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Zusammenfassung

Die Modellierung der Ozeandynamik ist ein wichtiger Bestandteil von Erdsystemmodellen.
Das Verständnis der Wechselwirkungen zwischen Ozean und Atmosphäre erfolgt durch
numerische Modelle wichtiger Variablen, wie es der Wind ist. Die windgetriebene
Ozeanzirkulation mittlerer Breite umfasst zum Beispiel die subtropischen Gyres, die
warmes Wasser aus äquatorialen Regionen polwärts transportieren, und die subpolaren
Gyres, die kaltes Polarwasser zum Äquator transportieren, bis zu dem Punkt, an dem
beispielsweise Europa erwärmt wird durch die Erweiterung des Golfstroms.

Eine Möglichkeit zur Reduzierung der Komplexität eines Modells könnte mithilfe der
Reduktionsmethode „Empirical Orthogonal Functions (EOF)“ erreicht werden. Die
EOF-Reduktionsmethode wurde zuvor in der Atmosphäre mit erfolgreichen Ergebnissen
(Achatz and Schmitz, 1997) verwendet, was die Möglichkeit erö�net, die Methode für
Ozeanmodelle zu verwenden, was bisher selten durchgeführt wurde. Diese Prämisse wird
getestet, indem ein Prototyp eines windgetriebenen barotropischen Ozeanmodells
verwendet und ein zusätzlicher externer Antrieb angewendet wird, um einen
realistischeren Aufbau zu simulieren.

Die Ergebnisse der Rekonstruktion aus der EOF-Reduktionsmethode werden unter
anderem anhand der optimalen Zuordnung und der Wasserstein-Abstände ausgewertet.
Konzepte, die hauptsächlich in der Wirtschaft verwendet werden und eine neue
Alternative als Methode zum Vergleichen von Attraktoren bieten.

Das getestete Modell mit mittlerer Komplexität (Böning, 1986) erzeugt Attraktoren mit
einer Phasendi�erenz zur Referenz, die mit herkömmlichen Fehlerberechnungsmethoden
nicht einfach zu vergleichen sind. Bereits eine kleine Anzahl von EOFs (3-7) reicht aus, um
die wesentliche Phasenraumdynamik und Stromfunktion zu reproduzieren. Bei den
Hauptkomponenten verringern sich die Unterschiede zum Referenzmodell, wenn die
Anzahl der EOFs zunimmt.

Diese Arbeit zeigt, dass die Methode der EOF-Reduktion und die Rekonstruktion
vielversprechend ist und zufriedenstellende Reproduktionen der kinetischen Energie, der
Stromfunktion und der Phasenraumdynamik auch für eine modi�zierte Version des
Böning (1986) -Modells erhalten werden. Dies erfolgt durch Einbeziehen eines zusätzlichen
externen Antriebs mit kohärenter räumlicher Struktur und stochastischer zeitabhängiger
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Zusammenfassung

Amplitude. Die neue Kraft bricht die im unveränderten Modell erzeugte symmetrische
Struktur. Dies stellt eine Herausforderung dar, mit dem rekonstruierten Modell zu
reproduzieren, aber für kleine Variationen wird eine zufriedenstellende Reproduktion
erreicht.

Schließlich gibt es viele mögliche Verbesserungen und empirische Korrekturen, die
implementiert werden könnten, um die Methode e�zienter zu gestalten. Es gibt auch
mehr potenzielle Prototypen von Ozeanmodellen, die einen Vorteil für zukünftige
Arbeiten darstellen könnten.
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Abstract

Modelling the ocean dynamics is an important part in Earth system models. The
understanding of the interplays between ocean and atmosphere is performed through
numerical models of important variables, as it is the wind. The wind-driven mid-latitude
ocean circulation, for example, includes the subtropical gyres which transport warm water
poleward from equatorial regions, and the subpolar gyres that carry cold polar water
towards the equator. To the point that Europe, for instance, is warmed by the extension of
the Gulf Stream.

A way to reduce a model complexity could be achieved by using the Empirical Orthogonal
Functions (EOF) reduction method. The EOF reduction method has been used in the
atmosphere before with successful results (Achatz and Schmitz, 1997), which opens the
possibility of using the method for ocean models, something that has been rarely done.
This premise is tested by using a prototype wind-driven barotropic ocean model and
applying an additional external forcing to simulate a more realistic setup.

The results of the reconstruction from the EOF reduction method are evaluated by using
the optimal assignment and Wasserstein distances among others. Concepts that are mostly
used in economy and that o�er a new alternative as a method to compare attractors.

The intermediate complexity model tested (Böning, 1986), produces attractors that have a
phase di�erence to the reference that are not easy to compare with traditional error
calculations methods. Already a small number of EOFs (3-7) su�ce to reproduce the
essential phase space dynamics and streamfunction. For the principal components, the
di�erences with the reference model decrease when the number of EOFs increases.

This thesis shows that the method of EOF reduction and reconstruction is promising,
satisfactory reproductions of the kinetic energy, the streamfunction and the phase space
dynamics are also obtained for a modi�ed version of the Böning (1986) model. This is done
by including an additional external forcing with coherent spatial structure and stochastic
time dependent amplitude. The new force breaks the symmetric structure produced in the
unmodi�ed model. This represents a challenge to reproduce with the reconstructed model
but for small variations, a satisfactory reproduction is achieved.
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Abstract

Finally, there are many potential improvements and empirical corrections that could be
implemented to make the method more e�cient. Also, there are more potential prototype
ocean models that could represent an advantage for future works.
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1. Introduction

The climate is a complex system and oceans are an essential part of it. The hydrosphere
consists of mostly oceans because they cover more than two thirds of the surface of the
Earth, which plays a key role in the natural variability of the weather. Ocean modeling by
extension is, therefore, important and advantageous in order to understand our current
climate and the e�ects of climate change (Miller, 2007).

Oceans have a profound in�uence on our climate, our weather and the ecosystems of the
Earth. The great heat capacity of the oceans (water alone has a heat capacity 4 times greater
than air and a volumetric density a thousand times higher) exerts, in some cases, a control
e�ect on the climate of the Earth, stores and transports heat, CO2, nutrients and, of course,
water, which in the long term became a great pillar for life on our planet. The oceans also
convert short-term climatic �uctuations into long-term climatic variations (Hasselmann,
1982).

The waters of the earth are gathered in shallow, irregular and interconnected basins. The
general circulation of the ocean is the large scale pattern of the �ow in these basins.
Alongside the pattern of motion, the related �elds of pressure, temperature, salinity and
density are as well important parts of a complete theory for the ocean circulation, since they
are dynamically connected to the motion of the oceans (Pedlosky, 1996).

The wind-driven mid-latitude ocean circulation forms an important part of the global
climate system. The western boundary currents of subtropical gyres transport warm water
poleward from equatorial regions, whilst those of subpolar gyres carry cold polar water
towards the equator. The resulting sea surface temperature anomalies and the e�ects they
have on evaporation have a profound in�uence on the climate of contiguous continental
regions. For instance, Europe is warmed by the extension of the Gulf Stream, whilst
Newfoundland is cooled by the Labrador current (Kiss, 1998). Studies have also shown that
in the last decade, the upper ocean has warmed up much more in comparison with deeper
layers therefore contributing in a higher rate of sea level rise due to thermal expansion
(Llovel et al., 2014).

When a model improves in replicating reality inevitably it becomes more complex due to
the inclusion of new processes and scales and their interactions, the most complex ocean
circulation models include as much physics as is computationally feasible and have an
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1. Introduction

output almost as complex as the real system. Models and their discrepancies with the real
climate have been studied before (Lambert and Boer, 2001) and it has been shown that
these discrepancies are more visible regarding ocean variables. Everything plays an
important role in the real ocean and this accentuates the di�culty in discarding variables
when studying their in�uence over the whole system.

A stochastic model of climate variability was considered by Hasselmann (1976) in which
slow changes of climate were explained as the integral response to continuous random
excitation by short-period weather perturbations. The coupled system
ocean-atmosphere-cryosphere-land, which can be divided into a fast responding system
(the atmosphere) and a slow one (the ocean), produces a climate response to the random
atmospheric forcing that could be described as a random walk or di�usion process
(�rst-order Markov process). The nature of the study allows that some of the general
properties of stochastic climate models could be contrasted against observed climatic
variability.

Acknowledging that current comprehensive Earth system models for weather and climate
cannot resolve all processes and scales, Franzke et al. (2015) proposed the use of stochastic
parameterization schemes for existing numerical weather and climate prediction models,
and showed that for data on the available timescales, the method provides more skillful
weather forecasts than traditional ensemble prediction methods. Their e�ect was even
demonstrated in laboratory experiments (Williams et al., 2005, 2008), and their
corresponding uncertainty estimations were done within the parameterizations that
models accurately simulate the large scales, while capturing the statistical properties of the
small and unpredictable scales.

Stochastic forcing was also used to explain the decadal variability in certain regions of the
ocean (Frankignoul et al., 1997), in this particular case the extratropical ocean, and the
model was a simple linear stochastic forcing model where the wind stress forcing was
modeled as stochastic with a white frequency spectrum, so its in�uence in the interior
ocean would be representative of short-timescale weather �uctuations. The model was able
to reproduce a red baroclinic spectrum appropriately and the baroclinic predictions for a
white-noise wind stress curl spectrum was consistent with real ocean decadal changes. The
model was coarse and could not reproduce details but it was suited for improvements. The
stochastic forcing approach was also used to study El Niño-like phenomena in the North
Atlantic using a coupled ocean-atmosphere system in a global circulation model, aiming to
improve the interannual to decadal predictability of these �uctuations (Grötzner et al.,
1999).

Sura et al. (2001) from their side, analyzed the in�uence of adding a stochastic wind stress
component in a double-gyre, gravity reduced wind driven ocean model. The stochastic
variability represented atmospheric transient eddies. This addition caused the system to
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1. Introduction

undergo through a bimodal behaviour, the spatially inhomogeneous stochastic wind �eld
pushed the system into a non symmetric �ow pattern in a phenomenon known as
„Noise-induced transition“. Later, deepening on their previous study with the same
model, (Sura and Penland, 2002) analyzed how relatively small variations of the stochastic
forcing in�uence the system, �nding that physical processes with widely spread timescales
interacted, that the distribution of the forcing was important to the dynamical response of
the system. In this case, the stochastic forcing represented the macroscopic manifestation
of unresolved nonlinear interactions. The prediction of extreme events on seasonal to
interannual timescales depend heavily on those unresolved aforementioned processes.

1.1. Variability in the ocean

The ocean distinctive dynamics translates into variabilities on di�erent time scales and
explaining them has been the subject of oceanographic research for years, ranging from a
work by Veronis (1963) motivated by Lorenz (1963) to nowadays. Zacharuk et al. (2018) for
example, analyzed a simple ocean model using stochastic parameterization of the subgrid.
The causes of these variabilities are manifested in their interaction with the atmospheric
system (Bjerknes, 1964), the thermohaline system (Winton and Sarachik, 1993; Greatbatch
and Zhang, 1995) and the wind-driven circulation (Meacham and Berlo� , 1997). Studies
have shown that the latter alone has enough potential to produce a low-frequency time
dependency (Meacham, 2000). Thus it is not far fetched to think that understanding the
natural part of the variability would help to better understand and predict the impact of
human activity on the climate (Dellnitz, 2000).

Those potential changes on the ocean circulation are the focus of attention for decadal
climate predictability. A study by Nilsen et al. (2003) suggests that an atmospheric pattern
resembling the North Atlantic Oscillation (NAO) is the main driving force for the
variations in the water volume exchanges in the North Atlantic-Nordic Seas. This Implies a
strong link between the Meridional Overturning Circulation (MOC) and the NAO and
means that considering those phenomena separately may result in important details being
missed (see Marshall et al., 2001a).

1.2. Modes of variability

There are plenty known variabilities in the ocean that are actively studied and, although
some of them are mentioned through this document, the emphasis of this study is the
in�uence of wind driven circulation at midlatitudes.
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1. Introduction

1.2.1. The North Atlantic oscillation (NAO)

The NAO is one of the most prominent and recurrent patterns of atmospheric circulation
variability, hence it in�uences signi�cantly the properties and circulation of the ocean. It
dictates climate variability from the eastern United States to Siberia and from the Arctic to
the subtropical Atlantic and even north Africa, understanding the dynamics of the
interaction between the NAO and the ocean is an important task to produce more accurate
coupled ocean-atmosphere models and in a way attacking important issues like climate
change (Visbeck et al., 2003).

Since the NAO exhibits variations at interannual to multidecadal time scales its importance
is undeniable. The connection between NAO and the ocean has been an object of study
for decades. Mehta et al. (2000), e.g., revised more than 40 years of data of SST and
contrasted those values to several experiments of atmospheric general circulation models,
and it showed that the relation between NAO and SST is not so simple; one in�uences the
other. A sensitivity study done by Eden and Willebrand (2001) on a model of the Atlantic
Ocean that was forced with decadal-scale time series of surface �uxes, showed a fast
barotropic response and a delayed baroclinic oceanic response to the NAO. a fast response
of a barotropic anticyclonic circulation anomaly to a high NAO and an enhanced
meridional overturning due to a spinup of the subpolar gyre.

Hurrell and Deser (2010) stated that the NAO also a�ects the ocean through changes in
heat content, gyre circulations, mixed layer depth, salinity, high latitude deep water
formation and sea ice cover. It was also found that there is no preferred time scale of
variability for the NAO: large changes occur from one winter to the next and from one
decade to the next. There was also a large amount of within-season variability in the
patterns of atmospheric circulation of the North Atlantic, so that most winters cannot be
characterized solely by a typical NAO structure.

There is evidence of links between the ocean circulation and the large-scale atmospheric
�ow. Czaja et al. (2003) discussed the feedback between the atmospheric circulation, in
terms of the NAO, and the ocean circulation, both horizontal and overturning. At
mid-latitudes the large-scale mean horizontal circulation of the upper 1 − 2 km of the
global ocean is dominated by subtropical and subpolar gyres driven by surface wind stress.
These gyres are recirculations spanning ocean basins, with slow meridional �ow in most of
the basin returned by narrow, rapid boundary currents at the western side. These currents
separate from the coast at some point and meander across the interior between the gyres.
Western-intensi�ed circulations of this type appear at mid-latitudes in all ocean basins,
examples of the poleward western boundary current being the Gulf Stream in the North
Atlantic, the Kuroshio in the North Paci�c and the East Australia Current in the South
Paci�c. Subtropical and subpolar gyres have a similar western-intensi�ed form, but
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1. Introduction

subtropical gyres have an anticyclonic circulation, whilst subpolar gyres are cyclonic.

1.3. Wind driven circulation and ocean dynamics in
midlatitudes

The study of wind driven ocean circulation was a focus of interest from di�erent points of
views, from mathematics, �uid dynamics, meteorology, geophysical among others. The
ocean acquires momentum (and kinetic energy) due to the force applied from the wind
against the ocean upper boundary. The ocean circulation is dominated (in the �rst
hundreds meters) by the wind stress (Wunsch, 2002) so it is important then to study in
depth the in�uence the wind has over the overall ocean behaviour.

Simple models with a manageable number of degrees of freedom can be used to model and
understand certain characteristics of the �ow. It serves to lay the foundation of a model
hierarchy consisting of di�erent simple models in which individual processes can be viewed
in isolation. The understanding of these separate processes, their interactions, as well as the
inherent mathematical-numerical structures will help in the future when it comes to
application of detailed numerical models of the general oceanic and atmospheric
circulation (Veronis, 1966; Primeau, 1998). The linear theories of Stommel (1948) and
Munk (1950) and the theory of nonlinear models according to Fofono� (1954) and Charney
(1955) represent the extremes of a continuum of models (Meacham and Berlo� , 1997).

Böning (1986) studied a wind-driven ocean circulation in an idealized, rectangular ocean
model, which was forced by steady zonal winds and damped by lateral and bottom friction.
He found that for di�usivity su�ciently large and using free-slip boundary conditions,
steady solutions were found for all chosen values of Rossby number (RO). If lateral
di�usion dominated the bottom friction, a strong recirculating subgyre emerged in the
northwestern corner of the basin. In the Veronis case, inertial recirculation only took place
with the values of RO so large that the eastward jet reached the eastern boundary. This
study established the foundation of many following studies that included a more complete
set of physical parameters.

Western boundary currents vary seasonally and have attracted signi�cant attention when
studying the ocean circulation. Jiang et al. (1995) used a reduced-gravity shallow-water
wind driven double gyre model and analyzed the behaviour of western boundary currents
and found that when the meridionally symmetric wind stress is su�ciently strong, two
steady solutions are achieved with the model: with the oceanic response from the imposed
wind stress, a periodic oscillation arises, and increasing the wind forcing and or decreasing
the viscosity would translate into aperiodic solutions.
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1. Introduction

Something that had been su�ering from a lack of attention in the recent decade are the
spectral models for global ocean circulation, although they are widely used in atmospheric
general circulation models. Frisius et al. (2009) introduced SOM (Spectral Ocean Model) a
global spectral barotropic ocean model for general circulation and weather prediction, and
it was shown that the coupling of this spectral ocean circulation model with the
correspondent spectral atmospheric model was notably smoother due to their grid
structure nature and that the singularities at the poles caused no issue. On the downside,
the model became ine�cient at high spatial resolutions, which makes SOM good for
studying the atmosphere-ocean interactions in idealized contexts but not for simulating the
large-to-small scale interactions in a realistic ocean.

The role of the North Atlantic ocean on the NAO has been discussed and it is said that it
modulates the NAO. Dewar (2001) used a quasigeostrophic ocean model with a highly
idealized atmospheric input to study the aforementioned in�uence, and it was found that
the intrinsic variability of the wind-driven ocean circulation damped the SST anomalies at
long timescales. Low-frequency modes of instability were observed and these instabilities
are at a maximum near the western boundary current. In addition, he highlighted the
importance of nonlinear processes associated with mesoscale eddies in the ocean for driving
variability in the SST and the overlying atmosphere. Variability of this type has the
potential to alter heat transport in the ocean, and is therefore important to climate
variability.

In the present work, the main focus is on a wind-driven barotropic model for a rectangular
ocean basin. This model is based on Fourier functions and can be formulated as a
dynamical system including quadratic nonlinearities, so it is proper to review other similar
studies.

When studying the motion of �uids it will always be about solving the Navier-Stokes
equations on any of its approximations, but solving the Navier-Stokes equations is not a
trivial matter. Numerical solvers must balance accuracy, stability and consistency, which
poses constraints on the time step and grid resolution that one can employ. One way is to
translate these equations to computational mathematical language using analytical
mathematical techniques that are available. So the focus can be shifted to scales that are of
interest for the researcher by using speci�c modeling techniques. The biggest issue is that
exact solutions to this set of equations are yet not known. So it falls into constructing
idealized models that are valid enough approximations to the full system. Some
mathematicians have also studied the derivation of some basic and classical equations of
meteorology and oceanography from the Navier-Stokes equations in a rotating frame with
viscous dissipation (see Desjardins and Grenier, 1999).

Idealized models are one way of addressing this di�culty; thus, it has been the resource for
many researchers. For instance, the wind-driven ocean circulation, which is useful for
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1. Introduction

duplicating the real dynamics of the ocean, has been studied since the late 40s (Stommel,
1948; Munk, 1950). It has been possible to obtain considerable good results from models on
how the ocean circulation reaches an equilibrium state in a simple, closed and rectangular
basin in response to a steady wind stress pattern. The simple, linear one-layer models have
shown the central role of the planetary vorticity gradient in establishing the westward
intensi�cation of the midlatitude gyres.

The understanding of important processes can be pinpointed clearer in models with less
input variables than in complicated complex models, also prototype models imply faster
simulations and a clearer opportunity to analyze the in�uence of large scale phenomena on
the general circulation patterns. Highly idealized models have been used to reduce the
problem to the most relevant physics processes, and it has been found that it is still
reasonably amenable to simple explanation (Scott, 1998). An additional approach to reduce
the complexity of the system is by applying reduction methods to those simpli�ed ocean
models, therefore analyzing how variables impact on the general ocean circulation comes
with ease.

In addition to the barotropic ocean models already mentioned, e.g. Böning (1986); Bryan
(1963); Munk (1950), other interesting approaches have been taken. Barcilon (1998) carried
out a very detailed analysis of the classical barotropic ocean model with bottom friction,
varying the Rossby number (RO) which represents the e�ects of the Earths rotation, and
the vertical Ekman number or bottom friction parameter (λB) with the space divided into
four sectors associated with four di�erent dynamical regimes discriminated by contrasting
Ro with λB . A large-scale clockwise circulation in the subtropical North Atlantic was
found and similarly patterns of circulation have been found in each of the oceans in both
hemispheres. Such large-scale patterns of �ow conform to the general circulation of the
ocean.

One of the commonly used approaches to make the system closer to the real ocean, is by
modifying the external forcing. This could be by simulating the e�ect of the NAO with an
anomaly in the form of a cosine windstress the midlatitude domain (Badin et al., 2003).
This is something that proved to give satisfactory outcomes and the resulting wind
anomalies resembled in acceptable means the real climate anomalies.

Using this kind of simple models for a wind-driven barotropic ocean in a closed basin of
constant depth, Verron and Jo (1994) analyzed the circulation patterns of the transitions
from a δi (non-linearity, inertia) system to one dominated by δl (lateral viscous dissipation),
and from a δi one to a δb (bottom friction dissipation) one. This analysis gives insight into
how the system behaves with variations of these parameters and also when increasing the
whole system complexity, from a simple inertia model (Fofono� , 1954) to a bottom friction
one (Stommel, 1948) to a Laplacian lateral friction (Munk, 1950) to �nally a biharmonic
lateral friction model (Holland, 1978) and extending them by including non-linear
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1. Introduction

phenomena. A general scheme on the parameters space was derived, so it was easier to see
that the relative importance of δi, δb and δl determines which process constitutes the main
controlling factor with respect to the dynamics of the western boundary current. The
models used are conceptually simple, but the number of possible con�gurations is high and
thus it is possible to increase the complexity. The transition from the linear systems to
those strongly in�uenced by non-linearities could help with understanding of the
behaviour of the real ocean.

In the same direction, using a homogeneous model of wind-driven circulation, Badin and
Crisciani (2009) observed the transition from non-linear to linear regimes, transitioning
continuously the values of δi from non-linear regimes governed by the steady form of
Bryan (1963) model to linear regimes governed by the Munk (1950) model, exposing that
the linear regime should be considered autonomous and separate from the non-linear
regimes due to the loss of the Sverdrup balance in some intermediate phases.

An interesting numerical phenomena is observed when eddy viscosity coe�cients are low
enough; then, the Munk model presents a couple of zonally lined up gyres, phenomena not
present in the real ocean, which is something that caught the attention of Badin et al.
(2009). This proves that this happens because the �ow is not in Sverdrup balance and the
aforementioned aligned gyres cannot take place in the real ocean, and although in other
regimes the model was consistent in reproducing the ocean dynamics, it was proven that
the Munk model has its limitations and can be improved by the use of nonlinear
circulation models.

To test the method, simpli�ed ocean models have been used: initially a wind-driven
barotropic model of a square basin with a rigid lid discarding vertical variations (Dellnitz,
2000) based on Fourier functions formulated as a dynamical system. In the North
Atlantic, for example, there are some variabilities that can be understood by studying these
kinds of simpli�ed models.

Empirical Orthogonal Function (EOF) analysis had an early introduction to meteorology
by Lorenz (1956) and has become a statistical tool of fundamental importance in
atmospheric, oceanic, and climate science for exploratory data analysis and dynamical
mode reduction (Selten, 1995). The EOFs give us information about the modes of
variability which explain the most variance in the system and are not only used on
multivariate statistics or atmospheric sciences but also to analyze stochastic �elds and
interaction terms. The EOF reduction method has been used in the atmosphere before
(Achatz and Schmitz, 1997; Franzke et al., 2005; Franzke and Majda, 2006) with successful
results, which open the possibility of using the method for ocean models.
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1. Introduction

1.4. Research questions and outline

On the whole, the importance of the wind input on accurate Earth system models, and being
aware of its in�uence in the global ocean circulation. The research on the in�uence of the
wind forcing over prototype ocean models is clearly relevant. All of the above leads to speci�c
questions that motivates the main focus of this document and will be addressed in the course
of it. The main question being

Is it possible to reproduce the oceanic circulation of a prototype wind driven ocean model with a
EOF reduced model?

and to answer this, it is necessary to tackle more speci�c questions such as

» Would the aforementioned reduced model be consistent with changes on the nature of
windstress input and a more realistic setting?

» Can the same reduced model reproduce slightly di�erent atmospheric states and
potentially be used for predictions?

» How would the model solutions react to changes of Reynolds number?

This study is organized as follows: in Chapter 2, a review of theoretical concepts and
relevant approximations for wind driven ocean models are discussed and the concept of
EOFs reduction method is applied to the ocean models. Chapter 3 covers the establishment
of the dynamical system and its relevant parameters, the structure of the wind forcing that
is used and its variations.

The analysis of the EOF reduction model is discussed in chapter 4. Where three main
ocean model are analyzed, starting with a low spectral order model developed by Veronis
(1963), followed by a more complex model (Böning, 1986) and �nally a variation of the
latter to produce an ocean model with a realistic windstress input. And in Chapter 4, an
overall summary, closing remarks, and a brief outlook of the study is provided.
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2. Spectral ocean models and EOFs

Solving the Navier-Stokes equations is not a trivial matter. Numerical solvers must face
concerns regarding accuracy, stability and consistency, which pose constraints on the time
step and grid resolution that one can employ. The usual approach is translating the
Navier-Stokes equations to computational mathematical language using analytical
mathematical techniques available to us, that it is possible to focus on scales that we are
interested in, using speci�c model techniques, like the Reynolds averaged Navier-Stokes
equations.

Wind driven oceans can be considered a non divergent �uid (∇ · ~v = 0) and non
compressible (in overturning circulation models variations in density have to be
considered), which means that the Boussinesq approximation can be used in the
Navier-Stokes equations, and it is re�ected in the continuity equation. In a prototype
ocean, with a constant depth H and a rectangular basin, the divergence of the vertically
averaged horizontal �ow.

This yields an ocean model driven only by the external forcing where forcing corresponds
to the wind forcing. It is known that on a β-plane, or on the surface of a rotating sphere,
an eastward mean zonal �ow can be maintained by a vorticity stirring that imparts no net
momentum to the �uid. That momentum converges in a rapidly rotating �ow mixed in a
meridionally localized region. Scaling analysis suggests that over most of the mid-latitude
ocean basins, inertial and frictional terms in the vorticity equation can be neglected in favor
of a balance between the advection of planetary vorticty and the input of vorticity by the
curl of the wind-stress.

∫
βvdz =

∂τ y0
∂x
− ∂τx0

∂y
(2.1)

This is the Sverdrup relation: at any location in the ocean, the vertically integrated
meridional velocity is given by the curl of the wind stress at the surface implying that a non
strati�ed wind driven ocean model is an amenable assumption. This relation is one of the
pillars of physical oceanography and a more complete discussion of it can be found in Vallis
(2019).

Since the early papers of Stommel (1948) and Munk (1950), a particular class of models has
been studied, one that deals with the question of how the ocean circulation equilibrates in
a simple, closed and often rectangular basin in response to a simple, steady windstress
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2. Spectral ocean models and EOFs

pattern. The imminent issue associated with the mentioned models is that the solutions
obtained are simply approximations to the full set of equations with a yet unknown
analytical solution. The system can be further simpli�ed by making approximations and
idealizations.

A crucial disadvantage of the spectral method used to be the enormous amount of
computation that required to evaluate the convolution sums of non-linear terms in the
spectral space. For this reason, the application of the spectral method was initially restricted
to systems with few degrees of freedom. It is the case for the oceanic circulation model of
Veronis (1963, 1966) widely considered as a „low-order“ models or in the case of the
atmosphere, the Lorenz (1963) atmospheric model (Böning, 1985).

2.1. The barotropic model: a homogeneous model of the
ocean

The barotropic quasigeostrophic vorticity equation describes the horizontal motion of a
homogeneous �uid on the β−plane. This �uid can be subdivided into three layers in the
vertical direction. In the middle, there is a broad homogeneous geostrophic layer that lies
between two thin Ekman layers. In the upper Ekman layer, the wind shear prompts Ekman
transport, creating a vertical velocity at the top of the inner layer. The lower Ekman layer
dampens the �ow caused by the bottom friction. The absolute vorticity of this
quasigeostrophic model can be altered by the horizontal di�usion (Pedlosky, 1987).

One of the �rst e�orts to study the ocean through models was made by Stommel (1948),
trying to explain the western boundary current phenomena. For that, a wind-driven ocean
circulation was devised including the beta-e�ect of the Coriolis force. This and the well
established Munk (1950) approach are simple linear stationary wave theories introducing
bottom and lateral friction respectively. In some regimes these models are consistent in
reproducing the ocean dynamics, but it was clear that they have their limitations, some of
which can be improved by the use of non linear circulation models as is the case for the
non-stationary, nonlinear Veronis (1963) model, de�ned by

∂

∂t
∇2ψ + J(ψ,∇2ψ) + β

∂ψ

∂x
= −K∇2ψ +

∇× τ
H

(2.2)

At its time, the numerical solution of this model represented a computational challenge
and was mostly limited by it. Eventually, this issue was overcome and models with higher
complexity but still simplistic and idealized were created, as was the case for the model of
Böning (1986).

12



2. Spectral ocean models and EOFs

Having a simple system facilitates pinpointing variations and sensitivities in the system. That
is why the main focus of the work of Böning (1986) is on analyzing the horizontal transport
in a closed square-ocean basin of widthL and constant depthH on a mid-latitude β-plane.
If lateral friction is included by a simple eddy viscosity hypothesis (Munk, 1950) and vertical
friction by means of Ekman layers at both the top and the bottom, the model is stated in
terms of the barotropic vorticity equation (BVE, eq.2.4), with the stream functionψ for the
vertically averaged velocity components u (east) and v (north).

u = −∂ψ
∂y

, v =
∂ψ

∂x
(2.3)

Then barotropic vorticity equation has the structure

∂

∂t
∇2ψ + J(ψ,∇2ψ) + βψx =

1

H
k̂ · (∇× τ) + A∇4ψ −K∇2ψ (2.4)

where J is the Jacobian operator, β is the gradient of planetary vorticity, f = f0 + βy, H
is the constant model depth, k̂ is the unit vector in the vertical (z up), τ is the wind shear
stress, A and K are the exchange coe�cients for the lateral and bottom friction on the
replacement concept, respectively (Munk, 1950). For comparison, some calculations were
performed with friction approach−k∇2ψ by Stommel (1948).

Equation eq. 2.4 describes the local-temporal change of relative vorticity ζ = ∇2ψ by the
rotation of the wind shear stress, by dissipation due to the lateral di�usion (or the linear
bottom friction), and by the transport of vorticity due to the advective terms and the
advection of planetary vorticity.

To describe the strategies employed for emulating the simple model, it is useful to consider
the symbolic representation of a dynamical model, which can be split into three main types
summarized in terms of a schematic form of the governing equations (either primitive
equations or a balance set)

ȧ = La +Na + F (2.5)

where a is a state of the model vector corresponding to the prognostic variables, ȧ is the
corresponding tendency, L is a linear operator, corresponding to linearization on some
�xed �ow, N(a) is a complex nonlinear operator dependent on a and F represents the
forcing terms.

In principle, construction of eq.2.5 can be done using purely empirical procedures once a
way of discretizing a has been decided. The need to de�ne only the functional form of N
arises and so the coe�cients of those functions as well as the elements of L and F can be
found using an optimization approach. General circulation studies typically involve
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2. Spectral ocean models and EOFs

altering the forcing function, F , and integrating eq.2.5 until a statistically stable state has
been obtained (Valdes and Hoskins, 1989).

A wind-driven barotropic model for a rectangular ocean basin, based on Fourier functions,
can be formulated as a dynamical system including non linearities which �ts the description
of systems suitable for an EOF representation, for it can be reshaped to take the form of
eq.2.5 as follows

dXi

dt
=

n∑
j=1

n∑
k=1

AijkXjXk +
n∑
j=1

BijXj + Fi(t)

with i = 1, · · · , n and n = nx × ny

(2.6)

Where n is the total number of spectral coe�cients, nx and ny are the zonal and
meridional spectral numbers of the approximation.

Except in the case when fast surface waves are of interest, we can exploit the fact that
large-scale motions in the ocean are relatively slow and introduce the rigid-lid
approximation. Large-scale movements with small Rossby numbers are close to
geostrophic equilibrium, so it would be safe to assume that the displacements of the surface
are negligible compared with interface displacements (Cushman-Roisin and Beckers, 2011).

2.2. Empirical orthogonal functions (EOFs)

Empirical orthogonal function analysis (EOF) is a statistical orthogonal decomposition
method for studying the variability of a single �eld. The method �nds spatial patterns of
variability, their time variation, and gives a measure of the „magnitude“ of each pattern
(Björnsson and Venegas, 1997). The essential idea is to generate an optimal basis for the
representation of data set of measurements, or of several simulations of a dynamic system.
Some important properties of the EOFs to highlight are:

» Provides a set of orthogonal functions that e�ectively compresses data, being able to
explain in the �rst terms the biggest variability of the data.

» It allows the reduction of the number of variables and provides a method of
eliminating noise or the less predictable part of the data.

» As an orthogonal set of functions with adaptable structure of eigenfunctions de�ned
by the structure of the data in itself, it provides broader range in contrast with the
Fourier Analysis which assumes a sinusoidal variation of the data set (Muñoz Pérez
et al., 2001).
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2. Spectral ocean models and EOFs

Simply put, the EOFs are eigenvectors of the covariance matrix and they describe typical
variability patterns, like propagating waves. In essence, they �nd a new set of variables that
capture most of the observed variance from the data through linear combinations of the
original variables. This is done through the decomposition of a continuous space-time �eld
ϕ(t, ~r) which Hannachi et al. (2007) describes as

ϕ(t, ~r) =
m∑
i=1

ϕi(t)φi(~r) (2.7)

where t represents time and ~r the position vector and m is the modes in the �eld (and in
theory m → ∞). These modes are composed of space functions φi(~r) and a set of time
dependent terms ϕi(t) with t = 1, · · · , p. In the matrix ϕ, each row is the spatial
measurement, and each column is a time series of observations.

For the decomposition it is important to calculate the anomaly �eld over a given time,
which is the calculation of the time anomaly version of the original data set (ϕO). This can
be done by removing the respective mean state of the time series ϕO, that represented by ϕ.
Then the covariance matrix of the scalar �eld S can be calculated using the relation

S =
1

p− 1
ϕTϕ (2.8)

The calculation of the EOFs is then reduced to solve the eigenvalue problem:

(S − λI) ~E = ~0 (2.9)

The EOF Ei is de�ned as the eigenvector of the covariance matrix S and λi is its
corresponding eigenvalue. Sorting the eigenvectors from the biggest eigenvalue to the
lowest one. The 1st EOF is then associated to the biggest eigenvalue λ1, so that the higher
the number of EOF, the lower is the value of its eigenvalue. For a measure of the explained
variance of S of a certain eigenvalue λi (σ2

λi
), said eigenvalue λi can be divided by the total

sum all the eigenvalues, meaning

σ2
λi

= 100%× λi
m∑
i=1

λi

(2.10)

The projection of the anomaly �eld ϕ onto the ith EOF,Ei, provides the evolution in time
of the pattern, which is

~Pi = ϕ ~Ei (2.11)
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2. Spectral ocean models and EOFs

When plotting an EOF as a map, the pattern obtained represents an oscillation and its
evolution on time is given by their principal component, which describes the magnitude
and timing of the oscillation of said pattern (Björnsson and Venegas, 1997). Consequently,
~Pi is then the ith principal component (PC) that corresponds to Ei, with elements Pti
de�ned as:

Pti =
m∑
j=1

ϕtjEji where t = 1, · · · , p (2.12)

With this, eq.2.12 and eq.2.7 share similarities worthy of highlight: ϕi(t) is analogous to ϕtj
and the space function φi(~r) toEji, respectively.

The EOFs are orthogonal and the PCs are uncorrelated by de�nition, and this orthogonality
provides a complete orthogonal basis for the data matrix so any �eld can be expanded in terms
of such EOFs. The decomposition is de�ned as

ϕt =
m∑
i=1

~PtiEi (2.13)

where Pti is the ith principal component Pi at a given time t (Hannachi et al., 2007). This
expansion transforms the problem from a set of partial di�erential equations to a coupled
system of ordinary di�erential equations describing the evolution of the system. Since in
theory the original streamfunction has an in�nite number of Fourier components, so the
expanded number with the new basis is �nite, the method represents a reduced form of the
barotropic vorticity equation (BVE) eq.2.4 (Selten, 1995).The �eld variable Xi in 2.6 can be
expanded in terms of EOFs, taking the form:

Xi(t) =

nT∑
j=1

~Pj(t)Eij +Xr (2.14)

Here Xr denotes the reference states and nT is the number of EOFs. Knowing that nT
represents the dimension of the truncated phase space (nT � n), using the �rst few EOFs
(which possess the largest eigenvalues) can be assumed that the �rst nT eigenvectors are
capturing the large-scale dynamical behavior of the system. With this new formulation, the
dynamical system with the EOF reconstruction leads to

daν
dt

=

nT∑
ε=1

nT∑
ρ=1

N q
νερaεaρ +

nT∑
ε=1

Lqνεaε +Gq
ν(t) (2.15)

which keeps the formal structure as the original system eq.2.7 but with di�erent
coe�cients N q

νερ, Lqνε and external forcing Gq
ν(t) and with fewer equations. Since the

relevant dynamics are contained in the �rst EOFs, it is possible to truncate the system to a
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2. Spectral ocean models and EOFs

small number of equations that describe the system accurately to a certain extent.
Therefore, a EOF reduction would mean a simpli�ed dynamical system (Niu et al., 2015).

2.2.1. Empirical-based correction to the EOFs

As a probable result of the truncation and thus neglecting some physical processes and
scales, the �elds studied with this method lack necessary properties to accurately resemble
the reference �eld. In this kind of reduction method, these factors have already been
studied. When comparing the reconstructed model to the reference model, di�erences that
grow over time emerge.

It has also been reported (Achatz and Schmitz, 1997) that using the structure of the
reference model 2.6 to add an empirically based correction to the forcing and the linear
operator minimizes the error considerably.

One of these solutions was proposed by Achatz and Branstator (1999), replacing the
operators of the dynamical system such as the forcing Gq and the linear operator Lq with
corrected empirically based quantities in the form

~G = ~Ge + ~Gq = −N q (2.16)

for the external forcing, where ~G is divided in two parts, ~Gq represents the original
uncorrected forcing and ~Ge is the empirically based corrected form of it. In this case the
terms of the nonlinear operator ~N are de�ned as

N q
ν =

nT∑
ε=1

nT∑
ρ=1

N q
νερa

r
εa
r
ρ (2.17)

and similarly for the linear interaction coe�cient L

~L = ~Le + ~Lq = −(ȧr −Nq) · arT ararT
−1

(2.18)

Here ar represents the principal components of the original reference state. As the
in�uence of the linear operator in the regime studied is greater than the in�uence of the
non-linear one, correcting the linear operator has a more signi�cant and direct impact on
the results. Non-linearity a�ects the physics of the boundary layer (Pedlosky, 1996).
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3. The model and the experimental
setup

The Equation 2.4 was integrated numerically and the system was evolved in time using a
fourth-order Runge-Kutta scheme and a rigid lid approximation. Thus, the spatial
dependence of the inhomogeneous term and the dependent variable in the BVE (eq. 2.4) is
represented by a truncated series of orthogonal functions, and a system of ordinary
di�erential equations for the time-dependent expansion coe�cients is constructed by the
Galerkin approximation.

A spectral model simulates two-dimensional non-divergent �ows in a rectangular model
domain. The model �elds were expanded in a double Fourier series, so that the model
equations form a dynamical system for the Fourier coe�cients. The wave numbers at
which the expansion is truncated could be chosen freely. Therefore, it sparks interest to
compare results of low and high order models for the same physical system.

All the reference models were run using part of the ICSM series (Interaction Coe�cient
Spectral Model) routine, speci�cally the ICSM_OCE, written by Frisius (1998) and
modi�ed by the author for the speci�c purposes of this project.

To test the reduction method, simpli�ed ocean models have been divided into more
idealized ones. The �rst one is a wind-driven barotropic model of a square basin with a
rigid lid discarding vertical variations (Dellnitz, 2000) based on Fourier functions and
formulated as a dynamical system. Starting from the simplest ocean model and increasing
the complexity, the models studied as reference were:

» A toy ocean model (Veronis, 1963)

» Idealized ocean models of higher complexity (Böning, 1986)

» Higher complexity with additional anomalous forcing (Badin et al., 2003; Dewar, 2001)

» Higher complexity with additional anomalous forcing and changes in atmospheric
conditions
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3. The model and the experimental setup

It is important to understand these selection of ocean models because in the North
Atlantic, for example, there are oceanic variabilities that can be explained by studying these
kinds of simpli�ed models.

3.1. Description of the model

Some considerations have to be made for integrating numerically eq.2.4 by means of a
spectral method. Spectral methods generally involve the approximate representation
(usually spatial dependency) of the solution function ψ(r, t) in a �nite series of orthogonal
functions φn, which is, namely

ψ(~r, t) ∼
n∑
µ=1

ψµ(t)φµ(~r) (3.1)

The spectral method known as Galerkin method involves the transformation of the partial
di�erential equation into a system of ordinary di�erential equations for the
(time-dependent) evolution coe�cients, the „spatially truncated spectral equations“,
which involves constructing a numerical scheme for ψn.

The rectangular basin of the model has free-slip boundaries, that is

ψ = 0 ,∇2ψ = 0

{
x = 0 , x = L

y = 0 , y = L
(3.2)

To satisfy the boundary conditions 3.2 the �elds are represented by a double Fourier sine
series. Therefore, 3.1 becomes

ψ(x, y, t) ∼
n∑
k=1

n∑
l=1

ψk,l(t) sin(kx) sin(ly) (3.3)

and

curlzτ(x, y) ∼
n∑
k=1

n∑
l=1

Tk,l sin(kx) sin(ly) (3.4)

curlzτ(x, y) ∼ T0

n∑
k=1

n∑
l=1

sin(kx) sin(ly) (3.5)

Thus, the default parameters of the model are L, H , β, T0, A and K . The number of
parameters can be reduced by non-dimensionalizing the equation. The variables are scaled
according to
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3. The model and the experimental setup

(x, y) = L(x′, y′)

t =
1

βL
t′

ψ =
T0

βH
ψ′

(3.6)

resulting in the dimensionless form of eq.2.4.

∇2ψt +ROJ(ψ,∇2ψ) + ψx = EL∇4ψ − EB∇2ψ +∇× τ (3.7)

where

RO =
T0

Hβ2L3
=

(
δI
L

)2

, EL =
A

βL3
=

(
δM
L

)3

, EB =
K

βL
=

(
δS
L

)
(3.8)

and in this case, it is assumed that the source of vorticity due to the curl of the wind-stress is
given by

curlzτ(x, y) = k̂ · (∇× τ) = ωE(y, t) (3.9)

The nondimensionalized boundary conditions become

ψ = 0 ,∇2ψ = 0 for x , y = 0 , π (3.10)

The variables RO, EL and EB are known as the inertial parameter or Rossby number, the
horizontal Ekman number or lateral friction coe�cient (Munk, 1950) and the vertical Ekman
number or bottom friction coe�cient (Stommel, 1948) respectively. The nondimensional
parameters anticipate which �uxes are expected to be important in this process; the frictional
widths, δM and δS , can be compared to the inertial width, δI , for which a boundary layer
Reynolds number is suitable, de�ned as the ratio of the inertial advection of relative vorticity
to the di�usion of vorticity meaning:

Re =
RO

EL
=
Lδ2

I

δ3
M

(3.11)
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3.2. Structure of the wind forcing and the anomaly

In addition to the external parameters, the shape of the forcing (wind stress) strongly a�ects
the model dynamics. Inertial currents are those driven by the wind and kept in movement by
the Coriolis force and gravity. And the wind driven turbulence happens in the mixed layer,
where most of the activity happens. Knowing that the wind-driven currents a�ect about
20% of the total volume of the ocean, a wind driven ocean is suitable and important, which
is the main focus of the work of Böning (1986). A typical wind stress for a box model is
constant in time and has a coherent spatial structure of a double ocean gyre. For this work,
the basic structure of the wind forcing (3.9) is a one-dimensional sinusoidal function with a
structure

ωE0(y) = − sin(2y) (3.12)

Counting on additional external forcings that are used for making a more realistic approach
by simulating the e�ect of the NAO with an anomaly, the total wind-stress curl �eld was
de�ned as a linear combination of the unperturbed wind-stress curl �eld component (ωE0)
and the anomalous components

ωE(y, t) = ωE0(y) + ωANOM(y, t) (3.13)

The climate anomalies are modelled by the ωANOM wind �eld structure which is latitudinally
restricted, in a broad sense similar to the oceanographic setting. The spatial distribution of
these anomalies is assumed �xed, in accordance to Badin et al. (2003) and Dewar (2001).

ωANOM = η(t) cos(2πy),
π

4
≤ y ≤ 3π

4
(3.14)

The temporal part of this input is then de�ned as two independent parts that represent only
a stochastic amplitude and an annual cycle that simulates the NAO. The criteria to chose
the amplitude of η(t) is determined by the model used, this two possible structures of the
amplitude have the form:

η(t) =


ηw = −wt

M

ηT = −wt
∣∣∣∣sin(πttT

)∣∣∣∣ (3.15)

The two terms are de�ned as ηw = wt/M , which represents the stochastic atmospheric
wind stress anomaly associated with the NAO, and is updated as reported in literature
(Dewar, 2001), and the periodic side, ηT corresponding to wt |sin (πt/tT )|, could represent
the in�uence of annual cycle on the stochastic wind stress variability.
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Additionally, wt is de�ned by the Box-Muller transformation (Thistleton et al., 2007) with
the form

wt = µ+ σ {−2 ln(Z1)}1/2 cos(2πZ2) (3.16)

where Z1 and Z2 are pseudo random numbers, the stochastic variable wt follows a normal
distribution wt ∼ N(µ, σ2) with mean µ and variance σ, and wt changes its value
stochastically every tw time period. Throughout all the runs with ωANOM the chosen values
for the mean and variance were left �xed, µ = 9 × 10−1 and σ = 3 × 10−2 (Visbeck et al.,
1998). The chosen values for the wind stress pro�le are similar to the ones reported in the
literature; in this speci�c case tT = 2 years (Hellerman and Rosenstein, 1983) and the
stochastic part term is updated monthly (tw = 30 days).

3.3. Experimental setup

The division of the simpli�ed ocean models into more idealized ones was carried out by
�rst using a barotropic model driven by the wind in a squared basin using the mentioned
initial conditions and starting from the simplest ocean model. The complexity was
increased for the chosen reference models. Additionally, for all further setups a rigid lid
approximation was chosen, so vertical variations can be safely discarded. For the di�erent
runs already mentioned, the set of parameters that were �xed depended on the approach
and reference setup as follows.

3.3.1. A toy ocean model

The Veronis (1963) model serves as an introduction to the reduction method as an example
of a simple dynamic system. When solving the reference model of the barotropic vorticity
equation eq.3.17 with few Fourier components, it is easy to select the same spectral number as
the number of EOFs. The chosen reference model was a bottom friction approach, in order
to ensure su�cient dissipation for given values of EB and RO (see Table 3.1). The Veronis
(1963) model found oscillating solutions, which would represent the simplest solution to
reproduce.

∇2ψt +ROJ(ψ,∇2ψ) + ψx = −EB∇2ψ +∇× τ (3.17)

For this particular case, the wind stress curl (∇× τ ) is approximated as

curlzτ(x, y) ∼ sinx sin y (3.18)
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Table 3.1.: Parameters Veronis

Parameter Symbol Quantity Unit

Horizontal length L 2.0π × 108 cm

Beta parameter β 2.0× 10−13 cm−1s−1

Rossby number RO 0.3

Vertical Ekman number EB 1.0× 10−2

For the reference run, and for the EOF reduced one, a total of 4 EOFs were chosen to
reproduce the 2× 2 spectral wave number full model.

3.3.2. Idealized ocean models of higher complexity

As mentioned, an idealized, rectangular ocean model can describe well enough many of the
features of large-scale circulation. Böning (1986) found statistically steady states solutions
for speci�c values of Rossby number (RO) and horizontal Ekman Number (EL).

The simplicity of this approach and the fairly realistic results made the study attractive for
ocean modelling, establishing itself as the basis of many studies. And to build an
identi�able reference model with even more realistic setups, the calculations were made by
means of a double-gyre wind forcing (see eq. 3.12).

In that case, it was found that the energy from the wind forcing was not dissipated by the
friction acting on the mean state, instead the energy was transferred to the �uctuating part
of the solution by Reynolds stress interaction work. The physical parameters that produce
this behavior are depicted in Table 3.2

The spectral number chosen for the reference model was in congruence with what was
found in the study by Böning where 63 × 63 wave numbers were shown to be necessary to
accommodate the solutions for this particular setup and parameters.

3.3.3. Higher complexity with additional anomalous forcing

Without drifting away from the already known Böning setup for the ocean box and in
order to bring it closer to a slightly more realistic mid-latitude realm (Mildner, 2013), the
chosen parameters for the second tier were similar to the previous one (see Table 3.3), with
the addition of the anomalous forcing of eq. 3.14 with amplitudes oscillating stochastically
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Table 3.2.: Böning Run

Parameter Symbol Quantity Unit

Horizontal length πL 2.00× 108 cm

Vertical length H 1.38× 105 cm

Horizontal viscosity Ah 5.20× 106 cm2s−1

Beta parameter β 2.00× 10−13 cm−1s−1

Amplitude of windstress T0 2.00 cm2s−2

Rossby number RO 1.40× 10−3

Horizontal Ekman number EL 1.00× 10−4

Vertical Ekman number EB −−−
Reynolds number Re 14

Spectral wave number n 63× 63

between 70% of T0 and T0, and adding bottom friction with values very similar to the ones
reported in the literature for the North Atlantic (Ierley and Sheremet, 1995).

Table 3.3.: Böning_2 Run with∗ and without bottom friction

Parameter Symbol Quantity Unit

Horizontal length L 2.0π × 103 km

Vertical length H 1.38 km

Horizontal viscosity Ah 44.58 km2d−1

Beta parameter β 1.73× 10−3 km−1d−1

Amplitude of windstress T0 1.49 km2d−2

Rossby number RO 1.40× 10−3

Horizontal Ekman number EL 1.00× 10−4

Vertical Ekman number∗ EB 5.00× 10−3

Reynolds number Re 14

Spectral wave number n 63× 63

3.3.3.1. Altered atmospheric conditions

In order to test the ability of the method to predict slight variations in the initial
conditions, the reduced model was used on di�erent reference models with di�erent initial
windstress conditions. The base reference model chosen used the parameters in Table 3.3,
but the windstress amplitude of the anomaly (eq. 3.15) was altered for every run by
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increasing the anomaly forcing by 10% and 5%, and in other runs with 10% and 5%

weaker anomaly (ηT ) with respect to the base original (T0).

This would also mean a change in standard deviation and the mean of wt (see eq.3.16) to
values that would allow the higher limit to not exceed the windstress amplitude T0, ending
up with anomaly values comparable to, or to half of the windstress, which is the case for
µ = 8.2× 10−1 and σ = 3× 10−2.

As said by Marshall et al. (2001b), typical values of the windstress curl for the North
Atlantic are around the ones given by Table 3.3 (Ierley and Sheremet, 1995) while those
correlated with the NAO are smaller than, but comparable to, the values already
mentioned in Table 3.3 (Dewar, 2001).

This is done mainly to test the ability of the method for the potential use as a predictor
of di�erent states due to changes in the atmosphere but keeping the simplicity and clarity
provided by the reduced form provided by the EOF reduction.

3.3.3.2. Variations in Reynolds number

The Reynolds number (Re) is a representation of the nonlinearity of the oceanic model. If
the Reynolds number is increased (increasing the in�uence of the non-linearity) then the
center of the circulation cell for a single gyre, for example, shifts to the north. A �eld of
Rossby waves develops, leading to a recirculation vortex in the northwest corner of the
basin which is what increases the nonlinearity.

A link between the coe�cient of the lateral turbulent frictionAL and instabilities has been
reported previously. The smaller the coe�cient AL is, the richer the instability of the
physical system. Decreasing di�usivity increased the meridional mass transport in
Northern Hemisphere (Danabasoglu and Mc Williams, 1995), which reduced the
horizontal di�usion coe�cient and increased north-south temperature gradients, thus
enhancing midlatitude zonal currents (Meehl et al., 1982), di�usion increases with the
water temperature.

Using Böning_2 values as a reference (see Table 3.3) are used, and values of δM which are
approximate values for the North Atlantic. In the case for no-slip conditions,
corresponding to the typical North Atlantic subtropical gyre wind forcing, increasing
values of Reynolds number Re means decreasing the viscosity of the system (Sheremet
et al., 1997), which in this particular case was done as shown in Table 3.4.
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Table 3.4.: Variations in Reynolds number using Böning_2 parameters of Table 3.3

Re Ah (km2/day) EL

140 4.46 1× 10−5

28 22.29 5× 10−5

14 44.58 1× 10−4

7 89.17 2× 10−4

1.4 445.85 1× 10−3

Increasing the Reynolds number of the model by the decreasing the horizontal advection
could be used as a form of simulating gradients of temperature in the ocean without using
the temperature as a variable Verron and Jo (1994).
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4. EOF of wind driven ocean models

One important part of reducing wind driven ocean models is establishing the references
from which the reduction model is built. The reference model used, starts with an idealized
model and progressively is turned into a more realistic one by small steps.

After the clear reference model structure is clari�ed, the EOF reduction and posterior
representation is carried out by using the method in section 2.2. The reconstruction is done
with the results of the reductions and then compared to the original full reference model.

4.1. A toy ocean model

In this section, the work of Veronis (1963) is used as an example of a simple dynamic system
and as a stepping stone for subsequent calculations and considerations. It is important to
be wary of some issues caused by modeling the version of the BVE described by eq.3.17 with
only a few Fourier components.

To better determine the reference points, the results from Veronis (1963) were taken as
starting point. The parameters given in Table 3.1 were proven to provide oscillatory
solutions, represented by the limit cycle of the �rst spectral coe�cients (see Figure 4.1a)
providing an idea of the structure of the principal components of the system.

The streamfunction is expanded in a double Fourier sine series in the Veronis (1963)
reference model. For a certain range of the Rossby number (or the strength of the wind
stress), the ocean never settles down to a steady state (see Figure 4.1b). After an initial
transient phase, a periodic limit cycle appears, which constitutes the necessary variability
for the EOF representation.

During the time of the statistically steady state, the system oscillates between two major
energetic levels. A mean state is taken as a representative characteristic of the model
(discarding the �rst 800 time steps of the transient) the gridpoint space representation of
the streamfunction takes a familiar form (Figure 4.1c) already reported in the literature
(Veronis, 1963, 1966).
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Figure 4.1.: (a) Phase space contrast of the1st spectral coe�cient vs the3rd, (b) basin integrated kinetic energy
vs time, (c) mean streamfunction of the Veronis (1963) model over 3000 time steps, discarding the
initial transient.

4.1.1. EOF representation

Choosing the complete set of available spectral numbers (four), the EOF reduced model in
theory should reproduce the entire variability of the system, something that is in
congruence with what is obtained. The 1st EOF shows the maximum variability of the
reference model, and evolving this map over time by using the principal component
described in Figure 4.2b, produces a fair, close to identical, reproduction of the reference
model (see Figure 4.2a). This is also visible on the phase space comparison of the �rst 2
principal components.
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Figure 4.2.: (a) Time series of the maximum streamfunction of the Veronis (1963) model and the reconstructed
data, (b) time series comparison of the 1st PC of the reference model (Ref.) and the reduced one
(Rec.), (c) phase space representation of the 1st and 2nd PC of Ref. and Rec., (d) comparison
between the 1st PC of the reference and reconstructed models and the symmetric mean absolute
percentage error (sMAPE) between them.

It must be clari�ed that the error calculated when comparing the reference and the
reconstructed models is the symmetric mean absolute percentage error, sMAPE (Morley
et al., 2018; Botchkarev, 2019), de�ned as

sMAPE =
100%

n

n∑
α=1

|Rα −mα|
(|Rα|+|mα|)/2

(4.1)

Where Rα is the reference value, mα the measurement and n the number of
measurements. From eq.4.1 the limitation of the sMAPE becomes apparent. If the
reference value is 0, the value of the sMAPE spikes to the upper-limit of 200% (Tofallis,
2015). This is something that is noticeable in Figure 4.2d.

Using the reconstructed spectral �eld, it is possible to calculate the kinetic energy of the
reduced system and compare it with the original reference system (see Figure 4.3). Just by
contrasting them, it is possible to attest to the e�ciency of the model. The correspondence
between the time series of the kinetic energy of the two �elds is almost 1 : 1 and yields
insight of how promising the method is for stable non chaotic systems.

Figure 4.3.: Kinetic energy diagram for the reference model (Ref.) and the reconstructed model (Rec.) from
the EOF reduction. Note that both lines are overlapping.
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4. EOF of wind driven ocean models

4.2. Idealized ocean models of higher complexity

The following step after the successful reproduction of the Veronis (1963) model is setting
up the parameters that better resemble a real ocean. The model chosen was the one devised
by Böning (1986). There, it was found that the needed statistically steady state of the system
was only achieved for particular cases and values of the given parameters. The attention of
this section is centered on one particular experiment of the ones proposed by Böning
(1986). In it, the desirable state was reached after an initial spin-up time of around 700 days
of �uctuations. After that transitional period, the system settles down into the statistically
steady state with regular oscillations (see Figure 4.4a).
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Figure 4.4.: (a) Kinetic Energy in Exp. 14 in Böning (1986), (b) Stream function at T=4years, (c) Normalized
Max Stream function over time, (d) Mean stream function found as Fig. 17 in Böning (1986).

The friction acting on the mean state is not able to dissipate the total wind input of energy,
producing the e�ect present in this particular experiment. It has been implied that the
decay times for initial oscillations become longer as the di�usivity becomes smaller
(Böning, 1986).
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4. EOF of wind driven ocean models

4.2.1. EOF analysis

After decomposing the reference model into its principal components and calculating the
corresponding eigenvalues, it is possible to generate a variance plot as can be seen in Figure
4.5, which shows that the �rst 5 PCs contain more than 95% of the variance of the �eld.
This could be interpreted as a clue of the amount of EOFs that could possibly be used to
reproduce the majority of the system variability.
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Figure 4.5.: Explained variance of principal components for the Böning (1986) model.

When reducing the reference �eld, it is clear that although the principal components of the
reference and reduced models share a similar structure, an increasing discrepancy that grows
over time appears (see Figure 4.6a), even when using only 7 EOFs, which could describe
around 99% of the variance. This phenomena has been dealt with using various methods.
The one chosen is the semi empirical correction proposed by Achatz and Branstator (1999),
described in Section 2.2.1.
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4. EOF of wind driven ocean models

 7 EOFs
 7 EOFs+Corr.

 Ref.

1st PC 2nd PC

3rd PC

(c)

Figure 4.6.: (a) Comparison between the 1st PC for the Böning (1986) reference model (Ref.) and the
reconstructed model (Rec.) using 7 EOFs, (b) 1st PC of Ref. and 1st PC of Rec. using 7 EOFs
with empirical corrections according to Achatz and Branstator (1999), (c) phase space diagram of
�rst 3 PCs of the Ref., the 7 EOFs model and the 7 EOFs model with corrections.

The correction proposed by Achatz and Branstator (1999) signi�cantly improves the
behavior of the principal components of the reduced model (see Figure 4.6b). This is also
visible in the phase space diagram where the attractors are more similar when the correction
is implemented, although initially the correction overcorrects the phase di�erence.
Nevertheless this particularity could be associated to the emerging of a second transient
phase that can be avoided by choosing a longer time series.

The correction allows a longer time series for the reduced model and additionally it allows
the use of fewer EOFs to reproduce the �eld as initially thought. Using the information
provided by Figure 4.5, it is now possible to choose a smaller number of EOFs (3 in this
case) that should su�ce to explain at least 90% of the variance.

It is worth of highlighting that the improvement of the reconstruction of the attractor
produced in the phase space projection of the �rst PC of both models is associated with the
selection of a longer time series in combination with the empirical correction (Figure
4.7).
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Figure 4.7.: Phase space diagram of the reference and the reconstructed 3 EOFs model.

Redoing the calculations and comparing the new results with Figure 4.6b over a longer
time period and using only 3 EOFs, the situation changes (see Figure 4.8). This time the
sMAPE error calculation method is shown to be less e�ective as the PCs oscillate around
the zero axis. Note that Figure 4.8 shows only a year of the run so the sMAPE would not
overshadow the other principal components.
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Figure 4.8.: Time series of the 1st PC of: the reference model (Ref.) for Böning (1986), the reconstructed
model (Rec.) and the error sMAPE between them.

As already mentioned, another valuable characteristic of the models that is useful to
compare is the kinetic energy after the reconstruction. An initial comparison is using the
power spectrum of the detrended energy time series (see Figure 4.9).
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4. EOF of wind driven ocean models

Figure 4.9.: Power spectrum of the basin integrated kinetic energy over time for the reference model (Ref.)
and the reconstructed one (Rec.).

Despite the reconstructed model being more energetic than the reference one, it is safe to
conclude that the 3 EOF reduced model is able to reproduce many important aspects of the
system dynamics. This is further veri�ed by looking at the autocorrelation patterns of their
respective kinetic energies (see Figure 4.10a).
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Figure 4.10.: (a) Autocorrelation function of the reference model (Ref.) for Böning (1986) and its
correspondent reconstructed version (Rec.), (b) Mean streamfunction of the reconstructed
system using 3 EOFs.

Notice that the autocorrelation functions for both �elds behave almost identically for the
�rst lags, hinting at a successful reproduction of the properties of the studied �eld.
Furthermore, the reconstructed model (Figure 4.10a), is able to reproduce the structure of
the streamfunction of the reference model (Figure 4.4d).

To further understand the di�erences between the models, it is useful to look at the
statistical parameters of each series (see Table 4.1).
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4. EOF of wind driven ocean models

Table 4.1.: Numerical comparison of the maxima (max), mean (µ) and standard deviation (σ) of the kinetic
energy for the reference model (Böning, 1986) and the reconstructed data and the Bootstrap
con�dence interval of 90% of the mean (CI).

Parameter Ref. Rec.

max 3.87× 103 3.98× 103

µ 3.73× 103 3.70× 103

σ 100.24 197.10

CI(%) [5 : 95] [3722.7 : 3726.0] [3697.4 : 3703.7]

The correspondence between the compared aspects of both systems seem satisfactory, but
the sMAPE error calculation falls short when quantifying this congruence. Considering
the principal components of the models as two sets of discrete points in the phase space, it
is possible to use the optimal transport properties (see Appendix A) to �nd how much the
reconstructed PCs di�er from the reference ones (Figure 4.11a).
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Figure 4.11.: (a) Optimal Assignment of the �rst two PCs of the reconstructed and reference models using
the Wasserstein distance algorithm, (b) Permutation matrix as a byproduct of the optimal
assignment for monthly data of the �rst 4 years after the transient, (c) comparison between the
two error methods selected in the time series, (d) Monthly calculated Wasserstein distance of the
aforementioned phase space diagram segment.
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The time series of the principal components were subdivided into segments of 48 months
to ease the readability and to better express the optimal assignment. One of the byproducts
of the optimal assignment is the permutation matrix (Figure 4.11b) which is the mapping of
the reconstructed data point to the correspondent data point in the reference model, and
transforming the reconstructed data set into the reference one.

When comparing the performance of the sMAPE with the Wasserstein distance, it is clear
that the Wasserstein distance o�ers stability at points close to zero, which is a signi�cant
advantage over the sMAPE. Although the Wasserstein distance seems to oscillate on each
subdivision, it does not have a clear periodic pattern. The mean distance of 3.92 of a
maximal euclidean distance of 30 corroborates the quality of the reduction model with
only 3 EOFs.

4.3. Higher complexity models with additional
anomalous forcing

It has been said that the Ekman pumping and Sverdrup transport in the subtropical gyre of
the North Atlantic is driven largely by the meridional gradient of the zonal wind stress and
it is believed that this is also true even during the last glacial maximum (LGM) times
(Nürnberg et al., 2015). This means that when getting the windstress input of the model
right, the realistic aspect of the already promising Böning (1986) model would improve
signi�cantly.

Figure 4.12.: Time series of the windstress forcing for the traditional double gyre (upper panel), the time
dependent anomaly that resembles the NAO (middle) and the total forcing when combining
those two (lower panel).
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4. EOF of wind driven ocean models

A more realistic wind forcing can be obtained by implementing the aforementioned
external forcing on the model (Badin et al., 2003). The additional wind forcing is modeled
as a white gaussian noise with a structure given by eq.3.14 and updated every day like
suggested by Sura et al. (2001). The already introduced double-gyre wind pro�le can be
described as the result of a linear combination of an unperturbed component and an
anomalous component (see Figure 4.12).

Adding an anomalous windstress forcing with a speci�c structure to the already established
model would resemble a NAO-like phenomena. The traditional windstress proposed is the
double gyre described by eq.3.12 (ωE0) as shown in the upper panel of the Figure 4.12,
representing the steady windstress over the whole basin. The isolated input of the chosen
anomaly over half of the basin, ωANOM (3.14) is shown in the middle panel and the �nal
structure of the windstress input as a result of the other two in the bottom panel.

This is easily visible in a cross section from north to south through the mean �eld (see Figure
4.13), where the green line (ωANOM) changes its amplitude over time.

-1

-0.5

 0

 0.5

 1

0 L/4 L/2 3L/4 L

A
m

pl
it

ud
e 

of
 t

h
e 

W
in

dS
tr

es
s

Latitude y

    ωE0
   ωANOM

    ωE

Figure 4.13.: Modelled Ekman pumping of the standard double gyre forcing, the perturbation pumping and
the total wind-stress curl �eld adding the two previous ones.

Thus, the NAO-like structure modelled is more latitudinally restricted than the ocean
circulation gyres, similar to other studies of the windstress oceanographic setting, e.g. Jin
(1997), where the spatial distribution of these anomalies is assumed to be well-structured
and �xed but with a temporally stochastic wind forcing.
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Figure 4.14.: (a) Kinetic energy diagram with the small white noise, (b) Eigenvalue spectrum with con�dence
limits where index is the number of the eigenvalue, ordered from largest to smallest, (c)
illustration of explained variance as a function of the number of principal components retained
out of the total possible.

To verify the e�ciency of the method when including a small wind alteration, only the ηw
part of the eq.3.15 is used for the anomaly amplitude. The parameters of eq.3.16 chosen for
this purpose are: µ = 7 × 10−1, σ = 7 × 10−2, M = 62 and updating Z1 and Z2

monthly, which translates into a weak anomaly (varying stochastically its amplitude
between 0.8% and 1.6% of the reference windstress).

It can be seen that the system does not change much but it is only after 20 years that it
stabilizes itself into a statistically steady state, showing the strong in�uence that the wind
input represents in the model (see Figure 4.14a).

Through the study, the criteria selected to evaluate how well the reduced model reproduces
the reference one, can be divided into 3 major parts:

» The kinetic energy of the system

» The streamfunction (ψ)

» The principal components
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4. EOF of wind driven ocean models

The kinetic energy part consists of directly comparing the time series of the reference
model with the reconstructed kinetic energy, its major statistical properties (variance,
mean, maximum value), the power spectra resulting from those time series and their
corresponding autocorrelation functions. For the streamfunction, the criteria would be a
side to side comparison of the gridpoint representation of ψ̄ and their maxima.

Finally, evaluating the principal components is done by contrasting the attractors formed
by the �rst three PCs, the time series of the 1st PC against the reconstructed one, and
calculating the optimal transport and the respective Wasserstein distance associated to it. If
the results of reconstruction do not deviate more than ∼ 20% from the reference in each
of the three aspects, then the reduced model is considered satisfactory.

The Wasserstein distance should be interpreted di�erently for each model. As the cost of
�nding optimal distances is computationally high and increases exponentially with the
amount of data to assign, the times series of the principal components were subdivided
into segments of 48 months to facilitate the optimal assignment and the visualization of
the data. This is how a temporal quality is associated to the optimal assignment and
Wasserstein distances, something that provides an advantage when identifying pattern.

To start the comparison, it is important to know those aspects from the reference model. In
the case of the streamfunction, the patterns obtained are shown in Figure 4.15. Comparing
Figure 4.15b with Figure 4.4b, it can be seen that the latitudinal symmetry is broken as an
e�ect of the new forcing, but still the system does not devolve into a chaotic state.
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Figure 4.15.: Gridpoint space representation of (a) the mean streamfunction of the reference model (ψmax =

3.81× 103km
2
/d) and (b) the streamfunction of the system after a 100 years of evolution.

This, combined with the information provided by Figure 4.14c, a 3 EOF reduced model is
assumed to be su�cient to explain the most relevant characteristics of the studied model.
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Figure 4.16.: Time series of the 1st PC of the reference model with and without the windstress anomaly ηw
for (a), the entire run and (b) the chosen time period to analyze, (c) power spectra representation
of Figure 4.16b.

4.3.1. EOF reconstruction

A total of 3 EOFs were used on the reduced model for the reconstruction. The �rst 24.1

years shown in Figure 4.14a are considered as a transition period necessary for the system to
stabilize and reach the statistical steady state necessary for the EOF reduction. After the
reconstruction, it is possible to review all of the criteria one by one.

Starting with the kinetic energy in Figure 4.17a, the reconstructed energy is able to reproduce
parts of the �uctuations from the reference system and reaching approximately the same
higher energetic values. But for the lower energy states, the reconstructed system goes to
values∼ 5% lower than the minimal energy of the reference.
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4. EOF of wind driven ocean models

(a) (b)

(c)

Figure 4.17.: (a) Time series of the nondimensionalized kinetic energy of the reference model and the
reconstructed one, (b) the power spectra representation of both energies, (c) autocorrelation
function of the studied kinetic energies.

Figure 4.17b shows that the reconstructed energy is much simpler and smoother than the
reference one, which means that higher frequency variabilities are not really represented
but it is also seen that they both share some of the same period of variability, and although
they do not share the same peak at the same frequency, the overall behavior of the curve is
similar.

But by the autocorrelation function it is possible to determine that the reconstructed
system seems to skip every second lag, which corroborates the lack of high frequency
variability. This is something that could potentially be changed by adding more EOFs to
the reduction, depending on what is desired to be reproduced. 3 EOFs seems appropriate
to reconstruct the kinetic energy behavior.

Table 4.2.: Numerical comparison of the maxima (max), mean (µ) and standard deviation (σ) of the kinetic
energy for the reference model with additional anomalous forcing, and the reconstructed data and
the Bootstrap con�dence interval of 90% of the mean (CI).

Parameter Ref. Rec.

max 3.67× 103 3.68× 103

µ 3.53× 103 3.41× 103

σ 8.92× 101 1.77× 102

CI(%) [5 : 95] [3528.1 : 3531.2] [3415.0 : 3421.0]
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4. EOF of wind driven ocean models

The maximum value of the reproduced energy deviates only by less than 1% from the
reference, and the mean by ∼ 4%. The standard deviation on the other hand, is almost
double of the reference, which represents the dispersion of the lower energy values.
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Figure 4.18.: Gridpoint space representation of (a) the mean streamfunction of the reconstructed system
over the 75.9 years studied (ψmax = 3.48 × 103km

2
/d) and (b) the streamfunction of the

reconstructed system at the end of the integration.

The streamfunction patterns of the reconstructed version (Figure 4.18a and Figure 4.18b)
can be compared to the reference model in Figure 4.15a and Figure 4.15b , respectively. The
ψmax of the reconstructed system di�ers only by ∼ 9% from the reference and the
structure of both are similar, which means that the main structure of ocean circulation is
represented.
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Figure 4.19.: (a) Time series of the 1st PC for the reference and reconstructed systems, note that only a
period of 5 years out of the 75.9 years available is shown to optimize visibility (b) phase space
representation of the �rst 3 PCs.

Figure 4.19a shows the resemblance of the PC is visible and also the lack of representation of
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4. EOF of wind driven ocean models

the high frequency variability. But this does not a�ect the attractor, which reproduces the
reference considerably well.

(a) (b)

(c)

Figure 4.20.: (a) Optimal assignment diagram of the �rst 2 PCs, (b) total Wasserstein distance calculated over
periods of 4 years, (c) power spectrum of the 1st PC.

The optimal assignment diagram (Figure 4.20a) shows that while the PCs of the reference
tend to accumulate in certain regions of the phase space , the reconstructed PCs are more
evenly distributed. That implies a long term periodicity in the reference model that the
reconstruction was not able to reproduce. It can also be seen in the Wasserstein distance
(Figure 4.20b) that out of an maximum distance of 30, the mean is about 50% of the
maximum, which is deceiving due to the generation of periodicity that resembles a quasi
bidecadal oscillation composed of small periods of consistent distance.

This could be interpreted as a sign of a potential weakness of the model in reproducing
long term oscillations that might appear from small variations of the wind forcing input.
In general, it can be said that the reconstruction is able to successfully reproduce the main
aspects of the streamfunction and in general the kinetic energy. For the case of principal
components, the system appears to have a �xed phase di�erence, which a�ects the other
two aspects. Despite that, the model can be considered successful and promising and could
be improved further by applying additional corrections to overcome the phase di�erence.
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4.3.2. Di�erent atmospheric conditions

One approach to test the ability of the reduction method to predict di�erent atmospheric
conditions is to select a base state for reference, reproduce it, and then use that base state
data to reconstruct other systems with slightly di�erent atmospheric forcing input.

It is important to notice that the wind forcing in�uences to a high degree the overall
oceanic circulation and could represent and in�uence other bigger phenomena. It is shown
that large-scale, long-time sea surface temperature (SST) anomalies might be explained
naturally as the response of the oceanic surface layers to short-time-scale atmospheric
forcing “ (Frankignoul and Hasselmann, 1977).

Using the parameters in Table 3.3 and ηw (see eq.3.15) with values not higher than the
windstress amplitude T0,the values of µ and σ in eq.3.16 are µ = 8.2 × 10−1 and
σ = 3× 10−2. The EOF reduction is applied at the model with this conditions (from here
on referred as Base), and using this data to try to reproduce di�erent atmospheric
conditions and compare it with their corresponding reference models

Setting a �xed value of amplitude of the windstress anomaly for the base model (see Section
3.3.3.1), the amplitude of the anomaly for the other atmospheric conditions would oscillate
stochastically around that value within±10% and±5%, see Figure 4.21.
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Figure 4.21.: Amplitude of the windstress anomaly ηT (eq. 3.15) for di�erent atmospheric conditions of 90%,
95%, 105% and 110% respect to the base original.

Due to the more chaotic nature of the system, a higher number of EOFs were required for
this cases. An idea of it can be drawn from the cumulative valuable plot of the eigenvalues
(see Figure 4.22).
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Figure 4.22.: Explained variance as a function of the number of eigenvalues out of the total possible.

The number of EOFs selected for this section was 23. Continuing with the previously
discussed criteria and comparing all the kinetic energies reproduced for all the stated
atmospheric conditions, Figure 4.23 is obtained.

(a) (b)

(c)

(d) (e)

Figure 4.23.: Kinetic energy of the models with changes in the amplitude of windstress anomaly in a
magnitude of: (a)+10%, (b)+5%, (c) 0%, (d)−5%, (e)−10%, with respect to the base model.
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All the patterns of the reconstructed kinetic energy have some characteristics in common.
Starting with the overestimated mean energy states with respect to the reference, the phase
di�erence in the oscillating part of the energy and the sudden increase of energy of the
reduced model between years 20 and 40 and then again at the end of the integration. But,
except the spikes, the energy structure is mostly maintained.

Table 4.3.: Numerical comparison of the maxima (max), mean (µ) and standard deviation (σ) of the kinetic
energy of 5% and 10% of the amplitude of the windstress anomaly and the Bootstrap con�dence
interval of 90% of the mean (CI).

−5% +5%

Parameter Ref. Rec. Ref. Rec.

max 3.30× 103 1.21× 104 3.29× 103 1.25× 104

µ 2.15× 103 2.16× 103 2.08× 103 2.12× 103

σ 497.57 1.39× 103 431.97 1.32× 103

CI(%) [5 : 95] [2142.3 : 2158.7] [2148.0 : 2195.2] [2069.6 : 2083.9] [2096.7 : 2139.9]

(a)

Base

Parameter Ref. Rec.

max 3.32× 103 1.26× 104

µ 2.03× 103 2.16× 103

σ 431.79 1.36× 103

CI(%) [5 : 95] [2023.2 : 2036.9] [2087.6 : 2131.9]

(b)

−10% +10%

Parameter Ref. Rec. Ref. Rec.

max 3.40× 103 8.85× 103 3.21× 103 1.26× 104

µ 2.16× 103 1.99× 103 1.98× 103 2.05× 103

σ 489.42 1.08× 103 392.59 1.38× 103

CI(%) [5 : 95] [2156.8 : 2173.4] [1987.0 : 2023.0] [1970.1 : 1982.4] [2039.9 : 2084.8]

(c)

Tables 4.4a, 4.4b and 4.4c show that the mean energy states are conserved in the
reconstruction, and if it were not for the abnormal spikes in the reconstructed model, the
maximum values would be also similar.These spikes are probably due to the reduced model
mixing the intrinsic variability between lower and higher EOF modes. It is known that
higher EOFs with small eigenvalues can be dynamically relevant and their inclusion or
exclusion could cause an interference at the moment of reconstructing the original
reference data.
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(a) (b)

(c)

(d) (e)

Figure 4.24.: Power spectrum of the models with changes in the amplitude of windstress anomaly in a
magnitude of: (a)+10%, (b)+5%, (c)0%, (d)−5%, (e)−10%, with respect to the base model.

That can be similarly seen in the power spectra of the corresponding kinetic energies,
where the references data and reconstructed data all share the same or similar period of
variability only di�ering in the amount of energy in the system.

The autocorrelation functions associated with the kinetic energies (Figure 4.25) are also
consistent and show a similar behavior for the �rst lags. It is fair to consider the
reconstruction of the behavior of kinetic energy as a relative success.
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(a) (b)

(c)

(d) (e)

Figure 4.25.: Autocorrelation function of the models with changes in the amplitude of windstress anomaly
in a magnitude of: (a) +10%, (b) +5%, (c) 0%, (d)−5%, (e)−10%, with respect to the base
model.

The structure of the streamfunction is for the most part conserved, but the same spike in
amplitude is present in the streamfunction. The average values for ψ in the studied period
of time are shown in Table 4.4.

Table 4.4.: Mean streamfunction over 75.9 years of integration for the given atmospheric conditions in km2
/d.

Ref. Rec.

ψ̄−10% 0.402× 102 0.328× 102

ψ̄−5% 0.424× 102 0.300× 102

ψ̄base 0.446× 102 0.316× 102

ψ̄+5% 0.469× 102 0.346× 102

ψ̄+10% 0.492× 102 0.368× 102

The model seems to better handle the small variations when reconstructing ψ. There are
small di�erences in the circulation patterns and slightly less intense streamfunctions, but in
general the structure and the ranges are similar. And the di�erences increase with the
increments of the amplitude of the windstress anomaly (see Figure 4.26). But staying
within the same range, corroborating that for ψ, the method is e�ective.
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Figure 4.26.: Mean streamfunction over 75.9 years of the reference and reconstructed models for changes in
the amplitude of windstress anomaly in magnitudes of: (a) and (b) = −10%, (c) and (d) =
−5%, (e) and (f ) = 0%, (g) and (h) = +5% and (i) and (j) = +10%, with respect to the base
model.

After corroborating a successful reconstruction of the streamfunction, the criteria left to
compare is the behavior of the principal components. Comparing the attractors formed by
the �rst three PCs for all the reference models and their respective reconstructed versions, it
is possible to see that the system is comparatively more chaotic than the previous analyzed
models. This leads to chaotic reconstructions of the PCs with lower agreement (see Figure
4.27).
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Figure 4.27.: Phase space representation of the reference and reconstructed models for changes in the
amplitude of windstress anomaly in magnitudes of: (a) +10%, (b) +5%, (c) base, (d) −5%,
(e)−10%.

The attractors are not well represented (see Figure 4.27), and it can be further con�rmed by
the optimal assignment between the �rst 2 PCs where the principal components tend to
cluster in the middle of the phase space. This clustering means that the 2 PCs carry similar
information about the variability, which is something that does not happen for the
reconstructed model.

(a) (b) (c)

(d) (e)

Figure 4.29.: Optimal assignment formed from the 1st PCs and 2nd PCs in the phase space for the reference
and reconstructed models with changes in the amplitude of η in magnitudes of: (a) +10%, (b)
+5%, (c) base, (d)−5%, (e)−10% of T0.

The behavior can be seen as well in the pattern of the Wasserstein distance (Figure 4.30).
which has no clear periodic structure but rather a noise-like one.
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(a) (b) (c)

(d) (e)

Figure 4.30.: Wasserstein distance between the 1st PCs and 2nd PCs of the reference models and
reconstructed models for changes in the amplitude of η in magnitudes of: (a) +10%, (b) +5%,
(c) 0%, (d)−5%, (e)−10%.

The distances seem high (all the mean values are circling 20% of the maximum distance) but
for the initial 4 years of calculations, the distances are much smaller (Figure 4.31).

(a) (b) (c)

(d) (e)

Figure 4.31.: Wasserstein distance of the �rst months between the1st PCs and2nd PCs of the reference models
and reconstructed models for changes in the amplitude of η in magnitudes of: (a) +10%, (b)
+5%, (c) base, (d)−5%, (e)−10%.
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4.3.3. Reynolds number variation

One of the known characteristics of the ocean box models is that the wind-driven
double-gyre circulation in a de�ned rectangular basin goes through several dynamical
regimes. One way to produce these is by decreasing the lateral friction in the system. But
generally in the box models, the bottom friction is very e�cient in dissipating the vorticity
produced by the wind (Pedlosky, 1996).

Additionally, the regimes are also present when the Reynolds number is increased (Speich
et al., 1995). Increasing the Reynolds number of the model by increasing the Rossby number
would mean changes in the vertical depth of the model. A single gyre windstress forcing was
used (eq. 3.18) together with lateral frictionEL = 9× 10−4 producing what in the research
from Böning (1986) is called experiment 4, leaving the lateral Ekman number constant and
RO as:

Table 4.5.: Variations in Reynolds number using the Rossby number

Re RO Re RO

0.60 3.36× 10−3 0.90 7.54× 10−3

0.65 3.94× 10−3 0.95 8.40× 10−3

0.70 4.57× 10−3 1.00 9.31× 10−3

0.75 5.24× 10−3 1.05 1.03× 10−2

0.80 5.96× 10−3 1.10 1.13× 10−2

0.85 6.73× 10−3 1.15 1.23× 10−2

As a starting point, the comparisons are made between a known bifurcation point in this
setup and then the anomaly is included (Figure 4.32a).
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Figure 4.32.: (a) Bifurcation diagram of a Böning (1986) model without anomaly, (b) maxima of the
streamfunction as a function of a changing Reynolds number for the Böning (1986) model with
anomaly.

By adding the anomalous external forcing, the �nal states of the systems are disrupted and
the new forcing dissipates the bifurcation that was present; nevertheless, the system does
not reach a steady state but a statistical steady state that allows us to use the EOF reduction.
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One can see that by the addition of the anomalous forcing, the bifurcation point vanishes
and the maximum value of the streamfunction is almost linearly related with the increase
in Reynolds number. Selecting some representative points, analogous to the same model
without anomaly, it is possible to see that the structure of the streamfunction does not
change substantially.
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Figure 4.33.: Gridpoint representation of the mean streamfunctions of the Figure 4.32a for values of (a)Re =

0.65, (b)Re = 1.0 (H), (c)Re = 1.0 (•), (d)Re = 1.3.
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Figure 4.33.: Gridpoint representation of the mean streamfunctions of the Figure 4.32b for values of (a)Re =

0.65, (b)Re = 0.85, (c)Re = 1.15.

Reconstructing those states for the chosen values ofRe, it is possible to see that the reduced
model was able to reproduce di�erent parts of the reference model but not all at the same
time. In the case of the streamfunction, the resemblance seems uncanny for small Reynolds
numbers (Re < 1).

 0

L/4

L/2

3L/4

L

L/4 L/2 3L/4 L

L
at

it
ud

e 
y

Streamfunction [km2/d]

 0

 1000

 2000

 3000

 4000

 5000

 6000

(a)

 0

L/4

L/2

3L/4

L

L/4 L/2 3L/4 L

L
at

it
ud

e 
y

Streamfunction [km2/d]

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

(b)

 0

L/4

L/2

3L/4

L

L/4 L/2 3L/4 L

L
at

it
ud

e 
y

Streamfunction [km2/d]

-50000

-40000

-30000

-20000

-10000

 0

 10000

 20000

 30000

(c)

Figure 4.35.: Gridpoint representation of the mean streamfunctions of the reconstructed form of the systems
shown in Figure 4.33 for values of (a)Re = 0.65, (b)Re = 0.85, (c)Re = 1.15.
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The �rst two principal components have di�erent behavior depending on the Reynolds
number. The phase space representation together with the optimal assignment and
Wasserstein distances show that the correspondence is not the best and for systems with a
higher chaotic behavior the reduced model loses accuracy.

(a) (b) (c)

Figure 4.36.: Optimal assignment formed from the 1st PCs and 2nd PCs in the phase space for the reference
and reconstructed models with changes of (a)Re = 0.65, (b)Re = 0.85, (c)Re = 1.15.

Having in mind that the maximal Wasserstein distance is given by the span of the axis in the
phase space. In the case of Re = 0.65, all the distances over time were above 50% of the
maximum available. Assuming that an acceptable distance would be smaller than 20% of
the maxima, the optimal distance is not ideal.

(a) (b) (c)

Figure 4.37.: Wasserstein distance between the1st PCs and2nd PCs of the reference models and reconstructed
models for changes in: (a)Re = 0.65, (b)Re = 0.85, (c)Re = 1.15.

But this does not seem to hold for the kinetic energy, where the reduced model
overestimated all of the points and seem to add an additional transient phase.
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(a) (b)

(c)

Figure 4.38.: Kinetic energies of the reference models and their respective reconstructed models for values of
(a)Re = 0.65, (b)Re = 0.85, (c)Re = 1.15.

Table 4.6.: Numerical comparison of the maxima (max), mean (µ) standard deviation (σ) and the Bootstrap
con�dence interval of 90% of the mean (CI) of the kinetic energy for the reference model and the
reconstructed model for di�erent values ofRe due to changes inRO .

Re = 0.65 Re = 0.85

Parameter Ref. Rec. Ref. Rec.

max 3.70× 102 6.21× 102 5.70× 102 5.87× 102

µ 2.72× 102 3.61× 102 3.73× 102 3.92× 102

σ 3.91× 101 1.38× 102 7.57× 101 1.05× 102

CI(%) [5 : 95] [272.1 : 273.3] [358.1 : 362.7] [372.1 : 374.5] [390.1 : 393.4]

(a)

Re = 1.15

Parameter Ref. Rec.

max 1.76× 103 4.29× 103

µ 1.25× 103 2.60× 103

σ 2.56× 102 7.62× 102

CI(%) [5 : 95] [1252.0 : 1260.6] [2581.7 : 2606.0]

(b)

The dominant frictional e�ect plays an important role in the oceanic circulation, and this
transition can be seen when analyzing the power spectra of various runs with and without
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bottom friction, with and without anomalous forcing. The e�ect of the bottom friction is
undoubtedly important, making the system go to an early steady state and to produce a lot
less energetic systems.
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Figure 4.39.: (a) Kinetic energy diagram for di�erent reference models with changes in EB and a windstress
anomaly of the form of ηT with tT = 2 years, (b) power spectral density representation of the
kinetic energies of Figure 4.39a.

Therefore the reference models taken were the ones with bottom friction
(EB = 5 × 10−3), allowing the system to be a little less energetic and better de�ned. The
EOF analysis was carried on with an initial base state where Re = 14, and then doubling it
and increasing the Reynolds number by ten times by means of the EL. The runs for
Re = 1.4 and Re = 7 for this speci�c setup have a persistent tendency to reach a steady
state, limiting the EOF reduction to only the values of Re = 14 and higher (see Figure
4.40).
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Figure 4.40.: Time series of the integrated kinetic energy for models with di�erent Re driven by changes in
EL.

Of the three setups studied in this part, only the Re = 140 seems to produce reasonable
reproduction of the kinetic energy. The other two overestimated the values by several orders
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of magnitude, a problem that seems consistent on every model that includesEB .

(a) (b)

(c)

Figure 4.41.: Time series of the kinetic energy of the models with di�erentRe via changes inEL in multiples
of (a)Re × 1, (b)Re × 2, (c)Re × 10.

Table 4.7.: Numerical comparison of the maxima (max), mean (µ) and standard deviation (σ) and the
Bootstrap con�dence interval of 90% of the mean (CI) of the kinetic energy for the reference model
and the reconstructed model for di�erent values ofRe due to changes inEL by factors of (a)Re×1,
Re × 2 and (b)Re × 10

Re × 1 Re × 2

Parameter Ref. Rec. Ref. Rec.

max 1.23× 103 3.33× 105 1.47× 105 1.85× 103

µ 1.05× 103 1.07× 105 3.78× 104 1.55× 103

σ 8.05× 101 4.56× 104 2.24× 102 2.48× 104

CI(%) [5 : 95] [1053.1 : 1055.8] [2556.8 : 2595.8] [107501.7 : 108980.4] [37233.2 : 38088.0]

(a)

Re × 10

Parameter Ref. Rec.

max 2.94× 103 7.69× 103

µ 2.57× 103 2.75× 103

σ 1.09× 102 1.29× 106

CI(%) [5 : 95] [2566.9 : 2570.5] [2556.8 : 2595.8]

(b)
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(a) (b)

(c)

Figure 4.42.: Power spectrum representation of the kinetic energy of the models with di�erentRe via changes
inEL in multiples of (a)Re × 1, (b)Re × 2, (c)Re × 10.

The power spectrum representation of the kinetic energy shows, in a more clear way, the
large di�erences in the reference and reconstructed data. This is the �rst indication that the
model starts to fall apart for systems of a more chaotic nature and with ample deviations
from the starting point.

(a) (b)
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(c)

Figure 4.44.: Autocorrelation function associated to the the kinetic energy of the models with di�erent Re

via changes inEL in multiples of (a)Re × 1, (b)Re × 2, (c)Re × 10.

Only for the autocorrelation that corresponds to the Re = 140 do the reduced models
seem to initially follow a similar behavior, but not enough to be associated with one
another.

(a) (b)

(c)

Figure 4.45.: Optimal assignment formed from the 1st PCs and 2nd PCs in the phase space for the reference
and reconstructed models with di�erent Re via changes in EL in multiples of (a) Re × 1, (b)
Re × 2, (c)Re × 10.

Even using the Wasserstein distance and optimal assignment, it is clear that the principal
components describe completely unrelated attractors with exorbitant values for the
Wasserstein distance.
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(a) (b)

(c)

Figure 4.46.: Wasserstein distance associated to the 1st PCs and 2nd PCs in the phase space for the reference
and reconstructed models with di�erent Re via changes in EL in multiples of (a) Re × 1, (b)
Re × 2, (c)Re × 10.

The Wasserstein distance is complemented by the phase space representation of the optimal
assignment. Where a real meaning of the distance can be grasp. The more disperse the
points of the principal components in the phase space, the smaller the Wasserstein
distances. A small Wasserstein distance means that the cost of transforming the PCs of the
reconstructed data to the reference data is. In this case (Figure 4.46), the Wasserstein
distances are so high because of the concentration of the reference data in the origin of the
phase space. This implies that the variabilities associated with these PCs are too low and
henceforth now entirely reproducible with the EOF reduction method.

This is a similar result as the results for the high complexity model without the empirical
correction. An additional empirical correction thus could be of use to resolve this issue.
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5. Conclusions

Before the closing remarks, it is important to review the main results obtained for each tier
established. First, the toy ocean model, in this case the reduced model and the reference
model (Veronis, 1963) shared the same amount of spectral numbers and EOFs, which led to
a successful full reproduction of the reference to a high degree.

For the second tier of complexity, the idealized with higher complexity, the reduction
started to be inconsistent but because of the empirical corrections that were implemented
and maintained along the rest of the study, the reduction was satisfactory to a degree where
less EOFs were needed to recreate the kinetic energy, streamfunction and principal
components of the reference.

The most realistic complex model studied was subdivided into a stochastic forced one, one
submitted under di�erent atmospheric conditions and one that could resemble gradients
in temperature. For each of them the reduction worked di�erently, the stochastic anomaly
was handled better and although di�erences between the reconstructions and the reference
arose, the selection of a di�erent number and the appropriate EOFs of the system would
reduce those di�erences to an acceptable value.

Coming back to the research questions initially stated, the reduction method was tested
with changes of the nature of the windstress input, and with it more realistic settings.
When the windstress curl is perturbed by a stochastic noise of low amplitude, the reduced
model was able to reconstruct successfully the streamfunction structure and kinetic
energies. But the method reached its limit for stronger additional wind forcings
(comparable to the default windstress amplitude T0) and not all the studied characteristics
were reproduced. This nevertheless, could be improved with the use of additional
correction methods.

With slightly di�erent atmospheric states the reduction method overestimated the kinetic
energy and was unable to reconstruct the attractor and because of it, the principal
components a�ected the streamfunction and energy of the system, hence its potential use
for predictions cannot be con�rmed.
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5. Conclusions

In the case of di�erent Reynolds number, only regimes where the reference model had no
bottom friction in�uence were reconstructed. There is still a lot to explore in this aspect.
And with all these answers, it can be said that the reduced model is able to successfully
reconstruct important characteristic of the idealized wind driven ocean models studied
between them, the circulation patterns of the streamfunction and kinetic energy.

The solutions obtained by the EOF reduction method are promising and the model works
better with a simpler reference. The selected criteria seemed appropriate and the
reconstructions, on the most part, were able to reproduce the characteristics compared.
Di�erences in the statistics for the complex models are associated with the inclusion or
exclusion of relevant EOFs that are probably not in the �rst ones.

When several time scales appear in the system the EOF analysis could be applied to low pass
�ltered model data. Then, the reduced model should only describe the low frequency
variability while high frequency perturbations are discarded. Therefore, the EOF reduction
method could be also used to design �ltered models. Furthermore, one may separate the
time scales by applying the EOF analysis to time �ltered model output. Then, the �rst
EOFs only describe low frequency variability and the high frequency waves which do not
in�uence the slow dynamics can be �ltered out.

Comparing the �rsts principal components of the reduced model (EOF method) with the
correspondent principal components of the spectral solution, for either idealized or quasi
realistic input parameters, it can be noticed that already few EOFs (most cases in this study
3 EOFs) are su�cient to reproduce the essential phase space dynamics. When increasing
the complexity of the spectral model by adding external forcing of di�erent nature it was
then when a higher number of EOFs and an empirical correction made the reduction
method work.

After all the discussion and witnessing the weaknesses that are carried by the reduction, it is
worthy to mention that some other approaches could turn the method into a more robust
one. It would be interesting to explore the possibility of using the permutation matrix
(obtained from the optimal assignment routine) as part of a next level correction.
Preliminary tests have been carried out for spectral thermohaline circulation models and
the results are also promising and could be integrated into the wind driven one to build a
global reduced model.

Although the selection of the number of EOFs seemed straight forward along the study,
the lack of a more direct indication prevented the model to be as e�cient as it could be.
Devising a method or a routine to estimate the number of EOFs to be used would increase
the practicability of the method.

66



Appendices

67





A. Optimal assignment and
Wasserstein metric

In order to calculate in a more accurately form how one of the attractors di�ers from
another, a method for �nding the optimal distance through the Wasserstein distance is
implemented, which is �nding the optimal permutation to convert one set of points into
another. This is done by reducing a cost function by solving the Monge–Kantorovich
problem, also known as the optimal transport problem (Villani, 2009; Vissio, 2018).

Depending on the measures µ and ν the optimal transport problem can take di�erent
forms, but �rst it is important to understand the concepts surrounding it. For two
complete sets of metric spaces that are both completely metrizable and separable X and Y
(also known as Polish spaces), the interest is put on subsets of P (X ) and P (Y) as
P ⊂ P (X ) and Q ⊂ P (Y), respectively. Then de�ning the set Π(P ,Q) of all
transference plans whose marginals lie inP andQ, respectively.

Thinking of the optimal transport as a simple transportation problem, quantities of a certain
product, µi, must be shipped from each of m locations and received in amounts νj at each
ofn destinations. It is assumed that the system is balanced in the sense that the total amount
shipped is equal to the total amount received. That is,

m∑
i=1

µi =
n∑
j=1

νj (A.1)

Associated with the shipping of a unit of product from origin i to destination j is a unit
shipping cost cij . The aim is to determine the amounts πij to be shipped between each
origin–destination pair i − j, so as to satisfy the shipping requirements and minimize the
total cost of transportation. This requires a solution in the form of a linear programming
problem. In other words, it can be reduced to �nd a set of πij that minimizes

m∑
i=1

n∑
j=1

cijπij (A.2)

while satisfying
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n∑
j=1

πij = µi for i = 1, · · · ,m (A.3)

m∑
i=1

πij = νj for j = 1, · · · , n (A.4)

for πij ≥ 0, so the constraints eq. A.3 and eq. A.4 remain consistent.

The transportation problem is now clearly seen to be a linear programming problem inmn
variables. The equations A.3 and A.4 can be combined and expressed in matrix form
resulting in an (m+ n)× (mn) coe�cient matrix consisting of zeros and ones only.

The optimal transport cost between the two measures:

C(µ, ν) = inf
π ∈ Π(µ,ν)

∫
cdπ (A.5)

where c stand for the value of the optimal transport cost of transport between µ and ν.

Generally, this value does not, strictly speaking, represent a distance because it does not
satisfy the axioms of a distance function. However, when the cost is de�ned in terms of a
distance, it is possible to de�ne a distance from it, the Wasserstein distance Villani (2009).

One very important aspect of optimal transport is that it gives rise to the Wasserstein
distance. Simply put, the p-dimensional Wasserstein distance between two probability
measures µ and ν on a complete, separable metric space (X , d) for p ≥ 1 is the pth root of
the optimal transport cost above, with respect to the cost function (Luenberger and Ye,
2008), meaning

Wp(µ, ν) =

min

∫
X×X

dp(x, y)dπ(x, y)

 1
p

(A.6)

Wp de�nes a metric on the space of probability measures over X of dimension p, which is,
the set

Pp(X ) =

{
µ ∈ P (X ) :

∫
X
dp(x0, x)dµ(x) <∞

}
(A.7)

where P (X ) is the set of probability measures onX and x0 ∈ X is an arbitrary element.
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In this particular case, p = 2 and this study is centered on the Kantorovich formulation of
�nite, and hence discrete, optimal transport and can be written as a �nite linear program.
For this, the measures µ and ν are considered as the following �nite sums

µ =
m∑
i=1

µiδxi and ν =
n∑
j=1

νjδyj (A.8)

The routines used are inspired on the ones coded by Gabriel Peyré, he made them free and
openly available at http://www.numerical-tours.com/matlab/ from the section of
Optimal Transport with Linear Programming (Peyré , 2011).

71

http://www.numerical-tours.com/matlab/


A. Optimal assignment and Wasserstein metric

72



Bibliography

Achatz, U., and G. Branstator (1999), A two-layer model with empirical linear corrections
and reduced order for studies of internal climate variability, J. Atmos. Sci., 56(17), p3140–
3160, doi:10.1175/1520-0469(1999)056<3140:ATLMWE>2.0.CO;2.

Achatz, U., and G. Schmitz (1997), On the closure problem in the reduction of complex
atmospheric models by pips and eofs: A comparison for the case of a two-layer
model with zonally symmetric forcing, J. Atmos. Sci., 54(20), p2452–2474, doi:10.1175/
1520-0469(1997)054<2452:OTCPIT>2.0.CO;2.

Badin, G., and F. Crisciani (2009), On the transition from non-linear to linear regimes in
the homogeneous models of the wind-driven ocean circulation, Nuovo Cimento B, 124(4),
p459–471, doi:10.1393/ncb/i2009-10773-y.

Badin, G., F. Crisciani, and G. Furlan (2003), On the dynamics of quasi-geostrophic
intergyre gyres, Nuovo Cimento C, 26(6), p621–632, doi:10.1393/ncc/i2003-10004-x.

Badin, G., F. Cavallini, and F. Crisciani (2009), Zonally aligned gyre solutions of linear
models of wind-driven ocean circulation, Nuovo Cimento B, 124(6), p653–669, doi:10.
1393/ncb/i2009-10792-8.

Barcilon, V. (1998), On the barotropic ocean with bottom friction, J. Mar. Res., 56(4), p731–
771, doi:10.1357/002224098321667341.

Bjerknes, J. (1964), Atlantic air-sea interaction, in Adv. Geophys., vol. 10, edited by
H. Landsberg and J. V. Mieghem, pp. p1–82, Elsevier, doi:10.1016/S0065-2687(08)
60005-9.

Björnsson, H., and S. Venegas (1997), A manual for eof and svd analyses of climatic data,
CCGCR Report, 97(1), p112–134.

Böning, C. W. (1985), Eine untersuchung der dynamik der windgetriebenen ozeanischen
zirkulation mit einem wirbelau�ösenden barotropen modell, Phd/ doctoral thesis,
Christian-Albrechts-Universität Kiel, doi:doi:10.3289/ifm\_ber\_137.

Botchkarev, A. (2019), Interdisciplinary Journal of Information, Knowledge, and
Management, 14, 045–076, doi:10.28945/4184.

Bryan, K. (1963), A numerical investigation of a nonlinear model of a wind-driven ocean, J.
Atmos. Sci., 20(6), p594–606, doi:10.1175/1520-0469(1963)020<0594:ANIOAN>2.0.CO;
2.

73



Bibliography

Böning, C. W. (1986), On the in�uence of frictional parameterization in wind-driven
ocean circulation models, Dyn. Atmos. Oceans, 10(1), p63–92, doi:10.1016/0377-0265(86)
90010-2.

Charney, J. G. (1955), The gulf stream as an inertial boundary layer, Proc. Nat. Acad. Sci.
U.S.A., 41(10), p731–740.

Cushman-Roisin, B., and J.-M. Beckers (2011), Chapter 7 - geostrophic �ows and vorticity
dynamics, in Introduction to Geophysical Fluid Dynamics, International Geophysics, vol.
101, edited by B. Cushman-Roisin and J.-M. Beckers, pp. p205–238, Academic Press, doi:
https://doi.org/10.1016/B978-0-12-088759-0.00007-9.

Czaja, A., A. W. Robertson, and T. Huck (2003), The role of atlantic ocean–atmosphere
coupling in a�ecting north atlantic oscillation variability, in the north atlantic oscillation:
Climatic signi�cance and environmental impacts, in Geophys. Monogr. Ser., vol. 134,
pp. p147–172, edited by J. W. Hurrell et al. AGU, Washington, D. C., doi:10.7916/
D8N87M17.

Danabasoglu, G., and J. C. Mc Williams (1995), Sensitivity of the global ocean circulation
to parameterizations of mesoscale tracer transports, J. Climate, 8(12), p2967–2987, doi:
10.1175/1520-0442(1995)008<2967:SOTGOC>2.0.CO;2.

Dellnitz, J. (2000), Niedrigdimensionale spektralmodelle des ozeans: Physik und
strukturen., Dissertation, Universität Hamburg, Hamburg, Deutschland.

Desjardins, B., and E. Grenier (1999), On the homogeneous model of wind driven ocean
circulation, SIAM J. Appl. Math., 60(1), 43–60, doi:10.1137/S0036139997324261.

Dewar, W. K. (2001), On ocean dynamics in midlatitude climate, J. Climate, 14(23), p4380–
4397, doi:10.1175/1520-0442(2001)014<4380:OODIMC>2.0.CO;2.

Eden, C., and J. Willebrand (2001), Mechanism of interannual to decadal variability of the
north atlantic circulation, J. Climate, 14(10), p2266–2280, doi:10.1175/1520-0442(2001)
014<2266:MOITDV>2.0.CO;2.

Fofono�, N. P. (1954), Steady �ow in a frictionless homogeneous ocean, J. Mar. Res., 13,
p254–262.

Frankignoul, C., and K. Hasselmann (1977), Stochastic climate models, part ii application
to sea-surface temperature anomalies and thermocline variability, Tellus, 29(4), p289–305,
doi:10.1111/j.2153-3490.1977.tb00740.x.

Frankignoul, C., P. Müller, and E. Zorita (1997), A simple model of the decadal response
of the ocean to stochastic wind forcing, J. Phys. Oceanogr., 27(8), p1533–1546, doi:10.1175/
1520-0485(1997)027<1533:ASMOTD>2.0.CO;2.

Franzke, C., and A. Majda (2006), Low-order stochastic mode reduction for a prototype
atmospheric gcm, J. Atmos. Sci., 63(2), p457–479, doi:10.1175/JAS3633.1.

74



Bibliography

Franzke, C., A. Majda, and E. Vanden-Eijnden (2005), Low-order stochastic mode reduction
for a realistic barotropic model climate, J. Atmos. Sci., 62(6), p1722–1745, doi:10.1175/
JAS3438.1.

Franzke, C. L. E., T. J. O’Kane, J. Berner, P. D. Williams, and V. Lucarini (2015), Stochastic
climate theory and modeling, WIREs Clim. Change, 6(1), p63–78, doi:10.1002/wcc.318.

Frisius, T. (1998), A mechanism for the barotropic equilibration of baroclinic waves,
J. Atmos. Sci., 55(18), p2918–2936, doi:10.1175/1520-0469(1998)055<2918:AMFTBE>2.0.
CO;2.

Frisius, T., K. Fraedrich, X. Zhu, and W. Wang (2009), A spectral barotropic model of the
wind-driven world ocean, Ocean. Model., 30(4), p310–322, doi:https://doi.org/10.1016/j.
ocemod.2009.07.008.

Greatbatch, R. J., and S. Zhang (1995), An interdecadal oscillation in an idealized ocean
basin forced by constant heat �ux, J. Climate, 8(1), p81–91, doi:10.1175/1520-0442(1995)
008<0081:AIOIAI>2.0.CO;2.

Grötzner, A., M. Latif, A. Timmermann, and R. Voss (1999), Interannual to decadal
predictability in a coupled ocean–atmosphere general circulation model, J. Climate, 12(8),
p2607–2624, doi:10.1175/1520-0442(1999)012<2607:ITDPIA>2.0.CO;2.

Hannachi, A., I. T. Jolli�e, and D. B. Stephenson (2007), Empirical orthogonal functions
and related techniques in atmospheric science: A review, Int. J. Climatol., 27(9), p1119–
1152, doi:10.1002/joc.1499.

Hasselmann, K. (1976), Stochastic climate models part i. theory, Tellus, 28(6), p473–485, doi:
10.1111/j.2153-3490.1976.tb00696.x.

Hasselmann, K. (1982), An ocean model for climate variability studies, Prog. Oceanogr., 11(2),
p69–92, doi:10.1016/0079-6611(82)90004-0.

Hellerman, S., and M. Rosenstein (1983), Normal monthly wind stress over the world ocean
with error estimates, J. Phys. Oceanogr., 13(7), p1093–1104, doi:10.1175/1520-0485(1983)
013<1093:NMWSOT>2.0.CO;2.

Holland, W. R. (1978), The role of mesoscale eddies in the general circulation of the
ocean—numerical experiments using a wind-driven quasi-geostrophic model, J. Phys.
Oceanogr., 8(3), p363–392, doi:10.1175/1520-0485(1978)008<0363:TROMEI>2.0.CO;2.

Hurrell, J. W., and C. Deser (2010), North atlantic climate variability: The role of the north
atlantic oscillation, J. Marine Syst., 79(3), p231–244, doi:10.1016/j.jmarsys.2009.11.002.

Ierley, G. R., and V. A. Sheremet (1995), Multiple solutions and advection-dominated �ows
in the wind-driven circulation. part i: Slip, J. Mar. Res., 53(5), p703–737, doi:doi:10.1357/
0022240953213052.

75



Bibliography

Jiang, S., F.-f. Jin, and M. Ghil (1995), Multiple equilibria, periodic, and aperiodic solutions
in a wind-driven, double-gyre, shallow-water model, J. Phys. Oceanogr., 25(5), p764–786,
doi:10.1175/1520-0485(1995)025<0764:MEPAAS>2.0.CO;2.

Jin, F.-F. (1997), A theory of interdecadal climate variability of the north paci�c
ocean–atmosphere system, J. Climate, 10(8), p1821–1835, doi:10.1175/1520-0442(1997)
010<1821:ATOICV>2.0.CO;2.

Kiss, A. (1998), Chaos in the „sliced cone“model of wind-driven ocean circulation,
Proceedings of the 1998 Woods Hole Geophysical Fluid Dynamics Program, WHOI Tech.
Rep., Woods Hole, MA, Available from Woods Hole Oceanographic Institution, Woods
Hole, MA 02543.

Lambert, S. J., and G. J. Boer (2001), Cmip1 evaluation and intercomparison of coupled
climate models, Clim. Dynam., 17(2), p83–106, doi:10.1007/PL00013736.

Llovel, W., J. K. Willis, F. W. Landerer, and I. Fukumori (2014), Deep-ocean contribution
to sea level and energy budget not detectable over the past decade, Nat. Clim. Change, 4,
p1031–1035, doi:10.1038/nclimate2387.

Lorenz, E. N. (1956), Empirical orthogonal functions and statistical weather prediction,,
Department of Meteorology, Massachusetts Institute of Technology, Cambridge, MA,
57 pp, statistical Forecasting Scienti�c Rep. 1.

Lorenz, E. N. (1963), Deterministic nonperiodic �ow, J. Atmos. Sci., 20(2), p130–141, doi:
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

Luenberger, D. G., and Y. Ye (2008), Transportation and Network Flow Problems, pp. p145–
179, Springer US, New York, NY, doi:10.1007/978-0-387-74503-9_6.

Marshall, J., Y. Kushnir, D. Battisti, P. Chang, A. Czaja, R. Dickson, J. Hurrell,
M. McCartney, R. Saravanan, and M. Visbeck (2001a), North atlantic climate variability:
phenomena, impacts and mechanisms, Int. J. Climatol., 21(15), p1863–1898, doi:10.1002/
joc.693.

Marshall, J., H. Johnson, and J. Goodman (2001b), A study of the interaction of the
north atlantic oscillation with ocean circulation, J. Climate, 14(7), p1399–1421, doi:10.1175/
1520-0442(2001)014<1399:ASOTIO>2.0.CO;2.

Meacham, S. P. (2000), Low-frequency variability in the wind-driven circulation, J. Phys.
Oceanogr., 30(2), p269–293, doi:10.1175/1520-0485(2000)030<0269:LFVITW>2.0.CO;2.

Meacham, S. P., and P. S. Berlo� (1997), Barotropic, wind-driven circulation in a small basin,
J. Mar. Res., 55(3), p523–563, doi:10.1357/0022240973224364.

Meehl, G. A., W. M. Washington, and A. J. Semtner (1982), Experiments with a global ocean
model driven by observed atmospheric forcing, J. Phys. Oceanogr., 12(4), p301–312, doi:
10.1175/1520-0485(1982)012<0301:EWAGOM>2.0.CO;2.

76



Bibliography

Mehta, V. M., M. J. Suarez, J. V. Manganello, and T. L. Delworth (2000), Oceanic in�uence
on the north atlantic oscillation and associated northern hemisphere climate variations:
1959–1993, Geophys. Res. Lett., 27(1), p121–124, doi:10.1029/1999GL002381.

Mildner, T. C. (2013), Past and present ocean dynamics in the western subtropical atlantic,
Ph.D. thesis, Universität Hamburg, Von-Melle-Park 3, 20146 Hamburg.

Miller, R. N. (2007), Numerical Modeling of Ocean Circulation, Cambridge University
Press, doi:10.1017/CBO9780511618512.

Morley, S. K., T. V. Brito, and D. T. Welling (2018), Measures of model performance based
on the log accuracy ratio, Space Weather, 16(1), p69–88, doi:10.1002/2017SW001669.

Munk, W. H. (1950), On the wind-driven ocean circulation, J. Meteorol., 7(2), p80–93, doi:
10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2.

Muñoz Pérez, J., L. Tejedor, and R. Medina (2001), Las funciones empíricas ortogonales y
los cambios en el per�l de playa a corto, medio y largo plazo., Física de la Tierra, 13, 139,
doi:-.

Nilsen, J. E. Ø., Y. Gao, H. Drange, T. Furevik, and M. Bentsen (2003), Simulated north
atlantic-nordic seas water mass exchanges in an isopycnic coordinate ogcm, Geophys. Res.
Lett., 30(10), p1536, doi:10.1029/2002GL016597.

Niu, M., S. Sun, J. Wu, and Y. Zhang (2015), Short-term wind speed hybrid forecasting model
based on bias correcting study and its application, Math. Probl. Eng., p. 13, doi:https://
doi.org/10.1155/2015/351354.

Nürnberg, D., A. Bahr, T. Mildner, and C. Eden (2015), Loop Current Variability—Its
Relation to Meridional Overturning Circulation and the Impact of Mississippi Discharge,
pp. p55–62, Springer International Publishing, Cham, doi:10.1007/978-3-319-00693-2_
10.

Pedlosky, J. (1987), Geophysical Fluid Dynamics, Springer-Verlag New York, doi:10.1007/
978-1-4612-4650-3.

Pedlosky, J. (1996), Ocean circulation theory, Springer, Berlin, Heidelberg, doi:10.1007/
978-3-662-03204-6.

Peyré, G. (2011), The numerical tours of signal processing - advanced computational signal
and image processing, IEEE Comput. Sci. Eng., 13(4), 94–97, doi:10.1109/MCSE.2011.71.

Primeau, F. (1998), Multiple equilibria and low-frequency variability of the wind-driven
ocean circulation, Ph.D. thesis, Massachusetts Institute of Technology and Woods Hole
Oceanographic Institution.

Scott, R. B. (1998), Geostrophic energetics and the small viscosity behaviour of an idealized
ocean circulation model, Ph.D. thesis, McGill University Libraries.

77



Bibliography

Selten, F. M. (1995), An e�cient description of the dynamics of barotropic �ow, J. Atmos.
Sci., 52(7), p915–936, doi:10.1175/1520-0469(1995)052<0915:AEDOTD>2.0.CO;2.

Sheremet, V. A., G. R. Ierley, and V. M. Kamenkovich (1997), Eigenanalysis of the two-
dimensional wind-driven ocean circulation problem, J. Mar. Res., 55(1), p57–92, doi:
doi:10.1357/0022240973224463.

Speich, S., H. Dijkstra, and M. Ghil (1995), Successive bifurcations in a shallow-water model
applied to the wind-driven ocean circulation, Nonlin. Proc. Geophys., 2, p241–268, doi:
10.5194/npg-2-241-1995.

Stommel, H. (1948), The westward intensi�cation of wind-driven ocean currents, Eos. Trans.
AGU, 29(2), p202–206, doi:10.1029/TR029i002p00202.

Sura, P., and C. Penland (2002), Sensitivity of a double-gyre ocean model to details of
stochastic forcing, Ocean. Model., 4(3), p327–345, doi:10.1016/S1463-5003(02)00008-2.

Sura, P., K. Fraedrich, and F. Lunkeit (2001), Regime transitions in a stochastically
forced double-gyre model, J. Phys. Oceanogr., 31(2), 411–426, doi:10.1175/1520-0485(2001)
031<0411:RTIASF>2.0.CO;2.

Thistleton, W. J., J. A. Marsh, K. Nelson, and C. Tsallis (2007), Generalized box–mÜller
method for generating q-gaussian random deviates, IEEE T. Inform. Theory, 53(12),
p4805–4810, doi:10.1109/TIT.2007.909173.

Tofallis, C. (2015), A better measure of relative prediction accuracy for model selection and
model estimation, J. Oper. Res. Soc., 66(8), p1352–1362, doi:10.1057/jors.2014.103.

Valdes, P., and B. Hoskins (1989), Linear stationary wave simulations of the time-mean
climatological �ow, J. Atmos. Sci., 46(16), p2509–2527, doi:10.1175/1520-0469(1989)
046<2509:LSWSOT>2.0.CO;2.

Vallis, G. K. (2019), Essentials of Atmospheric and Oceanic Dynamics, Cambridge University
Press, doi:10.1017/9781107588431.

Veronis, G. (1963), An analysis of wind-driven ocean circulation with a limited number
of fourier components, J. Atmos. Sci., 20(6), p577–593, doi:10.1175/1520-0469(1963)
020<0577:AAOWDO>2.0.CO;2.

Veronis, G. (1966), Wind-driven ocean circulation—part 2. numerical solutions of the non-
linear problem, Deep-Sea Res., 13(1), p31–55, doi:10.1016/0011-7471(66)90004-0.

Verron, J., and J.-H. Jo (1994), On the stability of wind-driven barotropic ocean circulations,
Fluid Dyn. Res., 14(1), p7–27, doi:10.1016/0169-5983(94)90019-1.

Villani, C. (2009), Optimal Transport: Old and New, Grundlehren der mathematischen
Wissenschaften, Springer Berlin Heidelberg.

78



Bibliography

Visbeck, M., H. Cullen, G. Krahmann, and N. Naik (1998), An ocean model’s response to
north atlantic oscillation-like wind forcing, Geophys. Res. Lett., 25(24), p4521–4524, doi:
10.1029/1998GL900162.

Visbeck, M., E. P. Chassignet, R. G. Curry, T. L. Delworth, R. R. Dickson, and
G. Krahmann (2003), The ocean’s response to north atlantic oscillation variability. in the
north atlantic oscillation: Climatic signi�cance and environmental impact, in Geophys.
Monogr. Ser., vol. 134, pp. p113–145, eds by J. W. Hurrell et al. AGU, Washington, D. C.,
doi:10.1029/134GM06.

Vissio, G. (2018), Statistical mechanical methods for parametrization in geophysical �uid
dynamics, Ph.D. thesis, MPI für Meteorologie, Hamburg, doi:10.17617/2.3012736.

Williams, P. D., T. W. N. Haine, and P. L. Read (2005), On the generation mechanisms
of short-scale unbalanced modes in rotating two-layer �ows with vertical shear, J. Fluid
Mech., 528, p1–22, doi:10.1017/S0022112004002873.

Williams, P. D., T. W. N. Haine, and P. L. Read (2008), Inertia–gravity waves emitted from
balanced �ow: Observations, properties, and consequences, J. Atmos. Sci., 65(11), 3543–
3556, doi:10.1175/2008JAS2480.1.

Winton, M., and E. S. Sarachik (1993), Thermohaline oscillations induced by strong steady
salinity forcing of ocean general circulation models, J. Phys. Oceanogr., 23(7), p1389–1410,
doi:10.1175/1520-0485(1993)023<1389:TOIBSS>2.0.CO;2.

Wunsch, C. (2002), What is the thermohaline circulation?, Science, 298(5596), p1179–1181,
doi:10.1126/science.1079329.

Zacharuk, M., S. I. Dolaptchiev, U. Achatz, and I. Timofeyev (2018), Stochastic subgrid-
scale parametrization for one-dimensional shallow-water dynamics using stochastic mode
reduction, Q J R Meteorol Soc., 144(715), p1975–1990, doi:10.1002/qj.3396.

79



Bibliography

80



Acknowledgements

First of all I would like to thank to Thomas Frisius,
Gualtiero Badin and Christian Franzke, for your
patience, your good advice and being there when I
needed it the most, I will be always grateful. Special
thanks to Berit and Ingo, without whom this thesis
would have never been possible, your support made the
di�erence. Gracias to Frau Kutlu, for always having
ready a smile. Thanks to Prof. Dr. Johanna Baehr
for being part of my committee. MC, thanks for
your proofreading and comments. And thanks to you
Janine, for always being part of my team. To my family,
my friends and to everybody who made me feel at home
in a foreign land. Thanks to you all.

81



Versicherung an Eides statt

Hiermit versichere ich an Eides statt, dass ich die vorliegende Dissertation mit dem Titel:
„On the Empirical Orthogonal Functions Representation of the Ocean Circulation“
selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel — insbesondere
keine im Quellenverzeichnis nicht benannten Internet-Quellen — benutzt habe. Alle
Stellen, die wörtlich oder sinngemäß aus Verö�entlichungen entnommen wurden, sind als
solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Dissertation oder Teile
davon vorher weder im In- noch im Ausland in einem anderen Prüfungsverfahren
eingereicht habe und die eingereichte schriftliche Fassung der auf dem elektronischen
Speichermedium entspricht.

Hamburg, 06.04.2020 Jairo Segura


	Inhaltsverzeichnis
	Zusammenfassung
	Abstract
	Introduction
	Variability in the ocean
	Modes of variability
	The North Atlantic oscillation (NAO)

	Wind driven circulation and ocean dynamics in midlatitudes
	Research questions and outline

	Spectral ocean models and EOFs
	The barotropic model: a homogeneous model of the ocean
	Empirical orthogonal functions (EOFs)
	Empirical-based correction to the EOFs


	The model and the experimental setup
	Description of the model
	Structure of the wind forcing and the anomaly
	Experimental setup
	A toy ocean model
	Idealized ocean models of higher complexity
	Higher complexity with additional anomalous forcing
	Altered atmospheric conditions
	Variations in Reynolds number



	EOF of wind driven ocean models
	A toy ocean model
	EOF representation

	Idealized ocean models of higher complexity
	EOF analysis

	Higher complexity models with additional anomalous forcing
	EOF reconstruction
	Different atmospheric conditions
	Reynolds number variation


	Conclusions
	Appendices
	Optimal assignment and Wasserstein metric
	Bibliography
	Acknowledgements

