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Abstract
The dawn of gravitational-wave astronomy has begun in 2015 with the historic detection of a binary
black hole merger [1]. Several more detections followed in the years a�er [2]. Among them, the
detectors observed the inspiral of a neutron star binary. This merger was also observed in a broad
spectrum of electromagnetic counterparts [3, 4]. This multi-messenger observation demonstrated
that gravitational-wave astronomy is invaluable for understanding the Universe [5, 6].

Current detectors, however, are able to see only a small part of binaries’ inspirals. A typical
signal from an inspiral of a binary neutron star appears in the detector at low frequencies a few
minutes before the merger. During the inspiral, the frequency of the signal increases, faster for
higher frequencies. It quickly passes through the detection band of the observatory. The merger
itself and post-merger oscillations o�en remain inaccessible due to the reduced sensitivity of the
detector to high-frequency signals. An increase in the low-frequency sensitivity will allow to detect
signals significantly earlier, extracting more information about the binary. This will allow to precisely
locate the source on the sky for the follow-up multi-messenger observations. An increase in the
high-frequency sensitivity will give a possibility to observe the merger and post-merger signals,
gaining insight into the physics of ultra-dense quantum ma�er.

The limitations to the sensitivity arise from quantum nature of light used to sense the displacement
of mirrors caused by gravitational waves. At low frequencies, quantum fluctuations in the amplitude
of the light field cause random forces on the mirrors, which mask the signal from gravitational
waves. At high frequencies, quantum fluctuations in the phase of the light field cause measurement
noise on the detectors. The detectors use optical cavities to enhance the signal within the bandwidth
of the cavities. At frequencies outside this bandwidth the signal is ge�ing suppressed. Signals from
the binary neutron star mergers typically have frequencies outside the detection bandwidth.

In this thesis I study the fundamental limitations on the sensitivity of detectors, in the quest of a
broadband observatory. I discuss a speedmeter approach to increasing the low-frequency sensitivity,
and propose two ways of achieving it: with quantum-entangled light, and in a novel ring cavity
topology of the detector, which I test experimentally. I further study the fundamental limits arising
from the finite bandwidth of the cavities, and demonstrate experimentally how this limit can be
overcome. I propose a concept of quantum expander that allows to increase the detection bandwidth
by using quantum correlations, generated directly inside the detector’s cavities. I investigate, how
quantum correlations, controlled by internal squeezing, can help to tailor the sensitivity of the
detector for the optimal performance at selected frequencies. Finally, I show that, although the
benefit from application of squeezed light in metrology is limited by quantum decoherence, its
impact on the sensitivity can be reduced by exploiting quantum correlations created with internal
squeezing.

�antum nature of light is a nuisance, which prevents us from seeing gravitational waves, but
also a powerful tool, if properly applied. �antum correlations hidden in the noise can be exploited
for the benefit of the detectors, as I show in various scenarios throughout the thesis.

�antum noise can be tamed, and not only in gravitational-wave detectors. All cavity-enhanced
quantum metrological experiments can use quantum noise and underlying correlations as the
resource for tailoring their sensitivity.





Kurzfassung
2015 begann mit der erstmaligen Beobachtung der Verschmelzung zweier schwarzer Löcher das
Zeitalter der Gravitationswellenastronomie [1]. In den darauffolgenden Jahren gab es viele weitere
Detektionen [2]. Unter anderem wurde das Gravitationswellensignal der Verschmelzung zweier
Neutronensterne detektiert. Parallel zur Messung der Gravitationswellen wurde auch das elektro-
magnetische Spektrum dieses Ereignisses beobachtet [3, 4]. Diese Multi-Messenger Beobachtung
hat gezeigt, dass Gravitationswellenastronomie wesentlich für das Verständnis des Universums
ist [5, 6].

Aktuell kann jedoch nur eine kleine Zahl von astronomischen Ereignissen detektiert werden, denn
die Signale sind typischerweise nur wenige Minuten vor der eigentlichen Verschmelzung messbar
und haben dann sehr kleine Frequenzen. Solange sich die astronomischen Objekte umkreisen,
erhöht sich die Signalfrequenz und zwar mit schneller werdender Rate hin zu höheren Frequenzen.
Auf diese Art und Weise durchläu� das Signal schnell das Detektionsband des Gravitationswellen-
detektors und die eigentliche Verschmelzung sowie darauffolgende Oszillationssignale können nicht
beobachtet werden, weil die Sensitivität der Detektoren bei den dafür nötigen höheren Frequenzen
nicht ausreicht. Eine Erhöhung der Sensitivität bei kleinen Frequenzen würde eine frühere Detektion
von Signalen ermöglichen, sodass mehr Informationen über die astronomischen Objekte gewon-
nen werden können. Außerdem würde die Signalquelle am Himmel präzise lokalisierbar, sodass
Beobachtungen durch weitere Teleskope frühzeitig beginnen könnten. Eine höhere Sensitivität im
hochfrequenten Bereich würde es ermöglichen, auch die eigentliche Verschmelzung zu beobachten
sowie Signale nach der Verschmelzung zu messen. Dadurch könnten neue Erkenntnisse zur Physik
von ultradichter �antenmaterie gewonnen werden.

Limitiert wird die Sensitivität, sowohl bei hohen als auch bei niedrigen Frequenzen, durch die
�anteneigenscha�en des Laserlichts, welches genutzt wird, um die relativen Positionsänderun-
gen von Spiegeln zu messen. Diese Änderungen werden durch Gravitationswellen hervorgerufen.
Bei kleinen Frequenzen sorgt die Amplitudenunschärfe des Lichts für Schwankungen des auf die
Spiegel wirkenden Strahlungsdrucks, wodurch das Gravitationswellensignal überdeckt wird. Bei
hohen Frequenzen koppelt durch die Phasenunschärfe des Lichts Rauschen in die Detektoren ein.
In die Detektoren sind außerdem optische Resonatoren integriert, welche das Messsignal inner-
halb der Resonatorbandbreite verstärken. Signale außerhalb der Bandbreite werden unterdrückt.
Gravitationswellensignale von sich umkreisenden Neutronensternen haben in der Regel Frequenzen
außerhalb dieser Detektionsbandbreite.

In dieser Arbeit befasse ich mich mit der Limitierung der Sensitivität der Detektoren und
zeige Wege auf, diese zu verbessern. Dafür diskutiere ich einen Detektor, welcher auf einer
Geschwindigkeitsmessung basiert und zeige zwei Wege auf, um die Messgenauigkeit zu steigern:
Zum einen mit quantenverschränktem Licht und zum anderen mit einem Umlaufresonator, also einer
neuartigen Detektortopologie. Außerdem studiere ich die Sensitivitäsbeschränkungen, welche durch
die Resonatoren zur Signalverstärkung entstehen. Um diese Beschränkungen zu reduzieren, schlage
ich ein neuartiges Konzept vor, bei dem quantenkorreliertes Licht direkt in den Resonatoren erzeugt
wird und so die Detektionsbandbreite erhöht. Ich untersuche, wie die durch internes squeezing
kontrollierten�antenkorrelationen dabei helfen können, die Empfindlichkeit des Detektors bei
ausgewählten Frequenzen zu optimieren. Dabei zeige ich, das der Einfluss von Dekohärenz auf
durch �etschlicht optimierte Sensitivität durch die Nutzung von �antenkorrelationen, die durch
internes Squeezing erzeugt werden, reduziert werden kann.

Die�antennatur des Lichts stellt ein fundamentales Limit für die Sensitivität der Gravitations-
wellendetektoren dar und verhindert die Beobachtung schwacher Signale. Sie kann aber auch als
nützliches Werkzeug eingesetzt werden, um durch �antenkorrelationen schwächste, im Rauschen
versteckte Signale, sichtbar zu machen. Dies zeige ich für unterschiedliche Szenarien in dieser Arbeit.

Nicht nur die Gravitationswellenastronomie kann von diesen Ansätzen profitieren. In allen
Resonator gestützten quantenmetrologischen Experimenten können �antenkorrelationen genutzt
werden, um die Messsensitivität zu verbessern.
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Introduction
1

Gravitational waves were predicted by Einstein more than a hundred years ago [7].

For a long time they were thought to be undetectable, and even their existence was

questioned. However, since the 60s it became evident that gravitational waves

are not only inherent to general relativity, but must also be detectable (since

they carry energy which can be coupled to detectors). There have been several

approaches to detection, including interferometric, as proposed by Gerstenstein

and Pustovoit in 1963 [8], and independently by J. Weber, and analyzed in detail

by R. Weiss in 1968 [9]. Since that time scientist have been developing even

more sensitive interferometers, first as small-scale test setups, and then first

meters-long prototypes. Eventually it became obvious that the complexity of the

interferometer capable of detecting gravitational waves goes beyond anything a

small group of people can build independently. In the early 90s the international

collaboration LIGO (Laser Interferometer Gravitational-Wave Observatory) [10]

was established, and the construction of a kilometer-scale detector in the US

had begun. Around the same time the Virgo detector in Italy [11, 12] and a

smaller-scale detector GEO600 in Germany [13, 14] have been founded. These

detectors were joined by a Japanese project KAGRA [15] in the early 2010s. It

took another 20 years of constant progress to achieve a sufficient sensitivity of

the detectors [16], until on September 14, 2015, the first gravitational-wave signal

was observed [1].

A�er 50 years of preparations, humanity has entered the era of gravitational-

wave astronomy. The gravitational-wave events are observed on a weekly basis [2],

and truly multimessenger astronomy becomes possible with observations of the

same event in gravitational, electromagnetic and neutrino spectrum [4]. The first

4 years of observations provided many results beyond the first direct confirmation

of Einstein’s theory of general relativity (GR). Scientists confirmed the speed of

gravitational waves to be equal to the speed of light with a very high precision [5]
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and put a bound on the mass of the hypothetical graviton particle; put constraints

on the possible deviations from GR [17, 18]; learned the origin of heavy elements

as coming from the kilonova events a�er the binary neutron star mergers [19, 20];

and measured the Hubble constant �0 using the standard sirens independently of

the cosmic distance ladder [6]. The observation of gravitational waves allowed us

to narrow the parameter spaces for cosmological models [21, 22] and put bounds

on the dark ma�er [23–27] and dark energy [28, 29] models, but at the same

time raised new questions and potential routs to solving the quantum gravity

riddle [30–33].

While the observations of gravitational waves have been so widely recognized

and praised, bringing so many exciting discoveries in cosmology and astrophysics,

the detectors’ development has been no less fruitful in uncovering new science

over the last decades. The GW community started new directions in research and

made major contributions in: quantum measurement theory [34, 35]; quantum

optomechanics [36–39]; quantum squeezed light [40–45]; frequency standards

and laser stabilization techniques [46, 47]; optical cavities [48]; material science

(e.g. suspensions [49–51] and optical coating [52–55]) and others. GW observa-

tions were made possible by a continuous improvement in every aspect of the

detector hardware, data analysis and supporting theory, which always stayed at

the cu�ing edge of the most advanced research for many decades.

More importantly, the detectors have not yet reached their full design sensi-

tivity, which is expected to happen by the end of 2024 [56, 57]. Further upgrades

to the current design are planned in the A+ [58] generation of the detectors, and

the proposed LIGO Voyager upgrade [59]. A�er that the third generation of

ground-based detectors is coming: the Einstein Telescope (ET) [60, 61] in Europe

and the Cosmic Explorer (CE) [58, 62] in the US. Their sensitivities will bring a

significant improvement to the detection rate, reaching up to multiple events per

day.

Even with these high rates, there will still be room for improvements, which

would be able to give us further insight into the physics of compact objects. For

example, when a binary merges, the signal from the inspiral stage will stay at

low frequencies for a long time: ET could be able first see the signal from binary

neutron stars hours before the merger event, allowing the optical telescopes to

point at the location of the expected event. Increasing the sensitivity at low
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frequency even further would allow to detect the signals days or even weeks

in advance, giving enough time for a precise triangulation. On the other hand,

both ET or CE would have high sensitivity for the signals with frequencies up to

∼ 1 kHz, which will make them not very efficient for detecting the moments of

merger for the neutron stars, or any post-merger features and oscillations, which

would typically be observed at higher frequency [61, 63]. Expanding the detection

bandwidth to higher frequencies would allow to gather more information about

the equations of state of the neutron stars, and even to glimpse at some possible

deviations from GR [64].

Finally, currently the detectors are optimized for broad frequency ranges, which

makes them very versatile, but less efficient for some potentially interesting signals

at a specific frequency. Having an additional knob to switch the detector from

the broadband operation to the narrowband would allow to observe a highly

interesting signal when needed — an option that current detectors do not possess.

A�er the current generation, the sensitivity of GW detectors will be mainly

limited by quantum noise at most of their detection frequencies [10]. There are

two types of quantum noise, originating from the quantization of light used

in the interferometers to sense the changes in the space-time metric disturbed

by the passing gravitational waves. The first type is quantum shot noise, also

called measurement noise, which arises from the fluctuations in the phase of the

light as seen by photodetectors [65, 66]. The second type is quantum radiation

pressure noise (QRPN) or back-action noise, which arises from the amplitude

fluctuations of the light field applying random kicks to the mirrors used in the

interferometer [67]. Increase in the sensitivity will come from quantum techniques

deployed in the detector, which would allow to suppress or mitigate these noises.

In this thesis, I explore the various approaches to employing quantum light

for pushing the quantum limits in gravitational-wave detectors. With the main

goal of observing the binary mergers over a longer time and accessing the high-

frequency signal from the post-merger dynamics of the formed object, I study

how quantum noise can be suppressed at low, medium and high frequencies. I

utilize quantum correlations in various ways to achieve a broadband observatory

and tailor the sensitivity for specific signals. Since a gravitational-wave detector

is one of the most precise metrological devices, the findings of this thesis are

placed in a more general context of quantum measurements and metrology.
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In Chapter 2, I review the basic principles of gravitational-wave detection.

I discuss the concept of interferometric detectors and which noises limit the

sensitivity of current detectors. I further introduce the general metrological task

of linear measurements, and which limits are imposed on the sensitivity by the

quantum nature of light.

In Chapter 3, I review the basics of quantum noises in optical experiments. I

introduce the ways to calculate quantum noises in optomechanical devices, with

the emphasis on practical application and specific examples. I discuss in more

detail quantum measurements and limits. I review the basics for experimental

techniques, including homodyne detection and laser noises.

In Chapter 4, I begin to introduce the path towards broadband detectors by

discussing the way to avoid quantum radiation-pressure noise by measuring the

speed of the test mirrors. I briefly review this concept of a quantum speedmeter,

and introduce a novel optomechanical ring cavity that features both position

and velocity measurements, which allows an independent comparison between

the two. I describe the concept theoretically, and experimentally test some of

speedmeter features. Part of the results of this chapter is published in [68]

In Chapter 5, I continue discussing the speedmeter concept, but from another

point of view. I present a concept of paired carriers, where the optomechan-

ical interaction entangles two light beams inside the detector, and enables a

speedmeter-like sensitivity. This approach allows to fine-tune the sensitivity of

the detector in a broadband way by combining pairs of carriers with different

parameters. The results of this Chapter are published in [69].

In Chapter 6, I switch from suppressing the QRPN to the shot noise, and intro-

duce the concept of internal squeezing in quantum metrology. In this approach

squeezed light is generated directly inside one of the detector’s cavities. This

provides an alternative to conventional external squeezed-light injection, and

serves as a new tool for tuning the detector’s sensitivity. I introduce the stan-

dard sensitivity-bandwidth limit, and demonstrate experimentally, that this limit

can be overcome using the internal squeezing. The results of this Chapter are

published in [70].

In Chapter 7 I give a more detailed account of the benefits of internal squeez-

ing for mitigating quantum decoherence. I give theoretical arguments for the
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existence of a new decoherence-induced quantum limit, and discuss how internal

squeezing is vital in achieving it.

In Chapter 8, I focus on expanding the detector’s bandwidth towards high fre-

quencies by employing both internal squeezing and the particular resonance struc-

ture of coupled cavities in the detector. I give a general quantum-optical model for

the system, which allows to readily transfer the results beyond gravitational-wave

detection, but also provide a theoretical derivation of a full interferometer model

that includes the effects of internal squeezing, decoherence, and QRPN. I further

highlight the benefits of the proposed approach by computing the improvement in

the detection rate of neutron star mergers. Notably, while this quantum expander

approach allows to detect more merger and post-merger signals, it does not affect

the low-frequency sensitivity. Therefore the back-action evasion techniques, such

as discussed in Chapters 3 and 5, could still be used, bringing all the benefits of

early detection of the inspiral signal. The results of this Chapter are published

in [71].

In Chapter 9, I discuss another way to use internal squeezing by changing

the phase between the pump of the nonlinear crystal and the main beam. This

creates an optical spring effect, which enhances the sensitivity greatly in a narrow

bandwidth around a selected frequency. By adjusting the phase of the pump, this

frequency can be tuned in a broad range, for dynamical tracing of the signal of

interest. The results of this Chapter are published in [72].

This dynamical tracing completes the full detection cycle for my vision of the

quantum-expanded detector: the signal appears early in the detector due to the

reduced QRPN, which allows to pinpoint its position on the sky and to tune the

electromagnetic telescopes to observe the merger. Once the signal reaches high

enough frequencies, the dynamical tuning switches on, and tracks the signal

in the mid-frequency range. Finally, closer to the merger point the detector is

brought in the quantum-expanded mode (also by tuning the phase of the pump),

which allows to observe the merger and post-merger oscillations of the formed

object.

In Chapter 10, I conclude with an outlook on the use of quantum technologies

for gravitational-wave detectors and quantum metrology in general, and discuss

the benefits and the challenges on the way towards a truly broadband detector.
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Disclaimer

Throughout the thesis I use different pronounces to describe the results. When

I use “we” (as in “we obtained the result”), it is to acknowledge that this result

was obtained in collaboration with other authors. Such results in most cases

were published in peer-reviewed journals, as cited in the text. Whenever I use

“I”, it is to highlight, that this opinion is only mine, and I am the only person

bearing the full responsibility for any mistakes in the statements. In particular,

in the chapters that are based on the published results, this distinction is made

to ensure the difference between the shared opinions of the authors group, and

my personal opinions. Correspondingly, such statements had not been verified or

endorsed by any of my collaborators.

In some cases in a descriptory context, where no new insights are presented, I

use “we”, assuming it to be “me and the reader”.
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Glossary

Acronyms

AOM acousto-optic modulator

AR anti-reflective

BS beamspli�er

CE Cosmic Explorer

DC direct current, used to define the 0Hz component of

a signal

EAOM electro-optic amplitude modulator

EOM electro-optic modulator

EPR Einstein–Podolsky–Rosen

ET Einstein Telescope

ETM end test mass

FSR free spectral range

FWHM full-width half maximum

GR general relativity

GW gravitational wave

GWD gravitational-wave detector

GWO gravitational-wave observatory

HR highly reflective

HWHM half-width half maximum

ITM input test mass

LIGO Laser Interferometer Gravitational-waveObservatory

LO local oscillator

MZI Mach-Zehnder interferometer

OPA optical parametric amplifier

PBS polarizing beamspli�er

PD photodiode

PDH Pound-Drever-Hall

PPKTP periodically poled potassium titanyl phosphate (KTP)

8 Chapter 1 Introduction



PR power recycling

PRM power recycling mirror

QCRB quantum Cramer-Rao bound

QN quantum noise

QRPN quantum radiation-pressure noise

SE signal extraction

SEM signal extraction cavity

SHG second harmonic generation

SNR signal-to-noise ratio

SQL standard quantum limit

SR signal recycling

SRM signal recycling mirror

SSBL standard sensitivity-bandwidth limit

TEM transverse electromagnetic mode

TF transfer function

TT transverse-traceless (gauge)
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Mathematical notation

�antity Description

2 speed of light

ℏ reduced Plank constants

" mass of a mirror

! length

l,l?, l0 angular frequency of light in different contexts

_ light wavelength

: = l/2 light wave vector

g = !/2 travel time

j mechanical response function

' amplitude reflectivity of a mirror

) power reflectivity of a mirror

W =
2) 2

4!
half-width half-maximum of the interferometer

X detuning of the light field relative to resonance

frequency of a cavity

V = arctan
X

W
normalized detuning

F finesse of a cavity

ℎ(C) gravitational-wave strain

Ω angular frequency of the signal audio sideband

�2 optical power circulating in a cavity

� =
4l?�2

"!2
normalized optical power

Z homodyne angle

42A squeeze factor

[ optical efficiency

0̂(l), 0̂†(l) annihilation and creation operators for the

mode at frequency l

0̂2 (Ω) = 0̂(l0 + Ω) + 0̂†(l0 − Ω)√
2

two-photon amplitude quadrature operator

0̂B (Ω) = 0̂(l0 + Ω) − 0̂†(l0 − Ω)
8
√
2

two-photon amplitude quadrature operator
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�antity Description

I identity matrix

〈-̂ 〉 expectation value of -̂

Δ
2-̂ variance of -̂

f-̂ standard deviation of -̂

- average value of -

(GG (Ω) single-sided spectral density of value G

(G , (G (Ω) single-sided spectral density normalized to

value G
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Introduction to

gravitational-wave

detection

2

2.1 Gravitational waves

Einstein’s general relativity (GR) has been extremely successful, contributing

to many technological advances in communication and space exploration. The

basis of GR is the idea that gravitational force is nothing else but a curvature of

space-time, and this curvature is created by energy (mass and radiation). The

objects traveling through space-time take the shortest path, which is a straight

line in a curved space-time, but looks like the change in direction to us, when we

observe e.g. a rotation of a planet around the sun.

The core of GR — Einstein’s field equation — relates the metric tensor field 6`a

to the energy-momentum tensor )`a :

�`a ≡ '`a − '6`a =
8c

24
�)`a , (2.1)

where �`a is the Einstein’s tensor, '`a is the Ricci tensor, and ' is the curvature

scalar. This system of coupled second order nonlinear differential equations in

general describes how the space-time (metric) curves in the presence of energy

and mass. There is no known general solution to these equations, but a solution

to many special cases exists: black holes, gravitational waves, etc.

Gravitational waves are small perturbations of the space-time [73, 74]. For a

gravitational wave propagating in a free space, the metric 6`a can be decomposed

into a flat Minkowski metric [`a and a small perturbation ℎ`a :

6`a = [`a + ℎ`a , |ℎ`a | ≪ 1, (2.2)
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and with this linearisation Einstein’s equation can be brought to a relatively

simple form [73, 74]. In the so-called transverse-traceless (TT) gauge, the solution

takes a simple form with only four components of the tensor present, and defined

by the two possible polarizations ℎ+,× (plus and cross):

ℎ =



0 0 0 0

0 ℎ+ ℎ× 0

0 ℎ× −ℎ+ 0

0 0 0 0


. (2.3)

In a simple case of observing a merger of a binary far away from the source, the

two polarizations take the form:

ℎ+ = −2�`
22A

(1 + cos2 ])
(E
2

)2
cos 2lC, (2.4)

ℎ× = −2�`
22A

cos ]
(E
2

)2
sin 2lC, (2.5)

where ` =<1<2/" is the reduced mass of the system with two masses<1,2 and

the total mass " = <1 +<2; A is the distance from the source; E = (l�")1/3
is the mean orbital speed; l is the radial frequency of the GW; and ] is the

inclination angle. This equation allows us to estimate the amplitude of the GW

from a typical source. Let’s consider the system GW150914 [1]:<1 = 35"⊙,<2 =

30"⊙, A = 440 × 3.1 × 1022, and select a frequency of 100Hz: the corresponding

parameters are: " = 65"⊙, ` = 16.15"⊙, l = 628.32, E/2 = 0.586, and we obtain

ℎ ≈ 1.2 × 10−21, which is close to the measured value (about 0.9 × 10−21).

This simple calculation tells us an important fact about the GWs: they are very

small in amplitude, if observed far from the source. The strain amplitude of 10−21

means that the relative change in distance between two test masses separated by

1 km would be on the order of 10−18m. This is the main difficulty of constructing

a gravitational-wave detector: it needs to be extremely sensitive.

Another feature of GWs is that they carry energy. The first confirmation of that

came with the detection of the decaying orbit of a binary pulsar [75]: two compact

objects rotating around each other emit gravitational waves, which carry away

the energy and cause the objects to inspiral into each other. Consequently, as the

distance between the objects becomes smaller, their orbital frequency increases,
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and so does the GW frequency - in an accelerating manner, a so-called chirp. At

the same time the amplitude of the GW would grow, carrying away more energy,

up until the moment the objects merge.

The time evolution of the gravitational-wave signal is described by a more

complicated equation, taking into account this decay:

ℎ+(C) = −2�M
22A

1 + cos2 ]

2

(
23(C2 − C)
5�M

)− 1
4

cos

[
2q2 − 2

(
23(C2 − C)
5�M

) 5
8

]
(2.6)

ℎ×(C) = −2�M
22A

cos ]

(
23(C2 − C)
5�M

)− 1
4

sin

[
2q2 − 2

(
23(C2 − C)
5�M

) 5
8

]
, (2.7)

where C2, q2 are the moment and the phase of the merger,M = `3/5"2/5 is the

chirp mass.

As gravitational waves propagate, they stretch and squash the metric of the

space-time in the plane (G,~) orthogonal to the direction of propagation (I).

GW are quadrupolar: for + polarization, if G is stretched, ~ is squashed; for ×
polarization the diagonal directions are stretched, see Fig. 2.1. It is this stretching

and squashing that can be detected by the interferometric detectormost efficiently

due to its topology.

2.2 How GW detectors work

The TT gauge is commonly used for describing gravitational waves. In this

gauge the test masses remain inertial, i.e. a passing GW does not induce the

displacement of the test masses, but instead changes proper distances between

them. The coordinate system is changing with the GW. Therefore, this gauge

cannot be easily applied for the ground-based detectors, where the coordinate

system is set by various forces acting on test masses (e.g. from suspensions of test

mirrors) [76].

Instead, it’s convenient to use the Lorentz (Newtonian) gauge. From the point

of view of the local observer in the origin of a coordinate system, in this gauge

a GW acts as a tidal force that displaces the test masses [77]. The dynamics of

the test masses is then defined simply by a tidal acceleration of the test mass. In

2.2 How GW detectors work 15



Fig. 2.1. Effect of a gravitational wave on a ring of free-falling masses, positioned orthog-
onally to the propagation direction of the GW. GW with frequency Ω changes
metrics such that the ring is deformed, differently for two GW polarizations ℎ+,×
at different phases ΩC .

the rest of this chapter I assume the GW wavelength to be large compared to

the dimensions of the experiment. In this approximation the dynamics is can be

described as:

¥G =
1

2
¥ℎG, (2.8)

¥~ = −1
2
¥ℎ~, (2.9)

which can be linearized to a small perturbation in metric:

XG (C) = 1

2
ℎ(C)G0, (2.10)

X~ (C) = −1
2
ℎ(C)~0, (2.11)

where G0, ~0 are the initial positions of the test mass. Notice, that the displacement

is larger the larger when the initial distance from the origin is larger.

This directly suggests a way to measure the GWs by observing a displacement

of the test mass relative to a reference point. This idea lies in the origin of

the interferometer-based detectors. While there are multiple different ways of
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Fig. 2.2. Michelson interferometer as gravitational-wave detector. Le�: a GW displaces the
test masses relative to the central beamspli�er, which results in a relative change
is phases of the light beams and interference observed on the photodiode. Right:
cavity-enhanced detector. Arm cavities serve to enhance signal and light power.
Power-recycling mirror (PRM) further enhances the light power, Signal-extraction
mirror (SEM) enhances the signal independently on the light power.

observing the GWs: bar detectors [78], pulsar timing arrays [79], and more exotic

Bose-Einstein-condensate [80] or atom interferometer [81] detectors. The most

successful topology to date is the optical interferometer.

The idea is to use light itself as a clock for measuring the changes in the distance

between the origin and the test mass. For that the light beam is sent from the

origin, reflected off the test mass, and detected at the origin again. Computing

the travel time (and comparing to the reference) allows to deduce the GW signal.

A convenient way to time the arrival of the light beam is to use a Michelson

interferometer with two arms, see Fig. 2.2. Passing GW stretches one arm and

squashes another, causing a relative phase change between the light beams in

the arms. This change can be observed as an interference on the output port of

the interferometer.

The phase of the light acquired by light on a round-trip in the arm is gauge

independent. In the Lorentz gauge, the mirrors are displaced by a GW, which

results in an additional phase acquired by light. In the TT gauge, the distance

to the mirror is stretched, and it takes longer for the light to travel, resulting in

2.2 How GW detectors work 17



Fig. 2.3. The sensitivity of the detector as a function of the position of the source on the
sky for circularly polarized GWs. (Le�) magnitude of the response as a function
of the coordinates on the sky; (right) antenna pa�ern relative to the position of
the detector in Cartesian coordinates. The GWs arriving from zenith or nadir
are twice as strong as the ones propagating along the arms, since they couple
maximally to both arms. The GWs arriving from the bisector between the arms
are not detected, since they excite the two arms equally, in the common mode.

an additional phase. Practically, when including other forces acting on the test

mirrors, it is difficult to use the TT gauge, so from here on I use the Lorentz gauge,

and view the GW as a tidal force.

In general, a single Michelson interferometer is not equally sensitive to all

polarizations and propagation directions of GWs [82, 83]. For example, if the

polarization of the GW is (+), and the arms are aligned along the coordinates

of metrics change, the signal in the detector will be maximal. It will be not

sensitive to (×) polarization, and somewhat sensitive to the combination of these

polarizations. Of course, the angle at which the GW arrives at the detector also

affects the sensitivity. Ultimately every detector has an antenna pa�ern for the

highest sensitivity, see Fig. 2.3. For the further discussion I always assume that

the detector is perfectly aligned with one of the polarizations, achieving the full

sensitivity.
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The change in the arm length, according to the equations (2.10) is:

X!(C) = 1

2
ℎ(C)!, (2.12)

where ! is the arm length of the interferometer. The corresponding change in the

phase of light with wavelength _0 on the round trip:

Xq (C) = 2c
2!

_0
ℎ(C). (2.13)

As one can see, the magnitude of this change in phase is tiny when induced by a

typical GW of amplitudeℎ ∼ 10−21 in the 4-km long interferometer: Xq ∼ 5×10−11.
In the interferometer this phase change converts into a power change at the output

of the interferometer. For example, for an interferometer tuned to the mid-fringe

(i.e. when there is half total power in the signal port in the absence of signal):

%out =
1

2
%in(1 + sin 2Xq) . (2.14)

The difference in detected powers for an input power of 100W due to the phase

change of Xq ∼ 5 × 10−11 will be on the order of 5 nW.

Clearly, such small signals are not feasible for practical detection. There are two

clear ways to increase the signal, which can be seen straight from the equations

above. The first one is to make the arms longer, the second one is to increase the

light power in the interferometer. The arm length of 4 km in Advanced LIGO is

already rather long, and while it is planned to implement tens of kilometers arms

in future detectors [58], their size is clearly limited by the ground infrastructure.

There are plans for space-based observatories, such as LISA [84, 85], DECIGO [86],

Taiji [87] and TianQin [88], with arm lengths of thousands to millions of kilome-

ters, to observe GWs at much lower frequencies (below 10Hz). While very long

arms are not feasible on the ground, the same effect may be achieved with a delay

line in the arms: since the measured effect depends on the travel time in arms, a

delay line with N trips would result in the phase gain:

Xq (C) = 2c ×N × 2!

_0
ℎ(C). (2.15)
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Modern detectors use Fabry-Perot resonators instead of delay lines, see Fig. 2.2.

An additional mirror (input test mass, ITM) in the arm of the interferometer forms

an optical cavity with the back mirror (end test mass, ETM). When the cavity is

on resonance, the light effectively stays inside for some time, acquiring a phase

enhanced by the amount of round-trips 4N = 2F /c , where F is cavity finesse,

which depends on the power reflectivities '1,2 of the two mirrors:

F =
c 4
√
'1'2

1 −
√
'1'2

. (2.16)

For a typical finesse F ∼ 100 and %in ∼ 100W would result in %out ∼ 0.5 `W,

which is much larger than 5 nW in the example without a cavity. Such power is

already detectable. Modern detectors use additional cavities to enhance the signal

even further. One mirror on the input of the interferometer forms a so-called

power-recycling (PR) cavity. This cavity enhances the light power by interfering

it constructively with itself on a round trip. This does not have an effect on the

signal. The second mirror is placed in the output of the interferometer and forms

a so-called signal-extraction (SE) cavity with the ITM to enhance the signal.

2.3 Sensitivity and noises

As we saw in Sec. 2.1, the strain amplitude from a GW source at typical distance is

extremely weak: on the order of 10−21. Conceptually, such a signal can be detected

by measuring the differential length change of the arms of the interferometer.

Practically though, the ability of the detector to measure such signals is limited

by various disturbances that also change the differential path length or manifest

themselves as such. The main noise source at signal frequencies above ∼ 50Hz in

the current generation of GW observatories is the quantum uncertainty of the

light field, which results in shot noise (photon-counting noise) [10, 16]. Noise at

lower frequencies has contributions of several origins such as Brownian motion of

the mirror surfaces and suspensions, as well as quantum radiation pressure noise,

which comes from mirrors’ random motion due to quantum uncertainty of the

light power [67, 89]. All these noise sources give contributions to the photocurrent

of the photodiode placed on the signal port of the detector. The observatory’s
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Fig. 2.4. Noise contributions to the total design sensitivity of Advanced LIGO [10] in
terms of sensitivity to gravitational-wave strain ℎ(C). The figure is produced in
PyGWINC package [90] using the standard ”aLIGO” model.

sensitivity to the GW signal is given by the observatory’s signal-to-noise ratio

(SNR).

It is convenient to quantify a noise in the frequency domain, since a GW signal

has distinct contribution at a single frequency (varying in time). Signal frequencies

at which the detector is most sensitive define the detection bandwidth. Since

most of the noises can be qualified as stationary or quasi-stationary [16], it is

sufficient to give the spectral density of the noise (usually normalized to the signal

transfer function).

The main noise contributions to the design sensitivity of Advanced LIGO are

plo�ed in Fig. 2.4, and further I briefly discuss some of the most important of the

sources.
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• Shot noise (measurement noise) originates from the quantization of light,

as seen by photodetectors. Random arrival statistics of the photons creates

photo-voltage fluctuations, which mask the signal. The photons in the

light beam obey Poisson statistics [91], which for large average number of

photons# can be approximated by a normal distribution with a standard

deviation f# =
√
#:

? (# ) = 1√
2c#

4
− (#−#)2

2# . (2.17)

The power % of the light beam is related to the average amount of photons

# per time g :

% =
2cℏ2

_0g
#. (2.18)

Their standard deviations are related correspondingly:

f% =
2cℏ2

_0g
f# =

√
2cℏ2

_0g
% . (2.19)

The output of a typical interferometer, see Eq. (2.14), contains both the

signal and the noise X%out:

%out(C) =
2c!%in

_0
ℎ(C) + X%out(C) . (2.20)

The standard deviation of the shot noise is defined by the relation above:

f%out =
2cℏ2

_0g
f# =

√
4cℏ2

_0g
%in. (2.21)

The sensitivity of the detector is characterized by the inverse SNR, which

can be computed by dividing the noise standard deviation by the signal

transfer function m%out/mℎ(C):

fℎ =
f%out

m%out/mℎ(C)
=

√
ℏ2_0

4c!2%ing
. (2.22)
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This relation allows us to confirm the qualitative picture from the previous

section, and highlight the ways to enhance the sensitivity. Firstly, one can

increase the input light power, either directly, or by using an additional

mirror (PRM) to form a power-recycling cavity. Secondly, one can increase

the length, either directly, or by using optical cavities in the arms. When the

arm cavity is present, the signal is amplified by its finesse F , see Eq. 2.15:

%out(C) =
2F !%in

_0
ℎ(C) + X%out(C), (2.23)

and using the relation between the input and intra-cavity power %c =

(2F /c)×(%in/2) one can obtain the enhanced sensitivity at low frequencies

(i.e. not taking the effects of a finite cavity linewidth into account):

fℎ =

√
ℏ2_0

4F !2%cg
=

√
ℏ_0W

8c!%2g
, (2.24)

where we introduced the cavity half-width half-maximum (bandwidth)

W = 2) /(4!), for a single-sided cavity with mirror’s power transmissivity ) .

• Radiation-pressure noise In the classical effect of radiation pressure,

electromagnetic radiation applies force to the surface it is reflected off.

This is the case also in gravitational-wave detectors, where the laser beam

creates a strong push on the test mirrors:

�rp(C) =
%2 (C)
2

=
%in + X%in(C)

22
. (2.25)

The average force is proportional to the average light power %in, but it also

has a contribution from any fluctuations in this power X%in(C). In particular,

when the light field is limited by quantum fluctuations, they cause quantum

radiation pressure noise (QRPN). The force applied to a test mass causes

its displacement: " ¥Grp(C) = �rp(C) The constant shi� can be compensated

by classical control loops, but the QRPN part inevitably produces random
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displacement and thus noise in the interferometer output. The standard

deviations of the QRPN can be computed accordingly:

f� =
f%in
2

=

√
4cℏ

2_0g
%in. (2.26)

As a consequence of the Heisenberg uncertainty relation, the noise imposed

on a test mass by a meter (QRPN) and the measurement precision (shot

noise) should obey the uncertainty relation:

ℏ

2
= fGf? =

!

2
fℎ × gf� =

!

2

√
ℏ2_0

4c!2%ing
× g

√
4cℏ

2_0g
%in =

ℏ

2
. (2.27)

Since the equivalent contribution of the QRPN to the displacement scales

with averaging time: "fG,rp = g
2f� , it is evident that the longer the aver-

aging time, the higher is the contribution of QRPN to the sensitivity. It is

understandable, since the position can be estimated most precisely from the

instantaneous measurement, and the momentum — from two successive

measurements of the position separated by some time, the QRPN contam-

inates the la�er. There is an optimum power, for which these two noise

contributions become equal: fG = fG,rp, and this optimum point is called

the Standard�antum Limit (SQL):

f
(SQL)
G =

√
ℏg2

2"
, % (SQL)

=
2_0"

8cg2
. (2.28)

SQL serves as an important benchmark, since it’s not possible to surpass this

limit using classical approaches, e.g. by increasing light power or integration

time. It is possible, however, to overcome this limit using non-classical states

of light.

• Coating thermal noise Molecules in the highly-reflective coatings of the

mirrors that are used as test masses undergo random Brownian motion

due to the coupling to a room-temperature thermal bath [92]. These ex-

citations lead to random fluctuations of the surface itself, which is seen

by the reflected light as a change in mirror’s position. The laser beam is
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relatively broad on the surface of the mirror, which averages out most of

the fluctuations, but a small fraction still contributes to the phase of the

reflected light. This coating thermal noise is currently limiting the sensi-

tivity in the middle-frequency band [16]. It is possible to reduce the noise

by decreasing the coupling to the thermal bath (increasing the mechanical

quality of the coatings) and decreasing the temperature of the bath itself.

The Japanese detector KAGRA operates at cryogenic temperatures, and it is

also planned for future GW detectors, such as Einstein Telescope and LIGO

Voyager. At the same time new coatings are constantly being developed

with be�er mechanical and optical properties (which reduces heating from

the absorbed light) [54].

• Suspension thermal noise Brownian motion also excites vibrations in

the suspensions of the test masses [93]. This noise acts as an additional

random force shi�ing the mirrors, and thus has a higher contribution at

low frequency, where the mirror’s response to a force is higher. While the

underlying reason for this noise is the same as for coating thermal noise,

the material design for suspensions has another focus: it needs to satisfy

strict requirements on the shape and dimensions of the suspension, while

optical properties are not important.

• Seismic noise The detectors are so sensitive, that even the smallest seis-

mic vibrations can be seen in the output channel [50, 94]. Aside from the

seismic activity of the Earth, various vibrations from cars on nearby roads,

construction works and other human activities, or even the ocean waves

hi�ing the shore, all can be sensed by the detector. Multiple stages of

isolation, both active and passive (most notably suspending all optics on

multi-stage suspensions) are required to reduce the influence of seismic

noise in the detection frequency band. One of the additional approaches

for reducing the seismic noise is placing the detector underground, as is

done for KAGRA, and planned for ET.

• Newtonian gravity noise One of the more fundamental noises is the

gravity gradient noise [95, 96]. Motion of heavy objects around test masses

can displace them due to the gravitational a�raction between the object
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and the test mass. For example, surface gravity waves cause mirrors to shi�.

The conceptual problem with this noise is that it is impossible to isolate

from it. It can be reduced by going underground, since there surface ground

motion would give minimal contribution. On the other hand, body waves

become more pronounced. One approach to mitigating this noise is sensing

it and subtracting from the data [97].

• Control noise There are various control noises, arising from electronics

and auxiliary readouts [16]. These noises have significant contribution at

low frequency, but are difficult to model and reduce.

• Other noises There are multiple other sources of noise (e.g. parasitic

interference with back-sca�ered light [98]), and also various non-stationary

processes that contaminate the signal [99, 100].

While all the noises are very challenging to mitigate and reduce, quantum shot

and radiation pressure noises remain the most fundamental limitations to the

sensitivity. In the next section I overview the techniques for reducing quantum

noise.

2.4 �antum-correlated light for GW detectors

�antum noises are one of the main limiting factors in gravitational-wave de-

tectors, and there are several approaches on how to reduce or avoid them. Semi-

classically, shot noise can be suppressed by increasing the light power, or the

length of the arms. That, however, increases QRPN at low frequencies. The

classical trade-off is always the SQL: there is no way to avoid it without creating

quantum correlations in the light field (non-classical light).

For continuous light field, the fluctuations in the photon number and arriving

times [101] correspond to the fluctuations in the amplitude and phase of the light

field. It is convenient to describe these fluctuations in the phase space in terms of

fluctuations in the amplitude and phase quadratures of the light field. I introduce
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the quadratures rigorously in Chapter 3, and here define as a real and imaginary

part of the complex amplitude of the light field �:

� (C) = �04−8l0C + �∗048l0C = - cosl0C + . sinl0C, (2.29)

- =
√
2ℜ[�], . =

√
2ℑ[�], (2.30)

where �0 is the complex amplitude of the light field at frequency l0, and -,. are

the amplitude and phase quadratures, correspondingly. From here on, I discuss

the noises in terms of light quadratures.

One of the first approaches for suppressing shot noise was squeezing the quan-

tumuncertainty of a signal quadrature by injecting squeezed vacuum in the output

port of the interferometer [65, 66, 102–107]. When the signal (phase) quadrature

is squeezed, the shot noise is suppressed, and the sensitivity is enhanced, much

like with increased light power: 3 dB of shot noise squeezing provides the same

increase in sensitivity as doubling the light power. On the other hand, the ampli-

tude quadrature gets anti-squeezed, which increases QRPN at low frequencies.

Nevertheless, squeezed light has been used in GEO600 for many years [108, 109],

and since April 2019 Advanced LIGO [42] and Advanced Virgo [44] use squeezed

light injection to suppress shot noise. Since these detectors currently have not

yet reached their design sensitivity and thus are not limited by QRPN at low

frequencies, squeezed light injection does not

In order to take full advantage of squeezed light, it would be necessary to

squeeze the amplitude quadrature of the light at low frequencies (thus reducing

QRPN), and the phase quadrature – at high frequencies (suppressing shot noise),

see Fig. 2.5. Such frequency-dependent squeezing [110, 111] is planned to be

implemented in the next large upgrade of the detectors. In order to create the

necessary frequency dependence, squeezed vacuum is reflected off a hundreds-of-

meters long filter cavities [112–114], detuned from their resonance in an optimal

way.

Other approaches target reducing the QRPN without affecting the shot noise.

One of the most direct ways is to increase the mass of the mirrors, but that is

technically challenging. A class of approaches is united under a general label of

back-action evading measurements [34, 115, 116]. The most notable example of

such measurements is ‘variational readout’ [112, 117, 118], where the outgoing
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Fig. 2.5. Sensitivity of the GW detector enhanced with squeezed light. Phase squeezing
(magenta) increases the sensitivity at high frequencies, at a price of reduced
low-frequency sensitivity, which increases due to QRPN. Amplitude squeezing
(green) allows to suppress QRPN at low frequencies, increasing the shot noise at
high frequencies. For both phase and amplitude squeezing, sensitivity does not
surpass the SQL, since no cross-correlation between the noises is used. Frequency-
dependent squeezing allows to rotate the squeezed quadratures such, that the
noise is suppressed at all frequencies, allowing to surpass the SQL.
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quadratures of the light are rotated in such a way that quantum correlations

between the two quadratures cancel the effect of QRPN and it is never seen by

the photodetectors. Variational readout requires a scheme with detuned filter

cavities, which is very similar to the frequency-dependent squeezing, but on the

output of the detector instead of the input.

There are other approaches, in which QRPN does not arise in the measurement.

Such approaches are called quantum-non demolition (QND) [34]. They require

changes to the measurement procedure itself. The most developed concept of such

measurements is a speedmeter topology [119–122], where instead of position, the

light senses the velocity of the test masses. This allows to significantly lower the

QRPN, and in the ideal case get rid of it completely. Many different topologies

have been proposed over the years [123–126], but they are still waiting to be

verified experimentally.

Finally, there are concepts that involve changing the response of the test masses

in such a way, that a particular frequency band gains in sensitivity significantly,

while others become less sensitive [127–132].

Apart from these mainstream concepts, many more have been proposed, in-

volving atomic [133–136] or optomechanical systems [137–139] inside and out-

side [140] the detector, changes in readout [141–144] and combinations of several

different approaches.

All these approaches share one weakness: as long as they use quantum cor-

relations, they are very susceptible to quantum decoherence (optical loss) [43].

Any quantum state is easily destroyed by a small amount of decoherence, and

optical states are not an exception. For example, even if one could produce 100 dB

of squeezed light (suppression of shot noise by 1010), 1% of loss would reduce this

squeezing to 20 dB (suppression by 100), and 10% – to 10 dB (suppression by 10).

One has to keep in mind, that current losses in Advanced LIGO are on the order

of 25% [45], and it could be technologically possible to reduce them to several

percent. Anything below 1% is beyond current technology. Optical loss is the

main limitation for all quantum techniques, and a showstopper for some of them.

It is therefore of utmost importance to always consider the practical aspect of a

specific approach, and find a way to reduce the influence of loss. In the following

chapters I will outline some possible directions for avoiding particular kinds of

optical loss.

2.4 �antum-correlated light for GW detectors 29



In the next section I talk more about the quantum limits in the more general

context of quantum metrology, and discuss the importance of these limits for

gravitational-wave detectors.

2.5 �antum limits in metrology

Metrology - the science of precise measurement of physical values - has entered

our everyday life in various applications [145, 146], from biological sensors [147]

and accelerometers [148, 149] to ultra-precise magnetic field sensors [150] and

gravitational-wave detectors. Technological advances lead to many sensors be-

ing limited by the quantum properties of the measurement device (e.g. laser

shot noise). Further advances would require employing quantum techniques for

achieving the optimal sensitivity. In this section I review the task of metrology,

fundamental limitations on the measurement precision, and how this connects to

gravitational-wave detectors.

The main task of metrology is finding the best way of measuring the specific

parameter or set of parameters, which entails both optimization of the measure-

ment apparatus, and data analysis [145]. There are many branches of quantum

metrology, some use discrete, some continuous variables (and measurement tech-

niques), some target measuring classical parameters, others — quantum. I focus

on a metrological task of measuring a classical force acting on a movable mirror

by reflecting continuous light off this mirror.

2.5.1 Simple quantum measurement model

I start by considering the simplest model of measuring the displacement of a free

test mass under action of classical force � . The measurement in this toy example

is instantaneous and yields a value for the position of the test mass. It also applies

some back-action (i.e. changes momentum of the test mass). An example of such a

measurement is timing the delay of a photon reflected off a test mass. Depending

on the delay, one may judge the value of the position, but also every reflection

transfers momentum of 2ℏ: to the test mass (for a wavevector :). Statistically,

the precision of such measurement ΔG and the random spread of momentum

Δ? should obey the Heisenberg’s uncertainty relation: ΔGΔ? ≥ ℏ/2. With this in
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mind we can construct a four-stage procedure for repeated measurement of the

force� : initiate the state of the test mass G0, ?0, measure this state right before

the force arrives (and apply back-action), wait for the force to act on the test mass

and measure again a�er time g and again a�er time g , in order to construct a

discrete second derivative (i.e. acceleration) as G3 − 2G2 + G1:

G1 = G0 + Gm1 , (2.31)

G2 = G0 + g
?0 + ?ba1
<

+ �g
2

2<
+ Gm2 , (2.32)

G3 = G0 + 2g
?0 + ?ba1
<

+ g
?ba2
<

+ 2
�g2

<
+ Gm3 , (2.33)

�̃ =
<

g2
(G3 − 2G2 + G1) = � +

?ba2
g

+ <
g2

(Gm3 − 2Gm2 + Gm1 ), (2.34)

where �̃ is our estimation of the force given the measurement record, and Gm1,2,3
are the measurement noises. The uncertainty of this estimation is:

Δ
2�̃ =

<

g2
(
Δ
2Gm3 + 4Δ2Gm2 + Δ

2Gm1
)
+
Δ
2?ba2
g

. (2.35)

Since the first and the last measurements do not contribute to the back-action,

they can be assumed infinitely strong: Δ2Gm1,3 = 0. If we then recall thatΔ2Gm2 Δ
2?ba2 =

ℏ2/4, we obtain:
Δ
2�̃ =

4<

g2
Δ
2Gm2 + ℏ2

4Δ2Gm2 g
, (2.36)

which allows to optimize the measurement strength for the second measurement:

Δ
2Gm2 = 0.25ℏg<−1, which gives the minimal detectable force

Δ
2�̃min

=
ℏ<

g3
. (2.37)

This measurement uncertainty corresponds to the SQL.

Now suppose that we could measure a linear combination of displacement and

back-action: ~ = G + U?ba, where we are free to choose a coefficient U . Then the
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same procedure as above with modified measurement during the second stage

would give:

G2 = G0 + g
?0 + ?ba1
<

+ �g
2

2<
+ Gm2 + U?ba2 , (2.38)

�̃ =
<

g2
(G3 − 2G2 + G1) = � +

?ba2
g

(
1 + 2<U

g

)
+ <
g2

(Gm3 − 2Gm2 + Gm1 ), (2.39)

which allows to completely avoid the back-action by selecting U = −g (2<)−1:

Δ
2�̃ =

<

g2
(
Δ
2Gm3 + 4Δ2Gm2 + Δ

2Gm1
)
. (2.40)

The precision is then unlimited: Δ2�̃min = 0, when all measurements are strong.

Note that this does not mean that the measurement does not produce back-action,

we just avoid looking at it: we use correlations between the measurements to

erase their effect on the measurement result. Such a variational measurement

scenario is not hypothetical and can be realized in a real experiment by using

quantum correlations in the light field.

2.5.2 Linear continuous measurement

The same example as above can be considered in the case of continuous measure-

ment of displacement Ĝ (C) reflecting a laser beam off the mirror and registering

the change in the phase. The light pushes back on the mirror, causing measure-

ment back-action �̂ ba(C). The dynamics of this system can be described by a

dynamical equation:

" ¥̂G (C) = � (C) + �̂ ba(C), (2.41)

~̂ (C) = Ĝ (C) + Ĝm(C), (2.42)
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where ~̂ is the measurement result, and Ĝm is the measurement noise (shot noise

in our example). It is convenient to consider the spectral components in the

frequency-domain:

−"Ω
2Ĝ (Ω) = � (Ω) + �̂ ba(Ω), (2.43)

~̂ (C) = Ĝ (Ω) + Ĝm(Ω) = � (Ω)
−"Ω2

+ �̂
ba(Ω)
−"Ω2

+ Ĝm(Ω). (2.44)

We are interested in the sensitivity of this measurement scheme, which is defined

by the spectral densities of the noises and the response of the system to a signal.

In general, measurement noise and back-action noise can be correlated. Therefore,

there is a cross-correlation spectral density (G� (Ω) that quantifies the correlation
between these noises. Total spectral density including this cross-correlation takes

the form:

(total(Ω) = (G (Ω) +
2ℜ[(G� (Ω)]

−"Ω2
+ (� (Ω)
"2Ω4

, (2.45)

whereℜ[/ ] is a real part of a complex value / . First consider the case without

cross-correlation: (G� = 0. As in the discrete case, it’s possible to prove that

the spectral densities for the measurement and back-action noises obey the

uncertainty relation:

(G (Ω)(� (Ω) ≥
ℏ2

4
. (2.46)

Then the SQL is readily recovered by optimizing the measurement precision, as

before:

(
SQL
G (Ω) = ℏ

"Ω2
, (

SQL

�
(Ω) = ℏ"Ω

2. (2.47)

When the noises are correlated, the uncertainty relation is modified:

(G (Ω)(� (Ω) − |(G� (Ω) |2 ≥
ℏ2

4
, (2.48)

and the sensitivity is, correspondingly:

(total(Ω) =
ℏ2/4 + |(G� (Ω) |2

(� (Ω)
+ 2ℜ[(G� (Ω)]

−"Ω2
+ (� (Ω)
"2Ω4

. (2.49)
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The optimal cross-correlation is given by (G� (Ω) = (� (Ω) ("Ω
2)−1, where the

sensitivity again becomes unbounded:

(total(Ω) =
ℏ2

4(� (Ω)
→ 0. (2.50)

The difficulty is in creation of the necessary frequency dependence in the correla-

tion function between the noises.

2.5.3 �antum Cramer-Rao bound

The SQL is not a fundamental limit, and can be avoided in a straightforward

(yet still practically challenging) way by using back-action evasion approaches.

Once back-action is out of the question, the sensitivity remains to be limited by

laser shot (measurement) noise. Shot noise puts a true fundamental limit on the

sensitivity.

It is possible to put this in a more broad metrological context by considering

the amount of information that in principle can be extracted out of the noisy

record. From the Heisenberg uncertainty relation:

ΔEXq ≥ ℏl0

2
, (2.51)

follows that if we want to detect a small phase shi� on a laser beamwith frequency

l0, we need to minimize the uncertainty in phase Δq and thus by necessity

increase the uncertainty ΔE in the energy used to probe this phase shi�. This

statement is at the core of the energetic quantum limit, as introduced by Braginsky

et.al. [151]: the ultimate measurement precision is limited by the available energy.

In a more general metrological context this statement is known as the quantum

Cramer-Rao bound (QCRB) [152, 153]. For measuring a parameter \ with a meter

that has an interaction Hamiltonian �int, there exists a bound on the precision of

estimation of this parameter:

Δ
2\ ≥ 1

4Δ2�int
, (2.52)
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for the case of pure states. This statement is in fact analogous to the energetic

quantum limit above. For linear detection of a continuous displacement G (C) with
interaction Hamiltonian �int = −G (C)�̂ , QCRB takes the form [154]:

Δ
2G (l) ≥ ℏ2

4(�� (l)
, (2.53)

where (�� (l) is a symmetrized spectral density of quantum fluctuations in �̂ .

For a gravitational-wave detector the fluctuations in �̂ correspond to power

fluctuations on the mirrors, so the QCRB can be wri�en as:

(
QCRB

ℎ
(Ω) = ℏ2

4l0!%2

1

(00 (Ω)
, (2.54)

where l0 is the light frequency, ! is the arm length, %2 is the optical power in the

arms, and (00 (Ω) is the spectrum of amplitude quadrature noise in the arms.

The main statement of the QCRB is that in order to increase the sensitivity of

the detector, one needs to increase the pure-state energy fluctuations of the meter.

For a GW detector it means increasing the amplitude fluctuations in the light

field. This can be done either by increasing the light power, or by anti-squeezing

the amplitude quadrature of the light. In general, QCRB does not impose any re-

quirement on the phase quadrature, and in some approaches involving entangled

states, both amplitude and phase quadratures can be increased. This summarizes

all approaches to increasing the shot-noise limited sensitivity of the detector. It

is important, that the QCRB in general does not make any statements about

the readout. The bound itself depends only on the properties of the interaction

Hamiltonian.

An entirely different question is how to reach this bound in a realistic design.

There are two main conditions for that: i) the detector is in a pure state (at the

quantum limit); ii) measurement back-action is evaded. This means in particular

that the detector would have to have no optical loss, which is not possible. There

exists a different limit, that originates from optical losses, and I discuss it in detail

in Chapter 7.

Practically, the design of a detector can then be separated into two tasks:

finding the design with low QCRB, and looking for ways to achieve it. Now I give

several examples of how QCRB could be applied to a detector design.
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First, let’s start with considering the baseline sensitivity of a Michelson inter-

ferometer without any cavities:

(baselineℎ (Ω) = ℏ2

4l0!%0
, (2.55)

where the amplitude noise on the mirror is assumed to originate from a coherent

state, thus (00 (Ω) = 1, and the input light power is %0. As I discussed in the

previous sections, optical cavities allow to increase the sensitivity. Indeed, from

the point of view of QCRB, with coherent input, the amplitude noise inside the

cavity is amplified by a cavity resonance factor, and the sensitivity becomes:

(
cavity

ℎ
(Ω) = cℏ2

4l0!%0F

W2 + Ω
2

W
, (2.56)

where W is cavity bandwidth, and F is the cavity finesse. Is is important, that the

QCRB is significantly, by F 2, lowered on resonance (Ω = 0), but becomes worse

at higher frequencies:

(
cavity

ℎ
(Ω)

(baseline
ℎ

(Ω)
= c

W2 + Ω
2

F W
=

c2

2F 2g
+ 2gΩ2. (2.57)

This highlights an important property of QCRB: it depends on frequency, and

thus sometimes it is difficult to use it as a benchmark parameter. Instead, an

integrated QCRB can be used. For a cavity-based detector, in which the sensitivity

has a Lorentzian spectral shape, integrating over the SNR gives the product of

peak sensitivity and bandwidth:

∫ lQCRB

0

1

(MFP
ℎ

(Ω)
3Ω =

+00

(
QCRB

ℎ
(0)

× W = S × B, (2.58)

where+00 is the variance of amplitude fluctuations in the cavity. Interestingly, for

any choice of detector’s bandwidth the sensitivity-bandwidth product remains

constant and proportional to the power on the mirror, since for a coherent state

of light+00 = 1. It can be understood as follows: if one wants to increase the peak

sensitivity, the only classical way to that is to increase the cavity finesse. But that

comes at a price of reduced bandwidth, such that the sensitivity times bandwidth
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remains constant. This limitation, known as the Mizuno theorem [155], we call

a standard sensitivity-bandwidth limit (SSBL), which cannot be overcome by

classical means for a given light power.

�antum-correlated light, on the other hand, would allow us to overcome

the SSBL: e.g. injection of squeezed light reduces the phase uncertainty, and

correspondingly increases the amplitude one. Interestingly, SSBL or QCRB depend

only on the amplitude quadrature, and generally don’t state anything about the

phase quadrature, where the signal is. That is because they only set a limit, and

finding the means for approaching it, is a separate task, as I mentioned earlier. It

might be that the limit is not achievable in a particular configuration.

Three limits, SQL, QCRB and SSBL, reflect different aspects of the quantum

nature of detector design. The SQL highlights the influence of measurement

back-action, the QCRB sets the precision for every measurement frequency, and

the SSBL allows to quantify the sensitivity in a broad band. The SQL and the

SSBL can be overcome and the QCRB can be lowered with quantum technology.

Using these limits as benchmark parameters for new experimental designs allows

to find new approaches to designing a detector.
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Basics of quantum noise in

gravitational-wave

detectors

3

In this chapter I give a brief introduction into the basics of quantum noise in

gravitational-wave detectors, and describe the ways tomeasure it and describe the

main limitations. This introduction is by no means complete or even fully rigorous

in the mathematical sense. Instead, I give a practical guide to calculating the

quantum noises for several common situations, and describe some experimental

challenges.

A curious reader can find plenty of literature devoted to theoretical and exper-

imental aspects of quantum technologies in quantum optics and gravitational-

wave detection [34–36, 38, 40, 91, 124, 156–164].

3.1 �antum states of light

3.1.1 �antization of the electromagnetic field

First, I introduce some concepts and definitions that will be used throughout the

text. The main focus of this thesis is quantum optics in the continuous-wave

regime and relatively strong fields, where the number of photons per Fourier-

limited mode is significantly larger than zero. For the purposes of the theoretical

calculations, I consider plane monochromatic laser light at a wavelength _0 (and

corresponding angular frequency l0), which propagates along G direction in

perfect vacuum. This laser light is described by an electric field strength

� (G,~, I, C) = � (~, I)� (G − 2C) = �048:0G4−8l0C , (3.1)
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where I assume the waves to be plane, such that the field strength in the direction

orthogonal to the propagation direction is uniform: � (~, I) = 1. The feature of

a plane wave is that its propagation in free space can be equivalently described

simply by time evolution. For example, the propagation from G0 = 0 to G! = ! is:

� (! − 2C) = �048:0!4−8l0C ≡ � (C − !/2). (3.2)

This enables us to talk only about time dependence in most cases: � (G−2C) ≡ � (C).
The main focus of this thesis are the effects of quantum noise on the metrologi-

cal devices. �antization of light follows the procedure of the second quantization,

in which propagating light fields are described by a continuum of Fourier-limited

modes at frequencies l with annihilation operators �̂(l):

�̂ (C) =
∞∫

0

√
2cℏl

A2
�̂(l)4−8lC 3l

2c
+ ℎ.2. (3.3)

where A is the laser beam cross-section area, ℏ is the reduced Plank constant,

and ”h.c.” stands for ”Hermitian conjugate”. Mode operators �̂(l) satisfy the

following commutation relations:

[�̂(l), �̂†(l′)] = 2cX (l − l′), (3.4)

and can act on a number state |=(l)〉 to create or annihilate a photon:

�̂(l) |=(l)〉 =
√
=(l) |=(l) − 1〉, (3.5)

�̂†(l) |=(l)〉 =
√
=(l) + 1|=(l) + 1〉. (3.6)

It is convenient to discuss the equations in terms of photon number flux (�̂(C)
has the dimension of its square root) and not electric field amplitudes, since its

relation to optical power is more direct. We can further assume the field to have a

strong ”classical” part (i.e. mean field) and small quantum noise: �̂(C) → �0+ 0̂(C).
Such a value is convenient, since it relates to optical power �̂ (C) as measured by

photodiodes:

�̂ (C) = ℏl0�̂2(C − G/2) ≈ 1

2
ℏl0 |�0 |2 + ℏl0�∗0̂(C − G/2) = �0 + Î (C), (3.7)
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where the average is taken over many optical oscillation periods, �0 = 0.5ℏl0 |�0 |2
is the mean power, and Î (C) is the quantum noise power fluctuations.

Wri�en in terms of photon number flux and separate classical and quantum

parts, the field quantization takes another form:

�̂(C) =
√
A2

2cℏl
� (C) = �04

−8l0C

√
2

+
∞∫

0

√
l

2l0
0̂(l)4−8lC 3l

2c
+ ℎ.2. . (3.8)

3.1.2 Two-photon quadratures

We are interested in the processes with characteristic frequencies Ω around the

central frequencyl0: l = l0±Ω. In most cases we consider, the noises and signals

are symmetric modulation sidebands at ±Ω. Therefore it is convenient to use so-

called two-photon quadratures, as introduced by Caves and Schumaker,[165, 166],

which takes this symmetry into account:

0̂2 (Ω) = 0̂+ + 0̂†−√
2

, (3.9)

0̂B (Ω) = 0̂+ − 0̂†−
8
√
2

, (3.10)

0̂+ ≡ 0̂(l0 + Ω) = 0̂2 (Ω) + 80̂B (Ω)√
2

, (3.11)

0̂†− ≡ 0̂†(l0 − Ω) = 0̂2 (Ω) − 80̂B (Ω)√
2

, (3.12)

where 2, B refer to cosine and sine components of the fields, as I show below. In

the quantum optical experiments the measurements are not instantaneous, and

are limited by the time resolution of the photodetectors Δg [43]. Therefore the

observable mode is in fact defined as an average over a resolution time Δg = 1/ΔΩ:

-̂Ω,ΔΩ (C) =
ΔΩ

2

∫ C+1/ΔΩ

C−1/ΔΩ
0̂2 (g)3g, .̂Ω,ΔΩ (C) =

ΔΩ

2

∫ C+1/ΔΩ

C−1/ΔΩ
0̂2 (g)3g . (3.13)

In the remaining of the thesis, I use the two-quadrature operators 0̂2,B as more

simple from theoretical perspective, but encourage the reader to keep in mind

that quadratures -̂Ω,ΔΩ and ˆ.Ω,ΔΩ are the ones observed in real experiment [43].
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These frequencies are typically much smaller than the optical frequency l0 ≫
Ω, so in terms of two-photon quadratures, quantization of a field in Eq. 3.8 takes

a simpler form:

�̂(C) = �04
−8l0C

√
2

+ 1

2

∞∫
0

√
1 + Ω

l0
[0̂2 (Ω) + 80̂B (Ω)]4−8 (l0+Ω)C 3l

2c
+ ℎ.2. ≈

≈ [�2 + 0̂2 (C)] cosl0C + [�B + 0̂B (C)] sinl0C . (3.14)

The two quadratures: cosine and sine, are called amplitude and phase quadratures

correspondingly. The reason for it is that the standard representation of a field

with a small phase q and noise 0:

�(C) = (�0 + 0) cos(l0C − q) ≈ (�0 + 0) cosl0C +�0q sinl0C, (3.15)

reduces to Eq. 3.14 when choosing �2 = �0, �
B = 0, 0B = q�0, 0

2 = 0. Thus,

fluctuations in a sine quadrature correspond to phase fluctuations.

Two-photon quadratures obey the following commutation relations, in the

approximation Ω ≪ l0:

[0̂2 (Ω), 0̂2 (Ω′)] = [0̂B (Ω), 0̂B (Ω′)] ≈ 0, (3.16)

[0̂2 (Ω), 0̂B (Ω′)] = [0̂B (Ω), 0̂2 (Ω′)] = 28cX (Ω + Ω
′). (3.17)

Two-photon operators create one photon in the lower sideband and annihilate

one photon in the upper sideband:

0̂2 (Ω) |=(l)〉 = 0̂(l0 + Ω) + 0̂†(l0 − Ω)√
2

|=(l)〉 =

=

√
=(l0 + Ω)

2
|=(l0 + Ω) − 1〉 +

√
=(l0 − Ω) + 1

2
|=(l0 − Ω) + 1〉, (3.18)

hence the name ”two-photon”.
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3.1.3 Vacuum state

The vacuum state of a continuum is the direct product of all ground states of

specific modes l in this continuum |vac〉 = ⊗l |0〉l . The energy in each mode is

defined as:

Ê (l) = ℏl

(
�̂(l)�̂†(l) + 1

2

)
≡ ℏl

(
=̂(l) + 1

2

)
(3.19)

and the ground state is the state of minimal energy, where =̂(l) = 0. The action

of an annihilation operator on the ground state yields zero:

�̂(l) |0〉l = 0. (3.20)

The mean value for this operator, as well as for the corresponding two-photon

quadrature operators, is zero too:

〈vac|�̂(l) |vac〉 = 〈�̂(l)〉 = 〈�̂†(l)〉 = 0, (3.21)

〈0̂2 (Ω)〉 = 〈0̂2 (Ω)〉 = 0, (3.22)

where the average is over the full spectrum of vacuum states |vac〉. To quantify
the fluctuations in the fields, we can define the spectrum of these fluctuations as:

2c(̄8, 9 (Ω)X (Ω + Ω
′) ≡ 〈0̂8 (Ω)0̂ 9 (Ω′)〉sym ≡

≡ 1

2
〈0̂8 (Ω)0̂ 9 (Ω′) + 0̂ 9 (Ω′)0̂8 (Ω)〉, (3.23)

where we defined the double-sided spectral density, which for an observable Ĝ

connects to the variance of its observable through:

Δ
2Ĝ =

∫ ∞

−∞
(̄G (Ω)

3Ω

2c
. (3.24)

Since the double-sided spectral density is unavailable in experiments without

heterodyne detection, for most of this thesis I define a single-sided spectral

density, i.e. only for positive frequencies Ω > 0:

( (Ω) = 2(̄ (Ω). (3.25)
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Using the definition of the spectral density in Eq. 3.23 and the commutation

relations, the spectral density for the vacuum state is:

(22vac(Ω) = (BBvac(Ω) = 1, (2Bvac(Ω) = (B2vac(Ω) = 0. (3.26)

3.1.4 Coherent state

Coherent states are the eigenstates of the annihilation operator:

�̂|U〉 = U |U〉, (3.27)

with complex eigenvalues U . Coherent states can be seen as displaced vacuum

states (in phase space):

|U〉 ≡ �̂ (U) |0〉 = 4U0̂†−U∗0̂ |0〉 =

= exp

[∫ ∞

0

(
U (l)0̂†(l) − U∗(l)0̂(l)

) 3l
2c

]
|0〉. (3.28)

The displacement operator �̂ is unitary, and the evolution of the annihilation

operator under its action is simply a displacement by a complex value U :

�̂ (U)†�̂�̂ (U) = �̂ + U, �̂ (U)†�̂†�̂ (U) = �̂† + U∗, (3.29)

which allows to compute the statistical properties of the field in terms of two-

photon quadratures:

〈0̂2 (Ω)〉 = ℜ[U]X (Ω), 〈0̂B (Ω)〉 = ℑ[U]X (Ω), (3.30)

(22vac(Ω) = (BBvac(Ω) = 1, (2Bvac(Ω) = (B2vac(Ω) = 0. (3.31)

The average complex amplitude 〈0̂(Ω)〉 = U (Ω) is then defined by the average

light power I0 at Ω = 0:

U (Ω) = c
√

2I0

ℏl0
X (Ω), (3.32)
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and the noise of this state corresponds to that of the vacuum state. This enables

us to talk about quantum noise as being in vacuum state, separately from the

”classical” mean amplitude, as I introduced before:

�̂(C) = [ℜ[U] + 0̂2 (C)] cosl0C + [ℑ[U] + 0̂B (C)] sinl0C = (3.33)

= [�2 + 0̂2 (C)] cosl0C + [�B + 0̂B (C)] sinl0C . (3.34)

3.1.5 Squeezed state

Variances of two orthogonal quadratures in the coherent (and vacuum) states

obey Heisenberg uncertainty relation:

Δ
20̂2 (C)Δ20̂B (C) ≥ 1

4
, (22 (Ω)(BB (Ω) ≥ 1, (3.35)

and while for these states the variances of two quadratures are equal, in principle,

it is possible to reduce one of them at the price of increasing the other – as long

as the uncertainty relation is satisfied.

It is straightforward to define a unitary operator generating a squeezed state:

S(j) = exp

[∫ ∞

0

(
j�̂†

+�̂
†
− − j∗�̂+�̂−

) 3Ω
2c

]
. (3.36)

For a real j = A , which we call squeeze factor, the evolution under this operator

is defined by a mixing of creation and annihilation operators:

S†(A )�̂S(A ) = �̂+ cosh A + �̂†
− sinh A, (3.37)

S†(A )�̂†S(A ) = �̂†
+ cosh A + �̂− sinh A, (3.38)

which for two-photon quadratures results in simple expressions:

S†(A )0̂2S(A ) = 4A 0̂2 (3.39)

S†(A )0̂BS(A ) = 4−A 0̂B, (3.40)
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Fig. 3.1. Effect of squeezing on quantum noise in the electromagnetic field for coherent
field (top), phase squeezed state (middle) and amplitude squeezed state (bo�om).
Le�: field amplitude �̂(C) = [�+0̂2 (C)] cosl0C +0̂B (C) sinl0C as a function of time,
classical amplitude � is shown in dashed white. Right: uncertainty of the field
amplitude in phase space in a frame, rotating at frequencyl0. Classical amplitude
� is shown as red arrow in amplitude quadrature; uncertainty of the vacuum
state, Δ0̂2 = Δ0̂B = 1/

√
2, is shown in red circle. With 10 dB of squeezing, the

uncertainty of quantum noise is suppressed by a factor of
√
10 in one quadrature,

and proportionally enhanced in another, according to the Heisenberg uncertainty
relation.
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Squeezed spectral densities for the quadratures are then anti-squeezed (amplified)

and squeezed correspondingly:

(22 (Ω) = 42A , (BB (Ω) = 4−2A , (3.41)

where it becomes clear that one quadrature can have significantly suppressed

quantum fluctuations. Such a state is called phase-squeezed (since the fluctu-

ations are reduced in phase quadrature), and the opposite choice of the sign

(phase) of squeezing strength would yield amplitude-squeezed state, see Fig. 3.1.

More generally, for a complex value of j = A48q , where q is the phase of the

squeezing, the evolution of a quadrature state can be described by a squeezing

matrix:

âsqz =

[
0̂2sqz

0̂Bsqz

]
= S(A, q)â, (3.42)

S(A, q) =
[
cosh A + sinh A cos 2q sinh A sin 2q

sinh A sin 2q cosh A − sinh A cos 2q sinh A

]
. (3.43)

Notice that the squeeze operation S(A, q) can equivalently be described as a

consecutive rotation of quadratures by q , squeezing along the origin, and counter-

rotation by q :

S(A, q) = O(q)S(A, 0)O(−q), (3.44)

O(q) =
[
cosq − sinq

sinq cosq.

]
(3.45)

The resulting state has cross-correlation between the amplitude and phase quadra-

tures, which, as I discussed in Chapter 1, can be used to evade the back-action

noise in gravitational-wave detectors.
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3.1.6 Entangled state

A more general state is the quantum-entangled state. The entangling operation

is akin to the squeezing one, but for two modes �̂, �̂:

E (j) = exp

[∫ ∞

0

(
j�̂†

+�̂
†
− − j∗�̂+�̂−

) 3Ω
2c

]
. (3.46)

and introduces correlations between the two optical modes, see e.g. the case of

j = A :

�̂>+ = E†(A )�̂+E (A ) = �̂+ cosh A + �̂†− sinh A, (3.47)

�̂>+ = E†(A )�̂+E (A ) = �̂+ cosh A + �̂†
− sinh A . (3.48)

Notice the similarity to the operator of the squeezed states: this operator produces

two-mode squeezed state. The only difference is the definition of the mode: and I

take the definition to be dependent on the measurement process. For example,

when two independent classical fields are used, this is the case of two-mode

squeezing. Another interesting hint to take from this similarity is that squeezing

operation produces entanglement between the upper and lower sidebands, and

this entanglement is the source of the quantum correlations that allow to suppress

the noise in one quadrature.

A�er defining two-photon quadratures for each of the modes, one can see that

their combinations have a curious property:

0̂>,2 (Ω) + 1̂>,2 (Ω) = 4A (0̂2 (Ω) + 1̂2 (Ω)), (3.49)

0̂>,2 (Ω) − 1̂>,2 (Ω) = 4−A (0̂2 (Ω) − 1̂2 (Ω)), (3.50)

0̂>,B (Ω) + 1̂>,B (Ω) = 4−A (0̂B (Ω) + 1̂B (Ω)), (3.51)

0̂>,B (Ω) − 1̂>,B (Ω) = 4A (0̂B (Ω) − 1̂B (Ω)), (3.52)

such that the two combined observables commute: [0̂>,2 (Ω) − 1̂>,2 (Ω), 0̂>,B (Ω) +
1̂>,B (Ω)] = 0. This EPR-type correlation [167] allows to infer the values of one of

the observables with in principle infinite precision based on the measurements

of another one, since there is no uncertainty relation limiting the precision of
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their measurement. In Sec. 3.6, I show how we used this property to benefit the

sensitivity of a gravitational-wave detector.

3.1.7 Squeezed light from parametric down-conversion

Section 3.1.5 introduces the squeezing operation as a purelymathematical abstrac-

tion. Squeezing naturally emerges in various nonlinear processes. One example

is parametric down-conversion (PDC) of light by actively pumping a nonlinear

material with non-zero second-order nonlinearity in dielectric polarization:

P (�) = n0
(
j (0)� + j (2)�2 + j (3)�3 + ...

)
, (3.53)

where the second-order susceptibility j (2) defines the three-mode interaction in

the crystal. The Hamiltonian of this system takes the form [168, 169]:

�̂ = ℏl10̂
†
10̂1 + ℏl20̂

†
20̂2 + ℏl?1̂

†1̂ + 8ℏ
2
(^0̂†10̂

†
21̂ − ^∗0̂10̂21̂†), (3.54)

where 0̂1,2 is the fundamental modes of frequenciesl1,2, 1̂ is the pumping mode of

frequencyl? ,^ is the nonlinear coupling term that is proportional to susceptibility

j (2) and is real when the fields are phasematched Ḟor the purposes of this analysis,

we take the two fundamental modes to be the upper and lower sidebands, so

l1 = l0 + Ω, l2 = l0 − Ω, and pump frequency to be twice the fundamental one:

l? = 2l0. The pump is usually assumed to be strong in the context of squeezed

light, such that the effects of quantization of pump light and its depletion can be

ignored: 1̂ = V48q4−28l0C , which brings the Hamiltonian in the following form:

�̂ = ℏl0(0̂†+0̂+ + 0̂†−0̂−) + 2ℏl0 |V |2+
+ 8ℏ^V (0̂†+0̂†−48q4−28l0C − 0̂+0̂−4−8q428l0C ) = �̂0 + �̂int, (3.55)

where we defined the self-evolution part of the Hamiltonian �̂0 and the interaction

part �̂int. The unitary evolution operator for this system in the interaction picture

(i.e. in the frame rotating at l0) is defined by the interaction Hamiltonian:

*̂ = exp
[
−8�̂intCℏ

−1]
= exp

[
^V

2

(
0̂†+0̂

†
−4
8q − 0̂+0̂−4−8q

)]
, (3.56)
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which corresponds to the squeeze operator Eq. 3.36, where A = ^VC . Indeed, the

PDC process does produce squeezed states of light. Notice that modes 0̂1,2 can

differ in their fundamental frequency. Then the parametric process entangles

these modes, and a suitable mirror can separate them for preparing a ”two-color”

entangled state [170].

It is important to keep in mind, that although the process involved in creation of

squeezed state is nonlinear, from the point of view of the light fields (quadratures),

the transformation between them is linear. This allows to describe the evolution

of fundamental light fields through a general linear amplification (resulting in all

transfer functions for the fields being linear).

3.2 Detection of light

3.2.1 Spectral densities

Suppose we are interested in measuring a classical signal G(Ω) using a coherent

light field in a pure state â (in two-photon quadratures). The device has a linear

transfer function for the noise R (Ω) and signal T (Ω), which might involve

spli�ing (and joining) the beam on semi-transparent mirrors, propagation through

optical cavities, and linear amplifiers (squeezers). The transformation of these

transfer functions to the two-photon quadratures obeys a general rule: for a given

input-output relation 1̂ (l0 + Ω) = R (l0 + Ω)0̂(l0 + Ω) = R+0̂+, the two-photon
quadratures are transformed as:

[
1̂2 (Ω)
1̂B (Ω)

]
=
1

2

[
R+ + R∗

− 8
(
R+ − R∗

−
)

−8
(
R+ − R∗

−
)
R+ + R∗

−

] [
0̂2 (Ω)
0̂B (Ω)

]
(3.57)

Then on the output we measure signal and noise, transmi�ed through the

device:

~̂ (Ω) = ℝ
†(Ω)â(Ω) + T

†(Ω)G(Ω), (3.58)

where in general the signal can be both in amplitude and phase quadratures. For

our analysis we assume that only a linear combination of quadratures can be

measured, so the noise and the signal transfer functions are vectors of the same

length as field operators: ℝ(Ω) = {R2 (Ω),RB (Ω)}T, T (Ω) = {T 2 (Ω),T B (Ω)}T.
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For simplicity (and since that’s the only case I discuss throughout the thesis), we

are going to assume that the signal is in the phase quadrature: T†(Ω)G(Ω) =
(T B)∗(Ω)�B (Ω) = T ∗(Ω)� (Ω). Alternatively, one can always apply a rotation

such, that the signal is fully contained in one quadrature.

We assume that the classical value that we obtain as a result of themeasurement

is linear with respect to the observable ~̂. Since we are interested in the sensitivity

of the device, we normalize the output to the signal transfer function:

˜̂~ (Ω) = 1

T ∗(Ω)ℝ
†(Ω)â(Ω) +� (Ω) = =̂(Ω) +� (Ω), (3.59)

where I defined the normalized noise on the output =̂(Ω), which provides the full

information about the sensitivity. The spectral density of this observable can be

computed:

2c(== (Ω)X (Ω − Ω
′) = 〈=̂(Ω)=̂†(Ω′)〉sym =

=
1

|T (Ω) |2ℝ
†(Ω)〈â(Ω)â†(Ω′)〉symℝ(Ω′), (3.60)

from where we find the expression for the spectral density in terms of input

spectral densities:

(== (Ω) =
1

|T (Ω) |2ℝ
†(Ω)

[
(22 (Ω) (2B (Ω)
(B2 (Ω) (BB (Ω)

]
ℝ(Ω) (3.61)

This will be the basis for the transfer matrix approach to computing the sensi-

tivities: finding the signal and noise transfer functions, and using the equation

above to calculate the spectrum.

3.2.2 Balanced homodyne detection

There are various particular schemes that realize the linear transfer function

between the quantum observable and classical signal. The simplest example is
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Fig. 3.2. Schematic of a homodyne detector. Laser beam is split into the strong local
oscillator (LO) field, and signal field, which is then sent into experiment (not in
the figure). The phase Z of the LO field can be adjusted by a piezo-actuated mirror.
The signal and LO fields are overlapped on the 50/50 beamspli�er, and the two
outputs are measured by photodetectors (PD). The resulting photocurrents are
subtracted and sent on the data acquisition device.

a photodiode: the current of the photodiode is proportional to the light field

intensity � :

8 ∝ � (C) = ℏl0 | (�2 + 0̂2) cosl0C + 0B sinl0C |2 ≈ �0 + ℏl0�
20̂2 (C), (3.62)

where we can only observe the amplitude fluctuations 0̂2 (C) (since the phase is
not an observable). In order to realize the observation of phase quadrature, one

first needs to convert phase fluctuations into the amplitude ones, which would

then be measured by the photodetector.

An example of such a scheme is a balanced homodyne detector. In this scheme

the signal beam ( (C) is split on a 50/50 beamspli�er, and overlapped with a strong

local oscillator field, see Fig. 3.2:

( (C) = (( + B̂2 (C)) cosl0C + B̂B (C) sinl0C, (3.63)

!(C) = (!0 cos Z + ;̂2 (C)) cosl0C + (!0 sin Z + ;̂B (C)) sinl0C, (3.64)

where I selected the signal phase such that the classical amplitude ( is only in the

amplitude quadrature, and introduced local oscillator’s classical field !0, phase
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Z and amplitude and phase noises ;2,B . A�er the overlap on the beamspli�er the

two fields are detected on the photodiodes, so:

81 ∝
|!(C) + ( (C) |2

2
≈
(2 + !20 + 2(!0 cos Z

2
+

+ !0(B̂2 (C) + ;̂2 (C)) cos Z + !0(B̂B (C) + ;̂B (C)) sin Z+
+ ( (B̂2 (C) + ;̂2 (C)), (3.65)

82 ∝
|!(C) − ( (C) |2

2
≈
(2 + !20 − 2(!0 cos Z

2
+

− !0(B̂2 (C) − ;̂2 (C)) cos Z − !0(B̂B (C) − ;̂B (C)) sin Z+
+ ( (B̂2 (C) − ;̂2 (C)), (3.66)

where all the noises are assumed to be small compared to the mean amplitudes.

The two currents 81,2 are then subtracted, such that the resulting signal is:

81 − 82 ∝ 2!0 (( cos Z + B̂2 (C) cos Z + B̂B (C) sin Z ) + 2(;̂2 (C), (3.67)

and since typically the classical field in the signal is relatively weak, the homodyne

signal can further be approximated:

81 − 82 ∝ 2!0 (B̂2 (C) cos Z + B̂B (C) sin Z ) , (3.68)

. One can see, that as long as the local oscillator is much stronger than the signal

field, the main contribution comes from the signal, which is linearly amplified by

the local oscillator amplitude.

There are several useful features of the homodyne detector:

• it allows to select the measured quadrature of the signal by adjusting the

LO phase Z ;

• there is no DC contribution to the measured output, which improves the

sensitivity of the detector, allowing be�er electronic characteristics of the

detector board;

• classical noises of the local oscillator are canceled (or suppressed, depending

on the average power in the signal)
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• the signal is linearly amplified by the LO amplitude, and the output spec-

trum of the current directly relates to the spectrum of the signal.

On the other hand, it requires good mode overlap between the LO and signal

fields, and good balancing of the spli�ing ratio.

Homodyne detection from the point of view of the linear measurement can be

described by a transfer vector:

ℍ(Z ) =
[
cos Z

sin Z

]
, (3.69)

and the output of the homodyne detector:

81 − 82 ∝ ~̂ (Ω) = ℍ
T(Z )ℝ†(Ω)a(Ω), (3.70)

where ℝ(Ω) is the full transfer matrix of a system for input noise a(Ω).

3.3 �antum-correlated light for sensing the

motion of a mirror

In this section I describe how to measure the motion of a single perfectly reflective

free mass, with force � (C) acting on it, see Fig. 3.3. The incoming light in the

two-photon picture:

�̂(C) = (�0 + 0̂2 (C)) cosl0C + 0̂B (C) sinl0C . (3.71)

The outgoing light will be delayed by 2Ĝ (C)/2 relative to the incoming light, and

assuming this delay to be very small, we can make a Taylor expansion:

�̂(C) = �̂(C − 2Ĝ/2)

≈ (�0 + 0̂2 (C)) cosl0C +
(
0̂B (C) − 2�0

l0

2
Ĝ (C)

)
sinl0C . (3.72)
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Fig. 3.3. Sensing the motion of a mirror with light. Classical force� (C) acts on a free mass
(mirror), causing its displacement G (C). This displacement is sensed by reflecting
laser light off the reflective surface of the mirror. Reflected light carries the
information about the displacement in the phase exp[28:G (C)]. This phase can
be sensed by overlapping the signal beam with a strong local oscillator field on a
50:50 beamspli�er, and then observing the interference on the two photodiodes.
The difference of the photocurrents is linearly proportional to the phase of the
signal beam, if the appropriate phase Z of the local oscillator is selected.
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The input-output relations describe the propagation of light through the system

for classical and quantum fields:

�0 = �0, (3.73)

1̂2 (C) = 0̂2 (C), (3.74)

1̂B (C) = 0̂B (C) − 2�0
l0

2
Ĝ (C), (3.75)

which can be translated into the frequency domain:

�0 = �0, (3.76)

1̂2 (Ω) = 0̂2 (Ω), (3.77)

1̂B (Ω) = 0̂B (Ω) − 2

√
2�0

ℏl0

l0

2
Ĝ (Ω), (3.78)

where I introduced the field intensity �0.

Motion of the mirror is caused by the signal force � (C), which is assumed to

be classical, and radiation-pressure force: �̂rp = 2�̂ (C)2−1:

" ¥̂G (C) = �̂rp(C) +� (C), (3.79)

−"Ω
2Ĝ (Ω) = �̂rp(Ω) +� (Ω). (3.80)

Radiation-pressure force has generally a constant contribution from the classical

light amplitude, and a fluctuating part from quantum noise. Since in time-domain

�̂ (C) = ℏl0 |�(C) |2 ≈ �0 + �0ℏl00̂
2 (C) = �0 +

√
2�0ℏl00̂

2 (C), the radiation-pressure
force is:

�̂rp(Ω) ≈
2�0

2
+ 2

√
2�0ℏl00̂

2 (Ω)
2

, (3.81)

which results in the equation of motion for a free mass (ignoring the constant

force):

Ĝ (Ω) = 1

−"Ω2

(
2
√
2�0ℏl00̂

2 (Ω)
2

+� (Ω)
)
. (3.82)

We can define an optomechanical coupling factor (Kimble factor), which describes

the coupling between the position and radiation-pressure:

K (Ω) = 8l0�0

"22Ω2
, (3.83)
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and then re-write the input-output relations in a different form:

[
1̂2 (Ω)
1̂B (Ω)

]
=

[
1 0

−K (Ω) 1

] [
0̂2 (Ω)
0̂B (Ω)

]
+

[
0√

2K (Ω)

]
� (Ω)
�SQL(Ω)

, (3.84)

where �SQL(Ω) is the SQL for force sensing, which was derived in the Introduction:

�SQL(Ω) =
√
2ℏ"Ω2. (3.85)

We can see that the interaction with the mirror causes mixing of two quadratures.

This introduces correlations between them – the effect, called ponderomotive

squeezing [102, 171].

We can now use the approach developed in the previous section to compute

the sensitivity of this setup as measured on the homodyne detector:

~̂ (Ω) = ℍ
T(Z )b(Ω) = ℍ

T(Z )ℝ†(Ω)a(Ω) +
√
2K (Ω)
�SQL(Ω)

� (Ω) sin Z . (3.86)

This results in a spectral density, normalized to the force � :

( (Ω) =
� 2SQL(Ω)

2K (Ω) sin2 Z
ℍ
T(Z )ℝ†(Ω)S(Ω)ℝ(Ω)ℍ(Z ), (3.87)

and assuming the input state to be vacuum: S(Ω) = I (identity matrix), and

measurement to take place in phase quadrature, where the signal is maximized:

Z = c/2 we obtain the sensitivity:

( (Ω) =
� 2SQL(Ω)

2

(
1

K (Ω) +K (Ω)
)
, (3.88)

which is the generic form of all standard sensitivities, where only the particular

function K (Ω) changes depending on the topology, as I discuss in detail in

Chapter 5.

There is another way to compute the sensitivity, which is mentioned in the

introduction: first compute the shot and QRPN noises separately, and then add

them using the rules for addition. This approach is more useful for understanding

the details of each particular contribution, while the transfer matrix approach is
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convenient for numerical calculations. We can use this approach to compute the

noises starting from equation for the output in a different form:

~̃ (Ω) =
�SQL(Ω)√
2K (Ω) sin Z

(0̂2 (Ω) cos Z + 0̂B (Ω) sin Z ) + �̂rp(Ω) +� (Ω)

= "Ω
2Ĝ= (Ω) + �̂rp(Ω) +� (Ω) (3.89)

We can compute the spectral density of every part separately (assuming no

cross-correlation on the input state: (B2 (Ω) = 0):

(GG (Ω) =
� 2SQL(Ω)

2K (Ω)"2Ω4 sin2 Z

(
(22 (Ω) cos2 Z + (BB (Ω) sin2 Z

)
, (3.90)

(�� (Ω) = K (Ω)� 2SQL(Ω)(22 (Ω), (3.91)

(G� (Ω) =
� 2SQL(Ω)
2"Ω2

(22 (Ω) cot Z , (3.92)

and for the total spectral density, assuming the input state to be vacuum, (22 (Ω) =
(BB (Ω) = 1:

( (Ω) = "Ω
4(GG (Ω) − 2"Ω

2ℜ[(G� (Ω)] + (�� (Ω) =

=

� 2SQL(Ω)
2

(
1

K (Ω) sin2 Z
− 2 cot2 Z +K (Ω)

)
(3.93)

As an exercise, we can demonstrate the use of cross-correlation between the

noises (G� (Ω) for surpassing the SQL, as I did already in the Introduction. For

that we minimize the expression above with respect to the readout angle: cot Z =

K (Ω), which yields an unbounded spectral density:

( (opt) (Ω) =
� 2SQL(Ω)
2K (Ω) . (3.94)

The difficulty here is in creating the necessary cross-correlation between the

noises. It is possible by a using a frequency-dependent homodyne angle in the

variational readout scheme [112].
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3.3.1 Squeezed light

Finally, we can describe demonstrate the effect of squeezed light injection on the

sensitivity. When the input state is phase-squeezed, (BB (Ω) = 4−2A , (22 = 42A , we
obtain for the shot and radiation-pressure noise:

(GG (Ω) =
� 2SQL(Ω)4−2A

2K (Ω)"2Ω4
, (3.95)

(�� (Ω) = K (Ω)� 2SQL(Ω)42A , (3.96)

so the shot noise is suppressed, and radiation-pressure noise is amplified (which

is required by the SQL), as I showed previously in Fig. 2.5:

( (Ω) =
� 2SQL(Ω)

2

(
4−2A

K (Ω) + 4
2AK (Ω)

)
. (3.97)

It is possible to use frequency-dependent squeezing, where the amplitude quadra-

ture is squeezed at low frequencies (and thus radiation-pressure reduced), and

phase quadrature is squeezed at high frequencies. Such frequency-dependent

rotation of the squeezed quadratures can be described by a squeezing matrix

S(A, q), see Eq. 3.43, with frequency-dependent phase q (Ω):
[
1̂2 (Ω)
1̂B (Ω)

]
=

[
1 0

−K (Ω) 1

]
S(A, q)

[
0̂2 (Ω)
0̂B (Ω)

]
+

[
0√

2K (Ω)

]
� (Ω)
�SQL(Ω)

. (3.98)

As in the case with a variational readout, a straightforward optimization of the

squeezing phase q (Ω) = arctanK (Ω) results in a phase quadrature squeezed for

both shot and radiation-pressure part:

1̂B (Ω) = 4−A (0̂B (Ω) −K 0̂2 (Ω)) +
√
2K (Ω)� (Ω)
�SQL(Ω)

, (3.99)

and the corresponding spectral density is suppressed by 42A at all frequencies:

( (Ω) =
� 2SQL(Ω)4−2A

2

(
1

K (Ω) +K (Ω)
)
. (3.100)
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Fig. 3.4. Comparison of effects of variational readout and frequency-dependent squeezing
on quantum noise in GW detectors. Frequency-dependent squeezing suppresses
both shot noise and QRPN equally, effectively achieving the same sensitivity gain
at all frequencies. Variational readout allows to evade the back-action completely,
but does not affect shot noise at high frequency. A combination of variational
readout with frequency-independent squeezing in phase quadrature allows to
achieve the highest gain in sensitivity.

As with the case of variational readout, implementing a particular frequency

dependence for the squeezing angle is challenging, and requires long high-quality

filter cavities, which would provide the desired frequency dependence to the phase

of squeezed light reflected off them [112]. These cavities need to have particularly

low optical loss, since quantum correlations that allow to achieve the desired

effect are very sensitive to loss. The important difference to the variational readout

is that here back-action is evaded only partially, while the variational readout

would allow full back-action evasion in the ideal case, see Fig. 3.4 Practically

though, when the effect of optical losses is included, the difference between the

two approaches becomes marginal [35]. A more detailed description of different

spectral densities in gravitational-wave detectors can be found in Chapter 5.
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Fig. 3.5. Optical cavity with a movable end mirror. External force � (e.g. from GW) dis-
places a mirror by G (C)

3.4 Optical cavity

Optical cavities are the basis of modern metrological devices, including the

gravitational-wave detectors. In this section I describe the input-output rela-

tions for the fields propagating through the cavity, define all main parameters

and compute the signal and the noise.

I start by solving the steady-state equations of motion for the fields as they

reflect off the mirrors and propagate through free space, see Fig. 3.5.

�̂ (l) = '8�̂ (l) +)8�̂(l), (3.101)

�̂ (l) = �̂ (l)48lg , (3.102)

�̂ (l) = '4 �̂ (l) +)4+̂ (l), (3.103)

�̂ (l) = �̂ (l)48lg , (3.104)

�̂(l) = −'8�̂(l) +)8 (l)�̂ (l), (3.105)

(3.106)
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where we introduce the amplitude transmissivity and reflectivity of the mirrors

'28,4 +) 2
8,4 = 1, and the phase accumulated during travel in free space of length !

depends on the travel time g = !/2 . We can solve these equations:

�̂ (l) = '4)8�̂(l)428lg +)4+̂ (l)48lg
1 − '4'8428lg

, (3.107)

�̂(l) =
(
−'8 + '4428lg

)
�̂(l) +)8)4+̂ (l)48lg

1 − '4'8428lg
. (3.108)

First, we can find the resonance condition of the cavity by looking for a maximal

amplification inside the cavity, i.e. where the absolute value of the denominator

of Eq.(3.107) reaches its minimum. This can be done by solving the equation

3 |1 − '4'8428lg |2
3l

=
3 (1 + '24'28 − 2'4'8 coslg)

3l
= 0, (3.109)

which yields a simple solution l0 = =c/(g), = ∈ ℕ0, which is of course a well

known condition for the resonance of the cavity: the round number of half-

wavelength _0/2 should fit into the cavity length !: ! = =_0/2, = = 1, 2, 3 . . .. The

fields can then be described relative to this resonance frequency at sideband

frequency Ω = l − l0. It is convenient to simplify the equations by assuming

the cavity to have a relatively high finesse, and the sideband frequency to be

low compared to the free spectral range of the cavity (5FSR = (2g)−1). These two
conditions are known as a single-mode approximation: (i) )8,4 ≪ 1, which allows

to expand '8,4 =
√
1 −)8,4 ≈ 1 − ) 2

8,4/2; (ii) Ωg ≪ 1, so 48Ωg ≈ 1 + 8Ωg . We can

define the cavity bandwidth:

W8,4 =
2) 2
8,4

4!
, W = W8 + W4, (3.110)
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and use the single-mode approximation to expand the coefficients in the Eqs.

(3.107),(3.108):

1 − '4'8428Ωg ≈ 1 − 1 + )
2
4

2
+
) 2
8

2
− 28Ωg = 2g (W − 8Ω), (3.111)

'4)8 ≈ )8 =
√
4W8g, (3.112)

− '8 + '4428lg ≈ −1 +
) 2
8

2
+ 1 − )

2
4

2
+ 28Ωg = 2g (W8 − W4 + 8Ω), (3.113)

)8)4 ≈ 4g
√
W8W4 . (3.114)

(3.115)

This approximation gives a more convenient form of the Eqs. (3.107),(3.108):

�̂ (Ω) = 1√
g

√
W8�̂(Ω) +

√
W4+̂ (Ω)

W − 8Ω (3.116)

�̂(Ω) =
(W8 − W4 + 8Ω)�̂(Ω) + 2

√
W8W4+̂ (Ω)

W − 8Ω =

= R (Ω)�̂(Ω) + T (Ω)+̂ (Ω), (3.117)

where we introduced frequency-dependent reflection and transmission coeffi-

cients R (Ω),T (Ω):

R (Ω) = (W8 − W4 + 8Ω)
W − 8Ω , (3.118)

T (Ω) =
2
√
W8W4

W − 8Ω . (3.119)

The optical power is amplified inside the single-sided cavity on resonance (Ω =

0, W4 = 0) by it’s finesse F ≈ 2c 5�(' (2W)−1:

|� (0) |2/|�(0) |2 = 1

Wg
=
25FSR

W
=
2F

c
. (3.120)
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Sensing a signal

When a back mirror is displaced by a small amount G , the light reflected off this

mirror acquires an additional phase shi� 28lĜ (l)2−1, so equations Eqs. 3.101 are

modified slightly:

�̂ (l) = '4 �̂ (l)428lG (l)2
−1 +)4+̂ (l), (3.121)

and if the displacement is small, the exponent can be expanded: 428lG2
−1 ≈ 1 +

28l0G (l)2−1, as we did with a single mirror.

In the single-mode approximation � (Ω) = � (Ω) = � (Ω), and also assuming

the intra-cavity field is monochromatic (i.e.� (Ω) ≈ � (0)), the signal part of the
output takes the form:

�̂G (Ω) =
28l0G2

−1� (0))8
1 − '4'8428Ωg

= 28
W8

2g

l0�(0)
W (W − 8Ω) Ĝ (Ω). (3.122)

Finally, we can make split the fields into classical and quantum parts: �̂(Ω) =
�0 + 0̂(Ω), and transition to the two-photon quadratures. Notice, that in the

simplest case we assume no coupling between the two quadratures in the equa-

tions of motion, and thus can directly write down the equations of motion for the

quadratures, which will be the same as for the sidebands (in shape). In a more

general case, one needs to compute the transfer matrices, as will be done in the

rest of the thesis. Here, however, keeping things simple, we can write quantum

noises and the signal on the output of the cavity:

1̂2 (Ω) = R (Ω)0̂2 (Ω) + T Ê2 (Ω), (3.123)

1̂B (Ω) = R (Ω)0̂B (Ω) + T ÊB (Ω) + 28
W8

2g

l0�0

W (W − 8Ω) Ĝ (Ω). (3.124)
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Making a further approximation by assuming the back mirror to be perfectly

reflective, we arrive at the same set of equations as for the case of a single mirror

(c.f. Eq. 3.84):

[
1̂2 (Ω)
1̂B (Ω)

]
= 428q

[
1 0

−K (Ω) 1

] [
0̂2 (Ω)
0̂B (Ω)

]
+ 4−8q

[
0√

2K (Ω)

]
� (Ω)
�SQL(Ω)

, (3.125)

but with an additional phase and a new definition of a Kimble factorK (Ω), which
includes a normalized power � :

q ≡ arctanΩ/W, K (Ω) = 2W �

Ω2(W2 + Ω2) , � =
8l0�2

"2!
, (3.126)

where �2 is the light power inside the cavity. The spectral density takes the same

form as for a single mirror:

( (Ω) =
� 2SQL(Ω)

2

(
1

K (Ω) +K (Ω)
)
, (3.127)

3.4.1 Detuned cavity

Considering a more general case of a cavity detuned from its resonance generally

needs to start with input-output relations in the sideband picture, but it is more

convenient to directly compute everything in the two-photon quadrature picture.

It also gives a chance to demonstrate the approach to computing the sensitivity

using transfer matrices.

The detuning of a carrier field from cavity resonance, X = l − l0, adds an

additional phase shi� on the free-propagating fields: 48 (l+Ω+X)g . In the two-photon

picture such a phase shi� can be seen as rotation of quadratures by a phase Xg ,

so e.g. the equations 3.101 for a detuned cavity take the form:

ê(Ω) = 48ΩgO[Xg]d̂(Ω) = ℙ(Ω)d̂(Ω), (3.128)
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where I defined thematrix for free-space propagationℙ. We can re-write Eqs. 3.101

in a matrix form (omi�ing the signal part for now):

d̂(Ω) = ℝ8 ĉ(Ω) + T8 â(Ω), (3.129)

ê(Ω) = ℙ(Ω)d̂(Ω), (3.130)

f̂ (Ω) = ℝ4 ê(Ω) + T4 v̂(Ω), (3.131)

ĉ(Ω) = ℙ(Ω)f̂ (Ω), (3.132)

b̂(Ω) = −ℝ8 â(Ω) + T8 ĉ(Ω). (3.133)

I keep the reflection and transmission matrices in this form to demonstrate the

approach, although ℝ8,4 = '8,4I, T8,4 = )8,4I. The solution to this set of equations is:

ĉ(Ω) = K(Ω)ℙ(Ω)ℝ4ℙ(Ω)T4 â(Ω) + K(Ω)ℙ(Ω)T4 v̂(Ω), (3.134)

b̂(Ω) = (−ℝ8 + T8K(Ω)ℙ(Ω)ℝ4ℙ(Ω)T4) â(Ω) + T8K(Ω)ℙ(Ω)T4 v̂(Ω), (3.135)

K(Ω) = [I − ℙ(Ω)ℝ4ℙ(Ω)ℝ8]−1 . (3.136)

Following the approach to computing spectral densities I described in this

chapter, we can find a generic expression for the noise spectral density of the

output:

(11 (Ω) = (−ℝ8 + T8K(Ω)ℙ(Ω)ℝ4ℙ(Ω)T4) S00 (Ω)×
× (−ℝ8 + T8K(Ω)ℙ(Ω)ℝ4ℙ(Ω)T4)† +
+ T8K(Ω)ℙ(Ω)T4SEE (Ω)T†4ℙ†(Ω)K†(Ω)T†8 . (3.137)

Such an expression is obviously not very useful for understanding the nature of

quantum noise, but can be easily computed using computing so�ware, such as

Wolfram Mathematica. This particular case can be calculated analytically in a

straightforward way, but when a more complicated case is considered, e.g. with

multiple coupled cavities, optical losses, etc., a numerical approach becomes

useful.

In order to complete the consideration of a detuned cavity, I simplify the

equations above by going to the single-mode approximation. In the single mode

approximation detuning is also considered to be small relative to the free spectral
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range of a cavity, which allows to expand: cosXg ≈ 1, sinXg ≈ −Xg , which allows

to write the rotation matrix as:

O[Xg] ≈
[
1 X

−X 1

]
≈ I +

[
0 X

−X 0

]
. (3.138)

The resulting input-output equations become:

b̂(Ω) = ℝ(Ω)â(Ω) + T(Ω)v̂(Ω), ê(Ω) =
√
g−1L(Ω)

(√
W8 â(Ω) +

√
W4 v̂(Ω)

)
,

(3.139)

where I defined the transfer matrices:

ℝ(Ω) = 2W8L(Ω) − I, (3.140)

T (Ω) = 2
√
W8W;L(Ω), (3.141)

L(Ω) = 1

(W − 8Ω)2 + X2

[
W − 8Ω −X
X W − 8Ω.

]
(3.142)

It is useful to see the case of a cavity with a perfectly reflective back mirror:

W4 = 0, W = W8 . In this case the reflection matrix is simplified:

ℝ(Ω) = 1

(W − 8Ω)2 + X2

[
W2 + Ω

2 − X2 −2WX
2WX W2 + Ω

2 − X2

]
= 48VO[U], (3.143)

U = arctan
2XW

W2 − X2 + Ω2
, V = arctan

2ΩW

W2 + X2 − Ω2
. (3.144)

In other words, a detuned cavity applies a frequency-dependent rotation on the

input fields. This explains why a detuned filter cavity can be used for frequency-

dependent squeezing or variational readout, which were discussed in this chapter.

3.5 Classical laser noises

Real lasers do not emit a perfectly monochromatic field. Their emission linewidth

is finite, due to the natural linewidth of a transition used to produce the photons,

but also additionally due to various imperfections in the laser setup. As a result,
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Fig. 3.6. Setup for measuring laser amplitude noise. Laser is split into two beams on a 50:50
beamspli�er, and the outputs are sent on the photodiodes. Added photocurrents
result in a sum of amplitude and shot noise, subtracted photocurrents give just
the shot noise. Subtracting two spectra allow to retrieve the amplitude noise
spectrum.

both the amplitude and the frequency of the laser can fluctuate. Part of these

fluctuations is quantum and has been discussed in the chapter so far. The main

characteristic of quantum noise is that it’s perfectly Markovian (i.e. does not

correlate with itself at different moments of time). The other part is classical. In

this section I discuss briefly classical phase and amplitude noises.

3.5.1 Amplitude noise

Consider the fluctuations in the amplitude of the light:

� (C) = (�0(1 + X� (C)) + 4̂ (C)) cos(l0C + q), (3.145)

where 4̂@ is the quantum noise, and X� is the classical fluctuation of the amplitude.

The corresponding intensity on a photodiode:

� (C) = �0 +
√
2�0ℏl04̂@ (C) + �0X� (C). (3.146)

Power spectral density of the intensity reveals the different scaling of noises with

optical intensity �0:

(� � (Ω) = 2�0ℏl0 + � 20(�� (Ω), (3.147)

where (�� (Ω) is the spectrum of the amplitude fluctuations. As an example,

when the light power on the photodiode is increased by a factor of 2, shot noise
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is increased by 3 dB, but amplitude noise is increased by 6 dB. This allows to

differentiate between the two noises in a simple way.

Amplitude noise generally does not couple to the measurements of the phase

quadrature directly. However, when the detector is detuned from its resonance,

such that the quadratures are rotated and mixed, it can influence the sensitivity.

Moreover, as an amplitude fluctuation, it contributes to the radiation-pressure

noise on the mirrors, and can disturb the measurements if this classical radiation-

pressure is comparable to the quantum one.

In interferometric experiments the influence of the amplitude noise is avoided

by the fact that its contribution to the radiation-pressure noise does not couple

to the differential signal between two arms. Only in the presence of asymmetries

(e.g. unequal powers in the arms, not perfect 50:50 spli�ing on the central beam-

spli�er) the amplitude noise can create some difficulties for the measurements.

Since in LIGO such asymmetries of course are present, several sophisticated laser

noise stabilization schemes are employed [172–174].

Amplitude noise can be measured by spli�ing the light field on the 50:50

beamspli�er, and detecting the outputs with two photodiodes, see Fig. 3.6. The

photodiodes’ currents are then added and subtracted. Added current contains the

information about both amplitude and phase noise of the laser. Subtracted current

contain only the information about the shot noise (since amplitude noise is corre-

lated). Then the difference between two spectra represents only the amplitude

noise. More details about the amplitude noise can be found in Chapter 4.

3.5.2 Phase noise

Phase noise is more difficult to observe, since it does not couple directly to the

intensity as measured on the photodiode. Instead, interferometric techniques

need to be used to convert phase fluctuations into the amplitude ones, that are

then observable on the photodetectors.

Consider a Mach-Zehnder interferometer (MZI) with imbalanced arm length,

see Fig. 3.7. A�er the first beamspli�er the two fields are:

�1,2(C) =
1√
2
�04

8q (C) + 4̂1,2(C), (3.148)
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Fig. 3.7. Setup formeasuring laser phase noise. Laser passes through the imbalancedMach-
Zehnder with arm length difference Δ!. The two photodiodes detect interference
between the light fields in the arms. Phase noise can be recovered by subtracting
the photocurrents (like in a balanced homodyne detector). Depending on the
imbalance in the arms, coupling of the laser phase noise changes.

where 4̂1,2(C) is the quantum part of the noise. This noise is uncorrelated, so we

simply carry it through the calculation. The two arms have length of !1,2 that are

generally different by Δ! = !2 −!1. A�er propagating through the interferometer,

the output of the second beamspli�er is the result of interference between two

beams:

�3,4(C) =
�0

2

(
48q (C) − 48q (C+Δ!/2)

)
+ 4̂3,4(C). (3.149)

Considering that the phase at a later time can be seen as an additional phase

delay: q (C + Δ!/2) = q (C) + Δq (C), the intensities measured on the photodiodes

are:

�3,4(C) =
�0

2
(1 ± cosΔq (C)) + 1

2

√
2�0ℏl04̂3,4, (3.150)

which can be subtracted as on the homodyne detector, resulting in the photocur-

rent:

8 (C) ∝ �0 cosΔq (C) +
√
2�0ℏl0(4̂3(C) − 4̂4(C)). (3.151)

The spectral density of the noise is then:

(� � (Ω) = 4�0(qq (Ω) sin2
(
ΩΔ!

22

)
+ 4�0ℏl0. (3.152)

70 Chapter 3 Basics of quantum noise in gravitational-wave detectors



In other words, the interferometer converts phase fluctuations on the input (qq (Ω)
into the amplitude (intensity) fluctuations on the output, given the appropriate

choice of Δ!. The corresponding transfer function of a MZI:

) (Ω) = 1 + sin
2Δ!Ω

2
. (3.153)

Phase noise can also be interpreted as frequency noise ( 5 5 (Ω) using the relation

between the phase and frequency: 2c 5 (Ω) = −8Ωq (l):

(� � (Ω) = 4�0
( 5 5 (Ω)
Ω2

sin2
(
ΩΔ!

22

)
+ 4�0ℏl0. (3.154)
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Fig. 3.8. The effect of path length imbalance in a Mach-Zehnder interferometer on the
phase noise of the laser. Input laser phase noise (simulated, blue) does not couple
to the detector when the arms are balanced (zero level, not shown). With 100m
imbalance in one arm (orange), the noise can contribute significantly to the
sensitivity. The magnitude of transfer function of the imbalanced interferometer
is in orange dashed (right y-axis and red grid lines). For low frequencies, the
transfer function is low, and the detected noise is suppressed relative to the input
phase noise. At the half of the FSR frequency of the MZI, 2/(2Δ!) = 1.5 × 106Hz,
phase noise couples maximally to the detector.
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Fig. 3.9. Compensation of the phase delay in the signal cavity with an additional cavity in
the local oscillator path. When a phase modulation signal in a cavity is measured
with a balanced homodyne detector, phase noise can couple into the measurement
record, due to the light being delayed in the cavity. It is possible to compensate
this delay by placing an identical cavity in the local oscillator path. For a perfectly
identical cavity, phase noise can be fully canceled, see Fig. 3.10
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Since the MZI is the basis for homodyne detector, we can separate the phase

difference into two contributions: phase delay due to macroscopic length, and

small phase difference corresponding to homodyne angle Z :

(� � (Ω) = 4�0(qq (Ω) sin2
(
ΩΔ!

22
+ Z

)
+ 4�0ℏl0. (3.155)

For perfectly balanced arms the noise does not couple to the output in amplitude

quadrature: Z = 0. This is why in a perfect interferometer operated in the

dark port condition (i.e. when the signal port remains dark), phase noise of the

laser does disturb the measurements. The main problem with the phase noise

occurs when the arms are largely imbalance. For instance, when in one arm

there is a cavity where the signal is generated. Then phase noise can have a

significant contribution to the measurement on the homodyne detector, see

Fig. 3.8. Sometimes it is possible to compensate this imbalance by placing an

identical cavity in the other arm, see Fig. 3.9. Such a cavity, depending on how

close it is in linewidth to the signal cavity, could provide a significant reduction to

the phase noise influence, see Fig. 3.10. In other cases, however, it is not possible

due to various reasons, as I discuss in Chapter 4. Generally a dedicated active laser

stabilization is required to minimize the impact of the phase noise [172–174].
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Fig. 3.10. Effect compensating the phase delay in signal cavity. Laser phase noise (blue)
experiences a phase delay, and contaminates the measurement record (red). If
another compensation cavity is placed in the local oscillator path, it is possible
to suppress this noise. For a compensation cavity identical to the signal cav-
ity cavity, the noise can be completely canceled (zero at the plot, not shown).
When its linewidth is larger (orange) or smaller (green) than the signal cavity
linewidth W , the noise is suppressed only at some frequencies. The magnitudes of
corresponding transfer functions are in dashed lines matching the colors.
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3.6 Example: conditional frequency-dependent

squeezing through Einstein—Podolsky—Rosen

entanglement

I conclude this chapter with an example by calculating the spectral density of the

EPR-based conditional frequency-dependent squeezing [143], which combines

the techniques used throughout this chapter. As I discuss in Sec. 3.3, frequency-

dependent squeezing requires costly long filter cavities for achieving the desired

frequency dependence. The main source of cost is the stringent requirement on

the low optical loss. For that cavities have to be made long, in vacuum, and very

high quality, which adds the experimental complexity as well.

In fact, there are already very long and very high quality cavities in the GW

detectors: their arm cavities. The idea behind the EPR-squeezing is to use the

detector itself as a filter cavity. In order to avoid the interaction with the signal,

squeezed light that experiences the rotation, needs to be tuned to the one of the

next longitudinal resonances of the arm cavities. For that purpose, two beamswith

different central frequencies are entangled and injected into the interferometer.

One beam is at the same frequency of the main laser field, and thus enters the

interferometer on resonance, as the usual squeezed vacuum field. Another beam

is detuned by several FSRs off the first one, and also from the cavity resonance

such, that it experiences the necessary phase rotation. Then two beams are

detected on two different homodyne detectors, and the measurement of the one

is conditioned on the measurement in the second one, resulting in the optimal

conditional sensitivity that features the desired effect of frequency-dependent

squeezing.

The detailed analysis of the proposal can be found in [141], the results of the

experiment performed by J.Südbeck and S.Steinlechner were published [143], and

independently by Yap et.al. in [144]. Here I briefly demonstrate how I combined

the approaches presented in this Chapter to produce the theoretical model used

in [143].

There the two non-degenerate entangled beams are sent in the GW detector,

such that low-frequency part (signal) is resonant in the main detector, and the

high-frequency part (idler) is detuned from one of the next longitudinal resonances
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Fig. 3.11. Schematic diagram of a setup for generating conditional frequency-dependent
squeezing with EPR-entangled fields. Two modes 0̂, 1̂ at frequencies l0, l0 + Δ,
are entangled inside the optical-parametric amplifier (OPA). The cavity is tuned
to be on resonance at l0. One of the next longitudinal resonances of the cavity
is detuned relatively to the frequency l0 + Δ. The two reflected fields acquire
frequency dependence in the correlations between them. These fields are then
detected on a bichromatic homodyne detector with local oscillator (LO) fields
at frequencies l0, l0 + Δ. The resulting photocurrent allows to compute the
conditional spectral density of the noise, exhibiting a frequency-dependence in
suppression of the shot noise, see more details in [143].

of the cavity. This way the idler experiences the frequency-dependent rotation

of the quadratures. By measuring the signal and idler at separate homodyne

detectors and optimally combining the data, it is possible to create a frequency-

dependent squeezing on the light field.

I start building the theoretical description of a setup, depicted in Fig. 3.11, by

considering generation of entangled fields inside the OPA. Consider the input

fields at frequencies l0, l0 + Δ, centered around the frequency l? = 2l0 + Δ. I

define the input fields 0̂in,± = 0̂(l0±Ω), 1̂in,± = 1̂ (l0 +Δ±Ω). Parametric process

in the OPA creates correlations between frequency symmetric around the pump
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frequencies. The input fields 0̂in,+ and 1̂in,−, being initially in the vacuum state

become quantum correlated on the output, see Sec. 3.1.6:

0̂+ = 0̂in,+ cosh A + 1̂†in,− sinh A, (3.156)

1̂+ = 1̂in,+ cosh A + 0̂†in,− sinh A . (3.157)

Every mode is sent into the interferometer, which we represent here by two

cavities (for the main field and the idler field). It is useful to define two-photon

quadratures. Keep in mind, that in this case, the modes are centered around

different frequencies, l0, l0 + Δ:

0̂2,B (Ω) = 0̂2,B
in
(Ω) cosh A ± 1̂2,B

in
(Ω)† sinh A, (3.158)

1̂2,B (Ω) = 1̂2,B
in
(Ω) cosh A ± 0̂2,B

in
(Ω)† sinh A . (3.159)

In the further discussion, I use the quadrature vectors, e.g. a (Ω) = {0̂2 (Ω), 0̂B (Ω)}T,
to simplify the discussion (as in the previous Sections):

a (Ω) = ain(Ω) cosh A + f3bin(Ω) sinh A, (3.160)

b (Ω) = bin(Ω) cosh A + f3ain(Ω) sinh A, (3.161)

where I defined the Pauli matrix f3 = {{1, 0}, {0,−1}}.

In the proposal, mode 0̂ is resonant with the cavity, and mode 1̂ is detuned

off the cavity resonance to produce the necessary rotation on the quadratures.

Here, I am going to assume that both fields can have some detuning of the cavity

resonance. Then the field reflected off the cavity is transformed according to

Eq. 3.143. Using the rules for two-photon quadratures from Sec. 3.2.2, I compute

the fields a�er the reflection off the cavities:

arefl(Ω) = 48V1 (Ω)O[U1(Ω)]ain(Ω) cosh A + 48V2 (Ω)O[U2(Ω)]f3bin(Ω) sinh A,
(3.162)

brefl(Ω) = 48V2 (Ω)O[U2(Ω)]bin(Ω) cosh A + 48V1 (Ω)O[U1(Ω)]f3ain(Ω) sinh A,
(3.163)
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where the rotation angles are:

U1,2 = arctan
2X1,2W

W2 − X21,2 + Ω2
, (3.164)

V1,2 = arctan
2ΩW

W2 + X21,2 − Ω2
. (3.165)

In these equations, I assume for simplicity that the linewidth of the cavities is the

same, since it is the same cavity at a different longitudinal resonance. In reality,

depending on the properties of the optical coatings, this might be different.

The next experimental stage is the detection of the reflected fields. In the

experiment in [143], the fields were detected on a bichromatic homodyne detector.

This detector features the two LOs at frequencies l0, l0 + Δ, with corresponding

powers %0, %0 and phases Z0, Z1 . The resulting photocurrents of the two outputs,

see Sec. 3.2.2:

~0 (Ω) =
√
%0ℍ

T [Z0]arefl(Ω), (3.166)

~1 (Ω) =
√
%1ℍ

T [Z1]brefl(Ω) . (3.167)

In the bichromatic homodyne detector, the photocurrents from two signals are

directly added (since the fields are detected by the same photodiodes):

~ (Ω) = ~0 (Ω) + ~1 (Ω) = R0 (Ω)ain(Ω) + R1 (Ω)bin(Ω), (3.168)

R0 (Ω) =
√
%0ℍ

T [Z0]48V1O[U1] cosh A +
√
%1ℍ

T [Z1]48V2O[U2]f3 sinh A, (3.169)

R1 (Ω) =
√
%1ℍ

T [Z1]48V2O[U2] cosh A +
√
%0ℍ

T [Z0]48V1O[U1]f3 sinh A . (3.170)

Computing the spectral density from this relation is straightforward by following

the rules in Sec. 3.2.1:

(~~ (Ω) = R0 (Ω)(aa (Ω)R†
0 (Ω) + R1 (Ω)(bb (Ω)R†

1
(Ω), (3.171)

3.6 Example: conditional frequency-dependent squeezing through

Einstein—Podolsky—Rosen entanglement

79



where (aa = (bb = 1, since the initial state is uncorrelated vacuum. I skip here

the lengthy computation of the matrix multiplication, and present the resulting

expression directly:

(~~ (Ω) = (%0 + %1) cosh 2A + 2
√
%0%1 cos[V2(Ω) − V1(Ω)]×
× cos[U1(Ω) + U2(Ω) − Z0 − Z1] sinh 2A . (3.172)

The full analysis of this expression goes beyond the scope of this thesis, and more

details can be found in [143] and in the thesis by Jan Südbeck [REF!]. Here, I

consider only one case, following the original proposal [141]: X0 = 0, X1 = −W :

U1 = 0, U2 = − arctan
2W2

Ω2
; (3.173)

V1 = arctan

[
2WΩ

W2 − Ω2

]
, V2 = arctan

[
2WΩ

2W2 − Ω2

]
; (3.174)

cos[V2(Ω) − V1(Ω)] cos[U1(Ω) + U2(Ω) − Z0 − Z1] = (3.175)

=
2W4 + W2Ω2 + Ω

4

(W2 + Ω2) (4W4 + Ω4)
(
Ω
2 cos(Z0 + Z1) − 2W2 sin(Z0 + Z1)

)
. (3.176)

I consider two limiting cases: low frequency and high frequency, and show that

as expected for frequency-dependent squeezing, at low frequencies the amplitude

quadrature is squeezed, and at high frequencies the phase quadrature.

(~~ (0) = (%0 + %1) cosh 2A − 2
√
%0%1 sin(Z0 + Z1) sinh 2A ; (3.177)

(~~ (Ω ≫ W) = (%0 + %1) cosh 2A + 2
√
%0%1 cos(Z0 + Z1) sinh 2A . (3.178)

Assuming the equal powers of LOs, %0 = %1 , at high frequencies the noise is

squeezed in phase quadrature, Z0 = Z1 = c/2: (~~ (Ω ≫ W) = %04
−2A . At low

frequency, the noise is squeezed in amplitude quadrature, Z0 = 0, Z1 = c/2:
(~~ (0) = %04−2A . In Fig. 3.12, I show how the spectrum of quantum noise depends

on the homodyne angle.
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Fig. 3.12. Example of conditional frequency-dependent squeezing through Ein-
stein–Podolsky–Rosen entanglement. �antum noise is plo�ed as a function of
signal frequency and readout angle. The color shows quantum noise measured on
the bichromatic homodyne detector, relative to the shot noise level. Blue regions
correspond to squeezed noise, red regions correspond to anti-squeezed noise.
The frequency-dependence of the noise is demonstrated: at low frequencies it is
squeezed in one quadrature (readout angle Z0 = 0), and at high frequencies it is
squeezed in the orthogonal quadrature (readout angle Z0 = c/2). The correlations
around the rotation frequency ∼ 50Hz are lost due to sub-optimal processing of
the data, see [143] for details.

3.6 Example: conditional frequency-dependent squeezing through

Einstein—Podolsky—Rosen entanglement

81





Proof-of-principle of a

ring-cavity speedmeter

4

�antum radiation pressure noise (QRPN) will be limiting Advanced LIGO at low

frequency once it reaches its design sensitivity [10]. This noise can be suppressed

(without increasing the shot noise) by using back-action evading techniques,

such as variational readout or frequency-dependent squeezing. These approaches

typically require sophisticated and costly high-quality filter cavities, as I discussed

in Chapter 3.

There is an alternative approach: using quantum non-demolition (QND) mea-

surements instead. As I introduce in Chapters 2,3, QRPN fundamentally arises

due to the measurement process itself. In a Michelson interferometer light senses

the position of the mirrors, and since the position does not commute with a

measurement Hamiltonian: [Ĝ, �̂ ] ∼ [Ĝ, ?̂] ≠ 0, this introduces a measurement

back-action on the mirrors [34]. If it were possible to measure the value that does

commute with the measurement Hamiltonian, it would not introduce back-action,

and would thus be a QND measurement. For a free mass, such an observable is

mirror’s momentum. Unfortunately, direct measurement of momentum is very

difficult, but it is possible to measure the velocity instead. Since the momentum

and velocity for a free mass are connected by a simple relation ?̂ = <Ê , such a

measurement is also QND measurement [35]. Velocity measurement is the basis

for a speedmeter concept.

A speedmeter measures the change in displacement of the test mass Ĝ (C)−Ĝ (C ′)
over a time g , and thus the average velocity Ê (C) = (Ĝ (C) − Ĝ (C ′))g−1. For example,

it can be achieved by sensing the displacement of a mirror from two different

sides with the same beam that experiences the delay g , see Fig. 4.1.

A quantum speedmeter for gravitational-wave detectors was first proposed

by Braginsky and Khalili [119], and since then has been conceptualized in dif-
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Fig. 4.1. The concept of a quantum speedmeter. The motion of the mirror is sensed by
light field � from two sides with some delay g . On the first reflection it acquires
a phase exp 28:G (C), and on the second a phase exp 28:G (C + g). The signal on
the phase-sensitive detector (e.g. a homodyne detector) is then proportional to
G (C) − G (C + g) = E (C)g−1. Since the light momentum transfer to the mirror is the
same from both sides, the net radiation-pressure force is approximately zero. This
feature makes quantum speedmeter useful for suppressing QRPN.

ferent topologies [121–126, 175, 176]. The characteristic optical transfer function

of the speedmeter has been demonstrated [177]. However, to date, there has

been no experimental demonstration of speedmeter sensing enhancement. The

challenge in such demonstrations is not only reaching the quantum regime in

an optomechanical system, but also proving the sensitivity enhancement from

velocity measurements. Since most speedmeter topologies differ significantly

from the position meter ones, such comparison might be challenging due to

differences in experimental parameters.

In this chapter, I propose a new ring cavity topology that simultaneously and

independently measures speed and position of a mechanical oscillator, which

would allow to compare the sensitivities. Such optomechanical cavity has been

investigated in a different context in [178–180]. I perform a table-top experiment

directly comparing the position and velocity optical transfer function. I use a

micro-mechanical oscillator to implement the sensing of the external force in

this setup. This is the first step towards the direct comparison of the speed and

position meter sensitivities. I further provide a detailed theoretical description of

the setup, and outline the possible applications for it.
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4.1 �antum speedmeter

I start by introducing the concept of a quantum speedmeter in a toy example [35].

As in the Chapter 3, I start by writing the input-output relations for the quadra-

tures of the light reflected off a mechanical oscillator, see Fig. 4.1.

This time, however, I consider a interaction that takes place twice with an

opposite phase and time delay g :

12 (C) = 02 (C), (4.1)

1B (C) = 0B (C) + 2:?� (G (C − g) − G (C)) , (4.2)

which can be converted into the frequency domain:

12 (Ω) = 02 (Ω), (4.3)

1B (Ω) = 0B (Ω) − 2:?�G (Ω)
(
1 − 48Ωg

)
≈ 0B (Ω) − 28:?�G (Ω)Ωg, (4.4)

where I assumed the time delay to be small. Here, one can already see the

characteristic property of the speedmeter: the output contains the displacement

proportional to the frequency Ω, which is a consequence of the fact that velocity

and position are connected by a Fourier transform as: E (C) = ¤G (C) → −8G (Ω)Ω.
Displacement G (Ω) has contribution from a signal force� , which we would like to

measure, and radiation-pressure force �rp, which contaminates the measurement:

G (Ω) = j (Ω) (� (Ω) + �rp(Ω)), (4.5)

where j (Ω) is the mechanical transfer function. For the case of a free mass it is

connected to the mass" by j (Ω) = −("Ω
2)−1.

Radiation-pressure fluctuating force �rp(C) depends on the fluctuations in the

amplitude quadrature of the light field and, since the light interacts with the

mirror twice, it has two contributions:

�rp(C) = X% (C)2−1 = 2ℏ:?� (02 (C − g) − 02 (C)) (4.6)

�rp(Ω) ≈ −28ℏ:?�02 (Ω)Ωg . (4.7)

4.1 �antum speedmeter 85



When the light is sensed by a homodyne detector, it measures a quadrature Z :

~ (Ω) = 12 (Ω) cos Z + 1B (Ω) sin Z =

= 02 (Ω) cos Z +
(
0B (Ω) − 28:?�G (Ω)Ωg

)
sin Z =

= 02 (Ω) cos Z + 0B (Ω) sin Z−
− 28:?�Ωg j (Ω)

(
� (Ω) − 28ℏ:?�0

2 (Ω)Ωg
)
sin Z . (4.8)

The output signal can be normalized to the displacement:

~̃ (Ω) = −~ (Ω) 1

28:?�Ωg sin Z
= Gfl(Ω) + jΩ

(
� (Ω) + �rp(Ω)

)
, (4.9)

where I introduced shot noise Gfl. Spectral densities of the shot noise Gfl, radiation-

pressure noise �rp and their cross-correlation can be found, assuming the input

noise to be in a coherent state, i.e. (0202 = (0B0B = 1, (020B = 0:

(GG (Ω) =
1

4:2?�
2Ω2g2 sin2 Z

, (4.10)

(�� (Ω) = 4ℏ2:2?�
2
Ω
2g2, (4.11)

(G� (Ω) = −ℏ cot Z . (4.12)

Total noise spectral density normalized to displacement is:

(G (Ω) = (GG −
2ℜ[(G� (Ω)]

"Ω2
+ (�� (Ω)
"2Ω4

=

=
1

4:2?�
2Ω2g2 sin2 Z

+ ℏ cot Z

"Ω2
+
4ℏ2:2?�

2
Ω
2g2

"2Ω4
=

=
ℏ

"Ω2

(
2"

4:?%g2 sin Z
+ cot Z +

4:?%g
2

"2

)
(4.13)

where I define the optical power % = ℏ:?2�
2. In a standard case the homodyne

detector measures the phase quadrature of the light: Z = c/2, and no cross-

correlation between the noises is present. In this case a spectral density follows

the SQL:

(G (Ω) =
ℏ

"Ω2

(
2"

4:?%g2
+
4:?%g

2

"2

)
. (4.14)
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This sensitivity can be improved by using the cross-correlation between noises.

With the optimal choice of frequency-independent homodyne angle

cot Z = −
4:?%g

2

"2
,

the sensitivity can reach any value below the SQL, only dependent on the available

light power (or squeezed light):

(G (Ω) =
ℏ2

4:?%g2Ω2
. (4.15)

This is the power of the speedmeters: even without using quantum correlations,

it naturally has a be�er sensitivity at low frequencies than the position meter, see

Fig. 4.2. There is also no need for costly filter cavities for producing frequency-

dependent squeezing (or variational readout) for surpassing the SQL. There are

also downsides: experimental topology is more complicated than for the position

meters and sensitivity is more fragile with respect to internal impurities that

could destroy the correlations in the light between two measurements. Overall,

the potential of the speedmeter is high, but it requires experimental effort to

demonstrate the feasibility of this idea.

In the next section, I make a first step towards a table-top proof-of-principle

demonstration of a speedmeter.

4.2 Optomechanical ring cavity as a speedmeter

I propose to implement the idea of a sequential measurement of the test mass’

position by placing a movable mirror (a semi-transparent Si3N4 membrane) inside

the optical ring cavity, see Fig. 4.3 The ring cavity is composed of three mirrors:

one semi-transparent (incoupling) mirror and two highly reflective mirrors. The

membrane is positioned inside, orthogonaly to the beam propagation direction.

The symmetry of the setup allows to separate the signal from the membrane into

two output ports, which I refer to as velocity and position outputs from here on.

Upon entering the cavity, the beam can be reflected or transmi�ed through the

membrane. The reflected beam can travel around the cavity and be again either
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Fig. 4.2. Comparison between the total noise spectral densities of the speedmeter and
position meter: (black dashed) the baseline interferometer with bandwidth W =

2c×500 s−1; (solid blue) the Sagnac speedmeter without cross-correlation between
quantum noises, and bandwidth W = 22/3 × 2c × 100 s−1; (solid red) the Sagnac
speedmeter with the cross-correlation, with bandwidth W = 2c × 100 s−1, cot Z = 4.
Using the optimal cross-correlation allows to surpass the SQL at low frequencies.
The SQL is in black do�ed line. In all cases, optical power �0 = 840 , kW and no
losses are taken into account.
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Fig. 4.3. Optomechanical ring cavity.(Le�) conceptual representation. A movable reflective
element (membrane) is placed inside a ring cavity. Only the incoupling mirror of
the cavity is semi-transparent, the other two are highly reflective. There are two
output ports: velocity and position. Velocity port contains no light power (it’s
dark), and only the information about the velocity of the membrane. (Right) the
notation for the amplitudes of the light field in the ring cavity.
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transmi�ed, or reflected. The beam that is reflected twice acquires the velocity

information — in direct analogy with a thought experiment in Fig. 4.1. This beam

exits through the velocity output port, together with the contributions from all

even number of reflections. The port contains purely velocity information. The

beam that is reflected an even amount of times is reflected directly back towards

the incoming beam into the position output port. This beam contains a combined

displacement information (more about it below).

Such an optomechanical ring cavity has several features: (i) it has a particular

resonance structure, where the resonance normal mode is split into two by the

membrane’s reflectivity; (ii) the classical light power is fully reflected back into the

input port; (iii) the second port remains dark, and only contains the velocity signal;

(iv) the resonance condition does not depend on the position of the membrane:

this setup features a new type of optomechanical coupling [68].

In the next sections, I explore in detail the properties of the ring cavity.

4.2.1 Input-output relations

I start by solving the input-output relations for the optical fields in the cavity

in matrix form, and then study the properties of the solutions. Following the

procedure described in Chapter 3, I define the propagation matrices for light fields

in frequency domain, see Fig. 4.3:

ℝ =

(
' 0

0 '

)
reflection matrix; (4.16)

T =

(
) 0

0 )

)
transmission matrix; (4.17)

M =

(
A 8C

8C A

)
reflection/transmission of the membrane; (4.18)

ℙ(Ω) =
(
48 (:?+Ω/2)!1 0

0 48 (:?+Ω/2)!2

)
propagation of quantum fields; (4.19)

ℙ(0) =
(
48:?!1 0

0 48:?!2

)
propagation of classical fields. (4.20)
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Here :? is the laser field wave vector, ' is the amplitude reflectivity of the front

mirror (I assume the other mirrors perfectly reflective), ) is the amplitude trans-

missivity of the front mirror, A, C are the amplitude reflectivity and transmissivity

of the membrane, !1,2 are the distances from the front mirror to the membrane

(clock and counterclockwise), Ω is the sideband frequency and 2 is the speed of

light. In addition, I define some useful matrices:

f1 =

(
0 1

1 0

)
, f2 =

(
0 −8
8 0

)
, f3 =

(
1 0

0 −1

)
, I =

(
1 0

0 1

)
(4.21)

Classical field

First, it is useful to write the equations of motion for the classical fields (i.e. at fre-

quency Ω = 0). I combine two propagating fields into a single vector, represented

by a bold le�er, e.g.

B =

(
�1

�2

)

In this notation the input-output equations are:

B = −ℝf1A + TC, (4.22)

C = ℙ(0)F, (4.23)

F = ME, (4.24)

E = ℙ(0)D, (4.25)

D = ℝf1C + TA. (4.26)

This set of equations can be brought to a single equation for the intra-cavity field

C:

C = ℙ(0)Mℙ(0) (ℝf1C + TA) , (4.27)

from which I obtain the input-output relation for the intra-cavity field:

C = (I − ℙ(0)Mℙ(0)ℝf1)−1 ℙ(0)Mℙ(0)TA = K(0)ℙ(0)Mℙ(0)TA, (4.28)

K(0) = (I − ℙ(0)Mℙ(0)ℝf1)−1 . (4.29)
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From this the outgoing field B and field on the membrane E are:

B = (−ℝf1 + TK(0)ℙ(0)Mℙ(0)T) A (4.30)

E = ℙ(0) (ℝf1K(0)ℙ(0)Mℙ(0) + I) TA. (4.31)

�antum field

For the quantum field, it’s necessary to keep the frequency dependence, and

also consider that upon reflection off the membrane, the field picks up a phase

modulation signal:

A → A428:G ≈ A (1 + 28:?G (Ω)) .

Generally : = :? + Ω/2 , but since I assume the displacement to be small, and

frequency Ω to be small compared to the optical frequency, I keep only the zeroth

order term :? .

�antum fields are considered as a first order perturbation on top of the

classical signal: �̂(Ω) = � + 0̂(Ω). The field that picks up the signal upon

reflection is approximated to the first order of smallness: A �̂ (Ω)428: (Ω)Ĝ (Ω) ≈
A� + A4̂ (Ω) + 28:?A�Ĝ . With these approximations, I write down the input-output

relations for the quantum fields, omi�ing the hats over the quantum field vectors

for brevity:

b(Ω) = −ℝf1a(Ω) + Tc(Ω) (4.32)

c(Ω) = ℙ(Ω)f (Ω) (4.33)

f (Ω) = Me(Ω) + 28:?G (Ω)Af3E (4.34)

e(Ω) = ℙ(Ω)d(Ω) (4.35)

d(Ω) = ℝf1c(Ω) + Ta(Ω) (4.36)

The solution to these equations for the intra-cavity field is:

c(Ω) = K(Ω)ℙ(Ω)Mℙ(Ω)Ta(Ω) + 28:?G (Ω)AK(Ω)ℙ(Ω)f3E, (4.37)

K(Ω) = [I − ℙ(Ω)Mℙ(Ω)ℝf1]−1 (4.38)
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The output field vector can also be obtained by solving the equations above:

b(Ω) = [−ℝf1 + TK(Ω)ℙ(Ω)Mℙ(Ω)T] a(Ω) + 28:?G (Ω)AY (Ω)A, (4.39)

Y (Ω) = TK(Ω)ℙ(Ω)f3ℙ(0) (ℝf1K(0)ℙ(0)Mℙ(0) + I) T . (4.40)

These equations are admi�edly not convenient for studying the properties

of the setup analytically, yet useful for generalized description and computer

simulation. Further, I will write the solutions explicitly.

4.2.2 Ring-cavity resonance structure

The first unusual property of the ring cavity is its resonance structure. In order to

study it, I start with input-output relations for the classical fields explicitly:

�1,2 =
�2,1

D (0)
[
'

(
1 − 428:?!

)
− 8C

(
'2 + 1

)
48:?!

]
− �1,2

D (0) A)
2428:?!1,2 (4.41)

where ! = !1 + !2 is the total cavity length; and D (Ω) is the cavity resonance

factor:

D (Ω) = '2428 (:?+Ω/2)! + 28'C48 (:?+Ω/2)! − 1 (4.42)

The resonance condition for the classical field corresponds to maximal enhance-

ment of the intra-cavity field. This can be found as the minimum of the resonance

factor D (0):
3 |D (0) |2
3:?

= 0, (4.43)

which gives the following resonance conditions for the frequency l2 = :?2 :

l2 =




2
!
arcsin

(
−C 1+'2

2'

)
2
!

(
c − arcsin

(
−C 1+'2

2'

))
.

(4.44)

Notice that there are two possible resonances, which depend on the reflectivity

of the membrane, as shown in 4.4. Without the membrane, these two resonance

modes are degenerate, and the membrane splits this degeneracy.

However, the part that makes this system unique is in the independence on the

membrane’s position. In order to understand this property, I consider the case of a
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Fig. 4.4. Resonance structure of the ring cavity. Top: the resonance condition for the phase
of the incoming light as a function of membrane reflection coefficient. Bo�om:
intensity of intra-cavity field normalized to its peak as a function of the phase of
incoming light for different reflectivities of the membrane. Without a membrane,
A = 0, the peaks are separated by one FSR (2c phase), which corresponds to
the empty ring cavity. With a membrane the resonance splits into two, and the
separation between the twomodes increases with increased reflectivity. When the
membrane is perfectly reflective, the peaks are equidistant again, corresponding
to the Fabry-Perot cavity case.
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perfectly reflective membrane. On resonance the standing wave is formed, much

as in a Fabry-Perot cavity. However, the shi� of the membrane does not cause the

change of total length of the cavity, unlike the Fabry-Perot cavity. Therefore the

resonance condition for the standing wave does not change either. This becomes

important in the discussion of the optomechanical coupling below.

When the membrane’s reflectivity is equal to zero, the resonance condition

reproduces a usual ring cavity resonance with FSR 2/!. Such a cavity maintains

two possible modes: clockwise and counter-clockwise, which have the same

resonant frequency – they are degenerate. Introducing a reflecting element

couples clockwise and counter-clockwise modes, and the interference between

them results in two new resonant modes (symmetric and anti-symmetric). These

two newmodes have a different resonance frequency, so themembrane reflectivity

breaks the degeneracy of the ring cavity.

When the reflectivity of the input mirror is rather large, the resonance condition

can be approximated as:

cos:±! ≈ ±A, A = cos\, C = sin\ (4.45)

Δl2 ≡ 2 (:+ − :−) ≈
22

!
arcsin A . (4.46)

This mode spli�ing effect occurs also in other optomechanical systems, such

as membrane-in-the-middle setups [181–185]. The unusual property in the ring

cavity is that the spli�ing depends only on the reflectivity of the membrane, not

its position.

4.2.3 Single mode approximation

The parameter regime for the system allows to use a single-mode approxima-

tion [35] to simplify the equations assuming: (i) the sideband (signal) frequency

is much smaller than the cavity free spectral range Ω, X0 ≪ 2/!, and (ii) the

transmissivity) of the front mirror is small, so that I can make a Taylor expansion

' ≈ 1 −) 2/2. I define the linewidth of the system:

W =
2) 2

2!
=
) 2

2g
, (4.47)
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where g = !/2 is the round-trip time, and write down the resonance factor:

D (Ω) = −1 + 28C'4−8\ (1 + 8Ω!
2

) + '24−28\ (1 + 28
Ω!

2
) =

= −2Ag4−8\ (W − 8Ω), (4.48)

where I applied the resonance condition in the single mode approximation:

48:?! = A − 8C = 4−8\ .

In the single mode approximation the velocity port remains dark for the classical

field, i.e. the full power is reflected back to the position port (assuming the laser

input only from one side: �2 = 0):

�1 = �1 (4.49)

�2 = 0 (4.50)

For the quantum fields, since the macroscopic position of the membrane does

not affect the resonance of the system, I simplify the equations without loss of

generality by assuming !1 = !2 = !/2. The output fields on the two ports can be

represented as:

11 = 11101 + 11202 + 113G, (4.51)

12 = 12101 + 12202 + 123G, (4.52)
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where the coefficient are computed from the matrices:

111 =122 = − 1

D (Ω) A)
248 (:?+Ω/2)!, (4.53)

112 =121 = − 1

D (Ω)
(
−' + 8C (1 + '2)48 (:?+Ω/2)! + '428 (:?+Ω/2)!

)
, (4.54)

113 =
28:?A)

2�14
8 (:?+Ω/22)!

D (0)D (Ω) ×

×
(
1 − '48:?! (8C + 8C48Ω!/2 + '48 (:?+Ω/2)!)

)
, (4.55)

123 =
28:?�1A

2) 2'48 (2:?+Ω/22)!
(
−1 + 48Ω!/2

)
D (0)D (Ω) . (4.56)

In the single mode approximation these relations simplify to:

111(Ω) = 122(Ω) ≈
W

W − 8Ω , (4.57)

112(Ω) = 121(Ω) ≈
−8Ω
W − 8Ω , (4.58)

113(Ω) ≈
28:?�1(W − 8Ω/2)

W − 8Ω , (4.59)

123(Ω) ≈ 8Ω
28:?�1

2(W − 8Ω) . (4.60)

First notice the most important feature of the system: the signal on the velocity

port 123(Ω) is proportional only to frequency, which is the speedmeter definition,

since in the frequency domain: E (C) = ¤G (C) → E (Ω) = −8ΩG (Ω). At low frequen-

cies, where Ω ≪ W , this signal is purely velocity. At high frequencies, the cavity

bandwidth averages the signal, which becomes purely position signal (i.e. zeroth

order in frequency): 123(Ω ≫ W) ≈ −8:?�1. The position port contains a mixture

of position and velocity signal:

113(Ω) = 28:?�1

(
1 + 8Ω

2(W − 8Ω)

)
, (4.61)

approaching purely position contribution for small and large frequencies (and

only ge�ing the mixture of velocity in the intermediate regime Ω ∼ W ). In my
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experiment, the cavity linewidth was significantly larger than the measurement

frequency, so the position port indeed contained almost only position signal.

The second important point to be seen in the equations is the optical transfer

functions for the incoming fields 111,12,21,22. It can be seen that the noise coupling

from one port to another acquires a speedmeter scaling, and the noise reflected

directly to the position port does not. This fact I will confirm experimentally.

In this section I demonstrated that the ring cavity indeed serves as a speedmeter.

Moreover, it features two separate output ports that allow to measure velocity

and position independently.

4.3 Full quantum noise sensitivity

4.3.1 Shot-noise limited sensitivity

Two-photon quadratures

In order to conveniently compute the spectral densities as measured with the

homodyne detector, I transition to the two-photon quadratures, as described

in the Chapter 3. Two-photon quadratures for a field 0(l? ± Ω) are defined as

following:

02 (Ω) =
0(l? + Ω) + 0†(l? − Ω)

√
2

, 0B (Ω) =
0(l? + Ω) − 0†(l? − Ω)

8
√
2

and the corresponding vector:

a =

[
02

0B

]
.

Expressed in terms of two-photon quadratures, the input-output relations 4.51

become:

b1 = R1(Ω)a1 + R2(Ω)a2 + GM1G (Ω)A1 + ΩGM1E (Ω)A1, (4.62)

b2 = R2(Ω)a1 + R1(Ω)a2 + ΩGM2E (Ω)A1, (4.63)
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where the transfer matrices are:

R1(Ω) =
W

W − 8Ω I, (4.64)

R2(Ω) =
−8Ω
W − 8Ω I, (4.65)

M1G (Ω) = −
8:?W

W − 8Ωf2, (4.66)

M1E (Ω) = −
8:?

2(W − 8Ω)f2, (4.67)

M2E (Ω) =
:?

W − 8Ωf2. (4.68)

Shot noise spectral density

The displacement signal from the ring cavity is measured with a homodyne

detector with homodyne phase Z :

~1,2 = H
)
1,2b1,2, H

)
1,2 = [cos Z , sin Z ]) . (4.69)

In order to get the sensitivity, I want to normalize both outputs to the correspond-

ing signal transfer function. The way to do it can be dividing by the pre-factor in

front of G in Eqs. 4.69:

~̃1 =
~1

H
)
1M1GA1 + ΩH

)
1M1EA1

= X1 + G, (4.70)

~̃2 =
~2

ΩH
)
2M2EA1

= X2 + G, (4.71)

whereX1,2 are the quantum noise parts of the normalized output. Since the signal

in a cavity tuned on resonance with incoming field is in the phase quadrature, I

select Z = c/2, and also without loss of generality fix the phase of the incoming

light such that

A1 =
√
2�

[
1

0

]
=

√
2�in

ℏl?

[
1

0

]
. (4.72)
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position meter speedmeter

without cavity
ℏ22

4�inl?

ℏ22

4�inl?

1

Ω2g2

ring cavity ≈ ℏ22

4�inl?

ℏ22

4�inl?

) 4

Ω2g2

standard detector
ℏ22

4�inl?

) 4

4

ℏ22

4�inl?

) 4

4

) 4

16Ω2g2

Tab. 4.1. Comparison between the shot-noise-limited sensitivities of different detectors.
The columns represent speed or position measurement. The rows define the type
of the detector: position and speedmeters without optical cavities, or a standard
Michelson-Fabry-Perot position meter and a Sagnac speedmeter.

The spectral densities of noises X1,2 then are:

(X1 =
ℏ22

4�inl?

W2 + Ω
2

W2 + Ω2/4 (4.73)

(X2 =
ℏ22

4�inl?

W2 + Ω
2

Ω2
(4.74)

Comparison to other setups

It is interesting to compare the shot-noise-limited sensitivity of the ring cavity

to other setups, see Table 4.1. In a standard speedmeter, optical cavities play

several roles: they enhance the light power and signal, much like in a standard

position meter, and also increase the effective delay g → g/) 2, which benefits the

sensitivity of a speedmeter. In the ring optomechanical cavity setup the cavity

itself plays an unusual role: it does not enhance the signal proportionally to its

finesse. Instead, the position signal has the same strength as for a free-standing

perfectly reflective membrane. When the membrane has small reflectivity, a

free-standing membrane would loose the signal proportionally to its transmission,

but in a ring cavity that does not happen. In a ring cavity the signal adds from the

many round trips such, that even for a very small reflectivity of the membrane,

the output signal is not reduced compared to the signal from a perfectly reflective

membrane. On the other hand, most of the signal gets coherently canceled due to
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the resonance condition of the cavity, and only a small part due to the imbalance

of powers on two sides of the membrane produces a signal. As a result, in the

ring cavity the sensitivity does not depend on the reflectivity of the membrane,

but also is not enhanced by a cavity resonance. For the velocity signal, the ring

cavity also enhances the effective delay, in addition to reflectivity-independence,

which makes the sensitivity significantly, ∼ ) 4 times be�er than the one of a

free-standing membrane without cavity.

The light power inside the cavity is enhanced by a cavity finesse. However,

when the two light fields of almost equal power interact with the membrane,

the signal that is carried away is almost completely canceled by destructive

interference between these beams. The setup is slightly asymmetric due to the

semi-transparent front mirror – the light field on one side of the membrane is

slightly reduced compared to other side, since part of it leaked to the outside

through the front mirror. The small difference in powers equals the power that

leaked out of the cavity. By energy conservation, the power that leaks out equals

the input power. Since the powers on the two sides of the membrane are not equal,

this imbalance translates into an imperfect cancellation of the signal – again,

proportionally to the input light power. Therefore, for the position signal, it looks

as if the light was directly reflected from the membrane without experiencing

any cavity effects. As a result, both position and velocity sensitivities are ∼ ) 4

times worse than the ones of a standard position- or speedmeter, see Table 4.1. In

the next sections I will discuss the necessary changes to the setup for achieving a

sensitivity comparable to the standard GW detectors.

4.3.2 Radiation-pressure noise

Themotion of the membrane is excited by thermal noise and by radiation-pressure

noise. In order to find how large these noises are, I compute the radiation-pressure

noise explicitly.

Each light field reflected off amembrane applies some force on it in the direction

it impinges on it. In the ring cavity, there are two sides of the membrane, both

subject to radiation pressure. This force causes a displacement of the membrane.

As I discuss in Chapter 2, the radiation pressure noise is a manifestation of the

measurement back-action applied by a meter (light) on the object (membrane).

4.3 Full quantum noise sensitivity 101



It can be separated in two contributions: static force and corresponding shi�

of the membrane’s position (if the light powers are unequal on two sides of the

membrane), and noisy force, coming from quantum (or classical) fluctuations of

the light field. The total force can be defined as a sum of all contributions:

�rp =
∑

±I8/2,

where I8 is the intensity of 8-th field falling on the oscillator, and the sign of

intensity is defined by the direction of travel.

There are two equivalent ways of calculating the QRPN: using two-photon and

sideband picture. In the sideband picture:

�rp/ℏ:? = E
†f3e(l? + Ω) + F

†f3f (l? + Ω)+
+ E

)f3e
†(l? − Ω) + F

)f3f
†(l? − Ω) (4.75)

In the two-photon picture:

�rp/ℏ:? = E)
1 e1(Ω) − E)

2 e2(Ω) + F )
1 f1(Ω) − F )

2 f2(Ω) (4.76)

I use the two-photon picture, since it makes it easier to compute the spectral

densities. I calculate the classical intra-cavity fields and simplify the denominator

in a single-mode approximation, but keep the numerator unexpanded (it will be

done at a later stage):

�1 = −�1

)48:?!/2
(
1 − 8)48:?!

)
D (0) = �1

)48\/2
(
1 − 8C'4−8\

)
2AgW

(4.77)

�2 = −�1
A')438:?!/2

D (0) = �1
A')4−8\/2

2AgW
(4.78)

�1 = A�1 + 8C�2 = �1
A)48\/2

2A\W
(4.79)

�2 = A�2 + 8C�1 = �1

)
(
8C48\/2 + '4−8\/2

)
2AgW

(4.80)
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For quantum amplitudes, the equations in the sideband picture are:

41 =
)48:!/2

D (Ω)
(
−01(1 − 8C'48:!) − 02A'48:! + 28:?A'G2(Ω)G (Ω)48:!/2

)
(4.81)

42 =
)48:!/2

D (Ω)
(
−02(1 − 8C'48:!) − 01A'48:! + 28:?A'G1(Ω)G (Ω)48:!/2

)
(4.82)

G1(Ω) =
1

)

(
(1 − 8C'48:!)�1 − A'�248:!

)
(4.83)

G2(Ω) =
1

)

(
−(1 − 8C'48:!)�2 + A'�148:!

)
(4.84)

51 = A41 + 8C42 + 28:?GA�1 (4.85)

52 = A42 + 8C41 − 28:?GA�2 (4.86)

The amplitudes of the fields depend on the position G (Ω), and therefore the

QRPN has a dynamical (position-dependent) contribution. This contribution

is called dynamical back-action or optical rigidity. First, I find the position-

independent part of the QRPN, se�ing G (Ω) = 0, and going to two-photon

quadratures:

e1 =
)48Ωg/2

2Ag (W − 8Ω) [P1(Ω)a1 + P2(Ω)a2] , (4.87)

e2 =
)48Ωg/2

2Ag (W − 8Ω) [P1(Ω)a2 + P2(Ω)a1] , (4.88)

f1 = A Ie1 − 8Cf2e2 (4.89)

f2 = A Ie2 − 8Cf2e1 (4.90)

E1 =
)

2AgW
P1(0)A1, (4.91)

E2 =
)

2AgW
P2(0)A1, (4.92)

F1 = A IE1 − 8Cf2E2 (4.93)

F2 = A IE2 − 8Cf2E1 (4.94)

4.3 Full quantum noise sensitivity 103



where I defined the frequency-dependent matrices:

P1 =

[
cos \

2
− C'48Ωg sin \

2
− sin \

2
+ C'48Ωg cos \

2

sin \
2
− C'48Ωg cos \

2
2>B \

2
− C'48Ωg sin \

2

]
(4.95)

P2 = A'4
8Ωg

[
cos \

2
sin \

2

− sin \
2

cos \
2

]
(4.96)

Taking these into account, I compute the contributions to the QRPN from the

reflected fields:

F )
1 f1 = (A IE1 − 8Cf2E2)) (A Ie1 − 8Cf2e2) =

= A 2E)
1 e1 + C2E)

2 e2 + 8AC
(
E)
1 f2e2 − E)

2 f2e1

)
(4.97)

F )
2 f2 = A

2E)
2 e2 + C2E)

1 e1 + 8AC
(
E)
2 f2e1 − E)

1 f2e2

)
(4.98)

From this, the QRPN can be simplified:

�rp = 2ℏ:?

(
A 2(E)

1 e1 − E)
2 e2) + 8AC (E)

1 f2e2 − E)
2 f2e1)

)
, (4.99)

Choosing the phase of the input field such, that A1 = {�, 0}) /
√
2, I obtain the

QRPN in the single mode approximation:

�rp(Ω) =
ℏ:?�√

2(W − 8Ω)
[ (
A 2 − C2

)
(2W − 8Ω) 021(Ω) + 8ACΩ0B1(Ω)+

+
(
A 2 − C2

)
Ω022(Ω) + 8AC (2W − 8Ω) 0B2(Ω)

]
. (4.100)

The equations above allow to compute the spectral density of the QRPN:

(rp(Ω) = 2W2
ℏl?�in

22(W2 + Ω2) + Ω
2

ℏl?�in

22(W2 + Ω2) = (Grp(Ω) + (Erp(Ω), (4.101)

where �in =
1
2
ℏ:?2�

2 is the average optical power in the incoming beam. This

spectral density has two contributions: position (Grp(Ω) and velocity (Erp(Ω). This
corresponds to the two detection channels. Since every measurement produces a

back action, the position port must have its contribution, as well as the velocity

one.

104 Chapter 4 Proof-of-principle of a ring-cavity speedmeter



However, the measurement outputs of these two channels can be optimally

combined to evade the back-action, as it is done in variational readout approach,

or in Chapter 5. Alternatively, if the two input light fields are entangled such,

that (A 2 − C2)021 = −8AC0B2, the position-dependent part in Eq. 4.100 gets canceled.

Finally, if A = C , it is sufficient to inject squeezed light to suppress 0B2 to achieve

speedmeter sensitivity. These approaches require further study into their detailed

implementation and feasibility.

Another important fact is that the QRPN in the ring cavity is significantly

smaller than the noise in a conventional Fabry-Perot cavity:

(rp,FP(Ω) =
4ℏ�inl?

!2(W2 + Ω2) . (4.102)

This is expected: since the shot noise is increased compared to the Fabry-Perot

cavity, the radiation-pressure must be reduced to obey the Heisenberg uncer-

tainty relation (for a minimum uncertainty state). Fundamentally, the origin

of this reduction is exactly the symmetry of the setup that allows the velocity

measurement: most of the radiation pressure is canceled coherently on the round

trip. Only a small fraction of the signal that leaks through the front mirror, is not

canceled.

Intra-cavity light field also depends on the position of the membrane, which

causes a position-dependent part of the QRPN. From Eqs. 4.87, I obtain this

position-dependent part in the single-mode approximation:

�Grp =
4l?�8=C

2!W
G = KosG, (4.103)

where Kos is the optical spring constant. The dynamics of the mirror is described

by:

" ¥G (C) + 2W< ¤G (C) +"l2
<G (C) = �rp(C) + �Grp(C) + �th(C) (4.104)

where l< is the mechanical frequency, W< is the mechanical linewidth, " is

membrane’s mass, �th is the random force caused by thermal fluctuations in the
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membrane. Taking into account the change in dynamics due to the QRPN, the

dynamics changes:

" ¥G (C) + 2W< ¤G (C) +
(
"l2

< −Kos

)
G (C) = �rp(C) + �th(C). (4.105)

Dynamical QRPN effectively introduces a shi� to the mechanical frequency, thus

its name – ”optical spring”. This optical spring is different from the optical spring

arising in a Fabry-Perot cavity, where additionally to changing the frequency, the

QRPN introduces additional damping or anti-damping. In a Fabry-Perot cavity

optical spring arises only when the laser is detuned off the cavity’s resonance

frequency. In the ring cavity the optical spring arises on resonance, and it only

shi�s the mechanical resonance frequency, without introducing any damping of

anti-damping.

However, this optical spring is rather weak: for the experimental parameters

of a ring cavity presented in the experimental section of this chapter, the shi�

due to the optical spring is on the order of 10 kHz to the mechanical frequency of

395 kHz.

4.3.3 Spectrum and discussion

The expressions obtained in the previous sections allow to plot the sensitivity

of the ring cavity to the displacement, see Fig. 4.5. The expected sensitivity

of the table-top setup is fully dominated by thermal noise, even at cryogenic

temperatures. This is expected from the previous discussion: e.g. the sensitivity

to the displacement in a ring cavity is analogous to a mirror without the cavity,

which is too low to be limited by QRPN in any regime (that is why cavities are

used in optomechanical devices in the first place). However, unlike in sensing a

single mirror, the velocity signal is of the same magnitude as the position one.

That, in principle, allows to directly compare two types of sensitivities in the same

setup.

It is possible to enhance the sensitivity of the setup by placing a cavity around

the membrane, see Fig. 4.6. In this case, the response would be enhanced and the

sensitivity would become comparable to the standard Fabry-Perot based setups.

This, however, requires careful tuning of all the phases in the cavity.
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Fig. 4.5. Displacement sensitivity of the ring cavity on the position and velocity output
ports. The quantum noise (QN) sensitivity is shown for position and velocity
outputs. The speedmeter scaling of the shot noise is visible at low frequencies.
Thermal excitation of the fundamental mode is visible above the shot noise, and
it is significantly above the QRPN. Only the fundamental mode is plo�ed in this
plot (there are higher order mechanical modes, as I discuss in the next section).
The parameters are listed in Table 4.2.

Another similar approach is to place signal and power recycling mirrors in the

two ports of the cavity. This will enhance the signal and the light power, allowing

to reach the QRPN-limited regime. It will, however, also require a very careful

tuning of different lengths and control of the subsystems, which makes such an

approach practically very challenging.

4.3.4 Towards large-scale design

The ring cavity topology offers interesting properties, that might be used for future

gravitational-wave detectors. In particular, it would be possible to implement

the ring-cavity type design directly in the current generation of GWOs. For that

purpose the central beamspli�er has to be ”turned” by 90 degrees to form a front
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mirror that couples the two arms of the interferometer, see Fig 4.6. Such a detector

would feature the full enhancement to the sensitivity from the arm cavities, and

the speedmeter signal on the output of the detector.

However, there are difficulties associated with such a design. Firstly, some

information leaks through the position port, and creates the position-dependent

contribution to the QRPN, which spoils the speedmeter scaling. In order to cancel

this contribution, an optimal combination of two measured outputs is required, as

described in Chapter 5. Then, it is possible to achieve a full speedmeter sensitivity.

The theoretical investigation of this scheme is currently underway.

Secondly, the dark (velocity) port contains not only a velocity signal from

the differential motion of the mirrors, but also common motion noise, which

contaminates the sensitivity, since it contains no GW signal. Usually in a standard

Michelson interferometer, this common mode is canceled naturally. In the L-

shaped detector, this is not the case, and special measures would have to be

considered for avoiding the influence of this common mode contamination. This

requires a separate analysis.

4.4 Optomechanical coupling

Ring cavities feature an unusual optomechanical coupling, one we call coherent. In

this section I briefly overview this type of coupling and mention the consequences

for the cavity optomechanical experiments. The results presented in this section

were obtained in collaboration with X.Li, Y.Ma and Y.Chen, and were published

in [68].

In the previous section I described the resonant structure of the ring cavity.

The equations for the propagating fields were wri�en in terms of clockwise and

counterclockwisemodes. Thesemodes are the eigenmodes of a ring cavity without

the membrane. However, when the membrane is placed inside, these modes are

no longer resonant. The eigenmodes of the system have new resonant frequencies

l±. These eigenmodes can be constructed out of clock- and counterclockwise

modes 41,2,:

4± =
41 ± 42√

2
. (4.106)

We call the new eigenmode 4+ symmetric, and 4− – anti-symmetric.
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Fig. 4.6. A path towards ring-cavity-based GW detector. The ring cavity with a perfectly
reflective membrane (top le�) is invariant to the L-shaped cavity (top right).
Placing a Fabry-Perot cavity around the membrane (bo�om le�) enhances the
light power as well as the signal. So do the arm cavities in the L-shaped topology
(bo�om right). The resulting sensitivity is compatible with traditional speedmeter
topologies (e.g. a Sagnac speedmeter).
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The motion of the membrane introduces a phase shi� on the modes 41,2, see

Eqs. 4.87. Thesemodes can be re-wri�en in terms of symmetric and anti-symmetric

modes:

4+ = −
0+)4−8 (\−Ωg)/2

(
428\ + '48Ωg

)
2Ag4−8\ (W − 8Ω)

−

−28:?G
�−'4−8 (2\−Ωg)

(
428\ + '48Ωg

)
g (W − 8Ω) , (4.107)

4− = −
0−)48 (3\+Ωg)/2

(
1 − '48Ωg

)
2Ag4−8\ (W − 8Ω)

−

−28:?G
�+'48Ωg

(
1 − '48Ωg

)
g (W − 8Ω) . (4.108)

In the single-mode approximation these equations are significantly simplified:

4+ = −
√
20+4−8\/2√

Wg
−
8
√
2:?G�+4−8\/2√

Wg
, (4.109)

4− = −
√
20−48\/2(W − 8Ω)g

2A
√
Wg

−
8
√
2:?G�+4−8\/2√

Wg

(W − 8Ω)
W

. (4.110)

There are several important features that can be seen from these equations. First,

mode 4+ is on resonance, and 4− is off resonance: 4−(G = 0) ∼ 4+(G = 0)Wg , where
Wg ≪ 1. This is expected for the eignemodes of the system. Second, from Eq. 4.107

it follows, that for symmetric mode the displacement couples with anti-symmetric

classical amplitude, and vise versa for the anti-symmetric. In other words, the

displacement couples symmetric and anti-symmetric modes. This statement

reflects the most important feature of the optomechanical interaction in the ring

cavity: mechanical motion couples two eigenmodes of the system. In a general

form, the dynamical coupling between the modes is [68]:

4±(G) =
48:?!/2

4−8:?G41 ± 48:?G42
. (4.111)

We call such optomechanical coupling coherent.

In general, in optomechanical systems, mechanical motion can affect different

parameters of the system. The systems are usually classified based on this cou-
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pling between the mechanical and optical degrees of freedom. In systems with

dispersive coupling, mechanical motion changes the resonance frequency of the

eigenmodes. In systems with dissipative coupling, mechanical motion changes

the coupling rate of the eingenmodes to the environment. In a ring cavity, nei-

ther dispersive, nor dissipative coupling is present. Instead, mechanical motion

re-distributes the energy between the two eigenmodes of the system. The optical

part of the Hamiltonian of the ring cavity system explicitly shows that the modes

themselves are changed with mechanical motion:

�̂ = ℏl+4̂+(G)†4̂+(G) + ℏl−4̂−(G)†4̂−(G) ≈ (4.112)

≈ ℏl+4̂+(0)†4̂+(0) + ℏl−4̂−(0)†4̂−(0) + 28Δl (4̂−(0)†4̂+(0) − h.c.). (4.113)

This equation directly shows how displacement G creates a photon in one mode

and annihilates in another mode, thus enabling the energy exchange between

the modes.

In [68] we developed a general framework for unambiguous classification of op-

tomechanical couplings. This classification allows to identify the type of coupling,

and predict the properties of the system based on that. In particular, coherent cou-

pling allows enhanced laser cooling of mechanical oscillator to its motional ground

state. The main property of coherent coupling – energy conversion between the

modes of different frequencies, can allow new types of quantum optomechan-

ical devices and frequency converters. Further research of different aspects of

coherent coupling is underway. In the next section, I focus on the experimental

investigation of the system as a speedmeter, towards the GW detection.

4.5 Experimental results

It is difficult to directly compare the sensitivity of most quantum speedmeter

designs to a position meter, since their topology and optical parameters differ

significantly. The ring cavity features two output ports, one containing the

position signal, another one containing the velocity signal. All the parameters,

such as cavity length, linewidth or light power, are the same for the speed and

position outputs of the cavity. I propose this design for a direct comparison

between the velocity and position sensitivity.
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In this section I present the first steps towards this goal in a table-top ring cavity

experiment. As I described in the theory section, it is not possible to reach the

quantum-noise limited sensitivity at room temperature with feasible light powers.

Therefore, the goal of the experiment was to demonstrate the speedmeter-like

classical sensitivity (i.e. not limited by quantum noise). This goal was achieved

partially: I demonstrated the speedmeter-type optical transfer function of the

cavity, but the full sensitivity was not achievable due to fundamental limitations

in the experimental setup. In this section, I describe the characterization of the

optomechanical setup, show the experimental sensing of the external signal and

explain the origins of the limitations on demonstrating the full sensitivity of the

speedmeter in this setup.

The experimental setup shown on Fig. 4.7 implemented the proposed ring cavity

design with a micromechanical SiN membrane serving as a central mirror, see

Fig. 4.8

4.5.1 Optical cavity

There were several practical considerations regarding the cavity design:

• Cavity waist size had to be smaller than the membrane size of ∼ 0.5-1mm.

• One of the mirrors had to be curved for the cavity to sustain a stable

Gaussian mode. The angle of incidence on this mirror had to be as small

as possible in order to minimize the ellipticity of the mode. This imposed

some restrictions on the possible length of the cavity: given the size of the

membrane, the membrane holder and positioner, the minimal length could

be around 30 cm.

• One of the back mirrors had to be partially transparent for alignment

purposes, but not too transparent to avoid significant signal leakage.

• The mirrors and membrane had to be adjustable in vacuum for proper

alignment.

These requirements resulted in the design parameters in Table 4.2. The cavity

length was optimized to minimize the effect of high-order optical modes on

112 Chapter 4 Proof-of-principle of a ring-cavity speedmeter



Cavity parameters

Length 39.1 cm
Front mirror power transmission 0.01
Back mirror power transmission 0.0007
Back mirror radius of curvature 25 cm
Back mirror angle of incidence 10.5°
WaistFG 221`m
WaistF~ 229`m
Cavity linewidth peak 1 0.84MHz
Cavity linewidth peak 2 0.95MHz
Cavity resonance spli�ing ∼53.5MHz
Light power input 0.01mW
Light power detection 100 µW

Membrane parameters

Membrane reflectivity 4.6%
Membrane size 1mm × 1mm
Membrane clipping ¡0.002%
Membrane frequency 395.2 kHz
Membrane Q factor 4.6 × 105

Tab. 4.2. Main experimental parameters of the ring-cavity system.

the main resonance, see Fig. 4.9. The cavity spacer was designed by T.Sobo�ke

during his master thesis. The cavity parameters were experimentally verified

by measuring the linewidth of the cavity (with and without the membrane), see

Fig. 4.10.

The laser was stabilized to the cavity resonance by the Pound-Drever-Hall

technique [46, 47]. For that purpose a phase modulation sideband was reflected

off the cavity, and the beat between the main field and the sideband was detected

on a separate photodiode. A�er demodulation at the sideband frequency, the

resulting error signal was fed back to the servo controller with appropriately

designed integrators and filters, which produced a control signal for the piezoac-

tuator acting on the length of a diode cavity in the laser. For the laser that was

used in the experiment (EOM 1W NKT Photonics 15C BoostiK), I designed a

special add-on for the existing servo design, which allowed to directly feed the

output of the servo into the laser.
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Fig. 4.7. Simplified setup of a ring-cavity experiment. The 1550 laser beam was split into
two beams: signal and local oscillator. The local oscillator went through the
phase compensation cavity, which reduced the phase noise, and also cleaned the
spatial mode profile of the beam (see Sec. 4.5.3). The signal beam went through
the electro-optic amplitude modulator (EOAM) that produced the sidebands that
were detected in amplitude modulation PDs, and allowed to probe the optical
transfer function (TF) of the ring cavity. The electro-optic modulator (EOM)
in the signal path generated phase modulation sidebands that were used for
the PDH stabilization of the laser to the cavity resonance: the beat between
the sidebands and the main field was detected on the OM locking PD, which
generated the error signal for the feedback loop to the laser frequency. The signal
beam was injected into the optomechanical cavity, which was placed inside the
vacuum chamber. The velocity port was almost dark, only a small fraction of
the light power leaked into it, and it mainly contained the velocity signal from
the membrane and classical noises. The signal in the position port went through
the Faraday isolator and a PBS for separating it from the incoming beam. Then
both position and velocity signals were overlapped on a PBS, which allowed to
send either of two signals on the balanced homodyne detector. The signal was
then overlapped with the local oscillator beam on a 50:50 beamspli�er. The good
overlap between the beams was controlled by monitoring the matching of both
optical modes, local oscillator and signal beams, to a separate diagnostic cavity.
The spectrum of a differential signal between the two photodiodes of a homodyne
detector was then observed.
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Fig. 4.8. The optomechanical ring-cavity experiment with a membrane in the laboratory.
Le�: a photograph of the experimental setup, with the laser beam drawn in red
(in reality invisible at 1550 nm). An optomechanical ring cavity (top le�) is placed
inside the vacuum chamber. A signal beam propagates through the ring cavity.
The velocity signal is then overlapped with the local oscillator (LO) beam an
detected on a balanced homodyne detector. Right: a schematic of a silicon-nitride
membrane made by Norcada.
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Fig. 4.9. Simulation of resonances of the higher order TEM modes in the ring cavity. The
design length was selected such that there was a minimal overlap between the
TEM00 modes and the higher order modes, such that only one became resonant
at a selected frequency. All modes are normalized to their peak intensity.
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Fig. 4.10. Measurement of the ring-cavity linewidth and the mode spli�ing of the ring
cavity with membrane. The frequency of the laser was scanned continuously,
and the time trace of the power changes in the position port was recorded. The
frequency scale was calibrated using a PDH signal. The power was normalized
to the peak power of the larger peak. The parameters acquired from the fit:
W1 = 0.84MHz, W2 = 0.95MHz, Δl2 = 49.28MHz, A = 3.9%. The experimentally
measured linewidth matched the theoretical prediction of W = 0.84MHz, based
on the mirrors’ parameters. The power of one of the peaks differed from the other
one due to a contribution of a higher-order optical mode that became degenerate
with the TEM00 mode, so the corresponding peak was higher, but also broader.
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4.5.2 Membrane motion

The membrane was positioned inside the ring cavity close to the front mirror

(since the macroscopic position of the membrane did not have an effect on the

resonance structure). The whole cavity was placed inside a vacuum chamber with

residual pressure of 10−7mbar. The vacuum could be maintained with only the

high-speed ion-ge�er pump. This minimized the coupling of acoustic noise to

the cavity. The cavity was isolated from the vibrations of the table by two-stage

passive isolation made of alternating layers of steel sheets and Viton feet. The

optical table itself was floating on air-filled vibration isolation feet.

The position of the membrane could be adjusted by tilting the membrane holder

and displacing the membrane along the optical axis. In the alignment procedure,

the membrane was first positioned perpendicularly to the beam without the

optical cavity (front mirror replaced by a transparent window) and the beam was

centered well on the membrane by monitoring the transmission and reflection

from the membrane on a CCD camera. Then, the front blank substrate was

replaced by a 50:50 beamspli�er, allowing to roughly adjust the cavity around

the membrane and get some interference on the output. In the next step, the

front 50:50 beamspli�er was replaced by a highly reflective mirror, and the final

alignment was performed with minimal adjustments to the incoming beam. The

alignment was done by monitoring the photodiode and the CCD camera placed

in transmission of one of the back mirrors. Finally, the membrane was slightly

tilted by a motorized holder to the position of maximal reflection (by monitoring

the mode spli�ing distance).

When the cavity was brought to resonance, most of the light power was re-

flected directly back to the position port. Only a small fraction of power went

into the velocity port (due to the non-perfectly reflective back mirror). The signal

in the position port was then separated from the incoming field with the help of

a Faraday rotator and a PBS.

The signal from the resonating ring cavity was sent to a balanced homodyne

detector, from two ports: position and velocity. These two signals were overlapped

on a PBS, allowing to switch between detecting one or another without changing

the alignment by blocking one path and adjusting the polarization with a half-

wave plate. This PBS also allowed to adjust the light power to match the signal
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strength in both ports (since position port has most of the input power, it has to

be reduced significantly). The homodyne was adjusted to achieve good visibility

and mode overlap (although it was not critical for the experiment), with the use

of an additional diagnostic cavity. The phase of the local oscillator was actively

stabilized to the phase quadrature, where the membrane signal reaches maximal

strength.

A typical measured spectrum is presented in Fig.4.11. This measurement was

largely limited by the laser phase noise (more about it below). The membrane

motion was produced by thermal Brownian noise exciting the resonance frequen-

cies of the membrane. For a square membrane, these frequencies for the mode

(m,n) are:

5<,= =

√
)

4d

√
<2

- 2
+ =

2

. 2
, (4.114)

where ) = 800 × 106 Pa is the stress of the membrane, d ∼ 2.7 kg/m3 is the

mass density, and (-,. ) are the dimensions of the membrane, see Fig. 4.8. In the

experimental data, the fundamental mode 500 at 395 kHz is well visible, together

with the higher-order modes at (622, 625, 789, 879, 886) kHz.

In order to characterize the membrane, I performed ring-down measurements.

For this measurement, a small piezoactuator was a�ached to the membrane

holder, and the membrane was excited at its resonance frequency by applying a

sinusoidal voltage to the piezo. A�er the oscillation stabilized on a certain level, I

switched off the voltage and recorded the time trace of a ringdown of a membrane

motion. It is convenient to automate the measurement procedure by generating a

square signal on the signal generator with a period of several seconds, trigger the

spectrum analyzer on the downslope of the signal (with small time shi� to the

past in order to capture the flat region), and then set it to average. The spectrum

analyzer should be operating in the zero span mode precisely at the resonance

frequency of the membrane. By repeating this measurement 100 times, I acquired

an averaged trace, presented in Fig. 4.12. From this trace I computed the quality

factor of the membrane by fi�ing an exponential ringdown to the data:

- (C) = - (C0)4−l< (C−C0)&−1 ⇒ & =
10l< (C − C0)

(-dB(C0) − -dB(C)) log 10
(4.115)
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Fig. 4.11. Spectral density of noise and membrane motion. The membrane peaks were
produced by thermal motion of the membrane. The fundamental (1,1) mode
is at 395 kHz. The higher order modes at higher frequencies fit the expected
frequencies. The measurement was limited by the phase noise of the laser, which
was much higher than the shot noise.

The resulting quality factor is & ∼ 4.6 × 105, which is typical for this type of

membrane [186].
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Fig. 4.12. Ringdown measurement of the quality factor of the membrane’s fundamental
mode. The membrane motion was measured without a cavity, i.e. the front mir-
ror of the cavity was replaced by a blank substrate, and the reflection off the
membrane was sent directly to the homodyne detector. The membrane was then
excited at the resonance frequency of 395 kHz, and the time trace of its motion
was recorded. When the excitation was removed, the motion ringed down at the
membrane’s damping rate, which was fi�ed and a quality factor of 4.6 × 105 was
computed a�er multiple repetitions of the measurement.
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4.5.3 Laser noises

Classical laser noises were the main sensitivity limitation in the current setup,

mainly laser phase noise. The laser source was not perfectly monochromatic,

and also had various fluctuations and imperfections that lead to classical power

and frequency (phase) fluctuations. These fluctuations came in addition to the

quantum noises in phase and amplitude quadratures that I considered so far.

Amplitude noise

I measured the amplitude noise of the laser by spli�ing the light field into two

parts with equal power, and sending them on two identical photodiodes, see

Fig. 4.13. The photodiodes measured the amplitude fluctuations in the laser field

that had contributions both from quantum shot noise and classical amplitude

noise. A�er that, I added and subtracted the voltages from these photodiodes.

Since the classical noise was correlated, and quantum shot noise was not, the

subtracted part contained only shot noise, and the added part contained both shot

and amplitude noises. Thus subtracting the two spectra gave only the contribution

of the amplitude noise.

The amplitude noise can be considered as a small modulation 0(C) on the

classical field with average intensity �̄0 and variance Δ2� :

� (C) = �0(C) (1 + 0(C)), (4.116)

Δ
2� (C) = Δ

2�0(C) + �̄02Δ20(C) = �̄0 + �̄02Δ20(C). (4.117)

The contributions from shot noise Δ2�0 = �̄0 and amplitude noise �̄0
2
Δ
20(C) scale

differently with light intensity �0, which makes it possible to distinguish between

the two by measuring the spectrum scaling with power. For example, when the

light power is doubled, the shot noise is increased by 3 dB, and the amplitude

noise – by 6 dB.

This was demonstrated experimentally in Fig. 4.14, where the amplitude noise

was measured by subtracting the shot noise (subtracted voltage spectrum) from

total noise (added voltage spectrum). Since real electronic devices had their own

transfer functions, which were frequency-dependent, in order to obtain the real

spectrum of the amplitude noise, I also accounted for these transfer functions

122 Chapter 4 Proof-of-principle of a ring-cavity speedmeter



Fig. 4.13. The setup used for measuring laser amplitude noise. Laser was split into two
beams on a 50:50 beamspli�er, and the outputs were sent on the photodiodes.
Added photocurrents resulted in a sum of amplitude and shot noise, subtracted
photocurrents contain only the shot noise. Subtracting two spectra allowed to
retrieve the amplitude noise spectrum.

of two photodiodes and an adder/subtractor electronic box. This measurement

demonstrated that in terms of amplitude noise the laser was sufficiently good for

the purposes of my experiment: it was shot-noise limited in the frequency range

of interest (300-600 kHz) for 1mW of light power. Since the typical powers in the

signal beam were on the order of tens of µW, amplitude noise had virtually no

contribution to the sensitivity.
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Fig. 4.14. Amplitude noise of the lasermeasured at frequencies of interest for the experiment.
The sum of amplitude and shot noise was measured with two photodiodes, whose
voltages were added and subtracted. The la�er part contained only the shot noise,
since the correlated amplitude noise was subtracted. This measured shot noise
could then be subtracted from the total noise, thus inferring only the amplitude
noise contribution. The noise was normalized to the shot noise level, and the
scaling of the ratio with optical power was demonstrated. At 1mW the amplitude
noise and shot noise had roughly equal amplitudes. For the light powers in the
signal (less than 100 µW) the amplitude noise had virtually no contribution to
sensitivity.
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Phase noise

Laser phase noise is o�en a limiting factor in laser cavity experiments. As I discuss

in detail in Chapter 3, phase noise in homodyne detection becomes relevant when

the signal and local oscillator paths are not balanced in length. In usual cavity-

based experiments, this imbalance is either rather small to have a significant

effect from the phase noise at frequencies of interest, or it can be compensated

by adding another cavity that compensates the path length difference.

In the ring cavity, the complicated resonance structure complicates mitigation

of the phase noise. In order to compensate the phase delay in such a cavity, one

needs to place exactly the same cavity in the local oscillator path. Usually it is

possible to make the cavities very similar in optical properties. However, in the

ring cavity, also the membrane reflectivity should exactly match the reflectivity

of the membrane in the compensation cavity. Since all membranes are slightly

different in their shape and thickness, they never have the same reflectivity.

This effect is shown in Fig. 4.15, where I compared the transfer functions and

simulated frequency noise in the cases without a compensating cavity in LO

path, and with a compensating cavity, but with imperfect match in membrane

reflectivity. The effect is basically such that the phase noise had significant

coupling even with minimal imbalance. Therefore, such compensation cavity was

not implemented in the experiment. Instead, a usual mode-cleaner cavity without

a membrane was used as a compensation cavity.

I measured the phase noise by transmi�ing the beam through a mode-cleaner

cavity offset from its resonance condition, see Fig. 4.16, and also in an imbalanced

Mach-Zehnder interferometer, confirming that the noise that was limiting the

experiment was indeed the phase noise of the laser.

The investigation of the phase noise in my experiment confirmed the empirical

evidence for difficult balancing of the optical paths for phase noise reduction. Due

to special features of the setup, it was not possible to passively cancel phase noise

by introducing compensation cavities in the local oscillator beam. A potential

solution to this problem was the realization of an active stabilization of the laser

for suppressing the phase noise. However, this remained the task for future

upgrades to the setup.
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Fig. 4.15. Transfer function for the laser frequency noise in different cases: imbalanced –
without compensation cavity in LO path, balanced – with identical cavity in LO
path, various plots for a cavity in LO path with membrane whose reflectivity
differs from themain cavity by XA = A!$−A . This demonstrates that only a perfectly
matched cavity allows for a sufficient cancellation of the frequency noise. The
peaks at ∼ 50MHz correspond to the second resonance of the optomechanical
cavity, where the phase delay acquires an additional contribution. This is high
above all mechanical peaks that I am interested in.
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Fig. 4.16. Laser frequency noise measurement. The noise was measured in transmission
through a filter cavity detuned from its resonance. Frequency fluctuations were
converted into amplitude fluctuations and were detected on the photodiode.
Depending on the offset, the magnitude of the effect changed. The characteristic
ripples in between 100−500 kHz (that were not the membrane peaks) were visible,
as in the spectrum measured on the homodyne detection in Fig. 4.11. The laser
noise peaks were seen at ∼ 900 kHz, that were also identified on the membrane
spectrum in Fig. 4.11. This measurement method did not allow for a calibrated
measurement of the frequency noise, but allowed to confirm the origin of the
limitation of the sensitivity.
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4.5.4 Speedmeter signatures

Optical transfer function

In the course of the experiment, I demonstrated the speedmeter optical transfer

function. For that, I generated an amplitude modulation sideband with an EOAM,

split it on a beamspli�er, detected one part on a broadband photodiode, and

sent the second part into the ring cavity, see Fig. 4.7. The sideband traveled

through the cavity, partially into the position, partially into the velocity port. I

then measured the amplitude of the sideband on another photodiode. The setup

allowed for switching the position and velocity signals by blocking paths and

adjusting polarizations. I ensured the two signals to have the same light power by

adjusting the power with waveplates and PBSs. The ratio between the signals on

two photodiodes gave the optical transfer function at the modulation frequency.

This frequency was swept and the broadband optical transfer function recorded

both for position and velocity signals. The procedure was repeated 10 times (as

long as the setup remained stable) and the signal was averaged. The resulting

optical transfer function is shown in Fig. 4.17. It demonstrates a clear difference

between the velocity and position signals in frequency scaling. While the speed

signal had a small contribution of the position signal (due to imperfectly reflective

back mirror in the cavity), it still remained significantly different from the position

signal. This measurement validated the ring cavity setup as a speedmeter setup.

Signal transfer function

In order to validate the possibility of enhanced sensing, it was necessary to

demonstrate the measurement of an external signal with a mechanical oscillator.

This point became an unexpected difficulty in the experiment. The initial idea

was to measure the response of the membrane to the external force (mechanical

or optical) at frequencies above the mechanical resonance, where the membrane

response could be approximated by the free mass response. In this regime, the

distinction between the velocity and position signals was expected to be most

pronounced, as I showed in the theory sections of this chapter. However, in the

course of the measurement it turned out that the initial analysis did not take into

account the higher order mechanical modes of the membrane.
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Fig. 4.17. Measurement of the optical transfer function of the ring cavity on the position
and velocity ports. The transfer function is measured by observing the change
in the amplitude modulation sidebands imprinted on the light fields as they go
through the ring cavity. The frequency scaling of the position and velocity port is
clearly different and matches well with the theoretical expectations. The fit of
the theory gives an optical linewidth of ∼ 900 kHz, which approximately matches
the independently measured value.
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Fig. 4.18. Theoretical calculation of the signal transfer function for an external force acting
on the membrane as seen on the homodyne detector. The transfer functions are
normalized to their corresponding peak values. The free-mass regime above the
resonance of the fundamental mode is spoiled by the interaction with the next
high-order mode, which makes the observation of difference between the velocity
and position response unfeasible in that frequency regime. The real difference
in scaling is only observable below the first resonance at low frequencies. Its
observation requires, however, a high sensitivity, in particular, low laser frequency
noise at frequencies between 100-300 kHz.
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As I show in Fig. 4.18, the measured difference between the velocity and position

response was expected to be very small - on the order of few dB, and the frequency

scaling barely differed. This prevented observing the speedmeter sensitivity above

the mechanical resonance frequency. It could still be possible to measure the

speedmeter response below the mechanical frequency, although it would require

a significant improvement to the sensitivity of the setup, mainly by reducing the

phase noise of the laser, which is the direction of future research.

Despite that, I demonstrated the sensing of the external signal on the mem-

brane by acting on it with a piezoactuator and observing the optical signal from

the membrane motion on the homodyne detector both in velocity and position

ports. Changing the frequency of the signal allowed to sweep across the mechan-

ical resonance and take a full response to the external signal. As expected, no

difference in frequency scaling between the velocity and position signals was visi-

ble, see Fig. 4.19. However, the signal strength was smaller in the velocity signal,

as predicted by theory in Eq. (4.57). The shape of the experimental data differed

from the theory prediction due to the effects of the low-frequency vibrational

excitations of the holder of the membrane, and the transfer function of electronics

and piezoactuators that were not included in the model.

In this section I demonstrated that although the direct demonstration of the

speedmeter sensitivity was not possible in my experiment due to various limita-

tions of both technical and fundamental nature, it was still possible to observe

some speedmeter features in the ring cavity. I observed the optical transfer

function and reduction in the membrane response, which I found to be in good

agreement with the theory.
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Fig. 4.19. Signal transfer function for external excitation on the membrane as seen on
the homodyne detector: theory and experiment. The experimental curves differ
slightly from theory on the slopes of the peaks due to the unmodeled effects of
low-frequency vibrational excitation from the holder of the membrane and elec-
tronic transfer functions. The overall difference in magnitude between two ports
corresponds to the expected difference in signal transfer function ∼ W2/Ω2 ∼ 8 dB.
Note that the theory curve is not fi�ed to data, but plo�ed as an approximated
model with independently estimated parameters of the system from Table 4.2.
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4.6 Conclusion

An optomechanical ring cavity is new and interesting optomechanical setup. On

the one hand, it features unusual optomechanical properties, such as coherent

optomechanical coupling. On the other hand, it can work as a test-bed for the

speedmeter, allowing to directly compare velocity and position measurements.

The table-top realization in my experiment came with several experimental

challenges, which prevented me from observing speedmeter sensitivity, but still

allowed to see some of the features predicted by the theoretical description. I

observed mode spli�ing and independence of the resonance frequency on the

sensitivity, compared the position and velocity transfer functions, and measured

the external signal on the membrane in both position and velocity ports.

In order to achieve the table-top speedmeter sensitivity it is necessary to use

a different low-frequency mechanical oscillator that has a significantly broad

frequency range where it acts as a free mass, and where the velocity signal can be

observed. This would require active laser frequency stabilization for suppressing

the phase noise. Alternatively, it could be possible to design a membrane that

features a broader frequency range where the motion can be approximated by

the free mass motion. Either way, this remains a direction for future research.

Ultimately, the ring cavity has potential applications in both optomechanics

and gravitational-wave detection.
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Theoretical analysis of

paired carriers for tailoring

sensitivity

5

�antum radiation-pressure noise will become the limiting factor in the sensi-

tivity of future gravitational-wave detectors at low frequencies. There are many

approaches to reducing this noise either by frequency-dependent squeezing, or

by QND measurements. One particular type of a QND measurement – measure-

ment of test masses velocity instead of position – has already been introduced

in the previous chapter. This speedmeter approach promises a significant en-

hancement to the sensitivity, yet it requires substantial changes to the topology

of the detectors. While it is promising for the detectors yet to be built, such as

the Einstein Telescope, turning existing interferometers into a speedmeter might

be challenging. Such approaches exist, but in this chapter I will present another

concept, that takes advantage of quantum entanglement between two light fields

that interact with the same test mass through radiation pressure.

This allows to create a speedmeter-like sensitivity with minimal adjustments to

the general topology of the detector, but with some changes to the core optics. This

paired carriers approach has several other advantages: it enhances the sensitivity

gain from increasing light power and/or squeezing injection; it allows to flexibly

tailor the sensitivity and probe specific frequencies with very high precision.

The paired carriers approach relies on creating entanglement between two light

fields using dynamical back-action in a detuned interferometer, with subsequent

optimal processing of the detected signals.

In this chapter I discuss the concept in detail, provide the theoretical framework

for computing the sensitivities, and demonstrate possible enhancements to the

sensitivity. The results in this chapter were published in [69], the numerical
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optimization was performed in collaboration with N.Voronchev using the so�ware

wri�en by him; theoretical analysis

5.1 Optical spring in gravitational-wave detectors

In a standard interferometer that does not use non-classical states of light, the

best achievable sensitivity is given by a standard quantum limit (SQL). It is not

possible to overcome this limit by merely increasing the light power, and instead

some kind of non-classical light is required. Therefore, the SQL is o�en used as

a benchmark for quantum-noise reduction schemes. For example, a quantum

speedmeter would allow to follow the SQL in a broad frequency band, and even

overcome it with appropriate signal readout.

One of the approaches to reducing quantum noise in GW detectors is modifi-

cation of the test masses’ dynamics by means of the optical spring effect which

arises in detuned interferometers [129, 187, 188]. Optical springs convert GW

detectors test masses into harmonic oscillators with eigenfrequencies within the

detection band, which makes them very sensitive to a signal around this fre-

quency. Rigorously speaking, this approach does not allow to overcome the SQL,

but instead reduces the SQL itself around the eigenfrequency [35]. Unfortunately,

optical springs allow to improve the sensitivity only in a limited frequency band,

while substantially degrading it at other frequencies.

The optical spring approach was further developed in [189, 190], where it was

proposed to use two optical carriers, which create two optical springs of the

opposite signs. Provided the appropriate power, detuning and bandwidth of the

carriers, the total effect of the double optical spring can be described as a negative

optical inertia. It cancels the positive inertia of the test masses, thus increasing

their response to gravitational waves and correspondingly reducing the SQL

within a broad band from zero frequency to some upper frequency, limited by

the available optical power. Unfortunately, estimates show that for the Advanced

LIGO, this upper frequency is equal to only ∼ 50Hz, and scales very slowly (as

�
1/3
2 ) with the circulating optical power �2 [190].

In the articles [131, 191] the double-carrier configuration was proposed as a

mean to create a dynamically stable optical spring. It is known that, depending
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on the detuning sign, a single carrier creates either positive rigidity accompanied

by negative damping, or negative rigidity with positive damping. Both cases lead

to unstable dynamics of the detector. However, by combining two carriers with

different powers and detunings, it is possible to implement a stable configuration

with positive total rigidity and positive total damping. The scheme considered

in [131] is shown in Fig. 5.1. In essence, it is the standard Michelson/Fabry-Pérot

topology of the second generation GW detectors, but with two light sources,

which either have to have orthogonal polarizations, or have to be separated by

one or more FSRs of the interferometer, in order to avoid interference between

them. Each of the two output beams is supposed to be measured by its own

homodyne detector, and their output signals are combined with the optimal

weight functions. In addition, the so called annihilation regime was considered

in [131], which uses the two carriers with equal power and opposite detunings;

as a result, the optical springs created by these two carriers completely cancel

each other.

On first glance this annihilation regime does not look useful: the optical spring

is created with one beam, and canceled with the second beam. However, the two

beams acting on the same mirror become entangled via radiation-pressure force,

which introduces correlations between two beams. It is then possible to measure

the two beams independently, and predict the outcome of one measurement

based on the other, in the EPR style, as in the example of EPR-based frequency-

dependent squeezing [141, 143, 144] I described in Chapter 3. Optimal processing

of the signal from the two beams allows to cancel a significant part of the back-

action, effectively creating a speedmeter-like quantum noise.

In the following, we consider the implementation of this scheme for current

generation of GWOs, like the Advanced LIGO [10]. In particular, we suppose,

that the total circulating optical power of all carriers is limited to 840 kW, which

corresponds to the normalized power � = (2c × 100)3 s−3, with the notation for

this chapter given in Table 5.1
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Fig. 5.1. Gravitational-wave detector with paired carriers. Two independent light fields
of different frequency or polarization get entangled with each other through
optomechanical interaction with the test masses. The two fields are detected on
to separate homodyne detectors, and the outputs of the detectors are processed
with an optimal filter. The correlations between the light fields allow to reduce
the impact of QRPN on the sensitivity.
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�antity Description

2 Speed of light
ℏ Reduced Plank constants
" = 40 kg Mass of each of the arm cavities mirrors
! = 4 km Length of the interferometer arm cavities
l? = 2c2/1.064 `m Optical pump frequency
l0 Resonance frequency of the interferometer
W Half-bandwidth of the interferometer
X = l? − l> Detuning

� =
√
W2 + X2 Effective half-bandwidth

V = arctan
X

W
Normalized detuning

Ω Audio sideband frequency of the GW signal
�2 Optical power circulating in the arm cavities

� =
4l?�2

"!2
Normalized optical power

Z Homodyne angle
42A Squeezing power
\ Squeezing angle
[ Unified quantum efficiency

Tab. 5.1. Main notations used in this chapter.
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5.2 �antum noise in position meter and

speedmeter

�antum noise in a gravitational-wave detector can be generally described by

individual contributions of shot, radiation-pressure and their cross-correlation

noises, as it was discussed in Chapter 3:

(sum(Ω) =
8

!2

[
(GG (Ω) −

2ℜ[(G� (Ω)]
"Ω2

+ (�� (Ω)
"2Ω4

]
, (5.1)

where (GG (Ω), (�� (Ω), and (G� (Ω) are, respectively, spectral densities of the shot
noise, the radiation pressure noise, and the cross-correlation spectral density of

these two noises, which obey the following uncertainty relation:

(GG (Ω)(�� (Ω) − |(G� (Ω) |2 =
ℏ2

4[ (Ω) , (5.2)

where [ ≤ 1 is the quantum efficiency of the detector, which takes into account

both the optical losses and the photodetector quantum efficiency. For simplicity,

we will assume the ideal case of [ = 1 in the rest of this section, although in

general they can have a significant impact on the proposed approach, as on any

other approach taking advantage of quantum correlations.

In the standard case shot noise and the radiation pressure noise are uncor-

related: (G� (Ω) = 0. In this case the minimum of total spectral density (5.1) is

achieved at the free mass SQL:

(SQL(Ω) =
8ℏ

!2"Ω2
(5.3)

As I showed in Chapter 3, the total spectral density of such a detector:

(sum(Ω) =
(SQL(Ω)

2

[
1

KPM(Ω)
+KPM(Ω)

]
, (5.4)

where

KPM(Ω) =
2�W

Ω2(W2 + Ω2) (5.5)
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is the optomechanical coupling factor of the position meter [112]. This spec-

tral density (5.4) reaches the SQL only at one frequency Ω0 which satisfies the

following equation:

Ω
2
0 (W2 + Ω

2
0) = 2�W , (5.6)

and goes above the SQL at all other frequencies. The detector with such sensitivity

is referred to as a baseline detector, with the particular case of � = (2c × 100)3 s−3
and W = 2c × 500 s−1, corresponding to the design values for the Advanced

LIGO [10].

In the general case of (G� ≠ 0, as I discussed in Chapter 3, the minimum of (5.1)

is not bounded by the SQL, and instead follows the QCRB:

(opt(Ω) =
2ℏ2

!2(�� (Ω)
, (5.7)

(G� (Ω) =
(�� (Ω)
"Ω2

. (5.8)

The sensitivity in this case can be increased by increasing the radiation-pressure

noise (e.g. by increasing light power or injecting squeezed light), as required by

the QCRB. The structure of equation (5.8) suggests that this equation can be

fulfilled in a broad band by making either (�� or (G� frequency dependent. These

two options correspond to two methods of overcoming the SQL considered as

the most probable candidates for implementation in the third generation GW

detectors. The first one, proposed in the work [112], is based on use of additional

filter cavities, which allow to create the frequency-dependent cross-correlation of

the quantum noises.

The second method which is more relevant for our consideration, the so-called

“quantum speedmeter”, was first proposed as semi-gedanken scheme in [192] and

later developed into two realistic interferometer topologies (based on the Sagnac

interferometer and on the ordinary Michelson one, but with an additional sloshing

cavity) in papers [121, 176, 193–195]. This scheme is sensitive to the velocity of

test masses, instead of their displacement (hence the designation “speedmeter”).
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This corresponds to the following characteristic frequency dependencies of the

quantum noise spectral densities:

(GG (Ω) =
(EE

Ω2
, (�� (Ω) = Ω

2(?? , (5.9)

where (EE , (?? are spectral densities of the velocity measurement noise and the

momentum perturbation noise, respectively. Note that in the quantum speedme-

ter scheme, the effective coupling of the test mass with the meter is proportional

to its velocity E ; therefore its momentum ? ≠ <E and (?? ≠ <2(EE . Within the

bandwidth of the interferometer, Ω < W , these spectral densities can be considered

as frequency independent ones, which allows to fulfill condition 5.8 in a broad

band by measuring a proper homodyne angle, without using filter cavities.

The explicit equation for the total quantum noise spectral density of the speed-

meter is the following [35]:

(sum(Ω) =
(SQL(Ω)

2

[
1

KSM(Ω) sin2 Z
− 2 cot Z +KSM(Ω)

]
, (5.10)

where the optomechanical coupling factor of the speedmeter KSM is equal to

KSM(Ω) =
4�W

(W2 + Ω2)2 (5.11a)

for the Sagnac-type speedmeter and

KSM(Ω) =
4�W

4W4 + Ω4
(5.11b)

for the speedmeter realized by using an additional sloshing cavity (only the low-

frequency optimized case is shown for brevity, and refer to Ref. [121] for more

details). Note that in both cases (in contrast with KPM), this factor does not

depend on Ω in the asymptotic case of Ω ≪ W .

Therefore, if the shot noise and the radiation pressure noise are not correlated,

that is Z = c/2, then the low-frequency optimization of the optomechanical

coupling that minimizes the spectral density:

KSM(0) = 1 ⇒ � =
W3

4
(5.12)
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gives the total noise spectral density that asymptotically follows the SQL within

the interferometer bandwidth. In particular, in the Sagnac speedmeter case, it is

equal to

(sum(Ω) =
(SQL(Ω)

2

[
W4

(W2 + Ω2)2 +
(W2 + Ω

2)2
W4

]
. (5.13)

In contrast, using the quantum noise cross correlation at low frequencies by

choosing:

cot Z = KSM(0) =
4�

W3
(5.14)

gives the total noise spectral density below the SQL within the interferometer

bandwidth:

(sum(Ω) =
(SQL(Ω)
2KSM(Ω)

{
1 +

[
KSM(0) −KSM(Ω)

]2}
. (5.15)

These two scenarios are illustrated in Fig. 5.2, where the spectral densities (5.4,

5.13, 5.15) are plo�ed for some characteristic values of W and � .

5.2.1 General equations for the quantum noise of a

position meter

In a general case, the sensitivity of a Michelson interferometer with arbitrary

squeezing input and arbitrarily detuned from its resonance (which causes optical

rigidity), can be expressed as (derivation of these equations can be found in [35]):

(sum(Ω) =
8

!2

[
(GG (Ω) + 2ℜ[j∗eff (Ω)(G� (Ω)] + |jeff (Ω) |2(�� (Ω)

]
, (5.16)

where the mechanical susceptibility of a free mass j (Ω) = [−"Ω
2]−1 can be

modified by the optical rigidity  (Ω):

jeff (Ω) =
[
 (Ω) + j−1(Ω)

]−1
=

[
 (Ω) −"Ω

2
]−1

(5.17)

 (Ω) = "�X

D (Ω) , (5.18)

D (Ω) = (W − 8Ω)2 + X2 , Γ =
√
W2 + X2. (5.19)
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Fig. 5.2. Comparison between the total noise spectral densities of speedmeter and position
meter: (black dashed) the baseline interferometer with bandwidthW = 2c×500 s−1
[Eq. (5.4)]; (solid blue) the Sagnac speedmeter without cross-correlation between
quantum noises, and bandwidth W = 22/3 × 2c × 100 s−1 [Eq. (5.13)]; (solid red) the
Sagnac speedmeter with the cross-correlation, with bandwidth W = 2c × 100 s−1,
cot Z = 4, [Eq (5.15)]. The SQL is in black do�ed line [Eq (5.3)]. In all cases,
� = (2c × 100)3 s−3 and [ = 1 (no losses).

144 Chapter 5 Theoretical analysis of paired carriers for tailoring sensitivity



The individual contributions to the spectral density take the form:

(GG =
ℏ

4"�W

1

� 2 sin2(Z − V) + Ω2 sin2 Z
×

×
[
&2
2 (Ω)42A +&2

B (Ω)4−2A +
1 − [
[

|D (Ω) |2
]
, (5.20)

(�� =
ℏ"�W

|D (Ω) |2
[
|%2 (Ω) |242A + |%B (Ω) |24−2A

]
, (5.21)

(G� =
ℏ

2D∗(Ω)
&2 (Ω)%2 (Ω)42A +&B (Ω)%B (Ω)4−2A

� sin(Z − V) − 8Ω sin Z
, (5.22)

where we defined the homodyne angle Z , squeezing phase \ and effective detuning

phase V = arctanX/W , and introduced the effective parameters:

&2 (Ω) = � 2 cos(2V + \ − Z ) + Ω
2 cos(\ − Z ) , (5.23a)

&B (Ω) = −� 2 sin(2V + \ − Z ) − Ω
2 sin(\ − Z ) , (5.23b)

%2 (Ω) = � cos(\ + V) + 8Ω cos\ , (5.23c)

%B (Ω) = −� sin(\ + V) − 8Ω sin\ . (5.23d)

In the next section we present how the complicated frequency dependence in

these spectral densities can result in a speedmeter-like spectral densities.

5.3 Multi-carrier shaping of quantum noise

In a general case of an arbitrary detuning X and homodyne angle Z , the quantum

noise spectral densities of the ordinary Michelson/Fabry-Pérot interferometer

have sophisticated frequency dependencies, see Eqs. (5.20). Here for us the im-

portant regime would be when

����sin(Z − V)sin Z

���� � ≪ Ω ≪ � . (5.24)

In this regime, the shot noise spectral density has a speedmeter-like frequency

dependence:

(GG (Ω) ∝
1

Ω2
. (5.25)
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However, frequency dependencies of the other two spectral densities are improper:

(�� (Ω) ∝ Ω
0 instead of (�� (Ω) ∝ Ω

2 and (G� (Ω) ∝ 1/Ω instead of (G� (Ω) ∝ Ω
0.

Moreover, while the quantum speedmeter requires the free mass dynamics, in

the detuned interferometer the dynamics of the test masses is modified by the

optical rigidity [196]. Therefore, the frequency dependence (5.25) by itself does

not allow to realize the speedmeter-type total quantum noise. It is possible though

to use quantum entanglement between multiple carriers created by the radiation-

pressure noise, and use quantum correlations between the carriers to conditionally

cancel the unwanted parts of QRPN and achieve the desired speedmeter-like

sensitivity.

5.3.1 Conditional measurement of a multi-channel

detector

In this section, we describe the ways to use several channels (measurement de-

vices) all coupled to the same movable mirror. The interaction with the mirror

entangles different channels, and for each channel separately worsens the sensi-

tivity. However, when they are combined in an optimal way, the total sensitivity

can be increased.

Consider a system consisting of # linear meters measuring position G of a

test mass. Each of the meters is described by its measurement noise Ĝ 9 and back

action (radiation-pressure) noise �̂ 9 (8 = 1..# ), with the spectral densities (
( 9)
GG ,

(
( 9)
��
, (

( 9)
G�

. The test object is described by its mechanical susceptibility function

j (Ω) = 1

� (Ω) , (5.26)

with the possible dynamic back action of the meters (the optical springs) included

into it.

In Fourier representation, outputs of these meters are equal to

G9 (Ω) = � (Ω) + � (Ω)Ĝ 9 (Ω) +
#∑
9=1

�̂ 9 (Ω) , (5.27)

146 Chapter 5 Theoretical analysis of paired carriers for tailoring sensitivity



where � is the signal force. The combined output is equal to

G(Ω) =
#∑
9=1

U 9 (Ω)G9 (Ω) = � (Ω) + �̂sum(Ω) , (5.28)

where U 9 (Ω) are weight functions satisfying the normalization condition

#∑
9=1

U 9 (Ω) = 1 (5.29)

and

�̂sum(Ω) =
#∑
9=1

[
� (Ω)U 9 (Ω)Ĝ 9 (Ω) + �̂ 9 (Ω)

]
(5.30)

is the total effective noise force with the spectral density being equal to

(�sum(Ω) =
#∑
9=1

{
|� (Ω) |2 |U 9 (Ω) |2( ( 9)GG (Ω)+

+ 2ℜ
[
� (Ω)U 9 (Ω)( ( 9)G�

(Ω)
]
+ ( ( 9)

��
(Ω)

}
. (5.31)

Using the vector notation, Eqs. (5.29, 5.31) can be rewri�en as follows:

A
†(Ω)1 = 1 , (5.32)

(�sum(Ω) = |� (Ω) |2A†
SGG (Ω)A(Ω)

+ 2ℜ
[
� (Ω)A†(Ω)SG� (Ω)

]
+

#∑
9=1

(
( 9)
��

(Ω) , (5.33)
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where we defined vectors and matrices:

A
†(Ω) =

(
U1(Ω) . . . U# (Ω)

)
, (5.34)

1 = (1 . . . 1)T, (5.35)

SG� (Ω) =
©«

(
(1)
G�

(Ω)
...

(
(# )
G�

(Ω)

ª®®®¬
, (5.36)

SGG =
©«
(
(1)
GG (Ω) 0. . .
0 (

(# )
GG (Ω)

ª®¬
. (5.37)

With account of condition (5.32), the minimum of (5.33) can be found by taking a

derivative with respect to the gain vector and solving the Lagrange equation:

m
(
(�sum + _[1 − A

†(Ω)1]
)

mA†(Ω) = 0. (5.38)

The solution to this equation:

A
†(Ω) = −

_1† + �∗(Ω)S†
G�
(Ω)

|� (Ω) |2 S
−1
GG (Ω) , (5.39)

_ = −
|� (Ω) |2 + �∗(Ω)S†

G�
(Ω)S−1

GG (Ω)1
1†S−1

GG (Ω)1
(5.40)

This allows to define the individual weight coefficients as:

U 9 (Ω) =
1

(
( 9)
GG (Ω)

{
(effGG (Ω) +

[
(eff
G�
(Ω) − ( ( 9)

G�
(Ω)

]∗
� (Ω)

}
(5.41)
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where I introduced the effective noise spectral densities:

(effGG (Ω) =
[
#∑
9=1

1

(
( 9)
GG (Ω)

]−1
, (5.42)

(eff�� (Ω) =
#∑
9=1

[
(
( 9)
��

(Ω) −
|( ( 9)
G�

(Ω) |2

(
( 9)
GG (Ω)

]
+
|(eff
G�
(Ω) |2

(effGG (Ω)
, (5.43)

(effG� (Ω) = (effGG (Ω)
#∑
9=1

(
( 9)
G�

(Ω)
(
( 9)
GG (Ω)

. (5.44)

Taking this all into account, the total spectral density can be expressed in terms

of these effective spectral densities:

(�sum(Ω) = |� (Ω) |2(effGG (Ω) + 2ℜ
[
� (Ω)(effG� (Ω)

]
+ (eff�� (Ω) . (5.45)

This optimization procedure is used to compute spectral densities in the next

section, but in principle the same concept (with the same outcome for the optimal

filter) can be used for any other entangled light fields, see e.g. the EPR-based

frequency-dependent squeezing, see Chapter 3 for details.

5.3.2 Speedmeter-like sensitivity in

Michelson-Fabry-Perot interferometer

Although for an ordinary detector the cross-correlation in the noises and the

optical spring prevent from achieving the speedmeter-like sensitivity, both can

be canceled using the annihilation regime discussed in [131]. Note that (GG is an

even function of X , Z , \ ; (G� is an odd function of these three parameters; and
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 is an odd function of X [see Eqs. (5.20, 5.18)]. Therefore two carriers with the

following parameters:

�1 = �2 , (5.46a)

A1 = A2 , (5.46b)

�1 = �2 , (5.46c)

V1 = −V2 , (5.46d)

Z1 = −Z2 , (5.46e)

\1 = −\2 (5.46f)

(the antisymmetric carriers) create an effective positionmeter with canceled optical

spring and with the quantum noise spectral densities equal to [see Eqs. (5.42)]

(effGG (Ω) =
(GG (Ω)

2
, (5.47a)

(eff�� (Ω) = [ (Ω)
ℏ2

4(effGG (Ω)
+ 2[1 − [ (Ω)](�� (Ω) , (5.47b)

(effG� (Ω) = 0 . (5.47c)

where (GG , (�� describe the individual carriers.

The first (major) term of the back action noise spectral density (5.47b), being

proportional to Ω
2, has the proper speedmeter-like frequency dependence. The

second one (originating from the optical losses) has the ordinary position meter

spectral dependence ((5.20)), which degrades the effect of the described regime.

It is worth noting that the effective back action noise is smaller, than that

just the sum of back action noises of the individual carriers, (eff
��

< 2(�� . This

means that the effective back action noise actually is a conditional one, that is, it

describes only the residual noise remaining a�er subtraction of the part known

to the observer due to the cross-correlation of the shot noise and the radiation

pressure noise. While the residual cross-correlation (5.47b) is canceled, the weight

functions for the individual output signals depend on the cross-correlation spectral

densities of the individual carriers, see Eq. (5.41).

Examples of the resulting total quantum noise spectral densities, based on

the simplified analytical optimization procedure, described in App. A.3.2, are

150 Chapter 5 Theoretical analysis of paired carriers for tailoring sensitivity



101 102 103

f [Hz]

10−24

10−23

10−22

S
h
[1
/
√

H
z]

Fig. 5.3. Plots of the total quantum noise spectral density in the double antisymmetric
carriers regime without squeezing (dashes), with 6 db squeezing (solid), and
with 12 db squeezing (dash-dots). The parameters � , Z , V , and \ are given by
Eqs. (A.116), (A.109), and Table A.1, respectively. Dots: the baseline interferometer
(5.4), at W = 2c × 500 s−1 (dots). Thin solid line: the SQL (5.3). In all cases,
� = (2c × 100)3 s−3 and [ = 1 (no losses).
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shown in Fig. 5.3. Comparison of Figs. 5.2 and 5.3 shows (assuming the Advanced

LIGO parameters), that the double-carrier Michelson/Fabry-Pérot interferometer

can provide the sensitivity comparable with the one of the simplified Sagnac

interferometer with uncorrelated quantum noises described by Eq. (5.13).

One interesting feature of the paired carrier detector is the unusual dependence

of the quantum noise on the circulating optical power and the squeezing power.

Similar to the ordinary single-carrier Michelson/Fabry-Pérot interferometer case

and to the quantum speedmeter one, the high-frequency noise spectral density

decreases with the power and the squeezing increase, albeit the dependence is

different: (�24A )−4/3 [see Eq. (A.121)] instead of (�242A )−1. On contrary to these

cases, the low-frequency noise, a�er the proper adjustment of the parameters � ,

Z , V , and \ , does not change at all. Therefore, the paired-carriers detector does

not require the frequency-dependent squeezing or the variational readout to take

full advantage of the stronger optical power and/or squeezing.

5.3.3 Combining multiple detectors in one

A pair of carrier forms an effectively independent detector. It is thus possible to

combine two pairs in a xylophone configuration: one pair is tuned such that it

increases the sensitivity at low frequency, the other one – at high frequency. The

effective spectral density of each carrier reaches its minimum at frequency Ω0 ∝ �
[see Eq. (A.114)]. The width of this minimum depends on V and the squeezing

power 42A , see App. A.3.2. Varying parameters of the pairs, it is possible to flexibly

shape the resulting total quantum noise spectral density, described by Eqs. (5.1,

5.42).

In particular, the high-frequency sensitivity of the antisymmetric double carrier

regime can be improved by adding one or more additional pair(s) of carriers tuned

to higher frequencies Ω0. For a fixed total power in the carriers, the total power in

each carrier would have to be reduced, which degrades the individual sensitivity.

However, the optimal sensitivity of a xylophon is nonetheless increased.

An example of the configuration with two pairs of antisymmetric carriers

(four carriers total, with the optical power evenly distributed among them) is

shown in Fig. 5.4. Parameters of the low-frequency component are calculated

using the same optimization procedure, that was used for the previous example
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Fig. 5.4. Plots of the total quantum noise spectral densities of the xylophone configuration
with two pairs of antisymmetric carriers with 6 db (solid magenta) and with 12 db
(dash-do�ed blue) squeezing. The values of � are given by Eq. (A.116) the lows-
frequency pair and Eq. (A.123) with Ω0 = 2c × 600Hz for the high-frequency pair.
The parameters Z , V , and \ are given by Eq. (A.109), and Table A.1, respectively.
The optical power is distributed evenly between the all carriers. Dashed red and
greed: the total quantum noise spectral densities of the individual pairs. Do�ed
red: the baseline interferometer (5.4), atW = 2c×500 s−1. Solid black: the SQL (5.3).
In all cases, the total circulating optical power corresponds to � = (2c × 100)3 s−3
and [ = 1 (no losses).
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Fig. 5.5. Total sensitivity of triple-paired detector optimized for a pulsar J0034-0534. Solid
magenta: total quantum noise spectral densities of the xylophone configuration
with two broadband pairs of antisymmetric carriers, with the parameters defined
in the same way as in Fig. 5.4, and one additional narrow-band pair with � =

4c × 532.7 s−1 (the double frequency of the pulsar J0034-0534), V = c/2 − 0.002,
\ = c/2. The optical power is distributed among the all carriers as 45%:45%:10%,
and 6 db squeezing is used for all carriers. Dashes: the total quantum noise
spectral densities of the individual pairs. Dots: the baseline interferometer (5.4),
at W = 2c × 500 s−1 (dots). Thin solid line: the SQL (5.3). In all cases, the total
circulating optical power corresponds to � = (2c × 100)3 s−3 and [ = 1 (no losses).

(see App. A.3.2). For the high-frequency pair, another procedure was used, see

App. A.3.2, which does not take into consideration the radiation pressure noise,

which in this case is negligibly small, but takes into account instead, that the

minimum of the shot noise spectral density has to correspond to some given

frequency Ω0.

The total noise spectral density of the higher-frequency pair in this case scales

with the optical power and with the squeezing power as (�24A )−1 (a bit weaker,
than for a single pair).

The xylophone configuration can also be used to create “on demand” some

special features of the quantum noise spectral density, for example, narrow-
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band minima at some given frequencies, associated with the known pulsars.

This possibility is demonstrated in Fig. 5.5, where the total quantum noise of a

configuration with three antisymmetric pairs is shown. The parameters of the

first two (broadband) pairs are optimized in the same way as described above.

However, 10% of the total optical power is relocated to the third narrow band

pair. Parameters of this pair are calculated using the optimization procedure

described in App. A.3.2. As an example of millisecond pulsars, we have chosen

J0034-0534 [197], which has the rotation frequency 50 ≈ 532.7Hz and therefore

presumably radiates near-monochromatic gravitation waves at frequency 250 ≈
1065.4Hz.

5.4 Discussion

The paired carrier approach to the detector design allows to flexibly shape the sen-

sitivity of the detector. At low frequency it results in a speedmeter-like quantum

noise, following the SQL closely. Additional pairs of carriers allow to increase the

detection bandwidth or create high sensitivity at particular frequencies, where we

expect to see some signal. These additional pairs do not disturb the low-frequency

sensitivity, since they are added coherently in a xylophon configuration.

Another feature of the approach is that a simple brute-force increase of the

circulating optical power and/or the squeezing power improves high-frequency

sensitivity the multi-carrier scheme without degradation of the low-frequency

one. In the “ordinary” single-carrier Michelson interferometer, increase of the

circulating optical power and/or the squeezing improve the high-frequency sensi-

tivity, but degrades the low-frequency one due to increased radiation-pressure

noise. Using frequency-dependent squeezing [111, 113] in an ordinary interfer-

ometer allow to avoid this degradation, but in this case increase of the circulating

power has to be supplemented by the proportional increase of the squeezing in

order to keep the low-frequency sensitivity unchanged. In a realistic setup both

schemes promise similar overall sensitivity gain, but paired carrier approach is

more focused on the low-frequency band dominated by the radiation pressure

noise and provides almost no gain at high frequencies. Both share the same main

shortcoming, namely, the vulnerability to the optical losses, which is a general

5.4 Discussion 155



feature of methods for overcoming the SQL based on the quantum noise cross-

correlation (which includes, in particular, all the filter cavities based schemes, as

well as the quantum speedmeter [35]).

Unlike the speedmeter topologies [121, 176, 194, 195], paired carriers allow only

to reach the SQL in a broad band, but overcome it, since there’s no residual cross-

correlation. However, practically the gain that the speedmeter configuration

can achieve below the SQL is rather limited currently by technical noises, most

notably, the mirrors coating and the suspension thermal noise, and the gravity

gradient noise), while introducing cross-correlation noticeably increases the shot

(high-frequency) noise, see Fig. 5.2. In the paired carrier it is possible to relax

to some extent the anti-symmetry condition (5.46) by removing constrains for

the homodyne and squeezing angles Z and \ , it is possible to create the residual

cross-correlation (G� and overcome the SQL in some frequency band, see Fig. 5.6.

The details of the numerical optimization, and parameters can be found in [69].

The proposed approach is rather challenging experimentally: it requires at least

two carriers, both of them detuned off resonance by a value set with high precision.

These carriers have to be spatially separated on the output and sent to separate

homodyne detectors. For a single pair, this separation can be implemented by

using two orthogonal polarizations for the two carriers, as it was proposed in

the initial paper [131]. In the case of two and more pairs, the output beams

can be separated by means of short (table-top scale) filter cavities. Such cavity

would result in additional loss 1 − [ 5 =
�5

)5 +�5
, where )5 is the input mirror power

transmissivity, and�5 are losses per round trip,�5 ∼ 10−5, the resulting quantum

inefficiency can be on the order of 10−2. This results in an estimation for the

half-bandwidth of such a cavity:

W 5 =
2�5

4; 5 (1 − [ 5 )
∼ 2c × 10 kHz , (5.48)

given the length ; 5 = 1m. If frequency separation between the carriers exceed

100 kHz, which roughly corresponds to three free spectral ranges of the Advanced

LIGO interferometer, then this bandwidth gives the separation efficiency be�er

than 99%. In order to implement different values of the interferometer bandwidthW

for different pairs of carriers, the optical outputs can be equipped by the additional
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Fig. 5.6. Numerically optimized quantum noise spectral densities for one (top) and two
(bo�om) pairs of carriers, with [ = 1 (solid) and [ = 0.95 (dashes). The corre-
sponding optimal parameters are listed in Table II in [69]. In all cases, the total
circulating optical power corresponds to � = (2c × 100)3 s−3 and 6 dB squeezing
is used for all carriers. Dashes: the total quantum noise spectral densities of the
individual pairs. Dots: the baseline interferometer (5.4), at W = 2c × 500 s−1 (dots).
Thin solid line: the SQL (5.3). Thin dashed line: total technical noise, based on
Advanced LIGO design.
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signal recycling mirrors, which either supplement the main signal recycling mirror

or completely replace it.

These challenges motivate further research into the practical implementation

of paired carriers in future gravitational wave-detector. In particular, of inter-

est are a combination with another approach taking advantage of entangled

light [141, 143, 144], and a combination with quantum expander, as presented in

Chapter 8.
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First demonstration of

beating the standard

sensitivity-bandwidth

limit with internal

squeezing

6

�antum noises are always present in any quantum metrological device. In

particular, measurement noise and measurement back-action noise limit the

sensitivity of these devices. As I discussed in previous chapters, it can be avoided

by back-action evading measurements or QND techniques. Measurement noise

is a more fundamental limit to sensitivity. Nevertheless, it can be squeezed.

In cavity-based devices, such as gravitational-wave detectors, not only the

maximal sensitivity is important, but also the frequency bandwidth in which the

detector is most sensitive. In this chapter, I introduce the standard sensitivity-

bandwidth limit (SSBL) on the sensitivity of a cavity-based detector. This limit

cannot be overcome without using nonclassical states of light. I introduce the

concept of internal squeezing, and discuss how it allows to beat the standard

sensitivity-bandwidth limit of a single-cavity detector. I present the experimental

demonstration of beating this limit by 36%.

Although in this chapter I talk about single-cavity detectors, this discussion

can be extended to a more general case of cavity-enhanced systems with multiple

cavities, such as gravitational-wave detectors.

The results of this chapter were published in [70]. The experiment was per-

formed in collaboration with Lisa Kleybolte using the squeezed-light experimental

setup built by her and homodyne detector provided by Stefan Ast.
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6.1 Introduction

As discussed in Chapter 1, according to the Heisenberg uncertainty principle,

one has to increase the uncertainty in the light’s amplitude quadrature in order

to improve the measurement sensitivity by decreasing the uncertainty in the

light’s phase quadrature. Since energy is needed to increase the uncertainty,

the sensitivity limit of an interferometer is set by the optical energy inside the

cavity [34, 151]. In a more general case of arbitrary signal waveforms, this con-

sideration leads to the�antum Cramer-Rao Bound (QCRB) for the estimation

of signals in Gaussian quantum noise: at each signal frequency, the maximal

phase sensitivity is inversely proportional to the fluctuations in the amplitude

quadrature at the same frequency [153, 154], as I discussed in Chapter 2.

Based on the QCRB, first of all, the concept of enhancing the sensitivity with op-

tical cavities can be understood. Both amplitude and phase quadratures resonate

inside the cavity and have their uncertainties amplified within the bandwidth

of the resonance, and a�enuated at other frequencies. In the case of a coherent

input field and a simple Fabry-Perot cavity the state remains coherent inside

the cavity. The standard sensitivity-bandwidth limit is defined as the maximum

product of a peak sensitivityS and a detection bandwidthB, that can be achieved

using coherent states of light and a given light power %2 inside the cavity [155]:

S × B ≤ 8c%2/(ℏ_!), where _ is the optical wavelength, ! is the cavity length

and ℏ is the reduced Plank constant.

We discuss three different strategies for improving the sensitivity of a cavity-

enhanced detector beyond the SSBL, see Fig. 6.1. The first approach is based on the

white-light cavity effect [133, 198–201]. It broadens the cavity resonance without

changing the finesse, increasing the amplitude fluctuations in a broader frequency

band. As a result, the variance of amplitude quadrature inside the cavity increases

above the vacuum uncertainty, and so does the sensitivity-bandwidth product. It

was proposed recently that the white-light cavity effect can be achieved by using

an anomalously dispersive medium inside the cavity [135–137, 202].

The second approach is called external squeezing. In this case, the uncertainty

of the optical field that is injected into the cavity is squeezed below the vacuum

level in the phase quadrature, without influencing the signal enhancement due to

the optical cavity [40–42, 44, 45, 66, 67]. The bandwidth remains unchanged, and
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Fig. 6.1. Three different approaches to improving the sensitivity (noise-to-signal ratio) of
a baseline detector (gray) beyond the SSBL. Internal squeezing approach (red)
generates squeezed states inside the detector cavity. The sensitivity is increased
maximally at low frequencies, and remains unchanged at high frequencies outside
the cavity’s linewidth. External squeezing approach (violet) generates quantum
squeezed states outside the cavity. The sensitivity is enhanced in a broad band.
White-light cavity approach (blue) increases the cavity linewidth with negative
dispersion medium inside the cavity. The sensitivity is enhanced at high frequen-
cies.
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hence the standard sensitivity-bandwidth limit is surpassed due to the increased

peak signal-to-noise ratio.

The third approach is internal squeezing [203–205]. Here, squeezed states of

light are produced inside the detector’s cavity, for instance using an optical

parametric amplifier. In contrast to external squeezing, in this approach, the

phase quadrature squeezing happens mainly inside the optical cavity linewidth

and affects both the noise and the signal. The amplitude quadrature uncertainty

is correspondingly increased above the vacuum level, and in accordance with

the QCRB, the sensitivity increases: the noise is squeezed more than the signal

is deamplified. The detection bandwidth narrows in this case, but the peak

sensitivity is increased even more strongly, which allows the standard sensitivity-

bandwidth limit to be surpassed.

In the following sections I provide the theoretical background for calculating

the effect of internal squeezing on the sensitivity-bandwidth product, and then

describe the experiment we performed to demonstrate the ability to surpass the

standard-sensitivity bandwidth limit.

6.1.1 Energetic quantum limit

In order to measure a small change in the light phase produced by an external

classical force, it is necessary to reduce the phase fluctuations in the light field.

According to the Heisenberg uncertainty principle, that requires increasing the

energy fluctuations, as I discussed in Chapter 2. In fact, the argument has to

be reversed: energy defines the resource available for storing the information.

Heisenberg uncertainty relation ensures that it leads to increased resolution in

phase [34]. Therefore, in order to increase the signal-to-noise ratio (SNR), it is

necessary to increase the energy fluctuations, or in other words the fluctuations

of amplitude quadrature of the light field.

This statement is known as the Energetic�antum Limit [151]. To express this

statement mathematically, we define the measured spectrum as

(total(Ω) = (= (Ω) + |) (Ω) |2 |G (Ω) |2, (6.1)
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Fig. 6.2. Internal squeezing approach to cavity-enhanced quantum metrology. Top: a
concept of internal squeezing. The phase quadrature of the input coherent light
field is squeezed inside the cavity, deamplifying the signal at the same time.
Signal deamplification is smaller than the noise reduction by squeezing, so the
sensitivity increases. An increased amplitude quadrature, according to the QCRB,
leads to the enhancement of the sensitivity-bandwidth product beyond the SSBL.
Bo�om: sensitivity enhancement by internal squeezing. The three curves show the
quantum measurement noise of a cavity-based detector with the same coherent
light power in its arms, normalized to a phase signal optical transfer function.
The peak sensitivity S is defined as the inverse of the minimum of the curves;
the bandwidth B is the frequency at which the noise rises by 3 dB above its
minimal value. The standard sensitivity-bandwidth product remains constant for
a given coherent light power inside the cavity: to increase the peak sensitivity by
10 dB, the finesse F has to be increased by a factor of 10, thus the bandwidth
decreases by the same amount (compare red dashed and blue dashed-do�ed
curves). When the sensitivity enhanced with internal squeezing (violet solid
curve) the bandwidth is larger than the one of a classical detector with increased
finesse (blue dot dashed).
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where (= (Ω) is shot-noise, G (Ω) is a classical signal, and ) (Ω) is the transfer

function of the signal through the cavity to the detector. Then, according to the

Energetic �antum Limit, the integrated SNR, assuming a signal equal to unity

G (Ω) = 1, is limited by:

d ≡
∫ lFSR

0

|) (Ω) |2
(= (Ω)

3Ω

2c
≤ l0%c!

ℏ2
+%% , (6.2)

where+%% is the variance of the amplitude quadrature of the light, 2 is the speed of

light, l0 is the carrier light angular frequency and lFSR is the free spectral range

of the cavity. Here, the equal sign stands for the quantum-noise limited case

without optical loss. For an optical cavity the amplitude quadrature fluctuations

have to be high inside the cavity, as that is where the transfer of information to

the light field occurs.

For optical cavities, the SNR has a Lorentzian profile. Therefore, it is pos-

sible to define the peak sensitivity S as the SNR at zero frequency, and it’s

bandwidth B as the half width at half maximum. In this case, the integrated

SNR by definition is equal to the sensitivity-bandwidth product: d = S × B.
For the coherent field, +%% = 1, the sensitivity-bandwidth product is limited

by S × B = l0%c!+%% (ℏ2)−1 = l0%c!(ℏ2)−1. This limit that is achievable with

coherent light we call the SSBL.

We mentioned three different ways of increasing the quantum fluctuations of

the amplitude quadrature inside the detector. Leaving aside the white-light cavity

approach, here, we compare internal and external squeezing. In the case of exter-

nal squeezing, the increase in the SNR is proportional to the amount of injected

squeezing at all frequencies, provided that the bandwidth of external squeezing is

large compared to the detector’s bandwidth. Consequently, detection bandwidth

remains unaffected. In the case of internal squeezing, the parametric amplifi-

cation reduces the phase quadrature of the light and amplifies the amplitude

quadrature. The phase quadrature sidebands are suppressed mostly inside the

cavity bandwidth, and there is li�le deamplification outside the cavity bandwidth.

As a result, the bandwidth of the optical transfer function is increased, both for

signal and quantum noise. However, the bandwidth of the SNR is reduced, since

both the signal and the squeezed quantum noise become closer to the coherent

level (more about it below). Another way of seeing that is the following: internal
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squeezing increases the SNR inside the cavity optical linewidth, but not outside,

therefore the detection bandwidth is effectively decreased, see Fig. 6.2. As the

bandwidth is reduced, in order the Energetic �antum Limit to be satisfied, it is

necessary that the SNR is increased more, than the bandwidth is reduced, which

is what we observe in the presented experiment. At the same time, when compar-

ing the internal squeezing with a classical detector of the same peak sensitivity,

internal squeezing results in a broader bandwidth, as dictated by the increase in

the sensitivity-bandwidth product, see Fig. 6.2.

6.2 Theoretical calculation

We consider the propagation of a signal through a Fabry-Perot cavity with a

nonlinear crystal inside, see Fig. 6.3. Pumping the crystal with light of the dou-

bled frequency leads to optical parametric amplification of the cavity mode. The

highest squeeze factor inside the cavity is achieved around cavity resonance and

is limited to 6 dB. At this level, the threshold for optical parametric oscillation is

reached, and the amplified amplitude quadrature becomes unstable and causes

lasing [168, 169]. However, the squeeze factor outside the cavity is not fundamen-

tally limited, due to destructive interference between the incoming vacuum field

and outgoing squeezing [206]. The signal, on the contrary, originates from the

inside of the cavity, and does not experience this such interference. Therefore,

the deamplification in the signal remains limited to 6 dB. The resulting difference

between noise squeezing and signal deamplification constitutes the gain in the

signal-to-noise ratio (SNR), which represents the sensitivity of the detector. On

the other hand, the bandwidth gets reduced, as the internal squeezing increases

the sensitivity only inside the cavity linewidth, and leaves it unchanged outside.

Despite this, the sensitivity-bandwidth product is enhanced, according to the

QCRB, as we amplify the amplitude quadrature fluctuations inside the cavity.

In order to compute this, we start by writing down the input-output relations,

as prescribed in Chapter 3. While it’s o�en more convenient to use matrix form

of input-output relations, in this Chapter I explicitly go through the derivation,

since the system allows for a methodological demonstration. The procedure is

standard, but one needs to keep in mind several key points: i) the signal appears
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Fig. 6.3. The schematic representation of the cavity system. The signal B = 28:?G (Ω)
originates from the displacement G (Ω) of the back mirror which is assumed to be
of infinite mass (such that its dynamics does not influence the sensitivity). Two
sources of loss are assumed: internal loss and detection loss. Both are modeled
with a beamspli�er. The optical parametric amplification process creates a gain
in one of the quadratures, and an a�enuation in the orthogonal one.

only in the equations for the phase quadrature of the light field; ii) the optical

loss is modeled by a beamspli�er reflecting some part of the light fields to the

environment and mixing in some vacuum from the environment; iii) the optical

parametric amplification process is simplified to a simple gain medium, which

linearly amplifies with gain 4@ a specific quadrature (amplitude in our case) and

deamplifies the orthogonal one. We call @ the squeezing factor in single pass

through the crystal.

The system of input-output equations for the amplitude (denoted by G) and

phase (denoted by ~) quadratures reads




0G (Ω) = CcEG (Ω) + Ac1G (Ω),
1G (Ω) = 0G (Ω)CintAb428Ωg42@ + =cG (Ω)CintCb48Ωg4@ + Aint=intG (Ω),
3G (Ω) = Cdet (−AcEG (Ω) + Cc1G (Ω)) + Adet=extG (Ω),

(6.3)




0~ (Ω) = CcE~ (Ω) + Ac1~ (Ω),
1~ (Ω) = 0~ (Ω)CintAb428Ωg4−2@ + 28:?�G (Ω)Cint48Ωg4−@+

+=c~ (Ω)CintCb48Ωg4−@ + Aint=int~ (Ω),
3~ (Ω) = Cdet

(
−AcE~ (Ω) + Cc1~ (Ω)

)
+ Adet=ext~ (Ω).

(6.4)

Here g = !/2 is the round trip propagation time, with ! being the length of the

cavity; 2 is the speed of light, @ is the single pass squeeze factor, G (Ω) is the
mirror displacement induced by a signal, :? is the wave vector of the carrier
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field, � is the mean amplitude of the light field inside the detector, Cc,b, Ac,b are

the amplitude transmissivity and reflectivity of coupling and back mirrors, such

that A 2
c,b

+ C2
c,b

= 1, Adet is the detection loss, Aint is the intra-cavity loss without the

coupling and the back mirrors; A 2
det,int

+ C2
det,int

= 1. This set of equations can be

solved for the detected fields 3G,~ :

3G (Ω) =
Cdet

4−2@ − 428ΩgAcAbCint

(
EG (Ω)

(
−Ac4−2@ + AbA 2int428Ωg

)
+

+ =cG (Ω)CcCbCint4−@48Ωg + =intG (Ω)CcAint4−2@)
)
+ Adet=extG (Ω), (6.5)

3~ (Ω) =
Cdet

42@ − 428ΩgAcAbCint
×

×
(
28:?�G (Ω)CcCint4@48Ωg + E~ (Ω)

(
−Ac42@ + AbCint428Ωg

)
+

+ =c~ (Ω)CcCbCint4@48Ωg + =int~ (Ω)CcAint42@)
)
+ Adet=ext~ (Ω). (6.6)

The spectrum of the noise 0(Ω) is defined as:

(0 (Ω)X (Ω − Ω
′) = 1

2
〈0(Ω)0(Ω′) + 0(Ω′)0(Ω)〉 . (6.7)

Assuming that all noises in the system are uncorrelated (as they are quantum

vacuum fluctuations), we find the spectral density of the detected noise in the

signal quadrature:

(= (Ω) = 1 −
C2c C

2
det
C2int(1 − 4−2@) (1 + 4−2@A 2b)

1 + A 2cA 2bC2int4−4@ − 2AcAbCint4−2@ cos 2Ωg
. (6.8)

The transfer function of the signal G (Ω) through the optical cavity to the detector

is:

) (Ω) = 28:?�
CcCdetCint4

@48Ωg

42@ − 428ΩgAcAbCint
, (6.9)

and it’s spectral shape:

|) (Ω) |2 = 8c%2

ℏ_2

4−2@C2c C
2
det
C2int

1 + A 2cA 2bC2int4−4@ − 2AcAbCint4−2@ cos 2Ωg
, (6.10)

where %2 = ℏ:?2 |� |2 is the light power inside the cavity, and _ is the carrier

wavelength.
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6.2.1 Optical parametric oscillation threshold

The squeezing value cannot be arbitrary large inside the cavity, as at some pump

power the cavity will become unstable and initiate lasing. We can find the stability

criterion from the equation for the amplitude quadrature inside the cavity to be:

1G =
EG (Ω)AbCcCint42@428Ωg + =cG (Ω)Cb4@48Ωg + =intG (Ω)Aint

1 − AcAbCint42@428Ωg
. (6.11)

The threshold value represents the condition, at which the gain becomes larger

than the total loss: leaking through the coupler transmission and the round trip

loss. This condition is defined by se�ing the denominator equal to zero, and is

reached when

42@ =
1

AcAbCint
. (6.12)

It is straightforward to see from Eq.(6.8) that at the threshold parametric gain,

without detection loss, the noise is fully suppressed on resonance: (= (0) = 0,

which corresponds to infinite squeezing. At the same time, the signal is only

reduced by a factor of 4 in this limit. As expected, the SNR is increased.

6.2.2 Maximal squeeze factor inside the cavity

It is well-known that there is a limitation to the amount of squeezing (and signal

deamplification) inside the cavity [168, 169]. Since this limitation on the signal

deamplification is crucial for our consideration — the difference between the signal

and noise behavior allows to increase the SNR — I demonstrate this limitation

explicitly.

Inside the cavity, the squeezing spectrum of the phase quadrature is (in the

assumption of the sideband frequency being much smaller than the cavity FSR):

( in(Ω) =
A 2cA

2
int + C2c + A 2cC2bC2int4−2@ + C2cA 2bA 2intC2int4−4@

(1 − AcAbC2int4−2@)2 + 44−2@AcAbC2intΩ
2g2

. (6.13)

At the threshold, in the limiting case Af,b → 1, Aint → 0, the amount of squeezing

approaches

( in(0)/( in(0)@=0 →
1

4
, (6.14)
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which is what we call the 6 dB squeezing limit. On the other hand, in some

literature one can find 3 dB as the intra-cavity limit for squeezing. This limit

refers to the maximal reduction in the noise variance of the cavity mode. Indeed,

by integrating the spectrum (6.13) over the full frequency range and applying the

same limits one finds the value of 1/2 as a limit.

6.2.3 Single-mode approximation

The expression for the spectral density (6.8) and signal transfer function (6.10) can

be simplified by making the standard single-mode approximation. The amplitude

transmissivities of the coupling and the back mirrors, as well as the internal

loss, are much smaller than unity, and we can approximate correspondingly

Ac,b ≈ 1 − C2
c,b
/2 and Cint ≈ 1 − A 2int/2; the squeezing factor @ is much smaller

than unity, so we can approximate 4@ ≈ 1 + @; the frequency of interest is much

smaller than the FSR of the cavity Ω ≪ 1/2g , which enables us to make a Taylor

expansion: cosΩg ≈ 1 − Ω
2g2/2.

We define three quantities that influence the cavity bandwidth: cavity decay

rate through the coupling mirror, squeezing rate and the round-trip optical loss

rate, correspondingly:

Wc =
2C2c
4!
, WB =

@2

!
, W; =

2;2

4!
, (6.15)

where ;2 = A 2int + C2b is the total loss inside the cavity. We can define the common

bandwidth for the noise and signal transfer functions: Γ = W2 + WB + W; .

Taking into account the single-mode approximation, and the newly defined

bandwidth contributions, we can simplify Eqs.(6.8), (6.10) to

(= (Ω) ≈ 1 − 4WcWB

Γ2 + Ω2
[, (6.16)

|) (Ω) |2 ≈ 8c%2

ℏ_!

Wc[

Γ2 + Ω2
, (6.17)
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where [ = 1 − C2
det

is the detection efficiency. The ratio between these quantities

constitutes the signal-to-noise ratio

|) (Ω) |2
(= (Ω)

=
8c%2

ℏ_!

Wc[

Γ2 − 4WcWB[ + Ω2
. (6.18)

It’s peak value S ≡ |) (0) |2/(= (0) and bandwidth B are given by

S =
8c%2

ℏ_!

W2[

B2
, (6.19)

B =
√
Γ2 − 4W2WB[. (6.20)

The sensitivity-bandwidth product naturally emerges from computing the inte-

grated sensitivity:

d =

∫ lFSR

0

|) (Ω) |2
(= (Ω)

3Ω ≈ S × B, (6.21)

where lFSR is a free spectral range of the cavity.

The standard sensitivity-bandwidth limit is defined for the absence of internal

squeezing and internal loss (i.e. WB,; = 0):

(S × B)WB=0 =
8c%2

ℏ_!
(6.22)

The internal squeezing enhances the sensitivity-bandwidth product beyond the

standard limit by:

(S × B)/(S × B)WB=0 =
W2 + W;
B

. (6.23)

In a more general case, when the single-mode approximation is not valid (like in

our experiment), a be�er way to demonstrate the enhancement is to compute

the integrated sensitivity d directly from Eqs. (6.8), (6.10).

6.3 Experimental demonstration

6.3.1 Experimental setup

In our proof-of-principle experiment, the signal was generated by injecting a

phase modulated field from the back of the Fabry-Perot cavity with the optical
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parametric amplifier inside. In terms of signal detection and observation of the

internal squeezing effect, this approach was viewed as a one-to-one analogy to a

detector with a movable end mirror sensitive to the external force. The advantage

of our approach was that it allowed for signal generation in a broad frequency

band, which was necessary to observe the change in the detection bandwidth.

The experimental setup, shown in Fig. 6.4 consisted of a second harmonic gen-

eration cavity (SHG), producing 775 nm light for optical-parametric amplification

of the longitudinal resonance at 1550 nm of our internal squeezing cavity (ISC).

The cavity had an optical length of ! = 3.69 cm, an optical linewidth (half-width

at half maximum) of W2 ∼ 2c × 54MHz, and contained a periodically poled KTP

(PPKTP) crystal [106]. A control field at 1550 nm with a phase-modulation signal

imprinted on it was injected from the highly reflective back side of the ISC. The

signal was produced by the broadband fiber electro-optical modulator (EOM).

The cavity length was stabilized via the Pound-Drever-Hall (PDH) locking tech-

nique [46, 47]. The ISC had two locking modes — with and without the pump

light. When the measurements with squeezing were taken, the cavity length was

stabilized with 775 nm light, while the 1550 nm control field was used to stabilize

the squeezing angle in the phase quadrature. When the measurements without

squeezing were taken, the 775 nm pump was turned off, and the cavity length was

stabilized with the 1550 nm control field. Between consecutive measurements,

the system was out of lock, and had to be brought to the optimal working point

for the new measurement, which caused some variations in data. The signal with

and without squeezing was detected with a high-efficiency broadband homodyne

detector with a bandwidth of ∼ 800MHz and dark noise clearance of ∼ 13 dB in

the frequency range of interest from 10 to 200MHz. The homodyne detector had

an electrical high-pass, which prevented it from detecting squeezing at very low

frequencies. The maximal squeezing observed was around 6.8 dB below shot noise

level. The full spectrum is shown in Fig. 6.5. The main limitation to the squeezing

level came from the detection efficiency, which was estimated to be 82-86% for

different measurement sets. The total detection loss had contributions from the

quantum efficiency of the photodiods in the homodyne detector, mode mismatch

between the local oscillator beam and the squeezed mode, and propagation losses

in various optical elements.
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Fig. 6.4. Experimental setup — The internal squeezing cavity (ISC) was resonant for both
the fundamental wavelength 1550 nm and the second harmonic wavelength
775 nm used for pumping the nonlinear crystal. The pump was generated in
a second harmonic generation (SHG) cavity. Through the highly reflective back
mirror, a beam at 1550 nm was injected, carrying a phase modulation signal
between 5.5 to 151MHz and phase modulation sidebands at 54MHz for Pound-
Drever-Hall (PDH) cavity length stabilization (not shown in the picture), both
generated by the fiber EOM. The output signal, consisting of squeezed light and
the deamplified signal sideband, was detected on a balanced homodyne detector
using 2.8mW local oscillator (LO) power, with an overall detection efficiency
of ∼ 85%. The phase of the local oscillator was actively stabilized to the phase
quadrature and the phase of the pump was stabilized to produce squeezing in
this quadrature.
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Fig. 6.5. Noise spectral densities measured on the homodyne detector: squeezing (orange),
anti-squeezing (blue), vacuum (green) and dark (grey) noises. The reduction below
20MHz was due to the high-pass in the homodyne circuit board. Peaks at 53, 101,
108, 119MHz were electronic pickups from the environment, in particular from
frequency generators used to produce control signals. Jumps in the dark noise
around 34, 58, 82, 106MHz were due to the spectrum analyzer sampling.
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Fig. 6.6. Example of experimental data. Signal and shot noise were measured on the
homodyne detector. When the pump of the ISC was switched on, the quantum
noise was squeezed and the signal was deamplified. At low frequencies, within
ISCs’ bandwidth (le� plot), squeezing and deamplification were stronger than
at high frequencies outside the bandwidth (right plot). The dark noise of the
homodyne detector was not limiting the measurement precision.

Measured noise suppression was compared to the signal deamplification. We

created a phase modulation signal at different frequencies. At each frequency,

we detected the signal together with the noise on the homodyne detector, in two

regimes: with the optical parametric amplification being on and off. The noise

was detected over a narrow frequency band around the signal frequency, see

Fig. 6.6, and then averaged over this band to obtain an estimate of the squeezing

level for this signal frequency. This allowed us to observe how the signal got

deamplified and the noise got squeezed. The combined spectra with signal can

be seen in Fig. 6.7.

From the squeezing spectrum, we estimated the experimental parameters:

squeezing factor @, transmissivity of the coupling mirror Cc, internal loss ;
2 and

detection efficiency [. The fi�ed upper bound on the internal loss, ;2 ≤ 2300 ppm,

resulted in a round-trip loss bandwidth of W; ≤ 2c × 743:�I ≪ W2 . This value
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Fig. 6.7. Signal and noise measurements. Every point corresponds to a set of data as
in Fig. 6.6, and was normalized to the vacuum noise level and the electrical
transfer functions, with subtracted dark noise. The signal was suppressed at high
frequencies due to the cavity bandwidth, which was the origin of the sensitivity-
bandwidth limit. When the ISC generated squeezing, it also deamplified the
signal, but the signal deamplification was weaker than the noise suppression,
which allowed to gain in the SNR. The gain was strong at low frequencies within
ISC bandwidth, and reduced at high frequencies.
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Fig. 6.8. Beating the standard sensitivity-bandwidth limit with internal squeezing. In
the plots, we demonstrate the increase in the signal-to-noise ratio for different
total quantum efficiencies of [ = 0.86, 0.85, 0.84, 0.82. The squeezing data (green
rhombus) was fit with a theoretical curve (green dashed line), and the parameters
of the system were estimated from the fit. The signal deamplification is repre-
sented by the red dots. It is compared to the results of the theoretical modeling
(black solid line) with parameters obtained from the squeezing measurement,
where the gray area represents the confidence interval based on the estimation
error. The difference between the two data sets directly demonstrates the in-
crease in the SNR, corresponding to enhancements of (36%, 33%, 31%, 26%) in the
sensitivity-bandwidth product beyond the standard limit, depending on the de-
tection efficiency [. The data for signal deamplification suffered from instabilities
in the setup (since every point required re-locking the setup twice) and only a�er
optimizing the setup and exchanging the homodyne detector electronics the last
data set (bo�om plot) was more stable at a price of reduced efficiency. This data
set was selected for the publication [70].
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was consistent with the previously measured absorption of a PPKTP crystal [207],

and the manufacturer-specified transmissivity of the back mirror (C2
b
= 0.05%

at 1550 nm) and bound on the anti-reflective coating of the crystal (A 2 < 0.1%).

The coupling mirror transmissivity of C2c = 15% at 1550 nm was confirmed by an

independent measurement of the cavity finesse. The detection loss estimation

was also bounded within 1% of the estimated value by comparing squeezing

and anti-squeezing spectra [106, 107]. We used these estimated parameters to

calculate the expected theoretical spectrum of the signal deamplification and

compared it with the measured values. The details on the experimental setup for

squeezed-light generation can be found in the thesis of Lisa Kleybolte [208].

Fig. 6.8 compares noise squeezing with signal deamplification for different

detection efficiencies. The difference between the squeezing and deamplification

curves directly represents the gain in the SNR at a given frequency. We collected

four data sets. First, three with one homodyne detector, which had slightly

higher detection efficiency, but was prone to electronic instabilities caused by

control signals. As a result, the data had more spread. For the final set of

data, we used another homodyne detector with be�er stability but slightly lower

detection efficiency. For this set, we found the theory to be in good agreement

with the experimental data, lying within the confidence interval obtained from

the parameter estimation error. We ascribe the observed discrepancies to the

electronic resonances in the homodyne circuitry and wires that were not taken

into account in the theoretical analysis.

The experimentally achieved enhancement factors (36%, 33%, 31%, 26%) repre-

sented four different overall detection efficiencies [ = 0.86, 0.85, 0.84, 0.82.

6.3.2 Data analysis

Unlike squeezing spectrum, the data for signal deamplification had a rather

significant spread. It was also difficult to collect sufficient statistics on the signal

strength, since every measurement would require a time-consuming re-locking

the system. As a result, every data point for the signal was a single random sample

out of statistical distribution for the fluctuating signal strength. Inferring any

experimental parameters, like the SNR, by fi�ing the theory curve into data would

yield highly uncertain results. Instead, our approach was to use the independently

6.3 Experimental demonstration 177



estimated parameters of the system, to plot the theoretical prediction for what

the signal deamplification should be, and to compare the experimental data

with this prediction. Most of the parameters could be measured independently,

except for the internal gain and internal loss values. To obtain theses values,

we used the fit of measured squeezing spectrum with these two parameters as

fi�ing parameters. Squeezing was more stable and reproducible, and allowed

to compute an average level and a standard deviation for values around every

signal frequency. We collected this statistics and then propagated the errors from

parameter estimation to the theoretical model for the signal deamplification.

This allowed to compute the confidence intervals for the model, and see that the

experimental data was within these intervals.

The full procedure went as follows. First, the data in a small frequency span of

100 kHz around every signal frequency was processed for removing any spurious

spikes higher than 3f above the average in a small running window. The dark

noise was subtracted and data was normalized to the resolution bandwidth. Then,

the signal was corrected for the EOM transfer function to ensure that the signal

strength was equal for every frequency. The signal level was obtained as the

peak point, and the noise level as the average of the noise over the small range

around the peak. While, in general, due to the cavity bandwidth, the noise has a

slope and such estimate could be biased, the frequency span of choice (100 kHz)

was much smaller than the bandwidth of the ISC (∼ 60MHz), so the effect was

negligible. The average value of squeezed shot noise (() a�er subtracting the dark

noise (�) and normalizing to vacuum noise (+ ) and its variance is:

(E =
( − �
+ − � , (6.24)

Δ
2(E = (+ − �)−2Δ2( + (2E (+ − �)−2Δ2++

+ ((E − 1)2(+ − �)−2Δ2�+
+ 2((E − 1) (+ − �)−2cov(�, ()−
− 2(E ((E − 1) (+ − �# )−2cov(�,+ ), (6.25)

where Δ2(,Δ2+ ,Δ2� are the experimental variances of not-normalized shot, vac-

uum and dark noises, and cov(�, (), cov(�,+ ) are the covariances between the

corresponding noise traces. For every measurement frequency, the corresponding
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average values and variances were calculated and used for fi�ing the theoretical

squeezing curve into this data using the least squares algorithm. From the fit,

the values of front mirror transmissivity, single-pass gain, internal losses and

detection losses were obtained.

The theoretical prediction for the signal was based on the best-fit parameter set

obtained from the squeezing values. In order to account for estimation and mea-

surement uncertainties, the most credible region for the signal was computed by

performing a Monte-Carlo simulation [209]. For that purpose, at every frequency,

a random value for the squeezing level was sampled from a normal distribution

centered around the average, with the variance being the sum of the residuals

from the fit and the measured variance (6.24). For the new set of generated data

a new fit was computed, with a new set of parameters. The process was repeated

1000 times, resulting in a distribution for a set of parameters. This distribution was

averaged, and the standard deviations for every parameter was calculated. Then

these average parameters were used to compute the theoretical predictions, and

the standard deviations allowed to set the confidence interval for this prediction.

The confidence interval was computed by performing the bounded optimization

for the squeezing and signal shapes to obtain the minimal and maximal possible

curves given the parameters’ standard deviations as bounds.

As a result, I obtained a theoretical prediction for the signal deamplification that

was based solely on the parameters from the squeezing fit. This prediction was

independent of the quality of the signal data, which varied due to the instabilities

in the system and the necessity to re-lock it for everymeasurement, which resulted

in unavoidable dri�s. Despite that, the data mostly fell within the confidence

intervals for the theoretical prediction.

Finally, the enhancement factor to the sensitivity-bandwidth product was

computed by numerically integrating the signal-to-noise ratios (and comparing it

to the sensitivity-bandwidth product as obtained from fit parameters).

6.4 Discussion and outlook

In summary, this chapter serves as the introduction to internal squeezing ap-

proach to quantum metrology. QCRB and the energetic quantum limit allow to
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gain a new intuition into the ways of achieving a be�er sensitivity. The insight

about the necessity to increase the amplitude fluctuations on the mirrors is es-

pecially useful: it allows to approach the experimental design from a different

perspective. For the cavity-enhanced detectors, the sensitivity-bandwidth product

provides a convenient value to judge the possible enhancement to the sensitivity.

It also provides a unified view of three different non-classical concepts for im-

proving the quantum measurement noise limited sensitivity of cavity-enhanced

laser interferometers. All of them can be seen as concepts of beating the stan-

dard sensitivity-bandwidth limit, which is unsurpassable without using quantum

states of light. Two of these concepts: “white-light cavity” and “external squeez-

ing”, have been investigated intensively in recent years for the improvement of

gravitational-wave detectors [134, 202, 206]. The third concept, “internal squeez-

ing”, is investigated here, theoretically as well as experimentally, and also with

the intention of improving gravitational-wave detectors. We presented the first

experimental demonstration of beating the standard sensitivity-bandwidth limit

with internal squeezing.

The most mature quantum enhancement concept is external squeezing, and it

is already implemented in all gravitational-wave detectors [41, 44, 45]. Since it

avoids any deamplification of the signal and squeezes shot noise in a broadband

way, it provides larger improvement to the sensitivity-bandwidth product than

the internal squeezing does. However, external squeezing is more sensitive to

intra-cavity losses than internal squeezing. This can be understood in the limiting

case when the cavity’s round trip loss equals the coupler’s transmissivity. In this

case, the cavity is impedance matched for external squeezing and no squeezing

gets reflected off the coupling mirror. By contrast, in the internal squeezing case,

only half of the squeezing produced inside the cavity is lost through the back

mirror. The other half is coupled out through the front mirror, resulting in a

maximal measurable squeeze factor of 3 dB. I discuss the consequences of that

for quantum limits in the next chapter.

The consideration presented in this Chapter focused on a detector based on

a single cavity. This approach can be generalized for a cavity-enhanced laser

interferometer. In particular, quantum noises in a gravitational-wave detector,

which is tuned to a signal-recycling (narrow-band) mode, can be described by the

equations for a single cavity [196]. Therefore the results of this section can be
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considered as a proof-of-principle for such signal-recycled detector. Currently

the detectors operate in a signal-extraction (broadband) mode, which results

in a different effect of internal squeezing. I compare the two cases in details

in Chapter 8. From a practical perspective, when implementing the internal

squeezing concept in gravitational-wave detectors, the nonlinear crystal would

have to be placed in the dark output port, between the central beamspli�er and

the signal-extraction mirror [210]. More details about the implementation of the

internal squeezing are discussed in Chapters 8,9.

Ultimately, internal squeezing serves as a tool that allows to take advantage of

the quantum noise, and it works best in combination with external squeezing, as

I show in the next chapters.
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Analysis of compensation

of quantum decoherence

with internal squeezing

7

�antum states of light are very fragile, and even a small amount of decoherence

can significantly reduce the effect they have on a system. In optics themain source

of decoherence is optical loss, leading to a fraction of the quantum state being

lost and replaced by vacuum. While modern metrological devices benefit from

the best optical components, they are never devoid of some loss. For squeezed

light, this loss directly leads to a reduced suppression in the shot noise of the

laser.

It was theorized by Miao et al. [211] that while QCRB is the ultimate limit on

measurement precision, there exists another limit, caused by quantum decoher-

ence. In this chapter, I build up on this work, and show that internal squeezing

allows to surpass this proposed limit. Instead, I show that there exists another

lower limit, and make a connection to the previously established limit by Miao et

al.. I demonstrate how the optimal choice of internal gain allows to compensate

part of the decoherence.

Optical loss can occur in several places: inside the detector’s cavity, which I

call internal loss; on the path from the cavity to the photodetectors, including the

photodetection inefficiency, which I call detection loss; in the case of additionally

injected external squeezing — injection loss, which destroys the purity of the

injected state. I make an argument that internal loss is most fundamental and

defines the ultimate limit to the sensitivity. Detection loss, on the other hand,

can be mostly compensated by appropriate optimization of the internal gain. The

notion of optimal internal gain was proposed in [70, 71], and here I study it in

more detail. Counter-intuitively, I show that is some cases it is optimal not to

183



squeeze the noise inside, but to amplify it instead. At first glance, this defies the

QCRB logic, but I show that in fact there is no contradiction.

The discussion in this chapter goes beyond purely methodological study of the

quantum limits, and allows to re-think the approach to the experimental design

of cavity-enhanced metrological devices. In particular, many devices that use

weakly nonlinear materials in their cavities (such as whispering-gallery-mode

resonators [212–214]) and have large losses that prevent them from using external

squeezing efficiently, can benefit even from weak internal squeezing for increasing

the sensitivity.

7.1 �antum limit from decoherence

7.1.1 Physical picture

I start with presenting an physical argument for the existence of an optimal

internal squeeze factor. The optimal point in internal squeezing exists for every

combination of experimental parameters, and this point can be well below the

threshold value.

Consider the following simple argument. The maximal detectable squeeze

factor is bounded by the amount of optical loss. The loss of squeezing can be

seen as mixing with vacuum [215]. Therefore, above a certain value, the increase

in squeezing is not detectable any more. However, the signal deamplification is

independent of the detection loss, and has weaker dependence on the internal

loss. Therefore, increasing the internal gain above a certain level deamplifies the

signal, but does not suppress the shot noise further (since it is limited by loss). As

a result, above this level the signal-to-noise ratio drops. This level corresponds

to the optimal internal squeezing. It is also useful to look at this level from a

different perspective.

Consider the example of detecting some signal� embedded in squeezed vac-

uum with a squeeze factor A . The detected signal and noise includes the effect of

detection efficiency [:

( = [ (4−2A +�2) + 1 − [, (7.1)
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Fig. 7.1. Illustration of optical loss as a cause of reduced SNR and the way to compensate
for it. Top: squeezed noise and a signal experience optical loss. The signal is
reduced, the noise is increased due to mixing with vacuum. As a result, the SNR
is reduced. Bo�om: parametric gain amplifies both the signal and the noise above
the vacuum uncertainty level. Both of them are affected by optical loss in the
same way, since mixing with vacuum does not have a significant effect on the
noise. As a result, the SNR is preserved.
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such that the SNR is reduced due to the vacuum noise destroying the correlations

in squeezed vacuum: SNR = [
(
1 − [ (1 − 4−2A )

)−1
. It was proposed by Caves [66]

and recently re-investigated experimentally [216] that the detection loss can be

mitigated by parametric amplification of the signal and noise before detection.

The idea of this approach is to amplify both the signal and the noise by the same

amount before it experiences loss, such that the resulting noise is much above

vacuum uncertainty, and the loss does not affect it significantly. Consider the

same signal as above, but now with an additional amplification of the signal and

noise by a factor 4@ :

(@ = [ (4−2A +�2)42@ + 1 − [, (7.2)

The SNR is given by SNR = [42@
(
1 − [ (1 − 4−2A42@)

)−1
. Without amplification,

@ = 0, in the limit of large squeezing, 4−2A ≈ 0, the SNR is limited to SNR@=0 ≤
[ (1 − [)−1. When the amplification is moderate, @ = A , the SNR scales linearly

with loss and amplification: SNR@=A = [42A . When the amplification is large,

@ → ∞, the SNR becomes independent on the loss: SNR@→∞ = 42A , and only

benefits from initial squeezing.

This parametric amplification generally does not have to occur outside the

detector. In fact, if the external squeezing is injected into the detector, internal

squeezing can serve as such parametric amplifier for avoiding the detection loss.

There is a subtle point there, because the internal squeezing, unlike the original

proposal, operates in the loop of the optical cavity, and acts on the signal and

external squeezing differently. However, I will exploit exactly this concept to

derive the new decoherence-induced quantum limit, updating the results of Miao

et al. [211].

7.1.2 Computing the decoherence-induced limit

In order to compute the new decoherence-induced limit, I start with the model of

internal squeezing described in the previous chapter, in Eqs. (6.10),(6.8). I proceed

to apply the single-mode approximation as in Chapter 6.2.3, but write the equa-

tions in a slightly different notation, in order to more directly compare the results

to [211]: nint = A
2
int, next = A

2
det
, C1 = 0,)2 = C

2
2 . For the demonstration purposes I

limit the analysis here to the case of a tuned cavity, while it’s straightforward
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to generalize it to the detuned case without adding substantially new physical

insights. I assume the external squeezing is injected into the cavity, with the

spectral density (EE = 4
2@input . With these assumptions, I obtain the noise spectral

density:

(= (Ω) = 1 − 16@)2 (1 − next)
(4@ +)2 + nint)2 + 16Ω2g2

−

−
(1 − 4−2@input) (1 − next)

(
(4@ −)2 + nint)2 + 16Ω2g2

)
(4@ +)2 + nint)2 + 16Ω2g2

(7.3)

and the signal transfer function:

|) (Ω) |2 = 8c%2

ℏ_2

4)2 (1 − next)
(4@ +)2 + nint)2 + 16Ω2g2

(7.4)

For simplicity, I first consider a low-frequency case: Ω ≈ 0, and compute

different limiting cases and which limits they lead to. First I compute the QCRB,

which is a lossless case, nint = 0, next = 0:

(
QCRB

ℎℎ
=

ℏ22

32%2l0!2
4−2@input ()2 − 4@)2

4)2
, (7.5)

where I normalized the sensitivity to the GW strain ℎ0 = G/!. Notably, in the

lossless case the sensitivity becomes unlimited, (
QCRB
GG = 0, at the parametric

threshold: @ = )2/4.
Clearly, optical losses will prevent from achieving the QCRB. It is therefore

possible to compute the new limit (n
ℎℎ
, induced by the losses. One way of doing it

is to follow Miao et al. [211] and assume that this this limit will be additive to the

QCRB, i.e. (min
ℎℎ

≈ (QCRB
ℎℎ

+ (n
ℎℎ
. However, this approximation does not hold in all

experimental se�ings. In order to account for a broader range of experimental

parameters, it is useful to directly minimize the full spectral density (ℎℎ and then

compare it to the QCRB. I show below that choosing the optimal internal gain

allows to surpass the limit (n
ℎℎ
.

First, I consider several limiting cases for the internal squeezing at threshold

regime: @th = ()2 + nint)/4. It is important that unlike Miao et. al. [211], I don’t

assume the smallness of external loss [ext and also keep the possibility of the front

mirror’s transmission to be on the same order as internal loss (thus the threshold
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is slightly different). I compute the sensitivity limits in the two ultimate cases:

without input squeezing, and with infinite input squeezing:

(nℎℎ (@input = 0) = ℏ22

32%2l0!2
1

1 − next

(
)2next + nint +

n2int
4)2

)
, (7.6)

(nℎℎ (@input → ∞) → ℏ22

32%2l0!2
1

1 − next

(
)2next + nint +

nextn
2
int

4)2

)
. (7.7)

Notice, that in the case of small detection loss I recover the limit in [211]. The

limit with infinite input squeezing is strictly lower than the limit without input

squeezing (notice the factor next < 1 in front of the last term in the equation

above).

For future comparison it is also useful to consider the case without internal

squeezing, @ = 0:

(nℎℎ (@ = 0, @input = 0) = ℏ22

32%2l0!2
1

1 − next
×

×
(
)2

4
next +

1

2
nint +

n2int
4)2

)
, (7.8)

(nℎℎ (@ = 0, @input → ∞) → ℏ22

32%2l0!2
1

1 − next
×

×
(
)2

4
next +

2 − next
2

nint +
nextn

2
int

4)2

)
. (7.9)

It is interesting to note that in the case without internal squeezing the limit is 4

times lower than in the case with at-threshold internal squeezing. This occurs due

to 6 dB of signal deamplification in the case of internal squeezing at threshold.

This does not mean that internal squeezing is not useful, since it does lower the

QCRB, and thus the total sensitivity (min
ℎℎ

.

However, the maximal benefit to the sensitivity can be obtained by optimizing

the total sensitivity (ℎℎ with respect to the internal gain. The optimal internal

gain @opt allows to reach the optimal sensitivity, which becomes a new sensitivity

limit:

(
opt

ℎℎ
=

ℏ22

32%2l0!2

(
)2next

1 + next(42@input − 1) + nint
)
. (7.10)
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In the absence of external squeezing I achieve:

(
opt

ℎℎ
(@input = 0) = ℏ22

32%2l0!2
()2next + nint) (7.11)

which looks like the limit in [211], but it has no assumptions on the detection loss.

Notice, that in this case the QCRB is not zero, since the internal squeezer operates

below threshold. There’s no sense in which it’s useful to split this sensitivity into

two contributions like (
opt

ℎℎ
= (

QCRB

ℎℎ
+ (n

ℎℎ
.

Finally I can compute the ultimate limit for infinite squeezing:

(
opt

ℎℎ
(@input → ∞) → ℏ22

32%2l0!2
nint. (7.12)

This is the ultimate limit to the sensitivity, and it can be significantly lower

than (n
ℎℎ
. There are several important conclusions I draw from this section:

• The ultimate limit on the sensitivity is defined only by internal loss;

• This limit is strictly below the previously reported (n
ℎℎ
;

• In this consideration the input state considered to be pure, i.e. there’s no

injection loss.

In the next section I discuss the physical nature of the new limit, and connect it

to the intuitive picture I developed before.

7.2 Optimal gain

It is instructional to see how the optimal internal squeezing depends on the

parameters of the system:

@opt ≈
1

4

(
−nint +)2

(
1 − 24@inputnext

cosh@input + (1 − 2next − 2nint) sinh@input

))
(7.13)

In the limiting case of infinite input squeezing, where the new limit is achieved,

the optimal internal gain is exactly opposite to the threshold value: @opt → −@th =
−()2 + next)/4. This connects to the intuitive picture I presented above. In order
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Fig. 7.2. Relative improvement from optimizing the internal squeezing compared to the
case without internal squeezing. Top: relative improvement compared as a func-
tion of detection loss for different levels of internal loss, for 15 dB external squeez-
ing. Bo�om: relative improvement as a function of detection loss for different
levels of input squeezing, for nint = 0.001. For all plots )2 = 0.01,Ω = 0.

to avoid the detection loss, one can amplify the signal together with the noise

right before the detection, keeping the signal-to-noise ratio intact. Here, internal

squeezing acts to fulfill this condition.

In the other case without input squeezing, the optimal gain is:

@opt(@input = 0) = 1

4
()2 (1 − 2next) − nint)) = @th −

1

2
()2next + nint), (7.14)
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which is clearly below the threshold, but is still above zero for as long as the

approximation used for calculation is valid (i.e. relatively small loss and trans-

missivity). In this case the purpose of internal squeezing is to generate as much

squeezing as possible, at the same time keeping the deamplification of the signal

as low as possible, given the losses in the system (which connects to the intuitive

picture from the previous section).

When input squeezing is nonzero, the optimal internal squeezing reflects a

combination of detection loss mitigation and balancing the signal deamplification.

Having gained this insight into the nature of the internal squeezing effect on the

sensitivity limit, I explain the relation of the new limit to the QCRB. As I discuss in

Chapter 2, the ultimate limit — QCRB — depends on the interaction Hamiltonian

between the light and the probe. This Hamiltonian is defined by the properties of

light and test mass at the point of interaction. Therefore the state of light would

affect the QCRB, but anything that happens upon the detection would not. From

this point of view it becomes clear why internal loss sets the ultimate limit, and

the detection loss can be avoided. Internal loss destroys the correlations that

directly enter the interaction Hamiltonian, and thus has an effect on the QCRB.

Detection loss reflects an imperfection in our measurement protocol and thus our

inability to reach the QCRB. Internal squeezing cannot have a significant effect on

the internal loss (although it does squeeze the vacuum that entered with internal

loss on each round trip, but only slightly so), so the main effect it can have is the

Caves’ parametric amplification for avoiding the detection loss. It might seem

counter-intuitive that the optimal internal gain can be full amplification of the

phase quadrature, which should reduce the amplitude quadrature, going against

the QCRB statement. However, it’s important to remember, that the maximal

deamplification (in amplitude quadrature in this case) reaches 6 dB inside the

cavity, and when the injected squeezing is infinite, it would produce infinite

anti-squeezing to the amplitude quadrature, thus fulfilling the requirement for

lowering the QCRB.

7.2.1 Benefit of internal squeezing in numbers

First, I demonstrate the benefit of internal squeezing compared to the case without

internal squeezing in Fig. 7.2. One can see that the benefit is higher for lower input
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squeezing: because then internal squeezing works to generate more squeezing.

For higher input squeezing the benefit increases with increased detection loss,

since then internal squeezing works to compensate detection loss. Internal loss

defines the sensitivity limit, so the higher it is, the smaller is the benefit from

internal squeezing. There also exists a detection loss value for which it’s optimal

not to squeeze internally, since the introduced signal deamplification exactly

cancels a potential benefit.

Now, when it’s clear that internal squeezing in most cases is beneficial, in

Fig. 7.3 I compare it to the limit in [211], i.e. with internal squeezing at threshold.

As expected from the equations, when the detection loss is small, the effect

is negligible (since internal squeezing works best when there is detection loss

to compensate). However, as the detection loss and input squeezing increase,

the benefit increases, and at the same time it requires less squeezing, quickly

transitioning into the amplification regime (negative values for @). For example,

already for a detection loss of around 5% (which is smaller than the current loss

in gravitational-wave detectors) it becomes optimal to amplify inside (for 15 dB

of input squeezing).
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Fig. 7.3. Relative improvement from optimizing the internal squeezing compared to the
case of internal squeezing at threshold: the improvement (

opt

ℎℎ
/(n
ℎℎ

(solid), and the
corresponding optimal internal gain relative to the threshold @opt/@th (dashed).
(Top) relative improvement as a function of detection loss for different levels of
input squeezing, for nint = 0.001; (bo�om) relative improvement as a function of
internal loss for different levels of detection loss, for 15 dB external squeezing.
Internal gain is optimized to squeezing for low losses, but for high losses switches
to parametric amplification regime (values below zero). For all plots)2 = 0.01,Ω =

0.
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7.3 Frequency dependence

In the previous Sections I considered only the effect of internal squeezing on the

peak sensitivity. In general, as I explained in the previous Chapter, it is important

to also consider the detection bandwidth, and the sensitivity-bandwidth product

as a generic measure. Internal squeezing reduces the effective bandwidth of the

system, and the higher the squeezing is, the smaller is the bandwidth. How-

ever, since the peak sensitivity increases faster, the overall sensitivity-bandwidth

product increases too.

In Fig. 7.4, I show the gain in the SNR relative to the case without internal

squeezing, and the corresponding reduction in the squeezer’s bandwidth, when

no input squeezing is present. As in the previous Section, here the clear optimum

point is reached for every experimentally detected squeezing level (which in turn

corresponds to the internal gain). This theoretical prediction is compared to the

experimental values I obtained in the experiment described in Chapter 6.

When input squeezing is added, internal squeezing acts in different ways

depending on the loss level, as described in the previous Section. The bandwidth

is always smaller than in the case without internal squeezing, but its dependence

on the losses is nontrivial. In Fig. 7.5, I show the enhancement relative to the case

with input squeezing, demonstrating that the sensitivity can be always enhanced,

despite the reduction in bandwidth. I also show the enhancement relative to the

SSBL, demonstrating that although the main contribution comes from the input

squeezing, internal squeezing helps to gain sensitivity. In this case the bandwidth

can also be enhanced in some parameter regimes, due to nontrivial dependence

of the bandwidth on losses and squeezing levels.

The reason for input squeezing to have higher contribution to the overall

sensitivity gain is the deamplification of the signal due to internal squeezing.

Consider the noise suppression of 10 dB both in the case of input and internal

squeezing. Input squeezing would result in 10 dB of increased sensitivity. Internal

squeezing (at threshold) would result only in 4 dB increase. However, the key

difference is the behavior with loss. Ultimately the best sensitivity is given by the

optimal combination of input and internal squeezing.
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Fig. 7.4. Dependence of the gain in the signal-to-noise ratio (top le�) and the reduction
in the bandwidth (top right) on the detected squeeze factor. Different plots
represent the influence of the detection loss on the enhancement. The existence
of an optimal squeezing is demonstrated. The shaded region represents the
parametric gains for which the intra-cavity field becomes unstable. (Bo�om) the
gain in the sensitivity-bandwidth product as a function of detected squeezing
for different values of experimental loss factors with experimental points from
Chapter 6 (dots on theoretical lines).
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Fig. 7.5. Effect of optimal internal squeezing on the detection bandwidth (top) and the
sensitivity-bandwidth product S × B. Le�: the changes relative to the standard
interferometer without internal or external squeezing. Right: the changes relative
to the baseline interferometer without internal squeezing. The optimal internal
squeezing is different for different parameters, and influences the bandwidth
differently. The sensitivity-bandwidth product is enhanced always except for a
single specific value of detection loss. Bo�om le�: the solid line is a combination
of optimal internal squeezing with input squeezing, dashed line is only input
squeezing. Input squeezing provides the main contribution to the enhancement,
internal squeezing helps to suppress the detection losses. For all plots )2 =

0.01, nint = 0.0001.
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7.3.1 Injection loss and additional amplification

Finally, in order to complete the consideration, I provide the expression for the sen-

sitivity including the injection loss for input squeezing. This expression also takes

into account an additional Caves-style amplifier before the detection. Such three-

stage squeezing scheme (input, internal, output) would yield the best sensitivity

with any combination of losses.

In order to include the injection loss ninput, I add a loss termwhen computing the

spectral density, i.e. < E~, E~ >= 42@input (1−ninput) +ninput. The output amplification

would be represented as a linear gain 4@out just before the detection loss term.

The resulting sensitivity with optimized internal gain (in the single-mode

approximation):

(
opt

ℎℎ
(Ω) =

)2ndet
(
4−2@input

(
1 − ninput

)
+ ninput

)
42@out (1 − ndet)

(
4−2@input

(
1 − ninput

)
+ ninput

)
+ 1

+ nint+

+ 4Ω2g2

)2 (1 − ndet)
{
4−2@outndet + 4−2@input (1 − ndet)

[
1 −

(
1 − 42@input

)
ninput

]}
. (7.15)

It is interesting to consider limiting cases here as well. In the limit of infinite

input squeezing (at zero frequency):

(
opt

ℎℎ
(Ω = 0, @input → ∞) →

)2ndetninput

ndet + 42Aoutninput (1 − ndet)
+ nint. (7.16)

Without output amplification (Aout=0), the limit is dependent on the injection

loss. From the QCRB point of view, it’s rather clear: the injected state is no

longer pure, and that impurity contributes to the interaction Hamiltonian. The

internal squeezing is unable to compensate that effect, since it has to find the

optimum between countering detection and internal loss. Therefore, an additional

term turns to zero both when the injection loss is zero (then internal squeezing

compensates detection loss), and detection loss is zero (then internal squeezing

compensates injection loss).

Interestingly, in the limiting case of infinite output amplification, the result is

independent on the input squeezing @out → ∞:

(
opt

ℎℎ
(Ω = 0, @out → ∞) → nint, @opt = ()2 − nint)/4. (7.17)
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This result is clear: the detection loss is fully compensated by output amplification,

and internal squeezing can be used to create maximal squeezing (taking into

account balance between signal deamplification and internal loss).

7.4 Discussion

In this chapter I explore the potential of internal squeezing for compensating

decoherence in quantummetrological devices. I show that the previously reported

limit [211] can be surpassed by using the optimal choice of internal gain. This

gain depends on the parameters of the system, and in some cases can be set to

amplifying the phase quadrature, instead of squeezing it. In general, internal

squeezing is in the unique position of being able to improve the sensitivity in two

directions: either by maximizing the SNR directly, when the loss is small, or by

amplifying the signal together with the noise in order to avoid large detection

losses. The optimal spectral density I compute in Eq. 7.15 takes into account all

major sources of loss and frequency dependent cavity response.

I show that the best sensitivity with finite squeezing levels can be achieved

when three parametric processes are involved: input, internal, and output squeez-

ing. The choice of implementing them, however, relies on interplay between the

anticipated benefit (which for some parameters can be marginal), and experimen-

tal complexity. Some of the technical issues have not yet been taken into account

here: i) the loss introduced by placing the crystal inside the detector; ii) the loss of

introducing an output amplifier; iii) the detection loss was assumed to occur a�er

the parametric amplifier, but in reality it would be split into two contributions —

before and a�er; iv) all the issues of control. These are the directions of future

studies.

The analysis as presented here is readily applicable to quantum-metrological

devices that are not limited by QRPN at low frequencies, and whose principle

schemes can be reduced to a single cavity. Especially the cavities that naturally

have nonlinearmaterials in them (such as on-chip devices [217, 218] or whispering-

gallery-mode sensors [147, 150, 219]). For these devices squeezing injection might

be challenging, and the readout is o�en subject to losses. Then internal squeezing

can become a useful tool for achieving quantum improvement to the sensitivity.
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In GWD, however, large squeezing at low frequency will lead to increased

QRPN, thus degrading the sensitivity instead of increasing it. QRPN can be

avoided or suppressed by increasing the mass of the mirrors, but in general the

design of the detector with internal squeezing would require a separate analysis.

In particular, the technical details of implementing the crystal inside the detector

have not been considered here. In the next chapter I discuss the realistic design of

a detector with internal squeezing, where it plays a different role: the combination

of specific tuning of the detector and internal squeezing can expand the detection

bandwidth without affecting the low-frequency sensitivity. In the next Chapter, I

also go into much more technical details of placing the crystal inside the detector.
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Proposal for quantum

expansion of detection

bandwidth

8

The issue of detector bandwidth becomes crucial in the era of multi-messenger

astronomy [3]. The information about physics of extremal nuclearma�er is hidden

in waveforms of gravitational waves radiated from the post-merger remnants

of binary neutron star systems [220]. Obtaining this information is important

for unraveling the physics of compact astrophysical objects - the engines that

drive gamma-ray bursts, the origin of heavy elements and possible modifications

to general relativity [221, 222]. These waveforms have typical frequencies above

1 kHz, where the sensitivity of current observatories degrades due to limited

bandwidth.

Over the past 20 years the challenge of increasing the bandwidth without

changing the peak sensitivity at low frequencies has become one of the corner-

stones for the design of future gravitational-wave detectors [133, 198]. Previous

concepts involved unstable optomechanical or atomic systems in the so-called

“negative dispersion” operation [134–137, 202].

In this chapter I present a new concept of expanding the detection bandwidth

based on the internal squeezing approach, see Fig. 8.1. In addition to internal

squeezing, quantum expander utilized the coupled-cavity structure of the GWD.

Due to the optical coupling between the cavities, the quantum uncertainty at

high frequencies gets squeezed such that it compensates the reduction in signal

enhancement due to the cavity linewidth, see Fig. 8.2 At low frequencies nei-

ther signal nor quantum noise change, which maintains the existing sensitivity,

which is optimized for observing the pre-merger stages of binary coalescence.

This approach is fully compatible with other enhancements to the detector de-
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Fig. 8.1. Conceptual representation of the GW observatory with our quantum expander.
The relative change in the distance between the central beamspli�er and the
test masses due to a gravitational wave is measured on the signal port with a
photodiode PD. Optical cavities in the arms are used to enhance the light power
and the signal. Additional mirrors independently enhance the signal (signal
extraction mirror) and power (power recycling mirror, PRM). We add a nonlinear
j (2) crystal into the signal extraction cavity, formed by the SE mirror and input
mirrors, which creates internally squeezed light field to boost the high-frequency
sensitivity and expand the detection bandwidth.

sign, such as injection of frequency-dependent squeezed light or variational

readout [35, 112, 223, 224].

Placing an optical parametric amplifier inside the detector has been consid-

ered for other purposes before, i.e. for increasing the low-frequency [70] or mid-
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frequency [72, 203, 205] sensitivity, yet all-optical quantum expansion of band-

width has never been proposed so far. The results presented in this chapter are

published in [71].

Fig. 8.2. Simulated signal from a binary neutron star coalescence (pale blue). The signal
is well resolved at low frequencies for the inspiral stage. A�er the merger, the
ringdown oscillations produce high-frequency GWs, which could not be resolved
by the baseline detector due to the cavities’ linewidth (orange). �antum expander
(dark blue) allows to resolve the ringdown oscillations by suppressing the quantum
noise at high frequencies.

8.1 �antum expander concept

8.1.1 Hamiltonian of the �antum Expander

With respect to the quantum noise and the signal, the interferometer topology can

be conceptually represented by a simpler system of two coupled cavities [196]:

the arm cavity with optical mode 0̂, and the signal-extraction cavity, formed

by the front mirror of the arm cavity and the signal-extraction mirror, with

optical mode 0̂@ , see Fig. 8.4A. The two modes are coupled through the partially

reflective front mirror of the arm cavity, with a coupling frequency lB , which

depends on the front mirror’s reflectivity. For illustrative purposes we limit the
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discussion to the interaction of these two modes, while the complete description

should include the modes of the next longitudinal resonances of the arm cavity,

separated by one free spectral range. In this approximation the system can be

described by the standard Hamiltonian for coupled harmonic oscillators: �̂/ℏ =

l00̂
†0̂ + l00̂

†
@0̂@ + lB (0̂†@0̂ + 0̂†0̂@). If the system is continuously excited at one of

the normal frequencies, l0 ±lB , the excitation energy is equally split between the

two modes 0̂ and 0̂@ . However, when one of the modes (e.g. 0̂@) is continuously

excited at l0, the complete energy gets redistributed into the other mode (e.g. 0̂).

In this way when mode 0̂@ is open to the environment and driven by the incoming

zero-point fluctuation, its noise components are strongly suppressed at sideband

frequencies l0 ± Ω,Ω ≪ lB , and all the energy at these frequencies goes into

the arm cavity mode 0̂. For large values of Ω, the noise becomes resonant inside

the SE cavity as well, reaching its resonance maximum at lB , as can be seen of

Fig. 8.4B. It is this particular resonant structure of the coupled system that we

take advantage of for boosting the sensitivity of the detector at high frequencies

as follows.

We propose to place an optical parametric amplifier, e.g. a j (2) nonlinear crystal,

inside the SE cavity. The parametric process will amplify the fluctuations in

one quadrature of the mode 0̂@ , and suppress the fluctuations in its conjugate

counterpart. Depending on the sideband frequency Ω, the amplification strength

varies due to the presence of the coupled cavity structure. At frequencies around

l0, the excitation of mode 0̂@ is suppressed, so the parametric process is inefficient,

and almost no squeezing is produced. At the same time, the SE cavity is resonant

for higher frequencies Ω ∼ lB , so the crystal produces a high squeeze factor. The

suppression of shot noise at the frequencies 0 ≪ Ω ≪ lB happens exactly at

the same rate as the reduction in the signal amplification due to the detector

bandwidth, see Fig. 8.4C. The two processes compensate each other, and the

signal-to-noise ratio remains constant, thus the bandwidth is expanded, see

Fig. 8.4D.
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The quantum expansion effect can be demonstrated in more detail by formu-

lating a complete Hamiltonian of the model two-mode system:

�̂ = �̂0 + �̂int + �̂W + �̂G − �GWG ; (8.1)

�̂0 = ℏl00̂
†0̂ + ℏl00̂

†
@0̂@ ; (8.2)

�̂int = ℏlB0̂
†
@0̂ +

1

2
ℏ^V4−28l0C 0̂†@0̂

†
@4
8q + ℎ.2.; (8.3)

�̂W = 8ℏ
√
2W

∫ ∞

−∞

(
0̂†@ (l)0̂in(l) − 0̂†in(l)0̂@ (l)

)
3l ; (8.4)

�̂G = −�̂rpĜ = −ℏ�00̂
†0̂Ĝ, (8.5)

where 0̂, 0̂@ are the arm cavity and SE cavity modes, and l0 is their natural

resonance frequency; lB = 2
√
)ITM/(4!SE!arm) is the coupling rate between two

cavities,)ITM is the transmission of the front mirror of the arm cavity, !SE, !arm are

the lengths of the signal extraction and arm cavity, respectively; W = 2)SE/(4!SE)
is the coupling rate of the SE mode to the continuum of input modes 0̂in; G is the

displacement of the test mass partially in reaction to the gravitational-wave tidal

force �GW; themirrormotion G is coupled via the radiation-pressure force �̂rp to the

cavitymodewith strength�0 = l0/!arm; ^ is the coupling strength due to a crystal
nonlinearity under a second harmonic pump field with amplitude V and phase q .

The pump field is assumed to be classical and its depletion is neglected. �antum

expansion affects only the high frequency sensitivity, which is dominated by shot

noise. This justifies us to ignore in this simple model the effects of the quantum

radiation pressure on the dynamics of the test mass, effectively assuming infinite

mass of the mirrors. The displacement of the mirrors G in this approximation is

caused only by the GW strain ℎ0 = G/!arm. Also note that the expression for the

coupling frequency lB only applies when lB ≪ lFSR ≡ 2/(2!arm), and modifies

when the neighboring longitudinal resonances of the arm cavity are taken into

account.

Equations of motion

The light field in the coupled system can be expressed in terms of the input fields

by solving the Hamiltonian above.
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We obtain the Langevin equations of motion for the cavity modes in the frame

rotating at l0 and expand the quantum amplitudes into a sum of large classical

amplitude and small quantum fluctuation, 0̂ → � + 0̂:

¤̂0 = −8lB0̂@ + 8�ℎ0; (8.6)

¤̂0@ = −8lB0̂ − W0̂@ +
√
2W0in − 8 j0̂†B 48q ; (8.7)

0̂out = −0̂in +
√
2W0̂@ . (8.8)

where we defined an effective coupling strength of GW strain to the light field

� =
√
2%2!arml0/(ℏ2), and optical power inside the arm cavity %2 = ℏl00̄, with

0̄ being an average amplitude of the mode 0̂; and the effective parametric gain

j = ^V ,

As we are interested in the spectral properties of the system, we transform

into a Fourier domain: ¤̂0(C) → −8Ω0̂(Ω). The outgoing light is measured by a

homodyne detector, which measures the quadratures of the light, that are defined

as:

0̂(1) =
0̂(Ω) + 0̂†(−Ω)√

2
, 0̂(2) =

0̂(Ω) − 0̂†(−Ω)
8
√
2

(8.9)

We obtain the input-output relations for the two quadratures by solving Eqs. (8.6):

0̂
(1)
out(Ω) = 0̂

(1)
in

(Ω) (W − j)Ω + 8 (Ω2 − l2
B )

(W + j)Ω − 8 (Ω2 − l2
B )

+

+ ℎ0(Ω)
28�

√
WlB

(W + j)Ω − 8 (Ω2 − l2
B )
, (8.10)

0̂
(2)
@ (Ω) = 0̂(2)

in
(Ω)

√
2WΩ

(W + j)Ω − 8 (Ω2 − l2
B )

+

+ ℎ0(Ω)
8�lB

(W + j)Ω − 8 (Ω2 − l2
B )
, (8.11)

0̂(1) (Ω) = 0̂(2)
in

(Ω) 8
√
2WlB

(W − j)Ω − 8 (Ω2 − l2
B )
, (8.12)

The phase of the pump field was chosen such that the parametric process squeezes

the signal quadrature inside the SE cavity, i.e.q = c/2. Several features can
be seen in these equations. First, when we remove the crystal (i.e. j = 0) in

the typical operational range of GW observatories Ω ≪ lB , the input-output
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relation Eq.(6) reduces to the standard one for a baseline GWO [196, 225], with

the detection bandwidth given by: Wbaseline = l2
B /W = 2)ITM/()SE!arm). Second,

the noise term in Eq.(7) is strongly suppressed at zero sideband frequency, as we

described above in the example with two coupled modes: 0̂
(2)
@ (0) = ℎ(0)�/lB ,

therefore virtually no squeezing is produced at low frequencies. The noise on

the output in Eq.(6) at low frequencies is defined by the vacuum field reflected

directly off the signal extraction mirror. Third, when the sideband frequency

matches the normal mode frequency, Ω = lB , the signal mode takes the form:

0̂
(1)
out(lB) = 0̂

(1)
in

(W − j)/(W + j) + 28ℎ0(lB)�
√
W/(W + j). This equation shows that

for a parametric gain close to the threshold (j → W ), the noise term becomes

almost infinitely squeezed [43], but signal gets deamplified at most by a factor of

2. Despite the signal deamplification, ideally the SNR in this case can become

infinite, as we show below by computing the sensitivity of the quantum-expanded

observatory.

8.1.2 Input-output relations

We can derive the same input-output relations as in Eq. 8.10, but based on a more

rigorous input-output formalism, as used in previous chapters. For simplicity

in this section we ignore the effects of quantum radiation pressure noise and

optical losses. These will be included in the full transfer matrix description in

Section 8.2.1. We follow the standard procedure for the fields, as in the previous

chapters.

We make several simplifications to the notation: as we are primarily interested

in the phase quadrature, we will omit index (B) in equations below; we also omit

the hats on the operators for brevity, although all the fields are quantized; we

consider only the noise fields in the frequency domain, so we don’t write that in

the equations explicitly: e.g. 0̂(s) (Ω) → 0.

The signal we consider is a phase modulation on the light field induced by

motion of the mirror with infinite mass caused by an external force. This mod-

ulation adds a phase shi� on the light reflected off the movable mirror: �refl =

�in4
28:G (Ω) ≈ �in(1 + 28:?G (Ω)), where :? is the light’s wave vector, �refl,in are the

amplitudes of the reflected and incident light fields, and G (Ω) is a small mirror
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Fig. 8.3. �antum fields in the model of a two-cavity system. 'B,8,4,)B,8,4 are the amplitude
reflectivities and transmissivities of the signal extraction, input and end test
mirrors correspondingly; a beam-spli�er with power reflectivity _B represents a
source of intra-cavity loss, which causes vacuum noises =̂1,2 to enter the system.

displacement. The signal appears only in the equations for the phase quadrature

of the light field.

We model the parametric amplification process as a simple linear amplification

of amplitude quadrature of the light by some factor 4@ , without considering

the effects of the parametric pump and the finite size of a crystal. In the full

model in section 5 we also will introduce the possibility to tune the amplification

quadrature. With this in mind we start with writing down the steady-state input-

output relations [165, 166] for the quantum fluctuations of the phase quadrature

of the light field, for the cavity cavity model depicted of Fig. 8.3. We choose the

arm cavity to be tuned on resonance, so that for Ω = 0 it has the maximal light

power inside.

3B = )B0 + 'B2B, (8.13)

0B = 3B4
−@48i48ΩgSE, (8.14)

1B = )82 + '80B, (8.15)

2 = 3428Ωgarm + 28:?�G4
8Ωgarm, (8.16)

1B = −'80B +)82, (8.17)

2B = 1B4
−@48i48ΩgSE, (8.18)

1 = −'B0 +)B2B, (8.19)

where '8,B =
√
'ITM,SE,)8,B =

√
)ITM,SE are the amplitude reflectivity and transmis-

sivity of input test mirror and signal-extraction mirror; @ is an amplification factor

on the single pass through the crystal; garm,SE = !arm,SE/2 is the single trip time in

arm cavity of length !arm and signal extraction cavity of length !SE, with 2 being
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the speed of light; i = −c/2 is the tuning of the SE cavity with respect to the

arm cavity; G is a small displacement of the end mirror due to the GW signal, �

is the large classical amplitude of field inside the arm cavity and :? is the wave

vector of the carrier light field.

We find a solution to these equation, spli�ing the output 1 into the noise part

1= and signal -out: 1 = 1= + -out.

1= = R0 (Ω)0(Ω) =

= − 428i428ΩgSE (428Ωgarm − '8) + 42@ (428Ωgarm'8 − 1)
42@ (428Ωgarm'8 − 1) + 428i428ΩgSE (428Ωgarm − '8)'B

0(Ω), (8.20)

-out = T (Ω)G (Ω) =

=
28:?�4

8i48ΩgSE48Ωgarm4@)8)B

42@ (428Ωgarm'8 − 1) + 428i428ΩgSE (428Ωgarm − '8)'B
!armℎ0(Ω), (8.21)

where R0 (Ω),T (Ω) are the noise and signal optical transfer functions corre-

spondingly.

We can obtain an intuitive expression for these functions by doing a single-mode

approximation. We assume Ωgarm ≪ 1, ΩgSE ≪ 1, so 48Ωgarm,SE ≈ 1 + 8Ωgarm,SE;
and )8,B ≪ 1, so '8 ≈ 1 −) 2

8 /2 = 1 − 2Warmgarm, 'B ≈ 1 −) 2
B /2 = 1 − 2Wgarm, where

Warm, W are the arm cavity and the signal-extraction cavity linewidth, respectively;

a single-pass optical gain is small: @ ≪ 1, so 4@ ≈ 1 + @ = 1 + jgSE, where j is an

effective parametric gain.

With these approximations, Eqs. 8.20 can be simplified to

R0 (Ω) =
(W − j)Ω + 8 (Ω2 − l2

B )
(W + j)Ω − 8 (Ω2 − l2

B )
(8.22)

T (Ω) = −
48:?!arm�√

garm

√
WlB

(W + j)Ω − 8 (Ω2 − l2
B )
, (8.23)

where we defined a sloshing frequency lB = 2
√
) 2
8 /(4!SE!arm). Based on these

equations, we derive the Hamiltonian of the system in Sec. 8.1.1.

We would like to point out the limits of this approximation: it is valid only until

sloshing and signal frequencies are much smaller than the free spectral range of

the arm cavity: Ω, lB ≪ 2/!arm. This condition sets a limit on the transmissivity of

the ITM: ) 2
8 ≪ !SE/!arm. This restricts the applicability of the derived equations
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to a detector with a relatively short arm length (e.g. Advanced LIGO), while a

longer detector (as baseline GWO considered in Table 8.1) would require a more

sophisticated expression with the higher FSR of the arm cavity taken into account.

The assumption of a small transmission of the SE mirror is o�en not valid in real

designs, which would lead to additional contributions in the noise spectrum.

Sensitivity spectrum

The noise spectral density of the GWO with quantum expander, normalized to

the unity of strain ℎ, can be obtained from Eqs. 8.22. The spectral density of the

output noise 0̂
(2)
out(Ω) is:

(out(Ω) = (in(Ω) |R0 (Ω) |2, (8.24)

where (in(Ω) is the spectral density of incoming light field, which we assume

here to be vacuum: (in(Ω) = 1. When internal squeezing suppresses : q = −c/2,
we obtain the following noise spectral density

(out(Ω) = 1 − 4W jΩ2

(W + j)2Ω2 + (Ω2 − l2
B )2

(8.25)

and signal transfer function:

|T (Ω) |2 = 4�2Wl2
B

(W + j)2Ω2 + (Ω2 − l2
B )2

. (8.26)

The sensitivity is given by the noise-to-signal ratio: (ℎ (Ω) = (out (Ω)
|T (Ω) |2 . Typical

GW signal has a relatively low-frequency, and the SE bandwidth is very large, so

the sensitivity can be approximated for Ω ≪ lB ≪ W .

(ℎ (Ω) =
ℏ2

8l0!arm%2

(Ω2 − l2
B )2 + (W − j)2Ω2

Wl2
B

≈

≈ ℏ2

8l0!arm%2

W2@ + Ω
2

Wl2
B

(W − j)2, (8.27)
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with the new detection bandwidth defined as W@ = l2
B /(W − j). Without the

quantum expansion, j = 0, the baseline sensitivity decreases with the frequency

increase, limited by the detector’s bandwidth Wbaseline = l
2
B /W :

(baselineℎ (Ω) = ℏ2

8l0!arm%2

(Ω2 − l2
B )2 + W2Ω2

Wl2
B

≈

≈ ℏ2

8l0!arm%2

W2
baseline

+ Ω
2

Wl2
B

W2. (8.28)

The detection bandwidth W@ can ideally be expanded infinitely (in the single-

mode approximation) by a factor of W/(W − j) → ∞ when squeezing approaches

the threshold point j = W . At this point the sensitivity is given by

(ℎ (Ω) =
ℏ2

8l0!arm%2

l2
B

W
, (8.29)

which is approximately frequency independent under Ω ≪ lB , as a result of

expanded bandwidth W@ . In reality, even in the lossless case, the bandwidth

is still limited by the next longitudinal resonance of the arm cavity, and the

detector’s reduced response when the detector’s arm length is comparable to the

gravitational wavelength.

The effect of the quantum expander is shown of Fig. 8.4C,D. Themain properties

of the concept are seen there:

• At frequencies around Wbaseline(i.e. 500Hz) reduction in noise has exactly the

same slope as reduction in signal due to cavity bandwidth. As a result, the

SNR in that region remains flat, which is the effect of expanded bandwidth.

• The noise is maximally squeezed at lB , and there the SNR in the ideal case

increases to infinity (there, as I show in the next section, QCRB turns to

zero).

• At low frequencies the noise is almost unchanged. This makes quantum

expander compatible with back-action evasion, such as variational readout

or frequency-dependent squeezing.

• Above lB the next longitudinal resonance of the arm cavity starts to play a

role, which reduces the sensitivity.
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Fig. 8.4. Concept of the quantum expander. A) Model system of two coupled cavities, arm
and signal extraction (SE), with nonlinear crystal inside SE cavity; B) resonance
enhancement of the SE mode (solid red) at frequencies close tolB and suppression
at low frequencies, with two longitudinal resonances of the arm cavity (dashed
magenta) separated by a free spectral range (lFSR); C) suppression of the shot
noise at high frequency by the quantum expander (red) compared to the vacuum
level (blue), in comparison to the scaling of the signal transfer function (TF) due
to the cavity linewidth with quantum expander (green) and without (blue), where
the signal is suppressed by 6 dB due to the parametric process; D) noise-to-signal
ratio for the detector with quantum expander (red) and without (blue). On C)
the quantum expander noise squeezing has exactly the same scaling as signal
reduction due to the cavity bandwidth, so the bandwidth of the signal-to-noise
ratio is expanded, as seen on D).
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It is important to point out the limits of the approximations used in this section:

they valid only until coupling and signal frequencies are much smaller than the

free spectral range of the arm cavity: Ω, lB ≪ lFSR ≡ 2/2!arm. This condition sets

a limit on the transmissivity of the ITM:) 2
8 ≪ !SE/!arm, which means the derived

simplified equations are applicable only to a detector with a relatively short arm

length (e.g. Advanced LIGO). A longer detector (such as the baseline GWO chosen

as a reference in the Figures (2-4)) would require a more sophisticated expression

with the higher longitudinal resonances of the arm cavity taken into account.

The assumption of a small transmission of the SE mirror is o�en not valid in real

designs, which would lead to additional contributions in the noise spectrum. I

perform the full analysis that avoids these limitations in the Appendix.

�antum Cramer-Rao Bound

The sensitivity of any gravitational-wave observatory is ultimately limited by its

quantumCramer-Rao bound (QCRB) (
QCRB

ℎ
(Ω) [154]. The conditions for reaching

its quantum Cramer-Rao bound are that (i) the quantum radiation pressure noise

is evaded, and (ii) the upper and lower optical sidebands generated by the GW

are equal in amplitude [154]. Naturally, there is also a typical requirement of

absence of optical decoherence and technical noises. The quantum expander

configuration does not affect the QRPN, and allows to satisfy condition (i) at low

frequency by well-known back-action evading techniques (e.g. variational readout,

see the Discussion below). We prove that the condition (ii) is satisfied by directly

computing the QCRB in the case of GW detectors is defined as follows [154]:

(
QCRB

ℎ
(Ω) = ℏ2

2!2arm(�� (Ω)
=

ℏ2

4l0!arm%2

1

(00 (Ω)
, (8.30)

where (�� (Ω) is the single-sided spectrum of the radiation-pressure force �̂rp,

and (00 (Ω) is the noise spectrum of the arm cavity field, which one can compute

from Eq. 9:

(00 (Ω) =
2Wl2

B

(W − j)2Ω2 + (Ω2 − l2
B )2

(8.31)
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Therefore the limit on the sensitivity is given by the QCRB in the following form:

(
QCRB

ℎ
(Ω) = ℏ2

4l0!arm%2

(Ω2 − l2
B )2 + (W − j)2Ω2

2Wl2
B

, (8.32)

which is identical to the Eq. 8.27. The sensitivity becomes unbounded (QCRB

turns to zero) at the parametric threshold j = W at frequency Ω = lB .

This calculation demonstrates that the quantum expander strongly reduces the

QCRB at high frequencies compared to the baseline GWO, and that the expanded

detector does reach its lowered QCRB (in case of the typical assumption of zero

photon loss).

8.2 The quantum expander in realistic GW

detectors

�antum-expanded signal extraction will further reduce the shot noise at high

frequencies, without affecting the established improvement factor from external

squeezing. The quantum noise at low frequencies (QRPN) will remain unchanged.

This differs our approach from other designs targeting the high-frequency sensi-

tivity [64, 225, 226]. The QRPN can be suppressed independently using already

developed approaches using frequency dependent squeezing, variational readout

or quantum non-demolition measurements [35, 112, 223, 224].

In this section I explore various aspects of implementing the quantum expander

in a real GWO.

8.2.1 Full derivation of the spectral density

In the previous sections we did several approximations, which are not applicable

to a real GWO. In particular, we did not consider QRPN, losses, next longitudinal

resonances, and the frequency response of a detector to GW. I perform a full

calculation in the Appendix A, using a transfer matrix approach. In choose a

baseline observatory design that is independent on any specific proposed design,

as ET or CE, with the parameters given in Table 8.1, except for the reference

we choose a case without injected squeezing (we call this case semi-classical,
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since it’s limited by quantum noise, but does not use quantum techniques to

overcome it). The resulting effect of the quantum expander on such baseline GW

observatory is shown in Fig. 8.5. In order to highlight the possibility to combine

the quantum expander with back-action evading techniques, I demonstrate the

effect of a variational readout at low frequencies. Variational readout makes use of

filter cavities on the output of the detector to rotate the detection quadrature in a

frequency-dependent way such, that the back-action noise has no contribution to

the observed sensitivity (it is in the orthogonal quadrature) [112]. Since quantum

expansion has virtually no effect on quantum correlations at low frequency,

variational readout can be applied without modifications.

The code used to produce this figure, which includes all the relevant effects,

can be found in [227].

8.2.2 Optical loss

Non-classical light is sensitive to decoherence, i.e. to optical loss, which destroys

the inherent quantum correlations [215]. Losses occur inside the detector as

well as on the readout, and have multiple contributions. Any squeezed light

application as well as QRPN suppression technique is limited by optical loss,

and the proposed scheme is not an exception. The quantum expander relies on

squeezing operation inside the interferometer to compensate the decrease in the

signal amplification due to the finite cavity linewidth. The higher the squeeze

factor is, the more it is susceptible to optical loss. The effect of different readout

loss is shown on Fig. 8.5.

All observatories of the current generation are already operating with external-

squeezing injection. When the quantum expander is combined with external-

squeezing injection, the overall squeeze factor at high frequencies increases

further. This imposes a strict requirements on reducing the optical losses. The

losses occur inside the detector: inside the arm cavity, and inside the SE cavity;

as well as on the readout train: from the SE mirror to the detector. The external

squeezing additionally suffers from the injection loss (which can be partially

mitigated by squeezing higher-order optical modes [54]). On Fig.8.6 we show

the contribution of different sources of loss as a function of frequency. We note

that the detection loss and loss inside the SE cavity are the most important
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parameter description Baseline GWO AdvLIGO

_ optical wavelength 1550nm 1064nm

%arm = %2/2 arm cavity light power 4MW 840kW

!arm arm cavity length 20 km 4 km

< mirror mass 200 kg 40 kg

!SE SE cavity length 56m 56m

)8 input mirror power transmission 0.07 0.014

)B SE mirror power transmission 0.35 0.35

)4 end mirror power transmission 5ppm 5ppm

42A external squeezing 10 dB —

_B loss inside SE cavity 1500ppm 1000ppm

[ detection efficiency 99% ∼85%

Tab. 8.1. Set of parameters of the proposed detector. In order to plot the spectral densities in
the paper we use the following set of parameters of some baseline GWobservatory,
without choosing a specific design from many possibilities of a 3-G topologies.
We note that our double-cavity model uses effective parameters. In order to use
this model for the Michelson topology, an effective light power inside the arm
cavity has to be used: %2 = 2%arm, where %arm is the power inside the arms of the
Michelson topology [196]
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Fig. 8.5. Effect of the quantum expander on the detector’s sensitivity to gravitational-wave
strain (ℎ (5 ), in combination with variational readout [112]. The bandwidth of
the semiclassical Gravitational Wave Observatory (GWO, blue dashed line) is
expanded by squeezing operation inside the detector at high frequencies (solid
red line, red shading). The effect deteriorates once quantum decoherence due to
optical loss is introduced (different shades of red for quantum expander, gray dot-
dashed line for semiclassical GWO). At low frequencies quantum noise remains
unaffected by quantum expansion, and allows to use the variational readout (green
shading) to evade the quantum radiation-pressure noise (QRPN). The efficiency
of the variational readout is also affected by the optical loss, which leads to the
loss of correlations between the two quadratures of the light field, resulting in
the reduction in the sensitivity at low frequencies, as shown by dashed red lines.
The boundary where the QRPN becomes equal to the shot noise at different light
powers, know as the Standard �antum Limit (SQL) is plo�ed in black dots. The
parameters used for plo�ing are based on the benchmark parameter set for the 3d
generation of GWOs: optical wavelength _ = 1550 nm; light power inside the arm
cavity %2 = 4MW; arm cavity length !arm = 20 km; SE cavity length !SE = 56m;
mirror mass< = 200 kg; input mirror power transmission )ITM = 0.07; SE mirror
power transmission )SE = 0.35.
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Fig. 8.6. Relative contribution of different vacuum modes to the overall sensitivity of the
detector at different frequencies. Input (solid red) vacuum mode defines the main
sensitivity level, and the rest come from the various sources of loss: loss inside
the SE cavity (dashed magenta), detection loss (dot-dashed blue) and arm cavity
loss (do�ed green). The parameters are taken according to Table 8.1: internal loss
is 1500 ppm single-trip, detection loss is 1%, transmission of the end mirror is
100 ppm (increased relative to Table 8.1 to emphasize the smallness of its influence
on the sensitivity)

contributions. In the current generation of GWOs, the optical readout loss is

on the order of 10% [228], and in next observatory generation 3–5% might be

achievable [229]. There might be a way to mitigate this loss by parametric

amplification before detection, as I discussed in Chapter 7. The only source of

detection loss that cannot be mitigated by such amplification is the loss in the

Faraday isolator used for injecting external squeezing. We assume this to be a

limitation in the detection loss, which corresponds to the 0.5% [229] mentioned

in the main text.

Internal loss will be increased due to the additional optical surfaces of the

nonlinear crystal and the absorption of the crystal. While the actual contribution
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Fig. 8.7. An improvement in the sensitivity of the detector by quantum expander, relative
to the detector with external squeezing injection, depending on the amount of
total loss (internal and readout). The higher is the external squeezing, the more
stringent is the loss requirement for being able to benefit from using the quantum
expander. The sensitivity depends in a non-trivial way on the losses, which is
reflected in the benefit from QE shown on the figure.

to the loss from such a crystal requires a separate investigation, we give an

estimate based on the squeezing cavity design for the table-top experiments. If

the PPKTP crystal is used, it’s absorption is ∼ 100 ppm per cm depending on

wavelength [207]; the surfaces of the crystal will have to be coated with anti-

reflecting coating to minimize the sca�ering loss. We estimate that the current

standard technology can bring this added loss on the level of 200–500 ppm in

single-pass.

We would like to emphasize, that not every configuration of the GWO will be

able to get a significant benefit from quantum expansionwhen the external squeez-

ing is in use. Depending on the amount of loss, and amount of external squeezing

injected, the benefit will vary. The reason is an additional de-amplification of

the signal in the quantum expander — the same effect that we discuss in detail
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Fig. 8.8. An example of sensitivity improvement in a particular design of a detector with
1% of total loss and 10 dB external squeezing injection, the parameters are given
in Table 8.1.

in Chapters 67. When the loss is high, the squeezing of the noise by quantum

expander in addition to external squeezing might be not significant. However,

the parametric process inside the detector reduces the signal, hence the signal-

to-noise ratio might even become reduced compared to the detector without

quantum expander, if the sub-optimal parametric gain is chosen. There always

exists an optimal gain, for which the benefit is maximal. If the loss is high, it

might be optimal to amplify the signal (and anti-squeeze the noise), similar to the

Caves’ amplification discussed above. We demonstrate possible improvements

to the sensitivity in Fig. 8.7. We note, that this specific design is based on the

benchmark parameters adopted by the LIGO-Virgo Collaboration, as presented

in Table 8.1, and corresponds to the sensitivity as given in Fig. 8.8. In reality,

the benefit from quantum expansion can be increased by optimizing the optical

design (e.g. SE cavity length and mirrors’ reflectivities). The optimized sensitivity

given by the quantum expander is a topic of future studies.
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8.2.3 Crystal inside the observatory

There are several issues to be taken into account with placing the crystal inside

the SE cavity.

First, the size of crystal itself has to be large enough so that the optical beam

does not clip on the edges of the crystal. Currently the diameter of the beam

inside the SE cavity is ∼ 2cm [10], with the focal point outside the SE cavity. For

comparison, as size of typical PPKTP crystal used in the squeezed light generation

is 1×2mm [207]. The crystal can be custom-made, or other nonlinear material

can be used. Further, the beam can be focused inside the SE crystal by changing

the curvatures of the mirrors of SE cavity, without using additional optics.

Second, the absorption and sca�ering in the crystal are generally an important

issue due to possible heating. However, as in this design the detector operates at

the dark port condition, there is no bright carrier field.

Third, the crystal has to be pumped with the frequency doubled parametric

pump, which requires additional optical elements that would deliver the pump

beam to the crystal and ensure the match between modes of the pump and the

main beam. This can be done in multiple ways. As the wavelength of the pump

is so different from the fundamental wavelength, it is possible to coat optical

elements with different coatings, such that an additional cavity is formed by the

SEM and ITM for the pump [70, 72]. Alternatively, the pump can be brought in by

replacing the steering mirrors in the SE cavity with dichroic mirrors, transmissive

for the frequency doubled pump. In any case, no additional optics inside the main

interferometer would be required.

In conclusion, while a non-linear crystal inside the interferometer is techno-

logically challenging, we do not foresee fundamental problems, and expect our

proposal for quantum expansion to motivate the future research and development

work in this direction.

8.3 Astrophysical analysis

Currently all GW observatories maximize the signal-to-noise ratio at frequen-

cies around 100Hz, where signals of compact binary inspirals can be observed.

Merger and post-merger signals from binary neutron stars are expected to be at
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Fig. 8.9. Histogram for signal-to-noise ratio of the loudest event for 100 realizations in the
Monte-Carlo simulation. Blue bins represent the SNR of our baseline gravitational
wave observatory. Orange and red bins are associated with the quantum expander
with total loss around 3% and 0.5%, respectively. The black dashed line indicates
a detection threshold (SNR = 5). We used the equation of state in [230, 231] and
the binary merger rate is taken to be ' = 1.54Mpc−3Myr−1. The mass distribution
for each neutron star in the binary is taken to be Gaussian centered around 1.33
"⊙.

frequencies around 1-3 kHz, where the sensitivity of the detectors significantly

deteriorates due to the detection bandwidth.

�antum expansion of the detection bandwidth allows to increase the sen-

sitivity exactly at these frequencies, as shown in Fig. 8.5. In order to illustrate

the potential of the quantum expander, we compute the SNR of a particular

model of the post-merger signal [230, 231]. The method we used here follows

the estimation procedure as described in [64, 232]. We perform a Monte Carlo

simulation based on the following assumptions: first, the mass of each individual

neutron star in a binary system follows an independent Gaussian distribution

centered at 1.33"⊙ with variance 0.09"⊙. The distributions of angular sky posi-

tion, inclination and polarization angles, and the initial phase of the source are
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assumed to be flat. The searching range is assumed to be 1Gpc and the event rate

is taken to be ≈ 1Mpc−3Myr−1. Second, the post-merger waveform is assumed to

be a parametrized damped oscillation, which depends on the equation of state of

a neutron star, and in frequency domain it is given by the equation:

ℎ(5 ) = 50Mpc

c3
ℎ?
& (25?& cosq0 − (5? − 28 5 &) sinq0)

5 2? − 48 5 5?& − 4&2(5 2 − 5 2? )
, (8.33)

where 3 is the source distance, ℎ? is the peak value of the wave amplitude, & is

the quality factor of the post-merger oscillation,q0, 5? are the initial phase and

the peak frequency of the waveform, respectively. Among them, ℎ?, &, 5? are

parametrized by fi�ing with the results generated by numerical simulation [233]

and they depend on the choice of equation of states. In the illustrative examples

here, we make use of a relatively stiffer equation of state proposed in [234], where

& = 23.3, ℎ? ≈ 5 × 10−22, and the peak frequency is given by:

5? = 1kHz

(
<1 +<2

"⊙

) [
02

(
'

1km

)2
+ 01

'

1km
+ 00

]
, (8.34)

where ' = 14.42 km is the radius of each neutron star, and<1,2 are their masses.

The parameters 02, 01, 00 take the value of 5.503,−0.5495, 0.0157, respectively [234].
We define the signal to noise ratio as:

SNR =

∫ 5max

5min

3 5
|ℎ(5 ) |2
(ℎℎ (5 )

, (8.35)

where we take the integration range to be 5min = 1000Hz, 5max = 4000Hz. We run

100 Monte-Carlo realizations each with 1000 samples, corresponds to one-year

observation. We exclude the binaries with total mass larger than 3.45"⊙ since

they will collapse into a black hole in a very short period of time, less than one

period of post-merger oscillation. For each different interferometer parameter

set, we selected out the loudest event in each Monte-Carlo realization and set

SNR = 5 as a threshold signal-to-noise ratio.

We demonstrate the improvement in detection rates on the histogram in Fig. 8.9:

from 9% chance to have a single loud event surpassing the detection threshold
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a�er a full-year data acquisition in a baseline GWO, to roughly 76% and almost

100% for quantum-expanded detectors with 3% and 0.5% optical loss, respectively.

8.4 Different tuning of cavities in GW detectors

The quantum expander is an extension of internal squeezing approach discussed

in Chapter 6. Depending on the tuning of the cavities in the detector, a crystal acts

to produce internal squeezing or quantum expansion. In this section, I provide an

overview of the physical picture behind these two regimes, and the connection

between them. I provide an explanation of the resonance structure of the detector.

As I discuss above, for the differential mode the detector can be modeled as a

system of two optical cavities: short signal extraction (SE) cavity and long arm

cavities. The assumption of the short length for SE cavity allows to ignore the

effects of its linewidth on the optical fields, assuming the cavity to introduce

only a constant phase shi�, dependent on the tuning. O�en the SE cavity is

treated as a compound mirror with an effective reflectivity, and it was proven in

the scaling law theorem [196] that the quantum noises of such system have the

same properties as of a full interferometer. However this approach, while being

convenient for mathematical models, hides some important physical effects.

For the further explanation we have to define the phase convention we’re going

to work in. First consider the SE cavity alone, without the arm cavity. We define

that inside the SE cavity the reflection off SEM picks up zero phase shi�, and the

reflection off ITM - phase shi� of c , changing the sign. Then for the SE cavity the

resonance condition is satisfied on the single trip from SEM to ITM light acquires

the phase shi� of c/2. In this case the field inside the cavity reaches maximal

value and the effective reflectivity of the whole cavity for the incoming light is

minimal. In the opposite case, when the cavity is off resonance (zero phase shi�

on a single pass), the reflectivity of the cavity is maximal.

When the arm cavity is added, the situation changes. In our phase convention

when the arm cavity is on resonance, the field reflected off ITM now has zero

phase shi� (at resonance frequency). That means, that the resonance condition for

the SE cavity changes: now the single pass phase of c/2 corresponds to the anti-

resonant case, when the field inside the cavity is minimal. However, the effective
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reflectivity of the SE cavity remains low, which o�en is taken as a signature of

a ”resonant” behavior, and that might lead to a confusion. The effect is due to

the fundamentally two-mode nature of the system. As the sideband frequency

increases, the arm cavity goes off resonance, and the reflection phase on the ITM

changes, thus bringing SE on resonance, when the arm cavity is completely non

resonant. If the SE is initially tuned to be on resonance together with the arm

cavity, they both will go off resonance with increasing sideband frequency.

Correspondingly there are two tuning regimes of the gravitational wave detec-

tor. The first one is narrow-band, when the SE cavity tuned on resonance with

zero phase shi�, and effective reflectivity of SE cavity is high, leading to a narrow

bandwidth and high sensitivity of the detector. The second tuning is broadband,

when the SE cavity is off resonance, and it’s effective reflectivity is lower, leading

to a broader bandwidth but reduced sensitivity.

Now, if we add a nonlinear crystal inside the SE cavity, the effect will differ

for these two tunings. The broadband case I discussed in the current Chapter:

squeezing will be produced only at high frequency, thus resulting in the expanded

bandwidth. The narrowband case corresponds to a single-cavity case, where the

squeezing is produced at low frequencies, as it was considered in Chapter 6.

The general expressions for the signal and noise that are valid for any tuning

were derived in Eq. 8.20. Making a single-mode approximation for the arm cavity

(but not for the SE cavity) and assuming the SE cavity to be short, gSE=0), these

relations take a form:

R (Ω) = Warm(428q − 'SE42@) + 8Ω(428q + 'SE42@)
Warm(42@ − 'SE428q ) − 8Ω('SE428q + 42@)

(8.36)

T (Ω) = −
48:?�4

8q4@
√
Warmgarm)SE

Warm(42@ − 'SE428q ) − 8Ω('SE428q + 42@)
. (8.37)

Since we are mainly interested in two tunings, we can compute the sensitivity for

these two cases:

(ℎ (Ω) |q= c
2 ,0

=
ℏ2

8l0!arm%2

W2arm(1 ± 42@'SE)2 + Ω
2(1 ∓ 42@'SE)2

442@) 2
SE
Warmgarm

, (8.38)
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Fig. 8.10. Two tunings of theGWdetector with internal squeezing. In a narrowband detector,
internal squeezing increases sensitivity at low frequencies, increasing the peak
sensitivity. In a broadband detector, internal squeezing increases the sensitivity
at high frequencies, expanding the detection bandwidth.

and we can define the detector bandwidth as half width at half maximum of the

SNR (−1
ℎ
(Ω):

W@ |q= c
2 ,0

= Warm
1 ± 42@'SE
1 ∓ 42@'SE

. (8.39)

One can see, that in the absence of internal squeezing @ = 0, tuning the detector

to q = c/2 achieves a broadband regime: W |q=c/2 ≈ Warm(1 − 'B) ≡ Wbaseline > Warm.
The opposite tuning, q = 0, is indeed narrowband: W |q=0 ≈ Warm(1 − 'B) < Warm,
This effect is enhanced in the presence of internal squeezing, @ > 0: in broadband

case W −−−−−→
@→@th

∞, and in narrowband case W −−−−−→
@→@th

0. The comparison of the

two sensitivities in Fig. 8.10 highlights the effect of reduced bandwidth for the

narrowband detector and expanded bandwidth for the broadband one.

From the perspective of the SSBL, both cases achieve the same enhancement

to the sensitivity-bandwidth product but by different means: one case enhances

the bandwidth, the other - peak sensitivity, at a price of reduced bandwidth. For
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this sensitivity-bandwidth product in both broadband and narrowband the same

value can be obtained at threshold:

∫ ∞

0

1

(GG (Ω)
3Ω

2c
=

42@) 2
SEg

44@'2
SE

− 1
−−−−−→
@→@th

∞. (8.40)

This, according to the QCRB, tells us that the sensitivity-bandwidth product can

be infinite, thus either the peak sensitivity or the bandwidth can be increased

compared to the classical case. I show this explicitly by calculating the bandwidth

W of the signal-to-noise ratio as a function of SR tuning q :

W = Warm

√
(1 + 44@'2

SE
)2 − 444@'2

SE
cos 4q − 242@'SE sin 2q

1 + 44@'2
SE

+ 242@'SE cos 2q
. (8.41)

In the limiting case of internal gain at parametric oscillation threshold, 42@ =

1/'SE, I obtain the expressions for the bandwidth and the gain in peak sensitivity

compared to the case without internal squeezing, G = (
@=0
GG (0)/(GG (0):

W = Warm(
√
2 − 1) tanq, (8.42)

G =
1 + '2SE − 2'SE cos 2q

4'SE sin
2 q

. (8.43)

In the broadband tuning case the bandwidth becomes infinite: W −−−−−→
q→c/2

∞, while

the peak sensitivity remains almost unchanged G −−−−−→
q→c/2

4'SE/(1 + 'SE)2 ≈ 1. In

the narrow-band tuning case bandwidth approaches zero, and peak sensitivity

approaches infinity.

8.5 Conclusion and outlook

The ‘quantum expander’ takes advantage of the coupled cavity structure of

the GW detector and the internal squeezing approach for increasing the high-

frequency sensitivity without affecting the low-frequency one. Using quantum

expander for a selected model GW observatory will allow to significantly increase

the detection rates for the neutron-star mergers, and enhance the SNR for post-

8.5 Conclusion and outlook 227



merger oscillation of the formed object. In the previous chapters I showed how

internal squeezing can help to increase the peak sensitivity and overcome deco-

herence, and here I generalized the discussion to include a particular resonance

structure of the detectors. I showed how internal squeezing in a form of quantum

expander can be established as a practical approach for increasing the sensitivity

of gravitational-wave detectors. When the concept is applied to a specific detec-

tor, the parameters have to be optimized to reach the best sensitivity. In some

parameter regimes one has to find a balance between the practical complexity of

implementing quantum expansion and achievable enhancement in sensitivity.

The analysis performed in this chapter (and presented in full in the Appendix A),

considers the most general configuration of a GWO, which includes practically

all relevant effects of quantum noise, and can be used to compute the sensitivities

for any parameter combination (losses, detunings, squeezing, etc.). Applying this

model to find a practical design of a future GW based on quantum expander is

currently underway.

While in this chapter the discussion is focused on the gravitational-wave

detection, the same concept can be implemented in different context of quantum

metrology. There it would serve as an environment engineering approach, which

engineers the coupling between the cavity and the environment by creating the

multi-resonance structure and adding parametric amplification there. This would

be the direction of future research.

In the next chapter I will explore the ways how internal squeezing can help

to broad the sensitivity in a different — dynamical — way by enhancing the

optomechanical interaction.
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Theoretical investigation

of an optical spring

enhancement via internal

squeezing

9

Back-action evading and QND techniques, such as speedmeter approaches dis-

cussed in Chapters 4,5, allow to increase the sensitivity at low frequencies and

thus detect binary objects at earlier stages of their evolution. The quantum ex-

pander increases the bandwidth of the detector towards higher frequencies, which

allows to be�er observe the late stages of evolution (merger and post-merger).

In this chapter, I present an approach, which focuses on enhancing the sensitiv-

ity in the middle frequency range (between 20 and 200Hz). This approach is also

based on internal squeezing, and takes advantage of optomechanical interaction

between the light and the test masses to enhance the sensitivity at a specific

frequency. This frequency can then be shi�ed by tuning the phase of the pump

field, such that it follows the GW signal. Such dynamical tuning would allow

to significantly enhance the sensitivity for signals of special interest (e.g. from

neutron star mergers). The advantage of this approach is that it allows to operate

the detector in quantum expansion mode most of the time, and only switch to

dynamical tuning when an extraordinary signal is detected.

In this chapter I focus on the effects of radiation-pressure on the sensitivity,

and how internal squeezing can affect them. Unlike the previous chapters, where

the SE cavity was tuned exactly on (or exactly off) resonance, in this chapter I

consider an arbitrary tuning of the cavity, which results in additional optical and

optomechanical resonances. The results of this chapter were partially published

in [72].
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9.1 The optical spring in GW detectors

Electromagnetic dynamical back-action was first observed in radio-frequency

systems, and its existence predicted for optical Fabry-Perot cavities by Braginsky

and his colleagues more than 50 years ago [89, 171]. 33 years later, Braginsky

and co-workers made the first proposal of using the dynamical back-action to

improve the sensitivity of laser-interferometric gravitational-wave detector [127]

The new scheme was called ‘optical bar’, since the light’s radiation pressure force

rigidly connects two far separated mirrors, which are suspended as pendula but

quasi-free otherwise. This way, a gravitational-wave signal is transformed into

an acceleration of mirrors with respect to the local frame. The interferometric

topologies that are considered in [127] as well as in related work [235] are different

from the Michelson topology having a balanced beamspli�er, and were not exper-

imentally realized so far. Recently, a more practical design was proposed [236].

The second proposal was made in 2002 by Buonanno and Chen [129] and was

called ‘optical spring’. It targets the sensitivity improvement of Michelson-type

gravitational-wave detectors having a signal-recycling (SR) cavity [237, 238] or

signal-extraction (SE) cavity, also called resonant-sideband extraction [210, 239].

For the purpose of utilizing the optical spring in a Michelson interferometer

operated on dark output port, these cavities need to be detuned from carrier

light resonance. If the frequency of the carrier light is blue-detuned with respect

to the cavity, the lower sidebands of phase modulations that are produced by

gravitational waves and that are matching the detuning frequency get optically

enhanced while the corresponding upper sidebands are suppressed. Due to energy

conservation, the mechanical (pendulum) motion of the suspended mirror is en-

hanced [37, 240]. The overall process corresponds to optomechanical parametric

amplification and results in optical heating of the mechanical motion, i.e. the

opposite of optical cooling [241]. The radiation pressure of the light not only

results in an optomechanical parametric amplification of the pendulum motion

but also in an additional (optical) spring constant that increases the pendulum

resonance frequency from typically 1Hz to an optomechanical resonance of up to

about 100Hz. Around this frequency the mechanical response of the GW detec-

tor is significantly enhanced and its sensitivity improved. The frequency of the

optomechanical resonance depends on the detuning and the optical power inside
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the arms of the detector. To further exploit the optical spring, it was proposed to

dynamically change the detuning by moving the SE mirror in order to follow ex-

pected chirps of GW signals [242, 243]. The optical spring was observed in several

experiments [37, 191, 244–253]. The gravitational-wave detectors GEO 600 [254],

Advanced LIGO [10], Advanced Virgo [12], and KAGRA [255] use either SR or

SE cavities, but so far have not yet employed the optical spring for a sensitivity

enhancement due to the requirement of additional control techniques.

The conventional scheme for producing the optical spring does not use any

additional parametric amplification of purely optical kind. Recent work, how-

ever, proposed complementing the SE cavity with optical-parametric amplifica-

tion [205] to allow for shi�ing up further the optomechanical resonance frequency

without increasing the light power in the arms.

In this work we extend the consideration in [205] and analyze a more general

situation, in which not only the parametric gain is varied but also the angle of

the amplified quadrature amplitude. The parametric gain relates to the intensity

of the second-harmonic pump field, whereas the angle relates to its phase. In

particular the last parameter can be quickly changed providing a new degree of

freedom for realizing dynamical detuning of the optical spring properties. We

consider the internal quantum noise squeezing that is accompanied with the

optical-parametric amplification together with the one from the optomechanical

parametric amplification and derive spectral densities. Furthermore, we propose

utilizing the second-harmonic pump field to implement a ‘local readout’ of the

motion of the arm cavity input test masses (ITMs) [256], see Fig. 9.1. The local

readout mitigates the unwanted effect of the optical spring, which is the rigid

connection of the ITMs with their respective end test mass (ETM) at frequencies

below the optical spring and a corresponding sensitivity loss at these frequencies.

9.2 The optomechanical system

Both optical and optomechanical parametric amplification can be described in a

similar way by their effect on the light field. Both result in a consecutive rotation

of quadratures (determined by the phase of the pump for optical amplification

and by the detuning of the SE cavity for the optomechanical one), squeezing
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Fig. 9.1. Schematic diagram of a GW detector proposed here. On top of the Advanced
LIGO topology, consisting of arm resonators, a power-recycling mirror (PRM) and
a signal-extraction mirror (SEM), a second-order nonlinear (j (2)) crystal is placed
in the SE cavity. The main carrier light at optical frequencyl is blue-detuned with
respect to this cavity, but resonating in the arm cavities as well as in PR cavity. The
second-order nonlinear crystal is pumped with a light field at frequency l2 = 2l

resulting in optical-parametric amplification (OPA) of light at l , including its
quantum uncertainty. The pump field (displaced for be�er visibility) is also used
to measure the differential motion of the ITMs. The two different wavelengths
can be separated easily with dichroic beamspli�ers (not shown). ITMN,E: input
test mass in north and east arm, respectively. ETMN,E: end test mass.

(optical and ponderomotive correspondingly) and rotation again [35, 130]. Thus

the optical spring can be created by both types of parametric amplification,
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Fig. 9.2. Notations of the optical fields for the PR cavity together with the common mode
of the arm cavities at l (top le�), for the SE cavity together with the differential
mode of the arm cavities at l (bo�om le�), and respective parts of the interfer-
ometer in Fig. 9.1 at l2, which belongs to the local readout (top and bo�om right).
Operators are annihilation operators and denote complex amplitudes including
their uncertainties. Capital le�ers � to � denote complex amplitudes whose
uncertainties are irrelevant. Subscript ‘B’: signal extraction; ‘?’: power recycling;
‘8’: input to arm cavity; ‘4’: end of arm cavity; ‘2’: optical frequency l2. ',) :
amplitude reflectivity and transmissivity of mirrors. ! is the average length of
the arm resonators, !2 is the relevant average length of the local read out, and G8,4
represent their dynamical parts due to differential test mass motion. q and i are
additional phases accumulated by the light field inside the SE cavity due to the
cavity detuning. The gravitational-wave signal (‘G’) corresponds to a differential
change of the arm length !.

and they can also be combined to achieve a higher flexibility. In this section I

derive explicitly the optical spring in the case of additional optical-parametric

amplification inside the SE cavity and show the effect of the squeeze angle on it.

We use an effective picture, where the interferometer is split into two separate

cavity systems, coupled only via the displacement of the test mass mirrors [196].

The first cavity system (Fig. 9.2, top le�) corresponds to the common mode, whose

modulation as well as its uncertainty are irrelevant for the signal-to-noise-ratio of

a gravitational-wave signal in the differential mode. It is thus fully described by

the classical carrier fields at frequency l . The second cavity system corresponds

to the differential mode atl and requires a quantized description (Fig. 9.2, bo�om

le�), as we considered in the previous Chapter 8 In this Chapter I also explicitly
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consider the pump field at l2 in the calculation. We propose to use the pump not

only for the parametric process, but also for measuring the differential motion

of the ITMs (local readout). For this purpose the pump is organized into a short

Michelson interferometer, formed by ITMs in Fig. 9.1. �antum fields for this

system are defined in Fig. 9.2 (right). This part of the interferometer is considered

in Section 9.2.1. The first mirrors of the main interferometer cavities (Fig. 9.2, le�)

are the power recycling (PRM) and signal extraction (SEM) correspondingly, and

the middle (input, i) and the end (e) mirrors are combinations of ITM and ETM.

Then the differential motion of four mirrors can be defined as the motion of input

and end mirrors in the effective cavity picture:

Ĝ−(Ω) =
(
G
(�)
ITM

(Ω) + G (�)
ETM

(Ω)
)
−

(
G
(# )
ITM

(Ω) + G (# )
ETM

(Ω)
)
= G8 (Ω) + G4 (Ω) . (9.1)

Relative to the beamspli�er only the far mirrors are accelerated due to the

gravitational wave force� , as the input mirrors are so close to the beamspli�er

that the effect can be neglected. In addition, all mirrors are accelerated by the

light’s radiation pressure force � ba(8,4,2) , which is proportional to the power of the

light shining on the mirror and which we call back-action.

Ĝ8 (Ω) = j8 (Ω)
[
� ba8 − � ba2

]
, (9.2)

Ĝ4 (Ω) = j4 (Ω)
[
� ba4 +�

]
, (9.3)

where j8,4 = [−<Ω
2]−1 are mechanical susceptibilities of the input and end

mirrors, that we assume here to be identical quasi-free masses of mass<. The

input mirror is driven by two different optical forces, due to the additional back-

action � ba2 from the second harmonic pump field.

When the cavity is detuned from resonance, the back-action force has a position-

dependent dynamical part, causing the optical spring effect. We thus split the

force into two contributions – the fluctuating part due to the quantum uncertainty

of the light’s amplitude quadrature, and the optical spring force � ba = � 5 ; (Ω) −
K (Ω)G (Ω), whereK (Ω) is the optical spring constant, also called optical rigidity.
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Fig. 9.3. Example of tuning of the sensitivity by changing the strength of intra-cavity
amplification. Three plots correspond to three different values of gain, with
X/2c = 580Hz and amplification phase \ = 0. This shows the enhancement of
the optical spring with parametric amplification (i.e. the shi� of optomechanical
resonance to higher frequency.) The parameters of the system are: �2 = 840 kW,
)8 = )B = 0.18, ! = 4000m.

We calculate the optical rigidity in the single-mode approximation, where the

back-action on the input and end mirrors are identical, yielding

� ba8,4 (Ω) = � 5 ; (Ω) −K (Ω)G−(Ω) . (9.4)

The single-mode approximation [35], as discussed in the previous chapters, further

involves (i) the sideband frequency and the arm cavity detuning being much

smaller than the cavity free spectral range Ω, X0 ≪ 2/!, with ! being the arm

cavity length, and 2 the speed of light, and (ii) the transmissivity )8,4 of mirrors

being small, so that we can make a Taylor expansion '8,4 ≈ 1 −) 2
8,4/2. The single-

mode approximation enables us to introduce an effective linewidth W and the
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detuning of the SE cavity XB as well as the normalized optical parametric gain

(per cavity round trip) Γ in the following way (see details in the Appendix A)

W =
W0)B

�0
, (9.5)

XB =
2W0'B

�0
(cosh 2@ cos 2q sin 2i + sin 2q cos 2i) , (9.6)

Γ =
2W0'B sinh 2@ cos 2q

�0
, with (9.7)

�0 = 1 + 2'B (cosh 2@ cos 2q cos 2i − sin 2q sin 2i) + '2B , (9.8)

where W0 = 2 () 2
8 + ) 2

4 )/(4!) is the linewidth of the arm cavity, q and i are

additional phases accumulated by the light field inside the SE cavity due to

the cavity detuning and @ is a squeeze factor on the single pass through the

optical-parametric amplifier.

We find that the optical parametric gain Γ influences the total detuning of the

interferometer Xeff as well as the light power associated with the optical spring

�eff

Xeff =
√
X2 − Γ2 , (9.9)

�eff = �X−1eff (X − Γ sin 2\ ) , (9.10)

where X = X0 + XB with X0 the arm cavity detuning, \ is the phase of the optical-

parametric amplification (the squeeze angle), and � = 4l�2/(<2!) the normalized

optical power with �2 being the power circulating in the arm cavities.

Given these definitions the optical rigidity K (Ω) is found to be

K (Ω) = <� (X − Γ sin 2\ )
(W − 8Ω)2 + X2 − Γ2

=
<�effXeff

(W − 8Ω)2 + X2
eff

. (9.11)

The optical spring is enhanced by optical-parametric amplifier, as we show on

in Fig. 9.4 and has several important properties.

First, the maximal enhancement of the optical spring due to the internal squeez-

ing is achieved if \ = −c/4 (for X > 0) yielding � < �eff ∝ �42@ . In this case, for

instance, 3 dB of intra-cavity squeezing modifies the optical spring in the same

way as doubling the optical power.
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Second, using Routh-Hurwitz’ criterion [257] one can show, that the system

is always unstable, in the same way the optical spring without internal squeez-

ing is [129, 196, 258]. The mechanical system can be stabilized via active feed-

back [129]. The optical-parametric process leads to an additional stability con-

dition that has to be satisfied: Γ2 < Γ
2
th

= W2 + X2, which is a threshold for

optical-parametric instability.
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Fig. 9.4. Signal enhancement by optical spring amplification. Noise (top) and signal trans-
fer function (bo�om) behave differently when the gain is on (solid red) and off
(dashed green). The signal is amplified significantly, yet the noise is increased
as well, although only slightly. This demonstrates that the main effect on sensi-
tivity is due to the optomechanical interaction (i.e. optical spring), and not noise
squeezing. The parameters of the system are: X/2c = 580Hz, \ = 0, �2 = 840 kW,
)8 = )B = 0.18, ! = 4000m.
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Fig. 9.5. Optomechanical frequency Ω−/2c as a function of squeeze angle \ for different
values of parametric gain Γ relative to the threshold value Γth. The parameters of
the system are: X/2c = 580Hz, �2 = 840 kW, )8 = )B = 0.18, ! = 4000m.
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Third, internal squeezing changes the dynamics and stability of the system.

The characteristic equation for the optomechanical motion is

Ω
4 + 28Ω3W + Ω

2(Γ2 − W2 − X2) + � (X − Γ sin 2\ ) = 0. (9.12)

The resonances can be found in the perturbative way by expanding the roots of

Eq. (9.12) in powers of W . Then zeroth order of expansion gives two positive roots:

Ω
(0)
± =

√√√
X2
eff

2
±

√
X4
eff

4
− �effXeff, (9.13)

where Ω
(0)
− corresponds to the shi�ed mechanical resonance, and Ω

(0)
+ to the

optical resonance. In the absence of optomechanical coupling, �eff = 0, mechanical

resonance is at zero, which corresponds to our assumption of having quasi-free

masses, and Ω
(0)
+ = Xeff =

√
X2 − Γ2.

Notice how in this case quantum expansion appears naturally from selecting a

broadband tuning q = c/2, i = 0, cosh 2@ = 0.5(1 + '2B )'−1B : �0 → 0, W → ∞.

With increased effective power the mechanical resonance shi�s to higher

frequencies, and the optical one gets reduced, until, within the approximation

used, these resonances become equal at the critical power �
(c)
eff

= X3
eff
/4 [128]. Note

that the absence of optomechanical coupling (�eff = 0) can be due to zero power

(� = 0) or if the condition Γ sin 2\ = X holds. Generally, the effective power can

be changed by tuning the squeeze angle, without affecting neither light power

nor squeeze factor, see Fig. 9.5.

We propose thus to use this feature for dynamical tuning of the interferometer

response to the GW signal. This way the mechanical resonance is changing

adaptively to match the chirp GW signal, see Fig. 9.6. Tuning of the squeeze angle

can be done in a straightforward way by tuning the phase of the second harmonic

pump, e.g. by transmission through a fast electro-optical modulator. We note

that the tuning speed is ultimately limited by the decay rate of the pump light’s

cavity.
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Fig. 9.6. Example of tuning of the sensitivity by changing only the squeeze angle of the
intra-cavity amplifier. Three plots correspond to three different values of the angle,
with X/2c = 580Hz and Γ/Γth = 0.93. They demonstrate the possibility to engineer
the optical spring by changing only the squeeze angle. Note that the generally
poor sensitivity at low frequencies can be improved by an additional local read
out of the differential motion of the near test masses [256]. The parameters of
the system are: �2 = 840 kW, )8 = )B = 0.18, ! = 4000m.

9.2.1 Sensing the radiation-pressure noise on input

test masses

The optical spring can be efficiently combined with the local readout [256]. The

idea of the local readout is based on that of the optical bar, proposed by Braginsky

and co-authors. At frequencies below the optomechanical resonance, the ITMs

and ETMs are connected in a rigid way via dynamical backaction. For this reason,

at these low frequencies, the motion of the ETMs due to a gravitational wave

causes an identical motion of the ITMs, which reduces the sensitivity at these

frequencies. The idea behind the local readout is to measure the motion of the
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Fig. 9.7. Dynamical tuning of the sensitivity by changing only the squeeze angle of the
intra-cavity amplifier. Grey plots correspond to different tuning angles, as the
interferometer follows the GW signal. The red plot is a cumulative curve rep-
resenting the maximal sensitivity over the whole dynamical tuning procedure.
The parameters of the system are: X/2c = 580Hz, Γ/Γth = 0.93, �2 = 840 kW,
)8 = )B = 0.18, ! = 4000m.

ITMs locally and to use this information in the data processing. This way the

sensitivity can be greatly improved at low frequencies. Here we propose to use

the second harmonic pump of the OPA to sense the local motion of the ITM. In

this case the dark port of a second small Michelson interferometer, formed by

ITMs, coincide with the bright port of the main interferometer, see Fig. 9.1 and

9.2. Both outputs have to be measured with balanced homodyne detectors with

an optimal homodyne angle, and then combined in an optimal way. For the local

readout it is important to take the motion of the central beamspli�er into account,

as the arm length of the small interferometer is rather short and arm cavities are

not used.

Using the second harmonic pump instead of a nearby wavelength [256] most
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likely eases the fabrication of the optical components that are part of both in-

terferometers. The large wavelength separation allows to manufacture a highly

reflective optical coating on the ITMs for the local readout beam, while keeping

a moderate transmissivity for the main beam to allow for over-coupling of the

input light. The detection of the two beams can be done independently in efficient

way, by separating the beams with dichroic beamspli�ers, which avoids using

polarization optics or filter cavities, as proposed in [256]. The particular design of

the local readout and resulting sensitivity is a direction of future research.

9.3 Summary and outlook

In this chapter I analyze the optical spring that is created by the ‘conventional’

optomechanical parametric amplification inside a detuned cavity in combination

with intra-cavity optical parametric amplification (OPA). Modifying the spectral

density of the conventional optical-spring GW detector requires modifying the

light power in the interferometer arms and/or changing the length of the signal

recycling/signal extraction cavity. In this chapter I show how the same modifica-

tion is achieved for the OPA-enhanced optical spring by changing the power of

the OPA pump light and/or by changing the phase of the pump light. This opens

a possibility for a more flexible tuning of the detector in-operation, since all the

associated control is performed on the pump field independently on the main

field. In particular, a dynamical tuning of the sensitivity in response to the GW

signal can be performed in order to achieve the highest resolution at every signal

frequency.

Such dynamical tuning would have certain practical limitations: the phase

adjustment speed is limited by decay time of the optical cavities, and the detector

has to be actively stabilized (since the optical spring is inherently unstable) dy-

namically with changing frequency. This excludes the possibility to use dynamical

tuning for fast sweeping signals from binary black holes. However, the signal

from neutron star merger usually remains at low frequencies for minutes, time

potentially sufficient for dynamical tuning.

With this the overall concept of a broadband detector with internal squeezing

is completed: at low frequency, quantum noise is suppressed with back-action
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evading techniques (variational readout, frequency-dependent squeezing or speed-

meter topology) and local readout, which allows to detect signals well before the

merger; at mid-frequency range between ∼ 20Hz and ∼ 200Hz the dynamical

tuning is switched on when suitable signal arrives; once the signal reaches higher

frequencies, the dynamical tuning won’t be fast enough (and strong enough),

so the detector is switched in the quantum expander mode, that allows to ob-

serve the merger and post-merger signals. Note, that the dynamical sensitivity

as presented in Fig. 9.7 uses physical detuning, and not only parametric phase,

to achieve the optical spring. Therefore, this example is not easily transferred

into quantum expansion mode (which requires a tuned detector). However, it

is possible to create the optical spring only by changing the internal squeezing

phase, but the resulting sensitivity requires further analysis.

The proposed parametric amplification can find its application in other designs

too. In particular, Einstein Telescope design currently features two detectors -

low frequency, and high frequency, where the former operates with low-power

light and optical spring. The low light power for this design is critical, since the

detector is planned to be cooled down to cryogenic temperatures for reducing

thermal noises, and high light power would cause an absorption-induced heating.

In this configuration a intra-cavity parametric amplifier would allow to reduce

the light power without sacrificing the optical spring enhancement. Moreover,

currently it is planned to use cost-intensive filter cavities for frequency-dependent

squeezing that would suppress QRPN at low frequency. However, since the noise

margin between the QRPN and technical noises is relatively small, a compara-

ble enhancement might be achievable with local readout. This requires further

investigation.

Finally, the pump field as the second carrier field might also be interesting for

other schemes such as the double optical spring [131] or multi-carrier configura-

tions [132, 190, 259], such as the one described in Chapter 5.

This work extends both aspects of the optical bar, the optical spring as well as

the local readout, towards gravitational-wave detectors with intra-cavity paramet-

ric amplification, and shows that such an approach allows versatile engineering

of GW detector sensitivities.
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Conclusion and outlook
10

�antum noise has been long thought to be the burden of gravitational-wave

detection, limiting the sensitivity of the observatories almost at all signal frequen-

cies. In this thesis I make an argument that it can become a useful tool that allows

to increase the sensitivity in different ways at different frequencies. Such in-

crease relies on the extensive use of quantum correlations: either between the two

light fields of different frequencies, like in Chapter 5, or between the two cavity

modes, like in Chapter 8, or between the light and the mechanical oscillator, like

in Chapter 9. I present a conceptual vision of a gravitational-wave detector that

operates with several quantum extensions, allowing to flexibly tune the sensitivity

of the detector to match the specific scientific goal. Such detectors use quantum

correlations for reducing quantum radiation-pressure noise at low frequencies,

and allow to see the signals from binary inspirals at early stages of their evolution.

These low-frequency signals not only give more precise information about the

parameters of the binary system, but also allow to locate the source on the sky

with increased precision. Providing this localization in advance to the electro-

magnetic observatories can allow them to observe the merger in electromagnetic

diapason. Such a detector follows the signal sweeping through the detection

band, and dynamically adjusts the frequency at which it is most sensitive. This

can be achieved by taking advantage of the optomechanical interaction between

the light and the test masses, amplified by a nonlinear crystal placed inside the

detector. Finally, when the binary merges, radiating high-frequency gravitational

waves, the detector is switched into the quantum expander mode, where the

sensitivity at high frequency is increased with quantum squeezed light, generated

by the nonlinear crystal inside the detector.

This vision for a future detector is based on several approaches, that I study in

detail in this thesis. Every one of these approaches needs to be extended into a
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practical configuration and tested experimentally. Therefore I hope this to serve

as an inspiration for future research in these directions.

As the first step towards this goal, I investigate the details of quantum limits on

the sensitivity of the detectors. These limits arise due to the interaction between

the light and the test masses. One of them is the standard quantum limit (SQL),

which originates in the balance between the quantum radiation-pressure noise and

quantum shot noise. This limit can be surpassed by using quantum correlations

and evading the radiation-pressure noise. I propose and investigate experimentally

the optomechanical ring cavity setup, designed to evade the radiation-pressure

noise by measuring the velocity of the mechanical oscillator. This novel setup

has interesting optomechanical properties, which are partially studied by us in

[68]. Much more remains to be studied, including the possible extensions to the

setup, that would allow to reach quantum-noise-limited sensitivity, and possible

applications of the ring cavity for gravitational-wave detection. The experiment,

in order to demonstrate the velocity measurements of mechanical motion, will

need further increase in sensitivity, in particular, reduction in classical phase

noise, in order.

The other approach to reducing the quantum radiation pressure relies on

quantum entanglement between the two light fields. This entanglement is created

by an optomechanical interaction between these fields and test masses. With

special combination of parameters, dubbed ”paired carriers” regime, it can be

possible to cancel a significant part of the radiation-pressure noise.

Once the SQL is surpassed, the sensitivity still remains bounded by the quantum

Cramer-Rao bound. This bound cannot be surpassed, but can be lowered by

employing quantum correlations. One approach to creating these correlations

is to generate them directly inside the detector’s cavities. I study the internal

squeezing approach in different regimes. I show how it allows to increase the

sensitivity in different frequency ranges, and expand the detection bandwidth. I

make the emphasis on the role of optical loss that destroys quantum correlations

and prevents from achieving high enhancements to the sensitivity. I propose how

internal squeezing can be used to compensate for some part of these losses. I

derive a new quantum bound for a lossy interferometer, originating in optical

loss. I show that internal squeezing plays the crucial role in achieving this bound.

Finally, I discuss the standard sensitivity-bandwidth limit on the sensitivity of
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cavity-enhanced detectors, and how in different configurations internal squeezing

allows to overcome this limit.

The approaches introduced in this thesis will need more research into the

practical aspects of their implementation in the gravitational-wave detectors.

They target the future detectors: the extensions to the third generation and

beyond. However, they can find applications in a smaller scale metrological

devices. Optomechanical ring cavity features unusual properties, which can prove

useful for quantum state engineering in certain regimes [68]. I anticipate that

internal squeezing and quantum expander will become standard tools in the

toolbox of quantum metrology.
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Appendix
A

A.1 Appendix: quantum expander

In this section we use the transfer matrix approach [35] to compute the sensitivity

of the detector taking into account the radiation pressure noise and optical losses.

We start by writing down the input-output relations as propagation of the field

amplitudes in terms of transfer matrices for each optical element. The description

is broader than strictly needed to compute the spectral density in the main text

(e.g. it includes the effects of dynamical back action), but we find it helpful to use

a general approach.

Input-output relations

We describe a two-cavity system, as shown on Fig. A.1, in terms of input and

output quantum fields. Based on two-photon quadrature amplitudes we define

the vector â(Ω) = {0̂(2) (Ω), 0̂(B) (Ω)}T. The signal extraction cavity can rotate

the quadratures due to its detuning from resonance. The optical parametric

amplification process also squeezes and rotates the quadratures. The effect of

Fig. A.1. �antum fields in the model of a two-cavity system. 'B,8,4,)B,8,4 are the amplitude
reflectivities and transmissivities of the signal extraction, input and end test
mirrors correspondingly; a beamspli�er with power reflectivity _B represents a
source of intra-cavity loss, which causes vacuum noises =̂1,2 to enter the system.
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the signal recycling cavity can be described as a set of rotations and squeezing

operations:

âB = $ (i)$ (\ )S$†(\ )$ (q) (
√
1 − _B3̂B +

√
_B=̂1)48ΩgSE , (A.1)

b̂B = −'8 âB +)8 ĉ , (A.2)

ĉB =

√
1 − _B$ (q)$ (\ )S$†(\ )$ (i)b̂B48ΩgSE +

√
_B n̂2 , (A.3)

d̂B = )B â + 'B ĉB , (A.4)

where we denote the amplitude reflectivity and transmissivity of the signal re-

cycling and input mirrors by 'B,8,)B,8 , the power loss inside the cavity (before the

crystal) is _B ; signal recycling cavity global delay gSE = !SE/2 and the phase delay

due to the cavity detuning before and a�er the crystal by q, i . We now introduce

the squeeze angle \ and the rotation matrix

∀q, $ (q) =
[
cosq − sinq

sinq cosq

]
, (A.5)

Y = $ (c/2) =
[
0 −1
1 0

]
, (A.6)

and squeezing matrix

S =

[
4@ 0

0 4−@

]
, (A.7)

with @ being the single-pass squeeze factor.

For the arm cavity the corresponding set of equations reads

b̂ = −'B â +)B ĉB , (A.8)

d̂ = '8 ĉ +)8 â , (A.9)

ĉ = $ (Xarmgarm) f̂48Ωgarm , (A.10)

ê = $ (Xarmgarm)d̂48Ωgarm , (A.11)

f̂ = '4 ê +)4 v̂ + 2:'4$ (c/2)EĜ−(Ω) , (A.12)

where : = l/2 is the wave vector of the main field, Xarm is the arm cavity detuning

and garm = !arm/2 is the propagation time with !arm being the length of the arm
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cavity, and 2 the speed of light. The field E corresponds to the classical amplitude

of the field impinging on the end mirror.

We find the solution to these equations, first for the complex transmissivity

and reflectivity of the signal recycling cavity

b̂B = D1 [−'8)BM [i, q] â +)8 ĉ] , (A.13)

d̂B = D3 ['B)8M [q, i] ĉ +)B â] , (A.14)

âB =M [i, q]D3 ['B)8M [q, i]ĉ +)B â] , (A.15)

ĉB =M [q, i]D1 [−'8)BM [i, q]â +)8 ĉ] , (A.16)

(A.17)

where we defined

M [q,k ] = $ (q)$ (\ )S$†(\ )$ (k )48ΩgSE,∀q,k , (A.18)

D1 = (I + '8'B (1 − _B)M [i, q]M [q, i])−1 , (A.19)

D3 = (I + '8'B (1 − _B)M [q, i]M [i, q])−1 . (A.20)

That provides the input-output relations for the signal extraction cavity

b̂ = −R1 â + T1 ĉ + L11n̂1 + L12n̂2 , (A.21)

d̂ = R3 ĉ + T3 â + L31n̂1 + L32n̂2 , (A.22)

where we introduced the transfer matrices for the fields

R1 = 'B + '8) 2
B (1 − _B)M [q, i]D1M [i, q] , (A.23)

R3 = '8 + 'B) 2
8 (1 − _B)M [i, q]D3M [q, i] , (A.24)

T1 = )8)B
√
1 − _BM [q, i]D1 , (A.25)

T3 = )8)B
√
1 − _BM [i, q]D3 , (A.26)

L11 = −)B'8
√
1 − _B_BM [i, q]D1M [q, i] , (A.27)

L12 = )B'8'B
√
_B (1 − _B)M [i, q]D1M [q, i] −

√
_B , (A.28)

L31 = −)8'8'B
√
_B (1 − _B)M [q, i]D3M [i, q] +

√
_B , (A.29)

L32 = )8'B
√
_B (1 − _B)M [q, i]D3 . (A.30)
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Now we can derive the fields for the arm cavity yielding

ĉ ='4D2$ (Xarmgarm)2T3 â428Ωgarm +)4D2$ (Xarmgarm)v̂48Ωgarm+
+ '4D2$ (Xarmgarm)2 (L31n̂1 + L32n̂2) 428Ωgarm+
+ 2:'4D2$ (Xarmgarm)YEĜ−(Ω)48Ωgarm (A.31)

ê =D4$ (Xarmgarm)T3 â48Ωgarm+
+)4D4$ (Xarmgarm)R3$ (Xarmgarm)v̂428Ωgarm+
+D4$ (Xarmgarm) (L31n̂1 + L32n̂2) 48Ωgarm+
+ 2:'4D4$ (Xarmgarm)R3$ (Xarmgarm)YEĜ−(Ω)428Ωgarm , (A.32)

where

D2 =

(
I − '4$ (Xarmgarm)2R3428Ωgarm

)−1
, (A.33)

D4 =

(
I − '4$ (Xarmgarm)R3$ (Xarmgarm)428Ωgarm

)−1
. (A.34)

Finally, we find the outgoing field to be

b̂ = −Râ + T v̂ +ZĜ−(Ω) + L1n̂1 + L2n̂2 , (A.35)

where we defined the transfer matrices:

R = R1 − '4T1D2$ (Xarmgarm)2T3428Ωgarm , (A.36)

T = )4T1D2$ (Xarmgarm)48Ωgarm , (A.37)

Z = 2:'4T1D2$ (Xarmgarm)YE48Ωgarm , (A.38)

L1 = '4T1D2$ (Xarmgarm)$ (Xarmgarm)L31428Ωgarm + L11 , (A.39)

L2 = '4T1D2$ (Xarmgarm)$ (Xarmgarm)L32428Ωgarm + L12 . (A.40)

(A.41)

Radiation pressure

The radiation pressure force acting on the mirrors has three contributions. First,

there is a constant force due to the classical high-power optical field. It induces a

constant shi� of the mirror, which can be compensated with classical feedback.
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Second, there is a dynamical classical part, which is amplified by optomechanical

parametric amplification and which belongs to the optical spring, and third a

fluctuating force due to the uncertainty in the amplitude quadrature of the light.

The la�er corresponds to the quantum back-action force of the carrier light.

Following [196], we assume the input test mass to be fixed, and twice the back

action imposed on the backmirror instead (which leads to introduction of effective

light power). Such approximation is valid when the transmission of front mirror is

small, such that the amplitudes of the fields acting on the front and back mirrors

are almost equal (which is the case in our consideration).

�10 = ℏ: (E†ê(Ω) + F†f̂ (Ω)) = � 5 ; (Ω) −K (Ω)G−(Ω) , (A.42)

where we split the back-action into the noise part � 5 ; (Ω) and position-dependent

optical spring force with spring constantK (Ω). Taking into account that F = '4E,

we find the equations for these contributions:

� 5 ; (Ω) = ℏ: (1 + '24 )E†D4$ (Xarmgarm)48Ωgarm (T3 â + L31n̂1 + L32n̂2) +
+ ℏ:)4E

†LE v̂ , (A.43)

LE = (1 + '24 )D4$ (Xarmgarm)R3$ (Xarmgarm)48Ωgarm + '4 , (A.44)

K (Ω) = − 2ℏ:2(1 + '24 )'4E†D4$ (Xarmgarm)R3$ (Xarmgarm)YE428Ωgarm−
− 2ℏ:2'24E

†YE . (A.45)

Without loss of generality we choose the phase of the classical amplitude such

that:

E =
√
2�{1, 0}T , (A.46)

where the amplitude � is connected to the power in the cavity as %2 = 2%arm =

ℏl? |� |2, where %arm is a power in the corresponding Michelson interferome-

ter [196].

The equation of motion for the test mass taking into account the radiation

pressure force:

Ĝ−(Ω) = j (Ω)
[
� 5 ; (Ω) −K (Ω)G−(Ω)

]
, (A.47)
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where j (Ω) = (−<Ω
2)−1 is the mechanical susceptibility for the free mass<.

This allows us to introduce an effective susceptibility:

jeff (Ω) = (j−1 +K (Ω))−1 , (A.48)

such that G−(Ω) = jeff (Ω)� 5 ; (Ω).

Detection

The presence of optical loss in the readout path, including the detection loss,

leads to a loss of quantum correlations due to mixing with vacuum. We model

this loss with a beamspli�er of power transmissivity [ = 1 − _A and reflectivity

(loss) 1 − [ = _A which mixes in vacuum n:

b̃(Ω) = √
[b(Ω) +

√
1 − [n . (A.49)

The balanced homodyne detection on the output b̃ at homodyne angle Z pro-

vides the values

~ (Ω) = {cos Z , sin Z }Tb̃(Ω) = H Tb̃(Ω) =
=
√
[H T (−Râ + T v̂ + L11n̂1 + L12n̂2) +

+ √
[H TZĜ−(Ω) +

√
1 − [H Tn(Ω), (A.50)

which we renormalize to the differential mirror displacement

~̃ =
H T (−Râ + T v̂ + L11n̂1 + L12n̂2)

H TZ
+
√
1 − [H Tn
√
[H TZ

+ Ĝ−(Ω) . (A.51)

We implement the injection of the squeezing from the outside, by defining an

action of the squeezing operation on the input field â as:

â = Sext [qext]âvac, (A.52)
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where âvac is the vacuum field before squeezing, and the squeezing matrix with

squeeze factor @ext and squeeze angle qext is defined as

Sext = $ (qext)
[
4@ext 0

0 4−@ext

]
$ (−qext). (A.53)

All other fields v̂, n̂, n̂1, n̂1 are in the vacuum state.

From this we get the spectral density for this output

(G (Ω) = (GG (Ω) + 2ℜ[j∗eff (Ω)(G� (Ω)] + |jeff (Ω) |2(�� (Ω) , (A.54)

where

(GG =
H T(RSextS†

extR
† + T T † + L11L†

11
+ L12L†

12
)H

|H TZ |2 +

+ 1 − [
[

1

|H TZ |2 , (A.55)

(�� = ℏ
2:2(1 + '24 )2E†D4$ (Xarmgarm)×

×
(
T3SextS

†
extT

†
3

+ L31L†
31

+ L32L†
32

)
×

×$†(Xarmgarm)D†
4 E + ℏ

2:2) 2
4 E

†LEL
†
E E , (A.56)

(G� =
ℏ:

H TZ

(
(1 + '24 )H T

(
−RSextS†

extT
†

3
+ L11L†

31
+ L12L†

32

)
×

×$†(Xarmgarm)D†
4 E4

−8Ωgarm +)4H TT L†
E E

)
. (A.57)

Finally we normalize the spectral density to the gravitational-wave strain

yielding (taking into account the effects of high-frequency corrections [260])

(ℎ (Ω) = (G (Ω)
4

<2!2Ω4 |jeff (Ω) |2
Ω
2g2arm

sin2 Ωgarm
. (A.58)

Filter cavities

Filter cavities on the can be used to create a necessary frequency dependence of

quantum correlations, such that the QRPN is suppressed or evaded completely.

There are two scenarios, input filter cavity, where the injected squeezing becomes

frequency dependent, and output filter cavity, where the homodyne detection
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becomes frequency dependent. We follow [35] and consider a lossless filter cavity,

so that the only effect of the cavity is a frequency-dependent rotation of the input

squeezed state â → $ [\ 5 (Ω)]â or output b(Ω) → $ [\ 5 (Ω)]b(Ω), by the angle

\ 5 (Ω) = arctan
2W 5 X 5

W2
5
− X2

5
+ Ω2

, (A.59)

where W 5 is the filter cavity bandwidth, and X 5 is it’s detuning from resonance.

To obtain the spectral corresponding spectral densities it’s sufficient to modify

the squeeze angle qext → qext + \ 5 (Ω) or homodyne angle Z → Z − \ 5 (Ω) in the

equations for the spectral density Eq. A.54. The optimal detuning is on the slope

of the cavity resonance X 5 = W 5 , and the exact choice of cavity linewidth depends

on the parameters of the detector, including the internal squeezing strength and

readout loss.

A.2 Appendix: optical spring detector

Input-output relations for coupled cavities

It is helpful to consider the input-output relations of our optomechanical system in

the ‘two-photon formalism’ [165, 166], where the amplitude and phase quadrature

amplitudes 0̂2 and 0̂B of the modulation field at frequency Ω are linked to the

optical fields 0̂(l ± Ω) via

0̂2 (Ω) = 0̂(l + Ω) + 0̂†(l − Ω))√
2

, (A.60)

0̂B (Ω) = 0̂(l + Ω) − 0̂†(l − Ω)
8
√
2

. (A.61)

Based on these quadrature amplitudeswe define the vector â(Ω) = {0̂2 (l), 0̂B (Ω)}T.

The signal recycling cavity rotates the quadratures due to it’s detuning and

squeezes and rotates additionally due to intra-cavity optical-parametric ampli-

fication. The phase shi� due to the cavity length can be neglected since the

cavity length is much shorter than the wavelengths of the sideband modulations
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Fig. A.2. Notations of the optical fields for the PR cavity together with the common mode
of the arm cavities at l (top le�), for the SE cavity together with the differential
mode of the arm cavities at l (bo�om le�), and respective parts of the interfer-
ometer in Fig. 9.1 at l2, which belongs to the local readout (top and bo�om right).
Operators are annihilation operators and denote complex amplitudes including
their uncertainties. Capital le�ers � to � denote complex amplitudes whose
uncertainties are irrelevant. Subscript ‘B’: signal extraction; ‘?’: power recycling;
‘8’: input to arm cavity; ‘4’: end of arm cavity; ‘2’: optical frequency l2. ',) :
amplitude reflectivity and transmissivity of mirrors. ! is the average length of
the arm resonators, !2 is the relevant average length of the local read out, and G8,4
represent their dynamical parts due to differential test mass motion. q and i are
additional phases accumulated by the light field inside the SE cavity due to the
cavity detuning. The gravitational-wave signal (‘G’) corresponds to a differential
change of the arm length !.

considered here. The effect of the signal recycling cavity can be described as a set

of rotations and squeezing operations:

âB = O(i)O(\ )SO†(\ )O(q)d̂B , (A.62)

b̂B = −'8 âB +)8 ĉ, (A.63)

ĉB = O(q)O(\ )SO†(\ )O(i)b̂B , (A.64)

d̂B = )B â + 'B ĉB, (A.65)

where we denote the amplitude reflectivity and transmissivity of the signal recy-

cling and input mirrors by 'B,8,)B,8 and the phase delay due to the cavity detuning
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before and a�er the crystal by q, i , see Fig. A.2. We now introduce the squeeze

angle \ and the rotation matrix

∀q, O(q) =
[
cosq − sinq

cosq sinq

]
, (A.66)

Y = O(c/2) =
[
0 −1
1 0

]
(A.67)

and squeezing matrix

S =

[
4@ 0

0 4−@

]
, (A.68)

with @ being the single-pass squeeze factor. For the arm cavity the corresponding

set of equations reads

b̂ = −'B â +)B ĉB , (A.69)

d̂ = '8 ĉ +)8 â , (A.70)

ĉ = O(X0g0)f̂48Ωg0 , (A.71)

ê = O(X0g0)d̂48Ωg0 , (A.72)

f̂ = '4 ê +)4 v̂ + 2:O(c/2)EĜ−(Ω) , (A.73)

where : = l/2 is the wave vector of the main field, X0 is the arm cavity detuning

and g0 = !/2 is the propagation time with ! being the length of the arm cavity,

and 2 the speed of light. The field E corresponds to the classical amplitude of

the field impinging on the end mirror. This set of equations can be resolved

for the outgoing field b̂ and intra-cavity fields ĉ, d̂, ê, f̂ . We find the solution to

these equations, first for the complex transmissivity and reflectivity of the signal

recycling cavity

b̂B = D1 [−'8)BM[i, q]â +)8 ĉ] , (A.74)

d̂B = D3 ['B)8M[q, i]ĉ +)B â] , (A.75)

âB = M[i, q]D3 ['B)8M[q, i]ĉ +)B â] , (A.76)

ĉB = M[q, i]D1 [−'8)BM[i, q]â +)8 ĉ] , (A.77)
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where we defined

M[q,k ] = O(q)O(\ )SO†(\ )O(k ),∀q,k , (A.78)

D1 = (I + '8'BM[i, q]M[q, i])−1 , (A.79)

D3 = (I + '8'BM[q, i]M[i, q])−1 . (A.80)

That provides the solution for the signal extraction cavity

b̂ = −ℝ1 â + T1 ĉ , (A.81)

d̂ = −ℝ3 ĉ + T3 â , (A.82)

where

ℝ1 = 'B + '8) 2
B M[q, i]D1M[i, q] , (A.83)

ℝ3 = '8 + 'B) 2
8 M[i, q]D3M[q, i] , (A.84)

T1 = )8)BM[q, i]D1 , (A.85)

T3 = )8)BM[i, q]D3 . (A.86)

Now we can derive the fields for the arm cavity yielding

ĉ ='4D2O(X0g0)2T3 â428Ωg0+
+)4D2O(X0g0)v̂48Ωg0

+ 2:D2O(X0g0)YEĜ−(Ω)48Ωg0
(A.87)

ê =D4O(X0g0)T3 â48Ωg0+
+)4D4O(X0g0)ℝ3O(X0g0)v̂428Ωg0+
+ 2:D4O(X0g0)ℝ3O(X0g0)YEĜ−(Ω)428Ωg0

(A.88)

where

D2 =

(
I − '4O(X0g0)2ℝ34

28Ωg0
)−1

(A.89)

D4 =

(
I − '4O(X0g0)ℝ3O(X0g0)428Ωg0

)−1
(A.90)
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Finally, we find the outgoing field to be

b̂ =

(
−ℝ1 + '4T1D2O(X0g0)2T3428Ωg0

)
0+ (A.91)

+)4T1D2O(X0g0)v̂48Ωg0+ (A.92)

+ 2:T1D2O(X0g0)YEĜ−(Ω)48Ωg0 = (A.93)

= −ℝâ + Tv̂ + ℤĜ−(Ω) (A.94)

Radiation pressure and optical spring

The radiation pressure force acting on the mirrors has three contributions. First,

there is a constant force due to the classical high-power optical field. It induces a

constant shi� of the mirror, which can be compensated with classical feedback.

Second, there is a dynamical classical part, which is amplified by optomechanical

parametric amplification and which belongs to the optical spring, and third a

fluctuating force due to the uncertainty in the amplitude quadrature of the light.

The la�er corresponds to the quantum back-action force of the carrier light and

can be wri�en for the input and end mirrors as

�108 = ℏ: (C†
ĉ(Ω) + D

†
d̂(Ω)) , (A.95)

�104 = ℏ: (E†ê(Ω) + F
†
f̂ (Ω)) . (A.96)

In the single-mode approximation, these two forces become equal and read

�108,4 (Ω) = 2ℏ:E†ê(Ω) = � 5 ; (Ω) −K (Ω)G−(Ω) , (A.97)

where

� 5 ; (Ω) = 2ℏ:E†D4O(X0g0)48Ωg0 (T3 â+

+)4ℝ3O(X0g0)v̂48Ωg0
) (A.98)

K (Ω) = −4ℏ:2E†D4O(X0g0)ℝ3O(X0g0)YEĜ−(Ω)428Ωg0 (A.99)

Ignoring the effect of the second-harmonic beam, we get for the differential

motion

Ĝ−(Ω) = j (Ω)
[
� 5 ; −K (Ω)G−(Ω)

]
, (A.100)
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which allows us to introduce an effective susceptibility:

jeff (Ω) = (j−1 +K (Ω))−1 , (A.101)

such that G−(Ω) = jeff (Ω)� 5 ; (Ω).

Detection

The balanced homodyne detection on the output b̂ at homodyne angle Z provides

the values

~ (Ω) =
[
cos Z sin Z

]
b̂(Ω) = ℍ

T
b̂(Ω) =

= −ℍT
ℝâ + ℍ

T
Tv̂ + ℍ

T
ℤĜ−(Ω) (A.102)

which we renormalize to the differential mirror displacement

~̃ =
−ℍT

ℝâ + ℍ
T
Tv̂

ℍTℤ
+ Ĝ−(Ω) = −−ℍ

T
ℝâ + ℍ

T
Tv̂

ℍTℤ
+ jeff� 5 ; (A.103)

From this we get the spectral density for this output

(G (Ω) = (GG (Ω) + 2ℜ[j∗eff (Ω)(G� (Ω)] + |jeff (Ω) |2(�� (Ω), (A.104)

where

(GG =
ℍ
T(ℝℝ

† + TT
†)ℍ

|ℍTℤ|2 , (A.105)

(�� = 4ℏ2:2E†D4O(X0g0)×

×
(
T3T

†
3
+) 2

4 ℝ3ℝ
†
3

)
O

†(X0g0)D†
4E,

(A.106)

(G� =
2ℏ:

ℍTℤ

(
−ℍT

ℝT
†
3
O

†(X0g0)D†
4E4

−8Ωg0+

+ )4ℍT
TO

†(X0g0)ℝ3O
†(X0g0)D†

4E4
−28Ωg0

)
.

(A.107)
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Finally we normalize the spectral density to the gravitational-wave strain yielding

(ℎ (Ω) = (G (Ω)
4

<2!2Ω4 |jeff (Ω) |2
. (A.108)

A.3 Appendix: paired carriers

In this Appendix, we consider the single carrier features and therefore omit for

brevity the indices enumerated the carriers.

A.3.1 Speedmeter-like frequency dependence of the

shot noise

Consider the ultimate case of the condition (5.24), assuming that

Z = V . (A.109)

This assumption gives the exact speedmeter-like frequency dependence of the

shot noise:

(GG (Ω) =
ℏ

4"�� cos V sin2 V

�� 4 + 2�� 2
Ω
2 +�Ω4

Ω2
, (A.110)

where

� = 42A cos2(V + \ ) + 4−2A sin2(V + \ ) , (A.111a)

� = 42A cos(V + \ ) cos(\ − V)
+ 4−2A sin(V + \ ) sin(\ − V) , (A.111b)

� = 42A cos2(\ − V) + 4−2A sin2(\ − V) . (A.111c)

The low- and high-frequency asymptotics of (A.110) are equal to

(GG (Ω → 0) = ℏ� 3

4"�Ω2 cos V sin2 V
� , (A.112a)

(GG (Ω → ∞) = ℏΩ2

4"�� cos V sin2 V
� , (A.112b)
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The minimum of (A.110) is equal to

(GG (Ω0) =
ℏ�

2"� cos V sin2 V
(
√
�� + �) , (A.113)

where

Ω0 = �

(
�

�

)1/4
. (A.114)

A.3.2 Sub-optimal regimes of the dual carrier

interferometer

Here we analytically calculate a sub-optimal parameters values of the antisym-

metric dual-carrier regime which we use in the plots in Sec. 5.3. We enumerate

the carriers by the index 9 , assuming the condition (5.46) for the odd and the even

components.

One pair of carriers or low-frequency pair of the xylophone

Start with requirement, that the low frequency asymptotic of the total quantum

noise spectral density has to be equal to the SQL:

(sum(Ω → 0) = ℏ

"Ω2
. (A.115)

With account of Eqs. (5.1, 5.46, 5.47, A.112a), it gives:

(effGG (Ω → 0) = (
( 9)
GG (Ω → 0)

2
=

ℏ

2"Ω2
⇒ (A.116)

�9 =

(
4� 9 cos V 9 sin

2
9 V

� 9

)1/3
, (A.117)

where 9 = 1, 2.

The corresponding high-frequency asymptotic of the total quantum noise is

equal to

(sum(Ω → ∞) ≈ (
( 9)
GG (Ω → ∞)

2
=

ℏΩ2

2" (4� 9 )4/3
� 1/3(V 9 , \ 9 ) , (A.118)
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42A �/Ω0 V \

1.0 (0 db) 1.0 − arccos(1/
√
3) —

2.0 (3 db) 0.75 -1.02 0.51
4.0 (6 db) 0.54 -1.04 0.52
10.0 (10 db) 0.34 -1.05 0.52

> 10.0 4−A/sin 2V -1.047 c/2 + V
Tab. A.1. Values of � , V , and \ which minimize function (A.122)

where

� (V, \ ) = ��3

cos4 V sin8 V
. (A.119)

The values of V and \ which provide the minimum of this function are shown

in Table A.1 for some characteristic values of squeezing. Note that in all cases,

\ ≈ c/2 + V , which cancels the term proportional to 42A in �, giving

� (V, \ ) ∝ 4−4A . (A.120)

Therefore, the high-frequency part of the total noise scales with the power and

with the squeezing as follows:

(sum(Ω → ∞) ∝ 1

(�4A )4/3
. (A.121)

Higher-frequency components of xylophon

At high frequency, the radiation pressure noise can be neglected. In this case,

our goal is to get the most broadband shot noise spectral density centered at

some given frequency Ω0. Therefore, we minimize the product of the low- and

high-frequency asymptotics

(GG (Ω → 0)eff × (effGG (Ω → ∞)

=
1

4
(
( 9)
GG (Ω → 0) × ( ( 9)GG (Ω → ∞)

=
1

4

(
ℏ

4"� 9

)2 � 2
9 � 9� 9

cos2 V 9 sin
4 V 9

(A.122)
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where 9 = {2? + 1, 2? + 2} and ? = 2, . . . is the pair number, in �9 , V 9 , and \ 9 for a

given value of Ω0:

Eq. (A.114) gives �9 :

�9 = Ω0

(
� 9

� 9

)1/4
. (A.123)

Therefore,

(
( 9)
GG (Ω → 0) × ( ( 9)GG (Ω → ∞) =

(
ℏ

4"� 9

)2 √
� (V 9 , \ 9 ) , (A.124)

with the same optimal values of V 9 and \ 9 as for the low-frequency pair.

In this case, the noise scales with the power and with the squeezing as follows:

(sum(Ω → ∞) ∝ 1

�4A
. (A.125)

Narrowband optimization

The minimum of (A.113) in \ is provided by

\ 9 =
c

2
. (A.126)

In this case,

(
( 9)
GG (Ω) =

ℏ

4"� 9�9Ω2 cos V 9 sin
2 V 9

×
[
(Ω2 − � 2

9 )242A sin2 V 9 + (Ω2 + � 2
9 )24−2A cos2 V 9

]
. (A.127)

If ���U 9 = c

2
− V 9

��� ≪ 1 , (A.128)

then this spectral density has a sharp minimum at Ω = �9 . In this case

(
( 9)
GG (Ω0 + a) ≈

ℏ

"��9U 9

(
a242A 9 + � 2U29 4

−2A 9
)
. (A.129)
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Therefore, the value of the minimum and its width are equal to

(GG (� ) ≈
ℏ�9U 94

−2A 9

"�
, (A.130)

ΔΩ = 2�9U 94
−2A 9 . (A.131)
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