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Abstract

Mathematical models of traffic flow have been successfully used to describe, understand and predict
congestion, behaviour at bottlenecks, and other phenomena. Models for single-lane vehicular
traffic are often formulated either “microscopically” as systems of ordinary differential equations,
trying to capture the dynamics at the level of a single vehicle, or “macroscopically” as (systems of)
partial differential equations, describing e.g. car density and flow velocity. For microscopic models
of a finite number of cars on a ring road, detailed stability and bifurcation analysis can be done.
In this way it can be explained why and how a slight variation of circumstances like mean density,
reaction time, or driving behaviour can lead to an abrupt change from smoothly flowing traffic
to congestion. It may be suspected that the fact that the information about a driver’s decisions
influences his actions at a later point of time by travelling from vehicle to vehicle upstream around
the circle might lead to unrealistic effects. If, however, an open road of infinite length is considered
instead, the situation becomes more involving mathematically.
The aim of this dissertation is to study how stability properties of traffic flow models change on
the transition from circular road to infinite lane and from microscopic to macroscopic description.
Prior applications of the concepts of convective and absolute instability to microscopic models
are reviewed. These results are compared to those obtained for related macroscopic models. The
notions of transient and remnant instability, well-known from partial differential equations, are
introduced for microscopic models by considering their behaviour under certain exponentially
weighted norms.
Analysis of car-following models on the circular road has shown that periodic solutions correspond-
ing to stop-and-go-waves may emerge from Hopf bifurcations and can be numerically continued
through parameter space, sometimes even into regions for which the quasi-stationary solutions
are locally stable. We examine how these solutions behave and how they move with respect to
different reference frames when the ring is opened and the number of cars is infinite.
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Chapter 1

Introduction

1.1 Motivation

In everyday life we frequently face the situation that our options for travelling from A to B are
confined to narrow channels by practicability, economical reason, or law. Often, these connections
also have to be shared with many others. From highways over bicycle lanes to the queue at the
supermarket counter, this is true for almost any mode of transportation. Even ships at sea and
planes in the air typically move along more or less strictly defined paths in spite of their apparent
freedom (Fig. 1.1(c)). This is far from being a genuinely human phenomenon: Many wild animals
tend to create and adhere to fixed trails as well, be it for harvesting, carving out their territory
or annual migrations (cf. Lewis 2013), and are sometimes arguably better at it than humans,
as in the case of ants (Fig. 1.1(b)), who seem to effectively avoid congestion on their roads (cf.
Hönicke et al. 2015).
Since the development of the automobile, individual vehicular traffic has become the dominating
means of transport and continues to grow in most parts of the world. In spite of its benefits,
this created a range of problems including congestion (Fig. 1.1(a)), air pollution, noise etc., not
to mention its significant contribution to CO2 emissions and the impending climate change. This
demonstrates the necessity to not only reduce the number of vehicles and our dependency on fossil
fuels, but also to improve our understanding and control of traffic flow mechanisms on all levels.
Historically, research in this direction started with the early works by Greenshields (1935) and
Pipes (1953), the development of the famous LWR model by Lighthill and Whitham (1955)
and Richards (1956), works by Chandler et al. (1958), Greenberg (1959), Herman et al.
(1959), and others. Since then, a tremendous amount of research has been done by a very diverse
community of engineers, physicists, mathematicians, and others, mostly from the point of view of
differential equations and dynamical systems and with the aim of modelling and describing central
phenomena. For a historical overview, see e.g. the articles Klar et al. (1996), Brackstone and
McDonald (1999), Nagel et al. (2003), Bellomo and Dogbe (2011), Wageningen-Kessels
et al. (2015), as well as the introductory textbooks on the subject by Kerner (2004), Treiber
and Kesting (2013), Elefteriadou (2013), and Kessels (2019).
More recently, a different perspective is added by the increasing development of electronic safety
devices and attempts towards (partial) automation of vehicular traffic. For road vehicles, this
may range from safety systems (e.g. anti-lock braking system, electronic stability control) over
various kinds of cruise control systems to connected and automated vehicles (CAVs) equipped to
exchange information with other vehicles digitally and/or drive autonomously to some extent (see
e.g. Sperling 2018). These technologies are usually developed and investigated under the aspect
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Chapter 1. Introduction

of optimal control (see e.g. Miucic 2019).
As common with new technologies, many expectations and fears are tied to these developments.
This may e.g. be observed in the public discussion concerning the tests of a self-driving minibus
prototype in Hamburg (Fig. 1.2(b)).

(a) Traffic jam on highway A81, Germany (b) Ant trail, Zam-
bia

(c) Marine traffic in the German Bay area, 2017;
red indicates areas with high vessel densities

Figure 1.1: Examples of traffic systems with different agents and dimensionality 1

(a) Air pollution at Max Brauer Allee, Hamburg.
Due to high concentrations of particulate mat-
ter (PM), access restrictions have been imposed
in 2018

(b) In a project led by Hochbahn, automated minibusses
are tested in semi-autonomous mode in the HafenCity
area of Hamburg, Germany

Figure 1.2: Problems and perspectives related to the development of traffic flow2

A feature common to the situations mentioned above and of vehicular traffic in particular is that
they may be described as multi-agent systems with anisotropic interaction and distributed control,
1 (a) photograph by Alexander Blum

(b) photograph by http://www.fourmilab.ch/images/eclipse_2001/africaimages.html
(c) marine traffic data obtained from https://www.marinetraffic.com/en/ais/

2 (a) data obtained from https://luft.hamburg.de/clp/max-brauer-allee-ii-aktuelle-messdaten/
(b) project HEAT: https://www.hochbahn.de/hochbahn/hamburg/en/home/projects

2

http://www.fourmilab.ch/images/eclipse_2001/africaimages.html
https://www.marinetraffic.com/en/ais/
https://luft.hamburg.de/clp/max-brauer-allee-ii-aktuelle-messdaten/
https://www.hochbahn.de/hochbahn/hamburg/en/home/projects/expansion_and_projects/project_heat


1.1. Motivation

(a) Japan (Sugiyama et al. 2008) (b) Arizona, USA (Stern et al. 2018) (c) Delft, NL (Gavriilidou et al.
2019)

Figure 1.3: Circular road experiments are a popular tool to study collective effects of driving
behaviour unter controlled conditions

where avoidance of collisions is desirable. While the direction may not be rigidly restricted, certain
one-dimensional paths exist that are preferable.
In its most basic form, this can be modelled as a single, homogeneous string of agents. Of course,
depending on the setting, effects like heterogeneity of the agents, dependencies of space and time,
the number of lanes, overtaking, intersections with other roads etc. may have to be taken into
account for a more accurate model.
As long as the situation is dominated by the interactions between the agents and no exterior
influences such as road curvature, slopes or bottlenecks are present, we intuitively expect the
agents to move at a constant common velocity such that they are at rest relative to each other.
This behaviour obviously minimises the energy consumption and stress caused by acceleration
and deceleration.
However, even if each agent is able to follow his predecessor without amplifying the small mistakes
that will inevitably occur, homogeneous flow conditions may break down in a string of agents
seemingly “out of nowhere”. This central phenomenon is often referred to as “phantom traffic
jam”.
For empirical research under controlled conditions, ring road experiments are a popular tool
(Fig. 1.3). In this setup, it has been demonstrated that phantom traffic jams occur (Sugiyama
et al. 2008), and how they may be avoided by the introduction of CAVs (Stern et al. 2018).
Other modes of transport such as bicycles have been explored by ring-road experiments as well
(Gavriilidou et al. 2019).
However, it is unclear how closely the results of such experiments resemble features of real traffic
and what may be considered as an artefact of the “unphysical” boundary conditions. This is
true for mathematical models as well but here, without having to worry about car rental costs
or finding appropriate test tracks, we have the freedom to explore arbitrarily and even infinite
numbers of vehicles on an open road as an alternative (Fig. 1.4).
In this context, there are several interesting questions related to phantom traffic jams:

– For a parameter-dependent traffic flow model, which parameters will let a small perturbation
develop into a jam? How do the boundaries between parameter regions depend upon the

3



Chapter 1. Introduction

setting?

– How fast does the breakup spread? Where does it go? This of course depends on the frame
of reference: Typically, our idea of the emergence of a phantom traffic jam is that of a
chain reaction where each driver’s reaction is slightly stronger than its predecessor’s. The
perturbation is thus amplified as it moves upstream through the string of vehicles, converse
to the direction in which they are driving. It may only travel in downstream direction if the
anisotropy is sufficiently small, i.e. if the drivers are influenced by what is happening behind
them. From the perspective of a person standing at the side of the road, the terms up-
and downstream do have a different meaning which is related to the drivers’ view by their
equilibrium velocity: An observer at rest will perceive the perturbation as moving upstream
if it is communicated from preceding to following car quicker than they are passing him by.

– How can the emerging inhomogeneous solutions be characterised? Typically, we expect
some form of stop-and-go-solutions, i.e. oscillating behaviour with rapid transitions between
phases of relatively fast and slow movement. Their actual shape may depend strongly on the
setting: While a small number of vehicles on a ring road may quickly converge to a stable
periodic solution (Fig. 1.4(a)), the inhomogeneous solution will stay local on the infinite lane
and may be characterised by a sequence of jumps between different states with high and low
velocity (Fig. 1.4(b)).

(a) Circular road of length l = 40 with N = 20
vehicles. An initial perturbation evolves into two
backwards moving travelling waves

(b) Infinite lane (black: trajectory of the 100th vehi-
cle behind the origin of the perturbation). The
perturbed region has the shape of a wedge

v

Figure 1.4: Evolution of a small perturbation to an initally homogeneous flow on a ring road and
an infinite lane with colour-coded velocity (simulation of the Bando model with a = 1,
he = 2)

4



1.2. Preceding work

(a) Circular road: After reaching the upstream bor-
der x = 0, the perturbation re-enters at the
downstream border x = L. Soon, all vehicles
are out of equilibrium.

(b) Infinite lane: The information can only move up-
stream in the vehicle frame. In the road frame,
the inhomogeneous region is permanently con-
fined to a cone.

log |vj − ve|

Figure 1.5: Detail from Fig. 1.4: Direct comparison of the transition to inhomogeneity with colour-
coded deviation from equilibrium velocity. The arrows indicate the spread of the
initially localised perturbation

1.2 Preceding work

1.2.1 Convective/absolute instability

The notions of convective and absolute instability have been studied in a traffic flow context by
Mitarai and Nakanishi (1999), Ward and Wilson (2011), and Treiber and Kesting (2011).
Mitarai and Nakanishi discuss one particular microscopic model without much theoretical
detail and determine the boundary between convectively upstream- and absolutely unstable ho-
mogeneous flow solutions.
Treiber and Kesting use the group velocity to approximate the speed of a perturbation in a
microscopic- and a related macroscopic model. The results are used in an attempt to dismiss the
critique of “2nd order models” in Daganzo (1995). They also evaluate empirical data and come
to the conclusion that convectively downstream- and absolute instability seem not to occur.
Ward and Wilson consider a more general framework of microscopic car-following models on
the infinite lane with a leading car, where the perturbation is localised. They use an inductive
argument and derive a rather complex set of necessary conditions.
The notions of transient- and remnant instability are introduced for partial differential equations
(PDEs) in Sandstede and Scheel (2000) and shown to be preferable to those of convective-
and absolute instability in some contexts.

5



Chapter 1. Introduction

1.2.2 Shift-invariant solutions

Periodic solutions of microscopic car-following models have been studied in detail by Gasser
et al. (2004) and Orosz et al. (2004a). Recently, also Tomoeda et al. (2018) and Kiss et al.
(2019) have made interesting contributions on the subject. To our knowledge, the transition to
the infinite lane has not been discussed in detail so far. Some of the results we are going to present
on this issue are currently under review in von Allwörden and Gasser (submitted 2018).

1.3 Research questions

In this thesis, we are therefore going to address the following questions:

1. String stability

(a) How are the stability properties for microscopic traffic flow models in the different
settings related?

(b) How are the spectra of microscopic models on the infinite lane related to those of
“linked” macroscopic models?

2. Convective/Absolute instability

(a) What is the connection between the notions of convective instability employed by Mi-
tarai and Nakanishi (1999) and Ward and Wilson (2011)?

(b) Do related macroscopic models show similar convective/absolute stability behaviour?
If so, in which sense?

(c) How can the concepts of remnant/transient instability be applied to microscopic traffic
flow models?

3. Periodic solutions

(a) How can the periodic solutions found on the circular road be parametrised and com-
pleted as solutions on the infinite lane?

(b) How can we calculate stability properties of periodic solutions on the infinite lane?

(c) Can we distinguish between convectively and absolutely unstable periodic solutions?

The structure of the thesis closely resembles these questions:
In Part I, we state basic definitions and assumptions for microscopic traffic flow models (Chapter 2)
and show how to systematically derive sequences of related macroscopic models (Chapter 3).
Part II is dedicated to homogeneous flow solutions, particularly the questions of when and how
fast they break down. After reviewing the stability analysis (Chapter 4) we compare and extend
approaches for convective/absolute instability in micro- and macroscopic settings (Chapter 5).
In Part III we discuss how to find and parametrise shift-invariant solutions on the infinite lane
(Chapter 6). Afterwards we discuss their stability and convective/absolute behaviour (Chapter 7).

6



1.3. Research questions

Several examples are worked out at the end of each chapter. Throughout the text, the Bando
model is used as an illustrative example that connects the different parts. Despite its simplicity,
this model has been demonstrated to show a wealth of phenomena that also occur in other, more
elaborate traffic flow models; its relevance for traffic flow theory can be compared to that of
Drosophila melanogaster to genetics.
Finally, the obtained results are discussed and an outlook for further research is given (Chapter 8).
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I Set-up

Chapter 2

Microscopic car-following models

Over the years, a multitude of different models have been proposed to describe traffic flow. We
refer to Bellomo and Dogbe (2011) and Wageningen-Kessels et al. (2015) for an overview
of the historical development and connections to other model classes. The paper by Pipes (1953)
with the model

v̇j = a (vj−1 − vj) (2.1)

is maybe the first example of a microscopic traffic model.
Due to the sheer number of models it is necessary to look for frameworks that allow to address
multiple models simultaneously. This of course requires a balance between the strive for generality,
including as many models as possible, on one hand, and the necessity to be concrete enough to
allow meaningful conclusions on the other.
The concept of “car-following”- or “follow the leader” models has proved to be very useful to this
end. A general overview of car-following models is given in Brackstone and McDonald (1999)
and Aghabayk et al. (2015). The important subclass of optimal velocity models is reviewed
in Lazar et al. (2016).
Unfortunately, the terms “car-following” and “follow the leader” are used in a slightly ambiguous
meaning in the literature. For example, the early paper Gazis et al. (1961) specifically regards
the delay differential equation

v̇j(t) = a
vj(t)α1

(xj−1(t− τ)− xj(t− τ))α2 (vj−1(t− τ)− vj(t− τ)) (2.2)

with parameters α1,2 as a follow-the-leader model, while the more recent works by Wilson and
Ward (2011) and Treiber and Kesting (2013) consider car-following models as second-order
ordinary differential equations of the form

v̇j(t) = a (xj−1(t)− xj(t), vj(t), vj−1(t)) , (2.3)

9



Chapter 2. Microscopic car-following models

where the acceleration is given by a function a of the headway and the velocities of both the own
and the preceding vehicle with relatively weak constraints.
Recently, technological advance has put a focus on systems that allow an exchange of information
with nearby vehicles beyond the direct leader.
In the following, we will therefore consider a variant of a general car-following framework similar
to the ones presented in Wilson and Ward (2011) and Treiber and Kesting (2013) that
enables us to study interactions with an interval of leading and following vehicles and puts special
emphasis on the underlying “road topology”.
The latter will be used as an umbrella term to refer to the different set-ups we are interested in,
i.e. circular road and open road with or without a leading and a last car. Strictly speaking this
is a slight misnomer since in our model it is not the road but the index set and the boundary
condition that are making the difference.

2.1 Definitions and assumptions

In real life, a road is characterised by a multitude of features. Mathematically, it may be described
as a curve embedded in a space X which is at least R3, possibly augmented by further information
including width, number of lanes, quality, legal regulations etc. Some aspects, like speed limits
or traffic lights, may even be changing with time on a scale relevant for traffic flow dynamics.
The road network in a certain area may be modelled as a directed graph, again with additional
information at the nodes describing the properties of road intersections.
In order to be able to study car following without the effects caused by road intersections, we
need to consider either a closed loop or an infinitely long open road without any on- or offramps.
Both situations can be modelled as a, possibly periodic, curve R : R→ X . Consequently, we may
perform our calculations on R regardless of the setting and map to the “true” space afterwards.
Therefore, for a vehicle j at time t, we will write its position as xj(t) ∈ R. Sometimes, in order to
emphasise the fact that the vehicle positions may be thought of as a function of j and t, we may
also write x(j, t) instead of xj(t). For nontrivial traffic flow dynamics, vehicle j needs to be part
of a set J with more that one element.
We make the following assumptions:

Assumption 2.1

1. Except for at most one vehicle j∗ ∈ J , each vehicle j has a direct preceder j′ ∈ J with
xj < xj′ .

2. Each car is the preceder of at most one other car.

3. For two vehicles j, j′ ∈ J , there is a unique distance n ∈ N such that j is the n-th preceder
of j′ or vice versa.

Implicitly, we have also already suggested the assumption of time-independence of the indices:

10
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xj+1

vj+1

xj

vj

xj−1

vj−1

hjhj+1

(a) General setting

···

xN−1

vN−1

g

xN vN
g

x1

v1

g

x2

v2

g

· · ·
· · ·

xj−1

vj−1

g

xjvj

g

xj+1

vj+1

g

···

h1

h2

hN

hj >

>

l

(b) Circular road

Figure 2.1: Setup and notation for microscopic car-following models

Assumption 2.2 J and the order of the positions xj are time-independent, i.e. there is no
overtaking, adding or removal of vehicles, etc.

From the Peano Axioms we see that under these assumptions, J is isomorphic to one of the sets
Z, N, −N, or [1, N ] = {1, 2, . . . , N} ⊂ N with j + 1 denoting the follower of vehicle j and j − 1
its preceder (Fig. 2.1(a)). We employ J = ±N to be able to refer to the situation of infinitely
many cars on an open road with a leader or a last car, respectively, without having to redefine the
direction in which the vehicles are counted. Note that we have J 6= Z/NZ because of uniqueness
of the relation. Without loss of generality, we may therefore restrict our attention to these sets.
We will write x or (xj)j∈J to denote the positions of all vehicles, regardless of the cardinality of
J .
Assume that the positions are at least n−1-times continuously differentiable with respect to time,
xj(t) ∈ Cn−1(R+). As for the position xj(t), the velocity vj = ẋj ∈ R may be mapped to the
tangent space TR(xj)X , if necessary . By

uj(t0) :=
[
xj(t0), ẋj(t0), ẍj(t0), . . .

]>
=
(

dk

dtk xj(t)
∣∣∣∣∣
t=t0

)
k∈[0,n−1]

∈ Rn

we denote the state of vehicle j at time t0 ≥ 0, u = (uj)j∈J is the state of the whole system. The
space of possible states at a fixed time UnJ := (Rn)|J | is called the state space.
With a function f : UJ → R|J |, we have the ordinary differential equation (ODE)

u̇(t) =
[

dx
dt (t), . . . , dn−1

dtn−1x(t),f (u(t))
]>
. (2.4)

In order to work with ODEs instead of delay differential equations (DDEs), we have to ignore
reaction time:

Assumption 2.3 The drivers’ reactions are instantaneous.

11



Chapter 2. Microscopic car-following models

In a car-following model, we want the j-th component to depend on its own state uj , the states
uj−1, . . . ,uj−ml of its ml ∈ N preceding vehicles and possibly uj+1, . . . ,uj−mf , the states of its
|mf | followers, where mf ∈ −N0 (Fig. 2.2). For J = Z, these exists for any j. For J = ±N or
J = [1, N ], we need to introduce boundary conditions to make up for missing vehicles at the
beginning and/or end of the queue.
The sign conventions here are chosen such that we are counting upwards from a leading car, if
there is one. Also, we have [mf ,ml] = [0, 1] in the simplest case where each vehicle only takes
information from its direct predecessor and its own state into account.

uj−mf
uj+1 uj uj−1 uj−ml

· · ·· · ·

Figure 2.2: Zone of attention of vehicle j: The number of leaders and followers that are considered
is denoted by ml and −mf , respectively.

Definition 2.1 We call the function bc : UnJ → UnZ a microscopic boundary condition if its
projection to UnJ is the identity.

Periodic boundary conditions are given by the function

bcper : Un[1,N ] → U
n
Z

(uj)J=[1,N ] 7→

 u : Z → Rn

j 7→ ujmodN −
[⌊

j
N

⌋
· l, 0, . . . , 0

]>
 (2.5)

i.e. after application of bcper we have uN+1 =
[
x1 − l, v1, . . .

]>
, as usual (Fig. 2.1(b)).

In the context of traffic flow, periodic boundary conditions are often used synonymous to a circular
road setting. However, we see that this is slightly misleading: so far, periodicity refers only to the
relations between vehicles.
After completion with a boundary condition, we can safely assign a headway to all vehicles:

Definition 2.2 Given (xj)j∈J and, for J 6= Z, a boundary condition bc, the headway is defined
as

hj := xj−1 − xj , j ∈ J (2.6)

To avoid confusion, we do not make use of the term “time headway” that is used in some publi-
cations; here, the headway is always a spatial quantity.

Definition 2.3 ODE (2.4), completed by a boundary condition if necessary, is called a micro-
scopic car-following model (CFM) if f can be written as g ◦ bc with g = (gj)j∈J ,

gj(u) = gj (uj−ml , . . . ,uj−1,uj ,uj+1, . . . ,uj−mf ) ,

12
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i.e.
∂gj′

∂
(

dk
dtkxj

) = 0 ∀k ∈ [0, n− 1], j′ − j 6∈ [mf ,ml].

The ODE system can then be written shortly as

dnxj
dtn (t) = gj (uj−ml(t), . . . ,uj−1(t),uj(t),uj+1(t), . . . ,uj−mf (t)) ∀j ∈ J (2.7)

or alternatively as a first-order system

u̇j(t) = gj (uj−ml(t), . . . ,uj−1(t),uj(t),uj+1(t), . . . ,uj−mf (t)) ∀j ∈ J, (2.8)

where gj : Rn·(ml−mf+1) → Rn and ul is implicitly understood to be defined with the help of the
respective boundary condition for l 6∈ J .
The components gj are then called car-following functions. Often, we will consider models
with gj ≡ g; g will then be referred to as “the” car-following function of the model. In the case
n = 2, we may also call g the acceleration law.
A CFM with an initial condition u(0) = u0 forms a microscopic initial value problem (IVP).

This definition is illustrated in Ex. 2.1.

Definition 2.4 A function x : (tstart, tend)× J → R|J | with tstart ∈ R ∪ {−∞}, tend ∈ R ∪ {+∞}
is called a solution to a CFM if each component is n-times differentiable with respect to time
and (2.8) is satisfied.

Using the same car-following function for all vehicles requires the assumption that the differences
between drivers are of no importance for our model:

Assumption 2.4 All vehicle-driver units are created equal.

If not stated otherwise, we will also assume that the road is homogeneous:

Assumption 2.5 The car-following functions gj depends on the headways hj−mf , . . . , hj−(mf−1),
but not explicitly on the position of any of the vehicles, i.e.

ml∑
k=mf

∂gj
∂xj−k

= 0. (2.9)

As long as this is satisfied, any solution will be invariant to spatial translation and we may write
the model in terms of the headways hj , j ∈ J instead of positions xj without loss of information,
since positions may be recovered from the headways by fixing an arbitrary index j∗ ∈ J and using

xj(t) =
t∫

0

vj∗(θ) dθ + C +
max(j∗,j)∑

k=min(j∗,j)+1
hk(t). (2.10)

13



Chapter 2. Microscopic car-following models

2.2 Special solutions

For many models, it can be shown that they admit one or more type(s) of special solutions.
In some cases, models may even be “tailor-made” with the aim of showing a certain solution
behaviour.
Once found, these special solutions may help us to deduce existence results for a region around
them or be subjected to stability analysis. Unfortunately, except for very special cases, we will
not be able to write down special solutions explicitly; rather, they have to be characterised by
certain properties.

Definition 2.5 A solution x(t) to a CFM is called a quasistationary solution (QS) with equi-
librium velocity ve if

xj(t) = xj(0) + vet ∀j ∈ J. (2.11)

In headway coordinates, this is a stationary solution. A (quasi-)stationary solution is called
homogeneous (hQS) if hj ≡ he for all j ∈ J (Fig. 2.3). If this is not the case, it is called
inhomogeneous (iQS).

xj+1

ve

xj

ve

xj−1

ve

hehe

Figure 2.3: In a quasistationary solution, all vehicles are going at the same velocity. In the ho-
mogeneous case, the distances between vehicles are constant, too

For J = N, a boundary condition with leading cars at an equilibrium velocity ve and corresponding
headway he may be introduced by setting

bce : UN × R+ → UZ

(uj)J=[1,N ] 7→


u : Z → Rn

j 7→

uj for j > 0

vet− jhe else

 .

The discrimination between homogeneous and inhomogeneous case could also be made in the
following definitions. For simplicity, we refrain from doing so and focus on the homogeneous
cases, motivated by Assumption 2.4.
We are also interested in solutions where the trajectories are shifted copies of each other, but not
necessarily affine functions:

Definition 2.6 A solution x(t) to a CFM is called a (homogeneous) travelling wave (TW) or
shift-invariant if

xj(t) = xj+1(t+ ∆t) + ∆x ∀j ∈ J. (2.12)
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Equivalently, x(t) is a TW if there is a function W : R→ R such that

vj(t) = W (∆t · xj(t) + t ·∆x) (2.13)

and the intersections of the trajectories xj(t) with the line ∆x
∆t t+ C are equidistant.

With circular road boundary conditions, TWs are periodic in the following sense:

Definition 2.7 Let T ∈ R+. A TW is called a T -periodic solution (PS) ifW satisfiesW (θ+T ) =
W (θ) for all θ ∈ R.

In the case of fixed bottlenecks, when Assumption 2.5 is not satisfied, we may expect TWs that
do not move in the road frame:

Definition 2.8 A TW is called standing or, in the case of a circular road, a pony on a merry-
go-round solution (POM) if ∆x = 0.

POMs may also be generalised:

Definition 2.9 A solution x(t) to a CFM is called a quasi-POM (qPOM) if there is a function
W : [0, L]× [0, T ]→ R such that vj(t) = W (xj mod L, t mod T ).

Finally, TWs may also occur in the form of heteroclinic solutions:

Definition 2.10 A TW is called a heteroclinc solution (HS) if there are v± ∈ R such that
lim

θ→±∞
W (θ) = v±.

QS PS

POM qPOM

HS

TW

iQS

Figure 2.4: Relations between the special solutions introduced in Def. 2.6-2.10. Arrows indicate
subsets, e.g. QS−→HS means that any quasistationary solution is also a heteroclinic
solution

2.2.1 Existence of nearby solutions

Assuming that a given car-following model admits a special solution x̄(t) like the ones described
above, a key task is to analyse the evolution of the model for initial conditions that are in some
sense “close” to it.
For this question to be meaningful, we have to specify what we understand by closeness, and of
course to ensure the existence of solutions close to the special solution.
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Definition 2.11 (Banach space `nJ) For n ∈ N and an index set J subject to assumption 2.1,
let ‖·‖2 denote the Euklidean norm on Rn and define the norm ‖·‖J on UnJ as

‖·‖J : UnJ → R+

u 7→
√∑
j∈J
‖uj‖22, (2.14)

which induces the Banach spaces

`nJ :=

u ∈ UnJ :
∑
j∈J
‖uj‖22 <∞

 . (2.15)

Theorem 1 (Cauchy’s existence theorem) Let x̄ : J × (0, tend) be a solution to a CFM with
f locally Lipschitz continuous in UnJ . For any u0 ∈ UnJ such that u0 − ū(0) ∈ `nJ , there is a
tmax ∈ R+ ∪ {∞} such that there is in (0, tmax) exactly one solution to the CFM with u(0) = u0.

Proof: Denote by Pn : Rn → Rn−1 the projection of an n-dimensional vector to its second to
last component. Let y := u− ū and apply the proof of Cauchy’s existence theorem for ODEs on
Banach spaces in Dieudonné (1960, p. 280) to the system of first-order ODEs

ẏj(t) =

Pn(yj(t) + ūj(t))
gj (y(t) + ū(t))

− ˙̄uj(t), j ∈ J. (2.16)

�

Theorem 2 (Comparison of solutions) Let ū be a solution to a CFM and let κ denote the
Lipschitz constant of the car-following function f .
For any initial data u0, w0 such that u0− ū(0) ∈ `nJ , w0− ū(0) ∈ `nJ and corresponding solutions
u(t), w(t) we have

‖u(t)− v(t)‖J ≤
∥∥∥u0 − v0

∥∥∥
J

exp(κt)

Proof: See Dieudonné (1960, p. 282), with the same notation as before. �

2.2.2 Linearisation

By using the linearity of the projection Pn and the expansion

gj (y(t) + ū(t)) = gj (ū(t)) + ∇ugj |u=ū(t) · y(t) +O
(
‖y‖2J

)
, (2.17)

the formulation (2.16) relative to a special solution may be used in the standard way to obtain
the local linearisation which may, away from the boundaries, be written as

ẏj(t) =
ml∑

k=mf

Aj,k(t)yj−k (2.18)
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where

Aj,k(t) =



δj,k

δj,k

0 0

0

0

0 0

∇ukgj(u)|u=ū(t)



, δj,k =

1 for j = k

0 for j 6= k.
(2.19)

We observe the following special cases:

– ȳ is QS ⇒ Aj,k(t) ≡ Aj,k

– identical vehicles ⇒ A(j, k)(t) ≡ Ak(t)

– ȳ is TW ⇒ Aj,k(t) = Ak(t− j∆t).

If assumption 2.5 is satisfied, we may use the headway hj instead of the position xj ; the lineari-
sation will then be constructed from blocks of the form

Bj,k(t) =



δj−1,k − δj,k

δj,k

δj,k

0 0

0

0

0 0

∂gj
∂xj−1

− ∂gj
∂xj

Pn
(
∇ukgj(u)|u=ū(t)

)



. (2.20)

2.3 Examples

Example 2.1 (The Bando model and its extensions)
The Bando model

ẍj = a (V (xj−1 − xj)− ẋj) , (2.21)

sometimes referred to as the “optimal velocity model”, is introduced in Bando et al. (1995a).
V was originally called “legal velocity”, in some publications it is referred to as “range policy
function”. In most of the literature, the term “optimal velocity function” is used. Key properties
of a reasonable optimal velocity function are:

Assumption 2.6 The optimal velocity function (OVF) V satisfies

i) V (0) = 0, ii) lim
h→∞

= vmax <∞, iii) V ′ > 0.

The parameter a > 0 can be interpreted as a sensitivity and is often written as 1
τ , where τ is seen

as a reaction time.
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In terms of Def. 2.3, we have n = 2 and [mf ,ml] = [0, 1], i.e. a second order in time model
with dependency of the vehicle directly ahead, where the state of the j-th vehicle is given by
uj =

[
xj , vj

]>
and the acceleration function is gj(u) = g (uj−1,uj) = a (V (xj−1 − xj)− vj).

The most characteristic phenomena are discussed in Bando et al. (1994, 1995b). In the early
articles, only the circular road is considered. For N vehicles on a ring road of length l the CFM is
completed by the periodic boundary condition bcper (cf. Def. 2.1 and (2.5)), with the effect that

gj ◦ bcper (u) =

g (uj−1,uj) for 1 < j ≤ N

g
(
[xN + l, vN ]>, [x1, v1]>

)
for j = 1.

All the experiments that are presented study perturbations of a trivial quasistationary solution
(Fig. 2.5(a))

xj(t) = vet− jhe + C, V (he) = ve. (2.22)

Solutions on the circular road that are periodic in headway and velocity (Fig. 2.5(b)) are studied
in detail in Gasser et al. (2004).
Experiments that simulate an infinite lane are performed in Berg and Woods (2001). Here tran-
sitions between quasistationary solutions in the form of travelling waves are studied (Fig. 2.5(c)).
Over the years, various extensions have been proposed, partly to address the limitations of the
model imposed by the strong assumptions:

– Mason and Woods (1997) and Yang et al. (2014) consider variants with multiple species
that use different optimal velocity functions Vj and/or sensitivities aj (cf. Assumption 2.4),
resulting in quasistationary solutions with varying headways (Fig. 2.5(f)).

– Bando et al. (1998), Bando et al. (2000) extended their model to account for reaction time
delays. This topic was later also studied in more detail e.g. in Orosz et al. (2004a,b, 2005)
(cf. Assumption 2.3).

– Lenz et al. (1999) discuss a model where drivers pay attention to what is happening further
ahead, i.e. they use ml > 1.

– Jiang et al. (2001) introduce a relative velocity term. If this is chosen to be linear, the
model can be written as

ẍj = α

τ
(V (xj−1 − xj)− ẋj) + 1− α

τ
(vj−1 − vj) , α ∈ [0., 1.]. (2.23)

This approach has been found to have the potential to improve the results substantially and
has been widely adopted (see e.g. Wilson and Ward 2011; Kiss et al. 2019; Tomoeda
et al. 2018). We will refer to this model as the “aggressive driver model.

– Huijberts (2002b) motivates the study of non-monotonous OVFs with a bus route system
where a large distance between buses causes more passengers to wait at bus stops and thus
leads to a reduction in speed (cf. Assumption 2.6).
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– Buric and Janovsky (2008) interpret crossings of the trajectories as overtaking (cf. As-
sumption 2.2).

– Gasser and Werner (2010) introduce bottlenecks along a circular road by multiplying the
OVF with a weight function W : R → (0, 1] that reduces the optimal velocity in a certain
area (cf. Assumption 2.5):

ẍj = a (W (xj) · V (xj−1 − xj)− ẋj) . (2.24)

Instead of QSs and PSs, we now have POMs (Fig. 2.5(d)) and quasi-POMs (Fig. 2.5(e)).

(a) Quasistationary or homogene-
ous flow solution (Def. 2.5) of
the Bando model

(b) Periodic solution (Def. 2.7) of
the Bando model

(c) Heteroclinic (Def. 2.10) or trav-
elling wave solution (Def. 2.6)
of the Bando model

(d) Pony on a merry-go-round so-
lution (Def. 2.8) of the bottle-
neck model (2.24)

(e) Quasi-POM solution (Def. 2.9)
of the bottleneck model (2.24)

(f) Inhomogeneous QS (Def. 2.5) of
the Bando model with stochas-
tically heterogeneous vehicles

Figure 2.5: Realisations of the special solutions mentioned in the text, with color-coded velocities
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Chapter 3

Micro-macro link

3.1 History

Let us briefly review some of the literature on the connection of microscopic and macroscopic
traffic flow models.
In Payne (1971), Taylor expansions are applied to relate CFMs from Gazis et al. (1961) of the
form ẋj(t+ τ) = V (xj−1(t)− xj(t)− he) to the PDE

ρt + (ρv)x = 0 (3.1a)

vt + vvx = 1
τ

(Ve (ρ)− v) . (3.1b)

The initial assumption on the headway-density relation here is h = 1
ρ ; later h(x) = 1

ρ
(
x+ 1

2ρ(x)

) is

used as a heuristic correction, leading to the inclusion of a “pressure term” in (3.1).
Helbing (1998) introduces a coarse-graining procedure, inspired by fluid dynamics. In this way,
the Bando model (2.21) is linked to Paynes’s macroscopic model

ρt + (ρv)x = 0 (3.2a)

vt + vvx = 1
τ

(
Ve (ρ)− v + 1

2ρV
′

e (ρ)ρx
)
. (3.2b)

Note that Payne’s model (3.2) may also be linked to the time-discrete Newell’s model

v(t+ τ) = min
(
ve,

xj−1(t)− xj(t)
τ

)
(3.3)

as detailed in (Treiber and Kesting 2013).
The assumption on the headway-density relation used here is

h(x) = 1
ρ(x+ 1

2ρ(... ))
. (3.4)

In Berg et al. (2000), the Bando model is considered and compared to the macroscopic Kerner-
Konhäuser model (cf. Kerner and Konhäuser 1993)

ρt + (ρv)x = 0 (3.5a)

vt + vvx = 1
τ

(Ve (ρ)− v)− cρx
ρ

+ µ
vxx
ρ
. (3.5b)
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The headway-density relation here is

xj−1∫
xj

ρ(x) dx = 1, (3.6)

resulting in the macroscopic model

ρt + (ρv)x = 0 (3.7a)

vt + vvx = 1
τ

(
Ve (ρ)− v + V ′e (ρ)

(
ρx
2ρ + ρxx

6ρ2 −
ρ2
x

2ρ3

))
. (3.7b)

In Lee et al. (2001), a coarse-graining approach is used to construct a micro-macro link for the
Bando model. They present a systematic way to approximate h(ρ) as

h ≈ ρ−1 + 1
2ρ
∂ρ−1

∂x
+ 1

6ρ2
∂2ρ−1

∂x2 + 1
6ρ

(
∂ρ−1

∂x

)2

. (3.8)

They note that this gives a different second order coefficient (1
6 instead of 1

8) compared to an
approach with Taylor expansions. Furthermore, they discuss the possibility of setting h = 1

ρ and
dismiss it because it does not reflect the inherent anisotropy of traffic flow.
Helbing et al. (2002) interpolate the microscopic variables linearly to obtain macroscopic vari-
ables. In Helbing (2009), the microscopic variables are instead folded with smoothing functions.
He obtains the macroscopic model

ρt + (ρv)x =0 (3.9a)

vt + vvt =1
τ

(
1
2

(
V

( 1
ρ(x)

)
+ V

(
1

ρ(x+ 1
ρ)

))
− v + . . .

)
(3.9b)

that is explicitly non-local.
Di Francesco and Rosini (2015), Di Francesco et al. (2017) are interested in the other
direction: they prove that entropy solutions of scalar conservation laws may be found as many
particle limits for corresponding “microscopic” equations under certain conditions.

3.2 Continuous microscopic car-following models

A central problem in the construction of a link between microscopic and macroscopic models is
to map the microscopic variables that take arguments from the possibly infinite, but countable
vehicle index set J to macroscopic quantities which are functions of the road position x ∈ R. This
typically involves some averaging procedure, as pointed out in the previous section and appears
completely natural from the application’s point of view.
We would like to step back and take a different perspective here: What is a “good” equivalent to a
macroscopic model? In macroscopic simulations, we will start at some initial condition, which is a
function of x. If we want to run a microscopic simulation for comparison, these initial conditions
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have to be sampled. There is some ambiguity in this process which is removed as soon as the
position of an arbitrary vehicle is fixed. This means that in general there is a whole family of
microscopic initial conditions corresponding to a single macroscopic one! Which one should we
use?
Mathematically, we are in the lucky position to avoid choosing a single microscopic representative
altogether. Instead, we extend our car-following model to continuous index sets Jco:
For A,B ⊂ R let A+ B := {c ∈ R : ∃a ∈ A, b ∈ B : a+ b = c}.

Definition 3.1 Let Jco ∈ {R, [0., N.],R±}.
Uco := {f : Jco → Rn}, [n,mf ,ml] ∈ N3, fco : Jco × (Rn)−mf+1+ml → R, and bcco : UJco → UR
form a continuous microscopic car-following model if the restrictions of Jco, Uco and fco

to Jco ∩ (Z + ξ) form a microscopic car-following model for each ξ ∈ [0, 1). Note that we admit
the car-following models to be connected by the boundary condition in special situations. For
an initial datum u0

co : Jco → Rn with monotone first component x0
co we analogously define a

continuous microscopic initial value problem with solution x : Jco × [t0, t1)→ R.

For appropriate boundary conditions, a continuous car-following model consists of a family of
“classical” car following models that are independent of each other. Theorem 2 guarantees that
the solutions to the initial problems stay close to each other (at least for finite time) if the initial
condition is sufficiently smooth in j. In Ex. 3.3 we solve a continuous microscopic initial value
problem numerically by solving the corresponding “classical” IVP for each ξ in a discretization of
the interval [0, 1) (cf. Fig. 3.6 a,b).
Since no averaging procedure is required, continuous car-following models are a natural candidate
to construct a micro-macro-link from.
Assume that x0

co is smooth and ∂x0
co

∂j is bounded away from zero. Then a corresponding solution
xco : Jco × [t0, t1) will have the same properties, at least on the restriction to some time interval
[t0, t2) ⊂ [t0, t1). We may then invert the function and instead consider j : R× [t0, t2)→ Jco.
For simplicity, we assume [mf ,ml] = [0, 1] and n = 2 for the moment , i.e.

ẋj(t) = vj(t) (3.10a)

v̇j(t) = f(xj(t), hj(t), vj(t), vj−1(t)). (3.10b)

Using headway and velocity as macroscopic variables, it is now straightforward to obtain a system
of PDEs from (3.10):

1. Transform the system to headway coordinates, depending on the position x rather than the
index j:

ḣ(x, t) = v(x+ h(x, t), t)− v(x, t)

v̇(x, t) = f(x, h(x, t), v(x, t), v(x+ h(x, t), t)).
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Chapter 3. Micro-macro link

2. Evaluate the total time derivative d
dt :

ht(x, t) + v(x, t) · hx(x, t) = v(x+ h(x, t), t)− v(x, t)

vt(x, t) + v(x, t) · vx(x, t) = f(x, h(x, t), v(x, t), v(x+ h(x, t), t)).

3. Transform to scaled variables

t̃ = εt, x̃ = εx, h̃(x̃, t̃) = εh(x, t), ṽ(x̃, t̃) = v(x, t)

with macroscopic dimensions (note that the external scaling factor cancels for ṽ):

h̃t̃
(
x̃, t̃
)

+ ṽ
(
x̃, t̃
)
· h̃x̃(x̃, t̃) = ṽ

(
x̃+ h̃

(
x̃, t̃
)
, t̃
)
− ṽ

(
x̃, t̃
)

ṽt̃
(
x̃, t̃
)

+ ṽ
(
x̃, t̃
)
· ṽx̃

(
x̃, t̃
)

= εf

(
x̃

ε
,
h̃
(
x̃, t̃
)

ε
, ṽ
(
x̃, t̃
)
, ṽ
(
x̃+ h̃

(
x̃, t̃
)
, t
))

.

4. Replace the car-following function f with a function f̃
(
x̃, h̃, ṽ, ṽ′

)
:= εf

(
x̃
ε ,

h̃
ε , ṽ, ṽ

′
)

that is
more suitable for the new coordinates:

h̃t̃
(
x̃, t̃
)

+ ṽ
(
x̃, t̃
)
· h̃x̃(x̃, t̃) = ṽ

(
x̃+ h̃

(
x̃, t̃
)
, t̃
)
− ṽ

(
x̃, t̃
)

(3.14a)

ṽt̃
(
x̃, t̃
)

+ ṽ
(
x̃, t̃
)
· ṽx̃

(
x̃, t̃
)

= f̃
(
x̃, h̃, ṽ, ṽ′

)
. (3.14b)

5. Optional: Approximate the nonlocality with Taylor expansions:

f̃ (ũ) = f̃ (ũe) + ∂x̃′ f̃ (ũe) · h̃+ ∂ṽ′ f̃ (ũe) · h̃ · ṽx̃ + . . . (3.15)

For brevity of notation, we will omit the tilde in the following discussion.

3.3 Densities

What makes things complicated? In analogy to fluid dynamics, we do not want to use the headway,
but a density ρ, in order to be able to rewrite (3.14a) in terms of mass conservation.
This will force us to perform a nonlinear coordinate change. Depending on its definition, ρ(x) is
possibly not even connected to h(x) by means of a simple function, but depends on the values in
a neighbourhood of x, too, by some integral transform.
We would like to link a microscopic CFM of the form (2.8) to a system of PDEs that is first order
in time and consists of a mass conservation law, an equivalent to the car-following rule of the form

d
dtun(x, t) = fj(x) (u(x+ hmf , t), . . . ,u(x+ hml , t)) (3.16)

and, if applicable, n− 2 equations of the form d
dtuk = uk+1, k ∈ [2, n− 1]. To avoid nonlocalities,

we may also wish to replace the right hand side of (3.16) by some Taylor approximation.
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3.3. Densities

Our main tasks in the following are consequently to define the notion of a density, discuss how to
obtain the distances from a vehicle at position x to its neighbours from the density profile, and
to study the mass conservation law corresponding to the density definition.

3.3.1 Definitions

Motivated by the literature review, there are at least three possibilities of how to define a density
ρ : R→ R+ from a bijective function x : Jco → R:

– Definition 3.2 (Inverse headway density ρ̃, IHD)

ρ̃

(
xj + xj−1

2

)
:= ε

xj−1 − xj
(3.17a)

This approach emphasises the relation between density and headway and allocates the head-
way in the middle of the involved cars.

– Definition 3.3 (Forward-looking density ρ̂, FLD)

ρ̂(xj) := ε

xj−1 − xj
(3.17b)

This definition has a direct relation to the headway as well, but has a forward-looking,
anisotropic character that will turn out helpful in order to incorporate a connection to the
velocity field.

– Definition 3.4 (Natural density ρ̌, ND) Let j : R → Jco be the “counting function”
obtained as the inverse of the vehicles’ positions x : Jco → R.

ρ̌ := −ε ∂j
∂x

(3.17c)

From a physicist’s perspective, this may be the most “natural” choice due to its equivalence
to the definition of a mass density. However, while definitions 3.2 and 3.3 will at least be
applicable to a discrete set of positions for discrete J , differentiability requires continuity.

The main ideas behind the three definitions are illustrated in Fig. 3.3 of Ex. 3.1. Given the same
x : Jco → R, the definitions will in general return different density profiles (Fig. 3.4).
Note that all definitions contain the scaling factor ε. When switching between formulations, it is
reasonable to introduce a change in coordinates, too. Since vehicle behaviour is not supposed to
change, we scale length and time by the same factor ε.
The choice of the letter ε might seem a bit unfortunate because we do not require ε to be particu-
larly small: Unlike in fluid dynamics, we do not have O

(
1023) particles to perform limit operations
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Chapter 3. Micro-macro link

on. If we want to describe e.g. dynamics on a circular road, it is questionable whether any “many
particle limit” is justified.
While ε > 1 makes little sense in practice, for direct comparison between continuous microscopic
CFMs and macroscopic models, ε = 1 is a natural choice.

3.3.2 Headway-density relationships

Our next task is, given a vehicle at position x, to determine the distances to its neighbours j(x)−k,
k ∈ [mf ,ml] from the density profile. We will write these distances as

hk(x) := xj(x)−k − x for k ∈ [mf ,ml] (3.18)

i.e. h(x) := h+1(x) is the “standard” headway, h−1 the first backwards headway (which is,
according to the definition, negative), etc. Note that this also includes the trivial distance to the
own car h0 = 0.
By induction, it holds that

hk±1(x) = hk(x) + h±1(x+ hk). (3.19)

Therefore, we may focus mainly on the standard headway.

3.3.2.1 Inverse headway density

For ρ̃, defined by (3.2), we have the conveniently symmetric expression

h±1(x) = ε

ρ̃

(
x± ε

2ρ̃
(
x± ε

2ρ̃(... )

)) .

Let

Tk(y) :=
k∑
j=1

dj

d ξj
(

ε

2ρ̃(ξ)

)∣∣∣∣∣
ξ=x

yj

j! .

i.e. (we omit the argument for brevity)

T2(y) = ε

2

(
1
ρ̃
− ρ̃x
ρ̃2 · y +

(
ρ̃2
x

ρ̃
− ρ̃xx

2ρ̃2

)
· y2 + . . .

)
.

Then in O(εn+1), we have
h(x) = 2Tn(Tn−1(. . . (T1(T0)))) (3.20)

i.e.
h = ε

ρ̃
− ε2ρ̃x

2ρ̃3 + ε3

8ρ̃5

(
2(ρ̃x)2 − ρ̃ρ̃xx

)
+O(ε4). (3.21)

An alternative approach to derive this is to introduce the centred headway h̃ = ε
ρ̃ .

The relation between centred headway h̃ and forward headway h may then be written as

h(x) = h̃

(
x+ 1

2 h̃
(
x+ 1

2 h̃ (. . . )
))

or h(x) = h̃

(
x+ h(x)

2

)
. (3.22)
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3.3. Densities

To approximate this, let Tkh̃(y) denote the n-th order Taylor approximation of h̃. With

Tnh̃(y) =
n∑
k=0

∂k

∂ξ
h̃ (ξ, t)

∣∣∣
ξ=x

yk

k! (3.23)

we have
h(x) = Tnh̃

(1
2Tn−1h̃

(
. . .

(
T1h̃

(
h̃
))))

+O
(
h̃n+1

)
(3.24)

i.e.
h = h̃+ 1

2 h̃h̃x + 1
8
(
2h̃2

x + h̃h̃xx
)

+O
(
h̃3
)
, (3.25)

which is equivalent to (3.21).
For n = 2, ml = 1, mf = 0 we have f = f(x, x′, v, v′).
To first order in h̃, this gives

h̃t + vh̃x = h̃vx

vt + vvx = f(x, x+ h̃, v, v) + ∂v′f(x, x+ h̃, v, v)vxh̃; (3.26)

to second order

h̃t + vh̃x = h̃vx

vt + vvx = f(x, x+ h̃, v, v) +∇[x′,v′]f(x, x+ h̃, v, v) ·

 1
2 h̃h̃x

vx
(
h̃+ 1

2 h̃h̃x
)

+ vxx
2 h̃2


+ 1

2∂v
′v′f(x, x+ h̃, v, v)v2

xh̃
2. (3.27)

3.3.2.2 Forward-looking density

For the forward-looking density ρ̂, definition 3.3 directly gives

ĥ(x) = ĥ+1(x) = ε

ρ̂
. (3.28)

Note, however, that for the backwards headway we have to do a construction similar as before:

ĥ−1(x) = − ε

ρ̂

(
x− ε

ρ̂
(
x− ε

ρ̂(... )

)) . (3.29)

3.3.2.3 Natural density

For ρ̌ defined by (3.4), we may write ρ̌(x) as a Taylor series:

ρ̌(x+ δ) = ρ̌+ ρ̌xδ + ρ̌xx
2 δ2 + · · · =

∞∑
j=0

δj

j!
∂j ρ̌

∂xj
.
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Chapter 3. Micro-macro link

By definition of ρ̌, we have

j(x+ δ)− j(x) = 1
ε

x+δ∫
x

ρ̌(x+ z) dz = 1
ε

∞∑
j=0

δj+1

(j + 1)!
∂j ρ̌

∂xj
=
∞∑
j=1

1
εj!

∂j−1ρ̌

∂xj−1︸ ︷︷ ︸
=:aj

δj

with inverse function
δ(n) =

∞∑
j=1

bjn
j .

For the coefficients Aj , we use the expression

b1 = a−1
1 = ε

ρ̌

b2 = −a−3
1 a2 = −ε

2

2
ρ̌x
ρ̌3

b3 = a−5
1

(
2a2

2 − a1a3
)

= ε3

ρ̌5

(
ρ̌2
x

2 −
ρ̌ρ̌xx

6

)
b4 = a−7

1

(
a1a2a3 − a2

1a4 − 5a3
2

)

bn = 1
nan1

∑(
n∑
k=1

kbk=n−1
)(−1)

(
n∑
k=1

bk

)(
n− 1 +

n∑
k=1

bk

)
!

(n− 1)!
n∏
k=1

bk!

n∏
k=2

(
ak
a1

)bk

which can be found e.g. in Morse and Feshbach (1953). The headway to the k-th neighbour is
then given by

ȟ±k =
∞∑
j=1

bj (±k)j . (3.30)

For the most important case k = 1 we have

ȟ(x) =
∞∑
k=1

bk = ε

ρ̌
− ε2

2
ρ̌x
ρ̌3 + ε3

ρ̌5

(
ρ̌2
x

2 −
ρ̌ρ̌xx

6

)
+O

(
ε4
)
. (3.31)

To this order, this corresponds to the approximation (3.8) from Lee et al. (2001).
The relations between the different headways and densities that have been introduced so far are
summarised in Fig. 3.1.

j h = ĥ h̃

ρ̌ ρ̂ ρ̃

∂
∂x

j(x+h)−j(x)=1

h(x− ε
2ρ̃ )= ε

ρ
ρ̌= ε

h

h(x)=h̃
(
x+h(x)

2

)

ρ̃= ε
h̃

∫
dx (3.31)

(3.21)

Figure 3.1: Overview of relations between the different density definitions introduce above and
their corresponding headways
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3.3. Densities

3.3.3 Continuity equations

We will now calculate mass conservation equations for the density definitions.
For the natural density ρ̌, the standard derivation from fluid dynamics is applicable, i.e. we have
“pure” mass conservation

ρ̌t + (ρ̌v)x = 0. (3.32a)

To obtain an equation for the inverse headway density ρ̃, we calculate the total derivative of
(3.17a):

d
dt ρ̃(x, t) = ρ̃t + 1

2 ρ̃x
(
v

(
x+ ε

2ρ̃

)
+ v

(
x− ε

2ρ̃

))
= − ρ̃

2

ε

(
v

(
x+ ε

2ρ̃

)
− v

(
x− ε

2ρ̃

))

⇔ ρ̃t + ρ̃x

 ∞∑
j=0

v(2j)

(2j)!

(
ε

2ρ̃

)(2j)
 = −2ρ̃2

ε

 ∞∑
j=0

v(2j+1)

(2j + 1)!

(
ε

2ρ̃

)(2j+1)
 (3.32b)

i.e.
ρ̃t + ρ̃x

(
v + ε2 vxx

8ρ̃2

)
= −ρ̃vx − ε2 vxxx

24ρ̃ +O(ε4).

Alternatively, this may be obtained from the headway conservation equation

h̃t + h̃x ·

v
(
x+ h̃

2

)
+ v

(
x− h̃

2

)
2

 = v

(
x+ h̃

2

)
− v

(
x− h̃

2

)

which is approximated by

h̃t + h̃x

2
bN/2c∑
j=0

v(2j)

(2j)!

(
h̃

2

)2j
 = 2

bN/2c∑
j=0

v(2j+1)

(2j + 1)!

(
h̃

2

)2j+1

.

For the forward-looking density, the same procedure applied to (3.17b) yields

d
dt ρ̂(x, t) = ρ̂t + ρ̂xv = − ρ̂

2

ε

(
v

(
x+ ε

ρ̂

)
− v

)
= − ρ̂

2

ε

∞∑
j=1

vj

j!

(
ε

ρ̂

)j
(3.32c)

= −ρ̂vx − ε
vxx
2 −O(ε2).

We see that the nonlocalities in definitions 3.2 and 3.3 have severe consequences for the continuity
equation:
Each of the equations (3.32a) - (3.32c) has in first order the standard continuity equation ρt +
(ρv)x = 0. As could be expected, the natural density recovers mass conservation exactly.
In contrast, for (3.32b) and (3.32c), we have correction terms including second and higher deriva-
tives of v in space. No higher order derivatives in ρ appear.
For (3.32b), both ρxv (“left hand side”) and ρvx (“right hand side”) need to be corrected: The LHS
correction is because definitions of ρ and v refer to different positions, i.e. xj and 1

2 (xj + xj−1).
On both sides, corrections come only with even powers of ε because of odd/even cancellation
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Chapter 3. Micro-macro link

effects. In (3.32c) we only have corrections on the RHS for the ρvx-term.
The approximations (3.21), (3.28), (3.31) of the headway to the leading car all start with ε

ρ , higher
order terms in ε are following.
Here, the FLD gives the “pure” case by construction. However, the ND is still attractive: while
the formula for Aj is complicated, even for [mf ,ml] 6= [0, 1] all distances can directly be recovered
from the series (3.30).
The choice of IHD seems to be disadvantageous in comparison, despite its “intuitive” definition.
For the FLD ρ̂, the PDE system can directly be calculated from system (3.14) by the transfor-
mation h = ĥ = ε

ρ̂ . It is therefore reasonable to do simulations in terms of the headways and
transform to the corresponding densities in a post-processing step.
For the special case n = 2, ml = 1, mf = 0 we have

ĥt + vĥx =v(x+ ĥ)− v(x) (3.33a)

vt + vvx =f(x, x+ ĥ, v(x), v(x+ x̂)), (3.33b)

which can be approximated by

ĥt + vĥx =
N∑
k=1

v(k)

k! h
k (3.34a)

vt + vvx =
N∑
k=0

1
k!

∂k

∂v′k
f(x, x+ ĥ, v(x), v(x))

(
N−k∑
l=0

v(l)

l! ĥ
l

)k
. (3.34b)

3.4 Numerics for macroscopic equations

3.4.1 Finite differences

We first introduce a finite difference discretisation for (3.34). To abbreviate the notation, we write
the coefficients of the n-th order approximation of the m-th derivative as

c
(m,n)
i , i ∈

[
−
⌊
m+ n

2

⌋
,

⌊
m+ n

2

⌋]
centered difference stencil

~c
(m,n)
i , i ∈ [0,m+ n− 1] forward (downstream) difference stencil

~c
(m,n)
i , i ∈ [1− (m+ n), 0] backward (upstream) difference stencil.

Our approach is to discretise with finite difference approximation in space and integrate in time
with a suitable ODE solver.
For the spatial derivatives on the left-hand side, information has to come from the upstream
direction. Therefore, we use backwards differences (upwind scheme) in this part.
For n = 2, mf = 0, ml = 1, we have f = f(x, x′, v, v′). On the right-hand side of (3.34a),
information has to be taken from the downstream direction, since the headway is affected by the
leading car. Consequently, forward differences are being used here.
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3.4. Numerics for macroscopic equations

The discretisation is then given by

∂tĥi + vi
∆x

∑
j

~c
(1,N)
j ĥi+j =− vi +

N∑
k=0

1
k!

ĥki
∆xk

∑
j

~c
(k,N)
j vi+j (3.35a)

∂tvi + vi
∆x

∑
j

~c
(1,N)
j vi+j =

N∑
k=0

1
k!

∂k

∂v′k
f(xi, xi + ĥi, vi, vi)

N−k∑
l=0

1
l!
ĥli

∆xl
∑
j

~c
(l,N)
j vi+j

k . (3.35b)

At O
(
ĥ
)
, this gives

∂tĥi = − vi
∆x

(
−ĥi−1 + ĥi

)
+ ĥi

∆x (−vi + vi+1) (3.36a)

∂tv = − vi
∆x (−vi−1 + vi) + f

(
xi, xi + ĥi, vi, vi

)
+ ∂v′f

(
xi, xi + ĥi, vi, vi

) ĥi
∆x (−vi + vi+1) ;

(3.36b)

at O
(
ĥ2
)
, we have

∂tĥi =− vi
∆x

(1
2 ĥi−2 − 2ĥi−1 + 3

2 ĥi
)

+ ĥi
∆x

(
−3

2vi + 2vi+1 −
1
2vi+2

)
+ 1

2
ĥ2
i

∆x2 (vi − 2vi+1 + vi+1)

(3.37a)

∂tv =− vi
∆x

(1
2vi−2 − 2vi−1 + 3

2vi
)

+ f
(
xi, xi + ĥi, vi, vi

)
+ ∂v′f

(
xi, xi + ĥi, vi, vi

)( ĥi
∆x

(
−3

2vi + 2vi+1 −
1
2vi+2

)
+ 1

2
ĥ2
i

∆x2 (vi − 2vi+1 + vi+1)
)

+ 1
2∂v

′v′f
(
xi, xi + ĥi, vi, vi

) ĥ2
i

∆x2

(
−3

2vi + 2vi+1 −
1
2vi+2

)2
, (3.37b)

etc.
Note that the term

N∑
k=0

1
k!

ĥki
∆xk

∑
j

~c
(k,N)
j vi+j

in the RHS of (3.35a) can be interpreted as a polynomial approximation of the velocity v(x) based
on its values at sampling points xi, . . . , xi+N , evaluated at position xi + ĥi. In this sense, the
discretisation also directly approximates the underlying ODE (Fig. 3.2). From this observation
we may conjecture that optimal results will be obtained if the grid size is on the order of magnitude
of the mean inter-vehicle distance.
It is not surprising that this scale should be resolved in order to capture reasonably detailed traffic
behaviour and obtain results that are directly comparable to the microscopic model. For an even
finer resolution, the microscopic model would of course be preferable.
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PDEN ODE

dPDEMN

N→∞
ε→∞

grid M→∞
M=N→∞

(polynomial appr.)

Figure 3.2: Connection between ODE (3.10), PDE (3.33), and spatial FD discretisation (3.35) for
the “naive” formulation in headway and velocity

3.4.2 Finite volume

In order to respect the mass conservation in the natural density formulation, we employ finite
volume methods. The source terms in the acceleration equation are integrated using a fractional
step method.
The inverse headway density is also discretised in this way, with source terms also in the mass
balance equation for higher-order approximations.
For the concrete implementation we use the software package clawpack-5 (Clawpack Devel-
opment Team 2019); an introduction to the software can be found in LeVeque (2002).
Where not stated otherwise, the sharpclaw solver with high-order wave propagation schemes
using WENO reconstruction and Runge-Kutta integration is chosen. Alternatively, the software
allows to employ e.g. Godunov- or Lax-Wendroff-LeVeque-schemes.

3.5 Examples

Example 3.1 (Density definitions)
We consider a circular road with N = 5 vehicles on it and average headway he = 1, i.e. the circle
length is l = 5. The initial vehicle distribution corresponding to a QS is then xj(0) = C − jhe,
where C is an arbitrary constant. Regardless which one of the definitions 3.2-3.4 is chosen, this
leads to a constant density ρe ≡ 1.
The differences between the density definitions become obvious if we add a N -periodic perturba-
tion. Of course, we need to make sure any new vehicle distribution is still monotonically decreasing.
In Fig. 3.3, the construction of the densities defined in the main text is illustrated for

x(j) = 5− j − sin2
(
j

5

)
. (3.38)

When comparing the different density profiles, we observe that, while the results for IHD and ND
are quite similar, the FLD is shifted to the left by ca. half an equilibrium headway, as could be
expected from its definition.
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(a) FLD
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)
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(b) IHD

x

j

x

ρ̌

1ȟ0
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x0

j(x0)

ρ̌(x0)ρ̌(x0)

(c) ND

Figure 3.3: Construction of density from the graph of j(x) for a ring with J = [0, 5.] and continuous
vehicle positions xj = 5 −

(
j + sin2 jπ

5

)
. Note that the values on the ordinate are

decreasing in the upper row

1 2 3 4 5

1

2

3

x

ND ρ̌
FLD ρ̂
IHD ρ̃

Figure 3.4: Direct comparison of the different density profiles obtained in Fig. 3.3. Due to the
anisotropy in its definition, the profile for the forward-looking density is shifted slightly
to the left compared to the “symmetric” densities

Example 3.2 (Comparison of micro-macro links for the Bando model)
From the literature mentioned in Sec. 3.1, Lee et al. (2001), Helbing (2009), and Berg et al.
(2000) use the Bando model we discussed in Ex. 2.1 as an example.
Let us demonstrate which macroscopic models the different density definitions yield for the Bando
model with aggressive drivers (2.23) with n = 2, ml = 1, mf = 0 and the vehicle-independent
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car-following function

f : R4 → R,

 xj

vj

 ,
 xj−1

vj−1

 7→ α

τ
(V (xj−1 − xj)− vj) + 1− α

τ
(vj−1 − vj) .

As above, we set ū =

 x

v(x)

 ,
 x+ ε

ρ

v(x)

.

The Taylor approximation in (3.15) becomes

f̃ (ũ) =α

τ

 ∞∑
k=0

V (k)
(
ε
ρ

)
k!

(
h− ε

ρ

)k
− v

+ 1− α
τ

( ∞∑
k=1

v(k)

k! h
k

)

=α

τ

(
V

(
ε

ρ

)
− v + V ′

(
ε

ρ

)(
h− ε

ρ

)
+ . . .

)
+ 1− α

τ

(
vxh+ vxx

2 h2 + . . .

)
.

We refrain from the futile renaming of v. It is common to introduce an “equilibrium velocity
function” Ve(ρ) := V

(
ε
ρ

)
. We are skipping this step in favour of the comparability with the

microscopic formulation, but note that V ′
(
ε
ρ

)
is of order 1

ε due to the inner derivative, V ′e (ρ) =

− ε
ρ2V

′
(
ε
ρ

)
.

After these considerations, we plug in the headway approximations (3.21), (3.28), and (3.31) and
obtain the following macroscopic systems, where we omit the argument ε

ρ of V , V ′ etc. for brevity.
For the inverse-headway density, we have

ρ̃t + ρ̃x

(
v + ε2 vxx

8ρ̃2

)
= −ρ̃vx − ε2 vxxx

24ρ̃ +O(ε4) (3.39a)

vt + vvx = α

τ

[
V − v + V ′ ·

(
−ε

2ρ̃x
2ρ̃3 + ε3

ρ̃5

(
ρ̃2
x

4 −
ρ̃ρ̃xx

8

)
+ . . .

)

+V ′′

2 ·
(
−ε

2ρ̃x
2ρ̃3 + . . .

)2

+ . . .


+ 1− α

τ

[
vx

(
ε

ρ̃
− ε2ρ̃x

2ρ̃3 + ε3

ρ̃5

(
ρ̃2
x

4 −
ρ̃ρ̃xx

8

)
+ . . .

)

+vxx
2

(
ε

ρ̃
− ε2ρ̃x

2ρ̃3 + . . .

)2

+ . . .

+O(ε3) (3.39b)

and for the forward-looking density we have

ρ̂t + ρ̂xv = − ρ̂
2

ε

∞∑
j=1

vj

j!

(
ε

ρ̂

)j

vt + vvx = α

τ
(V − v) + 1− α

τ

( ∞∑
k=1

v(k)

k!

(
ε

ρ̂

)k)
.
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Up to third order in ε, the latter yields

ρ̂t + ρ̂xv = −
(
ρ̂vx + ε

vxx
2 + ε2 vxxx

6ρ̂ + ε3 vxxxx
24ρ̂2

)
+O

(
ε4
)

(3.40a)

vt + vvx = α

τ
(V − v) + 1− α

τ

(
ε
vx
ρ̂

+ ε2 vxx
2ρ̂2 + ε3 vxxx

6ρ̂3

)
+O

(
ε4
)
. (3.40b)

For the natural density, we obtain

ρ̌t + (ρ̌v)x = 0 (3.41a)

vt + vvx = α

τ

[
V − v + V ′ ·

(
−ε

2ρ̌x
2ρ̌3 + ε3

ρ̌5

(
ρ̌2
x

2 −
ρ̌ρ̌xx

6

)
+ . . .

)

+V ′′

2 ·
(
−ε

2ρ̌x
2ρ̌3 + . . .

)2

+ . . .


+ 1− α

τ

[
vx ·

(
ε

ρ̌
− ε2ρ̌x

2ρ̌3 + ε3

ρ̌5

(
ρ̌2
x

2 −
ρ̌ρ̌xx

6

)
+ . . .

)

+vxx
2 ·

(
ε

ρ̌
− ε2ρ̌x

2ρ̌3 + . . .

)2

+ . . .

+O(ε3). (3.41b)

Example 3.3 (Numerical simulations)
For our numerical simulations, we consider the case α = 1. At first order in ε, the systems in
(3.39)-(3.41) reduce to

ρt + jx = 0 (3.42a)

jt +
(
j2

ρ
+ ε

2τ V
′

e (ρ)
)
x

= ρ

τ

(
Ve (ρ)− j

v

)
, (3.42b)

independent of the underlying density definition. This changes at second order in ε. Here we have

ρ̌t + jx = 0 (3.43a)

jt +
(
j2

ρ̌
+ ε

2τ V
′

e (ρ̌)
)
x

= ρ̌

τ

(
Ve (ρ̌)− j

v
+ ε2

ρ̌2

(
V ′e (ρ̌)

(
ρ̌xx
6 −

ρ̌2
x

4ρ̌

)
+ V ′′e (ρ̌) ρ̌

2
x

8

))
(3.43b)

for the natural density (3.41),

ρ̃t + jx = − ε2
(
ρ̃xvxx
8ρ̃2 + vxxx

24ρ̃

)
(3.44a)

jt +
(
j2

ρ̃
+ ε

2τ V
′

e (ρ̃)
)
x

= ρ̃

τ

(
Ve (ρ̃)− j

v
+ ε2

ρ̃2

(
V ′e (ρ̃)

(
ρ̃xx
8 −

ρ̃2
x

4ρ̃

)
+ V ′′e (ρ̃) ρ̃

2
x

8

))
(3.44b)

for the inverse headway density (3.39) and the headway PDE

ht + vhx = vxh+ vxx
2 h2 (3.45a)

vt + vvx = 1
τ

(V (h)− v) . (3.45b)
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Chapter 3. Micro-macro link

instead of (3.40).
For the conservative part of the ND and IHD, we use a modified Riemann solver with Roe averaging
for the isothermal Euler equations in density-flux formulation provided as an example with version
4.3 of clawpack. The solver was translated to Fortran90 and is called by pyclaw.
The results for a test profile

ρ(x, 0) = 1
2
(
1 + exp

(
−0.05 (x+ 50)2

)
+ χ[25,75]

)
, v(x, 0) = Ve(ρ(x, 0)) (3.46)

are displayed in Fig. 3.6 together with the corresponding microscopic simulation. Fig. 3.5 demon-
strates the effects of the usage of different solvers and grid sizes on the quality of the results.

(a) Results for different grid sizes using the WENO solver

(b) Results for different solvers using 200 grid points

Figure 3.5: Comparison of different settings for the solution of the 2nd order natural density
equations. The graphs show the velocity profiles at T = 20 for initial condition (3.46)
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3.5. Examples

(a) Microscopic solution of ODE for
discrete J

(b) Microscopic solution of ODE for
continuous J

(c) Solution of 1st order PDE with
finite volume scheme

(d) Solution of 2nd order IHD mo-
del with finite volume scheme

(e) Solution of 2nd order ND model
with finite volume scheme

(f) Solution of 2nd order FLD mo-
del with finite difference scheme

v

Figure 3.6: Comparison of discrete and continuous microscopic simulations (a,b) with the first
order macroscopic model that is independent of the density definition (c), and the
2nd order results for the different density definitions (d-f) for initial condition (3.46).
Colours in the upper and lower rows refer to different time snapshots and to velocity,
respectively. The finite volume simulations are performed using a WENO solver and
200 grid points
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II Quasistationary solutions

Chapter 4

Stability

In Sec. 4.1, we recall some of the well-known theory about linear stability, formulating it in terms
of Toeplitz and Laurent operators, in order to emphasise the connections between the different
road settings.
We will also briefly discuss the possibility of making statements about nonlinear stability with
Lyapunov arguments.
Afterwards we demonstrate that the spectra of the sequences of macroscopic models derived in
Sec. 3 not only have the same string stability properties due to their behaviour close to the origin,
but also approximate the rest of the spectrum well.

4.1 Microscopic models

Discussion of stability of quasistationary solutions may be regarded as a main pillar of traffic flow
theory and is addressed in a wide range of publications, see e.g. Wilson and Ward (2011) for
a general approach and Bando et al. (1994), Huijberts (2002a) for a discussion of the Bando
model. Largely unnoticed by much of the traffic flow community, related questions have also been
discussed at length in the engineering community. In a recent survey, Feng et al. (2019) show that
there is a wide range of definitions related to the stability of quasistationary solutions of a car-
following model, which is thought of as a controller design for automated or assisted driving. The
fact that they are apparently unaware of the seminal paper Wilson and Ward (2011) is another
indication for a lack of communication between the two thematically closely related communities.

4.1.1 Linear stability in terms of Toeplitz and Laurent operators

Since not all of the settings we are interested in involve leading cars, we focus on stability with
respect to perturbations of the initial conditions. We will work with the following definition:
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Chapter 4. Stability

Definition 4.1 (Linearised string stability) A quasistationary solution to a car-following mo-
del is called linear string stable if the linearisation of the CFM around the QS converges to
zero as t→∞ for any initial condition

(
u0
j

)
j∈J

in `2n(J).

This notion of string stability is maybe closest related to what is referred to as the “original
definition of string stability” in Feng et al. (2019):

A string of vehicle is stable if, for any set of bounded initial disturbances to all
the vehicles, the position fluctuations of all the vehicles remain bounded and these
fluctuations approach zeros as t→∞.

We consider the case of a car-following model satisfying assumptions 2.3-2.4 introduced in Sec. 2.1
with a quasistationary solution described by some equilibrium headway he and equilibrium velocity
ve. In this setting, the linearisation (2.18) simplifies to

u̇j(t) =
ml∑

k=mf

Akuj−k, (4.1)

where

A0 =


0 1 0
... . . . . . .
0 · · · 0 1
∂fj
∂xj

∂fj
∂vj

· · ·

 and Ak =


0 · · · 0
...

...
0 · · · 0
∂fj
∂xj−k

∂fj
∂vj−k

· · ·

 for k 6= 0 (4.2)

i.e. the stability matrices Aj,k(t) are constant with respect to time and index; the latter is of
course not true as soon as assumption 2.4 is removed.
Globally, we may assemble the n×n-matrices Ak into an operator A describing the instantaneous
reaction of the system to a small perturbation.

(u̇j)j∈J = A · (uj)j∈J (4.3)

The type of A now depends on the nature of the index set J and the boundary condition (Fig. 4.1).
In each case, Amf , . . . , Aml fill up the ml-th lower to |mf |-th upper block diagonal.
For finite vehicle numbers N ∈ N, A is a n ·N × n ·N -matrix. In the circular road setting with
N ∈ N vehicles, the matrices Ak wrap around periodically such that there are exactly ml−mf + 1
n×n-blocks in each row and column of the underlying N ×N -grid (Fig. 4.1(a)). If we replace the
periodic boundary condition by “phantom vehicles” at constant speed, thus considering a platoon
of N vehicles on an open road, the wraparound vanishes and we obtain a block Toeplitz matrix
(Fig. 4.1(b)).
Equivalently, for infinitely many vehicles, the block diagonals will either stretch incessantly to both
sides if J = Z, forming a block Laurent operator (Fig. 4.1(c)), or be cut on oneside if J = ±N,
i.e. if there is a first or a last car, thus forming a block Toeplitz operator (Fig. 4.1(d)).
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(a) Block circulant matrix
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(b) Block Toeplitz matrix
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(d) Block Toeplitz operator

Figure 4.1: Structure of relevant matrices and operators

For Toeplitz matrices and -operators there is a well-developed theory, see e.g. Böttcher and
Silbermann (1999); Trefethen and Embree (2005). One of their main attractions is that the
spectra for circulant matrices, Toeplitz and Laurent operators can be described in very simple
terms.
The central notion in the area of matrices and operators of this kind is that of the symbol.

Definition 4.2 (symbol of A) 1. Let A be a circulant matrix or a Laurent- or Toeplitz
operator with scalar entries aml . . . amf ∈ R. The associated symbol is defined as the
function

s : C→ C, z 7→
ml∑

k=mf

zkak. (4.4)

2. If the entries are given by the matrices Amf , . . . , Aml , the associated symbol is the matrix-
valued function

S : C→ Cn×n, z 7→
ml∑

k=mf

zkAk. (4.5)

In the literature, Toeplitz operators are also known as discrete Wiener-Hopf operators, Laurent
operators as multiplication operators, and frequently the appendix “with matrix-valued symbol”
is used instead of the prefix “block” (cf. Böttcher and Silbermann 2006).
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Theorem 3 (Spectra of circulant matrices, Laurent- and Toeplitz operators)
Let A be a circulant matrix or a Laurent- or Toeplitz operator with scalar entries amf . . . aml ∈ R
and symbol s : C→ C.

1. λ ∈ C is in the spectrum σ (A) iff there is a ξ ∈


2π
N · [1, N ] if A is a circulant matrix

[0, 2π) if A is a Laurent operator
such that λ = s(exp(iξ)).

2. λ ∈ C is in the spectrum of a Toeplitz operator iff it is in the spectrum of the corresponding
Laurent operator or enclosed by it with non-zero winding number.

Proof: See for example Trefethen and Embree (2005, p. 51) or Böttcher and Silbermann
(2006, p. 65). �
The reasoning in the proof of part 1 may be directly extended to the case of block circulant
matrices and block Laurent operators:

Theorem 4 (Spectra of block circulant matrices and block Laurent operators)
Let A be a block circulant matrix or Laurent operator constructed from real n × n-matrices
Amf , . . . Aml with symbol S : C → Cn×n. Then λ ∈ C is in its spectrum σ (A) iff it is a root
of the characteristic function χ,

0 = det (S(exp(iξ))− λ Id) =: χ (λ, ξ) , (4.6)

for some ξ ∈


2π
N [1, N ] if A is a block circulant matrix

[0, 2π) if A is a block Laurent operator.

Proof: See Böttcher and Silbermann (2006, p. 101). �
In the case of block Toeplitz operators we need to be more careful because the operator A may fail
to be invertible even if its symbol S(z) ∈ Cn×n is invertible for each z on the unit circle (Böttcher
and Silbermann 1999, p. 186).

Definition 4.3 (Fredholm operator) A bounded linear operator A : `2n(J) → `2n(J) is called
Fredholm if its kernel

kerA :=
{
x ∈ `2n(J) : Ax = 0

}
and cokernel

cokerA := `2n(J)/imA = `2n(J)/
{
y ∈ `2n(J) : ∃x ∈ `2n(J) : Ax = y

}
are finite-dimensional. In this case, indA := dim kerA − dim cokerA is called the Fredholm
index.

Definition 4.4 (essential spectrum) For a bounded linear operator A : `2n(J) → `2n(J), the
essential spectrum is defined as the set

σess := {λ ∈ C : A− λ Id is not Fredholm} .
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We observe that spectrum and essential spectrum coincide for J = [1, N ], and that the symbols
of the occuring operators are continuous on the unit circle. With the notions introduced above
we can formulate the following result by Gohberg:

Theorem 5 (Spectra of block Toeplitz operators) Let A be a block Toeplitz operator con-
structed from real n × n-matrices Amf , . . . Aml. Then λ ∈ C is in its essential spectrum σess (A)
iff it is a root of the characteristic function χ from (4.6) for some ξ ∈ [0, 2π). Moreover, the
Fredholm index of A−λ Id is given by the negative of the winding number of the essential spectrum
around this λ ∈ C.

Proof: See Böttcher and Silbermann (1999, p. 188) and references therein. �
The variable ξ introduced above can be viewed as an “index eigenvalue”, related to the spatial
eigenvalues ν in PDE models that we will encounter in Sec. 4.2. For this reason we choose to
refrain from the traditional notation as “k”, as e.g. in Mitarai and Nakanishi (2000a); Gasser
et al. (2004). Especially in physics literature, k is often associated with a wavenumber which
has the dimension of an inverse length; we emphasise that this is not the case here. With this
notation we are relatively close to Sandstede and Scheel (2000). In physics literature we also
often encounter iω = λ for the temporal eigenvalues.
By induction, we may conclude from (2.19) and (2.18) that the characteristic polynomial χ in
(4.6) is of the form

χ(λ, ξ) = λn −
[
1, λ, . . . , λn−1

]
·

ml∑
k=mf

eikξ∇ukf. (4.7)

Thus, χ is a n-th order polynomial in λ, and χ · z|mf | is a |ml −mf |-order polynomial in z = eiξ.
Note that the image of the symbol for z ∈ iR is a closed curve that separates C into connected
components. For any given λ ∈ C, there are |ml −mf | values of z solving deg(S(z)− λId) = 0. It
will turn out helpful to number them with values in Z + 1

2 .
As λ moves within the inner part of the connected components, the number of values of z to the
left and the right stays constant; sort them by real part, and let m∗ denote the integer between
the last one with negative and the first one with positive real part, i.e.

Re
(
zmf+ 1

2

)
) ≤ Re

(
zmf+ 3

2

)
) ≤ · · · ≤ Re

(
zm∗− 1

2

)
) < 0

< Re
(
zm∗+ 1

2

)
) ≤ · · · ≤ Re

(
zml− 3

2

)
) ≤ Re

(
zml− 1

2

)
). (4.8)

As we will see, m∗ != 0 for Re (λ)� 0:
Consider (4.1) for J = ±N0 together with initial conditions uj(0) = u0

j and a boundary condi-

tion uj(t) = wj(t), j ∈

[−ml,−1] for J = N0

[1,−mf ] for J = −N0
. In order to solve these, perform a Laplace

transform:

λuj − u0
j =

ml∑
k=mf

Akuj−k (4.9)
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We only need to consider the homogeneous case u0
j ≡ 0. The eigenvalue equation λv = S(z)v

yields solutions to the homogeneous part of (4.9) for j 6∈ [mf ,ml].
These solutions make up two subspaces of dimensions |ml,f −m∗| of solutions that are in l2(±N0),
respectively. For J = N0 and a given λ, we now need to find a unique linear combination of
the solutions to zm∗+ 1

2
, . . . , zml− 1

2
that also satisfies the ml boundary conditions; for J = −N0,

a unique linear combination of the solutions to zmf+ 1
2
, . . . , zm∗− 1

2
needs to satisfy mf boundary

conditions. Obviously, this will in general only be the case for m∗ = 0.
Consequently, it is a reasonable assumption that m∗(λ) = 0 for Re (λ)� 0.
What happens for m∗(λ) 6= 0? Consider m∗ = 1 which is of most interest in our setting. Now the
solutions for j 6∈ [mf ,ml] split into a |ml| − 1-dimensional subspace of solutions for J = N0 and a
|mf |+1-dimensional subspace for J = −N0. This means that while the boundary condition cannot
be satisfied for N0 any more, there now is a one-dimensional subspace that works for −N0, forming
an eigenfunction of the system that is exponentially localised at the lower end of the motorcade,
called a boundary mode (Trefethen and Embree 2005). In either case, invertibility of A−λId
is lost, consequently λ is in the spectrum of A. This motivates the following proposition, which
can also be seen as a simple lemma of Theorem 5:

Proposition 4.1 Let A be a block Toeplitz operator constructed from real n × n-matrices
Aml , . . . Amf . Then λ ∈ C is in its spectrum σ (A) if it is in the essential spectrum of the corre-
sponding Laurent operator or if m∗(λ) 6= 0, i.e. if λ is enclosed by the spectrum with nonzero
winding number.

See Ex. 4.4 for an application of this theory to the Bando model.
For a finite platoon on the infinite lane, J = [1, N ], it has been noted that the eigenvalues do not
give satisfactory information about the stability behaviour. In the case mf = 0, it can be directly
seen from the matrix A that the eigenvalues are given by the so-called “platoon eigenvalues” with
multiplicity N , i.e. σ (A) = σ (A0) (Wilson and Ward 2011; Werner 2013). Intuitively, we
would expect these eigenvalues to approximate in some sense the spectra in the infinite-dimensional
case.
As conjectured in Werner (2013), key to this is the observation that the boundary modes to the
Toeplitz operators for ±N0 are “almost” eigenvectors for big N .

Definition 4.5 (ε-pseudospectrum) Let ε > 0, A be in RN×N . λ ∈ C is in the ε-pseudospec-
trum σε (A) of A provided there is a vector v ∈ CN such that ‖(A−λ)v‖2

‖v‖2
≤ ε.

Let (AN )N∈N be the sequence of Toeplitz matrices for N ∈ N vehicles on an infinite lane.
For the scalar case n = 1, we have (Trefethen and Embree 2005, p. 61):

Theorem 6 (Convergence of ε-pseudospectra)
lim
ε→0

lim
N→∞

σε (AN ) = σ (AN) in the Hausdorff metric.

Note that the generalisation of this theorem for block matrices and -operators (n > 1) shown in
(Böttcher and Silbermann 1999, p. 196) takes a far more complicated shape. However, for

44



4.1. Microscopic models

mf = 0, we can easily construct pseudoeigenvectors: Fix λ ∈ C. Suppose there is z ∈ C with
|z| < 1 and det (S(z)− λId) = 0 so that we can find w ∈ Cn such that (S(z)− λId) = 0. Then
v−N = (vj)j∈−N =

(
z−jw

)
j∈−N is an exact eigenvector to A−N.

From this we see that the vector v[1,N ] = (wj)j∈[1,N ] =
(
zNw, . . . , z1w

)>
gets asymptotically

close to an eigenvector (Fig. 4.2):

∥∥∥(AN − λ)v[1,N ]

∥∥∥
2∥∥∥v[1,N ]

∥∥∥
2

=

√
ml∑
l=1

∥∥∥∥ml∑
k=l

Akwz(N+k−l)
∥∥∥∥2

2√
N−1∑
j=0

zj ‖w‖2

≤ C |z|N .

v−N = w1

v−1 = wN

...
v−N−ml

·

A0 − λIdAml

m
ain

diagonal

|m
l |-th

low
er
diagonal0

0

Figure 4.2: Construction of ε-pseudoeigenvectors for mf = 0: For |z| < 1, the block Toeplitz
operator for J = −N (left) has an eigenvector v−N (right). The first N entries of v−N
are close to an eigenvector to the block Toeplitz matrix for N vehicles (blue), the error
is given by the multiplication of the “overhanging” part of the Toeplitz operator (red
triangle) with the vector (v1−N−ml , . . . ,v−N )>. (red vertical line)

In this sense, the ε-pseudospectrum can give us insights for the nonscalar case n > 1 as well, e.g.
for the transient behaviour of the Bando model for finite platoons (cf. Ex. 4.5).
On the open road without a leader, the construction above would lead to modes with unbounded
amplitude and is therefore not reasonable.
We conclude that while the platoon eigenvalues do not yield much information for the behaviour of
a motorcade with finite length, the pseudoeigenvalues and -vectors do. The unconditional stability
of the platoon eigenvalues reflects the fact that each car will return to its position of rest eventually
after an initial perturbation. By induction, this is also true for a finite motorcade. However, it
may take a long time until all vehicles have reached their rest state again. The pseudoeigenvectors
for |z| < 1 are exponentially localised at the upstream end of the motorcade. They indicate that
it is only the lack of more vehicles that provides stability here.

4.1.2 Different frames of reference

In a microscopic traffic model, the natural independent variables are the vehicle index j and time
t. We are thus taking the drivers’ perspective, which is a reasonable choice in many situations.
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Sometimes, however, we may want to focus on the behaviour of the model in a certain spatial region
(e.g. to conclude about emissions in a given area), or more generally on the behaviour observed
while moving at a relative speed with respect to the heterogeneous solution. This distinction will
become particularly important in Sec. 5, but also for the comparison of the stability properties
with macroscopic models, which are usually formulated in a fixed reference frame.
In a continuous car-following model, this poses no major problem. We merely have to introduce
an alternative, time-dependent vehicle index ̃ = j − ct. In terms of ̃, the ODE (2.8) becomes

u̇̃(t) = d
dtu (̃(t), t) =− c · ∂

∂̃
u (̃, t) + ∂

∂t
u̃(t)

=− c · ∂
∂̃
u (̃, t) + g̃ (u̃−ml(t), . . . ,u̃−mf (t)) ∀̃ ∈ Jco. (4.10)

Of course this also applies to the local linearisation (2.18), which now becomes

∂

∂t
y̃(t) + c

∂

∂̃
y̃(t) =

ml∑
k=mf

A̃,k(t)y̃−k. (4.11)

We will then have to replace the characteristic polynomial χ(λ, ξ) in (4.6) by

0 = det
(
S(exp(iξ))−

(
λ̃+ icξ

)
Id
)

=: χ̃
(
λ̃, ξ

)
. (4.12)

For fixed ξ ∈ C, the temporal eigenvalues in the different frames are simply related by λ = λ̃+ icξ

(cf. Mitarai and Nakanishi 2000a). Unfortunately there is no comparable formula for the
relation between the roots of χ(λ, ·) and χ̃(λ̃, ·) for fixed λ = λ̃ ∈ C. While it may be possible to
explicitly calculate the index eigenvalues for simple models (Ex. 4.2), in general they will have to
be found numerically.

4.1.3 Acceleration models with a single leader

For mf = 0, ml = 1, and n = 2 we have f = f(xj , xj−1, vj , vj−1). Then (2.18) becomes with
yj = xj − x̄j , wj = vj − ve ẏj

ẇj

 =

 0 1
∂xjf ∂vjf

 ·
 yj

wj

+

 0 0
∂xj−1f ∂vj−1f

 ·
 yj−1

wj−1

 , (4.13)

(4.6) becomes
χ(λ, ξ) = λ

(
λ− ∂vjf − ∂vj−1fe

iξ
)
−
(
∂xjf + ∂xj−1fe

iξ
)

︸ ︷︷ ︸
(2.9)
= ∂hj f(eiξ−1)

,

or, when writing the acceleration function as g(hj , vj ,∆vj) with ∆vj = vj−1−vj (cf. Wilson and
Ward 2011):

χ(λ, ξ) = λ
(
λ− ∂vjg − ∂∆vjg

(
eiξ − 1

))
− ∂hjg

(
eiξ − 1

)
.

Note that ∂vjg = ∂vjf + ∂vj−1f , ∂∆vjg = ∂vj−1f ; the fact that i.g. ∂vjf 6= ∂vjg might cause some
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confusion at first glance.
For n = 2, the characteristic polynomial can be solved for λ:

λ±(ξ) =
∂vjf + ∂vj−1fe

iξ

2 ±

√√√√(∂vjf + ∂vj−1fe
iξ
)2

4 + ∂hjf (eiξ − 1). (4.14)

For a finite platoon on an open road, we only need to consider the eigenvalues of

A0 =

 0 Idn−1

∇uk


from the linearisation (2.18). In the context of the application, this corresponds to considering
only the part of the linearisation that corresponds to own car: Can a driver correct his own small
mistakes if everything else stays fix?
For [mf ,ml] = [0, 1], n = 2 this gives us the “platoon eigenvalues” (Wilson and Ward 2011)

λ± =
∂vjf

2 ±

√√√√(∂vjf)2

4 − ∂hjf. (4.15)

In a reasonable model, the partial derivatives should satisfy ∂vjf < 0 and ∂hjf > 0, therefore the
platoon eigenvalues lie in the open left complex half plane.

4.1.4 Lyapunov arguments

It is desirable to enhance the above stability results to the nonlinear case. In the finite-dimensional
setting the principle of linearised stability allows local conclusions in this sense. The question
whether this is also possible in the infinite-dimensional case, i.e. for J = N or J = Z, has been
raised in Werner (2013).

4.1.4.1 Circular road

In order to motivate our approach to the infinite-dimensional problem, let us briefly discuss the
situation on the circular road first.
If the system is formulated in terms of the vehicles’ positions, shift-invariance of the quasistationary
solution corresponds to a singular eigenvalue with corresponding eigenvector

([xj − x̄j , vj − ve]>)j∈J =
(
[1, 0]>

)
j∈J

.

This ambiguity may of course be removed by transforming to headway coordinates, hj := xj−1−xj .
However, the singular eigenvalue remains, now with an eigenvector corresponding to a change in
the circle length. We have incorporated the condition xN−1 = x1 + L into the system; since L
does not explicitly appear, the boundary condition is not enforced. The most straightforward
way of fixing this may be to reduce the number of ODEs to 2N − 1 by substituting hN with

L −
N−1∑
j=1

hj , as e.g. in Gasser et al. (2004). Unfortunately, there is no direct analogy to this in
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the infinite-dimensional setting.
Our formulation in terms of Toeplitz- and Laurent operators in 4.1.1 suggests to use an approach
based on Fourier techniques instead. Consequently, we apply a discrete Fourier transform, with
([yk, zk]>)k∈J denoting the new coordinates:

FN : R2N → C2Nhj − he

vj − ve


j=1,...,N

7→

 N∑
j=1

exp
(2πijk

N

)hj − he

vj − ve


k=1,...,N

=:

yk
zk


k=1,...,N

. (4.16)

Now the condition
N∑
j=1

hj = L corresponds to yN ≡ 0, so the ODE for yN can be eliminated from

the system.
In these coordinates, the linear part decouples and may be written asẏl

żl

 =

 0 elN − 1∑
k el·kN

∂fj
∂hj−k

∑
k el·kN

∂fj
∂vj−k


︸ ︷︷ ︸

=S′(elN )

·

yl
zl

 l = 1, . . . , N − 1,

where eN := exp
(

2πi
N

)
, where S′ is closely related to the matrix-valued symbol introduced in (4.5):

Using the identity
ml∑

k=mf

∂fj
∂xj−k

= 0 from assumption 2.5, it may easily be checked that S′(z) has

the same eigenvalues λ±(z) as S(z), but now S′ ·U = U ·diag(λ±) is fulfilled by the transformation
matrix

U−1(z) =

 z − 1 z − 1
λ+(z) λ−(z)

 . (4.17)

Let U = diag
(
U(e1

N ), . . . , U(eNN )
)

be the block diagonal operator composed from the elementary
parts. We now define the function

L :


hj − he

vj − ve


j∈J

∈ `22(J) :
∑
j∈J

hj − he = 0

→ R

u 7→ 1
2 ‖(UFN ) (u)‖22 . (4.18)

By construction, L is a Lyapunov function for the linear part provided the nonzero eigenvalues
have strictly negative real part:

d
dtL(u) = ∇L(u) · flin(u) =

(
(UFN )> (UFN )u

)
·
(
(UFN )−1D (UFN )u

)
≤ max

k=1,...,N−1
Re
(
λ+
(
ekN

))
‖(UFN )u‖22 .

We may thus find positive constants α1 and α3 (notation as in Swaroop and Hedrick (1996))
such that

∇L(u) · flin(u) ≤ −α1 ‖u‖22 and ‖∇L(u)‖2 ≤ α3 ‖u‖2 . (4.19)
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With this we can deduce that, at least in a small environment around the quasistationary solution
u = 0, L is also a Lyapunov function for the whole ODE:

d
dtL(u) = ∇L(u) · (flin(u) + fnl(u))

≤ −α1 ‖u‖22 + ‖∇L(u)‖2 ‖fnl(u)‖2

≤
(
α3
‖fnl(u)‖
‖u‖

− α1

)
‖u‖22

4.1.4.2 Infinite lane

Let us now check to what extent the considerations for the circular road can be generalised to the
infinite lane without a leader, J = Z.
Instead of the discrete Fourier transform (4.16), we apply the transformation

F : l22(Z)→ C2([0, 2π])hj − he

vj − ve


j∈Z

7→

 ∞∑
j=−∞

exp (ijθ)

hj − he

vj − ve


θ∈[0,2π]

=:

yθ
zθ


θ∈[0,2π]

. (4.20)

U should now be regarded as a block diagonal operator on C2([0, 2π]). Unfortunately, since the
eigenvalues are not isolated any more, we cannot take the biggest real part for α1. In order to have
a non-zero constant to estimate the non-linear part against, we need an additional assumption
on the sequence u = (uj)j∈Z. It appears reasonable to postulate that, in addition to h̄ = he and
v̄ = ve, the sequence is of moderate decay, i.e. for all n ∈ N, (jn · uj)j∈J is in l21. From this we
may see that we have finite upper bounds on the derivatives of its Fourier transform:

∥∥∥∥∥∥ dn

dθn

yθ
zθ

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥jn
hj − he

vj − ve

∥∥∥∥∥∥
1

.

Since the Fourier transform F is an isometry, ‖y‖2 = ‖h− he‖2, ‖z‖2 = ‖v − ve‖2. From the
bounds on the derivatives we see that y and z cannot be concentrated arbitrarily close to the
origin. If additional properties of the function Re (()λ+(θ)) are known, it may consequently be
possible to obtain a non-zero estimate.

4.1.4.3 Weak coupling theorem

Depending on the model, other ways of applying Lyapunov techniques may be possible. Feng
et al. (2019) refers to Swaroop and Hedrick (1996), where the following “weak coupling theo-
rem” is proven:

Proposition 4.2 (weak coupling theorem) Consider the CFM

u̇j = f(uj ,uj−1, . . . ,uj−ml) (4.21)
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where j ∈ N, uj−i ≡ 0 ∀i ≥ j, x ∈ Rn, f : Rn·(ml+1) → Rn, f(0, . . . , 0) = 0.
If f is globally Lipschitz in its arguments, i.e.

‖f(y1, . . . ,yml)− f(z1, . . . ,zml)‖ ≤
ml∑
j=1

lj‖yj − zj‖ (4.22)

and the origin of ẋ = f (x, 0, . . . , 0) is globally exponentially stable, then for sufficiently small lj ,
j = 2, . . . ,ml, the interconnected system is globally exponentially string stable.

The idea of the proof is to use the estimates stemming from the exponential stability of the single
vehicle to show that a weighted summation of the individual Lyapunov functions is robust enough
to deal with the inter-vehicle relations, provided these are sufficiently weak.
However, as shown in the examples, in practice this theorem is not very helpful since inter-vehicle
relations are crucial. For the models we are concerned with, this may or may not work, as
demonstrated in the examples.

4.2 Macroscopic models

4.2.1 Linearisation

Set r := ρ− ρe, w := v − ve.
The linearisation of the continuity equation (3.32) depends on the underlying density definition:

– for the ND, linearisation of (3.32a) is simply

řt + řxve = −ρewx (4.23a)

– for the IHD, (3.32b) becomes

r̃t + ver̃x = −2ρe
2

ε

 ∞∑
j=0

w(2j+1)

(2j + 1)!

(
ε

2ρe

)(2j+1)
 (4.23b)

– finally, for the FLD, from (3.32c) we have

r̂t + r̂xve = −ρe
2

ε

∞∑
j=1

w(j)

j!

(
ε

ρe

)j
. (4.23c)

We may also write this in the more general form

rt + verx = qw ·
[
wx, wxx, . . . , w

(nw)
]>
, (4.24)
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where

qw = −ρe



[
1, 0, 0, . . .

]>
for the ND

2ρe
ε

[
ε

2ρe
, 0, 1

3!

(
ε

2ρe

)3
, 0, . . .

]>
for the IHD

ρe
ε

[
ε
ρe
, 1

2

(
ε
ρe

)2
, . . .

]
for the FLD.

(4.25)

For car-following functions of order n > 2, we may set y := u−ue, where y =
[
r, w, y3, . . . , yn

]>
.

The equations d
dtuk = uk+1 for k = 2, . . . , n− 1 are already linear.

A Taylor expansion of d
dtun = fj(x)(u) yields

∂

∂t
yn + ve

∂

∂x
yn = fj(x) (ue) +

ml∑
k=mf

(
∂

∂xj−k
fj(x) (ue) ·

(
hk(ρe + r)− k ε

ρe

)

+
n∑
l=2

∂

∂ul,j−k
fj(x) (ue) · yl

(
hk(ρe + r)

))
+ . . . . (4.26)

In order to get a local equation, we need to replace the inner terms hk and yl with their Taylor
expansions as well. Denoting the first-order terms of hk(ρe + r) − k ε

ρe
by h′k(r), we get to the

linearisation

∂

∂t
yn + ve

∂

∂x
yn =

ml∑
k=mf

(
∂

∂xj−k
fj(x) (ue)h′k(r) +

n∑
l=2

∂

∂ul,j−k
fj(x) (ue) ·

( ∞∑
s=0

1
s!
∂syl
∂xs

(
kε

ρe

)s))
.

(4.27)
For n = 2, this simplifies to

wt + vewx =
ml∑

k=mf

∂

∂xj−k
fj(x) (ue)h′k(r) + ∂

∂vj−k
fj(x) (ue) ·

( ∞∑
s=0

1
s!
∂sw

∂xs

(
kε

ρe

)s)
. (4.28)

Let us now discuss the linearisation of the density-headway relation h(ρ). Again, we focus on the
special but most important case h′+1 = ∂h+1

∂ρ̃

∣∣∣
ρ̃=ρe

.

– Inverse headway density: from (3.21), we find:

h̃′(r) = −εr
ρ2

e
− ε

ρe2

∞∑
k=1

r(k)

k!

(
ε

2ρe

)k
= − ε

ρe2

∞∑
k=0

r(k)

k!

(
ε

2ρe

)k
. (4.29a)

– Forward looking density: from (3.28), we directly have

ĥ′(r) = − ε

ρ2
e
r. (4.29b)

– Natural density: from (3.31), we obtain

ȟ′(r) = −εr
ρ2

e
−
∞∑
k=2

εkr(k−1)

k!ρek+1 = − ε

ρ2
e

∞∑
k=1

r(k−1)

k!

(
ε

ρe

)k−1
. (4.29c)
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Similar to (4.24), (4.28) may also be written in the form

wt + vewx = qr ·
[
r, rx, rxx, . . . , r

(nr)
]>

+ p ·
[
w,wx, wxx, . . . , w

(nw)
]>
. (4.30)

For [mf ,ml] = [0, 1] we have

p = ∂

∂vj
fj(x) (ue)

[
1, 0, 0, . . .

]
+ ∂

∂vj−1
fj(x) (ue)

[
1, ε

2ρe
, 1

3!

(
ε
ρe

)2
, . . .

]
(4.31)

qr = − ε

ρ2
e

∂fj
∂xj−1



[
1, ε

4ρe
, 1

3!

(
ε

2ρe

)2
, . . .

]
for the IHD,[

1, 0, 0, . . .
]

for the FLD[
1, ε

2ρe
, 1

3!

(
ε
ρe

)2
, . . .

]
for the ND.

(4.32)

4.2.2 Characteristic polynomial and string stability

Proposition 4.3 The microscopic characteristic polynomial in the road frame (4.12) is recovered
in the limit nr,w →∞, independent of the choice of density definition.

Proof: Application of the exponential ansatz y(x, t) =
[
r0, w0, y3(0), . . . , yn(0)

]>
exp (λt+ νx)

to (4.24) yields

(λ+ νve) r0 = w0 qw ·
[
1, ν, ν2, . . .

]> nw→∞−→ −ρ
2
e
ε
w0


2 sinh

(
εν
2ρe

)
for the IHD

exp
(
εν
ρe

)
− 1 for the FLD

εν
ρe

for the ND

. (4.33)

From d
dtuk = uk+1, we obtain

yk+1(0)
yk(0) = λ+ veν, k ∈ [2, n− 1]; (4.34)

by induction, we have
yk(0) = w0 (λ+ veν)k−2 . (4.35)

Applying (4.29) to r(x) = r0 exp (λt+ νx), we obtain

h′+1(r) nr→∞−→ −εr
ρ2

e


exp

(
εν
2ρe

)
for the IHD

1 for the FLD
ρe
εν

(
exp

(
εν
ρe

)
− 1

)
for the ND.

(4.36)

From this we see by induction, with (3.19) and an evaluation of the geometric sum (or, in the case
of ND, by direct linearisation of (3.30))
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h′k
nr→∞−→ −εr

ρ2
e



exp
(
ενk
ρe

)
−1

2 sinh
(
εν
2ρe

) for the IHD
exp
(
ενk
ρe

)
−1

exp
(
εν
ρe

)
−1

for the FLD

ρe
εν

(
exp

(
ενk
ρe

)
− 1

)
for the ND.

(4.37)

Now we may combine conservation law (4.33), headway approximation (4.37), and higher order
additions (4.34) with the linearisation of the car-following function (4.27).
First we note that (4.37) can be plugged into (4.33) to obtain

λ+ νve = w0
exp

(
ενk
ρe

)
− 1

h′k
. (4.38)

With (4.35), we have

h′k = yn(0)
exp

(
ενk
ρe

)
− 1

(λ+ νve)n−1 . (4.39)

Now we plug the exponential ansatz into (4.27), giving

(λ+ veν) yn(0) =
ml∑

k=mf

h′k
∂

∂xj−k
fj(x) (ue) +

n∑
l=2

∂

∂ul,j−k
fj(x) (ue) · w0

l · exp
(
ενk

ρe

)
, (4.40)

which can be combined with (4.39) to

(λ+ veν)n =
ml∑

k=mf

(
exp

(
ενk

ρe

)
− 1

)
∂

∂xj−k
fj(x) (ue)

+
n∑
l=2

(λ+ veν)l−1 ∂ul,j−k
∂f j(x)

(ue) · exp
(
ενk

ρe

)
(2.9)=

ml∑
k=mf

n∑
l=1

(λ+ veν)l−1 ∂

∂ul,j−k
fj(x) (ue) · exp

(
ενk

ρe

)
. (4.41)

A substitution of the spatial eigenvalues ν by iξ
he

and comparison with the characteristic polynomial
in the Eulerian reference frame (4.12) and the shape of matrices Ak in (4.2) proves the claim. �
If we consider a given system for different density definitions up to a finite order of ε, we will have
different characteristic polynomials in general.
The corrections to the density conservation for IHD and FLD turn out to be crucial since the
characteristic polynomial can not be recovered otherwise.
It has been shown in Berg et al. (2000) for the Bando model that micro- and low order macroscopic
model have the same string stability criterium. This is true for a much more general case under
certain assumptions.
For n = 2, the characteristic function of a macroscopic model is given by a polynomial that is
second order in λ and at least second order in ν. The coefficients up to second order in ν do not
change when higher-order derivatives are included into the model.
Generically, string stability of the microscopic model on the infinite lane is determined by the
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curvature of its spectrum in the origin. This property is already correctly represented in the lowest-
order order macroscopic approximation and does not deteriorate for higher-order approximations.
Note that, unlike the microscopic case, the polynomial in ν diverges for ν → ±i∞ and the essential
spectrum will thus protrude arbitrarily wide into the right complex half plane in general . However,
a realistic initial datum [r0, w0]>(ν) may be assumed to have bounded support, since wavelengths
below the minimal distance of cars are not physically meaningful.

4.3 Examples

Example 4.1 (A first-order microscopic traffic model)
We consider the microscopic equivalent of the LWR model, which may be thought of as a first-order
“cousin” of the Bando model:
Let V : R → R be an OVF, e.g. V (h) = tanh(h − 2) + tanh(2). Fix he ∈ R+. Let V ∗(h) =
V (he) + β (h− he), where β := ∂V

∂h

∣∣∣
h=he

, β > 0.
Let f : R× R → R, f (xj , xj−1) = V (xj−1 − xj + he); f∗ : R× R → R, f∗(xj , xj−1) = V ∗(xj−1 −
xj + he). Note that the coordinates are chosen such that the equilibrium is in xj ≡ 0, i.e. xj does
not denote the actual position of vehicle j, but its deviation from the quasistationary solution.
The actual positions may be recovered by xj + j · he + C.
Linearisation yields the operators depicted in Fig. 4.3 with common symbol f(z) = β (z − 1);
consequently, the spectra are given by

– The N -th roots of unity, multiplied and shifted to the left by β, for N vehicles on a circular
road

– The eigenvalue −β with multiplicity N for a platoon of N vehicles on an open road

– A circle of radius β with center −β for infinitely many vehicles without a leader, J = Z

– A closed disk of radius β with center −β for infinitely many vehicles with a leader, J = N

−β

β

β

β −β

0

0

(a) Circulant matrix

−β

β

β −β

0

0

(b) Toeplitz matrix

−β

β

0

0

(c) Toeplitz operator

−β

β

(d) Laurent operator

Figure 4.3: Structure of relevant matrices and operators in Ex. 4.1
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Example 4.2 (Index eigenvalues for different reference frames)
We again consider the simplistic first order traffic model vj = V (xj−1 − xj) with n = 1 and
characteristic polynomial χ(λ, ξ) = λ+ icξ − β(exp (iξ)− 1). For c = 0, we have

heν = iξ = ln
(
λ

β
+ 1

)
+ 2πil, l ∈ Z.

On the other hand, for c 6= 0 we have

heν = iξ = −λ+ β

c
−W

(
−β
c

exp
(
−λ+ β

c

))
(4.42)

where W (z) denotes the multivariate Lambert W function of z ∈ C, returning the roots of the
expression z − x · exp (x) (Fig. 4.4).

(a) c = 0 (b) c = 0.2 (c) c = 0.5

Figure 4.4: Spectra (top) and spatial eigenvalues for selected values of λ (bottom) for the charac-
teristic function χ = λ + icξ − β (exp (iξ)− 1) of the first-order microscopic optimal
velocity model. When changing to a co-moving coordinate system, the string stability
properties stay the same but the roots ξ move

Example 4.3 (A Lyapunov function)
We demonstrate that the “weak coupling theorem” from Swaroop and Hedrick (1996) is not a
big help for the model in Ex. 4.1, since it is barely applicable for the affine-linear f∗:
By the triangle inequality, f∗ is globally Lipschitz with Lipschitz constants l1,2 = β.
The origin of ẋ = f∗(x, 0) is trivially globally exponentially stable with Lyapunov function W (x) =
1
2x

2, and the estimates

αl ‖x‖2 ≤W (x) ≤ αh ‖x‖2 (4.43a)
∂W

∂x
f(x, 0) ≤ −α1 ‖x‖2 (4.43b)∥∥∥∥∂W∂x

∥∥∥∥ ≤ α3 ‖x‖ (4.43c)
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are satisfied for αl = αh = 1
2 , α1 = β, α3 = 1.

As in the proof of the WCT in Swaroop and Hedrick (1996), we now pick 0 < d < 1 and
sum the local Lyapunov functions W to the global Lyapunov function candidate W : RN →
R,W

(
(xj)j∈N

)
=
∞∑
j=1

djW (xj). Global minimality of W (0) is thus fulfilled. Analogously to the

proof, we estimate Ẇ :

d
dtW

(
(xj)j∈J

)
=

∞∑
j=1

dj
∂W

∂x

∣∣∣∣
x=xj

f∗(xj , xj−1)

≤
∞∑
j=1

dj
∂W

∂x

∣∣∣∣
x=xj

(f∗(xj , 0) + l2 ‖xj−1‖)

≤
∞∑
j=1

dj
(
−α1 ‖xj‖2 + l2α3 ‖xj‖ ‖xj−1‖

)

≤
∞∑
j=1

dj
((

l2α3
2 − α1

)
‖xj‖2 + l2α3

2 ‖xj−1‖2
)
≤ 0

Since l2α3
2 = 1

2α1 in this case, the last inequality is sharp, so it is not robust enough to make room
for an additional nonlinearity.
The reason for this is obvious: since f∗ is antisymmetric in xj and xj−1, the coupling cannot be
considered weak.
However, we may also confirm that W is a Lyapunov function by direct calculation (as pointed
out by E. Felaco):

d
dtW

(
(xj)j∈J

)
= β

∞∑
j=1

xj (xj−1 − xj) = −β2

x2
1 +

∞∑
j=1

(
x2
j − 2xjxj−1 + x2

j−1

)
= − β

2

x2
1 +

∞∑
j=1

(xj−1 − xj)2

 < 0

This approach has the advantage that it may be extended to (slightly) more realistic non-linear
OVFs f : We first transfer the system to headway coordinates hj = xj−1−xj (note that, as before,
this headway definition is shifted so that the QS corresponds to the origin), ḣj = V (hj−1)−V (hj).

Let W (h) :=
h∫
0
V (y) dy and W

(
(hj)j∈N

)
:=

∞∑
j=1

W (hj).

Then we have

d
dtW

(
(hj)j∈J

)
=
∞∑
j=1

V (hj) (V (hj−1)− V (hj)) = −1
2

∞∑
j=1

(V (hj−1)− V (hj))2 .

Concavity of W , induced by strict monotonicity of V , is needed in order to show global minimality
of W (0):

W
(
(hj)j∈N

)
=
∞∑
j=1

W (hj) > β
∞∑
j=1

hj = 0

Example 4.4 (String stability of quasistationary solutions in the Bando model)
For the standard Bando model, the characteristic polynomial in the drivers’ coordinate system
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can be written as

0 = det


 0 1
−aβ −a


︸ ︷︷ ︸

A0

−λ Id + exp (iξ)

 0 0
aβ 0


︸ ︷︷ ︸

A1

 , (4.44)

where β = V ′(he). Since n = 2, we are now dealing with block matrices and -operators (Fig. 4.5).

A0

A1 A0

A1
. . .

. . .

. . .

. . . A0

A1 A0

A1

(a) Circulant matrix

A0

A1 A0

A1
. . .

. . .

. . .

. . . A0

A1 A0

(b) Toeplitz matrix

A0

A1 A0

A1 A0

A1
. . .

. . .

(c) Toeplitz operator

A0

A1 A0

A1

A0

A1

. . .

. . .

. . .

. . .

(d) Laurent operator

Figure 4.5: Structure of relevant matrices and operators for the Bando model

The spectra of the circulant matrix, Laurent- and Toeplitz operator are given by (Fig. 4.6)

σ =

λ ∈ C : λ = −a2 ±

√
a2

4 + aβ (z − 1), z ∈


{z ∈ C : zN = 1} circulant matrix

{z ∈ C : |z| = 1} Laurent operator

{z ∈ C : |z| ≤ 1} Toeplitz operator

 .
(4.45)

The spectrum of the Toeplitz matrix does not depend on N and is given the eigenvalues of A0,

σTM =

−a2 ±
√
a2

4 − aβ

 . (4.46)

(a) N = 5 (b) N = 10 (c) N = 50 (d) N =∞

Figure 4.6: Spectra of the Bando model for parameters a = 1, he = 1.3. Note that the circular
road model is stable for N = 5, but unstable for N ≥ 10
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Example 4.5 (Pseudospectra and -modes of the Bando model)
The pseudospectra

σε (AN ) = {λ ∈ C : |det (AN − λ Id)| ≤ ε} (4.47)

for the Toeplitz matrices AN of the Bando model (Fig. 4.5(b)) can be calculated numerically with
the package EIGTOOL for different values of ε and N (Fig. 4.7). We observe that for fixed ε > 0,
the pseudospectra appear to converge towards the spectrum of the Toeplitz operator as N →∞.

(a) N = 10 (b) N = 50 (c) N = 100 (d) N = 500

log(ε)

Figure 4.7: ε-pseudospectra of the Toeplitz matrices for the Bando model, calculated with
EIGTOOL. As N → ∞ and ε → 0, the ε-pseudospectra approximate the (essential)
spectrum of the Toeplitz operator (cf. Fig. 4.6(d))

Example 4.6 (The characteristic polynomial of macroscopic models)
We again consider the Bando model with aggressive drivers (2.23) from Ex. 2.1. For brevity, we
set a = α

τ and γ = 1−α
τ .

Locally, the linearisation is given by

ÿj = a (β (yj−1 − yj)− ẏj) + γ (ẏj−1 − ẏj) . (4.48)

In Eulerian coordinates, the microscopic characteristic polynomial is

(λ+ icξ) · (λ+ icξ + a− γ exp (iξ))− aβ (exp (iξ)− 1) . (4.49)

Linearising the PDEs we derived in Ex. 3.2, we find the linearisation up to nth order in ε for the
IHD model (3.39) is

r̃t + ver̃x = − 2ρ2
e
ε

bn/2c∑
j=0

w(2j+1)

(2j + 1)!

(
ε

2ρe

)2j+1
(4.50a)

wt + vewx = aβ

− ε

ρ2
e

n−1∑
j=0

r(j)

j!

(
ε

2ρe

)j− aw + γ

 n∑
j=0

w(j)

j!

(
ε

ρe

)j
− w

 . (4.50b)
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The corresponding characteristic polynomial is

(λ− νve)·

λ− νve + a− γ
n∑
j=0

1
j!

(
εν

ρe

)j−2aβ

bn/2c∑
j=0

1
(2j + 1)!

(
εν

2ρe

)2j+1
·
n−1∑
j=0

1
j!

(
εν

2ρe

)j .
(4.51)

Linearisation of the forward-looking headway (3.40) yields

r̂t + r̂xve = −ρe
2

ε

n+1∑
j=1

w(j)

j!

(
ε

ρe

)j
(4.52a)

wt + vewx = −aβr ε
ρ2

e
+ aw + γ

 n∑
j=0

w(j)

j!

(
ε

ρe

)j
− w

 (4.52b)

with characteristic polynomial

(λ− νve) ·

λ− νve + a− γ
n∑
j=0

1
j!

(
εν

ρe

)j− aβ
n+1∑
j=1

1
j!

(
εν

ρe

)j . (4.53)

Finally, for the natural density in (3.41) we obtain

řt + řxve = − ρewx (4.54a)

wt + vewx = aβ

(
− ε

ρ2
e

n∑
k=1

r(k−1)

k!

(
ε

ρe

)k−1
)
− aw + γ

 n∑
j=0

w(j)

j!

(
ε

ρe

)j
− w

 . (4.54b)

Interestingly, this yields the same characteristic polynomial (4.51) as PDE (4.50). As n → ∞,
both (4.51) and (4.53) converge towards the microscopic characteristic polynomial (4.49).
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Chapter 5

Linear analysis of jam behaviour

In this chapter, we are investigating the question in which direction a small perturbation to an
unstable quasistationary solution of a given car-following model moves while it is growing. In
traffic flow, this corresponds to the question of where an emerging traffic jam moves. The answer
will of course depend on the frame of reference we have in mind. Two points of view are especially
important: The drivers’ perspective (or rather that of a theoretical driver at equilibrium velocity
ve who is not affected by the perturbation) and the perspective from the side of the road. As in
Sec. 4.1.2, we will refer to these as the index- and road frame or, as in fluid mechanics, as the
Lagrangian and Eulerian point of view, respectively.
In a second step, it is of course interesting to obtain upper and lower bounds for the speed
of information in order to determine the area in x, t-space to which the result of a localised
perturbation is confined. Once we are able to detect whether a perturbation is moving up- or
downstream in a given reference frame, this problem is solved, too: Finding the velocities of the
fronts a traffic jam is equivalent to finding the coordinate systems in which these are at rest.
Without loss of generality, we may therefore concentrate on the two aforementioned systems in
the following.

5.1 Historical overview

Historically, the speed of a perturbation has often been associated with group velocities. Briefly,
this can be explained as follows: For a linear PDE ut = f(u, ux, . . . ) with initial profile

u0(x) = e−εx
2 · eik0x, k0 ∈ R, ε > 0

a Fourier transform gives
u0(k) ∼ e−

(k−k0)2
4ε .

If an exponential ansatz u = eλt+ikx yields the local approximation

λ(k) = λ0 + iσ (k − k0) (5.1)

to the essential spectrum, we have

u(k, t) ∼ e−
(k−k0)2

4ε e(λ0+iσ(k−k0))·t

where σ = ∂λ
∂ik

∣∣∣
k=k0

denotes the group velocity.
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After the inverse Fourier transform we obtain

u(x, t) ∼ eλ0t · e−ε(x+σt)2
· eik0x.

From this, one might argue naively that the instability is of convective nature if for all unstable
wavenumbers k the corresponding group velocities σ are real and in a certain interval.
While this approximation may be applicable for σ ∈ R, it breaks down for σ ∈ C, i.e. in
a dissipative medium. The problem here is not so much that the solution might explode if
(Re (σ))2 − (Im (σ))2 < 0, but mainly the distortion of the pulse because of the e2iRe(σ)Im(σ)tx-
term.
This issue was raised when after publication of special relativity in 1905, W. Wien objected
that, for a refractive index of light smaller than one (which occurs for absorptive media), phase
and group velocity may well be higher than the speed of light. In a talk titled “Ein Einwand
gegen die Relativtheorie der Elektrodynamik und seine Beseitigung” in 1907, A. Sommerfeld
discussed this issue and, on the basis of thought experiments, pointed out that neither the phase
nor the group velocity are of relevance here but what he called the “signal velocity”, which can be
calculated by means of complex integration. These ideas were further worked out in Sommerfeld
(1914), Brillouin (1914) and later translated to English and republished in Brillouin and
Sommerfeld (1960) (cf. Pryce 1961). The focus of this work is on the “signal velocity”, the
phrases “convective/absolute stability” are not yet used. The key idea in their approach is a
sophisticated variation of curves along which complex integrals are evaluated.
Central ideas from this line of work were later applied to microscopic traffic flow models by Ward
and Wilson.
Briggs worked, apparently unaware of Brillouin/Sommerfeld, on the interaction between electron-
streams and plasmas. The key phrase here is the distinction between “temporal” and “spatial”
instability. The work is based on early ideas from Lifshitz; vice versa, Lifshitz and Pitaevskii
(1981) refer closely to formalism in Briggs (1964). Brevdo (1988) can also be attributed to
this line of thought, with interesting applications to periodic solutions later on in Brevdo and
Bridges (1996, 1997) (to be discussed in Sec. 7.2).
Sherratt et al. (2014) give an introduction and overview to the topic from a biological point of
view, with special emphasis on the ideas of Sandstede and Scheel who introduced the notions
of transient and remnant instability which we will address in Sec. 5.3.
For traffic flow models, the topic was discussed by different authors:

– Treiber and Kesting (2011) use an approximation by group velocities and find good
agreement with simulations

– Mitarai and Nakanishi (1999, 2000a,b) use the PDE formalism from Lifshitz and
Pitaevskii (1981) for the microscopic Bando model

– Ward and Wilson (Ward 2009; Ward and Wilson 2011; Wilson and Ward 2011)
apply ideas from Brillouin and Sommerfeld (1960) explicitly to a microscopic system
with leader on the infinite lane and compare these results to group velocity calculations.
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In this section we are going to compare the different approaches for detecting convective and
absolute instability in microscopic traffic flow models. We will also compare the results to those
obtained for the corresponding macroscopic models. After that, we are going to adopt the notions
of transient and remnant instability to microscopic traffic flow models and provide an example for
a situation where this approach may be more helpful.

5.2 Convective and absolute instability

We start with an application of the general theory for convective and absolute instability as in
Lifshitz and Pitaevskii (1981), first to macroscopic and subsequently also to microscopic traffic
flow models.

5.2.1 Macroscopic models

We have found that the linearisations in section 4.2 are of the form rt + verx

wt + vewx

 =

 0 qw

qr p

 (
r, rx, rxx, . . . , r

(nr)
)(

w,wx, wxx, . . . , w
(nw)

) (5.2)

where qw,r and p are defined in (4.25), (4.32), and (4.31), respectively.
Let us start by writing the solution of the linear PDE (5.2) in terms of Laplace- and Fourier trans-
forms. For convenience, we do not rename the functions, but simply write out the independent
variables explicitly. We have

[
r, w

]>
(x, λ) =

∞∫
0

e−λt
[
r, w

]>
(x, t) dt (5.3a)

[
r, w

]>
(ν, λ) =

∞∫
−∞

e−νx
[
r, w

]>
(x, λ) dx. (5.3b)

Let qr(ν) :=
nr∑
j=0

νjqj+1
r and analogously for pw and qw.

Together with the initial condition
[
r, w

]>
(x, 0) =

[
r0, w0

]>
(x), after transformation (5.2) be-

comes (
(λ+ veν) Id−

 0 qw(ν)
qr(ν) p(ν)


︸ ︷︷ ︸

=:A(ν)

)r
w

 (ν, λ) =

r0

v0

 (ν) . (5.4)

For given (λ, ν), (5.4) can be solved for [r, w]> provided (let q(ν) := qr(ν) · qw(ν))

χ(λ, ν) := det ((λ+ veν) Id−A(ν)) = (λ+ νve) (λ+ νve − p(ν)) + q(ν) 6= 0. (5.5)
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Afterwards, we go back to x, t-space by the inverse transformations:

r
w

 (x, λ) =
+i∞∫
−i∞

eνx

r
w

 (ν, λ) dν (5.6a)

r
w

 (x, t) =
σ+i∞∫
σ−i∞

eλt

r
w

 (x, λ) dλ. (5.6b)

The Laplace-integral (5.6b) is carried out last. We assume that the integrand, determined by
(5.6a), is analytic; then we can pull the integration contour down as far as possible and the
integral will be dominated by the poles of the integrand, where the contour gets stuck.
Looking at the inner integral (5.6a), we see that it is finite (provided suitable decay of

[
r0, v0

]
(ν))

if (5.5) holds. This means that the poles in (5.6b) depend only on λ, not on x.
We may assume there is only a finite set of poles Λ = {λc(j), j = 1, 2, . . . ,m}. In the long run,
the evolution of

[
r, w

]
(x, t) will then be dominated by the surrounding of the pole(s) with the

biggest real part.
In order to find out where the λ-contour gets stuck, we look at the inner Fourier integral (5.6a)
again. It is easy to see that the integrand in (5.6a) has poles if χ(ν, λ) = 0.

Assumption 5.1 (wellposedness) The essential spectrum protrudes finitely wide into the right
half-plane.

When we fix the imaginary part of λ and choose its real part to be large enough, consequently no
spatial eigenvalue can be on the contour.
If we now deform the contour by decreasing the real part of λ, the associated spatial eigenvalues
move and, as we touch the essential spectrum, at least one of them crosses the imaginary axis.
However, we may deform the contour of the integration over ν as necessary and go on. As long as
the contour can be deformed continuously without crossing the spatial eigenvalues, everything is
fine. At some point, however, the ν-contour may be “pinched” by spatial eigenvalues. In general,
this will happen only at certain distinct values of λ. In this case, the integration contour in ν

cannot be deformed away from the spatial eigenvalues and the integrand in (5.6b) has a pole. It
may be observed that a necessary condition for this to happen is

χ (νc, λc) = 0 (5.7a)

∧ ∂χ

∂ν
(νc, λc) = 0 (5.7b)

for (λc, νc) ∈ C× C. We can write (5.7b) as λ+ veν = vep(ν)−q′(ν)
2ve−p′(ν) and plug this into (5.7a):

(
vep(ν)− q′(ν)

2ve − p′(ν)

)(
vep(ν)− q′(ν)

2ve − p′(ν) − p(ν)
)

+ q(ν) = 0

(
vep(ν)− q′(ν)

) (
vep(ν)− q′(ν)− p(ν)

(
2ve − p′(ν)

))
+ q(ν)

(
2ve − p′(ν)

)2 = 0. (5.8)

However, so far this only guarantees that two of the spatial eigenvalues merge, but not that they
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fix the integration contour between them. For this, we need to ensure that the colliding eigenvalues
were on different sides of the contour when the corresponding λ still had a bigger real part. This
may be achieved in different ways.
If χ is of low order in ν, it may be feasible to perform a curve discussion to determine the
asymptotic behaviour of the meeting spatial eigenvalues as λ → +∞; this approach is taken
in Lifshitz and Pitaevskii (1981).
We may set up a complex initial value problem:

∀h > 0 : 0 = χ(λc + h, ν(h)) = 0

⇒ dν
dh(h) = −χλ (λc + h, ν(h))

χν (λc + h, ν(h)) , ν(0) = νc. (5.9)

This is not a well-posed problem due to the root in the denominator at h = 0. However, note that
we have the limit

lim
ν→νc

χν(λc, ν)
ν − νc

= χνν(λc, νc).

Furthermore, as long as the order of νc as a zero of χ(λc, ν) is not higher than two (which is
generically fulfilled), χνν(λc, νc) 6= 0. To utilise this, we make an ansatz

∀h ∈ R : 0 = χ(λc + h2

2 , ν(h)) = 0,

⇒ dν
dh(h) =

−
χλ(λc,νc)
χνν(λc,νc) for h = 0

−h·χλ(λc+h,ν(h))
χν(λc+h,ν(h)) else

, ν(0) = νc. (5.10)

Unless we do run into another branch point along the way, (5.10) is well defined. Even if, we may
restart the continuation there, so this poses no serious problem.
Note that λ increases in real part for both signs of h. As we follow ν(h) from h = 0 towards
h→ ±∞, we therefore recover the origins of the colliding spatial eigenvalues.
Now we may formulate a pinching condition as follows:

Definition 5.1 (general pinching condition) Let (λc, νc) be a branch point and ν(h), h ∈ R
be the corresponding solution to (5.10). (λc, νc) satisfies the pinching condition if

lim
h→∞

Re (ν(+h)) · Re (ν(−h)) < 0. (5.11)

The approach chosen in Sandstede and Scheel (2000) is based on the distribution of the spatial
eigenvalues for Re (λ)� 0 and uses the notion of the Morse index:

Definition 5.2 (Morse index i∞) Pick any λ∞ ∈ C to the right of the essential spectrum.
Solve 0 = χ(λ∞, ν) for ν and sort the roots by real part:

Re (ν1) ≤ Re (ν2) ≤ · · · ≤ Re (νi∞) < 0 < Re (νi∞+1) ≤ . . .Re (νm−1) ≤ Re (νm) . (5.12)

The Morse index i∞ is given by the number of spatial eigenvalues with real part smaller zero.
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Note that the distribution of spatial eigenvalues between the left and right half-plane by definition
changes if and only if λ is in the essential spectrum. The requirement that the colliding spatial
eigenvalues originated from different sides may then be formalised as follows:

Definition 5.3 (pinching condition) Let (λc, νc) satisfy (5.7). Let ν1, . . . , νm be the solutions
to χ(ν, λc) = 0, sorted by real part as in (5.12). (λc, νc) satisfies the pinching condition if

νi∞ = νc = νi∞+1, (5.13)

where i∞ is the Morse index introduced in Def. 5.2.

Proposition 5.1 For polynomial χ, pinching according to Def. 5.3 implies pinching according to
Def. 5.1.

Proof: By definition of the Morse index i∞ and Assumption 5.1, there is an r ∈ R such that for
all Re (λ) > r we have Re (νi∞) < 0 and Re (νi∞+1) > 0. �
To conclude about the effect of the pole we encounter in a branch point satisfying the pinching
condition, we employ a Taylor expansion around (λc, νc). Locally, the solution of (5.4) is given byr

w

 (ν, λ) ≈ 1
∂χ
∂λ

∣∣∣
c

(λ− λc) + 1
2
∂2χ
∂ν2

∣∣∣
c

(ν − νc)2

λc + veνc − p(νc) −qw(νc)
−qr(νc) λc + veνc

r0

v0

 (νc) . (5.14)

As long as the matrix does not vanish in the branch point, it does not influence the asymptotic
behaviour.
Implicit derivation shows us

∂2λ

∂ν2

∣∣∣∣∣
c

=
∂2χ
∂ν2

∣∣∣
c
∂χ
∂λ

∣∣∣2
c

+ ∂2χ
∂λ2

∣∣∣
c
∂χ
∂ν

∣∣∣2
c
− 2 ∂2χ

∂ν∂λ

∣∣∣
c
∂χ
∂λ

∣∣∣
c
∂χ
∂ν

∣∣∣
c

∂χ
∂λ

∣∣∣3
c

=
∂2χ
∂ν2

∣∣∣
c

∂χ
∂λ

∣∣∣
c

. (5.15)

By setting

f(λ) = 1

2
√

∂2χ
∂ν2

∣∣∣
c
∂χ
∂λ

∣∣∣
c

(λ− λc)
, d(λ) :=

√√√√ 1
∂2λ
∂ν2

∣∣∣
c

(λ− λc) =

√√√√√ ∂χ
∂λ

∣∣∣
c

(λ− λc)
∂2χ
∂ν2

∣∣∣
c

, (5.16)

1
∂χ
∂λ

∣∣∣
c

(λ− λc) + 1
2
∂2χ
∂ν2

∣∣∣
c

(ν − νc)2 = f(λ)
( 1
ν − νc − d(λ) −

1
ν − νc + d(λ)

)
(5.17)

we can write the ν, λ-dependent part of the integral in (5.6a) as

f(λ)
+i∞∫
−i∞

eνx
( 1
ν − νc − d(λ) −

1
ν − νc + d(λ)

)
dν. (5.18)
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Note that a sometimes overlooked necessary condition for this analysis to work is

∂χ

∂λ

∣∣∣∣
c
6= 0. (5.19)

We may now split (5.18) and use residual calculus for the evaluation of the parts. At this point,
the meaning of the pinching condition becomes clear again: Unless the poles are situated on
opposite sides of the integration contour, the integrals will cancel each other. Note that d(λ) does
not influence the value of the integral.
We conclude that, as λ→ λc, [r, w](λ, x)→∞ like 1√

λ−λc
.

Putting this knowledge in the outer integral we see that it asymptotically grows like 1√
t
eλct+νcx.

If Re (λc) > 0, this will grow in any point in space; otherwise, we only have exponential growth
along rays x = ct for c in a given interval.
This motivates the following defintion:

Definition 5.4 (convective/absolute instability) An unstable quasistationary solution of a
macroscopic model is called convectively unstable (cu) if all (λc, νc) satisfying the branch
point condition (5.7), nondegeneracy condition (5.19) and the pinching condition (5.13) satisfy
Re (λc) < 0.
If an unstable QSS is not convectively unstable, it is called absolutely unstable (au).

We are also interested in a more detailed classification of convective instability:

Definition 5.5 (convective upstream (downstream) instability) A convectively unstable
quasistationary solution is convectively upstream (downstream) unstable (cuu/cdu) if it
stays convectively unstable for any frame of reference where standing objects are moving up-
stream (downstream).

5.2.1.1 Low order

We now apply this technique to the low order approximations from Sec. 4.2, where the resulting
polynomials can be solved exactly.
From Sec. 4.2.1, remember the linearisations of the first-order PDE for IHD and ND (4.50, 4.54):

rt + verx = −ρewx (5.20a)

wt + vewx = fh
ε

ρ2
e

(
r + ε

rx
2ρe

)
+ fvw + f∆v

wx
ρe

(5.20b)

and FLD (4.52)

rt + verx = −ρ
2
e
ε

(
wx

ε

ρe
+ wxx

2

(
ε

ρe

)2
)

(5.21a)

wt + vewx = fh
ε

ρ2
e
r + fvw + f∆v

wx
ρe
. (5.21b)
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System (5.20) may be written in matrix form asrt
wt

+

 ve ρe

fh
ε2

2ρ3
e

ve − f∆w
ρe

rx
wx

 =

 0 0
fh

ε
ρ2

e
fv

r
v

 ; (5.22)

with the initial condition
[
r, w

]>
(x, 0) =

[
r0, w0

]>
(x) , after transformation (5.22) becomes

λId + ν

 ve ρe

fh
ε2

2ρ3
e

ve − f∆w
ρe

−
 0 0
fh

ε
ρ2

e
fv

r
w

 (ν, λ) =

r0

v0

 (ν) . (5.23)

We omit the equivalent formula for (5.21). In both cases, the characteristic polynomial reads
(4.51, 4.53):

χ(λ, ν) = (λ− νve)
(
λ− νve + fv + f∆v

εν

ρe

)
− fh

(
εν

ρe
+ 1

2

(
εν

ρe

)2
)
. (5.24)

In terms of (5.5), we have p(ν) := fv + f∆v
εν
ρe

, and q(ν) := −fh
(
εν
ρe

+ 1
2

(
εν
ρe

)2
)

.
For simplicity, we use he = ε

ρe
, c = ve

he
and set z = νhe.

A simple curve discussion of λ(ik), k ∈ R, shows that the asymptotes for k → ±∞ are parallel to
the imaginary axis:
Solving χ(λ, ν) = 0 in (5.24) for λ yields

λ±(ν) = −fv + f∆v z

2 ±

√
(fv + f∆v z)2

4 + fh

(
z + z2

2

)
+ cz. (5.25)

With a = (f∆v)2

4 + fh
2 , b = f∆vfv

2 + fh we have for k ∈ R

lim
|k|→∞

∣∣∣∣∣λ±(ik)−
(
−
fv + f∆v

εik
ρe

2 + ikve ±
(√

aik + b

2
√
a

))∣∣∣∣∣ (5.26)

and obtain two vertical asymptotes at −fv
2 ±

b
2
√
a
. This means in particular that Ass. 5.1 is

satisfied and the essential spectrum protrudes only finitely wide into right-hand side.
From (5.24) we may directly see that

i∞ = 1⇔ c2 − cf∆v −
1
2fh < 0. (5.27)

If i∞ 6= 1 there can be no relevant branch point so the QSS will be convectively unstable.
Solving (5.24) for z, we obtain

χ(z, λ) =
(
c2 − cf∆v −

1
2fh

)
z2 + (−2λc− cfv + f∆vλ− fh) z +

(
λ2 + λfv

)

z± = −1
2
−2λc− cfv + f∆vλ− fh

c2 − cf∆v − 1
2fh

±

√√√√1
4

(
−2λc− cfv + f∆vλ− fh

c2 − cf∆v − 1
2fh

)2

− λ2 + λfv

c2 − cf∆v − 1
2fh

. (5.28)
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Looking at the radicant, we note that the roots diverge for c2−cf∆v− 1
2fh, which is not surprising

after our prior observation. In this case, condition (5.7) is equivalent to the discrimant in (5.28)
being zero, which is the case for

1
4 (−2λc− cfv + f∆vλ− fh)2 −

(
λ2 + λfv

)(
c2 − cf∆v −

1
2fh

)
= 0. (5.29)

We refrain from explicitly solving (5.29) for λ since the resulting complicated term gives no further
insight for the general case.
In Ex. 5.4.2.2, we derive explicit formulas for the case of the Bando model.
We may also view the above results from the persepective of the criticism by Daganzo (1995): If
we ignore the source term, we have a hyperbolic conservation law. The characteristic polynomial
of the first matrix is

(λ− ve)
(
λ− ve + f∆w

ρe

)
+ fh

ε2

2ρ2
e

(5.30)

with eigenvalues

λ± = ve −
f∆w
2ρe
±

√(
f∆w
2ρe

)2
− fh

ε2

2ρ2
e
. (5.31)

For the Bando model with f∆w = 0, this seems to be a problem because the characteristic
speed λ can be faster than the cars. This would be a contradiction to our conclusion that the
system is convectively stable in the Lagrangian frame: In fact, symmetric eigenspeeds seem to be
“prototypic” for absolute instability.
Compare Aw and Rascle (2000), in reply to Daganzo (1995): Here this problem was noted as
well for the Payne-Whitham model (Payne 1971; Whitham 1974)

ρt + (ρv)x = 0 (5.32a)

vt + vvx + 1
ρ

(p(ρ))x = 1
τ

(V (ρ)− v) + γvxx. (5.32b)

If we find q such that (q(ρ))x = 1
ρ (p (ρ))x, we can write this as

ρt
vt

+

 (ρv)x(
v2

2 + q(ρ)
)
x


︸ ︷︷ ︸

(f(ρ,v))x

=

 0
1
τ (V (ρ)− v) + γvxx

 . (5.33)

From the Jacobian of f in (ρe, ve) we find the characteristic speeds ve±
√
p′ (ρe). The explanation

by Aw and Rascle is that the problem is the derivative with respect to x. Their suggestion out
is to use a “directional derivative” ∂

∂t + c ∂∂x instead of ∂
∂x . This is not the place to discuss this

approach; however, it may be argued that this avoides rather than solves the problem.
Since these were the only ones considered, the problem could be blamed on the spatial derivatives,
too. However, we instead argue that the primary issue is the omitting of the source term in the
analysis.
Here and in Aw and Rascle (2000), in the linearised model, the Jacobian of f is not the part
where zeroth-order information about the distance to the car in front enters. In this sense, con-
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Chapter 5. Linear analysis of jam behaviour

sidering characteristic speeds calculated from the Jacobian cannot contain the right information.
Note also that the source term has factor 1

τ , where τ is of the same order of magnitude as ε. This
is the dominant term in the system so ignoring it cannot be a good idea.

5.2.1.2 Higher order

For higher order PDE approximations of a CFM, combination of (5.7a) and (5.7b) in general
yields a polynomial of order greater four, whose roots need to be found numerically.
The main problem is that the essential spectra will have bad asymptotics as k → ±∞; in general,
Ass. 5.1 will not be satisfied. However, as discussed in Sec. 4.2.2, we may assume that the initial
datum [r0, w0]>(ν) has bounded support.
This means that, since the position of the spectrum outside of the support of [r0, w0]>(ν) is not
important for the integration, we may change it arbitrarily. Thus, we may adapt χ such that the
essential spectrum has vertical asymptotes in λ-plane and branch points appear only for νc in the
support of [r0, w0]>(ν). Then i∞ from Def. 5.2 is well-defined and we may proceed as before.

5.2.2 Microscopic models

In Mitarai and Nakanishi (1999) the “convective stability limit” (corresponding to the cuu-au
instability boundary) was calculated for the Bando model, based on Lifshitz and Pitaevskii
(1981).
The necessary condition (5.7) is checked in terms of an equivalent formulation in ω and k, but
no comments are made on the applicability of the theory or the necessity to check the pinching
condition..
Therefore, let us go through the steps performed in section 5.2.1 and discuss at which points
changes need to be introduced.
Since the correct frame of reference is crucial, we need to work with a linear CFM in the form
(4.11), for simplicity we restrict ourselves to ẏ̃

ẇ̃

 =

 0 1
−fh fv − f∆v


︸ ︷︷ ︸

=:A

y̃
w̃

+

 0 0
fh f∆v


︸ ︷︷ ︸

=:B

y̃−1

w̃−1

 . (5.34)

The independent variables are now (̃, t) ∈ Z×R+ instead of (x, t) ∈ R×R+. In the transforma-
tions (5.3), we can keep the Laplace transform (5.3a) but have to replace the continuous Fourier
transform (5.3b) by a discrete-time Fourier transform over the indices:

[
y, w

]>
(̃, λ) =

∞∫
0

e−λt
[
y, w

]>
(̃, t) dt (5.35a)

[
y, w

]>
(ξ, λ) =

∞∑
̃=−∞

e−iξ̃
[
y, w

]>
(̃, λ) dx. (5.35b)
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After both transformations, (5.34) with initial data [y, w]>(̃, 0) = [y0, w0]>(̃) becomes

(
(λ+ icξ) Id−

 0 1
fh
(
eiξ − 1

)
fv + f∆v

(
eiξ − 1

)
︸ ︷︷ ︸

=A+eiξB

)y
w

 (ξ, λ) =

y0

w0

 (ξ) . (5.36)

Solvability of (5.36) is again determined by the characteristic function

χ(λ, ξ) = det
(
(λ+ icξ)Id− (A+ eiξB)

)
= (λ+ icξ)

(
λ+icξ−fv − f∆v

(
eiξ − 1

)
︸ ︷︷ ︸

p̃(ξ)

)
−fh

(
eiξ − 1

)
︸ ︷︷ ︸

q̃(ξ)

.

(5.37)
Note that for any given λ0, there is a countably infinite set of roots {ξ0 ∈ C : χ(λ0, ξ0) = 0}
The back-transformation is given by

[
y, w

]>
(̃, λ) =

π∫
−π

eiξ̃
[
y, w

]>
(ξ, λ) dξ (5.38a)

[
y, w

]>
(̃, t) =

σ+i∞∫
σ−i∞

eλt
[
y, w

]>
(̃, λ) dλ. (5.38b)

Although the index set is discrete, the back-transformation includes integration over two contin-
uous sets, one of which is bounded.
By the same arguments as before, we now have to search for branch points (ξc, λc) ∈ C2 such that

χ(ξc, λc) = 0 (5.39a)

∧ ∂χ

∂ξ
(ξc, λc) = 0. (5.39b)

Again, equivalently to our treatment of (5.7), we may solve ∂χ
∂ξ = 0 for λ+ ξc and plug the result

into χ = 0:

0 = cp(ξ)− q′(ξ)
p′(ξ)− 2c ·

(
cp(ξ)− q′(ξ)
p′(ξ)− 2c + p(ν)

)
+ q(ξ)

⇔ 0 =
(
cp(ξ)− q′(ξ)

)2 + p(ξ)
(
cp(ξ)− q′(ξ)

) (
p′(ξ)− 2c

)
+ q(ξ)

(
p′(ξ)− 2c

)2
. (5.40)

We may substitute z = eiξ. Note that (5.40) is a third order polynomial in z.
Solving and resubstitution gives three sequences of branch points.
As a sufficient condition, we may apply definition 5.1.

Definition 5.6 (Convective/absolute instability for microscopic models)
An unstable quasistationary solution (he, ve) of a microscopic model is called convectively unsta-
ble if all (λc, νc) satisfying the necessary condition (5.39) and the sufficient condition as described
above satisfy Re (λc) < 0.
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If an unstable CFM is not convectively unstable, it is called absolutely unstable.

5.2.2.1 Comparison with the approach by Ward and Wilson

Let us now consider the approach presented in Ward and Wilson (2011) which is loosely based
on Brillouin and Sommerfeld (1960), which in turn is a republication of Sommerfeld (1914)
and Brillouin (1914).
Their basic assumption is that perturbations are caused by the leading car, and the inital condi-
tions for all other cars are zero. The underlying index set is J = N.
After (5.35a), we have the system

λ̃
[
y, w

]> (
j, λ̃
)

=


[
y0, w0

]>
(j) +A

[
y, w

]>
(j, λ̃) j = 0

A

[
y, w

]>
(j, λ̃) +B

[
y, w

]>
(j − 1, λ̃) j > 0.

(5.41)

Here, we write λ̃ instead of λ̃, since for now we are still in the vehicles’ coordinate frame.
Since J 6= Z, we cannot apply (5.35b).
The solution to (5.41) can be written recursively as

[
y, w

]>
(j, λ̃) =

[(
λ̃ Id−A

)−1
B

]j (
λ̃ Id−A

)−1 [
y, w

]>
(λ̃, j = 0). (5.42)

Without loss of information, this can be written in y only as in Ward and Wilson (2011), since
w(λ, j = 0) depends only on y(λ, j = 0) and the initial value w(j = 0, t = 0). We stick with the
matrix formulation for ease of comparison with our former calculations.
Let z± be the eigenvalues of

(
λ̃ Id−A

)−1
B, i.e.

(
λ̃ Id−A

)−1
B = U−1diag

[
z±

]
U. (5.43)

Note that z± and U implicitly depend on λ̃.
The retransformation by means of (5.38b) can be written as

[
y, w

]>
(j, t) =

σ+i∞∫
σ−i∞

U−1diag
[
exp

(
λ̃t+ j ln z±

)]
U
(
λ̃ Id−A

)−1 [
y0, w0

]>
(λ̃) dλ̃. (5.44)

For fixed j, this expression converges to 0 as t→∞, provided we have platoon stability: Pull σ to
the left. Again the contour “sticks” to the poles of the integrand. These occur for det

(
λ̃ Id−A

)
=

0, corresponding to the platoon eigenvalues, whose real part is smaller than zero by assumption.
Now we consider the evolution along a ray j = ct and apply the method of steepest descent to

exp
(
t
(
λ̃+ c ln z+

))
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by finding the saddle point of λ̃+ c ln z+ with biggest real part, implying the necessary condition

∂

∂λ̃

(
λ̃+ c ln z+(λ̃)

)
= 0. (5.45)

Proposition 5.2 Condition (5.45) is equivalent to the necessary condition (5.39).

Proof: z+ is defined in (5.43). It is easy to see that this is equivalent to it being a solution of

χ̃
(
λ̃, z+

)
:= det

(
A+ 1

z+
B − λ̃ Id

)
= 0. (5.46)

(5.46) obviously corresponds to (5.39a); comparison with (5.37) shows we may set λ̃ = λ + icξ,
ζ = eiξ.
Now we may simplify the LHS of (5.45) as

∂

∂λ̃

(
λ̃+ c ln z+

)
= 1 + c

∂ξ

∂λ̃
= 1− c ∂χ̃

∂λ̃

/
∂χ̃

∂ξ
= 1− c

∂χ
∂λ

∂χ
∂ξ − c

∂χ
∂λ

,

making the equivalence of (5.45) to (5.39b) obvious. �
This can also be shown by direct comparison of the third-order polynomials for the branch point
condition. However, the variant presented here gives more insight into the structural relation
between the two approaches and provides a better interpretation of the variables occurring in the
different settings.
The sufficient conditions formulated by Ward and Wilson (2011) are

1. λ̃c is the global maximum of Re
(
λ̃+ c ln z+(λ̃)

)
along the contour.

2. The λ-contour must not cross the platoon eigenvalues.

With
λ̃+ c ln z+(λ̃) = λ, (5.47)

it is easy to see that maximality of Re
(
λ̃+ c ln z+(λ̃)

)
in λ̃c corresponds to λc being the rightmost

point on the integration contour in the other setting.
The necessity of the latter condition can be directly seen from (5.44).

5.2.3 Drawbacks

The meaning of the branch point condition (5.7) or its equivalent (5.45) are far from intuitive. The
visualisations are all done in the ν- and λ-plane, with no obvious interpretation in the application
context.
This critique applies maybe even more to the approach presented in Ward and Wilson (2011),
which may be one of the reasons it has seen little application in practice.
As described in Sandstede and Scheel (2000), using the concepts of convective and absolute
instability may give unexpected results for PDEs on finite domains with separated boundary
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conditions: Under certain circumstances, perturbations may not be convected out of a system of
finite length, but instead be “reflected” at the boundary.
A similar phenomenon may occur in microscopic traffic flow models for two lanes if information
is exchanged between lanes locally.
Assume both one-way models are in a convectively unstable parameter regime, but perturbations
are convected to the right on one lane and to the left on the other. The overall system will
then be convectively unstable as well. Without interaction, the amplitude of the perturbation
will eventually decay at each fixed location. This changes if an interaction between the lanes is
introduced at certain points: upon leaving an interval between such points on one lane, part of
the perturbation will “reenter” on the other lane and travel back. This will be repeated at the
other end of the interval in reverse order (Ex. 5.4).
The distinction between convective and absolute instability introduced in Def. 5.5 does not account
for this. This means that we can construct models that are convectively unstable, but neither
convectively upstream nor downstream unstable.

5.3 Transient and remnant instability

5.3.1 Macroscopic models

Consider a linear PDE ut = f(u, ux, . . . ). As we know, its solution consists of a weighted integral
over modes of the form exp (λt+ ν(λ)x), where each pair λ, ν(λ) solves the characteristic equation
χ (λ, ν(λ)) = 0. If there are pairs with Re (ν(λ)) = 0,Re (λ) > 0, we have instability. Conversely,
we have stability if for all λ in the right complex half plane the imaginary axis is free of spatial
eigenvalues.
Since the spatial eigenvalues move continuously with λ and for given λ there are always m ∈ N
spatial eigenvalues, by definition of the Morse index in (5.12) this means that for all λ in the right
complex half plane there are i∞ spatial eigenvalues in the left and m − i∞ in the right complex
half plane .
We would now like to have some sort of “filter” that helps us to qualitatively classify the contri-
bution from the neighbourhood of an arbitrary but fixed λ ∈ C.
To this end, we multiply the solution with an exponential weight eη(λ)x. By doing so, we are
effectively studying a variant of the PDE, in which ν(λ) is replaced by ν(λ)+η(λ) (Fig. 5.1). This
means that in general, we will be able to “fix” the distribution of spatial eigenvalues towards the
desired state (5.12). However, a problem arises whenever Re (νi∞(λ)) = Re (νi∞+1(λ)): In this
case, these two spatial eigenvalues will always be crossing the imaginary axis together, and the
desired distribution cannot be achieved. This is the case if, but not only if, νi∞ = νi∞+1, i.e. in a
branch point of χ(λ, ν).
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u(x, t) u(x, t+ s) H1

ũ(x, t) ũ(x, t+ s) H1
η

PDE

·eηx ·eηx
˜PDEη

Figure 5.1: Application of exponential weights to the solution of a PDE

This motivates the main definition of this section, adapted from Sandstede and Scheel (2000):

Definition 5.7 (transient and remnant instability) An unstable linear PDE is called tran-
siently unstable (tu) if for each λ in the right half plane there is an η(λ) ∈ R such that

Re (ν1) ≤ Re (ν2) ≤ · · · ≤ Re (νi∞) < η(λ) < Re (νi∞+1) ≤ . . .Re (νm−1) ≤ Re (νm) . (5.48)

A transiently unstable linear PDE is called transiently upstream (downstream) unstable
(tuu/tdu) if all such η may be chosen from R+ (R−).
An unstable linear PDE is called remnantly unstable (ru) if it is not transiently unstable.

In this context, the concept of the absolute spectrum will be helpful:

Definition 5.8 The absolute spectrum is given by the λ ∈ C for which

Re (νi∞(λ)) = Re (νi∞+1(λ)) .

Proposition 5.3 An unstable QS is transiently unstable if and only if its absolute spectrum lies
in the left half plane.

Proof: For λ ∈ C arbitrary but fixed, it is clear that (5.48) is true if and only if Re (νi∞(λ)) 6=
Re (νi∞+1(λ)). �

5.3.2 Microscopic models

In order to emphasise the connection to the macroscopic setting, in the following we will work
with iξ, rotating the index eigenvalues ξ by pi

2 . After division by he, we may also refer to them
as “microscopic spatial eigenvalues” ν = iξ

he
.

In the index frame, the spectrum is given by a closed curve, for each fixed λ ∈ C there are
countably infinitely many roots that are spaced equidistantly on a vertical line. If λ is in the inner
area of the closed curve, all the microscopic spatial eigenvalues are in the left half-space, if λ lies
outside of closed curve, all spatial eigenvalues are in the right half-space. We may also assign an
orientation to the spectrum so that we can regard the inner as to the left and the outer as to the
right of it.
In the road frame, the spectrum is “stretched” in the direction of the imaginary axis. For fixed
ξ, we have n solutions λ1(ξ), . . . , λn(ξ). The solutions are continuously differentiable in ξ, so we
obtain n smooth curves for iξ ∈ R.
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In this sense, for c = 0, the branches of the spectrum can be regarded as completely “coiled”, and
a non-zero c has the effect of spreading them out in the direction of the imaginary axis.
By definition, whenever λ crosses the spectrum, a spatial eigenvalue crosses the imaginary axis.
When crossing the “coiled” spectrum of the index frame, infinitely many spatial eigenvalues move
to the left or right simultaneously. This is different in the case c 6= 0. In general, up to points
where the branches cross themselves or each other, the distribution of spatial eigenvalues changes
by 1 when crossing a branch of the essential spectrum (cf. Ex. 4.2).
In order to determine the distribution of eigenvalues for a particular λ ∈ C with c 6= 0, it is helpful
to remember the classification of the connected components by the orientation of the spectrum
that we introduced before. Since the spectrum is no longer given by a closed curve, there is no
component that directly corresponds to the inner area. Instead, we have two large connected areas
to the left and the right of the spectrum and a periodic pattern formed by the n branches. From
this we may see that the spatial distribution is changed by n when λ moves from the very right to
the very left (same orientation of branches assumed). For λ with real part big enough, we have n
spatial eigenvalues with negative real part, for λ with real part small enough all spatial eigenvalues
are in the right complex half plane. As c ↘ 0, the real parts of the n spatial eigenvalues to the
left approach −∞ for Re (λ) � 0; in the center, regions with multiple spatial eigenvalues on the
left are created by intersections of the essential spectrum with itself.
Equivalently to the macroscopic case, we may therefore sort the spatial eigenvalues for fixed λ by
ascending real part,

Re (ν1(λ)) ≤ Re (ν2(λ)) ≤ . . . , (5.49)

or, in terms of the “index eigenvalues” ξ, by decreasing imaginary part

Im (ξ1(λ)) ≥ Im (ξ2(λ)) ≥ . . . . (5.50)

As pointed out in Sherratt et al. (2014), in the macroscopic case the distribution of the spatial
eigenvalues for temporal eigenvalues with big real part corresponds to the number of separated
boundary conditions that need to be prescribed at the end points when the PDE is considered on
a domain of finite length xd − xu. We may compare this to the situation we have for microscopic
models: In the cases we study in the examples, all but n spatial eigenvalues are located in the right
side of the complex plane if Re (λ) is big enough. Due to the anisotropic nature of these models,
the major part of the necessary information has to be provided at the downstream end, where
the behaviour of the “missing” leading vehicle has to be explained. In fact, since we are trying
to reconstruct the profiles over the length h(xd) from the spatial derivatives at xd, we do need
infinitely many terms to obtain the full Taylor series. At the upstream end, far less information
is needed: As long as mf = 0, no knowledge about vehicles beyond xu is required. All we need to
know is at which rate and at what speed vehicles are arriving in xu. In the first order model, even
the latter is unnecessary since speed and headway are directly connected by means of the OVF.
For the pinching condition to be satisfied, the right branch points to look out for are consequently
those arising as collisions of the spatial eigenvalues νn and νn+1. The same holds true for the
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absolute spectrum, where we need to look for λ with Re (νn(λ)) = Re (νn+1(λ)). In order to find
the absolute spectrum, we may start from the branch points that satisfy the pinching condition
and perform a numerical continuation of the roots of the function

g : C× C× R→ C2

(λ, ξ, d) 7→

 χ (λ, ξ)
χ (λ, ξ + d)

 ,
similar to what is proposed in Sherratt et al. (2014).
In order to ensure that we stay on the right branch, we need to monitor the number of spatial
eigenvalues to the left of the pair ν, ν + id. We may do so by calculating the integral

1
2πi

∫
C

∂χ
∂ξ (λ, ξ)
χ (λ, ξ) dξ, (5.51)

where C is a path enclosing the relevant area, e.g. a rectangle given by the points R+i(Im (ξ)+ε),
R(1 + i) + i(Im (ξ) + ε), R(i − 1) + i(Im (ξ) + ε), and −R + i(Im (ξ) + ε) with R � 1. When
a third spatial eigenvalue crosses the line through ξi∞ and ξi∞+1, a triple point occurs and the
continuation needs to be restarted (cf. Ex. 5.3).
Again, the absolute spectrum may be interpreted in terms of exponential weights. Consider a
CFM u̇j = f

(
umj+l , . . . ,uj+mf

)
, where u(t) = (uj(t))j∈J ∈ `nJ denotes the deviation from a

quasistationary solution. Instead, we may as well consider a weighted state

ũj(t) := exp (η · (ct− j)) · uj(t) (5.52)

where the weight applied to vehicle j depends on time t and index j (Fig. 5.2).

uj(t) uj(t+ s) `2

ũj(t) ũj(t+ s) `2η

ODE

·eη(ct−j) ·eη(c(t+s)−j)
˜ODEη

Figure 5.2: Application of exponential weights to a microscopic model

For a quasistationary solution, with c = ve
he

we have weights that are proportional to the position
xj(t); for c = 0, the weights are fixed on the vehicles themselves.
By elementary calculations, we find that the evolution of ũ is governed by the ODE

˙̃uj = lim
s→0

ũj(t+ s)− ũj(t)
s

= lim
s→0

exp (η · (c(t+ s)− j)) · uj(t+ s)− exp (η · (ct− j)) · uj(t)
s

= exp (η · (ct− j)) · u̇j(t) + lim
s→0

(exp (η · (c(t+ s)− j))− exp (η · (ct− j))) · uj(t+ s)
s

= exp (η · (ct− j)) · (u̇j(t) + ηc · uj(t))
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= exp (η · (ct− j)) · f
(
exp (η · (j +ml − ct)) ũmj+l(t), . . . , exp (η · (j +mf − ct)) ũj+mf (t)

)
+ ηc · ũj(t) (5.53)

In the linearisation, we have

˙̃uj =

 ml∑
l=ml

exp (ηl) ·Al · ũj+l

+ ηc · ũj (5.54)

and the characteristic polynomial χ(λ, iξ) is replaced by χ(λ̃, ηc + iξ̃). For fixed λ, the spatial
eigenvalues are simply shifted by η.
We may also fix ξ ∈ R and study the deformation of the essential spectrum. However, since the
weight η in the definition of transient and absolute instability is allowed to depend on λ, we may
not directly conclude that the system is absolutely unstable if the spectrum can not be “pulled”
into the left half-plane completely by a single weight η.
An interesting observation can be made in the case c = 0, i.e. in the index frame, for mf = 0. For
η → −∞, (5.54) is reduced to

u̇j = A0 · uj+l (5.55)

and the essential spectrum is asymptotically pulled back to the platoon eigenvalues. Since these are
assumed to have negative real part (Wilson and Ward 2011), we can conclude that a reasonable
CFM model of this form is always at most transiently upstream unstable in the index frame. This
was of course to be expected, since mf = 0 prohibits any information from flowing downstream
relative to the vehicles.

5.4 Examples

5.4.1 Reaction-diffusion equations

Example 5.1
Consider the reaction-diffusion-advection equation (RDA)

ut = uxx + aux + bu (5.56)

with parameters (a, b) ∈ R2 and initial data

u(x, 0) = u0(x) = e−σx
2
. (5.57)

Then it is easily checked that

u(x, t) = exp (bt)√
1 + 4σt

exp
(
−σ(x+ at)2

1 + 4σt

)
(5.58)
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solves the PDE, e.g. by comparison of the partial derivatives

ut = bu− 2σ
1 + 4σtu−

(
2aσ(x+ at)

1 + 4σt − 4σ2 (x+ at)2

(1 + 4σt)2

)
u

ux = −2σ (x+ at)
1 + 4σt u, uxx =

(2σ (x+ at)
1 + 4σt

)2
u− 2σ

1 + 4σtu.

The characteristic polynomial is

χ (λ, ν) = ν2 + aν + b− λ, (5.59)

the essential spectrum is therefore given by

σess(a, b) =
{
λ ∈ C : ∃k ∈ R : λ =

(
b− k2

)
+ aki

}
and we have stability if and only if b < 0.

Convective/absolute instability The classification of the unstable region b > 0 into convec-
tively and absolutely unstable regimes is worked out in Brevdo and Bridges (1996).
Looking for branch points (λc, νc), we observe that ∂χ

∂ν = 0 ⇔ νc = −a
2 ; plugging this into (5.59)

yields λc = b− a2

4 .
Solving χ(λc + h, νc + δ) = 0 for ν yields δ(h) = ±

√
h. For this branch point, the pinching

condition is fulfilled since the spatial roots diverge to ±∞ as h→∞, fixing the contour between
them as h↘ 0.
We see that the PDE is absolutely unstable for a2

4 < b.
In order to classify the convectively unstable regions a2

4 > b > 0, a ≶ 0, note that transferring
PDE (5.56) to a coordinate system x̃ = x + ct moving at speed c (i.e., upstream for c > 0 and
vice versa) only results in replacing a by a + c. Therefore, it is easy to see that a convectively
unstable parameter pair with a < 0 stays convectively unstable for any c ≥ 0 and vice versa. From
definition 5.5 we see that we have convective upstream and downstream instability for a > 0 and
a < 0, respectively.
E.g. by plugging the ansatz x = ct into the analytic solution (5.58), we see that asymptotically
for t → ∞, the solution grows only in the cone where b − (c+a)2

4 > 0, bounded by c = −a ± 2
√
b

(Figs. 5.3, 5.4).
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Figure 5.3: Stability classification in parameter space for reaction diffusion equation (5.56)

Transient/remnant instability Instead, we may apply exponential weights in order to classify
the PDE as transiently or remnantly unstable. The procedure is very similar to Example 1
in Sandstede and Scheel (2000).
Interpreting the real part of ν as an exponential weight, we may write the the characteristic
polynomial (5.59) as

χ (λ, η, k) = −λ− k2 + ik (2η + a) + η (η + a) + b (5.60)

i.e. the essential spectrum is given by a parabola opened to the left with vertex at λ = η(η+a)+b.
The optimal weight, giving the minimal value for the real part of the vertex is η∗ = −a

2 . At this
value, the weighted spectrum degrades to the ray (−∞, b − a2

4 ]. For all λ in C \ (−∞, b − a2

4 ],
including the complete right half plane, T η∗(λ) is invertible with one spatial root on each side of
the imaginary axis. From this we may conclude that for the scalar PDE, transient and remnant
instability are the same as convective and absolute.

(a) S, p = [1.5,−.1] (b) cdu, p = [− 1.5, .2] (c) cuu, p = [1.5, .2] (d) au, p = [.5, .2]

Figure 5.4: Examples for (in)stability classes for reaction-diffusion equation
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Example 5.2 (A two-component RDA)
Similar to Ex. 2 in Sandstede and Scheel (2000), we now combine two equations of the type
discussed above to study the differences between the concepts of convective and transient insta-
bility.
We consider two “species” u1, u2, both subject to PDE (5.56) but with possibly different param-
eters a1,2, b1,2. In a traffic context, we may think of the dynamics on two adjacent but unrelated
lanes.
If the species do not interact, we could of course solve each equation independently. However, if
we choose to solve them together, the characteristic polynomial becomes

χ(λ, ν) =
(
ν2 + a1ν + b1 − λ

) (
ν2 + a2ν + b2 − λ

)
=
(
ν2 + āν + b̄− λ

)2
−
(
âν + b̂

)2
, (5.61)

where ā = a1+a2
2 , â = a2−a1

2 , b̄ = b1+b2
2 , b̂ = b2−b1

2 .
Consequently, we have

σess(a, b) = σess(a1, b1) ∪ σess(a2, b2). (5.62)

Convective/absolute instability Näıvely looking for branch points, we find that

∂χ

∂ν
= 2 (2ν + ā)

(
ν2 + āν + b̄− λ

)
− 2â

(
âν + b̂

)
= 0 (5.63)

plugged into (5.61) yields

 â
(
âν + b̂

)
2ν + ā

2

−
(
âν + b̂

)2
= 0⇔

(
â2 − (2ν + ā)2

) (
âν + b̂

)
= 0.

We see that this is the case for νc ∈ {− b̂
â ,−

ā±â
2 } where ν∗c = − b̂

â has multiplicity 2. Consequently,
the branch point condition χ (νc, λc) = 0, χν (νc, λc) = 0 is fulfilled for

(νc, λc) ∈
{(
−a1

2 , b1 −
a2

1
4

)
,

(
−a2

2 , b2 −
a2

2
4

)
,

(
− b̂
â
, b̄+ b̂2

â2 −
āb̂

â

)}
. (5.64)

The first two points were of course to be expected, since these are the branch points from the
individual RDAs. We may already conclude that the system is absolutely unstable if one of the
components is, as could have been expected.
Let us study the additional branch point (ν∗c , λ∗c) =

(
− b̂
â , b̄+ b̂2

â2 − āb̂
â

)
in some more detail. This

spatial double root corresponds to a collision of an eigenvalue for u1 with one from u2. Intuitively,
this should have no effect, since the subsystems are independent of each other. In order to see
this, we need to recall our analysis of the asymptotic behaviour of (5.14): Formally, the solution
is given by

u (ν, λ) =

 1
χ(ν, λ)

χ2(ν, λ) 0
0 χ1(ν, λ)

u0(ν). (5.65)
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Since χ1(ν∗c , λ∗c) = χ2(ν∗c , λ∗c) = 0, the matrix does vanish in (ν∗c , λ∗c) and in its vicinity we have
with δλ := (λ− λ∗c), δν := (ν − ν∗c ):

u (ν, λ) =

 1
1
2χλλδ

2
λ + χλνδλδν + 1

2χννδ
2
ν

χ2 0
0 χ1


λ

δλ +

χ2 0
0 χ1


ν

δν

u0(ν) (5.66)

where all partial derivatives are evaluated in (ν∗c , λ∗c). Note that χλ = 0. Expansion into partial
fractions shows that δλ appears with a power of 1, not 1

2 like in the factor f in (5.16). Therefore,
this “artificial” branch point does not dominate the long-time behaviour even if it is to the right
of the other two.
We may get an intuition for this if we compare its Taylor expansion to that of a “proper” branch
point: In the “degenerate” case, the spatial eigenvalues leave the collision without having inter-
acted. When they are numbered by real part, the two eigenvalues merely change their indices and
thus only temporarily pinch the integration contour. On the other hand, in the “proper” case, the
spatial eigenvalues are leaving orthogonally to their arrival, thereby destroying the contour.
Since we were able to rule out the additional branch point, the system is convectively unstable if
one RDA is convectively unstable and the other one is stable or convectively unstable (Fig. 5.7,
Fig. 5.6). As discussed in Sec. 5.2.3, this classification may not be desired since it does not take
into account the direction of the convection.

Transient/absolute instability If we consider the two-component system, both spectra have
to be optimised with the same weight η(λ). Equivalently to what we saw for absolute instability,
the system is obviously remnantly unstable if at least one RDA is.
As discussed in Ex. 5.1, application of an exponential weight η moves the real part of the essential
spectrum by η (η + a), so only weights between −a and 0 pull the spectrum back, as desired.
From this it directly follows that the system will be remnantly (but not absolutely!) unstable if
a1 · a2 < 0, i.e. if the convective terms are directed in opposing directions.
Conversely, if a1 · a2 > 0 and b1, b2 are sufficiently small, it is possible to pull both spectra to the
left of the imaginary axis with the same weight.
However it is possible that the system is remnantly unstable even if both systems are transiently
unstable and the convective terms are directed in the same direction: For b1,2 = a2

1,2
4 −ε, we would

need a weight that is arbitrarily close to −a1,2
2 (Fig. 5.5).
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Figure 5.5: Distribution of spatial roots in the two-component system for λ ∈ R. Depending on
the parameters, two cases can be considered. Green: the branch point max

i=1,2

(
a2
i /4− bi

)
is decisive for convective/absolute instability. The collision between spatial roots of
the subsystems (dashed outline) is not relevant here. Blue: for transient/remnant
instability, we need to look for the rightmost point with Re (ν2) = Re (ν3)

(a) cdu & cdu, overlapping
(p = [1.5, 1, .2, .2])

(b) cdu & cdu, no overlap
(p = [1, 3, .1, .2])

(c) cdu & cuu: cu/ru
(p = [1.5,−1, .2, .2])

(d) cdu & au
(p = [3,−.3, .2, .25])

Figure 5.6: Examples from instability classes for two-component reaction-diffusion-advection sys-
tem with two species and parameter vector p = [a1, a2, b1, b2]. Displayed is the mean
u = 1

2 (u1 + u2) of the components.

u2
s cu/tu au/ru

u1

s s cu/tu
cu/tu cu/tu (b)/(c)
au/ru au/ru

(a) General classification

u2
cdu cuu

u1
cdu cdu cu
cuu cu cuu

(b) If both components are cu,
the combination is also cu

u2
tdu tuu

u1
tdu tu/ru ru
tuu ru tu/ru

(c) If both components are tu,
the combination may become
ru

Figure 5.7: Instability classification for two-component system
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5.4.2 Traffic flow models

5.4.2.1 Microscopic models

Example 5.3 (Instability classification for the Bando model)
The classification of the parameter space for the Bando model can be performed by numerical
continuation of the relevant branch points (Fig. 5.8). The cuu-au-boundary is identical to the one
obtained in Mitarai and Nakanishi (2000a), whereas the lower au-cdu-boundary was not found
there. The shape of the diagram is qualitatively very similar to the example presented in Ward
and Wilson (2011) for the Bando model with aggressive drivers. Tests with parameter values
from the different regions illustrate the meaning of the classification (Fig. 5.10). Calculation of the
absolute spectra for these parameters verifies that the rightmost points of the absolute spectra are
given by the pinching branch points (5.9). Classification into transiently and remnantly unstable
parameter regions yields the same results in this case.

Figure 5.8: Instability classification in parameter space for the microscopic Bando model
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(a) cuu/tuu (b) au/ru (c) cdu/tdu

Figure 5.9: Top row: spectra (black), branch points λc satisfying the pinching condition (crosses)
and absolute spectra (blue) for the microscopic Bando model. Bottom row: Dou-
ble spatial eigenvalues ξc (crosses) and contour lines of log |χ(λc, ξ)| (blue) and
log |χ(λc + ε, ξ)| (red), demonstrating that the pinching condition is satisfied. Note
the triple points in λ ≈ −0.4 in (a) and λ ≈ −0.1 in (b). In (c), choosing a higher
value of ε would move the two leftmost spatial eigenvalues to the left of the imaginary
axis but obscure the fact that the second and third eigenvalue are meeting in ξc for
λ = λc.
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(a) cuu/tuu (he = 2, a = 1.6) (b) au/ru (he = 2, a = 0.8) (c) cdu/tdu (he = 3, a = 0.3)

Figure 5.10: Examples from instability classes (see Fig. 5.8) for the microscopic Bando model:
In the Eulerian frame, a small initial perturbation localised in x = 0 at initial time
evolves as predicted by the classification

Example 5.4 (A model with two lanes)
We demonstrate that in a traffic flow context, we may encounter situations where the distinction
between transient and convective instability becomes relevant, similar to the RDA example in
Ex. 5.2.
Consider a situation where two different kinds of vehicles use adjacent lanes. On each lane, we
impose Assumptions 2.1 and 2.2 regarding the indices, i.e. there is no overtaking or changing of
lanes. However, there may still be interactions when the vehicles come close or pass each other.
Such an interaction depends of course on the context and may be modelled in different ways.
Maybe the simplest form is to assume that, due to the narrowness of the road, a high density of
one class slows down the other and vice versa. This may be the case everywhere or only on some
sections of the road.
Within this example, we denote the different species by subscripts 1, 2 and write the vehicle index
as an argument: xi(j, t) is the position at time t of vehicle j from species i, which in turn has the
index set Ji.
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x1(j + 1) x1(j) x1(j − 1)

x2(l − 1)x2(l)x2(l + 1) x2(l − 2)

Figure 5.11: Setup for two-lane model. In the depicted situation, the headway h1→2 that vehicle
j observes on the adjacent lane is calculated as a weighted average between the
distances x2(l − 1) − x2(l) and x2(l) − x2(l + 1), ensuring continuity when x1(j)
overtakes x2(l) or is itself overtaken by x2(l + 1)

For fixed t and J1,2 = Z, the function

l1→2 : J1 → J2

j 7→ min
l∈J2
{l ∈ J2 : x2(l, t) ≥ x1(j, t)}

is well-defined and returns the index l of the vehicle on lane 2 that is next to or directly ahead of
vehicle j on lane 1; on the circular road, we may define an analogous function in a straightforward
fashion. The function l2→1 : J2 → J1 is defined symmetrically.
The vehicle at position xj cuts the headway h2(l1→2(j)) by a certain ratio α1→2(j)

α1→2(j) := x2(l1→2(j))− x1(j)
x2(l1→2(j))− x2(l1→2(j) + 1) (5.67)

which we may use for a weighted average between h2(l1→2(j)) and h2(l1→2(j)− 1):

h1→2(j) := α1→2(j) · h2(l1→2(j)) + (1− α1→2(j)) · h2(l1→2(j)− 1). (5.68)

For this example, we prefer this approach over alternative ways along the lines discussed in
Sec. 3.3.1 because it is relatively easy to implement and continuous when the vehicles move
relative to each other. However, the exact definition is not crucial here.
We may now set

v̇1(j) = a1 [W1(h1(j), h1→2(j), x1(j))− v1(j)] (5.69a)

v̇2(j) = a2 [W2(h2(j), h2→1(j), x2(j))− v2(j)] (5.69b)

where W1,2 are modified optimal velocity functions with

W1(h1, h2, x1) = V (h1) · (1− ε · f(h2) · g(x1)) ; (5.70)

here, f(h) describes how the optimal speed is reduced by the headway on the adjacent lane and
g(x) describes the heterogeneity of the narrowness along the road. With f ≡ 1, this reduces to
two independent versions of the bottleneck model from Gasser and Werner (2010).
Assume now that the interaction takes only place in a certain region, i.e. g(x) has compact
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support. Away from the narrow regions, the lanes behave independently and perturbations behave
like discussed in Ex. 5.3.
Most interesting is the coupling of two lanes that are convectively up- and downstream unstable
when considered separately at several points. In combination, their behaviour will be remnantly
unstable, as in Ex. 5.2: The slightest coupling will cause a perturbation that is convected down-
stream on one lane to reappear on the other lane, where it will travel upstream and “re-ignite” a
perturbation on the downstream lane at the next coupling. This means that part of the perturba-
tion is trapped and amplifies between the couplings, similar to the situation in a laser (Fig. 5.12).

(a) Lane 1 (b) Lane 2

(c) Lane 1 (d) Lane 2

Figure 5.12: Results of a two-lane simulation on a circular road with L = 100 and couplings at
x = L

2 ±
L
10 . Subfigures (a,b) and (c,d) show velocity v and log |v − ve|, respectively.

A situation of special interest is that of two lanes with opposing directions. If the individual
lanes are convectively upstream unstable in this scenario, the system will be remnantly unstable
provided there are couplings between the lanes, which can hardly be avoided in practice.
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5.4.2.2 Macroscopic models

Example 5.5 (Instability classification for the models linked to the Bando model)
For the low-order macroscopic equivalents to the Bando model we can find the boundaries between
convectively and absolutely unstable parameter regions analytically:
With fh = aV ′(he) =: aβ, fv = a, and f∆v = 0 for the Bando model, (5.24) becomes

(λ− cz) (λ− cz + a)− aβ
(
z + z2

2

)
. (5.71)

Then setting ∂χ
∂z = 0 yields

λ− cz = −a2 + d(1 + z), where d := −aβ2c . (5.72)

We plug (5.72) into (5.71); the result

d2 (1 + z)2 − a2

4 − aβ
(
z + z2

2

)
= 0 (5.73)

is then solved for z:

z = −1±

√√√√1−
d2 − a2

4
d2 − aβ

2
. (5.74)

Using λ = (d + c)z − a
2 + d, we easily see that a pair of purely imaginary branch points crosses

the imaginary axis for a = 2c (au-cdu). However, one of these eigenvalues returns if the line
d2 = aβ

2 is crossed. This corresponds to a = c2

β (au-cuu). The resulting classification is displayed
in Fig. 5.13(a).
For the Lagrangian frame we have to set c = 0. Starting again from (5.71), we have ∂χ

∂z = 0 for
z = −1 and λ2 +aλ+ aβ

2 = 0, leading to branch points λ± = −a
2 ±

√
a2

4 −
aβ
2 . Note that when the

radicant is multiplied by 4
a , we recover the string instability criterion, meaning that the radicant

is negative for all relevant parameter values. So all of these are convectively unstable in a frame
that is moving with the vehicles.
For the higher-order models the classification can be done by numerical continuation of the branch
points satisfying the pinching condition. Since they have the same characteristic polynomial (cf.
Ex. 4.6), the classification for ND and FLD yields the same results (Fig. 5.13); however, the
classification for the IHD is only marginally different (Fig. 5.17). Simulations at the representa-
tive parameter values lead to very similar results for ND (Fig. 5.15), FLD (Fig. 5.16), and IHD
(Fig. 5.18).
Overall we may conclude that, while the absolutely unstable parameter region starts out notably
smaller in the first-order macroscopic models (Fig. 5.13 (a), Fig. 5.17 (a)) than in the microscopic
model (Fig. 5.8), already at third order (Fig. 5.13 (c), Fig. 5.17 (c)) the classifications are visually
indistinguishable from each other.
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Chapter 5. Linear analysis of jam behaviour

(a) O(ε1) (b) O(ε2) (c) O(ε3)

Figure 5.13: Stability classification in parameter space for ND/FLD Bando model equivalents up
to third orders in ε. The classification in (a) was obtained analytically, (b) and (c)
were classified by numerical continuation of branch points

(a) cuu (b) au (c) cdu

Figure 5.14: Examples from instability classes for O(ε1)-ND/IHD Bando model equivalent; same
parameter values as in Fig 5.10 (cf. Appendix A, Fig. 1 for density plots)
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(a) cuu (b) au (c) cdu

Figure 5.15: Examples from instability classes for O(ε2)-ND Bando model equivalent, (cf. Ap-
pendix A, Fig. 2 for density plots)

(a) cuu (b) au (c) cdu

Figure 5.16: Examples from instability classes for O(ε2) FLD Bando model equivalent; same pa-
rameter values as in Fig 5.10 (cf. Appendix A, Fig. 3 for density plots)
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(a) 1st order (cf. Fig. 5.13(a)) (b) 2nd order (c) 3rd order

Figure 5.17: Stability classification in parameter space for IHD Bando model equivalents for dif-
ferent orders in ε

(a) cuu (b) au (c) cdu

Figure 5.18: Examples from instability classes for O(ε2)-IHD Bando model equivalent; same pa-
rameter values as in Fig 5.10 (cf. Appendix A, Fig. 4)
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III Shift-invariant solutions

Chapter 6

Finding solutions

In this chapter, we are studying a special kind of travelling wave solutions in which the vehicle
trajectories are shifted copies of each other with a constant translation vector between them.
Such solutions are typical for periodic solutions on the circular road. In Sec. 6.1 we are going to
recall some of the existing theory on periodic solutions on the circular road and try to generalise
it to the infinite lane with J = Z. This will also help us to find heteroclinic solutions, a topic we
are going to discuss in Sec. 6.2.
Much of the material presented in this chapter is currently under review in similar form in von
Allwörden and Gasser (submitted 2018).

6.1 Periodic solutions

6.1.1 Circular road

The existence and continuation of periodic solutions on the circular road has been discussed for the
Bando model and variants thereof in Gasser et al. (2004), Gasser et al. (2007), and Tomoeda
et al. (2018). The effects of reaction-time delay in this context have been studied in detail in
Orosz and Stépán (2004, 2006); Orosz et al. (2004b, 2005, 2009), and Kiss et al. (2019).
We emphasise that the solutions of interest will be periodic in h and v. In our setup xj ∈ R
should be monotonically growing and the circular road is modelled via the boundary condition,
so periodic x would not be meaningful. Besides, due to assumption 2.5 on the homogeneity of the
road, the individual vehicles have no information about the circle length.
On the circular road, linear stability of the quasistationary solutions is lost through a complex
conjugated pair of eigenvalues crossing the imaginary axis. However, before the Hopf theorem
can be applied, the system needs to be reformulated in order to avoid the singular eigenvalue
that is due to the translational invariance along the road. This can be done by transforming it
into a variant of h, v-coordinates. The most intuitive way to do this may be to use the identity
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hN = l−
N−1∑
j=1

hj to eliminate the ODE for the N -th vehicle. Alternatively, we might also perform

a discrete Fourier transform on h and drop the trivial ODE for the evolution of the average, as
discussed in Sec. 4.1.4.1.
The Hopf theorem guarantees a family of periodic solutions in the neighbourhood of the bifurcation
point. While there is little hope of writing the periodic solutions down analytically in general, they
take a very simple form in the linear model: For an eigenvalue iω with ω ∈ R of S

(
exp

(
2πik
N

))
from (4.5) with eigenvector w, the family of periodic solution is given by

[
h, v

]>
(j, t) =

[
he, ve

]>
+A cos

(
ωt− 2πk

N
j

)
Re (w) , A ∈ R+. (6.1)

We observe that each car does the same as its preceder, only ∆t time units later and at a position
shifted by ∆x units. Formally, we may write

[
h, v

]>
(j, t) =

[
h, v

]>
(j + 1, t+ ∆t), x(j, t) = x(j + 1, t+ ∆t) + ∆x. (6.2)

Comparing this with the circular road condition

x(N + 1) = x(1) +Nhe, (6.3)

we directly obtain the necessary condition

kT = ∆t ·N, k ∈ N. (6.4)

For a periodic solution with x(j, t) = x(j, t+ T ) and L :=
T∫
0
v(j, t) dt we can deduce

∆x+ L

T
∆t = he (6.5)

without using the circular road condition (6.3).
Let us briefly review the basic idea behind the continuation of periodic solutions. In practice, this
should be done in terms of the reduced 2N − 1-dimensional system, but for now the additional
terminology would only draw the attention from the main points.
The periodic solutions can be characterised by their initial values

[
h, v

]>
(j, 0) ∈ R2N , a parameter

vector p ∈ Rm, and the time period T ∈ R+. To have uniqueness, we need to impose a phase
condition, e.g. h(1, 0) = he, which can be written in standard form as g([h, v]) != 0 for some
function g : R2N → R. Let

Φt : R2N+m × R+ → R2N+m (6.6)

be the evolution operator for the traffic model ODE system enhanced by the trivial ODE ṗ = 0
for the parameter. We are then looking for roots of a function F ([h, v],p, T ) = 0 defined as

F : R2N × Rm × R+ → R2N+m, ([h, v],p, T ) 7→

ΦT ([h, v,p])−
[
h, v,p

]>
g ([h, v])

 (6.7)
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Table 6.1: Popular continuation software packages

Name Language Developers since current version
AUTO Fortran / C Doedel et al. 1976 AUTO-07p
MATCONT Matlab Dhooge et al. 2003 7.1
DDE-BIFTOOL Matlab Engelborghs et al. and J. Sieber 2001 3.1.1
COCO Matlab Dankowicz and Schilder 2013 2017

To extend a given branch of periodic solutions, we can now calculate the Jacobian DF of F in its
last point, and go into the direction(s) of its null space.
As a starting point, we may use the stationary solution hj ≡ he, vj ≡ ve in the bifurcation point
with trivial amplitude 0 and time period T = 2πk

ω .
For numerical continuation, DΦT in DF can be calculated by integrating the Jacobian of the
acceleration function f along the trajectory. We can then use the extrapolation in the direction of
the null space as an initial guess for F = 0, which is solved together with a step-length constraint
like

‖pnew − pold‖ − ε = 0

by standard algorithms.
In praxis, this is taken care of by dedicated continuation software (Tab. 6.1). In a traffic context,
AUTO2000 has been used e.g. in Gasser et al. (2004), MATCONT in Buric and Janovsky (2008),
and DDE-BIFTOOL by Orosz et al..

Proposition 6.1 If the initial condition has property (6.2), the above procedure yields a curve
of periodic solutions that do so, too.

Proof: If ([h, v],p, T ) satisfies (6.2), it is a root of F by construction, but also of

F̃ : R2N × Rm × R+ → R2N+m

([h, v],p, T ) 7→

ΦT/N ([h, v,p])−
[
Sh · [h, v],p

]>
g([h, v])

 (6.8)

We need to show that the null spaces of the Jacobians of F and F̃ are the same.
Since g is unchanged, this reduces to comparing how ΦT/N and ΦT deform their tangential spaces.
For the operator ΦT/N , a small initial perturbation [δh, δv, δp] of the arguments will be mapped
to a deformation JΦT/N · [δh, δv, δp] in the output. An additional deformation δT in the period
T will add δT · ∂

∂T ΦT/N = δT · 1
N f([h, v, p](T/N)). The idea is now to look for a subspace such

that the effect of the error is neutralised by the (linear) shift operator Sh.
(For brevity, write f(T/N), JΦT/N (t), . . . instead of f([h, v, p](T/N)), JΦT/N ([h, vp](0)), . . . )

[
Sh[δh, δv], δp

]
= JΦT/N (0) · [δh, δv, δp] + δT · 1

N
f(T/N). (6.9)

If we evolve further, the effect of the initial perturbation will grow and we need to compare with
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the effect of the two-shift:

[
Sh2[δh, δv], δp

]
= JΦT/N (T/N) ·

(
JΦT/N (0) · [δh, δv, δp] + δT · 1

N
f(T/N)

)
+ δT · 1

N
f(2T/N)

= JΦ2T/N (0) · [δh, δv, δp] + δT · 2
N
f(2T/N) (6.10)

where in the last equality we used that JΦT/N · f(t) = f(t+ T/N).
Iterating this, we see that

[
ShN [δh, δv], δp

]
= JΦT (0) · [δh, δv, δp] + δT · f(T ). (6.11)

It is also clear that this procedure may be performed backwards. �
More branches of periodic solutions emerge as more pairs of eigenvalues cross the imaginary axis.
With the notation introduced above, we may define the family of shift-invariant periodic solutions
on the circular road for fixed N ∈ N as

Pcirc(N) :=
{

(p, [h0, v0], T ) ∈ Rm × R2N × R+ : F̃ ([h0, v0],p, T ) = 0
}
. (6.12)

6.1.2 Infinite lane

Now let Pline denote the set of periodic solutions for J = Z. We can show that Pline 6= ∅ by
mapping the periodic solutions from the circle into it by an appropriate function

ψ :
⋃
N∈N
Pcirc(N)→ Pline.

It is easy to see that the projection of the image of ψ to the coordinates (p,∆t) is dense near the
curve of bifurcation points.
The obvious question now is whether we can complete the family of curves of periodic solutions
to a hypersurface in the extended parameter space in the sense of the completion of Q to R. The
fact that condition (6.4) for commensurability of ∆t and T is not necessary on the infinite lane
suggests that this may be possible. The new solutions with ∆t

T 6∈ Q would then be unique to the
infinite lane. This is related to the question whether closeness in the parameters (p,∆t, T ) also
implies closeness in the velocity profiles. If we construct a sequence of periodic solutions on the
circular road in order to approximate a value ∆t

T 6∈ Q, the profiles should be converging in some
sense if the completion is to make sense. In order to calculate general solutions with ∆t

T ∈ R, we
take a step back and remember that, regardless of the system considered, a periodic solution of
type (6.2) contains all relevant information within a single trajectory (Fig. 6.1).
So instead of systems with N or even infinitely many vehicles, a natural ansatz is to consider the
delay differential equation

ḣ(t) = v(t+ ∆t)− v(t) (6.13a)

v̇(t) = f(h(t), v(t), v(t+ ∆t)). (6.13b)
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Figure 6.1: Structure of shift-invariant solutions

Similar approaches have been proposed in (Stumpf 2016b) and in (Shen and Shikh-Khalil
2018). While the former does not include a spatial shift, the latter work is studying the first-order
in time model ẋj = V (xj−1 − xj) (cf. Ex. 4.1), and is concerned with heteroclinic solutions (cf.
discussion of Ex. 6.5).
The forward delay ∆t > 0 introduces technical difficulties. For practical calculations, it is therefore
reasonable to consider a scaled version of (6.13) with inverted time.
The dimensionality is not really lost, but can be considered “hidden” in the initial condition. We
stress that the delay we introduce here does not correspond to reaction time, but is used to extract
the preceding car’s velocity.
It is easily checked that h(t) ≡ he, v(t) ≡ ve is a stationary solution of (6.13) and that the
linearisation around it yields the characteristic equation

χ(λ) = λ (exp (λ∆t) fvl + fv − λ) + fh (exp (λ∆t)− 1) = 0. (6.14)

As might be expected from our previous experience, (6.14) has a singular eigenvalue.
In the (h, v)-coordinates on the circular road, we could argue that the singular eigenvalue was
due to the fact that the condition

∑N
j=1 hj ≡ L had not been exploited yet. Plugging this into

the system, thereby reducing its dimension by one, solved the problem. However, there is no
immediate analogy to this procedure possible here.
Since we are exploiting the shift-invariant structure (6.2) in (6.13), the more natural choice in this
case is to replace h(t) in (6.13b) by

h(t) = x(t+ ∆t) + ∆x− x(t) = ∆x+
∆t∫
0

v (θ + ∆t) dθ (6.15)

and drop the obsolete (6.13a), obtaining

v̇(t) = f

(∫ ∆t

0
v(t+ θ) dθ + ∆x, v(t), v(t+ ∆t)

)
. (6.16)

In some sense, this can of course be seen as an analogy to the procedure applied on the circular
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road. For a periodic solution with v(t) = φ( tT ), the relation (6.19) between ∆x and he becomes

∆x = he − ve∆t, (6.17)

where ve =
∫ T

0 v(θ) dθ.
The periodic solutions on the infinite lane satisfying (6.2) can then be characterised as roots of

G : Rm × R+ × R+ × Cper([0, 1])→ C([0, 1])× R

(p, T,∆t, φ) 7→

 d
dtφ (t/T )− f

(
∆x+

∆t∫
0
φ
(
t+θ
T

)
dθ, φ

(
t
T

)
, φ
(
t+∆t
T

))
g(φ(0))

 ,
(6.18)

where

∆x = he −∆t
1∫

0

φ(θ) dθ (6.19)

(compare (6.5)) and g is a phase condition. To avoid problems, it is of course reasonable to choose
a condition that is related to its counterpart on the circular road in (6.7).
Now we can properly define Pline in terms of roots of G as

Pline :=
{

(p,∆t, T, φ) ∈ Rm × R+ × R+ × Cper([0, 1]) : G (p, T,∆t, φ) = 0
}
. (6.20)

The canonical way to map the periodic solutions on the circle onto Pline is then

ψ :
⋃
N∈N
Pcirc(N)→ Pline

(N,p, [h0, v0], T ) 7→ (p,∆t, T, v1 (t/T + θ)) (6.21)

where θ = θ(N,p, [h0, v0], T ) ∈ R is necessary to map between the phase conditions.
The definition of ∆x inherits the frame-dependency from v. The ratio c = ∆x

∆t describes the
velocity of the periodic solutions. In particular, for this choice of ∆x, the travelling waves are
moving downstream for ∆x < 0 and upstream for ∆x > 0 in the road frame. We may compare
this distinction with the classification of convective and transient up- and downstream instability
we discussed in Sec. 5.2 and 5.3, respectively. While the discussion there was purely linear, the
value of ∆x captures the nonlinear behaviour of the travelling waves. On the other hand, while
the periodic solutions assumed here have a very special structure, the linear discussion applies to
small perturbations of the quasistationary state.
In (6.16), we are now considering an integro-delay equation. Its characteristic equation is

χ(λ) = λ−


fh
λ (exp (λ∆t)− 1) + fv + fvl exp (λ∆t) for λ 6= 0

fh∆t+ fv + fvl for λ = 0
. (6.22)
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It is easy to check that all purely imaginary eigenvalues ±iω of S
(
exp

(
2πik
N

))
found on the

circular road satisfies (6.22) for ∆t = 2πk
Nω .

For a given model and fixed ∆t we may check that the eigenvalues ±iω are isolated and that the
nondegeneracy condition is fulfilled, which is generically the case so that the Hopf theorem in a
form suitable for delay differential equations like e.g. in (Faria and Magalhaes 1995) may be
applied.
By this procedure we obtain a curve of Hopf points in (he,∆t)-space in which the Hopf points we
know from the circular road are embedded.
To follow the periodic solutions that emerge from the curve of Hopf points through parameter
space, we have to use numerical continuation software again. In order to numerically implement
this, we invert and rescale time and approximate the integral in (6.16) with a quadrature rule
using n different delays.
Let us briefly mention that there are different possibilities to interpret the obtained periodic
solutions. If T and ∆t are commensurable, the solution is of course feasible for N = T/∆t cars
on the circular road. This idea can be extended to the rational case where T/∆t = m/n with
natural numbers m,n: The solution is then feasible for a circular road of appropriate length with
m cars, the circle being covered at any given time by n full spatial oscillations.
It can also be shown that a solution that lies close to one of the branches obtained from the
circular road with N :=

⌊
T
∆t

⌋
yields a solution to the delay differential equation

ẍα(t) = f ((xα+1(t− τ)− xα(t)) , ẋα(t), ẋα+1(t+ τ)) (6.23)

if the delay is chosen as τ := T
N −∆t. Here, τ can be interpreted as a reaction time. The different

possibilities to interpret a periodic solution to (6.16) are summarised in Table 6.2.

Table 6.2: Different interpretations to a periodic solution of (6.16) s.t. x(t+ T ) = x(t) + l

Circular road Infinite lane
xN+1 = x1 +Nhe h̄ = he

ODE (6.13) solution xj(t) = x(t+ j∆t) + j∆x

condition
N∆t =nT

N(he −∆x) =nl, n ∈ N
l∆t
T + ∆x = he

DDE (6.23) solution xj(t) = x(t+ j(∆t+ τ) + j∆x

condition
N(∆t+ τ) =nT
N(he −∆x) =nl, n ∈ N

l(∆t+τ)
T + ∆x = he

6.2 Heteroclinic solutions

Similar to macroscopic models, travelling waves can be expected to occur in microscopic models
when a group of faster vehicles approach a slower group from behind. When we think of a queue
forming at a red traffic light or the situation at the end of a traffic jam, this behaviour is desirable.
For the Bando model, sharp local transitions are characteristic and were already observed in the
initial paper Bando et al. (1995a). On the infinite lane, they dominate the long-term behaviour
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for string unstable parameter values (cf. Werner (2013), see Fig. 1.4(b)). The admissible jumps
have been studied in detail in Berg and Woods (2001).
In the examples for the previous section we observe that periodic solutions on the circle tend to
have a special structure as N →∞ and “collapse” in a single point of the ∆x,∆t parameter space.
The ansatz (6.13) can be seen as a microscopic analogy to a travelling wave ansatz for the macro-
scopic equations, which is typically made to determine admissible jump solution to the Riemann
problem.
In an infinite-dimensional setting, a heteroclinic solution connecting an upstream state u− with a
downstream state u+ should satisfy (cf. Def. 2.6)

uj(t+ ∆t) = uj−1(t) (6.24a)

lim
t−j∆t→±∞

uj(t) = u±. (6.24b)

Let the limiting states u± be characterised by up- and downstream headway h± and -velocity v±.
It is easy to see from a geometrical argument that the shift vector (∆x,∆t) is given by

∆t =h+ − h−
v+ − v−

(6.25a)

∆x =h+v− − h−v+
v+ − v−

. (6.25b)

We may now compute the speed of the travelling wave as ∆x
∆t =: c and easily see that this is

equivalent to the well-known macroscopic jump-condition

c = ρ+v+ − ρ−v−
ρ+ − ρ−

. (6.26)

In order to find heteroclinic solutions numerically, different approaches are possible:
“Experimentally”, to get a first impression or find an initial guess for an iterative scheme, we may
simply simulate a large number of cars with a leader on an infinite lane with initial condition
uj(0) ≡ u−, j > 0 and boundary condition u0(t) = (h+, v+). Heteroclinic transitions can then
be isolated in the solution by some heuristic. This approach is apparently applied in Berg and
Woods (2001).
Alternatively, we may formulate an approximation to (6.24) for a finite number of cars as a
root-finding problem, e.g. in the form

F : R2·(N+1) × R2 × R→ R2N × R2 × R× R2
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(u0, . . . , uN , h±,∆t) 7→



Φ∆t
u0≡const


u1
...
uN

−


u0
...

uN − 1


h0 − h+

hN − h−
∆t− h+−h−

v+−v−
g1(u0, . . . , uN )
g2(h±,∆t)



, (6.27)

where g1 is a phase condition ensuring uniqueness, e.g. vN/2(0) = v++v−
2 , and g2 is a function

specifying a “target”, e.g. fixing h+ to a particular value. Once a first heteroclinic solution has
been found, g2 can be used for continuation.
This approach may be considered “näıve” in the sense that h0 = h+, hN = h− are not good tests
if the convergence properties (6.24b) are fulfilled; more sophisticated conditions should be incor-
porated at this point. However, for N large enough, this approach already gives very satisfactory
results in the cases that we studied (Ex. 6.5).
The approach that seems most natural from what we found in Sec. 6.1.2 is to equip the integro-
delay ansatz (6.16) with a condition lim

t→±∞
v(t) = v±. Conveniently, DDE-BIFTOOL also supports

numerical continuation of branches of heteroclinic solutions, where a similar yet more sophisticated
approach as in (6.27) is applied (cf. Sieber et al. 2017).

6.3 Examples

Example 6.1 (Bifurcations on the circular road for fixed N)
We consider the standard Bando model on a circular road with OVF V (h) = tanh(h−2)+tanh(2)
as before. In this context, models similar to (6.23) have been studied as a reasonable generalisation
with reaction time in Orosz and Stépán (2006) and Bando et al. (2000). A detailed bifurcation
analysis of this system is carried out in Gasser et al. (2004). A different approach for the
continuation of periodic solutions using equation-free modeling has been presented in Carter
et al. (2017).
Bifurcations occur for

V ′(he) = a

1 + cos
(

2πk
N

) (6.28)

with ω = V ′(he) sin
(

2πk
N

)
.

In Gasser et al. (2004), bifurcation diagrams are drawn with the norm of solution over the
circle length. Here, we choose the average headway he = L

N as a bifurcation parameter for easier
comparability across vehicle numbers and use the velocity amplitude as a measure of the periodic
solutions (as e.g. in Orosz et al. (2004b)) to emphasise the symmetry due to the point-symmetry
of the OVF around he = 2, ve = tanh(2).
First, we fix the number of cars at N = 20 and the sensitivity at a = 1 (Fig. 6.2, 6.3). As he is
varied from 0 to 2, one after another the eigenvalue pairs for k = 1, . . . , 4 cross the imaginary axis
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from left to right; upon variation from 2 to 4, the eigenvalues pairs return in the opposite order.
From each of these bifurcations, a curve of periodic solutions emanates and may be continued
numerically (Fig. 6.2(a)). Continuation is done with DDE-BIFTOOL, introducing a trivial delay
τ = 0.
To get an idea of the behaviour of the periodic solutions, we consider the solutions from the
different branches at a fixed headway he = 1.75, corresponding to a circle length l = 35. In the
phase space portrait of the first car (Fig. 6.2(b)) we already see the typical pointed “hysteresis
curve” for k = 1, while the curves are getting smoother for higher k. Similarly, in the velocity
profiles (Fig. 6.2(c)) for the first car we see that the solution for k = 4 is still very close to a
sinusoidal shape, whereas the k = 1-solution remains close to a lower and a higher state for most
of the time and switches rapidly in between. The full trajectory plots for these solutions (Fig. 6.3)
show k regions of denser traffic moving in upstream direction; the speed of these “jams” appears
to vary only slightly with k.

Example 6.2 (Bifurcations on the circular road for varying N)
Next, we consider the branches emanating from the first bifurcation (k = 1) for different numbers
of vehicles (Fig. 6.4, 6.5). In the chosen representation, the overall picture appears to be very
similar to that in the previous experiment.
The trajectory plots (Fig. 6.5) show a single region of denser traffic moving upstream, where
transitions become more pronounced for higher N , as can also be seen from the phasespace
portrait (Fig. 6.4(b)).

Example 6.3 (Bringing the periodic solutions together)
In order to understand the connection between the branches of periodic solutions for different
values of N and k for fixed sensitivity a = 1, it is helpful to compare their bifurcation points in
terms of their critical headway and the time shift ∆t between trajectories, given as 2πk

Nω , where
ω is the imaginary part of the critical eigenvalue pair (Fig. 6.6). We see that the points lie on a
curve that may be parametrised by κ = N

k , κ ∈ [4,∞); note that the Bando model with a = 1 is
unconditionally stable for N ≤ 4.
This curve can also be described as a function from he to ∆t as follows: As long as V ′(he) > a

2 ,
we can find κ = κ(he) = arccos

(
a

V ′(he) − 1
)

satisfying a = V ′(he)(1 + cκ).

From this we can determine ω(he) = V ′(he) sin(κ) = V ′(he)
√

1−
(
V ′(he)
a − 1

)2
and finally obtain

the Hopf curve ∆tc(he) = κ(he)
ω(he) in (he,∆t)-space.
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(a) Bifurcation diagram (b) Phasespace portrait

(c) Velocity profiles

Figure 6.2: Bifurcation diagram for N = 20 vehicles on the circular road with branches k =
1, . . . , 4 corresponding to four pairs of eigenvalues crossing and re-crossing the imagi-
nary axis as parameter he is varied, and behaviour of vehicle j = 1 within the solutions
for he = 1.75

(a) k = 1 (b) k = 2 (c) k = 3 (d) k = 4

Figure 6.3: Trajectories of all 20 vehicles in the selected solutions with he = 1.75 from Fig. 6.2

103



Chapter 6. Finding solutions

(a) Bifurcation diagram (b) Phasespace portrait for solutions at he = 1.75

Figure 6.4: Comparison of periodic solutions for different numbers of vehicles on the circular road:
Bifurcation diagram, demonstration of local supercriticality and behaviour of vehicle
j = 1 in selected solutions

(a) N = 6 (b) N = 8 (c) N = 10 (d) N = 12

Figure 6.5: Trajectories of the selected solutions with he = 1.75 from Fig. 6.4
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Figure 6.6: Bifurcation points and time shifts for fixed sensitivity a = 1. The bifurcation points
for all possible vehicle numbers lie densely on a curve in he, ∆t-space

We may now introduce a “virtual” number of cars Ñ = 2π/κ; for Ñ ∈ Q and Ñ > 4, we are
in a Hopf point of the circular road. Starting from the Hopf curve, we can then use numerical
continuation software to parametrise the adjacent surface of periodic solutions. Since continuation
on the circular road becomes more costly with growing N , the most reasonable way to achieve
such a parametrisation for a given interval I ⊂ (4,∞) while avoiding unnecessary recalculation of
branches is to first calculate the branches for N ∈ I ∩N, k = 1, then for N ∈ {N : N2 ∈ I,

N
2 6∈ N},

k = 2 etc.
For Ñ in the interval (4, 5] (Fig. 6.7), this scheme yields the “canonical” sequence

(N(j), k(j))j∈N = (5, 1) , (9, 2) , (13, 3) , (14, 3) , (17, 4) , (19, 4) , . . . (6.29)

By calculating more branches, this may be continued to an arbitrary precision; however, we get a
good overall impression of the emerging surface already if we stop at k = 6 (Fig.6.7(a)), although a
higher resolution of the area close to Ñ = 4 would be desirable. However, this requires calculation
of the branches along the subsequence

(N(j), k(j))j∈N = (4j + 1, j)) = (5, 1), (9, 1), (13, 3), (17, 4), (21, 5), (25, 6), . . . (6.30)

and quickly becomes very costly. Comparing the velocity profiles (Fig. 6.7(b)) and phase space
portraits (Fig. 6.7(c)) along the periodic solutions with he = 1.9 on the six first branches along
this subsequence makes this approach seem unjustified since the solutions appear very similar to
each other.

105



Chapter 6. Finding solutions

(a) Branches of periodic solutions for the sequence in (6.29)
up to (N, k) = (29, 6)

(b) Velocity profiles for the periodic solutions with
he = 1.9 on the first six branches of the sequence
in (6.30)

(c) Phasespace portrait for the periodic solutions
with he = 1.9 on the first six branches of the
sequence in (6.30)

Figure 6.7: Combination of branches of periodic solutions for different numbers of vehicles with
“virtual vehicle number” Ñ ∈ (4, 5] to approximate part of the conjectured solution
manifold on the infinite lane
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Example 6.4 (Finding periodic solutions with the delay approach)
A better way to parametrise the space of periodic solutions is to use the delay approach discussed
in Sec. 6.1.2. We discretise the integral in (6.16) by using a quadrature over n = 20 discrete delays.
For better stability, time is inverted in the branch computations to have standard backward delays.
For each T -periodic solution v(t) with shift vector (∆t,∆x), we get another solution ṽ(t) =
2 tanh(2) − v(t) from the point symmetry of the chosen OVF around (2, tanh(2)). For the time
shift we have ∆t = ∆̃t, for the spatial shift we may calculate from (6.15) the relation

∆̃x =h̃(t)−
∆̃t∫
0

ṽ(t) dt = 4− h(t)−
∆t∫
0

2 tanh(2)− v(t) dt = 4− 2 tanh(2)∆t−∆x. (6.31)

We see that in (∆t,∆x)-space, the periodic solutions will be symmetric to the line ∆t = 2−∆x
tanh(2) .

To exploit this, we exchange the parameter ∆x by

∆y := ∆x− 2− tanh(2)∆t (6.32)

in our simulations.
We may now take any point on the Hopf curve we determined before (Fig. 6.6), calculate the
corresponding spatial shift ∆y from (6.17) and (6.32) and use it as a starting point for a branch
of periodic solutions, where either ∆y or ∆t is held fixed (Fig. 6.8(d)). Afterwards, ∆x and he

can be recomputed for each periodic solution in the obtained branch. Only the part to the left of
the symmetry axis is calculated by continuation, the other half can be concluded on. Although
the same number of steps is used in each continuation in ∆t, the length of the resulting branches
in parameter space is very different; the branches seem to stop in a boundary curve with a cusp
on the symmetry axis. If we try to continue the branches beyond this curve by force, continuation
fails. The boundary can be recovered asymptotically if branches for circular road systems with
growing Ñ are projected into the picture (N = 5, 10, 20, k = 1 are displayed, where 10 and 20 are
already very close to each other)
When we consider the velocity amplitudes as a function of he and ∆t (Fig. 6.8), we recognise the
overall shape we saw in our previous results (cf. Figs. 6.2(a), 6.4(a) 6.7(a)). The direct comparison
with selected branches obtained from the circular road shows very good agreement between the
results obtained from both approaches. The side and top view give more insight into the delicate
structure of the surface (Figs. 6.8(b), 6.8(c)).
Note the highly nonlinear mapping between ∆x and he: while the kind of periodic solutions
with near rectangular profile that is so typical for the Bando model takes a lot of room on the
“top shield” in the he,∆t-measure, this area is actually very coarsely represented by the chosen
equidistant parametrisation in ∆t,∆y. If the velocity amplitude is viewed as a function of ∆x
and ∆t, however (Fig. 6.8(e)), these solutions are concentrated in a very small region around the
cusp on the symmetry axis. This representation may be considered to reflect the nature of these
solutions more closely: even if they span a wide range of average headways, their main difference
is in the ratio of time the solution dwells in the upper and lower state.
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Only a small part of the obtained solutions has values of ∆x smaller than zero. This corresponds
to our intuition and empirical results Treiber and Kesting (2011, cf.) that typically, jams
travel upstream in an Eulerian frame.
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(a)

(b) Top view (c) Side view

(d) Branches in parameter space (e) Bifurcation diagram over ∆x and ∆t

Figure 6.8: Periodic solutions on the infinite lane obtained from the integro-delay approach (6.16),
compared with results of “traditional” ODE continuation, in different projections.
Note the collapse of the “shield” of high-amplitude solutions in (a,b) to a “cusp” in
∆x,∆t-space (d,e)
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Example 6.5 (Transitions between quasistationary solutions in the Bando model)
We extract a periodic solution close to the “hysteresis curve” from the previous example. In good
approximation it can be viewed as a combination of two heteroclinic solutions from a lower to a
higher equilibrium headway and back. We split the solution and use it as an initial guess for a
continuation of heteroclinic solutions in DDE-BIFTOOL. For comparison, we also perform a “näıve”
continuation with the approach from (6.27). The results match very well (Fig. 6.10), reproducing
and extending the transitions found experimentally in Berg and Woods (2001). Especially
interesting are the newly found solutions beyond the intersection with the line hd = hu, which are
travelling downstream in the road frame (Fig. 6.9 (e),(f)).
Note that only the parts of the transition branches below the main diagonal in Fig. 6.10(c) satisfy
the entropy solution formulated in Ansorge (1990) that a jump should only occur when vehicles
are going from the less dense into the denser region. However, although the situations depicted in
Fig. 6.9 (a-d) are thus not to be expected in real life, they are valid solutions of the Bando model.
It is also interesting to compare these results to the heteroclinic solutions obtained in (Shen and
Shikh-Khalil 2018). Since they studied a model that is first order in time, it was found that
generically, for fixed ∆x there is a whole family of transitions connecting up- and downstream
headways, subject to (6.25). For appropriate values of ∆x and ∆t, any two headways can be
connected. This is not true for the Bando model, which is second order in time: Transitions are
only possible for special combinations of h+ and h− (cf. Fig. 6.10(c)), and we need to allow both
∆x and ∆t to vary in order to find them. This can be seen as an analogy to the situation for
scalar conservation laws and systems of them, where the Rankine-Hugoniot jump condition has
to be satisfied component-wise.

110



6.3. Examples

(a) (b) (c)

(d) (e) (f)

Figure 6.9: Trajectory plots for heteroclinic solutions of the Bando model (Examples taken from
the continuation in Fig. 6.10). Note that the solutions in (a-d) are unentropic in the
sense of Ansorge (1990)
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(a) Parameter space (b) Parameter space

(c) Transitions (d) Phase space

(e) Phasespace-blowup (f) v-profiles

Figure 6.10: Heteroclinic solutions found by cutting the asymptotic periodic solutions in the
“cusp” in Figs. 6.8(c)-(e) and numerical continuation (red in (a-c)) and a contin-
uation using the ODE ansatz (6.27) with N = 100 vehicles (blue). In each case, the
symmetry of the used OVF yields another branch (dashed). The classical “hysteresis
curve”-periodic solution is dotted in (d) and corresponds to the intersections of the
branches with the line 4− h in (c)
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Stability and jam behaviour

On the circular road, the first Lyapunov coefficient can be calculated to conclude about stability
of the periodic solutions close to the bifurcation point. Although it is possible to calculate the first
Lyapunov coefficient for the integro-delay differential equation (6.16) as well (see Appendix B.2),
unfortunately its positivity would not imply local stability of the corresponding periodic solutions
on the infinite lane. We considered (6.13) because we were looking for a solution where all
trajectories are just shifted copies of each other. This is not true any more if a perturbation
appears on the infinite lane, unless this is periodic in nature as well, which is not realistic. The
space of possible perturbations of the periodic solution in the shift setting is too small, therefore
we need to find a way to consider more general perturbations. However, the Lyapunov coefficient
can still tell us about the local geometry of the solution surface.

7.1 Floquet multipliers and exponents

7.1.1 Circular road

The Hopf theorem can be used to check for local (in-) stability of periodic solutions close to
the critical parameter value. As we move away from it, their stability properties may change.
To determine the stability of an arbitrary periodic solution, we need to calculate its Floquet
multipliers (cf. e.g. Teschl 2012). To this end, we integrate the matrix-valued ODE

J̇(t) = A(~y(t), ~z(t)) · J(t) (7.1)

with initial condition J(0) = Id along with the time integration of the periodic solution over one
time period T and calculate the eigenvalues of J(T ) afterwards. If these lie inside of the unit
circle (except for a multiplier 1 that is always present for periodic solutions), we have stability.
Numerically, this can be implemented relatively easy with a standard ODE solver. Stability
calculation of periodic solutions is also a standard feature of numerical continuation software.
In the J(T ), the n × n-block at position (j, j −m) describes the influence of the initial pertur-
bation of the driver m vehicles ahead to the state of vehicle j after one time period T . While in
instantaneous stability matrix A only the block diagonals in the range [ml,mf ] around the main
diagonal are non-zero, this does not hold for the integral: An initial perturbation m > ml vehicles
ahead may not have an immediate effect, but eventually it will. However, we may expect that this
influence will decay quickly with growing m. Consequently, the entries in the off-diagonal blocks
should decay quickly.
What happens if we place a periodic solution on a circle twice as big, with twice as many cars?
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(a) Jacobian of a periodic solution
on the circular lane that has
been “copied” five times

(b) Jacobian for ten copies on the
circular road

(c) Block Laurent operator for the
infinite lane

Figure 7.1: By symmetry, the matrices J(T ) have a block circulant structure for k > 1. When the
circle is big enough that information does not flow back within one time period, this
can be used to construct an associate block Laurent operator for periodic solutions on
the infinite lane

Similar to what we found for the homogeneous solutions, we cannot expect the stability properties
to be the same for both situations. Locally, close to the bifurcation curve, we can see that typically
the periodic solution will be unstable on the bigger circle. Recall that generically eigenvalues with
smaller k cross the imaginary axis first. So if the bifurcation on the smaller circle is caused by the
pair of eigenvalues λ+(1), λ̄+(1) , this corresponds to the pair λ+(2), λ̄+(2) on the bigger circle.
Consequently, on the bigger circle we generically already have Re (λ+(1)) > 0. From this we see
that periodic solutions in a neighbourhood will have a Floquet multiplier close to exp (λ+(1) · T ),
i.e. outside of the unit circle. This also explains why the Lyapunov coefficients for these systems
give us no information about stability on the infinite lane. Similarly, in Gasser et al. (2004)
all the calculated branches of higher order (k ≥ 2) periodic solutions are unstable, even globally.
In Orosz et al. (2004a), the same effect is found in a system with reaction-time delay.

7.1.2 Infinite lane

As we already noted at the beginning of this chapter, even if we may use (6.16) to find solutions on
the infinite lane, its stability properties as a solution of (6.16) are not equivalent to the properties
on the infinite lane.
If T/∆t ∈ Q, we can directly apply the methods from the previous section. Find N, k ∈ N such
that N

k = T
∆t and consider a sequence of circular roads with n · N vehicles, n ∈ N. Analogously

to the case for the homogeneous solution, the Floquet multipliers will approximate the spectrum.
Note that the Jacobians have a block circulant structure by symmetry, with blocks of size 2nN .
As soon as the circle is wide enough that information cannot flow back in the course of one time
period there will only be a finite number of distinct 2nN -blocks that stay the same for circles with
an arbitrarily high number of vehicles. For the standard case where mf = 0, this will be indicated
by a “gap” opening up to the right of the main block diagonal (Figs. 7.1(a), (b)).
We can therefore use these blocks to construct the corresponding block Laurent operator for the
infinite lane and easily calculate its spectrum from its symbol, in analogy to the calculation of the
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(a) Jacobian of a circular road approx-
imation to the periodic solution on
the infinite lane

(b) Corresponding block Laurent opera-
tor

Figure 7.2: Constructing the stability operator on the infinite lane from a circular road approxi-
mation: As soon as J(T ) takes a banded form with zeros along the first upper n× n
block diagonal, we can separate it into two distinct block triangular matrices A0, A1
and use these to approximate the corresponding block Laurent operator

eigenvalues and the spectrum of the linearisation around the stationary solution of the circular
road and the infinite lane, respectively (Fig. 7.1(c)). In order to find a given number M of points
in the spectrum, we may then solve M

2Nn eigenvalue problems of dimension 2Nn, instead of a single
M -dimensional one.
For a periodic solution with T/∆t 6∈ Q, we may try to construct a sequence of periodic solutions
on the circular road that approximate it. To this end, consider the sequence (N(k))k∈N, where

N(k) =
⌊
Tk

∆t

⌋
. (7.2)

Then we have lim
k→∞

N(k)
k = T

∆t and N(k)
k < T

∆t for all k ∈ N. We are consequently only interested
in increasing subsequences of (N(k))k∈N. For each pair (k,N(k)), we may now view the periodic
solution on the infinite lane as an approximation of a k-periodic solution on the circular road with
N cars, where the length is given by (6.5). This approximation may then be used as an initial
guess for a root of (6.7) and can be corrected to the desired precision by a Newton scheme, holding
the other parameters fixed. Since the Newton algorithm guarantees convergence only locally, this
procedure might fail for low k.
In order to approximate the spectrum of the infinite lane from this, we may again exploit the
banded structure of the Jacobian when k is large enough. The corresponding operator can be
constructed by “glueing” the separated parts in the Jacobians together in a straightforward way
(Fig. 7.2).
Alternatively, we may directly look for Floquet exponents, i.e. µ ∈ C such that exp (µT ) = Λ,
where Λ is a Floquet multiplier and T the time period.
To this end, consider a periodic solution u(t, j) = u(t− j∆t) to the parameter-dependent ODE

u̇ (t, j) = f (u(t, j),u(t, j − 1),p) (7.3)
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with linearisation

ẇ(t, j) = A (u (t− j∆t) ,p)w(t, j) +B (u (t− j∆t) ,p)w(t, j − 1). (7.4)

Since A, B are not constant, simply plugging in v exp (λt− ijk) as in the quasistationary case
will not do. However, we may vary this approach slightly by exchanging the eigenvalue λ by the
Floquet exponent µ and making an ansatz ϕ(t− j∆t) · exp (µt− ijk) instead.
While the quasistationary case led to the eigenvalue problem

λ · v = (A+ exp (ik)B)v (7.5)

with constant eigenvector v, we now have the T -periodic eigenfunction ϕ(t) = ϕ(t + T ) and the
eigenvalue problem

ϕ̇(t) + µϕ(t) = A(u(t))ϕ(t) + exp (ik)B(u(t))ϕ (t+ ∆t) . (7.6)

By linearity, the eigenfunction ϕ has two degrees of freedom: therefore, we may set up two
functionals f1,2 : C(0, T )→ R and demand f1,2(ϕ) != 0, e.g. a condition on its norm and a phase
condition.
The formally correct way to obtain (7.6), equivalent to what is done in Brevdo and Bridges
(1997) (cf. also Brevdo and Bridges 1996), is to first perform a coordinate transform t̃ = t+j∆t
to a system with a constant base state that is periodic in time. We then have to deal with the
DDE system

˙̃u(t̃, j) = f(ũ(t̃, j), ũ(t̃+ ∆t, j − 1)) (7.7)

which we can linearise. Afterwards, we may apply a Fourier transform in j and consider the
matrix initial-value problem

Φ̇(t̃, k) = A(t)Φ(t̃, k) + exp (ik)B(t)Φ(t̃+ ∆t, k), Φ (0, k) = Id. (7.8)

According to Floquet theory, Φ(t̃, k) may be written as

Φ(t̃, k) = C(t̃, k) · exp
(
D(k) · t̃

)
(7.9)

Putting this into (7.8), we observe the identity

Ċ(t) + C(t) ·D = A(t) · C(t) + exp (ik)B(t) · C(t+ ∆t). (7.10)

Thus, plugging in C(t) · v(t) yields

v̇(k, t) = D(k)v(k, t) (7.11)
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which may be Laplace transformed, giving

(µId−D(k))v(k, µ) = v0(k) (7.12)

We may now combine (7.3) and (7.6) into an extended system, regarding µ and k as two additional
complex-valued parameters. If the extra conditions on ϕ are incorporated as well, it is possible
to do continuation in k while keeping the solution u and the “original” parameters p constant in
order to obtain the spectrum.
Another promising direction to study stability of periodic solutions of this kind is to use the
theory on so-called twisted Toeplitz- or Berezin-Toeplitz operators (Trefethen and Embree
2005; Trefethen and Chapman 2004; Borthwick and Uribe 2003).

7.2 Convective/absolute instability

We are of course also interested in characterising the unstable periodic solutions as convective
or absolute: In which direction will a small perturbation to a periodic solution move from the
perspective of an observer at the side of the road?
To study this, we may apply the analysis on the back transformation of (7.12) performed in
Sec. 5.2.2. Consequently, we are looking for branch points (µc, kc) satisfying

χ(µc, kc) = 0 (7.13a)
∂χ

∂k
(µc, kc) = 0 (7.13b)

Re (µc) = 0 (7.13c)

and a pinching condition, where χ(µ, k) = det
(
D(k)− Id

(
µ+ ik ve

he

))
.

An equivalent approach that appears better suitable for numerical continuation is to transform
(7.6) to road coordinates,

ϕ̇(t) +
(
µ+ ik

ve
he

)
ϕ(t) = A(u(t))ϕ(t) + exp (ik)B(u(t))ϕ (t+ ∆t) (7.14)

and calculate its derivative with respect to k (ψ := ∂ϕ
∂k ),

ψ̇(t) +
(
∂µ

∂k
+ i

ve
he

)
ϕ(t) +

(
µ+ ik

ve
he

)
ψ(t) = A(u(t))ψ(t) + exp (ik)B (u(t)) (iϕ+ψ) (t+ ∆t) .

(7.15)
The derivative only adds a heterogenity to (7.14). Therefore, ψ is not unique; addition of a
solution to (7.14) gives a new ψ. Consequently, we need to include another condition. Since ψ is
the derivative of the eigenfunction ϕ with respect to k, the most straightforward idea would be to
demand that the value of the functionals f1,2 do not change in the directionψ, i.e. ψ·∇f1,2 (ϕ) != 0;
however, other conditions may be chosen just as well.
We may now set up an extended system with (7.3), (7.14), and (7.15) for the combined state
[u,ϕ,ψ]> ∈ R2×C2×C2 with the enlarged parameter vector [p, k, µ, ∂µ∂k ], together with the phase
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condition on u and four conditions ensuring uniqueness of ϕ and ψ.
To find the borders between regions of absolute and convective instability, we then have to fix
Re (µ) = 0, ∂µ

∂k = 0 and do a branch continuation. The cu-au borders for the quasistationary
solutions can be chosen as a Hopf curve to start from.

7.3 Examples

Example 7.1
As shown in Gasser et al. (2004), for the OVF V (h) = tanh(h − 2) + tanh(2), bifurcations are
supercritical, but possibly very locally so. This result can be confirmed in the experiment: While
the curvature at the bottom of the global bifurcation diagram seems to imply a subcritical bifur-
cation for N ≥ 8 (Fig. 6.4(a)), a strong amplification around the bifurcation point (Fig. 6.4(b))
shows that all four branches are indeed supercritical and are asymptotically very similar to each
other.

Figure 7.3: Local behaviour of bifurcation curves for N = 6, . . . , 12 close to the smaller critical
headway hc (cf. Fig. 6.4). As predicted by nonlinear analysis (cf. Gasser et al. 2004),
all periodic solutions are locally stable close to the bifurcation point

Example 7.2 (Stability of the same velocity profile for different N)
Next, we demonstrate that a stable periodic solution on the circular road may loose stability if it
is placed on a circle with an integer multiple of the original length and vehicle number (Fig. 7.4),
as discussed in Sec. 7.1.1. We consider an arbitrary periodic solution with N = 5 cars and an
average headway he ≈ 1.2 (Fig. 7.4(a)). As expected, its Jacobian is dense, i.e. all vehicles
“communicate” with each other during one time period. The Floquet multipliers, given by the
eigenvalues of the Jacobian, lie within the unit circle, except for the trivial multiplier 1. When the
circle length is doubled (Fig. 7.4(a)), additional multipliers appear, two of which lie outside of the
unit circle. We may conclude that the periodic solution is unstable in this setting. If even more
copies are considered (Figs. 7.4(c), (d)), the instability persists. We also note that already for ten
vehicles, the magnitude of the entries in the first upper block diagonal, describing the influence
of its follower on each vehicle, drops considerably. For the bigger circles, it is numerically zero,
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(a) N = 5, k = 1 (b) N = 10, k = 2 (c) N = 25, k = 5 (d) N = 50, k = 10

velocities order of matrix entries

Figure 7.4: Periodic solutions may loose stability when placed on a bigger circle: The solutions in
the top row of (b-d) are obtained by glueing together multiple copies of the solution in
(a). While the corresponding matrices J(T ) get bigger in size, vehicles interact only
with a limited range of neighbours within one time period (middle row). The Floquet
multipliers (bottom) indicate that while the original solution is stable, the solutions
on the bigger circles are not. Each set of Floquet multipliers is a subset of the one for
the nextbigger system.

and we observe that the order of the entries drops in magnitude as we move left from the main
block diagonal. Also, in the Jacobian for k = 10 the block circulant structure becomes visible
in the repeating pattern of entries with higher and lower magnitude in the nonzero entries (cf.
Figs. 7.4(c), (d) to Figs. 7.1(a), (b)).

Example 7.3 (Approximation of periodic solutions on the infinite lane)
Our next example shows the approximation of a generic periodic solution on the infinite lane by
circular road solutions as discussed in Sec. 7.1.2 (Fig. 7.5). We arbitrarily choose the solution
with ∆x = 0.339, ∆t = 1.7403, he = 1.797, T = 9.766, corresponding to a virtual number of
Ñ = 5.6115 vehicles, and reconstruct the headway profile by integration. We calculate N(k)
according to (7.2) for k ∈ [1, 50] and choose the subsequence that promises increasing accuracy
(Fig. 7.5(a), Tab. 7.1). For each approximation, an initial guess is constructed by evaluation of
the velocity- and headway profiles at equidistant points and subsequent correction, where he is
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held fixed (the correction stays feasible even for high vehicle numbers since we can provide a good
initial guess). Already for (N, k) = (28, 5), the resulting solution cannot be distinguished from the
target in the phase space profile. Calculation of the Jacobians and Floquet multipliers (Fig. 7.6)
shows that the influence of the following car also becomes negligible for this value, allowing us to
split the Jacobian into its upper and lower part and calculate an approximation of the spectrum
on the infinite lane from this; this approximation changes very little when the next-better solution
is considered (Figs. 7.6(c), (d)).

Table 7.1: Parameters for subsequence in Fig. 7.5, 7.6

k N = bÑ · kc N/k
Ñ−N

k

Ñ
1 1 5 5 0.109
2 2 11 5.5 0.0199
3 5 28 5.6 0.0020
4 18 101 5.611 0.0001

(a) Approximation (subsequence marked in red) (b) Phase space

Figure 7.5: Approximation of a generic periodic solution on the infinite lane by periodic solutions
on the circular road: A solution chosen ranomly from the manifold depicted in Fig. 6.8
is evaluated at equidistant time intervals and taken as an initial guess for a sequence
of circular road systems

Finally, we may apply the technique demonstrated above to compare the spectra for different
periodic solutions in the infinite lane setting. In order to do so, we start at the Hopf point for
the central headway he = 2 and continue in ∆t, keeping ∆y fixed (Fig. 7.7(a), cf. the symmetry
axis in Fig. 6.8). From this branch, we pick four solutions and construct the best circular road
approximation (7.2) that can be obtained with N ≤ 100; the results are visually undistinguishable
from the original solutions (Fig. 7.7(b)). We now use these approximations to calculate the infinite
road spectra (Fig. 7.8). As may be expected, all the considered solutions are unstable when
considered on the infinite lane. However, the maximal absolute value of the Floquet multipliers,
and thus also the maximal real part in the associated spectra, shrinks towards the top and the
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(a) N = 5, k = 1 (b) N = 11, k = 2 (c) N = 28, k = 5 (d) N = 101, k = 18

velocities order of matrix entries

Figure 7.6: Comparison of the trajectories (top), shape of J(T) (middle) and Floquet multipliers
(bottom, blue dots) of the circular road approximations in Fig. 7.5. The matrices
in (c,d) are cut and rearranged in a block Laurent operator as indicated in Fig. 7.2.
Then the eigenvalues of the symbol are calculated on the unit circle to approximate
its spectrum on the infinite lane (bottom, blue lines)
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solution at the end of the branch (Fig. 7.8(d)) is only marginally unstable.

(a) Central branch with selected periodic solutions (b) Phase space portraits for selected solutions and
their approximations

Figure 7.7: With increasing amblitude, the periodic solutions are getting less unstable: The pro-
cedure shown in Fig. 7.6 is performed for four solutions along the central branch
(he = 2,∆y = 0) of the solution manifold in Fig. 6.8. Note that the DDE solutions
and their ODE approximations (dashed) are visually indistinguishable

(a) (b) (c) (d)

Figure 7.8: As the amplitude of the periodic solutions depicted in Fig. 7.7 increases, the maximal
real parts in their spectra and thus also the maximal absolute values of their Floquet
multipliers decrease

Example 7.4 (Convective and absolute instability of periodic solutions)
We expand the system we used for continuation of periodic solutions on the infinite lane by
(7.14) and (7.15) in order to be able to simultaneously follow an eigenfunction and its derivative
with respect to complex-valued k. In this formulation, k and the Floquet exponent µ become
parameters. The branch point conditions (7.13) are included as additional parameter constraints.
As starting points, the intersections of the cdu-au and au-cuu boundaries from Ex. 5.3 with the
line a = 1 are used. The obtained branches of periodic solutions separate the surface we obtained
in Ex. 6.4 into three regions (Fig. 7.9), with perturbations moving in upstream-, downstream-, or
in both directions (Fig. 7.10). While the results look promising, the pinching condition is not yet
verified and further testing and improvement of the code is necessary.
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(a) (b)

(c) (d)

Figure 7.9: Convectively and absolutely unstable periodic solutions on the infinite lane: The so-
lution manifold from Fig. 6.8 is classified by continuation of the borders found for the
homogeneous flow case; the curve for A = 0 corresponds to a cut at a = 1 through
the parameter space diagram in Fig. 5.8
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(a) cuu (b) au (c) cdu

Figure 7.10: Examples of periodic solutions from the separated regions in Fig. 7.9. The colours
in the top and bottom row show the actual velocities and their deviation from the
expected velocities, respectively.
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Chapter 8

Discussion and Outlook

8.1 Discussion

Let us briefly summarise the presented material and discuss the achievements that could be made.
In Chapter 2, we set up a general framework for microscopic car-following models similar to the
one in Wilson (2008) for different road topologies and index sets in which many of the existing
CFMs can be studied. Restrictions and inherent assumptions were carefully pointed out. By an
application of Cauchy’s existence theorem for ODEs on Banach spaces, we concluded about the
existence of solutions close to certain special solutions such as QSs, PSs or TWs.
Based on different density definitions, we then systematically derived families of associated macro-
scopic models in Chapter 3. For the different density definitions to be meaningful, it turned out
useful to introduce the notion of continuous index sets for microscopic car following models. This
approach was motivated mainly by mathematical reasoning and has no obvious resemblance in
real-life car following; its aim is to provide a simple mean for the construction of a PDE that
resembles first and foremost the underlying ODE system rather than the modelled reality. In
the literature, other approaches such as coarse-graining or mean field techniques and asymptotic
arguments have been proposed. The latter, which is often motivated by similar problems in fluid
dynamics, is problematic in this context because the ratio ε between micro- and macroscopic
length- and time scales does barely justify asymptotic arguments. We observed that when the
density is not defined via the derivative of the index with respect to the position, the mass conser-
vation cannot be taken for granted in the form ρt + (ρv)x = 0. For the IHD and FLD, correction
terms have to be applied to the local mass conservation already at second order in ε. This may
seem surprising at first sight, since these definitions are in fact rather natural and have also been
used in the literature before. However, we emphasise that this is merely an effect of the nonlocal
character of the underlying density definitions and does not imply that the number of vehicles is
not conserved in a closed system.
After this very general setup, we focused on different aspects of stability analysis of homogeneous
flow solutions in the following two chapters.
Well-known results about string stability of linear models for the different road topologies under
consideration could be recovered in Chapter 4. As pointed out in Feng et al. (2019), especially
in the control theoretic field of traffic flow theory, multiple definitions of string stability have
been proposed over the years. Since our main goal in this work was the comparison of different
road topologies, we chose to focus on string stability in the sense of stability of linear systems
with respect to initial pertubations. We emphasise that we did not show a principle of linearised
stability, as discussed in Werner (2013), for J with non-finite cardinality.
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The setup we introduced in Chapter 2 suggested to perform the linear stability analysis in the
framework of Laurent- and Toeplitz operators. In terms of this beautiful theory, the connections
between the different settings became clearly visible.
The fact that the spectrum on the infinite lane with J = Z vehicles is approximated by the spectra
of circular roads with the same average density as the number of vehicles N approaches infinity
was hardly surprising. After all, this can be seen as a justification of the great effort put into the
conduction of real-life circular-road experiments worldwide.
For finite groups of vehicles on an open road, the situation is different. For models that neglect
following cars in the acceleration law, the eigenvalues of such a system are given by the “platoon
eigenvalues” (Wilson 2008) of A0, each with multiplicity N , with no obvious relation to the
infinite lane. Even worse, by definition A0 only carries information from the partial derivatives
of the driving rule with respect to the own vehicle’s state. This is due to the fact that in a finite
platoon, by induction each vehicle will eventually return to equilibrium conditions after an initial
perturbation, provided it does not amplify its own deviations. In the general setting with mf 6= 0
the situation is more complicated, but the fact that the spectra of block Toeplitz matrices do not
approximate those of block Laurent or Toeplitz operators still holds true. This is of course far
from satisfying, especially because this might be considered the most (if not the only) realistic
of the road topologies under consideration. However, this apparent problem could be resolved in
the light of the general theory by an application of the concept of ε-pseudospectra, as anticipated
in Werner (2013). As N → ∞, the ε-pseudospectra of the platoons do approach the spectrum
on the infinite lane for n = 1. For n > 1 and mf = 0, we could use similar arguments to construct
ε-pseudomodes from the roots of the determinant of the symbol and the corresponding null spaces.
The ε-pseudomodes, as equivalent of eigenvectors, provide an explanation of what is going on in
the application: While the system is prohibited from oscillating at the downstream end by the
boundary condition on the leading vehicle, oscillations may grow along the platoon. If the platoon
is large enough, this growth may be very slow. Since the local properties of the systems are the
same, the modes we found for J = Z and ξ ∈ R are then very close to being solutions for the
platoon as well, if a small imaginary part is added to ξ so that the amplitude decays towards the
leading vehicle. This also allowed interesting insights into the situation for J = ±N, i.e. semi-
infinite motorcades on an open road. While typically this situation is studied with the boundary
condition at the downstream end (J = N), considering a final instead of a leading vehicle is
sometimes more instructive in order to understand boundary modes in the context of traffic flow.
The approximative solutions with exponential decay towards the leading car we found for the
finite platoons are exact in this setting but, unlike for J = Z, the corresponding modes are now
bounded and measurable. For n = 1, the underlying fact from the general theory is that the
spectrum of the Toeplitz operator is given by that of the Laurent operator together with those
λ ∈ C enclosed with non-zero winding number. For matrix-valued symbols, a weaker statement
holds.
After this, we briefly discussed the construction of Lyapunov functions. While this is possible
for selected models, few things could be said for the general case. The applicability of the “weak
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coupling theorem” from Swaroop and Hedrick (1996) can be questioned since for many relevant
models the dependence of the surrounding vehicles’ behaviour can hardly be classified as “weak”
in the necessary sense. The results for linear models suggested to argue with a possibly weak
nonlinearity instead; however, additional assumptions would be necessary for this approach to
succeed.
To be able to compare the microscopic stability results to the macroscopic case, the families of their
macroscopic companions found in Chapter 3 were linearised. We found that the resulting linear
PDEs are in general ill-posed in the sense that their essential spectra protrude arbitrarily wide into
the right complex half-plane. Instead of completely dismissing these models, we argued that the
asymptotic behaviour for large wave numbers is not relevant here since wave lengths below a certain
length scale are physically meaningless in the context of traffic flow. When the correction terms to
the continuity equation are taken into account, the characteristic polynomials for the macroscopic
models based on the different density definitions can be seen as approximative sequences to the
microscopic characteristic function. Interestingly, ND and FLD - exact in the continuity equation
and the acceleration law, respectively - yield the same sequence of characteristic polynomials.
It is pointed out in Treiber and Kesting (2011) that the stability of a second-order in time
macroscopic traffic model is determined by the curvature of its essential spectrum at the origin,
which correctly resembles its microscopic counterpart already at first order in ε.
We took a closer look at the string unstable quasistationary solutions in Chapter 5 and compared
the existing approaches for the classification of microscopic models as convectively and absolutely
unstable in Ward and Wilson (2011) and Mitarai and Nakanishi (2000a). Although there
appeared to be little connection at first, we found that the central necessary condition is the same
in both approaches.
Since the underlying methodology was originally developed for PDEs, an application to the linked
macroscopic models suggested itself. We analytically derived the cu/au boundaries at first order
in ε and showed in a series of numerical experiments how the boundaries approach those of the
microscopic model at higher order in ε.
Since the necessary conditions to identify the correct branch points which are derived in Ward and
Wilson (2011) are not very intuitive, we employed the method of exponential weights from Sand-
stede and Scheel (2000) instead. This also allowed us to apply the notions of transient and
remnant instability, which can be determined by calculation of the absolute spectrum. Special
attention had to be paid to the definition of an equivalent to the Morse index because the mi-
croscopic characteristic function has infinitely many “spatial” roots. While in many cases the
rightmost point of the absolute spectrum is a branch point satisfying the necessary “pinching
condition” and transient and convective instability coincide, we gave an example of a microscopic
traffic flow model where this is not the case. Here, the distinction between transient and remnant
instability gives more information about the system than that between convective and absolute
instability. The same idea is applicable to macroscopic models.
In Chapters 6 and 7 we left the quasistationary solutions in favour of the more general class of
travelling waves, specifically periodic and heteroclinic solutions. In this part, we restricted our
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attention to microscopic models.
We started by discussing how periodic solutions on the circular road of a certain shift-invariant
type, discussed in detail e.g. in Gasser et al. (2004), can be transferred to the infinite lane in
Chapter 6. This left us with the restriction that the quotient of time period T and time headway
∆t has to be rational. Besides, similar solutions have to be taken from different circular road
systems and numerical calculation of such solutions quickly becomes costly with rising N . We
solved this issue by an integro-delay approach similar to the one in Stumpf (2016a) where we
exploited the underlying symmetry.
This was simplified to a standard DDE by quadrature and implemented in numerical continuation
software to parametrise the manifold of possible periodic solutions of the Bando model on the
infinite lane. As could be expected, the famous “hysteresis curve” was recovered as a limiting
case. Taking this as a starting point, we were also able to perform a continuation of heteroclinic
solutions, recovering the diagram of allowed transitions found in Berg et al. (2000).
The stability of a periodic solution on the infinite lane was studied in Chapter 7 both as a limit to
a sequence approximating it as solutions on circular roads, and by continuation of eigenfunctions.
Although it is possible to calculate the first Lyapunov coefficient of the integro-delay equation
(Appendix B.2), this has no implications to the solutions on the infinite lane beyond the local
geometry of the solution manifold.
Finally, we took up the thread of Chapter 5 and discussed convective and absolute instability of
periodic solutions. Since the pinching condition has not yet been checked, the numerical continu-
ation of the convective/absolute boundaries has to be considered a preliminary result.
However, these results may serve the understanding of structure formation in the breakup of
quasistationary solution. The convective instability of the involved periodic solutions has been
suggested in Mitarai and Nakanishi (2000a) and explains the transition from mild oscillations
to jump solutions.
Throughout the text, most examples were based on the Bando model and variants thereof. Despite
its known issues such as an over-simplification of driving behaviour and unbounded acceleration,
this model was chosen due to its simplicity and historical importance for the development of traffic
flow theory.

128



8.2. Outcome and applicability

8.2 Outcome and applicability

Our application of results from operator theory to car-following models in a general framework
allowed us to recover well known results from linear stability analysis and obtain a clear view
on the influence of the road topologies. In particular, it helped us to understand in which sense
the finite-dimensional systems converge to the infinite-dimensional case. The recognition of the
importance of boundary pseudomodes for the transient behaviour of finitely many cars on an open
road may also help in a unification of the interpretations of platoon and ring road experiments.
Different PDEs have been proposed as macroscopic companions for the Bando model in the liter-
ature. By pointing out the relevance of the underlying density definition, we were able to explain
e.g. the issue of the deviating coefficients in the second order discussed in Lee et al. (2001). We
saw that, when worked out correctly, all three considered density definitions lead to sequences
of macroscopic models with linearisations that are “good” in the sense that they have the same
linear stability properties as the microscopic model with J = Z and even recover its characteristic
polynomial in the limit. The choice of the density definition can thus depend on the context:
For an emphasis on the equivalences to fluid dynamics, the natural density with its local mass
conservation is reasonable. Where the focus is on comparison or connection of macroscopic and
microscopic models, the inverse headway density may seem more attractive.
Our explanation of the common basis of the notions of convective and absolute instability in
Mitarai and Nakanishi (2000a) and Ward and Wilson (2011) in form of the underlying
branch point condition and the simplified and more accessible necessary condition we presented
may hopefully lead to more frequent application of this underestimated theory in the traffic flow
community. The involved change of the reference frame is also important in a metaphorical way.
In most studies of microscopic traffic flow, the vehicles and their drivers are the main interests.
More attention should be paid to the impact they have on their surrounding in terms of locally
raised levels of emissions etc.
We have seen that when roads are embedded in a network, the notions of transient and remnant
instability are more instructive than convective and absolute instability. A better understanding
of the nature of the instability on the links of a road network may help to establish control
mechanisms that help to contain emerging congestions to a limited area and maintain overall
flow.
The presented approach to shift-invariant periodic solutions establishes a connection between
periodic solutions of different orders and on circles of different length. For large numbers of
vehicles, numerical continuation of periodic solutions on the circular road becomes unfeasible; the
proposed exploitation of the inherent symmetry makes this unproblematic. With this, it is also
possible to directly compare related solutions without having to perform multiple continuations of
systems with different vehicle numbers. The formulation in ∆t and ∆x also admits some insight
into the nonlinear velocity of congestions in the road frame, with the line ∆x = 0 separating
between downstream- and upstream moving jams. The study of convective and absolute instability
of periodic solutions may help to provide a better understanding of structure formation at the
onset of congestion.
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8.3 Open questions

The results we have obtained open up a multitude of interesting follow-up questions.
As usual, the most straightforward way to proceed is to re-examine the assumptions made at the
beginning in Chapter 2. Although the restrictions made are common in the traffic flow literature,
their relaxation would greatly promote the applicability of our research. From our everyday
experience, amongst the most restrictive assumptions we formulated are that of instantaneous
reactions, homogeneous drivers and a fixed order of vehicles.
There is a lot of existing literature on car-following models with reaction time. In a project
with G. Orosz, we have made first steps to generalise the concept of convective and absolute
instability for microscopic models in this direction. Formally, the generalisation of the branch
point condition is straightforward, and preliminary numerical results are promising. As may be
expected, they indicate that with increasing reaction time the cdu region of parameter space grows
while the cuu region shrinks. During the time the drivers need to process the information, the
perturbation moves downstream with the column of vehicles. However, the theoretical background
becomes more involved for delay differential equations. For example, difficulties arise already
in the discrimination between string stable and -unstable parameter regions since it cannot be
guaranteed any more that the spectrum starts to cross the imaginary axis at the origin.
The assumption of a time-invariant vehicle order can also be criticised. Models including mecha-
nisms for overtaking typically employ rule-based behaviour which quickly make a detailed analysis
unfeasible. We may argue that the linear analysis employed here is only applicable close to the
special situations anyway. In many of these, such as homogeneous flow, heteroclinic transitions
between different regimes, or POMs at bottlenecks, overtaking manoeuvres may typically not be
desirable for reasonable drivers. It can also be shown that the introduced framework is flexible
enough to include effects such as the merging or splitting of lanes as long as the ordering before
and afterwards is predefined.
A generalisation with respect to the assumption of homogeneous drivers would be interesting
from different perspectives. Separating J into two or more subsets with different driving laws can
describe classes of vehicles, e.g. a road shared by cars and trucks, while randomly distributed
variation of the acceleration laws could model different vehicle characteristics and driving styles.
For the case [mf ,ml] = [0, 1] with fvl = 0, Mason and Woods (1997) showed that the charac-
teristic polynomial is insensitive to a permutation of the vehicles; it can be shown that the theory
for convective and absolute instability can easily be extended, too. In general, the order of the
vehicles is relevant and must be made subject to new assumptions. Systems with ml > 1 for one of
the classes are of special interest with respect to connected and automated vehicles. For a repeat-
ing pattern, the linear theory developed here can be applied to the resulting system of identical
platoons. Stability of multiclass models may also be studied in terms of so-called “twisted Toeplitz
matrices” (Trefethen and Embree 2005). Approaches using transfer functions have also been
made in this context (Feng et al. 2019). If the acceleration law is not constant we cannot expect
periodic solutions of the shift-invariant type. If the individual driving rules are similar to each
other, they may however serve as initial guesses for a numerical search.
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Another possible direction for further research is to pursue the comparison of the different road
topologies. So far, we have studied periodic solutions on the infinite lane and the circular road.
We have also seen that platoons on the open road have boundary pseudomodes for each λ that
is enclosed by the spectrum of the Laurent operator. This leads us to conjecture the existence of
a family of periodic solutions for J = −N whose amplitude grows with increasing vehicle index,
with corresponding “exponentially good periodic solutions” in an appropriate sense for platoons
of finite length. Compared to the periodic solutions for J = Z, this family can be expected to
have yet another degree of freedom.
It would also be interesting to apply the concept of convective and absolute instabilities to other
special solutions, in particular to the bottleneck case. To extend the results on periodic solutions
to qPOMs, it would first be necessary to implement a numerical continuation of the bi-periodic
density- and velocity profiles on [0, L]× [0, T ], as outlined in Gasser and Werner (2010).
The heteroclinic solutions in Chapter 6 strongly suggest to investigate the connection with jump
solutions of the Riemann problems for corresponding macroscopic models. In Berg and Woods
(2001), the existence of “dispersive” solutions of the Bando model reminiscent of rarefaction waves
is shown.
Finally, it would of course be exciting to establish cooperations with practitioners and to put the
results to a test under real-life conditions. As indicated above, relevant areas include the local
prediction of emission levels and the prediction of the dispersal of congestion on a network of
roads.
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A Additional figures

The figures below show the density profiles for the numerical examples in Sec. 5.4.2.2. In the main
text, for brevity only the velocity profiles were depicted.

(a) cuu (b) au (c) cdu

Figure 1: ND/IHD, 1st order: densities (cf. Fig. 5.14)
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(a) cuu (b) au (c) cdu

Figure 2: ND, 2nd order (cf. Fig 5.15)

(a) cuu (b) au (c) cdu

Figure 3: FLD (cf. Fig 5.16)
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(a) cuu (b) au (c) cdu

Figure 4: IHD, 2nd order (cf. Fig 5.18)

B Bifurcation analysis

B.1 Circular road

Locally, close to the bifurcation point, the stability of periodic solutions is determined by the sign
of the first Lyapunov coefficient LODE

1 (cf. Kuznecov 1995):

LODE
1 = 1

2ωRe
[
〈p, C(q, q, q)〉 − 2〈p,B(q,A−1 · B(q, q))〉+ 〈p,B(q, (2iωI −A)−1B(q, q))〉

]
, (B.1)

where q is an eigenvector to the critical pair of eigenvalues and p is an adjoint eigenvector, satisfying
〈p, q〉 = 1. B and C are multilinear functionals, defined as

Bi(~x, ~y) =
n∑

j,k=1
xjyk

∂2f̃i(ξ)
∂ξj∂ξk

∣∣∣∣∣
ξ=g(~hc,~vc)

, Ci(~x, ~y, ~z) =
n∑

j,k,l=1
xjykzl

∂3f̃i(ξ)
∂ξj∂ξk∂ξl

∣∣∣∣∣
ξ=g(~hc,~vc)

.

The nonlinear components of f̃ are given by

f̃j =
N∑
k=1

wj,kf

(
N−1∑
l=1

wl,kyl +
√
Nhe,

N∑
l=1

wl,kzl,
N∑
l=1

wl,k+1zl

)
. (B.2)
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Because of orthogonality, we have

N∑
k=1

wj,kwl,k =

1 j = l

0 j 6= l

so if we arrange the coordinates ~y, ~z as z1, y1, zN−1, yN−1, . . . , zN , zN/2, yN/2, A is block-diagonal
with bN/2c (4× 4)-blocks, a scalar block (describing the evolution of the average velocity) and an
additional (2× 2)-block in the case that N is an even number.
Let now ±k∗ denote the numbers of the critical eigenvalue pair. Where used as an index, −k∗ is
meant as N − k∗.
From

∑N
k=1wl,kwm,kwn,k = 0 ∀l,m, n ∈ {±k∗}, we can deduce that the second term cancels,

〈p,B(q,A−1 · B(q, q))〉 = 0. (B.3)

In a similar manner, we can use the double angle formula to show that only terms from the k∗,
2k∗ and average velocity block can appear in the third term 〈p,B(q, (2iωI −A)−1B(q, q))〉. Also,
because of the block diagonal structure of matrix A, the inversion is easily done analytically.
Ultimately, we see that L1 can be expressed in terms of partial derivatives of f up to third order,
evaluated at (he, ve).
For the Bando model on the circular road, the first Lyapunov coefficient was calculated in Gasser
et al. (2004) as

LODE
1 = s1(c1 + 1)

2(5− 3c1)

(
V ′′′(he)−

(V ′′(he))2

V ′(he)

)
. (B.4)

The sign depends on the chosen OVF. For V (h) = tanh(h − 2) + tanh(2) it is positive, i.e. we
have a supercritical bifurcation and initially stable periodic solutions. However, it was also shown
in Gasser et al. (2004) that the stable region may be very small, so that numerical calculation
of the Floquet multipliers is essential here.

B.2 Delay system

In order to calculate the first Lyapunov coefficient LDDE
1 for the Hopf bifurcation of equation (6.13)

we use the respective formula for delay differential equations, stated in (Faria and Magalhaes
1995).
For this, we have to evaluate the Taylor expansion of

f(v(t)) = f

(∫ ∆t

0
v(t+ θ) dθ + ∆x, v(t), v(t+ ∆t)

)

for a critical pair of he and ∆t with corresponding ∆x and ω at a linear combination
v(t) = ve + x1e

iωt + x2e
−iωt + x3 + x4e

2iωt:

f(v(t)) = L(v(t)− ve)︸ ︷︷ ︸
linear part

+B(2,0,0,0)x
2
1 +B(1,1,0,0)x1x2 +B(1,0,1,0)x1x3 +B(0,1,0,1)x2x4 + . . .︸ ︷︷ ︸

quadratic part
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+ C(2,1,0,0)x
2
1x2 + . . .︸ ︷︷ ︸

higher order terms

(B.5)

We may now use the coefficients B(2,0,0,0),. . . , B(0,1,0,1) and C(2,1,0,0) appearing in (B.5) and eval-
uate the linear operator L at 1, teiωt, and e2iωt to calculate the first Lyapunov coefficent as

LDDE
1 = Re

( 1
1− L(teiωt)

[
C(2,1,0,0) −

B(1,1,0,0)B(1,0,1,0)
L(1) +

B(2,0,0,0)B(0,1,0,1)
2iω − L(e2iωt)

])
. (B.6)

For the Bando model, we have with v(t) = ve + w(t)

f(v(t)) =V

 ∆t∫
0

v(t+ θ) dθ + ∆x

− v(t) = V

he +
∆t∫
0

w(t+ θ) dθ

− ve − w(t)

=V ′(he) ·
∆t∫
0

w(t+ θ) dθ − w(t)

︸ ︷︷ ︸
L(w(t))

+
∞∑
j=2

V (j)(he)
j!

 ∆t∫
0

w(t+ θ) dθ

j
︸ ︷︷ ︸

nonlinear part

. (B.7)

The coefficients in (B.6) are given by

L(teiωt) = −V
′(he)
ω2

(
eiκ(iκ− 1) + 1

)
, L(1) = V ′(he)∆t− 1,

L(ei2ωt) = − iV
′(he)
2ω

(
e2iκ − 1

)
− 1, B(2,0,0,0) = −V

′′(he)
2

(eiκ − 1)2

ω2 ,

B(1,1,0,0) = −V
′′(he)
2

2(eiκ − 1)2

ω2 , B(1,0,1,0) = −V
′′(he)
2

2i∆t(eiκ − 1)
ω

,

B(0,1,0,1) = −V
′′(he)
2

(e2iκ − 1)(eiκ − 1)
ω2 , C(2,1,0,0) = V ′′′(he)

2
i(eiκ − 1)3)

ω3

and the first Lyapunov coefficient is

LDDE
1 = Re

(
a2

1a2
1− L(teiωt)

(
−V

′′′(bc)
2 − ∆t (V ′′(bc))2

−V ′(bc)∆t− 1 +
1
2 (V ′′(bc))2 a4

2iω − β
2iω (1− e2ik) + 1

))
. (B.8)
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C Summary of main results

As required by the Doctoral Degree Regulations for the Faculty of Mathematics, Informatics and
Natural Sciences at Universität Hamburg from Dec. 01, 2010, §7 (5), we briefly summarise the
main findings of this dissertation; see below for a translation to German.

– Links between microscopic and macroscopic traffic flow models were studied for different
density definitions with special consideration of correction terms for the mass conservation
equation (Sec. 3.3)

– A big class of linear microscopic traffic flow models can be described in terms of Toeplitz
matrices and -operators (Sec. 4.1.1)

– The characteristic polynomials of the linearisations of “linked” macroscopic models converge
to the characteristic function of the underlying microscopic model in the Eulerian frame in
an appropriate sense (Sec. 4.2.2)

– The necessary criteria for convective and absolute instability for microscopic traffic models
employed by Mitarai and Nakanishi (2000a) and Ward and Wilson (2011) are equiva-
lent (Sec. 5.2.2)

– The notions of transient and remnant instability were applied to microscopic traffic flow
models (Sec. 5.3). It was demonstrated that this distinction may be more instructive than
that between convective and absolute instability in a traffic flow context (Ex. 5.4)

– Boundaries between convective and absolute instability in parameter space for macroscopic
traffic flow models were calculated and compared to the microscopic results for the Bando
model (Sec. 5.4.2.2)

– A certain class of stop-and-go-waves was described as solutions to an associated delay dif-
ferential equation. The ensuing singular eigenvalue problem can be avoided by formulation
in terms of a integro-delay differential equation (Sec. 6.1)

– Periodic solutions on the infinite lane for the Bando model were numerically continued using
the integro-delay differential equation (Ex. 6.4)

– Methods to determine (in-)stability (Sec. 7.1.2) and convective and absolute instability of
periodic solutions on the infinite lane (Sec. 7.2) were discussed.
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Zusammenfassung der Resultate

– Für verschiedene Definitionen der Dichte wurden aus einem mikroskopischen Verkehrsmodell
unter besonderer Beachtung ggf. notwendiger Korrekturen der Massenerhaltungsgleichung
entsprechende makroskopische Modelle abgeleitet (Sec. 3.3)

– Eine große Klasse linearer mikroskopischer Verkehrsmodelle konnte mit Hilfe der Theorie zu
Töplitzmatrizen und -operatoren beschrieben und untersucht werden (Sec. 4.1.1)

– Die charakteristischen Polynome der Linearisierungen der makroskopischen Modelle kon-
vergieren in geeignetem Sinne zur charakteristischen Funktion des zugrunde liegenden mi-
kroskopischen Modells. (Sec. 4.2.2)

– Die in Mitarai and Nakanishi (2000a) und Ward and Wilson (2011) aufgestellten
notwendigen Kriterien zur Unterscheidung zwischen konvektiver und absolute Instabilität
in mikroskopischen Verkehrsflussmodellen stellten sich als equivalent heraus (Sec. 5.2.2)

– Die Begriffe der “vorübergehenden” und “verbleibenden” Instabilität (remnant/transient
instability) wurden auf mikroskopische Verkehrsflussmodelle angewandt (5.3); es konnte
demonstriert werden, dass diese Unterscheidung unter gewissen Bedingungen der zwischen
konvektiver und absoluter Instabilität vorzuziehen ist (Ex. 5.4)

– Die Grenzen zwischen konvektiver und absoluter Instabilität für makroskopische Verkehrs-
flussmodelle im Parameterraum wurden berechnet und mit den entsprechenden Ergebnissen
für das zugrunde liegende mikroskopische Modell verglichen (Sec. 5.4.2.2)

– Eine gewisse Art von Stop-and-Go-Wellen konnte als Lösungen einer zugehörigen retardier-
ten Differentialgeichung beschrieben werden. Das dabei auftretende Problems des singulären
Eigenwertes der Linearisierung konnte durch Formulierung als integro-retardierte Differen-
tialgleichung umgangen werden (Sec. 6.1)

– Periodischer Lösungen auf der Geraden für das Bando-Modell wurden mit dem Ansatz der
integro-retardierte Differentialgleichung nummerisch bestimmt (Ex. 6.4)

– Methoden zur Bestimmung der (In-) Stabilität (Sec. 7.1.2) und konvektiven bzw. abso-
luten Instabilität der gefundenen periodischen Lösungen auf der Geraden wurden diskutiert
(Sec. 7.2)
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D Publications derived from this dissertation

H. von Allwörden and I. Gasser. On a general class of solutions for an optimal velocity model on
an infinite lane. Transportmetrica A: Transport Science, 2020

H. von Allwörden and I. Gasser. From circular road to infinite lane: Stability results for micro-
scopic optimal velocity models. (in preparation)
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