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Abstract

Automatic Speech Recognition (ASR) is often employed for applications like

dictation, where the aim is to cover a broad range of vocabularies. Also, ASR is

a central interface for humans to communicate or control a system. Those sys-

tems can perform a fixed set of actions and follow a well-defined goal. Audio is

recorded using a microphone, the ASR system produces text hypotheses, and a

natural language processing (NLP) system derives machine-readable represen-

tations from text. These representations are afterwards employed to instruct

the system to perform a defined action to achieve a goal. At a first glance,

this approach of orchestrating a unidirectional processing pipeline appears to

be reasonable and is often followed in practice. In this thesis, we demonstrate,

that there are better approaches to address this kind of tasks and present a

more suitable one.

A well-known issue of ASR systems is that a growing vocabulary of

words that could be recognized by the system leads to a higher word error rate

(WER). For applications like dictation, this issue is hard to address, but for the

before-mentioned problem of controlling a system, we are able to address it.

Usually, the number of goals and possible actions of the system is limited; the

possible text instructions are also limited. This leads to a smaller vocabulary,

which improves the performance of the ASR system. Another limitation of the

unidirectional processing chain approach is the assumption of NLP systems to

receive correct text input. Although these systems are trained on (clean) text,

it is still a challenge to recognize a correct natural language representation

from it. As the processed text is produced by an ASR system, it is possibly

incorrect, making it hard for the NLP system to recognize the correct meaning

from incorrect text. If afterwards a spoken command cannot be executed by

the system, it is rejected, and the user needs to repeat the instruction.

In this thesis, we present a self-trained ASR system that performs better

than Google’s cloud-based ASR on a benchmark data set. We also define a
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novel and simple natural language representation called Semantic Logic Pred-

icates (SemaPreds). In our experiments, we show that we can successfully

recognize SemaPreds from speech input. The approaches we developed make

it possible to interpret SemaPreds , find and correct errors inside them, and

evaluate their plausibility regarding a given situation. We test our novel bidi-

rectional processing chain in a human-robot interaction scenario and show

that it works robustly and performs better than a unidirectional processing

pipeline. These results indicate that the novel representation and the bidi-

rectional processing chain can be useful for other speech-controlled system

scenarios.
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Abstract

Zusammenfassung

Automatische Spracherkennung wird häufig für Diktieranwendungen verwen-

det, welche ein großes Vokabular aufweisen. Außerdem ist die automatische

Spracherkennung eine Hauptschnittstelle, um mit einem System zu kommu-

nizieren oder es zu kontrollieren. Diese Systeme können einen festen Satz von

Aktionen ausführen und folgen einem wohldefinierten Ziel. Audiodaten werden

von einem Mikrofon aufgenommen, die Spracherkennung erzeugt Texthypothe-

sen und ein System zur natürlichen Sprachverarbeitung erkennt maschinenles-

bare Repräsentationen des Textes. Diese Repräsentationen werden danach

vom System genutzt, um eine definierte Aktion auszuführen und ein Ziel zu

erreichen. Auf den ersten Blick macht es Sinn, eine eindirektionale Verar-

beitungspipeline aufzubauen, dieser Ansatz wird häufig in der Praxis verfolgt.

In dieser Arbeit zeigen wir, dass es bessere Ansätze für diese Art von Aufgaben

gibt und präsentieren einen besser passenden Ansatz.

Ein wohlbekanntes Problem mit Spracherkennungssystemen ist, dass ein

größeres Vokabular zu einer höheren Wortfehlerrrate führt. Für Diktieranwen-

dungen ist dieses Problem schwer zu behandeln. Für die zuvor genannte An-

wendung des Kontrollierens eines Systems sind wir in der Lage, dieses Problem

zu behandeln. Normalerweise ist die Zahl der Ziele und möglichen Aktionen

für diese Systeme limitiert. Dadurch sind auch die möglichen Texteingaben

begrenzt. Dies führt zu einem kleineren Vokabular, was die Performanz eines

Spracherkennungssystems verbessert. Eine andere Limitierung der eindirek-

tionalen Vererbeitungspipeline ist die Annahme, dass korrekte Texteingaben

vorhanden sind. Obwohl diese Systeme auf sauberen Texteingaben trainiert

wurden, ist es immer noch eine Herausforderung korrekte Repräsentationen

wiederzuerkennen. Da aber der Eingabetext aus Spracherkennungssystemen

stammt, welcher möglicherweise inkorrekt ist, wird die Erkennung durch ein

natürlichsprachliches Verarbeitungssystem zusätzliche erschwert. Wenn ein

Befehl nicht ausgeführt werden kann, wird dieser zurückgewiesen und der Be-

nutzer muss seine Instruktion wiederholen.
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Abstract

In dieser Arbeit präsentieren wir eine selbsttrainiertes Spracherken-

nungssystem, welches auf einem Benchmark-Datensatz besser funktioniert als

Googles Spracherkennungssystem. Außerdem definieren wir eine neue und ein-

fache Repräsentation für natürliche Sprache, genannt Semantic Logic Predi-

cates (SemaPreds). In unseren Experimenten zeigen wir, wie SemaPreds aus

natürlicher Sprache erkannt werden können. Die entwickelten Ansätze können

SemaPreds verarbeiten, Fehler darin finden und diese korrigieren. Außer-

dem können sie die Plausibilität der SemaPreds in einer gegebenen Situa-

tion evaluieren. Wir testen unsere neue bidirektionale Verarbeitungskette in

einem Mensch-Computer-Interaktionsszenario und zeigen, dass sie robuster

und besser als eine eindirektionale Verarbeitungspipeline funktioniert. Unsere

Resultate zeigen, dass die neue Repräsentation und die bidrektionale Verar-

beitungskette nützlich für sprachgesteuerte Systemszenarien sind.
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Chapter 1

Introduction

1.1 Motivation

The processing in speech-controlled agents like robots is performed in a unidi-

rectional processing pipeline, leading from automatic speech recognition (ASR)

to command execution. This pipeline involves ASR, natural language pro-

cessing (NLP), natural language understanding (NLU), execution parameter

extraction and actuators like movable joints. A common and naive1 approach

to develop such a pipeline is the following: First, an ASR system is chosen.

Human-robot interaction (HRI) systems often choose Google’s cloud-based

ASR system, because it can be used as a blackbox model which does not re-

quire training and works out of the box (see Section 3.6). A disadvantage

is a high response time, as it requires an internet connection and the speech

processing is performed in the cloud. Also, these systems often do not allow

domain adaptation leading to the occurrence of out-of-domain words in the

ASR outputs. The next step of creating the pipeline is to choose an appro-

1In this case, a naive approach is an intuitive approach to tackle a problem, without
considering or possessing deeper knowledge about the problem, leading to a low performance
compared to other more informed approaches.
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Chapter 1. Introduction

priate NLP strategy. Many systems employ keyword spotting leading to a

limited flexibility and performance. Another strategy is using a more sophisti-

cated natural language representation like dependency trees or similar tree-like

structures. Nowadays, tree parsers achieve a high performance and provide a

more useful natural language representation compared to simple keywords.

Usually, these structures are trained on text input. Problems occur, when the

input to the parser is noisy or incorrect. This is the case, when the text input

is coming from an ASR system. As long as the text produced by the ASR

system contains errors, it is not possible to generate a correct tree and finally

execute the command. There are approaches to tackle this issue (see Section

3.7), but we consider them to be not suitable for real applications and argue

they only work in theory.

We developed different requirements how to tackle the mentioned issues

in the unidirectional processing pipeline. The first requirement is to provide

accessibility to the language models of the ASR system. This way, the language

model can be adapted to the domain, resulting in a smaller vocabulary. It was

already shown that a smaller vocabulary may result in a lower word error rate

(WER) (Twiefel et al., 2014). To reduce the response time of the ASR system,

we propose to train an acoustic model and replace the cloud-based ASR system

with a local one. Another requirement is a natural language representation

that can be recognized from noisy or incorrect input sentences. We consider

the repair mechanisms for dependency trees to be too limited and state that

we require a novel natural language representation. This novel representation

requires to be (partially) recognizable even when the input is incorrect. Also,

it requires to be correctable if parts of it are incorrect. The representation

needs to be interpretable by an interpreter and executable given a concrete

scenario, for example an HRI scenario.

In this work, we extend the known unidirectional processing pipeline

to a bidirectional processing chain (BPC). We present our own ASR system

called SlimSpeech, which we trained on free and public audio and text data.

2



1.1. Motivation

Its language models can be adapted to a domain. Additionally, we introduce

a novel postprocessing system that works within a domain and repairs ASR

outputs. The structures employed by the postprocessing system are called

Sentence Templates (STs). We omitted the idea of using dependency trees

or performing keyword spotting and define a novel and more suitable nat-

ural language representation for this kind of problem called Semantic Logic

Predicates (SemaPreds). We show how to successfully recognize SemaPreds

from ASR outputs. For this purpose, we developed the SemaPred Recognizer

(SPR) that is based on convolutional neural networks (CNNs). We show that

SemaPreds can be encoded using the logic programming language Answer Set

Programming (ASP), which is performed by the SemaPred Interpreter (SPI).

Additionally, we integrated the Semantic Evaluator (SE) that is able to mea-

sure the quality of the recognized SemaPreds and identify potentially incorrect

parts using a semantic evaluation process that compares the text input to the

recognized SemaPreds . This way, the unidirectional processing pipeline is

transformed to a bidirectional processing chain. We add another bidirectional

component to the processing chain called the Crossmodal Corrector (CC). It

introduces wildcard slots to the SemaPreds . These slots can be filled with more

plausible assignments and are determined by the logic system inside the SPI.

The CC employs the SE to identify potentially incorrect parts of the recog-

nized SemaPreds and replaces them with wildcards. Afterwards, it tries to put

plausible assignments to the wildcard slots. This way, the partially incorrect

SemaPreds may be repaired or the user can be informed about implausibilities.

We show that our BPC approach is suitable for domain-dependent sce-

narios. For this purpose, we chose the Blocks World scenario that contains a

discrete grid world and a robot arm. The robot is instructed to move differ-

ently colored objects around (cubes and pyramids). The Train Robots data

set comprises training and test data from this domain, including text instruc-

tions, tree-like annotations and scene descriptions. We extended the data set

by recording audio test data and annotated SemaPreds for the training and

test set. To test the behaviour of the system under noisy conditions, we also

3



Chapter 1. Introduction

created a noisy variant of the data set by adding artificial noise to the audio

data. The extended Train Robots data set is called Knowledge Technology

Train Robots (KTTR) and is used to show that our BPC approach performs

better than the unidirectional processing pipeline. For this purpose, we created

such a unidirectional processing pipeline using Google’s ASR system together

with our SPR and SPI. We also present a simulator that is able to display

scenes from the data set and that can be controlled using speech instructions.

The system was also implemented on a real robot; a user can instruct it to

move real cubes.

1.2 Research Questions

In our work, we focus on domains using ASR as a control, for example, HRI

scenarios. In these scenarios, a fast responding system is required. It is also

required to have control over the ASR system, which is not given for cloud-

based systems. This leads to the first research question:

Question 1: How is it possible to develop a local ASR system that

is usable in realtime and achieves similar performance as state-of-

the-art speech recognition models?

If the first question can be answered by presenting such a system, we

want to overcome the unidirectional processing pipeline approach of using a

black-box cloud-based ASR system together with an NLP system that can be

adapted to the domain. We do this by changing the strategy of using a black-

box system by adapting the now controllable and modifiable ASR system to

the domain, leading to the question:

Question 2: Are there better alternatives for speech applications

than taking a black-box ASR together with a domain-dependent

NLP system?

4



1.3. Novelty and Contribution to Knowledge

In our motivation, we stated that a well working ASR system with a low

WER may not provide a correct representation of an utterance. This error

is expected to be propagated through the NLP system leading to a partially

incorrect meaning representation which perhaps cannot be executed. Here,

we see a need for a novel meaning representation that might contain incorrect

parts that can be corrected and though commands can be executed, resulting

in the question:

Question 3: Is it possible to define a novel NLP representation that

can be corrected if parts of it are incorrect? Is the novel repre-

sentation suitable to be interpreted to compute concrete execution

parameters?

It is expected that the quality of sentences coming from ASR systems

is decreasing with an increase of noise inside the audio signal. It is especially

interesting to analyse the behaviour of our system under very high noise levels,

which may occur during extreme situations in real-world applications. We ask

the question:

Question 4: Is the developed system also working under very noisy

conditions?

1.3 Novelty and Contribution to Knowledge

In this work, we propose different novelties that we consider useful for other

researchers and real-world application engineers.

• We propose a novel processing strategy, the bidirectional processing

chain. It contains an ASR system, a novel natural language representa-

tion called SemaPreds and is able to robustly process speech utterances

in (HRI) domains by introducing a bidirectional repair system for speech

5



Chapter 1. Introduction

utterances.

• We present an ASR system that can be trained using local computing

power and freely available training data. The system is a smaller variant

of DeepSpeech 2. The components of the architecture are already con-

tained or similar to the original system. The lower number of the layers

leads to faster training and execution time.

• Two novel language models (Sentence Template Grammars and Sen-

tence Template N-Grams) are presented. The first one is able to learn

a grammar-based language model in an unsupervised way by present-

ing training sentences. The second one extends the model into a hybrid

system of a grammar and a statistical N-gram language model and is

especially useful as a post-processing system for cloud-based ASR.

• We define the novel natural language representation SemaPreds, which

possesses a low complexity and which is especially suitable for real-world

applications. SemaPreds can be corrected using the context, to be able

to handle possibly incorrect text coming from an ASR system.

• We present a novel CNN-based NLP model that is able to recognize

SemaPreds from a natural language sentence and that does not require

recurrent neural networks to handle sentences making it fast in execution

and training. This way, the model can be trained in domains with a low

size of training data.

• Another novelty is the SemaPred Interpreter that is able to generate

execution parameters from SemaPreds, making it useful for, for example,

HRI scenarios. We developed the concept of the interpreter, while the

implementation was performed by Tobergte (2017) during his Bachelor’s

thesis (under our supervision).

• We developed a novel Semantic Evaluation mechanism that is able to

check the quality of SemaPreds by providing a confidence value to each of

6



1.4. Structure of this Thesis

their parts. It is based on fastText representations and the Needleman-

Wunsch-Algorithm. This way, potentially incorrect parts within the

SemaPreds can be identified.

• The SemaPred Interpreter is extended to support wildcard slots within

SemaPreds. These slots are identified as potentially incorrect by the Se-

mantic Evaluator and refilled to find an assignment that is consistent

with the context. In our example scenario, an abstraction of a visual

scene is used, making it a Crossmodal Corrector that corrects hypothe-

ses coming from the speech modality using knowledge from the visual

abstraction. This system increases the robustness of the whole speech-

to-execution chain.

• For the example scenario, we present a novel simulator that is able actu-

ally to perform commands coming from a microphone. It is web–based

and can also be used to simulate other scenarios containing a robot arm.

• We also present a novel concrete HRI application using the NICO robot.

Our system was used to control the robot in a real-world scenario. This

system is a basis for further applications and research.

1.4 Structure of this Thesis

In this chapter, we presented the motivation of our work, derived research ques-

tions, and listed the novelties and contributions to knowledge of our work.

Chapter 2 contains the methods we use for our developed approaches. We

shortly describe the neural networks, algorithms, and word embeddings we

used for our models. We give an introduction to Answer Set Programming, a

declarative programming language used by our SemaPred Interpreter. Chapter

3 contains related work. The Blocks World scenario is introduced, which serves

as a basis for our example scenario. Also, we describe the Train Robots data

set that contains data of the Blocks World scenario. Additionally, we describe

7



Chapter 1. Introduction

an NLP system that was used as an inspiration and we describe the current

state-of-the-art in ASR. We present our previous work that is adapted in our

novel language models. Afterwards, we give an overview about related works

regarding speech-controlled HRI scenarios. Finally, we give an overview about

strategies for dependency parsing to handle ungrammatical text input, which is

a similar task to SemaPred recognition from speech input. Chapter 4 contains

all approaches we developed including the definition of the novel SemaPred

representation, the SemaPred Recognizer, our ASR system SlimSpeech, the

Sentence Template language models, the SemaPred Interpreter, the Semantic

Evaluator, the Crossmodal Corrector, the simulator and the real-world appli-

cation using the NICO robot. Chapter 5 describes the datasets we used in

our experiments. It contains the TIMIT Core Test Set, an ASR benchmark

test set used to measure the performance of ASR systems. It also contains the

Knowledge Technology Train Robots (KTTR) dataset that comprises clean

and noisy audio data, text and SemaPreds to measure the performance of the

whole system. Then, we give a short summary of the approaches evaluated

in our experiments. Chapter 5 also contains the experiments performed and

their results. Chapter 6 contains discussions and the conclusions taken from

the experiments and presents answers to the research questions asked in this

chapter. It also contains a summary of possible future work.

8



Chapter 2

Methodology

2.1 Introduction

In this chapter, we give an overview of the methods used for our presented

approaches. First, we give a brief description of Convolutional Neural Net-

works that we use for one of our natural language processing modules and

our acoustic model. Afterwards, Gated Recurrent Units are introduced, which

we employ for our acoustic model. Then, we described Connectionist Tempo-

ral Classification, a loss function utilized for sequence-to-sequence training of

neural networks, which is performed when training our acoustic model. There-

after, we describe Beam Search Decoding, which is used to decode the output

of our neural acoustic model, providing language model support. Next, we

introduce word embeddings, which are utilized as input representation for one

of our natural language processing modules and also for our Crossmodal Cor-

rector. After this, we give an overview of Answer Set Programming, a logic

programming language similar to Prolog. Our SemaPred Interpreter is based

on Answer Set Programming. Finally, we describe the Needleman-Wunsch

Algorithm, an alignment algorithm used by our Crossmodal Corrector.

9



Chapter 2. Methodology

2.2 Convolutional Neural Networks

For the proposed NLP and ASR system, we employ Convolutional Neural

Networks (CNNs) (LeCun et al., 1998) in different variants. CNNs contain

kernels of a given dimensionality, usually 1D, 2D, or 3D, which slide over the

input and learn local features on parts of it. For common CNNs, the learned

features are overlapping, which is achieved via “sliding” over the input. For 1D

convolution, the kernels are sliding over one dimension of a 2D input. Given

an input matrix of 5x10 and the convolution being performed over the first

dimension, a kernel with a height of 1,2,3,4,5 and a width of 10 is possible. If

choosing a height of 2, the output of the convolutional layer will be 4 features.

For the 2D convolution, the kernel width is smaller than the width of

the input, and the kernel is sliding over the two dimensions of the input. For

the given input matrix of size 5x10, a convolution with a kernel size of 2x2

would produce 4x9=36 features. The output features can be arranged in a 2D

feature map, keeping the position of the learned features in the same position

it was in the input. A convolutional layer can be followed by a Max Pooling

layer. Max Pooling layers take parts of the output feature map and choose the

maximum value in that area. This way, the network is forced to learn only

relevant features; others are not propagated to the next layer. A parameter for

the pool size has to be defined to indicate the size of the Max Pooling areas.

2.3 Gated Recurrent Units

For our ASR system, we employ Gated Recurrent Units (GRUs) (Cho et al.,

2014), which represent a simpler variant of the Long Short-Term Memory

(LSTM) (Hochreiter and Schmidhuber, 1997). GRUs are recurrent neural

networks (RNNs), which aim at sequential learning tasks. They are state-of-

the-art methods in these tasks. Figure 2.1 shows the GRU architecture.

10



2.3. Gated Recurrent Units

Figure 2.1: This figure shows the GRU architecture; image taken from Zhou
et al. (2016).

A GRU consists of GRU cells, where each cell contains an update gate

(zt) and a reset gate (rt), a hidden state (ht), which is also the output, an

input weight vector (Wh) and a hidden weight vector (Uh) for the new hidden

state. The update gate controls how much information of past time steps is

carried over to the next state. It also possesses input weights (Wz) and hidden

weights (Uz) and is calculated with:

zt = σg(Wzxt + Uzht−1) (2.1)

where xt is the input at time step t, and σg is an activation function providing

values between 0 and 1, e.g., the sigmoid function.

The reset gate controls how much of the past state (ht−1) is removed from

the memory and is calculated similarly using the reset gate input weights (Wr)

and the reset gate hidden weights (Ur):

rt = σg(Wrxt + Urht−1) (2.2)

Using the reset gate state (rt) a new state (h̃t) can be calculated:

11
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h̃t = σh(Whxt + rt � Uhht−1) (2.3)

where � is a Hadamard product (or element-wise product) and σh is an acti-

vation with values between -1 and 1, like the hyperbolic tangent.

The new state (h̃t) is used to calculate the new hidden state (ht):

ht = h̃t � zt + ht−1 � (1− zt) (2.4)

2.4 Connectionist Temporal Classification

RNNs are often used to perform sequence to sequence learning tasks. For

example, in ASR, the input data is chunked into frames, while the output

data may consist of characters or phonemes. In this case, a direct mapping

from input chunk to output character is not possible, as a character may span

over multiple chunks. The timescales are different in this case. A training

sample consists of an audio file and the corresponding text but misses the

exact content of each chunk of audio, an alignment is missing here. As there

are fewer characters than chunks in a sample, we label the rest of the chunks

with a blank label (-).

The idea now is to find a proper alignment of audio chunks and charac-

ters. To find this alignment, one could use a trained ASR system. However,

we want to train a new ASR system, so this is not an option. Instead, we

calculate all possible alignments by modulating all combinations of possible

characters as a Hidden Markov Model (HMM). The probabilities for differ-

ent combinations of outputs are summed up to get a score for the alignment.

The probabilities are calculated by feeding the input through a randomly ini-

tialized RNN. The calculated score is used as the propagated error to adapt
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the weights inside the network. This way, the network is forced to learn rele-

vant information by aligning the input to the output. Connectionist Temporal

Classification (CTC) was first introduced by Graves et al. (2006). We employ

CTC to train our RNN-based ASR system.

During decoding, the input is fed through the network. The out-

put of the network is a sequence of character distributions. The sim-

plest decoding method is taking the argmax of each timestep, for example,

--H-EEE-L-LL-OOO-. As a first processing step, characters spanning over

multiple chunks, which are represented by multiple characters (EEE, LL), are

reduced to one character (E, L). Also, all blank tokens are removed. In this

case --H-EEE-L-LL-OOO- is transformed into HELLO. This way of decoding

is called Best Path Decoding or Greedy Decoding and is the simplest decod-

ing variant. There is a more sophisticated decoding mechanism called Beam

Search Decoding that we describe in the next subsection.

2.5 Beam Search Decoding

As mentioned in Section 2.4, we use CTC to train our ASR system. The

output of the acoustic model, which is a sequence of character distributions,

can be decoded using a Greedy Decoder, which only chooses the most probable

character from each time step. It lacks information about spelling and lan-

guage rules. This issue can be addressed when employing a language model for

decoding the output of a neural ASR system. Those language models are usu-

ally statistical N-gram models. They are trained on a corpus of sentences by

calculating the probabilities for one word following another word. This variant

is called a bigram model. When two words are used to predict the next one,

this is called a trigram model and so on. The probabilities are calculated by

counting how often one word follows another word or two other words etc.

Afterwards, the counted numbers are normalized to produce a probability for

each word. Usually, these models use start and end tokens that mark the start
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and the end of an utterance. Start tokens can be used to predict the first word

of the utterance.

It is now possible to score the first part of the input sequence of character

probabilities against all the words following a start token. For each of these

words, the next possible words are used to be scored against the next part of

the input by performing a best-first search. Obviously, this results in a com-

binatorial explosion and is not practical in most applications. Instead, only

the most promising paths are kept. This is achieved by ordering the paths by

their probability and keeping the most probable ones, which is called a beam

search. That is why this decoder is called Beam Search Decoder (Hannun et al.,

2014b). It is possible that not the best path is selected when decoding is fin-

ished, because it may have been pruned before. The beamwidth parameter

defines how many paths are kept while decoding, the more paths, the higher

the chance of keeping the best path. The more paths are kept, the more com-

putational effort is required to decode the input. The beamwidth needs to be

chosen to deliver good results while not spending too much processing time;

it needs to be chosen depending on the application. Our ASR system has dif-

ferent variants, using a Greedy Decoder (described in the previous subsection)

or a Beam Search Decoder.

2.6 Word Embeddings

For NLP tasks, word embeddings are usually used as word representations,

especially for inputs of neural networks. Instead of encoding a word as a

one-hot vector representation, the embedding vector contains a distributed

representation with values between e.g., -1 and 1 in all slots of the vector.

To generate word embeddings, no labelled data is required; unlabelled text is

sufficient.

In this work, we employ skip-gram word embeddings, which are gener-
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ated by training a neural network model. The model consists of an input layer

receiving a one-hot encoded word vector. For generating the word vectors, the

number of different words in the corpus has to be determined, for example

10,000. The input layer is connected to a hidden layer with usually 300 neu-

rons. The hidden layer has a linear activation function and is connected to an

output layer with again e.g. 10,000 units. The model is trained by predicting

the context of a word by the word itself. For the sentence the traffic

light is green, one would generate the following training samples:

• (the, traffic)

• (traffic, the)

• (traffic, light)

• (light, traffic)

• (light, is)

• (is, light)

• (is, green)

• (green, is)

For this example, the window size is 1, meaning there is taken one word before

the input and one word after the input as a context word. The context words

for light are traffic and is. If the window size is larger, more context

words are taken for training.

The network is quite vast, possessing 10, 000 ∗ 300 + 300 ∗ 10, 000 =

6, 000, 000 weights. 10,000 words are considered to be a small vocabulary;

common word embeddings are often trained on 3,000,000 input words, making

the network hard to train. It is only possible in reasonable time, because of

three optimization steps. First, only a small amount of computations needs
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to be performed in the first part of the network. As the input representation

is one-hot encoded, 9,999 weights need to be multiplied by 0 leading to a 0-

activation, one needs only to compute the activation of weights connected to

the activated input word.

The second step is to remove words with low relevance from the context.

For example the word traffic contains more context information for the

word light than the word is. To determine if a word is relevant for the

context, the occurrence of each word is counted. This frequency is used as a

probability to randomly remove the word from the context while training a

sample. Even with using this technique, many output activations need to be

computed.

The third step to reduce the computational effort is called negative sam-

pling. Here, the aim is not to adjust all hidden-to-output weights, but only a

small portion of them. As the output is again a one-hot vector, the weights

connected to the activated output are adjusted. Then, only a small portion of

negative samples is selected, which means outputs that are there for the given

input training sample. The words are again chosen using their frequency in the

corpus. A high frequency in the corpus is considered to be more relevant. The

negative samples are selected using random sampling based on their occurrence

probability. Instead of computing 3,000,000 weights (for 10,000 outputs), one

could calculate 3,000 (for 10 outputs). For commonly used corpora, the vo-

cabulary size is even larger (3,000,000 words), so the mentioned tricks are the

only way to train the network.

After training, the input and output layers are dropped; only the hidden

weights are kept. They contain a matrix of 10,000x300 or 10,000 vectors of

size 300. These vectors are the word embeddings. The described type of word

embeddings is referred to as Word2Vec (Mikolov et al., 2013b,a). For the

presented work we employ an extension called fastText (Bojanowski et al.,

2017). Often, rare words are modelled badly or not at all due to their rare

occurrence. For this reason, fastText also learns subword embeddings that can
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be used to construct the word embeddings for rare and unknown words. For

example, the word traffic is split to the subwords <tr, tra,raf, aff,

ffi, fic and ic>, and also the word <traffic> itself. These subwords are

then taken to train the model. Word embeddings can be constructed from the

subword embeddings afterwards.

2.7 Answer Set Programming

To be able to interpret predicate structures, we choose a logic programming

paradigm, as language predicates can be transferred to logic predicates. As

a method, we chose Answer Set Programming (ASP) (Lifschitz, 1999; Baral,

2003), a declarative language similar to Prolog. One of the differences between

Prolog and ASP is the execution order, Prolog’s statements are executed in the

order they are listed, ASP is independent of this order. Logic predicates are a

well-fitting representation, as parts of a predicate description can be removed

or changed while keeping the whole description valid or at least syntactically

correct. ASP consists of facts, rules, and integrity constraints. ASP facts con-

sist of a predicate describing arguments and evaluate to true. The following

predicates describe the weather and the sun being nice today:

Listing 1 Two facts in ASP.
1 nice(weather,today).
2 nice(sun,today).

ASP rules consist of a head and a body. When a rule head is evaluated,

the rule body needs to be evaluated. A rule is true if all elements in the rule

body are true. The following rule defines a day to be a good day if there are

nice weather and sun: This rule can be used in different ways. When asking for

goodday(Day), ASP will list all days that have nice weather and sun. When

asking for goodday(today), the answer will be true. Also, ASP can be

used to validate commands and to find execution parameters. The difference is
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Listing 2 A rule in ASP.
1 goodday(Day) :- nice(weather,Day), nice(sun,Day).

that arguments with lower case letters are used as constants, while arguments

starting with capital letters are interpreted as variables. The rule body can

also be used to perform basic calculations. Rules can also be used to create

conditions. For example, a day is always considered as good if the weather is

nice, but if there is no nice sun, it is not a good day:

Listing 3 A condition in ASP.
1 goodday(Day) :- nice(weather,Day),
2 #false: not nice(sun,Day).

Another kind of description is integrity constraints. They consist of a

rule without head and are used to form a consistent world. For example, the

following integrity constraint makes sure that a day cannot have nice and bad

weather at the same time:

Listing 4 An integrity constraint in ASP.
1 :- nice(weather,Day), not nice(weather,Day).

The described tools of ASP can now be used to form a scenario and

find concrete execution parameters from commands. In this work, we use the

clingo framework (Gebser et al., 2011) to interpret our ASP description.

2.8 Needleman-Wunsch Algorithm

The Needleman-Wunsch Algorithm (Needleman and Wunsch, 1970) is used

to calculate an alignment of two sequences having a different length. It is
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possible to use a custom similarity score function that scores the elements of

the sequence. Also, it is possible to define a custom gap cost function. The

algorithm is defined as follows:

M(0, 0) = 0 (2.5)

M(i, 0) = M(i− 1, 0) + f(i), 1 ≤ i ≤ m (2.6)

M(0, j) = M(0, j − 1) + f(i), 1 ≤ j ≤ n (2.7)

M(i, j) = max


M(i− 1, j − 1) + w(ai, bj)

max1≤k≤i{M(i− k, j) + f(k)}

max1≤l≤j{M(i, j − l) + f(l)}

 , 1 ≤ i ≤ m, 1 ≤ j ≤ n

(2.8)

with:
• a, b: the sequences to be aligned,

• m,n: the length of a and b

• M(i, j): the maximum similarity score of a prefix of a ending at i and a

prefix of b ending at j

• w(c, d): similarity score function

• f : gap cost function

The output of the algorithm is created by taking the number in M(i, j)

which represents the score of the alignment. Also, it produces an alignment

of the two sequences. The idea of the algorithm is to provide an extension of

the Levenshtein distance presented in Section 3.5 to support a custom similar-

ity score function. We employ the Needleman-Wunsch Algorithm to perform

semantic evaluation between input and output.
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Related Work

3.1 Introduction

In this chapter, we give an overview of the methods used for related work

that inspired our approaches or with which we compare our approaches. First,

we described the Blocks World scenario, a grid world containing cubes and

prisms, together with a data set about this scenario. The presented data set is

extended and used for our experiments. A detailed description of our novel ex-

tended data set can be found in the experiments section (5.2.2). Afterwards, a

related work that employs Convolutional Neural Networks to perform natural

language processing is introduced, which was an inspiration for our SemaPred

Recognizer. Next, we give a brief introduction to cloud-based speech recogni-

tion, namely the service offered by Google, with which we compare our ASR

system. Thereafter, we present Phonemic Postprocessing, one of our previous

works. Its mechanism is adapted to be employed by our Sentence Templates

language models. The following section contains information about approaches

using ASR in HRI scenarios. Finally, we present approaches containing depen-

dency parsing on ungrammatical text, which is a similar task to recognizing

SemaPreds on ungrammatical text like the output of ASR systems.
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3.2 The Blocks World Scenario and the Train

Robots Data Set

The models we present in this thesis are aimed at improving the ASR and NLP

performance in restricted domains. To test our models, we chose a domain

called Blocks World. It was originally described by Winograd (1972) in his

work about the NLU system SHRDLU. Winograd’s blocks world was adapted

by Dukes (2013a,b, 2014b) to develop a robot scenario in which NLP systems

like parsers can be tested by creating the Train Robots data set. The blocks

world consists of a grid containing 8*8*8 discrete positions. On the grid, there

may be differently shaped objects like cubes and pyramids, possessing different

colors. Next to the grid, there is a robot arm that is able to grasp the objects

and move them around on the grid. Figure 3.1 contains an example scene.

Figure 3.1: Example from the corpus. An example for a board scene before
(left board) and after (right board) the command: Move the red brick
on top of the blue brick.

The aim of Dukes’ work (Dukes, 2013a) was to provide a robust parser

and a spatial planner that is able to execute natural language command within

the mentioned blocks world. The natural language commands can be arbitrar-

ily complex and nested. The first step was to collect a data set containing

realistic natural language and a machine-readable and executable NLP rep-
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resentation. For this purpose, Dukes presented the Robot Control Language

(RCL). It consists of visual scenes as shown in Figure 3.1 and a natural lan-

guage command directed to the robot. The left scene is the initial scene;

the command describes the action performed by the robot arm to transition

into the subsequent scene shown on the right. The RCL annotations for the

command shown in Figure 3.1 is shown in Listing 5.

Listing 5 Definition of shapes
1 (event:
2 (action: move)
3 (entity:
4 (id: 1)
5 (color: red)
6 (type: cube)
7 (spatial-relation:
8 (relation: above)
9 (entity:

10 (color: blue)
11 (type: cube)))))

It consists of a hierarchical machine-readable structure describing the action

to be performed by the robot arm. At the leaves of the tree structure, one

can find prototype words like cube, while the input word was brick. Each

word connected to a leaf is transformed into its prototype word. The data set

contains a fixed set of prototype words. The structure can then be interpreted

by a spatial planner to perform the action. The scenes are annotated using

XML structures (Listing 6). The RCL commands possess a tree-like structure.

They can be used to derive a graphical tree which is depicted in Figure 3.2.

The data set consists of 1,000 scenes, each containing two layouts.

Crowdsourcing was used to collect the natural language commands. For this

purpose, a website1 was installed. On the website, users could take part in

a competitive online game. The players were presented scenes and had to

1http://www.trainrobots.com
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Listing 6 XML structure describing the layout of the left scene of Figure 3.1
<layout id="1">

<gripper position="7 5 7" open="true" />
<shapes>

<cube color="red" position="3 3 0" />
<cube color="blue" position="5 3 0" />

</shapes>
</layout>

move the red brick on top of the blue brick

move     red cube    above   the blue cube

event

action entity destination

  color type  spatial­relation

relation       entity

Color type

Figure 3.2: The tree representation of the RCL command shown in Listing 5.

provide natural language commands describing the scenes. The players were

scored by other players providing a score between 1 and 5 measuring the qual-

ity and correctness of the generated commands. This way, 10,000 commands

have been collected. 3,409 commands were usable and annotated manually

using RCL annotations. Other commands contained errors produced by the

users like confusing images, perspectives or providing spam commands. As

the commands were collected using online forms, they contained many gram-

matical and spelling errors and did not represent a realistic transcription for

spoken commands.

To evaluate our approaches, we extended the data set by correcting

grammatical and spelling errors and recorded audio data. We also reanno-
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tated the data using a novel representation, which is presented later in this

thesis. There are different publications describing the Train Robots data set

(Dukes, 2013a,b). It was used within an open NLP challenge called SemEval

2014 Task 6 (Dukes, 2014b). We also presented an approach using the original

data, which is not described in this thesis (Twiefel et al., 2016b). Also, Dukes

presented an approach, which used a different version of the data set (Dukes,

2014a) and therefore cannot be compared to the other approaches. The data

set is available on the website of SemEval 2014, Task 62.

3.3 Sentence Classification using Convolutional

Neural Networks

NLP tasks often contain classification and labelling tasks. Usually, classifi-

cation tasks differentiate between multiple classes. Our work of recognizing

SemaPreds in a restricted domain corpus is comparable to multiclass classifi-

cation. The work of Kim (2014) describes a sentence classification task where

a whole sentence has to be recognized, for example, as positive or negative.

Kim employs CNNs for this task. Input sentences are transformed into word

embedding sequences. As sentences are of arbitrary length, and CNNs work

on fixed-length vectors, a maximum length is defined, and each input sequence

is padded to reach this length. The first layer consists of convolutional layers

with different filter sizes. Then, the filters are concatenated, and a Max-over-

Time Pooling (Collobert et al., 2011) is performed, which means that the

maximum activation for a filter over the whole sequence is kept, and the other

activations are dropped. This layer is followed by a dense layer with softmax

activation containing the class labels for the classification task. Our presented

NLP approach is inspired by the work of Kim (2014).

2http://alt.qcri.org/semeval2014/task6/index.php?id=data-and-tools
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3.4 Cloud-based Speech Recognition

Speech recognition systems like Google Speech Recognition (Sak et al., 2015,

2014; Sainath et al., 2015) or Baidu’s Deep Speech 2 Amodei et al. (2015)

employ a deep Long Short-Term Memory (LSTM) (Hochreiter and Schmidhu-

ber, 1997) together with Connectionist Temporal Classification (CTC) (Graves

et al., 2006). LSTMs are able to learn long-range dependencies inside a se-

quence, compared to N-gram Hidden Markov Models (HMM), which are only

able to model the local context. Frames of audio data are taken as input and

trained to produce, e.g., phones, letters, or words. The problem of the differ-

ent timescales between acoustic frames and labels is solved using CTC, which

introduces a blank label to fill the gaps and performs an alignment between

the two sequences. The outputs are postprocessed by a 5-gram statistical lan-

guage model both for Google’s and Baidu’s ASR. For our experiments, we use

the free web API3 of Google’s Search by Voice. As there is no information

about the exact architecture behind the web API, we can only expect that it

is the architecture just mentioned.

3.5 Phonemic Postprocessing

Our previous work (Twiefel et al., 2014) suggests that domain knowledge helps

in improving the results of deep-neural-network-based (DNN) speech recogni-

tion by postprocessing them using this knowledge. Traditional speech recogni-

tion commonly used before the success of Deep Learning (LeCun et al., 2015)

in general consists of an acoustic model that generates phonemes from acous-

tic data and a language model that generates words based on a grammar or

a statistical n-gram model. The phoneme representations of these words are

then scored against the phoneme sequences generated by the acoustic model

to produce a probabilistic word sequence hypothesis. As described in Section

3https://pypi.org/project/SpeechRecognition/
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3.4, state-of-the-art ASR can also generate an intermediate representation like

phonemes. However, the acoustic model and the language model can also both

be included in a large DNN, and phonemes are not necessary in this case as

words are being generated directly.

The acoustic models used for traditional speech recognition are based on

Mel Frequency Cepstral Coefficients (MFCCs) (Mermelstein, 1976), which are

used to extract human speech from the audio signal. The acoustic model is

trained on MFCC features derived from speech and the corresponding phoneme

sequences.

A phoneme is the smallest meaning-distinguishing unit to express a word.

Compared to text, a character would be the smallest meaning-distinguishing

unit. Phonemes can be uttered using different phones or speech sounds, which

makes phonemes a superclass of phones. Comparing this to characters again, a

character can be expressed using different fonts. By this definition, a phoneme

is speaker-independent, making it a suitable intermediate representation that

can be used for scoring. We hypothesize that a phoneme is also spoken the

same way independently from its domain, meaning phonemes are spoken the

same way in a kitchen, football or Human-Robot Interaction context, which

would make acoustic modeling domain-independent, and acoustic models could

be transferred from one domain to another.

Another hypothesis is that language models are domain-dependent, as

the training data for a model should follow the same distribution as the data

of the environment it is used in, and this is only true if a general-purpose

model is used in domains which are a subset of a general-purpose domain. If a

general-purpose language model is used only inside a specific domain that does

not follow the same distribution as the general-purpose domain, the language

model is not the optimal one for this domain.

For this reason, we proposed a unified ASR system that consists of a large

and well-trained DNN-based domain-independent acoustic model combined
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with a domain-specific language model (Twiefel et al., 2014). Due to the

nature of DNNs to require large amounts of data and the lack of this data

in small domains, we recommended using traditional language modeling like

statistical n-gram models and grammars.

One of the approaches is based on the traditional open-source ASR sys-

tem Sphinx-4 (Lamere et al., 2003), which uses HMMs for acoustic modeling

and a Viterbi decoder to find the best word sequence hypothesis. As the

acoustic model relies on HMMs and is trained on a limited amount of labeled

acoustic data compared to the massive amount of data companies like Google

are able to generate and process, the acoustic model is the weakness of the

Sphinx-4 system. The scoring is performed on the phoneme level, which offers

the possibility to remove the acoustic model from Sphinx and directly feed in

phoneme sequences. Instead of training our own domain-independent acoustic

model, we employ the massive acoustic models of e.g. Google by delegating

the acoustic processing to Google’s Search by Voice. The unified system is

called DOCKS (Twiefel et al., 2014) and supports language models in the

form of grammars (DOCKS Grammar) or statistical bigram models (DOCKS

Bigram).

Google’s hypothesis for the reference text ‘addressed mail’ could

be something similar to ‘a dressed male’, which is completely incor-

rect on the word level. On the phoneme level, both grapheme sequences

can be represented as ‘AH D R EH S T M EY L’. We employ the train-

able grapheme-to-phoneme converter SequiturG2P (Bisani and Ney, 2008) and

train it on CMUdict 0.7a 4 to be able to generate a phoneme sequence for any

grapheme sequence coming from Google’s ASR. These phoneme sequences are

then fed to our postprocessing system. We showed that this principle works

better than using the given acoustic models of Sphinx-4 (Twiefel et al., 2014).

Another approach contained in the DOCKS system is called DOCKS

4http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Sentencelist. If a list of all possible sentences that can be uttered in a restricted

domain is known beforehand, this restricted but robust approach can be used.

The approach is based on the Levenshtein distance (Levenshtein, 1966), which

is a standard method to calculate a distance score between two sequences a

and b, with i and j being the recursively processed indices of the sequences:

La,b(i, j) =



max(i, j) if min(i, j) = 0,

min


La,b(i− 1, j) + 1

La,b(i, j − 1) + 1 otherwise.

La,b(i− 1, j − 1) + 1(ai 6=bj)

(3.1)

We convert the ten best hypotheses from Google’s ASR to phoneme sequences

and do the same for the list of expectable sentences. Then, a normalized

Levenshtein distance is calculated over all ten best phoneme sequences (H)

against all phoneme sequences of the sentence list (S):

λ = argmin Lhk,sl(|hk|, |sl|) (3.2)

where L is the Levenshtein distance. The confidence value was computed as

γA = max(0, 1− Lhk,sl(|hk|, |sl|)
|sl|

) (3.3)

with hk ∈ H (set of the ten best hypotheses) and sl ∈ S (set of reference

sentences) both in phonemic representations. As this approach is the most

restricted one, it performed best (WER around 0%) if all spoken sentences

are known in advance (Twiefel et al., 2014). The method of rescoring ASR

hypotheses on phoneme level using the Levenshtein distance is called Phonemic

Levenshtein Scoring and employed by the language models presented in this

thesis.
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3.6 Speech and Language Processing in

Human-Robot Interaction Scenarios

In this section, we describe related approaches using ASR in human-robot in-

teraction (HRI) scenarios. Bastianelli et al. (2014) present a related work in the

HRI domain. It consists of a processing pipeline containing a general-purpose

ASR (Google Android). The next step is to perform syntactic parsing with

a general-purpose parser. The following steps are frame prediction, boundary

detection, argument classification and command generation. They measure

precision, recall and F1-score in different experiments, which seem to be quite

low (e.g. precision: 0.36; recall: 0.20; F1-score: 0.26 in one of experiment). A

realistic performance in form of accuracy is not provided, but we expect it to

be low.

Another approach is provided by Bastianelli et al. (2017). They present

a pipeline consisting of a general-purpose ASR (Google Android), a morpho-

syntactic analysis by creating a dependency graph, speech re-ranking, action

detection, full command recognition, action grounding and argument ground-

ing. Again, the performance is not evaluated regarding accuracy.

Other systems within the HRI domain employ simpler architectures like

the work of Pleva et al. (2017) who employ the Julius ASR system (Lee and

Kawahara, 2009) together with a two-word grammar-based language model.

The system does not contain any sophisticated natural language process-

ing (NLP) approach. Kennedy et al. (2017) employ different ASR systems

(Google, Microsoft, PocketSphinx) to communicate with a Nao robot. The

architecture is minimalistic, not containing any NLP systems. Manzi et al.

(2017) employ Google’s ASR to navigate a robot without further NLP pro-

cessing. Fakhruldeen et al. (2016) use the declarative programming language

Prolog to instruct a robot. They connected a not-mentioned ASR system to

provide the input; but did not measure the performance of the system.
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All mentioned approaches were not evaluated regarding accuracy. We do

not believe that these approaches perform well in practice, especially because

they lack a strategy to handle ungrammatical inputs like the text outputs of

ASR systems.

3.7 Dependency Parsing on Ungrammatical

Text

This section contains approaches for dependency parsers to handle inputs com-

ing from ASR systems or other ungrammatical text inputs. There are different

approaches concentrating on handling text coming from ASR systems that are

processed by dependency parsers. The approach of Yoshikawa et al. (2016)

introduces an error label to the tree. It is trained by matching gold stan-

dard training trees with trees generated from ASR output. The mismatches

are labeled and the parser learns to handle the errors produced by the ASR

system on the training data. The approach is not evaluated regarding accu-

racy and we expect that it may not work in practice. Bechet et al. (2014)

adapt a syntactic parser to handle errors produced by an ASR system. There

are no details mentioned about the ASR system and the system is not eval-

uated regarding accuracy making it not possible to determine the usefulness

for robot applications. Honnibal and Johnson (2014) present a dependency

parser able to handle disfluency in the text. They are able to successfully

correct dependency trees that are created on incorrect data. We do not con-

sider this approach to be capable of correcting ASR errors, because disfluent

sentences contain the correct information while sentences from ASR systems

may not. Sakaguchi et al. (2017) present a dependency parser that is able to

handle ungrammatical text input. The system may be potentially useful when

connected to an ASR system. It is not clear to which degree the system can

handle ungrammatical input.
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The approaches presented in this section provide strategies to handle

ungrammatical text input. We believe that it is also important to differentiate

between different sources leading to this ungrammaticality. Parsers able to

handle disfluency are not suitable, as disfluent utterances contain the needed

information, ASR outputs may not. The only strategy that seems to be more

useful is the one of Yoshikawa et al. (2016). The problem here is, that it needs

learn the type of errors produced by an ASR system. We do not believe, that

it is possible to learn all different kinds of errors an ASR system may commit,

but it may be useful to correct a portion of the errors.
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Chapter 4

Novel Approaches Developed in

this Thesis

4.1 Introduction

In this section, we present the novel approaches we developed. We designed a

processing chain from audio data coming from a microphone to a simulated or

real robot performing instructions uttered by a user. To be able to achieve this

goal, we developed a novel machine-readable language representation called

SemaPreds that we describe in the first subsection. These SemaPreds can be

recognized from natural language sentences using our SemaPred Recognizer

depicted in the following subsection. Next, we introduce our ASR system

called SlimSpeech. Thereafter, we describe our external language model called

Sentence Templates. Afterwards, we introduce our SemaPred Interpreter that

is able to process the recognized SemaPreds and generate concrete execution

parameters for the simulator or robot. A benefit of our novel SemaPred repre-

sentation is that its quality can be evaluated. For this purpose, we developed

the Semantic Evaluator presented in the following subsection. It is employed
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by our Crossmodal Corrector, found in the following subsection, which uses

this information to revise incorrect parts using a (simulated) visual modality.

The Crossmodal Corrector also uses the SemaPred Interpreter to generate

revised execution parameters. Finally, we describe our simulator and a real-

world robot application that employs the generated execution parameters to

perform actions.

4.2 Semantic Logic Predicate Representation

In this section, we describe our novel natural language representation called

Semantic Logic Predicates (SemaPreds). One strategy to represent natural

language in speech-controlled scenarios like human-robot interaction (HRI)

scenarios is using keywords. These kinds of representation is limited and only

suitable for simple scenarios. Another strategy is to recognize tree-like struc-

tures like dependency trees (see Section 3.6 and 3.7), or RCL trees (see Section

3.2). Dependency parsers are trained on clean text data and there are only

limited strategies to handle ungrammatical text input like text coming from

ASR systems (see Section 3.7).

Our strategy is developing a novel representation that can be validated

for correctness. If a sentence had been recognized wrongly by the ASR system,

the output of the NLP model would be wrong in most of the cases. To simplify

the correction of the NLP output, the novel structure should be separable in

valid and invalid parts. For this purpose, the wrong parts should be removable

to check the validity of the rest of the structure. We chose logic predicates

as a suitable representation. Logic predicates can be validated using logic

programming languages like Prolog and Answer Set Programming (ASP). This

is only possible to a certain degree when operating in the general-purpose

domain. As our presented ASR system operates in restricted domains (Twiefel

et al., 2014) , the connected NLP system will also work in restricted domains

For our given HRI scenario, which contains robot instructions in a grid world,
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we define three different kinds of logic predicates representing information of

natural language instructions, namely actions, attributes, and relations. The

following example shows a simple instruction and its corresponding action

predicate:

move the prism on the cube
• move(prism, on, cube)

Another example could be:

put the pyramid on top of the box
• put(pyramid, top, box)

Both sentences possess the same information. We improve the quality of our

training data by reducing the number of possible labels. For this purpose,

words having the same meaning are clustered and replaced by a semantic

prototype word. The semantic representation of both sentences is:

• move(prism, above, cube)

To summarize, an action has the signature:

• action(entity, relation, entity)

Another predicate type is attributes. These may contain colors or other prop-

erties of an entity. An example containing attributes is the following:

put the red pyramid on top of the blue box
• move(prism, above, cube)

• red(prism)

• blue(cube)

The signature of an attribute predicate is:

• attribute(entity)
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A problem arises when a sentence contains objects of the same type, like:

put the red box on top of the blue box
• move(cube, above, cube)

• red(cube)

• blue(cube)

It is not possible to distinguish the two cubes. For this purpose, we introduce

indices for the different entities:

• move(cube1, above, cube2)

• red(cube1)

• blue(cube2)

The indices occur in the order of corresponding words of the original sentence.

Another predicate type is the relation predicate. It describes the relation

between two entities. The following example contains a relation predicate:

put the red box on top of the blue box that is in the

corner

• move(cube1, above, cube2)

• red(cube1)

• blue(cube2)

• is(cube2, above, corner3)

The signature of a relation predicates is:

• is(entity, relation, entity)
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It is also possible to use multiple actions, relations, and attributes. A complex

example is the following:

grab the red pyramid located on the blue box in the bottom

left corner and put it on top of the blue box that is on top

of the blue brick that is next to the white pyramid

• take(prism1, above, cube2)

• is(cube2, above, corner3)

• red(prism1)

• blue(cube2)

• back(corner3)

• left(corner3)

• drop(prism1, above, cube4)

• is(cube4, nearest, prism5)

• blue(cube4)

• white(prism5)

SemaPreds can be annotated using a comma-separated value (CSV) represen-

tation. For this example, it would look like:

Listing 7 CSV representation of SemaPreds
1 take, prism_1, above, cube_2
2 is, cube_2, above, corner_3
3 red, prism_1, ,
4 blue, cube_2, ,
5 back, corner_3, ,
6 left, corner_3, ,
7 drop, prims_1, above, cube_4
8 is, cube_4, nearest, prism_5
9 blue, cube_4, ,

10 white, prism_5

To summarize, the representation uses semantic prototype words to represent

words of a sentence in a machine-readable form. The form consists of a logic
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predicate representation. For this reason, we refer to the novel representation

as Semantic Logic Predicates or SemaPreds. The limitations of the approach

need to be evaluated. So far, we tested to annotate data in one domain, but

we believe that this is also possible in other domains. Dependency parsers

may not be able to recognize SemaPreds , as there is no direct link between

the slots of a SemaPred and the words of a sentence.

4.3 Semantic Logic Predicate Recognizer

In this section, we describe our method to learn SemaPreds in a restricted

domain. For NLP, the method of choice is usually a recurrent neural network

(RNN), often a Long Short-Term Memory (LSTM). As RNNs require a huge

amount of training data, and there is a lack of training data in restricted

domains, we chose an alternative to address this issue. We employ a convo-

lutional neural network (CNN), which requires less training data and which

was already successfully applied for sentence classification by Kim (2014) (see

Section 3.3) and the architecture is depicted in Figure 4.1.

As CNNs operate on vectors, we need to convert sentences to a fixed-

length representation. We do this by defining a maximum length of processable

words (40 in this case). The words are converted to word embeddings using

fastText (Bojanowski et al., 2017) (see Section 2.6). The dimensionality of

fastText embeddings is 300, so the input data has a shape of 40*300. To fill in

the missing vectors for a sentence shorter than 40 words, we employ padding

by adding padding vectors. Instead of adding a vector containing only zeros,

we add an embedding of a word not used in the data set (null in this case).

Like Kim (2014), we employ a one-dimensional convolution to the input.

The filter size varies from 1 to 13, meaning there are 300*1, 300*2, 300*3 ...

300*13 convolutional filters. This architecture adapts the idea of n-grams con-

taining relevant information by performing a kind of chunking similar to tra-
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ditional shallow parsing. In dependency parsing, a nested and often complex

dependency tree is constructed, which also contains long-range dependencies.

To imitate this behaviour, several convolutional layers could be stacked. As

deeper networks require more training data, we decided against this option.

Instead, we chose filter sizes from 1 to 13, which modulate both short- and

long-range dependencies.

Sentence

fastText Sequence

Max Pooling
(Size 5)

Dropout

1D Convolution
(Filter Sizes 1-13)

Concatenate

SemaPred
Recognizer

Output (sigmoid, Adam,
binary crossentropy)

Dense

Dropout

Figure 4.1: The architecture of our SemaPred Recognizer. The output of the
system is a vector that contains a list of encoded SemaPreds . The encoding is
explained later inside this section.

Consider the sentence: grab the red and blue box and put it

on the green block. For this sentence, a filter of size 6 that would be able

to learn the relation between grab and box would look like:

38



4.3. Semantic Logic Predicate Recognizer

• grab the red and blue box and put it on the green block

Short filter sizes should be used for short-range dependencies like entities

and their attributes and larger filter sizes should be used for long range depen-

dences like actions and their entities or nested sentences containing multiple

Relation SemaPreds. For the maximum filter size we chose 13, which is the

average length of a training sentence in our data set.

The one-dimensional convolution layer is followed by a Max Pooling

layer. Kim (2014) has chosen Max-over-Time Pooling (Collobert et al., 2011),

as the purpose of his work to classify a whole sentence. For our task, or-

dinary Max Pooling is useful, as relevant information needs to be extracted

from a sentence, and the same information may be relevant multiple times.

The following example shows this:

take the green block in the corner and put it on the green

block that is on the red block

In this case, the filter which learned green block is activated twice.

When using Max-over-Time Pooling, the information of one filter will get lost.

For this reason, we chose ordinary Max Pooling with a size of 5, which should

be a good number to prevent the overlay of the same activated filter within

the Max Pooling range. For regularization, Dropout is applied. Afterwards,

the activations of the different filters are concatenated to a vector. Again, a

dropout is applied. The concatenated activation vector is connected to the

output layer via a hidden dense layer with a Rectified Linear Unit (ReLU)

activation function. The parameters and the structure of the architecture is

shown in Listings 8 and 9.

The output layer encodes SemaPreds into a binary vector. For the en-

coding, the maximum number of actions, relations, entities, and attributes

must be defined. For the given data set, the maximum number of actions

per sentence is 2, the maximum number of relations is also 2, the maximum

39



Chapter 4. Novel Approaches Developed in this Thesis

number of entities is 5, and the maximum number of attributes is 20 (4 per

entity). As most SemaPreds representations possess less, the rest of the slots

has to be filled with an empty token (EEE). The following example illustrates

this:

• move(prism1, above, cube2)

• is(cube2, above, corner3)

• red(prism1)

• blue(cube2)

• back(corner3)

• left(corner3)

This SemaPred representation is created as follows to possess a coherent out-

put representation (Figure 4.2):

move(prism_1, above, cube_2)Action 1-2

Relation 1-2

Attribute 1-5

Attribute 6-10

Attribute 11-15

Attribute 16-20

Attribute 21-25

red(prism_1) EEE(prism_1) EEE(prism_1) EEE(prism_1) EEE(prism_1)

blue(cube_2) EEE(cube_2) EEE(cube_2) EEE(cube_2) EEE(cube_2)

back(corner_3) left(corner_3) EEE(corner_3) EEE(corner_3) EEE(corner_3)

EEE(EEE) EEE(EEE) EEE(EEE) EEE(EEE) EEE(EEE)

EEE(EEE) EEE(EEE) EEE(EEE) EEE(EEE) EEE(EEE)

EEE(EEE, EEE, EEE)

is(cube_2, above, corner_3) is(EEE, EEE, EEE)

Figure 4.2: The SemaPred template for an example command. The missing
SemaPreds and slots have to be filled with empty tokens (EEE). Relation
SemaPreds always start with the word is.

The dataset contains 3 different actions, 21 different attributes, 10 dif-

ferent entities and 9 different relations. For each category, an empty token

(EEE) is added, which represents an empty slot inside a predicate. To encode

an Action SemaPred, a vector is created by concatenating 4 localist vectors.

The first vector contains the action and has a size of 5 (4 actions+1 empty

40



4.3. Semantic Logic Predicate Recognizer

token). The second vector contains the index for the first entity. For the

dataset, the maximum number of entities is 5, so the vector has a size of 6 (5

indices+empty token). The third vector encodes the relation and has a size

of 10 (9 relations+empty token). The fourth vector contains the index of the

second entity and has the same shape as the second vector. Fig. 4.3 illustrates

the Action SemaPreds vector.

Action       Entity Index     Relation      Entity Index

    4             6                 10                 6

Figure 4.3: The schematic binary encoding of an Action SemaPred.

Relation SemaPreds are represented similarly. As they describe the relation-

ship between two entities, they are encoded exactly like an Action SemaPred,

excluding the action vector. Fig. 4.4 illustrates the Relation SemaPreds vec-

tor.

Entity Index     Relation      Entity Index

        6                 10                 6

Figure 4.4: The schematic binary encoding of a Relation SemaPred.

To encode an Attribute SemaPred, the process is different. It consists of

5 localist1 vectors. The first vector contains the attribute and has a size of 22

(21 attributes+empty token). As, for this data set, a SemaPred representation

may contain 4 attributes per entity, the first four vectors encode the different

entities. The last vector encodes the entity itself. Unlike for Action SemaPreds

and Relation SemaPreds, it does not encode the index of the entity but the

entity itself. The size of the vector is 11 (10 entities+empty token). Fig. 4.5

illustrates the Attribute SemaPred vector.

To produce the whole output vector, all vectors are concatenated. It

consists of 2 action vectors, 2 relation vectors and 5 attribute vectors in this

1also called one-hot vectors
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1st attribute    2nd attribute   3rd attribute    4th attribute        Entity

       22                 22                22 22  11

Figure 4.5: The schematic binary encoding of an Attribute SemaPred.

order. The output vector size is 2∗ (4 + 6 + 10 + 6) + 2∗ (6 + 10 + 6) + 5∗ (22 +

22 + 22 + 22 + 11) = 591 for the given data set. To be able to produce binary

outputs, we chose a sigmoid activation function. As softmax is not applicable

on the whole vector due to its sparseness, we chose binary cross-entropy as

a loss function instead of categorical cross-entropy loss. For inference, we

perform a winner-takes-all on each localist vector inside the output vector.

The text output is produced by taking the output template and removing all

SemaPreds containing only empty tokens. The whole model is trained using

the Adam optimizer (Kingma and Ba, 2014).

4.4 Automatic Speech Recognition:

SlimSpeech

When creating a processing pipeline for speech-controlled scenarios like HRI

scenarios, the first step is to provide an ASR system to the pipeline. A common

strategy is to employ a general-purpose ASR like Google’s ASR (see Sections

3.4 and 3.6). The language models of general-purpose ASR system possess

a large vocabulary, leading to a lower recognition performance. A large vo-

cabulary is not necessary in most HRI tasks, as a robot is only to perform

a limited number of actions. Also, we fully controlled vocabulary prevents

the system from recognizing out-of-domain words that may cause difficulties

to the NLP systems processing the text output of the ASR system. Another

limitation of cloud-based ASR systems like Google’s is the low response time

due to a remote connection. For these reasons, we decided to train our own

local ASR system. A difficulty is the lack of freely-available training data and
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Listing 8 The following definitions contain the different parameters for the
layers of the acoustic model of the SemaPred Recognizer.
1 s := sentence
2 n := length of sentence
3 e := embedding sequence
4 word vectors from fastText
5 size 300 * n
6 conv1 := 1D valid convolution with
7 channels = 1,
8 kernel sizes = 1
9 stride = 1

10 activation = ReLU
11 conv2-conv13 := 1D valid convolution with
12 channels = 1,
13 kernel sizes = 2,3,..., 13
14 stride = 1
15 activation = ReLU
16 max_pool := max pooling
17 size = 5
18 flatten := remove dimensions
19 dropout1 := dropout regularization
20 probability = ... (see Sec. 5.5)
21 concatenate := concatenate input to one vector
22 dropout2 := dropout regularization
23 probability = ... (see Sec. 5.5)
24 dense := fully connected layer
25 hidden size = ... (see Sec. 5.5)
26 size = hidden size * 591
27 output := output layer
28 size = 591 (encoding see this section)
29 activation = sigmoid
30 optimizer := optimization function
31 method = adam
32 learning rate = ... (see Sec. 5.5)
33 beta_1 = 0.9
34 beta_2 = 0.999
35 loss = binary crossentropy
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Listing 9 The following pseudocode contains the data flow of the SemaPred
Recognizer.
1 batch size = ... (see Sec. 5.5)
2

3 take batches
4

5 take s from batch
6

7 transform s to e
8

9 filter1 = dropout1(flatten(max_pool(conv1(e))))
10 filter2 = dropout1(flatten(max_pool(conv2(e))))
11 filter3 = dropout1(flatten(max_pool(conv3(e))))
12 ...
13 filter13 = dropout1(flatten(max_pool(conv13(e))))
14

15 concatenated_filters =
16 concatenate(filter1, filter2, ..., filter13)
17

18 output = dense(dropout2(concatenated_filters))

the vast amount of computational resources. We decided to adapt an existing

ASR system by reducing the number of layers to be able to train the system

in reasonable time.

The architecture of our model consists of a modified DeepSpeech 2 (Han-

nun et al., 2014a; Amodei et al., 2015) architecture and is a slightly different

variant of the work of (Lakomkin et al., 2018). The original DeepSpeech 2 ar-

chitecture contains three convolutional layers, while our system only has two.

The convolutional layers are followed by 5 bidirectional GRU layers, while the

original version uses 7. The GRU layers are followed by a fully connected

layer. As the architecture is more light-weight than the original DeepSpeech

2 architecture, we refer to it as SlimSpeech.

44



4.4. Automatic Speech Recognition: SlimSpeech

As features, we extract power spectrograms from the audio sequence,

each having a width of 20ms and a stride of 10ms. We standardize the fea-

tures by subtracting the mean and dividing by the standard deviation, which

results in a zero-mean and unit variance. For the first convolutional layer, the

kernel size is 41*11, while having 32 filters. A padding of 10 steps is applied

at the beginning and the end of the sequence. The first convolutional layer is

followed by a Batch Normalization layer, and hard tanh is chosen as an acti-

vation function. The second convolutional layer has a filter size of 21*11, also

containing 32 filters. Here, we also apply Batch Normalization and hard tanh2.

The output is fed to the first bidirectional GRU layer. The output is batch-

normalized and fed to the next bidirectional GRU layer. This way, five GRU

layers are connected, each possessing a hidden layer with a size of 1024 units.

The last GRU layers are also batch-normalized ; the output is fed to the fully

connected layer. The output of the fully connected layer employs softmax.

The model output is a character index representation (29 units) or phoneme

index representation (41 units). We refer to these models as SlimSpeech Chars

(SSC) and SlimSpeech Phonemes (SSP). The network is trained using Con-

nectionist Temporal Classification (CTC) (Graves et al., 2006). The whole

architecture is illustrated in Figure 4.6. All parameters needed to implement

the system can be found in Listing 10.

4.4.1 Speech Training Data

To train the system, we used five different English ASR datasets: LibriSpeech,

TED-LIUM v2, VoxForge, Mozilla Common Voice, and Google Speech Com-

mands. As we welcome the system to be used by the open-source community,

we only chose freely available datasets. In total, the training data contains

1500 hours of speech (see Table 4.1), data from more than 4000 speakers,

and 646,222 utterances. All the audio data was converted to single-channel,

a frame-rate of 16 bit, and a sampling rate of 16kHz. We removed utterances

2hard tanh is a faster but inaccurate tanh and used as an activation function
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Audio Sequence

Spectrogram Sequence

Batch Normalization

Hard Tanh

2D Convolution

Bidirectional GRU

Acoustic Model

Output (Softmax)

Dense

Batch Normalization

*2

*5

Figure 4.6: The architecture of the acoustic model of our self-trained Slim-
Speech ASR system. The outputs of the system are character distributions
per time step. These distributions can be transformed into characters using
a decoder. We also created a phoneme-based variant that produces phoneme
distributions.

longer than 15 seconds to overcome GPU memory limitations. The output

labels consist of text strings containing 26 different characters. To train the

phoneme variant, the text is transformed into phoneme sequences using a

trainable grapheme-to-phoneme converter Bisani and Ney (2008) trained on

CMUdict. The data consists of phoneme sequences, containing a set of 41

ARPABET phonemes.
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Listing 10 The following definitions contain the different parameters for the
layers of the acoustic model of SlimSpeech
1 a := audio sequence 16,000 kHz
2 n := length of the input sequence (variable)
3 s := spectrogram sequence
4 shape: 161 * n
5 frame_size = 20ms
6 window shift = 10ms
7 conv1 := 2D same convolution with
8 channels = 1,
9 filters = 32,

10 kernel size = 41 * 21,
11 stride = (2,2)
12 batch_norm := batch normalization
13 epsilon = 1e-05
14 momentum = 0.1
15 conv2 := 2D same convolution with
16 channels = 32,
17 filters = 32,
18 kernel size = 21 * 21,
19 stride = (2,1)
20 gru1 := bidirectional gru
21 input size = 672
22 hidden size = 1024
23 gru2-gru5 := bidirectional gru
24 input size = 672
25 hidden size = 1024
26 dense := fully connected layer
27 size = 1024 * 29
28 output := output nodes
29 size 29 * n
30 (29 = number of chars; 41 for phonemes)
31 loss := connectionist temporal classification
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Table 4.1: ASR datasets used for training.

Dataset Hours of Speech

LibriSpeech (Panayotov et al., 2015) 1,000

TED-LIUM v2 (Rousseau et al., 2014) 200

VoxForge3 100

Mozilla Common Voice4 300

Google Speech Commands (Buchner, 2017) ∼40

Total ∼1,640

Total Used ∼1,500

LibriSpeech

LibriSpeech contains read English coming from audiobooks. Examples:

• chapter eleven the morrow brought a very sober looking

morning the sun making only a few efforts to appear and

catherine augured from it everything most favourable

to her wishes

• declined giving any absolute promise of sunshine she

applied to missus allen and missus allen’s opinion was

more positive she had no doubt in the world of its being

a very fine day if the clouds would only go off and the

sun keep out

• at about eleven o’clock however a few specks of small

rain upon the windows caught catherine’s watchful eye

and oh dear i do believe it will be wet broke from her

in a most desponding tone

3http://www.voxforge.org
4http://voice.mozilla.org
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TED-LIUM v2

TED-LIUM v2 consists of TED talks, which were transcribed afterwards. Ex-

amples:

• i’m here today to show my photographs of the lakota

many of you may have heard of the lakota or at least

the larger group of tribes called

• the lakota are one of many tribes that were moved off

their land to prisoner of war camps now called reser-

vations the pine ridge reservation

• now if any of you have ever heard of aim the american

indian movement or of russell means or leonard peltier

or of the stand off at oglala

VoxForge

VoxForge is a dataset containing crowd-sourced speech. It also contains other

language; we chose only the English subset. Examples:

• it seemed the ordained order of things that dogs should

work

• and that was the last of francois and perrault

• mercedes screamed cried laughed and manifested the

chaotic abandonment of hysteria
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Mozilla Common Voice

Mozilla Common Voice is a dataset containing crowd-sourced speech. Exam-

ples:

• did you actually give tamara that gun

• good luck to you

• now it will be with hope

Google Speech Commands

Google Speech Commands is a dataset containing crowd-sourced speech. It

contains 35 different words, each sample has a duration of around one second

and contains one word. Examples:

• yes, no, up, down, left, right, on, off, stop, go

4.4.2 Training details

We apply data augmentation by randomly adjusting the tempo and loudness

of the audio samples. For the first epoch, the utterances are sorted using

SortaGrad (Amodei et al., 2015), which intends to improve the convergence

of the model. We employ stochastic gradient descent with a learning rate

of 0.0001 to train the model. After each epoch, the learning rate is reduced

by dividing by the factor 1.01. As a validation set, we chose the LibriSpeech

validation set. The model was trained until it got saturated regarding the

word error rate (WER) on the validation set. For the phoneme version of

the model, the validation set was transformed to phonemes, and the phoneme

error rate (PER) was measured.
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4.4.3 Decoder

In test mode, we use two different decoder types, the Greedy Decoder, and

the Beam Search Decoder. The Greedy Decoder performs best path decoding.

The output of the network per timestep is a vector containing the character

or phoneme distribution per timestep. It merely takes the argmax function

over the character or phoneme distribution per timestep. If the found output

contains the “blank” character, the character is removed. The output of the

CTC is a label per timestep. If a character or phoneme takes longer than one

timestep, the argmax function will find that character or phoneme in multiple

timesteps in a row. These duplicates are removed. The algorithm is fast but

may commit errors, in particular since information from a language model is

not considered.

The other decoder variant is the Beam Search Decoder (Hannun et al.,

2014b). The idea is to keep multiple different paths through the timestep-

character trellis. It is a variant of Best-first Search, which sorts all paths using

a heuristic reflecting the quality of the path. In this case, the heuristic is

the score of a path. The principle of the Beam Search Decoder is described

in Section 2.5. It uses language information coming from N-gram language

models, in our case, bigram, trigram, or quadrogram language models.

4.5 External Language Model: Sentence Tem-

plates

A commonly-used variant of language models in ASR systems are N-gram-

based statistical language models. These models are able to correct local

errors within a text hypothesis, but lack a global context about the whole sen-

tence. Grammar-based language models may provide this global context, but

they need to be hand-crafted for the application. Our idea is to combine the
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principles of N-gram-based and grammar-based language models and present

this approach in this section. The concept is learning the grammar from the

data. It is possible to use this grammar as a language model or to integrate

parts of the N-gram concept in a second step. The developed approaches are

considered as external language models, because they do not perform decoding

of acoustic models; instead they process the text output of a general-purpose

ASR system. This work is inspired by the work of Hinaut and Dominey (2013),

who proposed a neural computational model for thematic role labeling from

incoming grammatical constructions (Goldberg, 1995). Our approach does not

employ neural networks.

One hypothesis for language acquisition is that children learn “templates

of sentences” (Tomasello, 2009) (e.g., grammatical constructions (Goldberg,

1995)). The θRARes model proposed by Hinaut and Dominey (2013) learns

to assign θ-roles (thematic roles) to the semantic words (SW) or content words

in a sentence. E.g., the sentence:

put the pyramid on the cube

is mapped to the predicate: put(pyramid, cube). This mapping is called

a grammatical construction (Tomasello, 2009). The sentence is preprocessed

by removing all semantic words from the sequence and replacing them by the

wildcard token X:

X the X on the X

In this work, we call these structures like a Sentence Template (ST).

These STs are used for our language model. The system learns to assign the

slots of the predicate to the SWs of the sequence and requires to determine

if a word is an SW and has to be replaced by the wildcard token. As SWs

are an open class, which means that new words can be added to this class, it

is not trivial to determine if a word is an SW or not. Instead, non-semantic

words, which are function words, are identified, as they belong to a closed
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class, meaning that there is only a finite number of them. All words that do

not belong to the closed class of function words are considered to be SWs. As

function words belong to a closed class, they are known beforehand even for

new domains.

The idea of our work is to be able to perform domain-restricted language

modeling while also making use of general-purpose language models. The text

output coming from general-purpose ASR is corrected and not completely

overridden unlike in previous approaches (see Sec. 3.5, DOCKS SentenceList)

where only the phonemic representation was processed. The ST approach also

handles the syntactic structure. We consider function words to be domain-

independent. As STs only consist of function words, we consider STs to be

domain-independent. Instead of only processing the phonemic representation

of a hypothesis, we are now able to exploit the benefits of a general-purpose

language model.

Figure 4.7 depicts the processing pipeline of our system. We take the

word sequence coming from a general-purpose ASR system and build the ST

out of it. The training data for our restricted domain consists of grammati-

cally and syntactically correct sentences. As the hypothesis coming from the

general-purpose ASR system may be grammatically or syntactically incorrect,

we try to find the closest sentence producible from the training data. To be

able to generate variations that are not covered by the training data, we do

not match the concrete sentence (like in Sec. 3.5), but only its ST against

the ST of the training sentences using the normalized Levenshtein distance

mentioned in Section 3.5. This produces a ranked list of STs closest to the

one that was generated by Google’s ASR.

Like Hinaut and Dominey (2013), we interpret the SWs of the training

data as terminal words (non-replaceable words) in a grammar, and the wild-

card slots as the non-terminals to be replaced. We call these sets of possible

SWs Terminal Bags (e.g. t0, t1 below). This way, the model is able to generate

variations of sentences for the same ST that may not be contained literally in
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General-Purpose ASR 
(10 best results)

Sentence Template
Detection

Grapheme-to-Phoneme
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Phonemic Levenshtein
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Figure 4.7: This figure shows the processing pipeline of our postprocessing
system. First, the system tries to use the Sentence Template Grammar. If the
confidence for individual words or subsequences is below a threshold, this part
of the hypothesis is postprocessed by the Sentence Template N-gram module.

the training data. The following example explains the principle. The training

data consists of the sentences:

• put the pyramid on the cube

• move the prism on the block

• move the prism to the left

The ST for the first two sentences is X the X on the X and X the X to

the X for the third one. The training is performed by generating a grammar:
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• 〈s0〉 = 〈t0〉 the 〈t1〉 on the 〈t2〉

• 〈s1〉 = 〈t3〉 the 〈t4〉 to the 〈t5〉

• 〈t0〉 = put | move

• 〈t1〉 = pyramid | prism

• 〈t2〉 = cube | block

• 〈t3〉 = move

• 〈t4〉 = prism

• 〈t5〉 = left

This grammar is able to generate, e.g., the sentence put the prism on the

cube, which is not present in the training data. Testing a speech utterance is

performed by generating a hypothesis using, e.g., Google’s ASR. In this exam-

ple, where the reference text is put the prism on the cube, Google may

produce the hypothesis pull the pistol on the cube. This hypothesis

is transformed to its ST, which is X the X on the X. We employ the nor-

malized Levenshtein distance (see eq. 3.3) to calculate the best-matching ST

from the training data, which is, in this case, also X the X on the X. Then,

the SWs are matched against each other to find the best-matching word from

the Terminal Bag. This means that we calculate the normalized Levenshtein

distance of pull against put and pull against move on phoneme level for

the first SW gap. We do this for all SW gaps and get the most probable

sequence put the prism on the cube.

In some cases, the hypothesis coming from the general-purpose ASR

system cannot be converted to a correct ST, e.g. put them prism on the

cube. In this case, we calculate the best matching ST and generate possible

combinations for the incorrect part of the sequence, e.g. put the pyramid,

put the prism, move the prism, move the pyramid. This guarantees
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a correct ST, which can be interpreted by a θ-role assignment model (e.g.

Hinaut and Dominey (2013)).

As the normalized Levenshtein distance can be used as a confidence value

for each word, words that the system is uncertain about can be identified. This

information can be used to repair a hypothesis in the second step in case some

of the words possess a low confidence value (threshold 0.5).

Listing 11 The following pseudocode contains the training process of the
Sentence Template external language models.
1 for sentence in training_set
2 create sentence_template for sentence
3 if not sentence_template stored yet
4 store sentence_template
5 save non_terminal_words in terminal_bags
6 link terminal_bags with \
7 slots of sentence_template
8 else
9 add non_terminal_words to terminal_bags \

10 of existing sentence_template
11

12 for terminal_word in sentence_template
13 for terminal_word2 in sentence_template
14 store all words between terminal_word \
15 and terminal_word2

For long and nested sentences, the correct hypothesis cannot be con-

structed due to the lack of training data, meaning not enough samples for a

specific ST and a lack of possible SWs. This means, the Terminal Bags do

not contain many words and possibly not the word that was uttered. We use

a threshold for each word and repair all words that were recognized with a

confidence lower than this threshold (0.5). For this, we train the system by

collecting all n-grams inside the training data up to 10-grams. For example, if

we have the input sentence put the yellow prism on the cube, we pos-

sibly could only generate put the blue prism on the cube, if the word

yellow was never used in this SW gap. The function words the and on can
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be used as “anchors” to retrieve n-grams starting with the and ending with

on. Then, another scoring process is started using the normalized Levenshtein

distance to calculate the best-matching n-gram from the training data. This

way, we can generalize from other sentences and STs in the training data.

Listing 12 The following pseudocode contains the test process of the Sentence
Template external language models.
1 create sentence_template for input_sentence
2 find best matching stored sentence_template using \
3 Levenshtein distance
4 for all terminal_bags of sentence_template
5 for non_terminal_word of terminal_bag
6 score input word of slot against \
7 terminal_word using \
8 Phonemic Levenshtein Scoring
9 take best matching non_terminal_word

10 fill slot of sentence_template with \
11 best matching non_terminal_word
12 save confidence of non_terminal_word
13 output = filled sentence_template
14

15

16 %for Sentence Template N-grams model only:
17 find words where confidence < 0.5 in output
18 for all connected words
19 find anchor terminal_word before and after
20 rescore connected words against stored \
21 (n-1)-grams, n-grams and (n+1)-grams
22 take best matching gram
23 replace words of output

To reduce the number of incorrect sentences, we check each generated hy-

pothesis for non-existing word transitions (bigrams) in the training data, and,

if occurring, we can drop that hypothesis. Also, we perform the postprocessing

for the 10 best hypotheses coming from the general-purpose ASR system, and

afterwards sort our generated hypotheses by average word confidence.
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The approach is expected to work well, when there are not to many

variations regarding the sentence structure. The more variations, the more

examples are needed to fill the Terminal Bags. For the n-gram-based approach,

it is sufficient to cover only the structure, the vocabulary may be found within

the stored n-grams.

The original ST language model was presented by Twiefel et al. (2017)

and used as a postprocessor for Google’s Search by Voice. In this work, we

connect the system to our self-trained ASR system. We extended the model

to be able to also process phonemes instead of words directly. This way,

the model can also be connected to one of our ASR variants that produce

phonemes instead of characters (SlimSpeech Phonemes). The algorithm is

shown as pseudocode in Listing 11 and 12.

4.6 Semantic Logic Predicate Interpreter

SemaPred representations are novel and simple descriptors of natural language.

A requirement for SemaPreds to be considered as useful is the ability to be

able to process SemaPreds in concrete scenarios. In this work, we present a

SemaPred Interpreter that is able to process SemaPreds and extract concrete

execution parameters. A set of SemaPreds is usually valid or invalid, depend-

ing on its context. One application is the movement of entities in a Blocks

World, but also other tasks are possible. In this case, the SemaPreds contain

the information about which entity has to be moved to which position in a

scene. The entities can be differentiated using their shape (cube, pyramid).

The input of the model is a set of SemaPreds describing the command, the

outputs are the source and destination coordinates for a movement action.

The ASP code snippets in this section are (partially) taken from Tobergte’s Bacherlor’s
thesis (Tobergte, 2017). We developed the ideas and conceptions behind this approach,
while Tobergte performed the implementation (under our supervision).
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4.6.1 Logic Modeling

The SemaPred Interpreter is based on declarative logic. We employ ASP to

describe the scene and the SemaPreds. The following section will describe how

to define the scene for a SemaPred scenario. As an example, we use a Blocks

World, for other scenarios or tasks, the process is equivalent. First, the world

has to be described. If we have a 8*8*8 grid world:

Listing 13 Definition of the grid world
1 size(8).
2 grid(X,Y,Z) :-
3 X = 0..S-1,
4 Y = 0..S-1,
5 Z = 0..S-1,
6 size(S).

Next, we define the so-called references which refer to positions in the grid

(Listing 14).

Listing 14 References in the grid
1 % points on the floor
2 ref(X,Y,Z) :- grid(X,Y,Z), Z=0.
3 % points with shapes in them
4 ref(X,Y,Z) :- shape(X,Y,Z).
5 % points that are directly above shapes
6 ref(X,Y,Z+1) :- shape(X,Y,Z).
7 % point with gripper in it
8 ref(X,Y,Z) :- gripper(X,Y,Z).

Afterwards, the board has to be defined. It is below the grid, which is indicated

by a -1 as Z coordinate. Also, we define the position of the robot itself:
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Listing 15 Definition of the board and the robot
1 board(X,Y,-1) :- grid(X,Y,Z), Z = 0.
2 robot(X,Y,Z) :-
3 X = -(S/2),
4 Y = S/2,
5 Z = 0,
6 size(S).

The board consists of edges and corners, which can be used as reference points.

Edges contain the tiles at the edge of the grid, a corner contains the tile directly

in the corner of the grid. We group edges and corners in a class called rim:

Listing 16 Definition of the edges and corners
1 % there are 4 edges, each having 8 coordinates
2 % back edge (near robot)
3 edge(X,Y,Z) :- X = 0, Y = 0..S-1, Z = -1, size(S).
4 % right edge (from robot perspective)
5 edge(X,Y,Z) :- X = 0..S-1, Y = 0, Z = -1, size(S).
6 % front edge (far from robot)
7 edge(X,Y,Z) :- X = S-1, Y = 0..S-1, Z = -1, size(S).
8 % left edge (from robot perspective)
9 edge(X,Y,Z) :- X = 0..S-1, Y = S-1, Z = -1, size(S).

10 % the 4 corners
11 corner(0,0,-1 ; 0,7,-1 ; 7,0,-1 ; 7,7,-1).
12 %rim superclass
13 rim(X,Y,Z) :- corner(X,Y,Z).
14 rim(X,Y,Z) :- edge(X,Y,Z).

The board consists of different regions, the front, back, right, left, and center

regions. They are defined using the X and Y coordinates of the board, while

the Z coordinate is not relevant. It has to be set to be below the board, as

entities are positioned on top of it. We chose -3 as the Z coordinate to separate

it from other descriptions and parts of the board. The sizes of the regions can

be calculated dynamically for differently sized boards. For the center region,

we define several tiles, as the size of the board may be even, and the center

region consists of 4 tiles.
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Listing 17 Definition of regions
1 % right region
2 region(X,Y,-3) :- X= (S/2),Y = 0, size(S).
3 % left region
4 region(X,Y,-3) :- X= (S/2), Y = S-1, size(S).
5 % front region
6 region(X,Y,-3) :- X= S-1,Y = (S/2), size(S).
7 % back region (near robot)
8 region(X,Y,-3) :- X= 0, Y = (S/2), size(S).
9 % center region

10 region(X,Y,-3) :- X=(S/2), Y=(S/2), size(S).
11 region(X,Y,-3) :- X=(S/2)-1,Y= (S/2), size(S).
12 region(X,Y,-3) :- X=(S/2), Y=(S/2)-1, size(S).
13 region(X,Y,-3) :- X=(S/2)-1,Y= (S/2)-1, size(S).

The objects manipulated in this scenario are called shapes, which take one tile

in the grid. They may contain cubes or prisms (Listing 18).

Listing 18 Definition of shapes
1 shape(X,Y,Z) :- cube(X,Y,Z).
2 shape(X,Y,Z) :- prism(X,Y,Z).

The shapes may have different attributes like a color, a position, or may be

individual meaning it is not nearby other shapes. Attributes are defined by

the has attribute rule.

Listing 19 Definition of attributes
1 has_attribute(X,Y,Z, ATTR) :- has_color(shape(X,Y,Z),
2 color(ATTR)).
3 has_attribute(X,Y,Z, ATTR) :- has_position(X,Y,Z,
4 position(ATTR)).
5 has_attribute(X,Y,Z, individual) :- individual(X,Y,Z).

The definitions of the attributes are trivial and only mentioned in the ap-

pendix. There are different directionals, which are left, right, back, front, and
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center. The following definition explains the left relation. It describes an en-

tity to be on the left side of the board or to be on the leftmost location for

edges and regions:

Listing 20 Definition of left
1 left(X,Y,Z) :-
2 pointer(X,Y,Z), size(S), Y >= (S/2),
3 #false: edge(X,Y,Z).
4 % A region / edge is (on the) left if it is located
5 % on the leftmost location on board, given the
6 % boardsize S.
7 left(X,Y,Z) :- edge(X,Y,Z), size(S), Y = S-1.
8 left(X,Y,Z) :- region(X,Y,Z), size(S), Y = S-1.

Again, for the center definition the description is a special case:

Listing 21 Definition of center
1 % center region is defined to match 4 region points
2 % in the center
3 center(X,Y,Z) :- region(X,Y,Z), X <= (S/2),
4 X >= (S/2)-1, Y <= (S/2),
5 Y >= (S/2)-1, size(S).

The entities in the scenario may be in different relations towards each other.

The most important one is the above relation. It indicates that one entity

is above another entity but on the same X and Y coordinate. There are two

definitions of the above relation, one for other entities, the other one for rims.

For the different regions, the definition of above is similar, with a special case

for the center region (Listing 23).

The shapes in our scenario can be moved into different direction like forward,

backward, rightwards, and leftwards. When moving an object into a direction,

a distance parameter has to be set to indicate how many steps it is moved.

We need to define each direction twice, once for references and once for rims

(Listing 24).

62



4.6. Semantic Logic Predicate Interpreter

Listing 22 Definition of above
1 % Ref X,Y,Z is above A,B,C, if the altitude is
2 % higher, and they are on the same coordinates
3 % otherwise.
4 above(ref(X,Y,Z),ref(A,B,C)) :- ref(X,Y,Z),
5 ref(A,B,C), X = A,
6 Y = B, Z > C.
7 % Special case: rim (corner+edge) has no actual
8 % "level", so a point on the ground is above it
9 % if X and Y coordinates match.

10 above(ref(X,Y,Z), ref(A,B,C)) :- ref(X,Y,Z),
11 rim(A,B,C),
12 X = A, Y = B.

Listing 23 Definition of above
1 % Above rule for regions, center is special
2 above(ref(X,Y,Z), ref(A,B,C)) :- region(A,B,C),
3 shape(X,Y,Z),
4 horizontaldistance(X,Y,Z,A,B,C,Dist),
5 Dist <= 0,
6 center(A,B,C).
7 above(ref(X,Y,Z), ref(A,B,C)) :-
8 right(X,Y,Z), region(A,B,C), right(A,B,C).
9 above(ref(X,Y,Z), ref(A,B,C)) :-

10 left(X,Y,Z), region(A,B,C), left(A,B,C).
11 above(ref(X,Y,Z), ref(A,B,C)) :-
12 front(X,Y,Z), region(A,B,C), front(A,B,C).
13 above(ref(X,Y,Z), ref(A,B,C)) :-
14 back(X,Y,Z), region(A,B,C), back(A,B,C).

There are three different actions, namely take, drop, and move. The take

action requires an empty gripper before the execution, and afterwards, a grip-

per holding an entity. The drop action can be interpreted in different ways.

If the gripper is not holding an entity, it implies that it first has to grab an

entity and then drop it at a specific location or directly below the gripper if

a destination is not provided. The move action always consists of taking an
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Listing 24 Definition of forward
1 % as ref and rim are mutually exclusive, two rules
2 % are needed
3 forward(ref(X,Y,Z), ref(A,B,C), Dist) :- ref(X,Y,Z),
4 ref(A,B,C),
5 Y = B,
6 X-Dist = A,
7 Dist = 1..S-1,
8 size(S).
9 forward(ref(X,Y,Z), ref(A,B,C), Dist) :- ref(X,Y,Z),

10 rim(A,B,C),
11 Y = B,
12 X-Dist = A,
13 Dist = 1..S-1,
14 size(S).

entity and dropping it at a destination. The following descriptions define the

actions. They use different auxiliary rules which are self-explaining and not

shown here, but can be found in the appendix.

Listing 25 Definition of take
1 % normal take: from anywhere to gripper.
2 take(shape(X,Y,Z), ref(A,B,C)) :- shape(X,Y,Z),
3 ref(A,B,C),
4 not_blocked(ref(X,Y,Z),
5 free(ref(A,B,C)),
6 gripper(A,B,C).

The take action determines the coordinates of the shape to be taken and the

coordinates of the gripper holding the shapes afterwards. The shape must not

be blocked, and the position of the gripper after the action needs to be free.

As the drop action may be interpreted in two different ways, it requires two

different definitions. The first definition holds the description of a drop,

which is preceded by a take action. It requires a non-blocked shape inside

the gripper and a valid destination. Also, there could be the exception of
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a shape being dropped on itself which needs to be prevented. The second

definition describes the drop action without a preceding take, which is a

move action. It does not need the shape to be inside the gripper. Again, it

cannot be placed on itself.

Listing 26 Definition of drop
1 % normal drop: move from gripper onto free position.
2 drop(shape(X,Y,Z), ref(A,B,C)) :- shape(X,Y,Z),
3 gripper(X,Y,Z),
4 not_blocked(ref(X,Y,Z)),
5 ref(A,B,C),
6 valid_pos_for_move(ref(A,B,C)),
7 shape_in_gripper(true),
8 % but dropping the object on top
9 % of itself is not possible:

10 #false: X == A, Y == B, Z+1 == C.
11 % special drop: if no block in gripper, then
12 % drop should work with an object from anywhere
13 drop(shape(X,Y,Z), ref(A,B,C)) :- shape(X,Y,Z),
14 ref(A,B,C),
15 not_blocked(ref(X,Y,Z)),
16 free(ref(A,B,C)),
17 shape_in_gripper(false),
18 % but dropping the object ontop of itself is not
19 % possible:
20 #false: X == A, Y == B, Z+1 == C.

The move action has three cases: a shape can be moved onto the ground, into

the gripper of on top of another shape. For the first case, the shape must not

be blocked, and the space on the ground has to be free. The second case also

determines the gripper coordinates and is valid for all positions, not only the

ground. The third case handles the positioning on top of another shape. The

shape cannot be placed on top of itself, and it cannot be put on a prism, as

prisms are not able to hold other shapes.
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Listing 27 Definition of move
1 % A shape X,Y,Z can be moved to a point A,B,C,
2 % if X,Y,Z is not blocked and A,B,C is free.
3 % A,B,C has to be on the ground,
4 move(shape(X,Y,Z), ref(A,B,C)) :- shape(X,Y,Z),
5 ref(A,B,C),
6 not_blocked(ref(X,Y,Z)),
7 free(ref(A,B,C)),
8 C = 0.
9 % A shape can be moved into the gripper

10 move(shape(X,Y,Z), ref(A,B,C)) :- shape(X,Y,Z),
11 ref(A,B,C),
12 not_blocked(ref(X,Y,Z)),
13 free(ref(A,B,C)),
14 gripper(A,B,C).
15 % or on top of another shape, but not on top of a
16 % prism the shape cannot be put on top of itself.
17 move(shape(X,Y,Z), ref(A,B,C)) :- shape(X,Y,Z),
18 ref(A,B,C),
19 not_blocked(ref(X,Y,Z)),
20 free(ref(A,B,C)),
21 ontopof(ref(A,B,C), shape(P,Q,R)),
22 #false: P == X, Q == Y, R == Z;
23 #false: prism(P,Q,R).
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4.6.2 Command Encoding

A command consists of a set of SemaPreds and a world layout. First, the

world layout is used to ground the world. A world inside the data set consists

of an XML representation holding the positions of shapes, their colors, and

the position and state of the gripper. Listing 28 shows an example of a world

layout.

Listing 28 XML encoding of a world layout.
<layout id="1">

<gripper position="6 5 4" open="true" />
<shapes>

<cube color="blue" position="3 3 0" />
<cube color="blue" position="3 3 1" />
<cube color="red" position="6 5 0" />
<prism color="green" position="6 5 1" />

</shapes>
</layout>

The XML representation of Listing 28 is transformed to ASP facts:

Listing 29 A world layout (XML) transformed into an ASP representation.

1 gripper(6,5,4).
2 cube(3,3,0).
3 has_color(shape(3,3,0),color(blue).
4 cube(3,3,1).
5 has_color(shape(3,3,1),color(blue).
6 cube(6,5,0).
7 has_color(shape(6,5,0),color(red).
8 prism(6,5,1).
9 has_color(shape(6,5,1),color(green).

Then, the SemaPreds can be processed. For the given layout, the SemaPreds

could be the following:
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Listing 30 A command encoded as SemaPreds using comma-separated values.
19,0,move,prism_1,above,cube_2
19,1,green,prism_1,,
19,1,red,cube_2,,

The annotation is a comma-separated values (CSV) structure. The first col-

umn indicates the ID of the SemaPreds . Then, a descriptor, 0 or 1 is given,

declaring if it is a SemaPred with four slots (actions and relations) or two

slots (attributes). All entities possess an ID that is separated by an underscore.

Now, the given SemaPreds can be parsed and transformed to ASP facts (see

Listing 31). In this example, a move is performed, which is defined by moving

a shape to an empty position. All entities are transformed into ASP facts

(lines 1-2). Also, the destination of the shape has to be added (lines 3). Then,

the attributes are parsed. In this case, there are only color attributes (lines

4-5). The attributes are linked to the entities via the coordinate variables: for

example entity 1 has the same coordinates (A,B,C) for its shape (line 1) and

its color attribute (line 4). The attributes are followed by the given relation

(above). Again, the entities are linked via their coordinates (line 6). After-

wards, the action (move) is added. Its arguments are the shape to be moved

and the unknown destination (line 7).

Listing 31 A list of SemaPreds encoded in ASP.
1 prism(A,B,C),
2 cube(D,E,F),
3 ref(G,H,I),
4 has_color(shape(A,B,C), color(green)),
5 has_color(shape(D,E,F), color(red)),
6 ontopof(ref(A,B,C), ref(D,E,F)),
7 move(shape(A,B,C),ref(G,H,I))

This list of facts is true if the command can be processed, which means that

there is a valid and consistent allocation. To assure this, an integrity constraint

is defined (see Listing 32, lines 1-7). The output of the system are the source
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and target position of the shape to be moved. For this purpose, we define

them using the same list of facts we generated. The show directive makes the

solver display the variable assignments.

Listing 32 A list of SemaPreds encoded in ASP to derive source and desti-
nation coordinates for the robot arm.
1 :- #false: prism(A,B,C),
2 cube(D,E,F),
3 ref(G,H,I),
4 has_color(shape(A,B,C), color(green)),
5 has_color(shape(D,E,F), color(red)),
6 ontopof(ref(A,B,C), ref(D,E,F)),
7 move(shape(A,B,C),ref(G,H,I)).
8 source(A,B,C) :- ... %same facts as in line 1-7
9 #show source/3.

10 target(G,H,I) :- ... %same facts as in line 1-7
11 #show target/3.

4.7 Semantic Evaluator

The aforementioned approaches are arranged as a pipeline starting with a

speech signal which is processed by an acoustic model, a language model, a

natural language processor, and a logic interpreter. This pipeline is expected to

work well as long as the quality of the output coming from each of its modules

is acceptable. When acoustic noise comes into play, the acoustic model may

create wrong hypotheses, which can only partially be corrected by the language

model. These possibly incorrect text outputs are then processed by an NLP

model that was trained on correct data. We expect that this task is hard to

perform, and the NLP module benefits from assistance on the semantic level.

For this purpose, we developed a Semantic Evaluator (SE) that evaluates if

the predicates produced by the NLP module are meaningful in respect of the

input.
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The idea behind our approach is to provide a scoring mechanism for

the produced hypotheses coming from our NLP module, which evaluates the

quality of the output. An essential requirement is not only to score the output

but also to provide a quality measure for its parts, making possible errors

within the output identifiable. Usually, only parts of the output are expected

to be incorrect, while others are correct. Following this idea, it would be

possible to correct the incorrect parts by deriving them from the context.

The presented approach works on the SemaPred representations men-

tioned earlier. These representations are produced as output of our SemaPred

Recognizer (SPR), and the aim of our approach is to measure the quality of

these outputs. SemaPreds have a of a fixed structure containing words as

units. To measure the quality, we need to define a semantic value for each

word inside the SemaPreds. For this purpose, we chose the cosine similarity of

word embeddings, which delivers high values for semantically similar words.

The words need to be scored against the input of the SPI. When taking the

following sentence and SemaPreds, it is obvious that the scoring cannot be

performed in a trivial way:

grab the green prism and put it on the blue brick that is on

the red box

Listing 33 Example SemaPreds
take, prism_1, EEE, EEE
drop, prism_1, above, cube_2
is, cube_2, above, cube_3
green, prism_1
blue, cube_2
red, cube_3

To be able to score SemaPreds against a sentence, they both need to

be represented as a sequence. We developed an algorithm that performs this

step. First, we take all actions and add the attributes to the entities:
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Listing 34 1st step of processing
take, green, prism_1, EEE, EEE
drop, green, prism_1, above, blue, cube_2
is, blue, cube_2, above, red, cube_3

Afterwards, we take all relations and search the actions for the first of its

entities. Then, the second part (relation word and second entity) is appended.

Also, we drop the word is:

Listing 35 2nd step of processing
take, green, prism_1, EEE, EEE
drop, green, prism_1, above, blue, cube_2, above, red,

cube_3

In the final step, we omit all empty tokens and concatenate the action

sequences. Also, we only keep the first occurrence of each entity and its at-

tributes and relations:

Listing 36 3rd step of processing
take, green, prism_1, drop, above, blue, cube_2, above,
red, cube_3

For each of the words, we save the position inside the original SemaPreds.

This way, we can give a score for each word in the SemaPreds while calculating

the score of a sequence. For example, the saved position for take would be

action1, word1, for green it would be attribute1, word1, for prism 1 it would

be action1, word2 etc.

Now, we have a sequential representation of the SemaPreds, which can

be used to perform a sequence alignment against the input sentence. There are

different requirements for the scoring algorithm. It needs to be able to align

two differently-sized input sequences, and a user-defined scoring function. The

Needleman-Wunsch Algorithm meets these requirements and is employed for

our approach.
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We define a scoring function that uses the cosine similarity as a posi-

tive score. For this purpose, the input sentence and the sequential SemaPreds

are transformed into fastText representations. Then, the Needleman-Wunsch

Algorithm is applied to calculate the best matching alignment of the two se-

quences using the cosine distance. For each word missing in one of the se-

quences, an empty token (EEE) is inserted while aligning. As fastText was

trained on a massive amount of general-purpose data, and our approach is

usually used inside a specific domain, the scoring function can be improved by

adapting it to the domain.

The domain adaptation is performed by adding a domain-dependent se-

mantic score. It is calculated using training data from the domain, in this case,

2,500 sentences and their SemaPreds. For all the sentences, we perform the

described scoring process using only the cosine distance. Then, we calculate

the frequency for one word being aligned to another. For example, if the blue

is aligned to cyan three times and to turquoise twice, the semantic score

would be 0.6 for cyan and 0.4 for turquoise. This mechanism is intended

to stabilize the correct alignment. The score for each pair of words is stored

and used when testing. The new score is calculated by:

score(a, b) =
cossim(a, b) + semscore(a, b)

2
(4.1)

The best alignment for the given sentence and its SemaPreds could be:

Listing 37 Alignment of an input sentence and its SemaPreds.
grab the green prism and put it on the blue brick
take EEE green prism_1 EEE drop EEE above EEE blue cube_2
0.7 1.0 1.0 0.8 0.7 1.0 0.7

that is on the red box
EEE EEE above EEE red cube_3

0.7 1.0 0.9
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For each of the words within the alignment, we calculated a score. This score

can now be used as a confidence value for each word of the SemaPreds in

Listing 33:

Listing 38 Scores for Example SemaPreds
0.7, 1.0, ,
0.8, 1.0, 0.7, 0.7

, 0.7, 0.7, 0.9
1.0, 1.0
1.0, 0.7
1.0, 0.9

These scores can be used as to calculate the confidence of each word. It

can now be extended to identify probably incorrect parts of the recognized

SemaPreds. The following example clarifies this. For example, the output of

the ASR module was:

grab the green prism and put it on the blue brick that is on

the red box.

The output of the SPR could be:

Listing 39 Example SemaPreds with wrong parts (bold).

take, cube 1, EEE, EEE
drop, cube 1, above, cube_2
is, cube_2, above, cube_3
white, cube 1
blue, cube_2
cyan, cube_3

The word prism coming from the input was interpreted as cube 1 by the

SPR. Also, the word green was mapped to white and red to cyan. Again,

the SemaPreds are transformed into a sequence and aligned against the in-

put. The algorithm generates the confidence scores for each word inside the

SemaPreds :
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Listing 40 Scores for example SemaPreds.
0.7, 0.1, ,
0.8, 0.1, 0.7, 0.7

, 0.7, 0.7, 0.9
0.2, 0.1
1.0, 0.7
0.3, 0.1

These confidence values are now suitable to identify probably incorrect parts

of the output. The whole architecture of the Semantic Evaluator is depicted in

Figure 4.8. In summary, the module performs the following steps: Transform

the SemaPreds to a sequence, convert this sequence and the input sentence

to fasttext sequences, align the sequences using the Needleman-Wunsch Algo-

rithm, use the scores as confidence for words inside the SemaPreds.

Embedding Sequence

Alignment

Do for each predicate:

Scored Sequential SemaPreds

Semantic Evaluator 

Scored SemaPreds

Sentence

SemaPreds

Embedding Sequence

Do for each predicate:Sequential SemaPreds

Figure 4.8: Architecture of the Semantic Evaluator.

74



4.8. Crossmodal Corrector

4.8 Crossmodal Corrector

The described Semantic Evaluator in Section 4.7 is able to generate confidence

values for each of the words inside a list of SemaPreds. This information can

now be used to identify and correct incorrect parts of the SemaPreds. First,

a text hypothesis is generated by the ASR module. Then, the SemaPred

Recognizer produces SemaPreds, which are then processed by the SemaPred

Interpreter described in Section 4.6. As mentioned, the outputs of the module

are 3D source and destination coordinates. Now, there are different error cases

like a wrong formulation of the utterance by the user, or the misunderstanding

of the ASR module or the SemaPred Recognizer. For example, users often

confuse intrinsic and extrinsic perspectives (Twiefel et al., 2016a) and confuse,

for example, left and right, or forward and backward. It is also expected

that incorrect text coming from the ASR increases the chance of an incorrect

output of the SemaPred Recognizer. The idea of the Crossmodal Corrector is

to employ another modality to validate and correct the produced output. In

this scenario, the output are 3D coordinates but may be different for other

scenarios.

If the SemaPred Interpreter does not produce exactly one source position

and one destination position, we expect that one of the mentioned problems

occurred. Especially the case that no source or destination is found may be

challenging to handle. The first step is to analyse which part of the produced

output may be wrong. As this is not possible for a non-existent solution (no

coordinates), the error needs to be searched at a deeper layer. The SemaPreds

which were processed by the SemaPred Interpreter were incorrect or not con-

sistent with the scene. As the scene information is correct, the error results

of implausible SemaPreds. They may be too restrictive or may contain word

confusions. To identify the parts leading to a non-executable command, we

use the idea of semantic plausibility. If a part of a SemaPred is not plausible

regarding the context, we expect a high chance of it being the cause of the

error. We employ the Semantic Evaluator to generate confidence values for
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each word of the SemaPreds. Afterwards, these confidence scores are used as

semantic plausibility values. Values below a threshold (we chose 0.2) are con-

sidered to be possibly implausible. Now, that the potential causes of the errors

are identified, they can be treated as variables which need a better assignment.

To be able to find these assignments, we could use trial and error by

setting them to all possible values and feeding the new SemaPreds to the

SemaPred Interpreter. We found a better way by changing the logic declaration

within the SemaPred Interpreter. For this purpose, we introduce the concept of

wildcards by declaring potentially incorrect slots as wildcard slots. A wildcard

slot does not have a variable assignment. Instead, the ASP interpreter sets

the assignment while finding a solution. For example, there is the scene shown

in Figure 4.9.

Figure 4.9: Example Scene.
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The command could be: move the foo box on top of the blue box

with the following SemaPreds ; the SemaPred Recognizer recognized foo as

yellow in this case:

Listing 41 Example SemaPreds with wrong parts (bold)
move, cube_1, above, cube_2
yellow, cube_2, ,
blue, cube_2, ,

The SemaPred Interpreter encodes the SemaPreds in ASP using the following

description:

Listing 42 List of ASP facts encoding the command mentioned in Listing 41,
containing the wrongly recognized word yellow
1 cube(A,B,C),
2 cube(D,E,F),
3 ref(G,H,I),
4 has_color(shape(A,B,C), color(yellow)),
5 has_color(shape(D,E,F), color(blue)),
6 ontopof(ref(A,B,C), ref(D,E,F)),
7 move(shape(A,B,C),ref(G,H,I))

The Semantic Evaluator scores the slot containing foo with a low confidence

and thus identifying the words foo and yellow to be potentially implausible.

This information can now be used to mark the slot of the word yellow as a

wildcard slot. This is done by not allocating it with yellow but with a variable,

for example Wildcard 1:
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Listing 43 List of ASP facts encoding the command mentioned in Listing 41
including a wildcard
1 cube(A,B,C),
2 cube(D,E,F),
3 ref(G,H,I),
4 has_color(shape(A,B,C), color(Wildcard 1)),
5 has_color(shape(D,E,F), color(blue)),
6 ontopof(ref(A,B,C), ref(D,E,F)),
7 move(shape(A,B,C),ref(G,H,I))

This is done for all wildcards. The command #show can now be used to return

the wildcard assignments. In this case, it would find red, as this is this only

possible (see Figure 4.9). It is possible that multiple assignment are found. If

this is the case, the assignments can be inserted inside the SemaPreds, which

then can be rescored using the Semantic Evaluator, and the most probable

one can be chosen. The whole architecture is depicted in Figure 4.10.

Logic Scene

Constraint Satisfaction 

Do for each predicate:

Crossmodal 
Corrector 

Scene Predicates (with Variables)

Do for each predicate:Logic Predicates

Source 
Coordinates

Destination
Coordinates

(Variable
Assignments)

Figure 4.10: Architecture of the Crossmodal Corrector.

If, after this process, no solution is found, the user can be informed using a

dialog. The same is possible for multiple solutions. We developed a simple

dialog that produces natural language which can be displayed or read to the

user. This is especially useful if the error was caused by the user. Regarding
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the scene in Figure 4.9, the user could utter the command take the cube.

As there are no further descriptions about the cube, there are two possible

sources. In this case, the system will answer: I found two cubes.

It is also possible that the command is overspecified, which means, that

the description is too restrictive. In this case, the ASR did not fail, and the

Semantic Evaluator will not find any low scores. An approach to tackle this

issue is to remove the SemaPreds that restrict the command too much, lead-

ing to no solution. We expect this to be the case for, especially, Attribute

SemaPreds. If no solution is found using the SemaPred Interpreter and the

Crossmodal Corrector, we focus on a new approach we call Iterative Restric-

tion. We remove all attributes and only keep the actions and relations. Then,

we iteratively restrict the command by readding and revalidating the Attribute

SemaPreds. There are other strategies like Constraint Relaxation to address

this problem which were not chosen but could potentially work better. For

example, there is a scene like the one depicted in Figure 4.11.

Figure 4.11: Example scene.
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The produced partially incorrect SemaPreds could be:

Listing 44 Example SemaPreds with wrong parts (bold)

move, prism_1, above, cube_2
blue, prism_1, ,
magenta, cube_2, ,

In this case, the SemaPred Interpreter is not able to determine the source and

destination position. Now, all attributes are removed, resulting in:

move, prism 1, above, cube 2

When reprocessing the SemaPred, the interpreter will find one source position

(the prism) and two destinations (the two cubes). Still, there is no unique solu-

tion. We start to restrict the command iteratively by readding the attributes.

When adding the first attribute (line 2), there will be no source again, as there

are no blue prisms. In conclusion, we completely remove the first attribute

from the stack. Then, we add the next attribute (line 3). The SemaPreds

are reprocessed again, finding exactly one solution, namely the prism being

the source and the magenta cube being the destination. This way, wrong

SemaPreds can be corrected even if they possess a high semantic score.

4.9 Motion Simulator and Real Robot Appli-

cation

To test the developed system in an application, we developed a web-based

simulator and a robot application. The simulator is using Django6 as a back-

end. The frontend is programmed using Three.js 7 The surface is displayed in

Figure 4.12. It is possible to load scenes from the dataset, move the gripper

6https://www.djangoproject.com/
7https://threejs.org/
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and open and close it. The user can also move around the objects and arrange

new scenarios.

Figure 4.12: Screenshot of the web-based simulator. It can be controlled by
the user (buttons on the left side) and scenes from the data set can be loaded
(right side). The simulator can also be controlled via an API to be able to
connect it to our bidirectional processing chain.

As the output of the system are only source and destination coordinates,

a path between these coordinates is missing before a command can finally

be executed. We employ the A* algorithm (Hart et al., 1968) to compute

this path. It is commonly used as a pathfinding algorithm within a graph,

which guarantees the shortest path if an admissible heuristic is provided. As

a heuristic, we use the Euclidean distance between two points. As points, we

define the discrete positions in our 8*8*8 grid. Positions holding a shape are

removed before the graph is created. This way, collisions are prevented. The

algorithm has to be employed twice, first, to get the path from the actual

gripper position to the source position and then to calculate the path from the

source to the destination.

We also applied our approaches in a real-world robotic scenario. Fig-

ure 4.13 shows the Neuro-Inspired COmpanion (NICO) robot (Kerzel et al.,
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2017), which is a humanoid developmental robot with diverse capabilities like

grasping. In Figure 4.13, the robot received the voice command:

take the cube box that is on top of the green cube and

place it in the top left corner

The audio is captured by a Tamago microphone8 (the egg-shaped object

left to the robot). Then, the audio is processed by the modules described

before, producing source and destination coordinates. These coordinates need

to be mapped to real-world positions. In the end, the robot is receiving joint

angles to perform the movement.

The approach behind the grasping is not part of this work and will only

be described briefly and fully published in another paper. To initialize the

algorithm, a reference point is defined by placing a cube in the bottom left

corner and manually moving the arm of the robot to that position. In this

real-world scenario, we use a grid of 2*3*2 discrete positions (Y is 3, the others

2). The positions are calculated using the reference point. The calculation of

the joint angles is then performed by an approach based on the work of Starke

et al. (2016) and uses inverse kinematics to calculate the joint angles for the

discrete positions employing a genetic algorithm. It only needs to be run once,

as all joint angles can be precomputed. This way, the response time of the

algorithm is very low, because only cached values need to be recalled.

In this scenario, the cubes are stackable in a 2*2 grid. The highest level

is reserved for navigation. This way, the robot can more or less safely move a

cube from one position to another without knocking over other cubes. Also,

path planning is not necessary. The grid has a size 2*2 is chosen because the

robots grasping capabilities are limited and it can not reach objects in a larger

grid; with another robot, larger grids are possible.

8http://www.sifi.co.jp/system/modules/pico/index.php?content id=39
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(a) (b)

(c) (d)

(e)

Figure 4.13: NICO robot performing the action: take the blue box that
is on top of the green cube and place it in the top left
corner.
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For example (Figure 4.13), the blue cube is moved from position (1, 1, 1)

to position (0, 0, 1). The coordinates (X, Y, Z) are left (0) and right (1), up (1)

and down (0), and forward (1) and backward (0) from the intrinsic perspective

of the robot. From the source position (1, 1, 1), the blue cube is lifted up to

the highest level (1, 2, 1), then moved towards the destination while holding

the highest level (0, 2, 1). From there, the cube only needs to be dropped at

the destination position (0, 0, 1) by lowering the level. After positioning the

cube at the destination, the internal representation of the scene is updated

and the robot can continue to move objects around.

It would be possible to extend the scenario to support a larger grid.

Only motion limitations of the robot need to be taken into account. The

approach does not require vision, as the decision and validation are performed

only using its internal representation of the scene. Only at the beginning, the

internal representation and the actual scene need to be made consistent. In

future work, the approach can be extended to use vision to derive the internal

representation from an RGB image.

4.10 Summary

In this chapter, we presented the novel natural language representation called

SemaPreds , and the components needed to build our proposed bidirectional

processing chain for speech-controlled scenarios. The following figure of the

architecture shows the arrangement of the different modules (Figure 4.14).

The bidirectional chain receives speech utterances from a user and, in this

case, scene layouts from an HRI scenario. For other scenarios, other context-

based data could be provided. The audio data is processed by our SlimSpeech

ASR system, where different internal language models like domain-dependent

or general-purpose N-gram models may be used. The next (optional) step

is to postprocess the text output with an external language model like Sen-

tence Template models. Then, the SemaPred Recognizer extracts SemaPreds
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from the text. These are fed to the Crossmodal Corrector, that contains the

Semapred Interpreter. It tries to interpret the SemaPreds ; if this fails, the

potential errors are found using the Semantic Evaluator. The parts of the

SemaPreds , where errors are assumed, are tried to be corrected using wild-

cards. If the SemaPreds can be corrected, the simulator or a real robot can

perform the actions. If the SemaPreds cannot be corrected, the user can be

informed about the kind of error.

Audio Sequence

(Sentence Template
External Language Model)

SemaPred Recognizer

SlimSpeech

Crossmodal Corrector

SemaPred Interpreter

Bidirectional Processing Chain

Simulator or Robot

Semantic Evaluator

Scene Layout

Figure 4.14: The architecture of the bidirectional processing chain.
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Chapter 5

Experiments and Results

5.1 Introduction

This chapter contains the descriptions of the experiments we conducted to

be able to answer our research questions. First, we provide an overview of

the used data sets (Sec. 5.2), namely the TIMIT Core Test Set (Sec. 5.2.1),

a benchmark data set for testing speech recognition performance. Then, we

introduce our Knowledge Technology Train Robots data set (Sec. 5.2.2), con-

taining speech, text, NLP labels, and other data. Afterwards, we provide a list

of approaches we evaluate in our experiments (Sec. 5.2.3). The next subsection

(Sec. 5.3) contains the experiment setup and results for our first experiment,

where we measure the performance of our ASR system on the TIMIT Core

Test Set. The next experiment (Sec. 5.4) measures the performance of our

ASR system, together with our internal and external language models within

a restricted domain. The performance is measured on clean and noisy audio

data. The following experiment (Sec. 5.5) contains the results of the hyper-

parameter optimization for our SemaPred Recognizer. Then (Sec. 5.6), we

measure the performance of our ASR together with the SemaPred Recognizer

to recognize text from speech and then create SemaPreds. The experiment
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is performed on clean speech data; the following experiment (Sec. 5.7) has

the same setup, but with noisy speech data. In the next two experiments

(Sec. 5.8; Sec. 5.9), we extend the pipeline to process the SemaPreds with our

SemaPred Interpreter. The first experiment uses clean speech data, the other

one noisy speech data. After that, we repeat the same experiments (5.10; Sec.

5.11), adding our Crossmodal Corrector to the pipeline transforming it to a

bidirectional processing chain. In the last experiment (5.12) we measure the

processing time of the different chain modules.

5.2 Evaluation Data Sets and Evaluated Ap-

proaches

5.2.1 TIMIT Core Test Set

The TIMIT Core Test Set consists of 192 different sentences by 24 speakers us-

ing close-talking microphones (Garofolo et al., 1993). As the sentences spoken

are very diverse, there is no speech recognition grammar available for TIMIT.

The test set contains sentences like:

• She had your dark suit in greasy wash water all year.

• Don’t ask me to carry an oily rag like that.

• Production may fall far below expectations.

The data set is commonly used to evaluate the performance of acoustic models,

as the vocabulary is not domain-dependent and domain-dependent language

models cannot be used.
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Figure 5.1: Example from the corpus. An example for a board scene before
(left board) and after (right board) the command Move the red brick on
top of the blue brick.

5.2.2 Knowledge Technology Train Robots Data Set

To evaluate our system, we created an extended version of the Train Robots

data set (Dukes, 2013b); we call it Knowledge Technology Train Robots

(KTTR). It consists of instructions directed at a robot arm that can move

objects around like boxes and pyramids in a discrete world and is inspired

by SHRDLU (Winograd, 1972). The text corpus contains 2,500 training sen-

tences and 909 test sentences, which are linguistically rich, including anaphoric

references, multi-word spatial expressions, and challenges like lexical disam-

biguation. The data set has a “before” and “after” scene for each of the

commands, Fig. 5.1 shows an example. The sentences are, for example:

• Move the red brick on top of the blue brick

• Pick up the blue block from the top of the green block

and put it down on the blue block which lies next to

another green block

The original corpus was created via crowd-sourcing and contains many

grammatical and syntactic errors, which would make a model learn incorrect
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syntax. A prerequisite for our approach to work is that the system learns the

correct syntax of the language. For restricted domains like the Train Robots

scenario, we believe that there is not enough data available to be able to

identify incorrect syntax in an unsupervised way. That is why we corrected

grammatical errors in the training data to make sure the system learns only

the correct syntax. We recorded audio data for the 909 test sentences with

9 different non-native speakers, each one uttering 101 sentences from the test

set.

We also used the recorded audio to generate another very challenging

variant of the data set by employing audio-degrader 1. The gain is reduced, the

sound is mixed with ambience sound (signal-to-noise ratio: 18dB) from a pub

and convolved with a smartphone microphone input response (wetness level:

0.8). This way, very challenging conditions can be simulated. The original

data set contains labels in the form of Robot Control Language (RCL). RCL is

a variant of dependency trees in combination with semantic prototype words at

the leave of the trees, e.g., grab and grasp are both mapped to the prototype

word take. For all the 3,409 sentences, we annotated SemaPreds. The data

set is used to evaluate the performance of our language models in combination

with ASR and to measure the recognition of SemaPreds using a pipeline of

ASR, language models, and the SemaPred Recognizer. The layout data is used

to evaluate our SemaPred Interpreter and the Crossmodal Corrector.

5.2.3 Evaluated Approaches

The following list contains the models we analysed in our experiments together

with their abbreviations. The :

• SSC: SlimSpeech Chars acoustic model

• Google: Google’s cloud-based ASR system

1https://pypi.org/project/audio-degrader/
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• SSP: SlimSpeech Phonemes acoustic model

• Gold Standard Test Sentences: the test sentences from the data set

• Gold Standard Test SemaPreds : the test SemaPreds from the data set

• GP3: internal general-purpose trigram language model

• GP4: internal general-purpose quadrogram language model

• DD2: internal bigram language model trained on the training sentences

• STG: Sentence Template Grammar model trained on the training sen-

tences

• STN: Sentence Template N-gram model trained on the training sentences

• DBi: external DOCKS bigram model trained on the training sentences

• SPR: the SemaPred Recognizer creating SemaPreds from speech hy-

potheses

• SPI: the SemaPred Interpreter which creates source and destination co-

ordinates from SemaPreds and scenes.

• CC: the Crossmodal Corrector that can be used to find the unique source

and destination coordinates if the SPI did not deliver a unique solution

5.3 General-purpose Speech Recognition Per-

formance

We evaluate our acoustic model on the TIMIT Core Test Set. The performance

is measured for Word Error Rate (WER) and Phoneme Error Rate (PER). To

be able to measure the PER, the best text hypothesis of each approach and
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reference text is converted to phonemes using SequiturG2P (Bisani and Ney,

2008) trained on CMUdict.

Table 5.1 shows that the performance of SlimSpeech regarding WER is

slightly lower than Google’s cloud-based ASR system. If we employ a tri-

gram general-purpose language model (SSC-GP3) there is a huge performance

improvement (25.083 % vs. 18.807 %). When using a quadrogram general-

purpose language model, the performance is even better (17.575 %).

The results in Table 5.1 indicate that all our local ASR systems perform

better than Google’s ASR regarding PER. Using our acoustic model without a

general-purpose language model (SSC) leads to a better phoneme quality than

Google’s ASR achieved. If we do not convert the phonemes from graphemes

but produce them directly from audio (SSP), the PER performance is even

better. The best PER performance is achieved using SSC-GP3 (35.019 %) and

SSC-GP4 (32.555 %).

Table 5.1: Performance regarding Word Error Rate and Phoneme Error Rate
on the TIMIT data set.

Internal Internal Word Phoneme

Acoustic Language Error Error

Model Model Rate Rate

SSP - n/a 41.15 %

SSC - 25.551 % 44.682 %

Google - 25.083 % 47.86 %

SSC GP3 18.807 % 35.019 %

SSC GP4 17.575 % 32.555 %
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5.4 Domain-dependent Speech Recognition Per-

formance

In this experiment, we measure the performance of the presented general-

purpose ASR systems and compare it with the performance of the domain-

dependent approaches. The experiment is performed on the clean and the

noisy KTTR dataset. The language models for the domain-dependent ASR

systems DBi, DD2, STG, and STN are trained on the 2500 training sentences

of the given corpus. Figure 5.2 shows the results on the clean test set.

The best-performing approach is our SlimSpeech system with an inter-

nal DD2 language model. It is followed by the approaches using an external

DBi language model. Then, the approaches that use STN language models

follow, and the general-purpose ASR systems and, finally, the ones using STG

language models. For all external language models, the ones using Google’s

speech hypothesis as input perform slightly better than their equivalents using

the output of SSC as input. For all external language models, the phoneme-

based SlimSpeech (SSC) performs the weakest. All internal (DD2, GP4, GP3)

and external language models (DBi, STN) except STG, together with our SSC

or SSP system, perform better than Google’s ASR. The huge gap in perfor-

mance can be observed when comparing Google’s ASR (15.854 %) against our

best performing approach SSC (3.85 %) which is an absolute WER reduction

of 12.004 %.

Figure 5.3 shows the performance of the different approaches on the

noisy KTTR dataset. The performance dropped drastically for all approaches.

Like on the clean KTTR data set, the performance of the SSC-DD2 is the

best, followed by the external DBi language models with character input,

while the performance with phoneme input is much lower. It is followed by

the STN language models. For the noisy dataset, the character-based STG

language models perform better than the general-purpose language models
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Figure 5.2: Performance regarding Word Error Rate on the clean KTTR data
set.

or no language models. Here the performance gap between our best approach

(SSC-DD2) and Google is even more drastic with 27.349 % vs. 49.902 % which

is an absolute WER reduction of 22.553%.
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Figure 5.3: Performance regarding Word Error Rate on the noisy KTTR data
set.

5.5 Hyperparameter Optimization for the Se-

mantic Logic Predicate Recognizer

To find fitting hyperparameters for our model, we use hyperopt (Bergstra et al.,

2015) with a Tree of Parzen Estimator iterating for 200 trials. The hyperpa-
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rameters to find are the dropout probability after the Max Pooling layer and

the dropout probability after the concatenation using a uniform distribution

between 0 and 1. Also, we searched for a good batch size between 1 and

401. The size of the dense hidden layer was searched between 500 and 5000

neurons. To find a reasonable learning rate, we chose a uniform distribution

between 0.01 and 0.0001. We performed a 5-fold cross-validation for each

iteration. The metric to optimize measures whether an output sample was

correctly predicted. For each subvector of the output, a winner-takes-all is

performed, setting the winner to 1 and the rest to 0. This vector is compared

to the validation sample. If the two samples are equal, the sample is correctly

classified. This way, we calculated the error of the validation set, doing this

once for each fold, and determined the average error rate for an iteration. The

found hyperparameters are given in Table 5.2.

Table 5.2: Hyperparameters found for the KTTR data set.

Hyperparameter Found Value

Dropout Probability 1 8.215 %

Dropout Probability 2 75.078 %

Batch Size 7

Hidden Size 757

Learning Rate 0.0001

5.6 Semantic Logic Predicate Recognition on

Clean Speech

To evaluate the performance of our system for lab and real-world applications,

we measured the performance of our system on the 909 test sentences (Gold)

and the ASR hypotheses produced by our ASR systems. We tested differ-

ent combinations of acoustic models, internal language models and external

language models to generate the hypotheses. The hypotheses are then fed to
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a SemaPred Recognizer that is producing SemaPreds. The quality of these

SemaPreds is analysed in this experiment. Figure 5.4 shows the results for the

clean KTTR data set.
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Figure 5.4: Performance regarding SemaPred recognition accuracy on the
clean KTTR data set.

When trained on the 2,500 training sentences and training SemaPreds,

the model achieves an accuracy of 74.147 % for the 909 test samples (Gold
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Standard Test Sentences). A SemaPred output consists of up to two actions,

up to two relations, and up to 25 attributes. If all SemaPreds for a sentence

are classified correctly, the output is considered as correct. The accuracy

is calculated on the number of correctly classified samples. Partly incorrect

outputs are considered as incorrect, making it a strict metric.

The best accuracy when using ASR outputs as inputs to the system is

achieved by the SSC-DD2 model. The other n-gram-based models achieve a

slightly lower performance, except the SSP-DBi achieving an obviously lower

performance. The performance of the STN-based models is even lower. The

best STN-based approaches use an internal general-purpose language model

(Google, SSC-GP3, SSC-GP4). Then, the models with general-purpose lan-

guage models follow, afterwards, the approaches using STG language models.

Comparing our best approach (SSC-DD2) with the performance of a SemaPred

Recognizer taking test sentences as input, the gap in performance is not high

(67.107 % vs. 74.147 %). This means that our best approach achieves around

90.5 % of the performance that could theoretically be achievable. If we com-

pare our best approach against Google’s ASR together with a SemaPred Rec-

ognizer, the performance gap is much larger with 67.107 % vs. 48.625 %, which

is an absolute improvement of 18.482 % or a relative improvement of around

138 %.

5.7 Semantic Logic Predicate Recognition on

Noisy Speech

This time, we want to measure the quality of the produced SemaPreds under

noisy speech conditions. The same experiment as in Section 5.6 is performed,

again the SemaPred Recognizer is trained on the 2,500 training samples. This

time, the noisy KTTR audio test set is used. We produce speech hypotheses

using different combinations of acoustic and language models. These hypothe-
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ses are fed to the SemaPred Recognizer. Figure 5.5 contains the results of this

experiment.
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Figure 5.5: Performance regarding SemaPred recognition accuracy on the
noisy KTTR data set.

The overall performance is obviously lower for all approaches. The best

performing combination is the STN language model taking Google’s ASR hy-

potheses as input. It is followed by SSC-DD2 and the other STN language
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models using character input. Then, there are the DBi models using char-

acter input, and the STG-based models. The lowest performance is achieved

when using general-purpose ASR systems. Under noisy conditions, the per-

formance of the STN-based models is almost equal or better than the perfor-

mance of other external language models. If we compare the accuracy of our

best approach Google-STN against Google without an external language model

(26.733 % vs 11.111 %), we observe an absolute improvement of 15.622 % or

a relative improvement of 240.6 %. When we compare to our best SSC-based

model (SSC-DD2), the absolute improvement is 15.072 %, and the relative

improvement is 235.649 %.

5.8 Semantic Logic Predicate Interpretation

on Clean Speech

In this experiment, we measure the SemaPred interpretation accuracy under

clean conditions using the clean KTTR dataset. The SemaPreds are produced

using the SemaPred Recognizer. As input to the SemaPred Recognizer, we

use the speech hypotheses produced by the different ASR combinations. The

speech hypotheses are the same ones as in experiment 5.6 and the produced

SemaPreds are the same as in experiment 5.6. The SemaPreds are then pro-

cessed by the SemaPred Interpreter (SPI). The dataset consists of 909 samples

and scenes. Each scene consists of an initial layout and a subsequent layout,

where an entity and the gripper is moved to a different position in the grid.

After processing the SemaPreds, we receive a source and a destination posi-

tion of the gripper. We simulate a move by changing the gripper position to

the destination position and the position of the entity at the source position

to the destination position. Finally, we compare the positions of all entities

of the changed layout to the subsequent layout of the dataset. If the lay-

outs are equal, the sample is considered as interpreted correctly, otherwise as

incorrectly.
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Figure 5.6 shows the results of the experiments. The SPI almost reaches

100% accuracy when processing gold standard SemaPreds. If we use the gold

standard test sentences to produce SemaPreds, the accuracy is 79.538 % which

should be the maximum performance achievable when using ASR hypotheses

as input. The best ASR model achieves 73.157 % accuracy (SSC-DD2). It is

followed by the DBi-based models and then STN-based models using SSC as

input. The best system without a domain-dependent language model is SSC-

GP4, with 56.986 %. When using Google’s ASR without a domain-dependent

language model, the accuracy is 56.436%. Comparing our best model (SSC-

DD2) against Google, we observe an absolute improvement of 16.721 % and a

relative improvement of 28.377 %.

5.9 Semantic Logic Predicate Interpretation

on Noisy Speech

To investigate the performance of the SemaPred Interpreter under very noisy

audio conditions (see Sec. 5.2.2), perform a similar experiment as in section

5.8. This time, we choose the noisy KTTR data set to produce the ASR

hypotheses, which are the same as in experiment 5.4, and use the SemaPred

Recognizer to recognize SemaPreds. These SemaPreds are the same ones as

in experiment 5.7. The SemaPreds are processed by the SemaPred Interpreter

(SPI). The produced source and destination coordinates are employed to sim-

ulate a gripper movement like in experiment 5.9. Under very noisy conditions,

the accuracy of the best approach is 32.233 %. Those are SSC-DD2 and

Google-STN. Compared to the clean conditions, the STN-based approaches

perform superior compared to the DBi-based approaches in most cases. The

weakest performance is achieved by SSC when using no language model at

all. Google’s accuracy is only 15.622 %. When comparing Google to our best

approaches (SSC-DD2, Google-STN), we observe an absolute improvement of

16.611 % and a relative improvement of 106.90 %.
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Figure 5.6: Performance regarding SemaPred interpretation accuracy on the
clean KTTR data set.
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Figure 5.7: Performance regarding SemaPred interpretation accuracy on the
noisy KTTR data set.

5.10 Crossmodal Correction on Clean Speech

In this experiment, we want to measure the influence of the Crossmodal Correc-

tor (CC) on the SemaPred interpretation accuracy. We base this experiment
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on experiment 5.8. Again, the SemaPreds are produced using different variants

of ASR systems and the SemaPred Recognizer. As a data set, we also chose the

clean KTTR . We employ the SemaPred Interpreter (SPI) to produce source

and destination gripper positions and simulate movements like in experiment

5.8. This time, we use the CC to attempt to correct implausible inputs to the

SPI. Figure 5.8 shows the outcomes of the experiment and also contains the

SemaPred interpretation accuracy measured in experiment 5.8 (rows having

only SPI as SemaPred processor).

Again, the best accuracy (99.56%) is achieved when interpreting the gold

standard SemaPreds from the test set. When using the SPI+CC instead of

only using the SPI only, the accuracy is improved for all approaches. Even

when feeding the gold standard sentences of the test set to the SemaPred

Recognizer, the accuracy can be improved from 79.538% to 82.728%. The best

approach (SSC-DD2) can be improved from 73.157% to 77.228%, which is close

to the accuracy of using gold standard test sentences without CC (79.538%).

Again, SSC-DD2 is followed by the DBi-based approaches, the STN-based

approaches, and the models using a general-purpose language model. Google

achieves 59.406% accuracy when employing the CC. When comparing our

best system against Google using only SPI, the accuracy is 77.228% (SSC-

DD2-SPI+CC) versus 57.096% (Google-SPI).

5.11 Crossmodal Correction on Noisy Speech

This experiment investigates the influence of the Crossmodal Corrector (CC)

on the SemaPred interpretation accuracy under very noisy conditions. We

produce speech hypotheses using the different ASR combinations on the noisy

KTTR dataset like in experiment 5.4. The speech hypotheses are processed

by the SemaPred Recognizer, and the SemaPreds are processed using the

SemaPred Interpreter (SPI) in combination with the CC. To be able to mea-

sure the influence of the CC, we compare the performance with the SPI without
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CC. Figure 5.9 shows the results of this experiment.
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Figure 5.8: Performance regarding SemaPred interpretation accuracy on the
clean KTTR data set.

For all combinations of ASR models, the performance is improved when

using a CC compared to only using an SPI alone. The best performance is
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achieved by the STN model in combination with Google’s ASR as an acoustic

model (36.634 %) and SPI with a CC. It is followed by the SSC-DD2 with the

SPI and the CC (35.204 %). When comparing to Google’s ASR with SPI and

CC, it performs weaker with 15.952 % accuracy. Google with SPI and without

CC achieves 15.622 % accuracy.

5.12 Processing Time

In this experiment, we want to analyse the processing and response time of

our different models. For this purpose, we measured the different processing

times for each stage of the processing chain. Those are the time between

taking the audio and producing the first text hypotheses. These are created

using Google’s ASR or using our SSC or SSP acoustic model and an internal

language model like DD2, GP3, or GP4 or not using an internal language model

at all. When using an external language model like STG, STN, or DBi, this

step is also measured separately. Afterwards, we measure the time to create

SemaPreds from the speech hypotheses. Thereafter, the time to interpret the

SemaPreds using the SPI is noted. Finally, we measure the processing time

when using a CC to improve the results. The measurement is started, when

a module receives the input data and stopped after a module produced the

output.

Figure 5.10 shows the results of this experiment. The fastest ASR system

is SSC with 0.35s. When using an internal language model like GP4, GP3,

or DD2, the response time rises to 0.461s, 0.459s and 0.436s. This is very

fast compared to Google’s response time of 1.271s. When creating SemaPreds

from a speech hypothesis, the processing time is around 0.012s to 0.017s.

The processing time for the external language models varies depending on the

connected ASR system. DBi takes 0.334s to 0.435s, STN’s processing time is

between 0.651s to 1.407s.
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Figure 5.9: Performance regarding SemaPred interpretation accuracy on the
noisy KTTR data set.

The processing time of the SPI varies between 0.216s and 0.524s. For the

CC, the processing time is only measured if it was really used. This was the

case when the SPI did not deliver a unique solution. Otherwise, the processing
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time of CC is 0. The average processing time for CC is between 0.051s and

0.128s.

Regarding the whole processing chain from the acoustic model to the CC,

the fastest approach is SSC-GP4 with 0.785s followed by SSC (0.842s), SSC-

GP3 (0.891s) and SSC-DD2 (0.96s). When defining an average response time

of one second as the limit for realtime capability, these are the only approaches

achieving this. When using Google’s ASR together with the SemaPred Recog-

nizer and SPI with CC, the processing time is 1.638s, without CC, it is 1.549s,

which is still not realtime capable using our definition.
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Figure 5.10: Average processing time per utterance on the clean KTTR data
set.
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Discussion and Conclusion

This chapter contains the outcomes of this thesis. In the first subsection,

we mention discuss the main findings of our experiments. Then, we provide

concrete answers to the research questions we derived. After that, we give an

overview of the limitations and possible future work that could be performed

using the contributed knowledge contained in this thesis. Finally, we provide

conclusions.

6.1 Discussion

This section contains a discussion of the main findings of our experiments.

In experiment 5.3, we investigated the performance of the acoustic model of

our SlimSpeech ASR system. On the TIMIT benchmark data set, the model

achieved a Word Error Rate (WER) of 17.575% when using a general-purpose

quadrogram (GP4) language model, while Google’s ASR achieved 25.083%.

These results show that our system can be considered as an alternative to

Google’s ASR, at least under clean audio conditions.
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In next experiment (5.4), we analysed the performance of the different

combinations of acoustic models, internal language models and external lan-

guage models on clean and noisy audio data. On the clean and the noisy

Knowledge Technology Train Robots data set, SlimSpeech with a domain-

dependent bigram (DD2) language model achieved a WER of 3.85% (clean)

and 27.349% (noisy) which is vast improvement compared to Google’s ASR

with 15.854% (clean) 49.902% (noisy).

In experiments 5.6 and 5.7, we investigated the behaviour of our

SemaPred RecognizerRegarding the performance of the SemaPred Recognizer,

we observed an accuracy of 74.147% when processing text sentences from the

KTTR test set. This indicates, that the SemaPred Recognizer contains the

central limitations of our architecture and leaves room for improvements. We

analysed the errors made by the system to identify possible reasons. For this,

we measured the coverage rate of test sentences inside the training set. The

whole test set consists of 909 sentences, 353 of them were already contained in

the training set, which results in 556 completely unknown sentences (61.16%).

In the experiment, the recognizer recognized (partially) wrong SemaPreds for

235 test sentences; all of them are from the unknown portion. We decide be-

tween outputs that possess the correct number of SemaPreds and outputs that

have too many or not enough SemaPreds . 158 (67.23%) of the 235 incorrect

outputs contained the correct number of SemaPreds . 85 of them had only

one errors, meaning one word inside the list of SemaPreds was confused; 43

had 2 errors; 18 had 3 errors. The most common error was confusing region

with edge (46) and nearest with above (22). Other prominent errors were

confusing numbers like, one with two, two with one, three with one etc.

The reasons for this behavior we believe to be found in overfitting and a weak

coverage of the domain in the training set. As there are often only few or one

error inside the output we believe that the approach can be improved in the

future. The error cases are not evenly distributed leading to the hypothesis,

that there could be a systematic error which could be identified. It may result

from a lack of coverage of the training data. Perhaps data augmentation may
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help in this case. Our Sentence Template language models could be used to

generate novel sentences and training data for this purpose.

When the input of the SemaPred Recognizer came from an ASR system,

the performance decreased from 74.147% accuracy to 67.107% on the clean

Knowledge Technology Train Robots data set. The best performing ASR sys-

tem is SlimSpeech (SSC) with a domain-dependent bigram (DD2) language

model. The performance of 67.107% is good, regarding the fact that the per-

formance on clean text is only around 7% higher, while using the text from

Google’s ASR, a lower accuracy of 48.625% could be achieved. Under noisy

audio conditions, the best-performing model was Google’s ASR together with

out Sentence Template N-gram language model with 26.733% and SSC-DD2

with 26.183%. Google’s ASR achieved 11.111%.

In experiments 5.8, 5.9, 5.10 and 5.11, we analysed the SemaPred inter-

pretation accuracy on text generated by ASR systems on the clean and the

noisy Knowledge Technology Train Robots data set. When using clean text,

the SemaPred Interpreter achieved an accuracy of 79.538%; the best ASR ap-

proach is SlimSpeech with a domain-dependent (DD2) language model and the

Crossmodal Corrector. It achieved an accuracy of 77.228%, which is marginally

lower compared to using clean text. Google’s ASR with the SemaPred In-

terpreter achieved 56.436 %. Under noisy conditions, the best performing

approaches were Google with a Sentence Template N-gram language model

(36.634%) and SlimSpeech with a DD2 language model (35.204%). Both em-

ployed the Crossmodal Corrector. Google’ASR together with the SemaPred

Interpreter achieved an accuracy of 15.952%.

We analysed the response time of the different models in experiment

5.12. The fastest configuration when applying ASR, SemaPred Recognizer,

SemaPred Interpreter and Crossmodal Corrector is SlimSpeech with a general-

purpose quadrogram (GP4) language model with a response time of 0.785s for

the whole processing chain. SlimSpeech with a domain-dependent bigram lan-

guage model achieved a response time of 0.96s for the whole processing chain.
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The ASR itself achieved 0.45s. Google’s ASR with a SemaPred Recognizer

and a SemaPred Interpreter achieved a response time of 1.549s.

6.2 Answers to Research Questions

The following research questions could be answered:

Question 1: How is it possible to develop a local ASR system that

is usable in realtime and achieves similar performance as state-of-

the-art speech recognition models?

We successfully showed that it is possible to develop such a system.

Experiment 5.4 shows that the performance on an ASR benchmark dataset is

similar to a state-of-the-art approach. In experiment 5.12 we show that the

system is realtime capable (for our definition) with a processing time of around

0.450s against 1.271s (Google).

Question 2: Are there better alternatives for speech applications

than taking a black-box ASR together with a domain-dependent

NLP system?

We showed that it is possible to develop a local realtime capable speech

recognition system. The acoustic model of the system is not adapted to the

domain, because an acoustic model is a model for speech in general. What

actually helps in improving the performance is a domain-dependent language

model. The language models we use in experiment 5.4 perform, almost all,

better than the reference cloud-based solution without a domain-dependent

language model. In case there is no data available, the local ASR can use a

general-purpose language model, which achieves a similar performance com-

pared to a cloud-based solution. The produced text hypotheses could be

recorded and corrected to be used as training data for a domain-dependent
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language model. For the presented scenario, only 2,500 training sentences

where enough to achieve a vast improvement in performance.

Question 3: Is it possible to define a novel NLP representation that

can be corrected if parts of it are incorrect? Is the novel repre-

sentation suitable to be interpreted to compute concrete execution

parameters?

We defined the novel Semantic Logic Predicates (SemaPreds) represen-

tation to meet this requirement. They are less complex than dependency or

RCL trees, and can be represented as logic representations, which can be inter-

preted by a declarative programming language like Answer Set Programming.

If SemaPreds represent an instruction, an interpreter can compute concrete

execution parameters like source and destination coordinates in our scenario.

In other scenarios, other parameters are possible. The SemaPred Recognizer

presented in this thesis is able to produce the novel representation from natu-

ral language. To be able to repair incorrect parts, we developed a Crossmodal

Corrector (CC) that matches the output against the sentence input and identi-

fies semantically implausible parts. These parts can be replaced with different

parts that are consistent with the context, using the interpreter. The wildcard

system of the interpreter makes it possible for the interpreter to find consistent

variable allocations for the incorrect parts independently.

Question 4: Is the developed system also working under very noisy

conditions?

Under very noisy conditions, the performance of the cloud-based ASR

system is weak. When using the best variant of our local ASR system, we

achieve a relative reduction in word error rate by around 54%. When con-

necting an NLP module (SemaPred Recognizer) to the Cloud-based ASR, the

accuracy in SemaPred recognition is very weak (11.221%). We developed an

external language model (Sentence Template N-Grams) that can be connected

to the Cloud-based ASR and boosts the performance relatively by around
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230%. When using the best variant of our local ASR system, we achieve

a relative boost of around 213%. The overall performance of the system is

still relatively low (25.853% accuracy), which is not surprising regarding the

massive amount of noise added to the audio test data.

6.3 Future Work

The ASR system is based on DeepSpeech 2, which was state-of-the-art when

we trained our system. The system we trained is not as powerful as Deep-

Speech 2, because it possesses fewer layers and used less training data. In

the meantime, there appeared other ASR systems which achieved a slightly

better performance than DeepSpeech 2 on different benchmark test sets like

LibriSpeech (Panayotov et al., 2015), and Wall Street Journal ’92 and ’93

(Garofolo et al., 2007; Consortium et al., 1994). For LibriSpeech, these are

transformer-based models (WER: 2.3 %) (Wang et al., 2019), hybrid mod-

els (WER: 2.3 %) (Lüscher et al., 2019), self-attention (WER: 2.2. %) (Han

et al., 2019), while DeepSpeech 2 achieved a WER of 5.15 %. There are also

other approaches performing better than DeepSpeech 2 on this data set. For

the WSJ ’92 data set, only a lattice-free maximum mutual information ap-

proach achieved a better performance (WER: 2.9 %) (Hadian et al., 2018)

than DeepSpeech 2 (WER: 3.1 %). In the future, we could adapt one of those

infrastructures, measure the response time, and optimize the architecture or

retrain a thinner architecture, and replace our SSC system.

The internal language model, which is based on HMMs, could be re-

placed by a Gated-CNN-based approach (Dauphin et al., 2017). This approach

could also be used to extend or replace the SemaPred Recognizer. We showed

that a domain-dependent language model provides a considerable boost in

performance. Often, there is not much data available for a task (2,500 train-

ing samples for our scenario). This problem needs to be taken into account

when developing a different approach for the internal language model and the
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SemaPred recognition system. So far, the performance of our CNN-based

system is acceptable, preliminary results with LSTMs and GRUs showed no

comparable results, possibly because of the lack of training data.

The performance of the SPI is excellent for the chosen task and possibly

for other tasks. A disadvantage is that it only works in discrete worlds so far,

hence, we explored possibilities to discretize the real-world to a 2*2 grid when

working with the NICO robot. A possible extension would be a visual system

that is able to abstract discrete 3D representations from real-world scenarios.

The input could be either 2D using a camera or 3D using a Kinect, and the

output could be a 3D grid representation like in our scenario. The system is

not limited to spatial tasks; also other tasks that can be solved using logic like

question answering could be tackled with our ASR-to-execution chain.

Our external language models work on text input and are partly written

in pure python. They could be optimized to work with C-based libraries

to speed up processing. Also, they could be integrated with the acoustic

model and to direct the decoding. When comparing the performance of DD2

and DBi language models, which are both using the same bigram language

model, the performance is better for DD2 in any of our experiments. This is

because DD2 works with character distributions as input, while DBi only uses

phonemes. Adapting STN and STG to also work with character or phoneme

distributions could lead to a boost in performance. The data set we chose for

our experiments is diverse and rich of different phrasings. This is not helpful

for ST-based language models, as they can only recognize known phrasing

structures. If the test data contained more phrasing structures already found

in the training data, the performance is expected to be better. This leads to

the conclusion that ST-based language models are especially useful when there

are not many variations expected in the test data.
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6.4 Conclusion

In this work, we proposed different approaches for acoustic modelling, language

modelling, natural language processing and a new language representation

called SemaPreds. We evaluated the performance of our presented acoustic

model and general-purpose ASR system on the commonly usedTIMIT Core

Test Set, achieving better performance than Google’s cloud-based ASR. The

aim of the presented approaches is to provide an alternative bidirectional pro-

cessing chain from ASR to execution for future real-world applications like

HRI scenarios. Depending on the results of our experiments (see Section5.3)

we suggest employing our ASR system for real-world projects instead of the

commonly used unidirectional pipeline approach.

The results of the experiments on clean audio (see Section 5.4, Figure

5.2) indicate that the use of a domain-dependent language model provides a

clear improvement in performance (Google 15.854 % WER, SSC-DD2 3.850%

WER). For low noise environments, we suggest to use a domain-dependent

bigram language model (DD2 or DBi). DD2 performs better, as the decoding

is performed on distributions of characters, while DBi uses only one-hot vector

information.

For the type of ASR, the choice should clearly be character-based ASR

(SSC, Google) instead of phoneme-based ASR models (SSP), as they perform

better for each type of language model. SSC is the better option, as it allows

decoding over distributions of characters (DD2), which performs best. When

using external language models, we suggest using Google’s ASR as an acoustic

model, as the performance is slightly better than SSC with external language

models. The response time for Google is much higher than SSC, which would

probably not justify the slight improvement in WER and suggest SSC.

When testing on a noisy dataset (see Section 5.4, Figure 5.3), the results

indicate that the whole dataset is challenging (SSC 63.335% WER, Google
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49.902% WER). Using a general-purpose model (GP4, GP3) helps (SSC-GP4

52.992% WER, SSC-GP3 53.626% WER) to improve the performance, but is

still lower than Google’s performance. We interpret this behaviour as Google’s

ASR being more robust to noise. The reason could be that our acoustic models

are mainly trained on clean audio data. Using a domain-dependent language

model improves the performance drastically (SSC-DD2 27.349 % WER vs.

Google 49.902 % WER). Again, DBi performs marginally worse than DD2

due to the reason already mentioned. Even the very restricted STG language

models perform better than the general-purpose language models when using

characters as input. We strongly suggest using a domain-dependent language

model if training data from the domain is available.

The performance of the SemaPred Recognizer is acceptable (see Sec-

tion 5.6, Figure 5.4) when receiving clean test sentences as input (accuracy

74.147%) regarding the accuracy to be a strict metric (see explanation in Sec-

tion 5.6). When performing general-purpose ASR (Google) on clean speech

data and SemaPred recognition is performed afterwards, the performance de-

creases drastically (accuracy 48.625 %). Even though the ASR performance

of Google’s ASR showed a WER of 15.854%, its performance is still not good

enough to achieve acceptable NLP performance. By employing a DD2 lan-

guage model, the accuracy can be improved to 67.107 %. This is already very

good, as the performance of clean text input from the test data is only 7.040 %

better. Also, the DBi language model performs similarly well, especially the

SSC-GP4-DBi and SSC-DBi perform better than Google-DBi, which makes

the use of Google’s ASR obsolete here. The performance of the STN-based

language models is lower but still obviously better than using general-purpose

language models alone.

When performing experiments on very noisy data (see Section 5.7, Figure

5.5), one can observe a huge decrease in NLP performance. When performing

SemaPred recognition on Google’s text output, the accuracy is only 11.221%,

which is far from acceptable. The best-performing language model is STN in
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combination with Google as an acoustic model (25.853 %). SSC-DD2 is per-

forming second best (23.872%). Then, the other character-based STN models

follow. STN models provide stability to the structure of the output hypothe-

sis. All character-based STN models perform better than all character-based

DBi models, which indicates that the provided stability of the STN models

obviously helps when the speech input is very noisy. For very noisy speech

input, we suggest using the STN language models with Google’s ASR or the

faster SSC-DD2.

The results of the experiments on SemaPred interpretation accuracy on

clean audio data (see Section 5.6) indicate that the SemaPred Interpreter (SPI)

performs very well (99.56 %) when it processes Gold Standard SemaPreds from

the test set. When processing test sentences and recognizing SemaPreds using

the SemaPred Recognizer the accuracy of 79.538 % is still very high. When

processing real audio data from the test set using our best approach (SSC-

DD2), the performance drops only marginally to 73.157 %. Compared to

Google (56.436 %), this is a large improvement. For clean audio conditions,

we suggest using our SSC-DD2 model.

Under very noisy audio conditions, the performance in SemaPred in-

terpretation accuracy drops for all approaches (see Section 5.9). Our best

approaches (SSC-DD2, Google-STN) achieve a relative accuracy improvement

of 106.90 % compared to Google. We also showed that all domain-dependent

language models helped to improve performance.

In this thesis, we also presented a Semantic Evaluator and a Crossmodal

Corrector (CC). Our experiments (see Section 5.10) show that the use of a

CC is helpful under clean audio conditions. When processing text sentences

from the test set, recognizing SemaPreds with the SemaPred Recognizer, and

process them with the SPI, the performance could be improved by utilizing the

CC (79.538 % vs. 82.728 % SemaPred interpretation accuracy). This shows

that the CC is able to compensate both errors from the ASR and the SemaPred

Recognizer. The experiments performed under very noisy conditions (see Sec-
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tion 5.11) indicate that the usage of the CC also improves the performance

for all approaches. The best performing approach is Google-STN (36.634 %),

the second-best is SSC-DD2 (35.204 %). Under noisy conditions we suggest

to use the configuration Google-STN-SPI+CC for the best performance.

In our experiments, we also measured the processing time of the different

approaches. The fastest acoustic model is SSC with 0.35s. When using internal

language models (GP4, GP3, DD2), the response time rises to 0.461s, 0459s,

and 0.436s. Compared to Google’s ASR (1.271s), the response time is much

shorter. One needs to consider that Google’s ASR is cloud-based, and the

higher response time may be caused by the network traffic. Our aim was to

provide a local and faster solution, which could be achieved. The response

time for the slowest system (Google-STN 2.519s) is relatively slow. For noisy

environments, we suggest using the system nevertheless, if there are no time

constraints. Otherwise, we suggest employing SSC-DD2.

In summary, we suggest using domain-dependent language models in any

case. In this work, we show that a self-trained ASR can perform similar to

cloud-based Google ASR when using general-purpose language models. When

using a self-trained ASR, together with domain-dependent language models,

the performance is drastically better for the ASR itself but also for connected

NLP models. The performance of our NLP system is acceptable, making it a

baseline model for future SemaPred recognition tasks. This work also showed

that SemaPreds can be successfully recognized from speech. The SPI achieves

almost 100 % SemaPred interpretation accuracy when working on clean in-

put, which raises hope that it is also useful for other scenarios. We suggest

employing our CC whenever time constraints make this possible. As the main

outcome of this thesis, we contribute the fast (0.842s per command) ASR-

to-execution chain (SSC-DD2-SPI+CC) which achieves excellent performance

under clean audio conditions and acceptable performance under noisy audio

conditions. We also demonstrated that the developed bidirectional processing

chain can be used in simulated and real human-robot interaction scenarios.

119



Appendix A

Nomenclature

NLP natural language processing

NLU natural language understanding

ASR automatic speech recognition

HRI human-robot interaction

SemaPred Semantic Logic Predicates

CNN Convolutional Neural Network

NICO Neuro-Inspired COmpanion

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

RNN recurrent neural network

HMM Hidden Markov Model
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CTC Connectionist Temporal Classifcation

DNN deep neural network

MFCC Mel Frequency Cepstral Coefficients

ASP Answer Set Programming

RCL Robot Control Language

CSV comma-separated values

SSC SlimSpeech Chars

SSP SlimSpeech Phonemes

WER word error rate

PER phoneme error rate

ST Sentence Template

STG Sentence Template Grammar

STN Sentence Template N-gram

SW semantic word

TB terminal bag

SPR SemaPred Recognizer

SPI SemaPred Interpreter

XML Extensible Markup Language

SE Semantic Evaluator
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GP3 general-purpose trigram language model

GP4 general-purpose quadrogram language model

DD2 domain-dependent bigram language model

DBi DOCKS bigram language model
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Complete List of Logic

Declarations
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1 % We work with a 8x8x8 world.
2 size(8).

1 % Coordinates are X,Y,Z
2 % Direction-relations left, right are
3 % from the robots perspective
4 % Direction-relation front is far away
5 % from the robot, while back is near the robot
6 % From perspective of the viewer, X is left, right
7 % From perspective of the viewer, Y is front, back
8 % From perspective of the viewer, Z is height
9

10 % Define a grid with the existing size.
11 grid(X,Y,Z) :- X = 0..S-1, Y = 0..S-1, Z = 0..S-1,
12 size(S).

1 % Each point on the board is a reference point.
2 ref(X,Y,Z) :- grid(X,Y,Z), Z=0.
3 ref(X,Y,Z) :- shape(X,Y,Z).
4 ref(X,Y,Z+1) :- shape(X,Y,Z).
5 ref(X,Y,Z) :- gripper(X,Y,Z).

1 % define colors
2 color(white;red;yellow;blue;green;gray;cyan;magenta).

The ASP code snippets in this section are (partially) taken from Tobergte’s Bacherlor’s
thesis (Tobergte, 2017). We developed the ideas and conceptions behind this approach,
while Tobergte performed the implementation (under our supervision).
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1 % define directional positions
2 position(left;right;center;back;front).

1 % define possible shapes
2 shape(cube;prism).

1 % other
2 extreme(leftmost;rightmost).

1 has_position(X,Y,Z, position(left)) :- left(X,Y,Z).
2 has_position(X,Y,Z, position(right)) :- right(X,Y,Z).
3 has_position(X,Y,Z, position(center)) :-
4 center(X,Y,Z).
5 has_position(X,Y,Z, position(front)) :- front(X,Y,Z).
6 has_position(X,Y,Z, position(back)) :- back(X,Y,Z).

1 % combine has_position + has_color predicates
2 % to has_attr ( + one rule for individual)
3 has_attribute(X,Y,Z, ATTR) :- has_color(shape(X,Y,Z),
4 color(ATTR)).
5 has_attribute(X,Y,Z, ATTR) :- has_position(X,Y,Z,
6 position(ATTR)).
7 has_attribute(X,Y,Z, individual) :- individual(X,Y,Z).

1 % has shape predicate
2 has_shape(X,Y,Z, shape(cube)) :- cube(X,Y,Z).
3 has_shape(X,Y,Z, shape(prism)) :- prism(X,Y,Z).

1 % there is a robot at approx. 0,4,0
2 robot(X,Y,Z) :- X = -(S/2), Y = S/2, Z = 0, size(S).

1 % cubes and prisms are both shapes.
2 shape(X,Y,Z) :- cube(X,Y,Z).
3 shape(X,Y,Z) :- prism(X,Y,Z).
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1 % there are 4 corners.
2 corner(0,0,-1 ; 0,7,-1 ; 7,0,-1 ; 7,7,-1).

1 % there are 4 edges, each having 8 coordinates
2 edge(X,Y,Z) :- X = 0, Y = 0..S-1, Z = -1, size(S).
3 edge(X,Y,Z) :- X = 0..S-1, Y = 0, Z = -1, size(S).
4 edge(X,Y,Z) :- X = S-1, Y = 0..S-1, Z = -1, size(S).
5 edge(X,Y,Z) :- X = 0..S-1, Y = S-1, Z = -1, size(S).

1 % the board is 'below' ground level
2 board(X,Y,-1) :- grid(X,Y,Z), Z = 0.

1 % robot, shapes, corners, edges and board are
2 % pointers to locations
3 pointer(X,Y,Z) :- robot(X,Y,Z).
4 pointer(X,Y,Z) :- shape(X,Y,Z).
5 pointer(X,Y,Z) :- corner(X,Y,Z).
6 pointer(X,Y,Z) :- edge(X,Y,Z).
7 pointer(X,Y,Z) :- board(X,Y,Z).

1 % corner and edge are both on the outer rim
2 rim(X,Y,Z) :- corner(X,Y,Z).
3 rim(X,Y,Z) :- edge(X,Y,Z).
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1 % each point in the world can be associated with
2 % one or more region
3 % regions are implemented as points, 4 for each
4 % direction plus 4 for the center
5 % the center has 4 points, because the board size
6 % is divisible by two, so it has no exact center
7

8 % right region
9 region(X,Y,-3) :- X = (S/2),Y = 0, size(S).

10 % left region
11 region(X,Y,-3) :- X = (S/2), Y = S-1, size(S).
12 % front region
13 region(X,Y,-3) :- X = S-1,Y = (S/2), size(S).
14 % back region (near robot)
15 region(X,Y,-3) :- X = 0, Y = (S/2), size(S).
16 % center region
17 region(X,Y,-3) :- X = (S/2), Y = (S/2), size(S).
18 region(X,Y,-3) :- X = (S/2)-1, Y = (S/2), size(S).
19 region(X,Y,-3) :- X = (S/2), Y = (S/2)-1, size(S).
20 region(X,Y,-3) :- X = (S/2)-1, Y = (S/2)-1, size(S).

1 % a group is either a stack or a row, same applies
2 % for colored groups
3 group(X,Y,Z) :- stack(X,Y,Z).
4 group(X,Y,Z) :- row(X,Y,Z).
5

6 group(X,Y,Z,H,C1) :- stack(X,Y,Z,H,C1).
7 group(X,Y,Z,H,C1) :- row(X,Y,Z,H,C1).
8

9 group(X,Y,Z,H,C1,C2) :- stack(X,Y,Z,H,C1,C2).
10 group(X,Y,Z,H,C1,C2) :- row(X,Y,Z,H,C1,C2).
11

12 group(X,Y,Z,H,C1,C2,C3) :- stack(X,Y,Z,H,C1,C2,C3).
13 group(X,Y,Z,H,C1,C2,C3) :- row(X,Y,Z,H,C1,C2,C3).
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1 % a colored stack is also a simple stack
2 stack(X,Y,Z) :- stack(X,Y,Z,H,C1).
3 stack(X,Y,Z) :- stack(X,Y,Z,H,C1,C2).
4 stack(X,Y,Z) :- stack(X,Y,Z,H,C1,C2,C3).

1 % the lower block in a stack with height 2 is also
2 % part of the stack
3 stack(X,Y,Z-1) :- stack(X,Y,Z,2,C1).
4 stack(X,Y,Z-1) :- stack(X,Y,Z,2,C1,C2).
5 stack(X,Y,Z-1) :- stack(X,Y,Z,2,C1,C2,C3).

1 % A stack has a top coordinate X,Y,Z, and a height H
2 % and has to start on the ground
3 % A stack can also be part of a bigger stack
4 stack(X,Y,Z,H) :- shape(X,Y,Z), shape(X,Y,B), Z > B,
5 H = 1+Z-B,
6 ground(X,Y,B),
7 shape(X,Y,M1), Z >= M1, M1 >= B.

1 % A colored stack has a top coordinate X,Y,Z,
2 % a height H, and a number of Colors C1 .. CN
3 % no other colors may occur inside the stack,
4 % and the stack has to start on the ground
5 stack(X,Y,Z,H,C1) :- shape(X,Y,Z), shape(X,Y,B),
6 Z > B, H = 1+Z-B,
7 ground(X,Y,B),
8 color(C1), has_color(shape(X,Y,M1),
9 color(C1)), Z >= M1, M1 >= B,

10 #false: shape(X,Y,Z1), Z >= Z1,
11 Z1 >= B,
12 has_color(shape(X,Y,Z1),
13 color(CX)),
14 CX != C1.
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1 stack(X,Y,Z,H,C1,C2) :- shape(X,Y,Z), shape(X,Y,B),
2 Z > B, H = 1+Z-B,
3 ground(X,Y,B),
4 color(C1), has_color(shape(X,Y,M1),
5 color(C1)),
6 Z >= M1, M1 >= B,
7 color(C2), has_color(shape(X,Y,M2),
8 color(C2)),
9 Z >= M2, M2 >= B,

10 C1<C2,
11 #false: shape(X,Y,Z1), Z >= Z1,
12 Z1 >= B,
13 has_color(shape(X,Y,Z1),
14 color(CX)),
15 CX != C1, CX != C2.

1 stack(X,Y,Z,H,C1,C2,C3) :- shape(X,Y,Z),
2 shape(X,Y,B),
3 Z > B, H = 1+Z-B,
4 ground(X,Y,B),
5 color(C1), has_color(shape(X,Y,M1),
6 color(C1)),
7 Z >= M1, M1 >= B,
8 color(C2), has_color(shape(X,Y,M2),
9 color(C2)),

10 Z >= M2, M2 >= B,
11 color(C3), has_color(shape(X,Y,M3),
12 color(C3)),
13 Z >= M3, M3 >= B,
14 C1<C2,C2<C3,
15 #false: shape(X,Y,Z1), Z >= Z1,
16 Z1 >= B,
17 has_color(shape(X,Y,Z1),
18 color(CX)),
19 CX != C1, CX != C2,
20 CX != C3.
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1 % the simplest row is two adjacent shapes
2 row(X,Y,Z) :- shape(X,Y,Z), adjacent(shape(X,Y,Z),
3 shape(A,B,C)).

1 % a row along the x-axis with length H and color C1
2 row(X,Y,Z,H,C1) :- shape(X,Y,Z), shape(A,Y,Z),
3 X > A, H = 1+X-A, color(C1),
4 has_color(shape(M1,Y,Z), color(C1)),
5 X >= M1, M1 >= A,
6 #false: free(M4,Y,Z), X >= M4, M4 >= A;
7 #false: shape(M2,Y,Z), X >= M2, M2 >= A,
8 has_color(shape(M2,Y,Z), color(CX)),
9 CX != C1.

1 % a row along the y-axis with length H and color C1
2 row(X,Y,Z,H,C1) :- shape(X,Y,Z), shape(X,B,Z),
3 Y > B, H = 1+Y-B, color(C1),
4 has_color(shape(X,M1,Z), color(C1)),
5 Y >= M1, M1 >= B,
6 #false: free(X,M4,Z), Y >= M4, M4 >= B;
7 #false: shape(X,M2,Z), Y >= M2, M2 >= B,
8 has_color(shape(X,M2,Z), color(CX)),
9 CX != C1.

1 % dual-colored row along the x-axis with length H
2 % and colors C1 and C2
3 row(X,Y,Z,H,C1,C2) :- shape(X,Y,Z), shape(A,Y,Z),
4 X > A, H = 1+X-A, color(C1),
5 has_color(shape(M1,Y,Z), color(C1)),
6 X >= M1, M1 >= A, color(C2),
7 has_color(shape(M2,Y,Z), color(C2)),
8 X >= M2, M2 >= A, C1<C2,
9 #false: free(M4,Y,Z), X >= M4, M4 >= A;

10 #false: shape(M3,Y,Z), X >= M3, M3 >= A,
11 has_color(shape(M3,Y,Z), color(CX)),
12 CX != C1, CX != C2.
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1 % dual-colored row along the y-axis with length H
2 % and colors C1 and C2
3 row(X,Y,Z,H,C1,C2) :- shape(X,Y,Z), shape(X,B,Z),
4 Y > B, H = 1+Y-B, color(C1),
5 has_color(shape(X,M1,Z), color(C1)),
6 Y >= M1, M1 >= B, color(C2),
7 has_color(shape(X,M2,Z), color(C2)),
8 Y >= M2, M2 >= B, C1<C2,
9 #false: free(X,M4,Z), Y >= M4, M4 >= B;

10 #false: shape(X,M3,Z), Y >= M3, M3 >= B,
11 has_color(shape(X,M3,Z), color(CX)),
12 CX != C1, CX != C2.

1 % triple-colored row along the x-axis with length H
2 % and colors C1,C2 and C3
3 row(X,Y,Z,H,C1,C2,C3) :- shape(X,Y,Z), shape(A,Y,Z),
4 X > A, H = 1+X-A, color(C1),
5 has_color(shape(M1,Y,Z), color(C1)),
6 X >= M1, M1 >= A, color(C2),
7 has_color(shape(M2,Y,Z), color(C2)),
8 X >= M2, M2 >= A, color(C3),
9 has_color(shape(M3,Y,Z), color(C3)),

10 X >= M3, M3 >= A, C1<C2,C2<C3,
11 #false: free(M5,Y,Z), X >= M5, M5 >= A;
12 #false: shape(M4,Y,Z), X >= M4, M4 >= A,
13 has_color(shape(M4,Y,Z), color(CX)),
14 CX != C1, CX != C2, CX != C3.
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1 % triple-colored row along the y-axis with length H
2 % and colors C1,C2 and C3
3 row(X,Y,Z,H,C1,C2,C3) :- shape(X,Y,Z), shape(X,B,Z),
4 Y > B, H = 1+Y-B, color(C1),
5 has_color(shape(X,M1,Z), color(C1)),
6 Y >= M1, M1 >= B, color(C2),
7 has_color(shape(X,M2,Z), color(C2)),
8 Y >= M2, M2 >= B, color(C3),
9 has_color(shape(X,M3,Z), color(C3)),

10 Y >= M3, M3 >= B, C1<C2,C2<C3,
11 #false: free(X,M5,Z), Y >= M5, M5 >= B;
12 #false: shape(X,M4,Z), Y >= M4, M4 >= B,
13 has_color(shape(X,M4,Z), color(CX)),
14 CX != C1, CX != C2, CX != C3.

1 % Extra relation used for tiles, and cubes 'in' stacks
2 in(ref(A,B,C),ref(X,Y,Z)) :- ref(A,B,C), ref(X,Y,Z),
3 A=X, B=Y, C=Z.
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1 % Ref X,Y,Z is above A,B,C, if the altitude is
2 % higher and they are on the same coordinates
3 % otherwise.
4 above(ref(X,Y,Z),ref(A,B,C)) :- ref(X,Y,Z),
5 ref(A,B,C), X = A, Y = B, Z > C.
6

7 % Special case: rim (corner+edge) has no actual
8 % "level", so a reference on the ground is above
9 % them if its X and Y coordinates match.

10 above(ref(X,Y,Z), ref(A,B,C)) :- ref(X,Y,Z),
11 rim(A,B,C), X = A, Y = B.
12

13 % Above rule for regions, center is special
14 above(ref(X,Y,Z), ref(A,B,C)) :- region(A,B,C),
15 shape(X,Y,Z),
16 horizontaldistance(X,Y,Z,A,B,C,Dist), Dist <= 0,
17 center(A,B,C).
18 above(ref(X,Y,Z), ref(A,B,C)) :- region(A,B,C),
19 right(A,B,C), right(X,Y,Z).
20 above(ref(X,Y,Z), ref(A,B,C)) :- region(A,B,C),
21 left(A,B,C), left(X,Y,Z).
22 above(ref(X,Y,Z), ref(A,B,C)) :- region(A,B,C),
23 front(A,B,C), front(X,Y,Z).
24 above(ref(X,Y,Z), ref(A,B,C)) :- region(A,B,C),
25 back(A,B,C), back(X,Y,Z).
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1 % Reference X,Y,Z is ontopof reference A,B,C, if it
2 % is directly on top of it.
3 ontopof(ref(X,Y,Z),ref(A,B,C)) :- ref(X,Y,Z),
4 ref(A,B,C), X = A, Y = B, Z = C + 1.
5 % special case for board as it is no reference
6 % point.
7 ontopof(ref(X,Y,Z),ref(A,B,C)) :- ref(X,Y,Z),
8 board(A,B,C), X = A, Y = B, Z = C + 1.
9 % Same for shape and shape

10 ontopof(shape(X,Y,Z),shape(A,B,C)) :- shape(X,Y,Z),
11 shape(A,B,C), X = A, Y = B, Z = C + 1.
12 % And for ref and shape
13 ontopof(ref(X,Y,Z),shape(A,B,C)) :- ref(X,Y,Z),
14 shape(A,B,C), X = A, Y = B, Z = C + 1.

1 % Below is needed only for the gripper so far, so for
2 % performance increase we can narrow down the
3 % solution
4 below(ref(X,Y,Z), ref(A,B,C)) :- gripper(A,B,C),
5 ref(X,Y,Z), X=A, Y=B, Z < C.

1 % center region is defined to match 4 region points
2 % in the center
3 center(X,Y,Z) :- region(X,Y,Z), X <= (S/2),
4 X >= (S/2)-1, Y <= (S/2),
5 Y >= (S/2)-1, size(S).

1 % Reference X,Y,Z is left of reference A,B,C, if the
2 % X coordinate of X,Y,Z is smaller than A,B,C's,
3 % which in this case is Y > B, because the
4 % perspective is rotated 3 hours clockwise
5 left(ref(X,Y,Z), ref(A,B,C)) :- ref(X,Y,Z),
6 ref(A,B,C), Y = B+1, X = A.
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1 % A pointer (excluding edge) is (on the) left if it
2 % is on the left half of the world,
3 % which in this case is Y >= boardsize/2 because
4 % the perspective is rotated 3 hours clockwise
5 left(X,Y,Z) :-
6 pointer(X,Y,Z), size(S), Y >= (S/2),
7 #false: edge(X,Y,Z).
8 % A region / edge is (on the) left if it is located
9 % on the leftmost location possible on board,

10 % given the boardsize S.
11 left(X,Y,Z) :- edge(X,Y,Z), size(S), Y = S-1.
12 left(X,Y,Z) :- region(X,Y,Z), size(S), Y = S-1.

1 % Reference X,Y,Z is <Dist> tiles leftward to
2 % reference A,B,C if B+Dist = Y and X and A match.
3 leftward(ref(X,Y,Z), ref(A,B,C)) :-
4 leftward(ref(X,Y,Z), ref(A,B,C), 1).
5 leftward(ref(X,Y,Z), ref(A,B,C), Dist) :-
6 ref(X,Y,Z), ref(A,B,C), Y = B+Dist, X = A,
7 Dist = 1..S-1, size(S),
8 #false: gripper(X,Y,Z).
9 leftward(ref(X,Y,Z), ref(A,B,C), Dist) :-

10 ref(X,Y,Z), rim(A,B,C), Y = B+Dist, X = A,
11 Dist = 1..S-1, size(S),
12 #false: gripper(X,Y,Z).

1 % Same applies for right / rightward
2 right(ref(X,Y,Z), ref(A,B,C)) :- ref(X,Y,Z),
3 ref(A,B,C), Y+1 = B, X = A.
4 right(X,Y,Z) :-
5 pointer(X,Y,Z), size(S), Y <= (S/2),
6 #false: edge(X,Y,Z).
7 right(X,Y,Z) :- edge(X,Y,Z), size(S), Y = 0.
8 right(X,Y,Z) :- region(X,Y,Z), size(S), Y = 0.
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1 rightward(ref(X,Y,Z), ref(A,B,C)) :-
2 rightward(ref(X,Y,Z), ref(A,B,C), 1).
3 rightward(ref(X,Y,Z), ref(A,B,C), Dist) :-
4 ref(X,Y,Z), ref(A,B,C), Y = B-Dist, X = A,
5 Dist = 1..S-1, size(S),
6 #false: gripper(X,Y,Z).
7 rightward(ref(X,Y,Z), ref(A,B,C), Dist) :-
8 ref(X,Y,Z), rim(A,B,C), Y = B-Dist, X = A,
9 Dist = 1..S-1, size(S),

10 #false: gripper(X,Y,Z).

1 % Same applies for front / forward
2 front(ref(X,Y,Z), ref(A,B,C)) :- grid(X,Y,Z),
3 grid(A,B,C), ref(X,Y,Z), ref(A,B,C),
4 X = A+1, Y = B.
5

6 front(X,Y,Z) :-
7 pointer(X,Y,Z), size(S), X >= (S/2),
8 #false: edge(X,Y,Z).
9

10 front(X,Y,Z) :- edge(X,Y,Z), size(S), X = S-1.
11 front(X,Y,Z) :- region(X,Y,Z), size(S), X = S-1.

1 forward(ref(X,Y,Z), ref(A,B,C), Dist) :-
2 ref(X,Y,Z), ref(A,B,C), Y = B, X-Dist = A,
3 Dist = 1..S-1, size(S),
4 #false: gripper(X,Y,Z).
5 forward(ref(X,Y,Z), ref(A,B,C), Dist) :-
6 ref(X,Y,Z), rim(A,B,C), Y = B, X-Dist = A,
7 Dist = 1..S-1, size(S),
8 #false: gripper(X,Y,Z).
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1 % Same applies for back / backward
2 back(X,Y,Z) :-
3 pointer(X,Y,Z), size(S), X <= (S/2),
4 #false: edge(X,Y,Z).
5

6 back(X,Y,Z) :- edge(X,Y,Z), size(S), X = 0.
7 back(X,Y,Z) :- region(X,Y,Z), size(S), X = 0.

1 backward(ref(X,Y,Z), ref(A,B,C)) :-
2 backward(ref(X,Y,Z), ref(A,B,C), 1).
3 backward(ref(X,Y,Z), ref(A,B,C), Dist) :-
4 ref(X,Y,Z), ref(A,B,C), Y = B, X+Dist = A,
5 Dist = 1..S-1, size(S),
6 #false: gripper(X,Y,Z).
7 backward(ref(X,Y,Z), ref(A,B,C), Dist) :-
8 ref(X,Y,Z), rim(A,B,C), Y = B, X+Dist = A,
9 Dist = 1..S-1, size(S),

10 #false: gripper(X,Y,Z).

1 % A shape with coordinates X,Y,Z is individual if
2 % there are no shapes on top of it and it is on
3 % ground level
4 individual(X,Y,Z) :- shape(X,Y,Z), ground(X,Y,Z),
5 #false: ontopof(shape(A,B,C), shape(X,Y,Z)).

1 % A shape is on the ground if its altitude is 0.
2 ground(X,Y,Z) :- shape(X,Y,Z), Z=0.
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1 % Shapes X,Y,Z and A,B,C are adjacent, if the
2 % distance between them is exactly 1, and they
3 % are on the same plain.
4 adjacent(shape(X,Y,Z), shape(A,B,C)) :-
5 shape(X,Y,Z), shape(A,B,C),
6 |X - A| = 1, Y = B, Z = C.
7 adjacent(shape(X,Y,Z), shape(A,B,C)) :-
8 shape(X,Y,Z), shape(A,B,C), X = A,
9 |Y - B| = 1, Z = C.

10 adjacent(ref(X,Y,Z), ref(A,B,C)) :-
11 ref(X,Y,Z), edge(A,B,C), X = A,
12 |Y - B| = 1.
13 adjacent(ref(X,Y,Z), ref(A,B,C)) :-
14 ref(X,Y,Z), edge(A,B,C),
15 |X - A| = 1, Y = B.

1 % The horizontal distance between X,Y,Z and A,B,C
2 % is calculated via the 2D euclidean distance,
3 % but without the squareroot
4 horizontaldistance(X,Y,Z,A,B,C,Dist) :-
5 pointer(X,Y,Z), pointer(A,B,C),
6 Dist = (X - A) ** 2 + (Y - B) ** 2.
7 horizontaldistance(X,Y,Z,A,B,C,Dist) :-
8 pointer(X,Y,Z), region(A,B,C),
9 Dist = (X - A) ** 2 + (Y - B) ** 2.

1 % Pointers / regions X,Y,Z and A,B,C are different
2 % if they are not the same
3 different(X,Y,Z,A,B,C) :- pointer(X,Y,Z),
4 pointer(A,B,C),
5 #false: X == A, Y == B, Z == C.
6 different(X,Y,Z,A,B,C) :- region(X,Y,Z),
7 region(A,B,C),
8 #false: X == A, Y == B, Z == C.
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1 % A point is free, if there is no shape in it.
2 free(X,Y,Z) :- grid(X,Y,Z), #false: shape(X,Y,Z).
3 free(ref(X,Y,Z)) :- ref(X,Y,Z), #false: shape(X,Y,Z).

1 % A point is not_blocked, if the point itself, or
2 % the point directly on top of it is free.
3 not_blocked(ref(X,Y,Z)) :- ref(X,Y,Z),
4 free(ref(X,Y,Z)).
5 not_blocked(ref(X,Y,Z)) :- ref(X,Y,Z),
6 free(A,B,C), C=Z+1, X=A, Y=B.
7 % or if is the topmost location possible in the grid.
8 not_blocked(ref(X,Y,Z)) :- ref(X,Y,Z),
9 Z=S-1, size(S).

1 % A shape X,Y,Z can be moved to a point A,B,C, if
2 % X,Y,Z is not blocked and A,B,C is free.
3 % A,B,C has to be on the ground,
4 move(shape(X,Y,Z), ref(A,B,C)) :- shape(X,Y,Z),
5 ref(A,B,C),
6 not_blocked(ref(X,Y,Z)), free(ref(A,B,C)),
7 C = 0.
8 % A shape can be moved into the gripper
9 move(shape(X,Y,Z), ref(A,B,C)) :- shape(X,Y,Z),

10 ref(A,B,C),
11 not_blocked(ref(X,Y,Z)), free(ref(A,B,C)),
12 gripper(A,B,C).
13 % or on top of another shape, but not on top of a
14 % prism
15 % the shape cannot be put on top of itself.
16 move(shape(X,Y,Z), ref(A,B,C)) :- shape(X,Y,Z),
17 ref(A,B,C),
18 not_blocked(ref(X,Y,Z)), free(ref(A,B,C)),
19 ontopof(ref(A,B,C), shape(P,Q,R)),
20 #false: P == X, Q == Y, R == Z;
21 #false: prism(P,Q,R).
22 #show.
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1 % A shape can be moved to a point X,Y,Z in general
2 % only if it is free.
3 % Furthermore, there are 3 different cases for a
4 % valid move:
5 % 1. move onto the ground:
6 valid_pos_for_move(ref(X,Y,Z)) :- ref(X,Y,Z),
7 free(ref(X,Y,Z)), Z = 0.
8 % 2. move into the gripper:
9 valid_pos_for_move(ref(X,Y,Z)) :- ref(X,Y,Z),

10 free(ref(X,Y,Z)), gripper(X,Y,Z).
11 % 3. on top of another shape, but not on top of a
12 % prism:
13 valid_pos_for_move(ref(X,Y,Z)) :- ref(X,Y,Z),
14 free(ref(X,Y,Z)), ontopof(ref(X,Y,Z),
15 shape(P,Q,R)), #false: prism(P,Q,R).

1 % normal drop: move from gripper onto free position.
2 drop(shape(X,Y,Z), ref(A,B,C)) :- shape(X,Y,Z),
3 gripper(X,Y,Z), not_blocked(ref(X,Y,Z)),
4 ref(A,B,C), valid_pos_for_move(ref(A,B,C)),
5 shape_in_gripper(true),
6 % but dropping the object ontop of itself is
7 % not possible:
8 #false: X == A, Y == B, Z+1 == C.
9 % special drop: if no block in gripper, then drop

10 % should work with an object from anywhere
11 drop(shape(X,Y,Z), ref(A,B,C)) :- shape(X,Y,Z),
12 ref(A,B,C),
13 not_blocked(ref(X,Y,Z)), free(ref(A,B,C)),
14 shape_in_gripper(false),
15 % but dropping the object ontop of itself is
16 % not possible:
17 #false: X == A, Y == B, Z+1 == C.
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1 % normal take: from anywhere to gripper.
2 take(shape(X,Y,Z), ref(A,B,C)) :- shape(X,Y,Z),
3 ref(A,B,C),
4 not_blocked(ref(X,Y,Z)), free(ref(A,B,C)),
5 gripper(A,B,C).

1 shape_in_gripper(true) :- gripper(X1,Y1,Z1),
2 shape(X2,Y2,Z2),
3 X1 == X2, Y1 == Y2, Z1 == Z2.
4 shape_in_gripper(false) :-
5 not shape_in_gripper(true).
6 #show shape_in_gripper/1.
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Appendix C. Complete Simulation Results

Table C.1: Word Error Rate on the clean Knowledge Technology Train Robots
data set.

Internal Internal External Word

Acoustic Language Language Error

Model Model Model Rate

SSP - STG 25.134 %

SSC - STG 23.544 %

SSC GP3 STG 22.847 %

SSC GP4 STG 22.731 %

Google - STG 22.186 %

SSC - - 21.275 %

Google - - 15.854 %

SSC GP3 - 15.595 %

SSC GP4 - 14.755 %

SSP - STN 12.755 %

SSC GP4 STN 11.325 %

SSC GP3 STN 10.897 %

SSC - STN 10.406 %

SSP - DBi 10.182 %

Google - STN 9.512 %

SSC - DBi 4.823 %

SSC GP3 DBi 4.26 %

SSC GP4 DBi 4.252 %

Google - DBi 4.216 %

SSC DD2 - 3.85 %

144



Appendix C. Complete Simulation Results

Table C.2: SemaPred recognition accuracy on the clean Knowledge Technology
Train Robots data set.

Internal Internal External SemaPred

Acoustic Language Language Recognition

Model Model Model Accuracy

SSP - STG 38.834 %

SSC GP3 STG 40.594 %

SSC GP4 STG 40.594 %

SSC - STG 40.704 %

Google - STG 41.034 %

SSC - - 42.354 %

Google - - 48.625 %

Google - STN 49.395 %

SSC GP3 - 49.945 %

SSC GP4 - 50.385 %

SSP - STN 52.475 %

SSC - STN 54.895 %

SSC GP3 STN 56.546 %

SSC GP4 STN 56.546 %

Google - DBi 57.096 %

SSP - DBi 57.976 %

SSC - DBi 63.696 %

SSC GP3 DBi 63.696 %

SSC GP4 DBi 64.796 %

SSC DD2 - 67.107 %

Gold Standard Test Sentences 74.147 %
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Table C.3: SemaPred interpretation accuracy on the clean Knowledge Tech-
nology Train Robots data set.

Acoustic Internal External SemaPred SemaPred

Model Language Language Processor Interpretation

Model Model Accuracy

SSP - STG SPI 45.875 %

SSC GP3 STG SPI 49.505 %

SSC GP4 STG SPI 49.615 %

SSC - STG SPI 49.835 %

Google - STG SPI 50.055 %

SSC - - SPI 50.165 %

Google - STN SPI 56.216 %

Google - - SPI 56.436 %

SSC GP3 - SPI 56.766 %

SSP - STN SPI 56.766 %

SSC GP4 - SPI 56.986 %

SSC - STN SPI 59.846 %

SSC GP3 STN SPI 61.716 %

SSC GP4 STN SPI 62.156 %

Google - DBi SPI 64.466 %

SSP - DBi SPI 65.017 %

SSC - DBi SPI 70.077 %

SSC GP3 DBi SPI 70.077 %

SSC GP4 DBi SPI 70.957 %

SSC DD2 - SPI 73.157 %

Gold Standard Test Sentences SPI 79.538 %

Gold Standard Test SemaPreds SPI 99.56 %
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Appendix C. Complete Simulation Results

Table C.4: SemaPred interpretation accuracy on the clean Knowledge Tech-
nology Train Robots data set.

Acoustic Internal External SemaPred SemaPred

Model Language Language Processor Interpretation

Model Model Accuracy

SSP - STG SPI+CC 49.615 %

SSC - - SPI+CC 52.365 %

Google - STG SPI+CC 53.245 %

SSC GP3 STG SPI+CC 53.355 %

SSC - STG SPI+CC 53.575 %

SSC GP4 STG SPI+CC 53.575 %

SSC GP3 - SPI+CC 58.636 %

SSC GP4 - SPI+CC 58.966 %

Google - - SPI+CC 59.406 %

Google - STN SPI+CC 61.386 %

SSP - STN SPI+CC 62.046 %

SSC - STN SPI+CC 66.007 %

SSC GP3 STN SPI+CC 66.997 %

SSC GP4 STN SPI+CC 67.767 %

Google - DBi SPI+CC 68.977 %

SSP - DBi SPI+CC 70.407 %

SSC - DBi SPI+CC 74.917 %

SSC GP3 DBi SPI+CC 75.138 %

SSC GP4 DBi SPI+CC 75.798 %

SSC DD2 - SPI+CC 77.228 %

Gold Standard Test Sentences SPI+CC 82.728 %

Gold Standard Test SemaPreds SPI+CC 99.56 %
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Appendix C. Complete Simulation Results

Table C.5: Word Error Rate on the noisy Knowledge Technology Train Robots
data set.

Internal Internal External Word

Acoustic Language Language Error

Model Model Model Rate

SSC - - 63.335 %

SSC GP3 - 53.626 %

SSC GP4 - 52.992 %

SSP - STG 49.929 %

Google - - 49.902 %

SSP - STN 46.338 %

SSC - STG 41.05 %

SSP - DBi 40.372 %

SSC GP3 STG 39.443 %

SSC GP4 STG 39.05 %

Google - STG 38.067 %

SSC - STN 36.075 %

SSC GP3 STN 33.985 %

SSC GP4 STN 33.708 %

Google - STN 33.128 %

SSC GP4 DBi 29.475 %

SSC GP3 DBi 29.278 %

Google - DBi 29.153 %

SSC - DBi 28.51 %

SSC DD2 - 27.349 %

148



Appendix C. Complete Simulation Results

Table C.6: SemaPred recognition accuracy on the noisy Knowledge Technology
Train Robots data set.

Internal Internal External SemaPred

Acoustic Language Language Recognition

Model Model Model Accuracy

SSC - - 4.95 %

SSC GP3 - 8.801 %

SSC GP4 - 9.461 %

Google - - 11.111 %

SSP - STG 11.111 %

SSP - STN 14.961 %

SSC - STG 16.172 %

SSP - DBi 16.502 %

SSC GP3 STG 18.152 %

SSC GP4 STG 18.592 %

Google - STG 21.012 %

Google - DBi 21.122 %

SSC GP3 DBi 21.782 %

SSC GP4 DBi 21.892 %

SSC GP3 STN 22.552 %

SSC - STN 22.992 %

SSC GP4 STN 22.992 %

SSC - DBi 23.102 %

SSC DD2 - 26.183 %

Google - STN 26.733 %

Gold Standard Test Sentences 74.147 %
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Appendix C. Complete Simulation Results

Table C.7: SemaPred interpretation accuracy on the noisy Knowledge Tech-
nology Train Robots data set.

Acoustic Internal External SemaPred SemaPred

Model Language Language Processor Interpretation

Model Model Accuracy

SSC - - SPI 8.801 %

SSC GP3 - SPI 13.091 %

SSC GP4 - SPI 14.411 %

Google - - SPI 15.622 %

SSP - STG SPI 15.622 %

SSP - STN SPI 17.932 %

SSP - DBi SPI 19.472 %

SSC - STG SPI 21.672 %

SSC GP3 STG SPI 25.193 %

SSC GP4 STG SPI 25.743 %

SSC - STN SPI 26.733 %

SSC GP3 STN SPI 27.283 %

SSC GP4 DBi SPI 27.283 %

SSC - DBi SPI 27.613 %

SSC GP3 DBi SPI 27.613 %

Google - DBi SPI 27.613 %

Google - STG SPI 27.723 %

SSC GP4 STN SPI 28.493 %

SSC DD2 - SPI 32.233 %

Google - STN SPI 32.233 %

Gold Standard Test Sentences SPI 79.538 %

Gold Standard Test SemaPreds SPI 99.56 %
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Appendix C. Complete Simulation Results

Table C.8: SemaPred interpretation accuracy on the noisy Knowledge Tech-
nology Train Robots data set.

Acoustic Internal External SemaPred SemaPred

Model Language Language Processor Interpretation

Model Model Accuracy

SSC - - SPI+CC 9.901 %

SSC GP3 - SPI+CC 13.861 %

SSC GP4 - SPI+CC 15.512 %

Google - - SPI+CC 15.952 %

SSP - STG SPI+CC 18.812 %

SSP - STN SPI+CC 21.452 %

SSP - DBi SPI+CC 23.542 %

SSC - STG SPI+CC 26.623 %

SSC GP3 STG SPI+CC 29.813 %

SSC GP4 STG SPI+CC 30.143 %

SSC - STN SPI+CC 31.573 %

SSC GP3 STN SPI+CC 31.793 %

SSC GP4 DBi SPI+CC 31.793 %

Google - STG SPI+CC 31.903 %

SSC GP4 STN SPI+CC 32.233 %

SSC GP3 DBi SPI+CC 32.343 %

SSC - DBi SPI+CC 32.563 %

Google - DBi SPI+CC 32.563 %

SSC DD2 - SPI+CC 35.204 %

Google - STN SPI+CC 36.634 %

Gold Standard Test Sentences SPI+CC 82.728 %

Gold Standard Test SemaPreds SPI+CC 99.56 %
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Appendix C. Complete Simulation Results

Table C.9: Processing time on the clean Knowledge Technology Train Robots
data set.

Internal Internal External

Acoustic Language Language SemaPred Processing

Model Model Model Processor Time

Google - STN SPI+CC
2.519s (1.271s + 0.652s

+ 0.014s + 0.524s + 0.058s)

SSC GP4 STG SPI+CC
2.256s (0.461s + 1.398s

+ 0.013s + 0.329s + 0.056s)

SSC GP4 STN SPI+CC
2.231s (0.461s + 1.407s

+ 0.013s + 0.262s + 0.09s)

Google - STG SPI+CC
2.219s (1.271s + 0.655s

+ 0.014s + 0.216s + 0.062s)

Google - DBi SPI+CC
2.139s (1.271s + 0.339s

+ 0.014s + 0.417s + 0.098s)

SSC GP3 STG SPI+CC
1.802s (0.459s + 1.038s

+ 0.013s + 0.226s + 0.066s)

SSC GP3 STN SPI+CC
1.792s (0.459s + 0.979s

+ 0.013s + 0.253s + 0.087s)

Google - - SPI+CC
1.651s (1.271s + 0.017s

+ 0.261s + 0.102s)

SSC - STG SPI+CC
1.638s (0.35s + 0.726s

+ 0.012s + 0.479s + 0.07s)

SSP - STG SPI+CC
1.53s (0.323s + 0.649s

+ 0.014s + 0.475s + 0.069s)
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Appendix C. Complete Simulation Results

Table C.10: Processing time on the clean Knowledge Technology Train Robots
data set.

Internal Internal External

Acoustic Language Language SemaPred Processing

Model Model Model Processor Time

SSC - STN SPI+CC
1.501s (0.35s + 0.727s

+ 0.012s + 0.282s + 0.128s)

SSP - DBi SPI+CC
1.448s (0.323s + 0.435s

+ 0.014s + 0.565s + 0.112s)

SSP - STN SPI+CC
1.323s (0.323s + 0.651s

+ 0.014s + 0.268s + 0.067s)

SSC GP4 DBi SPI+CC
1.202s (0.461s + 0.339s

+ 0.017s + 0.314s + 0.072s)

SSC GP3 DBi SPI+CC
1.166s (0.459s + 0.334s

+ 0.013s + 0.232s + 0.128s)

SSC - DBi SPI+CC
1.056s (0.35s + 0.339s

+ 0.012s + 0.3s + 0.055s)

SSC DD2 - SPI+CC
0.96s (0.436s + 0.014s

+ 0.431s + 0.079s)

SSC GP3 - SPI+CC
0.891s (0.459s + 0.016s

+ 0.328s + 0.087s)

SSC - - SPI+CC
0.842s (0.35s + 0.025s

+ 0.415s + 0.051s)

SSC GP4 - SPI+CC
0.785s (0.461s + 0.014s

+ 0.254s + 0.057s)
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Lüscher, C., Beck, E., Irie, K., Kitza, M., Michel, W., Zeyer, A., Schlüter, R.,

and Ney, H. (2019). Rwth asr systems for librispeech: Hybrid vs attention-

w/o data augmentation. arXiv preprint arXiv:1905.03072.

Manzi, A., Fiorini, L., Esposito, R., Bonaccorsi, M., Mannari, I., Dario, P.,

and Cavallo, F. (2017). Design of a cloud robotic system to support senior

citizens: The kubo experience. Autonomous Robots, 41(3):699–709.

Mermelstein, P. (1976). Distance measures for speech recognition – psycho-

logical and instrumental. In Joint Workshop on Pattern Recognition and

Artificial Intelligence, pages 374–388, Hyannis, USA.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation

of word representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b).

Distributed representations of words and phrases and their compositionality.

In Advances in Neural Information Processing Systems, pages 3111–3119.

Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable

to the search for similarities in the amino acid sequence of two proteins.

Journal of Molecular Biology, 48:443–453.

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. (2015). Librispeech:

an ASR corpus based on public domain audio books. In IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

5206–5210, Brisbane, Australia. IEEE.

Pleva, M., Juhar, J., Cizmar, A., Hudson, C., Carruth, D. W., and Bethel,

C. L. (2017). Implementing english speech interface to jaguar robot for swat

training. In IEEE 15th International Symposium on Applied Machine Intel-

ligence and Informatics (SAMI), pages 105–110, Herlany, Slovakia. IEEE.

164



Bibliography
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