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For you will see many particles there stirred by unseen blows change their course and turn

back, driven backwards on their path, now this way, now that, in every direction everywhere.

[...] And so the movement passes upwards from the first-beginnings, and little by little comes

forth to our senses, so that those bodies move too, which we can descry in the sun’s light

[...]

Lucretius, De rerum natura (On the nature of things), book II, ll. 116-149, translated by C.

Bailey (Oxford University Press, London, 1910)
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Abstract

This thesis is devoted to quantum dynamical processes in dissolved atoms and molecules

when non-stationary time-dependent changes within the solvent-solute configuration occur.

The strong spatial and temporal changes of the solvent produce statistical configurations

far away from thermal equilibrium and strongly modify the properties of the solute such

as time-dependent modifications of optical absorption or of charge transfer.

In the first part of the thesis, I investigate optical absorption of an atom in a non-

equilibrated solvent as signature of energy absorption. To this end, I consider the dynam-

ics of a generic molecular dipole which is embedded in an Onsager sphere with specific

time-dependent geometric configurations. We solve a non-stationary Langevin equation

for the molecular dipole moment of the solute and use the reduced description of the sol-

vent based on the Onsager continuum model of solvation. Central macroscopic properties

such as the molecular polarization, the dielectric constants and the relaxation time of the

solvent, which are all experimentally measurable, enter in that model. First, I generi-

cally study the relaxation and absorption properties of a central molecular dipole moment

embedded in the center of a shrinking and a breathing Onsager cavity. The relaxation

rate of the dipole moment inside the shrinking sphere is enhanced in comparison to the

static sphere while the relaxation within the breathing cavity is reduced. The calculated

linear absorption spectrum for the breathing sphere additionally shows a dramatic reduc-

tion of the broadening of the linewidth. Second, the model of a shrinking Onsager sphere

is connected to a bimodal time-dependent Stokes shift and provides an extension to the

Bagchi-Oxtoby-Fleming theory. Thus, the Stokes shift can be decomposed into the bulk

water relaxation and the self-motion or extensional changes of the solute. Afterward, the

Onsager solvation model is extended to describe a dynamical formation of the hydration

shell. For a growing hydrophobic hydration shell around a neutralized iodine, the calcu-

lated absorption spectrum shows a noticeable time-dependent blue shift. Experimental

data from X-ray absorption spectroscopy confirm this shift which thus provides a clear
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signature of hydrophobic solvation.

In the second part of the thesis, I investigate charge transfer through solvated molecular

junctions mediated by a nonadiabatic solvent. Under equilibrium condition, the celebrated

Marcus theory explains the charge transfer by successive hopping where the charge con-

figuration on the conducting molecule leads to a readjustment of the surrounding solvent

molecules. A central assumption in equilibrium Marcus theory is the complete relaxation

of the solvent according to the charge configuration before each new hopping while thermal

solvent fluctuations around the equilibrium account for the charge transfer. In this the-

sis, I go beyond equilibrium Marcus theory and study charge transfer under the action of

nonequilibrium fluctuations. For this, I consider a finite relaxation time, during which the

solvent molecules adjust in between the successive charge-transfer processes. In general,

they do not entirely thermalize between two sequential hops. To this end, a diffusion equa-

tion (Smoluchowski equation) is formulated for an effective solvent coordinate representing

its configuration. I determine its solution for a low and overdamped solvent relaxation. By

employing a Monte Carlo simulation for the successive single-electron transfer, a charac-

teristic Kramers-like turnover in the current-damping behavior of the molecular junction is

found. For a well chosen applied bias voltage and solvent reorganization energy, the char-

acteristic turnover can be inverted. The calculated current autocorrelation function grows

for an enhanced damping which shows a strong influence of the solvent relaxation on the

current. Finally, I propose a way to tune the solvent-induced damping using geometrical

control of the solvent dielectric response in nanostructured solvent channels.



Zusammenfassung

In der vorliegenden Dissertation werden dynamische quantenmechanische Prozesse in sol-

vatisierten Atomen und Molekülen unteruscht, wenn nicht stationäre zeitliche Änder-

ungen in der Konfiguration von Solvens und gelöstem Stoff sich vollziehen. Die starken

örtlichen und zeitlichen Lösungsmitteländerungen induzieren statistische Konfigurationen

fern vom thermischen Gleichgewicht und beeinflussen mittelbar die Eigenschaften des sol-

vatisierten Moleküls, wie zeitabhängige Modifikationen der optischen Absorption oder des

Ladungstransfers.

Im ersten Teil der Dissertation untersuche ich die optische Absorption eines Atoms in

einem Nichtgleichgewichtssolvens als Merkmal der Energieabsorption. Zu diesem Zweck

betrachte ich die Dynamik eines generischen molekularen Dipols, welcher im Zentrum

einer Onsagersphäre mit spezifischen geometrischen Konfigurationen situiert ist. Wir

lösen dann die nicht stationäre Langevin Gleichung für das molekulare Dipolmoment eines

solvatisierten Stoffes und nutzen die reduzierte Beschreibung des Solvens mit dem On-

sager Model, einem Kontinuumsmodel. Zentrale makroskopische Größen, die auch ex-

perimentell zugänglich sind, wie die molekulare Polarisation, die dielektrischen Konstan-

ten und die Relaxation des Solvens, fließen in dieses Model ein. Zunächst studiere ich

generisch das Relaxations- und Absorptionsvehaltens eines zentralen molekularen Dipol-

moments in einer schrumpfenden und einer atmenden Onsagerkavität. Die Relaxation-

srate des Dipolmoments in der schrumpfenden Kavität wird im Vergleich zum statis-

chen Fall erhöht, während die Relaxtion für die atmende Kavität reduziert wird. Das

berechnete lineare Absorptionsspektrum zeigt hier zusätzlich eine drastische Reduktion

der Linienbreite für die atmende Kavität. Sodann wird das Model der schrumpfenden

Onsagerkugel mit einem biomodalen Verhalten im zeitabhängigen Stokes-Shift verknüpft

und liefert so eine Erweiterung der Bagchi-Oxtoby-Fleming Theorie. Der Stokes-Shift

kann somit in die kollektive Solvensrelaxation und in die mögliche Eigenbewegungen oder

Größenänderungen des zentralen Moleküls zerlegt werden. Anschließend erweitere ich das
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Onsagermodell für die dynamische Bildung einer Solvationshülle. Für eine hydrophobe

Hydrathüllenausbildung um ein neutralisiertes Iodmolekül zeigt das berechnete Absorp-

tionsspektrum eine deutliche zeitliche Blauverschiebung. Experimentelle Daten aus der

Röntgenabsorptionsspektroskopie bestätigen die Verschiebung und geben einen klaren Hin-

weis auf hydrophobe Solvatation.

Im zweiten Teil der Dissertation untersuche ich den nicht-adiabatischen solvensbed-

ingten Landungstransfer durch einen solvatisierten molekularen Leiter. Unter Gleich-

gewichtsbedingungen beschreibt die berühmte Marcus-Theorie den Ladungstransfer mittels

sukzessiver Hüpfprozesse, wobei jede Ladungsänderung des zentralen leitenden Moleküls

eine Neuausrichtung der umgebenden Solvensmoleküle bedingt. Eine zentrale Annahme der

Marcustheorie ist hierbei die vollständige Relaxation des Solvens gemäßdes Ladungszusa-

tandes des Molekls vor jedem Hüpfprozess, wobei die thermischen Fluktuationen des Sol-

vens um das Gleichgewicht den Landungstransfer bedingen. In der Dissertation unter-

suche ich den Ladungstransfer unter der Wirkung von Nichtgleichgewichtsfluktuationen

jenseits der Marcus-Theorie. Daher betrachte ich eine endliche Relaxationszeit, während

welcher sich die Solvensmoleküle neu ausrichten. Im Allgemeinen thermalisieren diese nicht

vollständig zwischen den sequenziellen Hüpfvorgängen. Zu diesem Zweck wird eine Diffus-

sionsgleichung (Smoluchowski-Gleichung) für eine effektive Koordinate formuliert, welche

die zeitabhängige Solvenskonfiguration darstellt. Ich bestimme sodann die Lösungen für

die Grenzfälle einer stark und schwach gedämpften Solvensrelaxation. Eine anschließende

Monte-Carlo Simulation für den Ein-Elektronen-Transfer zeigt ein charakteristisches Kra-

mers Umkehrverhalten in der Strom-Dämpfungs-Abhängigkeit. Für eine geschickte Wahl

der angelegten Spannung und der Solvensreoganisationsenergie kann das Verhalten umge-

kehrt werden. Die berechnete Stromautokorrelationsfunktion wächst bei einer erhöhten

Dämpfung, was einen starken Einfluss des Solvensrelaxationsverhaltens auf den Strom

zeigt. In einem letzten Schritt zeige ich eine geschickte Methode das Dämpfungsverhalten

des Solvens zu steuern, indem ich die veränderte dielektrische Antwort des Solvens aufgrund

geometrischer Einschnürungen im Bereich weniger Nanometer nutze.



Chapter 1

Introduction

Since the early days in physics one is interested in dynamics of objects ranging from

the macroscopic world to the smallest particles known today. While in the macroscopic

world Hamilton’s equations, or simply Newton’s equation, adequately describe their time

evolution, one exploits the Schrödinger equation for the dynamics of quantum objects.

During time evolution they will interact with other particles of ’the rest of the world’ and

may exchange energy, charge or spin. These interactions significantly affect the dynamics

of the particle of interest and result in dissipation [1, 2, 3, 4, 5, 6], and decoherence [7].

The latter, being an inherent quantum effect, disturbs the quantum phase relation, such

that relevant information of the system is lost in the environment or bath.

A historic example of observing and quantifying trajectories of classical particles is the

jittery motion of pollen grains suspended in water studied by the Botanist Robert Brown

in 1827 [8]. Albert Einstein in 1905 [9], Marian Smoluchowski in 1906 [10] and later Paul

Langevin in 1908 [11] formulated phenomenological equations of motion for such a particle

trajectory leading to a diffusion constant, which depends on the temperature of the solution

and the mobility of the observed particle related to its mean free path.

1.1 Brownian motion and open quantum systems

To retrace equations of motion from the microscopic perspective, the idea of small coupled

quantum objects forming a many-body system arises which can eventually be reduced to the

dynamics of few significant degrees of freedom. Therefore, John von Neumann introduced

in 1927 a formalism of density matrices where he effectively describes the time evolution of

a quantum (sub-)system of particular interest interacting with a bath of which the detailed
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dynamics is insignificant [12]. The global Hamiltonian H = HS + HB + HI is split into a

relevant system Hamiltonian HS, a bath Hamiltonian HB and a system-bath interaction

HI . The time-dependent expectation value of a system observable A can be obtained by

〈A(t)〉 = trS{ρS(t)A}, where the density operator of the system ρS(t) = trB{ρ(t)} re-

sults from a partial trace over the bath states for the overall density matrix ρ(t) which

describes the system, the bath and their interaction [12] 1. In performing the trace over

the many bath degrees of freedom, one considers the bath composed of a great number of

identical constituents obeying the laws of statistical mechanics. Particularly, if the bath

is large in comparison to the small subsystem of interest, the bath is thought to be in

thermal equilibrium. With the reduced description for the bath at hand one can formulate

equations of motion for the system which may now depend on a few macroscopic variables.

The Fokker-Planck equation for a Brownian motion [15], the Bloch equations for magnetic

relaxation [14] or the master equation for an atom interacting with the radiation field [16]

are just few examples which follow this spirit [17]. While the isolated system obeys re-

versible dynamics determined by the Hamiltonian HS and the initial probability density

ρS(t0), its interaction with the bath leads to irreversible time evolution. In this case, the

equation of motion for ρS(t) comprises a reversible part entering via the Poisson bracket

(classically) or the commutator (quantum mechanically) [18] and an irreversible part re-

lated to correlation functions of the system variable coupling to the bath characterized by

Green-Kubo-type formulae in linear order of perturbation theory [19, 20]. The quantum

statistical environment acts via fluctuating forces like the solution particles exerts them

on the pollen grain in the Brownian experiment. The fluctuating forces cause decoherence

and damping of the quantum system where measurements of relevant dynamical system

observables are related to entities of the macroscopic world. The fundamental principle of

the fluctuation-dissipation theorem relates dissipation of energy and fluctuations of a noise

force where the notion of a local equilibrium exists [20]. Multiple ansatzes are available

to solve the equation of motion of ρS(t) ranging from simple master equations [21, 22],

when the interactions between the system and the environment is weak and the equations

can be solved in a pertubative manner, to exact numerical methods [23, 24, 6]. The latter

are needed for strong system-bath interaction in the non-Markovian regime when memory

effects of previous system states due to bath interaction strongly influence the momentary

time-evolution of the system.

1The formalism of density matrices or density operators is independently introduced by John von
Neumann [12] in 1927, Lev Landau in 1927 [13] and Felix Bloch in 1946 [14].
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1.2 Experimental approach to dynamical solvents

In experimental setups, one probes dynamical processes of quantum systems by applying

an external force which drives the system (and bath) slightly or far away from equilib-

rium. The time-dependent response to this force enlightens different dynamical system

behavior determined by the interaction with the bath. Standard experimental methods

are quasi-elastic and inelastic scattering of light [25], electrons or neutrons off a sample un-

der investigation. The line shapes of the associated spectra reveal the underlying system’s

dynamics influenced by the bath relaxation [26]. More advanced nonlinear spectroscopy

techniques exploit three or multiple light pulses interacting successively with the probe and,

thus, provide more detailed information on the system’s time evolution and its correlation

dynamics which is not resolved in linear spectroscopy. 2D spectra may offer for example

information about prominent vibrational mode couplings and, hence, directly enlightens

the energy transfer dynamics in molecules up to femtosecond time resolution [27]. In all

such experiments, the system’s response to an external force yields information about the

dynamical properties of fluctuations and the ensuing dissipation of energy into the bath.

A prominent example to study dynamical properties of a central system within a huge

bath is the chemical process of photodissociation and possible recombination of iodine I2

→ I + I in solution which totally dissociates in the gas phase [28, 29]. The potential

energy surfaces of dissolved iodine depend on the distance of the center of mass of the

two I atoms and describe bound and repulsive states of I2. Upon photoexcitation from a

stable ground state, iodine may reach a dissociative energy level which leads to a separation

of the I atoms due to the repulsive Coulomb potential. The separating atoms encounter

solvent molecules, exchange energy with them and, thus, can be forced to recombine or

may completely dissociate. The molecular absorption spectrum at a wavelength of 500 nm

is first bleached out, but recovers after 30-50 ps, signaling the recombination of I2 in CCl4

[30]. At 350 nm, the transient states can be probed, and their life time varies from 60 ps in

alkane solvents to 2.7 ns in CCl4 [28, 31]. Since the life time depends on the solvent, multiple

theoretical ansatzes have been used to explain its influence. A simplest model stems from

Smoluchoswki [32] who has considered diffusion-controlled reactions where the rate for

interstate transition, kD = 4πDσ, depends only on the solvent diffusion constant D and the

length of the relative free reactive path σ between the reactants 2. This model has further

developed, such that, e.g., the ’cage effect’ in liquids, where radicals are screened by the

solvent disabling the separation, is taken into account [33]. Further developments include

2Smoluchowski has considered ideal spherical reactants [32].
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non-spherical solvent geometry [34] or spin statistical factors [35] which clearly hint to

consider the molecular aspect of the solvent. Then, vibration-vibration transfer pathways

between solute and solvent eventually become important [29]. A molecular dynamics (MD)

simulation for the solvent molecules in the vicinity of the reactants may provide numerical

solutions for such a many-body problem [36].

1.3 Discrete and continuum models of solvation

Albeit MD simulations recover with high accuracy dynamical processes such as reaction

rates of dissolved reactants, the simulation effort increases with the number of solvent

molecules taken into account. The main ingredients here are the forces modifying the

positions of the individual solvent molecules. In most cases, one uses simple force-field

representations of molecular features, such as harmonic spring forces for bond lengths

and angles or the Coulomb law for van der Waals or electrostatic interactions. Once

the effective forces acting on the individual atom are obtained, mostly, classical Newton’s

equation is applied to calculate accelerations and velocities to iteratively update the atom

positions. The integration of movements is done numerically where the individual time

steps normally rank between 1 and 3 fs for MD simulations. Biological or chemical processes

up to microseconds require iteration over 109 calculation cycles [37]. Yet, MD simulations

remain essentially a description on the classical level.

One effective way to incorporate quantum mechanical effects are continuum solvation

models. In an enormously complex network of interactions that characterizes the liquid, one

may obtain dynamical information of a subsystem by simply focusing on the component of

interest, the solute, while treating the rest as responsive continuum medium, the solvent. In

1936, Lars Onsager was the first who has effectively described the polarization of the solvent

as back action on the solute dipole moment by means of a fluctuating force field, the reaction

field [38]. His concept of molecular dipole moments acting on the continuum dipolar

solvent with a resulting back action opened up the way to describe the solute dynamics

quantum mechanically, e.g., as a two level system with distinct dipole moments for the

ground and excited states [39, 40]. As a result, the vacuum Hamiltonian of the isolated

molecular system becomes an effective Hamiltonian, where the solute-solvent interaction

and the solvent Hamiltonian are taken into account according to the approach in terms of a

system-bath model. Since the polarization of the solvent is induced by the solute while the

solute is subsequently polarized by the solvent, an iterative self-consistent field approach
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represents the solution of such a problem which is an often used quantum mechanical

method [40]. This implicit sampling of the solvent relies on macroscopic properties, such

as the dielectric permittivity and the refractive index of the solvent, which furthermore

take into account long-range electrostatic interactions and polarization effects. These are

often neglected in discrete MD approaches [40].

1.4 Nonequilibrium quantum solvation and irreversible

time-dependent phenomena

The main focus of this thesis is to study nonequilibrium quantum solvation and irreversible

as well as non-stationary time-dependent phenomena. The relevant time dependence in

continuum models is contained in the frequency dependent dielectric function ε(ω) of the

solvent where information on the precise functional form is known experimentally or from

effective models such as the Debye [41] or the Drude [42] model. With ε(ω) and a suitable

Fourier transform, one obtains a time-dependent polarization by exploiting the theory

of linear response [20]. Within the framework of a continuum model, a separation of

the solvent response into a fast, mostly associated with electronic motion, and a slow

contribution, due to nuclear and molecular motion, is commonly performed. The slow

delays of solvent polarization upon fast changes in the structure or in the electronic charge

distribution are then used to simulate the solvation dynamics. These nonequilibrium effects

are used to describe chemical reaction dynamics in a condensed environment, electron-

transfer processes [43, 44] or (non-linear) vibrational spectroscopies [45, 46]. In all these

models, the relaxation process of the solvent polarization is not completely coupled to

the source of relaxation, i.e., the charge transfer or energy absorption, but, instead, is

activated by such a source [40] and thus is based on linear response theory. The solvent

then freely relaxes according to the functional form of ε(ω) and its corresponding time-

dependent characteristics follow in linear response theory a time translation symmetry

reflecting stationarity. A model extension away from solvent equilibrium requires that the

relaxation of the system (the source of nonequilibrium) and the solvent are coupled from

the initial moment to the final re-equilibration such that non-stationary effects in time are

encountered [40].



6 1. Introduction

1.5 Aim of the thesis

Modern picosecond and femtosecond resolved X-ray spectroscopy provides an experimen-

tal tool to reveal solute-induced changes of water structure such as the hydrogen-bond

strength, the tetrahedral order, or the presence of dangling (non-hydrogen-bonded) OH

groups in the hydration shell of the solute [47, 48, 49]. In this case, the continuum model

alone is limited and has to be adapted to recover possible time-dependent anisotropies

in solute-solvent interactions. Hence, the configuration departs from thermal equilibrium

and the solvent becomes a true nonequilibrium entity. Here, chemical intuition or prelimi-

nary MD simulations may help to follow the real-time geometrical structure changes of the

solvent around the solute. From largely adiabatic simulations, one may extract some repre-

sentative configurations within the first layer of the hydration shell(s) and exploit them to

quantum mechanically model the molecule combined with a continuum description of the

solvent that takes into account bulk and longer-range effects [47]. Phenomenological con-

tinuum models using molecular cavities like the Onsager model [38] can then be adjusted to

describe evolving non-stationary polarization effects in given spatial regions of the solvent.

This concept is followed within the first part the thesis. We shall use a continuum model of

a polar solvent hosting a solute described by an Onsager-type geometric cavity. Structural

changes in the solvent are included in time-dependent changes of geometrical properties

of the solute cavity, e.g., its radius, its solvation shell layer. An externally provided time

protocol will be used to mimic a dynamic environment. Then, the time-dependent relax-

ation and absorption properties in this nonequilibrium solvent will be determined, leading

to clear signatures of the dynamic solvent which become measurable via physical observ-

ables associated to the solute. This realizes a time-dependent observation of dynamical

solvent properties by considering dynamical information of the solute alone. This is newly

established and will be studied in detail in the first part of this thesis.

Chemical reaction in an equilibrium solution is well studied and the first theoretical

treatment of the dynamic influence of the solvent on an activated reaction stems from

Kramers in 1940 [50]. He found that the solvent dynamics may lead to a breakdown of the

reaction rate of reactants in chemical equilibrium covered by the conventional transition

state theory in two distinct ways [51]. First, solvent collisions with the reactants may

lead to a recrossing of the reaction barrier and may, in the extreme case, turn into a

diffusive passage over the barrier. By exploiting the model of a Brownian motion (Langevin

and Fokker-Planck equations) for the solvent, Kramers has introduced a damping force

experienced by the reacting particles which interact with the solvent. For large damping
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the reaction rate is strongly reduced. The damping is often associated with the viscosity

of the solvent by exploiting a hydrodynamic argument of Stokes’ law[52]. In a second way,

for sufficiently low friction and mostly at low pressure, a system-solvent energy transfer

is required for reactive activation, and, thus, the reaction rate grows with friction. The

regime of low friction is observed in isomerization reactions or unimolecular processes,

whereas the high-friction limit is valid for most processes where atoms are transferred

between reactant and product states [28]. This theory can be extended to metal-molecule-

metal junctions in solution, such that solvent features can be read of from the charge

current and its fluctuations through the molecular bridge. In the simplest model, when

the molecule supports only one electronic site, this site may be successively occupied and

de-occupied as an electron hops between the metal and the molecule. Every hopping is

accompanied by solvent relaxation due to a change of the charging state of the molecule

and, thus, due to a change of the polarization state of the solvent. In the most prominent

Marcus electron transfer theory [43, 44] the solvent fully relaxes before a new event occurs.

In this case, only equilibrium fluctuations of the solvent polarization affect the charge on

the molecule. When solvent relaxation happens on a finite time scale, successive electron

hopping events are highly correlated in time and the Marcus theory has to be extended to

the realm of nonequilibrium fluctuations. Such a generalization of the Marcus theory to

nonequilibrium is the main focus of the second part of this thesis.

1.6 Structure of this thesis

This implies the following structure of the thesis: In Chapter 2, I establish the basic and

the conceptual ideas of open quantum systems to study the energy absorption and charge

transfer in molecules in a highly fluctuating solvent. Therefore, I investigate the time

evolution of relevant system degrees of freedom such as the molecular dipole moment. I

start with the derivation of the quantum Langevin equation from a microscopic model

in Sec. 2.1 to obtain an equation of motion for the relevant system variable. To further

specify the environmental solvent, I continue in Sec. 2.2 with a description of continuum

solvation models and exploit dielectric properties such as the dielectric constants and re-

laxation properties related to the underlying molecular characteristics of the solvent. I

briefly recapitulate a molecular system coupled to the electromagnetic field in Sec. 2.3 to

link important relaxation and absorption properties of the molecule determined in linear

spectroscopy, e.g. the absorption coefficient, to the solvent characteristics. In Sec. 2.4,
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I review the spin-boson model to describe the electron transfer in polar solution. In the

nonadiabatic regime, important dielectric properties are related to a characteristic spectral

density of the bath to describe the solvent mediated electron transfer.

In Chapter 3, I formulate a novel nonequilibrium theory for time-irreversible changes of

the geometrical structure of the solute or solvent. I extend the cavity model of Onsager in

Sec. 3.1 to describe a molecule in solution. In Sec. 3.2, a theory of nonequilibrium quantum

solvation based on the Onsager model is formulated in which geometric parameters of the

solvent are explicitly depending on time. The relaxation and absorption properties of a

test molecular point dipole in a dielectric solvent is used to reveal the solvent dynamics

for two cases: a shrinking Onsager sphere, and a breathing Onsager sphere. The idea of

the shrinking sphere is used in Sec. 3.3 to develop a model for a bimodal behavior in the

time-dependent fluorescence Stokes shift. In Sec. 3.4, I address the dynamic build-up of the

hydration shell around a hydrophobic solute on the basis of this time-dependent dielectric

continuum model. Interestingly, it turns out that the build-up of the hydration shell can

be revealed by a time-dependent Stokes’ shift of the solute’s absorption spectrum.

In Chapter 4, I consider the effect of a finite solvent-induced relaxation on the ’hopping’

conduction in molecular junctions, which goes beyond the standard treatments of trans-

port in solvated molecular junctions that rely on equilibrium Marcus theory. I develop a

generalization of Marcus theory to nonequilibrium.

Furthermore, I predict an effective way to suitably tune the solvent relaxation and,

hence, the current as well as its correlation, by changing the dielectric properties of the

solvent in strong geometrical confinements on the nanoscale. Strong surface effects of

nanostructured solvent channels strongly modify the relaxation properties of a bulk solvent,

opening the way to control relaxation and dephasing rates by geometric means.

Chapter 5 concludes the thesis and provides an outlook. Three Appendices A, B and

C are included.



Chapter 2

Theory of nonequilibrium quantum

dynamics in a continuous solvent

Energy absorption and charge transfer in a molecule dissolved in a dynamical solvent with

many degrees of freedom portray prominent quantum dynamical processes. Externally

imposed photons or electrons, e.g. by a light source or by a bias voltage, drive the molecule-

solvent system out of its initial thermally equilibrated state which, on the one hand, lead to

charge and energy redistribution of the molecule itself, but, on the other hand, also induce

a solvent reorganization. The latter has to adapt to the varying energy or charge state of

the molecule, and consequently, strongly acts back on the molecule and alters its energy

and charge states. Thus, the solvent dynamics influences energy relaxation properties of

the dissolved molecule and changes its charge transfer abilities.

To study energy absorption and charge transfer in such enormous open quantum sys-

tems, one utilizes the framework of quantum statistical mechanics for many-body systems

to understand the origin of macroscopic irreversible behavior, such as energy dissipation,

resulting from the underlying microscopic process of many individual interacting particles

[17]. It arises the idea to reduce the many-body system into a (sub-)system of interest, the

molecule or solute, which interacts with an environment, the solvent [12]. This concept

may be translated into a simple formal expression where the whole system is partitioned

into three parts: the system or solute, the environment or solvent and their interaction.

Thus, the Hamiltonian reads on the lines of the system-bath formalism

H(q, r) = HS(q) +HB(r) +HI(q, r), (2.1)
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where q and r describe the degrees of freedom of the solute and the individual solvent

molecules, respectively, e.g. their position or angle of distortion. Having such a model

at hand, one wants now to understand the microscopic origin of relaxation dynamics of a

specific system observable, e.g. the molecular dipole moment to study molecular energy

absorption. These system-plus-bath models allow a full quantum mechanical treatment as,

despite its complexity in detail, the total given Hamiltonian H of Eq. (2.1) determines the

dynamical process. In general, the time evolution of closed systems with finite degrees of

freedom, such as usually described by HS, can be solved by unitary operations acting on the

the system. For open systems with ’infinite’ many degrees of freedom, the dynamics of the

system cannot by accurately described using unitary operators alone due to the interactions

between the system and its environment [26]. Refs. [21, 22, 23], as some examples of many

for energy absorption and electron transfer dynamics of the system, introduce quantum

master equations for distinct observables, while, e.g. Refs. [24, 6] exploit exact numerical

techniques to include memory effects of the solvent related to strong molecule-solvent

correlations for system-plus-bath models.

In this context, the general concept of continuum solvation models to determine the

time evolution of the system is to preserve the accurate description of the central solute, or

at least parts of it, e.g. a distinct electronic transition, and to reduce the degrees of freedom

of the large solvent molecular assembly by means of a continuous dielectric description.

There is a large variety of many-body systems for which such a reduction may be profitably

used. The single solute molecule in a dilute solvent is just one example of many ones, which

may be also a defect inside a crystal, an active part of an enzyme or a a single molecule

in a pure gas [53]. The reduction procedures exploit, for example, projection operator

techniques to relevant observables and thermal averaging of the remaining solvent degrees

of freedom [17]. The resulting continuous polar solvent imposes a fluctuating environment

and responds electrodynamically to the charging or energy state of the central solute.

Thus, the dynamics of the system observable of interest can be determined in terms of a

generalized (quantum) Langevin equation for the motion [17, 26]. The damped (quantum)

mechanical harmonic oscillator is the simplest model of a dissipative quantum system

[54, 4, 26]. A central harmonic oscillator is coupled linearly via its displacement q to the

fluctuating coordinates of a dynamical bath of harmonic oscillators. After formulating the

equation of motion for the displacement q, or for another relevant system observable in

the quantum case, one can study its relaxation dynamics which is fully described by the

spectral density J(ω). The spectral function covers the coupling to each individual bath



2.1 System-bath model 11

mode and bears all collective influence of the harmonic bath on the system, such as energy

relaxation or dephasing of initially fixed system’s quantum phase relations. To obtain the

spectral density for continuum solvation models, one may consider a generic molecular

two-level system interacting electrodynamically with a huge collection of solvent modes

which are eventually related to a continuous solvent. Thereafter, dielectric properties and

solvent relaxation times enter in the spectral description for the bath (see Sec. 2.4). The

resulting theoretical framework is based on the spin-boson model which has become one

of the central models of theoretical physics with applications in chemistry and biology

[31]. Caldeira and Leggett were among the first who applied this model to study quantum

mechanical tunneling in macroscopic systems [4, 55].

The aim of the present chapter is to establish the important theoretical framework for

solute dynamics embedded in a continuous and mostly stationary solvent by exploiting the

continuum model of solvation which is later utilized and extended towards non-stationary

changes of solute/solvent configurations for energy absorption in Chapter 3 and for charge

transfer in Chapter 4. In Section 2.1, the system-bath model is revisited to derive the gener-

alized quantum Langevin equation for observables whose dynamics can be used for energy

absorption and charge transfer processes. Section 2.2 revisits the electrostatic descrip-

tion of the continuum model of the solvent to connect macroscopic dielectric properties

to its molecular origins of solvent fluctuations. Section 2.3 focuses on linear absorption

spectroscopy of light by using the Hamiltonian of minimal coupling Hamiltonian of the

molecular system to the radiation field. In Section 2.4, the spin-boson model is reviewed

to describe charge transfer processes in solution. Finally, I show how a spectral density

relies on dielectric properties.

2.1 System-bath model

The aim of the system-bath model is to achieve a generalized equation of motion for a

system observable of particular interest.

In this model, the quantum system is realized by a particle of mass M moving in a

potential V (q) with the position operator q as the relevant degree of freedom 1. The

system Hamiltonian reads,

HS =
p2

2M
+ V (q), (2.2)

1The presentation essentially follows Refs. [26, 31].
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where p is the momentum operator. The huge environment is represented by a bath

of N independent harmonic oscillators of mass mα with displacement operators xα and

momentum operators pα. The bath and system-bath interaction Hamiltonian reads

HB +HI =
N∑
α

(
p2
α

2mα

+
1

2
mαω

2
α(xα −

cα
mαω2

α

q)2

)
, (2.3)

where the interaction appears via a bi-linear coupling term q
∑

α cαxα with the coupling

constants cα to the individual oscillators. This coupling represents the first term in the

expansion of a general interaction VI(q,x1, ...,xN) = VI(q0)+VI(x
N
0 )+ 1

2

∑
α kα(q−q0)(xα−

xα,0) between the system and the bath displacements, where the notation xN = (x1, ...,xN)

is used and where the coupling constant is kα = (∂2V/∂q∂xα)|q0,xα,0 = 2cα. One sets

q0 = xN0 = 0 and VI(q0) = VI(x
N
0 ) = 0 in the following discussion. The counter term∑

α
c2αq

2

2mαω2
α

in the Hamiltonian of Eq. (2.3) has the effect that the minimum of the total

potential experienced by the particle at any displacement q in q-direction remains at the

minimum of V (q). The quantum mechanical equations of motion in the Heisenberg picture

for the system and bath operators are

q̈ = − 1

M

∂

∂q
V (q)− 1

M

N∑
α

cα

(
cα

mαω2
α

q− xα

)
, (2.4)

and

ẍα = −ω2
αxα +

cα
mα

q. (2.5)

The dynamical equation (2.5) for the oscillator displacement operator xα(t) is an ordinary

second order linear differential equation with inhomogeneity cα/mαq(t). This equation is

solved by standard Green function techniques. The solution evolving from the initial values

x
(0)
α and p

(0)
α at t0 = 0 reads

xα(t) = x(0)
α cos[ωαt] +

p
(0)
α

mαωα
sin[ωαt] +

cα
mαωα

∫ t

0

dt′ sin[ωα(t− t′)]q(t′). (2.6)

Integrating the last term by parts, one obtains a functional of the particle’s velocity q̇(t)
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and position q(t) in the form

xα(t) =x(0)
α cos[ωαt] +

p
(0)
α

mαωα
sin[ωαt] (2.7)

+
cα

mαω2
α

(
q(t)− cos[ωαt]q(0)−

∫ t

0

dt′ cos[ωα(t− t′)]q̇(t′)

)
.

One can now eliminate the bath degrees of freedom by inserting Eq. (2.7) into Eq. (2.4).

The equation of motion for q(t) alone follows as

M q̈(t) +M

∫ t

0

dt′γ(t− t′)q̇(t′) +
∂

∂q
V (q) = ξ(t). (2.8)

This equation for the dynamics of q(t) is the generalized quantum Langevin equation

where the interaction with the environmental bath appears via a memory-friction, second

term of Eq. (2.8), and a random external force ξ(t). To this end one introduces the

memory-friction kernel

γ(t) = Θ(t)
1

M

∑
α

c2
α

mαω2
α

cos[ωαt], (2.9)

and the external force term

ξ(t) =
∑
α

cα

([
x(0)
α −

cα
mαω2

α

q(0)

]
cos[ωαt] +

p
(0)
α

mαωα
sin[ωαt]

)
. (2.10)

The equation of motion (2.8) is an integro-differential equation in which the environ-

ment affects the system non-instantaneously by a memory function γ(t−t′) at time t−t′ of

the past interaction between them producing in general a non-Markovian dynamics. The

Markovian limit is obtained when this kernel is instantaneous, i.e., γ(t− t′) = 2γδ(t− t′).
This term induces friction for the position operator q.

The external force represents a stochastic force that acts on q and conveys energy

absorption and emission of single quanta ~ωα into and from the environment. Coming

from the microscopic picture, the stochastic nature roots in the lack of information of

initial values of x̄
(0)
α = x

(0)
α − cα

mαω2
α
q(0) and p

(0)
α . As one assumes the bath in thermal

equilibrium at initial time, one samples their momenta and position out of an equilibrium
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Boltzmann distribution. Their statistics satisfies 2

〈x̄(0)
α 〉ρ(0)

B
= 〈p(0)

α 〉ρ(0)
B

= 0; (2.11)

2mαωα〈x̄(0)
α x̄

(0)
β 〉ρ(0)

B
=

2

mαωα
〈p(0)

α p
(0)
β 〉ρ(0)

B
= ~[1 + 2n(ωα)]δαβ,

where n(ωα) = [exp(β~ωα)− 1]−1 is the single-particle Bose distribution.

With this relation at hand, one finds for the mean force 〈ξ(t)〉
ρ

(0)
B

= 0 and for the

force-force or environment auto-correlation function (for t > s)

〈ξ(t)ξ(s)〉
ρ

(0)
B

= ~
N∑
α

c2
α

2mαωα

[
coth[β~ωα/2] cos[ωα(t− s)]− i sin[ωα(t− s)]

]
. (2.12)

If the number N of bath oscillators is large, the Poincaré recurrence time exceeds all

relevant time scales of the system. Thus, one may replace the sum over the discrete bath

modes by a frequency integral by introducing a spectral density

J(ω) = π
N∑
α

c2
α

2mαωα
δ(ω − ωα), (2.13)

such that one obtains

〈ξ(t)ξ(s)〉
ρ

(0)
B

=
~
π

∫ ∞
0

dωJ(ω)

[
coth[β~ω/2] cos[ω(t− s)]− i sin[ω(t− s)]

]
(2.14)

and

γ(t) =
2

πM

∫ ∞
0

dω
J(ω)

ω
cos[ωt]. (2.15)

In the classical limit kBT � ~ω the environmental correlation function (Eq. (2.14)) be-

comes 〈ξ(t)ξ(s)〉
ρ

(0)
B

= MkBTγ(t− s) such that the quantum Langevin equation becomes

formally the classical one.

The relaxation induced by the environment is entirely determined by the properties of

2The canonical distribution of the shifted bath oscillators in equilibrium reads

ρ
(0)
B = Z−1 exp

(
− β

∑
α

[
p(0)2

α

2mα
+

mαω
2
α

2 x̄
(0)2
α

])
, where Z is the partition function and β−1 = kBT .
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the spectral density (Eq. (2.13)). An Ohmic bath is described by

J(ω) = ηωe−ω/ωc , (2.16)

such that Eq. (2.15) becomes

γ(t) =
2η

πM

1/ωc
(1/ωc)2 + t2

, (2.17)

where ωc is a cutoff frequency beyond which the density of states in the environment drops

rapidly. If ones defines the constant η = γM and chooses a short memory time τmem =

π/(2ωc) → 0, the memory-friction kernel in Eq. (2.15) becomes Markovian γ(t) = 2γδ(t).

Thus, the force-force auto-correlation (Eq. (2.12)) in the classical Markovian regime reads

〈ξ(t)ξ(s)〉
ρ

(0)
B

= 2MγkBTδ(t− s). Markovianity requires that the bath relaxes fast relative

to the system, which is realized when ωc is chosen larger than all relevant system frequencies

or energy spacing.

2.2 Continuum model of the solvent

In the previous section a generalized Langevin equation for the dynamics of a relevant

system observable, e.g. q(t) in Eq. (2.8), is formulated. All relevant impact of the solvent

on the system observable enters via the non-Markovian friction term
∫ t

0
dt′γ(t − t′)q̇(t)

and the random force ξ(t). In performing the thermal average for the initial positions

and momenta in Eq. (2.12) for the bath oscillators, one continues with a coarse-grained

description of the bath. In such a continuum approach individual solvent molecules are

described by their collective action on the system. It is of great interest in system-solvent

models to compare the time scales of the system or solute variable of interest to that one

of the solvent. Characteristic timescales in molecular systems with electronic processes are

around 10−15 − 10−16s, 10−14 − 10−15s for vibrational motions and > 10−12s for rotations,

librations and center of mass motion [56, 31]. A typical timescale for solvent relaxation,

e.g. for water bulk water at room temperature, is about τ = 8.2ps [39, 57]. Obviously this

timescale is longer than characteristic electronic or vibrational motions in the solute and

clearly hints a non-Markovian treatment in formulating the relevant Langevin equation

since past solvent configurations influences the momentary dynamics of the solute. In

the limit where the solvent relaxation is short relative to the characteristic system time,

e.g. time scale for rotational motion of the solute or nonadiabatic charge transfer (see
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Subsec. 2.4.3), the solvent response is instantaneous and expressed by a constant damping

coefficient and by a white-noise character of the random force, a signature of Markovianity.

The idea now arises to formulate an effective Hamiltonian for continuous models of

solvation which leads to a generalized Langevin-type equation for the relevant observ-

able for the non-Markovian limit. We introduce an appropriate solvent response function

Q(x,x′; t, t′) in the solute-solvent interaction term to effectively describe the solvent ac-

tion on the system. x and x′ represent two individual vectors, pointing in the continuous

solvent, which are correlated. Together with t and t′, describing the correlation between

solvent events at different times, we gain dynamical information of the coarse-grained and

continuous solvent. The effective Hamiltonian then reads

Heff (q,x) = HS(q) +HI(q, Q(x,x′; t, t′)). (2.18)

Here, we neglect the solvent Hamiltonian HB of Eq. (2.1) as we are only interested in its

action on the system and the system dynamics itself. The introduced response function

or susceptibility is related to the introduced spectral density of Eq. (2.13) for a stationary

process in time via the identity J(ω) ∝ Im[Q(ω)] and is independent of the position x for a

homogeneous and isotropic solvent [26] (see further details in the following Subsec. 2.2.1).

A spectral density for an continuous solvent will be studied and formulated in greater detail

by means of electrostatics in Sec. 2.4.

This section revisits basic electrostatic descriptions of a continuous solvent coming from

its ’atomistic’ nature. In Subsec. 2.2.1, I derive an appropriate response function for a

continuous dielectric medium to an applied external electric field which may be associated

to charge distortion described by the solute coordinate q. In Subsec. 2.2.2, the time scales

and origins of the nonequilibrium dynamic response of the solvent are reviewed. Finally,

a dielectric description for a continuous solvent based on the molecular polarizability is

presented in Subsec. 2.2.3.

2.2.1 Electrostatics in continuous dielectric solvents

We determine the response function of a solvent described by an continuous dielectric

medium to a test charge [58]. To this end, we consider a solvent in a box whose dimension

is such that all effects induced by solvent-wall interaction can be neglected. We place a

small test charge (density) in the center of the solvent box at the position x and and ask

for the electric field at this point which is created by all other charges in the material. The
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total solvent box is assumed charge-neutral neglecting the small test charge. The charge

distribution for the m-th solvent molecule reads

ρm(x) = −e
N

(m)
el∑
j=1

δ(r
(m)
j − x) + e

N
(m)
nuc∑
n=1

z(m)
n δ(R(m)

n − x), (2.19)

where the first term describes the electrons of elementary charge −e and the second term

the nucleons of charge e or zero counted by z
(m)
n = 0; 1. m is the index of the respec-

tive molecule. Using stationary Maxwell’s equation, one obtains the scalar electrostatic

potential from the Poisson equation ∆Φ(x) = −4πρ(x) in the form (we use cgs-units)

Φ(x) =

∫
d3x′

ρ(x′)

|x− x′|
, (2.20)

where the electric field E(x) = −∇Φ(x) is induced by the complete molecular charge

distribution ρ(x) =
∑

m ρm(x) at the point x of our test charge.

It is often more relevant to determine the macroscopic electric field as average over

the individual microscopic molecular contributions. This averaging is equivalent to the

elimination of the short range of the electric field expressions from the individual solvent

molecules. We further discuss individual molecular contributions to the electric field in

the following Subsec. 2.2.3. To this end, one divides the macroscopic solvent volume into

smaller volumes ∆V (xs) that still contain a large number of molecules, where the vector

xs points to the s-th volume element. Since we are only interested in the long-range

contributions of the charges located in ∆V (xs) to the potential, we perform a multipole

expansion up to the dipole contribution for a vector x far away xs. By expanding the term

|x − xs − (x′ − xs)|−1 ≈ |x − xs|−1 − (x′ − xs)∇x|x − xs|−1 with respect to x′ − xs the

potential reads

Φ(x) =
∑
s

1

|x− xs|

∫
∆V (xs)

d3x′ρ(x′) +

∫
∆V (xs)

d3x′(x′ − xs)ρ(x′)
x− xs
|x− xs|3

(2.21)

=
∑
s

1

|x− xs|

∫
∆V (xs)

d3x′ρ(x′) + ds
x− xs
|x− xs|3

.

The first term is the monopole term, which is assumed to be zero, since the solvent contains

no free charges disregarding the small test charge. The second term is the dipole term by

introducing the dipole moment ds =
∫

∆V (xs)
d3x′(x′ − xs)ρ(x′) of the volume element

∆V (xs). Higher-order multipole moments are assumed to be small compared to the dipole
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term. The dipole moment ds of the small volume may be traced back to the individual

molecular dipole moments ds =
∑

m∈∆V (xs)
dm =

∑
m

∫
d3x′x′ρm(x′). We note that not

all molecules such as H2 our CCl4 have a permanent dipole moment. However, once an

external electric field is applied, the molecular charge density can be distorted and an

dipole moment is induced. Other molecules, e.g. H2O or NH3, have permanent dipole

moments and form polar dielectrics [58].

Regarding the effective Hamiltonian approach of Eq. (2.18), the aim is to reduce the

degrees of the individual solvent molecules (or subunits of collection of them) discretized by

the vector xs of the volume ∆V (xs) to a continuous description. To this end, we introduce

the coarse-grained dipole density or the polarization by P(xs) = ds/∆V (xs), such that the

sum of the second term of the potential of Eq. (2.21) can be replaced by an integral over

the system volume, i.e.,

ΦP (x) =
∑
s

ds
x− xs
|x− xs|3

≈
∫
d3x′P(x′)

x− x′

|x− x′|3
(2.22)

=

∫
d3x′P(x′)∇x′

1

|x− x′|
= −

∫
d3x′
∇x′P(x′)

|x− x′|
.

The resulting electric field in the solvent obeys the relation ∇E(x) = 4πρP (x) and is

induced by the polarization charge density ρP (x) = −∇P(x) of the solvent.

So far, we have discussed how a given polarization charge density ρP (x) within the

solvent results in an electric field. We now come back to the initial idea of the effective

Hamiltonian of Eq. (2.18) for the solute, where we have reduced the solute-solvent interac-

tion by means of the response function Q(x,x′; t, t′) of the solvent to the solute degrees of

freedom. To this end, we may ask how an external electric field, e.g., induced by the charge

displacement q of the solute (cf. Chapter 3), leads to a change of the charge distribution

in the solvent, characterized in terms of its polarization.

In general, the answer to this question is that the polarization of the solvent is a

complicated functional of the acting electric field, P = P[E]. For a weak perturbation of

the solvent due to the external field, a linear relation between the electric field and the

polarization is justified in the form

P(x, t) =

∫
dx′
∫
dt′χ(x,x′; t, t′)E(x′, t′). (2.23)

Here, χ is the tensor of electric susceptibility, because the direction of P can differ from
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that of the electric field E. For an isotropic solvent, P and E are parallel and χ = χI
where χ is a scalar and I is the unit tensor. The dependence of χ(x,x′; t, t′) on time and

position dependence reflects the fact that an applied field at some position at some time

may cause a response at another position at a later time [31]. In a homogeneous and

stationary solvent, χ(x,x′; t, t′) = χ(x − x′; t − t′) and the susceptibility depends only

on position and time differences. For a local susceptibility in time and position and an

isotropic solvent, we even have that χ(x − x′; t − t′) = χδ(x − x′)δ(t − t′), which implies

P = χE. We assume that the electric field in the solvent results from an externally

controlled charge density ρex(x), e.g. from a solute molecule, an the polarization charge

density of the solvent ρP (x). Therefore, the relation for the overall electric field in the

solvent ∇E(x) = 4π(ρex(x) + ρP (x)) holds. The dielectric displacement field, which obeys

∇D(x) = 4πρex(x) and where D = E + 4πP, may be interpreted as the external field

induced by ρex(x). For vacuum and, hence, in absence of the polarizable solvent D = E.

With the definition of the (local) dielectric constant ε = 1 + 4πχ, one can write the

relation D = E + 4πP as E = ε−1D. In dielectric media, ε > 1 holds such that the electric

field E inside the solvent is smaller than the applied field outside the solvent which we

identify the dielectric displacement vector D [58]. This reduction of the field is a clear

signature of the polarization of the solvent. The electric susceptibility χ for molecules is

further revisited in Subsec. 2.2.3.

2.2.2 Dynamic response of the polarization

One key feature of interest is to describe nonequilibrium or time-dependent processes, when

the dynamics of the solvent, characterized by the stationary response Q(t−t′) (see effective

Hamiltonian of Eq. (2.18) for a response local in space), occurs on the same timescale as

the dynamics of the solute described by its coordinate q in a non-Markovian way. If the

charge distribution of the solute varies appreciably during a time period, the response of

the microscopic solvent particles, i.e., molecules, atoms or electrons, will not be sufficiently

rapid to build up a new equilibrium polarization, such that the actual polarization P of

the continuous solvent will lag behind the changing charge distribution of the solute [53].

For an isotropic and homogeneous solvent which is local in position, the polarizability α is

given according to the applied external field D = ε−1D + 4πP outside as

P(t) =
1

4π

∫ t

−∞
dt′[δ(t− t′)− ε−1(t− t′)]D(t′) ≡ 1

4π

∫ t

−∞
dt′α(t− t′)D(t′). (2.24)
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The assumption of locality is valid if the spatial variation of the actual external electric

field D(t) is small on the scale of atomic or molecular extensions inducing the polarization.

Causality requires that α(t) = 0 for t < 0. Carrying out a Fourier transform of Eq. (2.24),

we get P(ω) = α(ω)D(ω). Using the relation D(ω) = ε(ω)E(ω) (see Subsec. 2.2.1) we

obtain the polarizability

α(ω) =
1

4π
[1− ε−1(ω)]. (2.25)

For many realistic physical situations, it is reasonable to split the polarization P =

Pfast + Pslow into a fast and slow part. The fast part of the solvent response is associated

with the distortion of the molecular electronic charge distribution by the external field and

its typical response time τe is of the order 10−16s [53, 31]. This polarization may respond

to high-frequency external fields. The slow part is related to the orientational relaxation of

nuclei on a time scale τn ∼ 10−12s [53, 31]. Therefore, this term is more sensitive to electric

fields of lower frequencies. The separation of P into a high- and low-frequency part enters in

the Debye [41] dielectric relaxation function 2πε(t) = ε∞δ(t)+τ−1
D (εS−ε∞) exp[−t/τD]Θ(t)

or in Fourier space 3

ε(ω) =

[
ε∞ +

εs − ε∞
1 + iτDω

]
. (2.26)

In the high-frequency range (ω →∞), the dielectric function in Eq. (2.26) approaches

the value ε∞, whereas for very low frequencies (ω → 0) it goes to the static dielectric

constant εs. The intermediate, frequency-dependent range is characterized by the De-

bye relaxation time τD. Inserting an external monochromatic electric field D with a

low frequency ωex � τ−1
n in Eq. (2.25), the polarization P ≈ (4π)−1[1 − ε−1

s ]D follows.

For a high-frequency external D with ωex ∼ τ−1
e one can deduce the fast polarization

Pfast = (4π)−1[1− ε−1
∞ ]D. Since the resulting P contains also the fast electronic contribu-

tion, the slow orientational polarization alone is Pslow = P−Pfast = (4π)−1[ε−1
∞ − ε−1

s ]D.

This decomposition of the response function into two terms goes back to Pekar and Mar-

cus, such that the resulting polarizability for the slow orientational solvent relaxation,

cP = ε−1
∞ − ε−1

s , is named as Pekar factor [43]. For very fast processes, e.g. vertical

electronic transitions, only the electronic polarization will be involved, whereas for slower

processes, such as, e.g., the time-resolved fluorescence Stokes shift measurements, the com-

3The Fourier transform is defined by F [f(t)] =
∫∞
−∞ dt exp(iωt)f(t).
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plete solvent dynamic response, including induced and orientational polarization, will be

faced [59, 31].

2.2.3 Molecular polarizability

In this subsection, we further investigate the relationship between molecular properties of

the solvent and the macroscopic susceptibility χ (cf. Eq. (2.23)).

First, one distinguishes between the macroscopic electric field E and the actual near

field Ei which acts on the individual molecules in the solvent. In dilute solvents the

distance between the molecules is large enough that there is no further contribution to the

macroscopic electric field coming from the neighboring molecules, whereas in dense solvents

an internal field Ei acts on the individual molecules in addition to the macroscopic field

E in the solvent. To determine the internal field Ei, Lorentz proposed to first remove

the nearest neighbor molecules of a chosen central solvent molecule [60]. Afterwards one

lays a sphere around the molecule and calculates the electric field EP which arises from

the polarization of the surrounding medium which is now assumed to be a continuous

dielectric solvent [60, 61]. One then determines the electric near field En arising from the

nearest neighboring molecules which one has removed. The calculated difference between

these two contribution gives rise to the actual internal field Ei = En − EP which acts on

the individual molecules. The polarization field is calculated from a volume integral [61]

to EP = −4πP/3, while P represents the polarization in the sphere. The field arising

from the neighboring atoms is found to cancel to zero, En = 0, due to symmetry of the

molecular cluster of nearest neighbors [60] 4. The total polarization P can be expressed by

the mean individual molecular dipole moment dm of N molecules and reads P = N〈dm〉.
The induced molecular dipole moment 〈dm〉 is proportional to the total electric field in the

solvent and reads 4π〈dm〉 = αm(E + Ei), where the molecular polarizability αm itself is

assumed to be independent of the field.

In combining the equations one obtains

4πP = Nαm

(
E +

4π

3
P

)
, (2.27)

where we have assumed En = 0. Using the relation P = χE/4π, the susceptibility of a

4Lorentz has calculated in [60] for illustration the electric field at the origin of a cube which stems from
parallel dipole moments located at the eight vertices. In some amorphous substances one may express the
near field contribution En in terms of the polarization P related via a traceless tensor sαβ .
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solvent follows as

χ =
Nαm

1− 1
3
Nαm

. (2.28)

This relation relates the susceptibility χ, a macroscopic parameter of the solvent, with the

molecular polarizability, a microscopic parameter. The dielectric constant ε, which relates

the electric field outside the solvent (dielectric displacement) D to that one inside the

solvent E via E = ε−1D, is connected to the susceptibility χ via ε = 1 + χ (by exploiting

Eqs. (2.23) and (2.25)) such that one obtains the Clausius-Mossotti relation

αm =
3

N

ε− 1

ε+ 2
. (2.29)

Mossotti (in 1850) and Clausius (in 1879) have independently found that the relation

(ε− 1)/(ε+ 2) is proportional to the density of the dielectric matter [62, 63]. This relation

holds mostly for gases and liquids with small dielectric constants whereas for liquids and

solids with large ε this relation holds only approximatively.

2.3 Molecular absorption spectroscopy

Laser absorption spectroscopy is a common technique to study the energy absorption of

molecular systems by means of its absorption spectrum. In this section, I investigate the

coupling of a molecular system to light, or more general, to the radiation field to enlighten

linear absorption properties when the system forms a continuous dielectric medium.

The minimal-coupling Hamiltonian of a molecular system with electrons and nuclei

interacting with the radiation field reads

H =
∑
u

1

2mu

[
pu −

qu
c

A(xu, t)

]2

+
1

2

∑
u6=v

quqv
|xu − xv|

+HR, (2.30)

where mu, qu, c, pu and xu are the mass, the charge, the speed of light in vacuum, the

momentum and position operator of the nuclei and electrons composing the molecular

system.5 The first term describe their coupling to the external vector field A(r, t) and

the kinetic energy while the second term of the Hamiltonian in Eq. (2.30) describes the

5I use cgs-units here.
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Coulomb interaction between the molecular constituents. The last term is the Hamiltonian

of the external radiation field. One usually neglects the fields induced by the motion of the

charges bound in the molecular system. Further, one disregards here molecule-molecule

interactions responsible for intermolecular charge and energy transfer.

The Hamiltonian of the external radiation field is given by

HR =
1

8π

∫
dr[E2(r) + B2(r)], (2.31)

where the external electric and magnetic field are defined by the vector potential A(r, t)

via

B(r, t) = ∇×A(r, t) (2.32)

E(r, t) = −1

c

∂A(r, t)

∂t
. (2.33)

The choice of the Coulomb gauge ∇A(r, t) = 0 makes the vector potential a transverse

field A(r, t) ≡ A⊥(r, t) with respect to its propagation. Due to the specific gauge the

external electric field E(r, t) ≡ E⊥(r, t) is transverse. One assumes that there are no free

charges which give rise to respective densities or currents, which would contribute to the

longitudinal electric field. The contribution of the external electric and magnetic field, HR,

in the Hamiltonian (Eq. (2.30)) is neglected as we are in this section specifically interested in

the molecule-field interaction. Another simplification arises by restricting the wavelength

of the external fields to exceed the spatial extension of the molecular system. Within

this long-wavelength approximation, the vector potential in Eq. (2.30) can be written as

A(Xm, t), where Xm represents a single specific point, e.g., the center of mass, of the m−th

molecule [58].

We next transform the Hamiltonian (Eq. (2.30)) by neglecting HR with the unitary

operator

D(t) = exp

[
− i

~c
∑
u

quxuA(Xm, t)

]
= exp

[
− i

~c
µmA(Xm, t)

]
, (2.34)

where µm =
∑

u quxu is the dipole operator associated to the m−th molecule. The trans-

formed Hamiltonian for the electronic and nuclear coupling to the radiation field thus
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becomes

H̃(t) = D(t)HD†(t) + i~
(
∂D(t)

∂t

)
D†(t) =

∑
u

1

2mu

pu
2 +

1

2

∑
u6=v

quqv
|xu − xv|

− µmE(Xm, t).

(2.35)

Here one uses the transformed momentum operator D(t)puD
†(t) = pu + qu

c
A(Xm, t) and

i~
(
∂D(t)
∂t

)
D†(t) = 1

c
µm

∂A(r,t)
∂t

= −µmE(Xm, t) together with Eq. (2.33). The resulting

Hamiltonian (2.35) reproduces with its two first terms the molecular Hamiltonian, while

its last term µmE(Xm, t) represents the interaction of the molecular dipole moment µm

of molecule m with the electric field at the specifically chosen point Xm. We note that

the radiation-matter interaction term in the Hamiltonian of Eq. (2.30) may also contain a

higher-order term ∝ A2 which vanishes within the long-wavelength and after applying the

unitary transformation.

In order to obtain spectroscopic information of condensed phase situation beyond indi-

vidual molecules, we make several assumptions according to reference [58]:

(i) One neglects magnetization effects and effects leading to a magnetic field within the

medium, especially displacement currents.

(ii) The molecules forming the condensed medium are polarized as dipoles, while one

neglects higher order multipoles of the polarization.

(iii) One assumes no free charge and current in the medium.

(iv) One considers spectroscopic setups that probes macroscopic properties, i.e., elec-

tromagnetic fields of wavelengths longer than the individual molecular size.

For macroscopic spectroscopic information of the molecular assembly, an important

assumption is to only look at far field contributions of the electromagnetic field coming

from the sample. In terms of the experimental setup, the spectrometer is far away from

the illuminated sample. The key quantity is the polarization field P(x, t) generated by

the molecules in response to their interaction with the incoming electric field (see Subsec.

2.2.2). In doing so, we proceed as in Eq. (2.22) and consider a coarse-grained polarization

field of a small volume element ∆V , which still contains a sufficiently large number of

molecules. The applied field should vary only slightly on the length scale of this volume.

Each volume element ∆V (x) is labeled by the spatial vector x which is its center of mass.

It will become a continuous quantity when sums are considered. The resulting polarization



2.3 Molecular absorption spectroscopy 25

of the medium reads

P(x, t) =
1

∆V (x)

∑
m∈∆V

dm(t), (2.36)

where dm(t) is the time-dependent expectation value of one individual molecular dipole

moment according to dm(t) = tr{ρeqU †(t, t0)µmU(t, t0)} 6.

For the total Hamiltonian H(t) = Hmol +Hint(t), one uses the light-matter interaction

Hamiltonian derived in Eq. (2.35) and sum over individual molecular contributions

Hint(t) = −
∑
m

E(Xm, t)µm. (2.37)

For an ensemble of identical molecules with ∆V (x) one may replace the summation over

the individual molecular dipole moments in Eq. (2.36) by an effective dipole moment at x

multiplied by the volume density nmol of the molecules in the sample volume [58], i.e.,

P(x, t) = nmold(x, t). (2.38)

We then consider the light absorption of the collectivity of individual dipoles represented

by P.

By using Maxwell’s equations for dielectric media, using the relation D = E+4πP and

the assumption of vanishing free charges and currents and a nonmagnetic material, one

obtains a closed equation for the electric field and the polarization according to

[
∂2

∂t2
− c2∆

]
E = −4π

∂2

∂t2
P[E]. (2.39)

To determine the functional P[E], we use the sum over the resulting time-dependent ex-

pectation values for the individual molecular dipole moments as given in Eq. (2.36). The

speed of light in vacuum is c =
√
µ−1

0 ε−1
0 .

If the polarization depends linearly on the external field P = χE (see Eq. (2.23) in

Subsec. 2.2.1), Eq. (2.39) can be solved by a plane wave ansatz. To be specific, we use

a dielectric platelet of thickness d in z-direction, while there are no geometric restrictions

6The initial equilibrium statistical operator in absence of the radiation field is ρeq = Z−1 exp[−βHmol],

where Z is the partition function and β−1 = kBT . U(t, t0) = T̂ exp
[
−i/~

∫ t
t0
dt′H(t)

]
is the time-evolution

operator with the time-ordering operator T̂ .
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in x- and y-direction. The monochromatic light is assumed to propagate along the z-

direction. Since one neglects reflecting boundary conditions for a thickness much larger

than the wavelength of the light in the platelet, d� λmed, one finds

E(z, t) = neiωt
[
Θ(−z)

[
E0e

ikvacz + ERe
−ikvacz

]
+ Θ(z)ET e

ikmedz

]
+ c.c., (2.40)

where we discriminate between the transmitted part in the medium with amplitude ET

and wave number kmed = ω
√
ε(ω)/c and the incoming field with amplitude E0 and the

reflected field ER in vacuum with wave number kvac = ω/c. n defines the polarization unit

vector and ε(ω) is the complex frequency dependent dielectric constant (cf. Eq. 2.26 in

Subsec. 2.2).

The absorption is defined as the decay of the field intensity inside the medium and,

thus, determined by the imaginary part of kmed. According to Beer’s law I(z) = I(0)e−az,

where I(z) = |E(z)|2, the absorption coefficient is frequency dependent and reads a(ω) =

2ω Im[
√
ε(ω)]/c. After inserting the electric field of Eq. (2.40) together with relation

P = χE in Eq. (2.39), one finds the relation
√
ε(ω) =

√
1 + 4π[Re[χ(ω)] + i Im[χ(ω)]] =

n(ω) + iκ(ω). Therefore, Im[
√
ε(ω)] = κ(ω) = 2π Im[χ(ω)]/n(ω) where n(ω) = Re[

√
ε(ω)]

is the frequency dependent index of refraction. The absorption coefficient reads

a(ω) =
4πω

n(ω)c
Im[χ(ω)], (2.41)

which is proportional to the imaginary part of the susceptibility. Moreover, in most cases

n2 � κ2, such that the index of refraction is n(ω) =
√

1 + 4πRe[χ(ω)].

The actual frequency dependence of the dielectric susceptibility χ(ω) is strongly deter-

mined by the geometry of the dielectric medium and the molecular system as well as the

underlying model under investigation. The absorption may also strongly depend on time

according to time-dependent varying molecular assembly inside the medium (cf. Chapter

3).

2.4 Electron transfer processes in solution

Electron transfer (ET) is the basis the most chemical reaction processes. Chemical phe-

nomena ranging from photosynthesis to electrochemistry a governed by oxidation-reduction

processes where ET is involved in the essential steps for oxygen production or corrosion. A
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typical working definition of ET is a spontaneous charge redistribution between an initially

prepared state, the donor state, and a specific product state, the acceptor state [58, 64, 65].

The transferred electron remains in a bound state with respect to the particular molecular

system and is not activated above the ionization threshold. During the ET the electronic

charge distribution and, hence, the internal electric field of the molecule is changed. This

may cause new equilibrium positions of the nuclei, and, in case the ET takes place in a

polarizable environment such as a polar solvent, may lead to polarization and a rearrange-

ment of the solvent molecules. This process may be seen as the motion of the electron

carrying along a polarization cloud [58, 64, 65]. Typical vacuum molecular ionization po-

tential are of the order of (100− 300)kBT at T = 300K. Therefore, the stabilization of the

reactants by the solvent is associated with the reason that ET occurs in solution at room

temperature [31]. For the adequate description of ET, there exists a similarity between

the introduced system-bath model in Sec. 2.1 such that the donor and acceptor state, the

system of interest, are coupled to the degrees of freedom of the solvent which change their

equilibrium configuration if the electronic charge density on the molecule is modified due

to the ET. Conversely, the overall free-energy landscape of the donor and acceptor state

strongly depends on the momentary solvent configuration. This dependence is mostly con-

sidered for a reaction coordinate, a particularly chosen collective coordinate for the solvent

degrees of freedom. Generically, one considers a double-well potential where its minima

are related to the reactant and product states being in equilibrium with the respective

solvent configuration. A tractable approximation for the regime of high enough barriers,

separating the states, is to approximate the potential wells by harmonic wells.

In the following, I will apply the system-bath Hamiltonian of Sec. 2.1 to model ET in

Subsec. 2.4.1 in solution. Afterwards, in Subsec. 2.4.2, we will interpret the displacement

of the bath coordinate as solvent dielectric fluctuations influencing on the ET processes in

solution. Then, we evaluate in detail the nonadiabatic ET rates for different temperature

regimes in Subsec. 2.4.3. Finally, I will relate, in Subsec. 2.4.4, the spectral density for the

ET rates to dielectric properties of the solvent.

2.4.1 The system-bath model of dielectric solvation

We consider a quantum two-state system, representing the donor and acceptor state, which

couples linearly to the solvent, modeled as collection of harmonic oscillators (cf. Sec. 2.1),
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H =

[
EA +

∑
α

gαAxα

]
|A〉 〈A|+

[
ED +

∑
α

gαDxα

]
|D〉 〈D|+ VDA |D〉 〈A|+ VAD |A〉 〈D|

(2.42)

+
∑
α

[
p2
α

2mα

+
1

2
mαω

2
αx

2
α

]
,

where gαN = V α
N

√
2mαωα/~ is the strength of coupling between the donor (N = D) and

acceptor (N = A) and the individual harmonic oscillators of the bath. The coupling is

diagonal in the local donor- and acceptor- state, such that the bath induces fluctuations

in the local state energies EA and ED. |A〉 and |D〉 describe the donor and acceptor states

respectively. One neglects the off-diagonal bath coupling to the interstate transition from

donor to acceptor state and vice versa. pα, xα, mα, ωα describe the momentum operator,

the position operator, the mass and frequency of the harmonic bath mode, respectively.

We use the Condon approximation that neglects any dependence of VDA or VAD on the

momentum or position of the harmonic bath modes because we are interested in the onsite

vibrational dynamics. Next, we use the unitary polaron transformation of the Hamiltonian

with U = ΠN=A,D exp
[
i~ |N〉 〈N |ΩN

]
, where ΩN =

∑
α Ωα

N and Ωα
N =

gαNpα
~mαω2

α
. The donor

and acceptor states are orthogonal, i.e., 〈N |N ′〉 = δN,N ′ . The transformed Hamiltonian

H̃ = U†HU reads

H̃ =
∑

N=A,D

[
EN −

[∑
α

gαN
2

2mαωα

]]
|N〉 〈N |+

∑
N ′ 6=N=A,D

VNN ′e
−i(ΩN−Ω′N ) |N〉 〈N ′| (2.43)

+
∑
α

[
p2
α

2mα

+
1

2
mαω

2
αx

2
α

]
.

The first and the last term describe the uncoupled system and bath, while the donor

and acceptor state energies are shifted due to the coupling to the bath. This means that

for the present case, we do not use a counter term in the model in comparison to the

model introduced in Sec. 2.1. The interstate coupling is transformed to VNN ′ |N〉 〈N ′| →
VNN ′e

−i(ΩN−Ω′N ) |N〉 〈N ′|. To see its significance, one writes the eigenstates of the system

and bath as |N,v〉 = |N〉ϕv{xα}, where the elements vα of the vector v denote the state

of the different modes α. ϕv{xα} = Παϕvα{xα} are the set of eigenstates of the bath

Hamiltonian. The coupling between two vibronic state |N,v〉 and |N ′,v′〉 is given by the
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bare interstate coupling VNN ′ with am additional renormalization term

ϕv({xα})VNN ′e−i(ΩN−Ω′N )ϕ′v({xα}) = VNN ′Παϕvα{xα}e−λ
N,N′
α (∂/∂xα)ϕv′α{xα} (2.44)

= VNN ′Παϕvα{xα}ϕv′α{xα − λ
N,N ′

α },

where λN,N
′

α = (gαN − gαN ′)/(~mαω
2
α). The absolute square of the term in Eq. (2.44) is

known as Franck-Condon factor. Here, we have introduced the eigenstates of the total

Hamiltonian (Eq. (2.42)) by a product of the eigenstates of the system and the bath.

This product ansatz may be a good description if one further investigates the system and

bath contributions, especially the resulting dynamics of their degrees of freedom. Once

noticeably different time scales for the system of interest and of the solvent bath are

identified, the eigenfunctions separate.

The most prominent example in this context is the Born-Oppenheimer approximation,

where one splits a molecular system dynamics in their fast electronic and de facto static

nuclear contributions. The main reasoning here is the huge mass difference between elec-

tron and nuclei which results in different time scale for the underlying motions. The nuclei

are about 2000 times heavier than electrons, which results in a much faster dynamics of

the electrons [66]. In Subsec. 2.2.2, we have used the same argument to split the polar-

ization in a fast, electronic, and slow, nuclear part. In the Born-Oppenheimer picture the

molecular states have the form Φn(r,R)ϕn,v(R) where r and R denote the fast electronic

and slow nuclear positions, respectively. Φn(r,R) are the eigenfunctions of the electronic

states with eigenvalue E
(n)
el (R) which depend parametrically on the fixed nuclear position

R due to the slow nuclear motion relative to the electronic motion. ϕn,v(R) are the nu-

clear wavefunctions associated with the given n-th electronic state within the calculated

static potential surface E
(n)
el (R), which is formed by electronic eigenenergies. Often, a good

approximation is to expand the nuclear potential surfaces E
(n)
el (R) up to quadratic order

in a Taylor expansion about the solvent configuration of the minimal energy E
(n)
el,eq. The

nuclear normal mode coordinates x(n) ≡ {x(n)
α } and the corresponding frequencies {ω(n)

α }
result from the nuclear eigenvectors and corresponding eigenfunctions of the Hessian ma-

trices of the n-th surface, H
(n)
α,α′ = (∂2E

(n)
el (R)/∂Rα∂Rα′)eq [31]. The resulting potential

surfaces in this harmonic approximation are

E
(n)
el (R) = En +

1

2

∑
α

mαω
(n)2
α x(n)2

α , (2.45)
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where En = E
(n)
el,eq. If the vibrational energies are independent of the actual electronic

state, we have that {ω(n)
α } = {ωα} which one also assumes in the Hamiltonian of (2.42).

Then, the harmonic potential surfaces of the n-th electronic state are shifted with respect

to each other according to Eq. (2.43) and we have

E
(n)
el (R) = En +

1

2

∑
α

mαω
2
α(xα − λ(n)

α )2 (2.46)

= En +
∑
α

~ωα(x̄α − λ̄(n)
α )2, (2.47)

where we have used the dimensionless coordinates x̄α ≡ xα
√
mαωα/2~ and shifts λ̄

(n)
α ≡

λ
(n)
α

√
mαωα/2~ in Eq. (2.47). Experimental evidence for identical normal-mode coordi-

nates for different electronic state is given in molecular spectroscopy, especially for low-lying

electronic states [31].

We now reconsider the two distinct donor and acceptor electronic states introduced

in the Hamiltonian of Eq. (2.43) and identify the nuclear modes of the introduced Born-

Oppenheimer picture with the solvent modes. Fig. 2.1 represents a schematic view of the

potential surfaces involved for the transition from the donor D to the acceptor A while

each state couples to the same harmonic normal modes ωα of the solvent. The normal

mode shift λ̄Aα ≡ λ̄α express the deviation of the equilibrium position of the acceptor

state, while one sets λ̄Dα = 0 for the donor state. We identify their (shifted) equilibrium

energies ED ≡
[
ED −

[∑
α

gαD
2

2mαωα

]]
and EA, respectively. Eα

R = ~ωαλ̄2
α is the single mode

reorganization energy, while ER =
∑

αE
α
R is the total reorganization energy after a vertical

transition from the donor to the energy minimum of the acceptor state has occurred. We

will discuss the reorganization energy in Subsec. 2.4.3 in greater detail.

A vertical transition between the two potential surfaces may occur in a photoinduced

transition where the needed energy is carried by the absorbed photon. For ET processes in

solution at high-temperature when photon is involved, the only available energy is thermal.

Marcus [43, 31] observed that in this case, the transition between two electronic states is

only possible if these two states are energetically equal and degenerate due to a specific

solvent configuration respectively. The solvent coordinates xα therefore determine the

transition state for the ET process, while the dynamics of these coordinates determines

the ET rate (see Subsec. 2.4.3 for nonadiabatic ET and Chapter 4 for nonequilibrium

solvent dynamics). In the low-temperature limit, nuclear solvent tunneling between the
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Figure 2.1: Schematic view of the shifted potential surfaces for the donor (D) and acceptor
(A) state for a single mode ωα.

two surfaces is the dominant process that accompanies the ET. Then, the solvent nuclear

wavefunctions are localized in wells which are relatively far from each other and, hence,

their mutual overlap is small [31].

In the following subsection, we will associate a physical meaning to the solvent coor-

dinates xα for high-temperature by using the notion of a fluctuating polarization within a

continuous dielectric solvent.

2.4.2 Continuum dielectric theory for ET in solution

An ET process is a change of the electronic charge distribution in the molecular system.

The polarization of the surrounding solvent molecules due to this charge rearrangement,

which implies a change of the electric field, can be described in a continuum approach

by the relation P = χE of Eq. (2.23), where χ = (ε − 1)/4π results from Eq. (2.25)
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and the displacement field D = εE. According to the discussion in Subsec. 2.2.2 the

polarization can be split into a fast, electronic, and a slow, nuclear (solvent) part P =

Pe + Pn. The electronic part may be related to Pel = (εe − 1)E/4π and the nuclear

part to Pn = (ε − εe)E/4π. Following the Marcus theory, the energy of the electronic

states immediately before and after the ET are equal, while the solvent molecules can

not adjust instantaneously [43, 31]. Thus, an ET occurs if a solvent fluctuation matches

a configuration where the donor and acceptor state are energetically equivalent. The

fluctuation acts before the ET takes place at a given fix charge distribution.

Based on this picture, we study in the following the changes in the solvent configuration,

where we are especially interested in Pn, i.e., the slow fluctuations due to thermal motion

of the solvent nuclei. We consider the ET transfer from the donor to the acceptor state

where ρD and ρA are the molecular charge distributions associated with these two states.

Starting in the donor state, we first determine the fluctuations in the nuclear solvent

polarization Pn associated to charge configuration ρD. A charge fluctuation is generated

by a fictitious charge distribution ρΘ = ρD + (ρA− ρD)Θ where the fluctuation is recorded

with 0 ≤ Θ ≤ 1. In turn, ρΘ induces a nuclear polarization PnΘ in equilibrium with

this fictitious charge distribution. Thus, in the donor state, where ρ = ρD, PnΘ defines a

fluctuation departing from equilibrium and being characterized by the parameters ρA and

Θ [31]. For illustration, let us consider an ideal conducting sphere as test molecule with

radius a and varying charge qD → qΘ embedded in a continuous and homogeneous dielectric

solvent [43, 31]. We calculate the free energy difference ∆G, in being the reversible work

at constant temperature and pressure, where the charge on the sphere remains qD but the

nuclear polarization of the solvent is PnΘ. The latter is the same as in the equilibrium state

with the charge qΘ on the sphere. In the first step, we calculate the difference ∆GΘ→D′ in

free energy for a charge transfer qΘ → qD while the polarization remains at the value for the

charge qΘ. The state D′ represents a charge qD on the sphere with the fixed polarization

PnΘ of the state and the charge qΘ. D′ is hence a nonequilibrium state in view of the

nuclear degrees of freedom. The electrostatic potential on the surface of the sphere can be

written as a vacuum term and a term from the solvent polarization in the form

ΦΘ =
qΘ

εa
=
qΘ

a
+

[
1

ε
− 1

]
qΘ

a
. (2.48)

Under the condition that the nuclear polarization PnΘ remains fixed, the addition of a

small amount of charge ξ leads to the modified potential
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Φ(ξ) =
qΘ

εa
+

ξ

εea
, (2.49)

where only the electronic polarization responds quickly. The first term of the potential in

Eq. (2.49) stems from the fixed polarization induced by the charge qΘ while the second term

in Eq. (2.49) results from the electronic polarization during the charging. The charging

process proceeds until ξ = qD − qΘ. The reversible work from this charging process is

∆GΘ→D′ =
∫
dξΦ(ξ) from ξ = 0 to ξ = qD − qΘ. The free energy with the substitution

qΘ = qD + (qA − qD)Θ leads to

∆GΘ→D′ =

∫ qD−qΘ

0

dξΦ(ξ) =
qD(qD − qA)

εa
Θ +

(qA − qD)2

a

[
1

2εe
− 1

ε

]
Θ2. (2.50)

Next, we determine the free energy ∆GΘ→D where the nuclear polarization reacts to

the given charge of the sphere. The corresponding free energy thus reads with qΘ =

ρD + (qA − qD)Θ

∆GΘ→D =

∫ qD

qΘ

dq′Φ(q′) =

∫ qD

qΘ

dq′
q′

εa
=
qD(qD − qA)

εa
Θ− (qD − qA)2

2εa
Θ2. (2.51)

The potential surface for the fluctuations of the nuclear polarization of the solvent about

the equilibrium donor state with the charge qD on the sphere results out of the difference

∆GD→D′ = ∆GΘ→D′ −∆GΘ→D as

∆GD→D′ =
(qD − qA)2

2a

[
1

εe
− 1

ε

]
Θ2. (2.52)

The theory of linear response of the dielectric continuum yields a harmonic potential

surface quadratic in the charge fluctuation Θ which may be associated with a solvent

reaction coordinate for the ET from the donor to the acceptor. The potential surface in Eq.

(2.52) represents the thermal fluctuation of the solvent nuclei inducing a polarization field

PnΘ while the charge on the molecule remains qD. The resulting curvature of the harmonic

surface may be directly connected to physical parameters: the dielectric constants εe and

ε, the initial (qD) and final (qA) charge as well as a geometry factor, the radius a of the

test sphere. The result of Eq. (2.52) can be directly compared to the potential energy
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surface given in Eq. (2.47) which originated in a two-state model coupled to a bath of

harmonic oscillators. Once we have identified a prominent bath mode to which the donor

and acceptor states couple, the introduced frequency ωα of the harmonic bath modes gets

a physical meaning via Eq. (2.52). Moreover, the displacement x̄α in Eq. (2.47) or Θ in

Eq. (2.52) may be then understood as a reaction coordinate which determines the ET rate.

The resulting energy surfaces for both processes consequently are

ED(Θ) = ED +
(qD − qA)2

2a

[
1

εe
− 1

ε

]
Θ2, (2.53)

EA(Θ) = EA +
(qD − qA)2

2a

[
1

εe
− 1

ε

]
[1−Θ]2, (2.54)

where ED and EA are the energies for the donor and acceptor equilibrium state, respec-

tively, when the nuclear polarization PnΘ is in equilibrium with the states n = D or n = A.

2.4.3 Rate for the nonadiabatic electron transfer

One of the crucial parameter for ET is the interstate coupling VAD between the donor and

acceptor state given in Eq. (2.43). This quantity is directly associated with the time scale

tel = ~/|VAD| for electronic transition on which the electronic wave function moves from

the donor and acceptor site. The donor-acceptor system is coupled to different harmonic

modes ωα of the solvent bath. They can be characterized by a mean frequency ωvib to

determine the time scale tvib = 2π/ωvib for the change of configuration of the solvent nuclei

if we assume that the motion is not overdamped [58].

For the case tvib � tel, the electron will move many times between the donor and accep-

tor before any relevant change in the solvent nuclear configuration occurs. Therefore, the

electronic wave function is delocolized over the whole donor-acceptor system and the elec-

tron in an adiabatic state. This situation may be compared to the introduced (adiabatic)

Born-Oppenheimer approximation where one separates the time scales for the nuclear and

electronic motion (see Subsec. 2.4.1). This situation is referred to an adiabatic ET.

The opposite situation is encountered for tvib � tel. Here, the solvent vibrational

motion is much faster than the electronic motion on the molecule. This type of operation

is called nonadiabatic ET. The donor and acceptor states are spatially localized and the

reaction coordinate describing the motion within the solvent evolves very rapidly. So, the

electronic wave function does not have enough time to move completely from the donor
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to the acceptor, such that only a small fraction of the electronic probability amplitude

reaches the donor site 7. Since the coupling VDA is small in this case, one can describe the

ET by a perturbation expansion with respect to VDA. In the lowest order of perturbation

theory one can use Fermi’s golden rule to describe the ET rate which is valid at any

temperature [58]. We focus on the nonadiabatic ET because the bridge-mediated ET over

large distances usually proceeds in this limit such as the problem of the nonadiabatic ET

through a molecule coupled between a source and a drain electrode in non-equilibrated

solution studied in Chapter 4.

To this end, we proceed with the thermally averaged rate for the ET between the donor

and acceptor D → A. Since the relaxation in the bath is fast relative on the time scale

of the ET, we can assume the bath being in thermal equilibrium state during the whole

process. Thus, the overall donor state and the acceptor state can be written as product

states in the form |N,v〉 = |N〉Πα |vα〉. The ET rate follows from Fermi’s golden rule

[58, 31] as

kDA =
2π

~
∑
v

Pv

∑
v′

| 〈v|V̂DA|v′〉 |2δ(ED − EA + E(v)− E(v′)), (2.55)

where Pv = Z−1 exp[−HB/kBT ] is the statistical operator 8. The interstate coupling

term of Eq. (2.43) reads, after using the product ansatz for the donor and acceptor

states, V̂DA = VDAe
∑
α λ̄

D,A
α (â†α−âα), where we use the formulation in terms of creation

and annihilation operators for p̄α and dimensionless coordinates. After using the iden-

tity δ(x) = (2π~)−1
∫
dteixt/~ and the Bloch theorem, 〈ec(â†+â)〉T = e〈[c(â

†+â)]2〉T [31], for

thermal averaging, Eq. (2.55) reads

kDA =
1

~2

∫ ∞
−∞

dteiωDAt
∑
v

Pv 〈v| eiHBt/~V̂DAe−iHBt/~
∑
v′

|v′〉 〈v′| V̂AD |v〉 (2.56)

=
|VDA|2

~2
e−

∑
α λ̄

(D,A)2
α [2n(ωα)+1]

∫ ∞
−∞

dteiωDAt+
∑
α λ̄

(D,A)2
α {n(ωα)eiωαt+[n(ωα)+1]e−iωαt}

=
|VDA|2

~2
e−

∫∞
0 dωJDA(ω)[2n(ω)+1]

∫ ∞
−∞

dteiωDAt+
∫∞
0 dωJDA(ω){n(ω)eiωt+[n(ω)+1]e−iωt},

7One uses the term ’electronic probability density’ in order to determine the transition quantum
mechanically. It is meaningless to follow the velocity of the electron itself within the ET process without
any measurement[58].

8The state v are described by HB =
∑
α

[
p2

α

2mα
+ 1

2mαω
2
αx

2
α

]
and Z is the partition function.



36 2. Theory of nonequilibrium quantum dynamics in a continuous solvent

where ~ωDA = EDA = ED − EA and n(ω) = (eβ~ω − 1)−1 is the thermal boson occupation

number. We further exploit the unitary operator relation I =
∑

v′ |v′〉 〈v′| in Eq. (2.56).

In the last equality of Eq. (2.56), we have introduced the spectral density JDA(ω) =∑
α λ̄

(D,A)2
α δ(ω− ωα), since we assume that the number of the different vibrational solvent

modes becomes large.

This form of ET rate reminds one of the fact that the spectral density is interpreted as

the density of bath oscillators weighted by its specific coupling constant to the subsystem

of interest (cf. Sec. 2.1). We further introduce G(t) =
∫∞

0
dωJDA(ω) cos[ωt][1 + 2n(ω)] −

i
∫∞

0
dωJDA(ω) sin[ωt] 9 such that the ET rate in Eq. (2.56) reads

kDA =
|VDA|2

~2
e−G(0)

∫ ∞
−∞

dteiωDAt+G(t). (2.57)

We next derive the high-temperature limit for the ET rate of Eq. (2.57). To this end,

we require that the spectral density goes to zero beyond a certain cutoff frequency ωc

(see Eq. (2.16)). For ωc|t| � π/2, exp[G(t)−G(0)] rapidly approaches zero since the

real part of the exponent cos[ωt] − 1 is negative. For ωc|t| � π/2 the different frequency

contributions to the time integral may interfere destructively, since the number of the

different vibrational solvent modes is large. In the high-temperature limit kBT � ~ωc, we

may introduce the approximation 1+2n(ω) ≈ 2kBT/~ω � 1 for all frequencies less the ωc.

One may approximate then by G(t) ≈ −
∫∞

0
dω(ωt)2 kBT

~ω JDA(ω) − i
∫∞

0
dω(ωt)JDA(ω) in

the exponent by the leading order terms of sine and cosine which is known as the short-time

expansion. Hence, the ET rate of Eq. (2.57) in the high-temperature limit follows as

kDA =
|VDA|2

~2

∫ ∞
−∞

dt exp

{
i
(EDA − ~

∫∞
0
dωJDA(ω)ω)t

~

}
exp

{
−
∫∞

0
dωJDA(ω)ωkBTt

2

~

}
.

(2.58)

Finally, we define the reorganization energy

~
∫ ∞

0

dωJDA(ω)ω = ER (2.59)

9The spectral density JDA(ω) introduced here has a different dimension than J(ω) introduced in Eq.
(2.13). They are related via JDA(ω)ω2 = J(ω), which follows the different conventions in the different
scientific communities.
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and perform the Gaussian time integral in Eq. (2.58). The ET rates becomes then

kDA =
2π

~
|VDA|2

1√
4πkBTER

exp

{
−(EDA − ER)2

4ERkBT

}
. (2.60)

This celebrated expression that follows upon introducing ER is the Marcus rate of ET,

named after R. A. Marcus [43, 58] who received the Nobel prize for this concept in 1992.

We may compare the Marcus rate of Eq. (2.60) with the Arrhenius type ET rate given by

kDA ∝ exp{−Eact/kBT} for chemical reactions. By this we may identify the activation

energy Eact = (EDA−ER)2/(4ER) [67, 68], which is the energy needed to cross the potential

energy barrier separating the donor and acceptor state in their equilibrium.

The difference EDA−ER in the expression for the activation energy may be understood

with the following consideration. Initially, the electron is at the donor site and then

suddenly reaches the acceptor. This transfer is accompanied by a change in the electronic

charge density, where the solvent has to readjust. In order to reorganize the surrounding

molecules, the energy ER has to be removed from the available system energy which is given

by the transition energy EDA. Therefore, the energy ER is called reorganization energy

or polarization energy. It was formally introduced in Eq. (2.47) in Subsec. 2.4.1 for the

system coupled to a bath of harmonic oscillators. A major advance of the reorganization

energy is that it reduces all solvent degrees of freedom to a single number because it is the

integral over all bath modes.

One can further easily derive the rate for the back transfer from the acceptor to the

donor kAD in the used model of identical parabolic potentials of the donor and acceptor

states (Eq. (2.43)). One only has to change the sign of EDA → −EDA ≡ EAD. One obtains

kAD = kDA(−EDA) = e−EDA/kBTkDA(EDA), (2.61)

where the ratio of the forward and backward rate fulfills the detailed balance condition

exp{−EDA/kBT}, a clear signature for processes at thermal equilibrium.

2.4.4 Spectral density for the fluctuations in polar solvents

Now, we are ready to derive the spectral density J(ω) entering in the ET rate of Eq. (2.60)

for an ET process in polar solvents by using a macroscopic dielectric description. To this

end, we introduce a free energy functional FP [Pfast,Pslow,D] which depends on the fast

and slow solvent polarization (cf. Subsec. 2.2.2) as well as on the displacement field D
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produced by the charge distribution of donor and acceptor state.

Again, we may separate the ET process into different time scales. k−1
DA describes the time

scale for an ET process between the donor and acceptor, τn and τe characterize the nuclear

and electronic polarization relaxation, respectively. This enables us to introduce a reduced

free energy that only depends on the fluctuating properties of the slow orientational nuclear

solvent polarization. The fast electronic polarization is described by its equilibrium values

due to its quasi-instantaneous adaptation to the actual state. One further assumes that

the electron is either at the donor or the acceptor. Any intermediate sates are neglected.

Hence, we obtain two diabatic reduced free energy expressions for the donor (n = D) and

the acceptor (n = A) state, respectively, as

Fn[P̃,Dn] = En −
1

2cel

∫
d3xD2

n(x) +
2π

cp

∫
d3xP̃

2
(x, t)−

∫
d3xDn(x)P̃(x, t), (2.62)

where Dn is fixed for the electronic degree of freedom at the donor or acceptor, P̃ =

Pslow/ε∞, the Pekar factor cp (cf. Subsec. 2.2.2), and cel = 4π(1− ε−1
∞ )−1 10. The electronic

levels En get renormalized with the Born solvation energy, which is the second term of

Eq. (2.62) and which reflects the fact to have the charges at the donor or acceptor in a

polar solvent. This gives rise to a displacement field in which the fast dielectric electronic

part of solvent enters. The third term is the energy of the freely fluctuating orientational

polarization, while the last term is the energy due to the coupling of the solvent polarization

and the electric displacement field. The diabatic potential surfaces of the donor-acceptor

complex, as introduced in Eq. (2.52) for the system-bath model, can be directly deduced

from Eq. (2.62). To this end, we identify Fn[P̃,Dn] with the potential energy surface Un[P̃].

This identification is valid since the free energy functional depends on a quasistatic field

without any kinetic energy contribution [58]. The equilibrium polarization of Un[P̃
(eq)

m ] is

obtained from the condition ∂Um/∂P̃ = 0 and is given by P̃
(eq)

m = (4π)−1cpDm.

The total free energy at equilibrium polarization then reads Um[P̃
(eq)

m ] = Em−(8π)−1(1−
ε−1
s )
∫
d3xD2

m(x) which describes the solvent in total equilibrium, including its fast elec-

tronic as well as its slow orientational contributions, to the given charge state. We are now

able to compute the reorganization energy as energy difference between the product state

(electron at the acceptor), but with the equilibrium polarization of the donor state and

10The derivation of the reduced functional is described in the textbook of May and Kühn [58].
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the equilibrium free energy for the acceptor state. The reorganization energy thus reads

ER = UA[P̃
(eq)

D ]− UA[P̃
(eq)

A ] =
cp
8π

∫
dx3[DA(x)−DD(x)]2. (2.63)

We then rewrite the transfer rate of Eq. (2.57) and eventually express it in terms of the

dielectric function of the polar solvent. To this end, we retrace the rate equation (2.56)

and write it as

kDA =
|VDA|2

~2

∫
dtei∆Et/~ tr

{
ρDeqSAD(t, 0)

}
. (2.64)

Here, ρDeq is the statistical operator of the solvent in thermal equilibrium with the donor

state. Furthermore, the operator SAD(t, 0) is specified below. One identifies the difference

Hamiltonian HA − HD with the difference of the free energy of Eq. (2.62) between the

acceptor and donor state such that ∆E in Eq. (2.57) is the operator-free part of HA−HD.

In principle one has to define a proper expression for the kinetic energy of the polarization

field to obtain a Hamiltonian. However, the kinetic energy contribution cancels in HA−HD.

Further, one has to quantize the polarization field P̃→ P̂. Since P̂ will eventually be used

to define a quantum statistical correlation function associated to the dielectric function,

we omit further discussion on the details of the quantization [58, 69, 70, 71, 72].

Overall, the difference Hamiltonian thus reads

HA −HD = −∆E −
∫
d3x∆DAD(x)P̂(x), (2.65)

where ∆DAD(x) = DA − DD and ∆E = ED − EA − 1
2cel

∫
d3x
[
D2
D(x) − D2

A(x)
]
. This

includes the renormalization of the state energies by the Born solvation energy. Further-

more, we have SAD(t, 0) = T̂ exp
{
− i

~

∫ t
0
dt′∆H

(D)
AD (t′)

}
, with ∆H

(D)
AD (t) = U †D(t)[HA −

HD + ∆E]UD(t) = −
∫
dx3∆DAD(x)P̂

(D)
(x, t), the time ordering operator T̂ and UD(t) =

exp
{
− i

~HDt
}

.

Next, we perform a second-order cumulant approximation of tr

{
ρDeqSAD(t, 0)

}
≡

〈SAD(t, 0)〉 ≈ exp{−Γ1(t)− Γ2(t)}, where Γn(t) is of n−th order in ∆H
(D)
AD . For Γ1(t)
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one obtains

Γ1(t) =
i

~

∫ t

0

dt1〈∆H(D)
AD (t1)〉D (2.66)

= − i
~

∫ t

0

dt1

∫
d3x∆DAD(x)〈P̂(x, t1)〉D

= − i
~
t

∫
d3x∆DAD(x)P̃

(eq)

D (x)

= − i
~
t
cp
4π

∫
d3x∆DAD(x)DD(x),

where the expectation value of the polarization operator can be replaced by the equilibrium

polarization P̃
(eq)

D for the electron at the donor. The quantity Γ2(t) has the form

Γ2(t) =
1

2
Γ2

1(t) +
1

~2

∫ t

0

dt1

∫ t1

0

dt2

∫
d3x1d

3x2∆DAD(x1)〈P̂(x1, t1)P̂(x2, t2)〉D∆DAD(x2)

(2.67)

=
1

2
Γ2

1(t) +
1

~2

∫ t

0

dt1

∫ t1

0

dt2

∫
d3x1d

3x2

×∆DAD(x1)〈[P̃(eq)

D (x1) + ∆P̂
(D)

(x1, t1)][P̃
(eq)

D (x2) + ∆P̂
(D)

(x2, t2)]〉D∆DAD(x2)

=
1

~2

∫ t

0

dt1

∫ t1

0

dt2

∫
d3x1d

3x2∆DAD(x1)〈∆P̂
(D)

(x1, t1)∆P̂
(D)

(x2, t2)〉D∆DAD(x2).

Here, we have split the polarization operator according to P̂(x, t) = P̃
(eq)

D (x)+∆P̂(x, t) into

its equilibrium value plus the deviation from this equilibrium polarization. The deviation

∆P̂(x, t) is related to a fluctuation and does not depend on the electronic charge at the

donor. Therefore, this quantity can be related to the dielectric function. To this end, we

further neglect spatial dispersion and anisotropy in the correlation function of the polariza-

tion fluctuations CP (x1, t1; x2, t2) = 〈∆P̂
(D)

(x1, t1)∆P̂
(D)

(x2, t2)〉D → δ(x1−x2)Cp(t1− t2)

to obtain a scalar, coordinate-independent and stationary correlation function in time, see

Eq. (2.69) in Subsec. 2.2.1 for the polarizability tensor. Using the expression for the solvent

reorganization energy in Eq. (2.63), one finds

Γ2(t) =
8πER
~2cp

∫ t

0

dt1

∫ t1

0

dt2CP (t1 − t2). (2.68)

The linear polarizability is connected to the polarization via α(t1 − t2) = − i
~Θ(t1 −
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t2)

〈[
∆P̂

(D)
(t1),∆P̂

(D)
(t2)
]〉

D

, where [...] denotes the commutator. Therefore, we intro-

duce the antisymmetrized correlation function C−P (t) = Cp(t) − C∗P (t) 11 to replace the

commutator which leads to α(t1 − t2) = − i
~Θ(t1 − t2)C−P (t1 − t2). Performing a Fourier

transform of the polarization results in12

α(ω) =

∫
dω′

2π~
C−P (ω′)

ω − ω′ + iν
, ν > 0. (2.69)

The equation (2.69) relates Im[α(ω)] = −C−P (ω′)/2~, while according to Eq. (2.25) in

Subsec. 2.2.2, Im[α(ω)] = − Im[ε(ω)−1]/4π ≡ Im[ε(ω)]/4π|ε(ω)|2. One finds 13

CP (t) = − ~
4π2

∫ ∞
0

dω

{
e−iωt[1 + n(ω)] + eiωtn(ω)

}
Im[ε(ω)]

|ε(ω)|2
. (2.70)

After carrying out the double time integration in Eq. (2.68) and Eq. (2.70) one obtains

with the Bose-Einstein distribution n(ω)

Γ2(t) =
2ER
π~cp

∫ ∞
0

dω

ω2

Im[ε(ω)]

|ε(ω)|2

{
[e−iωt − 1][1 + n(ω)] + [eiωt − 1]n(ω) + iωt

}
. (2.71)

If one compares this result with the function G(t) in Eq. (2.57), we find the expression for

the spectral density for the polar solvent

J(ω) = − 2ER
π~cp

1

ω2

Im[ε(ω)]

|ε(ω)|2
. (2.72)

With the relation ER = ~
∫∞

0
dωωJ(ω), we have Γ2(t) = G(0) − G(t) − iERt/~. The

final expression for the ET rate with the free energy difference according to Eq. (2.62)

∆F (eq) = F
(eq)
D (DD)− F (eq)

A (DA) reads

kDA =
1

~2
|VDA|2

∫
dt exp

{
i

~
∆F (eq)t+G(t)−G(0)

}
. (2.73)

We observe that the energy difference EDA in the rate in Eq. (2.60) is shifted by the

complete equilibrium Born solvation energy which includes fast electronic and slow orien-

11C∗p (t) denotes complex conjugate of Cp(t).
12The heavy side function can be expressed by the Fourier integral −

∫
dω
2πi exp(−iωt)/(ω + iε) and

C−P (ω) ≡ Re[C−p (ω)].
13One uses the relation between the time-dependent correlation function and its Fourier-transformed

antisymmetrized version Cuv(t) =
∫∞
0

dω
2π [e−iωt[1 + n(ω)]C−uv(ω) + eiωtn(ω)C−vu(ω)] [58].
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tational contributions. This reflects the influence of the polarity of the solvent surrounding

an electron transfer reaction on the ET rate. The solvent fluctuations enter in G(t) via a

frequency dependent spectral density which is proportional to the imaginary part of the

dielectric function.

The assumption of an ET rate being much smaller than the rate of the orientational

polarization, kDA � τ−1
n , enables us to find the free energy expression and a spectral

density, J(ω) ∝ Im[ε(ω)], for the ET process of Eq. (2.73). Once an electron is transferred,

the slowest contribution of the solvent relaxes fast enough, such that solvent vibrational

states |v〉 are in thermal equilibrium before a new possible ET occurs. To this end, we

describe the initial solvent state distribution in Eq. (2.56) by the Bose-Einstein distribution

n(ω). In high temperature limit kBT � ~ωc 14 the function G(t) stemming from the

coupling to the bath goes quickly to zero and a Marcus-type ET rate will be found according

to Eq. (2.60).

In the opposite limit of a slow ET, for a rate kDA > τ−1
n the solvent states do not relax

fast enough to their thermal equilibrium and cannot be described by n(ω) for a stationary

density of solvent microstates, especially if a cascade of ET events between the donor and

acceptor happens or a successive electron transmission between the molecule-lead interfaces

occurs. Moreover, we expect a time-dependent ET rate which depends on the time span

elapsed since the previous charge rearrangement due to the previous ET. During this time

span, the solvent readjusts to the newly formed charge configuration but does not reach

its equilibrium configuration before the new ET process occurs. Thus, the ET is strongly

solvent-controlled [58]. The impact of the solvent dynamics on the nonequilibrium ET

rates for chemical reactions was studied in great detail by H. A. Kramers [50]. To this

end, he has introduced a solvent-induced friction in the dynamics of a generalized reaction

coordinate in terms of a Fokker-Planck equation. This nonequilibrated ET rates will be

extended in Chapter 4 to study the successive electron transmission processes through a

molecule between two electronic leads embedded in a nonequilibrated solvent.

14ωc may be associated with the highest energy of the thermal bath



Chapter 3

Nonequilibrium molecular relaxation

dynamics in a dynamic solvent

Electronic spectroscopy of photoexcited molecules dissolved in a polar medium measures

the response of molecular electronic states to applied time-dependent electric fields, but also

reveals the interplay of the dissolved molecule (the solute) and the solvent as signature of

a quantum many-body system (see Sec. 2.1) [53, 58]. Since the early days of spectroscopic

measurements, it has been established that the solvent induces pronounced features in the

molecular response. Prominent examples are the broadening of spectral lines and the Stokes

shift between absorption and emission lines which both reflect the omnipresent influence

of the solvent relaxation properties in energy absorption processes [58, 53, 31, 73].

A new type of spectroscopic phenomena arises if changes of the charge configuration of

the solute are accompanied by timely irreversibly structural changes of the solute or the

solvent. Such a situation, when the solvent/solute changes its configuration as a function

of time, clearly goes beyond the time-dependent reorganization of the continuous solvent to

the newly formed charge configuration described by the dynamic, but stationary, response

of the polarization in Subsec. 2.2.2.

A recent study [74] of a sequence of electronic transitions between a low-spin and a

high-spin electronic configuration of aqueous Fe-II complexes has provided possible hints

of fast non-stationary dynamical changes in the first hydration shell which accompany

the electronic transitions in the central molecule. In the experiment, an increase of the

lengths of the bonds between the central Fe-atom and the nearest neighbor atoms in the

complex was identified as being induced by the electronic transitions. The experimental

data have been interpreted such that the transition from the low-spin to the high-spin
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configuration due to photoexcitation is accompanied by a structural change of the hydration

layer: On average two shell water molecules are expelled from the hydration shell into

the bulk solvent. The distribution of the water molecules in the shell is modified during

the transition influencing the electronic relaxation. This experiment is consistent with

earlier theoretical predictions [75, 76] obtained on the basis of ab initio molecular dynamics

simulations. Another example is the structural dynamics of photoexcited of [Co(terpy)2]2+

in aqueous solution investigated with ultrafast X-ray diffuse scattering [77]. Accompanying

density functional theory calculations showed that the photoexcitation leads to elongation

of the Co-N bonds.

X-ray absorption spectroscopy (XAS) is even able to probe the transition form hy-

drophilic to hydrophobic solvation and the dynamic built-up of the hydrophobic solvation

shell with atomic scale resolution on a short time scale [49]. The process of the formation

of a solvation shell is usually observed if the central molecule abruptly changes its charge

configuration, e.g., from its ionic to its neutral, and hence, hydrophobic state. This can

be achieved by a strong-field removal of one electron of the solute. The picosecond XAS

study reveals the creation of a network of hydrogen bonded water molecules in the first

solvation shell within 5ps around a iodine molecule which has been neutralized just before.

The experimental data further demonstrate the dynamic expansion of the solvent layer

after the transfer I− → I0 with an increase of the radius of the hydrated cluster by up

to 80% [49, 78]. The experimental data have been corroborated by ab initio molecular

dynamics simulations. Further experimental studies have been carried out, see Ref. [79]

for an excellent recent account on the present status.

These experimental observations of time-dependent and highly nonequilibrium features,

i.e., changes in molecular bond lengths and/or solvent reorganization require theoretical

descriptions beyond established models of solvation. The aim of this chapter is to develop

and solve a theoretical model describing the response of a dissolved molecule facing time-

dependent configurational changes of its structure or of the solvent to an external electric

field. To this end, different situations for non-stationary and timely strongly changing

configuration of the solute (Sec. 3.2 and 3.3) and solvent, i.e., a timely varying solvation

shell (Sec. 3.4), are studied for the absorption spectrum of the central molecule according

to the experimental observations described above.

This leads to the following structure of the present chapter. First, I introduce the basic

concepts of the Onsager continuum model of solvation in Sec. 3.1. In Sec. 3.2, I then

establish a time-dependent Onsager model to determine the optical linear absorption of a
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molecule with geometric configurations varying explicitly over time. I exploit the derived

model to explain the bimodal behavior of the time-dependent fluorescence Stokes shift in

Sec. 3.3. In Sec. 3.4, I examine a molecule where a layer of a hydration shell grows around

the central Onsager sphere by developing the time-dependent Onsager model. We will

see that the predictions of this time-dependent Onsager model are confirmed by measured

X-ray absorption spectra.

3.1 Onsager’s model of solvation

Figure 3.1: Onsager’s model of solvation. The molecular dipole moment µ is embedded
inside an empty vacuum cavity (ε = 1) of radius a which is surrounded by a polar solvent
with dielectric function ε(ω). The dipole polarizes the solvent which in turn creates an
electric reaction field R acting back on the dipole.

The starting point of Onsager’s model of solvation model is captured by the generalized

Hamiltonian of Eq. (2.18) in Sec. 2.2 for continuum solvation models based on the system-

bath description. The tremendous reduction of solvent (bath) degrees of freedom leads
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effectively to a solvent response function which indicates the reaction to changes of solute

(system) degrees of freedom and which contributes to the system dynamics as main result

in system-bath approaches (cf. Sec. 2.1).

The earliest polarizable and simplest continuum model of solvent was developed by

Born in 1920 [80] who assumed a solute with a spherical charge distribution in the center

of an effective molecular cavity with an unknown time-independent radius. This molecular

cage itself is placed in a classical dielectric continuum. Inside the molecular cavity, vacuum

is assumed. The solute-solvent interaction is determined by the net electric charge q of

the solute. In view of the later developments, the total charge of the sphere can be viewed

as the first term of a multipole expansion of the charge distribution of the sphere. The

interaction VI = qΦ results, where Φ is the electrostatic potential stemming from the

back-action of the solvent polarization to the net molecular charge q.

Later, Kirkwood [81] and Onsager [38] have extended this model to include the second

and higher-order multipole terms of the electrostatic potential generated by the solute.

The latter is described as a point dipole located at the center of a spherical (Kirkwood)

or an ellipsoidal (Onsager) molecular cavity which, again, is static and whose unknown

parameters are empirical and used as fit parameters. The model gives then rise to a

dipole-dipole interaction between the central molecule and the solvent. The interaction

has the form VI = −µ ·R (cf. minimal coupling Hamiltonian of Eq. (2.35) for a molecule

coupling to an applied electric field in Sec. 2.3) where µ is the dipole moment of the solute

and R the electric reaction field at the location of the dipole moment as result of its solvent

polarization (see Fig. 3.1). The reaction field can be obtained from linear response theory

yielding

R(t) =

∫ t

−∞
dt′X(t− t′)µ(t′), (3.1)

where X(t−t′) is the susceptibility function (in general a tensor). One assumes an isotropic,

homogeneous and local-in-space response function such that X is a scalar function which

we have discussed for the electric susceptibility in Eq. (2.23) in Subsec. 2.2.1 in greater

detail. The formulation of Eq. (3.1) reflects the fact that the dipole moments of solvent

molecules do not adjust instantaneously to the central dipole moment, but rather lag

behind the changing dipole in time. Causality requires that X(t) = 0 for t < 0. The

Fourier transform of Eq. (3.1) using the convolution theorem reads R(ω) = X(ω)µ(ω) 1.

1The Fourier transform is defined by F [f(t)] =
∫∞
−∞ dt exp(iωt)f(t).
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To obtain a appropriate equation for X(ω) which is the response of the idealized ho-

mogeneous dipolar solvent to the molecular dipole moment, one has to solve the time-

dependent electrostatic problem. The dielectric displacement Di in any phase i, i.e. i = I,

inside, i = A, outside the Onsager sphere, is related to the electric field Ei and polar-

ization Pi by Di(x, t) = Ei(x, t) + 4πPi(x, t), see Subsec. 2.2.1. In linear response, the

polarization is related to the electric field via Pi(x, ω) = αi(ω)Di(x, ω) (cf. Eq. (2.24))

and Di(x, ω) = εi(ω)Ei(x, ω) with εi(ω) = (1 + 4παi(ω))−1. Here, αi(ω) is the respective

polarizability (see Eq. (2.25) of Subsec. 2.2.2) of the medium inside and outside the sphere.

To obtain the response function X and the corresponding reaction field R one has to know

the electrostatic potential in the cavity in the presence of the dipole and due to its interac-

tion with the solvent. Taking the center of the dipole as the origin of a coordinate system

and choosing the dipole vector in alignment with the z− axis, µ = µêz, we are able to

solve the Laplace equation ∆Φ = 0 for the potential as the net charge is zero. The result-

ing solution exploits the spherical symmetry and is Φi =
∑∞

n=0

(
A

(i)
n rn + B

(i)
n

rn+1

)
Pn[cos Θ],

where Pn are the Legendre polynomials and Θ is the angle with respect to the z−axis [73].

We set the potential (ΦA)r→∞ = 0 far outside. Furthermore, we require the continuity

of the potential yielding the condition (ΦI)r=a = (ΦA)r=a and the electric displacement(
∂
∂r

ΦI

)
r=a

=
(
∂
∂r

ΦA

)
r=a

at the surface of the Onsager sphere. The potentials inside and

outside the Onsager sphere read

ΦI =
µ

r2
cos Θ− 2(ε− 1)

2ε+ 1

µ

a3
r cos Θ, (3.2)

ΦA =
3

2ε+ 1

µ

r2
cos Θ. (3.3)

The resulting electric field inside the cavity is a superposition of the dipole field in

vacuum and the uniform reaction field of the form

R(ω) =
1

a3

2[ε(ω)− 1]

2ε(ω) + 1
µ(ω), (3.4)

or,

R(ω) = X(ω)µ(ω). (3.5)

This reaction field acts back on the central molecular dipole moment and is constant

everywhere inside the uniform spherical cavity.

The reaction field of Eq. (3.5) as electrodynamic response of the solvent to the solute



48 3. Nonequilibrium molecular relaxation dynamics in a dynamic solvent

can now be exploit to understand basic solute dynamics in solution. To illustrate this,

we now formulate a spectral density J(ω), according to Eq. (2.13) in Sec. 2.1 as collective

effect of the bath influencing the system’s dynamics, for the Onsager’s model of solvation.

The spectral density can be used to obtain time-dependent relaxation and dephasing in

the solute in the presence of the solvent [39, 31, 26, 82]. The solute-solvent coupling

VI = −µ · R is the central entity which contains all relevant information of the solvent

dynamics in response to the solute motion. This interaction energy typically lowers the

total energy and forms a stable structure [39]. To illustrate the timely evolving solute

in form of a Onsager cavity in presence of a solvent, we model a two-level system with

a single active transition of energy ε, a coupling ∆ for tunneling between the two levels

and assume the solute has a permanent dipole moment in the ground and in the excited

state, given by µg and µe respectively. We note that the direction of the dipole moment

of the solute in the ground and excited state points in the same direction, such that we

only use its absolute values in the two states µ =

(
µe 0

0 µg

)
. The two-state solute and

the solute-solvent interaction Hamiltonian together reads

HS+I =
1

2
εσz −

1

2
∆σx +

1

2
σz∆µR +

1

2
I(µe + µg)R, (3.6)

with ∆µ = µe − µg, the 2 × 2 Pauli matrices σz and σx and the 2 × 2 unitary matrix

I 2. We quantize the reaction field with its modes ωα and its amplitudes eα according

to R(t) =
∑

α eα[aαe
−iωαt + a†eiωαt]. aα and a†α are the bosonic anhilation and creation

operators such that the solvent is considered as bath of independent harmonic oscillators

with the total solvent energyHB =
∑

α ωαa
†
αaα. This spin-boson model describes relaxation

and decoherence of an initially coherent excitation due to its coupling to the solvent with

the resulting spectral density J(ω) = π
∑

α e
2
αδ(ω − ωα) [5, 26, 39]. We now relate the

spectral density J(ω) to the zero-temperature fluctuations in the uncoupled environment

as done in Refs. [4, 39]. We consider the expectation value of the reaction field as 〈R(t)〉 = 0

and define the reaction field correlation function

CR(t) = i〈R(t)R(0)〉 ≡ i 〈0| eiHBtRe−iHBtR |0〉Θ(t), (3.7)

where |0〉 is the ground state of the solvent harmonic oscillators. We find that the Fourier

2The Pauli matrices are σz =

(
1 0
0 −1

)
and σx =

(
0 1
1 0

)
.
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transform of CR(t) can be related to the spectral density via

ImCR(ω) = π
∑
α

δ(ω − ωα)| 〈0|R |α〉 |2 = π
∑
α

δ(ω − ωα)eα
2 = J(ω)/(∆µ)2. (3.8)

Here we have used the orthogonality of the solvent states 〈α|α′〉 = δαα′ and expand R

into its normal modes. We see that all terms 〈0|R |α〉 describe transitions of the single

solvent oscillators from a ground state to a singly occupied state with energy ~ωα, and

〈0|R |α〉 = eα. The response X(ω) of Eqs. (3.4) or (3.4) relates the changing dipole

moment to the solvent reaction field. From the quantum fluctuation-dissipation relation

[20, 39, 26] we find that the imaginary part of X(ω) is related to the field fluctuations by

the form

X ′′(ω) = − i
2

(1− e−βω)CR(ω), (3.9)

which reduces to CR(ω) = 2iX ′′(ω) at zero temperature and confirms the general relation

between the spectral density and the imaginary part of the response function, J(ω) ∝
X ′′(ω), by exploiting Eq. (3.8). Using the Debye formula for the dielectric function of Eq.

(2.26) of Subsec. 2.2.2 and Eq. (3.8), the spectral density for the Onsager model reads

J(ω) =
2(∆µ)2

a3

6(ε∞ − εs)
(2εs + 1)(2ε∞ + 1)

ωτE
ω2τ 2

E + 1
, (3.10)

where τE = (2ε∞ + 1)(2εs + 1)−1τD [39].

The basis of the established model is the assumption that time-dependent changes in

the electronic configuration of the solute are not too large such that the back action of

the solvent polarization on the solute can be calculated in terms of linear response theory.

Then, the fluctuation-dissipation theorem of Eq. (3.9) holds, the fluctuations are thermal,

and a bath spectral density exists in the established form of Eq. (3.10) [26]. Despite

microscopic details of the system and solute, the Onsager model captures the essential

physics of the solvation process [39, 82]. Based on the derived spectral density (3.10),

where experimentally obtainable parameters enter, spectroscopic features such as shifting

and broadening of an absorption spectrum can be explained [39]. Thus, nonequilibrium

but timely stationary solvation processes become measurable [53, 58, 31].
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3.2 Generalization to a time-dependent Onsager model
3

Up to present, a generalization of the Kirkwood-Onsager continuum theory of quantum

solvation to explicitly include time-dependent solute or solvent properties has not been

established. In this section, I formulate a theory of nonequilibrium quantum solvation in

which parameters of the solute become explicitly time-dependent. We assume in a sim-

plest approach a spherical molecular Onsager cavity with a time-dependent radius. The

precise functional form of the time-dependence is imposed from outside and we consider two

cases: a shrinking Onsager sphere (Subsec. 3.2.3), and, a breathing Onsager sphere with

a transient expansion followed by a shrinking to the original size (Subsec. 3.2.4) [77]. In

particular, we are interested in how the relaxation properties of an excited electronic state

of the solute and its frequency-dependent response are influenced by the time-dependent

solute cage. We consider a molecular point dipole dissolved in water. Since all parameters

are kept explicit, other dielectric solvents can readily be addressed as well. In general,

the frequency-dependent response functions are non-stationary and explicitly depend on

time. For a shrinking Onsager sphere we find a frequency-dependent susceptibility which

grows over time by up to 40%. In case of the breathing sphere we find a non-monotonous

dependence of the solute relaxation rate on the breathing rate and a resonant suppression

of damping when both rates are comparable. From the point of view of the theory of dis-

sipative quantum systems, a time-dependent solute radius amounts to a time-dependent

system-bath coupling and to a break-down of the stationarity of the environmental fluc-

tuations. This calls for a generalization of the formalism to nonequilibrium baths. In

particular, a standard form of the spectral density, see Eq. (3.10) for the stationary On-

sager model, which is connected to a time-translationally invariant susceptibility and a

damping kernel for the generalized Langevin equation (2.14) in Sec. 2.2 [26], cannot be

formulated. This is also different to a previously calculation of an externally driven har-

monic bath in which an external time-dependent field drives the harmonic bath oscillators

[83, 84]. By this, a net external force on the central systems is composed by the bath, but

it still can be described by a spectral density.

This leads to the following structure of this section. In Subsec. 3.2.1, I derive a model for

a molecular dipole moment embedded in Onsager cavity with a time-dependent radius by

3The model presented in this section is based on the publication : H. Kirchberg, P. Nalbach and M.
Thorwart, ”Nonequilibrium quantum solvation with a time-dependent Onsager cavity,” J. Chem. Phys.
148, 164301 (2018).
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means of a non-stationary Langevin equation. Subsec. 3.2.2 gives the physical parameters

chosen for the model of solvation. In Subsec. 3.2.3, I solve the established equation and

calculate the relaxation dynamics for the molecular dipole moment and its response to an

external electric field in a shrinking Onsager cavity. Subsec. 3.2.4 shows the corresponding

results for the case of a breathing Onsager cavity. Subsec. 3.2.5 concludes.

3.2.1 Model and nonequilibrium Langevin equation

One considers a solute molecule in the form of an electric dipole which is exposed to the re-

action electric field generated by the back action of the polarized solvent. The electrons are

bound to the positively charged nuclei and can be brought out of their equilibrium position

by the fluctuating reaction field. In the simplest form of a homogeneous, isotropic model,

the effective potential for the electron (with a charge e) near its equilibrium position is as-

sumed harmonic with the characteristic frequency ω0, and the fluctuations induce damping

of its time-dependent displacement q(t) [61, 85]. The induced dipole moment of the solute

is along the z-axis and given by µ(t) = e q(t)êz. The dipole is placed inside a spherical

Onsager cavity whose radius a(t) is now assumed to be explicitly time-dependent in com-

parison to the static Onsager model in Sec. 3.1. One assumes that the time-dependence is

created by some external mechanism, for instance, upon photoexcitation of the solute and

a subsequent reconfiguration of the solute or the solvent (see introduction of this Chapter

3 for specific examples). The spherical cage is surrounded by a dielectric medium with a

given frequency-dependent complex permittivity ε(ω) = ε′(ω) + iε′′(ω) according to Eq.

(2.26) of Subsec. 2.2.2.

To calculate the Onsager reaction field by means of Maxwell’s equations for a time-

dependent radius, we assume that the radius a(t) = a0 + a1(t) is composed of a time-

independent part a0 =const. and only changes weakly in a small range by the magnitude

a1(t) over time. This allows us to neglect any charge current density and to use the much

simpler laws of electrostatics [73, 38]. Therefore we use the electrostatic potential obtained

for the region outside the Onsager sphere in the dielectric medium (r > a(t)) described by

Eq. (3.3) and inside the sphere (r < a(t)) according to Eq. (3.2). All contributions of the

magnetic field induced by the displacement current at the boundary of the slowly changing

sphere are negligible.

With this, the reaction field is found to include an explicitly time-dependent radius

a(t) in comparison to that one derived in Eq. (3.4). The reaction field is homogeneous and

points in z-direction, R(t) = R(t)êz, like the molecular dipole moment µ(t) = eq(t), so
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that it is given by

R(t) =
1

a(t)3

∫ t

−∞
dt′χ(t− t′)µ(t′) . (3.11)

With the Debye dielectric permittivity of Eq. (2.26) in time space we find the time-

dependent response function or susceptibility

χ(t) = χDe
−ωDtΘ(t), (3.12)

where we have defined ωD = (2εs + 1)/(3τD), χD = 2(εs−1)
3τD

and choose ε∞ = 1 (cf. Subsec.

3.2.2 for further discussions). This yields the response function in the Laplace space 4,

which we define for later purpose, according to

χ(z) = − χD
z + iωD

. (3.13)

The total Hamiltonian for the electron forming the molecular dipole moment in harmonic

approximation which couples to the reaction field via minimal coupling VI = −µR accord-

ing to Eq. (2.35) reads

H = HS + VI =
1

2m
p2 +

m

2
ω2

0q
2 − eqR, (3.14)

where p is the momentum of the electron e, q its displacement and m its mass.

The reaction field is a field operator whose expectation value 〈R(t)〉 gives rise to a

time-dependent expectation value for the external force e〈R(t)〉. Using the Hamiltonian

of Eq. (3.14) and the Heisenberg equation of motion for the momentum 〈p〉 ≡ m〈q̇〉 of the

electron with mass m leads to a Langevin-type equation for the expectation value of the

displacement with an explicit time-dependent memory kernel (resulting from reaction field

of Eq. (3.11)) in form

m〈q̈(t)〉+mω2
0〈q(t)〉 = e〈R(t)〉 =

e2

a(t)3

∫ t

0

dt′χ(t− t′)〈q(t′)〉 , (3.15)

where 〈q(t)〉 = 0 for t < 0 has been assumed. The electron displacement and the resulting

dipole moment begins at t = 0 which also yields the lower limit t = 0 of the integral

4Laplace transform is defined by f(z) = i
∫∞
0
dt eiztf(t), where f(z) is analytic for Im(z) > 0 and

f(t→∞) <∞.
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in the memory kernel of Eq. (3.15). In the frequency domain, the response function in

the memory kernel χ(ω) = χ′(ω) + iχ′′(ω) can be separated into the real and imaginary

part, where the real part χ′(ω) leads to a shift of the potential V (q) = m
2
ω2

0q
2 in Eq.

(3.14) and the imaginary part χ′′(ω) induces damping of the displacement motion (see

denominator polynomial in Eq. (3.20) where −iχ0(Re[z]) = χ0(ω)). We emphasize again

that for a static Onsager radius a(t) = a0 the damping kernel can be associated to the

spectral density J(ω) of an equilibrium or stationary environment (see Eq. (3.10)). For the

nonequilibrium solvent with a time-dependent Onsager radius, this is no longer possible,

since the fluctuations of the nonequilibrium bath are no longer time-translational invariant

(or, stationary). In the following, we therefore shall use the equation of motion in the form

of Eq. (3.15).

3.2.2 Model parameters

Throughout this work, we study a test molecule with an eigenfrequency ω0 = 1.183× 1015

Hz, which sets the natural system time scale of the dipole dynamics comparable to the ones

of molecules and atoms in the ultraviolet regime. Furthermore, the choice of ω0 is restricted

to the regime above a minimal magnitude for stability reasons within the model (see Sec.

3.2.3 and Appendix A.1). The relevant mass is given by the electron mass m = 9.11×10−28

g. Then, the natural length scale of the displacements q(t) is given by the oscillator length

qd =
√
~/(mω0) = 3.1 Å= 3.1 × 10−8cm. Note that we work in cgs units in which the

electron charge is e = 3× 1.602× 10−10esu.

For the solvent, we use the values of bulk water (at 20◦C) according to εs = 78.3,

τD = 8.2 ps of the dipolar solvent and ωD = 6.4 THz = 5.4× 10−3ω0. Moreover, χD = 6.3

THz. For simplicity, we set ε∞ = 1 in the high-frequency limit, while other values (ε∞ > 1)

for this limit lead to small constant shifts of the potential (see Eq. (A.6) in Appendix A.1

for details). The scale a0 of the radius of the static Onsager sphere is assumed to be

a0 = 6 × 10−8cm. Hence, ω0 � ωD;χD, and under these conditions, the scale of the

right-hand side of Eq. (3.15) becomes
√
e2/(ma3

0) = 1.1 × 1015 Hz ' ω0. Moreover the

quantity e2/(mω2
0) = αm is related to the molecular polarizability (cf. Eq. (2.27) of Subsec.

2.2.3) for molecules without a permanent dipole moment [61] and reads within the model

αm = 0.84a3
0 which is comparable to the polarizability of Sr where αm ' 30 Å3 [86, 87, 88]5.

5Value for αm is appropriate for cgs units. To convert to SI, we utilize the relation αm(SI)/Cm2V−1 =
4πε010−6αm(cgs)/cm3.
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3.2.3 Shrinking Onsager sphere

First, we consider the relaxation dynamics of the dipole in a shrinking Onsager sphere. We

assume that the radius varies with time from the larger radius a0 + a1 to the smaller one

a0 according to

a(t) = a0 + a1(t) = a0 + a1e
−αtΘ(t). (3.16)

α denotes the shrinking rate. We assume that the initial electron displacement coincides

with the shrinking of the sphere at t = 0.

From now on, I write all expectation values as 〈q(t)〉 ≡ q(t) and 〈R(t)〉 ≡ R(t) for

better readability.

Time evolution of the dipole moment

To calculate the expectation value of the dipole moment µ(t), one needs to solve Eq. (3.15)

which is a linear integro-differential equation. This is not possible in general in an analytic

manner. To proceed, we employ the Laplace transform and need to use an approximation

for the prefactor 1/a(t)3. In doing so, we expand the prefactor in a Taylor series up to first

order in the time-dependent part. This is valid when the overall magnitude a1 by which

the radius changes over time is much smaller than the static radius a0, which is usually the

case in a concrete physical situation. In fact, the molecule is typically much larger than

the change of its size induced by photoexcitation.

Hence, we have for a1 � a0 that

1

a(t)3
=

1

(a0 + a1e−αt)3
' 1

a3
0

[
1− 3a1

a0

e−αt
]
. (3.17)

For convenience, we define the rescaled linear susceptibilities for the case of fast shrinking

according to

χ0(t) =
e2

ma3
0

χ(t), (3.18)

χ1(t) =
3a1

a0

χ0(t) .

Here, χ0(t) only depends on the static radius a0 while χ1(t) is of first order in a1/a0.
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In first order in the ratio a1/a0, we obtain the Laplace transform 6 of Eq. (3.15) in the

form

−z + [ω2
0 − z2 + iχ0(z)]q(z) = iχ1(z + iα)q(z + iα) . (3.19)

The solution immediately follows as

q(z) = q0(z) + q1(z) (3.20)

=
zq(t = 0)

ω2
0 − z2 + iχ0(z)

+
iχ1(z + iα)q0(z + iα)

ω2
0 − z2 + iχ0(z)

.

Here, q(t = 0) denotes the initial expectation value of the displacement at t = 0 and

we have assumed that the initial expectation value of the velocity q̇(t = 0) = 0. For

specific calculations below, we set q(t = 0) = qd. Moreover, one has defined q0(z) which

includes the contribution from the static smaller sphere with the final radius a0, while all

contributions from the time-dependent radius are contained in q1(z). Since we need to

make sure that the second term q1(z) only contains contributions up to first order in a1/a0

(which is realized by the prefactor χ1(z+iα)), we need to replace q(z+iα) by q0(z+iα) for

consistency here. Thus, we first calculate q0(z) for the static case by setting a1 = 0. Then,

we calculate the first-order term q1(z) which reflects the influence of the time-dependent

radius a1(t). Finally, we transform the results back to the time domain to obtain the overall

time-dependent expectation value of the displacement q(t) = q0(t) + q1(t).

To obtain a stable solution of q0(t) as Laplace back transform of q0(z), we have to

restrict the frequency domain such that ω0 > ω0,min (see Eq. (A.6) in Appendix A.1 for

details). If we choose a smaller eigenfrequency, we will obtain an additional solution of q0(t)

which diverges in time. The molecular dipole moment would then be completely distorted

beyond the harmonic limit, and a real molecule, based on the Onsager model, would be

deformed in terms of its extensional and electronic properties which is unphysical.

To transform q0(z) (first term of Eq. 3.20) back into the time domain, we first calculate

the roots of the denominator polynomial D(z) according to

q0(z) =
q(t = 0)z

ω2
0 − z2 + iχ0(z)

=
q(t = 0)(−z2 − izωD)

z3 + iωDz2 − ω2
0z + i(−ω2

0ωD + Φ)
=
q(t = 0)(−z2 − izωD)

D(z)
.

(3.21)

6Laplace transform is defined by f(z) = i
∫∞
0
dt eiztf(t), where f(z) is analytic for Im(z) > 0 and

f(t→∞) <∞.
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The resulting equation

D(z) = z3 + iωDz
2 − ω2

0z + i(−ω2
0ωD + Φ) = 0, (3.22)

can now be solved in several steps, where Φ = e2

ma3
0
χD. First, we substitute z = iλ and

obtain

λ3 + ωDλ
2 + ω2

0λ+ ω2
0ωD − Φ = 0 . (3.23)

With the shift λ = z̃ − ωD/3, it follows that

z̃3 + pz̃ + r = 0, (3.24)

where p = ω2
0 − ω2

D/3 and r = 2ω3
D/27 + 2ω2

0ωD/3− Φ. The cubic equation can be solved

by Cardano’s method and one obtains

z̃1 = u+ v , (3.25)

z̃2 = uε1 + vε2 , (3.26)

z̃3 = uε2 + vε1, (3.27)

where ε1 = −1/2 + i
√

3/2, ε2 = −1/2− i
√

3/2, u = (−r/2 +
√

∆)1/3, v = (−r/2−
√

∆)1/3

and ∆ = (r/2)2 + (p/3)3. After back-substitution, the roots read

z1 = i
(
u+ v − ωD

3

)
≡ −ic , (3.28)

z2 = − i
2

(
u+ v +

2ωD
3

)
−
√

3

2
(u− v) ≡ −iΓ0 − Ω , (3.29)

z3 = − i
2

(
u+ v +

2ωD
3

)
+

√
3

2
(u− v) ≡ −iΓ0 + Ω . (3.30)

Here, we have introduced the parameters

c = −u− v +
ωD
3
, (3.31)

Γ0 =
1

2

(
u+ v +

2ωD
3

)
, (3.32)

Ω =

√
3

2
(u− v) . (3.33)
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The inverse Laplace transformation can be carried out by solving

q0(t) =
1

2πi

∫ ∞
−∞

dze−izt
q(t = 0)(−z2 − iωDz)

(z − z1)(z − z2)(z − z3)
= −2πi

∑
j

Res(q0, zj) . (3.34)

Next, we exploit the relations between the parameters which are typical for a Debye

solvent, and, in the present case, for water in the Debye approximation. Plugging in the

parameters discussed in Subsec. 3.2.2, we find that Φ ≈ ω2
0ωD and that p ≈ ω2

0. Moreover,

we have that r ≈ 2ω2
0ωD/3 − Φ ≈ −ω2

0ωD/3 < 0. This ensures that ∆ ' ω6
0/3

3 > 0,

such that three linearly independent solutions exist, since ω0 � ωD. Using this physically

motivated approximations from the model parameters in Subsec. 3.2.2, we have that u '
ω0/
√

3 and v = −u, such that

c ' ωD
3
, (3.35)

Γ0 '
ωD
3
, (3.36)

Ω ' ω0 . (3.37)

In time-domain q0(t) finally reads

q0(t) ' e−Γ0tq(t = 0)

[
2

9

ω2
D

ω2
0

+

(
2

9

ω2
D

ω2
0

+ 1

)
cosω0t−

ωD
3ω0

sinω0t

]
(3.38)

' e−Γ0tq(t = 0) cosω0t . (3.39)

For the given parameters, it follows that the damping strength is Γ0 ' ωD/3, see Eq.

(3.36). Only then, the oscillation frequency is given by ω0, and other components (such as

that coming from the sine) are negligible. Moreover, we note that for a fixed parameter

combination and without the neglect of the small terms in Eq. (3.34), we find that the

damping, defined in Eq. (3.32), Γ0 ∝ 1/a3
0, i.e., an increased radius results in a smaller

damping [89].

With this result at hand, we investigate next the first-order term q1(t) ∼ a1/a0 obtained

from the inverse Laplace transform of q1(z) in Eq. (3.20).
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q1(z) can be expressed as

q1(z) =
iχ1(z + iα)q0(z + iα)

ω2
0 − z2 + iχ0(z)

(3.40)

= iQ1
1

z − z0

z + iωD
(z − z1)(z − z2)(z − z3)

z2 + iωDz − α2 − ωDα + 2iαz

(z − z̄1)(z − z̄2)(z − z̄3)
,

where z̄i = zi − iα are the shifted roots zi of Eqs. (3.28)-(3.30),

z0 = −i(α + ωD) , (3.41)

and

Q1 =
3a1

a0

e2

ma3
0

χDq(t = 0) . (3.42)

After performing the inverse Laplace transform back to the time domain by using the

theorem of residues and the physically motivated approximations of Eqs. (3.35)-(3.37), we

obtain three terms such that

q1(t) = Q1

3∑
j=1

q
(j)
1 (t) , (3.43)

with

q
(1)
1 (t) =

e−ωDt/3

3

ωD
ω2

0

1

α(α2 + ω2
0)

{
2

3
ωD + α− α(5ωD − 9α)

2ωD + 3α
− e−αt

(
2

3
ωD − α

)}
,

q
(2)
1 (t) =

e−ωDt/3

9ω2
0α

(3.44)

× Re

{
eiω0t

3ω0 − i2ωD
3ω0 − i(2ωD + 3α)

2ω2
D + 9ω2

0 − 3ωDα− 9α2 − i(3ωDω0 + 18αω0)

(iα− ω0)(iα− 2ω0)

}
,

q
(3)
1 (t) =

e−[ωD/3+α]t

9ω2
0α

Re

{
eiω0t

3ω0 − i(2ωD − 3α)

3ω0 − i2ωD
2ω2

D + 9ω2
0 − i3ωDω0

(iα + ω0)(iα + 2ω0)

}
. (3.45)

The results for q0(t) (black curve) and for q1(t) (blue curve) with a1/a0 = 0.1 are

shown graphically in Fig. 3.2 for a rather quick shrinking with α = 5Γ0 ' 9× 10−3ω0. The

additional term q1(t), which reflects the shrinking, is in phase with q0(t) and has the same

frequency as q0(t). The amplitudes for q1(t) first grow, reach a maximum and finally decay

to zero.

For the chosen shrinking rate α = 5Γ0 the maximum magnitude of q1(t) is reached

around t ≈ 150ω−1
0 . After that, the central dipole experiences the shrinking sphere and,

thus, an enhanced damping, such that the amplitude of q1(t) decreases. The maximum
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Figure 3.2: Time-dependent displacement q0(t) (black, reduced by a factor of 0.2) and
first-order contribution q1(t) for a1/a0 = 0.1 and for the shrinking rate α = 5Γ0 (blue) for
the parameters given in Sec. 3.2.2. The red curve shows the estimated effective correction
δqeff(t) = qeff(t) − q0(t) obtained by substituting a0 in Φ in Eq. (3.22) by the full time-
dependent radius a(t) which leads to qeff(t) for a1/a0 = 0.1 (see text).

amplitude occurs on a time scale α−1 ' 120ω−1
0 . For an increased shrinking rate, the

maximal magnitude of the additional term q1(t) is reached earlier as the sphere shrinks

faster. A larger magnitude of a1 results in a bigger initial radius a(t = 0) = a0 + a1 of the

Onsager sphere where the fluctuating solvent molecules are located further away from the

dipole. This gives rise to a more rapid initial increase in q1(t), see Fig. 3.3. During the

shrinking, the fluctuating solvent molecules come closer and their impact increases which

happens on the characteristic timescale α−1, before going to zero at infinite time when the

final radius a0 is reached.

As the magnitude a1 by which the radius changes is much smaller than the static

radius a0, one may approximate the time-dependent q(t) by an effective qeff(t) which is

obtained from the exact q0(t) in Eq. (3.34) with the constant decay rate Γ0 of Eq. (3.32)

being replaced by a time-dependent decay rate Γ(t) ∝ 1/[a(t)]3. The resulting δqeff(t) =

qeff(t) − q0(t) is shown in Fig. 3.2 by the red line for a1/a0 = 0.1. One observes that
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Figure 3.3: Time-dependent first-order contribution q1(t) for short times for different
values of a1/a0 = 0.1 (black), 0.2 (red), and 0.3 (blue) for α = 5Γ0.

this simply estimated correction to q0(t) considerably underestimates the fully dynamical

time evolution. Hence, the time-dependent a(t) induces more involved emerging collective

effects which are not captured by an adiabatic approach.

With the expectation value q(t) = q0(t) + q1(t) at hand, we can determine the expec-

tation value of the reaction field, given in Eq. (3.11), in response to the dipole moment

µ(t) together with Eq. (3.12). The result is shown in Fig. 3.4. The reaction field of the

surrounding medium shows a phase shift of π/2 relative to the dipole moment µ(t) = eq(t)

and therefore acts as a damping force. The phase shift reflects the rearrangement time of

the caging solvent molecules to the momentary configuration of the central dipole moment.
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Figure 3.4: Time dependent reaction field R(t) for the time-dependent dipole moment
µ(t) = eq(t) for the parameters given in Sec. 3.2.2, α = 5Γ0 and a1/a0 = 0.3.



62 3. Nonequilibrium molecular relaxation dynamics in a dynamic solvent

Influence of the shrinking rate on damping

To reveal the impact of the shrinking rate α on the damping of the central solute dipole,

we consider the driven dynamics with a finite q1(t). Physically, a larger value of α brings

the solvent more rapidly closer to the center of the Onsager sphere and damping is en-

hanced. The two limiting cases can be obtained from the Onsager radius Eq. (3.17) and

the dependence Γ ∝ 1
a3 . For α → ∞, the damping rate Γ is given by Γ0 ∝ 1

a3
0
, as is

clear from Eq. (3.17). For the opposite limit α → 0, one may set e−αt ' 1 and obtain

the rate Γα by replacing the prefactor 1
a3

0
→ 1

a3
0

[
1− 3a1

a0

]
in the expression for Γ0, i.e.,

Γ→ Γα = (1− 3a1/a0)Γ0.

To obtain the crossover between the two limiting cases, we exploit the fact that the

additional contribution to the expectation value q1(t) has the same frequency and no phase

shift relative to q0(t). To determine the damping rate Γ, we fit the function qft(t) = q(t =

0)e−Γt cos[ω0t] to q(t) = q0(t) + q1(t) in the regime of long times, i.e., in the time window

[100, 200]ω−1
0 , where possibly fast decaying contributions are suppressed. The result for

the dependence of Γ on the shrinking rate α is shown in Fig. 3.5 for a1/a0 = 0.01. The full

result correctly interpolates between the two limits.

For comparison, we also show the damping rate Γeff determined from fitting the decaying

exponential in the same time window as above to the adiabatic time-dependent qeff(t) in

which the static Onsager radius has been replaced by the momentary value a(t). The result

is shown in Fig. 3.5 by the red symbols. One observes that the assumption of an effective

dynamics leads to an overestimated damping rate as compared to the true dynamics of

q(t). This is consistent with the results shown in Fig. 3.2. Hence, we conclude that the

relaxation properties of the central dipole are significantly influenced by a time-dependent

radius of the Onsager sphere.
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Figure 3.5: Damping rate Γ (blue symbols) as a function of the shrinking rate α for
a1/a0 = 0.01 and for the parameters given in Sec. 3.2.2. The limiting cases are Γ→ Γ0 for
α→∞ and Γ→ Γα = Γ0(1− 3a1/a0) for α→ 0. The red symbols show the effective rate
Γeff obtained from a fit to the approximated dynamics qeff .
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Dipole response

We study next the frequency-dependent linear response of the expectation value µ(t) =

eq(t) of the dipole moment in a temporally shrinking sphere to an external harmonic

electric force eE(t). The response function contains information about the refraction and

the absorption behavior of the test molecule (see Sec. 2.3 and Eq. (2.41) for the response of

a continuous dielectric medium). For this, we couple an additional time-dependent external

electric field E(t) to µ(t) via VI(t) = −µ(t)E(t) under the assumption that the wavelength

of the external field is much larger than the sphere radius a0 of the Onsager sphere, so that

one can disregard any spatial dependence. Additionally, we assume for simplicity that the

direction of E is parallel µ.

To determine the response, we again perform the approximation for the prefactor

1/a(t)3 as above. Next, we extend the equation of motion (3.15) by the driving term

and perform the Laplace transform f(z) = i
∫∞

0
dteiztf(t) to obtain qR(z) = q(z) + δq(z)

(see Eq. (A.9) in Appendix A.2). The first term represents the homogeneous part and is

discussed in detail in the previous Sec. 3.2.3, while we identify the second term δq(z) as

the term of the response term to the applied external field, i.e.,

δq(z) = X0(z)[E(z) + iW1(z + iα)E(z + iα)], (3.46)

where

X0(z) =
e

m[ω2
0 − z2 + iχ0(z)]

, (3.47)

W1(z) =
χ1(z)

ω2
0 − z2 + iχ0(z)

.

In the real-time domain and for a1 � a0, δq(t) can be written in the form

δq(t) = i

∫ t

0

dsX(t, s)E(t− s), (3.48)

where s ≤ t and where

X(t, s) = X0(s)− e−αt
∫ s

0

dueαuX0(u)W1(s− u) (3.49)

= X0(s)− e−αtX1(s).
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Adiabatic limit

In order to obtain a frequency-dependent response function, which depends explicitly on

the time t, we again perform a Laplace transform of Eq. (3.48), while one is only interested

in the real part of z, which is the frequency part. According to the chosen definition of the

Laplace transform, we identify the physical response function as X(t, ω) ≡ −iX(t,Re[z]).

The adiabatic limit holds when the shrinking rate α � Γ0, where Γ0 in Eq. (3.39) is the

decay rate of X0(s). Then, the time-dependent prefactor e−αt can be treated adiabatically

and the response function in the frequency domain reads

X(t, ω) = X0(ω) + ie−αtX0(ω − iα)W1(ω) . (3.50)

The response function in the adiabatic limit contains two terms. The first one reflects the

response of the dipole moment to the external field for a static sphere with constant radius

a0. The second term includes all shrinking effects and is linear in a1/a0. Figures 3.6 and

3.7 show the real and imaginary part of the response function at different times t after

initial preparation of the dipole moment µ(t = 0) = eqd at t = 0.

At time t = 0, the impact of the shrinking on the response function is most pronounced

due to the second term of Eq. (3.49). The real part of the response function is associated

with the refraction of the incoming light and the imaginary part is connected to the absorp-

tion of the central dipole moment in the shrinking Onsager cavity according to (molecular)

absorption of general dielectric media discussed in Sec. 2.3. The imaginary part has a

maximum at ω0 and shows an enhancement of up to 40% (Fig. 3.6 b) for its maximum,

which decays exponentially with time (e.g., Fig. 3.7 b at intermediate time t = 40Γ−1
0 ).

The exponential decay of the maximum is shown in Fig. 3.8.

Interestingly, a bigger shrinking rate α shows an initially more pronounced response

which rapidly decays with time, while the response function for a smaller α decreases more

slowly. The physical meaning is that for a slower shrinking, the final radius a0 is reached

later, the action of the fluctuating environment comes later closer to the dipole, such that

effectively, damping is reduced and the response is enhanced for a longer time period. In

turn, the broadening of the imaginary part is narrower for longer times.

As a side remark, one may fit a Lorentzian to the imaginary part X ′′(ω) of Eq. (3.50)

and read of its full width at half maximum which is equal to Γ for different shrinking rates

α shown in Fig. 3.5 for a1/a0 = 0.01.
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Figure 3.6: Real (a) and imaginary (b) part of the response function X(t = 0, ω) at initial
time t = 0 in the adiabatic limit for different shrinking rates α for a1 = 0.1a0 for the
solvent parameters of water (see text).
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Beyond the adiabatic limit

In order to get information about the dipole response beyond the adiabatic limit for larger

shrinking rates, we couple the dipole to an explicit monochromatic electric field E(t) =

E0 cos[ωext]. We are then able to calculate the response −iδq(Re[z]) ≡ δq(ω) according

to Eq. (3.46) to this specific choice of the electric field. We define the effective response

function δq(ω)/E(ω) and show the results in Fig. 3.9. If the frequency of the external field

is in resonance with the dipole frequency, ωex = ω0, we finds an interesting behavior. For

0 ≤ α ≤ 0.5Γ0, the maximum at ω = ω0 turns into a dip and two peaks around the dipole

eigenfrequency appear in the imaginary part of the response. With increasing shrinking

rate, the two peaks move further apart from each other and disappear again at α ≥ 0.5Γ0

while the central linewidth becomes broader. The analysis of calculating the damping rate

Γ of the dipole moment leads back to the idea of fitting a single Lorentzian to the imaginary

part around the eigenfrequency ω0 which becomes broader for faster shrinking. We note

that the effective response function δq(ω)/E(ω) still contains functional signatures of the

applied electric field since the charge displacement δq(ω) and the stimulating field E(ω)

depend on each other in a nonlinear way, see Eq. (3.46). The effective response reflects

only a global responsive behavior away from the frequency ωex of the incoming light field.

The observed dip results from the sharp feature of the monochromatic electric field around

ωex. We observe that the incoming field enters as E(ω + iα) in the nonlinear response

of Eq. (3.46) and depends on the shrinking rate α. We thus conclude that the distance

between the two maximum frequencies forming the dip, w = ωmax,2 − ωmax,1, can be used

to determine the shrinking rate α. Fig. 3.10 represents the distance between the maximum

frequencies for different shrinking rates. Their distance grows with enhanced shrinking

rate before it drops and eventually disappears. For small shrinking rates, a ≤ 0.1Γ0, we

find that the distance of the maximum frequencies shows a dependence w ∝
√
α.
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3.2.4 Breathing Onsager Sphere

Another physically relevant configuration is a breathing Onsager sphere with the dynamic

radius

a(t) = a0 + a2(t) = a0 + a2 α t e
1−αt Θ(t), (3.51)

which is chosen such that we obtain the maximum value amax(tmax = 1/α) = a0 + a2

at tmax = 1/α. During this dynamics the radius first growths from a(t = 0) = a0 to the

maximum value a(tmax) = a0+a2 and then returns to a(t→∞) = a0. This time-dependent

behavior covers excitation and de-excitation of photoexcited molecules accompanied by

spatial breathing [77].

Time evolution of the dipole moment

We calculate the impact of the breathing Onsager sphere on the expectation value µ(t) =

eq(t) of the central dipole moment. In following the same calculus as in Sec. 3.2.3, we again

expand the prefactor 1/a(t)3 in a Taylor series up to first order in the time-dependent part.

This is valid when the magnitude a2 by which the radius changes is much smaller than the

static radius a0. One finds

1

a(t)3
' 1

a3
0

[
1− 3a2

a0

αte1−αt
]

(3.52)

=
1

a3
0

[
1− 3a2

a0

α exp[1]

(
− ∂

∂α

)
e−αt

]
,

so that we can again split the linear the response function into χ0(t) + χ2(t), since we are

only interested in first order contributions of a2/a0, the prefactor of χ2(t) = 3a2/a0 exp(1)χ0(t).

We perform a Laplace transform of Eq. (3.15). It is helpful to define the Laplace transform

of the susceptibility for the breathing

χ2(z) = −3a2

a0

exp(1)
e2

ma3
0

χD
(ωD − z)2

. (3.53)

To obtain an analytic solution in the form q(t) = q0(t) + q2(t), we need to determine
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the inverse Laplace transform of the dynamic part

q2(z) = −α ∂

∂α

iχ2(z + iα)q0(z + iα)

ω2
0 − z2 + iχ0(z)

(3.54)

= −iQ2
∂

∂α

[
1

z − z0

z + iωD
(z − z1)(z − z2)(z − z3)

z2 + iωDz − α2 − ωDα + 2iαz

(z − z̄1)(z − z̄2)(z − z̄3)

]
,

where z̄i = zi − iα = z̄i(α) are the shifted roots zi of Eqs. (3.28)-(3.30) and explicitly

depend on α. Moreover, z0 is given by Eq. (3.41) and also depends on α. Furthermore,

Q2 =
3a1α exp(1)

a0

e2

ma3
0

χDq(t = 0) . (3.55)

Performing the inverse Laplace transform by exploiting the theorem of residues, we obtain

the solution q(t) = q0(t) + q2(t) in the time domain, where q0(t) is known from Eq. (3.34).

The solution q2(t) reads with the assumption of the physical model parameters (Subsec.

3.2.2)

q2(t) = Q2

4∑
j=1

q
(j)
2 (t), (3.56)
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with

q
(1)
2 (t) = e−ωDt/3

2

3

ωD
ω2

0

1

α(α2 + ω2
0)

2ω2
D − 3ωDα− 9α2

3α + 2ωD
(3.57)

×
{

−ωD − 6α

9(2ω2
D − 3ωDα− 9α2)

− 1

3α + 2ωD
+

1

3α
− 2α

3(ω2
0 + α2)

}
,

q
(2)
2 (t) = e−(ωD/3+α)t 2ωD − 3α

2ω2
0

1

9ωDα(α2 + ω2
0)

(3.58)

×
{
−3ωD + ω2

D

(
2t+

2

2ωD − 3α
+

2

α
− 4α

ω2
0 + α2

)}
,

q
(3)
2 (t) = e−ωDt/3

1

9ω2
0α

Re{
eiω0t

(2ωD + 3iω0)(−9α2 − 3αωD + 2ω2
D + 9ω2

0 − 18iω0α− 3iωDω0)

2ωD + 3α + 3iω0

×
[

−ωD − 6iω0 − 6α

3(2ω2
0 − α2 − 3iαω0)(−9α2 − 3αωD + 2ω2

D + 9ω2
0 − 18iω0α− 3iωDω0)

− 3

(2ω2
0 − α2 − 3iαω0)(2ωD + 3α + 3iω0)

+
1

(−ω0 + iα)2(2iω0 + α)

− 2

α(−2ω0 + iα)2

]}
,

q
(4)
2 (t) = e−(ωD/3+α)t 1

ω2
0α

Re

{
eiω0t

3α− 2ωD − 3iω0

2ω2
0 + 3iω0α− α2

[
−2ωD − 12iω0

6ωD + 9iω0

− 2ω2
D − 3iωDω0 + 9ω2

0

3(2ωD + 3iω0)2

+
(2ω2

D − 3iωDω0 + 9ω2
0)t

9(2ωD + 3iω0)
− 2ω2

D − 3iωDω0 + 9ω2
0

3(2ωD + 3iω0)(−2ωD − 3iω0 + 3α)

+ (2ω2
D − 3iωDω0 + 9ω2

0)

(
− 1

3(2ωD − 3iω0)2
− −2iω0 + α

9(2ω2
0 + 3iαω0 − α2)(2ωD + 3iω0)

− 1

9α(2ωD + 3iω0)
+

iω0 + α

9(2ωD + 3iω0)(2ω2
0 + 3iαω0 − α2)

)]}
. (3.59)

The time-evolution of the dipole moment according to q(t) = q0(t) + q2(t) is shown in

Fig. 3.11. The driven part q2(t) is shown for different breathing rates and compared to

the undriven part q0(t). For the breathing sphere, a relative phase shift between q0(t) and

q2(t) can be observed. For smaller breathing rates α/Γ0 < 1, the phase shift persists much

longer than for the larger breathing rates.

Next, we compare the two cases of a time-dependent shrinking a1(t) with the time-

dependent breathing a2(t) Onsager radius regarding their impact on the time evolution

of q(t) at longer (but still non-asymptotic) times. The comparison is shown in Fig. 3.12

for the same value of the time constant α = 0.1Γ0 and for a1/2 = 0.1a0. At long times,
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Figure 3.11: Dynamics of the dipole moment according to q(t) = q0(t) + q2(t). The driven
part q2(t) is shown for different breathing rates α = 0.5Γ0 (blue, scaled by a factor of 10)
and α = 10Γ0 (black, scaled by a factor of 10) for a2/a0 = 0.3 and for the parameters as
given in Sec. 3.2.2. The undriven part q0(t) is shown in red.

both cases show in-phase oscillations with q0(t). In general, the shrinking results in a more

pronounced impact on the dipole oscillations than the breathing.

Influence of the breathing rate on damping

The parameter α determines the scale of the time-dependent breathing behavior of the

Onsager radius a(t) = a0 + a2(t). In turn, the time scale of the damping of the dipole

is given by Γ0 and the interplay of both can affect the overall damping rate Γ of the

breathing system. In order to determine the overall damping rate Γ, we again fit the

function qft(t) = q(t = 0)e−Γt cos[ω0t] to q(t), but now regarding the additional term which

respects the breathing behavior of the Onsager radius a(t) = a0 + a2(t). The initial phase

shift is neglected by restricting the fitting to the time window ω0t > 300. The result for

the damping rate is shown in Fig. 3.13.

For small rates α � Γ0, the maximal extension of the sphere is reached only at long
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Figure 3.12: Dynamics of the driven parts q1(t) (shrinking sphere, blue) and q2(t) (breath-
ing sphere, red) at intermediate times for a1 = a2 = 0.1a0, α = 0.1Γ0, and for the parame-
ters given in Sec. 3.2.2.

times ∼ 1/α → ∞, so that the radius largely persists at a0. Moreover, α enters as a

prefactor in a2(t), so that the additional term of the dynamics q2(t) is negligible, and, thus,

Γ→ Γ0. For large breathing rates α � Γ0, the breathing occurs very rapidly, so that the

dipole does not have enough time to respond and largely ’sees’ again an Onsager sphere with

radius a0, so that Γ→ Γ0. In between, when α ≈ Γ0, the environmental solvent molecules

are mostly pushed away from the central dipole while it relaxes, so that its damping is

reduced. This effect is maximal when α = Γ0, pointing to an interesting resonant reduction

of the damping. As can be seen for our choice of realistic model parameters, the reduction

of the damping can amount to almost 30% in the resonance region, an effect that should

be detectable by spectroscopic means.
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Dipole response

We study next the linear response function of the dipole moment µ(t) in the breathing

sphere to an externally driven electric field E(t), analogously to Sec. 3.2.3. As before, the

wavelength of the external field is assumed to be much larger than the static sphere radius

a0, so that we can disregard the spatial dependence of E(t). Additionally, the external

electric field E(t) is assumed to be parallel to the dipole moment µ(t).

The equation of motion in Laplace space again takes the form qR(z) = q(z) + δq(z),

where q(z) (and its time equivalent) is studied in detail in Sec. 3.2.4 and the term δq(z)

arises from the external field eE(z) (see Eq. (A.9) in Appendix A.2). δq(z) is given by Eq.

(3.46), where W1(z) now takes the form

W1(z) = −α ∂

∂α

χ2(z)

ω2
0 − z2 + iχ0(z)

. (3.60)

In the real-time domain,

δq(t) = i

∫ t

0

dsX(t, s)E(t− s) , (3.61)

where

X(t, s) = X0(s) + iα
∂

∂α
e−αt

∫ s

0

dueαuX0(u)W1(s− u). (3.62)

Adiabatic limit

When performing the Laplace transform of X(t, s), we again assume α� Γ0, the decay rate

of X0(s). Thus, the time-dependent prefactor can be treated adiabatically. The Laplace

transform of the response function for the breathing sphere then becomes

X(t, ω) = X0(ω) + iαte−αtX0(w − iα)W1(ω) (3.63)

− iαe−αt ∂
∂α

X0(ω − iα)W1(ω) ,

where the real part of the Laplace variable Re[z] ≡ ω reflects the frequency. According

to our definition of the Laplace transform, the physical response is identified as X(t, ω) ≡
−iX(t, ω = Re[z]).

At initial time t = 0, the response of the dipole moment in a breathing sphere does not

differ from the dipole moment in the static sphere. We show the results for a later time t =
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20Γ−1
0 in Fig. 3.14. We observe again a more pronounced response function which finally

drops to the form of a static sphere (Fig. 3.15, e.g., the imaginary part). Especially the

imaginary part which reflects the absorption of the dipole moment is temporally enhanced

by up to 40% as compared to the static case. A smaller breathing rate α shows a weaker

impact on the response. Additionally the broadening of the line shape of the absorptive part

is reduced at different times for different rates α. A intermittently smaller broadening is

connected to a momentary reduced damping of the central dipole moment. The maximum

radius a(t = 1/α) = a0 + a2 of the breathing sphere is reached at the time t = 1/α where

the fluctuating environment is spatially maximally far away from the dipole moment, while

its damping is reduced the most. Thus, the time-dependent response function carries clear

signatures of the breathing of the Onsager sphere.
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Beyond the adiabatic limit

The effective response δq(ω)/E(ω) to an electric field E(t) = E0 cos[ωext] leads also to

a split in two peaks shifted around the dipole eigenfrequency ω0, while the central peak

remains the most pronounced. This is shown in Fig. 3.16. The splitting first increases

with an enhanced breathing rate until it disappears at α ≥ 0.4Γ0. At α ≈ Γ0 we observe

the narrowest line width which eventually becomes broader with increasing breathing rate,

see Fig. 3.16. This can be again recovered by recording the full width at half maximum

of a single Lorentzian fit to the imaginary part, see discussion in Sec. 3.2.3. These results

are shown in Fig. 3.13 as fitted damping rates to the real-time dipole dynamics q(t). We

emphasize again that the effective response δq(ω)/E(ω) reflects only a global behavior away

from the frequency ωex of the incoming light field while the behavior around ωex = ω0 results

from the sharp feature of the monochromatic electric field since the charge displacement

δq(ω) is non-linearly related to the stimulating electric field E(ω), see Eq. (3.46). Due to

the non-linearity of the response function of Eq. (3.46), the signatures of E(ω+ iα) results

in pronounced dips in the effective response function varying with the breathing rate α.

Fig. 3.17 shows the distance between the outer maximum frequencies forming the dips

for different breathing rates. Their distance grows with enhanced breathing rate before it

disappears. We find that the distance of the maxima shows an overall dependence w ∝
√
α.
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breathing rates α.
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3.2.5 Conclusions for the time-dependent Onsager spheres

The time-dependent Onsager model portrays a solvated molecule which changes its spa-

tial extensions in a time-dependent way due to an external stimulus. As an important

consequence, the interaction of the molecular dipole moment with the dissipative solvent

becomes time-dependent, such that the non-stationary effects of nonequilibrium quantum

solvation can be investigated within a model-based approach. The cases of a shrinking and

a breathing Onsager sphere are of particular physical interest.

For the case of a shrinking sphere, we find that the qualitative form of the response is

close to the that of the static sphere, but is strongly time-dependent. The magnitude of

the absorptive part is temporally enhanced up to 40%. The damping rate of the molecular

dipole moment can be easily understood in the two limits of fast and slow shrinking and our

results nicely interpolate between these two limits. The calculated results clearly show that

the nonequilibrium quantum solvation cannot be described by a fully adiabatic approach

which treats the momentary radius of the shrinking sphere as a parameter. In general, a

shrinking sphere shows a stronger damping than the corresponding static sphere.

For the case of a breathing sphere, the real and the imaginary parts of the susceptibility

show again a strong time dependence. A breathing Onsager sphere is accompanied by a

globally reduced damping at intermediate shrinking rates. There, the damping rate shows a

significant minimum for values of shrinking rates comparable to the static relaxation. This

cross-over behavior nicely interpolates between the two limits of fast and slow breathing

which both coincide with the relaxation behavior of a static sphere.

In both regimes an effective response function which relates the central molecular dipole

moment dynamics to an external electric driving field in a non-linear way can be formulated.

The non-monotonous behavior of the effective response around the resonance frequency is

a variable means to determine the shrinking and breathing rates of the Onsager cavity and,

thus, the dynamics of the solute.

The resonantly reduced damping which occurs for a breathing Onsager sphere illus-

trates the nontrivial role of a nonequilibrium environment for the relaxation properties

of a damped system such as the central solute. It can only occur under nonequilibrium

conditions and shows that a time-dependent dissipative environment away from thermal

equilibrium can yield less detrimental implications than resulting from a thermal reser-

voir. The time-dependent Onsager model thus contributes to understanding the impact

of dynamically and spatially varying molecular properties of dissolved molecules on the

relaxation of its electronic degrees of freedom and, thus, its energy exchange with the
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solvent.
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3.3 Nonconventional time-dependent Stokes shift7

Time-dependent fluorescence spectroscopy is used to probe molecular motion at the in-

terfaces of dissolved molecules. By determining the maximum shift of the fluorescence

emission spectrum at time t after excitation, solvent relaxation in the proximity of the

solute, e.g., chromophores of biological macromolecules, can be recorded [90, 91, 92]. This

time-dependent Stokes shift is measured after electronic excitation analogous to the Franck-

Condon principle [93, 94], where the polar solvent arrangement still corresponds to the un-

excited solute which is an energetically unfavorable solvent conformation when the solute

is excited. Over time, the solvent adapts to the altered charge distribution of the so-

lute, reaches energetically more favorable configurations, so that the energy of fluorescence

emission decreases. The well-established Bagchi-Oxtoby-Fleming theory describes the time

development of the Stokes shift in polar media by means of a continuum Onsager model

[92]. It may be understood as a time-dependent description of the Ooshika-Lippert-Mataga

equation of the average shift in frequency of the absorption and fluorescence transition in

solution due to polar interactions [92, 95, 96, 97]. By determining linear response, it is

possible to link the fluctuations of the solute-solvent interaction to the dipole correlation

function, which depend on solvent time constants and dielectric properties only [92]. For

the simplest case of a Debye-type dielectric medium (cf. Eq. (2.26)), the model predicts

an exponential relaxation of the solvation energy proportional to the solvent’s longitudinal

relaxation time τL = [(2ε∞+ 1)/(2εs + 1)]τD which is also one outcome of the spectral den-

sity in Eq. (3.10). The relaxation time becomes observable by the time-dependent Stokes

shift [92]. The continuous approach for time-resolved fluorescence spectroscopy is a pow-

erful description until today because the fluorescence response is insensitive to the motion

of individual water molecules but only to their collective motion [90, 91]. Spectroscopic

measurements confirm relaxation time scales in accordance with τL which are much faster

than reorientation of single-solvent molecules reflecting the fact that the solvent response

involves the coupled response of many molecules. This prediction of τL forms a corner-

stone for the comparison of experimental time-dependent Stokes shift results to theoretical

models [98].

However, experimental data sometimes deviate from the prediction of a homogeneous

continuum model. This may be understood from the microscopic picture. The solvent in

7The model presented in this section is based on the publication : H. Kirchberg and M. Thorwart,
”Time-Resolved Probing of the Nonequilibrium Structural Solvation Dynamics by the Time-Dependent
Stokes Shift,” J. Phys. Chem. B 124, 5717 (2020).
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close proximity to the solute contains an insufficient number of molecules to attain the

full cooperativity described by the τL response, but the solvent far away may look like a

continuum fluid where τL pertains. Therefore, the overall relaxation may occur on several

different time scales and may include single particle relaxation times up to τL and even

leads to ultrafast relaxation contributions in a non-exponential manner [98, 99].

To this end, molecular dynamics (MD) simulations help to mimic at least the most

prominent solvent reorientation and relaxation time scales to understand experimental

time-dependent fluorescence studies. Neira and Nitzan, for example, have used MD sim-

ulations to confirm a slow dynamical solvent component associated with salt ions in elec-

trolyte solutions which becomes visible by a slower time component in the Stokes shift in

comparison to the conventional bulk water relaxation [100].

Recent experimental time-dependent fluorescence studies of aqueous proteins portray

clear evidence of different dynamical components within the solvent [101, 90]. Heid and

Braun, for example, successfully decompose the fluorescence Stokes shift into a water and

protein component by performing MD simulations at nine different sites of the protein in

water [90]. The water component dominates the static Stokes shift at short times, but

decays rapidly, whereas the self-motion of the protein becomes visible after a few picosec-

onds. The resulting Stokes shift therefore leads to a bi- or multimodal time-dependent

decay behavior [90, 91]. Despite the computational accessibility to describe different dy-

namical contributions of the solvation process, MD simulations may also be limited to a

tractable number of solvent molecules to avoid extremely high numerical effort.

The aim of this section is to formulate an effective nonequilibrium theory for the time-

dependent Stokes shift where explicit time-dependent motion beyond thermal fluctuations

enters. To this end, we extend the Bagchi-Oxtoby-Fleming continuum theory by including

a shrinking radius on a finite time scale according to the model discussed in the previous

Section 3.2.

In this section, I develop a model for the bimodal time-dependent Stokes shift by the

time-dependent Onsager model of solvation in Subsec. 3.3.1. In Subsec. 3.3.2, the results

are discussed.

3.3.1 Model

We consider the time-dependent Stokes shift characterized by the function S(t) for a pho-

toexcited molecular complex with explicit molecular motions at the aqueous interface to a
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dipolar solvent. The Stokes shift function is defined by [31]

S(t) =
∆Esolv(t)−∆Esolv(∞)

∆Esolv(0)−∆Esolv(∞)
, (3.64)

where ∆Esolv(t) is the resulting solvation energy difference between the excited and the

ground state molecule at a given time t. ∆Esolv(t) results of the electrostatic interaction

between the solute, i.e., its charge distribution, and the surrounding solvent. If there is only

little internal vibrational excitation of the solution in the transition, the time-dependent

Stokes shift mainly results from the time-dependent solvation energy [102].

We consider the model of the shrinking Onsager cavity of Sec. 3.2 where the central

molecular dipole moment suddenly changes from an initial ground state µg to µe upon

photoexcitation which initiates the geometrical ’shrinking’. The shrinking cavity radius

may mimic generically motional changes at the solute-solvent interface such as the observed

self-motion of dissolved proteins [91, 90].

The interaction energy of the dipole with the homogeneous and isotropic solvent is

given by VI = −µ(t) · R(t) ≡ Esolv(t). The reaction field R(t) (cf. Eq. (3.11)) portrays

the time-dependent back action on the dipole moment, where the geometric changes at the

solute-solvent interface enters via a time-dependent Onsager radius a(t). We follow the

same arguments of a small dynamically shrinking Onsager radius (Eq. (3.17)) to split the

reaction field into two terms according to Eq. (3.18)

R(t) =
1

a3
0

∫ t

−∞
dt′
[
χ(t− t′)− 3a1

a0

exp[−αt]Θ(t)χ(t− t′)
]
µ(t′), (3.65)

where the shrinking with rate α begins upon photoexcitation at time t = 0. We assume

the optical excitation of the solute to occur instantaneously such that the dipole moment

changes from µg to µe at t = 0 which coincides with the beginning of the radial shrink-

ing. Moreover, we assume that the dipole moment does not change its direction but its

magnitude. Therefore the dipole moment reads

µ(t) = µgêz + Θ(t)(µe − µg)êz, (3.66)
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where Θ(t) is the unit Heaviside function. Then, the reaction field in Eq. (3.65) yields

R(t) =
1

a3
0

χsµgêz +
1

a3
0

∫ t

−∞
dt′
[
χ(t− t′)− 3a1

a0

exp[−αt]χ(t− t′)
]
Θ(t′)∆µêz, (3.67)

where, exploiting Eq. (3.12), χs =
∫ t
−∞ dt

′χ(t− t′) = 2(εs−1)
2εs+1

and ∆µ = µe − µg. The first

term in Eq. (3.67) describes the static reaction field before excitation when the solvent is

in equilibrium with the ground state dipole moment µg. The second term is the change of

R(t) after the sudden change of the dipole moment to µe where the solvent has to readjust

to. In addition, due to the excitation, the molecular radius begins to shrink from its initial

value a0 + a1 to a0, which gives rise to an additional explicit time-dependent contribution

given by the third term.

At time t the solute suddenly fluoresces and reaches again its ground state such that

also its dipole moment goes back to µg where the solvent will immediately react in the

continuum’s approach with the fast (or optical) contribution ε∞ (cf. Eq. (2.26)). We set

this value to ε∞ = 1 according to the physical parameters in Subsec. 3.2.2 such that there is

no further contribution to the reaction field coming from the sudden dipole change arising

from χ∞ = 2a(t)−3(ε∞ − 1)(2ε∞ + 1)−1.

The solvation energy difference between the excited state and the ground state of the

molecule at time t thus reads

∆Esolv(t) = −µeR(t) + µgR(t) (3.68)

= − 1

a3
0

µgχs∆µ−
∆µ2

a3
0

∫ t

−∞
dt′
[
χ(t− t′)− 3a1

a0

exp[−αt]χ(t− t′)
]
Θ(t′)

= − 1

a3
0

µgχs∆µ+ ∆E(t),

where only the second term is time-dependent such that the first term cancels out in

determining S(t) of Eq. (3.64). We then perform a complex Fourier transform 8 of ∆E(t),

by using the convolution theorem and the Fourier transform of the Heaviside step function

8One defines the complex Fourier transform by f(z) =
∫∞
−∞ dt e−iztf(t) = F [f(t)], where f(z) is

analytic for Im(z) < 0 and f(t→∞) <∞.
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F [Θ(t)] = 1
iz

, and find

∆E(z) = −∆µ2

a3
0

[
χ(z)

iz
− 3a1

a0

χ(z − iα)

i(z − iα)

]
, (3.69)

where z = ω− iη with ω real and η representing a small positive number [102]. The inverse

transform of Eq. (3.69) for t ≥ 0 leads to

∆E(t) = −∆µ2

2πa3
0

∫
C

dzeizt
[
χ(z)

iz
− 3a1

a0

χ(z − iα)

i(z − iα)

]
(3.70)

= −4∆µ2

πa3
0

∫ ∞
0

dω
cos[ωt]

ω
Im

[
ε(ω)− 1

2ε(ω) + 1

]
− ∆µ2χs

a3
0

[
1− 3

a1

a0

e−αt
]

(3.71)

=
∆µ2

a3
0

{[
2(εs − 1)

2εs + 1
e−ωDt

]
− χs

[
1− 3

a1

a0

e−αt
]}

. (3.72)

The contour C of integration in Eq. (3.70) is a path parallel to but slightly below the

real axis in the complex plane. Further details for calculating the first term in Eq. (3.70)

are given in Appendix B while we apply the residue theorem for the second term at the

singularity z = iα. We use the Debye relaxation for ε(ω) (cf. Eq. (2.26)) to evaluate the

integral in Eq. (3.71). The resulting ωD = (2εs + 1)/(3τD) in Eq. (3.72) is already defined

for the response function of Eq. (3.12) and is the inverse dipolar longitudinal relaxation

time ωD = τ−1
L [92].

The time-dependent fluorescence Stokes shift of Eq. (3.64) then yields

S(t) =
1

1 +Q
e−ωDt +

1

1 +Q−1
e−αt, (3.73)

where Q = 3a1

a0
.

3.3.2 Results and discussions

The calculated Stokes shift of Eq. (3.73) clearly indicates a bi-exponential decay where the

first term reflects the collective bulk water relaxation while the second term describes the

motional changes at the solute-solvent interface associated with a possible self-motion of

the solute and the corresponding shrinking rate α. Fig. 3.18 shows the resulting Stokes shift

for different shrinking rates, which are equal to (black-star line), larger than the inverse

longitudinal relaxation time (black-diamond line) or smaller (red-diamond line).

The bimodal experimental fit to time-dependent fluorescent Stokes shift of the dye
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Figure 3.18: The time-dependent Stokes shift due to a suddenly changing dipole moment
upon fluorescence in an shrinking Onsager cavity of different shrinking rates for a1 = 0.01a0.
The dashed red line portrays the time-dependent Stokes shift in an Onsager cavity of
constant radius.

Hoechst 33258 in solution with DNA shows clear evidence of different motional contribu-

tions. The experimental recorded Stokes-shift confirms that water solvating the dye bound

to DNA is slowed down but contributes to the fast relaxation times (0.2 and 1.2 ps), while

the DNA self-motion (∼20 ps) changes the long-time components (1.4 and 19 ps) of the

solvation response. [103, 104].

Hence, the standard Onsager continuum model for the time-dependent Stokes shift can

be extended to a generic model for an explicit time-dependent motion at the interfacial

region of the solute to solvent. Many experimental fluorescence Stokes shifts show two or

more components which decays on different time scales. Molecular dynamics simulations

examine the origin of the Stokes shift data and find that the bulk water component domi-

nates at short times but rapidly decays. The long-time behavior is more dominated by the
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solute dynamics, i.e., mostly the self-motion of a dissolved protein [91].

3.4 Formation of a hydrophobic hydration shell 9

We study next the time-dependent formation of the hydration shell around a hydrophobic

solute on the basis of a Onsager model with a varying hydration shell around it. The

growth process is imposed from outside and is described phenomenologically within two

approaches. First, we consider a time-dependent thickness of the hydration layer which

grows from zero to a finite value over a finite time range. Second, we assume a time-

dependent variation of the dielectric properties in the form of a time-dependent complex

permittivity within a finite layer around the central Onsager sphere. In the first approach,

we assumes that the hydration shell has different dielectric properties and, in particular,

a slower solvent reorganization (or, Debye) time. We find a time-dependent frequency

shift down to the blue of the resonant response of the dipole, together with a dynamically

decreasing line width. The blue shift directly indicates the work which the systems performs

to form the hydration layer and is a directly measurable quantity. The reduced line width

reveals the less effective damping of the hydration shell which has slower fluctuations and

also removes the fast bulk fluctuations further away from the central dipole.

This section is structured as follows. In Subsec. 3.4.1, I point out time-dependent

extensions of hydration shells determined from spectroscopic measurements and build a

Onsager model with a dynamic hydration shell. Then, I first derive a time-dependent

layered Onsager model with a growing hydration shell around in Subsec. 3.4.2 and calculate

the response function of the molecular dipole to an external applied field. In Subsec. 3.4.3,

I formulate a layered Onsager model with a hydration shell of fixed extension but with

time-dependent dielectric permittivity before determining the resulting response behavior

of the central molecular dipole moment. Subsec. 3.4.4 summarizes.

3.4.1 Layered dynamic Onsager model

To describe the impact of a time-dependent formation of the hydration shell on the re-

laxation properties of a test dipole dissolved in a polar solvent, we generalize the static

Onsager model of Sec. 3.1 [38, 105, 106] to include time-dependent nonequilibrium effects

9The model presented in this section is based on the publication : H. Kirchberg, P. Nalbach, C. Bressler
and M. Thorwart, ”Spectroscopic Signatures of the Dynamical Hydrophobic Hydration Shell Formation,”
J. Chem. Phys. B 123, 2106 (2019).
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due to a dynamic hydration shell. To mimic the growth of the hydration shell, we assume a

dynamic layer thickness growing from zero to a final value r. The precise time protocol of

this growth is left unspecified and only enters phenomenologically into the model. Outside

the shell, the water shows its usual bulk behavior.

This model is motivated by the experiment [49] with a negatively charged hydrophilic

iodide which is ionized by an X-ray pulse. Around the resulting neutral and hydrophobic

iodine, an expanded water layer forms containing around 27 water molecules [78]. The

extracted size of the entire complex, i.e., the central iodine plus the hydration shell of one

layer of water molecules after the shell formation is approximately b = 6.5Å. This value is

found from the iodine-oxygen radial distribution function, where a second maximum ap-

pears signaling a high density of water atoms beyond the shell and the continuous interface

to the bulk water [78]. The initial size of the dissolved iodide is estimated as a = 3.6Å from

the first maximum of the iodide-oxygen radial distribution. The resulting layer thickness

after neutralization can thus be obtained as r = 2.9Å= 0.8a. We neglect in the derived

model the hydration shell around the initial iodide formed by approximately eight water

molecules in the first solvation shell [39, 78]. We now ready to study the two different sce-

narios for the hydration shell formation. Within the first one (Subsec. 3.4.2), we consider

a time-dependent growth of a hydration layer with a time-dependent thickness, which has

a complex permittivity different from the bulk. In the second situation (Subsec. 3.4.3),

we assume a static Onsager sphere, but a time-dependent complex permittivity within a

well-defined spatial range associated with the fixed shell extension. Outside the hydration

layer, bulk water is assumed as solvent. In comparing the results of both scenarios, we

obtain interesting insights into the dynamic formation of a hydration shell leading to the

hydrophobic behavior.

3.4.2 Growing water layer

In the layered Onsager model, the solvent is described as continuous, homogeneous and

uniform and is associated with the time translationally invariant dielectric function εx(t−t′)
[39]. The index x refers to different components of the environment, i.e., the hydration

shell (x = H) and the bulk (x = B). Throughout this model, we consider again the Debye

form of the dielectric function (cf. Eq. (2.26) for its equivalent in frequency space in Subsec.
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2.2.2)

εx(t− t′) = εx,∞δ(t− t′) +
εx,s − εx,∞

τx,D
exp

[
− t− t′

τx,D

]
Θ(t− t′), (3.74)

where each component x has its own specific Debye relaxation time τx,D, its static dielectric

constant εx,s and its high-frequency dielectric constant εx,∞. For bulk water at room

temperature, εB,s = 78.3, εB,∞ = 4.21, and τB,D = 8.2ps [39, 57]. The dielectric properties

of the hydration shell continuum are less clear, but in general, a higher structural order

of the water molecules in the first few layers around the solute implies weaker fluctuations

and, thus, εB,s � εH,s [39, 79, 107, 108]. This reflects the fact, that the water molecules

are stronger bound in a hydrogen network and are less polarizable. Due to this enhanced

interaction in the layer, the relaxation time is slower by a factor of 5 to 10 [79], such

that τH,D � τB,D [108]. A reduced dielectric constant of water is also recorded in water

strongly confined in small tubes of several nanometers [109]. Here, water exhibits a less

flexible structure near surfaces and is difficult to reorient by applying an electric field.

In our time-dependent layered Onsager model, we assume that the shell formation

process is phenomenologically well described by a radial increase of the total radius b(t) of

the central Onsager sphere plus layer of the form

b(t) = a+ r[1− e−α(t−t0)]Θ(t− t0), (3.75)

where the shell formation begins at time t0 from the static radius a with the rate α of

formation. The final shell thickness is r and the final total Onsager radius is b = a + r.

This form of the growth reflects a gradual shell formation, where the environmental dipole

moments adjust themselves first more rapidly layer by layer in a stronger bound network

and then successively slower if further away from the central hydrophobic molecule.

Reaction field

To determine the time-dependent response to the dynamic hydration shell formation, we

calculate the resulting electric field induced by the polar environment. The central time-

dependent dipole moment polarizes both components of the polar environment, the hy-

dration shell and the bulk water, such that both create a fluctuating reaction field. We

assume again that the dipole moment µ(t) = µ(t)êz does not change its direction but its

magnitude.
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Due to the spherical symmetry, the electric potentials in the cavity, the shell and the

bulk water sectors are expressed in terms of Legendre polynomials [73] as in Sec. 3.2. From

the potentials, all resulting electric fields in all sectors result by imposing the boundary

conditions at a and b, i.e., (i) the continuity of the electric potentials and (ii) the continuity

of the normal components of the electric displacement. The boundary conditions follow as

R(t)a3 + µ(t) = A(t)a3 +B(t), (3.76)

R(t)a3 − 2µ(t) =

∫ t

t∗
dt′εH(t− t′)

[
A(t′)a3 − 2B(t′)

]
, (3.77)

A(t)b(t)3 +B(t) = C(t), (3.78)∫ t

t∗
dt′εH(t− t′)

[
A(t′)b(t)3 − 2B(t′)

]
= −2

∫ t

t∗
dt′εB(t− t′)C(t′) , (3.79)

where R(t) is the magnitude of the reaction field and µ(t) the magnitude of the dipole

moment. A(t) is the reaction field and B(t) the field of the induced dipole moment in

the shell, while C(t) is the induced dipole field in the bulk water. We have to ensure

that the layer formation is slow enough to disregard any dynamic magnetic field induced

by the displacement current. We further disregard the spatial variation of the dielectric

function, but assume it as homogeneous inside the bulk and the shell. The time t∗ marks

the beginning of measuring the response of the dipole moment, when the molecular charge

is brought out of its equilibrium, and may differ from the time t0 of the beginning of the

shell formation in Eq. (3.75). The two processes may be recorded experimentally by two

different sharp coherent pulses, like in an experimental pump-probe set-up.

When performing a Fourier transform 10 of Eqs. (3.76) and (3.77), we want to treat

the time-dependent total radius b(t) adiabatically in order to be able to proceed. This

is possible as long as the shell formation in Eq. (3.75) is slower than all time-decaying

processes of the electric fields induced by the environment, or, equivalently, the rate α is

the smallest of all inverse time scales of the problem. In doing so, b(t, t0)3 → b(t∗, t0)3

contributes as a constant parameter and can be taken out of the Fourier integral which

starts effectively at time t∗, while the shell formation has already started at t0. This

approach requires t∗ ≥ t0 such that the beginning of the shell formation is at the same

time or before the beginning of the measurement. Below, we will ensure self-consistently

that α fulfills this requirement. From Eqs. (3.76)-(3.79), we obtain for the reaction field in

10The Fourier transform is defined here by F [f(t)] =
∫∞
t∗
dt exp(iωt)f(t).
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Fourier space

R(ω) =
µ(ω)

a3

−2[εH(ω) + 2][εH(ω)− εB(ω)]a3 + 2[εH(ω)− 1][2εB(ω) + εH(ω)]b(t0, t
∗)3

2[εH(ω)− 1][εH(ω)− εB(ω)]a3 − [2εB(ω) + εH(ω)][2εH(ω) + 1]b(t0, t∗)3

(3.80)

= ξ(ω, t0, t
∗)µ(ω),

where b(t∗, t0)3 enters parametrically and the dipole moment may be understood as µ(ω) =

eq(ω). This relation defines the frequency-dependent susceptibility ξ(ω, t0, t
∗) which de-

pends parametrically on t0 and t∗.

Equation of motion for the molecular dipole moment

We investigate next again the time-dependent expectation value 〈µ(t)〉 = e 〈q(t)〉 of the

molecular dipole moment. The net charge of the molecule is zero, but it can be polarized

such that within the harmonic approximation, with the potential V (q) = 1
2
mω2

0q
2 in HS

of Eq. (3.14), the charge of mass m oscillates with a characteristic frequency ω0 around its

equilibrium position, forming the time-dependent molecular dipole moment. The dipole

moment couples linearly via the coupling VI = −µ[R + E] to the reaction field and an

additional external electric driving field. We assume again perfect alignment of the dipole

moment to the direction of the reaction and electric field, such that we can operate with

their absolute values. To obtain a Langevin-type equation for the expectation value of

the charge displacement, we can again derive again the Heisenberg equation of motion for

〈p(t)〉 ≡ m 〈q̇(t)〉 by exploiting the Hamiltonian of Eq. (3.14) while we take into account the

reaction field, the environmental back action of the bulk water and the gradually growing

hydration shell given in Eq. (3.80). The reaction field couples to the dipole moment via the

force e 〈R(t)〉. The resulting Langevin-type integro-differential equation of motion follows

as

m 〈q̈(t)〉+mω2
0 〈q(t)〉 − e2

∫ t

t∗
dt′ξ(t∗, t0, t

′) 〈q(t′)〉 = eE(t), (3.81)

with the electron mass m, the electron charge e and a typical molecular frequency ω0 =

2.5× 1015Hz in the near ultraviolet spectrum. The associated molecular polarizability (cf.

Eq. (2.27) in Subsec. 2.2.3) αm = e2/(mω2
0) = 11.26Å3 for a polarizable molecule without a

permanent dipole moment matches perfectly with the value for diatomic iodine I2 [61, 110]
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11. Although one wants to mimic the hydration shell formation around monoatomic iodine

with a less polarizability the use of the polarizability for diatomic iodine may be a good

approximation. The reason for this is that the associated X-ray absorption experiment

I− → I clearly hints to a transient complex species I0(OH2) which may have a higher

polarizability [49]. Moreover, all information about the molecular extension a, the final

hydration shell thickness r, its formation rate α and the time t0 of the onset of the formation

enter via the the response term ξ(ω, t0, t
∗) of Eq. (3.80). A Fourier transform of Eq. (3.81)

leads to

〈q(ω)〉 =
〈q̇(t∗)〉 eiωt∗ − iω 〈q(t∗)〉 eiωt∗ + (e/m)E(ω)

ω2
0 − ω2 − (e2/m)ξ(ω, t0, t∗)

, (3.82)

with the initial charge displacement 〈q(t∗)〉 and its initial velocity 〈q̇(t∗)〉, while 〈q(t→∞)〉 =

〈q̇(t→∞)〉 = 0 as the functions are integrable. We note that Re[ξ(ω, t∗, t0)] induces a

renormalization of the potential frequency in the denominator polynomial of Eq. (3.82),

while Im[ξ(ω, t∗, t0)] leads to damping.

To obtain the electric reaction field A(t) and the dipole field B(t) in the hydration shell,

we transform 〈q(ω)〉 in Eq. (3.82) back into the time domain. By this, we obtain the dipole

moment 〈µ(t)〉 = e 〈q(t)〉 and the resulting reaction field given in Eq. (3.80) in the Onsager

sphere and can calculate then the associated fields A(t) and B(t) as given in Eqs. (3.76)-

(3.79). This allows us to verify self-consistently that we can treat b(t, t0) in Eqs. (3.78) and

(3.79) adiabatically. We are free to choose the initial time t∗, when the dipole begins to

oscillate, while the hydration shell formation has begun at an earlier time t0, i.e., t∗ ≥ t0.

We set t0 = 0 such that t∗ directly refers to the time span during which the hydration shell

grows. Additionally, we switch off the driving field E(ω) = 0 to see the damping induced

by the environment, set 〈q̇(t∗)〉 = 0 and choose the typical oscillator length for the initial

expectation value for the charge displacement as Re[〈q(t∗)〉 eiωt∗ ] =
√

~
mω0

. The results are

shown in Fig. 3.19.

It is clear that b(t)3 increases slowly enough in comparison to A(t) and B(t) for a

proper choice of the formation rate α such that the time dependence of the total radius

can be treated adiabatically in Eqs. (3.78) and (3.79), i.e., b(t)3 ≡ b(t∗)3 =const. We also

have to ensure that the resulting damping has to comply with Γ � α for different sphere

radii a, for all given final hydration shell thicknesses r and for all chosen times t∗ for the

initial displacement. For the specific choice of the neutralization of iodine (I− → I0) with

11Note that we work in cgs units in which the electron charge is e = 3× 1.602× 10−10esu.
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Figure 3.19: Dipole field A(t) and reaction field B(t) in the hydration shell which has begun
to grow at t0 = 0 before we start the observation at t∗ = 10ω−1

0 . The inner (constant) sphere
radius is a = 3.6 Å, while the final shell thickness is set to r = 0.8a. Γ = 2.6 × 10−4ω0 is
the resulting decay rate of the electric fields. The formation rate is chosen as α = 0.1Γ and
the Debye dielectric parameters are set to εH,∞ = εB,∞, εH,s = 0.1εB,s and τD,H = 10τD,B.

a = 3.6Å and r = 0.8a, we find Γ = 2.6×10−4ω0, where the oscillation begins at t∗ = 10ω−1
0

after the hydration shell formation. We choose α = 0.1Γ, which refers to a typical time

scale of the hydration shell formation of α−1 ∼ ps [49, 107]. The shell formation requires

a breaking of the hydrogen bonds between the solvent molecules with the just neutralized

and hydrophobic iodine and a reformation of strong hydrogen bonds among each other.

The measured average molecular reorientation times for bulk water is 2.5 ps [107, 111].

The dynamics of the displacement of the central dipole is damped with the damping rate

Γ. The results for Γ for different given parameters are shown for increasing time t∗ in Fig.

3.20. An overall decrease of the damping is observed with increasing time delay t∗ between

the onset of the shell formation and the initial charge displacement. The fact that Γ is

time-dependent reflects the nonequilibrium situation of the time-dependent environment

with the growing hydration layer. The maximal damping rate is observed at t∗ = 0, where

no shell exists. While the shell forms out, the bulk water as the source of fluctuations
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is further pushed away from the central dipole by the intermediate hydration layer. The

dielectric properties within the newly created hydration shell are assumed to be weakened

as the water molecules hold stronger together due to the formation of hydrogen bonds.

This reduces damping of the charge displacement and hence of the induced electric fields

A(t) and B(t). As can be seen, for larger inner sphere radii a, the damping decreases

because the environment is spatially further away from the central dipole, see Fig. 3.20.

Qualitatively similar results have been obtained previously for the relaxation time of an

excited vibrational state of a molecular complex with a finite, but static hydration shell

around [89]. If the hydration shell grows to a bigger final thickness r, damping is more

reduced as the strongly fluctuating bulk water is gradually replaced by the less polarizable

water confined in the hydration shell. This effect is less recorded for a smaller final shell

extension r in Fig. 3.20.
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Figure 3.20: Damping rate in dependence of the time t∗ between the start of the shell
formation and initial displacement for different sphere radius a and final shell extensions
r. The damping is recorded relative to the damping Γ0 = 2.6 × 10−4ω0 for a = 3.6Å and
r = 0.8a at t0 = 0. Moreover, εH,∞ = εB,∞, εH,s = 0.1εB,s and τH,D = 10τB,D.
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Response function

When we are only interested in the response of the dipole moment to the external electric

field, we set the initial conditions 〈q(t∗)〉 = 0 and 〈q̇(t∗)〉 = 0 in Eq. (3.82). The external

electric field drives the charge, which follows with a characteristic but fixed phase delay

and amplitude difference after a transient time. On the one hand, the pulse has to be long

enough that the dipole displacement follows its stationary oscillation, but on the other

hand, it should be short enough that the time-dependent total radius b(t) ≡ b(t∗) can

be treated adiabatically. This can expressed as Γ−1
min < T < α−1, where T is the pulse

duration. Γmin is the minimal damping which occurs when the shell formation process is

completed (Fig. 3.20). The resulting response to the external driving field can be evaluated

as

〈q(ω)〉 =
e

m

1

ω2
0 − ω2 − (e2/m)ξ(t∗, ω)

E(ω) = χ(ω, t∗)E(ω) , (3.83)

where the susceptibility χ(ω, t∗) contains information about the time evolution via t∗ of

the increasing radius b(t∗).

The real part of the susceptibility is shown in Fig. 3.21(a) and is connected to the

refractive behavior of the molecule, while the imaginary part of the response, shown in

Fig. 3.21(b) is related to its absorptive behavior (see Eq. (2.41) in Sec. 2.3).

With increasing time t∗ since the onset of the shell formation, the resonances in the

absorptive part shifts in frequency to the blue. This results in a smaller relative shift

δωm(t∗) = ωm(t∗)−ω0 of the peak maximum at ωm(t∗) with respect to the eigenfrequency

ω0 until the shell is fully formed out. The resonance frequency is smaller than the eigenfre-

quency ωm(t∗) < ω0 due to the renormalization due to the polar environment. Thus, the

incoming light will be absorbed from the molecule at higher frequencies when the hydration

shell around it is more pronounced. This up-shift to the blue of the absorption frequency

corresponds to an energy which may be understood as a part of the energy needed to build

up the hydrogen-bond network within the hydrophobic hydration shell.

To quantify this work performed, one can use the Gibbs free energy of solvation for

our model with ∆G = ∆H − T∆S = ∆E + p∆V − T∆S, while ∆H is the enthalpic

change, ∆E is the change of the internal energy, p∆V the volume work and T∆S the heat

exchange during the solvation. The change of internal energy ∆E = ∆W − p∆V + T∆S

contains a contribution of non-expansion work ∆W , while one keeps the pressure and

temperature constant. The defined Gibbs free energy then reads ∆G = ∆W , which reflects
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Figure 3.21: Real (a) and imaginary (b) part of the susceptibility χ(ω, t∗) to an external
field at different times, with δω = ωm − ω0, α = 10−5ω0,τH,D = 10τB,D, εH,s = 0.1εB,s,
εH,∞ = 0.8εB,∞. The sphere extension is a = 3.6Å and r = 0.8a.

the maximal amount of work that can be extracted from the solute (∆G < 0), or has to

be added to the solute (∆G > 0) during solvation in order to letting it dissolve. In the

given case, ∆G will be positive since we have to perform work to electrostatically orient

the water to form a hydration shell. In fact, to be quantitative, we can extract this

work from the blue shift of the peaks in the susceptibility, see, e.g., Fig. 3.21(b). For

the parameters used there, we can read off the frequency difference of ∆δω = 0.04ω0, such

that ∆G = ∆W = 0.04~ω0. The performed work stems from the explicitly time-dependent

shell thickness performed from outside. The total required Gibbs free energy ∆G > 0 for

the whole hydrophobic solvation process is positive, reflecting the low solubility of iodine

and, thus, the hydrophobic character. The frequency shift is directly measurable in the

absorption spectrum of the solute.

In MD simulations of hydrophobic solvation of noble gases the positive free Gibbs

energy ∆G = ∆H − T∆S > 0 results out of an extremely large loss of entropy and hence

a negative ∆S at room temperature. This also has been confirmed experimentally by
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[112, 113]. A prominent interpretation is that the water molecules in the hydration shell

are more strongly coupled among each other and to the solute which reduces their mobility,

and hence, the entropy of the system. Therefore, the entropic penalty for the hydrophobic

solvation becomes directly measurable.

Additionally, one observes a strongly reduced line width when t∗ is growing. This is

shown in Fig. 3.21 (b) and, more explicitly, in Fig. 3.22, and perfectly reflects the reduced

damping of the central dipole. The basic physical origin are the less flexible water molecules

of the shell and the strengthened hydrogen bonds of the water molecules, see also Fig. 3.20.

The range of the hydrogen bonds in the shell is smaller as compared to bulk water, which

indicates a high structural ordering. In the Debye model, this effect is included by a smaller

static and high-frequency dielectric constant in the shell [108]. The line width, measured

by the full width at half maximum of the peak in the absorptive part of the response, is

more reduced with time t∗ if the static dielectric constant is more reduced in the shell, as

shown in Fig. 3.22. The final width is reached faster, with a more rapid shell formation.

To be more quantitative, we show in Fig. 3.23 the total blue shift δω of the resonance

frequency over time t∗. It increases for a larger final shell thickness r, as more energy

is needed to form the hydrophobic shell. This result coincides with the higher energy

required to dissolve hydrophobic molecules with a bigger volume, because a molecule with

thicker hydration shell takes up an enlarged volume in the solution [114]. The shift to the

blue occurs faster for a quicker shell formation. Moreover, a strong up-shift is observed

with a reduced high-frequency dielectric constant εH,∞ of the bound water. This is seen

by changing the parameter c and shown in Fig. 3.23. In contrast, no impact on the

frequency shift is found for a reduced static dielectric constant εH,s. Analytically, this can

be understood via the impact of the high-frequency dielectric constant on the real part of

the susceptibility ξ in the denominator polynomial of Eq. (3.82) which leads to a frequency

renormalization, while the static dielectric constant has an imperceptible impact on ω0.

The maximum of the absorption peak increases with time t∗ until the hydration shell is

finally formed out, which is shown in Fig. 3.23 (inset). This enhanced response is due to the

fact that the strongly damping bulk water is more and more replaced by the less damping

water more tightly bound in the shell. The final value of the peak maximum is faster

reached with a more rapid shell formation. This effect is more pronounced for a thicker

shell. The reduced damping and the increase of the absorption maximum validate the

decreased linewidth in Fig. 3.22. We also find an enhanced growth of the peak maximum

and a smaller line width (shown in Fig. 3.22) for a smaller static dielectric constant εH,s,
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Figure 3.22: Full width at half maximum w(t∗)/w(t∗ = 0) of the peak in the imaginary
part of the susceptibility χ(ω, t∗) in dependence of the time t∗ elapsed since hydration shell
formation has started, for different final shell extensions r. The high-frequency dielectric
constant is set to εH,∞ = cεB,∞ with c = 0.8, if not stated otherwise. The static dielectric
constant εH,s = dεB,s with d = 0.1, if not stated otherwise. The inner Onsager sphere
radius reads a = 3.6Å and α = 10−5ω0, α∗ = 5α and the Debye times are τD,H = 10τD,B.

while this effect is not visible for a smaller high-frequency dielectric constant, see inset

of Fig. 3.23. We thus can conclude that the high-frequency constant εH,∞ contributes

more to a renormalization of the eigenfrequency ω0, while the static constant εH,s strongly

influences the damping and hence the absorption maximum of the central dipole moment.

3.4.3 Time-dependent dielectric permittivity

In the second approach, the shell formation is described by a time-dependent decrease of

the static εH,s and the high-frequency εH,∞ dielectric parameters of the dielectric continuum

in a layer region with finite fixed thickness r around the Onsager cavity within a Debye

model. Once the ion has been neutralized by a light pulse, a hydrogen network will be

gradually formed associated with its specific dielectric constant. During this process, the

dielectric parameters will progressively decrease from their initial values of bulk water to
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the their final values. Within this picture, the small environmental dipole moments arrange

themselves successively in a network of hydrogen bonds within the fixed shell thickness r.

The overall temporal Debye form will be kept unchanged with the fixed relaxation time

τH,D = τB,D, see Eq. (3.74), while the prefactors decrease according to

g(t, t0) = 1− h[1− e−α(t−t0)]Θ(t− t0) , (3.84)

where 1−h describes the final magnitude of the dielectric parameters within the shell, while

t0 is again the time when the shell formation starts. α defines the rate of the decrease of

the dielectric parameter. The exponential decrease in Eq. (3.84) is chosen because the

hydration shell forms out more rapidly at the beginning, before it successively reaches
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its final dielectric properties. The model parameter is chosen as 0 < h < 1 because the

more strongly coupled water network of the shell can be described by a reduced dielectric

constant and the dipoles in the shell are less polarizable than bulk water.

Again with the same idea as before, we treat g(t) adiabatically in Eqs. (3.76)-(3.79).

After Fourier transforming the resulting reaction field, we find

R(ω) =
µ(ω)

a3

2[g(t∗, t0)− 1][2 + g(t∗, t0)εB(ω)]a3 − 2[2 + g(t∗, t0)][g(t∗, t0)εB(ω)− 1]b3

[g(t∗, t0)εB(ω)− 1][g(t∗, t0)− 1]2a3 − [2 + g(t∗, t0)][2g(t∗, t0)εB(ω) + 1]b3

(3.85)

≡ ξ(ω, t0, t
∗)µ(ω) = eξ(ω, t0, t

∗)q(ω),

where ξ(ω, t0, t
∗) contains all information about the adiabatically decreasing dielectric pa-

rameter within the solvation shell. One has to ensure that α� Γ, where Γ is the damping

of the induced reaction field A(t) inside the hydration shell. Hence, g(t) ≡ g(t∗) can be

treated parametrically. As before, the time t0 = 0 marks the onset of the hydration shell

formation, while t∗ is the beginning of the evaluation of the response, the lower boundary

of the Fourier transform, reflecting the arrival of the external pulse, where t∗ ≥ t0. We are

now able to study the response to an external electric field with the reaction field given in

Eq. (3.85), which we insert into Eq. (3.83). As before in the approach with a growing layer

(Subsec. 3.4.2), one also finds here a relative frequency up-shift in the absorptive part of

the response function. This is shown in Fig. 3.24, where we compare the results of both

approaches.

For the dynamically increasing radius, scenario in Subsec. 3.4.2 (labeled with A in

Fig. 3.24), the frequency shift decreases faster with time than for the decreasing dielectric

parameter of the present scenario (labeled with B in Fig. 3.24). Formally, this may be

understood by the fact that b(t)3 enters cubic in Eq. (3.80) while g(t) appears as linear in

Eq. (3.85). The surface of the hydration shell grows quadratically in growing scenario of

Subsec. 3.4.2 and, thus, also the number of involved environmental dipoles, whereas the

total number of the involved dipoles in the present scenario is constant and they adjust

themselves all together at the same time. With a more reduced dielectric constant in the

shell, its polarizability decreases in comparison to the bulk and the total up-shift is more

pronounced, as seen in Fig. 3.24.
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are here τD,H = τD,B for both scenarios.
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3.4.4 Summary

We have studied the time-resolved response of a molecule, becoming a hydrophobic agent,

which is embedded in water as a highly polar environment, around which a layer of hydrated

water grows dynamically. This model refers to the abstraction of an electron of iodide which

results in its neutral but strongly hydrophobic iodine partner [49]. After the formation of

the apolar hydrophobic solute, hydrogen bonds in the water have to be broken up and the

water molecules have to rearrange. This hydrophobic solvation process is accompanied by

a formation of a hydration shell which leads to a reduction of the overall entropy such that

the solubility is energetically highly unfavorable. In the very proximity of the hydrophobic

agent, the polarizability of the water is assumed to be reduced since water molecules form

strengthened hydrogen bonds and the fluctuations are slowed down as compared to bulk

water. This is modeled by a continuous hydration layer with reduced dielectric constants.

With this continuum model, we are able to calculate the time-dependent response of

the central probe dipole in this nonequilibrium environment to an external electric field.

Within our calculation, we have assumed that the electric probe pulse is long enough to

drive the dipole to a stationary oscillation, but short enough to treat the change of the

radius of the cluster adiabatically. In good agreement with the experiment, we find a time

scale of the shell formation of α−1 ∼ ps [49, 111]. We have studied two scenarios of the

hydration shell formation, where, within the first one (Subsec. 3.4.2), the thickness of the

spherical shell grows progressively, while, in the second one (Subsec. 3.4.3), the Debye

dielectric permittivity decreases gradually for a fixed shell extension. Both approaches

yield a relative dynamical frequency up-shift of the resonance in the absorptive part of the

response function during the shell formation, which signals a positive free energy during

the hydrophobic solvation. The time-dependent frequency blue shift is accompanied by a

reduced line width in the absorptive peak which additionally indicates less damping due

to a more rigid structural order and stronger hydrogen bonds of the water molecules in

the shell as compared to bulk water. For both scenarios, the dynamic frequency shifts of

the absorption resonance reveals the dynamics of the hydration shell formation. Further

experimental investigation by pico- and femtosecond absorption spectroscopy will lead to

more detailed insights to elucidate the hydrophobic solvation process on the atomic scale,

and, in particular, into the dielectric properties inside the hydration shell.



Chapter 4

Charge transfer in molecular junction

in non-equilibrated solvents1

Metal-molecule-metal junctions that operate in dielectric solvent are common in many

applications, for example in junctions controlled by electrochemical gating. Transport

in such junctions often occur by successive electron hopping between molecular sites as

well as between the molecule and the metal leads [115]. In the simplest model when

the molecule supports only one electron localization site, this site is repeatedly occupied

and de-occupied as electrons hop between meal and molecule. Each such hopping event is

accompanied by solvent relaxation (so called reorganization) to accommodate the molecule

charging state and determines the time for transient localization. The overall conduction

in this case is determined by metal-molecule coupling, the solvent-imparted stabilization

(reorganization energy or polaron formation energy) and solvent fluctuations needed to

overcome the localization barrier.

Theoretical treatments of such sequential hopping events usually rely on the Marcus

electron transfer theory [115] introduced in Subsec. 2.4.3. This is a transition-state type

theory that assumes that solvent relaxation between hopping events proceeds to full ther-

mal equilibrium so that the next electron transfer event takes place out of an equilibrium

distribution solvent configurations (see nonadiabatic charge transfer rate in Eq. (2.60) in

Subsec. 2.4.3). Such behavior can be realized when solvent reorganization in response to

charge localization on the connecting molecule is fast relative to the molecule-leads’ tun-

neling rates. The other extreme limit, where the solvent is not sensitive to the molecular

1The model presented in this chapter is based on the publication : H. Kirchberg, M. Thorwart and
A. Nitzan, ”Charge Transfer Through Redox Molecular Junction In Non-Equilibrated Solvents,” J. Phys.
Chem. Lett., accepted for publication (2020).
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charge redistribution, corresponds to co-tunneling transport that is described by the Lan-

dauer theory. However, even when localization and solvent relaxation make consecutive

hopping the dominant mechanism, the assumption of full thermal relaxation embedded in

the Marcus theory is not necessarily valid, and extension of Marcus theory to situations

where the electron transfer rate is ’solvent controlled’, in the sense that it depends on the

solvent relaxation dynamics, are abundant [116, 117, 118, 119].

Most relevant to the present chapter are studies that focus on solvent dynamic effects in

bridge-mediated electron transfer [120, 121], where solvent dynamics is not manifested just

in the electron-transfer rate but in the determination of the very nature of the processes

between the limiting forms of cotunneling (or superexchange) and sequential hopping. The

publications cited above are representative of a substantial body of literature that analyzes

deviations of the electron transfer rate from its transition state theory (TST) form due to

finite solvent relaxation time. TST becomes valid when this relaxation is assumed fast,

implying that bridge mediated transfer is sequential, with the individual hopping rates

assuming their Marcus form (see Eq. (2.60) in Subsec. 2.4.3). As discussed extensively in

the context of the classical theory of barrier crossing, slow relaxation does not necessarily

imply weak coupling to the solvent [50, 122, 123]. Indeed, solvent relaxation in response to

solute state-change is manifested in classical barrier crossing rates as a crossover between

the low- and high-friction limits [123, 124, 125], with the rate increasing or decreasing with

increasing friction at the low- (underdamped) and high- (overdamped) friction limits, while

the TST approximation provides an upper bound on the rate in the intermediate crossover

region. Most treatments of such effects in electron transfer have focused on the case of low

friction although the other limit has also been considered [126].

In this chapter, we consider the effect of finite solvent-induced relaxation on the hopping

conduction in molecular junctions, thus going beyond the standard treatments of transport

in solvated molecular junctions that rely on Marcus theory. We maintain other assumptions

of this theory: electron tunneling is conditional on the possibility to conserve the total

(electronic and nuclear) energy, and broadening of molecular electronic levels due to their

interaction with the metal leads is disregarded so that electron-transfer (ET) rates into or

out of the metal electron level ε are proportional to Γf(ε) and Γ[1 − f(ε)], respectively,

where Γ is a golden rule rate associated with the molecule-metal coupling, and f(ε) the

Fermi function [127, 31]. The corresponding Marcus rates kAB (from the electrode to the
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molecule) and the reverse kB→A are

kAB =

∫
dεΓ(ε)f(ε)F (EAB + ε) (4.1)

kBA =

∫
dεΓ(ε)[1− f(ε)]F (∆E − ε), (4.2)

where EAB = EA − EB is the energy difference between the molecular state A and B and

the rate derived for donor-acceptor ET in Eq. (2.60) of Subsec. 2.4.3

F (x) =
1√

4πERkBT
exp

{
−(x− ER)2

4ERkBT

}
, (4.3)

with T and kB denoting the temperature and the Boltzmann constant, respectively (through-

out this chapter we assume that the temperature of the metal electrodes and the solvent

are equal) and ER is the solvent reorganization energy - the free energy released by relax-

ation of the solvent to its stable (equilibrium) configuration following a sudden transition

between the oxidized and reduced molecular states (see discussion in Subsec. 2.4.3). Eq.

(4.3) is the high-temperature limit of the average, over a thermal (Boltzmann) distribution

of solvent configurations, of Franck-Condon factors (see Eq. (2.60) in Subsec. 2.4.3) that

reflect the dependence of the solvent configuration on the molecular electronic state. When

the finite timescale of the solvent relaxation is taken into account, this thermal distribution

is replaced by a time-dependent probability distribution that reflects this relaxation.

In the following model, I describe this dynamics by diffusion (Smoluchowski) equations

that take different forms in the high- and low-friction limits. In analogy to the Kramers the-

ory of activated barrier crossing [50], the high-friction (overdamped) limit is characterized

by diffusion along the position coordinate, while the low-friction is described by diffusion

in energy space. In either case, we find that the average junction current resulting from

this calculation depends on the friction parameter γ that determines the solvent relaxation

rate. Of further significance is the dependence of the current noise on this relaxation rate.

For small damping we show that the process is Markovian and the hopping statistics is

Poissonian. When solvent relaxation occurs on a finite timescale, successive electron hop-

ping events are correlated. We suggest that a combined measurement of average current

and current noise may serve to identify such situations in solvated electronic junctions.

This leads to the following structure of this chapter: In Sec. 4.1 we derive the theoretical

model for the ET transfer in solvent that relaxes on a finite timescale. To this end, we solve

the diffusion equation in the overdamped regime for a solvent reaction coordinate and in
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the regime of low damping for the total solvent energy as diffusive variable, respectively.

We construct a suitable Monte Carlo simulation procedure to calculate the average charge

current and the charge current correlation function, which is described in Sec. 4.2. In Sec.

4.3, we analyze the calculated average current and current correlation for the different

modes of operation in the overdamped and low-damping regime. Finally, we discuss the

possibility to realize these limiting behaviors through the dependence of solvent relaxation

dynamics on its geometrical confinements. Sec. 4.4 summarizes this chapter.

4.1 Theoretical Model

We consider a molecular system weakly coupled to two metal electrodes R (right) and

L (left) which are modeled as free electron reservoirs characterized by their respective

chemical potentials µK and the potentials φK(K = L,R) due the external applied voltage.

The associated Fermi functions for the electron energy ε read

fK(ε) =
1

exp

(
ε−µK+eΦK

kBT

)
+ 1

, (4.4)

where K = L,R, and e, kB and T are the electron charge, the Boltzmann constant and

the temperature, respectively.

The molecular system comprises a single channel, a two-state system with an oxidized

state A, with N − 1 electrons, with energy EA, and a reduced state B, with N electrons,

with energy EB. The molecular system is embedded in a polar solvent that imposes

a fluctuating environment and responds electrodynamically to the charging state of the

molecule 2. In the Marcus theory [43, 44], this response is expressed by a distribution

of solvent configurations along a single reaction coordinate, x, determined by free energy

surfaces that depend on the molecular electronic state according to (see Eqs. (2.45) and

2As discussed in Subsec. 2.4.1, the electron transfer theory may be represented by a standard spin-
boson model, with the solvent represented as bosonic environment coupled linearly to the molecular elec-
tronic occupation [64, 65]. A standard polaron transformation of this Hamiltonian yields a system with
two electronic levels system, a harmonic bath comprising independent normal modes and coupling that
connects transitions between the two electronic levels with shifts in the equilibrium position of these modes.
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(2.47) in Subsec. 2.4.1 for a single solvent mode and Ref. [31])

EA(x) = EA +
1

2
~ω0x

2 + ε (4.5)

EB(x) = EB +
1

2
~ω0(x− d)2. (4.6)

In this shifted harmonic surfaces model, EA and EB are the electronic energies at the

equilibrium solvent configurations, chosen as xA = 0 and xB = d for the state A and B

respectively. The harmonic forms and the identical curvatures of these surfaces correspond

to the assumption that the solvent responds linearly to the charging state of the molecule

and has the consequence that the reorganization energy

ER =
1

2
~ω0d

2 (4.7)

is the same irrespective of the process direction from A to B or vice versa.

The single-electron energy ε is added to the molecular energy in state A (cf. Eq. (4.5)),

expressing the fact that when the molecule is oxidized, the electron removed from it is

occupying a single electron state of energy ε in the metal. The integrals over ε in Eqs.

(4.1) and (4.2) reflect the broad band of single electron states in the metal. The Marcus

theory makes two further simplifying assumptions: the small molecule-metal coupling and

the high-temperature limit. Together they have several implications. First, the assump-

tion that ~Γ � kBT , allows to disregard level broadening due to the finite lifetime of

excess electron or holes on the molecule. Secondly, in the high-temperature limit, nuclear

tunneling can be disregarded in evaluating the electron hopping rate, namely such events

are assumed to be dominated by crossings of nuclear potential surfaces. Finally, the small

electronic coupling Γ makes it possible to use perturbation theory to the lowest order in the

electronic coupling for evaluating the electron hopping probability, essentially disregarding

level splitting in this calculation (e.g., using the non-adiabatic limit of the Landau-Zenner

expression for this probability). Under these assumptions, electron transfer events are

dominated by nuclear configurations where EA(x) = EB(x), namely at the transition point

along the reaction coordinate given by

xTR =
EB − EA − ε+ 1

2
~ω0d

2

~ω0d
. (4.8)

Marcus theory [43, 44] is based on transition state theory of reaction rates. It provides a
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framework for representing the solvent sate in a one-dimensional free-energy surface de-

fined with respect to a single reaction coordinate that the electronic energies in states A

and B depend only on a single solvent quantifier, in the present case, the local solvent

polarization. Extending this theory to the dynamical regime requires an additional as-

sumption, tacitly made in most studies like those cited above, that the same free energy

surfaces EA(x) and EB(x) can be used as potential energy surfaces for the reaction co-

ordinate x, provided that account is taken for the fact that this coordinate can exchange

energy with all other solvent degrees of freedom 3. Making the additional assumption that

this dynamics is Markovian, the motion of the reaction coordinate, when the molecule is in

state A or B, can be described by a Langevin equation by augmenting Newtonian dynam-

ics on the potential surfaces (4.5) or (4.6) by a friction γ and a random noise terms that

satisfy the standard fluctuation-dissipation relations according to Sec. 2.1. Equivalently,

the probability distribution Pj(x, v; t) for the molecular states j = A,B obeys under these

conditions the Fokker-Planck equation

∂Pj(x, v; t)

∂t
= ω0

dV̄j
dx

∂Pj
∂v
− ω0v

∂Pj
∂x

+ γ

[
∂

∂v
(vPj) +

kBT

~ω0

∂2Pj
∂v2

]
. (4.9)

In Eq. 4.9, the normalized potential surfaces are V̄j = Vj/(~ω0) with VA(x) = 1
2
~ω0x

2

and VB(x) = 1
2
~ω0(x − d)2. We note that the position and velocity variables in Eqs.

(4.5),(4.6) and (4.9) are dimensionless, and related to their dimensioned counterparts x̄, v̄

by x =
√
mω0/~x̄ and v =

√
m/(~ω0)v̄. The solvent properties that enter at this level of

description are manifested via the parameters ω0 and γ that can be obtained from fitting of

an observed dielectric response of the solvent to standard dielectric response models which

will be described in more detail for γ in Subsec. 4.3.4. The solvent-molecule coupling enters

through the parameter d that determines the solvent reorganization energy ER as given

in Eq. (4.7) and discussed in the system-bath model in Subsec. 2.4.1. We note that the

overdamped limit of Eq. (4.9) has been used in the Zusman generalization of the Marcus

theory [116, 117]

In the following Subsections 4.1.1 and 4.1.2, in analogy to Kramers treatments of acti-

vated barrier crossing [50], we consider the implications of this dynamics in two limits. In

the overdamped limit, γ � ω0, Eq. (4.9) leads to a Smoluchowski equation that describes

3A detailed theoretical treatment may be the reaction coordinate mapping. Here one incorporates
a distinct bath degree of freedom, the reaction coordinate, into an enlarged system Hamiltonian, which
is then treated explicitly. The remaining reservoir degrees of freedom are again traced out in the usual
pertubative manner [128].



4.1 Theoretical Model 111

diffusion along the x coordinate,

∂

∂t
Pj(x, t|x′TR, tTR) = − ∂

∂x
[ẋPj(x, t|x′TR, tTR)] (4.10)

=
ω0

~βγ
∂

∂x

[
∂

∂x
+ β~ω0

dV̄j(x)

dx

]
Pj(x, t|x′TR, tTR) ,

where β = (kBT )−1. In the opposite underdamped limit, γ � ω0, the relaxation implied by

Eq. (4.9) may be reduced, after phase averaging [31], to diffusion in energy space, described

by

∂P (E)

∂t
=

∂

∂E

[
γE

[
1 + kBT

∂

∂E

]
P (E)

]
(4.11)

=
∂

∂E
γ

[
E − kBT

]
P (E) +

∂2

∂E2
γEkBTP (E).

The distribution functions P (x, t) from Eq. (4.10) or P (E, t) from Eq. (4.11) replace the

Boltzmann distribution in the evaluation of the instantaneous probability for electron trans-

fer, leading to time-dependent rates that will replace the rates of Eqs. (4.1) and (4.2). We

note that the stationary solution of both Eqs. (4.10) and (4.11) is the Boltzmann distribu-

tion, implying that transition-state theory will be recovered when relaxation is fast, γ → 0

in Eq. (4.10) or γ →∞ in Eq. (4.11).

We are now ready to solve Eqs. (4.10) and (4.11) to obtain charge transfer rates in the

respective limits to investigate their implications for standard observables like the average

charge current noise.

4.1.1 Overdamped regime

The probability densities resulting from the Smoluchowski equation (4.10) for the over-

damped reaction coordinate x (γ � ω0) can be calculated exactly. In this limit, the

probability densities are velocity independent. Eq. (4.10) should be solved now for every

time segment between electron transfer events with the initial condition

Pj(x, tTR|x′TR, tTR) = δ(x− x′TR) , (4.12)

where tTR < t is the time of the preceding electron transfer event, given that the event oc-

curred with the reaction coordinate at position x′TR. The solutions are (see also illustration
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Figure 4.1: Energy representation of the electron transfer process. The blue diabat repre-
sents the oxidized state A including the energy alignment with a charge of an arbitrarily
chosen energy ε∗, the red diabat the reduced state B. The energy distribution of the
charges and vacancies in the left (K = L) and right (K = R) electrode follows out of
the Fermi distribution fK(ε) (or 1− fK(ε)), respectively, of Eq. (4.4) with temperature T .
The state energy strongly depends on the solvent configuration described by the reaction
coordinate x (see Eqs. (4.5) and (4.6)). The relaxation of the reaction coordinate x after
a previous transition at x′TR is described by its probability density (black colored) under
the action of the damping γ. The boxes show the equilibrium solvent configuration xA = 0
for the oxidized state and xB = d for the reduced state indicating the fluctuating dipole of
the solvent molecules.

in Fig. 3.2)

PA(x, t|x′TR, tTR) =

√
D

2π[1− a2(t− tTR)]
exp

{
−D

2

[x− a(t− tTR)x′TR]2

1− a2(t− tTR)

}
, (4.13)

PB(x, t|x′TR, tTR) =

√
D

2π[1− a2(t− tTR)]
exp

{
−D

2

[x− d− a(t− tTR)(x′TR − d)]2

1− a2(t− tTR)

}
,

(4.14)



4.1 Theoretical Model 113

where D = β~ω0 and a(t) = exp
[
−ω2

0

γ
t
]
. For γ → 0, a(t)→∞ for all time t > 0, indication

”instantaneous” relaxation to an equilibrium Boltzmann distribution in the corresponding

wells.

PA(x, t|x′TR, tTR)dx is the probability to find a solvent configuration with a reaction

coordinate in [x, x + dx] for the the oxidized state A at time t, given that the previous

transition from the reduced state B has occurred at the solvent configuration x′TR at time

tTR. Correspondingly, PB(x, t|x′TR, tTR)dx describes the equivalent for the reduced state

B. It is important to notice that the next electronic transition can take place at any x.

This x then becomes the next transition configuration xTR for which the energy ε(xTR)

and consequently the probabilities to find a corresponding metal level occupied fK(x) or

unoccupied 1− fK(x) are determined from Eq. (4.8).

Correspondingly, the ET rates (probabilities per unit time), kAB into the molecule, and

kBA out of the molecule, are given in this high-friction limit by

kKAB(t− tTR;x′TR) = Γ

∫ ∞
−∞

dxPA(x, t|x′TR, tTR)fK(x) (4.15)

kKBA(t− tTR;x′TR) = Γ

∫ ∞
−∞

dxPB(x, t|x′TR, tTR)
(
1− fK(x)

)
, (4.16)

where K = L or R. Γ is assumed to be independent of the solvent configuration x while

Γ−1 characterizes the time span between the electron hopping events.

We emphasize again that the integration over all solvent configuration in Eqs. (4.15) and

(4.16) can be extended to±∞ because a transition may occur at every solvent configuration

along the reaction coordinate, subjected to the Pauli principle that is accounted in Eqs.

(4.15) and (4.16). In agreement with the above observation that the limit γ → 0 correspond

to ”infinitely fast” relaxation to equilibrium, the rates given in Eqs. (4.15) and (4.16)

become the thermal Marcus rates of Eqs. (4.1) and (4.2).

Using the rates of Eqs. (4.15) and (4.16), we can calculate the average current and its

correlation with a numerical Monte Carlo procedure (Sec. 4.2). The solvent dynamics is

propagated using Eq. (4.13) or (4.14) depending on the present state of the molecule, and

at any time step transition is attempted using the probabilities (4.15) or (4.16) depending

again on the current molecular state.
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Figure 4.2: Energy representation of the electron transmission process. The blue diabat
represents the oxidized state A including the energy alignment with a charge of arbitrarily
chosen energy ε∗, the red diabat the reduced state B. The energy distribution of the charges
and vacancies in the left (K = L) and right (K = R) electrode follows out of the Fermi
distribution fK(ε) (1− fK(ε)) (Eq. (4.4)) with temperature T . The state energy strongly
depends on the solvent configuration described by the solvent energy E, see Eqs. (4.5)
and (4.6). The relaxation of the energy E after a previous transition with E0 is described
by its probability density (black colored) influenced by the damping γ. The boxes show
the equilibrium energy EA for the oxidized state and EB for the reduced state by means
of adjustable dipoles where the solvent energy has its minimum respectively.

4.1.2 Low-damping regime

In the regime of low damping, γ � ω0, the reaction coordinate oscillates many times under

its harmonic restoring force before appreciable relaxation occurs. In this case, as in the

Kramers [50] regime of low damping, the parameter that determines the probability of

electron transfer and relaxes due to the interaction with the thermal environment is the

energy. In the Kramers case, the rate in this limit is determined by the inverse mean first-



4.1 Theoretical Model 115

passage time to reach a critical energy. Here, the rate can be obtained from the golden

rule (see Eq. 2.55 in Subsec. 2.4.3 by including the electronic states of the metal) say for

the A→ B transition, in the form

kAB =
2π

~

∫ ∞
−∞

dερM(ε)f(ε)
∑
v;v′

| 〈v|V̂A,B|v′〉 |2δ(EA − EB + ε+ Eb(v)− Eb(v′)) , (4.17)

where EA(v), EB(v′) are eigenvalues of the solvent Hamiltonian (harmonic oscillator state

on the potential surfaces EA(x) and EB(x)), V̂AB is the interstate coupling and ρm(ε) is

the density of single electron states in the metal. We further consider the density of states

ρM(ε) = ρM = const. as independent of the electron energy.

In the Appendix C, we show that Eq. (4.17) can be transformed into the expression

kAB =Γ

∫ ∞
−∞

dεf(ε)

∫ ∞
−∞

dtei(EA−EB+ε)t/~e−ig
2 sin(ω0t)+g2[2n(t)+1][cos(ω0t)−1], (4.18)

where Γ =
ρM |VA,B |2

~2 is the conditional rate and g determines the coupling between the

solvent (oscillator) states and the molecular state A or B. Eqs. (4.17) and (4.18) are not

limited to the semi-classical limit used in the Marcus theory and, in fact constitute, for

this low-damping limit, an extension of the Marcus formalism. Keeping, for simplicity, the

Marcus level of treatment, we exploit an additional approximation which is equivalent to

the high-temperature limit used in the transition state theory limit (see derivation for Eq.

(2.60) in Subsec. 2.4.3): Assuming n(t) � 1 in the relevant range of solvent energy, and

because the reaction coordinate x interacts in this energy range with many solvent degrees

of freedom, the integrand is very short-lived [129] and can be approximated by expanding

the sine term up to first and the cosine term up to second order in the argument ω0t. This

short-time expansion leads to

kAB =Γ

∫ ∞
−∞

dεf(ε)

∫ ∞
−∞

dtei(EA−EB+ε)t/~−itg2ω0−t2g2ω2
0 [2n(t)+1]/2 (4.19)

=Γ

√
π

a

∫ ∞
−∞

dεf(ε)e−
(EA−EB+ε−ER)2

4~2a ,

where we consider n(t) to evolve only slightly in time for slow energy relaxation (γ � ω0).

Moreover, we perform the time integral in Eq. (4.19) by regarding n(t) as a constant

parameter. We introduce a = (2n(t)+1)g2ω2
0/2 ' E(t)ER/~2 as well as the reorganization

energy ER = ~g2ω0 and the solvent energy E(t) = ~ω0n(t) in Eq. (4.19).
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The rates for the electron insertion and removal process accompanied by slow energy

relaxation finally follow as

kAB(t;E|E0) = Γ

√
π

E(t)ER

∫ ∞
−∞

dεf(ε)e
− (EA−EB+ε−ER)2

4E(t)ER (4.20)

kBA(t;E|E0) = Γ

√
π

E(t)ER

∫ ∞
−∞

dε[1− f(ε)]e
− (EB−EA−ε−ER)2

4E(t)ER . (4.21)

Remarkably, the final result under this short-time approximation is similar to Marcus’

result of Eq. (2.60) in Subsec. 2.4.3, except that the thermal energy kBT is replaced by

E(t) - the (time-dependent) solvent energy expressed by the energy content in the reaction

coordinate, calculated at time t, which is the time elapsed since the proceeding electron has

hopped onto or out off the molecule, and subject to the initial condition E(t = 0) = E0,

which is the energy at which the proceeding hopping took place.

Next, we consider the energy relaxation (or diffusion) dynamics, sketched in Fig. 4.2. As

before, we look at the time evolution between two electron hopping events. For definiteness,

we assume that the next electron hopping will be an A→ B transition and the proceeding

B → A event happened at time t0 under system energy E0. Following this event, the

probability to find the system at time t with energy E is the solution of Eq. (4.11) with

the initial condition P (E, t0|E0, t0) = δ(E − E0).

The solution of Eq. (??) may be found by performing a Fourier transform according to

P (c) =
∫
dEeicEP (E), which yields

∂P (c)

∂t
+

[
γc− ic2γkBT

]
∂

∂c
P (c) = ickBTγP (c). (4.22)

It can be solved by using the methods of characteristics P (c, t) → P (c(τ), t(τ)), which

implies

∂P

∂τ
=
∂P

∂c

∂c

∂τ
+
∂P

∂t

∂t

∂τ
. (4.23)
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Comparison of the coefficients leads to the ordinary differential equations

∂t

∂τ
= 1 (4.24)

∂c

∂τ
= γc− ic2γkBT (4.25)

∂P

∂τ
= ickBTγP (c(τ), t(τ)). (4.26)

Eq. (4.24) and Eq. (4.25) lead to

t = τ , (4.27)

∂

∂t

[
1

c

]
+
γ

c
− iγkBT = 0 , (4.28)

and with 1/c→ z, we find

∂z

∂t
+ γz − iγkBT = 0, ⇒ z(t) = ae−γt +

(
1− e−γt

)
ikBT, (4.29)

while a is determined by the initial condition. Hence, this gives with c(t = 0) = c0 ⇒ a =

1/c0

c(t) =
1

ae−γt + (1− e−γt)ikBT
=

c0

e−γt + (1− e−γt)ikBTc0

. (4.30)

Eq. (4.26) then leads to

P (t) = Ae
∫ t
0 dt
′ikBTc(t

′) (4.31)

= Aeln(1−ikBTc0+ikBTc0e
γt) (4.32)

= A
(
1− ikBTc0 + ikBTc0e

γt
)
, (4.33)

where A may be defined by the initial conditions. With c0 = ce−γt/[1− cikBT (1− e−γt)],
we get

P (c, t) =
A

1− cikBT (1− e−γt)
. (4.34)
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The initial condition c(t = 0) = c0 and the fixed initial energy E0 translates to

P (c0, t = 0) =

∫ ∞
−∞

dEeic0Eδ(E − E0) = eic0E0 ≡ A . (4.35)

One now transforms P (c, t) back to P (E, t) and finds

P (E, t) =
1

2π

∫ ∞
−∞

dc exp (−iEc) exp

[
iE0ce

−γt

1− cikBT (1− e−γt)

]
1

1− cikBT (1− e−γt)
(4.36)

=
1

2π

∫ ∞
−∞

dcP (c, t). (4.37)

We identify cp = −i/[kBT (1 − e−γt)] = −ih as a simple pole and can solve the integral

by taking the real axis as contour of integration and an infinite semicircle in the lower

half-plane towards the imaginary axis to end up with the residue of the lower half-plane.

We have

P (E, t) =
1

2π

∮
dcP (c, t) = lim

R→∞

∫ R

−R
dcP (c, t) + lim

R→∞

∫ π

0

dθP (Reiθ, t)iReiθ (4.38)

=
−2πi

2π
Resc=−ihP (c, t), (4.39)

where one uses c = Reiθ in the second integral which one can neglect afterwards because

lim|c|→∞ P (c, t) → 0, if E ≥ 0. We further rewrite the function P (c, t) as an infinite sum,

which leads to

P (E, t) =
1

2π

∫ ∞
−∞

dc
∞∑
n=0

(iE0ce
−γt − iEc− Ec2/h)n(ih)n+1

n!(ih+ c)n+1
Θ(E) (4.40)

=
1

2π

∫ ∞
−∞

dc
∞∑
n=0

F (c)n(ih)n+1

n!(ih+ c)n+1
Θ(E). (4.41)

One can use the theorem of residue for each summand, while one has a simple pole at

c = −ih of each different power of n. This yields

P (E, t) =
−2πi

2π
Resc=−ihP (c, t)Θ(E) = −i

∞∑
n=0

(ih)n+1(∂n/∂cn)F (c)n|c=−ih
n!2

Θ(E). (4.42)

Before calculating each summand, we evaluate the derivatives (∂n/∂cn)F (c) at c = −ih,
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where we define (∂n/∂cn)F (c) = F (n)(c).

F (−ih) = E0he
−γt, (4.43)

F (1)(−ih) = i[E0e
−γt + E], (4.44)

F (2)(−ih) = −2E/h, (4.45)

F (3)(−ih) = F (n)(−ih) = 0; for n ≥ 3. (4.46)

We now evaluate the summands of Eq. (4.41) to obtain

n = 0 ih (4.47)

n = 1 − ih2[E0e
−γt + E] (4.48)

n = 2 ih3[2![E0e
−γt + E]2 + 4EE0e

−γt]/2!2 (4.49)

n = 3 − ih4[3![E0e
−γt + E]3 + 36EE0e

−γt[E0e
−γt + E]]/3!2 (4.50)

n = 4 ih5[4![E0e
−γt + E]4 + 144EE0e

−γt[E0e
−γt + E]2 + 72E2E2

0e
−2γt]/4!2 (4.51)

n = 5 − ih6[5![E0e
−γt + E]5 + 2400EE0e

−γt[E0e
−γt + E]3 + 3600E2E2

0e
−2γt[E0e

−γt + E]]/5!2

(4.52)

...

After some reorganization effort one finds

P (E, t) = h
∞∑
n=0

(−h)n[E0e
−γt + E]n

n!
·
∞∑
m=0

h2mEmEm
0 e
−mγt

m!2
Θ(E) (4.53)

=
1

kBT (1− e−γt)
exp

[
−(E0e

−γt + E)

kBT (1− e−γt)

] ∞∑
m=0

[
EE0e−γt

k2
BT

2(1−e−γt)2

]m
m!2

Θ(E). (4.54)

The infinite series in the last expression (4.54) represents the modified Bessel function of

first kind and zeroth order 4.

4The modified Bessel function of the first kind and of zeroth order reads

I0(x) =

∞∑
k=0

( 1
4x

2)k

k!2
(4.55)

lim
x→∞

I0(x) =

√
1

2πx
ex. (4.56)
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We check the normalization by using again h = 1/[kBT (1− e−γt)],∫ ∞
0

dEP (E, t) = he−hE0e−γt
∞∑
m=0

h2mEm
0 e
−mγt

m!2

∫ ∞
0

dEe−hEEm︸ ︷︷ ︸
m!

hm+1

= e−hE0e−γt
∞∑
m=0

(hE0e
−γt)m

m!

(4.57)

= 1.

In the limit t→∞, we find

lim
t→∞

P (E) =
1

kBT
exp

(
−E
kBT

)
Θ(E) , (4.58)

which is the Boltzmann distribution. Moreover, the limit t → 0 corresponds to the limit

h→∞, which yields

lim
t→0

P (E) = lim
h→∞

P (E) =

√
1

2π2h
√
EE0

· e2h
√
E0E · h · e−h[E0+E]Θ(E) =

0 for E 6= E0

∞ for E = E0

(4.59)

= δ(E − E0)Θ(E) . (4.60)

Using the energy dependent rates of Eqs. (4.20) and (4.21) and the evolving probability

distribution for this energy, Eq. (4.54), we have constructed a numerical Monte Carlo

procedure for generating a sequence of electronic transitions in the following Sec. 4.2 from

which the average current as well as the current noise can be evaluated.

4.2 Numerical Methods

4.2.1 Charge current

We calculate the charge current through the molecule by means of a random walk sim-

ulation (Monte Carlo) for a sequence of electron insertion (removal) events into (out of)

the molecule. The rates for these processes, corresponding to transfer from (to) the left

(K = L) and right (K = R) electrode are given by Eqs. (4.15) and (4.16) in the overdamped

limit and by Eqs. (4.20) and (4.21) for the low-damping regime, respectively.

The stochastic current is defined as the difference between the sequence of insertion
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Figure 4.3: Flow chart of the Monte Carlo algorithm to calculate the charge current.

events and the sequence of removal events from and to a given electrode, where each

event is represented by the delta-function spike (see Eq. (4.61) below). Once an insertion

or removal event is recorded at time tNTR, one determines the electrode involved in this

exchange (see Fig. 4.3). Fig. 4.4 represents an example of individual electron moves with

respect to the right lead.
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Figure 4.4: Specific sequence of hopping events between the states A and B at ambient
temperature T = 300K for the damping rate γ = 0.001ω0 (overdamped regime) and
the bias potential of ∆Φ = 300mV. The electron injection AB from the right lead is
recorded with the normalized current IR(t)/e, where e is the electron charge. We set
µR = µL = ∆E = EB − EA.

The stochastic current associated with the lead K (K = L,R) is then written as

IK(t) = e

[∑
i

δ(t− tKi)−
∑
j

δ(t− tKj)
]
, (4.61)

where e is the electron charge and where the first sum goes over all time tKi at which the

electron was inserted in lead K, and the second accounts similarly for removal events at

tKj. The expectation value of the current 〈I〉 at the respective lead reads

〈I〉 =
e

τ

∫ τ

0

dt

[∑
i

δ(t− ti)−
∑
j

δ(t− tj)
]

=
e

τ
[N −M ], (4.62)
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where we detect N electron insertion and M removal processes to a given lead within the

time period τ . We assume a steady-state current for the observation time window between

(0, τ) for ideally long observation times τ →∞.

4.2.2 Current noise

Next, we examine the correlation characteristics of resulting current time-series. The

autocorrelation function of the current is defined by

CI(t
′) =

1

τ

∫ τ

0

(I(t)− 〈I〉)(I(t+ t′)− 〈I〉)dt, (4.63)

where τ is the time interval of observation. Now, we apply Eqs. (4.61) to (4.63) to find the

autocorrelation of the δ-current pulses as

CI(t
′) =

e2

τ

∑
i;i′

∑
j;j′

∫ τ

0

dt

[
δ(t− ti)δ(t− ti′ + t′)− δ(t− ti)δ(t− tj′ + t′) (4.64)

− δ(t− tj)δ(t− ti′ + t′) + δ(t− tj)δ(t− tj′ + t′)

]
− 〈I〉2

=
e2

τ

∑
i;i′

∑
j;j′

[
δ(ti − ti′ + t′)− δ(ti − tj′ + t′)

− δ(tj − ti′ + t′) + δ(tj − tj′ + t′)

]
− 〈I〉2.

We examine the term I(t)I(t + t′) as all other terms lead to −〈I〉2. The current variance

is defined by σ2
I ≡ C(t′ = 0). In evaluating this term, we use the fact that only δ-functions

for i = i′ and j = j′ remain in I(t)I(t) of Eq. (4.64), while all other δ-functions cancel. If

we detect N insertion and M removal processes to a given lead, we find

σ2
I = C(t′ = 0) =

e2

τ
[N +M ]δ(0)− 〈I〉2 = lim

τ ′→0

e2

ττ ′
[N +M ]− 〈I〉2 = 〈I2〉 − 〈I〉2, (4.65)

where we replace the δ-function by the inverse of the infinitely small time span τ ′−1.

To obtain an autocorrelation signal in a numerically efficient way, one broadens the

δ-functions of Eq. (4.64) to normalized Lorentzian functions. They do not influence the

current as long as their characteristic width is smaller than the expected waiting time

between the individual electron occupation and deoccupation events onto and from the

molecule. This is of the order of Γ−1.
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Experimental current auto-correlograms are often fitted to an exponential function

[130], such that one considers exponential current correlation of the form

CI(t
′) = σ2

I,P τ
′
[
δ(t′) +

α

τc
e−

t′
τc

]
= σ2

I,P τ
′
[

1

τ ′
+
α

τc
e−

t′
τc

]
, (4.66)

where σ2
I,P is the variance of the current for uncorrelated Poissonian electron injection and

removal events and τc is the correlation time. τ ′ is the small time span describing the δ-

function. Thus, the variance calculated from Eq. (4.66) reads CI(t
′ = 0) = σ2

I = σ2
I,P (1+α),

where τ ′ ' τc such that α characterizes the correlation between the electron events. For

a Possonian process α = 0 and the Fano factor F = 1 + α = σ2
I/〈I〉 = 1. If F > 1, the

current has positive correlations, while if F < 1, the current has negative correlations.

4.3 Results and discussion

4.3.1 Overdamped regime

Current

The average charge current 〈I〉 obtained from the Monte Carlo procedure of Subsec. 4.2

is shown in Fig. 4.5 as a function of the bias voltage and the solvent induced damping

γ. We set µR = µL = ∆E = EB − EA in Eqs. (4.4) to (4.6) and apply a symmetric

bias voltage ΦR = −ΦL = ∆Φ/2 between the leads. Depending on the voltage bias, three

modes of behavior are seen. (a) When the applied bias voltage is moderately larger than

the thermal energy, i.e. e∆Φ/2 > kBT , (while kBT ∼ 25meV at ambient temperature of

300K) the current increases, then saturates, with increasing γ (see Fig. 4.5 for 200-400

mV). The reason for this behavior is that for large γ relaxation is slow. Therefore, the

system remains close to a transition configuration, i.e., energy barrier to the transition

does not develop quickly enough. (b) For considerably larger bias (1000 mV in Fig. 4.5)

there is no sensitivity to solvent configuration (states are vacant on one lead and occupied

on the other for any configuration), hence no effect on the average current at which this

configuration evolves is seen. (c) For small bias (100 mV in Fig. 4.5) increasing γ initially

enhances the electronic current for the same reason as in (a): At large γ, staying in the

small energy window at which transfer can occur, implies a larger probability of an electron

transfer. However, some relaxation is needed to stabilize the ”product” of this transfer.

Further increase of γ makes such relaxation to slow and leads to current reduction because
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Figure 4.5: Expectation value of the current 〈I〉/〈I0〉 at ambient temperature T = 300K
for the reorganization energy ER = 200meV at different applied bias potentials ∆Φ by
varying the damping rate γ. 〈I0〉 is the current for fast solvent relaxation, γ → 0. The
dotted lines are functional fits to the data points for better readability.

for such large γ the dot level sticks in an energy region with finite probability to return to

the electrode where it originated.

Reiterating, a larger friction γ implies, in the limit under consideration, a slower solvent-

induced stabilization of the electron on the molecular bridge. The initial increase of the

current with growing γ for small damping for all modes of operation (see inset Fig. 4.5)

may be understood as solvent-mediated stabilization of the molecular transition state con-

figuration. For larger γ, this stabilization results in a frozen configuration that is more

(e∆Φ/2 > kBT ) or less (e∆Φ/2 ∼ kBT ) favorable to subsequent electron transfer events.

We note that, although the diffusion equation in the overdamped regime is strictly

valid only for γ � ω0, it reproduces the Boltzmann distribution as a solution for γ = 0.

However, the calculated average current in the intermediate regime γ ∼ ω0 may be seen as
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an interpolation between the tractable limits of zero and strong damping.

Figure 4.6: Illustration of the rate integral in Eq. (4.15) which comprises a probability
density PA (PB) and the Fermi function fK(x) (1− fK(x)) of the respective lead (K = R
or K = L) where the probability density and Fermi function have a time-dependent shift
relative to each other. Figure (a) shows the time-dependent probability distribution of state
A reflecting the solvent relaxation along the x-coordinate to an equilibrium Boltzmann
distribution. An enhanced damping γ stabilizes the distribution near a transition point
and leads to an overall larger integral value in comparison to the equilibrium distribution.
This results in an increased charge injection rate. Figure (b) shows the same scenario,
but for a different applied bias potential ∆Φi ≡ ∆Φi(~ω0d)−1 and ∆Φii ≡ ∆Φii(~ω0d)−1.
For e∆Φi ∼ kBT , there arises a finite probability for a distribution stabilized near a
transition point of a charge injection from opposed directed leads which decreases the
charge current. For a large applied e∆Φii > 2ER, the Fermi functions are shifted in a
way that the probability density around equilibrium or near a transition point leads to
comparable integral values. The current is therefore less sensitive to the solvent damping
γ along x. Since the bias voltage is applied symmetrically, one may discuss the same
scenario for the rate of electron removal in Eq. (4.16).

Mathematically all modes of operation can be directly understood by investigating the

ET rates (Eqs. (4.15) and (4.16)) where two contributions, (i) the probability distribution
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and (ii) the Fermi function (Eq. (4.4) with transformation ε → x), form the integral (see

illustration in Fig. 4.6). With enhanced γ, the solvent probability distributions PA, Eq.

(4.13), and PB, Eq. (4.14), relax slower to their equilibrium Boltzmann-like properties

around xA = 0 or xB = d, respectively. Their initial position depends on the solvent

configuration under which an ET process has occurred. The increased γ ’freezes’ the

configuration and hence stabilizes the distribution near a possible transition point (see

Fig. 4.6). The integral values of Eqs. (4.15) as well as (4.16), and, hence, the rate for

an electron injection and removal, to the right and left lead, respectively, increases with

bigger solvent damping and, thus, the current. For e∆Φ/2 ∼ kBT , the more localized

solvent distributions with increased γ may also form a finite integral with the lead of the

opposite direction such that an injection and removal process may occur from and to the

same lead. This suppresses the charge current.

By calculating the average current over the reorganization energy, we observe that the

average current drops suddenly if the reorganization energy is ER = ∆Φ/2 for an extremely

small damping. This represents the Marcus ET transfer regime (see γ = 0.001ω0 in Fig.

4.7). For ER = ∆Φ/2 and γ � 1, the ET rates of Eq. (4.15) as well as Eq. (4.16) clearly

portray that the Fermi function cuts half the Boltzmann distribution in Fig. 4.6 such

that the rate and the current are halved. In general, an enhanced reorganization energy

results in a pronounced horizontal shift between the potential minimum of state A and B,

i.e. a larger distance between xA and xB in Fig. 4.1, such that the transition becomes

energetically less favored. However, a greater solvent damping stabilizes the molecular

state near a transition state such that the current drops at higher reorganization energies

with enhanced damping (see Fig. 4.7). In addition, the sudden drop is more stiff with

enhanced damping γ, since the solvent fluctuates less freely. Thus, the rigid behavior in

the current-reorganization behavior with larger γ may be associated to a less fluctuating

solvent. A similar effect is observed for the increase of current-voltage characteristic before

a steady state current is reached (inset in Fig. 4.7). For enhanced solvent damping, the

steady state current is reached for smaller applied bias voltage due to solvent stabilization

near a transition point.
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Figure 4.7: Expectation value of the current 〈I〉/〈I0〉 at ambient temperature T = 300K
for different damping strengths γ at a bias potential ∆Φ = 1000mV by varying the reorga-
nization energy. 〈I0〉 is the current for the reorganization energy ER = 0. The solid lines
are functional fits to data points. Inset: 〈I〉/eΓ at ambient temperature T = 300K for
different damping strengths γ at a reorganization energy of ER = 500meV and varying the
applied bias potential ∆Φ. The observation time for the average current (see Eq. (4.62))
is τ = 50000Γ−1, Γ is the characteristic transition rate and e the elementary charge.



4.3 Results and discussion 129

Current correlation and Fano factor

The current correlation CI(t) (see Eq. (4.64)), as shown in Fig. 4.8, drops faster with time

by applying a higher bias voltage. This is evident since a higher applied voltage is able to

align the molecular level with more occupied or vacant energy states in the leads such that

the charge current is less correlated. In contrast, a longer correlation expresses the solvent

mediated ET, where the ’frozen’ solvent configuration holds the molecular state near a

transition state which becomes more visible when applying a smaller bias potential. Since

a bigger γ describes a slower solvent relaxation, the current is more correlated with growing

γ. The solvent fluctuates less and the ET events are stronger influenced by previous charge

configurations on the molecule and their related solvent configurations. Interestingly, for

e∆Φ/2 ∼ kBT , small damping γ = ω0 shows higher correlation than larger damping with

γ = 70ω0 (Fig. 4.8 for ∆Φ = 50meV). This behavior reflects again the effect of a possible

ET in inverse directions, since the transition state may align the molecular energy level

with electronic states of the opposite lead.

The current variance σI (see Eq. (4.65)) first grows with γ for e∆Φ ∼ kBT (inset in

Fig. 4.8 for ∆Φ = 50meV and ∆Φ = 100meV) and confirms an initially enhanced current

deviation from the mean, which decreases with growing γ. A molecular picture: The solvent

fluctuates less which aligns at first the molecular state with more occupied or vacant metal

states leading to a higher current variance. Later with growing γ the molecular state can be

aligned with the metal levels of opposite directed leads which results in a reduced current

variance. For e∆Φ > kBT , the current deviation about the mean increases with γ before a

steady state is reached when the solvent configuration stabilizes the molecular state near

a transition state (inset in Fig. 4.8 for ∆Φ = 200meV).

The calculated Fano factor [130, 131] F = 〈I2〉−〈I〉2
〈I〉 > 1 (see discussion of Subsec. 4.2)

shows clear evidence of a non-Poissonian (correlated) ET process for non-vanishing friction,

while Poissonian statistics characterizes the limit γ → 0 (fast solvent relaxation). Once

the applied bias voltage is large enough, the solvent relaxation shows no impact on the ET

because the position of the dot ”level” does not change its orientation relative to empty

and occupied single electron states of the metal, hence F = 1 for all γ. For an applied bias

potential in the regime of relevant thermal fluctuations, i.e., e∆Φ ∼ kBT , the Fano factor

first increases before it declines to a steady value when the molecular ”state” is localized

in a region when its sees probabilities of similar magnitudes for vacancies or occupation on

the leads of both sides (see ∆Φ = 50mV and ∆Φ = 100mV in Fig. 4.9). Yet, the reduced

Fano factor signals a less correlated ET since the charge transfer may occur spontaneously
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in opposite directions. The inset in Fig. 4.9 shows the correlation time τc, defined by fitting

CI(t) (see Eq. (4.64)) to an exponential C(t) ∝ exp

[
− t

τc

]
. An increased correlation time

τc with enhanced damping directly signals a stronger current correlation and confirms the

prior observations.
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Figure 4.8: Normalized current correlation function CI(t)/CI(0) at ambient temperature
T = 300K for the reorganization energy ER = 200meV at different applied bias potentials
∆Φ and different values of the damping strength γ. Inset: Normalized current variance
σI/σI0 for varying the damping γ. The black circles portray the variance for the potential
∆Φ = 50mV, the black triangles for ∆Φ = 100mV and the red stars for ∆Φ = 200mV.
The dotted lines are functional fits to the data points for better readability. I0 is the
current for γ → 0 (fast solvent relaxation).
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4.3.2 Low-damping regime
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Figure 4.10: Expectation value of the current 〈I〉/〈I0〉 for different reoganization energies
ER for varying the damping γ. The bias potential is set to ∆Φ = 600mV. 〈I0〉 is the
current for infinitely small solvent energy relaxation, γ → 0. Inset: 〈I〉/〈I0〉 for different
reoganization energies ER for the bias potential ∆Φ = 1000mV at temperature T = 300K.
The dotted lines are functional fits to the data points for better readability.

We consider the average current in Fig. 4.10 and recall that in the low-damping regime

energy relaxation is faster for larger γ. We set again µR = µL = ∆E = EB − EA (Eqs.

(4.4) to (4.6)) and a symmetric bias voltage ΦR = −ΦL = ∆Φ/2 (Eq. (4.4)) at the leads.

For e∆Φ/2 < ER, the average current increases with growing solvent-induced damping γ

(see Fig. 4.10 for ER = 380meV and ER = 350meV). This increase appears to stem from

the fact that the energy distribution becomes broader in time, such that more metal states

can be accessed. This enhances the rates and hence the current through the molecule for

growing γ. It is evident that this effect becomes more pronounced at higher temperature
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(see Fig. 4.10 for ER = 380meV at T = 200K and T = 300K) since the thermal fluctuations

are enhanced, thus leading to thermally activated ET processes. If the reorganization

energy becomes much larger than the applied bias voltage, the broadening of the molecular

states becomes irrelevant since the alignment with the Fermi states of the leads vanishes.

When the bias voltage ∆Φ satisfies e∆Φ/2 = ER (see Fig. 4.10 for ER = 300meV or inset

of Fig. 4.10 for ER = 500meV), the average current shows no sensitivity to an increasing

damping γ. The reason appears to be the fact that in this case the molecular energy state

aligns with the occupied/vacant electronic energy levels in the leads. For e∆Φ/2 > ER,

the average current decreases with increasing solvent induced damping γ (see Fig. 4.10 for

ER = 220meV). In this case, the molecular states which are broadened due to γ drop out

of the conduction window of the leads. This reduces the ET rates (Eqs. (4.20) and (4.21))

and, thus, the current through the molecule.

We may again analyze the rate for the electron insertion (Eq. (4.20)) where the integral

includes the probability distribution PA for an electron to enter the molecule with the given

molecular and environmental energy configuration weighted by the Fermi distribution of

the given lead. For e∆Φ/2 < ER, the Fermi distribution f(ε) has a negative offset while the

width of PA increases with γ such that the overlap increases and with it the rate (see Fig.

4.11). The same is observed for the removal process but now with the distribution 1−f(ε)

of vacant states of the electrode. In the mode of operation e∆Φ/2 = ER, the average

current shows no sensitivity to increasing damping γ (see Fig. 4.10 for ER = 300meV).

The molecular energy states aligns with the occupied or vacant electronic energy levels

in the leads. For the rates for the electron insertion and removal process, the Fermi

distribution has no offset with respect to the probability distribution PA (PB) such that

the friction-depending width of PA (PB) does not affect the integral value and, hence, the

rate. For e∆Φ/2 > ER, the average current decreases with increasing solvent induced

damping γ (see Fig. 4.10 for ER = 220meV). In this case, the broadened molecular states

with enhanced γ exceed the conduction window of the leads. This reduces the ET rates

(Eqs. (4.20) & (4.21)) and, thus, the current through the molecule.

By calculating the average current for different reorganization energies, we observe

that the average current drops suddenly if the reorganization energy is ER = ∆Φ/2 (Fig.

4.12). The sudden drop is more smooth with enhanced damping γ. A larger γ allows

the solvent to fluctuate more freely due to the ambient temperature. Thus, the flattened

dependence in current-reorganization characteristics with enhanced γ may be associated

to a more strongly fluctuating solvent. The same effect is observed for the current-voltage
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Figure 4.11: Illustration of the rate integral in Eq. (4.20) which comprises a probability
density and the Fermi function of the right lead which can be shifted with respect to each
other by the applied bias voltage. Figure (a) shows the fluctuating probability distribution
of state A reflecting the solvent fluctuation proportional to γ along the energy coordinate.
The applied bias potential is smaller than the reorganization energy, i.e., e∆ΦR,i/2 < ER.
An increased magnitude of γ leads to a broadened distribution such that the integral
value in Eq. (4.20) is reduced due to the smaller overlap with the Fermi function. The
current is thus reduced. Figure (b) shows the same scenario but for a bias larger than the
reorganization energy ∆ΦR,ii > ER. Here the overlap with the Fermi function increases in
the integral value and, thus, the current.

characteristics once half the bias voltage reaches the reorganization energy (see inset in

Fig. 4.12).
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Figure 4.12: Expectation value of the current 〈I〉/〈I0〉 at ambient temperature T = 300K
for different damping strengths γ for a potential ∆Φ = 1000mV for varying reorganization
energies. 〈I0〉 is the current for the reorganization energy ER = 0. The solid lines are
functional fits to data points. Inset: 〈I〉/eΓ at ambient temperature T = 300K for different
damping strengths γ at reorganization energy ER = 200meV for varying the applied bias
∆Φ. The observation time for the average current (see Eq. (4.62)) is τ = 50000Γ−1, Γ is
the characteristic transition rate and e the elementary charge.
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Current correlation and Fano factor

The calculated current correlation function CI(t) (see Eq. (4.64)) is shown in Fig. 4.13.

It drops again faster with time by applying a higher bias voltage since the successive ET

is increased and less correlated. However, the current shows more correlation for larger

γ which describes a faster solvent energy relaxation. In this situation, the ET events are

stronger influenced by the solvent energy of previous molecular charge states and, thus,

more correlated.

The current variance σI , statistically determined from Eq. (4.65), (inset in Fig. 4.13)

grows with γ for e∆Φ/2 < ER and confirms enhanced current variations about the mean

(inset in Fig. 4.13 for e∆Φ = 300mV). The solvent energy relaxes faster which aligns the

molecular state with more occupied or vacant metal states leading to a higher current which

varies more. For e∆Φ = 0, the average current is zero which varies even less for enhanced

solvent energy relaxation. For e∆Φ/2 = ER the current deviation about the mean is

independent of the solvent energy relaxation and, therefore, independent of γ (inset in Fig.

4.13 for ∆Φ = 400mV). For ∆Φ/2 > ER, the current variance is reduced with larger γ

since fast solvent energy relaxation leads to less molecular energy-metal energy alignments

such that the current is reduced. It varies only little around its average (inset in Fig. 4.13

for ∆Φ = 500mV).

The calculated Fano factor F = 〈I2〉−〈I〉2
〈I〉 > 1 is shown in Fig. 4.14 and reveals a strongly

non-Poissonian ET process for a small bias voltage in comparison to a large reorganization

energy. Here, the effect of the broadening of the molecular level induced by larger γ

leads to electron hopping correlated in time. This correlation disappears if the applied

voltage exceeds the reorganization energy considerably. Again by fitting an exponential

C ∝ exp

[
− t

τc

]
(see Eq. (4.66)) to the normalized calculated correlation function the

impact of damping on the current can be directly quantified (see inset in Fig. 4.14). An

increased correlation time τc with enhanced damping directly signals a higher current

correlation and confirms the prior observations.
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damping γ. The variance for the potential ∆Φ = 0 is displayed with diamonds, for ∆Φ =
300mV displayed with stars, for ∆Φ = 400mV displayed with circles and for ∆Φ = 500mV
displayed with pluses. I0 is the current for small solvent energy relaxation, γ → 0.
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4.3.3 Kramers-like turnover
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Figure 4.15: The ratio 〈I〉/〈IM〉 between the actual average current 〈I〉 and the current
obtained in the TST (Marcus) limit (γ → 0 in the high-friction calculation (red dots)
or γ → ∞ in the low-friction one (black dots)), plotted as a function of γ in a range
encompassing both low- and high-friction (LF and HF, respectively) regimes and displayed
for different values of the bias potential ∆Φ. The reorganization energy is set to ER =
200meV and the temperature is taken to T = 300K. The dotted lines are functional fits
to the data points for better readability. Inset: Focus on the transition from low to high
friction of the average current.

It is interesting to consider the dependence of the average current on the damping

strength. This is shown in Fig. 4.15. For e∆Φ/2 < ER, we see in Fig. 4.15 for ∆Φ = 100mV

in the low-friction regime that 〈I〉 ∝ γ and that the current is controlled by energy diffusion

and the resulting broadening of the molecular level inside the conduction window. In the

high-damping regime, we find that 〈I〉 ∝ γ−1 for small bias voltage, e∆Φ/2 ∼ kBT , and the

current is strongly influenced by the configurational change along the reaction coordinate.

For large damping, the solvent configurations freeze the molecular state at a transition state
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which may fall into occupied or vacant electronic levels in the leads of opposite directions.

This reduces the current. For e∆Φ/2 > ER for the low-friction regime, see Fig. 4.15 for

∆Φ = 600mV, the molecular level broadening exceeds the width of the conduction window

for small but growing γ such that 〈I〉 ∝ γ−1 while for e∆Φ/2 > kBT the solvent stabilizes

a possible transition state in the high-damping regime where 〈I〉 ∝ γ.

The ’turnover’ between the regimes of low- and the high-damping, reminiscent of the

Kramers turnover of activated barrier crossing rates [50]. Despite a conceptual similarity,

there is an important difference: We consider the average current which is composed in the

sequential transport regime of four different time-dependent ET rates describing electron

insertion and removal to/from the molecular dot via the left/right contact. All four rates

depend on the solvent damping and the applied bias voltage. Therefore, there is no one-

to-one mapping of the charge current to the Kramers rate as shown in Chapter 14 of Ref.

[31] in the strict sense. However, the analogy is obvious.

4.3.4 Proposal for experimental control of solvent damping

The question may arise how to suitably tune the damping strength γ in a real junction

experiment. Since the solvent adjusts to the charge distribution on the molecule, its re-

laxation properties are determined by electromagnetic properties (see discussion of for

continuous dielectrics in Sec. 2.2). In particular, for a polar solvent, they depend via the

spectral density linearly on the dielectric function as derived in Eq. (2.72) of Subsec. 2.4.4

[58]. Provided that the damping experienced by the Marcus reaction coordinate stems

from the solvent, we may aim to control damping by tuning the dielectric properties of the

solvent. This is indeed possible in a dielectric solvent confined on the nanoscale and can

be realized by tuning the geometry of the confinement. A proof-of-principle is the recent

observation of the dependence of the dielectric function of water confined in nanochannels

[109].

To illustrate this connection in more detail, we use the spectral density of a fluctuating

dipolar solvent specified by Eq. (2.72) in Subsec. 2.4.4 with the Debye type dielectric

function of Eq. (2.26) in Subsec. 2.2.1

J(ω) =
2ER
π~

ωD
ω

1

ω2 + ω2
D

, (4.67)

where ωD = εs/(ε∞τD) with the low- (εs) and high- (ε∞) frequency dielectric constants

and the Debye relaxation time τD for solvent relaxation described by the Onsager contin-
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uum model of the solvent with Debye relaxation in Subsec. 3.2.1. In the Ohmic regime

where ωD � ω0 (see Eq. 2.16 in Sec. 2.2), the damping kernel (Eq. 2.15 in Sec. 2.2) for

the Langevin equation for the diffusive coordinates x or E can be evaluated as γ̃(t) =

Θ(t)ω0

∫∞
0
dωJ(ω)ω cos(ωt) = Θ(t)ω0

ER
~ e
−ωDt = ω0

ε∞
ε0

ERτD
~ δ(t) = γδ(t). For the latter

equation, we use the definition of the damping kernel of Ref. [26], but multiply J(ω) by ω2

(we note the different definition of the spectral densities of Refs. [58] and [26] as discussed

in Sec. 2.4) and the limit ωD →∞ to obtain the δ-distribution.

It is interesting to see that Fumagalli et al. [109] have found experimentally an

anomalous decline of the static dielectric constant following the phenomenological rela-

tion εs(h) = h/[2hi/εi + (h − 2hi)/εbulk] for water confined in nanochannels of height h

with εi = 2.1, ε∞ = 1.8 and hi = 7.4 Å. They explain the strong reduction of εs(h) for

the nanostructured water channel as compared to the bulk configuration with a restricted

mobility of the water dipoles at the boundary surfaces which the nanochannel forms with

the host material in which they are immersed.

The relationship between the damping constant and the reorganization energy implies

in turn that the friction experienced by a solute in a dielectric solvent depends on the

dielectric function. For example, using the common relation ER = A
[

1
ε∞
− 1

εs

]
[58], A

being a solvent/solute dependent coefficient with the dimension of an energy, we find a

connection between γ and ε and consequently between γ and any geometrical parameter

that may affect ε. In detail, we find a geometry-dependent damping strength

γ(h) =

[
1

ε∞
− 1

εs(h)

]
ω0

ε∞
εs(h)

AτD
~

, (4.68)

where the strong change of the static dielectric constant in confined geometries enters.

Obviously, we can effectively tune the damping strength γ by tuning the height h of the

nanochannel, i.e., the degree of confinement of the solvent, in which the metal-molecule-

metal junction operates. The resulting dependance of γ on h is shown in Fig. 4.16. This

effect intensifies further if one takes into account the enhanced relaxation time τD for

water molecules restricted in their mobility [108]. For different modes of operation, i.e., for

different relations of ER, ∆Φ and kBT , we thus may control the current 〈I〉 by tuning γ.

Even though the change of γ may not lead to a turnover from low to high damping or vice

versa, the characteristic 〈I〉 ∝ γ or 〈I〉 ∝ γ−1 indicates the high- or low-damping regime.
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Figure 4.16: Effective frequency-dependent damping γ/(ω0AτD), for ~ ≡ 1, in confined
nanochannels of height h filled with water based on data taken from Fumagalli et al. [109].
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4.4 Summary

To summarize, we have calculated the average charge current for a sequential electron

transfer in a metal-molecule-metal junction, where consecutive events of charge transfer

my be strongly influenced by relaxation of surrounding solvent, thereby affecting the ob-

served current and its fluctuations. The resulting dynamics was described by a kinetic

model that comprises rates of electron exchange between molecules and leads with re-

laxation of the thermal environment in response to the changing molecular charge. This

relaxation is described by a diffusion process that focuses on the reaction coordinate in

the high-friction regime and on its associated energy in the low-friction limit. We have

considered the average current as well as the current noise. In the regime of low friction,

an increasing solvent damping strength leads to an increasingly fluctuating energy level

which is associated to an effective broadening of the molecular energy level that lies inside

(e∆Φ/2 < ER) or outside (e∆Φ/2 > ER) the conduction window of the metal-molecular-

metal junction (using the language of a combined Marcus-Landauer model [132, 133]).

Consequently, the average current is enhanced (e∆Φ/2 < ER) or reduced (e∆Φ/2 > ER)

when friction becomes larger in this regime. In the regime of large damping, increasing fric-

tion implies a more slowly relaxing configuration along the reaction coordinate. Therefore,

in the course of successive electron transfer events the molecular configuration remains

more localized near a transition point. This leads to an average current that increases

with friction when e∆Φ/2 > kBT but decreases when an enhanced localization leads to an

increased probability of back ET, which becomes possible when e∆Φ/2 ∼ kBT . A unified

look at both regimes indicates a Kramers-like turnover of electron transfer which translates

into a corresponding turnover behavior of the overall current as a function of the damping

strength. This clearly reflects the nonequilibrium fluctuations at work under an applied

bias voltage.

It should be noted that ”turnover” is a generic mode of behavior of rate (or transport)

processes. The overall transport dynamics determined by the underlying rate(s) changes

its character between different regimes by varying some control parameter. In the Kramer

problem this parameter is the friction on the reaction coordinate while in our case it is the

(not unrelated) dielectric relaxation associated with the solvation coordinate (as defined

by Marcus). Other mechanisms have been considered, see, e.g. Refs. [134, 135] where

the control parameter changes the dephasing of local energy levels leading to turnover in

exciton transport behavior. To the best of our knowledge, our present work is the first

where the consequence of such turnover is considered not only for the average rate (or
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transport coefficient) but also for the noise in the ensuing current.

The calculated Fano factor indicates a non-Poissonian current statistics for an enhanced

damping in both regimes for a small applied bias voltage and a large reorganization energy.

Once the applied voltage is large enough, the solvent-induced friction has no impact on the

ET, because the solvent-mediated orientation (in the high-damping regime) or the broad-

ening (in the low-damping regime) of the molecular level does not change relative to empty

and occupied single-electron states in the metal. The calculated current autocorrelation

functions and the related correlation times confirms the observations. Therefore, current

noise as an additional observable may help to distinguish between different modes of op-

eration. Additionally, this mechanism may help to interpret current-voltage observations

(see Ref. [136]).

Furthermore, we illustrate a viable means to tune the damping strength γ of the solvent

which depends on the dielectric properties of the solvent via the static dielectric constant.

For this, we illustrate a possible way of how to effectively use experimentally measured

data which report an extreme decline of the static dielectric constant of water in confined

nanochannels of variable height. By this, we deduce a direct dependence of γ on the height

of the nanochannel which can be readily used to observe and control the characteristic

current-damping behavior in molecular junctions.



Chapter 5

Summary and outlook

In the present thesis, a generalized theory of a dynamical solvent has been introduced in

order to analyze ’non-conventional’ time-dependent phenomena in guest-host correlated

quantum systems. All associated experimental setups refer to dissolved single molecules

or molecular systems when one faces solute and solvent dynamics on same and, thus,

competing time scales. These situations where specific highly nonequilibrium solute-solvent

effects, such as a hydration shell formation, take place [49] require a theoretical description

beyond standard Green-Kubo like correlations known from equilibrium quantum solvation

[20]. Therefore, the explicit solutions of equations of motion for distinct solute or solvent

degrees of freedom may now enable predictions for energy absorption and charge transfer

in a dynamical and strongly non-equilibrated solvent.

The dynamics of complex many-body quantum systems as those characterizing solute-

solvent systems is often calculated in terms of the effective dynamics of a relevant small

set of observables characterizing the solute or solvent. Depending on the context, these

observables are related to the macroscopic world, e.g., the molecular dipole moment as

considered in the first part of the thesis, or to a reaction coordinate describing the solvent

degrees of freedom for charge transfer processes as investigated in the second part of this

thesis. The utilized Langevin equations lead to a mean-field-type description of the solvent

which enters in a memory kernel of the equation of motion where, within the continuum

approach, macroscopic dielectric solvent properties are integrated.

In the first part of the thesis, I have established a novel nonequilibrium theory for

time-irreversible changes in the geometrical structure of the solute or solvent. To this end,

I have formulated a theory of nonequilibrium quantum solvation based on the Onsager

model in which parameters of the solute or solvent are explicitly depending on time. Up
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to present, a generalization of the Onsager continuum equilibrium theory of quantum

solvation to explicitly include time-dependent solvent properties has not been established.

I have solved the resulting generalized Langevin equation for the molecular dipole moment

where the memory kernel has now an explicit time dependence reflecting the non-stationary

solute-solvent dynamics.

Inspired by experimental results revealing the structural dynamics of photoexcited com-

plexes such as [Co(terpy)2]2+ in aqueous solution where the photoexcitation leads to an

elongation of the Co-N bonds[77], we have analyzed the relaxation properties of molecular

point dipole by the results of the corresponding non-stationary Langevin equation. We have

considered two different scenarios: a shrinking Onsager sphere and a breathing Onsager

sphere. Due to the time-dependent solvent, the frequency-dependent response function of

the dipole becomes explicitly time-dependent. For a shrinking Onsager sphere, the dipole

relaxation is in general enhanced. In contrast, a breathing sphere reduces damping as

compared to the static sphere. We have identified a difference in the dipole relaxation

in comparison to a stationary quasiadiabatic Onsager model where the time-dependent

solvent has been incorporated parametrically. Interestingly, we find a non-monotonous

dependence of the relaxation rate on the breathing rate and a resonant suppression of

damping when both rates are comparable. Moreover, the line width of the absorptive part

of the response function is strongly reduced for times when the breathing sphere reaches

its maximal extension.

Since the model is very generic, we have used the approach of a shrinking sphere to

develop a model for the observed bimodal dynamic behavior of the solvent correlation

function. This behavior can be experimentally revealed by a time-dependent Stokes shift

[103, 104, 101]. By using linear response theory, we have explicitly decomposed the flu-

orescence Stokes shift into a component which originates from the solvent and into a

component reflecting the ’self-motion’ of the solute. Thus, we have extended the well-

established Bagchi-Oxtoby-Fleming theory of solvent relaxation towards non-stationary

molecular motions.

Finally, we have modeled the dynamic build-up of the hydration shell around a hy-

drophobic solute on the basis of solving the non-stationary Langevin equation for the

generalized Onsager model by including a time-dependent hydration shell. Most notably,

we have found a time-dependent frequency shift down to the blue of the resonant absorp-

tion of the dipole, together with a dynamically decreasing line width compared to bulk

water. The blue shift reflects the work performed against the network of hydrogen bonds
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in the bulk solvent and is a directly measurable quantity. The results are in agreement

with an experiment on the hydrophobic solvation of iodine in water. The experimental

XAS study has demonstrated the dynamic expansion of the solvent layer within a time of

5ps after the transfer I− → I0, accompanied by an increase of the radius of the hydrated

cluster by up to 80% [49, 78].

In the second part of the thesis, I have investigated the effect of a dynamic solvent-

induced relaxation on the ’hopping’ conduction of electrons in molecular junctions. This

approach goes beyond the standard treatment of transport in solvated molecular junctions

that rely on Marcus theory. In analogy to Kramers’ treatment of activated barrier crossing

[50], we have formulated a diffusion (Smoluchowski) equation for the reaction coordinate, a

distribution of specific solvent configurations. Its dynamics can be described by a Langevin

equation where a friction γ and a random noise terms enter. They satisfy the standard

fluctuation-dissipation relations. We then have considered the implications of the solvent

dynamics in two limits. In the overdamped limit, a Smoluchowski equation describes dif-

fusion along the reaction coordinate. In the opposite underdamped limit, the relaxation

may be reduced, after phase averaging, to diffusion in energy space. After solving the

Smoluchowski equations, we have formulated the electron transfer rates which now depend

explicitly on the time elapsed since the last transfer process. The average charge current

through the junction results from the statistical calculation based on a Monte Carlo simu-

lation by exploiting the time-dependent electron transfer rates. It depends on the friction

strength that determines the solvent relaxation rate. For the regime of low damping, we

have found that an enhanced damping leads to an effective broadening of the molecular

energy level that falls into or exceeds the conduction window of the metal-molecular-metal

junction arrangement, depending whether the bias voltage window is smaller or larger than

the reorganization energy. Therefore, the average current is correspondingly enhanced or

reduced. In turn, in the regime of large damping and slowly relaxing configuration along

the reaction coordinate, the molecular state is more localized at a transition point with

increasing damping such that the average current increases or decreases when thermal

fluctuations make an inverse ET possible. This depends whether the bias voltage win-

dow is larger than or comparable to the thermal energy. Both regimes together show a

Kramers-like turnover of the current in dependence of the damping, but now under true

nonequilibrium conditions of an applied bias potential. Moreover, I have investigated the

dependence of the current noise on this relaxation rate. For low damping the process is

Markovian and the hopping statistics is Poissonian. When solvent relaxation occurs on a
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finite timescale, successive electron hopping events are correlated. Finally, we illustrate a

viable means to tune the damping strength of the solvent which depends on the dielectric

properties of the solvent via the static dielectric constant. Therefore, we show a possible

way of how to effectively use experimentally measured data which report an extreme de-

cline of the static dielectric constant of water in confined nanochannels of variable height.

By this, we deduce a direct dependence of the solvent induced damping on the height

of the nanochannel which can be readily used to observe and control the characteristic

current-damping behavior in molecular junctions.

In both parts of the present thesis, I have investigated the impact of the solvent dy-

namics on a finite time scale on physical measurable observables, such as the transport

current and the time-dependent molecular dipole moment. We see that, in both cases,

the observable strongly depends on the underlying nonequilibrium solvent dynamics which

needs to be controlled. To do so, we have reduced the enormously complex network of

time-dependent interaction characterizing solute-solvent systems to relevant properties. In

the first part, I have formulated a non-stationary solvent response to the system’s dipole

moment dynamics where the explicit solvent degrees of freedom have been eliminated. In

the second part, I have derived a time-dependent probability distribution for a reduced

set of the solvent degrees of freedom, the reaction coordinate. Both approaches yield a

tremendous reduction and come along with coarse-grained solvent variables which may be

related to macroscopic solvent properties such as the dielectric constant and relaxation

times. Such parameters can be experimentally determined with the ultimate goal that

energy and charge transfer may be efficiently controlled.

Several experimental, numerical and theoretical approaches still exist to study and un-

derstand the dynamics of water as solvent surrounding (bio-)molecules and control their

charge- and energy-transfer properties. One example of many is the study of energy ex-

change of a vibrationally excited solute to the interfacial water shell [137, 138, 139]. Energy

transfer from the solute to the hydration shell occurs on subpico- to picosecond time scales

and strongly depends on the local hydration geometries and particular type of excitation

[140]. This opens further promising tasks to understand the solvent-solute interplay and

to deduce consequences on the properties and on the function of the dissolved molecules,

including their elementary (bio-)chemical reactions also in vivo [140]. Time-resolved struc-

ture sensitive experimental methods from X-ray diffraction, scattering or absorption may

elucidate further insights in the functionality of solute-solvent interactions. One possibility

could arise when the water dynamics in the vicinity of the solute changes time-local dielec-
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tric properties and, thus, influence whether charges can easily enter the solute to initiate

a chemical reaction [140]. In this direction, new theoretical developments will be required

to quantify nonequilibrium and time-dependent effects in more complex models. A theory

of higher-order (X-ray) spectroscopy [141] combined with time-dependent non-stationary

Langevin equations for the relevant observables [40], where system and bath are strongly

correlated, may be a promising route. Once the origin of (time-dependent) solvent-solute

interactions is understood, suitable manipulation of the solvent environment can yield a

control of the reactivity and product selectivity of chemical processes [142].
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Appendix A

Time-dependent Onsager sphere

This Appendix establishes background information for the developed generalized Onsager

model in Sec. 3.2. In Sec. A.1, we rewrite the equation of motion in the usual form in

which a Stokes damping force appears which is proportional to the velocity of the particle.

In Sec. A.2, we provide the details for the time-dependent response function to an external

applied electric field.

A.1 Equation of motion in time domain

The expectation value 〈µ(t)〉 = e〈q(t)〉 of the dipole moment embedded in the center of the

Onsager sphere follows from the solution of the generalized Langevin equation in which

the expectation value of the reaction field 〈R(t)〉 = e2

a(t)3

∫ t
0
dt′χ(t − t′)〈q(t′)〉 acts as an

external force e〈R(t)〉 on the dipole moment. For better readability, we set 〈q(t)〉 ≡ q(t)

and 〈R(t)〉 ≡ R(t). The equation of motion then reads

mq̈(t) +mω2
0q(t)−

e2

a(t)3

∫ t

0

dt′χ(t− t′)q(t′) = 0, (A.1)

where the third term is the back action of the dielectric medium, the solvent, on the dipole.

To obtain the usual form of the equation of motion with a damping force proportional to

the velocity, we express the response function χ(t) with the dielectric function in Debye
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form (see Eq. (2.26) in Subsec. 2.2.2) and with ε∞ 6= 1 as

χ(t) = exp

[
− 2εs + 1

(2ε∞ + 1)τD
t

]
2(εs − 1)

(2ε∞ + 1)τD
Θ(t) (A.2)

− exp

[
− 2εs + 1

(2ε∞ + 1)τD
t

]
2(2εs + 1)(ε∞ − 1)

(2ε∞ + 1)2τD
Θ(t)

+ exp

[
− 2εs + 1

(2ε∞ + 1)τD
t

]
2(ε∞ − 1)

(2ε∞ + 1)
δ(t).

The resulting damping kernel reads with ε∞ = 1 according to

γ(t) =

∫ ∞
t

dsχ(s) =
χD
ωD

e−ωDt , (A.3)

where ωD = (2εs + 1)/(3τD) and χD = 2(εs−1)
3τD

according to Eq. (3.12) in Subsec. 3.2.1.

With this, one can now write the third term of Eq. (A.1) in terms of the damping kernel

in the form

mq̈(t) +mω2
0q(t) +

e2

a(t)3

∫ t

0

dt′γ̇(t− t′)q(t′) = 0 . (A.4)

After an integration by parts and obeying the relation γ̇(t − t′) = ∂γ(t − t′)/∂(t − t′) =

−∂γ(t− t′)/∂t′, we find

mq̈(t) +mω2
0q(t)−

e2

a(t)3

[
γ(0)q(t)− γ(t)q(0)−

∫ t

0

dt′γ(t− t′)q̇(t′)
]

= 0 . (A.5)

or, equivalently,

mq̈(t) +m

[
ω2

0 −
e2

ma(t)3
γ(0)

]
q(t) +

e2

a(t)3

∫ t

0

dt′γ(t− t′)q̇(t′) = − e2

a(t)3
γ(t)q(0). (A.6)

The second term describes a renormalized potential where the renormalization occurs due

to the coupling to the dielectric medium, where the effective frequency follows from ω2
eff =

ω2
0 − [∆ω(t)]2, with [∆ω(t)]2 = e2γ(0)/(ma(t)3). The biggest renormalization occurs for

the smallest magnitude of the sphere radius a0 such that we set

∆ω ≡ ∆ω(t→∞) =

√
Φ

ωD
, (A.7)

with

Φ =
e2

ma3
0

χD . (A.8)
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If ω2
0 < (∆ω)2, the effective potential has a negative curvature and describes an unstable

situation of the dipole moment in the Onsager sphere. So, since we are only interested in

the damping of the dynamics of the dipole induced by the dielectric medium and not in

an unstable renormalization of the potential, one needs to ensure that ∆ω < ω0 which is

fulfilled for our choice of parameters in the main text of Sec. 3.2.

The third term of Eq. (A.6) describes the damping force acting on the dipole in the

Onsager sphere due to the response of the environment to the dipolar dynamics. This

damping kernel is related to the spectral density J(ω) = Mω
∫∞

0
dtγ(t) cos(ωt) in case of a

static Onsager radius a(t) = a0 of an equilibrium environment described as an infinite set

of harmonic oscillators as inversion of the Fourier integral of Eq. (2.15) of Sec. 2.2. The

inhomogeneous term on the right-hand side of Eq. (A.6) is an initial slip resulting from

the present assumption of factorizing initial conditions for the system-bath dynamics [26].

A.2 Response function

When one adds an external force eE(t) on the right hand side of Eq. (3.15) in Sec. 3.2 and

then perform a Laplace transform, we find

qR(z) = q(z) + δq(z) (A.9)

=
zq(t = 0)

ω2
0 − z2 + iχ0(z)

+
iχ1(z + iα)q0(z + iα)

ω2
0 − z2 + iχ0(z)

+
e

m

1

ω2
0 − z2 + iχ0(z)

[
E(z) +

iχ1(z + iα)E(z + iα)

ω2
0 − (z + iα)2 + iχ0(z + iα)

]
,

where we again replace q(z + iα) by q0(z + iα) in the second term of Eq. (A.9) since we

need to make sure that the latter one only contains contributions up to first order in a1/a0

(which is realized by the prefactor χ1(z+ iα)). The second term δq(z) reflects the response

of the dipole moment to the external force and reads

δq(z) = X0(z)[E(z) + iW1(z + iα)E(z + iα)], (A.10)
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with

X0(z) =
e

m[ω2
0 − z2 + iχ0(z)]

, (A.11)

W1(z) =
χ1(z)

ω2
0 − z2 + iχ0(z)

. (A.12)

With the Laplace transform

f(z) = i

∫ ∞
0

dzeiztf(t) = L[f(t)], (A.13)

where z ∈ C and Im[z] > 0, the convolution rule follows as

L[

∫ t

0

dsf(t− s)q(s)] = −if(z)q(z). (A.14)

In the real-time domain, δq(t) takes the form (for small but finite radius a1)

δq(t) = i

∫ t

0

dsX0(t− s)
[
E(s)− e−αs

∫ s

0

duW1(s− u)E(u)

]
. (A.15)

This may be written as

δq(t) = i

∫ t

0

X(t, s)E(t− s), (A.16)

where

X(t, s) = X0(s)− e−αt
∫ s

0

dueαuX0(u)W1(s− u) = X0(s)− e−αtX1(s). (A.17)

The Fourier transform of X(t, s) leads to the response function. An explicit form of it can

only be obtained in the adiabatic limit: We assume α� Γ0, while Γ0 is the decay rate of

X0(s), so that the time-dependent prefactor e−αt can be treated adiabatically. We define

the Fourier transform as

f(ω) =

∫ ∞
−∞

dteiωtf(t) = F [f(t)]. (A.18)

As all functions f(t) = 0 for t < 0 in our problem, we performs a Laplace transform, so

that we may write f(ω) ≡ −if(Re[z]) in view of our definition of the Laplace transform in
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Eq. (A.13).
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Appendix B

Analysis for the Stokes shift equation

For the first term in Eq. (3.70) of Sec. 3.3, we follow the back transform given in the

publication of Hsu et al. [102].

∆E(t) =
−∆µ2

2πa3
0

∫
C

dz
χ(z)

iz
eizt (B.1)

= −−∆µ2

2πa3
0

∫
C

dz
χ(z)− χ(0)

iz
eizt − −∆µ2

2πa3
0

∫
C

dz
χ(0)

iz
eizt, (B.2)

while C is the contour parallel but slightly below the real axis. The second term by

exploiting the residue theorem is equal to −∆µ2

a3
0
χ(0)Θ(t). χ(z) is analytic on the real axis

and χ(0) is a real number. Since χ(z)−χ(0)
z

= [dχ(z)
dz

]z=0 + O(z) (second integrand of Eq.

(B.2)) for z → 0 and since dχ(z)/dz has no singularity at z = 0, the term does not possess

a pole at z = 0.

The contour C may now therefore coincide with the real axis such that with χ(ω) =

Re[χ(ω)] + i Im[χ(ω)] and the fact that χ(−ω) = χ∗(ω) because χ(t) is real, we find∫
C

dz
χ(z)− χ(0)

iz
eizt = 2

∫ ∞
0

dω
Im[χ(ω)]

ω
cos(ωt) + 2

∫ ∞
0

dω
Re[χ(ω)]− χs

ω
sin(ωt).

(B.3)

Thus, Eq. (B.2) reads

∆E(t) =
−∆µ2

πa3
0

[ ∫ ∞
0

dω
Im[χ(ω)]

ω
cos[ωt] +

∫ ∞
0

dω
Re[χ(ω)]− χs

ω
sin[ωt] + πχsΘ(t)

]
.

(B.4)
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Since ∆E(t) = 0 for t < 0 and the first and second integrand are equal for positive t.

Eq. (B.4) yields

∆E(t) =
−2∆µ2

πa3
0

∫ ∞
0

dω
Im[χ(ω)]

ω
cos[ωt]− ∆µ2

a3
0

χsΘ(t). (B.5)



Appendix C

Evaluation of the nonadiabatic

electron transfer rate

Here we derive the transfer rate of Eq. (4.18) in Subsec. 4.1.2. We start with the golden

rule ET rate given by Eq. (4.17) in Subsec. 4.1.2 for the A→ B transition

kAB =
2π

~

∫ ∞
−∞

dερM(ε)f(ε)
∑
v;v′

| 〈v|V̂A,B|v′〉 |2δ(EA − EB + ε+ Eb(v)− Eb(v′)) , (C.1)

where EA(v) and EB(v′) are the eigenvalues of the nuclear (solvent) Hamiltonian (i.e., the

harmonic oscillator state on the potential surfaces EA(x) and EB(x)), V̂AB is the interstate

coupling and ρM(ε) is the density of single electron states in the metal. We further assume

the wide-band limit, i.e., the density of states ρM(ε) = ρM = const. being independent of

the electron energy in the following.

We use the definition of the interstate coupling V̂A,B = VA,Be
g(â†−â) (while V̂ †A,B = V̂B,A)

according to the spin-boson model after a polaron transformation. Here, â† and â are the

creation and annihilation operators of the harmonic oscillator state while g describes its

coupling strength to the molecular energy states (see Ref. [31] , Chapter 12). Next, we use
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the identity δ(x) = (2π~)−1
∫∞
−∞ dte

ixt/~ and write Eq. (C.1) in Subsec. 4.1.2 in the form

kAB =
ρM
~2

∫ ∞
−∞

dεf(ε)
∑
v;v′

〈v| V̂AB |v′〉 〈v′| V̂BA |v〉
∫ ∞
−∞

dtei(EA−EB+ε+Eb(v)−Eb(v′))t/~ (C.2)

=
ρM
~2

∫ ∞
−∞

dεf(ε)

∫ ∞
−∞

dtei(EA−EB+ε)t/~
∑
v

〈v| eiĤBt/~V̂ABe−iĤBt/~
∑
v′

|v′〉 〈v′| V̂BA |v〉

=
ρM |VA,B|2

~2

∫ ∞
−∞

dεf(ε)

∫ ∞
−∞

dtei(EA−EB+ε)t/~
∑
v

〈v| eg(â†eiω0t−âe−iω0t)eg(â
†−â) |v〉 ,

where ĤB is the Hamilton for the harmonic oscillator, ω0 is the harmonic mode and∑
v′ |v′〉 〈v′| is the completeness relation in the oscillator subspace whose orthonormal states

obey 〈v|v′〉 = δv,v′ . We utilize the identity

K ≡
∑
v

〈v| eα1â+β1â†eα2â+β2â† |v〉 = e(α1+α2)(β1+β2)(n+1/2)+(α1β2−β1α2)/2 , (C.3)

where n =
∑

v 〈v| â†â |v〉 [31]. Since the the oscillator interacts with many solvent degrees

of freedom, it exchanges irreversibly energy with the solvent, such that the energy can be

defined by E(t) = n(t)~ω0. Using the definition n(t) = E(t)/(~ω0), Eq. (C.2) in Subsec.

4.1.2 becomes

kAB =Γ

∫ ∞
−∞

dεf(ε)

∫ ∞
−∞

dtei(EA−EB+ε)t/~−ig2 sin(ω0t)+g2[2n(t)+1][cos(ω0t)−1] , (C.4)

which equals Eq. (4.18) in Subsec. 4.1.2 after introducing the conditional rate Γ =
ρM |VA,B |2

~2 .
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[11] P. Langevin, “Sur la Théorie du Mouvement Brownien,” Comptes Rendues 146, 530

(1908).

[12] J. v. Neumann, “Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik,”

Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-

Physikalische Klasse 1927, 245–272 (1927).
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einem früheren Promotionsverfahren angenommen oder als ungenügend beurteilt.
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