the novel context might deliver the demanded method to go

beyond the dipole approximation, beyond a perturbative treatment and remain intrinsically

gauge invariant.

We have seen that by no means a clear and unambiguous description in terms of simplified

models is always common or available. With increasing coupling strength, the design of

non-conventional cavities (plasmonic, circuit QED, ...) and their interplay with molecular

rather than atomic systems, fundamental concerns appeared that call for a careful reflection

on common methodologies. The beauty of QEDFT is now that it allows a spatially resolved

first principles description which circumvents many of the previously mentioned issues. All

our problems culminate in the construction of a local potential that will mimic quantum

interactions that appear within the potpourri of electrons, nuclei and photons. The design
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of possible approaches as well as their application is one of the focus points of this thesis.

The following Sec. 5 will introduce the ideas and efforts that associate QEDFT and related

methods with this work.





5 Quantum chemistry in cavities

Theoretical approaches and promising steps for an untainted perspective

A
fter we set the physical framework and the according correct equations, let us briefly

review a set of options that arise to describe cavity QED from first-principles. Specific

details can be obtained from the corresponding publications. In this sense, this section

will provide merely a methodological motivation, introduction as well as highlighting

strength and weaknesses in the big picture. Let us start with the ground state, extend to

equilibrium eigenstates, debate the role of decoherence and finally provide a perspective how

large systems could be described. We use atomic units in the following.

5.1 (Non)Equilibrium features of the light-matter correlated system

Solving the full light-matter problem with a finite number of modes, thus treating all possible

degrees of freedom as part of the Hamiltonian and system, will always allow us to identify

static quantities. The corresponding ground and excited states characterize the complete

Hilbert space (see Fig. 6). Any (time-dependent) state Ψ(t) can be expressed in terms of

the known equilibrium states (spectrum) and associated energies Ψ(t) =
∑

i ciψie
−iεi(t−t0)

with expansion coefficients ci,
∑

i |ci|2 = 1. Weakly perturbing the set of eigenstates in the

form of a linear response measurement allows to deduce all equilibrium features. Precise

knowledge of equilibrium quantities and their perturbative response covers therefore often a

substantial part of physics. The ideal cavity would feature cleanly separated eigenstates and

the correlated system would posses polaritonic states with infinite lifetime. The fact however

that no cavity is truly perfect leads to a finite width (recall the Q-value Q = ∆ω/ω) such

that in reality every excited state will posses a finite lifetime. For instance, imagine that we

start in an initial ’pure’ state, e.g. the ground state, for which ρ̂(t) = c0(t)c∗0(t)|Ψ0〉〈Ψ0|.
An external drive will lead to non-vanishing transition matrix elements 〈Ψ0|Ĥ(t)|Ψj〉 6= 0 in

the state-basis, disturbing the system out of equilibrium. In turn, the evolution will feature

coherent oscillations between the various participating states Ψj , referred to as polarization.

The more states participate in this process, the more different oscillation periods are present

and the longer it takes until the initial configuration reappears (revival). If j becomes very

large or even tends towards a continuum of states, every small excitation will couple to a vast

number of states, all with different associated oscillations. If we now project (in the sense

of Sec. 4.2.1) into one specific subsection of interest P, e.g. the dynamic of the electronic

system instead of the full photon-matter system, the remaining degrees of freedom Q will

still influence the subspace and render the hole system still unitary if no approximations

are employed. Each subsystem individually evolves however non-unitary and experiences

decoherence. The electronic system might for instance undergo spontaneous emission, i.e.

initial occupation is turned into polarization and relaxes towards the electronic ground state

(see e.g. P6). For a finite number of photonic modes, the spontaneously emitted photon will

after some time bounce back from the boundaries of the quantization box and return to the
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Figure 6: Schematic of a quantum system subject to external driving. Any closed quantum system with

finitely many degrees of freedom has a set of discrete eigenstates which are the solutions to the Schrödinger

equation with employed boundary conditions. Note that the correlation among e.g. the fermions lead to

excitations that are not just single-particle excitations but instead of correlated nature, e.g. removing one

electron does also relax all other single-particle eigenvalues. This ’closed’ system is in constant interplay

with other degrees of freedom, e.g. a continuum of states, that represent channels for decoherence. A

pulse of finite width will excite coherent oscillations within a small energy-window. A δ(t) linear response

kick instead will excite towards all non-forbidden eigenstates as the sharp pulse includes all frequencies.

Occupation is the result of decoherence disturbing the polarization, where ’effective’ decoherence via many

channels can in practice also result from the large Hilbert space of correlated particles. External pertur-

bations or absorbing boundaries [136] transform δ(ω)-like spectral peaks, characterizing the closed system

eigenstates, into resonances with finite lifetime and therefore introduce concepts such as spontaneous

emission or vibrational relaxation.

electronic system, which is the concept behind strong light-matter coupling in cavities. If we

instead send the box to infinity [14, 137], define absorbing boundaries [136] or assume that

the photonic system acts merely as an energy accommodating bath, the electronic system

will have been permanently relaxed to the ground state. In general, spectral features and the

anharmonicity of the bath define how quickly polarization dephases into occupation which in

turn decays via dissipation as a consequence of energy or particle transfer between the specific

subsystem of interest and the surrounding system. Therefore describing a large Hilbert space

does not always demand the inclusion of external decoherence to effectively thermalize a

state, motivated in P3 and illustrated by the spontaneous emission process in P6 and P7. It

is much more the consequence of focusing our attention on a subset of the system, may it be

via theoretical projection or selective measurement. The feature of thermalization in closed

systems is known as many-body thermalization and prethermalization, i.e. the system can
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be (partially) characterized by thermodynamic quantities such that the dependence on the

initial state is seemingly erased [138]. Exclusions are situations were many-body localization

appears which effectively permits thermalization.

5.1.1 Quantum electrodynamic density-functional theory (QEDFT)

Density-functional theory is nowadays an essential tool in the set of methods to capture ground

and excited state features for molecules and extended systems. The basic idea is to describe

the interacting system, usually subject to the high-dimensional wavefunction Ψ(r, r2, r3, ...), in

terms of a strongly reduced quantity (see Fig. 7), the density n(r). This would render the latter

approach tremendously less expensive. And indeed, Hohenberg an Kohn [139] found that a

unique bijective mapping between the electronic ground-state density n(r) and the many-body

electronic wavefunction Ψ(r, r2, r3, ...) exists. Let us briefly illustrate this elementary concept

before we extend it to include the photonic degrees of freedom. This and following [140–142]

proofs are based on two assumptions that have to be fulfilled. The first is the N-representability

which ensures that always an antisymmetric normalizable N-electron wavefunction as solution

to the Schrödinger equation exists that leads to the density n = 〈Ψ|n̂(r)|Ψ〉. Our second

condition, the v-representability, has to guarantee that there exists an external potential

(e.g. the nuclear potential binding the electrons) for which we obtain exactly this density.

While fringe cases exist where those situations are not met, mostly due to specific boundary

problems, for most physically relevant examples the bijectivity conditions are fulfilled such

that

EΨ = (T̂ + v(r) +
1

2

∑
i 6=j

1
|ri−rj |)Ψ with v ↔ Ψ

Ψ↔ n(r) = N

∫
dr2...drNΨ∗(r, r2, ..., rN )Ψ(r, r2, ..., rN ) .

We can therefore express the wavefunction uniquely in terms of its density Ψ[n] for a given v,

where v is unique up to a constant. This by itself is quite amazing but the true beauty of this

approach manifests once we realize that at no point during this proof the Coulomb interaction

among electrons 1
2

∑
i 6=j

1
|ri−rj | played any role. So a system with a different local potential,

lets call it Kohn-Sham potential vKS , but without electronic Coulomb interaction will be able

to reproduce the same density, thus the same wavefunction Ψ[n] and all observables, if we just

know what the difference between the local potentials vHxc = vKS − v is. This difference is

called Hartree-exchange-correlation potential (Hxc) and it should intuitively somehow mimic

the effect that the electronic Coulomb interaction had for the interacting system v for the

non-interaction (Kohn-Sham) system with vKS . If we succeed, we can solve a non-interacting

system, a rather trivial task, instead of the exponentially complex interacting system. The

Hartree-component is indeed trivial vH(r) =
∫
dr2

n(r2)
|r−r2| and we quickly realize that it boils

down to the question if we can find the exchange-correlation component vxc. In practice,

obtaining the exact vxc is of similar complexity as exactly solving the Schrödinger equation

and any practical vxc will be of approximative nature. Most commonly, this approximation
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Figure 7: Computational complexity of various common descriptors (describing the system). Despite

its simplicity and therefore computationally convenient handling, the density uniquely reproduces the

wavefunction (up to a global phase). The same is not true for the other descriptors as their mapping is

not surjective without further conditions (see e.g. RDMFT theory).

manifests as an abstraction of the solution of the (homogeneous) electron gases to our system

of interest (see also Sec. 7). This approach brings with it various flavors (a vast amount

of different vxc derivations, ensemble, multicomponent and various other DFTs), subtleties

(degeneracies, convergence, ...) and decades of active research and we therefore refer the

reader to [95, 141, 143] and references therein. Similar proofs for the time-dependent situation

based on most commonly a Taylor expansion [141, 144] allow us to similarly define a time-

dependent density-functional theory (TDDFT). Let us note here that the non-interacting

Kohn-Sham system is just one special and convenient choice. The auxiliary system could

also feature an arbitrarily adjusted interaction, e.g. we could assume a system with weak

kinetic energy (Coulomb dominating) and the above proofs would remain valid. Following

this direction one can approach the problem of static correlation with DFT, a rather small

but active domain of research (see e.g. [145] and references therein) that could similarly proof

interesting for the following QEDFT. Note that the wavefunctions and eigenvalues of the

auxiliary (e.g. Kohn-Sham) system are not identical with the interacting solutions even if we

would have had the exact vxc. The Kohn-Sham eigenvalues for instance represent the effective

single-particle energies (bands in solids) but their energy difference is not providing us with

the excitation energy of the correlated system (band gap of a solid). Nevertheless is it possible

to obtain the correct values (see derivative continuity and adiabatic connection [141]), gain

physical insight (the ionization potential is for example given by the Kohn-Sham eigenvalue

of the highest occupied orbital) and utilize the Kohn-Sham solutions as perturbative ansatz

if we do not know how to express an observable in terms of a functional of the density. This

fact causes an immense amount of confusion about the applicability of DFT.

The photonic system attributes now an additional dimension to this problem and again one

can proof as before the bijectivity of the system. QEDFT was initially designed for the

time-dependent and relativistic situation [146, 147], received subsequent improvements [9,

80] and a ground-state proof similar to the Hohenberg-Kohn theorem was presented by M.

Ruggenthaler [148]. The bijective mapping describes a unique relation between external

potentials (jext,Aext) and internal variables (A, j) of any system. Again, we can get the
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same internal variables by solving a (non-interacting system) with the effective Kohn-Sham

potentials (jKS ,AKS) such that (jext,Aext) ↔ (A, j) ↔ (jKS ,AKS). It becomes apparent

that QED is a theory of vector potentials and currents, therefore extends into the domain of

current density-functional theory [141, 149]. Taking the non-relativistic limit and in addition

the long-wavelength approximation, we end up however in the same DFT framework as before

(jext, vext) ↔ (q, n) ↔ (jKS ∝
∫
drrn(r), vKS) with a density to potential map. The mode

displacements q are trivially known as solution to Maxwell’s equations with the system plus

external current jKS (coherent states) [9, 80].

Consequentially, the non-relativistic cavity QEDFT problem can be solved once we obtain the

exchange-correlation potential vxc, as the Hartree, now mean-field or Maxwell vHxc → vMxc,

contribution is known analytically in the mode-expanded form (P4,[10, 80]). The pho-

tonic xc-potential vpxc thus mimics the effect of interactions among charged particles via the

transversal fields which manifests via (virtual) photon excitations q̂R̂ and direct interac-

tions (λ · R̂)2 ∝ r2
i + rirj 6=i. The Coulombic xc-potential does the same for the longitudinal

fields. The xc-potential (of longitudinal and transversal origin) is as usual the non-trivial

hurdle to take as it behaves highly non-linear and has to fulfill a given set of exact conditions

[150]. First attempts to obtain a photonic xc-potential vpxc followed the optimized effective

potential (OEP) approach [96, 151] on an exact exchange level [10] (see following section

for more details). The OEP emerges from a response equality equation that determines vxc

self-consistently depending on a self-energy Σxc(rt, r
′t′) that encapsulates a given order of

perturbation theory (for more details see P4 and [10, 152]). We improved in Publication

P4 the algorithm to a point that it enables for the first time real-space ab initio calculations

for realistic molecules. This represent the first results that demonstrate how the ground-state

electronic density, and thus chemistry, is altered inside the cavity. Sec. 5.1.2 and P5 will

furthermore highlight a Kohn-Sham construction that is based on the polaritonic quasipar-

ticles rather than the bare matter and photonic components. QEDFT developed within the

last few years into a highly beneficial approach for QED chemistry due to our recent con-

tributions. As presented in Sec. 7, the current perspective to develop an xc-potential based

on the homogeneous electron gas and the direct application of QEDFT to the experimental

setting of [43] will illustrate the potential that QEDFT inhibits. For systems with substantial

static correlation, e.g. stretched molecules (see P3), the high amount of correlation will be

non-trivial to capture with any Kohn-Sham based QEDFT ansatz. In this regime, a multi-

reference ansatz or the Quantum Electrodynamic Reduced Density Matrix Functional Theory

[99] might deliver more satisfying results with the drawback of increased computational cost.

Let us clarify at this point why the following Sec. 5.1.2 addresses aspects of uttermost im-

portance. Ground-state QEDFT allows us to capture polarization dependent changes in the

density that originate from the influence of the cavity as presented in P4. The interest in

strong light-matter interaction is however dominantly driven by the design of the excited

and correlated polaritonic states. To obtain the latter, a time-dependent DFT framework

similar to [153, 154] or P5 is demanded. The in P4 applied OEP can be similarly phrased

as time-dependent theory [10] but is in its current form computationally intractable for re-
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alistic systems, even if numerical instabilities would be covered [155], and foremost lacks the

polaritonic nature without further additions that we present in Sec. 5.1.2 and App. 10.1. The

quantum description of light-matter interaction by means of QEDFT will therefore funda-

mentally depend on the clever design of functionals that allow a time-dependent evaluation.

Our conclusions illustrated in Sec. 5.1.2, App. 10.1 as well as the polaritonic approach in

P5 manifest the first satisfying realizations that address this demand.

5.1.2 Spectral information and tilting out-of equilibrium

Obtaining the characteristics of excited states demands in many quantum chemical frame-

works, e.g. DFT, coupled cluster, statistical approaches, a formulation which is intrinsically

time-dependent. In density-functional theory, two major approaches are used, the explicit

propagation of the system with subsequent Fourier analysis and the Casida linear response

framework. Explicit propagation in time has the major advantage that it is general in the

sense that we can describe also systems out-of-equilibrium and subject to losses (e.g. via loss

of electrons that are emitted from the simulation box). The drawback is that it is typically

computationally more involved than the Casida approach for small systems which will deliver

the excited states of the system in equilibrium [95].

Both approaches have been realized in the classical limit, i.e. the explicit Maxwell-Kohn-

Sham solver was developed by Jestädt et al. [153] which is conceptually similar to the classical

Casida approach by Flick et al. [154]. A mode reduced description of Maxwell’s equations al-

lowed to furthermore consider the classical component of vibrational interaction [156]. In the

classical (Maxwell) limit, the first (n = 0) polariton will be qualitatively captured for mod-

erate coupling strengths [154]. Stronger coupling or higher lying polaritonic states demand

however a quantum description (see e.g. P5 or [115, 154]). So far, all those approaches suffer

from the lack of suitable exchange-correlation potentials and the for response constructions

demanded xc-kernels, i.e. the latter connects between the response of the Kohn-Sham and

many-particle system (see e.g. [141, 154]). One specific construction might however provide

a very interesting and apparently well performing approach to tackle the lack of potentials

in QEDFT, the dressed Kohn-Sham construction presented in P5 and illustrated in Fig. 8.

This approach, in contrast to the QEDFT Kohn-Sham ansatz, does not assume that light

and matter are uncorrelated in the auxiliary system. It takes the set of N-fermionic and

M-photonic modes and rephrases the system in terms of quasiparticle orbitals where each

electron is dressed by M artificial photonic modes such that φ(r, q1, ..., qM , t) describes a po-

laritonic orbital of the auxiliary Kohn-Sham system (for a more detailed explanation please

see P5). The neat idea behind this is that the strong light-matter interaction is then al-

ready part of the Kohn-Sham orbitals. The local exchange-correlation potential does then

merely take care of the ’polariton-polariton’ interaction, thus the interactions between the

dressed particles. The simplest (exchange-only) approximation does already improve over its

competitors TDOEP and the non-dressed QEDFT construction. Conceptually the usage of

dressed particles is by no means novel (see e.g. the extensive literature on quasiparticles and
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Figure 8: Schematic of the dressed Kohn-Sham construction. Standard Kohn-Sham QEDFT is based

on the factorization of fermionic and bosonic components, correlation appears though vxc in adjusted

single-particle orbitals φKSl (r1). By expanding the space of the physical wavefunction, i.e. mapping from

physical modes p to auxiliary modes q, and subsequent DFT mapping, a dressed Kohn-Sham construction

is build in which dressed (polaritonic) single-particle orbitals represent the basis. This does however

enforce special constrains for the symmetry to enforce physical solutions.

the polaritonic operators of macroscopic QED [72, 73]) and yet their application for strongly

light-matter correlated systems, such as transmons in the quantum circuit and quantum infor-

mation community, could represent the most beneficial path. The non-perturbative character

of the light-matter treatment (merely the ’polariton-polariton’ interactions have to be approx-

imated) is especially interesting when extremely strong couplings of order g/ω = λ/
√

2ω ∼ 1

are reached [32].

Patchwork approaches that utilize the by first-principles methods solved electronic and nu-

clear structure and use those parameters as input into a limited basis or quantum optical

models [118, 119, 157] allow a quick investigation with the help of decades of quantum chem-

ical methods. As suggested in section 4.3 and P2, this will however remain intrinsically

perturbative and furthermore demands special caution as features such as coherent shifts,

gauge and translational invariance can be easily missed and might provide a tainted or wrong
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conclusion. Other first-principles techniques not based on density-functional theory, such as

the equation-of-motion coupled cluster for electron-photon correlated systems [115, 116] pro-

vide promising alternatives that will complement the highly efficient time-dependent QEDFT

calculations.12 The relatively well controlled perturbative order of coupled cluster and many-

body perturbation theory will prove very beneficial as the advantage and on the same hand

disadvantage of DFT is the rather non-perturbative and non-linear design of approximations.

The TDOEP equation on the other hand is a special case and exclusion from that rule. In the

following, we want to use it to illustrate how perturbative constructions should be designed

to capture the essentials of correlated light-matter dynamics.

Many-body perturbation theory and spectral features in the TDOEP framework Many-

body perturbation theory (MBPT) is an instructive and extremely successful tool that often

allowed to tackle existing problems, e.g. the band-gap problem in DFT for extended systems,

due to its clear yet by no means trivial way of construction and solution. For a detailed

introduction we refer the reader to [96, 160, 161] and references therein.13 Two very similar

constructions are of special interest to us, the first is based on the equation of motion for the

one-body reduced density matrix, known as the Bogoliubov–Born–Green–Kirkwood–Yvon

(BBGKY) hierachy, and the second builds on the one-body reduced Green’s function, known

as Martin-Schwinger hierarchy.14 As a consequence of the structure of the Heisenberg equa-

tion of motion, each order of the given descriptors couples to the next higher order and is

12 Please notice that the cluster excitation operator ansatz eT̂e+
∑
i,j,... ci,j,...â

†
i â

†
j ... suggested in P2 can only

produce uncorrelated eigenstates as we can separate the exponential in light and matter excitations, thus

explicit coupling terms in the exponential are necessary. The harmonic oscillator basis becomes indeed

problematic for O((â†)3) [158]. Using the above form would produce the optimal mean-field solution (al-

lowing for displacement and squeezing of photonic modes) that might be interesting in the thermodynamic

limits (see e.g. [130]) but will lack the so interesting quantum correlation effects. Another beneficial aspect

of coupled cluster is size-extensivity, i.e. the feature that doubling the system without introduction of

interaction (a far more specific condition in the cavity P3) leads merely to double the energy (conveniently

enforced by the exponential ansatz). Density-functional theory is sharing the same size-extensivity when,

as commonly done, constructed from localized single-particle orbitals [159], in contrast to a restricted CI

expansion.
13 The concept of dynamical mean-field theory (DMFT) (structurally similar to MBPT) in which an impurity

problem is solved to describe strong local interactions can be found in [162] and investigations using this

technique are currently perceived by the community.
14 The major difference between both is, that BBGKY remains time-local, thus scales much more favorable

than the time non-local Kadanov-Baym equations, a clear advantage for longer propagations. This is related

to the fact that the Green’s function gains an advantage in spatial dimensionality as it absorbs information

into memory terms leading to the highly unfavorable scaling in time. This problem can be diminished by

the Generalized Kadanov-Baym approximation (GKBA) [163]. However, applying the GKBA effectively

reduces the spectral information during propagation to a single Hartree-Fock SD and thus limits this

ansatz quite substantially in its predictability. The Kadanov-Baym equations demand merely the handling

of spatial one-body objects (two-dimensional matrices such as G(r1t1, r2, t2) and Σ(r1t1, r2, t2)) instead

the BBGKY hierarchy implies a quick increase in spatial dimensionality ρ(r1, r2, t), ρ
(2)(r1, r2, r3, r4, t), ...

up to the limit of factorization. It is indeed possible to show that BBGKY and GKBA in a given level of

approximation are of similar form [164, 165].
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thus subject to a hierarchy that extends to order N when N particles are present. This is

now intuitively even more expensive than solving the Schrödinger equation and an applicable

theory is merely created if we somehow limit the number of higher-order correlators. For

example, we could decide to propagate only one- and two-body reduced density matrices and

factorize any higher order to express it perturbatively as one- and two-body correlators. This

gives rise to various different levels of approximations, some conserve physical restrictions,

such as the most trivial Hartree-Fock/exact-exchange approximation, and others do not [96].

How the BBGKY hierarchy can be applied to the light-matter problem is illustrated in P7 and

references therein while the Martin-Schwinger hierarchy was fundamental in the construction

of the OEP [10], P4 and P5 and both have a long standing history in QED. Indeed, their

close relation to the system-bath approach (density-matrix descriptor) provides a convenient

framework to connect the mentioned unitary methodologies in the context of an open system

as mentioned in Section 4.2.1, efforts in this direction are under development.

One essential aspect that distinguishes the pure electronic structure evaluation from the

problem at hand is that the photonic correlators (the photonic one-body reduced Green’s

function Dkξk′ξ′(t, t
′)) have to be considered in addition to the pure matter correlators (the

electronic and/or nuclear propagator G(rt, r′t′)). This gives rise to a coupled set of integro-

differential equations, the Kadanov-Baym equations, for Green’s functions and the coupled set

of differential equations for the different correlators and cumulants in the BBGKY hierachy.

The TDOEP ([10], P4) now features the lowest possible ansatz to this problem, the exact

exchange solution, where the photon propagator is not ’updated’ by the light-matter coupling.

The fluctuations of the photonic field are thus assumed completely unaffected in time. It is

instructive to investigate when this approximation breaks down to understand why a proper

consideration of the photonic fields becomes essential for the most interesting situations and

why the second Born approximation in P7 performs superior. To do this, we will perform

here a simple trick. We can keep the structure of the TDOEP equations15, and thus to a

large extent their computational complexity, if we would already know how the correct D(t, t′)

should look like instead of the bare D0(t, t′). For the investigated 2-level ([10], P5) system at

hand, we can utilize the RWA to obtain a good estimate for the correlated wave function and

can then trivially obtain D(t, t′) (see Appendix 10.1). The given correlator is then included

in the TDOEP exact-exchange equation which approximately promotes it to the full GW or

self-consistent Born solution (here named GWRWA). This level of diagrammatic expansion is

indeed consistent with the RWA as shown in [167]. Figures 9, 10 and Fig. 1 of P5 clearly

illustrate now that on-resonance, the exact exchange approximation GW0 of the TDOEP

equation introduces artificial beatings while the GWRWA solution very accurately reproduces

the dynamics, even for longer times and stronger coupling. The reason is simply that the

15 This can be motivated by the resummation of topologically unique diagrams arising from Wicks theorem

[96] into many-body propagators G0 → G. Performing the same procedure for the interaction potential,

the response function or polarization, the vertex correction and the self-energy leads to Hedin’s pentagon

and the famous GW approximation [96, 160, 166].
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Figure 9: Weak coupling on-resonant performance of bare (GW0) and RWA dressed (GWRWA) TDOEP

equation in relation to the exact solution for the relative occupation of a 2-level system with t = 0.5, ω = 1

in atomic units and a sudden quench of the light-matter coupling λ(t) = 0.01θ(t−0+). The wrong beating

of the bare TDOEP, which is getting increasingly worse for longer times, see also Fig. 1 of P5, is almost

completely cured by the GWRWA.

Figure 10: Strong coupling on-resonant performance of the RWA dressed (GWRWA) TDOEP equation in

relation to the exact solution for the relative occupation of a 2-level system with t = 0.5, ω = 1 in atomic

units and a sudden quench of the light-matter coupling λ(t) = 0.1θ(t− 0+). Even for stronger interaction

the RWA dressed TDOEP performs excellent. Numerical comparison with full GW calculations performed

by Niko Säkkinen showed very high consistency.

photon fluctuations are now (approximately) adjusted in time according to the polaritonic

eigenstates. It becomes apparent that strong (but not ultra-strong) light-matter correlation

might be satisfyingly captured by the GW (or even the second Born P7) approximation.

When extending into even stronger coupling, the concept of dressing the basic single-particle

orbitals (as in the dressed Kohn-Sham framework or implied in [168]) could be used, following

the conceptual idea behind strongly correlated methods such as the Gutzwiller wave function

ansatz [169]. One should however be conscious that the employed approximation might

break energy and momentum conservation if not derived consistently (e.g. variationally).

The derivation of accurate self-energies that remain conserving is a non-trivial problem [96,

170]. The most common diagrams Hartree-Fock, second Born, and GW are conserving. The

according conditions in the photonic context have been recently investigated [170]. It was

shown that the photonic GW0 TDOEP, and even the here presented GWRWA, obey the

form W(r1t1, r2t2) = W (r1 − r2)δ(t1 − t2) + ri1D
ij(t1, t2)rj2 and therefore fulfill energy and

momentum conservation as well as the zero-force theorem. The latter states that internal

interactions should not emit a physical force on the full system. This opens a manifold

of direct improvements over the bare TDOEP [10] as any dressed photon propagator just

dependent on time will be similarly conserving as the bare propagator. Specifically, we can

use as above the polaritonic eigenstates by e.g. using QEDFT Casida on mean-field level [154]

to construct an approximately dressed photon-propagator D(t1, t2) and subsequently solve

the OEP equation with this dressed propagator. This will approximately shift the excitation
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poles D(ω) = 1
D−1

0 (ω)−Π(ω)
by the full polarization Π(ω) such that excitations appear at

the poles of the quasiparticles (polaritons). Simplifying on the other hand the TDOEP

equation itself towards the time-dependent Krieger-Li-Iafrate (TDKLI) approximation [171]

is rather unattractive. The TDKLI equations feature large artificial self-interactions and such

violations of the zero-force theorem [172]. As the light-matter interaction is mediated via

local polarizations, the flaw of the KLI approximation for exactly those local polarizations

[152] is disqualifying time-dependent propagations and massively limits the performance of

KLI for light-matter correlated systems.

The role of decoherence and loss in cavity QED In our attempt to solve the Schrödinger,

or more precise Pauli-Fierz, equation for the correlated setup composed of nuclei, electrons

and photons, we naturally remain within a unitary system. Every physical system of interest

(smaller than the universe) is however subject to ambient conditions such as exchange of par-

ticles and energy. The very same is true for the cavity where photons scatter into free-space

modes, the lower the Q-value the quicker the loss. Observed from another perspective, the

cavity and its included matter system will modify any external photon that is put into the

cavity and the output of the cavity includes precious information about the correlated system

at hand. The description and utilization of this perspective is known as input-output theory

[173–176] and can be similarly beneficial for spectroscopy, photonic devices and information

theory. A very illustrative example is the photon blockade effect [177] in which a single photon

inside a cavity is blocking the entrance of the next photon. This appears as a consequence of

the anharmonic energetic spacing of the polaritonic state consisting of an atom and the cavity.

Within this work we focus however on the dynamics of the matter-system inside the cavity.

As mentioned in Sec. 3, nanoplasmonic devices feature so far rather small Q-values (Q < 102)

and therefore lifetimes on femtosecond scale. Extremely high-Q optical cavities (Q > 108)

with (typically) much weaker coupling, e.g. the whispering gallery modes of microresonators,

can on the other hand even exceed nanoseconds [19, 20, 27, 28, 178]. The very same effects

appear if we consider theoretically merely a subset of the system, e.g. a limited domain of the

electronic Hilbert space. Vibrational, rotational and other degrees of freedom will then act as

external bath that can accommodate energy and phase-information. In this sense, everything

of the universe that is not considered explicitly is then effectively projected (in the sense of

Sec. 4.2.1 and 5.1) into a bath. Theoretically, dissipation (e.g. the occupation of photonic

modes) could be considered via absorbing boundaries or quenched trajectories. The exterior

affecting the subsystem signalizes that even a lossy cavity will always feature the possibility

to host a photon and first theoretical investigations showed that this will merely quantita-

tively change our conclusions [180]. Dephasing and the related thermalization are active and

intricate subjects of research and their consideration vary strongly depending on the system

of interest and the theoretical perspective. The simplest, yet often applicable, approach is to

consider unitary dynamics within an effective lifetime τ that will be defined by the loss of
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Figure 11: Illustration of common decoherence times for an electronic subspace that we consider as our

system of interest Ψs. In the absence of conical intersections, the nuclear system is typically strongly

detuned from the electronic system due to the mass-ratio me/Mp (Born-Oppenheimer approximation).

The rate of interaction scales with the spectral overlap (minimal detuning ∆ωxy = ωx−ωy) and the speed

of oscillations. The cavity itself is partially transmitting (in and out) according to the Q-value. Isolated

exchange among few states, e.g. a resonant photon-matter interaction with a single mode, can remain

largely coherent. The interested reader can find an extended yet introductory discussion in Sec. 8.2 of

[179].

coherence. Figure 11 illustrates common interactions and their according decoherence times.

This approach was chosen in P3 to debate how decoherence would affect energy transfer in-

side the cavity and we obtained indeed quite similar conclusions as predicted from Markovian

rate-equations [57]. We utilized time-scales of 15 − 200 fs, motivated dominantly by the

decoherence via nuclear vibrations but similar considerations can happen for the photonic

lifetimes. This approach, while extremely simplified and phenomenological, can be applied

widely and is not restricted to our method of choice. We might find however situations where

the decoherence is essential, e.g. they compete with the timescales of reactions, or the bath

itself is of interest. Under those conditions various possibilities arise based on Sec. 4.2.1. To

which extent memory can be omitted is characterized by the bath-bath correlation function

which indicates if the bath itself dilutes information quickly, instantaneously in the Marko-

vian approximation, or in contrast might posses a highly peaked spectral structure implying a

coherent exchange between system and bath (for details see e.g. [88, 175, 179]). Methods that

build around a density-matrix or Green’s function technique can be extended relatively easy

to consider decoherence (see e.g. [55, 181]). In addition, similar constructions for QEDFT

can be designed starting from the OEP equation by coupling to a Caldeira-Leggett bath (pro-

posed in [80]), following for example a stochastic approach [182] or utilizing the connection to

density matrix formulations [183]. In this sense, while state-of-the-art QEDFT is applied to
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purely unitary systems, the generalization will be merely a matter of time. Recall also that a

large Hilbert space will to a large extent mimic the thermalization/decoherence of a specific

(measured) subsystem state. The present realization of QEDFT is capable to describe the

full correlated motion of electrons, nuclei and photons for finite but realistic systems (see e.g.

[153]). ’Opening’ QEDFT is therefore much more tailored to account for degrees of freedom

that might be hard to explicitly describe, such as for example the vibrations of a solvent.

5.2 Collectivity in ensemble light-matter interaction

So far we have focused our attention on a single instance of a system, e.g. a single molecule

undergoing a reaction. Some experimental realizations describe indeed strong light-matter

coupling between a single molecule and the cavity while others couple a dilute gas or fluid

to the cavity. Fig. 12 illustrates the coupling of such an ensemble of approximately identical

and isolated molecules to the cavity. The latter leads to an effective amplification of light-

+ + + +

Figure 12: Schematic of col-

lective light-matter coupling

of a dilute ensemble (no

Coulomb molecule-molecule

interaction). The Tavis-

Cummings model with N

molecules features a manifold

of N−1 dark states which are

of antisymmetric character

in the transition-dipole and

decouple from the mode, i.e.

they do not hybridize. In

addition, two bright polariton

branches (also referred to

as superradiant) exist which

obey a hybridization splitting

∝
√
Nλ.

matter coupling and appears to drive the presently existing cavity reactivity experiments

that provide an exciting perspective on chemical reaction steering. The collective interaction

does not just scale the polaritonic splitting and introduces dark states, it furthermore also

results in modified nonequilibrium features such as the burst-like coherent emission of photons

(superradiance) [184]. In Section 4.1 and 4.3 we briefly mentioned how the Born-Huang

expansion relates to the dominantly applied Tavis-Cummings models, in which the Dicke

model is approximated by the RWA. Those models drive the current perception of the dynamic

of a weakly concentrated set of emitters in gaseous, liquid and solid-state systems. This

resulted in the recent years in first crossovers between quantum chemistry and quantum

optics (e.g. [118, 119, 130, 157] and many more). As emphasized in Sec. 4.3.1, P1and P2,

the intrinsic assumptions to those models should be considered with caution when applied

outside of the regime of e.g. dilute gases of atoms as the number of coherently participating
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molecules might then be much smaller [185]. In an attempt to nevertheless accurately describe

an ensemble without deviating from our first-principles conception, we investigated possible

approaches utilizing the quantum-classical correspondence. This approach has a long history

in quantum optics but especially molecular dynamics and features an excellent scaling in

terms of system size. In recent efforts the here introduced concepts have been applied to

ensembles of molecules [186] (superradiance already appears within a mean-field description)

and the here envisioned approaches have already seen partial realization.

5.2.1 The Quantum-Classical Correspondence

A toolbox tailored to tear down the scalability problem?

Although we often speak of quantum and classical electrodynamics as distinct domains of

physics, the latter seen as the limit of light-matter interactions described by Maxwell’s equa-

tions, in practice this separation is often non-trivial and can be misleading. Indeed a wide

range of mixed quantum classical, from here on referred to as semiclassical, approaches orig-

inated from quantum optics [187] and proved to be an essential pillar of electron-nuclei dy-

namics in the past 50 years (see e.g. semiclassical, mapping and surface-hopping methods

[63, 188]). Let us briefly introduce the conceptual idea behind those and connect to the cor-

responding application in P6 and P7.

They are based on the idea of mapping all operators belonging to a given Hilbert space onto

classical phase-space functions f̂ ↔ f(χ), thus creating an isomorphism between Hilbert space

and phase space. It can be shown [187, 188] that this bijectivity can be established under

restricted conditions.16 One approach is the so called Weyl quantization which establishes a

correspondence by introducing a quantization kernel ŵ(q1, ..., qN , p1, ..., pN ) such that

f̂ =

∫
dq1√

2π
...
dqN√

2π

dp1√
2π
...
dpN√

2π
ŵ(q1, ..., qN , p1, ..., pN )f(q1, ..., qN , p1, ..., pN ) .

Often the set of coordinates q1, ..., qN is represented in short in a collective notation Q.

Different choices for ŵ are possible, given they fulfill a set of conditions (e.g. hermiticity, see

[187, 188]), as different selections of operator orderings are valid. One especially important

choice is the Wigner-transformation as quantization kernel, being self-dual [187], such that

expectation values can be calculated in a straight-forward manner

tr(f̂ ρ̂) =

∫
dQ
√

2π
N

dP
√

2π
N
fW (Q,P )ρW (Q,P ) .

In the given context, we are interested in light-matter coupled systems, such that the den-

sity matrix ρ̂ and the corresponding Liouville or von Neumann equation i~∂tρ̂(t) = [Ĥ, ρ̂(t)]

includes electronic(-nuclear) and photonic variables. A manifold of possibilities open up now

16 This approach can be rendered sometimes more convenient by switching basis to a set of new operators

that can be easily associated with classical phase-space variables, e.g. the harmonic displacement operators.

This procedure will give rise to the LSC and FBTS procedure in P7.
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how we could tackle this problem within the given Quantum-Classical context and with it

different limitations and drawbacks of our approach. So far, no separation of the Hilbert

space and the associated Liouville space in which ρ̂ is represented has been done. As the

fermionic subspace is somewhat different in nature (mass, energy-scale, symmetry, dissipa-

tion time-scale), it could be beneficial to handle fermionic and bosonic components differently.

In the following, we investigate two different strategies, 1) we try to explicitly separate the

fermionic and bosonic dynamics, yet retaining them interacting, and perform the above cor-

respondence in just the bosonic subspace (partial Wigner transformation). And on the other

hand, 2) include the fermionic quantities into the correspondence by mapping their discrete

eigenstates (hard to express in terms of classical phase-space variables) onto discrete excita-

tions of a set of harmonic oscillators |n〉 → |00, ..., 0n−1, 1n, 0n+1, ...〉 (clear relation between

excitations and phase-space variables) in combination with a subsequent phase-space map-

ping.

In practice, the starting point for both is a partial Wigner-transformation of the N bosonic

modes with X = (Q,P ) 17

ρ̂W (X) =

∫
dZ
√

2π~N
eiP ·Z〈Q− Z

2
|ρ̂|Q+

Z

2
〉; trbosonic(ρ̂bosonic) =

∫
dX
√

2π~N
ρW (X) .

We therefore express the density matrix as quantum operator in the fermionic subspace which

also depends on classical phase-space coordinates ρ̂ → ρ̂W (Pbosonic, Qbosonic) = ρ̂W (X). The

evolution of this object in time is then described by the Quantum Classical Liouville Equation

(QCLE) exactly if the interaction between fermionic and bosonic subsystem is purely bilinear

[189].18 The QCLE reads

∂tρ̂W (X, t) = −iL̂ρ̂W (X, t); −iL̂· = − i
~

[ĤW , ·] +
1

2
({ĤW , ·} − {·, ĤW }) (11)

with the partial Wigner transformed Hamiltonian ĤW (X) and the Poisson bracket {., .}. This

is of rather little advantage without further restrictions as our equations of motion posses in

the Liouville space an even larger level of complexity than the Schrödinger equation itself. If

we compare our investigations in this section with the concepts elaborated in Sec. 4.2.1, we

notice how closely related both approaches and subsequent derivations are.19

Following option 1), we could continue performing the mean-field ansatz

ρ̂(t) ≈ ρ̂fermion ⊗ ρ̂boson → ρ̂W (X, t) ≈ ρ̂fermion(t)ρW,boson(X, t) (12)

17 Note that the here selected normalization is symmetric, in contrast to P6 and P7.
18 For nonlinear couplings (e.g. q̂2R̂, a squeezing type of coupling) the operator e−

i~
2

(
←−
∇Q
−→
∇P−

←−
∇P
−→
∇Q), appear-

ing in between operators when partially Wigner-transformed (ÂB̂)W = ÂW e
− i~

2
(
←−
∇Q
−→
∇P−

←−
∇P
−→
∇Q)B̂W , will

lead to higher order terms changing the structure of (11). Alternatively the QCLE can be derived in a

classical limit procedure [189].
19 We suggest the interested reader to embrace the extensive literature that debates subsequent derivations,

e.g. the connection to the Fokker–Planck equations (see for instance [190]).
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which tremendously simplifies the full algorithm as our equations of motion are then solely

coupled by expectation values (traces separate). We therefore have to solve a von Neumann

equation for the fermionic system coupled to the expectation values of the field variables.

The equation of motion of the latter in turn is represented by a classical-type phase-space

equation for the bosonic subsystem coupled to the expectation values of the fermionic system

(see publication P6 for further details). The consequential simplicity comes, as usual, with

substantial drawbacks that we elucidate in P6. Those are the loss of phase-relations and

subsequently interferences between bosonic and fermionic system as well as an incomplete

emission and absorption. The time needed for this incomplete decay to appear (simplified

Ne(t)−N t→∞
e ≈ (N t=0

e −N t→∞
e )e−t/τ ) is however in close agreement with the exact solution

such that one can expect a good prediction of line widths and lifetimes τ , consistent with the

observation for the linear response of a purely Maxwell coupled light-matter system [154]. For

practical purposes an uncorrelated initial state (as e.g. present in our spontaneous emission

setup) should be chosen. A (semi)classical approach seems indeed promising as long as the

number of molecules heavily out-competes the number of photons participating, i.e. single

photon excitations dominate, or the number of photons tends towards the coherent (infi-

nite) limit. If strong photonic fluctuations affect each molecule significantly, the anharmonic

quantum effects deviate from a classical description (recall Fig. 1). Nevertheless including

strongly correlated bosonic modes into the subsystem, effectively defining a polaritonic sub-

system similar to our approach in P5 or the QEDFT method in general, and treating the

remaining bosonic modes as before might still recover many of the strongly correlated fea-

tures.20 This separation of degrees of freedom is conceptually similar to the correlated systems

+ dissipative bath ideology of (non-)Markovian dynamics [194] and might be promising for

future developments yet will be computationally and conceptually more demanding. We sug-

gest and plan to investigate those intersections of QEDFT (e.g. P5) and P6 in the future,

e.g. separating resonant from off-resonant bosonic modes.

When we solve a classical phase-space equation starting from an initial ρW (X, t = 0), we may

very well also represent this initial function in terms of independent trajectories [189] which

we define as the Multi-Trajectory Ehrenfest dynamics (MTEF) approach. The idea is there-

fore that we sample a combination X = (Q,P ) randomly from the initial ρW (X, t = 0) and

then evolve a large amount of those trajectories. Observables are then calculated by averaging

over the set of trajectories ρW (X, t) = 1
Ntraj

∑Ntraj

j=1 δ(Xj − X(t)). It becomes apparent that

the outcome heavily depends on how dense the phase-space is represented by the number of

trajectories and with increasing phase-space, the necessary number of trajectories tends to

increase quickly. We thus have to ensure that observables of interest are densely represented

which may very well lead to hundreds of thousands of trajectories, strongly depending on

the order O(q̂N , p̂M ) of operators involved in the observable of interest. The larger the ef-

fective phase-space of a given observable the stronger will the initial ensemble of trajectories

20 This could also go well in line with conditional dynamics, e.g. to generate a weighted probability distribution

to enforce specific physical effects [191, 192], or we can even exclude classical trajectories of less interest to

reach Fokker-Planck type of dynamics [193].
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be diluted and the higher the amount of trajectories necessary to achieve a reliable predic-

tion. How demanding this criteria can be is well represented by e.g. the G(2) function in

publication P6. Other more advanced methods which are based on coupled trajectories (such

as e.g. [195–197]) need commonly fewer trajectories, with the drawback of a much higher

computational cost for each trajectory itself.

Publication P6 presents how this method is constructed and practically applied. Within

this context, we discuss the relevance of normal-ordering which is of fundamental physical

relevance and demands some additional consideration when constructing observables in the

classical phase-space. How the initial conditions affect the equation of motion and how they

define the spontaneous emission can be very illustratively seen when considering the explicit

solution of the mode-displacement qα, α = kξ in dipole approximation. As a consequence of

the mode-resolved Heisenberg equations of motion (and corresponding Maxwell’s equation)

∂2
t q̂α(t) + ω2

αq̂α(t) = ωαλα · R̂(t)

originating from the Hamiltonian (7) with the full (electronic plus nuclear) dipole R(t) =

−
∫
dr3rn(r, t)+

∫
dR3

nRnnn(Rn, t), n(r, t) being the electronic density, we get via the classical

Green’s function the solution

qα(t) =

∫ t

t0

dt′
sin[ωα(t− t′)]

ωα
ωαλα ·R(t) + qα(t0) cos[ωα(t− t0)] + ∂tqα(t0)

sin[ωα(t− t0)]

ωα
.

Within the mean-field approximation (12), the matter system is purely driven by the local

potential −
∑

α ωαqα(t)λα · R̂. Clearly, if the matter system is resting in an eigenstate with

R(t0) = 0 21 and the photonic modes start with zero momentum and displacement, then light

and matter completely decouple in the mean-field limit. No spontaneous emission can take

place as some form of light-matter quantum effects have to be considered. The exact solution

would feature now two components, (1) that the photonic wavefunction corresponds to the

solution of the quantum harmonic oscillator (represented by a Gaussian in its ground state)

and thus has a probability for nonzero displacements and (2) that this quantum distribution

couples to the dipole operator 〈q̂αR̂〉 and therefore the probability for polarization. The

MTEF approach now repairs point (1) but disregards (2). This way, we allow each trajectory

to posses a set of nonzero qα(t0), ∂tqα(t0) which in turn leads to a non-vanishing qα(t) and

consequentially will enact a force on the matter system stimulating spontaneous emission.

Notice that the rate of spontaneous emission will not be exact as we are lacking (2). Further

details are elaborated in P6.

From the different observables presented in this publication and the fact that we disregard (2),

it becomes apparent that the mean-field limit inevitably leads to the loss of phase-relations

such that no interference effects can be captured. Nevertheless, the rate of spontaneous decay

will not be a constant but features small oscillations that emerge from the Rabi oscillations

21 To be precise, the self-polarization part contributes an additional component that precisely cancels any

generated local MF potential for R(t0) 6= 0 if the combined system is in equilibrium, see e.g. P1.
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and the discrete cavity spectral function (see [67] page 201 ff). Although we lost interference

effects, repairing component (1) allows us to extend classical light-matter descriptions to a

semiclassical treatment in a straight-forward manner that is highly compatible with available

Maxwell-matter implementations based on QEDFT [153, 156] (see Sec. 7).

Let us now come back to the second option, i.e. we rephrase not just the bosonic system in

a classical phase-space but similarly the fermionic system and treat both on equal footing.

This way we hope that we can not just repair (1) but also approximate (2) in a satisfying

fashion. The very convenient Meyer-Miller-Stock-Thoss mapping [198, 199] will render this

procedure much more applicable. Here, the fermionic many-body subsystem eigenstates, pre-

cisely the projector of states, are mapped onto a set of harmonic oscillators, each harmonic

excitation representing one specific eigenstate |Ψe
k(r1, r2, ...)〉 → |01, ..., 1k, 0k+1, ...〉. We can

directly see that this will in principle demand the knowledge of the k’th excited many-body

fermionic eigenstate, something rather rarely available due to the exponential wall of elec-

tronic structure theory. In reality, the wavefunction that we map will be an approximated

object, unless the fermionic subspace is very limited such as in P7.22 Depending on how we

specify this mapping, e.g. forward and backward propagation treated differently and how

we approximate consecutively generated phase-space equations of motion, we can build a hi-

erarchy of approximations. In P7, we focus on the linearized semiclassical dynamics (LSC)

and forward-backward trajectory solution (FBTS) (for further details we refer the reader

to P7 and the citations therein).23 The propagated classical equations of motion in phase

space quite consistently reproduce the spontaneous emission process and are even capable to

capture interference features, although limited to qualitative agreement. Interestingly they

give rise to a rather large overestimation of beyond RWA features, illustrated by the bound

photon-peak in P7. While this approach provides overall a more desirable performance, its

application to realistic systems might be far more demanding than performing the similar,

rather comprehensible step, in the MTEF approach.

22 When handling this approximated wavefunction, we have to consider the fact that available standards come

hand in hand with a set of implications. Configuration interaction provides a wavefunction that can be

used as normal but with rather high computational effort in relation to its accuracy, it is further not size-

consistent. Coupled cluster, the ’gold-standard’ of quantum chemistry, provides a rather accurate wavefunc-

tion with the drawback that Hilbert space and corresponding dual-space are no longer trivially connected

by hermitian conjugates but represents a bi-orthonormal system with |Ψe
cc,k〉 = R̂keT̂ |Ψe

SD,0〉, 〈Ψe
cc,k| =

〈Ψe
SD,0|e−T̂ L̂k where L̂k, R̂k are left and right excitation operators and exp (T̂ ) is the excitation operator

that transfers the uncorrelated SD Ψe
SD,0 into a correlated ground state [200]. A (TD)DFT wavefunction on

the other hand is an uncorrelated SD of optimized single particle orbitals. Excitations are thus uncorrelated

single particle excitations.
23 The Wigner-function can attain negative values for excited states which should be considered during the

sampling (see e.g. Fig. 16 in [15]). Alternative quantum-classical phase-space mappings, which are then

not self-dual, exist with their individual strengths and weaknesses. For example the Husimi function is

strictly positive and possesses the Glauber transformation as its dual [187, 188]. In the given publication

(common in the LCS approach), the excited electronic state was sampled from the ground-state Gaussian of

the mapping variables φ(Q,P ) = 2Ne+1

~ e−
1
~

∑Ne
α (q2α+p2α) and subsequently weighted to obtain the electronic

occupation operators in the Wigner-transformed mapping basis |α〉〈α|WQ,P = φ(Q,P )(q2α + p2α − ~
2
) [201].
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We mentioned previously that the tremendous effort in the domain of fermion-nuclei inter-

action resulted in a flourishing field of possible approaches, each comprising opportunities

and drawbacks. A staple of this regime is Tully-surface hopping [63], which allows a tra-

jectory to jump between potential energy surfaces (PES) corresponding to an empirically

motivated hopping rate. While it is not obvious at first glance how to develop this technique

for the photonic interaction, it can be indeed derived by following the cBO approach (see

Sec. 4.3 and [107]). The electronic system is considered to adjust instantaneously such that

we can solve the electronic system with a parametric dependence on the nuclear coordinates

R̂n → {Rn} and the photonic displacements q̂α → {q}. The PES’s depend now on both co-

ordinates εl(Rn, q) with an electronic wavefunction Ψe
l (r, {Rn}, {q}). Photonic and nuclear

coordinates move then within the cBO approximation adiabatically on this surface

Ek,lΦk,l(Rn, q) =
[
− 1

2

∑
i

∇2
Ri

+
1

2

∑
α

∂2
qα + εl(Rn,i, q)

]
Φk,l(Rn, q) .

It is thus trivial to extend the common surface hopping approach to the light-matter inter-

action as displayed in P7. Although often well performing for the electron-nuclear interac-

tion, this approach seems to fail to properly capture the light-matter dynamics. The reason

might be that the cBO describes well the renormalization of the bare states, i.e. captures

Lamb-physics, but it fails for the hallmark of strong light-matter interaction, the polari-

tons (motivated in P2). The combination of good performance and perfect compatibility of

MTEF method (and possible extensions) with the efficient Maxwell implementation renders

the surface hopping thus relatively unattractive and we resigned from further progress in this

direction for the moment. It might be nevertheless interesting to inspect the cBO from the

point of view of entangled classical trajectories as suggestions by Donoso and Martens [202].

Here, the classical equation of motion for the momentum is extended by higher order non-

linearities of the PES ṗ = −∂qε(q) + ~2
24∂

3
q ε(q)

1
ρ(q,p,t)∂

2
pρ(q, p, t) + ... where our distribution

function ρ(q, p, t) = 1
Ntraj

∑Ntraj
j=1 δ(q − qj(t))δ(p− pj(t)) is again represented by an ensemble

of classical trajectories. It becomes apparent that this approach is notoriously unstable as we

divide by a distribution represented by singular values, a problem that it shares with various

other attempts such as exact factorization or conditional wavefunctions [108, 203]. It could

be however that various analytic insights could assist curing those issues [204].

We certainly cannot claim that we presented a complete evaluation of semiclassical and per-

turbative methods for light-matter interaction in P6 and P7 or that our conclusions can be

directly transfered to realistic systems due to the necessary simplicity of the matter system.

We nevertheless provided a route for extensions, benchmarked the performance for a sizable

selection of approaches, gathered interesting insights regarding interference, strong coupling,

and finite size features, and shined light on the non-trivial question which methods might be

worth it to explore further. To which extent those conclusions can be extrapolated to realistic

materials is of course a different question and it is indeed possible that the self-polarization

component omitted here might improve the performance as it provides an additional classical
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self-correlation channel (see also [154]). The simplicity of the few-level system investigated

leads to a small set of resonances, it represents thus an extraordinarily demanding benchmark

for a method to preserve phase-information and it could easily be that for realistic systems

the failures of semiclassical methods become less influential. Due to the structural similarity

between the harmonic representation of photonic modes and the approximatively harmonic

nuclear vibrations many other methods could get beneficially extended. For instance ring-

polymer molecular dynamics, a path-integral representation of the imaginary propagation,

typically improves MTEF in situations of passing non-adiabatic coupling-points [205–207].

However, the failure of the cBO in resonant situations should be considered such that the

right tools are applied to their correspondingly suited problems.

Our approach is directly applicable for realistic systems with the help of the Maxwell-Kohn-

Sham implementation by Jestädt et al. [153] and thus provides us on the spot with the

demanded first-principles predictability to describe recent experimental realizations. Already

in [153], the feasibility to describe the dynamics of nanoparticles from ab initio allows us to

tackle systems that are usually hard to describe with a high degree of detail, e.g. nanotubes

in microcavities [208, 209]. It furthermore allows us to investigate nanoplasmonic cavities,

including their associated scattered light, completely untainted. It therefore extends previous

investigations [153, 210, 211], allowing even for the investigation of possible electron emission

or charge transfer, all subject to longitudinal and transversal quantum field effects. The full

propagation of quantum fields which allows for near and far-field measurements as in exper-

iments in combination with the semiclassical representation provides us with a theoretical

toolset that is incomparably close to experiments and possesses the full predictive power of

time-dependent density-functional theory.

The following section briefly elucidates some of the fascinating effects that arise from the

interplay of light with matter. We focus here on the extensive work of this thesis, setting it

in relation to recent experimental and theoretical developments in the field.
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Setting some spotlights

T
he publications within this work have to be considered in the wider context of the

efforts to understand, predict and utilize strong light-matter interaction for chemical,

physical and quantum informational purposes and selected aspects are illustrated in

Fig. 13. We included already in the previous sections many side remarks related

to the state-of-the-art research. This section will provide a short, not comprehensive, list of

effects that comprise to a large extend cavity QED research.

++ +

Figure 13: Schematic illustration of the various effects of strong light-matter coupling on physical and

chemical features as highlighted below.

Excitation energy transfer Most intuitively, the photo-excitation of a molecular system is

connected to photons, i.e. especially the preparation of an excited state is often performed

by illumination. This subject, known as photo-chemistry, renders itself therefore as natural

starting point for investigations if we want to shape the chemical process with the help of a

cavity environment. Based on many previous investigations (e.g. [212]) not further named

here, recent attempts started in J-aggregates [33, 36, 39, 40] and proved quickly that strong

light-matter interaction was able to significantly shape the energetic structure by creating

strong polaritonic branches. Obtained spectra showed furthermore a domination of emission

from the lower polariton, dissipation channels via e.g. vibrations seemed therefore impor-

tant to quantitatively characterize the dynamics of the molecular ensemble. Still considering

J-aggregates, Zhong et al. [44, 213] observed energy transfer over scales of ≥ 100 nm un-

der strong coupling, remaining effectively distance independent as long as the light-matter

coupling strength was preserved. This extends far beyond the common scales that could

appear following the Förster resonant energy-transfer (FRET) mechanism in which Coulom-

bic (longitudinal photon exchange) dipole-dipole coupling quickly diminishes with ∝ 1/R6.

Illustrated in Fig. 5 of P3 is the crossover between Coulombic and photonic driven regime.

Here, the photonic interaction opened a very efficient energy transfer channel under strong
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coupling. Other investigations based on 2-level systems came to similar conclusions regarding

high exciton conductance [54, 214], efficient energy transfer [57] and furthermore suggest that

the middle polariton, dark states and the vibrational reservoir play a crucial role [56, 215].

In this context, one should remember that photons couple to polarization (coherence). To

move occupation permanently, i.e. non reversible, multiple interactions (multi photon) or

decoherence have to be present.

Driving a chemical reaction by illumination is our daily experience, may it be the syntheti-

zation of vitamin D or the deterioration of a chemical complex as part of our cuisine. And

indeed this subject represents the forefront of current research when utilizing large-scale quan-

tum chemistry approaches. This can vary between a single molecule coupled in a restricted

(one-)photon basis [157] and the many-particle limit where up to 100 molecules are coupled

by the Tavis-Cummings model. The real-time electronic excitations undergo then a photo-

chemical reaction featuring coherence and localization effects [118, 119]. The close similarity

between cavity and Floquet should be naturally interesting to control chemical reactions that

are based on photonic excitations (see Sec. 7 and P2).

Charge transfer The transfer of charge seems more intricate in the cavity context. It has

been shown experimentally however that strong light-matter coupling can also enhance the

conductivity of a molecular extended structure [38]. Considering a tight-binding 2-level chain,

theoretical investigations [167, 216] suggested that the cavity effectively populates the con-

duction band, thus opens an additional channel in the valence band, and therefore increases

the conductivity. A theoretical estimation to which extend charge transfer and subsequent

chemical reactivity could be enhanced inside the cavity was first provided by Herrera and

Spano [59] for a molecular ensemble characterized by few-level systems. We decided to shift

in P3 the focus away from the few-level ensemble description towards a single but accurately

described molecule with the goal to understand the interplay of the competing contributions

that manifest in excitation and charge transfer as well as involved correlations. Fig. 4 of P3

illustrates the conclusion that the hybridization of charge-transfer and polaritonic states, tun-

able by the cavity, opens an efficient channel to transfer charge between Donor and Acceptor.

Most remarkably, this does not merely improve the transfer from Donor to Acceptor but it

can completely flip the direction of transfer, thus rendering the transfer from Acceptor to

Donor suddenly favorable and consequently inverting the role of Donor and Acceptor. Rele-

vant for this flip is the varying contribution of Donor and Acceptor in the middle polariton,

i.e. depending on from which side we approach the middle polariton, the character will change

and thus the preferred direction of charge-flow. The high coherence imprinted by the avoided

crossing is visible in sub-figure (D) of Fig. 4 of P3. This conclusion could be efficiently used

to steer charge transfer and electronic correlation in functional materials.

For example MoS2WS2 heterostructures exhibit ultrafast electron transfer between the MoS2

and WS2 layer around 50fs [217] and by steering distance and light-matter coupling, a similar

effect should be observed. This would not only provide experimental evidence but further

delivers an additional knob for optoelectronic and light-harvesting devices. Integrated devices
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on the nanoscale, featuring a plasmonic antenna [218], could furthermore investigate single

particle effects and provide valuable insight for the design of models describing plasmonic

cavity interaction (see P1).

Describing chemical reactivity usually demands the consideration of reorganization of the

molecules due to vibrations and solvent effects. Marcus theory [219, 220], and extensions

such as the Marcus-Levich-Jortner theory that account for vibrational excitation, describe

the reaction in an elegant fashion. At the heart of this approach is the idea that energy-

conservation has to be guaranteed. Reactant and product feature in this model parabolic

free-energy curves with a curvature provided by vibrational and solvation effects. A transfer

of charge demands then enough free energy to overcome the crossing point of both parabola.

If the product possesses a much smaller free energy than the reactant, the rate does not

reduce monotonically but takes the opposite trend in the so called inverted region. Two

independent publications utilized this model with modifications by the cavity and restricted

to a kinetic discussion. In the limit of resonant interaction with the vibrations [221], a catalytic

behavior was proposed when the product is coupled to the cavity. Off-resonant, a reshaping

of the reaction barrier (via renormalization of the curvature or via introducing replica in the

inverted region) was suggested [222].

Vibrational strong coupling (VSC) One of the most exciting applications of strong light-

matter interaction builds around reshaping the vibrational landscape with the cavity. In

this field, recent experiments showed impressive results that suggest that under the cavity

influence the rate of a reaction can be substantially decreased [43], steered as demanded [50],

or even accelerated [49, 223]. This suggests a completely novel pathway to synthesize chemical

components with the help of a cavity. The precise microscopic explanation of this effect, for

example what decides if the reaction experiences acceleration or deacceleration, has been

not delivered so far. First theoretical investigations suggest a change of the reactive barrier,

thus reshaping the (free-)energy landscape [120, 221], but either do not show full qualitative

agreement with experimental observation as resonant effects are absent or lack a mechanism

when the reactant is coupled. The quick extension of the given field of research into the

chemical community and the progress in QED-based quantum chemical methods, such as

QEDFT (P4, P5, [9]), cavity extended Born-Huang expansions (P2, [107]) or semiclassical

approaches (P6, P7, [153]), may allow us to overcome the yet existing hurdles (see also Sec. 7).

Shaping of electronic density and breaking of symmetries The large extent of theoretical

investigations describing the restructuring of matter inside the cavity assume a bare basis

of matter excitations. While this is in principle exact, the lack of possibility to obtain the

full matter Hilbert space sets an intriguing limit to this approach (see e.g. P2). When the

interaction becomes so strong that for instance the electronic structure itself will be reshaped

by the cavity, a different approach that explicitly obtains the correlated density, such as

QEDFT, might provide further insight. A fascinating yet very intuitive feature that can be
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Figure 14: Difference in elec-

tronic ground-state density

nλ=0.08(r) − nλ=0(r) of Azu-

lene (complementing visual-

ization, see P4) when affected

by the cavity with a po-

larization in x-direction and

ω = 0.0856 a.u. Small black

squares indicate the position

of nuclei. The reorganiza-

tion of electronic density in-

volves many eigenstates in a

non-trivial fashion. A stripe-

like, alternating pattern along

the direction of polarization

can be observed in which

electronic density is shifted

in/out-wards of the molecular

(x-y) plane.

observed under those conditions is that the electronic ground-state density when coupled to

the cavity tends to avoid the polarization direction of the field for strong coupling (see P4,

[107] and P2). In Fig. 2 of P2, a clear accumulation of charge perpendicular to the direction

of polarization can be observed. However, for substantially stronger coupling (see Fig. 2

of P2), the opposite behavior appears, the density tends to orient along the polarization

direction. We can understand this when considering that two components compete for the

energy of the system, the repulsive self-polarization and the bilinear displacing interaction

∝ q̂R̂. The self-polarization now commonly dominates the ground state, aiming to reduce the

local polarization thus decoupling from the cavity. The same behavior was observed in P4.

However, the excited states behave contrary (see e.g. Fig. 3 of P2) as now the bilinear coupling

O(λ1) will dominate the self-polarization contribution O(λ2) for as long as the extension

criterion λ2/4ε2
i � 1 is sufficiently fulfilled (see P1). In combination with the control of the

polarization, it opens further interesting opportunities how charge can be redistributed via the

cavity. For instance Fig. 10 of P4 illustrates that the density of a chain of sodium dimers can

be accumulated onside the atomic position, reducing the charge overlap between the dimers.

According to P3, this shifts the electronic configuration into the domain characterized by

static correlation. However, when switching the polarization perpendicular to the chain, the

opposite effect is present, charge overlap increases, and it becomes apparent that electronic

devices can be partially controlled by strong light-matter interaction. Furthermore, with the

tendency to accumulate charge where charge is already present, a molecule in the equilibrium

configuration will accumulate charge in the bonding region. The nuclei will then relax into

a configuration with a reduced bond length (see e.g. [61]). Figure 14 visualizes the effect of

the cavity on the electronic ground state for Azulene as investigated in P4. Clearly, a real
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molecule reacts in a much more complex way, the previous conclusions should be perceived as

overall tendencies. The stripe-like pattern of alternating in- and outwards shifting of density

will clearly also enact forces on the nuclei. The molecular structure will relax accordingly and

its previous symmetries (e.g. rotational) will break. Especially the capability to break the

symmetry of a given system in a non-intrusive fashion might be of fundamental interest (see

also Sec. 7).

In conclusion, the cavity does not only allow us to introduce polaritonic excited states, it

furthermore reshapes the complete equilibrium electronic and nuclear structure when the

coupling is sufficiently strong. So far, the strength of light-matter interaction on an in-

dividual molecule does not reach the level that would be demanded to consistently access

those effects in experiment. It might be however instructive and beneficial for the future to

account for those features, especially for systems with high collectivity and plasmonic devices.

Imprinting correlation Imprinting correlation between far apart components with the help

of the cavity is in contrast surely accessible with state-of-the-art cavities, indeed represents a

corner-stone of collective light-matter coupling, and first steps to utilize this mechanism for

quantum informatic purposes were already investigated [58]. The first-principles description

will be demanding as especially Fig. 12 of P3 illustrates that the role of electronic corre-

lation imprinted by the cavity can be non-negligible while light and matter remain largely

uncorrelated. Density-functional theory for instance will be able to reliably describe the lo-

cal molecular structure but it is unclear if the strong electronic correlation can be captured.

We should remind ourself that classical correlation is similarly relevant and already mixed

quantum-classical methods are able to qualitatively resemble correlated dynamics (see for

instance the G(2) function calculated in P6). The precise description of quantum correlation

on the other hand might demand steps towards non-equilibrium Green’s functions or similar

techniques (see P7 and [99]).

Extended systems Extended systems show typically even stronger polaritonic features as

the sheer amount of charge contributing to the polarization is massive. The only conceptual

differences are the apparent momentum dependence of the coupled excitons, i.e. the polaritons

posses a mixed band-dispersion, and the theoretical question if the long-wavelength approxi-

mation is applicable. Various experimental realizations provided insight into the creation and

control of exciton polaritons [35, 224, 225]. The massive amount of charge in those systems

might provide a further interesting direction and the question to which extent a novel collec-

tive state can be imprinted by the cavity when various competing interactions are present.

For instance, this can include shifting the phase-transition of superconductivity, theoretically

[226, 227] and experimentally shown [131]. In general, the cavity has the capability to shape

the excitation structure [228], electronic and phononic, as well as their interplay. In addition

to electric fields, the interplay with magnetic fields becomes interesting in extended systems.

It gives rise to the (fractional) quantum hall effect and to Landau polaritons for which the
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light-matter coupling can reach rather large values such that the collective Lamb shift L (see

P2) and the counter-rotating components become entirely non-negligible [229].



7 Work in progress

M
any aspects of this work, as common to science, never stopped developing or never

worked out the way intended. This includes various extensions of for instance

QEDFT, realizations of non-equilibrium perturbation theory in the light-matter

context and attempts to shape chemistry or materials with the confining structure

of a cavity. In addition to previous comments within the manuscript, we present here a short

list of projects that are currently in progress but have not yet reached the level of submission.

One of the major obstacles that is holding back QEDFT so far, is the lack of a simple work-

ing functional similar to the local density approximation (LDA). While the OEP is rather

accurate and able to collect a set of physically demanded features, such as the 1/r long-range

decay, it is computationally demanding to converge and intractable for larger systems. A

simplification of the OEP along the lines of the KLI approximation, as in P4 and further

investigations, showed that it sacrifices too much of the desirable features of the OEP, e.g.

translational invariance and the zero-force theorem. At the heart of DFT is the homogeneous

electron gas (HEG) that leads to the LDA functional and from there on to a manifold of other

DFT functionals. Together with Michael Ruggenthaler, Florian Eich, Vasilis Rokaj and An-

gel Rubio, we are currently investigating how the HEG and subsequently the LDA is shaped

inside the cavity. In its simplest realization, we obtain a simple functional that incorporates

effectively a simplification to the response of the HEG, delivering very good results for one-

dimensional atomic systems. Improvements that are necessary to capture physical features

that arise in higher dimensions are currently investigated.

QEDFT has an incomparable advantage as it allows to self-consistently and in real-space de-

scribe the electronic, photonic and nuclear motion for realistic systems. Together with Enrico

Ronca, Johannes Flick, Prineha Narang and Angel Rubio, we currently exploit this strength

to describe in real-space and real-time the slow-down of a reaction inside a single-mode cavity

as measured by Thomas et al. [43]. We observe not just that the reaction is taking place as

expected outside the cavity but we furthermore observe the slow-down of the reaction under

resonant coupling and we are able to distinguish two competing mechanism preventing the

reaction. Further calculations extending the statistical ensemble are currently performed.

When a system is externally driven, it can be forced into new equilibrium states, some-

times rendering previously unstable configurations now stable. An instructive example is the

Kapitza pendulum for which driving the pivot point leads to the pendulum flipping on its

head rather than hanging down. Driving with classical fields, i.e. Floquet physics, has proven

to deliver all kinds of desirable and fascinating features. For example might it induce super-

conductivity [230] and allows to manipulate topological (Weyl)points in solid state materials

[231]. We have seen that Floquet and cavity physics are conceptually very similar with the

major advantage that the cavity does not demand pumping and consequently avoids heating.
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A in Nature Materials accepted perspective, written together with Hannes Hübener, Umberto

De Giovannini, Enrico Ronca, Johan Andberger, Michael Ruggenthaler, Jerome Faist and An-

gel Rubio, illustrates and promotes the immense possibilities that arise from this realization,

especially for chiral cavities.

An ongoing debate is the question if for the thermodynamic limit or sufficient light-matter

coupling, a novel state of matter appears in the ground state, i.e. the so called superradi-

ant phase transition takes place. Indeed, a no-go-theorem exists for a dilute gas of atoms

that prohibits such a transition [123, 127]. On the other hand, when the system becomes

interacting, especially the limit in which the approximate cancellation of self-polarization and

Coulomb interaction (’contact-free limit’) is no longer fulfilled, this can change [123, 232].

Considering further investigations in the domain of excitonic insulators [130] and the shaping

of superconductivity [131, 226, 233], proof that this limit is surely of interest. However, the

question which gauge is delivering the correct results and how components of the Hamilto-

nian have to relate to each other becomes essential when the collective coupling reaches such

immense values. Together with Enrico Ronca and Angel Rubio, we investigate the thermody-

namic limit starting from a finite system in various approximations and gauges to extrapolate

into a regime of interest and remain control of physical features, such as the violation of the

Thomas-Reiche-Kuhn sumrule and the scaling of correlation.

We might often be able to approximate the cavity-field as a few or even a single mode.

Nanoplasmonic environments, on the other hand, in which a complicated interplay between

longitudinal and transversal modes appears on microscopic scales that are on the order of the

structures itself, might drive an interest for a true first-principles description. As hinted in

P1, the improvement of model descriptions could be greatly fostered by this approach. The

coupled Maxwell-Kohn-Sham algorithm part of the OCTOPUS code [153] allows to solve the

light-matter system self-consistently on the mean-field level for any arbitrary mode-geometry.

This powerful tool can be conveniently combined with the MTEF ansatz to account for a set

of quantum statistical features and in combination with the excellent scalability, we obtain

a methodology that will be able to provide theoretical predictions consistent with the exper-

imental realizations. To which extent the experimental observations are driven by quantum

character is still up to debate and will very much depend on the specific application in mind.

The high resilience of this effect, present even under rough ambient conditions such as room

temperature and low-quality cavities [20, 30, 33–52], indicates that classical, semiclassical

and full quantum light-matter coupling descriptions will have their fair share of usage for the

community and scientific progress. Recall here especially the results of Section 6 and Publi-

cation P3 which indicate that for excitation energy transfer especially electronic correlations,

originating from longitudinal (Coulomb) and transversal (q̂αλα · R̂ and (λα · R̂)2) interaction,

are essential while explicit light-matter correlations are in contrast of negligible relevance in

those situations. In this context, building a connection to macroscopic QED [72, 73] might

be furthermore beneficial.
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The cavity allows spatially separated components to interact, for instance within a molecular

ensemble. When we try to employ quantum chemical methods to accurately describe the local

chemical reaction, we have to find a way to account for this collective non-local interplay. So

far, the full ensemble was included fully as e.g. in P4, or via approximate models that

allowed to effectively parallelize the system [118, 119]. Those approaches delivered already

remarkable insight into the collective interplay. The alteration of chemical reactions however

seems to suggest that the collectivity extends far beyond the domain of a few molecules. To

which extent the full ensemble of billions of molecules at room temperature and subject to

solvent effects is indeed (quantum) correlated is yet to be investigated but the relevance of

interplay between many molecules is undoubtedly present in experiments. Taking the ambient

conditions into account, it seems indeed unlikely that a true entanglement will be at the heart

of the mechanism and an effective correlation of polarizability seems more likely. If this is the

case, it would pave a way to consider local light-matter couplings as reshaped by a collectively

dressed photonic field. For instance, the dressed propagator in Sec. 5.1.2 could approximately

account for the ensemble polarizability. This way a single component in an ensemble bath

can be effectively described and the result will be conceptually similar to a first-principles

version of the Dicke model, focusing just on the bright states.

We have observed in Sec. 5.1.2 the relevance and emergence of polaritonic states in the con-

struction of QEDFT functionals and MBPT at the example of the bare [10] and dressed

(App. 10.1) TDOEP equation. Although the computational complexity disqualifies the time-

dependent OEP from its application to larger realistic systems, it can provide very valuable

insight for small molecules, atoms or models. We are currently investigating possibilities to

construct an efficient algorithm that allows us to obtain the TDOEP in frequency space by

means of the Sternheimer response equation with adjusted polaritonic poles according to our

previous considerations. This would not just provide us with an improved and potentially

ensemble adjustable TDOEP solution but will furthermore foster any future development of

QEDFT functionals.

Let us to this end abstract our gathered insights towards quantum information. With the

recent progress into the quantum supremacy regime [234], quantum information took a step

into a mature domain of research. Common realizations depend on superconducting qubits

implying the demand for specific ambient conditions. So far the rather small light-matter

interaction prevented realizations build around photonic systems [235]. With the step towards

theoretical first-principles predictions of functional materials and light-matter interaction, a

new chapter in this story might be opened. Inspired by our observations regarding long-range

correlation imprinted by the cavity and in combination with the developed theoretical first-

principles methodologies, we hope to provide a novel perspective to drive further progress in

the development of scalable quantum information devices.
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9 Conclusion

N
on-relativistic QED exists since many decades and dominates our perception of

this world as it describes the energy scale on which we experience this piece of paper

in our hand or on our screen. Would we ignore transversal or longitudinal fields, we

could neither read the ink on this paper nor would it materialize in our hands. If we

zoom down to the molecular scale, the intricate interplay of charged particles via transversal

photons and Coulomb interaction is in most situations an unsolvable and yet so essential

problem. We have seen how the fundamental equations of non-relativistic QED are approx-

imated by focusing on specific subspaces of interest and treating the remaining components

merely qualitatively. The historically deviating strategies, one addressing the matter itself

via quantum chemical methods and the other the quantized interplay of light with matter,

demand now a consideration on equal footing as we enter domains of strong light-matter

interaction in which none of the two strategies alone provides satisfying predictions. In the

course of this thesis (P1, P2, P3), we have shown that many ad-hoc combinations will lead to

serious violations of basic physical constrains, such as gauge, coordinate and basis indepen-

dence as well as the stability of the light-matter correlated system itself. It is of uttermost

importance for the future of cavity QED and its application in chemistry that first-principles

descriptions and complementary models lead to conclusive and reasonable predictions. The

design of accordingly suited models will greatly benefit from the here derived conclusions and

will be fostered by the now arising first-principles approaches.

Quantum electrodynamic density-functional theory (QEDFT) presents now such a feasible

and accurate method to describe realistic cavity-matter systems. While QEDFT will still

demand many years of research to reach the same highly sophisticated level that conventional

density-functional theory possesses in quantum chemistry, the first steps taken within this

(P4, P5) and previous work prove how efficient and accurate this approach is. We have been

able to develop and apply functionals that describe the correlated ground and excited states

of realistic systems to high accuracy by means of dressed quasiparticle approaches and the op-

timized effective potential with its subsequent simplifications and improvements. For the first

time, quantum chemistry and optics are truly considered on equal footing. The reshaping of

electronic density, the creation of the novel polaritonic quasiparticles and the nuclear reorga-

nization are all accessible and of uttermost interest. Our efforts pushed not just QEDFT as a

method but furthermore cavity QED itself to novel heights, presenting truly magnificent per-

spectives. We have shown (P6, P7) that when the interplay of many emitters or the dynamic

of many modes becomes relevant, the extensively benchmarked semiclassical and perturbative

methods provide a path to complement QEDFT by an additional edge. While purely classical

propagation in terms of Ehrenfests equation of motion might omit phase-relations, advanced

(linearized) semiclassical methods are able to recover some of this information. This way, we

provided cavity QED with an complementary angle for efficient first-principles predictions.
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Many promising applications are waiting for those tools, some already presented in this work

or other publications. That energy transfer and entanglement can be rendered almost distance

independent inside the cavity (P3) is just a first indication of the impact that cavity QED

will have on various domains of modern science. The control of (photo)chemical reactions via

electronic or vibrational strong coupling is already changing the perception of how steering

and catalysis of chemical reactions can take place. The similarity between coherently driving

matter with an external field and the cavity environment enables many further applications

far beyond the scope of this work. The exploration of strong light-matter interaction repre-

sents a novel knob to tune physical systems, chemical reactions and many more features in a

way we can barely imagine at this moment. Our theoretical impact, presented in this thesis

and especially P1-P7, provided the field with novel perspectives, tools, unseen predictions

and unknown conclusions, comprising to a large extent the state-of-the-art of first-principles

cavity QED. The recent years signalized an ever increasing interest and grow of the commu-

nity, accounting for physicists, chemists, biologists, computer scientists and mathematicians.

Breathtaking steps in experimental realizations that vary between ultra-strong single emitter

coupling, controlling chemical reactions and the modification of superconductivity push the

limits of this fast expanding field of research. This process sheds new light on many previous

considerations, e.g. the question of phase transitions (see for instance the Mermin-Wagner

theorem [236]), that are worth revisiting. On the interface between quantum electrodynam-

ics and electronic structure theory, a highly interdisciplinary field of research is growing that

proves once more that human curiosity is the catalyst needed to overcome the hurdles awaiting

us.



10 Appendix

10.1 The polaritonic propagator approximation

Let us start from a 2-site, 1-mode model in PZW gauge represented by Pauli matrices (recall

Sec. 4.1). The coupling to a single cavity mode is

Ĥ = −tσ̂x + g(â† + â)σ̂z + ω(â†â+
1

2
) +

λ2

2

with g =
√

ω
2λ and dipole |R01| = 1. The hopping between the two sites, i.e. the element

t = 〈Φ1|∇
2

2 |Φ2〉 (assumed symmetric), provides the energetic scale of excitations ωa = 2t.

As this model practically implies a pinned dipole, the self-polarization reduces for a 2-level

system in its center-of-mass to a constant. Recall that this breaks gauge invariance and

therefore Coulomb and PZW gauge only agree in their predictions if photonic and atomic

system are resonant (see Sec. 4.3, P2 and P1). The difference in occupation between the two

sites (relative density) is represented in Fig. 9 and 10 according to σz = n1 − n2. We apply

the unitary transformation Û =
√

1
2(σ̂x + σ̂z) which switches the Pauli matrices σz ↔ σx and

changes the representation of eigenstates from the discrete site-basis (with explicit hopping)

into the energetic representation. By furthermore shifting the energetic origin as we transform

ÛĤÛ † − (ω2 + λ2

2 )1 = ĤRabi, we arrive at the Rabi Hamiltonian

Ĥ = −ω + δ

2
σ̂z + g(â† + â)σ̂x + ωâ†â , with δ = ωa − ω detuning .

Notice please that this similarly demands to transfer any initial state |φa(0)〉gσx = Û |φa(0)〉gσz .
By performing the RWA (â + â†)σ̂x = (â + â†)(σ̂+ + σ̂−) ≈ âσ̂+ + â†σ̂−, we obtain a 2-by-2

block structure (just transitions between |e, n〉 ↔ |g, n+ 1〉 are allowed) that can be directly

solved. Relevant quantities are

Ωn(δ) =
√
δ2 + 4g2(n+ 1) Rabi-frequency

En± = ω(n+
1

2
)± 1

2
Ωn(δ) Rabi-splitting

αn = tan−1(2g
√
n+ 1/δ) detuning angle

|n,+〉 = cos(αn/2)|n, e〉+ sin(αn/2)|n+ 1, g〉, e−iĤt|n,±〉 = e−iE
n
±t|n,±〉

|n,−〉 = − sin(αn/2)|n, e〉+ cos(αn/2)|n+ 1, g〉, e−iĤt|0, g〉 = e−i
ω+δ
2
t|0, g〉

(13)

with the identity operator

1 =
∞∑
n=0

(|n, g〉〈n, g|+ |n, e〉〈n, e|) = |0, g〉〈0, g|+
∞∑
n=1

(|n,+〉〈n,+|+ |n,−〉〈n,−|) .
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An arbitrary initial state |φ(0)〉 =
∑∞

n=0 cn(bg|n, g〉+ be|n, e〉) evolves in time according to

|φ(t)〉 =c0bge
+iω+δ

2
t|0, g〉

+

∞∑
n=0

{
cn+1bg

[
sin(αn+1/2)e−iE

n+1
+ t|n+ 1,+〉+ cos(αn+1/2)e−iE

n+1
− t|n+ 1,−〉

]
+ cnbe

[
cos(αn/2)e−iE

n
+t|n,+〉 − sin(αn/2)e−iE

n
−t|n,−〉

]}
.

(14)

We refer the interested reader now to [96, 160, 161] for a detailed introduction into many-body

perturbation theory. While the approach is conceptually simple, it is technically demanding

and requires a deeper representation to be fully appreciated. The basic idea is again built

around avoiding the wavefunction as descriptor such that we decide to use the one-body

Green’s function in its place. The Green’s function describes the propagation of a particle

by creating it at one point and destroying it at another point according to G(1)(r1t1, r2t2) =

−i〈e−βĤT Ψ̂(r1t1)Ψ̂†(r2t2)〉/〈e−βĤ〉. The time-ordering operator T distinguishes the different

situations t1 ≶ t2 and accordingly (anti)commutes the operators. Those situations are then

indicated by adding G≶ and the resulting objects are referred to as lesser/greater components.

We are able to represent any one-body observable with the help of G(1)(r1t1, r2t2) such that for

example the ionization spectrum of a material is naturally provided. However, many-particles

objects, such as excitons, demand the next higher order of Green’s function to be fully de-

scribed. The thermal initial state is created by e−βĤ and can be conveniently included into the

propagation scheme by construction of an imaginary time, the Matsubara track. Applying the

Heisenberg equation of motion leads to a hierarchy of coupled equations (Martin-Schwinger

hierarchy). This hierarchy can be formally closed on the one-body level by using Wicks the-

orem (any higher-order correlator can be broken down in a determinant/permanent of free

propagators) and introducing a self-energy Σ which accumulates all many-body scatterings

G(1)(r1t1, r2t2) = G
(1)
0 (r1t1, r2t2) +

∫ ∫
dr3dt3r4t4G

(1)
0 (r1t1, r3t3)Σ(r3t3, r4t4)G(1)(r4t4, r2t2).

The self-energy encodes therefore all interactions (classical = Hartree, fermion symmetry =

exchange, and correlation) that affect the propagation of a particle and therefore leads to

correlated quasiparticles. The photonic system follows the same conceptual steps with the

difference that the Heisenberg equation of motion ∂2
t q̂(t) + ω2q̂(t) = ωλ · R̂(t) is of second

order, giving rise to a slightly adjusted structure. 24 The photonic system can feature large

coherent shifts which is the reason why Maxwell’s equations provide often satisfying results.

As a consequence, the creation and annihilation operators are hardly truncating and it is

much more elegant to design the perturbative ladder around the field fluctuations (see e.g.

24 To generate self-consistent approximations, by means of a sensible self-energy that conserves energy and

momentum, the functional derivative of the Φ functional can be used [96, 161]. The lowest order self-

consistent Φ functional is a bubble diagram (see e.g. [237, 238]) featuring two electronic propagators

enclosing one photonic propagator 1
2
GDG. Functional derivatives with respect to the electronic propagators

δG deliver the electronic self-energy Σ ∝ GD while δD leads to the photonic self-energy or polarization Π ∝
GG. Disconnected diagrams are canceled by the partition function in the denominator of the propagators.
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[237, 238])

∆q̂α(t1) =
1√
2ωα

(âα(t1) + â†α(t1))− 〈q̂(t1)〉 .

The photonic propagator at zero temperature for a pure state can then be defined as

Dαα(t1, t2) = −i〈T ∆q̂α(t1)∆q̂α(t2)〉 . (15)

The equation of motions for the electronic and photonic Green’s functions, the Kadanoff-Baym

equations, are naturally correlated. The lowest order of self-consistently dressed interaction

(GW or self-consistent Born approximation) will describe a self-consistently updated single

photon scattering for the electronic equation ∝ G(r1t1, r2t2)D(r1t1, r2t2). Vice versa, the

photonic operator is driven by the polarization of the matter system, the corresponding self-

energy, Π(r1t1, r2t2) ∝ G(r2t2, r1t1)G(r1t1, r2t2) accounts for exciton creation.

We calculate now the time-ordered components of the perturbatively dressed propagator

D≶RWA in the Schrödinger frame by substituting Eq. (14) into Eq. (15) and can express the

propagation with the help of Eq. (13). The symmetry 〈â†(t2)â(t1)〉 = 〈â†(t1)â(t2)〉∗ such that

D≷,∗(t2, t1) = −D≶(t2, t1) = −D≷(t1, t2) and assuming δ = 0 will render this procedure more

convenient. We arrive at

2iωD>
RWA(t2, t1) =

|be|2

4
e+iω(t2−t1)

[
e+igt2 − e−igt2

] [
e−igt1 − e+igt1

]
+
|bg|2

2
e−iω(t2−t1)

[
e+ig(t2−t1) + e−ig(t2−t1)

]
+
|be|2

4
e−iω(t2−t1)

{
(
√

2 + 1)
[
e+i(

√
2−1)g(t2−t1) + e−i(

√
2−1)g(t2−t1)

]
− (
√

2− 1)
[
e+i(

√
2+1)g(t2−t1) + e−i(

√
2+1)g(t2−t1)

]}
−b2eb2g<

[
e−i(ω−g)t2 − e−i(ω+g)t2

]
<
[
e−i(ω−g)t1 − e−i(ω+g)t1

]
.

For g → 0 the free propagator is obtained. The excellent performance of the RWA dressed

TDOEP indicates that the linearized Sham-Schlüter equation employed to derive the starting

point of the OEP (see [10]) is indeed the minor issue. Similarly, for coupling λ well below

one, vertex corrections are apparently of minor impact. The interested reader might refer to

the phononic context and Migdal’s theorem [239]. Instead, the failure of the bare TDOEP on

resonance is very intuitively arising because the propagator does not consider the adjusted

quasiparticle eigenstates, therefore the essential component of strong coupling and its effect on

the photonic fluctuations is disregarded. Future developments should consequentially always

consider those components and the rather low demand to design conserving approximations

[170] might allow very efficient strategies. The computational complexity and instability will

likely prohibit the TDOEP from true first-principles utilization for large realistic systems. By

consistently combining insight from models and extending the size of the latter, one might

however find the ideal field of application for a dressed TDOEP, interpolating between models

and first-principles.
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Abbreviation Definition

BBGKY Bogoliubov–Born–Green–Kirkwood–Yvon

(c)BO (cavity) Born-Oppenheimer

CI Configuration interaction

(TD)DFT (time-dependent) Density-functional theory

DMFT Dynamical mean-field theory

DMRG Density-matrix renormalization group

FBTS Forward backward trajectory solution

FRET Förster resonant energy-transfer

FSSH Fewest switches surface hopping

FWHM Full width half maximum

HEG Homogeneous electron gas

Hxc Hartree-exchange-correlation

(TD)KLI (time-dependent) Krieger-Li-Iafrate

KS Kohn-Sham

Laser Light amplification by stimulated emission

of radiation

LDA Local density approximation

LSC Linearized semiclassical

MBPT Many-body perturbation theory

MCTDH Multiconfiguration time-dependent Hartree

MTEF Multi-trajectory Ehrenfest

(TD)OEP (time-dependent) Optimized effective poten-

tial

PES Potential energy surface

PZW Power-Zienau-Wooley

QCLE Quantum Classical Liouville Equation

QED Quantum electrodynamics

QEDFT Quantum electrodynamic density-functional

theory

RWA Rotating wave approximation

VSC Vibrational strong coupling
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[6] Norah M Hoffmann, Christian Schäfer, Angel Rubio, Aaron Kelly, and Heiko Appel.

Capturing vacuum fluctuations and photon correlations in cavity quantum electrody-

namics with multitrajectory ehrenfest dynamics. Physical Review A, 99(6):063819, 2019.
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[165] N. Säkkinen. Discussions and notes. unpublished.

[166] Lars Hedin. New method for calculating the one-particle green’s function with applica-

tion to the electron-gas problem. Physical Review, 139(3A):A796, 1965.
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