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Summary

In this thesis we study algebraic structures that are important for models of commuting-
projector Hamiltonians which realize topological phases of matter. The Kitaev model is such
a model, where the projectors are defined using the structure of a semisimple Hopf algebra. In
the first part of the thesis we construct a Kitaev model based on more general Hopf-algebraic
data – semisimple bicomodule algebras – thereby implementing defects and boundaries. In the
second part of the thesis we find generalizations of the idempotents used in the standard Kitaev
model to non-semisimple Hopf algebras.
More precisely, in the first part of the thesis, we construct a Kitaev model, consisting of a

Hamiltonian which is the sum of commuting local projectors, for surfaces with boundaries and
defects of dimension 0 and 1. Specifically, we show that one can consider cell decompositions
of surfaces whose 2-cells are labeled by semisimple Hopf algebras and 1-cells are labeled by
semisimple bicomodule algebras. We introduce an algebra whose representations label the 0-
cells and which reduces to the Drinfeld double of a Hopf algebra in the absence of defects. In
this way we generalize the algebraic structure underlying the standard Kitaev model without
defects or boundaries, where all 1-cells and 2-cells are labeled by a single Hopf algebra and
where point defects are labeled by representations of its Drinfeld double. In the standard
case, commuting local projectors are constructed using the Haar integral for semisimple Hopf
algebras. A central insight we gain in this theis is that in the presence of defects and boundaries,
the suitable generalization of the Haar integral is given by the unique symmetric separability
idempotent for a semisimple (bi-)comodule algebra. This enables us to provide an explicit
construction of a Kitaev model allowing for defects and boundaries.
In the second part of the thesis we obtain representation-theoretic results. We study the

isotypic decomposition of the regular module of a not necessarily semisimple, finite-dimensional
Hopf algebra over an algebraically closed field of characteristic zero. For a semisimple Hopf
algebra, it is known that the idempotents realizing the isotypic decomposition can be explicitly
expressed in terms of characters and the Haar integral. Here we investigate Hopf algebras with
the Chevalley property, which are not necessarily semisimple. We find explicit expressions for
idempotents in terms of Hopf-algebraic data, where we replace the Haar integral by the regular
character of the dual Hopf algebra. For a large class of Hopf algebras we show that these form
a complete set of orthogonal idempotents. Finally, we give an example which illustrates that
the Chevalley property is crucial.
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Zusammenfassung

In dieser Arbeit untersuchen wir algebraische Strukturen, die wichtig sind für Modelle von
Hamilton-Operatoren mit kommutierenden Projektoren, welche topologische Phasen der Ma-
terie realisieren. Das Kitaev-Modell ist ein solches Modell, bei dem die Projektoren mithilfe
der Struktur einer halbeinfachen Hopf-Algebra definiert werden. Im ersten Teil der Arbeit
konstruieren wir ein Kitaev-Modell, das auf allgemeineren Hopf-algebraischen Daten basiert –
halbeinfache Bikomodul-Algebren – und dabei Defekte und Ränder implementiert. Im zweiten
Teil der Arbeit finden wir Verallgemeinerungen der im Standard-Kitaev-Modell verwendeten
Idempotenten für nicht-halbeinfache Hopf-Algebren.
Genauer gesagt konstruieren wir im ersten Teil der Arbeit ein Kitaev-Modell, das aus einem

Hamilton-Operator besteht, der eine Summe von kommutierenden lokalen Projektoren ist, für
Flächen mit Rändern und Defekten von Kodimension 0 und 1. Insbesondere zeigen wir, dass
man Zellzerlegungen von Flächen betrachten kann, deren 2-Zellen mit halbeinfachen Hopf-
Algebren und deren 1-Zellen mit halbeinfachen Bikomodul-Algebren dekoriert sind. Wir führen
eine Algebra ein, deren Darstellungen die 0-Zellen dekorieren und die sich im Spezialfall ohne
Defekte auf das Drinfeld-Doppel einer Hopf-Algebra reduziert. Auf diese Weise verallgemei-
nern wir die algebraische Struktur, die dem Standard-Kitaev-Modell ohne Defekte oder Ränder
zugrunde liegt, bei dem alle 1-Zellen und 2-Zellen mit einer einzigen Hopf-Algebra und Punkt-
defekte mit Darstellungen seines Drinfeld-Doppels dekoriert werden. Im Standardfall werden
kommutierende lokale Projektoren mithilfe des Haar-Integrals für halbeinfache Hopf-Algebren
konstruiert. Eine zentrale Einsicht dieser Arbeit ist, dass bei Vorhandensein von Defekten
und Rändern die geeignete Verallgemeinerung des Haar-Integrals durch die eindeutige sym-
metrische Separabilitätsidempotente einer halbeinfachen (Bi-)Komodul-Algebra gegeben ist.
Dies ermöglicht es uns, eine explizite Konstruktion eines Kitaev-Modells anzugeben, welches
Defekte und Ränder zulässt.
Im zweiten Teil der Arbeit erlangen wir darstellungstheoretische Resultate. Wir untersuchen

die isotypische Zerlegung des regulären Moduls einer nicht unbedingt halbeinfachen, endlichdi-
mensionalen Hopf-Algebra über einem algebraisch abgeschlossenen Körper in Charakteristik
0. Für eine halbeinfache Hopf-Algebra ist bekannt, dass die Idempotenten, die die isotypische
Zerlegung realisieren, explizit durch Charaktere und das Haar-Integral ausgedrückt werden kön-
nen. Hier untersuchen wir Hopf-Algebren mit der Chevalley-Eigenschaft, die nicht unbedingt
halbeinfach sind. Wir finden explizite Ausdrücke für Idempotente durch Hopf-algebraische
Daten, wobei wir das Haar-Integral durch den regulären Charakter der dualen Hopf-Algebra
ersetzen. Für eine große Klasse von Hopf-Algebren zeigen wir, dass diese einen vollständigen
Satz orthogonaler Idempotente bilden. Abschließend geben wir ein Beispiel, das zeigt, dass die
Chevalley-Eigenschaft von entscheidender Bedeutung ist.
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1 Introduction

The Kitaev model is a family of quantum systems on a two-dimensional lattice, or more gener-
ally a graph embedded in a surface, which provide fundamental examples of topological phases
of matter. It has initially been proposed by Kitaev [Kit1] as a model for an error-correcting
code, the so-called toric code, allowing for fault-tolerant quantum gates by braiding anyons, in
the context of quantum computing. The algebraic input datum for the construction of such a
Kitaev model is a finite-dimensional semisimple complex Hopf algebra [BMCA]; for the toric
code it is the group algebra of the group with two elements. The ground states of the model
are described by a three-dimensional topological field theory of Turaev-Viro type [BK2] and
as such, mathematically, the Kitaev model provides a link between low-dimensional topology,
Hopf algebras and tensor categories.
In this introductory chapter we will explain the concepts mentioned in the above paragraph

in more detail.

1.1 The Kitaev model as a quantum many-body system
In terms of physics, the Kitaev model describes a quantum many-body system in two dimensions
with local interactions. As such it is described by a Hilbert space that is the tensor product of
local degrees of freedom, i.e. finite-dimensional Hilbert spaces associated with the edges of an
underlying graph embedded in a surface Σ, and a Hamiltonian that is the sum of short-range
interaction terms, i.e. Hamiltonians that each only act on a few local degrees of freedom in a
small neighborhood. More precisely, such a Hamiltonian is called local, if there exists n ∈ N,
such that for any graph in Σ, the Hamiltonian considered on that graph has the property that
every summand is the identity on all except for at most n tensor factors of the Hilbert space.
We note at this point already that, in this thesis, instead of Hilbert spaces and Hamiltonians,
we will consider vector spaces over an algebraically closed field k of characteristic zero and
diagonalizable endomorphisms, respectively, i.e. we do not consider scalar products.
Specifically, for the Kitaev model, which depends on a finite-dimensional semisimple Hopf

algebra H and a cell decomposition of a surface Σ with sets Σ0, Σ1 and Σ2 of vertices, edges
and plaquettes, respectively, the Hilbert space is the tensor product H =

⊗
e∈Σ1 H of copies

of H for all edges e ∈ Σ1. (If H is a semisimple complex ∗-Hopf algebra, then H has the
structure of a Hilbert space [BMCA], but, since here we will only consider it as vector space,
it will be enough to consider a semisimple Hopf algebra H over k.) In particular, for the toric
code, the degrees of freedom at each edge are described by a two-dimensional Hilbert space
H = CZ2, whose distinguished basis given by the two group elements of Z2 can be interpreted
as the spin-up and spin-down states of a spin-1

2
system. The local terms of the Hamiltonian

h =
∑

v∈Σ0(id−Av) +
∑

p∈Σ2(id−Bp) are given by vertex operators Av, which act only on
the tensor factors associated with the edges incident to a single vertex v ∈ Σ0, and plaquette
operators Bp, which act only on the tensor factors associated with the edges in the boundary
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1 Introduction

of a single plaquette p ∈ Σ2. Furthermore, these local terms are mutually commuting projec-
tors making it particularly easy to diagonalize the Hamiltonian, leading to what is called an
exactly solvable system with a frustration-free Hamiltonian. Here, a local Hamiltonian is called
frustration-free if its lowest-eigenvalue eigenspace, i.e. the ground-state space, is contained in
the ground-state space of each individual term of the Hamiltonian.

In the case of a group algebraH = CG for a finite groupG, the Kitaev model has a lattice-gauge-
theoretic interpretation with gauge group G as follows. The Hilbert space H =

⊗
e∈Σ1 CG is, as

a vector space, the space of functions on the set of assignments of group elements to each edge
of the graph. Such an assignment can be interpreted as a discretized version of a G-connection
on the underlying surface Σ, whose holonomy along a given edge of the graph is given by the
group element assigned to that edge. The vertex operators implement gauge invariance at the
individual vertices by averaging with respect to the Haar integral and the plaquette operators
implement flatness of the connection at the individual plaquettes by projecting to the sub-
space of connections with trivial holonomy around the plaquette. The resulting ground-state
space can then be interpreted as the space of gauge-invariant functions on the set of flat G-
connections on the surface Σ. Even for a general semisimple Hopf algebra, the Kitaev model
has been exhibited as an instance of a suitable notion of Hopf algebra gauge theory [Me, BR].

1.2 Topological phases of matter and topological field
theories

The main theoretical relevance of the Kitaev model does not derive from any ability to describe
particularly realistic physical systems, but rather from the fact that it provides a family of
explicit, manageable representatives of a family of topological phases of matter.
Here, two-dimensional topological phases of matter are understood, not in a precise or ex-

haustive way, as equivalence classes of quantum many-body systems on a surface, such as the
Kitaev model, which might differ in their microscopic description, but which have the same
macroscopic properties at low energies, which includes the ground-state space as well as states
with (finitely many) localized, gapped excitations – also called quasi-particles. This low-energy
sector of a topological phase of matter has the following main characteristic properties.
Firstly, the ground-state space depends only on the topology of the underlying surface and its

dimension is typically larger than one for topologically non-trivial surfaces. For example, the
toric code considered on the torus has a four-dimensional ground-state space. This is known as
ground-state degeneracy.
Furthermore, the ground-state space is robust against local perturbations: Any local observ-

able, i.e. an operator that is the identity outside of a sufficiently small region, acts as (a multiple
of) the identity on the ground-state space [CDHPRRS]. This means that the degrees of freedom
on the ground-state space are non-local or, in other words, topological. For example, in the toric
code, the four-dimensional ground-state space is identified with the first homology on the torus
with coefficients in Z2, corresponding to the following four spin configurations: Either all spins
are down, or all spins are down except along one of the two non-homotopic non-contractible
loops around the torus, or all spins are down except along both of the non-contractible loops.
Finally, in a topological phase of matter, the localized gapped excitations are anyons. This

means that the observables which exchange localized excitations of identical type with each
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1.2 Topological phases of matter and topological field theories

other, by adiabatically moving them around in the surface, form a representation of the so-
called surface braid group (which is the ordinary braid group when the underlying surface is
a sphere) that is non-trivial, i.e. it does not factor through the symmetric group. (This is to
be contrasted with identical bosons and identical fermions, whose exchange corresponds to the
trivial representation and the sign representation of the symmetric group, respectively.) This
means that the exchange of two identical anyons is not necessarily given by acting with a factor
of 1 or −1, as for bosons and fermions, respectively, but rather it can be given by any phase
or, more generally, any unitary operator.
A quantum system which satisfies the above properties is said to possess topological order

[W], the theoretical study of which emerged from the experimental discovery of the fractional
quantum Hall effect [TSG].

On the one hand, the above characteristic properties of topological phases lend themselves
well to the implementation of a quantum computer, as we will explain in the next section 1.3.
On the other hand, this characterization of (two-dimensional) topological phases, almost by def-
inition, points to three-dimensional topological field theories as the low-energy effective theories
of such quantum many-body systems. Topological field theories are a mathematical framework
[At], that has been developed as an attempt to capture and study some of the structural prop-
erties of quantum field theories in a mathematically rigorous way. A three-dimensional oriented
topological field theory is defined to be a symmetric monoidal functor Z : cobor

2,3 −→ vect(k)
from a symmetric monoidal category cobor

2,3 of compact oriented surfaces and three-dimensional
compact oriented cobordisms to a symmetric monoidal category vect(k) of finite-dimensional
vector spaces (or, alternatively, finite-dimensional Hilbert spaces) and linear maps. Other vari-
ants of topological field theories are based on categories of manifolds that are not necessarily
oriented or that have other additional structures such as framings. Relevant for this thesis, as
explained in Section 1.4, are also topological field theories with defects, which are defined on a
cobordism category of stratified oriented manifolds.
Concretely, a topological field theory assigns to any compact oriented surface Σ a finite-

dimensional vector space Z(Σ) and to any compact oriented three-manifold M with boundary
∂M = Σ1 tΣ2 a linear map Z(M) : Z(Σ1)→ Z(Σ2) between the vector spaces assigned to the
components of the boundary, where Σ1 is the same manifold as Σ1 but with opposite orientation.
In particular, by considering as a cobordism the mapping cylinder on a surface Σ corresponding
to a diffeomorphism of Σ, the topological field theory produces a linear automorphism of the
associated vector space Z(Σ) for each diffeomorphism of Σ. This induces a representation of
the mapping class group of the surface Σ on the vector space Z(Σ). The mapping class group of
a surface Σ is defined to be the quotient of the group of diffeomorphisms of Σ by the subgroup
of diffeomorphisms isotopic to the identity.
In order to capture not only vacuum states of a topological phase, but also states with local-

ized gapped excitations, one needs the structure of an extended three-dimensional topological
field theory, which is defined on a larger class of surfaces and cobordisms. In this case, there is a
(finite) braided tensor category C that is assigned to the circle, and there are (finite-dimensional)
vector spaces assigned to all (compact oriented) surfaces with boundary, where each boundary
circle must be labeled by an object in C. This assignment depends functorially on the objects
attached to the circles and is compatible with gluing surfaces along boundaries. The idea is that
such a vector space represents a ground-state space with localized gapped excitations at each
boundary circle, with particle type prescribed by the corresponding object in C. Furthermore,
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1 Introduction

an extended topological field theory assigns linear maps to three-dimensional cobordisms with
corners between surfaces with boundary, and this, in particular, yields representations of the
mapping class groups of surfaces with boundary. For example, for the sphere with n boundary
circles the mapping class group is the braid group on n strands. If one only has the vector
spaces and the mapping class group representations on them, then one has the structure of a
modular functor. In particular, the mapping class group of a surface with several boundary
components includes diffeomorphisms which braid the boundary circles around each other. In
this way, a modular functor captures the feature of topological phases that the exchange of any-
onic excitations in the surface is given by a, generally non-trivial, unitary operator on the state
space. To conclude, in this paragraph we have motivated the idea that a modular functor is the
mathematical structure that describe the low-energy effective behavior of a two-dimensional
topological phase of matter in the sense described above. For a more direct relation between
the braided tensor category C that enters and the anyon model that is described by the modular
functor, see also [Kit2].

It is well-established [BK2] that the ground-state space of the Kitaev model is described by a
three-dimensional topological field theory. More precisely, for any semisimple Hopf algebra over
k and compact oriented surface Σ, the ground-state space of the corresponding Kitaev model
is canonically isomorphic to the vector space assigned to Σ by the topological field theory of
Turaev-Viro type for the spherical fusion category H–mod of finite-dimensional H-modules.
Such a three-dimensional topological field theory is part of a class of topological field theories
that appear in many contexts and that have various constructions. Let us briefly mention these
different realizations.
Firstly, if the semisimple Hopf algebra H is a group algebra for a finite group G, then the

Dijkgraaf-Witten construction provides a gauge-theoretic approach [FQ, MNS]. Defects and
boundaries have also been studied in this framework [FSV2].
Secondly, for any spherical fusion category there exists a state-sum construction, which dates

back to work of Turaev and Viro [TV], who considered the representation category of a certain
quantum group. Barrett and Westbury have later generalized the construction to spherical
fusion categories [BW2]. Here, similarly to the Kitaev construction, one first constructs a larger
vector space which depends on a choice of auxiliary combinatorial data on the surface, such as
a triangulation, and then projects onto a subspace using maps assigned to three-dimensional
manifolds. For an exposition see [BK1, TVi]. This construction has been extended to include
defects in [CMS]. More recently, state-sum constructions based on non-semisimple categories
have been considered [FSS2]. These constructions provide a useful counterpart to which we can
compare our constructions in the framework of Kitaev models.
Finally, Levin-Wen string-net models also realize the class of topological field theories of

Turaev-Viro type. Originally constructed as a family of microscopic models with a commuting-
projector Hamiltonian in order to realize a large class of topological phases, they have been
turned into a mathematically rigorous construction in [Kir]. Recently they have been extended
to fully fledged topological field theories, at least in the case that is based on the group algebra
of Z2, which corresponds to the toric code, in [BG]. Here, the vector spaces assigned to surfaces
are not constructed as subspaces, but rather as quotients of larger vector spaces, where certain
local relations on discs are taken into account.
It is well known that topological field theories of Turaev-Viro type can also be realized by

the Reshetikhin-Turaev construction [BK1, TVi]. Here the relevant modular tensor category is
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1.3 Quantum codes and error correction

the Drinfeld center of a spherical fusion category.

1.3 Quantum codes and error correction
The basic idea of quantum computing is to employ quantum-mechanical systems for the stor-
age and processing of information. This means that information is encoded as a state of a
(finite-dimensional) Hilbert space, say CN with the standard Hermitian scalar product, and
manipulated by unitary operators on this Hilbert space. If the Hilbert space is factorized into
a tensor product (C2)⊗n of two-dimensional Hilbert spaces C2, then these are referred to as
qubits. More generally, one can consider qu-d-its Cd for any d ∈ N.
In realistic physical systems, the stored information might be corrupted over time and unitary

operators might not be perfectly realized. Moreover, since physical systems are never completely
isolated from their environment, the effect of decoherence can compromise the very quantum-
mechanical nature of the system. Therefore, it is crucial for the functioning of a quantum
computer to be protected from such errors. Like in classical computing, one thus encodes the
information with a redundancy and implements a mechanism to recover the original state from
a corrupted state using this redundancy. This means that a quantum code is defined as a
linear subspace C ⊆ H of a finite-dimensional Hilbert space H, which is also referred to as
the quantum medium. The code subspace should be chosen such that a sufficiently small error
occuring to a state encoding information will result in a state outside the code subspace that
can be uniquely corrected back to the original state in the code space.
Here, an error is representated by a linear operator on the Hilbert space H. The set of

correctable errors is determined by the quantum code C ⊆ H and it is a fundamental problem
in the theory of quantum error correction to maximize both the set of correctable errors and
the dimension of the code subspace, i.e. the amount of information that can be encoded, while
minimizing the dimension of the total Hilbert space.
Often, a quantum code is specified by a set of commuting projectors, called the stabilizer, on

the Hilbert space H. In this case it is called a stabilizer code [G]. The code subspace C ⊆ H is
then the simultaneous (+1)-eigenspace of these projectors. An error that does not preserve the
code subspace, i.e. that does not commute with all projectors of the stabilizer, can be detected
by measuring the eigenvalues of the projectors. If the error is sufficiently small, it can also be
corrected by acting with the stabilizer projectors.
More precisely, let H = (C2)⊗n be a tensor product of n qubits. A linear operator on H

is called k-local, for k ∈ N, if it is the identity on all but at most k tensor factors of H. A
quantum code C ⊆ H is called a k-code, for k ∈ N, if for any k-local operator O : H → H,
which for example describes a k-local error, the linear operator πC ◦ O|C : C → C on the code
space is (a scalar multiple of) the identity. Here, πC : H → C is the orthogonal projection
onto the subspace C ⊆ H, which in the case of a stabilizer code is given by the composition
of all the commuting projectors of the stabilizer. In this sense, errors that affect sufficiently
few qubits at the same time can be corrected by the stabilizer projectors and one speaks of an
error-correcting code.

The idea of topological quantum computing is to physically realize an error-correcting quantum
code by a quantum many-body system in a topological phase, such as the Kitaev model. Here
the quantum medium H, as a tensor product of qu-d-its, for d ∈ N, is realized as the state space
H =

⊗
e∈Σ1 H, where the local degrees of freedom are associated with the edges e ∈ Σ1 of a
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1 Introduction

graph embedded into a surface Σ and are given by a semisimple Hopf algebra H with dimension
d. (For H = CZ2, one considers a system of qubits.) The code space C ⊆ H is realized as
the ground-state space of the system. For this it is important that the ground-state space is
degenerate, otherwise it would encode only a single qu-d-it. Since the Hamiltonian is a sum of
commuting projectors, i.e. the ground-state space is given as the simultaneous (+1)-eigenspace
of commuting projectors, the Kitaev model provides a stabilizer code. The dynamics described
by the Hamiltonian thus tend to correct sufficiently small errors, since it costs energy for a state
to violate the stabilizer conditions that define the ground-state space. This means that error
correction does not have to implemented by some artificial procedure but rather is built in at
the physical level. It has been rigorously shown [CDHPRRS], for the case of a group algebra
H = CG for any finite group G, that the Kitaev model yields an error-correcting quantum
code.
It is remarkable how closely the defining properties of an error-correcting quantum code mir-

ror the characteristic properties of topological phases of matter: The topological stability of a
degenerate ground-state space, on which sufficiently local operators can only act by (a multiple
of) the identity, is precisely the condition that sufficiently local errors restricted to code sub-
space are correctable by the stabilizer projectors.

However, topological phases of matter not only lend themselves well to realizing quantum
codes, but are also characterized by the existence of an interesting class of observables that
braid localized anyonic excitations around each other, as explained in the previous section 1.2.
On the other hand, in order to realize a quantum computer we need to implement not only the
error-correcting code, the so-called quantum memory, but also linear operators on the quan-
tum medium H preserving the code space C ⊆ H, so that the quantum computer cannot only
store information but also actually perform computations on it. In order to obtain a quantum
computer one must realize a library, i.e. a finite set, of unitary operators on the quantum code
C ⊆ H, called quantum gates, which usually act on only one or two qu-d-its at the same time.
The computations that can be performed, the so-called quantum circuits, are all the finite
compositions of the quantum gates. The quantum computer is called universal, if the group
generated by the quantum gates lies densely in the group of all unitary operators on the code
space.
In topological quantum computing, the idea is to realize the unitary operators on the code

space by the operators that correspond to braiding localized anyonic excitations around each
other. The benefit of these operators is again that they are stable under local perturbations,
since they only depend on the homotopy class of the path along which the anyon is moved.
Mathematically more precisely, in terms of the underlying topological field theory or modular
functor, these operators are given by the acting with the appropriate element of the mapping
class group, which is an isotopy-invariant. It is known that in this way modular functors allow
for universal quantum computation [FLW].
It turns out that the toric code based on the group algebra of Z2, as originally suggested by

Kitaev, does not allow for universal quantum computation. However, it has been shown that
it suffices to consider only slightly larger and more complicated groups such as the symmetric
group S3 to achieve universal quantum computation with a model based on anyons [Mo].
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1.4 Defects and boundaries in topological field theories

1.4 Defects and boundaries in topological field theories
It is natural to consider topological field theories not just on surfaces, but on surfaces with
additional structure. In terms of physics, we want to allow for defects and boundaries; in
mathematical terms, we consider the theories on a suitable class of decorated stratified manifolds
called defect surfaces in the sense of [FSS2], but see also e.g. [CMS]. (For this thesis, models on
oriented surfaces are relevant, whereas in [FSS2] surfaces with 2-framings have been considered.)
Here, one considers manifolds with a collection of distinguished submanifolds that are labelled
by certain additional data of a type that depends on the theory. For a boundary, for example,
such a datum encodes a boundary condition.
The study of defects and boundaries in topological field theories has received increased at-

tention in recent years. They are interesting for a variety of reasons. Firstly, considering a
topological field theory with defects amounts to a unification of an entire family of topological
field theories. Usually topological field theories come in families parametrized by a certain
algebraic or category-theoretic input datum, such as spherical fusion categories in the case
of Turaev-Viro theories or modular tensor categories for Reshetikhin-Turaev theories. In the
framework of topological field theories with defects these input data are interpreted as the pos-
sible labels for the top-dimensional strata of the underlying manifolds. Defects of co-dimension
1 between such top-dimensional strata corresponding to various theories then allow to consider
these theories within a single one. In this regard, Turaev-Viro theories are a natural subclass of
three-dimensional topological field theories to consider, since boundaries and defects between
such theories always exist in the sense of [FSV1], while in general this does not hold for every
pair of three-dimensional topological field theories.
Secondly, defects and boundaries provide links with the (categorified) representation theory of

the algebraic structures that label the top-dimensional manifolds. For example, surface defects
in three-dimensional topological field theories of Turaev-Viro type are labelled by (semisimple)
bimodule categories over the spherical fusion categories which describe the theories separated
by the defect. In this way, many constructions in the categorified representation theory of such
fusion categories obtain a geometric underpinning, as further demonstrated in [FSS2].
Furthermore, defects are related to symmetries of topological field theories. In fact, many

symmetries of and dualities between theories can be interpreted as invertible defects. In this
sense, defects can be seen as a framework that generalizes such features. Accordingly, there
exist generalized orbifold constructions for topological field theories with defects [CRS].

For the present thesis, most crucially a further aspect of introducing defects and boundaries
into the theory is relevant. It is known that defects leads to higher-dimensional vector spaces
assigned to surfaces and more interesting mapping class group actions. For example, this
has been demonstrated in [FS], see also [BJQ], for so-called permutation twist defects, which
effectively increase the genus of the surface, i.e. the vector space assigned to a surface with such
defects is isomorphic to the vector space assigned to a surface of higher genus without defects.
In such theories the dimension of the vector spaces grows exponentially with the genus, as can
be read off from the Verlinde formula.
This is particularly relevant for applications to topological quantum computing, since as

explained in Section 1.3, the dimension of the ground-state space determines the amount of
information that can be stored in the code and the action of the mapping class group on this
vector space determines the variety of operations that can be performed on the code. A study in
this direction, using boundaries in order to achieve higher computational power, is e.g. [LLW].
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1 Introduction

There have been already several approaches to include defects or boundaries in Kitaev models
based on group algebras [BK, BMD, BSW, CCW]. In this thesis we follow an approach that
deals with the more general case of semisimple Hopf algebras.

1.5 Projectors in the Kitaev model in terms of
Hopf-algebraic structure

Let us review in more detail the construction of the Kitaev model, emphasizing the central
role played by the Hopf-algebraic structure; see also [BMCA, BK2]. We shall also use this
opportunity to fix our conventions regarding the notation. Throughout the thesis we fix an
algebraically closed field k of characteristic zero. All vector spaces will be finite-dimensional
over k, including those underlying any algebras or modules over algebras.
For the construction of the Kitaev model without defects or boundaries, one fixes a semisimple

Hopf algebra H over k. General references for Hopf algebras are e.g. [Mon, Ka]. This means
that, in addition to being a finite-dimensional semisimple unital algebra over k, H is equipped
with a co-multiplication ∆ : H −→ H ⊗H and a co-unit ε : H −→ k, which are morphisms of
algebras. The co-product is usually written in Sweedler notation as ∆(x) = x(1)⊗x(2) ∈ H⊗H
for x ∈ H, where x(1) ⊗ x(2) is in general a sum of pure tensors, but the summation symbol
is omitted. For an n-fold coproduct one writes x(1) ⊗ · · · ⊗ x(n), which is well-defined due
to co-associativity. Furthermore, H has an involutive antipode S : H −→ H, which is an
anti-algebra-morphism as well as an anti-coalgebra-morphism and can, hence, be seen as an
isomorphism of Hopf algebras S : Hop,cop −→ H. Here, Hop,cop has the opposite multiplication
as well as the opposite co-multiplication compared to H. Semisimplicity of the Hopf algebra
H implies that it possesses a distinguished idempotent ` ∈ H, the Haar integral. This is
the unique normalized two-sided integral of H, i.e. it satisfies x` = ε(x)` = `x for all x ∈
H and ε(`) = 1. These defining properties also imply that ` ∈ H is an idempotent and
cocommutative. It provides the crucial algebraic ingredient entering in the construction of the
commuting projectors of the Kitaev model, as explained below. Lastly, note that the dual
H∗ of a finite-dimensional semisimple Hopf algebra H is again a finite-dimensional semisimple
Hopf algebra. Its multiplication is defined by dualising the co-multiplication of H so that for
f, g ∈ H∗ we have (f · g)(x) := f(x(1))g(x(2)) for all x ∈ H. Likewise, the co-multiplication is
defined in terms of the multiplication of H as (f(1) ⊗ f(2))(x ⊗ y) := f(xy) for all f ∈ H∗ and
x, y ∈ H.

The Kitaev model depends not only on the semisimple Hopf algebra H, but also on a compact
oriented surface Σ and a cell decomposition thereof, i.e. a CW complex structure. This means
that Σ is decomposed into sets Σ0, Σ1 and Σ2 of vertices, edges and plaquettes, respectively. The
edges are assumed to have their own orientation. In other words, (Σ0,Σ1) is a directed graph
embedded into the surface Σ such that its complement in Σ is a disjoint union of a set Σ2 of
discs. The starting point of the construction is then to consider the vector space H =

⊗
e∈Σ1 H,

which has the interpretation of the state space of a quantum system composed of local quantum
systems with state spaces H associated with the edges of the cell decomposition – or in terms
of quantum computing, H =

⊗
e∈Σ1 H is a quantum medium composed of qu-d-it spaces H,

where d = dim(H), as explained in Section 1.3.
The construction of the Kitaev model proceeds in a natural way using only the Hopf-algebraic

structure that is present as well as the combinatorial data contained in the cell decomposition.
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1.5 Projectors in the Kitaev model in terms of Hopf-algebraic structure

The crucial idea is that the vector space H =
⊗

e∈Σ1 H admits certain natural actions of the
Hopf algebra H and the dual Hopf algebra H∗, which give rise to representations of the Drinfeld
double D(H).
More precisely, for each pair of a vertex v ∈ Σ0 and an auxiliary plaquette p ∈ Σ2 that is

incident to v (and which we assume to lie on at most one side of any edge incident to v) – a
so-called site (v, p) – there is an action A(v,p) of the Hopf algebra H on

⊗
e∈Σ1 H by the n-fold

coproduct of an element a ∈ H acting in counter-clockwise order on the individual copies of
H associated to the n edges incident to the given vertex v. For example, the action A(v,p)(a)
looks like the following for n = 4:

v

p

xnx1

x2

x3

v

p

a(n)xna(1)x1

x2S(a(2))

a(3)x3

A(v,p)(a)
7−→

where xi ∈ H is any element of the copy of H associated with the relevant edge. Here, the
auxiliary plaquette p ∈ Σ2 determines the edge at which the counter-clockwise order of the
edges around v starts, which is given with respect to the orientation of the surface Σ, and the
relative orientation of an edge with respect to the vertex v determines whether the Hopf algebra
acts by left multiplication or by right multiplication via the antipode. In particular, this action
does not depend on the choice of auxiliary plaquette p if one acts by a cocommutative element
a ∈ H. Hence, it allows one to define, for each vertex v ∈ Σ0, an idempotent endomorphism
Av : H −→ H by acting with the unique Haar integral ` ∈ H of the semisimple Hopf algebra
H. In terms of representation theory, this idempotent gives a projection to the subspace of
invariants with respect to the H-action. This defines one part of the family of commuting
projectors for the Hamiltonian of the Kitaev model, the so-called vertex operators.
For the remaining projectors, the so-called plaquette operators, one considers in the spirit of

Poincaré duality an action B(p,v) of the dual Hopf algebra H∗ on the copies of H associated
to the edges in the boundary of a plaquette p ∈ Σ2. For this, one analogously chooses an
auxiliary vertex v ∈ Σ0 in the boundary of the given plaquette p, assuming that the edges in
the boundary incident to v are not loops, and orders the edges in the boundary in clockwise
order with respect to the orientation of Σ. Depending on the relative orientation of an edge
with respect to the plaquette p ∈ Σ2, the dual Hopf algebra H∗ acts on the copy of H associated
to that edge via one of two natural actions which are intertwined by the involutive antipode
of H, for details see [BMCA, BK2]. The action B(p,v)(α) of an element α ∈ H∗ thus looks like
follows, when one edge is oriented counter-clockwise around the boundary of p and the others
clockwise:
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p

v
xn

x1

x2 x3

B(p,v)(α)
7−→ p

v
α(n).xn

α(1).x1

x2.S(α(2)) α(3).x3

On the tensor factors associated with the edges not in the boundary of p The plaquette operator
for the plaquette p ∈ Σ2, an idempotent endomorphism Bp : H −→ H, is then defined by acting
via this action with the unique Haar integral λ ∈ H∗ of the dual Hopf algebra H∗. Again in
terms of representation theory, this gives a projection to the subspace of H∗-invariants.
The thus defined family of projectors {(Av)v∈Σ0 , (Bp)p∈Σ2} has the important property that

they commute pairwise, which leads to the construction of the frustration-free Hamiltonian
h =

∑
v∈Σ0(id−Av) +

∑
p∈Σ2(id−Bp) or, in quantum information theoretic terms, a stabilizer

code. Proving this property requires a careful analysis of how the actions of the Hopf algebra
H and its dual H∗ on the vector space H for a given site (v, p) interact, revealing the structure
of the Drinfeld double D(H). Indeed, it turns out that the H- and H∗-actions satisfy the so-
called straightening formula, which is the defining commutation relation that H and H∗ satisfy
as subalgebras inside the the algebra D(H), which has the underlying vector space H∗⊗H, cf.
[BMCA, Theorem 1]. Since in this way the structure of the Drinfeld double is an outcome of the
construction, one can regard the Kitaev model as an independent motivation of the algebraic
structure of the Drinfeld double.
Furthermore, representations of the Drinfeld double in the Kitaev model become important

when studying point-like excitations. This is done by considering subspaces of the full state
space H, where at a few distinguished disjoint sites one does not project to the subspace of
D(H)-invariants by vertex and plaquette operators, but rather leaves a larger subspace with a
non-trivial residual D(H)-action for each distinguished site, see [BK2].

1.6 Summary of results
This thesis consists of two main parts, Chapters 2 and 3. While Chapter 2 is mainly a con-
struction in mathematical physics, in Chapter 3 we obtain representation-theoretic results. The
common theme of both chapters is that they investigate Hopf-algebraic structures which appear
in the Kitaev model.

The main result of Chapter 2 is the construction of a Kitaev model, consisting of a commuting-
projector Hamiltonian, for surfaces with defects and boundaries, using general Hopf-algebraic
and representation-theoretic input data.
For this construction it is necessary to first realize the data labeling the defects, which are

known for Turaev-Viro theory in a category-theoretic language, concretely in Hopf-algebraic and
representation-theoretic terms. Specifically, topological field theories of Turaev-Viro type are
parameterized by spherical fusion categories [BW2]. The data for defects separating two such
theories are semisimple bimodule categories [KK, FSV1, FSS2]. The idea for obtaining the data
for a Kitaev construction is to invoke Tannaka-Krein duality [D]. It states that a semisimple
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1.6 Summary of results

Hopf algebra is equivalent to specifying a fusion category (the representation category of the
Hopf algebra, admitting a canonical spherical structure) together with a monoidal fibre functor
valued in finite-dimensional vector spaces (the forgetful functor assigning to a representation
its underlying vector space). This recovers semisimple Hopf algebras as the input datum for
the Kitaev models without defects, which we think of here as the labels for the two-dimensional
strata of the defect surface.
We extend this idea and employ, for the bimodule categories labelling line defects on the sur-

face in Turaev-Viro theory, the appropriate bimodule versions of fibre functors. By a bimodule
version of Tannaka-Krein duality, which we explain in Subsubsection 2.1.1.1, this realizes these
categories as the representation categories of bicomodule algebras over Hopf algebras. We thus
identify bicomodule algebras as the labels for line defects and, as a special case, comodule
algebras for boundaries.

Having established the algebraic data for line defects of the surface, we turn our attention to
vertices where such line defects can join. They are labeled by objects in a category which serves
as possible labels for generalized Wilson lines in a corresponding three-dimensional topological
field theory, including boundary Wilson lines and Wilson lines at the intersection of surface
defects. This category has been determined as a suitable generalization [FSS1, FSS2] of the
Drinfeld center for a spherical fusion category, which labels bulk Wilson lines. Here, in Sub-
section 2.1.3, this category is realized as a representation category as follows: For a vertex at
which line defects meet, the bicomodule algebras of the line defects and the algebras dual to
the Hopf algebras attached to the adjacent two-dimensional strata naturally assemble into an
algebra, which we introduce in Definition 5. This algebra, which we call vertex algebra, reduces
in special cases to the Drinfeld double of the Hopf algebra, whose representations label point-
like excitations in the Kitaev model without defects. The category of possible labels for such
a vertex is then the category of modules over this algebra. We show in Theorem 8 that this
category is equivalent to the category of generalized Wilson lines at the intersection of surface
defects in a corresponding three-dimensional field theory [FSS2].

Furthermore, a choice of cell decomposition on the underlying surface enters the construction of
the Kitaev model. In the standard Kitaev model without defects, every 1-cell (or edge) of the
cell decomposition is labeled by a single Hopf algebra. In our setting this should be seen as the
regular bicomodule algebra and we consider this label as the transparent defect. In our case,
edges of the cell decomposition are either transparently labeled or they constitute a non-trivial
defect and are labeled by an arbitrary bicomodule algebra.

Our construction proceeds in the following steps – mirroring the construction of the standard
Kitaev model without defects, as in e.g. [BMCA, BK2]. We first define in Definition 9 a
vector space with local degrees of freedom for each edge and each 0-cell (or vertex ) of the cell
decomposition. Then we show in Subsection 2.2.1 that this vector space admits, locally with
respect to the cell decomposition, the structure of a bimodule over the algebras attached to
the vertices. This is analogous to the representations of the Drinfeld double for each site in the
standard Kitaev model without defects. In this case one then proceeds to use the Haar integral
for any semisimple Hopf algebra to define local projectors via these local representations. One
of our main insights, established in Subsection 2.2.2, is that, in the presence of defects, the
suitable generalization of the Haar integral to semisimple bicomodule algebras is given by the
symmetric separability idempotent, see Definition 15. The symmetric separability idempotent
of a semisimple algebra is unique, which we recall in Proposition 17. Furthermore, we show
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in Proposition 19 that for a semisimple (bi-)comodule algebra, the symmetric separability
idempotent satisfies a compatibility with the (bi-)comodule structure which generalizes a basic
property of the Haar integral of a semisimple Hopf algebra. In the absence of defects, the
symmetric separability idempotent reduces to the Haar integral, as we show in Example 18.
Using such separability idempotents, in Subsection 2.2.3 we finally construct projectors for

each vertex, as usual called vertex operators, and for each plaquette, as usual called plaquette
operators. Our main result in Chapter 2, Theorem 25, is that all vertex operators and plaque-
tte operators commute – giving rise to an exactly solvable Hamiltonian defined as a sum of
commuting projectors, which project to the ground states of the model.

Concerning the ground states, our construction can be seen as a concrete representation-theo-
retic realization of the category-theoretic construction in [FSS2]. While in [FSS2] more general
categories than representation categories of Hopf algebras and bicomodule algebras are consid-
ered, for us the additional structure of fibre functors on the categories is necessary in order
to define a larger vector space which contains the pre-block space and block space as sub-
spaces. Moreover, while for the construction in [FSS2] no semisimplicity is required, in this
chapter semisimplicity is essential for the construction of commuting local projectors, since we
define them in terms of the symmetric separability idempotents. (In Chapter 3 we achieve
partial results towards constructing projectors for non-semisimple Hopf algebras.) Lastly, since
semisimple Hopf algebras have an involutive antipode, they have a canonical trivial pivotal
structure. Hence, we can define our model on any surface with orientation. The approach in
[FSS2] is to assume no pivotal structure on the tensor categories, but instead to assume more
geometric structure, namely a 2-framing, on the surfaces.

In the standard Kitaev model based on a semisimple Hopf algebra, the Haar integral is the main
algebraic ingredient defining the commuting projectors. The importance of such an idempotent
leads to the problem which we study in the second part of this thesis, Chapter 3, and which
can be phrased in purely representation-theoretic terms. While in Chapter 2 we considered
the symmetric separability idempotent of a bicomodule algebra as a generalization of the Haar
integral of a semisimple Hopf algebra, in this chapter we give a generalization of the Haar
integral to a class of not necessarily semisimple Hopf algebras.

In Chapter 3 we study the decomposition of the regular module of a finite-dimensional Hopf
algebra into isotypic components. Recall that k is an algebraically closed field of characteristic
zero and H a finite-dimensional Hopf algebra over k. If H is semisimple, the Artin-Wedderburn
theorem implies that as a left H-module H decomposes into the direct sum of submodules Hi

isomorphic to the dim(Si)-fold direct sum S⊕ dimSi
i of the simple H-module Si. Here, i runs

over the set I of isomorphism classes of simple H-modules. The decomposition H =
⊕

i∈I Hi

is called the isotypic decomposition of H, seen as a left H-module, into its isotypic components
Hi. It can be also described by the central orthogonal idempotents (ei)i∈I in H such that
ei ∈ Hi and

∑
i∈I ei = 1. Then Hi = Hei and the projection from H =

⊕
i∈I Hi onto the direct

summand Hj is given by right multiplication by ej for all j ∈ I.
So far this only uses the algebra structure of H. The following idea is well-known and lies at

the heart of the theory of representations of a finite group. For a semisimple Hopf algebraH over
k with antipode S, the central orthogonal idempotents ei can be described explicitly in terms
of the Haar integral and the irreducible characters of H by the following character-projector
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formula [S, Cor. 4.6]
ei = dim(Si)χi(S(`(1)))`(2). (1.1)

Here, Sweedler notation is understood, and ` ∈ H is the Haar integral for H, the unique
(two-sided) integral of H, normalised to ε(`) = 1, which exists due to the Maschke theorem
for semisimple Hopf algebras [Sw, Theorem 5.1.8]. The functional χi : H −→ k here is the
character of the simple H-module Si.

In this thesis, we study generalizations of the character-projector formula (1.1) for finite-
dimensional Hopf algebras that are not necessarily semisimple. Hence, we do not have a Haar
integral at our disposal. It is a central insight of this thesis, instead to use the character of
the regular representation of the Hopf algebra H∗ dual to H. While for semisimple algebras
there is a unique isotypic decomposition, in the non-semisimple case such decompositions are
in general not unique anymore. Our aim in this chapter is to nevertheless construct one explicit
decomposition using the Hopf-algebraic structure.
We obtain the strongest results for Hopf algebras with the Chevalley property, see Definition

45. This is a large class of finite-dimensional Hopf algebras, including semisimple Hopf algebras
and basic Hopf algebras, i.e. Hopf algebras for which all simple modules are one-dimensional,
the Hopf algebras dual to pointed Hopf algebras.

Our main results are as follows: for a finite-dimensional Hopf algebra with the Chevalley
property, we give in Theorem 52 an explicit idempotent for each one-dimensional simple module.
In Theorem 56, we exhibit a necessary and sufficient condition involving the so-called Hecke
algebra of the trivial representation (see Definition 55) ensuring that these idempotents form a
complete set in the sense that they sum up to the identity.
In Conjecture 48, we propose an explicit generalization of the character-projector formula

(1.1) for finite-dimensional Hopf algebras with the Chevalley property. (The Chevalley property
is essential, as witnessed by the counterexample given in Example 50.) The two main theorems
52 and 56 imply our Conjecture 48 for basic Hopf algebras that satisfy the condition on the
Hecke algebra, as summarized in Corollary 57. Furthermore, in Proposition 60 we prove that
Conjecture 48 holds for Hopf algebras which have the Chevalley property and the dual Chevalley
property. Lastly, we provide further evidence for Conjecture 48 by studying in Subsection 3.3.2
an example of a Hopf algebra with the Chevalley property that is not covered by our general
results in Section 3.2. We do this by performing some of the more computationally complex
calculations using the computer algebra software Magma.

Publications
The chapters of this thesis are based on the following pre-prints:

Chapter 2: Defects in Kitaev models and bicomodule algebras.
arXiv:2001.10578 [math.QA]

Chapter 3: On isotypic decompositions for non-semisimple Hopf algebras.
With Ehud Meir and Christoph Schweigert.
arXiv:1910.13161 [math.QA]
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2 Defects and boundaries in Kitaev
models

This chapter is organised as follows. In Section 2.1 we introduce the Hopf-algebraic and
representation-theoretic data labelling defects in our construction of the Kitaev model. In
Definition 1 we define line defects to be labeled by bicomodule algebras, for which we give a
category-theoretic motivation in Subsubsection 2.1.1.1 using Tannaka-Krein duality. In Defini-
tion 5 we introduce an algebra, which we call vertex algebra, whose representations we define
in Definition 7 to be the labels for a point defect, at which line defects intersect. We show in
Theorem 8 that its representation category is equivalent to the category of generalized Wilson
lines at the intersection of surface defects in a corresponding three-dimensional field theory.
In Section 2.2 we give our construction of the Kitaev model based on the Hopf-algebraic data

introduced in the first section. In Definition 9 we define the vector spaces that are assigned to
surfaces, which function as the state spaces of the Kitaev model. In Subsection 2.2.1 and, in
particular Theorem 13, we prove that the state spaces admit natural bimodule structures over
the vertex algebras. We use these bimodule structures in Subsection 2.2.3 to define in Definitions
22 and 24 local projectors on the state spaces. We prove in Proposition 19 a compatibility of
the symmetric separability idempotent of a semisimple comodule algebra with the comodule
structure. These results finally culminate in our main result, Theorem 25, which shows that the
local projectors we defined commute pairwise and, hence, give rise to a Hamiltonian, defined
in Definition 26.

2.1 Hopf-algebraic and representation-theoretic labels for
surfaces with cell decomposition

Following the discussion in the introduction, we will explain in the first section the input data
for our construction.

Let Σ be a compact oriented surface together with a cell decomposition (Σ0,Σ1,Σ2) with non-
empty sets of 0-cells (or vertices), 1-cells (or edges) and 2-cells (or plaquettes), respectively. This
can be thought of as an embedding of a graph (Σ0,Σ1) into Σ such that its complement in Σ
is the disjoint union of a set Σ2 of disks. Furthermore, let the edges be oriented, i.e. there are
source and target maps s, t : Σ1 −→ Σ0. If the surface Σ has a boundary, then we require that
the 1-skeleton of the cell decomposition be contained in the boundary.
For the construction of a Kitaev model one needs as a further input Hopf-algebraic and rep-

resentation-theoretic data labelling the various strata of the cell decomposition. In the ordinary
Kitaev model without defects as in [BMCA], all edges of the cell decomposition are labeled by a
single semisimple Hopf algebra H, and wherever point-like excitations are considered [BK2], a
vertex is labeled by a representation of the Drinfeld double D(H) of the Hopf algebra H. In this
thesis we consider more general labels for the edges, thereby implementing arbitrary line defects
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(also known as domain walls in condensed matter theory) and boundaries in the Kitaev model.
Accordingly we also consider more general labels for vertices, implementing point defects (also
known as point-like excitations) inside defect lines or boundaries. For the remainder of this
section we will specify the three types of Hopf-algebraic and representation-theoretic data that
label the plaquettes, edges and vertices of a cell decomposition.

2.1.1 Bicomodule algebras over Hopf algebras for line defects

We fix once and for all an algebraically closed field k of characteristic zero. For the necessary
background on Hopf algebras and conventions regarding the notation, see [Mon, Ka, BMCA].

Definition 1.

• Let H1 and H2 be Hopf algebras over k. An H1-H2-bicomodule algebra K is a k-algebra K
together with an H1-H2-bicomodule structure, i.e. with co-associative co-action written
in Sweedler notation for comodules as

K −→ H1 ⊗K ⊗H2,

k 7−→ k(−1) ⊗ k(0) ⊗ k(1),

which is required to be a morphism of algebras. If H1 = k or H2 = k, then K is just a
right H2-comodule or a left H1-comodule algebra, respectively.

A semisimple bicomodule algebra is a bicomodule algebra whose underlying algebra is
semisimple.

• Let Σ be an oriented surface with a cell decomposition with oriented edges. A label Hp

for a plaquette p ∈ Σ2 is a semisimple Hopf algebra Hp over k.
For any edge e ∈ Σ1 let p1 ∈ Σ2 and p2 ∈ Σ2 be the labelled plaquettes on the left and on
the right of e, respectively, with respect to the orientation of e relative to the orientation of
Σ. Then a label Ke for the edge e is a finite-dimensional semisimple Hp1-Hp2-bicomodule
algebra Ke over k.

e

p1

p2

Hp1 : Hopf algebra

Hp2 : Hopf algebra

Ke : Hp1-Hp2-bicomodule algebra

Figure 2.1: An edge e and the adjacent plaquettes p1 and p2 with their algebraic data. The two
arrows denote the orientations of the edge and, respectively, of the surface Σ into
which the edge is embedded.

If the edge e lies in the boundary of Σ and hence only has a plaquette p on one side (left
or right), then Ke is just a left or right Hp-comodule algebra, respectively.
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2.1 Hopf-algebraic and representation-theoretic labels for surfaces with cell decomposition

Examples 2.

1. Let H be a Hopf algebra. The regular H-bicomodule algebra is the algebra underlying
the Hopf algebra H together with left and right co-action given by the co-multiplication
of H. Note that the regular H-bicomodule algebra is semisimple if and only if the Hopf
algebra H is semisimple, since both are defined by the semisimplicity of the underlying
algebra.

2. Let G be a finite group and kG its group algebra, which has a basis (bg)g∈G parametrized
by G and multiplication induced by the group multiplication. kG is a semisimple Hopf
algebra with comultiplication given by the diagonal map bg 7→ bg ⊗ bg for all g ∈ G.
Further, let U ⊆ G be a subgroup and ζ ∈ Z2(U,k×) a group 2-cocycle. Then the
cocycle-twisted group algebra kUζ with multiplication bu · bv := ζ(u, v)buv for all u, v ∈ U
is a kG-comodule algebra with co-action given by the diagonal map bu 7→ bu ⊗ bu.

2.1.1.1 A category-theoretic motivation for bicomodule algebras via
Tannaka-Krein duality

Let us explain the emergence of bicomodule algebras from the point of view of Tannaka-Krein
duality, as outlined in the Introduction. We thereby relate the algebraic input data for our
construction, as defined in Definition 1, to the category-theoretic data for the state-sum con-
struction of a modular functor in [FSS2]. For the relevant category-theoretic notions and
background, see e.g. [EGNO].
First of all, for a finite-dimensional Hopf algebra H over k, it is well known that the category

H–mod of finite-dimensional left H-modules is a finite k-linear tensor category. This tensor
category comes equipped with a forgetful functor H–mod −→ vect(k) into the tensor category
of finite-dimensional vector spaces. The forgetful functor is monoidal, exact and faithful.
In fact, it is known [EGNO] that the datum of a finite-dimensional Hopf algebra H over k is

equivalent to the datum of a finite k-linear tensor category A together with a monoidal fiber
functor ω : A −→ vect(k), i.e. an exact and faithful k-linear tensor functor to the category
of finite-dimensional vector spaces. More precisely, the Hopf algebra H can be reconstructed
as the algebra of natural endo-transformations of the fiber functor ω and the tensor structure
on the fiber functor ω induces the additional coalgebra structure on the algebra H, such that
A ∼= H–mod as tensor categories.
We extend this idea to bimodule categories as follows. For a finite-dimensional H1-H2-

bicomodule algebra K for Hopf algebras H1 and H2, the category K–mod has the structure of
an (H1–mod)-(H2–mod)-bimodule category in a natural way. Indeed, if X1 is an H1-module,
X2 is an H2-module and M is a K-module, then X1 . M / X2 := X1 ⊗k M ⊗k X2 becomes a
K-module by pulling back the natural (H1 ⊗ K ⊗ H2)-action on it along the co-action map
K −→ H1 ⊗K ⊗H2 that belongs to K.
On the other hand, let (A1, ω1 : A1 −→ vect(k)) and (A2, ω2 : A2 −→ vect(k)) be finite

k-linear tensor categories together with monoidal fiber functors. Consider vect(k) as an A1-
A2-bimodule category via the monoidal functors ω1 and ω2. Let M be a finite k-linear A1-
A2-bimodule category. Then we define a bimodule fiber functor ω : M −→ vect(k) for M to
be an exact and faithful A1-A2-bimodule functor fromM to the category of finite-dimensional
vector spaces. Let H1 and H2 be the corresponding finite-dimensional Hopf algebras over k
corresponding to (A1, ω1) and (A2, ω2). Then, by the same argument as for tensor categories
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2 Defects and boundaries in Kitaev models

mutatis mutandis, the bimodule structure on the fiber functor ω induces the structure of an
H1-H2-bicomodule algebra K on the algebra of natural endo-transformations of ω, such that ω
induces an equivalence of bimodule categoriesM∼= K–mod.

Hence, we conclude that bicomodule algebras emerge naturally as the algebraic input data
for Kitaev models, if one follows the following idea in order to obtain concrete Hopf-algebraic
data: Take the category-theoretic data underlying the corresponding topological field theories
or modular functors, which are tensor categories and bimodule categories [FSS2, KK], and
equip them with fiber functors of the appropriate type.

2.1.2 Algebraic structure at half-edges and sites

It remains to determine the possible labels for the vertices of the cell decomposition. This is
the content of Subsection 2.1.3. Before that, in this Subsection 2.1.2, we first introduce suitable
notation and terminology in order to extract and conveniently speak about the combinatorial
information contained in the cell decomposition.

Fix a vertex v ∈ Σ0. Then let Σ0.5
v be the set of half-edges incident to v. This is the set of

incidences of an edge with the given vertex v ∈ Σ0. (A loop at v yields two half-edges incident
to v.) Note that we have a map Σ0.5

v −→ Σ1, assigning to any half-edge its underlying edge,
which is in general not injective due to the possible existence of loops. We will denote by Σ1

v

its image in Σ1, that is the set of edges starting or ending at the given vertex v.
We will say that e ∈ Σ0.5

v is directed away from v ∈ Σ0 if v = s(e) and, that e ∈ Σ0.5
v is

directed towards v ∈ Σ0 if v = t(e). Then for any half-edge e ∈ Σ0.5
v incident to the vertex

v ∈ Σ0, let the sign ε(e) ∈ {+1,−1} be positive if the half-edge e ∈ Σ0.5
v is directed away from

the vertex v:

v

e
Figure 2.2: A half-edge e ∈ Σ0.5

v incident to v with sign ε(e) := +1

and negative if e ∈ Σ0.5
v is directed towards v:

v

e
Figure 2.3: A half-edge e ∈ Σ0.5

v incident to v with sign ε(e) := −1

Let p ∈ Σ2 be the plaquette on the left of the half-edge e ∈ Σ0.5
v , as seen from the vertex

v ∈ Σ0, and let p′ ∈ Σ2 be the plaquette on the right, as in Figure 2.4.
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2.1 Hopf-algebraic and representation-theoretic labels for surfaces with cell decomposition

v

ep
p′

Figure 2.4: A half-edge e at v with neighboring plaquettes p and p′

What we have not represented in the figure is that the half-edge e comes with an orientation,
expressed by the sign ε := ε(e). By our assignment of labels, if the half-edge e is directed away
from the vertex v, i.e. ε = +1, then it is labeled with an Hp-Hp′-bicomodule algebra Ke, with
co-action written in Sweedler notation for comodules:

Ke −→ Hp ⊗Ke ⊗Hp′

k 7−→ k(−1) ⊗ k(0) ⊗ k(1)

}
if ε(e) = +1.

If, on the other hand, the half-edge e points towards v, that is ε = −1, then Ke is an Hp′-Hp-
bicomodule algebra:

Ke −→ Hp′ ⊗Ke ⊗Hp

k 7−→ k(−1) ⊗ k(0) ⊗ k(1)

}
if ε(e) = −1.

We shall introduce notation which allows us to treat both cases ε = +1 and ε = −1 at once.
Let

K+1
e := Ke

K−1
e := Kop

e ,

where Kop
e is the algebra with opposite multiplication. Moreover, let

H+1
p := Hp,

H−1
p := Hopcop

p ,

where Hopcop
p is the Hopf algebra with opposite multiplication and opposite comultiplication.

If Ke is a left (or right, respectively) Hp-comodule algebra, then K−1
e is canonically a left (or

right, respectively) H−1
p -comodule algebra.

Hence, in both above cases we can write that Kε
e is an Hε

p-Hε
p′-bicomodule algebra, with

co-action in Sweedler notation:

Kε
e −→ Hε

p ⊗Kε
e ⊗Hε

p′ ,

k 7−→ k(−ε) ⊗ k(0) ⊗ k(ε).

Denote by Σsit
v the set of sites incident to v. These are incidences of a plaquette p ∈ Σ2

with the given vertex v ∈ Σ0. (Note that a single plaquette p ∈ Σ2 can have two separate
incidences with the vertex v. This happens when an edge in its boundary is a loop.) Dually, for
a plaquette p ∈ Σ2 denote by Σsit

p the set of sites incident to p. These are incidences of a vertex
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2 Defects and boundaries in Kitaev models

v ∈ Σ0 with the given plaquette p. It is justified to use the name site for both notions: To any
site p ∈ Σsit

v at a vertex v ∈ Σ0 corresponds a unique site ṽ ∈ Σsit
p with underlying vertex v at

the plaquette that underlies the site p ∈ Σsit
v .

Now let p ∈ Σsit
v be such a site at the vertex v ∈ Σ0. There is a half-edge e′p ∈ Σ0.5

v bounding
p on the left as seen from the vertex v and there is a half-edge ep ∈ Σ0.5

v bounding p on the
right. For an example consider Figure 2.5.

v

p

ep

e′p

Figure 2.5: A site p ∈ Σsit
v with neighboring half-edges e′p and ep.

Then, in consideration of the respective signs ε := ε(ep) and ε′ := ε(e′p) of the half-edges ep
and e′p, we have by our assignment of labels that Kε′

e′p
is a right Hε′

p -comodule algebra and that
Kε
ep is a left Hε

p-comodule algebra. In other words, we have a left ((Hε′
p )cop ⊗ Hε

p)-comodule
structure on the algebra

K{ep,e′p} :=
⊗

e∈{ep,e′p}⊆Σ0.5
v

Kε(e)
e =

{
Kε′

e′p
⊗Kε

ep , ep 6= e′p ∈ Σ0.5
v

Kε
ep , ep = e′p ∈ Σ0.5

v

. (2.1)

Next we introduce, for a fixed site p ∈ Σsit
v , a canonical left ((Hε′

p )cop ⊗Hε
p)-module algebra,

which we think of as associated to the site p:

Definition 3. Let v ∈ Σ0 be a vertex and p ∈ Σsit
v a site at v with neighboring half-edges

ep, e
′
p ∈ Σ0.5

v with signs ε, ε′ ∈ {+1,−1} as before.
The ε′-ε-balancing algebra H∗p , or more explicitly (Hp)

∗
(ε′,ε), is the left ((Hε′

p )cop⊗Hε
p)-module

algebra, whose underlying k-algebra is the dual algebra of the Hopf algebra Hp, with the
following action.

((Hε′

p )cop ⊗Hε
p)⊗H∗p −→ H∗p ,

a′ ⊗ a⊗ f 7−→ f(a′〈−ε
′〉·? · a〈ε〉),

where
a〈ε〉 :=

{
a, ε = +1

S(a), ε = −1

}
for all a ∈ Hp

and where S : Hp −→ Hp denotes the antipode.

Together, the ((Hε′
p )cop⊗Hε

p)-comodule algebraK{ep,e′p}, associated to the half-edges ep ∈ Σ0.5
v

and e′p ∈ Σ0.5
v , and the ((Hε′

p )cop⊗Hε
p)-module algebraH∗p , associated to the site p ∈ Σsit

v situated
between the edges ep and e′p, can be coupled into a single k-algebra, denoted by

H∗p =K{ep,e′p} (2.2)
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2.1 Hopf-algebraic and representation-theoretic labels for surfaces with cell decomposition

which has underlying vector space H∗p⊗K{ep,e′p} and which is an instance of the following general
construction. For related constructions see [Mon].

Definition 4. Let H be a Hopf algebra over k, let A be a left H-module algebra and let K
be a left H-comodule algebra. Then the crossed product algebra A=K is the k-algebra with
underlying vector space A⊗K and multiplication

(a⊗ k) · (a′ ⊗ k′) := a(k(−1).a
′)⊗ k(0)k

′ for (a⊗ k), (a′ ⊗ k′) ∈ A⊗K.

In particular, the algebra H∗p =K{ep,e′p} contains H∗p and K{ep,e′p} as subalgebras and the
commutation relation between these is

k · f = f(k
〈−ε′〉
(ε′) ·? · k

〈ε〉
(−ε)) · k(0) ∀f ∈ H∗p , k ∈ K{ep,e′p}, (2.3)

the so-called straightening formula. This generalizes the straightening formula of the Drinfeld
double of a Hopf algebra, see Example 6.

2.1.3 Vertex algebras and their representations as labels for vertices

In this subsection we introduce, for each vertex v ∈ Σ0, an algebra over k, which is constructed
from the algebraic labelling in the neighbourhood of the vertex v. The representations of this
algebra will serve as possible labels for the vertex v. In a corresponding three-dimensional
topological field theory these are the possible labels for generalized Wilson lines.
Let us collect the algebras Kε(e)

e of all half-edges e ∈ Σ0.5
v incident to the vertex v ∈ Σ0 into

a tensor product
KΣ0.5

v
:=

⊗
e∈Σ0.5

v

Kε(e)
e .

With the notation of the previous subsection, for each site p ∈ Σsit
v with neighboring half-edges

ep and e′p as in Figure 2.5, the algebra K{e′p,ep} is a left comodule over(
H
ε(e′p)
p

)cop ⊗Hε(ep)
p .

This trivially extends to an ((H
ε(e′p)
p )cop ⊗ H

ε(ep)
p )-comodule structure on the tensor product

KΣ0.5
v

of K{e,e′} with the algebras attached to the remaining half-edges in Σ0.5
v . The co-actions

on KΣ0.5
v

for different sites commute with each other, because they come from the bicomodule
structures of the tensor factors (Ke)e∈Σ0.5

v
, making KΣ0.5

v
a left comodule algebra over the tensor

product of Hopf algebras ⊗
p∈Σsit

v

(
H
ε(e′p)
p

)cop ⊗Hε(ep)
p . (2.4)

For each site p ∈ Σsit
v we want to couple the balancing algebra H∗p to KΣ0.5

v
, similarly as in (2.2).

For this we collect the balancing algebras of the sites around the vertex v into a tensor product

H∗Σsit
v

:=
⊗
p∈Σsit

v

H∗p .

This is a left module algebra over the tensor product of Hopf algebras as in (2.4). Now we have
all the ingredients to introduce:
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2 Defects and boundaries in Kitaev models

Definition 5. Let v ∈ Σ0. The k-algebra Cv associated to the vertex v, or vertex algebra, is
defined as follows. For any site p ∈ Σsit

v denote by e′p and ep ∈ Σ0.5
v the half-edges bounding p

on the left and on the right, respectively, from the perspective of the vertex v, as illustrated in
Figure 2.5. Then let

Cv := H∗Σsit
v

=KΣ0.5
v

=

( ⊗
p∈Σsit

v

H∗p

)
=
( ⊗
e∈Σ0.5

v

Kε(e)
e

)
be the crossed product algebra, as introduced in Definition 4, for the left module algebra H∗Σsit

v

and the left comodule algebra KΣ0.5
v

over the tensor product (2.4) of Hopf algebras.

In particular, the algebra contains H∗Σsit
v

= ⊗p∈Σsit
v
H∗p and KΣ0.5

v
= ⊗e∈Σ0.5

v
K
ε(e)
e as subalgebras

and, for each site p′ ∈ Σsit
v , we have the commutation relation (2.3); so in other words,

H∗p′ =K{ep′ ,e′p′} ⊆
( ⊗
p∈Σsit

v

H∗p

)
=
( ⊗
e∈Σ0.5

v

Kε(e)
e

)
= Cv (2.5)

is a subalgebra of Cv.

Example 6. Let us consider the situation where the vertex v ∈ Σ0 has precisely one half-edge
e, which is directed away from the vertex and which is labeled by the regular H-bicomodule
algebra H, the transparent label.

v

H Figure 2.6: A vertex v with a single half-edge trans-
parently labeled by H;
the associated algebra Cv is the Drinfeld
double D(H)

Then for the algebra Cv at the vertex v we have H∗Σsit
v

=KΣ0.5
v

= H∗ =H and the commutation
relation (2.3) gives

h · f = f(S(h(3))·? · h(1)) · h(2). (2.6)

This is precisely the so-called straightening formula of the Drinfeld doubleD(H) of a semisimple
Hopf algebra H [Ka]. In the Kitaev model without defects as in [BMCA, BK2], representations
of the Drinfeld double D(H) label point-like excitations.

Up to this point we have explained how, for a given vertex v ∈ Σ0, the algebraic labelling of
the edges and plaquettes and the combinatorial structure of the cell decomposition around that
vertex gives rise to the k-algebra Cv = H∗Σsit

v
=KΣ0.5

v
.

Definition 7. We declare the category of possible labels for a vertex v ∈ Σ0 for the Kitaev
construction to be the k-linear category Cv–mod of finite-dimensional left modules over the
k-algebra Cv.
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2.2 Construction of a Kitaev model with defects

Indeed, in [FSS2], the category-theoretic data assigned to a vertex v ∈ Σ0 is as follows. In the
language of [FSS2], a vertex v corresponds to a boundary circle Lv with marked points on which
defect lines end. A 2-cell p ∈ Σ2 is labelled by a finite tensor category; in our context this is the
representation category Hp–mod of a finite-dimensional Hopf algebra Hp. An edge e ∈ Σ1 is
labelled by a finite bimodule category; in our context this is the representation categoryKe–mod
of a bicomodule algebra Ke. Then according to [FSS2, Definitions 3.4 and 3.9] the category of
possible labels of a vertex v ∈ Σ0 is given by the category T(Lv) of so-called balancings on the
Deligne tensor product �e∈Σ0.5

v
(K

ε(e)
e –mod) of the bimodule categories labelling the half-edges

around the vertex v.

Theorem 8. Let v ∈ Σ0. There is a canonical equivalence of k-linear categories

T(Lv) ∼= Cv–mod

between the category assigned by the modular functor T, constructed in [FSS2], to the circle Lv
with marked points corresponding to the half-edges incident to v and the representation category
of the algebra Cv.

Proof. The proof requires the introduction of significant additional notation and is therefore
relegated to the Appendix 2.A, see Theorem 33.

This theorem paves the way for comparing our construction with the modular functor con-
structed in [FSS2].
Furthermore, in the case that the edges incident to the vertex v are labeled transparently by

a single Hopf algebra H seen as the regular H-bicomodule algebra, then the category Cv–mod
is equivalent to the Drinfeld center Z(H–mod) [FSS2, Remarks 3.5 (iii) and 5.23], which is
equivalent to the category of representations of the Drinfeld double D(H). These are also the
possible labels for point-like excitations in the Kitaev model without defects, cf. [BK2].

2.2 Construction of a Kitaev model with defects
Having specified in the preceding subsections the algebraic input data for the Kitaev model
and, in particular, having identified the possible labels for vertices, we are now in a position
to construct, for any oriented surface Σ with labeled cell decomposition, the vector space and
local projectors of the model.
We recall that we have for each plaquette p ∈ Σ2 a semisimple Hopf algebra Hp, for each

edge e ∈ Σ1 a semisimple algebra Ke with a compatible bicomodule structure over the Hopf
algebras of the incident plaquettes, and for each vertex v ∈ Σ0 a left module Zv over the algebra
Cv = H∗Σsit

v
=KΣ0.5

v
, introduced in Definition 5. We abbreviate

KΣ1 :=
⊗
e∈Σ1

Ke,

ZΣ0 :=
⊗
v∈Σ0

Zv,

for the tensor products as vector spaces over k. More precisely, KΣ1 enters our construction of
the local projectors and the Hamiltonian of the model not only as a vector space, but together
with its structure as the regular (

⊗
e∈Σ1 Ke)-bimodule and its various co-actions with respect
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2 Defects and boundaries in Kitaev models

to the Hopf algebras labeling the plaquettes. Similarly, we will regard ZΣ0 together with its
Cv-module structure for every vertex v ∈ Σ0.

The first thing we construct is the vector space, on which subsequently the commuting local
projectors and the Hamiltonian will be defined.

Definition 9. The state space assigned to an oriented surface Σ with labeled cell decomposition
as above is the vector space

H := Homk(KΣ1 , ZΣ0) = (
⊗
e∈Σ1

K∗e )⊗ (
⊗
v∈Σ0

Zv). (2.7)

We refer to a tensor factor associated to an edge e or to a vertex v as a local degree of freedom
associated to e or v, respectively.

Remarks 10.

1. In the standard Kitaev construction without defects, the vector space is a tensor product
of copies of a single Hopf algebra H for every edge, which we interpret in our context as
the regular bicomodule algebra over H (the transparent labeling), and for every vertex
the dual vector space of a module over D(H) [BMCA, BK2]. In our construction, we
instead consider a module over the algebra Cv for every vertex v ∈ Σ0 and the vector
space duals of the bicomodule algebras for the edges. This dual version will make it easier
to compare our ground-state spaces with the block spaces of [FSS2].

2. In order to define the state space H we are implicitly using that we do not only have the
categories (Ke–mod)e∈Σ1 and (Hp–mod)p∈Σ2 as algebraic input data, but we also have the
algebras (Ke)e∈Σ1 and (Hp)p∈Σ2 , of which they are the representation categories. In other
words, we need fibre functors on the categories (Ke–mod)e∈Σ1 and (Hp–mod)p∈Σ2 to the
category of vector spaces in order to define H as a space of k-linear homomorphisms.

3. Note that we are only defining a vector space over k, and not a Hilbert space, i.e. we
do not consider a scalar product here. Accordingly, when we speak of projectors on this
vector space we always mean idempotent endomorphisms. By a Hamiltonian we mean a
diagonalizable endomorphism.

2.2.1 Local representations of the vertex algebras on the state space

Next, we exhibit on the vector space H a natural Cv-bimodule structure for each vertex v ∈ Σ0,
that is local in the sense that it acts non-trivially only on the local degrees of freedom in a
neighborhood of the vertex v ∈ Σ0. This is analogous to the existence of local actions of the
Drinfeld double D(H) on the state space in the ordinary Kitaev model without defects for a
semisimple Hopf algebra H [BMCA, BK2]. In our construction, however, the algebras Cv are
in general not Hopf algebras and we only obtain bimodule structures on H. (A Cv-bimodule
structure is equivalent to a left (Cv ⊗ Cop

v )-action, where Cop
v has the opposite multiplication

of Cv. Whenever Cv is a Hopf algebra, such as D(H), any Cv-bimodule structure can be
pulled back to a left Cv-action via the algebra map (id⊗S) ◦ ∆ : Cv → Cv ⊗ Cop

v , using the
co-multiplication ∆ and the antipode S of the Hopf algebra.)

Let v ∈ Σ0 be any vertex. Recall from Subsection 2.1.3 that the algebra

Cv = H∗Σsit
v

=KΣ0.5
v
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2.2 Construction of a Kitaev model with defects

is a crossed product of H∗Σsit
v

and KΣ0.5
v

and contains these as subalgebras, and that

H∗Σsit
v

=
⊗

p∈Σsit
v

H∗p

is the tensor product of the algebras H∗p for each site p ∈ Σsit
v . A Cv-bimodule structure on

H is therefore fully determined by a KΣ0.5
v
-bimodule structure and H∗p -bimodule structures for

each site p ∈ Σsit
v , provided that for each p ∈ Σsit

v the left and right actions of KΣ0.5
v

and H∗p
each satisfy the straightening formula (2.3) of the crossed product algebra H∗p =KΣ0.5

v
, which

we prove in Theorem 13.
We start by exhibiting a KΣ0.5

v
-bimodule structure on the vector space H. This is the anal-

ogon of the action of the Hopf algebra H for every vertex in the ordinary Kitaev model for a
semisimple Hopf algebra H.

Definition 11. Let v ∈ Σ0. The KΣ0.5
v
-bimodule structure on H

Ãv : KΣ0.5
v
⊗Kop

Σ0.5
v
⊗H −→ H,

is defined on the vector space of linear maps H = Homk(KΣ1 , ZΣ0) in the standard way by
pre-composing with the left action on KΣ1 and post-composing with the left action on ZΣ0 ,
which are defined as follows:

• Firstly, the vector space KΣ1 becomes a left KΣ0.5
v
-module as follows. Restrict the regular

KΣ1-bimodule structure of KΣ1 , seen as a left (KΣ1 ⊗ Kop
Σ1)-action, to the subalgebra

KΣ0.5
v
⊆ KΣ1 ⊗Kop

Σ1 .

• Secondly, the vector space ZΣ0 becomes a left KΣ0.5
v
-module as follows. Restrict the given

Cv-module structure on Zv to the subalgebra KΣ0.5
v
⊆
⊗

v∈Σ0(H∗Σsit
v

=KΣ0.5
v

) = Cv and
extend the action trivially to the vector space ZΣ0 = Zv ⊗

⊗
w∈Σ0\{v} Zw.

Next we will exhibit, for any site p ∈ Σsit
v incident to a vertex v ∈ Σ0, an H∗p -bimodule

structure on H.
Recall that Σsit

p denotes the set of incidences of a vertex with a given plaquette p (which we
also call sites) and denote by Σ1.5

p the set of incidences of an edge with the given plaquette p
(which we call plaquette edges). We consider their union Σsit

p ∪ Σ1
p together with a cyclic order

on it, given by the clockwise direction along the boundary of p with respect to the orientation
of Σ, as illustrated in Figure 2.7

p Figure 2.7: Cyclic order on the set Σsit
p ∪ Σ1

p of sites and
plaquette edges of a plaquette p

Furthermore, for any plaquette edge e ∈ Σ1
p at the plaquette p, let the sign εp(e) ∈ {+1,−1}

be positive if the plaquette edge e ∈ Σ1
p is clockwise directed around the plaquette p:
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p

e
Figure 2.8: A plaquette edge e with sign εp(e) := +1

and negative if e ∈ Σ1
p is directed counter-clockwise around p:

p

e Figure 2.9: A plaquette edge e with sign εp(e) := −1

Recall that, attached to each plaquette p ∈ Σ2, there is a Hopf algebra Hp. Now, depending
on choice of a site v ∈ Σsit

p at p, we define an H∗p -bimodule structure on the vector space H.
This is the analogon of the action of the dual Hopf algebra H∗ for every site in the ordinary
Kitaev model for a semisimple Hopf algebra H.

Definition 12. Let p ∈ Σ2. We define, for each site v ∈ Σsit
p , the H∗p -bimodule structure on H,

or left action of the enveloping algebra H∗p ⊗ (H∗p )op,

B̃(p,v) : H∗p ⊗ (H∗p )op ⊗H −→ H,

by the following left and right H∗p -actions on H.

• We start by declaring that H∗p acts from the left on H = (
⊗

e∈Σ1 K∗e ) ⊗ (
⊗

w∈Σ0 Zw) by
the action of H∗p ⊆ H∗Σsit

v
=KΣ0.5

v
on the (H∗Σsit

v
=KΣ0.5

v
)-module Zv and by acting as the

identity on the remaining tensor factors of H.

• For the right action of H∗p on H, we use the total order on the set (Σsit
p ∪ Σ1.5

p ) \ {v}
starting right after v ∈ Σsit

p in Σsit
p ∪ Σ1.5

p with respect to the cyclic order declared above,
given by the clockwise direction around the plaquette p. We first exhibit individual right
H∗p -actions on the tensor factors of (

⊗
e∈Σ1

p
K∗e )⊗ (

⊗
w∈Σ0

p\{v} Zw):

– For any e ∈ Σ1.5
p , the vector space K∗e becomes a right H∗p -module as follows. Ke is

a right Hεp(e)
p -comodule and, hence, a left (H∗p )εp(e)-module. Thus the vector space

dual K∗e becomes a right (H∗p )εp(e)-module, and finally, by pulling back along the
algebra isomorphism ?〈εp(e)〉 : H∗p → H∗p

εp(e), a right H∗p -module.

Recall that ?〈+1〉 def
= idH∗p and ?〈−1〉 def

= S, the antipode of H∗p . Explicitly, this right
H∗p -action is given by

K∗e ⊗H∗p −→ K∗e ,

ϕ⊗ f 7−→
(
k 7→ ϕ

(
k(0)f

(
k
〈εp(e)〉
(εp(e))

)))
.

– For any w ∈ Σsit
p \ {v}, the vector space Zw becomes a right H∗p -module as follows.

The (H∗Σ2
w

=KΣ1
w
)-module Zw comes with a left H∗p -action since H∗p ⊆ H∗Σ2

w
=KΣ1

w

is a subalgebra. We let H∗p act on Zw from the right by pulling back this left action
along the antipode ?〈−1〉 = S : H∗p → H∗p .
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2.2 Construction of a Kitaev model with defects

Then we declareH∗p to act from the right on the tensor product (
⊗

e∈Σ1
p
K∗e )⊗(

⊗
w∈Σ0

p\{v} Zw)
by applying the co-multiplication on H∗p suitably many times and then acting individually
on the tensor factors in the sequence given by the image of the clockwise linear order that
we have prescribed on the set (Σsit

p ∪ Σ1.5
p ) \ {v} under the map (Σsit

p ∪ Σ1.5
p ) \ {v} →

(Σ0
p ∪ Σ1

p) \ {v} that assigns to a site its underlying vertex and to a plaquette edge its
underlying edge. Finally, this gives a right H∗p -action on H = (

⊗
e∈Σ1 K∗e )⊗ (

⊗
w∈Σ0 Zw)

by acting with the identity on all remaining tensor factors.

So far we have defined, in Definitions 11 and 12, on the vector space H an KΣ0.5
v
-bimodule

structure Ãv for each vertex v ∈ Σ0 and an H∗p -bimodule structure B̃(p,v) for each site p ∈ Σsit
v .

These are analogous to the actions of the Hopf algebra H and the dual Hopf algebra H∗

defined for each site in the ordinary Kitaev model without defects. Just as the latter are shown
to interact with each other non-trivially, giving a representation of the Drinfeld double D(H)

at each site [BMCA], we will now proceed to study how the bimodule structures Ãv and B̃(p,v′)

of KΣ0.5
v

and H∗p for various v and (p, v′) interact with each other.
In order to simplify the proof we will make a certain regularity assumption on the cell

decomposition of the surface Σ: We call a cell decomposition regular if it has no looping edges,
i.e. there is no edge which has the same source vertex as target vertex and if the Poincaré-dual
cell decomposition also has no looping edges, i.e. in the original cell decomposition there is no
plaquette that has two incidences with one and the same edge (on its two sides).

Theorem 13. Let H be the vector space defined in Definition 9 for an oriented surface Σ with
a labelled cell decomposition. Recall from Definitions 11 and 12 the KΣ0.5

v
-bimodule structure Ãv

on H for every vertex v ∈ Σ0, and the H∗p -bimodule structure B̃(p,v) on H for every plaquette
p ∈ Σ2 together with incident site v′ ∈ Σsit

p . Then

• For any pair of vertices v1 6= v2 ∈ Σ0, the actions Ãv1 and Ãv2 commute with each other.

• For any pair of sites (p1 ∈ Σ2, v1 ∈ Σsit
p1

) and (p2 ∈ Σ2, v2 ∈ Σsit
p2

) such that p1 6= p2, the
actions B̃(p1,v1) and B̃(p2,v2) commute with each other.

• Assume that the cell decomposition of Σ is regular. For any site (p ∈ Σ2, v ∈ Σsit
p ), the

actions Ãv and B̃(p,v) compose to give on H a bimodule structure over the crossed product
algebra H∗(p,v) =KΣ0.5

v
,

B̃(p,v)Ãv : H∗p ⊗KΣ0.5
v
⊗ (H∗p ⊗KΣ0.5

v
)op ⊗H −→ H,

f ⊗ k ⊗ f ′ ⊗ k′ ⊗ x 7−→ B̃f⊗f ′
(p,v) Ã

k⊗k′
v (x).

Proof.

• The left KΣ0.5
v1
- and KΣ0.5

v2
-actions act as the identity on all tensor factors of H except on

Zv1 and Zv2 , respectively. It is thus clear that they commute for v1 6= v2.

The right KΣ0.5
v1
- and KΣ0.5

v2
-actions only have a common tensor factor on which they do

not act by the identity for every edge e ∈ Σ1 that joins the vertices v1 and v2. Such an
edge is directed away from one of the vertices and directed towards the other. Hence, the
action for one of the vertices comes from left multiplication of Ke and the other one from
right multiplication, so they commute.
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2 Defects and boundaries in Kitaev models

• The left H∗p1- and H
∗
p2
-actions act as the identity on all tensor factors of H except on Zv1

and Zv2 , respectively. It is thus clear that they commute for v1 6= v2. In the remaining
case v1 = v2 =: v, H∗p1 and H∗p2 are commuting subalgebras in Cv. Since their actions on
Zv are by Definition 12 the restrictions of the Cv-action that Zv comes with, they must
therefore commute.

The right H∗p1- and H∗p2-actions only have a common tensor factor on which they do
not act by the identity for every vertex v ∈ Σ0 and for every edge e ∈ Σ1 that lies in
the boundaries of both plaquettes p1 and p2. For any such vertex v, the two actions
come from the (H∗Σsit

v
=KΣ0.5

v
)-action on Zv restricted to the two subalgebras H∗p1 and

H∗p2 , respectively. These subalgebras commute inside H∗Σsit
v

=KΣ0.5
v
, therefore showing the

claim.

• The left KΣ0.5
v
- and H∗p -actions on H are simply the restrictions of the left Cv-action on

Zv to KΣ0.5
v

and H∗p , respectively, and the identity on all other tensor factors of H. Hence,
by construction they satisfy the commutation relations of the crossed product algebra
H∗p =KΣ0.5

v
⊆ Cv, see also (2.5).

The right KΣ0.5
v
- and H∗p -actions on H are non-trivial only on the tensor factors

⊗
e∈Σ1

v
K∗e

and (
⊗

e∈Σ1
p
K∗e ) ⊗ (

⊗
w∈Σ0

p\{v} Zw), respectively. We can therefore restrict our attention
to the vector space (

⊗
e∈Σ1

v∪Σ1
p
K∗e ) ⊗ (

⊗
w∈Σ0

p\{v} Zw), on which KΣ0.5
v

and H∗p act from
the right.

For convenience, for the remainder of the proof we now switch to the dual vector space
(
⊗

e∈Σ1
v∪Σ1

p
Ke) ⊗ (

⊗
w∈Σ0

p\{v} Z
∗
w), with the corresponding left actions of KΣ0.5

v
and H∗p .

With the notation of Subsection 2.1.2, let ep, e′p ∈ Σ0.5
v be the half-edges at v on the

two sides of the site p ∈ Σsit
v , with signs ε := ε(ep) and ε′ := ε(e′p). The KΣ0.5

v
- and

H∗p -actions only overlap on the tensor factors (Ke)e∈Σ1
v∩Σ1

p
corresponding to the edges

underlying the half-edges ep, e′p ∈ Σ0.5
v . Due to our regularity assumption on the cell

decomposition, the half-edges ep and e′p have distinct underlying edges. Then the action
of KΣ0.5

v
= (Kε

ep ⊗ Kε′

e′p
) ⊗

⊗
e∈Σ0.5

v \{ep,e′p}K
ε(e)
e on

⊗
e∈Σ1

v
Ke, which is a tensor product

of algebras, decomposes into a tensor product of the action of Kε
ep ⊗ K

ε′

e′p
on Kep ⊗ Ke′p

and the action of
⊗

e∈Σ0.5
v \{ep,e′p}K

ε(e)
e on

⊗
e∈Σ1

v\{ep,e′p}Ke. On the latter vector space, H∗p
does not act non-trivially by our regularity assumption on the cell decomposition. Hence,
it remains to consider the interactions of the left actions of Kε

ep ⊗ Kε′

e′p
and H∗p on the

vector space Kep ⊗ Ke′p ⊗ (
⊗

e∈Σ1
p\{ep,e′p}Ke) ⊗ (

⊗
w∈Σ0

p\{v} Z
∗
w). We abbreviate by V :=

(
⊗

e∈Σ1
p\{ep,e′p}Ke)⊗(

⊗
w∈Σ0

p\{v} Z
∗
w) the tensor factor on which only H∗p acts non-trivially.

Furthermore, without loss of generality, we write the left H∗p -action on V in terms of the
Sweedler notation for the corresponding right Hp-coaction, V → V ⊗Hp, v 7→ v(0) ⊗ v(1):

H∗p ⊗ V −→ V, v 7−→ f.v =: f(v(1))v(0).

Finally, it is left to analyze the interaction between the H∗p -action

H∗p ⊗Kep ⊗Ke′p ⊗ V −→ Kep ⊗Ke′p ⊗ V,
f ⊗ x⊗ x′ ⊗ v 7−→ f(3).x⊗ f(1).x

′ ⊗ f(2).v

= f
(
x′
〈ε′〉
(ε′)v(1)x

〈−ε〉
(−ε)

)
x(0) ⊗ x′(0) ⊗ v(0),
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2.2 Construction of a Kitaev model with defects

and the (Kε
ep ⊗K

ε′

e′p
)-action

(Kε
ep ⊗K

ε′

e′p
)⊗Kep ⊗Ke′p ⊗ V −→ Kep ⊗Ke′p ⊗ V,
a⊗ a′ ⊗ x⊗ x′ ⊗ v 7−→ a.x⊗ a′.x′ ⊗ v

(a ·ε x)⊗ (a′ ·ε′ x′)⊗ v,

where ·ε and ·ε′ denote the multiplication in Kε
ep and Kε′

e′p
, respectively, that is

a ·ε x :=

{
ax, ε = +1,

xa, ε = −1.

It remains to show that that these actions satisfy the straightening formula

f(a′
〈−ε′〉
(ε′) ·? · a

〈ε〉
(−ε)).(a(0) ⊗ a′(0)).(x⊗ x′ ⊗ v) = (a⊗ a′).f.(x⊗ x′ ⊗ v),

for all f ∈ H∗p , a⊗ a′ ∈ Kε
ep ⊗K

ε′

e′p
and x⊗ x′⊗ v ∈ Kep ⊗Ke′p ⊗ V . Indeed, the following

calculation, which is analogous to the calculation in the proof of [BMCA, Theorem 1] but
more general and at the same time shorter, verifies this.

f
(
a′
〈−ε′〉
(ε′) ·? · a

〈ε〉
(−ε)

)
.(a(0) ⊗ a′(0)).(x⊗ x′ ⊗ v)

= f
(
a′
〈−ε′〉
(ε′) ·? · a

〈ε〉
(−ε)

)
.((a(0) ·ε x)⊗ (a′(0) ·ε′ x′)⊗ v)

= f
(
a′
〈−ε′〉
(2ε′) · (a

′
(0) ·ε′ x′)

〈ε′〉
(ε′) · v(1) · (a(0) ·ε x)

〈−ε〉
(−ε) · a

〈ε〉
(−2ε)

)
((a(0) ·ε x)(0) ⊗ (a′(0) ·ε′ x′)(0) ⊗ v(0))

= f
(
a′
〈−ε′〉
(2ε′) · a

′〈ε′〉
(ε′) · x

′〈ε′〉
(ε′) · v(1) · x〈−ε〉(−ε) · a

〈−ε〉
(−ε) · a

〈ε〉
(−2ε)

)
((a(0) ·ε x(0))⊗ (a′(0) ·ε′ x′(0))⊗ v(0))

= f
(
x′
〈ε′〉
(ε′) · v(1) · x〈−ε〉(−ε)

)
((a ·ε x(0))⊗ (a′ ·ε′ x′(0))⊗ v(0))

= (a⊗ a′).
(
f
(
x′
〈ε′〉
(ε′) · v(1) · x〈−ε〉(−ε)

)
(x(0) ⊗ x′(0) ⊗ v(0))

)
= (a⊗ a′).

(
f.(x⊗ x′ ⊗ v)

)
.

This proves that H∗p and Kε
ep ⊗K

ε′

e′p
together give a representation of the crossed product

algebra H∗p = (Kε
ep ⊗K

ε′

e′p
), as claimed.

Remark 14. Taking all sites p ∈ Σsit
v around a given vertex v ∈ Σ0 together, we thus get, due

to Theorem 13, on H a bimodule structure over the vertex algebra Cv. It is remarkable that
this makes the crossed product algebra structure on Cv show up naturally – analogous to the
appearance of the algebra structure of the Drinfeld double in the commutation relation of the
vertex and plaqette actions in the standard Kitaev model without defects.
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2 Defects and boundaries in Kitaev models

2.2.2 Towards local projectors: Symmetric separability idempotents
for bicomodule algebras

Before we proceed to use the bimodule structures on the state space H defined in Subsection
2.2.1 to define commuting local projectors on the vector space H, we need to invoke another
algebraic ingredient.
The standard Kitaev construction for a semisimple Hopf algebra H makes use of the Haar

integrals of H and of H∗, in order to define commuting local projectors on the state space via
the actions of H and H∗. The Haar integral of a semisimple Hopf algebra H over k is the
unique element ` ∈ H satisfying x` = ε(x)` = `x for all x ∈ H and ε(`) = 1. This means that
` is the central idempotent which projects to the H-invariants: for any H-module M , we have
`.M = MH := {m ∈ M | h.m = ε(h)m ∀h ∈ H}. Furthermore, ` ∈ H is cocommutative, i.e.
`(1) ⊗ `(2) = `(2) ⊗ `(1) in Sweedler notation. The idempotence, centrality and cocommutativity
of the Haar integral are crucial in showing that the Haar integral gives rise to commuting local
projectors in the standard Kitaev construction [BMCA].
In our setting, instead of a semisimple Hopf algebra acting on the state space, we have, for

each vertex v ∈ Σ0, a bimodule structure on the state space over a semisimple (bi-)comodule
algebra KΣ0.5

v
. Hence, we need a notion replacing the Haar integral, that works in this setting.

Our main insight is that the suitable generalization of the Haar integral to our setting is the
unique symmetric separability idempotent, which exists for any semisimple algebra over an
algebraically closed field k with characteristic zero.

Definition 15. Let A be an algebra over a field k. A symmetric separability idempotent for
A is an element p ∈ A ⊗ A, which we write as p = p1 ⊗ p2 ∈ A ⊗ A omitting the summation
symbol, satisfying

(x · p1)⊗ p2 = p1 ⊗ (p2 · x) ∀x ∈ A, (2.8)
p1 · p2 = 1, (2.9)
p1 ⊗ p2 = p2 ⊗ p1, (symmetry) (2.10)

where on both sides of equation (2.8) and in equation (2.9) we are using the multiplication in
A.
The properties (2.8) and (2.9) immediately imply that p1 ⊗ p2 is an idempotent when seen

as an element of the enveloping algebra A⊗ Aop.

Remarks 16.

1. The structure of a separability idempotent, i.e. an element p1⊗p2 ∈ A⊗A satisfying (2.8)
and (2.9), is equivalent to an A-bimodule map s : A −→ A ⊗ A that is a section of the
multiplication m : A ⊗ A −→ A, by defining s(x) := p1 ⊗ p2x for all x ∈ A. An algebra
endowed with such a structure is called separable and, in general, such a separability
structure might not exist or be unique. A symmetric separability structure, however, is
always unique – see the end of the proof of Proposition 17.

2. Representation-theoretically, a separability idempotent p1⊗p2 ∈ A⊗Aop plays the role of
projecting to the subspace of invariants for any A-bimodule M . Indeed, due to property
(2.8), one has

p1.M.p2 = MA := {m ∈M | a.m = m.a ∀a ∈ A} ⊆M.

30



2.2 Construction of a Kitaev model with defects

This is in analogy to the Haar integral ` ∈ H of a semisimple Hopf algebra H which
projects to the invariants `.M = MH := {m ∈ M | h.m = ε(h)m ∀h ∈ H} of any left
H-module M .

Just as every finite-dimensional semisimple Hopf algebra over a field k has a unique Haar
integral, for every finite-dimensional semisimple k-algebra there exists a unique symmetric
separability idempotent:

Proposition 17 ([A]). Let A be a finite-dimensional semisimple algebra over a field k which is
algebraically closed and of characteristic zero. Then there exists a unique symmetric separability
idempotent p1 ⊗ p2 ∈ A⊗ Aop for A.

Proof. For a more detailed proof, see [A, Thm. 3.1, Cor. 3.1.1]. Here we recall the main idea
that the unique symmetric separability idempotent can be described in terms of the trace form
on A, because we will use this description in Proposition 19.
Due to semisimplicity, the following symmetric bilinear pairing on A is non-degenerate:

T : A⊗ A −→ k,
a⊗ b 7−→ t(a · b) := trA(La·b),

defined in terms of the trace form t : A → k, a 7→ trA(La), where L? denotes the left multi-
plication of A. In fact, this non-degenerate bilinear pairing turns A into a symmetric special
Frobenius algebra. Consider the isomorphism #T : A

∼−→ A∗, a 7→ t(a · −), induced by this non-
degenerate bilinear pairing. This is an isomorphism of A-bimodules. It induces an isomorphism
A⊗A ∼−→ A∗⊗A ∼= Endk(A). Consider the pre-image p ∈ A⊗A of the identity idA under this
isomorphism. As usual, we write an element p ∈ A⊗A as p = p1⊗p2, omitting the summation
symbol. In fact, if we choose a basis (p1

i )i for A and let (p2
i )i be its dual basis of A with respect

to the non-degenerate pairing T , then p1 ⊗ p2 is the sum
∑

i p
1
i ⊗ p2

i . With this definition of
p1 ⊗ p2 ∈ A⊗A it is straightforward to verify the defining properties (2.8), (2.9) and (2.10) of
a symmetric separability idempotent.
To prove that the symmetric separability idempotent is unique, let p1⊗ p2, q1⊗ q2 ∈ A⊗Aop

be any two symmetric separability idempotents for A. Then they are equal by the following
computation:

p1 ⊗ p2 (2.9)
= q1q2p1 ⊗ p2 (2.8)

= q1p1 ⊗ p2q2 (2.10)
= q2p1 ⊗ p2q1

(2.8)
= q2 ⊗ p2p1q1 (2.10)

= q2 ⊗ p1p2q1 (2.9)
= q2 ⊗ q1 (2.10)

= q1 ⊗ q2,

using the defining properties (2.8), (2.9) and (2.10).

Example 18. Let H be a finite-dimensional semisimple Hopf algebra over k with Haar integral
` ∈ H. Then the symmetric separability idempotent for H is `(1) ⊗ S(`(2)) ∈ H ⊗Hop.
Indeed, the invariance property of the Haar integral, x` = ε(x)` for all x ∈ H, implies the

corresponding invariance property (2.8) of `(1)⊗S(`(2)). The normalization ε(`) = 1 of the Haar
integral implies the corresponding normalization property 2.9 for the separability idempotent.
Finally, using that the Haar integral is two-sided, which implies S(`) = `, it can be shown that
`(1) ⊗ S(`(2)) is symmetric.
Hence we see that, in the sense of this example, the symmetric separability idempotent of a

semisimple algebra generalizes the Haar integral of a semisimple Hopf algebra.
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2 Defects and boundaries in Kitaev models

In our construction of a Kitaev model, however, we are not only dealing with semisimple
algebras, but semisimple algebras together with a compatible bicomodule structure. On the
other hand, the Haar integral ` ∈ H has the property of being cocommutative, `(1) ⊗ `(2) =
`(2) ⊗ `(1), which is crucial in showing that it gives rise to commuting projectors in [BMCA]
and we have not exhibited an analogous property of the symmetric separability idempotent. In
the following proposition we prove such a property, which holds for the symmetric separability
idempotent of a semisimple (bi-)comodule algebra and which generalizes the cocommutativity
of the Haar integral, see Example 20.

Proposition 19. Let H be a semisimple Hopf algebra over k and let K be a semisimple right
H-comodule algebra with symmetric separability idempotent p1 ⊗ p2 ∈ K ⊗Kop. Consider the
right H-coaction on the tensor product K ⊗Kop:

K ⊗Kop −→ K ⊗Kop ⊗H,
k ⊗ k′ 7−→ k(0) ⊗ k′(0) ⊗ k(1)k

′
(1).

Then p1 ⊗ p2 ∈ K ⊗Kop is an H-coinvariant element of K ⊗Kop, i.e. p1
(0) ⊗ p2

(0) ⊗ p1
(1)p

2
(1) =

p1 ⊗ p2 ⊗ 1H ∈ K ⊗Kop ⊗H, and this is equivalent to

p1
(0) ⊗ p1

(1) ⊗ p2 = p1 ⊗ S(p2
(1))⊗ p2

(0) ∈ K ⊗H ⊗Kop. (2.11)

Analogously, if K is a left H-comodule algebra, then

p1
(0) ⊗ p1

(−1) ⊗ p2 = p1 ⊗ S(p2
(−1))⊗ p2

(0) ∈ K ⊗H ⊗Kop. (2.12)

Proof. Without loss of generality we only show the case whereK is a right H-comodule algebra.
Recall from the proof of Proposition 17 that the symmetric separability idempotent p1 ⊗ p2 ∈
K⊗Kop forK can be characterized in terms of the multiplication and the trace form t : K −→ k
on K, namely by t(p1 · x)p2 = x ∀x ∈ K, as explained in the proof of Proposition 17. Another
way of phrasing this is that the map K∗ −→ K defined by f 7−→ f(p1)p2 is the inverse of
the isomorphism K −→ K∗, k 7−→ t(? · k) induced by the non-degenerate pairing t ◦ µ, where
µ : K ⊗K −→ K is the multiplication on K.
The crucial step for the present proof is the observation that the multiplication and the trace

form onK are morphisms ofH-comodules ifK is anH-comodule algebra. For the multiplication
this means that x(0)y(0) ⊗ x(1)y(1) = (xy)(0) ⊗ (xy)(1) ∀x, y ∈ K, which holds by definition of
a comodule algebra, see Definition 1. As for the H-colinearity of the trace form, note that
t = evK ◦(µ ⊗ idK∗) ◦ (idK ⊗ coevK), where µ : K ⊗ K → K denotes the multiplication, and
coevK : k −→ K ⊗K∗ and evK : K ⊗K∗ −→ k are the standard coevaluation and evaluation
morphisms for vector spaces. Due the involutivity of the antipode S of H, both evK and coevK
are morphisms of right H-comodules for the H-comodule structure on the dual K∗ given by
K∗ −→ K∗ ⊗ H,ϕ 7−→ ϕ(0) ⊗ ϕ(1), where ϕ(0)(x)ϕ(1) := ϕ(x(0))S(x(1)) for all x ∈ K. (We
are here implicitly using the canonical trivial pivotal structure on the tensor category of right
H-comodules, which exists due to the involutivity of the antipode of H.) Since therefore the
trace form t is composed only of morphisms of right H-comodules, it is itself a morphism of
right H-comodules, i.e.

t(k(0))k(1) = t(k)1H ∀k ∈ K. (2.13)

As a consequence, the isomorphism K −→ K∗, k 7−→ t(? · k) induced by the pairing
t ◦ µ is an isomorphism of H-comodules. Indeed, for all x ∈ K one has t(xk(0))k(1) =

t(x(0)k(0))S(x(2))x(1)k(1)
(2.13)
= t(x(0)k)S(x(1))

def
= (t(? · k))(0)(x)(t(? · k))(1).

32



2.2 Construction of a Kitaev model with defects

This immediately implies that the inverse map, K∗ −→ K,ϕ 7−→ ϕ(p1)p2, must also be a
morphism ofH-comodules, which spelled out means that ϕ(p1

(0))p
2⊗S(p1

(1))
def
= ϕ(0)(p

1)p2⊗ϕ(1) =

ϕ(p1)p2
(0)⊗ p2

(1) for all ϕ ∈ K∗. This implies the equation (2.11) of the claim. To show that this
is equivalent to p1 ⊗ p2 ∈ K ⊗Kop being H-coinvariant, we compute

p1
(0) ⊗ p2

(0) ⊗ p1
(1)p

2
(1)

(2.11)
= p1 ⊗ p2

(0) ⊗ S(p2
(1))p

2
(2) = p1 ⊗ p2 ⊗ 1H .

Example 20. Let H be a semisimple Hopf algebra and consider it as the regular H-bicomodule
algebra, as in Example 2.(1). Recall that for H the symmetric separability idempotent is
p1 ⊗ p2 = `(1) ⊗ S(`(2)) ∈ H ⊗ H. Let us spell out Proposition 19 for the left and right H-
comodule structures on the regular bicomodule algebra H. Equation (2.11) boils down to the
equation (`(1))(1)⊗ (`(1))(2)⊗S(`(3)) = `(1)⊗S(S(`(2))(2))⊗S(`(2))(1). But due to S2 = idH both
sides of the equation are equal to `(1) ⊗ `(2) ⊗ S(`(3)). On the other hand, equation (2.12) boils
down to the equation (`(1))(2)⊗ (`(1))(1)⊗S(`(3)) = `(1)⊗S(S(`(2))(1))⊗S(`(2))(2), which in turn
due to S2 = idH simplifies to `(2)⊗ `(1)⊗S(`(3)) = `(1)⊗ `(3)⊗S(`(2)). This is equivalent to the
cocommutativity property `(1) ⊗ `(2) = `(2) ⊗ `(1).
Hence we have shown that the coinvariance property of the symmetric separability idempo-

tent for a bicomodule algebra, proven in Proposition 19, is the appropriate analogue of the
cocommutativity of the Haar integral. In the proof of Lemma 21 we will use it in a crucial way,
on the way towards proving in Theorem 25 that symmetric separability idempotents allow for
defining commuting projectors.

Lemma 21. Let H be a semisimple Hopf algebra over k and let K be a semisimple left H-
comodule algebra and A a semisimple left H-module algebra. Let p1 ⊗ p2 ∈ K ⊗ Kop and
π1 ⊗ π2 ∈ A⊗ Aop be the symmetric separability idempotents for K and A, respectively.
Then (1A ⊗ p1) ⊗ (1A ⊗ p2) and (π1 ⊗ 1K) ⊗ (π2 ⊗ 1K) commute in the algebra (A=K) ⊗

(A=K)op, where A=K is the crossed product algebra defined in Definition 4.

Proof. Due to the co-invariance of the symmetric separability idempotent of a semisimple co-
module algebra over k, proven in Proposition 19, we have

p1
(−1) ⊗ p1

(0) ⊗ p2 (2.12)
= S(p2

(−1))⊗ p1 ⊗ p2
(0)

and
(h.π1)⊗ π2 = π1 ⊗ (S(h).π2)

for all h ∈ H, where the latter can be derived from equation (2.11) by regarding A as a right
H∗-comodule algebra, which is equivalent to a left H-module algebra [Mon]. By definition of
the multiplication in (A=K)⊗ (A=K)op we have:

(1A ⊗ p1)⊗ (1A ⊗ p2) · (π1 ⊗ 1K)⊗ (π2 ⊗ 1K) = (p1
(−1).π

1 ⊗ p1
(0))⊗ (π2 ⊗ p2)

and
(π1 ⊗ 1K)⊗ (π2 ⊗ 1K) · (1A ⊗ p1)⊗ (1A ⊗ p2) = (π1 ⊗ p1)⊗ (p2

(−1).π
2 ⊗ p2

(0))

But the right-hand sides of these equations are equal by the following computation:

(p1
(−1).π

1 ⊗ p1
(0))⊗ (π2 ⊗ p2) = (S(p2

(−1)).π
1 ⊗ p1)⊗ (π2 ⊗ p2

(0))
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= (π1 ⊗ p1)⊗ (S2(p2
(−1)).π

2 ⊗ p2
(0))

= (π1 ⊗ p1)⊗ (p2
(−1).π

2 ⊗ p2
(0)).

2.2.3 Local commuting projector Hamiltonian from vertex and
plaquette operators

In this subsection we define on the vector space H assigned to a surface Σ with a labelled cell
decomposition a set of commuting local projectors and finally, in the spirit of Kitaev models,
a Hamiltonian on H as the sum of commuting projectors.
Recall that in Subsection 2.2.1 we have defined on H a KΣ0.5

v
-bimodule structure Ãv for each

vertex v ∈ Σ0 and a H∗p -bimodule structure B̃(p,v) for each site (p, v), p ∈ Σ2, v ∈ Σsit
p .

A KΣ0.5
v
-bimodule structure is equivalent to a left (KΣ0.5

v
⊗Kop

Σ0.5
v

)-action on H, so that specify-
ing an element of the so-called enveloping algebra (KΣ0.5

v
⊗Kop

Σ0.5
v

) determines an endomorphism
of H. By assumption, all bicomodule algebras Ke labelling the cell decomposition of Σ are
semisimple and, hence, the tensor product KΣ0.5

v
is semisimple and possesses a unique symmet-

ric separability idempotent p1
v ⊗ p2

v ∈ (KΣ0.5
v
⊗Kop

Σ0.5
v

) according to Proposition 17.

Definition 22. Let v ∈ Σ0. The vertex operator for the vertex v is the idempotent endomor-
phism of the state space H

Av := Ãv(p
1
v ⊗ p2

v) : H −→ H

given by acting with the unique symmetric separability idempotent

p1
v ⊗ p2

v ∈ KΣ0.5
v
⊗Kop

Σ0.5
v

via the KΣ0.5
v
-bimodule structure Ãv, defined in Definition 11.

This operator is local in the sense that it acts as the identity on all tensor factors in H =
(⊗e∈Σ1K∗e ) ⊗ (⊗w∈Σ0Zw) except for those associated to the vertex v ∈ Σ0 and to the edges
e ∈ Σ1

v incident to v. Since the symmetric separability idempotent of a semisimple bicomodule
algebra generalizes the Haar integral of a semisimple Hopf algebra, as explained in Subsection
2.2.2, we see that the vertex operator defined here provides a suitable analogon to the vertex
operators in the ordinary Kitaev model for a semisimple Hopf algebra.

Next we want to define a projector on H for each plaquette p ∈ Σ2 in analogy to the plaquette
operators of the ordinary Kitaev model for a semisimple Hopf algebra H, which are defined
by acting with the Haar integral of the dual Hopf algebra H∗. In our construction, we have
defined in Definition 12 an H∗p -bimodule structure B̃(p,v) on H for every plaquette p ∈ Σ2 with
incident site v ∈ Σsit

p and we can again use this to define a projector B̃(p,v)(λp(1) ⊗ S(λp(2))) on
H by acting with the symmetric separability idempotent of the semisimple algebra H∗p , which
is λp(1)⊗S(λp(2)) ∈ H

∗
p ⊗ (H∗p )op, see Example 18. However note that, as opposed to the vertex

operator here it is actually not necessary to invoke the concept of the symmetric separability
idempotent, since H∗p is a Hopf algebra just as in the ordinary Kitaev model, and its symmetric
separability idempotent is given by the Haar integral.
When considering the projector B̃(p,v)(λp(1)⊗S(λp(2))) on H, it seems that a priori it depends

not only on the plaquette p but also on the site v ∈ Σsit
p that we had to choose in Definition 12 in
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2.2 Construction of a Kitaev model with defects

order to define the bimodule structure B̃(p,v). Just like the plaquette operators in the ordinary
Kitaev model, we will show that due to the properties of the Haar integral the projector only
depends on the plaquette p:

Lemma 23. Let p ∈ Σ2. If λp ∈ H∗p is the Haar integral of H∗p , then the endomorphism

B̃(p,v)(λp(1) ⊗ S(λp(2))) : H −→ H

does not depend on the choice of the site v ∈ Σsit
p .

Proof. The endomorphism B̃(p,v)(λp(1)⊗ S(λp(2))) is equal to the endomorphism of H obtained
by acting with the Haar integral λ via the left H∗p -action B′(p,v) on H that is the pullback of the
left (H∗p ⊗ (H∗p )op)-action B̃(p,v) along the algebra map (idH∗p ⊗S) ◦ ∆ : H∗p −→ H∗p ⊗ (H∗p )op.
Next we observe that the action B′(p,v) is independent of v for any cocommutative element λ
of the Hopf algebra H∗p . Indeed, looking carefully at Definition 12, we extract from it that
B′(p,v)(λ) acts with the multiple coproduct of λ on the degrees of freedom of H in the boundary
of the plaquette p in a cyclic order starting at the vertex v. Therefore, for a different vertex
v′ ∈ Σsit

p , the endomorphism B′(p,v′)(λ) will only differ by a cyclic shift in the multiple coproduct
of λ. But since λ is cocommutative, any multiple coproduct of it is invariant under such cyclic
shifts of its tensor factors.

Thus we have shown that the following is well-defined.

Definition 24. Let p ∈ Σ2. The plaquette operator for the plaquette p is the idempotent
endomorphism of the state space H

Bp := B̃(p,v)(λp(1) ⊗ S(λp(2))) : H −→ H

given by acting via the H∗p ⊗ (H∗p )op-action B̃(p,v) introduced in Definition 12 with the unique
symmetric separability idempotent λp(1) ⊗ S(λp(2)) ∈ H

∗
p ⊗ (H∗p )op for H∗p . Here λp ∈ H∗p is the

Haar integral for H∗p .

This operator is local in the sense that it acts as the identity on all tensor factors in H =
(⊗e∈Σ1K∗e )⊗ (⊗v∈Σ0Zv) except for those associated to the edges e ∈ Σ1

p and the vertices v ∈ Σ0
p

incident to the plaquette p.
We have thus defined a family of projectors (Av)v∈Σ0 and (Bp)p∈Σ2 on the vector space H.

We now finally reach our main result that they all commute with each other.

Theorem 25. Let Σ be an oriented compact surface with a regular cell decomposition labeled
by semisimple Hopf algebras, semisimple bicomodule algebras and representations of the ver-
tex algebras, and let H be the associated vector space defined in Definition 9 with vertex and
plaquette operators {(Av)v∈Σ0 , (Bp)p∈Σ2} defined in Definitions 22 and 24.
Then any pair of vertex or plaquette operators commutes.

Proof. Due to Theorem 13, the only non-trivial commutation relations between a KΣ0.5
v
-action

and an H∗p -action on H may occur when v and p are incident to each other. In that case, the
KΣ0.5

v
-bimodule structure Ãv and the H∗p -bimodule structure B̃(p,v) together form a bimodule

structure over the crossed product algebraH∗p =KΣ0.5
v
. However, due to Lemma 21 the symmet-

ric separability idempotents for KΣ0.5
v

and H∗p commute in (H∗p =KΣ0.5
v

)⊗ (H∗p =KΣ0.5
v

)op and,
hence, the vertex operator Av and the plaquette operator Bp commute with each other.
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2 Defects and boundaries in Kitaev models

This is completely analogous to the standard Kitaev model without defects: We have a
family of commuting projectors on the state space. Since any family of commuting projectors
is simultaneously diagonalizable, this allows for the definition of an exactly solvable Hamiltonian
as the sum of commuting projectors. We thus conclude our construction of the Kitaev model
with defects as follows:

Definition 26. The Hamiltonian on the state space H assigned to an oriented surface Σ with
labeled cell decomposition as above is the diagonalizable endomorphism

h :=
∑
v∈Σ0

(idH−Av) +
∑
p∈Σ2

(idH−Bp) : H −→ H.

The associated ground-state space is its kernel,

H0 := kerh,

i.e. the simultaneous 1-eigenspace for all the projectors {(Av)v∈Σ0 , (Bp)p∈Σ2}.
Such a Hamiltonian is also called frustration-free, as its lowest eigenvalue is not lower than

any eigenvalue of its summands.

Remark 27. The ground-state space H0 is isomorphic to the vector space that is category-
theoretically realized by the modular functor constructed in [FSS2] for the defect surface Σ
labeled by the corresponding representation categories of the Hopf algebras and bicomodule
algebras. We leave the detailed proof of this statement for future investigations.
As a consequence, the ground-state space H0 is invariant under fusion of defects and indepen-

dent of the transparently labeled part of the cell decomposition. Moreover, due to the results of
[FSS2], there will be a mapping class group action on H0 that can be explicitly computed. This
allows to define quantum gates on the ground-state space in terms of the mapping class group
action, as has been proposed before, and to address questions of universality of such gates. We
have thus constructed an explicit Hamiltonian model which offers the possibility for quantum
computation, realizing a general framework for theories of the type discussed e.g. in [BJQ].

A detailed investigation of the above and related questions remain for future work.

2.A Appendix: a category-theoretic motivation for the
vertex algebras

The construction in this chapter takes as its input a compact oriented surface Σ, whose 2-
cells are labelled by Hopf algebras and whose 1-cells are labelled by bicomodule algebras.
Furthermore, we have introduced in Definition 5, for every vertex v ∈ Σ0, an algebra Cv,
which we call vertex algebra. The category of possible labels for a vertex v ∈ Σ0 of the cell
decomposition is the category of modules over the relevant vertex algebra Cv, see Definition 7.
On the other hand, in three-dimensional topological field theories and modular functors

defined on surfaces with defects such as in [FSS2, KK], the strata are labelled by category-
theoretic data: 2-cells by finite tensor categories and 1-cells by finite bimodule categories,
which in our setting arise as the representation categories of the Hopf algebras and bicomodule
algebras that we use as labels for our construction.
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Furthermore, in [FSS2], a category is assigned to any boundary circle of a surface with defects,
which is equivalent to a Drinfeld center in the absence of defects. Such a boundary circle can
be intersected by defect lines labelled by bimodule categories, leading to marked points on the
circle. In our construction this situation corresponds to a vertex v ∈ Σ0 at which a number of
edges labelled by bicomodule algebras meet. We can regard such a vertex as a boundary circle
Lv, cut into the surface Σ, at which defect lines end which are labelled by the representation
categories of the corresponding bicomodule algebras.
The main result of this section, Theorem 33, is that the category assigned to such a decorated

circle with marked points Lv according to the prescription of [FSS2], defined in Definition 30,
is canonically isomorphic to the category of labels that we have defined in Definition 7 for such
a vertex v ∈ Σ0 in a labeled cell decomposition.

First we must explain the category that is assigned to a boundary circle of a defect surface in
the construction of [FSS2]. For the category-theoretic background, see also [EGNO]. We adapt
the notions and notation to our setting, since it slightly differs from the one in [FSS2]. Here, the
tensor categories we consider are pivotal and the underlying defect surface is oriented, whereas
in the reference no pivotal structures are used and instead the surfaces are framed.

For a tensor category A and a sign ε ∈ {+1,−1}, write

Aε :=

{
A, if ε = +1,

A, if ε = −1,

where A := Aop,mop is the tensor category whose underlying linear category is the opposite
category of A and whose tensor product is also opposite to the one of A, i.e. a ⊗ b := b⊗ a
for a, b ∈ A , where for any object a ∈ A we denote its corresponding object in the opposite
category A by a, and likewise for morphisms. If A = H–mod for a Hopf algebra H, then
A ∼= H–mod canonically as tensor categories, where H := Hop,cop is the Hopf algebra that
has the opposite multiplication as well as the opposite co-multiplication with respect to H.
For X ∈ H–mod, the corresponding object X in H–mod is given by the vector space dual
Homk(X, k) of X with the natural induced H-action. For ε ∈ {+1,−1}, we also write Hε := H
if ε = −1, and Hε := H if ε = +1.
The right duality functor induces a monoidal equivalence, A −→ A, x 7−→ x∨. For A =

H–mod for a Hopf algebra H, this equivalence takes an H-module X and turns it into an H-
module by pulling back the H-action along the antipode S : H −→ H. Note that instead of the
right dual functor one can also take any other odd-fold right or left dual. For our purposes this
choice does not matter, since the tensor categories which we will consider are pivotal, where all
these odd-fold duals are canonically identified. Indeed, for a semisimple Hopf algebra H, the
antipode is involutive, so that all odd powers of the antipode are the same. (This is in contrast
to [FSS2] where no pivotal structures on the tensor categories are used, but instead 2-framings
on the underlying surfaces are used to determine which multiple of the duality functor to use
in a given moment in the construction.)
If A1 and A2 are two tensor categories and M is an A1-A2-bimodule category, then the

opposite linear category M := Mop canonically becomes an A2-A1-bimodule category by
defining a2 . m / a1 := a1 . m / a2 for a1 ∈ A1, m ∈ M, a2 ∈ A2 and likewise for morphisms.
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2 Defects and boundaries in Kitaev models

For ε ∈ {+1,−1}, we write

Mε :=

{
M as an A1-A2-bimodule category, if ε = +1,

M as an A2-A1-bimodule category, if ε = −1.

If M = K–mod for an H1-H2-bicomodule algebra K, then M ∼= K–mod canonically as
(H1–mod)-(H2–mod)-bimodule categories, where K := Kop is the opposite algebra with re-
spect to K considered as an H2-H1-bicomodule algebra. For M ∈ K–mod, the corresponding
object M in K–mod is given by the vector space dual Homk(M,k) of M with the natural
induced K-action. For ε ∈ {+1,−1}, we also write Kε := K if ε = −1, and Kε := K if ε = +1.

A boundary circle of an oriented surface with defect lines labeled by bimodule categories gives
rise to the following data. Consider an oriented circle with n marked points (ei)i∈Zn that are
each labelled with a sign εi ∈ {+1,−1}, so that we call these points oriented. Label each
segment between two marked points ei and ei+1 by a finite pivotal tensor category Ai,i+1 and
label each marked point ei with a finite bimodule category Mi, which is an Ai−1,i-Ai,i+1-
bimodule category if εi = +1, and an Ai+1,i-Ai,i−1-bimodule category if εi = −1. In other
words, thenMεi

i is an Aεii−1,i-A
εi
i,i+1-bimodule category, using the notation we have introduced

above for opposite tensor categories and opposite bimodule categories. The set (Mεi
i )i∈Zn is

called a string of cyclically composable bimodule categories, according to [FSS2].
To this decorated circle with marked points, by the prescription of [FSS2], one associates a

linear category, which we will explain now, see Definition 30. First we consider the Deligne
product Mε1

1 � · · · �Mεn
n of the categories (Mεi

i )i∈Zn . Following the above notation, corre-
sponding to each segment between two marked points ei and ei+1 in the circle there is the
structure of an Aεi+1

i,i+1-A
εi
i,i+1-bimodule category on this Deligne product. These n bimodule

category structures on the Deligne product commute with each other (up to canonical coherent
isomorphisms), since they act either on different Deligne factors or on two different sides of one
of the bimodule categories.
For each of these bimodule category structures on the Deligne product we can consider

so-called balancings ; e.g. for a �-factorized object (m1
ε1 � · · ·�mn

εn) these are natural isomor-
phisms (m1

ε1 � · · ·�mi
εi � (aεi+1

εi+1 . mi+1
εi+1) � · · ·�mn

εn −→ m1
ε1 � · · ·� (mi

εi / aεi
εi) �

mi+1
εi+1 � · · ·�mn

εn)a∈Ai,i+1
Here, for any category X and ε ∈ {+1,−1}, we use the notation

xε :=

{
x ∈ X , if ε = +1,

x ∈ X , if ε = −1.

for the object in X ε that corresponds to the object x ∈ X , and for a pivotal tensor category A
we use the notation

aε :=

{
a, if ε = +1,

a∨, if ε = −1.

(While this notation would make sense for any tensor category that is not necessarily pivotal,
it would be unnatural as it would arguably favor the right dual functor over all other odd-fold
duals. Therefore we assume that A is pivotal, which is the case of our interest anyway.)
Let us recall the general definition of such balancings for bimodule categories.

Definition 28. Let A be a pivotal tensor category, let ε, ε′ ∈ {+1,−1} and let M be an
Aε-Aε′-bimodule category.
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Then the category Zε,ε′(M) of balancings in M has as objects pairs (m,β), where m is an
object ofM and the balancing (βa : aε

ε
.m

∼−−→ m/aε′
ε′

)a∈A is a natural isomorphism satisfying

(a⊗ b)ε
ε
. m ∼= aε

ε
. bε

ε
. m

aε
ε
. m / bε′

ε′

m / (a⊗ b)ε′
ε′ ∼= m / aε′

ε′

/ bε′
ε′

idaεε .βb

βa⊗b

βa / id
bε′

ε′

Iεε . m

m

m / Iε′
ε′

∼=

βI

∼=

or, in formulas,

βa⊗b = (βa / id
bε′

ε′ ) ◦ (idaεε .βb) ∀a, b ∈ A, (2.14)

βI = idm, (2.15)

where we have omitted the bimodule constraint isomorphisms.
The morphisms in the category of balancings are defined to be the morphisms inM that are

compatible with the balancings.

Remark 29. While this definition does not require any pivotal structure on the tensor category
– one can consider every dual to be the right dual, for example – we will consider it only for a
pivotal tensor category, since otherwise it would not coincide with the definition of the category
of κ-balancings from [FSS2] for an integer κ ∈ Z. In the construction in [FSS2] this integer
comes from a framing of the underlying surface and determines which of the various multiples
of the double-dual functor, which are trivialised by a pivotal structure, we would need to insert
in the above definition.

The category that one finally assigns to the decorated circle with marked points, according
to the prescription of [FSS2] is as follows:

Definition 30 (c.f. Definition 3.4 in [FSS2]). Let L be an oriented circle with marked oriented
points {ei}i∈Zn labelled by bimodule categories – giving rise to a string (Mεi

i )i∈Zn of cyclically
composable bimodule categories. The category T(L) assigned to the circle L is the category
of balancings on the Deligne product (�i∈ZnMεi

i ) with respect to the Aεi+1

i,i+1-A
εi
i,i+1-bimodule

category structures for all i ∈ Zn. In formulas,

T(L) := Zε1,εn(· · · Zε2,ε1(�i∈ZnMεi
i )). (2.16)

Remarks 31.

• This category is well-defined because the bimodule category structures on the Deligne
product, with respect to which the balancings are considered, all commute with each
other (up to canonical coherent natural isomorphisms). In [FSS2] it is explained that the
category of balancings is monadic and that the monads for the balancings for the different
bimodule category structures on the Deligne product satisfy a distributivity law, which
also shows that (2.16) does not depend on the order in which we consider the balancings.
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2 Defects and boundaries in Kitaev models

• The category assigned to a decorated circle with marked points reduces to the well-known
Drinfeld center Z(A), as shown in [FSS2], if all bimodule categories Mi are given by a
single tensor category A.

In Theorem 33 we want to give a realization of such a category assigned to a decorated
circle with marked points, in terms of representations of a k-algebra, namely the vertex algebra
Cv, if the bimodule categories (Mi)i are the representation categories of bicomodule algebras
(Ke)e∈Σ0.5

v
.

To this end, we first show generally that the category of balancings, as in Definition 28, can
be realized in such a representation-theoretic way. For this, let H be a finite-dimensional Hopf
algebra over k, let ε, ε′ ∈ {+1,−1} and let K be an Hε-Hε′-bicomodule algebra. Recall from
Subsubsection 2.1.1.1 that the category K–mod is an Hε-Hε′-bimodule category, so that we
can consider the category of balancings Zε,ε′(K–mod) as defined in Definition 28. On the other
hand, recall from Definition 3 the so-called balancing algebra H∗ε,ε′ , which is an ((Hε′)cop⊗Hε)-
module algebra, and recall from Definition 4 the crossed product algebraH∗ε,ε′ =K, for which we
consider K as an ((Hε′)cop ⊗Hε)-comodule algebra. This k-algebra H∗ε,ε′ =K with underlying
vector space H∗⊗K is characterized by having H∗ and K as subalgebras, and by the following
instance of the straightening formula for the multiplication of an element f ∈ H∗ with an
element k ∈ K:

k · f = f(k
〈−ε′〉
(1) ·? · k

〈ε〉
(−1)) · k(0) (2.17)

The following proposition proves that the category of balancings on K–mod is isomorphic
to the representation category of the k-algebra H∗ε,ε′ =K. This justifies the name “balancing
algebra” for H∗ε,ε′ and will be used in Theorem 33 to establish a connection between the vertex
algebras defined in this thesis and the categories assigned to circles in [FSS2].

Proposition 32. Let H be a semisimple finite-dimensional Hopf algebra over k, let ε, ε′ ∈
{+1,−1} and let K be an Hε-Hε′-bicomodule algebra. Then there is a canonical equivalence of
k-linear categories

Zε,ε′(K–mod) ∼= (H∗ε,ε′ =K)–mod .

Proof. Let (M,β = (βX : Xεε . M
∼−−→ M / Xε′

ε′

)X∈H–mod) be an object in Zε,ε′(K–mod).
Recall that the vector spaces underlying the modules Xεε ∈ Hε–mod and Xε′

ε′

∈ Hε′–mod are
the same as X ∈ H–mod. In this proof, to simplify notation, we will often write βX as a map
X ⊗M −→M ⊗X, keeping implicit the module structures on the respective vector spaces.
We define, using β, a left H∗-module structure onM as follows. We denote by Hreg ∈ H–mod

the left regular H-module with underlying vector space H, whose H-action is defined by left
multiplication.

ρ : H∗ ⊗M −→M, (2.18)
f ⊗m 7−→ (idM ⊗f)βHreg(1H ⊗m)

We show that this indeed satisfies the axioms of a left H∗-module: On the one hand we have,
for f, g ∈ H∗ and m ∈M ,

ρ(f ⊗ ρ(g ⊗m))
def
= (idM ⊗f)βHreg(1H ⊗ (idM ⊗g)βHreg(1H ⊗m))

= (idM ⊗f ⊗ g)(βHreg ⊗ idH)(idH ⊗βHreg)(1H ⊗ 1H ⊗m).
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On the other hand, we have

ρ((f · g)⊗m) = (idM ⊗(f · g))βHreg(1H ⊗m)

= (idM ⊗f ⊗ g)(idM ⊗∆)βHreg(1H ⊗m)

β natural
= (idM ⊗f ⊗ g)βHreg⊗Hreg(∆(1H)⊗m)

= (idM ⊗f ⊗ g)βHreg⊗Hreg(1H ⊗ 1H ⊗m)

(2.14)
= (idM ⊗f ⊗ g)(βHreg ⊗ idH)(idH ⊗βHreg)(1H ⊗ 1H ⊗m),

where we use in the third line that the coproduct of H is an H-module morphism ∆ : Hreg −→
Hreg⊗Hreg. This shows one of the two axioms of an H∗-module. For the other axiom, let again
m ∈M . Then, indeed, we have

ρ(1H∗ ⊗m) = ρ(ε⊗m)
def
= (idM ⊗ε)βHreg(1H ⊗m)

β natural
= βk(ε(1H)⊗m)

= m,

where we use in the third line that the co-unit of H is an H-module morphism ε : Hreg −→ k.
Hence, we have shown that ρ endows M with the structure of an H∗-module.
To prove that (M,ρ) is an object of (H∗ε,ε′ =K)–mod we have to show that the just defined

H∗-action ρ and the given K-action on M , which we simply denote by K ⊗M →M,k⊗m 7→
k.m, satisfy the straightening formula (2.17). That is, we have to show that, for all f ∈ H∗,
k ∈ K and m ∈M ,

k.((idM ⊗f)βHreg(1H ⊗m)) = (idM ⊗f(k
〈−ε′〉
(1) ·? · k

〈ε〉
(−1)))βHreg(1H ⊗ k(0).m) (2.19)

We start with the right-hand side:

(idM ⊗f(k
〈−ε′〉
(1) ·? · k

〈ε〉
(−1)))βHreg(1H ⊗ k(0).m)

β natural
= (idM ⊗f(k

〈−ε′〉
(1) ·?))βHreg(k

〈ε〉
(−1) ⊗ k(0).m)

βHreg K-linear
= ((k(0).?)⊗ f(k

〈−ε′〉
(2) k

〈ε′〉
(1) ·?))βHreg(1H ⊗m)

= k.((idM ⊗f)βHreg(1H ⊗m)).

Here we use in the first line that right multiplication by any element h ∈ H is an H-module
morphism (? · h) : Hreg −→ Hreg for the left regular H-module Hreg, and in the last line
we use the defining property of the antipode of H. This concludes the proof that (M,ρ) ∈
(H∗ε,ε′ =K)–mod.

Conversely, assume that M ∈ (H∗ε,ε′ =K)–mod and let us define on M a balancing βX :

Xεε . M −→ M / Xε′
ε′

for all X ∈ H–mod. Denoting by (ei ∈ H∗)i and (ei ∈ H)i a pair of
dual bases, we define

βX : X ⊗M −→M ⊗X,

x⊗m 7−→
∑
i

ei.m⊗ ei.x,
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where ei.x refers to X as an H-module, not Xε′
ε′

as an Hε′-module, even though we will show
that βX is a K-module morphism Xεε . M −→ M / Xε′

ε′

. Indeed, for k ∈ K, x ∈ X,m ∈ M ,
we calculate

k.(βX(x⊗m)
def
=
∑
i

(k(0).e
i.m)⊗ (k

〈ε′〉
(1) .ei.x)

(2.17)
=
∑
i

(ei(k
〈−ε′〉
(1) ·? · k

〈ε〉
(−1)).k(0).m)⊗ (k

〈ε′〉
(2) .ei.x)

=
∑
i

(ei.k(0).m)⊗ (k
〈ε′〉
(2) .k

〈−ε′〉
(1) .ei.k

〈ε〉
(−1).x)

=
∑
i

(ei.k(0).m)⊗ (ei.k
〈ε〉
(−1).x)

def
= βX(k.(x⊗m))

Furthermore, it can be seen directly that (βX)X∈H–mod is a natural family. Indeed, for any
H-module morphism f : X −→ Y and x ∈ X,m ∈ M , we have βY (f(x) ⊗ m)

def
=
∑

i e
i.m ⊗

ei.(f(x)) =
∑

i e
i.m⊗ f(ei.x)

def
= (idM ⊗f)βX(x⊗m).

It remains to show that (βX)X∈H–mod satisfies axioms (2.14) and (2.15), i.e. βX⊗Y = (βX ⊗
idY )(idX ⊗βY ) for all X, Y ∈ H–mod and βk = idM .
For the first identity, let x ∈ X, y ∈ Y and m ∈ M . Then on the one hand we have

βX⊗Y (x⊗ y ⊗m)
def
=
∑

i e
i.m⊗ ei.(x⊗ y) =

∑
i e
i.m⊗ (ei(1).x)⊗ (ei(2).y). On the other hand,

(βX⊗idY )(idX ⊗βY )(x⊗y⊗m)
def
=
∑

i,j e
j.ei.m⊗ej.x⊗ei.y =

∑
i e
i.m⊗(ei(1).x)⊗(ei(2).y), where

the last identity uses that the multiplication of H∗ is defined as the dual of the co-multiplication
of H.
In order to show (2.15), we use that the unit of H∗ is the co-unit ε : H → k of H. For λ ∈ k

and m ∈M we thus have βk(m⊗ λ)
def
=
∑

i e
i.m⊗ ε(ei)λ = 1H∗ .m = m.

So far in this proof, we have shown that on M ∈ K–mod one can construct out of a bal-
ancing on M an H∗-action such that M becomes an (H∗ε,ε′ =K)-module, and that conversely
out of an (H∗ε,ε′ =K)-module structure one can construct a balancing on M ∈ K–mod. To
conclude the proof of the proposition we have to show that these two assignments are inverse
to each other.
First, assume that (M,β) ∈ Zε,ε′(K–mod). Consider the balancing β′ on M that is con-

structed from the H∗-action on M which in turn is constructed from β, as shown above. For
X ∈ H–mod, x ∈ X and m ∈M we have

β′X(x⊗m)
def
=
∑
i

(idM ⊗ei)βHreg(1H ⊗m)⊗ ei.x

= (βHreg(1H ⊗m))(M) ⊗ (βHreg(1H ⊗m))(X).x

β natural
= βX(x⊗m),

where use the notation (βHreg(1H ⊗m))(M) ⊗ (βHreg(1H ⊗m))(X) := βHreg(1H ⊗m) ∈ M ⊗X,
and in the third line we use that (?.x) : Hreg −→ X is an H-module morphism for any x ∈ X.
Finally, assume thatM ∈ (H∗ε,ε′ =K)–mod with H∗-action ρ : H∗⊗M −→M . Consider the

H∗-action ρ′ on M that is constructed from the balancing on M which in turn is constructed

42



2.A Appendix: a category-theoretic motivation for the vertex algebras

from ρ, as shown above. For f ∈ H∗ and m ∈M we then have

ρ′(f ⊗m)
def
=
∑
i

(idM ⊗f)(ρ(ei ⊗m)⊗ ei.1H) =
∑
i

ρ(ei ⊗m)f(ei) = ρ(f ⊗m),

which concludes the proof of the proposition.

Now, finally, we can prove the main result of this appendix. Most of the work for this has
already been done in the proof of Proposition 32. Let v ∈ Σ0 be a vertex of a labeled cell
decomposition of Σ so that (Ke)e∈Σ0.5

v
are bicomodule algebras labelling the incident edges

at v. Let Lv be the corresponding circle with marked points which are labeled by cyclically
composable bimodule categories (Ke–mod)e∈Σ0.5

v
.

Theorem 33. Let v ∈ Σ0 be a vertex in a labelled (as defined in Definition 1) cell decomposition
of a compact oriented surface Σ. There is a canonical equivalence of k-linear categories

T(Lv) ∼= Cv–mod

between the category assigned by the modular functor T, constructed in [FSS2], to the circle
Lv with marked points corresponding to the half-edges incident to a vertex v ∈ Σ0 and the
representation category of the algebra Cv.

Proof. Consider the bicomodule algebra (
⊗

e∈Σ0.5
v
K
ε(e)
e ), which realizes the Deligne product

�e∈Σ0.5
v

(Ke–mod)ε(e) = (
⊗

e∈Σ0.5
v
K
ε(e)
e )–mod as a representation category. For each incident

site p ∈ Σsit
v , which corresponds to a segment between two marked points of the corresponding

decorated circle Lv and is labeled by a Hopf algebra Hp, it has an H
ε(ep)
p -Hε(e′p)

p -bicomodule
structure, where ep and e′p are half-edges incident to v in the boundary of the plaquette p, cf.
Figure 2.5. Denote the sites in Σsit

v in clockwise order around v by (p1,2, . . . , pn,1) and abbreviate
ε(epi,i+1

) =: εi+1 and ε(e′pi,i+1
) =: εi. We then repeatedly apply Proposition 32 for each of these

H
εi+1
pi,i+1-Hεi

pi,i+1
-bicomodule structures. This is well-defined and does not depend on the order,

since for different p ∈ Σsit
v the bicomodule structures commute with each other. We hence

obtain an equivalence of categories

Zε1,εn(· · · Zε2,ε1(�e∈Σ0.5
v

(Ke–mod)ε(e))) ∼=
((

(Hpn,1)
∗
ε1,εn
⊗ · · · ⊗ (Hp1,2)

∗
ε2,ε1

)
= (

⊗
e∈Σ0.5

v

Kε(e)
e )

)
–mod

def
= Cv–mod,

which concludes the proof.

Remark 34. Since the category of balancings reduces to the Drinfeld center Z(A) if all bimodule
categories Mi are given by a single tensor category A, as shown in [FSS2], we see that also
in our construction in case of only transparently labeled edges incident to the vertex v, the
category of labels is the representation category of the Drinfeld double, just as in the Kitaev
construction without defects, see e.g. [BK2].
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3 Isotypic decompositions for
non-semisimple Hopf algebras

This chapter is organised as follows. In Section 3.1 we first review the definition of isotypic
decompositions for finite-dimensional algebras and then obtain preliminary results about them.
In particular, in Proposition 40 we give a characterisation of the semisimplicity of a Hopf algebra
in terms of the centrality of the idempotent associated to the trivial isotypic component. Section
3.2 contains our main results for general finite-dimensional Hopf algebras with the Chevalley
property. Finally, in Section 3.3 we first illustrate our results with an example of a basic Hopf
algebra (Subsection 3.3.1) and then provide further evidence for Conjecture 48 by studying in
Subsection 3.3.2 an example of a Hopf algebra with the Chevalley property that is not covered
by our general results in Section 3.2.

3.1 Isotypic decompositions for finite-dimensional algebras
Let H be a (not necessarily semisimple) finite-dimensional algebra over k. Let, as before, I
denote the (finite) set of isomorphism classes of simple H-modules. Then, as a projective left
H-module, H possesses a direct sum decomposition into projective H-submodules Hi,

H =
⊕
i∈I

Hi, (3.1)

where Hi
∼= P⊕nii is a direct sum of projective indecomposable submodules of the same isomor-

phism type Pi, the projective cover of the simple H-module given by i ∈ I.

Definition 35. We call Hi an i-isotypic component of H, for i ∈ I, and a direct sum decom-
position into isotypic components an isotypic decomposition of H.

Specifying an isotypic decomposition is equivalent to specifying the corresponding orthogonal
idempotents (pi)i∈I such that pi ∈ Hi and

∑
i∈I pi = 1.

Remark 36. Isotypic decompositions can clearly be defined for any projective left module over
H. However, in general there does not exist a description in terms of orthogonal idempotents
in H, since for this we use that left H-module endomorphisms of H are in bijection with right
multiplications with elements of H: EndH(H) ∼= Hop.
By the Krull-Schmidt theorem, the multiplicities ni of the indecomposable modules inside

each Hi are unique for any isotypic decomposition. In fact, they are given by the dimensions of
the simple H-modules. Indeed, let Si be a simple H-module in the isomorphism class i ∈ I and
let Hi

∼= P⊕nii , where Pi is the projective cover of Si and ni ∈ N. Then we have an isomorphism
of vector spaces

Si ∼= HomH(H,Si) ∼= HomH

(
⊕j∈IP

⊕nj
j , Si

)
∼= HomH(Pi, Si)

⊕ni .
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Since HomH(Pi, Si) is one-dimensional, this implies that ni = dim(Si).
Another point of view on isotypic decompositions is the following. Let J ⊆ H be the Jacobson

radical of the finite-dimensional algebra H, i.e. the maximal nilpotent ideal of H (as a general
reference see [Br]). Then the algebra H/J is the maximal semisimple quotient algebra of H
with natural surjection of algebras π : H −→ H/J .

Lemma 37. An isotypic decomposition of H is equivalent to an algebra map s : Z(H/J) −→ H
such that π ◦ s = idZ(H/J).

Proof. Indeed, given an isotypic decomposition H =
⊕

i∈I Hpi, mapping Z(H/J) 3 ei 7→ pi ∈
H, where ei are the central orthogonal idempotents of the semisimple algebra H/J , gives us
such an algebra map s : Z(H/J) −→ H because Z(H/J) = spank{ei}.
Conversely, given an algebra map s : Z(H/J) −→ H such that π ◦ s = idZ(H/J), the images

of the central orthogonal idempotents ei ∈ H/J give us the orthogonal idempotents pi := s(ei)
of an isotypic decomposition of H. For this we need to show that Hpi is a projective cover
of S⊕ dim(Si)

i . Indeed, Hpi is a projective cover of Hpi/J(Hpi) and we have an H-module
isomorphism Hpi/J(Hpi) ∼= (H/J)ei ∼= S⊕ dimSi

i . The first isomorphism follows from J(Hpi) =
Hpi ∩ J(H) = ker(π|Hpi), together with the fact that (H/J)ei is the image of the restricted
quotient map π|Hpi : Hpi −→ H/J .

3.1.1 (Non-)uniqueness of isotypic decompositions

In general, an isotypic decomposition is not unique. We can characterize the uniqueness of such
a decomposition as follows.

Lemma 38. Let H be a finite-dimensional algebra over k. A direct sum decomposition H =⊕
i∈J Hi into left H-submodules, where the isomorphism types of the summands Hi are pre-

scribed, is unique if and only if any left H-module automorphism of H commutes with the
projections of the direct sum

⊕
i∈J Hi.

Proof. LetH =
⊕

i∈J Hi be a unique decomposition into components of prescribed isomorphism
type and let ϕ : H −→ H be an H-module automorphism. Then H =

⊕
i ϕ(Hi) together

with the projections (ϕ ◦ pi ◦ ϕ−1 : H → ϕ(Hi))i is also such a decomposition and therefore
Hi = ϕ(Hi) ∈ H and pi = ϕ ◦ pi ◦ ϕ−1 for all i ∈ J .
It remains to prove the implication in the other direction. For this assume that any H-

automorphism ϕ : H −→ H commutes with the projections pi : H −→ Hi for all i ∈ J . Now
let H =

⊕
iH
′
i be another decomposition into components of the prescribed isomorphism type

with projections p′i : H −→ H ′i. There are isomorphisms ϕi : Hi −→ H ′i. Together they give
an isomorphism ϕ =

⊕
i ϕi : H =

⊕
iHi −→

⊕
iH
′
i = H, which by construction satisfies

ϕ ◦ pi = p′i ◦ ϕ for all i ∈ J . But by assumption an H-automorphism ϕ commutes with the
projections pi : H −→ Hi for all i ∈ J , i.e. we have ϕ ◦ pi = pi ◦ ϕ for all i ∈ J . Together
this implies p′i ◦ ϕ = pi ◦ ϕ for all i ∈ J and by invertibility of ϕ this proves the claim that
pi = p′i.

Remark 39. Furthermore, we can describe the set of decompositions of H into isotypic com-
ponents as follows. Choose one such decomposition (pi : H −→ Hi)i. Mapping an H-linear
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automorphism ϕ ∈ AutH(H) to the decomposition (ϕ ◦ pi ◦ ϕ−1 : H −→ ϕ(Hi))i induces a
bijection

AutH(H) /
∏
i

AutH(Hi)
∼−−→
{

(p′i : H → H ′i)i isotypic decomposition
}
.

Denoting by CentH×{pi|i ∈ I} the centralizer of the set (pi)i∈I in H×, we can thus also describe
the set of isotypic decompositions as the homogeneous set

H×/CentH×{pi|i ∈ I}.

If H is a semisimple Hopf algebra, then the idempotents ei in equation (1.1) giving us
the isotypic decomposition are central (as they are for any semisimple algebra by the Artin-
Wedderburn theorem), implying by Lemma 38 the uniqueness of the isotypic decomposition in
the semisimple case.
Conversely, we obtain the following characterization of semisimplicity for a Hopf algebra H:

Proposition 40. A finite-dimensional Hopf algebra H over k is semisimple if and only if
there exists a decomposition H =

⊕
i∈I Hei into isotypic components such that eI ∈ H, the

idempotent corresponding to the trivial H-module, is central.

Proof. The only-if part of the statement is implied by the Artin-Wedderburn theorem.
For the rest of the proof assume that eI is central. This implies that Ext1

H(I, S) = 0 for any
non-trivial simple H-module S as we show next. Let 0 → S → M → I → 0 be a short exact
sequence in H–mod, where M is an arbitrary H-module. Since eI ∈ H is central, acting with
this element defines an H-module morphism on any H-module, in particular eI : S → S. If
there were an x ∈ S such that eI.x 6= 0, then this would define a non-zero H-module map
HeI −→ S, heI 7−→ heI.x. But for a simple H-module S non-isomorphic to the trivial one I,
this does not exist, since HeI is the projective cover of I. Hence, we must have eI.S = 0. This
implies that we obtain a well-defined morphism eI : M/S → M , which provides a splitting
of the short exact sequence, since M/S ∼= I by exactness of the sequence and, hence, eI acts
on M/S as the identity. We have thus shown that Ext1

H(I, S) = 0 for any non-trivial simple
H-module S, using that eI is central.
Due to Theorem 4.4.1 in [EGNO], we also have Ext1

H(I, I) = 0.
Now let N be an arbitrary H-module. Since a short exact sequence of H-modules induces

a long exact sequence of corresponding Ext groups, we can use a composition series for N to
inductively show that there exists a simpleH-module S (the smallest module in the composition
series) such that Ext1

H(I, S) surjects to Ext1
H(I, N). Since we have shown that Ext1

H(I, S) = 0,
this implies that Ext1

H(I, N) = 0 for all N , and hence the trivial H-module I is projective. This
implies that every H-module is projective, since the tensor product of a projective module with
any other module is projective. We conclude that H is semisimple.

Example 41. Let H = H4 = k〈g, x〉/(g2 = 1, x2 = 0, gx = −xg) be Sweedler’s four-dimensional
Hopf algebra, which reappears in more detail in Example 44. Consider the decomposition
H = P0 ⊕ P1 := H 1+g

2
⊕ H 1−g

2
. Then there exists an automorphism ϕ : H → H of H as a

left H-module such that ϕ(P0) 6= P0. Indeed, let ϕ be given by right multiplication by the
invertible element 1 + 1+g

2
x. This does not commute with the element 1+g

2
, as can be easily

computed. Hence 1+g
2

is not central and H4 is not semisimple.
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We can therefore see that
H = H

1 + g

2
⊕H 1− g

2
and

H = H
1 + g

2
(1 + x)⊕H 1− g

2
are two different isotypic decompositions for H4.

3.1.2 Isotypic decompositions for self-injective algebras

When we are dealing with a self-injective algebra H, i.e. the regular H-module is injective,
then finding an isotypic decomposition simplifies to finding isotypic components individually,
as we will show in this subsection. In particular, this applies to Hopf algebras since they are
Frobenius algebras and hence self-injective.
For a simple H-module Si, i ∈ I, write φ(i) for the (isomorphism class of) the socle soc(Pi)

of the projective cover Pi of Si. Since Pi is also injective, because H is a self-injective algebra, it
holds that Pi is the injective envelope of φ(i). Since Pi is indecomposable, this means that φ(i)
is simple. So this gives us a bijection φ : I −→ I, which is called the Nakayama permutation
of H(cf. [F]). In particular, if i 6= j, we have soc(Pi) 6= soc(Pj).

Proposition 42. Assume that for any i ∈ I, Hi ⊆ H is an i-isotypic component of H, i.e.
Hi
∼= P

⊕ dim(Si)
i . Then the map

Ψ :
⊕
i∈I

Hi −→ H

is an isomorphism of left H-modules.

Proof. Due to dimension considerations it is enough to prove that Ψ is injective. Assume the
opposite. Then choose a minimal subset J ⊆ I such that Ψ| :

⊕
i∈J Hi −→ H is not injective.

Then for some i ∈ J we have that Ψ| :
⊕

j∈J\{i}Hj −→ H is injective andHi∩Ψ(
⊕

j∈J\{i}Hj) 6=
0. If two modules intersect, then there is a simple module contained in the intersection. But
the biggest semisimple submodule of Hi is the socle soc(Hi) ∼= soc(Pi)

⊕ dim(Si) = φ(i)⊕ dim(Si).
The biggest semisimple submodule of the other module is⊕

j∈J\{i}

soc(Hj) ∼=
⊕

j∈J\{i}

soc(Pj)
⊕dim(Sj) =

⊕
j∈J\{i}

φ(j)⊕ dim(Sj).

Since these two modules do not have any common submodule (up to isomorphism), we arrive
at a contradiction.

So the conclusion of this proposition is: Once we pick for every i ∈ I a submodule Hi which
is of the right isomorphism type (that is, it is an i-isotypic component), this will give us a direct
sum decomposition of H into isotypic components.

3.2 Isotypic decompositions for Hopf algebras with the
Chevalley property

As we have seen, isotypic decompositions of non-semisimple Hopf algebras are in general not
unique. Our goal is to nevertheless construct one explicit isotypic decomposition for a Hopf
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algebra by generalizing to the non-semisimple case the idempotents given by the character-
projector formula (1.1), which makes use of the additional Hopf-algebraic structure such as the
Haar integral.
Note that the idempotent eI for the isotypic component corresponding to the trivial module

is given by the Haar integral: eI = (ε(S(`(1))`(2))(∆(`)) = `. In a non-semisimple Hopf algebra
any (say, left) integral ` ∈ H satisfies ε(`) = 0 and, hence, `2 = ε(`)` = 0. So ` is not an
idempotent anymore. Therefore the character-projector formula (1.1) does not generalize to
anything desirable in terms of idempotents for an isotypic decomposition in the non-semisimple
case.
Instead we want to take into account that for a semisimple Hopf algebra the Haar integral

coincides with the (appropriately normalized) character of the regular representation of the
dual algebra:

Proposition 43 (Prop. 1 b) in [LR]). Let H be a semisimple finite-dimensional Hopf algebra
over k. Then the Haar integral of H is equal to p := 1

dim(H)
χH∗, where χH∗ ∈ H∗∗ ∼= H is the

character of the regular H∗-module.

This proposition motivates us to consider, for our purposes, the character of the regular
H∗-module as the appropriate generalization of the Haar integral to the non-semisimple case:

p :=
1

dim(H)
χH∗ ∈ H∗∗ ∼= H. (3.2)

Indeed,

• We still have that p is an idempotent:

p2 =
1

dim(H)2
χH∗χH∗ =

1

dim(H)2
χH∗⊗H∗ =

1

dim(H)2
χH∗⊗H∗triv

=
1

dim(H)2
χH∗χH∗triv =

1

dim(H)2
χH∗ dim(H) =

1

dim(H)
χH∗ = p,

where we have used the isomorphism of H∗-modules H∗ ⊗ H∗ → H∗ ⊗ H∗triv, f ⊗ g 7→
f(1) ⊗ S(f(2)).g.

• Another basic property of p is that ε(p) = 1, since ε(χH∗) = χH∗(ε) = dim(H).

• Moreover, the cyclicity of the trace implies that p ∈ H is cocommutative.

• A difference from the semisimple case is that p is in general not central when H is not
semisimple. But, due to Proposition 40, this is exactly what we expect.

Example 44. Let us consider as a non-semisimple example where the element p is not equal to
any integral, the four-dimensional Sweedler Hopf algebra (cf. Example 41)

H4 = k〈g, x〉/(g2 = 1, x2 = 0, gx = −xg)

The co-multiplication is given by ∆(g) = g ⊗ g and ∆(x) = x⊗ 1 + g ⊗ x.
As can be straightforwardly verified, the space of left integrals of H4 is I` = k(1 + g)x and

the space of right integrals is kx(1 + g). However, p ∈ H4 is equal to 1
2
(1 + g).
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3 Isotypic decompositions for non-semisimple Hopf algebras

For later reference, let us list the simple modules of Sweedler’s Hopf algebraH4. The Jacobson
radical J of H4 is k{x, gx} ⊆ H4 and the maximal semisimple quotient H4/J of H4 can then
be identified with the group algebra k{1, g} of the cyclic group of order 2. Hence, there are two
non-isomorphic simple H4-modules, both one-dimensional: the trivial one, denoted k+, sending
g 7→ 1 and x 7→ 0 and the other one, denoted k−, mapping g 7→ −1 and x 7→ 0.
Let us see what the character-projector formula (1.1) would give us in this example if we

replace the Haar integral ` in the formula by the idempotent p. For the trivial module, we of
course get p = 1

2
(1 + g) itself and for the non-trivial simple H4-module we obtain 1

2
(1 − g).

These are indeed orthogonal and both idempotent.

The Hopf algebra H4 in the previous example has only one-dimensional simple modules, so
in particular satisfies the so-called Chevalley property. For the remainder of this chapter, we
will restrict our attention to the better behaved subclass of Hopf algebras with the Chevalley
property.

Definition 45. Let H be a Hopf algebra. H has the Chevalley property if the tensor product
of any two semisimple H-modules is again a semisimple H-module.

Remark 46. A Hopf algebra H, all of whose simple modules are one-dimensional, clearly pos-
sesses the Chevalley property. We call such an algebra basic.

Another characterization of the Chevalley property is the following (cf. [AEG, Proposi-
tion 4.2]):

Lemma 47. H has the Chevalley property if and only if its Jacobson radical J is a Hopf ideal
in H, that is J is an ideal such that ∆(J) ⊆ J⊗H+H⊗J , ε(J) = 0 and S(J) ⊆ J , or in other
words, H/J has the structure of a Hopf algebra such that the quotient map π : H −→ H/J is
a Hopf algebra morphism.

The class of Hopf algebras with the Chevalley property in particular includes the semisimple
Hopf algebras, but is much larger than that. In fact, many known examples of finite-dimensional
Hopf algebras over k have either the Chevalley property or a dual Hopf algebra with the
Chevalley property. The latter case includes in particular the pointed Hopf algebras that have
been much studied by N. Andruskiewitsch, H.-J. Schneider et al. For example the pointed
Hopf algebras with abelian group of group-like elements were classified in [AS] (under a mild
restriction on the order of the group). Hopf algebras with the Chevalley property were also
studied in [AEG, AGM, AV].
In view of Proposition 43 and the observations following it, we conjecture the following

character-projector formula for non-semisimple Hopf algebras:

Conjecture 48. Let H be a finite-dimensional Hopf algebra over k with the Chevalley property
(cf. Def. 45). Then we conjecture that the elements

pi := dim(Si)χi(S(p(1)))p(2) ∈ H, (3.3)

for i ∈ I, where I is the set of isomorphism classes of simple H-modules, define a set of
orthogonal idempotents of H such that H =

⊕
i∈I Hpi is an isotypic decomposition.

Remark 49. When H has the Chevalley property, the quotient map π : H −→ H/J sends
{pi}i∈I to the canonical basis of central orthogonal idempotents of the center of the semisimple
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3.2 Isotypic decompositions for Hopf algebras with the Chevalley property

algebra H/J . The restriction of the quotient map to the subalgebra k〈pi〉 ⊆ H generated by
{pi}i∈I then gives us a surjection

π : k〈pi〉 −→ Z(H/J).

onto a semisimple algebra. It is known that any such surjection splits as an algebra map, and
if s : Z(H/J) → k〈pi〉 is a section, then sπ(pi) will give us a basis of orthogonal idempotents
which are moreover non-commutative polynomials in the elements pi. However, our conjecture
asks if the character-projector formula generalises directly, without any adjustments.

In order to justify our assumption of the Chevalley property for this conjecture, we will give
a counter-example:

Example 50. Let us give a counter-example to the above conjecture for a Hopf algebra that
does not possess the Chevalley property.
Let µ ∈ k. Then we define an 8-dimensional Hopf algebra H(µ) over k, a deformation of the

so-called double cover of Sweedler’s 4-dimensional Hopf algebra, as follows. As an algebra it is
generated by elements g and x with the relations

g4 = 1

gxg−1 = −x

x2 =
µ

2
(1− g2),

and the co-multiplication is given by ∆(g) = g ⊗ g and ∆(x) = x ⊗ 1 + g ⊗ x. From this one
can compute that p = 1

dim(Hµ)
χH(µ)∗ = 1

4
(1 + g + g2 + g3). Let us compute the remaining pi

from the character-projector formula (3.3):
To this end we have to determine the simple H(µ)-modules and compute their characters.

Since 1+g2

2
and 1−g2

2
are central orthogonal idempotents, H(µ) decomposes as a direct sum of

algebras

H(µ) = H(µ)
1 + g2

2
⊕H(µ)

1− g2

2
=: H(µ)+ ⊕H(µ)−.

Denoting γ := g(1+g2

2
) and ξ := x(1+g2

2
), as an algebra H(µ)+ has the unit 1+ := 1+g2

2
and is

generated by γ and ξ satisfying the relations

γ2 = 1+,

γξγ−1 = −ξ,
ξ2 = 0,

and hence is isomorphic to the four-dimensional Sweedler algebra H4.
On the other hand, denoting G := g(1−g2

2
) and X := x(1−g2

2
), as an algebra H(µ)− has the

unit 1− := 1−g2
2

and is generated by G and X satisfying the relations

G2 = −1−,

GXG−1 = −X,
X2 = µ1−

Now we have to distinguish the two cases µ = 0 and µ 6= 0.
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3 Isotypic decompositions for non-semisimple Hopf algebras

Let us first assume that µ = 0. Then setting G̃ := iG, the elements G̃ and X satisfy the
relations of the four-dimensional Sweedler algebra H4, so that we have that, as an algebra
H(0), is isomorphic to the direct sum of two Sweedler algebras: H(0) ∼= H4 ⊕ H4. We have
seen in Example 44 that Sweedler’s Hopf algebra has two one-dimensional simple modules k+

and k−, so that H(0) therefore has four one-dimensional simple modules: k+
+ and k+

− for the
H(0)+-part and k−+ and k−− for the H(0)−-part. The corresponding orthogonal idempotents
pi according to the character-projector formula (3.3) are p = pk++ = 1

4
(1 + g + g2 + g3) and

pk+− = 1
4
(1−g+g2−g3) for the two simple modules of H(0)+ ∼= H4, and pk−+ = 1

4
(1+ig−g2−ig3)

and pk−− = 1
4
(1− ig − g2 + ig3) for the two simple modules of H(0)− ∼= H4.

Now consider the case µ 6= 0. Then it turns out that the algebra H(µ)− is isomorphic to

the matrix algebra Mat2(k), by identifying G with
(
i 0
0 −i

)
and X with

(
0 µ
1 0

)
. The matrix

algebra has only one simple module, the standard two-dimensional one, which we shall denote
by V , even as a module over H(µ). Its character χV maps G 7→ 0, G2 7→ −2 and G3 7→ 0.
In total then, H(µ) has three simple modules k+

+, k+
− and V and the corresponding pi of the

character-projector formula (3.3) are p = 1
4
(1 + g + g2 + g3) and pk+− = 1

4
(1 − g + g2 − g3) for

the two simple modules of H(µ)+ ∼= H4, and pV = 2 · 1
4
(2− 2g2) = 1− g2 for the unique simple

module of H(µ)− ∼= Mat2(k). Here we see now that pV 2 = (1− g2)2 = 1− 2g2 + g4 = 2(1− g2)
is not an idempotent. The reason for this failure to be idempotent is, one could argue, the
factor 2 in pV = 2 · 1

4
(2− 2g2), which comes from the factor dim(V ) in the character-projector

formula pV := dim(V )χV (S(p(1)))p(2).
Indeed, if we set µ = 0, then V is not a simple H(µ)-module anymore, but rather fits in a

short exact sequence 0→ k−− → V → k−+ → 0, so that the character splits into χV = χk−−
+χk−+

.
Therefore, for µ = 0, pV becomes dim(V )(S(χk−−

+χk−+
)⊗ id)(∆(p)) = dim(V )(pk−− + pk−+). The

sum of orthogonal idempotents pk−− and pk−+ is of course again an idempotent, so here we do
not get an idempotent precisely because of the factor dim(V ) = 2.

3.2.1 Idempotence of the conjectured idempotents

Making use the Chevalley property we will now arrive at further results concerning the idem-
potent p ∈ H and isotypic decompositions of H, towards proving our Conjecture 48.
We reiterate that if H has the Chevalley property, then H/J is a semisimple Hopf algebra

and the quotient map π : H −→ H/J is a surjective morphism of Hopf algebras. We want to
determine the image π(p) of the idempotent p ∈ H under this surjection.

Lemma 51. The image of the element p ∈ H under the quotient map π : H → H/J is
pH/J := 1

dim(H/J)
χ(H/J)∗ ∈ H/J , and hence by Proposition 43 the Haar integral of the semisimple

Hopf algebra H/J .

Proof. Considering p as an element ofH∗∗, π(p) ∈ (H/J)∗∗ is the restriction of p : H∗ → k to the
subalgebra (H/J)∗. According to the Nichols-Zoeller theorem H∗ is free as an (H/J)∗-module,
i.e.: H∗ ∼= ((H/J)∗)⊕N , for N ∈ N such that dim(H) = N dim(H/J). This implies for the
characters: χH∗|(H/J)∗

= Nχ(H/J)∗ and thus we have π(p) = 1
dim(H)

χH∗|(H/J)∗
= N

dim(H)
χ(H/J)∗ =

1
dim(H/J)

χ(H/J)∗ = pH/J .

From this follows the main result of this subsection:
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3.2 Isotypic decompositions for Hopf algebras with the Chevalley property

Theorem 52. Let H be a Hopf algebra with the Chevalley property and let χ : H → k be
the character of a non-zero one-dimensional (hence, simple) H-module. Then the element
pχ = (S(χ)⊗ idH)(∆(p)) ∈ H is an idempotent such that Hpχ ⊆ H is a χ-isotypic component
of H.

Proof. Since χ : H → k is the character of a one-dimensional H-module, it is an algebra
morphism. This implies that the element pχ = (S(χ) ⊗ idH)(∆(pH)) ∈ H is an idempotent
as it is the image of the idempotent p under an algebra morphism. Furthermore χ : H → k
factors through H/J as χ corresponds to a simple H-module and, hence, π(pχ) = π((S(χ) ⊗
idH)(∆(p))) = (S(χ) ⊗ idH)(∆(π(p))) = (S(χ) ⊗ idH)(∆(pH/J)), using Lemma 51 in the last
step.
Since pH/J is the Haar integral of the semisimple Hopf algebra H/J , we thus know that

π(pχ) ∈ H/J is the central idempotent projecting to the isotypic component of χ in H/J .
To conclude the proof we show that, if ẽS ∈ H is an idempotent preimage of the central

idempotent eS ∈ H/J corresponding to a simple H-module (and, hence, also H/J-module) S,
then the submodule HẽS ⊆ H is a projective cover of S⊕ dimS. Indeed, HẽS is a projective cover
of HẽS/J(HẽS). Moreover, note that we have the isomorphism of H-modules HẽS/J(HẽS) ∼=
(H/J)eS ∼= S⊕ dim(S). The first isomorphism follows from J(HẽS) = HẽS ∩ J(H) = ker(π|HẽS),
where π : H −→ H/J denotes the quotient map, together with the fact that (H/J)eS is the
image of the restricted quotient map π|HẽS : HẽS −→ H/J .

In this subsection we have shown that, for a one-dimensional simple H-module i ∈ I, the
conjectured idempotent pi is indeed an idempotent projecting to an i-isotypic component of H.
However, we do not yet know whether these idempotents for one-dimensional simple modules
are orthogonal to each other.

3.2.2 Orthogonality of the conjectured idempotents

In particular, if we assume that H has only one-dimensional simple modules, i.e. H is basic,
then we know so far, combining Propositions 42 and 52, that H =

⊕
i∈I Hpi is an isotypic

decomposition forH. However, we do not yet know whether the natural projections of
⊕

i∈I Hpi
onto the direct summands Hpi are the same as the projections given by right multiplication
with the idempotents pi. This is the case if and only if the pi are orthogonal to each other, i.e.
pipj = δi,jpi for all i, j ∈ I. In this subsection we prove a result which implies in particular for a
basic Hopf algebra H, using our results from Subsection 3.2.1, that under a certain additional
assumption they are.
Due to the following lemma, showing that

∑
i∈I pi = 1 is sufficient to show that the idempo-

tents pi are pairwise orthogonal to each other.

Lemma 53. Let H be an algebra with decomposition H =
⊕

iHi into left H-submodules Hi

and let pi ∈ Hi be elements such that
∑

i pi = 1. Then pipj = δi,jpi for all i, j and Hi = Hpi.

Proof. We have for any i that pi = pi1 =
∑

j pipj. Then pi ∈ Hi by assumption and pipj ∈ Hj

because Hj is an H-submodule together imply that pipj = δi,jpi using the direct sum property
of
⊕

iHi.
It is left to show that Hi = Hpi. Hpi ⊆ Hi follows immediately from the facts that pi ∈ Hi

and that Hi is an H-submodule. In order to show that also Hi ⊆ Hpi, assume that hi ∈ Hi.
We have hi = hi1 =

∑
j hipj. Since hipj ∈ Hj, this implies that hi = hipi, concluding the proof

that Hi ⊆ Hpi.
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3 Isotypic decompositions for non-semisimple Hopf algebras

In this subsection we therefore want to show that
∑

i∈I pi = 1 (Thm. 56).
First we need a lemma. Note that the regular character χH : H −→ k lifts to H/J via the

quotient map π : H −→ H/J (as all characters of H do, since the Jacobson radical J is a nil
ideal). In fact, we can furthermore show that on H/J it is proportional to the character χH/J
of the regular H/J-module, i.e. we have:

Lemma 54. Let H be a Hopf algebra with the Chevalley property. Then: χH = dim(H)
dim(H/J)

χH/J◦π.

Proof. On the hand, we have for any left H-module M a canonical H-module isomorphism
H⊗M ∼= H⊗Mtriv. Applying this to M = π∗(H/J), by which we denote H/J with the action
of H via the quotient map π : H −→ H/J , we obtain the equality of characters χH ·χπ∗(H/J) =
χH dim(H/J) ∈ H∗.
On the other hand, for any H/J-module N we have a canonical isomorphism of H/J-modules

N ⊗H/J ∼= Ntriv ⊗H/J , which implies for the characters: χN · χH/J = dim(N)χH/J .
Next, observe that π : H −→ H/J induces an isomorphism π∗ : G0(H/J) −→ G0(H) of the

Grothendieck rings of H–mod and (H/J)–mod. Since the character of a module only depends
on its class in the Grothendieck ring, this implies that there exists an H/J-module V such that
χH = π∗χV . Moreover, dim(V ) = dim(H), since modules in the same class in the Grothendieck
ring have the same dimension.
In summary, we obtain

χH · χπ∗(H/J) = π∗(χV · χH/J)

= π∗(dim(V )χH/J)

= dim(H)π∗(χH/J).

Together with the first paragraph of the proof this shows the claim.

As always denote by I the set of isomorphism classes of simple H-modules and for i ∈ I
write pi := dim(i)

dim(H)
(S(χi) ⊗ idH)(∆(χH∗)), as in Conjecture 48, where χi ∈ H∗ is the character

of the simple H-module Si and where χH∗ ∈ H∗∗ ∼= H is the regular character of H∗.
The following Theorem 56 proves that

∑
i∈I pi = 1 holds for a Hopf algebra H with the

Chevalley property, under an additional assumption on H. In order to formulate this assump-
tion, we have to introduce the so-called Hecke algebra associated to H∗. Since H has the
Chevalley property, H/J is its maximal semisimple quotient-Hopf-algebra. Dually this means
that H∗0 := (H/J)∗ ⊆ H∗ is the maximal semisimple sub-Hopf-algebra of H∗. (In other words,
H∗0 = (H/J)∗ is in particular the coradical [Mon] of H∗.) Hence we can consider the unique
Haar integral Λ0 ∈ H∗0 of this semisimple Hopf algebra H∗0 . Now the space Λ0H

∗Λ0 ⊆ H∗

is an (in general, not unital) subalgebra of H∗ with unit Λ0. It can also be characterised as
the endomorphism algebra EndH∗(H

∗Λ0) ∼= Λ0H
∗Λ0 of the H∗-module H∗Λ0 induced from the

trivial H∗0 -module along the inclusion H∗0 ⊆ H∗. Hence:

Definition 55. We call the algebra Λ0H
∗Λ0 with unit Λ0 the Hecke algebra H(H∗, H∗0 ) asso-

ciated to the trivial representation of H∗0 ⊆ H∗.

Now we can state our result.

Theorem 56. Let H be a Hopf algebra with the Chevalley property. Let Λ0 ∈ H∗ be the Haar
integral of the maximal semisimple sub-Hopf-algebra H∗0 = (H/J)∗.
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3.2 Isotypic decompositions for Hopf algebras with the Chevalley property

Then ∑
i∈I

pi = 1H

if and only if the Hecke algebra Λ0H
∗Λ0 has up to isomorphism only one simple module.

Proof. Since for the regular character χH ∈ H∗ of H we have by Lemma 54

χH =
dim(H)

dim(H/J)
π∗(χH/J) =

dim(H)

dim(H/J)

∑
i∈I

dim(i)χi =
dim(H)

dim(H/J)

∑
i∈I

dim(i)S(χi),

the equation
∑

i∈I pi = 1H is equivalent to

dim(H/J)

dim(H)2
(χH ⊗ idH)(∆(χH∗)) = 1H .

Using that Λ0 = 1
dim(H/J)

χH/J by semisimplicity of the Hopf algebra H/J , and 1
dim(H/J)

χH/J =
1

dim(H)
χH by Lemma 54, we rewrite this equation to

(Λ0 ⊗ idH)(∆(χH∗)) =
dim(H)

dim(H/J)
1H ,

which can be rewritten as
χH∗(Λ0 · −) =

dim(H)

dim(H/J)
εH∗ . (3.4)

Since the subalgebra H∗0 is semisimple, we can decompose H∗ as an H∗0 -bimodule as

H∗ =
⊕
i,j∈I′

eiH
∗ej =:

⊕
i,j∈I′

H∗i,j,

where (ei)i∈I′ are the central orthogonal idempotents of the semisimple algebra H∗0 (in partic-
ular, eI = Λ0, where eI is the idempotent corresponding to the trivial H∗0 -module). Therefore,
with respect to this decomposition of H∗ we have:

H∗i,j ·H∗k,l ⊆

{
H∗i,l : j = k,

0 : j 6= k.

In particular, if i 6= j, then H∗i,j contains only nilpotent elements. From this it follows that
both sides of equation (3.4) vanish on ⊕

i,j∈I′
(i,j)6=(I,I)

H∗i,j

Indeed, both χH∗ (being a character) and εH∗ (being an algebra map) vanish on nilpotent
elements of H∗. Furthermore, for i 6= I, χH∗(Λ0 ·−) vanishes on H∗i,j by orthogonality of (ei)i∈I′
and so does εH∗ for the same reason, since εH∗(Λ0) = 1.
Therefore, equation (3.4) is equivalent to

χH∗|Λ0H∗Λ0
=

dim(H)

dim(H/J)
εH∗|Λ0H∗Λ0

. (3.5)
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For this, note that left multiplication by Λ0H
∗Λ0 on H∗ is non-zero only on the direct summand

Λ0H
∗ ⊆

⊕
i∈I′ eiH

∗ = H∗. This defines an action of the algebra Λ0H
∗Λ0 (with unit Λ0) on

Λ0H
∗. Thus equation (3.5) is equivalent to the statement that the character of Λ0H

∗ as a
left Λ0H

∗Λ0-module is equal to dim(H)
dim(H/J)

εH∗ |Λ0H∗Λ0
. We can show this to be equivalent to the

statement that up to isomorphism, the algebra Λ0H
∗Λ0 has only one simple module: the trivial

one defined on k via εH∗|Λ0H∗Λ0
: Λ0H

∗Λ0 −→ k.
Indeed, if this is the case, then the character of the Λ0H

∗Λ0-module Λ0H
∗ must be equal

to n · εH∗|Λ0H∗Λ0
, where n ∈ N is the length of the Jordan-Hölder series of the module Λ0H

∗.
Evaluating on Λ0, which is the unit for the algebra Λ0H

∗Λ0, gives n = dim(Λ0H
∗). Therefore,

we obtain χH∗|Λ0H∗Λ0
= dim(Λ0H

∗)εH∗|Λ0H∗Λ0
. It remains to verify that dim(Λ0H

∗) = dim(H)
dim(H/J)

.
Indeed, by Nichols-Zoeller H∗ ∼= (H∗0 )N as a left H∗0 -module, for N = dim(H)

dim(H/J)
. Under this

isomorphism we have Λ0H
∗ ∼= (Λ0H

∗
0 )N = (Λ0k)N , since Λ0 is the Haar integral of H∗0 . Hence,

dim(Λ0H
∗) = N = dim(H)

dim(H/J)
.

Conversely, if there is another simple Λ0H
∗Λ0-module, not isomorphic to the trivial one given

by εH∗|Λ0H∗Λ0
, then it is also a quotient of the regular Λ0H

∗Λ0-module and, hence, of Λ0H
∗.

But then the character of Λ0H
∗ cannot be equal to dim(H)

dim(H/J)
εH∗|Λ0H∗Λ0

.

Finally, we conclude from Theorems 52 and 56 the validity of Conjecture 48 for a certain
subclass of the Hopf algebras with the Chevalley property:

Corollary 57. Let H be a finite-dimensional basic Hopf algebra over k and denote by H∗0 :=
(H/J)∗ the maximal semisimple sub-Hopf-algebra of its dual H∗. Assume that the associ-
ated Hecke algebra H(H∗, H∗0 ) (cf. Definition 55) has, up to isomorphism, a unique simple
H(H∗, H∗0 )-module. Then Conjecture 48 holds for H, i.e. (pi = dim(Si)χi(S(p(1)))p(2))i∈I are
orthogonal idempotents such that H =

⊕
i∈I Hpi is an isotypic decomposition for H.

Proof. Theorem 52 and Proposition 42 imply that the (pi)i∈I are idempotents and that H =⊕
i∈I Hpi is an isotypic decomposition, since H has only one-dimensional simple H-modules.

Furthermore, Theorem 56 and Lemma 53 together imply that the (pi)i∈I are orthogonal.

3.2.3 Hopf algebras with the Chevalley property and the dual
Chevalley property

Let H be a Hopf algebra over k with both the Chevalley property and the dual Chevalley
property (i.e. also the dual Hopf algebra H∗ has the Chevalley property). Then a lot more can
be said about the structure of H and, in particular, our conjecture that the elements pi give an
isotypic decomposition of H can be verified.

Lemma 58. Let H be a Hopf algebra over k with both the Chevalley property and the dual
Chevalley property. Then there exists a Hopf algebra section ι : H/J −→ H of the quotient
map π : H −→ H/J , identifying the maximal semisimple quotient Hopf algebra H/J with the
maximal semisimple sub-Hopf-algebra (H∗/JH∗)

∗ ⊆ H.

Remark 59. By Radford’s projection theorem this implies that H is isomorphic to the Radford
biproduct R#(H/J), where R := Hco(H/J), the subspace of right (H/J)-coinvariants of H.
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Proof. Since H∗ has the Chevalley property, its maximal semisimple Hopf algebra quotient is
H∗ � H∗/JH∗ , where JH∗ is the Jacobson radical of H∗. This means that

(H∗/JH∗)
∗ ⊆ H∗∗ ∼= H

is the maximal semisimple sub-Hopf-algebra of H. Consider the composition (H∗/JH∗)
∗ ↪→

H � H/J of inclusion and quotient map. We will show that it is an isomorphism of Hopf
algebras (H∗/JH∗)

∗ ∼= H/J .
Firstly, it is injective because (H∗/JH∗)

∗ ∩ J = 0, because (H∗/JH∗)
∗ ∩ J ⊆ (H∗/JH∗)

∗ is
a nilpotent ideal of (H∗/JH∗)

∗, but (H∗/JH∗)
∗ is semisimple and therefore has no non-zero

nilpotent ideal.
Secondly, we see that (H∗/JH∗)

∗ ↪→ H � H/J is also surjective, because its dual is

H∗0
def
= (H/J)∗ ↪→ H∗ � H∗/JH∗ ,

which is just the inclusion of the maximal semisimple sub-Hopf-algebra followed by the surjec-
tion to the maximal semisimple quotient Hopf algebra for the dual Hopf algebra H∗, and this
is injective by the above argument.

Proposition 60. Let H be a Hopf algebra over k with both the Chevalley property and the
dual Chevalley property. Then the family pi ∈ H, as described in Conjecture 48, gives a set of
orthogonal idempotents of an isotypic decomposition of H.

Proof. We will prove this by proving that pi = ι(ei) for the Hopf algebra inclusion ι : H/J −→ H,
which we have shown to exist in Lemma 58, where ei ∈ H/J are the central orthogonal
idempotents of the isotypic decomposition of the semisimple Hopf algebra H/J . We have
pi = dim(Si)

dim(H)
χi(S(χH∗ (1)))χH∗ (2) and ei = dim(Si)

dim(H/J)
χ̃i(S(χ(H/J)∗ (1)

))χ(H/J)∗ (2)
, where χi ∈ H∗ is

the character of the i-th simpleH-module and χ̃i ∈ (H/J)∗ is the character of the corresponding
H/J-module, i.e. χi = χ̃i ◦ π.
What we thus have to show is that

1

dim(H)
χi(S(χH∗ (1)))χH∗ (2) =

1

dim(H/J)
χ̃i(S(χ(H/J)∗ (1)

))ι(χ(H/J)∗ (2)
).

Using π ◦ ι = idH/J and that ι is a morphism of Hopf algebras, we obtain

1

dim(H/J)
χ̃i(S(χ(H/J)∗ (1)

))ι(χ(H/J)∗ (2)
) =

1

dim(H/J)
χ̃i(π(ι(S(χ(H/J)∗ (1)

))))ι(χ(H/J)∗ (2)
)

=
1

dim(H/J)
χi(ι(S(χ(H/J)∗ (1)

)))ι(χ(H/J)∗ (2)
)

=
1

dim(H/J)
χi(S(ι(χ(H/J)∗)(1)

))ι(χ(H/J)∗)(2)
.

Thus it is left to show that
1

dim(H/J)
ι(χ(H/J)∗) =

1

dim(H)
χH∗

Denote by Π : H∗ −→ H∗/JH∗ the quotient map, which is a morphism of Hopf algebras due to
the Chevalley property of H∗. Then by Lemma 54 applied to H∗, we have

1

dim(H)
χH∗ =

1

dim(H∗/JH∗)
Π∗(χH∗/JH∗ ).
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But in Lemma 58 we have identified the Hopf algebras (H∗/JH∗)
∗ and H/J and via this

identification, by definition, the injection ι : H/J −→ H corresponds to

Π∗ : (H∗/JH∗)
∗ −→ H∗∗ ∼= H.

Hence, 1
dim(H∗/JH∗ )

Π∗(χH∗/JH∗ ) = 1
dim(H/J)

ι(χ(H/J)∗), concluding the proof.

3.3 Examples
In this last section of the chapter we discuss two examples of Hopf algebras with the Chevalley
property that we can show to satisfy our conjecture. The first example is a basic Hopf algebra
for which we can verify the assumptions of Theorem 56, which implies that the conjecture
holds. The second example is not basic and it does not follow directly from our general results
that it satisfies our conjecture, but we carry out explicit computations to show that it does.

3.3.1 The dual of a deformation of the double cover of Sweedler’s
Hopf algebra: a basic Hopf algebra

Recall the 8-dimensional Hopf algebra H(µ) from Example 50. Without loss of generality let
us set µ = 2, since for all µ ∈ k×, H(µ) is in the same isomorphism class of Hopf algebras.
Here we are interested in its dual Hopf algebra, which does satisfy the Chevalley property, and
which by slight abuse of notation we will denote by H, so that H∗ = H(2). Recall that H∗ is
generated as an algebra by g and x subject to the relations

g4 = 1

gxg−1 = −x
x2 = (1− g2),

with the co-multiplication given by ∆(g) = g ⊗ g and ∆(x) = x⊗ 1 + g ⊗ x.
H∗ has a Z2-grading as an algebra, H∗ = (H∗)0⊕ (H∗)1, where (H∗)0 = spank{1, g, g2, g3} =

kG is the group algebra of the group G of group-like elements and (H∗)1 = (H∗)0 · x. Further-
more, we have ∆(H∗)0 ⊆ (H∗)0 ⊗ (H∗)0 and ∆(H∗)1 ⊆ (H∗)1 ⊗ (H∗)0 ⊕ (H∗)0 ⊗ (H∗)1.
The simple H∗-comodules are given by the simple comodules of the coradical of H∗, which

is (H∗)0 = kG ⊆ H∗, and therefore we have four one-dimensional simple H∗-comodules corre-
sponding to the four group elements of G.
For the dual Hopf algebra H this means that there are four simple H-modules and they are

one-dimensional and given by the four group elements 1, g, g2, g3 ∈ G interpreted as elements
of H∗.
Let us consider the corresponding four elements p, pg, pg2 , pg3 ∈ H given by the character-

projector formula (3.3). Since all four simple modules are one-dimensional, our results from
Subsection 3.2.1 imply that these four elements are idempotents projecting to appropriate
isotypic components. The remaining question of their orthogonality is answered affirmatively
by Theorem 56. Indeed, we can verify that the Hecke algebra Λ0H

∗Λ0, where here Λ0 =
1
4
(1 + g + g2 + g3) ∈ H∗0 , satisfies the condition of Theorem 56, since

Λ0H
∗Λ0 = spank{Λ0,Λ0xΛ0} ∼= k[x]/(x2).
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Finally we can also compute the orthogonal idempotents p, pg, pg2 , pg3 ∈ H explicitly: With
respect to the basis {1, g, g2, g3, x, gx, g2x, g3x} for H∗, with dual basis

{δ1, δg, δg2 , δg3 , δx, δgx, δg2x, δg3x}

for H, it is easy to see by computation that we have:

p = δ1

pg = δg

pg2 = δg2

pg3 = δg3

Therefore, indeed, the idempotents are orthogonal to each other.

3.3.2 A Hopf algebra with the Chevalley property which is not basic

Finally we consider an example of a Hopf algebra with the Chevalley property that is not basic,
i.e. it does not have the property that all its simple modules are one-dimensional. We show by
computation that it still satisfies Conjecture 48. This gives evidence that our conjecture holds
for all Hopf algebras with the Chevalley property, even though our general results only cover
basic Hopf algebras (with an additional assumption on the associated Hecke algebra).
We describe the Hopf algebra H that we want to consider, first by its dual Hopf algebra H∗.

As an algebra, H∗ is generated by the elements a, b, c and {eg | g ∈ S3} subject to the following
relations:

egeh = δg,heg ∀g, h ∈ S3∑
g∈S3

eg = 1

aeg = e(12)ga ∀g ∈ S3

beg = e(23)gb ∀g ∈ S3

ceg = e(31)gc ∀g ∈ S3

ab+ bc+ ca = 0

ac+ cb+ ba = 0

a2 = λab(e13 + e132) + λac(e23 + e123)

b2 = λbc(e12 + e132) + λba(e13 + e123)

c2 = λca(e23 + e132) + λcb(e12 + e123),

where λab, λbc, λca ∈ k are the deformation parameters. The co-multiplication on H∗ is given
by

∆(eg) =
∑
h∈S3

egh−1 ⊗ eh ∀g ∈ S3

∆(a) = a⊗ 1 + (e1 − e12)⊗ a+ (e132 − e13)⊗ b+ (e123 − e23)⊗ c
∆(b) = b⊗ 1 + (e1 − e23)⊗ b+ (e132 − e12)⊗ c+ (e123 − e13)⊗ a
∆(c) = c⊗ 1 + (e1 − e13)⊗ c+ (e132 − e23)⊗ a+ (e123 − e12)⊗ b.
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We see that H∗ contains the dual group algebra kS3 = spank{eg | g ∈ S3} of the symmetric
group S3 as a sub-Hopf-algebra. In fact, H∗ is a cocycle deformation of the Radford biproduct
B#kS3 , where B is the Nichols algebra generated by a, b and c and the dual group algebra
kS3 is the maximal semisimple sub-Hopf-algebra. For more details about this Hopf algebra see
[M, AV].
For the dual Hopf algebra H with the Chevalley property this means that it possesses the

group algebra kS3 as its maximal semisimple quotient Hopf algebra and, hence, the simple
H-modules are given by the irreducible representations of S3: the trivial representation, the
sign representation and the two-dimensional simple H-module V , which is defined by:

(12) 7−→
(

0 1
1 0

)
(123) 7−→

(
0 −1
1 −1

)
.

For later reference we note that the character χV ∈ H∗ of thisH-module is χV = 2e1−e123−e132.
Now we want to compute the three corresponding elements p, psgn and pV ∈ H from the

conjectured character-projector formula (3.3).
Let us start with p = 1

dim(H)
χH∗ , that is we have to compute the trace of the regular repre-

sentation of H∗. A convenient basis for H∗ as a vector space is given by

{1, a, b, c, ab, bc, ac, cb, aba, abc, bac, abac} × {eg | g ∈ S3}. (3.6)

Hence we can think of H∗ as being N≥0-graded as a coalgebra (the grading comes from the
grading of the Nichols algebra B), where the degree is determined by the length of the word in
the letters a, b and c.
The basis elements eg, g ∈ S3, of degree 0 are idempotents with 12-dimensional image, that

is χH∗(eg) = 12. This determines the trace of all elements of degree 0.
The basis elements of degree 1 are nilpotent: For example,

aegaeg = a2e(12)geg = a2δ(12)g,geg = 0

for all g ∈ S3 since (12)g 6= g. This implies that χH∗(aeg) = 0 and likewise χH∗(beg) = 0 and
χH∗(ceg) = 0 for all g ∈ S3.
A similar argument shows that the trace is zero on the degree 2 and degree 3 parts of H∗.

On the degree 4 component this argument does not work anymore, since (31)(12)(23)(12) = 1
and hence

abacegabaceg = (abac)2eg, (3.7)

which we cannot immediately see to be zero by orthogonality of the (eg)g∈S3 as before. In order
to obtain an explicit expression for χH∗(abaceg), we start by computing (abac)2.

Lemma 61.

(abac)2 = abac((λ2
ab + λ2

ca − λ2
bc)e23 + 2λabλace132)− λ2

abλ
2
ace23 − λ2

abλ
2
ace132

Proof. We straightforwardly calculate using the relations of the algebra H∗:

abacabac = −aba(ab+ bc)bac
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= −abaabbac− ababcbac
= −ab(λab(e13 + e132) + λac(e23 + e123))(λbc(e12 + e132) + λba(e13 + e123))ac− ababcbac.

(3.8)

We further calculate

ababcbac = −ababc(ac+ cb)c

= −ababcacc− ababccbc
= −ababca(λca(e23 + e132) + λcb(e12 + e123))− abab(λca(e23 + e132) + λcb(e12 + e123))bc

= −ababca(λca(e23 + e132) + λcb(e12 + e123))

− ababbc(λca(e(31)(23)(23) + e(31)(23)(132)) + λcb(e(31)(23)(12) + e(31)(23)(123)))

= −ababca(λca(e23 + e132) + λcb(e12 + e123))

− ababbc(λca(e31 + e123) + λcb(e23 + e1))

= −ababca(λca(e23 + e132) + λcb(e12 + e123))

− aba(λbc(e12 + e132) + λba(e13 + e123))c(λca(e31 + e123) + λcb(e23 + e1))

= −ababca(λca(e23 + e132) + λcb(e12 + e123))

− abac(λbc(e(31)(12) + e(31)(132)) + λba(e(31)(13) + e(31)(123)))(λca(e31 + e123) + λcb(e23 + e1))

= −ababca(λca(e23 + e132) + λcb(e12 + e123))

− abac(λbc(e123 + e23) + λba(e1 + e12))(λca(e31 + e123) + λcb(e23 + e1)) (3.9)

and

ababca = −aba(ab+ ca)a

= −abaaba− abacaa
= −ab(λab(e13 + e132) + λac(e23 + e123))ba− abac(λab(e13 + e132) + λac(e23 + e123))

= −abba(λab(e(12)(23)(13) + e(12)(23)(132)) + λac(e(12)(23)(23) + e(12)(23)(123)))

− abac(λab(e13 + e132) + λac(e23 + e123))

= −abba(λab(e23 + e1) + λac(e12 + e132))

− abac(λab(e13 + e132) + λac(e23 + e123))

= −a(λbc(e12 + e132) + λba(e13 + e123))a(λab(e23 + e1) + λac(e12 + e132))

− abac(λab(e13 + e132) + λac(e23 + e123))

= −aa(λbc(e(12)(12) + e(12)(132)) + λba(e(12)(13) + e(12)(123)))(λab(e23 + e1) + λac(e12 + e132))

− abac(λab(e13 + e132) + λac(e23 + e123))

= −aa(λbc(e1 + e13) + λba(e132 + e23))(λab(e23 + e1) + λac(e12 + e132))

− abac(λab(e13 + e132) + λac(e23 + e123))

= −(λab(e13 + e132) + λac(e23 + e123))(λbc(e1 + e13) + λba(e132 + e23))

· (λab(e23 + e1) + λac(e12 + e132))

− abac(λab(e13 + e132) + λac(e23 + e123))

= −(λabλbce13 + λabλbae132 + λacλbae23)(λab(e23 + e1) + λac(e12 + e132))

− abac(λab(e13 + e132) + λac(e23 + e123))

= −λabλbaλace132 − λacλbaλabe23 − abac(λab(e13 + e132) + λac(e23 + e123)). (3.10)
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Putting the above computations together, we finally obtain:

abacabac = −ab(λab(e13 + e132) + λac(e23 + e123))(λbc(e12 + e132) + λba(e13 + e123))ac− ababcbac
(3.9)
= −ab(λab(e13 + e132) + λac(e23 + e123))(λbc(e12 + e132) + λba(e13 + e123))ac

+ ababca(λca(e23 + e132) + λcb(e12 + e123))

+ abac(λbc(e123 + e23) + λba(e1 + e12))(λca(e31 + e123) + λcb(e23 + e1))

(3.10)
= −ab(λab(e13 + e132) + λac(e23 + e123))(λbc(e12 + e132) + λba(e13 + e123))ac

+ (−λabλbaλace132 − λacλbaλabe23 − abac(λab(e13 + e132) + λac(e23 + e123)))

· (λca(e23 + e132) + λcb(e12 + e123))

+ abac(λbc(e123 + e23) + λba(e1 + e12))(λca(e31 + e123) + λcb(e23 + e1))

= −ab(λab(e13 + e132) + λac(e23 + e123))(λbc(e12 + e132) + λba(e13 + e123))ac

− λabλbaλacλcae132 − λacλbaλabλcae23 − abac(λabλcae132 + λacλcae23 + λacλcbe123)

+ abac(λbc(e123 + e23) + λba(e1 + e12))(λca(e31 + e123) + λcb(e23 + e1))

= −abac(λab(e(31)(12)(13) + e(31)(12)(132)) + λac(e(31)(12)(23) + e(31)(12)(123)))

· (λbc(e(31)(12)(12) + e(31)(12)(132)) + λba(e(31)(12)(13) + e(31)(12)(123)))

− λabλbaλacλcae132 − λacλbaλabλcae23 − abac(λabλcae132 + λacλcae23 + λacλcbe123)

+ abac(λbc(e123 + e23) + λba(e1 + e12))(λca(e31 + e123) + λcb(e23 + e1))

= −abac(λab(e23 + e1) + λac(e12 + e132))(λbc(e31 + e1) + λba(e23 + e132))

− λabλbaλacλcae132 − λacλbaλabλcae23 − abac(λabλcae132 + λacλcae23 + λacλcbe123)

+ abac(λbc(e123 + e23) + λba(e1 + e12))(λca(e31 + e123) + λcb(e23 + e1))

= −abac(λabλbae23 + λabλbce1 + λacλbae132)

− λabλbaλacλcae132 − λacλbaλabλcae23 − abac(λabλcae132 + λacλcae23 + λacλcbe123)

+ abac(λbcλcae123 + λbcλcbe23 + λbaλcbe1)

= abac(−λabλbae23 − λabλbce1 − λacλbae132 − λabλcae132 − λacλcae23 − λacλcbe123

+ λbcλcae123 + λbcλcbe23 + λbaλcbe1)

− λabλbaλacλcae132 − λacλbaλabλcae23

= abac((−λabλba − λacλca + λbcλcb)e23 + (−λabλbc + λbaλcb)e1 + (−λacλba − λabλca)e132

+ (−λacλcb + λbcλca)e123)

− λabλbaλacλcae132 − λacλbaλabλcae23

= abac((λ2
ab + λ2

ca − λ2
bc)e23 + (−λabλbc + λabλbc)e1 + (2λacλab)e132

+ (−λcaλbc + λbcλca)e123)

− λ2
abλ

2
ace132 − λacλabλabλace23

= abac((λ2
ab + λ2

ca − λ2
bc)e23 + 2λabλace132)− λ2

abλ
2
ace23 − λ2

abλ
2
ace132. (3.11)

Combining (3.7) and Lemma 61 we immediately obtain

(abac e12)2 = 0 and (abac e31)2 = 0.

This implies that
χH∗(abac e12) = 0 and χH∗(abac e31) = 0. (3.12)
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Furthermore, using the relations of the algebra H∗ – in particular, we will use several times
(we will indicate it when we do) that

baca = −b(cb+ ba)a

= −bcba− b2a2

= bc(ac+ cb)− b2a2

= bc(ac+ cb)− b2a2

= bcac+ bc2b− b2a2

= −(ab+ ca)ac+ bc2b− b2a2

= −abac− ca2c+ bc2b− b2a2, (3.13)

and using the cyclicity of the trace, we can compute:

χH∗(abac e23) = χH∗(baca e(12)(23))

= χH∗(acab e(23)(12)(23))

= χH∗(acab e31)

= χH∗(−a(ab+ bc)b e31)

= χH∗(−a2b2 e31 − abcb e31)

= χH∗(−a2b2 e31 + ab(ac+ ba) e31)

= χH∗(−a2b2 e31 + ab2a e31 + abac e31)

(3.12)
= χH∗(−a2b2 e31 + a(λbc(e12 + e132) + λba(e13 + e123))a e31)

= χH∗(−a2b2 e31

+ a2(λbc(e(12)(12) + e(12)(132)) + λba(e(12)(13) + e(12)(123)))e31)

= χH∗(−a2b2 e31 + a2(λbc(e1 + e31) + λba(e132 + e23))e31)

= χH∗(−a2b2 e31 + a2λbce31)

= χH∗(−(λab(e13 + e132) + λac(e23 + e123))(λbc(e12 + e132) + λba(e13 + e123))e31

+ (λab(e13 + e132) + λac(e23 + e123))λbce31)

= χH∗(−λabλbae31 + λabλbce31)

= χH∗(λab(λab + λbc)e31)

= χH∗(λabλace31)

= 12λabλac. (3.14)

χH∗(abac e1) = χH∗(baca e12)

(3.13)
= χH∗(−abac e12 − ca2c e12 + bc2b e12 − b2a2 e12)

(3.12)
= χH∗(−ca2c e12 + bc2b e12 − b2a2 e12)

= χH∗(−c(λab(e13 + e132) + λac(e23 + e123))c e12

+ b(λca(e23 + e132) + λcb(e12 + e123))b e12

− (λbc(e12 + e132) + λba(e13 + e123))

· (λab(e13 + e132) + λac(e23 + e123)) e12)

= χH∗(−c(λab(e13 + e132) + λac(e23 + e123))c e12
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+ b(λca(e23 + e132) + λcb(e12 + e123))b e12)

= χH∗(−c2(λab(e(13)(13) + e(13)(132)) + λac(e(13)(23) + e(13)(123)))e12

+ b(λca(e23 + e132) + λcb(e12 + e123))b e12)

= χH∗(−c2(λab(e1 + e23) + λac(e132 + e12))e12

+ b(λca(e23 + e132) + λcb(e12 + e123))b e12)

= χH∗(−c2λace12

+ b(λca(e23 + e132) + λcb(e12 + e123))b e12)

= χH∗(−(λca(e23 + e132) + λcb(e12 + e123))λace12

+ b2(λca(e(23)(23) + e(23)(132)) + λcb(e(23)(12) + e(23)(123)))e12

= χH∗(−λcbλace12 + b2(λca(e1 + e12) + λcb(e132 + e31))e12

= χH∗(−λcbλace12 + b2λcae12)

= χH∗(−λcbλace12 + (λbc(e12 + e132) + λba(e13 + e123))λcae12)

= χH∗(−λcbλace12 + λbcλcae12)

= χH∗(−λcbλace12 + λbcλcae12)

= 0.

χH∗(abac e123) = χH∗(baca e(12)(123))

= χH∗(baca e23)

(3.13)
= χH∗(−abac e23 − ca2c e23 + bc2b e23 − b2a2e23)

(3.14)
= χH∗(−ca2c e23 + bc2b e23 − b2a2e23)− 12λabλac

= χH∗(−c(λab(e13 + e132) + λac(e23 + e123))c e23

+ b(λca(e23 + e132) + λcb(e12 + e123))b e23 − b2a2e23)

− 12λabλac

= χH∗(−c2(λab(e(13)(13) + e(13)(132)) + λac(e(13)(23) + e(13)(123)))e23

+ b2(λca(e(23)(23) + e(23)(132)) + λcb(e(23)(12) + e(23)(123)))e23 − b2a2e23)

− 12λabλac

= χH∗(−c2(λab(e1 + e23) + λac(e132 + e12))e23

+ b2(λca(e1 + e12) + λcb(e132 + e31))e23 − b2a2e23)

− 12λabλac

= χH∗(−(λca(e23 + e132) + λcb(e12 + e123))(λab(e1 + e23) + λac(e132 + e12))e23

+ (λbc(e12 + e132) + λba(e13 + e123))(λca(e1 + e12) + λcb(e132 + e31))e23

− b2a2e23)

− 12λabλac

= χH∗(−λcaλabe23 − b2a2e23)− 12λabλac

= χH∗(−λcaλabe23

− (λbc(e12 + e132) + λba(e13 + e123))(λab(e13 + e132) + λac(e23 + e123))e23)

− 12λabλac

= χH∗(−λcaλabe23)− 12λabλac
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= χH∗(λacλabe23)− 12λabλac

= 12λacλab − 12λabλac

= 0.

χH∗(abac e132) = χH∗(baca e(12)(132))

= χH∗(baca e31)

(3.13)
= χH∗(−abac e31 − ca2c e31 + bc2b e31 − b2a2e31)

(3.12)
= χH∗(−ca2c e31 + bc2b e31 − b2a2e31)

c2e31=0
= χH∗(bc

2b e31 − b2a2e31)

= χH∗(b(λca(e23 + e132) + λcb(e12 + e123))b e31 − b2a2e31)

= χH∗(b
2(λca(e(23)(23) + e(23)(132)) + λcb(e(23)(12) + e(23)(123)))e31 − b2a2e31)

= χH∗(b
2(λca(e1 + e12) + λcb(e132 + e31))e31 − b2a2e31)

= χH∗(b
2λcbe31 − b2a2e31)

= χH∗((λbc(e12 + e132) + λba(e13 + e123))λcbe31

− (λbc(e12 + e132) + λba(e13 + e123))a2e31)

= χH∗(λbaλcbe31 − λbaa2e31)

= χH∗(λbaλcbe31 − λba(λab(e13 + e132) + λac(e23 + e123))e31)

= χH∗(λbaλcbe31 − λbaλabe31)

= χH∗(λba(λcb − λba)e31)

= χH∗(λbaλcae31)

= χH∗(λabλace31)

= 12λabλac.

Summarizing our above calculations we finally obtain:

Proposition 62.

p =
1

dimH
χH∗ =

1

72

(∑
g∈S3

12g + 12λabλac(δabac e23 + δabac e132)

)
=

1

6

(∑
g∈S3

g + λabλac(δabac e23 + δabac e132)

)
.

Since the character of the sign representation is χsgn = e1 − e12 − e23 − e31 + e123 + e132, we
have therefore:

psgn = p(χsgn · −) =
1

6

(
1− (12)− (23)− (31) + (123) + (132) + λabλac(−δabac e23 + δabac e132)

)
.

Furthermore, we have:

pV = p(χV · −) =
1

6

(∑
g∈S3

g + λabλac(δabac e23 + δabac e132)

)
((2e1 − e123 − e132) · −)
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=
1

6
(2− (123)− (132)− λabλacδabac e132).

Evidently, the images of these elements pi under the surjection H −→ kS3 to the maximal
semisimple quotient algebra kS3 are the orthogonal idempotents of kS3 for the unique isotypic
decomposition of kS3. Hence, by Lemma 37, it only remains to check that the pi are orthogonal
idempotents in H in order to prove that they provide an isotypic decomposition of H.

3.3.2.1 Idempotence and orthogonality of p, psgn and pV

Concerning the question whether these elements p, psgn and pV ∈ H satisfy our Conjecture 48,
we can apply our general results from Subsections 3.2.1 and 3.2.2. We obtain from Theorem 52
that p and psgn are idempotents projecting to isotypic components of H of trivial type and sign
representation type, respectively. Moreover, we obtain from Theorem 56 that p+psgn +pV = 1,
if we can verify that H satisfies the assumptions of that proposition.
Indeed, we can ensure that the subalgebra Λ0H

∗Λ0 ⊆ H∗ has only one simple representation
up to isomorphism. The Haar integral of the semisimple sub-Hopf-algebra H∗0 = kS3 ⊆ H∗

is given by the idempotent e1 ∈ kS3 . With this we can compute that Λ0H
∗Λ0 = e1H

∗e1 =
k{e1, abace1}, since 1 and abac ∈ B(V ) span the subspace of S3-degree 1 in B(V ). e1 is the
unit of the algebra Λ0H

∗Λ0 and, furthermore, we have (abace1)2 = 0 by Lemma 61. Essentially,
the reason for this is that the deformed relations for the squares a2, b2 and c2 take values in the
kernel of right (or left) multiplication by Λ0 = e1. The algebra Λ0H

∗Λ0 is therefore isomorphic
to the two-dimensional algebra k[x]/(x2), which indeed has a unique simple representation.
Finally, with the help of a computation with the computer algebra system Magma, as can be

seen in the Appendix, we can extend these results to the statement that all three p, psgn and
pV are idempotents and pairwise orthogonal.

3.3.2.2 Calculations with Magma

We describe here a Magma code for calculating explicitly the products of the different conjec-
tured idempotents pi for the Hopf algebra discussed in Subsection 3.3.2. We begin with the
remark that, when considering the grading we have for H∗,

H∗ =
4⊕

k=0

H∗k ,

the only direct summand on which the product pipj (where i 6= j) might not vanish is H∗4 .
This follows from the fact that all pi’s vanish on Hk for k 6= 0, 4, and on the coalgebra grading.
The calculation with Magma will be done in the following way: for different values of λa, λb, λc
we will define the algebra A = H∗ in Magma. Then we will present it in a matrix form,
and calculate the trace of the regular representation, as well as the translations of this trace
by multiples of irreducible characters. For the calculations of the product we will calculate
(pi ⊗ 1)∆(abaceg) where g ∈ G and pi ∈ {p, pV } by hand, and apply the relevant functionals
pj ∈ {p, psgn, pV } to them. Finally, since all the relevant values are polynomials of degree at
most 3 in λabλac it will be enough to show that they vanish on four different values of λabλac.
The code is enclosed here. We ran it on http://magma.maths.usyd.edu.au/calc/, the

online version of Magma.
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/* Values of lambdas */
lam_a:=0;
lam_b:=23;
lam_c:=11;

K:=RationalField();
A<e1,e2,e3,e4,e5,e6,a,b,c>:= FPAlgebra<K, e1,e2,e3,e4,e5,e6,a,b,c|
e1*e1-e1, e2*e1, e3*e1, e4*e1, e5*e1, e6*e1,
e1*e2, e2*e2-e2, e3*e2, e4*e2, e5*e2, e6*e2,
e1*e3, e2*e3, e3*e3-e3, e4*e3, e5*e3, e6*e3,
e1*e4, e2*e4, e3*e4, e4*e4-e4, e5*e4, e6*e4,
e1*e5, e2*e5, e3*e5, e4*e5, e5*e5-e5, e6*e5,
e1*e6, e2*e6, e3*e6, e4*e6, e5*e6, e6*e6-e6,e1+e2+e3+e4+e5+e6-1,
a*e1-e2*a,a*e2-e1*a, a*e3-e5*a,e5*a-a*e3,a*e4-e6*a,a*e6-e4*a,
b*e1-e3*b,b*e3-e1*b, b*e4-e5*b,e5*b-b*e4,b*e2-e6*b,b*e6-e2*b,
c*e1-e4*c,c*e4-e1*c, c*e2-e5*c,e5*c-c*e2,c*e3-e6*c,c*e6-e3*c,
a*b+b*c+c*a, a*c+c*b+b*a,
a^2 - (lam_a-lam_b)*(e4+e6) - (lam_a-lam_c)*(e3+e5),
b^2 - (lam_b-lam_c)*(e2+e6) - (lam_b-lam_a)*(e4+e5),
c^2 - (lam_c-lam_a)*(e3+e6) - (lam_c-lam_b)*(e2+e5)>;
/* Defining A=H^* by generators and relations */
D:=Dimension(A);
S,f:= Algebra(A); /* S is now the algebra A considered as a subalgebra of the
72 x 72 matrix algebra. f:A\to S is the natural isomorphism */
Y:=AssociativeArray();

B,h:=ChangeBasis(S,[f(e1),f(e2),f(e3),f(e4),f(e5),f(e6),
f(a*e1),f(a*e2),f(a*e3),f(a*e4),f(a*e5),f(a*e6),
f(b*e1),f(b*e2),f(b*e3),f(b*e4),f(b*e5),f(b*e6),
f(c*e1),f(c*e2),f(c*e3),f(c*e4),f(c*e5),f(c*e6),
f(a*b*e1),f(a*b*e2),f(a*b*e3),f(a*b*e4),f(a*b*e5),f(a*b*e6),
f(b*c*e1),f(b*c*e2),f(b*c*e3),f(b*c*e4),f(b*c*e5),f(b*c*e6),
f(a*c*e1),f(a*c*e2),f(a*c*e3),f(a*c*e4),f(a*c*e5),f(a*c*e6),
f(c*b*e1),f(c*b*e2),f(c*b*e3),f(c*b*e4),f(c*b*e5),f(c*b*e6),
f(a*b*a*e1),f(a*b*a*e2),f(a*b*a*e3),f(a*b*a*e4),f(a*b*a*e5),f(a*b*a*e6),
f(a*b*c*e1),f(a*b*c*e2),f(a*b*c*e3),f(a*b*c*e4),f(a*b*c*e5),f(a*b*c*e6),
f(b*a*c*e1),f(b*a*c*e2),f(b*a*c*e3),f(b*a*c*e4),f(b*a*c*e5),f(b*a*c*e6),
f(a*b*a*c*e1),f(a*b*a*c*e2),f(a*b*a*c*e3),
f(a*b*a*c*e4),f(a*b*a*c*e5),f(a*b*a*c*e6)]);

/* we now fix for S the basis described above.
This is given by the algebra B. The map h:S\to B is then the isomorphism */

for i:=1 to D do
Y[i]:=0;
for j:=1 to D do
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Y[i]:= Y[i] + BasisProduct(B,i,j)[j]/72;
end for;
end for;

/* We calculate p as the trace of the regular representation
divided by the dimension. Notice that we think of p as an element in H=A^*. */

"print p";
for i:=1 to D do
Y[i];
end for;
"end p";
"";

chi:= e1-e2-e3-e4+e5+e6;
chiV:= 2*e1 - e5-e6;

/* the characters of the two non-trivial representations of A^*.
Both are elements of A */

Z:=AssociativeArray();
for i:=1 to D do
Z[i]:=0;
for j:=1 to D do
Z[i]:= Z[i] + (h(f(chi))*BasisProduct(B,i,j))[j]/72;
end for;
end for;

/* The array Z contains now the translation of p by the sign representation.
In other words, it is p_{sign}, considered as an element of A^*. */

W:=AssociativeArray();
for i:=1 to D do
W[i]:=0;
for j:=1 to D do
W[i]:= W[i] + 2*(h(f(chiV))*BasisProduct(B,i,j))[j]/72;
end for;
end for;

/* Similarly, we calculate p_V for the
2-dimensional irreducible representation of A. */

E2:=AssociativeArray();
for i:=1 to D do
E2[i]:=Y[i]+Z[i] + 2*W[i];
end for;
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"print epsilon";
for i:=1 to D do
E2[i];
end for;
/* We calculate and print the sum p + p_{sign} + p_V.
If it is the counit, then we are on the right path. */

"print p_sign";
for i:=1 to D do
Z[i];
end for;
"end p_sign";
"";

"print p_V";
for i:=1 to D do
W[i];
end for;
"end p_V";
"";

/* Next, we calculated manually the
elements v_i:=(p \otimes 1)\Delta(a*b*a*c*ei). */
v1:= h(f(1/6*(lam_a-lam_b)*(lam_a-lam_c)*(e3 + e5) +
1/6*((lam_c-lam_a)*b*b*e6 - (lam_a-lam_b)*c*c*e4-
(lam_a-lam_b)*a*a*e5 - (lam_a-lam_c)*a*a*e3)+
1/6*(a*b*a*c*e1 + a*c*a*b*e2 + c*b*c*a*e3 +
b*a*b*c*e4 + c*a*c*b*e6 + b*c*b*a*e5)));

v2:= h(f(1/6*(lam_a-lam_b)*(lam_a-lam_c)*(e6 + e4) +
1/6*((lam_c-lam_a)*b*b*e3 - (lam_a-lam_b)*c*c*e5-
(lam_a-lam_b)*a*a*e4 - (lam_a-lam_c)*a*a*e6)+
1/6*(a*b*a*c*e2 + a*c*a*b*e1 + c*b*c*a*e6 +
b*a*b*c*e5 + c*a*c*b*e3 + b*c*b*a*e4)));

v3:= h(f(1/6*(lam_a-lam_b)*(lam_a-lam_c)*(e1 + e2) +
1/6*((lam_c-lam_a)*b*b*e4 - (lam_a-lam_b)*c*c*e6-
(lam_a-lam_b)*a*a*e2 - (lam_a-lam_c)*a*a*e1)+
1/6*(a*b*a*c*e3 + a*c*a*b*e5 + c*b*c*a*e1 +
b*a*b*c*e6 + c*a*c*b*e4 + b*c*b*a*e2)));

v4:= h(f(1/6*(lam_a-lam_b)*(lam_a-lam_c)*(e5 + e3) +
1/6*((lam_c-lam_a)*b*b*e2 - (lam_a-lam_b)*c*c*e1-
(lam_a-lam_b)*a*a*e3 - (lam_a-lam_c)*a*a*e5)+
1/6*(a*b*a*c*e4 + a*c*a*b*e6 + c*b*c*a*e5 +

69



3 Isotypic decompositions for non-semisimple Hopf algebras

b*a*b*c*e1 + c*a*c*b*e2 + b*c*b*a*e3)));

v5:= h(f(1/6*(lam_a-lam_b)*(lam_a-lam_c)*(e4 + e6) +
1/6*((lam_c-lam_a)*b*b*e1 - (lam_a-lam_b)*c*c*e2-
(lam_a-lam_b)*a*a*e6 - (lam_a-lam_c)*a*a*e4)+
1/6*(a*b*a*c*e5 + a*c*a*b*e3 + c*b*c*a*e4 +
b*a*b*c*e2 + c*a*c*b*e1 + b*c*b*a*e6)));

v6:=h(f(1/6*(lam_a-lam_b)*(lam_a-lam_c)*(e2 + e1) +
1/6*((lam_c-lam_a)*b*b*e5 - (lam_a-lam_b)*c*c*e3-
(lam_a-lam_b)*a*a*e1 - (lam_a-lam_c)*a*a*e2)+
1/6*(a*b*a*c*e6 + a*c*a*b*e4 + c*b*c*a*e2 +
b*a*b*c*e3 + c*a*c*b*e5 + b*c*b*a*e1)));

E:= AssociativeArray();
for i:=1 to 6 do
E[i]:=0;
end for;

for i:= 1 to D do
E[1]:= E[1] + Y[i]*v1[i];
E[2]:= E[2] + Y[i]*v2[i];
E[3]:= E[3] + Y[i]*v3[i];
E[4]:= E[4] + Y[i]*v4[i];
E[5]:= E[5] + Y[i]*v5[i];
E[6]:= E[6] + Y[i]*v6[i];
end for;

/* This calculates p (p \otimes 1)\Delta(a*b*a*c*ei) = p p (a*b*a*c*ei).
Since a*b*a*c*ei are the only elements on which p^2 might be non-zero,
it is enough to consider them.
After that we do a similar calculation for p*p_V and p*p_{sign}.*/
"results of p*p - p";
for i:=1 to 6 do
E[i]-Y[D-6+i];
end for;

for i:=1 to 6 do
E[i]:=0;
end for;

for i:= 1 to D do
E[1]:= E[1] + Z[i]*v1[i];
E[2]:= E[2] + Z[i]*v2[i];
E[3]:= E[3] + Z[i]*v3[i];
E[4]:= E[4] + Z[i]*v4[i];
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E[5]:= E[5] + Z[i]*v5[i];
E[6]:= E[6] + Z[i]*v6[i];
end for;

"Results of p*p_{sign}";
for i:=1 to 6 do
E[i];
end for;

for i:=1 to 6 do
E[i]:=0;
end for;

for i:= 1 to D do
E[1]:= E[1] + W[i]*v1[i];
E[2]:= E[2] + W[i]*v2[i];
E[3]:= E[3] + W[i]*v3[i];
E[4]:= E[4] + W[i]*v4[i];
E[5]:= E[5] + W[i]*v5[i];
E[6]:= E[6] + W[i]*v6[i];
end for;
"results of p*p_V";
for i:=1 to 6 do
E[i];
end for;

/* Similarly to the elements vi from the previous part, we define
wi= (p_V \otimes 1)\Delta(a*b*a*c*ei) and similarly calculate the products.*/
w1:= 2*h(f(1/6*((lam_a-lam_c)*b*b*e6 + (lam_a-lam_b)*a*a*e5) -
1/6*((lam_a-lam_b)*(lam_a-lam_c)*e5)
+ 1/3*a*b*a*c*e1 - 1/6*(c*a*c*b*e6 + b*c*b*a*e5)));

w2:= 2*h(f(1/6*((lam_a-lam_c)*b*b*e3 + (lam_a-lam_b)*a*a*e4) -
1/6*((lam_a-lam_b)*(lam_a-lam_c)*e4)
+ 1/3*a*b*a*c*e2 - 1/6*(c*a*c*b*e3 + b*c*b*a*e4)));

w3:= 2*h(f(1/6*((lam_a-lam_c)*b*b*e4 + (lam_a-lam_b)*a*a*e2) -
1/6*((lam_a-lam_b)*(lam_a-lam_c)*e2)
+ 1/3*a*b*a*c*e3 - 1/6*(c*a*c*b*e4 + b*c*b*a*e2)));

w4:= 2*h(f(1/6*((lam_a-lam_c)*b*b*e2 + (lam_a-lam_b)*a*a*e3) -
1/6*((lam_a-lam_b)*(lam_a-lam_c)*e3)
+ 1/3*a*b*a*c*e4 - 1/6*(c*a*c*b*e2 + b*c*b*a*e3)));

w5:= 2*h(f(1/6*((lam_a-lam_c)*b*b*e1 + (lam_a-lam_b)*a*a*e6) -
1/6*((lam_a-lam_b)*(lam_a-lam_c)*e6)
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+ 1/3*a*b*a*c*e5 - 1/6*(c*a*c*b*e1 + b*c*b*a*e6)));

w6:= 2*h(f(1/6*((lam_a-lam_c)*b*b*e5 + (lam_a-lam_b)*a*a*e1) -
1/6*((lam_a-lam_b)*(lam_a-lam_c)*e1)
+ 1/3*a*b*a*c*e6 - 1/6*(c*a*c*b*e5 + b*c*b*a*e1)));

/*
"print ws";
for i:= 1 to D do
w1[i], w2[i], w3[i], w4[i], w5[i], w6[i];
end for;
*/
for i:=1 to 6 do
E[i]:=0;
end for;

for i:= 1 to D do
E[1]:= E[1] + Y[i]*w1[i];
E[2]:= E[2] + Y[i]*w2[i];
E[3]:= E[3] + Y[i]*w3[i];
E[4]:= E[4] + Y[i]*w4[i];
E[5]:= E[5] + Y[i]*w5[i];
E[6]:= E[6] + Y[i]*w6[i];
end for;

" ";
"results of p_V*p";
for i:=1 to 6 do
E[i];
end for;

for i:=1 to 6 do
E[i]:=0;
end for;

for i:= 1 to D do
E[1]:= E[1] + Z[i]*w1[i];
E[2]:= E[2] + Z[i]*w2[i];
E[3]:= E[3] + Z[i]*w3[i];
E[4]:= E[4] + Z[i]*w4[i];
E[5]:= E[5] + Z[i]*w5[i];
E[6]:= E[6] + Z[i]*w6[i];
end for;

"Results of p_V*p_{sign}";
for i:=1 to 6 do

72



3.3 Examples

E[i];
end for;

for i:=1 to 6 do
E[i]:=0;
end for;

for i:= 1 to D do
E[1]:= E[1] + W[i]*w1[i];
E[2]:= E[2] + W[i]*w2[i];
E[3]:= E[3] + W[i]*w3[i];
E[4]:= E[4] + W[i]*w4[i];
E[5]:= E[5] + W[i]*w5[i];
E[6]:= E[6] + W[i]*w6[i];
end for;

"results of p_V*p_V - p_V";
for i:=1 to 6 do
E[i]-W[D-6+i];
end for;
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