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Zusammenfassung

Diese Arbeit beschreibt neue Methoden und Programme für automatische Vorher-
sagen und Vergleiche dreidimensionaler (3D) RNA-Strukturen.

Mit Hilfe zuverlässiger Vorhersagen makromolekularer 3D-Strukturen ließe sich
viel Arbeit für aufwendige Experimente sparen. Das etablierte Programm NAST
erzeugt RNA-Strukturmodelle mit niedriger Auflösung mittels Molekulardynamik-
Simulation. In dieser Arbeit wird ein grundlegender und schwerwiegender Feh-
ler im Aufbau des verwendeten Kraftfeldes beschrieben. Die Kombination von
Termen für Bindungs- und Torsionswinkel führt zu extremen Steigungen in der
Energiefunktion und dadurch zu numerisch instabilen Simulationen. Um dieses
Problem zu beheben, wurde NASTI (NAST Improved) entwickelt. Form und Para-
meterisierung der Energieterme wurden durch unterschiedliche Veränderungen
verbessert. Die wichtigste Erneuerung ist ein Energieterm für Torsionswinkel, der
durch Hinzunahme der benachbarten Bindungswinkel die Simulationen stabilisiert.
Während NASTI ohne numerische Probleme über Millionen Zeitschritte läuft, en-
den NAST-Simulationen regelmäßig in numerischen Katastrophen. Vergleicht man
die vorhergesagten Modelle mit bekannten 3D-Strukturen, zeigt sich außerdem,
dass NASTI gegenüber NAST gleichwertige oder bessere Ergebnisse erzielt.

3D-Strukturvergleiche sind zentrale Werkzeuge in Studien zur Evolution und Funk-
tion von Makromolekülen. Im Rahmen der vorliegenden Arbeit wurden deshalb
Methoden zum schnellen Vergleich von RNA-Strukturen entwickelt. Zunächst
wird eine neue Methode, das RNA-Rückgrat durch ein Strukturalphabet zu be-
schreiben, vorgestellt. Strukturalphabete reduzieren 3D Molekülstrukturen auf
eindimensionale Buchstabenfolgen. Die hier vorgestellte Methode ist speziell für
den RNA-Strukturvergleich optimiert. Die Abbildung von Strukturfragmenten auf
Alphabetsbuchtstaben wurde durch einen Suchalgorithmus mit dem Ziel, ähnliche
Bereiche zwischen verschiedenen Strukturen zu finden, optimiert. Anschließend
werden zwei neue Programme zur Berechnung von RNA-Strukturalignments vor-
gestellt. ALFONS verwendet das neue Strukturalphabet und CVRRY beruht auf
der Verwendung geometrischer Deskriptoren für Rückgratfragmente. Die beiden
Programme sind im Vergleich zu drei etablierten Methoden deutlich schneller
und produzieren ähnlich gute Alignments. Für Anwendungen, die noch schnel-
lere Strukturvergleiche erfordern, werden die Programme URSULA und FREE-
DOLIN vorgestellt. Indexstrukturen auf Sequenzen des neuen Strukturalphabets

i



ermöglichen die Suche nach ähnlichen Strukturen in großen Datenbanken. Ein
Signifikanzmaß für einander gleichende Teilsequenzen erhöht die Genauigkeit der
Suchen. Im Vergleich zu einem bekannten Programm produzieren FREEDOLIN
und URSULA vergleichbare bis bessere Ergebnisse.
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Abstract

This thesis presents several new methods and tools for the computational prediction
and comparison of three-dimensional (3D) RNA structures.

The prediction of 3D macromolecular structures would reduce the effort invested
in costly experiments. The established tool NAST uses molecular dynamics simula-
tions and a knowledge-based force field to sample low resolution structure models
of RNA molecules. In this work, a major flaw in the design of the force field is
described, which causes numerical instabilities during the simulations. The way in
which the respective energy terms are defined results in steep cliffs in the energy
landscape for some combinations of bond and torsion angles. A new program
NASTI (NAST Improved) is introduced as a numerically stable replacement for
NAST. Several improvements were made to the formulation and parameterisation
of the energy terms. The most important is a new smoothed energy term for the
torsion angles which takes the neighboring bond angles into account removing the
instabilities. Simulations were conducted to compare NASTI and NAST. NASTI
runs steadily for millions of steps while NAST suffers routinely numerical catastro-
phes. Sampled structure models were assessed via comparison to crystal structures.
For different test cases NASTI produces structures with equal or better quality
compared to NAST.

Studies of evolution and function are often based on the comparison of large
numbers of 3D structures. This requires fast methods. Several approaches to this
problem were developed in this project. First, a new structural alphabet description
of the RNA backbone is described. Structural alphabets are used to reduce the
3D shape of a macromolecule to a one-dimensional string of letters. The method
presented here was developed specifically for RNA structure comparison. Unlike
previous approaches, the procedure to find the mapping of backbone fragments
to letters is formulated as an optimization task with the objective to find similar
regions shared by distinct structures. The next developments presented here are two
new tools for RNA 3D structure alignment. ALFONS uses the structural alphabet
representation and CVRRY deploys novel geometric descriptors comprising inter-
nucleotide distances and a chirality measure. Both tools are implemented into
the same framework and share algorithms for alignment and superposition. A
benchmark against three state of the art programs shows that the new tools are
considerably faster while producing satisfactory alignments. Finally, the programs

iii



URSULA and FREEDOLIN were developed for applications where even faster
comparisons are required. The tools use the new structural alphabet representation
and enhanced suffix arrays for quick alignment-free comparison. An estimate
of statistical significance of substring matches improves the accuracy. Database
searches were conducted to demonstrate the ability of the two methods to find
related structures. Both tools are very fast, while producing results of quality
comparable to a previously published method.
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1
Chapter 1.

Introduction

Non-coding RNAs (ncRNAs) have diverse and vital functions in living cells.
To fully understand life at the molecular level one thus requires knowledge
and understanding of ncRNAs. The function of many ncRNAs is closely
linked to their three-dimensional (3D) shape [1]. The determination and
analysis of RNA 3D structures is therefore an important task in molecular
biology research. Computer programs play an important role in this research
field [2–4]. The work underlying this thesis was therefore dedicated to the
development of structural RNA bioinformatics tools.

1.1. RNA structure

A typical RNA molecule is a single strand of nucleotides which folds onto
itself. The sequence of nucleotides with bases adenine (A), cytosine (C), gua-
nine (G) and uracil (U) determines the final structure to a large extent. The
folding process is mainly driven by the formation of base pairs. Nucleotide
bases that are not near each other in the sequence can hydrogen-bond with
each other. There are many H-bond donors and acceptors, but the most com-
mon patterns lead to canonical base pairs (AU, GC) and wobble pairs (GU).
Consecutive base pairs along the chain stack on top of each other and form
an A-helix (Fig. 1.1 A). RNA structures typically consist of a set of helices
with loops between them (Fig. 1.1 B-C). Tertiary connections determine the
3D arrangement. The importance of base pairs for the folding process led to
a hierarchical view on RNA structure. We call the sequence of nucleotides
the primary structure, the set of base pairs the secondary structure and
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1. Introduction

Figure 1.1.: (A) Stacked base pairs. Blue lines mark hydrogen bonds. (B) Crystallo-
graphic structure model of riboswitch-adenine complex (PDB-ID: 1y26)
at atomic resolution and (C) drawn as simplified cartoon.

the overall 3D arrangement the tertiary structure [5]. On one side, this is
justified by the belief that the folding process is often hierarchical, with
helices folding first and further contacts being established afterwards [6].
On the other side, it is practical because knowledge about the distinct levels
is gained from different experiments [7–11].

3D structure models for macromolecules such as proteins and RNAs are
usually determined by nuclear magnetic resonance spectroscopy, x-ray crys-
tallography or cryo-electron microscopy [10, 11]. Publicly available models
are deposited in the protein data bank (PDB) [12]. As the main data source,
this database is of major importance for research in structural biochemistry
and hence also for the related bioinformatics approaches.

1.2. Scope of this thesis: RNA structural
bioinformatics

Two different computational issues were addressed in this work: the pre-
diction and the comparison of RNA 3D structures. In the following, the
motivations and objectives are briefly introduced.
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1.2. Scope of this thesis: RNA structural bioinformatics

1.2.1. RNA structure prediction

Experiments for the determination of macromolecular 3D structures are
time consuming, expensive and do not always succeed. Sequences, on the
contrary, are much more easy to get [7]. Hence, a lot of time and money
would be saved if one could predict structures computationally based on
sequences.

A computational method for RNA 3D structure prediction is typically built
with three ingredients. First, a representation for the 3D structure is re-
quired. Reduced representations are routinely used instead of full atomistic
models because they are computationally cheaper [13–24]. The second
ingredient is the scoring function. Two different schools of thought are
established here. Physics-based energy models are based on an analytical
model for physical phenomena [17, 25], whereas Knowledge-based mod-
els rely on statistics extracted from known structure models. Probability
distributions for the modeled features are fitted to values found across
structure models from the database. The distributions are either used with-
out modification [21, 26, 27], or they are turned into quasi-energy functions
using the Boltzmann relation [14–16, 19, 24]. Some approaches combine
knowledge-based and physics-based terms [13, 15, 23]. The third ingredient
is a sampling algorithm. Molecular dynamics simulation [14, 18] and Monte
Carlo sampling [19–21,24,26–28] are used frequently. Many tools incorporate
a fourth ingredient, which is the knowledge about the secondary structure
and tertiary contacts [14, 18–20, 22, 26–28]. This reduces the search space
drastically and thereby enables the modeling of larger structures. Contacts
may originate either from experiments [8, 9] or from predictions, which can
be computed on the sequence of the respective molecule alone [29, 30] or
with more confidence from a multiple alignment of a set of homologous
sequences [31–33].

The simulation tool NAST uses a minimalist structure representation, a
knowledge based force field and contact restraints for quick structure sam-
pling in a molecular dynamics framework [14]. Unfortunately, the simula-
tions are numerically unstable. The cause of the instability and a solution to
the problem are described in chapter 2 of this thesis. Stabilizing the force
field and the implementation of some additional improvements led to the
development of the tool NASTI. To proof NASTIs abilities, a comparison to
NAST using five example structures is presented.

3



1. Introduction

1.2.2. RNA structure comparison

Reliable comparison methods are a basic requirement for the exploration
of the world of RNA molecules. Close homologs are easily found and
compared with sequence alignments [34–37]. However, not all similarities
are observable at the sequence level. Evolution tends to conserve structure
more than sequence [38]. Similarities may still be clearly visible for the 3D
structures even if the sequence identity is very low [39]. Hence, methods
for structure comparison are required and may, for example, be used to
answer the following questions. Are two given structures related? For a
given structure, are similar molecules with known function available in a
database? Which parts of two related structures are conserved? Are there
conserved motifs shared by molecules with different overall 3D shape? Can
we find a sensible way to group structures into different folds or classes?

Several new methods and tools for RNA structure comparison are described
in chapters 3 to 5. Computational efficiency is crucial for tasks which re-
quire a large number of comparisons. All approaches presented here were
designed with the goal to compare structures quickly. Chapter 3 describes
a reduced string representation of the RNA backbone, which is optimized
specifically for the use in structure comparison approaches. It is employed
by methods described in chapter 4 and 5. Two new tools for fast pairwise
RNA structure alignments are described in chapter 4 and even faster tools,
which implement new alignment-free methods, are presented in chapter 5.

4



2 Chapter 2.

A revised RNA force field

Reproduced in part with permission from [40]. c© 2019 American Chemical Society.

2.1. Introduction

Coarse-grain representations can help to explore a larger variety of con-
formations when sampling macromolecular structures. The terms used to
model interactions must be chosen carefully to be applicable in dynamics
simulations. This chapter describes how an RNA force field [14] from the lit-
erature is fundamentally flawed and how it can be repaired while retaining
the same low level of molecular detail.

All-atom representations may be the most intuitive models for molecules
but are not always the most useful. When looking at the overall structure
of a macromolecule not every single atom is of interest. Merging particles
into united pseudo-atoms, on the other hand, reduces the number of energy
calculations and thus helps to speed up simulations [41]. However, there is
no free lunch and one has to make some compromises. Computed energies
will be less accurate, it becomes more difficult to include anisotropic inter-
actions and one loses temperature-transferability by removing degrees of
freedom. The challenge is to find a formulation which preserves as much as
possible of the relevant features, but there are some pitfalls. One may find a
solution which works often, but occasionally fails disastrously. Such a case
is described herein.
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2. A revised RNA force field

Using a lower resolution will reduce the accuracy, but also the versatility
and the transferability of the model [42]. Therefore, coarse-grain models are
typically designed to work for a set of relevant conditions. This could, for
instance, be a restricted temperature range or specific chemical environment.
One can even take this one step further and tailor models for one specific
task. This is the case for the NAST force field for RNA simulations [14]. The
force field is designed for a setting where secondary structure and tertiary
contact information is available from an experiment [8, 9] or computational
prediction [29–33]. This information is used in a Newtonian dynamics
simulation to restrain the coarse-grain particle coordinates in order to form
the respective base pairs and helices. One should keep in mind that the
simulation does not resemble any physical process. Instead, it is used as
a sampling method to find plausible conformations which fit the given
restraints.

NAST deploys a minimalist structure representation with one spherical
particle per nucleotide, which is centered at the C3’ atom of the ribose ring.
This is sufficient to describe the overall shape of RNA molecules. To make up
for the accuracy loss due to this drastic simplification, particles are labeled as
being part of a base-paired/helical or loop region. In helical regions, angles
and dihedrals are restrained to ideal A-helix geometry. The respective force
constants were chosen rather arbitrarily by trial and error. Energy terms
acting on particles in loop regions were parameterised based on reference
values collected from ribosome structures. Symmetric distributions were
fitted to the measured geometries and used to calculate force constants
using the inverse-Boltzmann relation.

The application of NAST was reported in various projects. The tool was
used to model tRNA [43], RNA junctions [44], trans activation response
regions [45], group I introns [46], the Panicum mosaic virus [27] and parts
of the tobacco mosaic virus [47]. Weinreb et al. incorporated NAST into a
pipeline for the prediction of RNA 3D structures based on contacts deter-
mined by evolutionary couplings [33].

The NAST approach may be well suited for its specific task, but there is a
detail which causes numerical disruptions that often end in a collapse of the
simulated system. In order to be used in Newtonian dynamics simulations,
energy terms need to be continuous and differentiable. There is yet another
requirement. If the rate of change of energy with respect to coordinates
gets too large, the linear approximation used by a first-order integrator
is not valid anymore. This causes numerical errors ranging from small

6



2.1. Introduction

irregularities to a breakdown of the whole simulated system [48]. The
energy terms defined in NAST fulfill these requirements to a large extent.
Unfortunately, there are conformations, visited regularly in most simulations,
which result in numerical explosions. Here, an explosion is defined as a
temperature change by orders of magnitudes over only a few time steps.
The problem was recognized before. Reading the distributed code, one can
see that the program checks the temperature in each iteration and reassigns
velocities if an explosion is detected. However, it is unclear whether the
cause of the explosions was known since the authors did not report any
unusual behavior of the simulations.

The observed instabilities are the result of an unfortunate interplay of the
dihedral angle term and a soft bond angle term. A conventional form
Eφ = k cos(φ − φ′) is used for dihedral angles with dihedral angle φ, a
reference value φ′ and a force constant k. This term is problematic when
soft constraints are used for bond angles which allow conformations where
the angle is close to 0 or π rad. If the adjacent bond angle is exactly 0 or
π rad, the dihedral is undefined. This may be unlikely to happen in practice,
but conformations close to this point are also problematic. The energy
landscape becomes so steep in this area that a simple integrator fails to give
a sensible approximation (Fig. 2.1 A). Tiny changes in Cartesian coordinates
cause large jumps in energy. This happens regularly in NAST simulations,
but is hidden by the strong interference of a temperature bath and the
mechanism to reset velocities. A more elegant solution is presented in this
chapter. Several changes are made to the energy terms and parameters while
preserving the basic features of the method.

Repairing the problem of numerical instability, as well as changes to improve
the fit to known data, have led to a new program called NASTI1. The
most important difference between NASTI and NAST is the form of the
dihedral angle energy term. A new term for dihedral angles is defined,
which also considers the adjacent bond angles as depicted in Figure 2.1 B.
The new function inherits the periodic form from the classical definition
but is, in order to avoid the energy jumps seen in NAST, extended with
additional terms to flatten the curve when either of the adjacent bond angles
approaches 0 or π. Using the opportunity, some additional changes are
made to update the functional forms and the parameterisation of some other
terms. A more sophisticated treatment of helical regions and energy terms
involving particles in loops and helices is introduced. Instead of enforcing

1NAST Improved
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2. A revised RNA force field

0
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Figure 2.1.: Relative energies of stable and unstable dihedral angles in (A) NAST
and (B) NASTI. The center row shows four arrangements of atoms. The
top row depicts the corresponding NAST energies as a function of the
dihedral angle φ. When passing π rad, the adjacent angle φ instantly
changes its value by π rad. In the most extreme case the energy jumps
from the minimum to the maximum of this energy term, as indicated
by the star in the far right plot. The bottom row shows the same energy
dependence in NASTI.
Reprinted with permission from [40]. c© 2019 American Chemical Society.

ideal A-helix geometry, all energy terms, including those for helical regions,
are fitted to values collected from crystallographic structures. Base pairing
patterns are defined for a more specific parameterisation of energy terms
acting on particles from both loop and helix regions. The harmonic energy
terms for backbone angles were replaced with spline functions to account
for the skewness observed on distributions taken from crystallographic
structures. Structure ensembles were sampled with both NAST and NASTI
for evaluation. The sampled structure models were assessed by root mean
square differences (RMSD) and global distance test (GDT-TS) values [49]
with respect to the crystal structures. Additionally, local geometries were
computed on the sampled structures to compare the distributions to those
found in ribosomal subunits. NASTI was tested with two objectives in mind.
The structures sampled with NASTI should be as good as those produced
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2.2. Methods

by its predecessor, and the simulations should be so close to conserving
energy that they run steadily with minimal interference of the temperature
bath.

2.2. Methods

2.2.1. Datasets

Three sets of RNA structures were used in the parameterisation and eval-
uation. For the parameterisation of energy terms, 40 structures, given in
Table A.1, were taken from the list of non-redundant RNA structures by
Leontis and Zirbel [50]. Only structures with a chain length of more than
150 nucleotides were used. Global structural alignments were computed for
all pairs using FRIEs [51]. If the percentage of structural identity [52] within
a pair was greater than 0.7, the molecule with the shorter chain was re-
moved. Five structures given by Weinreb et al. [33] were used for evaluation
simulations. Base pairs and contacts were determined using RNAView [53].
Contacts along the Watson-Crick edges of the nucleotides were used for the
secondary structure input and pseudoknots smaller than three nucleotides
were removed. For each structure a small list of additional tertiary contacts
was used. A contact was added if it was amongst the strongest N predictions
(for chain length N) by Weinreb et al. [33] and not already in the list of
secondary structure restraints. NASTI was parameterised on a larger set of
structures than NAST, so it might be unfair to compare simulation snapshots
against the larger parameterisation set. To avoid this problem, distributions
of distances, angles and torsion angles in simulations were evaluated by
comparison against the three ribosomal subunits used by Jonikas et al. [14].

2.2.2. Energy function

NASTI uses the same coarse-grain representation as its predecessor with
one pseudoparticle per nucleotide centered at the C3’ atom. As in NAST,
each particle is labeled as to whether it is part of a base pair or a non-paired
loop particle. The total energy of the system is

Etotal = Enon bonded + Ebonds + Eangles + Edihedrals, (2.1)
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2. A revised RNA force field

where Enon bonded is the energy due to non-bonded particles and Ebonds,
Eangles, Edihedrals are energy terms due to bond distances, bond angles and di-
hedrals respectively. For Enon bonded NASTI uses exactly the same functional
form and parameters as NAST. Bonded energy terms stem from every back-
bone bond distance, angle and torsion angle. Specific helix geometry terms
act on sites within base pairs. If particle i is paired with particle j, there are
four additional restraints. One force restrains the distance rhlx between the
two particles and another one the angle θhlx affecting the triplet (i + 1, i, j).
There are two different dihedral restraints: φhlx for particles (i + 1, i, j, j− 1)
and φknight for (i− 1, i, i + 1, j− 1). Topologically these terms have the same
form as in NAST, but some of the functional forms were altered. The param-
eterisation is explained first, followed by the description of the functional
forms.

NASTI applies different energy contributions to the particles in helix, loop
and border regions. In the following, the labels 0 and 1 are used for non-
paired and base-paired nucleotides respectively. The sequence of labels
gives each geometry a signature. A backbone angle, for example, involves
three particles and thus there are eight possible different signatures. The
signature 011 would describe an angle between three particles of which the
first is not paired while the other two are. Values for each combination of
geometry and signature were collected from the Leontis and Zirbel set. The
parameters of the corresponding energy term were then fitted to the data
using the Boltzmann relation

E(x) = −RT ln P(x), (2.2)

where E is a pseudo-energy contribution, R and T are the gas constant and
temperature and P(x) the probability of geometry x.

Bond distances are restrained between neighboring particles along the
backbone and between the two nucleotides that form a base pair. Normal
distributions were fitted to the observed distributions. This directly leads to
a harmonic energy term

Ebond(ri) = kbond
i (ri − r′i)

2 (2.3)

with distance ri, distance optimum r′i and force constant kbond
i for bond i. The

form of the energy term is thus the same as in NAST while the parameters
are different. Before fitting, outlier distances were removed. Let Q1 and Q3
be the first and third quartiles and δQ = Q3 − Q1 the interquartile range.
Instances smaller than Q1 − 1.5δQ or larger than Q3 + 1.5δQ were removed.
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2.2. Methods

The energy contribution from bond angles was given by

Eangles = Ebackbone angles + Ehelix angles (2.4)

Ehelix angles accounts for the angles between base pairs and the backbone
in helices. They were parameterised by fitting normal distributions, again
yielding a harmonic potential. Ebackbone angles were parameterised with a
more sophisticated approach using splines. First a histogram was built
using bin width w following Scott [54]:

w = 3.49σN−
1
3 , (2.5)

where σ is the standard deviation and N the number of samples. The
probability density from this histogram was converted to pseudo-energies
using equation 2.2. Finally, quadratic splines were fit to the energies to
account for the asymmetry in the distributions. An implementation of a
B-Spline fitting algorithm by Dierckx [55] provided by the SciPy library [56]
was used. The energy terms in our force field implementation have the form

Ebackbone angle(θi) =
Nintervals

∑
j=1

sj(θi) (2.6)

with

sj(θi) =

{
ai,jθ

2 + bi,jθ + ci,j, if ti,j ≤ θ < ti,j+1

0, otherwise
(2.7)

where ti,j is the boundary of the interval j and ai,j, bi,j and ci,j are the interval
specific coefficients for angle θi.

Dihedral angle distributions were fit to von-Mises distributions [57], giving
a pseudo-energy term:

Eperiodic(φi) = kdih
i cos(φi − φ′i) (2.8)

where kdih
i is the force constant and φ′i the reference dihedral for dihedral φi.

To avoid the problems with sudden energy jumps, this was coupled to the
angle term

f (θ) =


0.5 cos[π( θ

b − 1)] + 0.5, if θ < b
1, if b ≤ θ ≤ π − b
0.5 cos[π( θ−π

b + 1)] + 0.5, if θ > π − b

(2.9)
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2. A revised RNA force field

where θ is the angle and b is an arbitrarily set parameter that controls the
range in which a changing angle changes the energy. The value was chosen
empirically to be small while still giving numerically stable simulations. b
was set to 0.1 rad for all dihedrals. Finally, 2.8 and 2.9 were combined to get

Edih(φi, αi, βi) = f (αi) f (βi)(Eperiodic(φi)− kdih
i ) + 2kdih

i (2.10)

where αi and βi are the neighbor angles to dihedral φi.

2.2.3. Initial random structures

Initial random structures were generated following Chen et al. [46] Starting
from a random position in the sequence, particles are added successively
at both ends at random coordinates but with a correct bond length and
avoiding collisions. 5× 104 steps of simulation at 300 K were used to relax
the system after each particle addition.

2.2.4. Simulations and structure sampling

All simulations were done twice, once with NAST and once with NASTI.
Using different initial random number seeds, 50 simulations were conducted
without a thermostat (NVE) and 100 simulations with an Anderson ther-
mostat (NVT) for each structure in the test set in both force fields. The
collision frequency was set to 1 ps−1 for equilibration and to 1 ps−1 and
0.01 ps−1 during production in NAST and NASTI respectively. Each simula-
tion started with a different initial random structure. After equilibration of
104 steps, each case was simulated for 106 steps with a time step of 0.005 ps
and a snapshot saved every 103 steps. NAST simulations were run using
the most recent version [58].

2.2.5. Structure quality evaluation

RMSD and GDT-TS values were computed for every snapshot with respect
to the PDB-structure. The RMSD between two sets of C3’ atoms measures
the average error between the coordinates in angstroms. GDT-TS scores
were originally popularised for protein comparisons [49] where they are the
average of the fraction of Cα atom pairs superimposable to within 1, 2, 4 and

12



2.2. Methods

8 Å. This gives a convenient score between 1 (very similar structures) and 0
(very different). They were adapted for RNA using C3’ backbone atoms.

2.2.6. Bootstrapping

The significance of differences in RMSD and GDT-TS scores was evaluated
using bootstrap confidence intervals and permutation tests [59]. This kind
of test assumes independence of measurements, but this is not the case for
measurements within a trajectory. To minimize the effect of correlations,
the average of all RMSD or GDT-TS scores for snapshots from the same
trajectory was used. This led to 100 mean values from 100 simulations for
both RMSD and GDT-TS. Working with average values from the NAST force
field could be problematic since an unstable trajectory led to samples with
outrageous energy values. This meant outliers had to be removed. If δQ for
each run was the interquartile energy range from the sample distribution,
then points were removed if E > Q3 + 1.5δQ where Q3 is the third quartile.
In the following a sample refers to a collection of per simulation mean
RMSD or GDT-TS scores.

50 000 resamples were taken with replacement from the original sample of
per simulation averages to compute the 99 % bootstrap confidence interval.
Each resample had the same size as the original. The average was computed
for each resample yielding a sorted list of averages. The 0.5th and 99.5th
percentile of that list were used as lower and upper limits of the 99 %
bootstrap confidence interval.

A two sided permutation test was conducted against the null hypothesis
that the means in the samples from NAST and NASTI are equal. A joint
sample came from merging the outcomes of NAST and NASTI, again using
per simulation averages. 50 000 permutations were sampled of this joint
distribution. Each permutation was divided into two groups with the sizes
of the original samples and the difference of the means of these subsamples
was computed. The collection of these differences is referred to as the
permutation distribution. Mean and standard deviations as parameters of a
t-distribution were used to compute p-values for the observed differences.
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2.2.7. Histogram distance

Histogram distances were computed following Cao and Petzold [60] to
compare sampled distributions of bonds, angles and dihedrals with the
respective distributions from the PDB reference data. The bin width was
calculated using equation 2.5 with the statistics of the reference data.

2.2.8. Implementation

NASTI was implemented using the OpenMM library [61]. The new energy
terms for dihedrals and angles were added to OpenMM as a C++ plugin.
The main routines of NASTI are written in Python 2 [62] calling OpenMM
functions through the provided interface.

2.2.9. Availability

NASTI is available at https://gitlab.com/nilspetersen/nasti.

2.3. Results

All results shown here were obtained from simulations of the five RNA
chains used by Weinreb et al. [33].

2.3.1. Numerical stability

Numerical instabilities are best observed in simulations with no temperature
coupling (NVE). In total, 250 NVE simulations were conducted with each
tool to test for numerical stability. After a short equilibration run coupled to
a temperature bath at 300 K, each system was simulated for 5 ns (106 steps)
with no temperature coupling. Energies were sampled every 1000 steps.
The most relevant result of this work is depicted in Figure 2.2. Every single
simulation with NAST ends in a numerical catastrophe while NASTI simu-
lations always remain stable with temperatures close to 300 K as shown by
the inset.
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2.3. Results

Figure 2.2.: Temperature from trajectories without coupling to a thermostat. Labels
show whether NAST or NASTI was used. The inset is zoomed to show
the slight difference between stable simulations. Colors are arbitrary
and only serve to separate calculations. There are 250 simulations for
both force fields.
Reprinted adapted with permission from [40]. c© 2019 American Chemical Society.

2.3.2. Evaluation of sampled ensembles

In addition to numerical stability, NASTI should provide structure samples
which are at least as good as those sampled with NAST. Simulations were
carried out using temperature coupling at 300 K. 105 snapshots were col-
lected for every molecule in the test set with each force field. These were
assessed in two ways. Distributions of local geometries (bond lengths, angles,
dihedrals) were collected and compared to reference distributions collected
from crystal structures of ribosomal subunits. The overall quality of the
sampled structure models was assessed by a comparison of the snapshots
with the respective structure models from the PDB [12].

The results concerning local geometries are presented first. NASTI was
parameterised on a larger set of ribosome structures than NAST. The evalu-
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ation of the local geometries was therefore restricted to the chains of Jonikas
et al. [14] in order to get a fair comparison. A distribution was assembled for
each structural property corresponding to an energy term. The distributions
collected from NASTI samples were closer to the reference than those from
NAST in all but one of the cases (Table 2.1). Histograms for bond angles
and dihedrals are depicted in Figures A.1 to A.3. The most outstanding
observation was made for distributions of an angle given by the orientation
of a base pair to the backbone (Fig. 2.3 A). Mean (µ) and standard deviation
(σ) are 1.3 rad and 0.2 rad respectively for the samples produced with NAST.
These values differ significantly from those measured for crystal structures,
which are µ = 1.1 rad and σ = 0.1 rad. NASTI reproduces these values
more closely with µ = 1.1 rad and σ = 0.1 rad. The consequence is that
helices in structure models sampled with NASTI are more similar to those
found in crystal structures (Fig. 2.3 B).

The force constants for dihedral terms in NASTI are smaller than those used
in NAST (Table A.2). This implies weaker restraints on the torsion angles
and therefore allows them to visit a wider range of conformations, which
is reflected by significantly larger variances of the sampled distributions
(Fig. A.2 and A.3). The differences are most evident for energy terms acting
on both base-paired and non-paired particles.

To assess the overall accuracy of the structure predictions, RMSD and GDT-
TS scores were computed between the sampled coordinates and the struc-
tures in the PDB. The measured scores for all five structures are depicted as
box plots in Figure 2.4. NASTI performs always better than NAST with re-
spect to the GDT-TS scores. Considering the RMSD values, NASTI achieves
better results for three of five cases while the original NAST force field
produced structures with lower RMSDs for the other two cases. Bootstrap-
ping techniques were used to assess the statistical significance of these
results. 99 % bootstrap confidence intervals were computed and permuta-
tion tests were conducted on the sampled means of per simulation averages.
Means, confidence intervals and permutation test p-values for the RMSD
and GDT-TS values of the five test cases are listed in Table 2.2. The means
behave similar to the medians and quartiles shown in Figure 2.4. The highest
permutation test p-value is ∼ 0.5 % and the confidence intervals are not
overlapping. This clearly supports the previous observations, which are
thus unlikely to be due to chance.
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NAST NASTI
rbb 00 0.02 0.03

01 0.03 0.03
10 0.04 0.03
11 0.06 0.03

rhlx 11 0.03 0.01
θbb 000 0.09 0.07

001 0.18 0.05
010 0.17 0.06
011 0.09 0.06
100 0.09 0.07
101 0.20 0.05
110 0.11 0.04
111 0.12 0.06

θhlx 10 0.26 0.17
11 0.45 0.07

φbb 0000 0.08 0.02
0001 0.08 0.04
0010 0.19 0.05
0011 0.15 0.06
0101 0.14 0.04
0110 0.16 0.05
0111 0.15 0.04
1000 0.07 0.04
1001 0.14 0.05
1011 0.14 0.06
1100 0.17 0.04
1101 0.17 0.07
1110 0.15 0.05
1111 0.11 0.03

φhlx 10 0.17 0.03
11 0.07 0.02

φknight 111 0.07 0.02

Table 2.1.: Histogram distances between sampled distributions and those col-
lected from crystal structures. The smaller value in each line is printed
bold. The abbreviations bb and hlx refer to values computed on the
backbone or helices, including particles on both sides of the helix.
Reprinted with permission from [40]. c© 2019 American Chemical Society.
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Figure 2.3.: (A) Comparison of inner helix angle (shown left) from ribosome ref-
erence structures (blue) with values from simulation snapshots (red)
from NAST (top center) and NASTI (bottom center). (B) Helices from
structures sampled with NAST (pink, top right) and NASTI (green,
bottom right) superimposed on the target structure (red).
Reprinted with permission from [40]. c© 2019 American Chemical Society.
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Figure 2.4.: RMSD (top) and GDT-TS (bottom) for structure ensembles sampled
with NAST and NASTI. Boxes show medians, upper and lower quartiles.
Whiskers stretch out to 1.5 interquartile ranges. Outliers are drawn as
circles. Unstable NAST simulations occasionally led to very high RMSD
values outside of the range of the plots and are not shown.
Reprinted with permission from [40]. c© 2019 American Chemical Society.
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RMSD Mean (CI) in angstroms

NAST NASTI P-Value

1fir 15.1 (14.6, 15.6) 9.4 (9.1, 9.9) 0
1y26 11.1 (10.8, 11.4) 11.5 (11.4, 11.6) 5.1× 10−03

2gdi 13.4 (13.2, 13.7) 13.9 (13.8, 14.0) 5.8× 10−04

3q3z 12.3 (11.9, 12.7) 10.7 (10.1, 11.4) 8.2× 10−07

4lvv 12.3 (11.8, 12.7) 10.2 (9.6, 11.0) 1.7× 10−09

GDT-TS Mean (CI)

NAST NASTI P-Value

1fir 0.19 (0.18, 0.20) 0.30 (0.29, 0.30) 0
1y26 0.22 (0.22, 0.23) 0.26 (0.26, 0.27) 2.2× 10−16

2gdi 0.15 (0.14, 0.15) 0.16 (0.16, 0.17) 3.3× 10−10

3q3z 0.17 (0.16, 0.18) 0.23 (0.22, 0.24) 0
4lvv 0.19 (0.18, 0.20) 0.27 (0.26, 0.28) 0

Table 2.2.: Comparison of NAST and NASTI snapshots with PDB structures.
Mean RMSD and GDT-TS of simulation averages with 99 % confidence
interval and permutation-test p-value. The means of the more correct
results are printed bold.
Reprinted with permission from [40]. c© 2019 American Chemical Society.
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2.4. Discussion

Let us first quickly summarize the most important results. While producing
similar results compared to its predecessor NAST, NASTI runs simulations
seamlessly without numerical instabilities or explosions. The new force field
may be as ad hoc as the old one, but it enables sampling in a better defined
micro-canonical ensemble without strong interference of a temperature bath.
This has several benefits. Checking for explosions and re-setting velocities,
as implemented in NAST, is not necessary anymore. Also, analyzing the
trajectories became much easier since no filtering for outliers is required.
NASTI is therefore much better suited for the use in pipelines like the one
proposed by Weinreb et al. [33].

The new formulation also enables the simulation of larger molecules. The
number of dihedral angles is proportional to the length of the simulated
chains. Hence, the probabilities of explosions also increased with the chain
length when simulating using the original NAST. With numerically stable
simulations and a well defined ensemble, NASTI is also much better suited
to replica exchange methods than its forefather. Jonikas et al. [14] wrote that
the benefit of such methods may be modest since the quality of the sampled
structures is probably more limited by the low resolution of the model than
by sampling efficiency. At least, it is possible now to implement a reliable
sampling procedure.

A critical view on the developments and formulations presented here should
be helpful for future work. Note that there is little physical basis for the terms
used in NASTI. Using the Boltzmann-relation on macromolecular structures
is based on several simplifications. The quantities from statistical potentials
are therefore at best rough approximations of the true energies underlying
the folding process [63]. Instead, one may describe the knowledge-based
approach as a way to sample structure models with geometries that agree
with the statistics of known 3D structures.

In defense of this approach, one could claim to have a useful scoring function
for efficient conformational sampling and concede that one has no claims
of statistical mechanical rigor. Especially the new dihedral terms are a
pragmatic but also ad hoc solution. The problem originated from the adaption
of terms conventionally used in atomistic force fields, where bond angles
are extremely rigid. There are no problems with the classical cosine dihedral
term if the bond angles do not approximate values close to 0 or π. However,
the bond angles in NAST are not defined on single atoms but on sites which
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are not really bonded to each other. By fitting the terms to the distributions
from crystallographic structures one obtains very flexible angles. This caused
the instabilities observed in NAST simulations.

Flattening the energy term in the critical area, as it was done in this work,
may be one of the most direct ways to solve this problem. This is imple-
mented using a cross term on bond angles and dihedrals. Separate terms
are used to persuade the bond angles to resemble the distributions used for
parameterisation. A more elegant approach would be to derive a single term
from a joint distribution of bond and torsion angles. However, the solution
used in this work fixes the instability problem and the structures sampled
with NASTI reproduce crystallographic geometries quite well. It is therefore
definitely an improvement over the formulations used in NAST.

Despite being parameterised on a larger set of structures, NASTI reproduces
the geometry distributions of the original ribosomes used in the NAST
parameterisation better than NAST. Although most improvements listed in
Table 2.1 are quite small, some interesting observations were made. Small
improvements can be observed for the distributions of bond lengths, bond
angles and torsion angles both in backbone and helix geometry. There are
two reasons for this. The first reason is the more sophisticated parameteri-
sation scheme used in NASTI. NASTI has different terms for cases where
all particles belong to either a loop or a helix and those where only some
of the affected particles are part of a base pair. The effect is most obvious
for dihedrals at helix borders. In NAST, a dihedral is simply restrained
to helix geometry if two or more of the affected nucleotides are part of a
base pair. This results in distributions with a very small spread for these
cases. The more complicated scheme used in NASTI, on the other hand,
produces distributions which are much closer to the reference values. The
second reason is that backbone angles are modeled with spline functions in
NASTI. These terms allow for skew and therefore reproduce the observed
distributions better than the symmetric harmonic terms used in NAST.

The most salient difference between the old and the new force field was
observed for an angle which describes the orientation of a base pair to
the backbone. NAST sampled a distribution which deviates substantially
from the reference values. The cause of this is a bad parameter choice. The
corresponding line in the NAST source code assigns an ideal value of 1.5 rad.
While the supplement provides the same number, an optimum at 1.76 rad
is given in the main publication [14]. Both values are far from the mean
observed in crystallographic structures, which is 1.08 rad.
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Local geometry is maybe only partially important if one is interested in the
overall shape of a molecule. RMSD and GDT-TS scores were computed with
respect to crystallographic structures to get an idea about the quality of
the sampled coordinates. Samples from both force fields have low GDT-TS
scores. This reflects the sensitivity of the score to coordinate differences
larger than 1 Å. Such a high accuracy is out of reach for force fields as
simple as the ones used here. However, we can observe differences between
the scores calculated for samples from NAST and those from NASTI, and
the results differ for RMSD and GDT-TS. NASTI was always better with
respect to GDT-TS and produced on average lower RMSDs in three of five
cases. Although the bootstrapping tests suggest that the differences are
not by chance, one would exaggerate by claiming that these are substantial
improvements. An interesting difference between RMSD and GDT-TS can
be observed. RMSD values are more affected by outliers due to flexibilities
in the molecule while GDT-TS scores are more likely to reward good local
geometry.

More examples favored by either NAST or NASTI are probably easily found.
If a fragment contains both paired and non-paired bases, the rigid backbone
in NAST simulations becomes favorable when the true shape really is helix-
like. NASTI, on the other hand, is more likely to succeed for loop structures
which deviate significantly from helix geometry. Furthermore, NASTI also
produces helices which are more like those found in structures deposited in
the PDB.

The NAST framework is simple, but this also means that there is room for
extensions. One could, for instance, incorporate energy terms for coaxial
stacking or specific loop motifs [64].

The work presented here may be useful beyond the specific task of RNA
structure prediction. When designing a coarse-grain force field for macro-
molecular or similar structures, one may be tempted to use familiar energy
terms and simply apply them in the new setting. This, however, is not always
wise as one can see from the numerical instabilities in NAST. Critical testing
is therefore required, sometimes followed by a little adjusting surgery.
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2.5. Conclusion

The new program NASTI is a numerically stable alternative to NAST. RNA
structures sampled with NASTI are at least as good, if not a little bit better,
as those produced by NAST, while simulation runs are smooth as butter.
NASTI should therefore replace NAST in practice. It is recommended for
applications which require a simple, quick and easy-to-extend tool.
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3 Chapter 3.

Structural alphabet
optimization

3.1. Introduction

A new method for designing a structural alphabet for RNA is described
here. A structural alphabet is a technique to discretize the 3D shape of a
macromolecules backbone. Typically, short overlapping backbone fragments
are translated to a 1D sequence of letters. Structural alphabets have been
extensively built and applied to protein structures. Common applications
are fold recognition [65], the prediction [66] and the comparison [67–69]
of structure models. The benefit of using structural alphabets for structure
comparison is that it facilitates the application of methods developed for
sequence comparison [67–69]. One looses information due to the reduction
to one dimension and the discretization, but one gains the speed of fast
algorithms.

The core of these methods is the encoding of backbone geometry to a se-
quence of letters. In many approaches, fragments spanning multiple residues
are described with geometrical descriptors like distances [70, 71] or torsion
angles [68]. Based on this description the fragments are typically grouped
in an unsupervised manner with algorithms such as nearest neighbor clus-
tering [68] or hidden Markov models [70, 71]. If the fragments seem to be
distributed into discrete classes, then describing the structure by a series of
class memberships may be a reasonable approximation. A downside of the
discretization is that fragments in neighboring bins may be very similar if
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they are both close to the border between the two bins. Because of their sim-
ilarity it would be preferable to match them. Unfortunately, the fragments
are not matched by the comparison algorithm since they were assigned
to different letters. How often this happens obviously depends on both
the encoding and the distribution of the fragments according to the chosen
descriptors. It will happen more often the less well separated the clusters are.
Another difficulty is the choice of the number and the size of the clusters.
Variations of the fragment coordinates can be due to experimental accuracy,
mobile regions in the molecule or mutations. Local fragments may differ
but still contribute to a similar overall backbone shape. Other fragments
are so different that it is very unlikely or impossible to observe them in
corresponding positions of similar molecules. To counteract these problems
methods to parameterise substitution matrices were adapted from protein
sequence comparison [68, 72]. These matrices are parameterised using pre-
viously existing multiple alignments with known 3D structures. Broadly
speaking, the substitution matrix is parameterised to reward exchanges that
have been seen often and penalize exchanges which have been rarely seen.

Alphabets were also built and applied in this manner for RNA structure
comparison [73–78]. The RNA backbone was described by torsion [73, 74]
or coarse grained pseudotorsion angles [75–78]. Fragments were collected
and clustered using vector quantization [73, 74], affinity propagation clus-
tering [76–78] and the Blackman window function [75, 79]. The statistical
method underlying the BLOSUM family of substitution matrices [80] was
used to parameterise a scoring matrix in most approaches [73, 74, 76–78]. It
has been claimed that the RNA backbone can be described using a finite
set of discrete conformers [79, 81, 82]. However, some clusters depicted by
Yen et al. [78] and also used by Wang et al. [76] and Yang et al. [77] separate
densely populated areas of the fragment space with no obvious groups in
the data. Hence, the previously described problems of the discretization do
apply here.

In the following, an approach to the structural alphabet design is presented,
which is fundamentally different to the methods described previously. The
objective is to avoid the detour of searching for separable groups in the
fragment space and naturally occurring substitutions. Instead, the encoding
is optimized directly for its purpose, which is finding similar backbone
stretches in distinct molecules. This requires essentially four ingredients:
A basic mechanism for the translation of backbone fragments to letters, a
target function to measure the performance of an alphabet, a dataset for
the parameter training and an optimization algorithm. For the definition
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of the fragments, the idea of spaced k-mers [83] is adapted from sequence
comparison in order to reduce redundancy between overlapping fragments.
A fragment contains atoms of four nucleotides across a stretch of seven
nucleotides along the backbone. An alphabet is a composition of fragments
acting as centroids. Each centroid fragment corresponds to a distinct letter.
Chains are encoded by assigning the letter of the closest centroid to each
fragment, using RMSD as distance measure.

The goal of the optimization is to find a set of centroids that performs well
in finding similar structures. With all RNA structures in the PDB there is
a large number of fragments to choose from. To search for a good set of
fragments we need a defined performance measure. Here, an alphabet is
found to be good if it finds many good and few bad matches in a large set
of chain pairs. The evaluation therefore requires a method to find matches,
a dataset to search for matches and a function to evaluate these matches.
Enhanced suffix arrays [84] are used to search for exact substring matches
(longest common substring) in a set of chains collected from the PDB. The
difficulty is to estimate the quality of these matches. One has to trade simi-
larity against the length of the match. The cost function used here compares
the RMSD of the match to an estimate of what is expected for a random pair
of chains of the given size. The last ingredient is the optimization procedure.
A population based algorithm with Boltzmann weighted sampling and tem-
perature annealing [85] is used. A set of alphabets referred to as population
is iteratively refined. New alphabets are generated through the application
of random changes at the beginning of each iteration. Subsequently, a new
population is sampled with probabilities based on the abilities of the al-
phabets to find good matches. With this methodology the alphabet size
can be constrained to a specific value or subject to the optimization. Some
results are presented for both cases in the following. The composition of
an example alphabet, average properties of matches and some individual
matches are analyzed.

3.2. Methods

This section starts with the description of all the ingredients and prepara-
tions for the optimization. The optimization procedure is described subse-
quently.
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3.2.1. Datasets

All RNA structure models from a list of chains with pairwise sequence
identity smaller than 95 % [50] were downloaded from the PDB [12]. Many of
these structure models are missing residues within the model. The backbone
chain is thus not continuous. During the optimization exact matches between
sequences of letters are optimized, but sequence matches across gaps in the
chain are not meaningful. Therefore, all chains from the initial list were split
at each position where nucleotides are missing. This new list of continuous
chains was used to create the following three datasets, used for

• description of RMSD distributions for random chains,

• training,

• testing.

The first dataset was assembled to sample distributions of RMSD values
for a range of different match lengths. This set contains all chains which
are at least 500 nucleotides long. It will be referred to as the NR500 dataset.
For the optimization the continuous chains were cut again to pieces with a
length of not more than 250 nucleotides. Chains smaller than 50 nucleotides
were removed from the set. This list of subchains was then divided into two
distinct sets by random sampling with 80 % of the chains used for training
and 20 % used for testing.

3.2.2. Significance of backbone similarity

Distributions of RMSDs for matches between two chains of a given length
were estimated using a sampling strategy. 106 pairs of subchains were
sampled with replacement for each chain length from 7 to 250 nucleotides.
Chain pieces were sampled from a uniform distribution across all subchains
with the given length in the NR500 set. The RMSD was computed for every
pair. Mean µl and standard deviation σl of the RMSDs were computed for
every group, with l being the chain length. Based on these we can compute
a Z-score

Z =
RMSD− µl

σl
(3.1)

for any ungapped match with a length of l nucleotides.

28



3.2. Methods

Figure 3.1.: RNA backbone fragment used for the assignment of structural alphabet
letters. Atoms colored blue are considered for the assignment of a letter
and white ones are ignored.

3.2.3. Translation of backbone fragments to letters

Structural alphabet letters of this alphabet are defined for backbone frag-
ments spanning 7 nucleotides (Fig. 3.1). 4 nucleotides of each fragment are
considered for the assignment of the letter. Starting at position i these are the
nucleotides at positions i, i + 1, i + 3 and i + 6. Every letter in the alphabet
is represented by one specific centroid fragment. To translate a backbone
fragment to a letter, RMSDs are computed between the fragment and the
centroid fragment of every letter in the alphabet. The RMSDs are computed
with respect to the P, O5’, C5’, C4’, O4’, C3’, O3’, C2’ and C1’ atoms of the
two fragments. Missing atoms are simply ignored in the computation. The
letter with the smallest RMSD is then assigned to the fragment.

3.2.4. Computation of substring matches

The longest common substring (LCS) of two strings is computed using
enhanced suffix arrays [84]. The enhanced suffix array comprises a gener-
alized suffix array and a longest common prefix (LCP) array. To build a
generalized suffix array, a unique (sentinel) character is appended to the
end of both strings. The two strings are concatenated and a suffix array
is computed on the merged string. sais-lite [86], a fast implementation of
induced sorting [87], is used for the suffix array construction. To compute
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3. Structural alphabet optimization

the LCP array, the algorithm by Kasai et al. [84] was implemented. The LCP
array stores the size of the longest common prefix for all successive suffix
pairs from the suffix array. The LCS can therefore be found by searching the
largest entry in the LCP array where the two neighboring suffixes originate
from the two different strings. The worst case runtime to build the enhanced
suffix array and find the LCS is O(l1 + l2) for two strings with lengths l1
and l2.

3.2.5. Preclustering fragments

A list of letter candidates for the optimization was created by clustering all
fragments in the training set using the affinity propagation algorithm [88].
The negation of the RMSD on the previously described atom pattern (sec-
tion 3.2.3) was used as affinity value between two backbone fragments. A
preference value of −2.0 was used. The clustering was done in two itera-
tions because clustering all fragments at once requires too much memory.
For the first iteration, the set of all fragments was split into four subsets.
Affinity propagation was performed and yielded a list of exemplars for each
subset. These fragment lists were merged and clustered again. The cluster
centers emerging from this clustering were used as candidate fragments for
alphabet letters in the optimization.

Visualization of the clusters

The following steps were conducted to visualize the outcome of the clus-
tering. A new coordinate space is constructed based on similarity between
fragments. For each fragment, a vector of size N is computed comprising the
RMSDs to the N candidate fragments. Merging the vectors of the candidate
fragments yields an N2 matrix. Principal component analysis (PCA) [89]
was performed on this matrix yielding N eigenvectors. For visualization,
vectors of all fragments were projected onto the first three eigenvectors.

3.2.6. Optimization

This section describes the search for optimal RNA structure alphabets. The
overall algorithm is described first. Afterwards, the different parts of the
procedure will be described in detail. The main routine is a population
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based search heuristic with Boltzmann weighted sampling at the end of
each iteration (Algorithm 1). The space in which the optimal alphabet is
searched during the optimization will be referred to as alphabet space. It is
spanned by the list of letter candidates L which is computed as described in
section 3.2.5. A position in this space is an alphabet A ⊆ L. The search space
comprises all possible alphabets, either of arbitrary size or constrained to
a predefined size. Moves in this space are implemented as changes of an
alphabet referred to as mutations. A population P is a set of alphabets. The
algorithm starts with the creation of an initial population P. Subsequently,
this population is refined for NGen iterations. In each iteration the population
is enlarged using mutations to create new alphabets. The quality of every
alphabet is assessed by computing the cost function on the training data
D. Cost values and temperature-like parameter T are then used to sample
a new set of alphabets from P that replaces P. Finally, the best alphabet is
chosen from P based on the cost function.

Algorithm 1 Alphabet Optimization

1: procedure AlphaOpt( D, L, NGen, NSurvivors, NO f f spring, TStart, TEnd )
2: P← initialPopulation(L, NSurvivors)
3: for i← 1 to NGen do
4: P← produceNextGeneration(P, L, NO f f spring)
5: T ← getTemperature(i, TStart, TEnd)
6: C ← computeCosts(P, D)
7: P← sampleSurvivors(P, C, T, NSurvivors)
8: end for
9: return getBestAlphabet(P)

10: end procedure

Moves in alphabet space

Three different moves were implemented to randomly mutate the alphabets.
To mutate an alphabet, we either add, remove or replace a letter. For a given
set of candidates L, we have an alphabet A ⊆ L and a list of candidates
not chosen yet A′ = L \ A. |A| is the number of letters in A. To enlarge the
alphabet, a letter a ∈ A is drawn with probability 1

|A| . The alphabet is re-

duced by sampling a letter b ∈ A′ with probability 1
|A′| . For the replacement

the letters a and b are drawn with the given probabilities and exchanged
between A and A′.
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3. Structural alphabet optimization

Generating new candidate alphabets

At each step of the optimization NO f f spring new alphabets are created from
each of the Nsurvivors alphabets that survived the previous iteration (Al-
gorithm 2). The new generation comprises the original and the mutated
alphabets. A new alphabet is generated by copying its predecessor and ap-
plying exactly one of the moves described previously. Two different search
strategies were used in this work. The first strategy includes all three moves.
The optimization starts with empty alphabets (A = ∅∀A ∈ P). When gener-
ating strings with this alphabet every fragment is assigned the same letter. It
is thus equivalent to an alphabet comprising one letter. For every mutation
one of the three moves is chosen randomly. If possible, each move has the
same probability to be chosen. When A = L letters can only be removed
and A = ∅ implies that the only possible move is adding a letter. In the
other strategy the size of the alphabet is fixed. The optimization starts with
a random choice of letter candidates. At each move a letter is replaced as
described previously.

Algorithm 2 Increase the population

1: function produceNextGeneration(P, L, NO f f spring)
2: PNew ← P
3: NSurvivors ← |P|
4: for j← 1 to NSurvivors do
5: for k← 1 to NO f f spring do
6: PNew ← PNew ∪ {copyAndMutate(Pj, L)}
7: end for
8: end for
9: return PNew

10: end function

Annealing schedule

An exponential annealing schedule [85] is used for the temperature. For
an optimization with NSteps iterations, initial temperature TStart and final
temperature TEnd, the temperature at iteration i is

Ti = TStart

(
TEnd
TStart

) i−1
NSteps−1

. (3.2)
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Cost for a match

The cost for a match of two continuous backbone pieces is given by

cost = tanh(
a
σl
(Z− s))l, (3.3)

where Z is computed according to equation 3.1 using the RMSD and the
length l of the match. a and s are arbitrary constants. The term a

σl
adapts

the slope of the sigmoid. a was set to 20 in all optimizations. s shifts the
x-ordinate. It defines the tipping point for a good match being rewarded
and a bad match being penalized. s was set to 2 in all optimizations. 2σ is
a common choice for a significance threshold for Gaussians [59]. However,
the choice is rather arbitrary. Both parameters were found by initial trial
and error experiments. The parameterized score function is depicted in
Figure 3.3.

Evaluate candidate alphabets

The quality of an alphabet is assessed by computing and evaluating matches
between the chains from the training set. The procedure to compute the
target function for each alphabet A in the population P is shown in Al-
gorithm 3. First, each chain in the training set D is translated to a string.
Subsequently, the LCS match m is computed for all possible string pairs Si
and Sj from the set of Strings S as described in section 3.2.4. The RMSD
for the corresponding segments of the chains Di and Dj is computed using
Kabsch’s superposition algorithm [90]. RMSD and length of the match are
then used to calculate the cost according to equation 3.3. The cost of an
alphabet is the average cost of all matches computed with this alphabet.

Sample survivors

In each iteration the population P is replaced. The new set of Nsurvivors
alphabets is sampled from P with replacement. Boltzmann weights are used
to assign probabilities to the different alphabets. The probability to sample
the alphabet Pi is

pi =
e−CiT−1

|P|
∑

j=1
e−CjT−1

, (3.4)

with temperature T and cost Ci and Cj for alphabet Pi and Pj respectively.
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Algorithm 3 Evaluate alphabets

1: function evaluateAlphabet(A, D)
2: S← chainsToStrings(A, D)
3: c← 0
4: for i← 1 to |D| do
5: for j← 1 to i− 1 do
6: m← lcsMatch(Si, Sj)
7: l ← getMatchLength(m)
8: RMSD ← kabschSuperposition(m, Di, Dj)
9: c← c + cost(RMSD, l)

10: end for
11: end for
12: return 2c

|D|2−|D|
13: end function
14:
15: function computeCosts(P, D)
16: C ← ∅
17: for i← 1 to |P| do
18: C ← C ∪ {evaluateAlphabet(Pi, D)}
19: end for
20: return C
21: end function

Time and space requirements

Computational requirements of the different parts of the optimization algo-
rithm are analyzed in this section. Time requirements will be analyzed first.
We will start with the generation, mutation and resampling of alphabets
and then analyze the evaluation of the cost function. Memory consumption
is analyzed afterwards.

In the implementation presented here, an alphabet is implemented as an
array which contains all letters from the candidate list L. The array is sorted.
The letters of the alphabet are at the beginning and the others are at the end.
The size of the alphabet is stored in an extra variable. All three moves are
implemented as two letters changing places and - if necessary - increasing
or decreasing the number of letters chosen. A move requires thus O(1) time.
However, when generating a new alphabet, the predecessor is copied and
then mutated. Copying an alphabet requires O(|L|) time. Therefore, the
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initialization of P uses O(NSurvivors|L|) and the production of new alphabet
candidates O(NSurvivorsNO f f spring|L|). In each iteration a new population is
sampled with replacement. The probabilities for the alphabets are stored in
a cumulative array. Sampling an alphabet is done by generating a random
number followed by a binary search in this array. The sampling of NSurvivors
alphabets thus requires O(NSurvivors log(|P|) time and the copying requires
O(NSurvivors|L|) time. Given that |L| � |P| we can conclude that the most
expensive step described so far is generating new alphabet candidates.

The most demanding part of the optimization is the calculation of the target
function for every alphabet in each iteration. A chain Di from the training
set D has length li. In the following we will ignore the fact that strings
are slightly shorter than the corresponding chains. We will use li for the
length of Di and Si, since this will not change the runtime complexity in
O notation. To compute the set of strings S, every fragment in the training
set is translated to a letter. Since the maximum size of an alphabet is the
number of letter candidates |L|, finding the closest letter for a fragment
has O(|L|) time complexity. F is the group of all fragments found in D.
Translation of all chains to strings thus requires O(|F||L|) time. This is
reduced to O(|F|) if the alphabet size is constant. However, even for opti-
mizations where the alphabet size is not fixed, the alphabets are smaller
than 10 letters most of the time (section 3.3.3). Thus, the runtime can also
be assumed to be O(|F|) in practice. The computation of the LCS match
between the strings Si and Sj is O(li + lj) (section 3.2.4). The matching
chain parts are superimposed with the Kabsch algorithm. The superposition
and the calculation of the RMSD require time linear to the length of the
match. We get O(max(li, lj)) time complexity. Since computing the score
given the length and RMSD of the match requires O(1) time, the overall
time complexity for the computation and evaluation of one string match
is O(li + lj). Each chain Di is compared to |D| − 1 other chains. Since the
contribution to the runtime for a match computation is linear, the contribu-
tion to all match computations is O(|D|li). The sum of the contributions of
all chains is O(|D|∑|D|i li) = O(|D||F|). To compute all strings and matches
we thus need O(|F|) + O(|D||F|) = O(|D||F|) time. For |P| alphabets we
get O(|P||D||F|) and for NGen iterations this becomes O(|P|NGen|D||F|).
Previously, producing new alphabet candidates was the most demand-
ing task described. Because |P| = NSurvivorsNO f f spring + NSurvivors we can
simplify the runtime of this step to O(|P||L|). Now let us compare this
to the evaluation of the cost function. The set of letter candidates L is
a subset from the fragment set F obtained by clustering as described in
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section 3.2.5. The clustering drastically reduces the number of fragments
(section 3.3.2). We have |F| � |L| and it follows that |D||F| � |L| and there-
fore O(|P||D||F|)� O(|P||L|). Hence, the evaluation of the target function
is the bottleneck regarding the speed of the computation. To speed up the
computation it was parallelized. Computations of the target function for
different alphabets were distributed on distinct threads.

The algorithm requires memory for chains, sequences and alphabets. Chains
and sequences can be kept in O(|F|) space. Storing |P| alphabets requires
O(|P||L|). The total space required is thus O(|F|+ |P||L|). In the implemen-
tation presented here the RMSD values between the letter candidates in
L and the fragments in F are precomputed. This requires O(|F||L|) space.
This is not necessary but convenient since the required memory is not a
bottleneck here. The required space becomes O(|F||L|+ |P||L|).

3.2.7. Parameter choices

To find the parameters used in this work some initial trial and error experi-
ments were performed. The following parameters were found to produce
adequate results and therefore have been used to produce the results de-
scribed in section 3.3. TStart and TEnd were set to 1.0 and 0.2 respectively.
NSurvivors was set to 12 and NO f f spring to 4. The optimization was done in
1000 iterations (NGen). Every 10th iteration the average match length, RMSD,
cost and alphabet size were collected for training and test set. Optimizations
were done with a fixed and flexible alphabet size. Alphabets with fixed size
of 5, 6 and 7 letters were optimized. Each optimization was started three
times with different seeds for the random number generator.

3.2.8. Implementation and computation

Code was written in C and Python 3. GCC C-compiler version 7.4.1 [91] and
the Python interpreter version 3.6.5 [92] were used. The interface was built
using SWIG 4.0 [93]. OpenMP [94] was used to implement shared memory
parallelization. For the affinity propagation clustering and the PCA the im-
plementations from scikit-learn [95] were used. Code from sais-lite version
2.4.1 [86] was used for suffix array construction. The computations were
done on a high performance computing cluster. The affinity propagation
clustering was computed on machines with at least 200 Gigabytes RAM.
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Optimizations were computed on 12 threads with shared memory of at least
12 Gigabytes.

3.3. Results

3.3.1. RMSDs of random matches

Pairs of chain pieces were sampled from larger chains to estimate the
distributions of RMSDs for random RNA chains of a given length. For
chain pairs between 7 and 250 nucleotides length the average RMSD is
continuously increasing with the chain length while the rate of change is
decreasing (Fig. 3.2). This has implications on the cost function given in
equation 3.3 (Fig. 3.3). The cost function is a Z-score wrapped in a logistic
function multiplied by the length of the match. The x-intercept is the turning
point for a match from being considered favorable to unfavorable in the
optimization procedure. The increasing mean of the distributions shifts
this point to larger values. This means the tolerance with respect to RMSD
increases with the length of the matches. Multiplication with the match
length further means that larger matches contribute more to the overall cost.

3.3.2. Clustering backbone fragments to produce alphabet
letter candidates

If every 7-mer in the training dataset is considered as a potential centroid
for a letter, there are 156 782 letters to choose from in order to assemble an
alphabet. This imposes some problems on the optimization. The search space
is huge which causes the system to require more steps in order to converge
to an optimum. Furthermore, it is not possible to precompute all distances
between the fragments of the chains in the training set and the alphabet
candidates and keep them in the memory. One would have to compute the
distances between the chosen candidates for every alphabet at every step
of the optimization. Therefore, the fragments in the dataset were clustered
using affinity propagation to produce a smaller set of letter candidates. The
original set of fragments was separated into four subsets of equal size. The
cluster centers were merged and clustered again producing 4637 clusters.
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Figure 3.2.: Distributions of RMSDs for pairs of sampled chain pieces. Pairs were
sampled for chain lengths 7 to 250 nucleotides. Every seventh distribu-
tion is depicted here. Boxes show medians, upper and lower quartiles.
Whiskers stretch out to 1.5 interquartile ranges. Outliers are drawn as
circles.

PCA was performed to roughly sketch and inspect the outcome of the
clustering. Projection onto the first three principal components preservers
60, 23, and 5 % (total 88 %) of the variance of the distances (RMSD) between
the cluster centers. Visual inspection shows a core area densely populated
with cluster centers and a few cluster centers on sparsely populated areas
(Fig. 3.4).
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Figure 3.3.: Cost function for the alphabet optimization for different match lengths.

Figure 3.4.: Projection of distances between backbone fragments (blue) and alphabet
candidates (orange) on the first three principal components.
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3.3.3. Alphabet optimizations

Optimizations were performed with flexible or fixed alphabet size. Alphabet
size and random seed were the only parameters that varied between the
different optimization runs. An alphabet size of five, six and seven letters
was used in optimizations were the size was fixed. Each optimization was
done three times with different random seed. An annealing procedure was
used for a more efficient search (Fig. 3.5 A).

Trajectories

Optimizations ran 1000 iterations. At every tenth iteration the average cost,
RMSD and match length were computed and collected for the training
and the test set. Furthermore, the average number of letters was collected
when the alphabet size was not fixed. To get an idea about the course of
such an optimization the trajectories of two cases are analyzed here. The
first trajectory is from an optimization without restraints on the alphabet
size (Fig. 3.5 B-E). The second one is from an optimization on alphabets
restrained to a size of six letters (Fig. 3.5 F-H). The random seeds in these
two optimizations were set to one and two respectively.

The optimization of alphabets with flexible size starts with alphabets of size
zero. All fragments will be assigned to the same letters. Matches computed
on these strings are meaningless. The energy is very high due to long
matches with high RMSD. The average alphabet size increases to a value
close to eight within the first 200 steps. Afterwards, this value stays close
to eight for the rest of the optimization. With the first letters being added
to the alphabets, the average cost drops very fast within the first ten steps
(not shown in the figure). This comes with decreasing RMSD and match
length. In the following steps the cost function still decreases very quickly
compared to the rest of the optimization. This comes with a sharp increase of
the average match length from less than 16 to values close to 18 nucleotides.
In the following ∼ 500 steps cost, RMSD and match length further decrease
on average. Afterwards, in the second half of the optimization, the cost
computed on training and test data is further improved, but to a smaller
amount than in the first half. The significant downwards trend for RMSD
and match length, however, is not abundant anymore.

In the trajectory of the six letter alphabet the cost value decreases the most
in two different phases of the optimization. The first overall drop in the
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cost function is within the first 100 steps, the second drop happens between
step 300 and 400. Afterwards, the value still improves on the training set
but to a lesser extend than previously. However, this does not happen when
computed on the test set. Both match length and RMSD drop within the
very first steps. The match length has its minimum below 17.5. Afterwards
both increase and start to decrease again around step 200. The final average
RMSD computed on the training set is close to 6.0 Å thus lower than
the start value of approximately 6.6 Å. The final average match length is
approximately 18.6 nucleotides and therefore a little bit larger than the
initial value of roughly 18.5 nucleotides. Hence, both values improve during
the optimization.

Final scores

Table 3.1 lists the final average cost, RMSD and match length for each
optimization run computed on the training and the test set. Furthermore, a
line with mean values for the different alphabet sizes was added. Results
for only three different random seeds per alphabet size may not be enough
to compute meaningful statistics. We can still make a few observations. The
lowest cost value is obtained from the optimization with fixed alphabet size
of seven nucleotides using one as random seed. This yields an average cost
of -10 on the training set and -9.5 on the test set. The optimization with seed
two, on the other hand side, only achieves a score of -7.6 on the training
set. This is the worst performance on the training set observed across all
optimizations. Hence, the results of the different alphabets obtained from
the different runs are overlapping.

Frequencies of different letters

Figure 3.6 shows the backbone fragments selected in the optimization of
a six letter alphabet using seed two. The letters were named A to F. The
fragment of letter E has a shape which is typical for RNA helices. The
frequencies of the letters were computed for the chains of the training set
(Fig. 3.6). The most abundant letter is the helix letter E. 66 % of all fragments
are assigned to E. The second most frequent letter is A covering 12 % of the
letters. Hence, E occurs 5.5 times as often as A.
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Figure 3.5.: Averaged properties for an optimization with flexible (B-E) and one
with fixed alphabet size (F-H). Both optimizations used an exponential
cooling scheme (A) and all measures were computed for the training
and test set. Optimizations with flexible alphabet size initially have
very high RMSD, match length and cost. Therefore, the initial values
(step 0) are not shown to improve the visibility in plots C to E.
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Cost RMSD (Å) Match length (nucleotides)
5 6 7 Flex 5 6 7 Flex 5 6 7 Flex

Seed

Train 1 -7.9 -7.8 -10.0 -8.3 6.0 5.9 6.2 5.3 18.6 18.2 20.1 16.8
2 -7.8 -9.1 -7.6 -9.1 5.9 5.9 5.8 5.9 18.1 18.8 17.9 18.7
3 -8.3 -7.9 -8.9 -8.2 6.3 5.9 6.0 6.1 19.5 18.4 18.9 18.9
Mean -8.0 -8.3 -8.8 -8.5 6.0 5.9 6.0 5.7 18.7 18.5 19.0 18.1

Test 1 -7.1 -6.9 -9.5 -7.6 6.0 5.9 6.2 5.3 18.2 17.7 20.0 16.5
2 -6.5 -8.4 -7.5 -7.9 5.9 6.0 5.8 5.9 17.4 18.6 17.7 18.2
3 -7.9 -6.2 -7.9 -7.3 6.3 6.1 6.1 6.1 19.1 18.0 18.6 18.6
Mean -7.2 -7.2 -8.3 -7.6 6.1 6.0 6.0 5.8 18.3 18.1 18.8 17.7

Table 3.1.: Final scores from alphabet optimizations. The different columns are
sorted and named by the size constraints on the alphabets. The mean
was computed over the three runs for each case.

A B C

D E F

Figure 3.6.: Fragments of a six letter alphabet. The green positions are used for the
assignment of the letter using the RMSD. The white parts are ignored
in this computation.
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Figure 3.7.: Distribution of letters from a six letter alphabet. The fragments corre-
sponding to the letters are shown in Figure 3.6.

Matches

A closer look on the individual matches can help to further understand and
evaluate the performance of an alphabet. As an example, matches computed
with the six letter alphabet described in section 3.3.3 are examined here.
RMSD, match length and cost value were computed on the training and the
test data (Fig. 3.8). Between the chains of the training set 68 % of the matches
were rewarded with a negative cost value while 32 % were penalized with a
positive cost value. For the test set 65 % of the matches were rewarded and
35 % penalized. In both cases less than 0.01 % of the matches did not have
any letter in common and therefore were assigned cost zero.

Three example matches with different quality are presented here as an at-
tempt to illustrate the range of matches found with the optimized alphabet
(Fig. 3.8 and Fig.3.9). The matches shown are selected from the test set and
have thus not been considered during the optimization. They are therefore
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realistic examples for later use cases. Matches were selected that are signifi-
cantly longer than most of the matches with a similar Z-score. This was done
because similarities and differences are more visible for longer matches.
The first match is 102 nucleotides long with 1.7 Å RMSD. Therefore, the
match is rewarded with a cost value of −102.0. The two structures are very
similar and can be superimposed closely (Fig. 3.9 A). The second match is
126 nucleotides long with 17.3 Å RMSD. It is thus a little bit longer but has
a much larger RMSD compared to the previous example. The RMSD is still
well below µl=126 − 2σl=126. Therefore, it is considered to be significantly
better than expected for a random match and rewarded with a cost value
of −123.4. Both chains are from long helical stretches. Each of them is only
half a helix with the complementary strand missing. The matching strings
are both completely made of the repeating letter E, which has the typical
helical shape (section 3.3.3). At visual inspection after superposition one can
see that the overall shape of the two chain pieces is similar. The matching
nucleotides, on the other hand, are not placed on top of each other as seen
for the previous example (Fig. 3.9 B). The third match is 61 nucleotides long
with 24.4 Å RMSD. This RMSD is larger than µl=61 − 2σl=61. The match
is penalized with a cost value of 61.0. Again, both strings only comprise
letter E. The RMSD is higher than in the previous example, because one of
the two matched chain pieces is bend while the other one is rather straight
(Fig. 3.9 C).

3.4. Discussion

A central difficulty of the optimization described here is that one has to
juggle two objectives. Large continuous substring matches are preferred to
shorter ones. Longer matching segments may add more confidence for the
indication of similar function or evolutionary origin. They can also be more
helpful when assigning substructures in a global comparison. Obviously, this
is only the case if the matched substructures really do have a similar shape,
which is herein expressed in terms of RMSD. The challenge is therefore
to trade match length and RMSD in a sensible way. This is not a trivial
task as there is no obvious threshold on the RMSD to distinguish a good
from a bad match. The problem becomes even more difficult considering
that there is a non-linear dependence between the RMSD and the match
length (section 3.3.1). The first step towards an optimization is therefore
the definition of a target function that implements a sensible compromise
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3. Structural alphabet optimization

Figure 3.8.: RMSD, match length and cost for all matches between chains in the
training and in the test set at the end of an optimization. µ and σ are
the mean and standard deviation of RMSD distributions from sampled
chain pairs. The µ− 2σ line marks the x-ordinate of the cost function,
where the cost value switches from a negative reward to a positive
penalty. The matches shown here were computed with a six letter
alphabet. The superimposed structures for the highlighted matches A,
B and C are shown in Figure 3.9.

between those two measures. The cost function used in this work rewards
matches which have a significantly lower RMSD than expected for a random
match and penalizes matches that do not fulfill this requirement. The reward
or penalty is weighted by the length of the match. The benefit of this
approach is its simplicity. No additional information about the relation of
the specific structures in the training set is required. It can only be applied
to a match of length l if a distribution of RMSDs has been sampled for l
as described in section 3.3.1. This is not a problem for our optimization
because the maximum match length is constrained to the maximum length
of the chains in the training set, which are not longer than 250 nucleotides
(section 3.2.1).

An alphabet cuts the continuous fragment space into discrete chunks. Bor-
ders are defined by the choice of the centroid fragments. The objective of the
optimization is now to find an arrangement that optimizes the previously
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Figure 3.9.: Superimposed chains for matches highlighted in Figure 3.8. The chain
segments colored purple and red belong to the matching substrings.
The yellow and white parts are not matched.
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described compromise of length and RMSD. The quality of the matches is
directly linked to the division of the fragment space by the choice of the
centroids. If the bins are too wide there will be unspecific matches. If they
are too narrow, many similar fragments will be assigned to different letters
and similarities will be missed out. This may be most easily understood
when looking at alphabets with different size. Adding letters to an alphabet
will add more boundaries. This will likely lead to the truncation of some
matches in the training set and thus reduce the average match length. It
will also reduce the RMSD at least a bit and more so if these matches had a
large RMSD. Let us consider the match shown in Figure 3.9 C as an exam-
ple. A straight helical stretch is matched to one with a hinge like structure.
Both corresponding strings comprise only the letter E. A different letter
assigned to at least one of the fragments in the hinge area would disrupt
the match. The longest substring match would be shorter but also have a
smaller RMSD. Having fewer letters in the alphabet on the other side would
produce longer matches with higher RMSD. The most extreme case is a one
letter alphabet which leads to arbitrary matches of maximum length and
RMSDs distributed similar to those expected from random samples. The
trajectory depicted in Figure 3.5 B-E clearly illustrates how the previously
described effects drive the optimization. Within the first 200 steps the av-
erage alphabet size increases to about eight letters. The specificity of the
matches increases rapidly as observed by a decreasing cost value due to
decreasing average RMSD. In many steps the decreasing average RMSD
concurs with a decreasing average match length.

The number of bins is obviously not the only factor. How the selection
of the centroids improves the performance in finding matches is clearly
visible for the trajectory depicted in Figure 3.5 F-H. The alphabet size
does not change during this optimization. At the beginning six random
centroid fragments are chosen for every alphabet. The performance increases
significantly as shown by the decreasing cost value. At the end of the
optimization there is an improvement on both objectives. The average match
length is longer and the RMSD smaller for the final state compared to the
initial state. Hence, the optimization definitely succeeds in searching for
better alphabets with respect to the target function. We can make a similar
observation on the trajectory of the optimization with a flexible number of
letters (Fig. 3.5 B-E). From step 200 onward the average size of the alphabets
oscillates around eight letters. The cost function still decreases. This indicates
that the optimization finds better groups of centroids while a size close to
eight letters seems to be optimal.
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The quality of an alphabet is assessed by averaging the cost over all matches.
This means there is another compromise to make. Finding a good overall
score is achieved by balancing matches which are rewarded by the cost
function against those that are penalized. The best score may be achieved
tolerating small bad matches in order to enable large good matches. A
typical distribution of the scores is shown in Figure 3.8. Therein, matches
are found on both sides of the µl− 2σl line which marks the x-ordinate of the
cost function. Changing the factor s in equation 3.3 would shift this border
towards rewarding or penalizing more matches. Setting the boundaries
too tight will eventually result in an optimization which is dominated by
the removal of penalized matches with only little influence from rewarded
matches. The alphabet size increases to very large numbers if it is not fixed
and this leads to very short matches. The matches shown in Figure 3.9 help
to get an idea for the implications of the parameter choice made in this work.
Match A is a case that should very obviously be rewarded as the backbone
stretches are very similar. It would even be beneficial to further extend this,
but occasional interruptions of favorable matches due to the borders of the
discretization are probably something that one has to live with. Whether
match B should be rewarded or penalized may depend on ones point of
view or the application. The overall shape is similar while the nucleotides
are not superimposed closely. Match C is penalized and therefore a part of
the compromise. This may not be harmful. The most important task of the
alphabet is to assign corresponding pieces between a pair of structures. In
this sense the alphabet only fails if it prefers a bad match over a good one.
In practice this means on may have to assess the quality of matches using
geometric or statistical measures, for example the RMSD or an E-value [96].

The quality of the matches obviously depends on the set of structures
they are searched in. The test set was extracted from the data to check if
the alphabets are over fitted to match very specific chains in the training
set. We observed that most of the improvements on the training set are
reflected by the performance of the test set (Fig. 3.5 C-H). An exception
can be observed in Figure 3.5 F. From step 400 onward the cost computed
on the training set is still slightly improving while it is not for the test
set. However, this improvement is tiny compared to the changes from
the steps before. Furthermore, the performance on the test set is also not
getting significantly worse. We can therefore conclude that the results can
be generalized assuming that the local backbone geometry of future RNA
structures will not fundamentally differ from those used here.
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The ability to either choose a fixed alphabet size or let the optimization
find the best size can be a useful property. Fortunately, the implementation
of both approaches is straight forward here. The automatic determination
is especially useful because the choice of the letters is directly linked to
the performance in finding similar structures. This would be far more
complicated if not impossible for unsupervised methods. In a rugged or
fuzzy landscape the choice to separate or join different parts of the fragment
space is difficult to answer. Constraining the size of the alphabet, on the
other hand, can be helpful if one tailors an alphabet for a specific purpose, for
example when utilizing existing software that can only cope with a limited
alphabet size. A fixed alphabet size also imposes a smaller search space and
thereby could enhance the efficiency of the search. Several optimizations
were performed with flexible and fixed alphabet size. The runs with fixed
alphabet size used five to seven letters. Table 3.1 lists the average scores
of the final states. Estimating the best choice from this table would not be
very helpful because the ranges of the results are overlapping and there are
only three samples for every case. A good example are the costs computed
on the training data for the alphabets with size seven. The three cases
contain the overall best and the worst result across all optimizations with
cost values -10.0 and -7.6 respectively. Chances are good to find an alphabet
that performs at least slightly better. To make a confident statement on the
perfect alphabet size one would require more optimizations with different
random seeds and a wider range of alphabet sizes. The practical implications
of the differences may be limited though. As described previously, the choice
of the parameters for the cost function is a compromise and to some extend
arbitrary. Furthermore, the score is the average over all matches in the
training data. As a consequence, an alphabet may perform better for some
pairs of structures while another one is superior in other cases.

Besides the alphabet size there are more parameters that could be changed
in an attempt to improve the results. The choice for most of these param-
eters was done based on the performance in some initial trial and error
experiments. They were not optimized. The representation of the fragments
for example is rather arbitrary. It was chosen to avoid redundancy while
capturing a significant amount of the orientation of the local backbone.
One could also try different parameters or even different methods for the
selection of fragment candidates (sections 3.2.5 and 3.3.2). The method here
was chosen in order to reduce the number of fragments but keep enough
to roughly cover the whole conformational space. Furthermore, one could
change the training and test data and a large number of optimization param-
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eters, such as the population size, the number of new alphabets generated
in each iteration, the number of iterations, the annealing schedule and the
temperatures or the probability distribution used for sampling the next
generation. One could even incorporate different moves similar to cross-over
moves in genetic algorithms [97] or use a selection scheme [98] instead of
sampling. One may spend a lifetime searching for perfect parameters. The
practical impact may be limited for the same reasons mentioned before and
also because using structural alphabets is a very coarse simplification in the
first place.

If one intends to run a larger number of optimizations it would be sensible to
think about the runtime of the algorithm. The bottleneck is the computation
of the matches in order to assess the alphabet quality. One could try to
reduce the number of computations by sampling a subset of chain pairs to
compute the cost in every step.

Centroid fragments of an example alphabet are shown in Figure 3.6. One
should be careful with the interpretation of this picture. Unlike fragments
found with an unsupervised methods, the fragments shown here are not
necessarily representative of naturally occurring conformers. Instead, they
define a division of the fragment space which has been heuristically op-
timized with respect to matches found in the training data. However, the
region of the fragment space assigned to letter E clearly includes the ma-
jority of helix-like backbone pieces. Since a large amount of most RNA
structures has a helix-like shape it has a much higher abundance than the
other letters (Fig. 3.7). Containing stretches of E leads to many matches
between else unsimilar structures. One can exploit the knowledge about
this distribution and pay more attention to more significant matches, which
have a low probability to be found at random. An example application is
described in chapter 5.

As a final remark, it may be interesting to note that the search heuristic
described in this chapter shares many properties with genetic algorithms us-
ing Boltzmann weighted selection [98] and with population annealing [99].
However, unlike genetic algorithms no recombination moves are imple-
mented and a sampling process is used to generate the next generation
instead of a deterministic selection process. In contrast to the method used
here, population annealing also re-equilibrates the system after sampling
the next generation to ensure a valid canonical ensemble.
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3.5. Conclusion

A new approach to the encoding of RNA structures to strings was presented
in this chapter. The mechanism described here is specifically designed for
the task of finding similarities between different chains. Unlike previous
approaches it does not rely on any assumptions about naturally occurring
clusters of fragments. Instead, the method is intended to choose the division
of the fragment space in a manner that optimizes matches between different
chains directly. Alphabets designed this way will be applied in the next
chapters.

52



4
Chapter 4.

RNA structure alignments

4.1. Introduction

Pairwise alignments of macromolecular 3D structures generally serve two
functions. The first is the overall assessment of similarity between a pair of
structures. This can be used to derive similar function or evolutionary origin
in the absence of sequence similarity [39, 100, 101]. Given a structure of
interest one can search for similar existing structures in a database [102–105].
One can also take the comparisons one step further and compare all avail-
able structures against each other and use clustering methods to explore the
space of known molecular structures [106–109]. The second task performed
by structural alignment tools is to find the corresponding residues or nu-
cleotides in two molecules. The exact knowledge of matching positions helps
to detect regions which are conserved with respect to sequence or structure
and those which are not. It can also be used to transfer knowledge, such as
the position of binding sites, from one structure to another. Alignment tools
may be used on their own followed by a manual inspection of the output.
However, they can also be used in larger automated processes. An example
for such an application is the modeling tool PRIME, which uses RNA and
protein structure alignments to search for templates to use for building
models of RNA protein complexes [110]. Recently, it was demonstrated how
the alignment quality enhances the success rate of the tool [111].

There are far more experimentally determined 3D structure models available
for protein than for RNA molecules1. Therefore, it is not surprising that

1156 758 vs. 4684 files containing protein and RNA respectively found in the PDB [12] on
February 6, 2020
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alignment tools for proteins were developed earlier and are more abun-
dant [112,113]. However, within the last one and a half decades several tools
were specifically designed for RNA structure comparison [51, 52, 73, 75–78,
111,114–120]. Most of the approaches adopt methods developed for proteins
with specific adjustments made to suite the unique features of RNA.

A common approach for fast alignments is the adaptation of dynamic
programming algorithms from the sequence comparison field. The macro-
molecular backbone is described in terms of small overlapping fragments.
These fragments are compared based on some geometric descriptors. A
matrix is computed with scores from the comparison of all fragments of
one chain with all fragments of the other chain. A dynamic programming
procedure such as the Smith-Waterman [35] or the Needleman-Wunsch
algorithm [34] is then used to compute the optimal alignment with respect
to the position specific scores. Several tools have been developed for RNA
structure comparison using this approach [51,52,73,75–77,114]. They mainly
differ in the representation of the fragments. The scoring function used in
DIAL is a weighted sum of contributions from torsion angles, sequence
similarity and a reduced representation of base pairing information [114].
LaJolla [75], PARTS [73] and iPARTS [76] translate either torsion or pseudo-
torsion angles to structural alphabet letters. iPARTS2 uses a larger alphabet
enhanced with sequence information [77]. FRIEs uses a fuzzy clustering
method based on torsion angles, distances and H-bond information. Vec-
tors of class probabilities are used to compute position specific scores [51].
SARA describes the backbone in terms of unit vectors. Secondary structure
information is optionally incorporated by reducing the backbone to only
base-paired nucleotides. Additionally, SARA uses a refinement routine to
optimize the alignment with respect to rigid body superposition [52].

A different strategy starts the alignment by searching small and very similar
pieces of the two structures to use as alignment seeds, which are subse-
quently extended. ARTS enumerates all seed matches of two successive base
pairs. The structures are superimposed based on the seed match and the
alignment is extended with pairs of nucleotides that are now in proximity
of each other [115]. Rclick uses a similar approach, but does not consider
molecular topology. Instead, local groups of close nucleotides are searched
as initial alignment seeds [116]. R3D Align searches for local alignments
with high structural similarity and then applies a maximum clique algorithm
to merge compatible matches to a global alignment [117]. Other tools build
more heavily on the hierarchical relationship between RNA secondary and
tertiary structure. SETTER reduces the RNA structure to a set of secondary
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structure units and aligns structures based on this representation [118].
STAR3D searches for similar helix pieces first. The tree topology of knot-free
RNA secondary structures is then exploited to quickly find a maximum set
of compatible matches. Finally, the unpaired loop regions are aligned [119].
RAG-3D uses a graph representation for quick searches for highly similar
substructures [121]. The tools RMalign [111] and RNA-align [120] were
developed recently and are inspired by the program TM-align [122], which
aligns protein structures. These methods try to optimize the alignment with
respect to a length independent scoring function. An ensemble of different
methods is used to create initial alignments which are refined by iterative
rigid body superposition.

In this work, two new tools called CVRRY2 and ALFONS3 are introduced.
Both implement the dynamic programming alignment approach and a super-
position refinement procedure. The largest difference to previous approaches
is the use of novel fragment descriptors. ALFONS applies the structural
alphabet described in chapter 3 and a simple identity score. CVRRY is
based on a set of descriptors previously described [123]. The backbone
is represented as a series of overlapping tetrahedra, each spanning seven
nucleotides. Five distances are stored along with a scalar reflecting chirality
(Fig. 4.2). The fragment description and the specific values of alignment pa-
rameters are the only differences between ALFONS and CVRRY. In addition
to the geometric description, both tools apply a reduced string representa-
tion of base pair information. Alignment parameters are determined using
a simplex optimization procedure on a large set of RNA chains. The final
step of the two programs is a refinement with respect to rigid body super-
position. A fast heuristic is used, which deploys two different algorithms
for the superposition of two chains and the alignment from superimposed
structures.

To evaluate CVRRY and ALFONS, their performance with respect to max-
imizing structural overlap is compared with three state of the art tools
on three benchmark datasets. SARA, Rclick and STAR3D were chosen for
comparison to cover a range of fundamentally different approaches and
because either the tool (SARA, STAR3D) or the benchmark data (Rclick)
were available. STAR3D is especially interesting because it was reported
to be significantly faster than many other available tools [119]. The speed
of CVRRY and ALFONS is compared to that of SARA and STAR3D and
shown to be substantially faster.

2Chiral Volume Rna Ressemblance Yielder
3ALphabet For Ordinary Nucleic acid Structures
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4.2. Methods

4.2.1. Datasets

Sets of RNA chains were assembled for three different purposes. All chain
files were obtained from the PDB [12]. A set of chain pieces was assembled
and divided into training and test data for the optimization of alignment
parameters. Different benchmark sets found in the literature were used to
evaluate the alignment methods and compare them to existing tools. A list
of structure pairs was used for a time benchmark. The datasets used for
parameterisation and evaluation are described subsequently while the time
benchmark set is described separately in section 4.2.7.

Training and test data for parameter optimization

Training and test set for the optimization of alignment parameters (sec-
tion 4.2.5) were assembled based on the following considerations. A large
dataset comprising many different chain pairs will help to find well per-
forming parameters. Unfortunately, the optimization will slow down and
eventually become infeasible if the dataset becomes too large. This is espe-
cially true if the chains are very long since the runtime scales quadratically
with the chain length. Hence, it is sensible to restrict the choice. Chain pairs
which are hard to align are definitely useful. However, pairs with no simi-
larity at all will only add noise and will not help to find better parameters.
One may also prefer medium-size rather than large chains to avoid very
slow comparisons.

The assembly of training and test data for this project basically comprises
three steps. Large chains from an initial chain set are cut into smaller pieces.
To get an initial estimate of similarity, all possible pairs are aligned multiple
times with varying arbitrary parameters. Subsequently, promising chain
pairs with at least some similarity are sampled.

Chains from the non-redundant list by Leontis and Zirbel [50] were used.
All chains that can also be found in one of the evaluation sets were removed
from the list. The base pair annotation was computed for the remaining
chains (section 4.2.2). All chains shorter than 50 nucleotides were removed
from the dataset. All chains longer than 350 nucleotides were cut into pieces
with a maximum size of 350 nucleotides. Gaps in the chain due to missing
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nucleotides were ignored. This is actually wanted, because a factor for
scaling the scores of fragments close to the margins is optimized in the
procedure.

Pairwise CVRRY alignments were used to search for promising candidates.
Each pair in the dataset was aligned once for every parameter combination
listed in Table A.5. Q-scores (Eq. 4.15) were computed for all alignments.
For each chain pair we chose the best Q-score achieved with any parameter
combination. All pairs with Q < 0.6 were removed from the list. The rest
were grouped by the Q-score into bins of size 0.1 from 0.6 to 1.0. 5000
pairs were sampled without replacement from each of the four groups.
Subsequently, every group was shuffled and then split 80 % to 20 % for
training and test set respectively. Merging the groups finally makes 16 000
pairs in the training set and 4000 pairs in the test set.

Evaluation set

Three established benchmark sets from the literature were used for the
evaluation. They have been also used by Nguyen et al. for the evaluation of
the program Rclick [116]. The lists of the chain pairs were downloaded from
the Rclick server [124]. The NR95-HR comprises a group of high resolution
structures found to be non-redundant with respect to sequence (less than
95 % identity) [52]. All structures have a resolution higher than 4 Å and a
length between 20 and 320 nucleotides. The second set is the FSCOR set
and was originally distributed on the SARA web server [103]. The chains
are between 11 and 2774 nucleotides long. The third set contains chains of
ribosomal subunits with a length of 117 to 3308 nucleotides. It was originally
assembled by Rahrig et al. [125] and will be referred to as the RIBO set.
Figure 4.1 shows the length distribution of the chains in the three datasets.

4.2.2. Backbone description and similarity

The alignment algorithm uses similarity scores derived from structural
features. CVRRY and ALFONS both combine a description of local backbone
geometry with a coarse string representation of base pairing information.
The descriptors and the respective scoring functions are described in the
following.
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Figure 4.1.: Chain length distributions in the three evaluation sets. The bin widths
of the histograms are adapted to the range of chain lengths and thus
differ for the three histograms.

ALFONS score

The local backbone structure was translated into a sequence of letters using
the methodology described in chapter 3. An alphabet with seven nucleotides
scored best (Table 3.1) and was therefore applied here. The similarity score
between two letters a and b is

s(a, b) =

{
1, if a = b,
0, otherwise.

(4.1)

CVRRY fragments

CVRRY fragments are described by four points in 3D space, the minimum
number of points required to capture a bending direction of the backbone.
The coordinates of the C4’ atoms were chosen for the description because
they are at a central position of the nucleotide. Again, the idea of spaced
k-mers is applied, using the same pattern as described in section 3.2.3. The
C4’ atom of the nucleotides at positions i, i+ 1, i+ 3 and i+ 6 are considered.
They form a tetrahedron, which is fully described by five distances and the
chiral volume (Fig. 4.2). The L2-norm of an N-dimensional vector ~u is

|~u| =

√√√√ N

∑
i=1

u2
i , (4.2)

where ui is the element in ~u at position i.
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The euclidean distance between two vectors ~u and ~v is

d(~u,~v) = |~u−~v|. (4.3)

We will use the notation
di,j = d(~ri,~rj) (4.4)

for the distance between three-dimensional coordinate vectors ri and rj. The
chiral volume described by Braun et al. [126] is

Vi,j,k,l = (~ri −~rl) · [(~rj −~rl)× (~rk −~rl)]. (4.5)

The features assembled to a vector are

~f =



di,j
di,k
di,l
dj,k
dj,l

Vi,j,k,l


(4.6)

with j = i + 1, k = i + 2 and l = i + 6 according to the previously described
pattern. To balance the contribution of the features they were normalized
to Z-scores [59]. Distributions were collected from the structures in the
non-redundant dataset by Leontis and Zirbel [50]. Mean µ and standard
deviation σ were computed for each feature. The vector of normalized
features is

~f ′ =


...

fi−µi
σi
...

 , (4.7)

where fi is the ith element of ~f from equation 4.6 with corresponding mean
µi and standard deviation σi. The euclidean distance d(~u,~v) between the
normalized feature vectors ~u and ~v is used to compute the score

s(~u,~v) =
1

1 + d(~u,~v)
. (4.8)
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Figure 4.2.: Fragment description used in CVRRY. The chiral volume and five
distances are computed for the tetrahedron formed by the highlighted
C4’ atoms. Distances used in CVRRY are drawn as solid lines whereas
the distance drawn as a dashed line is not explicitly part of the feature
vector.

Base pair bonus

DSSR [127] is used to extract base pairing information from the coordinate
file. Only canonical base pairs (AU and CG) and wobble base pairs (GU)
between two nucleotides of the respective chain are considered. Interactions
to other chains in the structure and different types of base pairs are ignored.
The information is then encoded into a string as done in DIAL [114]. One of
three letters is assigned to every nucleotide in the RNA chain based on its
base pairing state. Going from the 5’ to the 3’ end of the chain, a nucleotide
can be either unpaired, paired to a nucleotide in the following or in the
preceding part of the chain. When comparing two such strings, the score
for two letters p and q is

sbasepair(p, q) =

{
β, if p = q,
0, otherwise,

(4.9)

where β is the size of the rewarded bonus.
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4.2.3. Alignments

The computation of the alignments basically comprises three steps (Algo-
rithm 4). The fragment descriptors and base pair strings are computed first.
In both methods, the local backbone geometry is described in terms of over-
lapping fragments with a length of seven nucleotides. Therefore, descriptors
are computed starting at each nucleotide that is followed by a continuous
stretch of at least six nucleotides. This is done separately for both chains
R1 and R2. Hence, the fragment sets F1 and F2 and the base pair strings
B1 and B2 can be precomputed for a dataset. This saves much time when
performing a search or an all against all comparison on a large dataset. The
next step is to fill a score matrix. An individual score is assigned to each
combination of nucleotide positions between the two chains. For two chains
of length m and n we thus get an m × n score matrix S. The details are
described later on in this section. Finally, the alignment A with maximum
score is computed using the Gotoh variant [36] of the Needleman-Wunsch al-
gorithm [34]. Penalties gopen and gextend are used for opening and extending
gaps.

Algorithm 4 Alignment routine

1: procedure AlignRnaChains(R1, R2, gopen, gextend, λ, β)
2: m← getChainLength(R1)
3: n← getChainLength(R2)
4: F1 ← computeFragmentDescriptors(R1)
5: F2 ← computeFragmentDescriptors(R2)
6: B1 ← getBasepairString(R1)
7: B2 ← getBasepairString(R2)
8: S← computeScoreMatrix(F1, F2, B1, B2, m, n, λ, β)
9: A← needlemanWunsch(S, gopen, gextend)

10: return A
11: end procedure

Algorithm 5 describes the computation of the score matrix. Two m × n
matrices, the score matrix S and an auxiliary matrix C are initialized to zero
at all positions. Subsequently, the scores are computed in three stages. The
scores according to the backbone descriptors are added to S first. Afterwards,
the score corresponding to pairs covered by fewer fragment comparisons
are scaled. Finally, the similarity bonus of the base pair strings is added.
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Algorithm 5 Compute the score matrix

1: function ComputeScoreMatrix(F1, F2, B1, B2, m, n, λ, β)
2: l ← getFragmentLength()
3: S← 0m,n
4: C ← 0m,n
5: for f1 in F1 do
6: i← f ragmentPosition( f1)
7: for f2 in F2 do
8: j← f ragmentPosition( f2)
9: s← calcScore( f1, f2)

10: for k← 0 to l − 1 do
11: Si+k,j+k ← Si+k,j+k + s
12: Ci+k,j+k ← Ci+k,j+k + 1
13: end for
14: end for
15: end for
16: for i← 1 to m do
17: for j← 1 to n do
18: Si,j ← Si,j(1 + λ

l−Ci,j
Ci,j

)

19: end for
20: end for
21: for i← 1 to m do
22: for j← 1 to n do
23: Si,j ← Si,j + sbasepair(B1,i, B2,j, β)
24: end for
25: end for
26: return S
27: end function
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To score the backbone geometry similarity, all combinations of fragments
from both chains are compared. This is the only part where CVRRY and
ALFONS differ. The fragments fi and f j are described by feature vectors
(equation 4.7) in CVRRY and with alphabet letters in ALFONS. The calcScore
function computes the similarity score given in equation 4.8 for CVRRY
or equation 4.1 for ALFONS. Since all fragments span a backbone stretch
of l = 7 nucleotides, the score is added to all seven positions along the
corresponding diagonal of S. Most positions in S will therefore be the sum
of the contribution of seven fragment comparisons. The chain positions close
to the ends of the chain are not covered by all seven fragments. Furthermore,
the backbone can be discontinuous because of missing nucleotides in the
structures. Positions close to these chain breaks are also covered by fewer
fragments. To account for this, a scaling procedure is implemented. Along
with the computation of the scores, the number of fragments covering every
position in S is computed and stored in D. Afterwards, each position Si,j is
scaled according to the coverage Di,j and a factor λ. Finally, the bonus due
to the base pair information strings given in equation 4.9 is added to each
position of S.

4.2.4. Alignment evaluation

The following measures were applied to assess alignments.

fDME

Distance matrices can be used to compare two aligned structures without
superimposing them. For a given alignment, let a and b denote the substruc-
tures comprising the C4’ atoms of all nucleotides from one chain which
are aligned to a nucleotide in the respective other chain. Distance matrices
Da and Db are computed on a and b respectively. Da

i,j holds the distance
between the coordinates of position i and j in a. The distance matrix error
(DME) [128] is

DME = (
2

Nmatches(Nmatches − 1)

Nmatches

∑
i=1

Nmatches

∑
j=i+1

(Da
i,j − Db

i,j)
2)

1
2 . (4.10)

However, this measure is prone to outliers. Parts of the molecules which are
different or poorly aligned tend to mask similarities quickly. Furthermore,
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a flexible stretch in a molecule may allow two units to arrange differently.
The similarity of two molecules with such a hinge-like flexibility may be
easily missed using the DME.

This is addressed by the fraction distance matrix error (fDME) [129]. In brief,
it captures the share of distances for which the DME falls below a threshold
ε. The set of residuals summed in equation 4.10 can be written as

E = {(Da
i,j − Db

i,j)
2|i, j ∈N∧ 1 ≤ i, j ≤ Nmatches}. (4.11)

The sorted version of the list is

E′ = [Ek|Ek ∈ E ∧ (k = 0∨ Ek ≥ Ek−1)]. (4.12)

The largest number of distances that fits under the threshold ε is

Nε = max({N| 1
N

N

∑
k=1

E′k ≤ ε2}). (4.13)

We can now compute

f DME =
2Nε

Nmatches(Nmatches − 1)
. (4.14)

In this work ε was set to 5 Å.

Q-score

The Q-score [130] weights the fDME by the coverage of the alignment. With
Nmatches non-gap positions in the alignment for two sequences of length m
and n we have

Q = f DME
Nmatches

min(m, n)
. (4.15)

PSI

The Percentage of Structural Identity (PSI) describes the amount of closely
superimposed nucleotides in an alignment [52]. Unlike RMSD and fDME
it can not be deterministically retrieved from the alignment. Instead, it
also depends on a heuristic to find a good superposition [131]. Given
an alignment and two superimposed chains we can count the number of
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matched nucleotides Nsup where the C4’ atoms are within 4 Å distance to
each other. For two chains with lengths m and n we get

PSI =
Nsup

min(m, n)
. (4.16)

The heuristic to search the best superposition used in CVRRY and ALFONS
is described in section 4.2.6.

4.2.5. Parameter optimization

There are four parameters to choose when computing an alignment as
described in algorithm 4. These are the gap penalties gopen and gextend,
the margin factor λ and the base pair bonus β. The Nelder-Mead simplex
algorithm [132] was used to optimize parameters as previously [129, 133].
All chain pairs from the training set are aligned repeatedly in the course
of an optimization. The Q-score (Eq. 4.15) was used to assess alignments
because it rewards both high coverage and structure similarity. However,
not all differences are useful improvements. The score difference between
two bad alignments is not meaningful and should be considered as noise.
To reduce noise, the Q-score is wrapped in a logistic function. Incorporating
the constraint gopen ≥ gextend required by the alignment algorithm, we get
the cost function

c =

{
1− (1 + e−k(Q−Q0))−1, if gopen ≥ gextend,
1, otherwise,

(4.17)

with arbitrary parameters k and Q0 set to 14 and 0.7 respectively. Moves
that cause gopen < gextend are rejected immediately without computing any
alignments. Averaging over all Nalignments chain pairs, we get

cost =
1

Nalignments

Nalignments

∑
i=1

ci, (4.18)

where ci is the cost of pair i.

The optimizations were started multiple times with different initial parame-
ters. Three or four initial values were chosen for each of the four parameters
(Table A.6). All combinations with gopen > gextend were used. This yielded a
list with 171 starting points. From each point two optimizations were started
using different seeds for the random number generator.
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4.2.6. Structure superpositions and refinement

A heuristic was implemented to refine the alignment and find a superposi-
tion subject to maximizing the PSI. The procedure combines the MaxSub
algorithm [131] and an alignment method which is similar to the approach
used in the program ProSup [134]. Algorithm 6 outlines the main steps. The
input are the C4’ coordinates of the two chains R1 and R2 and an initial
alignment A. The chains R1 and R2 have length m and n respectively. The
alignment A is a set of pairs. Each pair comprises either two indices i and
j for positions in R1 and R2 respectively or one index and a gap element.
Every position of R1 and R2 is found in exactly one of the pairs. The first step
is to find a good superposition of the nucleotides that are paired in A. This
is done using the MaxSub algorithm. MaxSub is a heuristic to optimize the
PSI. It tries to find a superposition, such that the coordinates of a maximum
number of aligned pairs lie within 4 Å distance of each other. Pseudocode
and a detailed explanation of MaxSub were given by Siew et al. [131]. It
will be summarized briefly here. Pairs of small, continuous fragments from
the two chains are used as seeds. All overlapping seeds of a given length
are iterated. A seed length of four nucleotides was used in this work. Each
iteration starts with the superposition of the two seed fragments. This is
followed by a few iterations of superposition and subsequent selection of
pairs with a distance below a threshold. The threshold decreases in each
iteration and finally becomes 4 Å. The algorithm has time complexity O(N2).
The result are the superimposed structures R′1 and R′2 and a set M ⊆ A. M
contains only the pairs that are superimposed within 4 Å distance.

Algorithm 6 Superposition and alignment refinement

1: procedure SuperimposeAndRefineAlignment(A, R1, R2)
2: M, R′1, R′2 ← MaxSub(A, R1, R2)
3: A′ ← re f ineAlignment(M, R′1, R′2)
4: M′′, R′′1 , R′′2 ← MaxSub(A′, R′1, R′2)
5: return M′′, R′′1 , R′′2
6: end procedure

The removal of pairs from A that do not superimpose close enough can
cause unaligned regions in the two chains. One reason for aligned pairs
to be excluded from M is that they were not aligned well in A. There may
be alternative nucleotide pairs that can be superimposed closely. There-
fore, alignments are derived from the superimposed structures R′1 and R′2.
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The basic idea is borrowed from ProSup [134]. Unlike ProSup the method
described here only realigns nucleotides which are not part of a pair in
M. It also uses a different scoring function. The procedure is described in
Algorithm 7. First, one has to collect the non-aligned regions between the
matches in M. Let (i, j, k, l) describe a pair of backbone stretches R1[i . . . k]
and R2[j . . . l]. By adding two sentinel index pairs

M′ = M ∪ {(0, 0), (m + 1, n + 1)} (4.19)

one can define the set of unmatched regions

U =

(i, j, k, l)

∣∣∣∣∣∣
1 ≤ i ≤ k ≤ m ∧ 1 ≤ j ≤ l ≤ n
∧(i− 1, j− 1), (k + 1, l + 1) ∈ M′

∧(p, q) /∈ M′∀p = i . . . k, q = j . . . l

 . (4.20)

All regions (i, j, k, l) ∈ U are aligned separately. The procedure is similar to
the computation of the original alignment. A scoring matrix is filled and
the Needleman-Wunsch algorithm is used to find the optimal path through
that matrix. The score for two nucleotides with the coordinates of the C4’
atoms ~ri ∈ R′1 and ~rj ∈ R′2 is now

s3D =
1

1 + d(~ri,~rj)2 (4.21)

where d(~ri,~rj) is the euclidean distance (Equation 4.3). The local alignments
are merged with M to a global alignment A′. The MaxSub algorithm is used
once more to superimpose the structures based on A′ (Algorithm 6). One
can now compute the PSI directly from M′′ with

PSI =
|M′′|

min(m, n)
. (4.22)

4.2.7. Runtime benchmark

The runtimes of CVRRY, ALFONS, STAR3D and SARA were compared.
Rclick is only available as a web server and not as standalone version and
is therefore not included in the benchmark. Four chain pairs with different
lengths were chosen and downloaded from the PDB (Table 4.1). CVRRY,
ALFONS and STAR3D were executed with all pairs. SARA only accepts
chains with a maximum length of 500 nucleotides by default. It was therefore
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Algorithm 7 Alignment refinement

1: function alignSuperimposed(R′′1 , R′′2 )
2: S← [|R′′1 | × |R′′2 |] matrix
3: for i← 1 to |R′′1 | do
4: for j← 1 to |R′′2 | do
5: Si,j ← scoreBy3dDistance(R′′1 [i], R′′2 [j])
6: end for
7: end for
8: A′ ← needlemanWunsch(S)
9: return A′

10: end function
11:
12: function refineAlignment(M, R′1, R′2)
13: A′ ← M
14: U ← getNotAlignedStretches(M)
15: for (i, j, k, l) ∈ U do
16: A′ ← A′ ∪ alignSuperimposed(R′1[i . . . k], R′2[j . . . l])
17: end for
18: return A′

19: end function

Chains Lengths (nucleotides)

1s72 9 & 2qbg A 122 & 117
2a64 A & 3dhs A 298 & 215
1fjg A & 2aw7 A 1507 & 1530
1s72 0 & 3u5h 5 2754 & 3150

Table 4.1.: Chain pairs used for the runtime benchmark. Chains are named by
PDB-ID and the chain identifier.

only benchmarked on the two shorter chain pairs. Every alignment was
computed 30 times by each program. In CVRRY, ALFONS and STAR3D the
preparation of each chain and the alignment are two separately executed
steps. SARA performs both steps in one call. All programs produce files
with an alignment and superimposed coordinates. The tests were done
using the openSUSE Leap 15.0 operating system and an Intel Core i5-9500
processor with 3 GHz.
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4.2.8. Implementation

CVRRY and ALFONS are implemented in the same framework. The core
is written in the C programming language with SWIG [93] interfaces for
Python and Perl scripting. An in-house implementation written in Perl was
used for the simplex optimization. The GCC C-compiler version 7.4.1 [91],
Perl 5.26.1 [135] and Python 3.6.5 [92] were used. Code for the Kabsch
algorithm, dynamic programming alignments and fDME calculations was
adopted from WURST [133].

4.2.9. Availability

ALFONS and CVRRY are available at https://gitlab.com/nilspetersen/
cvrry.

4.3. Results

4.3.1. Parameter optimizations

The four alignment parameters gap open (gopen) and extend (gextend) penalty,
margin scaling factor (λ) and base pair bonus (β) were optimized for both
CVRRY and ALFONS. For each tool 171 simplex runs were started with
varying initial parameters (section 4.2.5). A test set was used to check for
overfitting to the training data. Figure 4.3 shows the cost trajectories of
the optimization runs, which found the best optima with respect to the
performance on the training data. At each step the lowest cost found by the
simplex is plotted. The optimizations took 492 and 428 steps for ALFONS
and CVRRY respectively. In both cases, the largest improvement can be
observed within the first 50 steps. Therein, the course of the test data follows
that of the training data closely. Thereafter, the ALFONS trajectory has a stair
like shape with three short periods of improvement. The values computed on
the test set follow this course closely. The CVRRY trajectory looks different.
The cost only improves once on both datasets simultaneously. This happens
around step 120. Subsequently, changes leading to small improvements on
the training data do not improve the performance on the test set. Instead,
the cost slightly increases around step 210. However, this difference is less
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than 0.001 while the total improvement on the test set is ∼ 0.06 (arbitrary
cost units).

Figure 4.3.: Trajectories of simplex optimizations. The curves show the cost value
of the best parameter set found by the simplex so far.

Table 4.2 lists the parameters that achieved the best results. They were used
for the benchmarks of the programs in the next section. The parameters
for gap costs and base pair bonus are higher for ALFONS than CVRRY.
The margin factor, on the other hand, is reduced to 0 for ALFONS, while
it is 0.21 for CVRRY. A large number of data points from the optimization
trajectories were collected to get an idea about the relationships between
parameters and alignment performance. Figure 4.4 and 4.5 show that most
of the final states are found close to the best scoring parameters forming
a pointy tip. Some optimizations do not reach this area and end with a
significantly higher cost. Among the optimizations of ALFONS parameters
there are two clearly visible groups (Fig. 4.4). The first is a group with a
base pair bonus close to zero. The second group has significantly higher
gap open and lower gap extend penalties compared to the best parameters.
Looking at the overall distribution of data points from both CVRRY and
ALFONS optimizations, one can see that the lower edge has a convex shape.
Furthermore, areas on both sides of the final state clusters are explored if
possible.
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Margin factor Base pair bonus Gap open Gap extend

ALFONS 0.00 3.27 14.58 3.14
CVRRY 0.21 0.45 4.78 0.56

Table 4.2.: Best alignment parameters. The best parameters found for CVRRY and
ALFONS with respect to the cost function computed on the training
data.

Figure 4.4.: Costs for ALFONS alignments with varying parameter combinations.
Data points originate from optimization trajectories and final states.
The bottom windows are a zoom onto a cluster of final scores.
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Figure 4.5.: Costs for CVRRY alignments with varying parameter combinations.
Data points originate from optimization trajectories and final states.
The bottom windows are a zoom onto a cluster of final scores.

Impact of base pair information

Separate optimizations with no base pair bonus were performed to assess
its impact on the alignment quality. For the three other parameters the
same initial combinations were used as before. Figure 4.6 shows that using
the base pair information significantly reduces the cost of the final states.
The distributions for optimizations with and without base pair bonus only
overlap due to some outliers for which the optimization did not succeed in
finding a parameter set close to the other final combinations. One can also
see that significantly better scores are reached with CVRRY compared to
ALFONS.
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Figure 4.6.: Costs of final states for optimizations with and without base pair bonus.

4.3.2. Superposition refinement

Alignments were computed for the FSCOR dataset with and without super-
position based refinement. The success is measured with the PSI. For the
alignments without refinement the best superposition is simply searched us-
ing MaxSub based on the alignment. In the other case the whole refinement
procedure described in section 4.2.6 is applied. Figure 4.7 shows cumulative
curves of the PSI. The largest gain can be observed in the middle for PSI
values around 0.6. The differences become smaller to the ends of the curve.

4.3.3. Comparison of different alignment programs

Three datasets with RNA chains were used to assess the quality of ALFONS
and CVRRY alignments in comparison with state of the art tools. PSI scores
were used as the performance measure. Alignments were computed using
ALFONS, CVRRY, STAR3D and SARA. The scores achieved by Rclick were
taken from the Rclick web server. SARA and STAR3D could not compute
alignments for all cases. Both programs require at least some secondary
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Figure 4.7.: PSI computed for CVRRY alignments on FSCOR dataset with and
without alignment refinement.

structure and can not align chains without base pairs. STAR3D needs a min-
imum of three stacked base pairs. SARA is also limited to align chains that
are not longer than 500 nucleotides. The numbers of alignments computed
with every tool are listed in Table 4.3. On the NR95-HR dataset, for example,
STAR3D computed alignments for less than half of the chain pairs. For the
RIBO dataset SARA can only compute the 10 alignments of the shortest
chain pairs due to the size limitation. For each tool, only the chain pairs
where alignments were computed successfully are taken into account for
the comparison against CVRRY and ALFONS.

Cumulative curves of PSI values are shown in Figure 4.8. CVRRY and
ALFONS perform nearly equally good with CVRRY producing slightly
better results in total.

The largest differences to ALFONS and CVRRY are visible for the Rclick
alignments. Rclick outperforms the two programs significantly on the NR95-
HR and FSCOR dataset. This is not true for the RIBO dataset. In the Rclick
benchmark multiple chains of a complex are superimposed together. This is
not yet implemented for any of the other methods and therefore chains are
compared separately. Therefore, there are only 30 alignments for comparison
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# of alignments
FSCOR NR95-HR RIBO

Total 87571 1275 40
Max. 500 Nucleotides 68635 1275 10
ALFONS 87571 1275 40
CVRRY 87571 1275 40
SARA 68628 1275 10
STAR3D 78758 595 40
RCLICK 87571 1275 35

Table 4.3.: Number of alignments computed successfully with each program. The
second line lists the number of chain pairs where both chains are not
longer than 500 nucleotides.

against Rclick. CVRRY and ALFONS both fail in one case to find a good
alignment where Rclick succeeds. For the other cases, ALFONS and CVRRY
alignments are equally good and sometimes slightly better than Rclick
alignments.

The STAR3D results are closer to the PSI scores of ALFONS and CVRRY.
While the cumulative frequency is larger for STAR3D across most PSI values,
the CVRRY curve is slightly higher for very large PSI values. For the align-
ment of the large chains in the RIBO dataset, both CVRRY and ALFONS
achieve higher cumulative frequencies.

SARA curves are closest to those of CVRRY and ALFONS. The largest
difference is observed for very high PSI scores on the FSCOR dataset where
CVRRY and ALFONS outperform SARA. The results on the RIBO dataset
only comprise the ten shortest alignments. The scores of the three programs
are very similar here.

Figure 4.9 shows heat maps of PSI values for the FSCOR dataset comparing
CVRRY results to those of each of the other tools. In these plots, the quality
of two alignments is more similar the closer they are to the diagonal. For
each of the four other programs on can see at least some cases, where CVRRY
performs better, and some, where it produces worse results. The most similar
results are observed for ALFONS. A large number of alignments is found
on or very close to the diagonal here. For ALFONS, STAR3D and SARA the
distribution of the alignments around the diagonal is close to symmetric.
For the Rclick alignments one can clearly observe a shift of PSI values.
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Figure 4.8.: Cumulative frequencies of PSI values for ALFONS, CVRRY, STAR3D
and Rclick alignments.
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Figure 4.9.: PSI values of CVRRY alignments compared to those computed with
ALFONS, STAR3D, SARA and Rclick.

This is most obvious for cases where CVRRY superimposes only very few
nucleotides. The minimum PSI value for Rclick is 0.2. Most of the CVRRY
alignments with a PSI less than 0.1 have a PSI larger than 0.4 when computed
with Rclick.

Figure 4.10 A shows the PSI scores of CVRRY alignments of the chains in
the RIBO set compared to those computed with ALFONS. The programs
achieve similar PSI scores for most chain pairs. There are two exceptions. In
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Figure 4.10.: Parameter dependency of alignment between chains 2zjr X and 4a1b 1.
(A) PSI scores of CVRRY and ALFONS on RIBO dataset with original
parameters. The alignment between the two chains is highlighted.
(B) CVRRY alignment with parameters from original optimization.
(C) CVRRY alignment after parameters were specifically optimized
for this chain pair.

one case CVRRY fails to compute a proper alignment and in the other case
ALFONS fails. In both cases, the other tool achieves a score higher than 0.6.
Hence, there is evidence that a much better alignment is possible. CVRRY
fails aligning the two chains 2zjr X and 4a1b 1 (Fig. 4.10 B). To check if the
two chains can be aligned with different parameters, the four alignment
parameters were optimized again. The parameters given in Table 4.2 were
used as starting point. Only this chain pair was used as training set. The
chains were not cut into pieces as done for the training set. The optimization
yielded margin factor 0.28, base pair bonus 0.53, gap open penalty 1.96 and
gap extend penalty 0.16. Using these parameters CVRRY achieves a PSI
score of 0.78. Figure 4.10 C shows the new superposition.

4.3.4. Runtimes

Figure 4.11 depicts the results of the runtime benchmark. The average
runtimes are also listed in Table A.7, A.8 and A.9. For the comparison of
ALFONS, CVRRY and STAR3D the precomputations and the alignments
are analyzed separately. The precomputations for ALFONS and CVRRY are
faster for six of eight chains by a factor between 13 for chain 1fjg A and 132
for chain 2qbg A. For the chains 2a64 A and 3dhs A STAR3D is about 1.2
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and 1.6 times faster than ALFONS and CVRRY. The alignment computations
are always faster for ALFONS and CVRRY compared to STAR3D. The most
extreme case is the alignment of chains 1s72 9 and 2qbg A. The chains are
the shortest chains in the dataset. They are 112 and 117 nucleotides long.
ALFONS and CVRRY computations require on average 0.008 and 0.007
seconds respectively, which is roughly 63 and 71 times faster than STAR3D.
The longest chains in the dataset are 1s72 0 and 3u5h 5 with length 2754 and
3150 nucleotides. ALFONS needs 0.3 and CVRRY 0.4 seconds to compute
the alignment. They are therefore about 5 and 4 times faster than STAR3D
in this case. For the comparison against SARA the precomputations and
alignment calculation are measured together. For the shorter chains 1s72 9
and 2qbg A ALFONS and CVRRY are both about 2 times faster than SARA.
Aligning the longer chains 2a64 A and 3dhs A takes SARA roughly 8 times
longer than ALFONS and CVRRY. The differences between CVRRY and
ALFONS are much smaller than those to SARA and STAR3D. Looking at
the alignments only one can see that CVRRY performs slightly better in one
case while ALFONS performs better in the three other cases.

4.4. Discussion

The following considerations highlight the strengths, difficulties and per-
spectives of the new programs CVRRY and ALFONS in comparison to the
three established tools SARA, STAR3D and Rclick. This should support
further developments in this field and also help to choose a tool for a given
application.

Figure 4.9 shows how the tools produce alignments with varying quality
for the different chain pairs. Neither does CVRRY perform better nor does
it perform worse on all alignments compared to any of the other tools. It
is therefore obvious that none of the tools always finds the perfect align-
ment with respect to PSI. Thus, there is, at least theoretically, room for
improvement for each of the tools.

A naive approach to improve the search for a good alignment would be to
employ several programs. For a pair of chains one simply chooses the best
alignment according to some measure like the PSI. Since different tools are
superior for different chains pairs, there is obviously an improvement in the
overall accuracy of the alignments compared to the use of any single tool.
The downside is that the required computational resources are the sum of
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Figure 4.11.: Average times required to compute chain descriptors and alignments.
Error bars represent 95 % bootstrap confidence intervals.
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all programs applied. This may be suitable if one is interested in an accurate
comparison of only few chain pairs.

If one specific tool is to be chosen, one should consider the purpose of the
application. Sometimes an exact mapping of corresponding nucleotides is
essential. Better mappings can for example improve results from homology
modeling [136, 137] or the assignment of interaction sites [110]. For other
applications it may be enough to distinguish similar from unsimilar chains.
Examples of such cases would be the search for homologs or clustering. In
this work, the quality of the nucleotide mapping was assessed with the PSI.
It was chosen because it is a state of the art measure for benchmarking RNA
alignments and has been widely used [52, 116, 119]. Its application is built
on the assumption that related nucleotides can be superimposed closely.
The mapping that produces the largest number of closely superimposed
nucleotides is expected to be the most accurate alignment. This may be
reasonable for most cases but there are some limitations. If there are one or
more hinge movements in the molecule, only a fraction of the molecules can
be superimposed. The authors of Rclick addressed this issue by computing
alignments iteratively. After each alignment the superimposed parts are
removed from the two chains and the remaining nucleotides are used for the
next iteration. This procedure could easily be adopted by any of the other
tools. The program SupeRNAlign uses an even more sophisticated approach.
The method is built on top of existing alignment tools. In multiple iterations
matches that can be superimposed very closely are selected from alignments
produced by an external alignment tool [138]. Unfortunately, there is yet no
single score to assess and compare the quality of such alignments. Distance
matrix based methods such as the fDME score could be an alternative. The
challenge remains to balance local and global similarity in order to produce
meaningful results. Another drawback of using the PSI is the fixed threshold.
The threshold of 4 Å is probably appropriate for small to medium size
RNA molecules such as tRNAs. For large ribosomal subunits this threshold
may be too small and exclude corresponding nucleotide pairs from the
superposition. Recently, two scores were proposed as a size independent
alternative to the RMSD [111, 120]. Both measures were inspired and are
similar to the TM-score for protein structures [139]. They could be useful for
future benchmarks and applications of the RNA structure alignment tools
presented here.

From Figures 4.8 and 4.9 one can clearly see that on average Rclick align-
ments achieve higher PSI scores than CVRRY and ALFONS on the FSCOR
dataset. This may not be too surprising. The Rclick heuristic approaches the
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objective of maximizing the PSI most directly of all tools tested here. The
algorithm searches the largest number of nucleotides that can be superim-
posed closely irrespective of the molecules topology. This is different to the
other tools, which are bound to the linear order of the chains. The largest
differences can be observed for chain pairs where CVRRY superimposes
very few nucleotides (PSI < 0.1) while Rclick alignments have medium
PSI values around 0.5. However, it is debatable whether these superposi-
tions are helpful. Many pairs in the dataset are between unrelated pairs
and superimposing a larger amount of these structures will not help to
get much biological insight. Although the differences between the results
from STAR3D compared to CVRRY and ALFONS are smaller than those
described for Rclick, one can see a similar trend here. STAR3D reaches
higher cumulative scores for low to medium PSI values on the NR95-HR
and the FSCOR dataset (Fig. 4.8). These differences can be explained to a
large extend with a closer look at the STAR3D algorithm. Searching for the
most similar helices by superposition, the algorithm explicitly starts with
finding a group of superimposable nucleotides. Given two small chains
with low overall similarity and a significant proportion of helix structure,
finding the best matching helix pair may well be the best alignment one
can get with respect to PSI. There are probably many such cases since the
distribution of chain lengths is very skewed to small values in the two
datasets (Fig. 4.1). Again, it is debatable whether these improvements are
helpful. The downside of relying on secondary structure is, that STAR3D
fails to align structures without or with only few base pairs. This happened
for more than half of the chain pairs in the NR95-HR dataset (Table 4.3). The
picture changes for very similar chains with PSI scores close to one. Here,
the cumulative frequency for CVRRY is slightly higher than for STAR3D.
This improvement is probably due to the refinement step. Unlike in CVRRY,
ALFONS and SARA, STAR3D does not make a final refinement of the global
superposition. SARA is the method in the benchmark which is method-
ologically most similar to CVRRY and ALFONS. It also achieves the most
similar overall performance with respect to cumulative PSI curves (Fig. 4.8).
Unfortunately, it can not compute some alignments for the FSCOR dataset
and is computationally too inefficient to compute alignments between most
of the structures in the RIBO set in an acceptable time. Furthermore, CVRRY
and ALFONS perform better for very similar structure pairs with PSI values
close to one in the FSCOR dataset. When choosing between SARA and
CVRRY one is probably better off using CVRRY. The most encouraging
results for the application of ALFONS and CVRRY are the alignments of
the large homologous chains in the RIBO set. PSI values are often similar or
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higher compared to those achieved by STAR3D or Rclick (Fig. 4.8). Unfortu-
nately, there are also cases where CVRRY and ALFONS fail to produce a
useful alignment (Fig. 4.10).

The risk to misalign backbone stretches and the sensitivity of the alignment
to the parameters are consequences of using limited local information. Fig-
ure 3.7 in chapter 3 shows how the largest fraction of fragments have a
helix-like shape and are therefore assigned to the same letter. This leads
to different choices with similar scores. Nucleotides within long helices,
for example, share a very similar local surrounding. Therefore, it becomes
difficult to correctly assign residues that are in long helices of different size.
Additionally, large gaps increase the number of alternative choices for an
alignment and thus make the problem more difficult. Unfortunately, the
gaps are not only insertions and deletions from the evolutionary history
of the molecules but due to missing backbone pieces that could not be
modeled from the experimental data. Furthermore, gaps differ very much
in their length. There are insertions and deletions of single nucleotides, but
there are also pairs of large ribosome chains that differ by the existence
of whole helices. The superposition shown in Figure 4.10 C comprises all
these different kinds of gaps. The alignment of the two depicted chains
was found to be very sensitive to the used parameters. A large number of
the nucleotides in the cores of the chains are superimposed closely. At the
edges there are large unmatched pieces from both chains. Some of them are
from structural differences while others are due to missing pieces. There are
also several small insertions throughout the structure. Hence, this example
demonstrates the difficulties of the dynamic programming algorithm quite
well. Base pairing information was incorporated to add some information
about non-local contacts. The simple linear representation was used to stay
within the quadratic runtime of the dynamic programming algorithm and
avoid computationally more expensive tree comparisons. Figure 4.6 shows
that this simple extension leads to a significant improvement. A possible
improvement in the future could be to incorporate more different interac-
tions such as different non-canonical base pairs, base triples or interaction
between bases and backbone.

Simplex optimization was used to search for sensible parameters. This
method is well suited for functions with a convex shape, and it does not
require the computation of gradients. But there is no guarantee to find the
global optimum if the landscape of the target function is rugged. One may
end in local minima and not even get close to a good parameter choice. In
this work we did not need to find the global optimum but wished to find
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parameters that perform as good as possible. The target function is obviously
not perfectly smooth since some optimizations end in local optima with
significantly higher cost and different parameters compared to optimizations
with a better outcome (Fig. 4.4 and 4.5). However, most optimizations end
in a valley of the target function and have very similar final parameters.
This is especially remarkable since the optimizations started from a wide
range of parameters. Furthermore, the optima for ALFONS and CVRRY are
very different (Table 4.2) but are well reached using the same set of initial
conditions. The ability to converge to this regions in parameter space from
a wide range of starting points shows that the overall shape of the target
function is very close to convex and that the minima found are likely to
be close to a global optimum. The observed cost values computed on the
test set during the optimizations followed those for the training set for most
of the improvement (Fig. 4.3). We thus conclude that the final parameters
should perform well when applied to new structures. One should also keep
in mind that this parameter set performs well for a large number of chain
pairs but is not the best in every single case. An example is the chain pair
depicted in Figure 4.10.

The refinement algorithm was shown to significantly improve the superpo-
sition with respect to PSI (Fig. 4.7). The bottleneck here is the limitation of
the performance by the initial alignment. If the largest superimposed piece
found by the MaxSub procedure is a good fit more nucleotides which are
now superposed closely are added to the alignment. In order to enhance
the performance one could try to use multiple parameter sets and choose
the best alignment in the end. The cost of doing this would be a longer
runtime. A drawback of the superposition refinement is that it is limited
to structures without hinge movements, which is not the case for the pure
backbone alignment. As pointed out previously, an iterative approach of
superimposing rigid subunits could work here.

Time efficiency is the major strength of ALFONS and CVRRY. The two pro-
grams are significantly faster than SARA and STAR3D. Runtime is critical
when many structure pairs are aligned. Chain specific features can be pre-
computed and used multiple times for applications like database searches
or all against all comparisons. In these cases, the alignment speed is much
more important than the preprocessing. Therefore, the runtimes of pre-
processing and alignment were compared separately for CVRRY, ALFONS
and STAR3D. ALFONS and CVRRY are clearly faster than STAR3D when
computing alignments. They are also faster in most of the precomputations.
However, there are two outliers. Interestingly, the precomputations for the
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two chains 1s72 9 and 2qbg A take STAR3D much longer than those for
2a64 A and 3dhs A, even though the latter are much longer. This is probably
due to the calculation of base pairs. 1s72 9 and 2qbg A are chains from
structure files with multiple long RNA chains. STAR3D passes those files
to MC-Annotate [140, 141] which searches for base pairs in all chains. This
takes significantly longer for more and longer chains. The files of the chains
2a64 A and 3dhs A contain only one chain and the computation is therefore
much faster. CVRRY and ALFONS do not have this problem because the
respective chain is extracted from the file before it is passed to DSSR for base
pair annotation. A comparison to Rclick was not done because the program
is only available as a web server. Therefore, only some coarse speculations
are made here. The clique searching algorithm deployed by Rclick is com-
putationally more complex than the quadratic runtime algorithms used in
CVRRY and ALFONS. The measured time reported by Nguyen et al. [116]
for small RNA chains is substantially higher than those measured in this
study. Furthermore, the authors write that they had to reduce the number of
potential seed matches by only considering nucleotides with identical bases
when comparing large structures in order to make the calculation feasible.
Unfortunately, this means that large structures with very low sequence
identity can not be aligned.

4.5. Conclusion

This chapter introduced ALFONS and CVRRY, two new tools for RNA 3D
structure alignment. The greatest strength of these tools is that they are
significantly faster than state of the art tools while producing alignments
with similar quality measured in terms of structural overlap (PSI) for pairs
of structurally similar chains. A site for future work is the sensitivity to
parameters which sometimes leads to poor alignments in cases where a
different parameter choice clearly succeeds. ALFONS and CVRRY are thus
recommended to use in cases where computational resources are limited
while rare mis-alignments do not have lethal consequences.
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5 Chapter 5.

Alignment-free RNA
structure comparison

5.1. Introduction

In the previous chapter two new time efficient tools for structure alignments
with quadratic time complexity were introduced (O(mn) for chains with
length m and n). However, for some applications there is a demand for
even faster comparisons. In cases where the exact residue or nucleotide
mapping is not important, alignment-free heuristics may help to quickly get
an estimate of the overall similarity of two molecules. Quick comparison
may, for example, enable fast database scans for related structures or the
clustering of large numbers of macromolecular structures. In both scenarios,
the score from the alignment-free comparison can be used directly or applied
as a filter to select candidate pairs that are subsequently aligned using a
more expensive tool.

In a biological context, alignment-free methods were first developed and
are now well established for the comparison of biological sequences [142].
They are most relevant when dealing with large genomic sequences [142],
but are also used to build guide trees for multiple alignments of protein
sequences [143, 144]. The list of methods and available tools is long [142].
Many tools rely on the sequence composition of words with a fixed length,
also called k-mers [142]. The average common substring method extends
this idea by utilizing enhanced suffix arrays to account for substring matches
with different lengths. A distance is defined based on the average length of
the longest common substrings shared by the two sequences [145].
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Approaches were also made to implement alignment-free comparisons of
macromolecular structures. As for alignment methods, most methods were
designed to compare protein structures [146–152]. Few methods were de-
veloped for quick comparison of RNA structures. Most of them compare
RNA molecules on the secondary structure level [153–155]. Alignment-free
comparison of 3D RNA structures can be conducted using the program
FRASS. Therein, the structures are represented as Gauss integrals which are
compared to get a distance estimate. The comparison based on this repre-
sentation is fast and the speed is independent of the size of the molecules
(O(1)). The computation of the Gauss integrals, on the other hand, has
cubic (O(N3)) time complexity. Therefore, the Gauss integrals have to be
precomputed and stored for a set of structures in order to get time efficient
processes [156].

Herein, new methods for fast RNA 3D structure comparison are presented.
They are based on substring matches between strings of the structural al-
phabet described in section 3. Two simple attempts were implemented first
and are presented as a baseline for the evaluation of the more sophisticated
approaches. The first one is the computation of the longest common sub-
string (LCS). The length of the LCS is used to rank structure pairs. The
second method is closely related to the average common substring measure
for genome comparison. It sums the length of all longest substring matches
and is referred to as the sum of longest common substrings (LCS SUM).
The tools URSULA1 and FREEDOLIN2 are based on LCS and LCS SUM
respectively. Unlike their predecessors, these methods take the uneven distri-
bution of the different alphabet letters found in experimentally determined
structure models (Fig. 3.7) into account. Instead of just using the match
length, the substring matches are weighted by an estimate of significance. To
achieve fast computations, an enhanced suffix array is utilized and extended
with two additional arrays for each of the two input strings. Using these
data structures, the comparison requires only O(m + n) time for two chains
with m and n nucleotides length.

A benchmark is conducted by simulating a database scenario based on
annotations from the Rfam database [157]. The four new tools and the
program FRASS are compared with respect to their ability to find structures
of homologous molecules. Additionally, the speed of FREEDOLIN, URSULA
and FRASS is compared by measuring the time required to perform a

1Ultrafast Rna Search Using Letters from a structural Alphabet
2(alignment) FREE Detection Of Large Interesting Nucleic acid structures
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database search. The runtimes of FREEDOLIN and URSULA are also shown
in comparison to ALFONS, the alignment tool described in the previous
chapter.

5.2. Methods

5.2.1. RNA structure alphabet strings, suffix arrays and the
longest common substring

RNA structures were translated to strings as described in section 3.2.3.
The six letter alphabet presented in section 3.3.3 was used. As mentioned
earlier (section 3.2.1), the structure models of RNA chains found in the
PDB are often discontinuous with some nucleotides missing. To prevent
string matches across these chain breaks and across the molecule ends,
sentinel characters were inserted at the respective positions. The strings
were concatenated and subsequently a generalized suffix array (GSA), a
longest common prefix (LCP) array and the longest common substring (LCS)
were computed as described in section 3.2.4.

5.2.2. Longest substring matches

Let S = (s1, . . . , sm) and T = (t1, . . . , tn) be two strings with length m
and n respectively. For every position i in S, let lcs(S, i) be the size of the
longest substring S[i . . . i + lcs(S, i) − 1] that exactly matches a substring
T[j . . . j+ lcsa,i− 1] at some position j in T. Vice versa, there is a longest exact
substring match of size lcs(T, j) starting at position j in T and some position
i in S. Note that lcs(S, i) and lcs(T, j) also depend on T and S respectively.
However, the respective other string is omitted from the function parameters
in the notation used here to achieve a better readability and avoid confusion
between lcs(S, i) and lcs(T, j). In the following, the computation of two
arrays LCSS = (lcs(S, 1), . . . , lcs(S, m)) and LCST = (lcs(T, 1), . . . , lcs(T, n))
is described.

Pseudocode for the procedure is given in Algorithm 8. The computation
gets the GSA GSA and the LCP array LCP as input. GSA contains the
indices of all suffixes of the concatenated string U = (s1, . . . , sm, t1, . . . , tn)
in lexical order. U, GSA and LCP have the same length l. Let Uj = U[j . . . k]
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be the substring of U that starts at position j and ends with the nearest
following sentinel at position k. We can consider GSA as a sorted list of
sentinel-terminated substrings of U. Since the sentinel characters are unique,
they set a limit to the length of the LCP between any successive entries in
GSA. LCP[i] holds the size of the LCP shared by substrings UGSA[i] and
UGSA[i−1]. The length of the LCP of two substrings UGSA[i] and UGSA[j] with
i < j is

lcp(UGSA[i], UGSA[j]) = min(LCP[i + 1 . . . j]). (5.1)

In the following, we have to distinguish between substrings from sequences
S and those from T. UGSA[i] is a substring of S, if GSA[i] <= m, and a
substring of T, otherwise. We will now search for the longest exact substring
match for each 1 ≤ i ≤ l between UGSA[i] and the other chain. Let

lcsGSA(i) =

{
lcs(S, GSA[i]), if GSA[i] ≤ m,
lcs(T, GSA[i]−m), else.

(5.2)

lcs(S, GSA[i]) is equal to the LCP of either the nearest preceding (j < i) or
the next succeeding (i < j) entry at position j in GSA for which UGSA[j] is a
substring of T. This is due to the lexical ordering of GSA. Using equation 5.1,
the size of the LCP to the closest preceding entry from the respective other
string is computed for each position 1 ≤ i ≤ l as

lcs−(i) =


0, if i = 1,
LCP[i], if GSA[i] ≤ m < GSA[i− 1]

or GSA[i− 1] ≤ m < GSA[i],
min(LCP[i], lcs−(i− 1)), otherwise.

(5.3)
For the next successor from the respective other string, we have

lcs+(i) =


0, if i = m + n,
LCP[i + 1], if GSA[i] ≤ m < GSA[i + 1]

or GSA[i + 1] ≤ m < GSA[i],
min(LCP[i + 1], lcs+(i + 1)), otherwise.

(5.4)
Now, we can compute

lcsGSA(i) = max(lcs−(i), lcs+(i)). (5.5)

The first three loops in Algorithm 8 compute equations 5.3, 5.4 and 5.5 for
i = 1 . . . l using dynamic programming. The fourth loop sorts the match
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lengths according to the order in which the suffixes occur in S and T. Each
of the four loops takes l steps. Since l = m + n, the overall time complexity
is O(m + n).

5.2.3. Sum of longest common substrings

Using the notation of section 5.2.2, the sum of longest common substrings
for a string S with respect to another string T is

LCS SUM(S) =
m

∑
i=1

lcs(S, i). (5.6)

Hence, we can compute LCSS and LCST as described previously and calcu-
late the sum of each array to get the values for S with respect to T and vice
versa.

5.2.4. FREEDOLIN

The FREEDOLIN score is, like LCS SUM (Eq. 5.6), a sum of contributions
from matches of string S found in T. Instead of taking a sum over their
lengths, the matches are weighted by an estimate of significance.

For a character a we say p(a) is the probability of a. p(a) is estimated using
the measured frequencies of the letters depicted in Figure 3.7. If we make
the simplifying assumption that the probabilities to observe two specific
characters at two distinct positions in a string V = (v1, . . . , vl) of length l
are independent from each other,

p(V) = p(v1, . . . , vl) = p(v1) . . . p(vl) =
l

∏
i=1

p(vi) (5.7)

becomes the probability of observing V.

Given V and another string T = (t1, . . . , tn) with length n and n > l, we say
that V is a substring of T, if V equals T[j..j + l − 1] for some j. Let N(T, l)
be the number of sentinel-free substrings of length l in T and, therefore, the
number of substrings that could potentially match V. We now estimate the
probability that V is a substring of T as

p(V is a substring of T) = N(T, l)
l

∏
i=1

p(vi). (5.8)
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Algorithm 8 Compute longest matches between two strings

1: function longestMatchEachPosition(GSA, LCP, m)
2: l ← getSize(GSA)

. forward traversal of the GSA
3: LCS− ← newArray(l)
4: LCS−[0]← 0
5: for i← 2 to l do
6: if sameString(GSA[i], GSA[i− 1]) then
7: LCS−[i]← min(LCP[i], LCS−[i− 1])
8: else
9: LCS−[i]← LCP[i]

10: end if
11: end for

. backward traversal of the GSA
12: LCS+ ← newArray(l)
13: LCS+[l]← 0
14: for i← l − 1 to 1 do
15: if sameString(GSA[i], GSA[i + 1]) then
16: LCS+[i]← min(LCP[i + 1], LCS+[i + 1])
17: else
18: LCS+[i]← LCP[i + 1]
19: end if
20: end for

. merge forward and backward values
21: LCSGSA ← newArray(l)
22: for i← 1 to l do
23: LCSGSA[i]← max(LCS−[i], LCS+[i])
24: end for

. suffix array to string order
25: LCSstr ← newArray(lGSA)
26: for i← 1 to lGSA do
27: LCSstr[GSA[i]]← LCSGSA[i]
28: end for
29: LCSS ← LCSstr[1 . . . m]
30: LCST ← LCSstr[m + 1 . . . l]
31: return LCSS, LCST
32: end function
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The negative logarithm

− log p(V is a substring of T) = − log(N(T, l))−
l

∑
i=1

log p(vi) (5.9)

is used to weight substring matches in FREEDOLIN. Let us assume we
have computed LCSS for string S with length m as described in section 5.2.2.
We therefore know length lcs(S, i) of the longest substring match for each
position i with 1 ≤ i ≤ m. For every position i in S we define the weight

w(S, T, i) = − log(N(T, lcs(S, i)))−
i+lcs(S,i)−1

∑
j=i

log p(si). (5.10)

Taking the sum over all matches in LCSS, we get

sFREEDOLIN(S, T) =
m

∑
i=1

w(S, T, i). (5.11)

It may be helpful to point out that sFREEDOLIN(S, T) 6= sFREEDOLIN(T, S).

In order to compute Equation 5.11 in linear time O(m), two additional arrays
are constructed. The first array is NT = (log N(T, 1), . . . , log N(T, n)) and
holds log N(T, l) in T for each length l with 1 ≤ l ≤ n. The calculation for
counting the substrings in O(n) time is described in Algorithm 9. The second
array is used to compute the sum on the right hand side of Equation 5.10 in
constant time. Let us define the cumulative sum of log-letter-frequencies for
any i with 0 ≤ i ≤ m as

c(S, i) =


i

∑
j=1

log p(sj), if i > 0,

0, otherwise.
(5.12)

We can tabulate these values to get an array C = (c(S, 0), . . . , c(S, m)) and
then compute the sum in Equation 5.10 in constant time using

log P(si, . . . , sj) =
j

∑
k=i

log P(si) = c(S, j)− c(S, i− 1). (5.13)
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Algorithm 9 Count sentinel-free substrings

1: function countSubstrings(S)
2: m← getLength(S)
3: Counts[1 . . . m]← 0
4: k← 0
5: for i← 1 to l do
6: if isSentinel(S[i]) then
7: k← 0
8: else
9: k← k + 1

10: Counts[k]← Counts[k] + 1
11: end if
12: end for
13: for i← m− 1 to 1 do
14: Counts[i]← Counts[i] + Counts[i + 1]
15: end for
16: NS ← newArray(m)
17: for i← 1 to m do
18: NS[i]← log(Counts[i])
19: end for
20: return NS
21: end function

Algorithm 10 describes a procedure to compute sFREEDOLIN(S, T) and
sFREEDOLIN(T, S) simultaneously. Line 2 to 5 describe the computation
of the sequence specific arrays NS, NT, CS and CT. NS and CS are indepen-
dent from T and NT and CT are independent from S. Hence, these arrays
can be computed beforehand and stored in order to be re-used. In line 6 S
and T are concatenated to compute GSA and LCP, which are then used to
compute sFREEDOLIN(S, T) and sFREEDOLIN(T, S).

The overall time complexity of the algorithm is O(m + n). The computa-
tions of the structural alphabet string, the array of substring counts and
the cumulative log-frequencies each require O(m) and O(n) steps for S
and T respectively. Computing the generalized suffix array and the LCP
array on the concatenated string requires O(m + n) steps. The joint con-
struction of the arrays LCSS and LCST as described in section 5.2.2 also
requires O(m + n). With the previously described data structures available,
the FREEDOLIN score can be computed in O(m) and O(n) steps for the
two chains respectively.
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Algorithm 10 FREEDOLIN comparison of RNA structure alphabet strings

1: function freedolin(S, T)
2: NS ← countSubstrings(S)
3: NT ← countSubstrings(T)
4: CS ← cumulativeLogFrequency(S)
5: CT ← cumulativeLogFrequency(T)
6: U ← concatenate(S, T)
7: GSA← inducedSort(U)
8: LCP← kasaiLCP(GSA)
9: m← getLength(S)

10: LCSS, LCST ← longestMatchEachPosition(GSA, LCP, m)
11: scoreS ← computeFreedolinScore(LCSS, CS, NT)
12: scoreT ← computeFreedolinScore(LCST, CT, NS)
13: return scoreS, scoreT
14: end function

5.2.5. URSULA

The URSULA score uses the same weights for matches as the FREEDOLIN
score (Eq 5.10). The score for S given T is equal to the largest weight among
all substrings of S found in T. Analogous to equation 5.11 we can write

sURSULA(S, T) = max
i=1...m

w(S, T, i). (5.14)

The routine implemented here is very similar to that of FREEDOLIN, which
is described in algorithm 10. The only difference is found in line 11 and 12,
where the maxima in LCSS and LCSt are identified instead of taking the
sums.

Implementation remark

The routine described in algorithm 10 computes LCSS and LCST as de-
scribed in algorithm 8. For further optimization, one may consider that the
substring match with the largest weight will always be between suffixes,
which are adjacent in GSA. Thus, one could save a few computing steps.
The four loops in algorithm 8 and the loop required to find the maximum
in LCSS and LCST can be reduced to one. However, the overall runtime
complexity stays in O(m + n). In this work, the routines from FREEDOLIN
were reused for the implementation of URSULA for convenience.
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5.2.6. Evaluation

Dataset

The classification of ncRNAs provided by the Rfam database version 14.1 [157]
was utilized for evaluation. We follow the nomenclature of RNA families
used in Rfam. Coordinate files were downloaded from the PDB [12] for all
Rfam entries for which a structure model is available. Chains that are only
represented by a coarse grained chain of P-atoms and chains that are shorter
than seven nucleotides were removed from the set, because no strings can
be computed for these cases. Some chains are assigned to more than one
family. These chains were also removed from the dataset. Eleven chains were
removed from the dataset because FRASS failed to process the structure
files. Eventually, the dataset included 4909 chains.

Performance assessment

The performance of the four tools was compared in a database search
scenario. Every chain from each family with at least two members was
compared to all other chains in the dataset. A search is considered successful
if a large amount of chains from the same family (positives) score higher than
most chains that belong to another family (negatives). This can be visualized
using a receiver operating characteristic (ROC) curve [158]. Figure 5.1 shows
some example curves. One has to keep in mind here, that a curve considers
only the comparison of the query chain with the database and not, as it is
often done, all pairwise scores. The area under the curve value (AUC) [158]
was used to get the performance of a search as a single number.

Runtime benchmark

All runtime measurements were computed on the machine described in
section 4.2.7. As before, every measurement was repeated 30 times. Runtimes
were measured in two different scenarios to compare FREEDOLIN and
URSULA to the alignment tools from chapter 4 and to FRASS. To compare
FREEDOLIN and URSULA to the alignment programs, they were executed
using the chain pairs listed in Table 4.1. The preparation of the chain features
and the comparison were executed separately as done previously for most
of the alignment tools. A different runtime benchmark was performed to
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Figure 5.1.: Example ROC curves of Rfam database searches with varying AUC
values.

compare the time efficiency of FREEDOLIN, URSULA and FRASS. The time
required to search the Rfam dataset was measured. The first chain of each
pair listed in Table 4.1 was chosen as a query. Hence, there are four different
queries for chains with a length of 122 to 2754 nucleotides. The FRASS
software package contains tools to set up a database and to compare a query
chain against the database. To set up the database, the Gaussian integrals for
a given list of structures are computed and stored. When a query chain is
compared against the database, the Gaussian integrals are computed for that
chain and subsequently compared to all entries in the database. In order to
get a fair comparison, a similar procedure was implemented for FREEDOLIN
and URSULA. A database with string descriptors for all chains from the
Rfam set was prepared. Each database search includes the computation of
the string description for the query chain and the comparison to all chains
in the database.
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5.2.7. Implementation

The alignment-free string comparison methods were implemented into
the same framework described in section 3.2.8. The same tools were used.
The ROC curves and AUC values were computed using the function from
scikit-learn [95].

5.2.8. Availability

FREEDOLIN and URSULA are available at https://gitlab.com/nilspetersen/
cvrry.
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5.3. Results

5.3.1. Database scan

Database searches were conducted on the Rfam dataset and the results were
assessed computing AUC values as described in section 5.2.6. Figure 5.2
and 5.3 show the distributions of AUC values for the different methods
grouped by the Rfam family of the queries. One can see that FREEDOLIN
and URSULA perform significantly better than their simple counterparts
LCS SUM and LCS for most of the families. When comparing FREEDOLIN
and FRASS, multiple cases where one of the method performs significantly
better than the other are easily found for both directions. The same is true
for the comparison of URSULA and FRASS.

An average score is required to assess and compare the overall performance
of the tools. However, the families differ a lot in size. The largest family
contains 1292 structures while the smallest families for which queries were
run have only two members. A simple average AUC over all query structures
would be dominated by the largest families. Therefore, the mean is computed
separately for every family first. One gets 68 mean values for 68 families.
Taking the average of these 68 values yields the overall score. The results for
the five tools are shown in Figure 5.4. Note that the shown 95 % bootstrap
confidence intervals are also computed on the 68 mean values. The average
AUC of FREEDOLIN, URSULA and FRASS are close to each other with
overlapping confidence intervals. FREEDOLIN scores marginally higher
than URSULA which performs slightly better than FRASS. The three tools
all perform significantly better than LCS SUM and LCS.
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Figure 5.2.: AUC values for comparisons of single RNA chains against the Rfam
dataset. Boxes show medians, upper and lower quartiles. Whiskers
stretch out to 1.5 interquartile ranges. Outliers are drawn as circles.
Figure 5.3 shows the results for the other 32 families.
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Figure 5.3.: AUC values for comparisons of single RNA chains against the Rfam
dataset. Boxes and whiskers as in Figure 5.2, which shows the results
for the other 36 families.
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Figure 5.4.: AUC scores of database searches averaged over all families. Error bars
represent 95 % bootstrap confidence intervals computed on per family
averages.
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5.3.2. Runtimes

Runtimes were measured following the description in section 5.2.6. The
results are depicted in Figure 5.5. Figure 5.5 A and B show the runtimes
of the alignment tool ALFONS and the alignment-free tools FREEDOLIN
and URSULA. The average runtimes are also listed in Table A.7 and A.8.
Figure 5.5 A shows the time required for the preprocessing of the chains.
Since the preprocessing step is the same for FREEDOLIN and URSULA, it
is only depicted once. The preprocessing step conducted by the alignment-
free tools is significantly faster in all cases compared to the procedure of
ALFONS. Figure 5.5 B depicts the average times required for a comparison
of two chains. The runtimes of FREEDOLIN and URSULA are very similar
with a difference of less than 10 %. FREEDOLIN and URSULA are always
faster than ALFONS. The runtimes of all programs increase with the length
of the chains, but the runtime of ALFONS increases to a substantially larger
extent compared to that of FREEDOLIN and URSULA. The comparison of
the shortest two chains 1s72 9 and 2qpg A takes ALFONS 1.1 times as long
as FREEDOLIN. This factor grows to 29.5 for the comparison of the longest
two chains 1s72 0 and 3u5h 5.

Figure 5.5 C shows the duration of database scans performed with FRASS,
FREEDOLIN and URSULA. Again, the speed of FREEDOLIN and UR-
SULA is very similar. FRASS is faster than FREEDOLIN and URSULA for
the searches with the shorter query chains. For the shortest query chain
1s72 9 FRASS is only marginally faster and requires 0.97 times the time
FREEDOLIN requires. The difference is a bit larger for chain 2a64 A where
the runtime of FRASS is 0.8 times the runtime of FREEDOLIN. FRASS
becomes substantially slower than the string based methods when longer
chains are used as queries. For the query chains 1s72 9 and 2a64 A scanning
the dataset takes FRASS 6.7 and 38.3 times as long as FREEDOLIN.
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Figure 5.5.: Average times required to (A) compute structural alphabet strings,
(B) compare two chains and (C) search a database. The preprocessing
step is the same for FREEDOLIN and URSULA and therefore only
depicted once. Error bars represent 95 % bootstrap confidence intervals.
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5.4. Discussion

There are two obvious objectives for the design of an alignment-free structure
comparison method. The method should be fast and it should provide useful
information about the similarity of two structures. The comparison to the
program FRASS was herein used to evaluate how far these goals are reached
by two new tools FREEDOLIN and URSULA. Furthermore, the comparison
to the more naive attempts LCS and LCS SUM is used to demonstrate
the benefit of the substring match weighting used in FREEDOLIN and
URSULA. The speed of the alignment-free tools is also compared to that of
the alignment program ALFONS in order to get an idea about how much
the alignment-free comparisons could help to speed up time consuming
processes.

Let us first compare FREEDOLIN and URSULA to LCS and LCS SUM.
Methodologically, FREEDOLIN differs from LCS SUM only by the weights
assigned to substring matches. The same is true for URSULA and LCS. LCS
and LCS SUM weight the substring matches simply by their length as done
by the methods for genomic data [145] that inspired the work presented here.
FREEDOLIN and URSULA, on the other hand, assign weights to substring
matches based on a simple estimate of statistical significance. Figures 5.2
to 5.4 show that FREEDOLIN and URSULA clearly outperform LCS and
LCS SUM. One can conclude that the significance estimate developed here
brings a substantial improvement in the reliability of similarity detected
between similar structures.

The weight function used in FREEDOLIN and URSULA was described by
Equation 5.10. Substring matches that are estimated to be unlikely found
by chance are weighted higher than those which are assumed to be more
likely. There are two contributions. The first is the letter composition of the
substring. Letters that are rarely seen in general contribute more weight
than the more abundant ones. The second contribution is due to the size
of the target string in which the given substring was found. The chance to
find a given substring by chance increases with the size of the structure it
is searched in. Hence, the significance and thereby the weight assigned to
the match is smaller for larger target structures. However, the estimate is
just a rough approximation. It is based on the simplifying assumption that
the probabilities to find certain letters at different positions are independent
from each other (Eq. 5.7). It is easy to see that this is not true though. Typical
RNA strands comprise helix and loop regions. Hence, a letter that represents
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a typical helix shape is likely to be in the proximity of other helix letters.
Likewise, certain loop shapes will be translated to specific sequences of
letters and therefore some combinations of neighboring letters will occur
more frequently than others. The accuracy of the estimate could be improved
using a model with conditional probabilities. A little bit more sophisticated
than the current approach but still easy to implement would be the use of
a Markov chain [159]. Therein, the probability of a character at a certain
position in the string depends on the character at the preceding position.

Another part of this work with room for improvement is the combination of
the weighted longest common substrings to a single score. Taking the sum,
as done by the FREEDOLIN score, is a rather ad-hoc solution. It was used
because it is a simple way to account for multiple stretches that are common
between the backbones of the two compared structures. However, the score
can not be interpreted in terms of probability since the matches listed by
the suffix array are certainly not independent of each other. An interesting
development for the future would be a statistically rigorous estimate of the
joint probability of all substring matches.

To compare FREEDOLIN, URSULA and FRASS one can have a look at the
average AUC values computed for the database scans and observe that
FREEDOLIN and URSULA achieve marginally higher scores than FRASS
(Fig. 5.4). More insight is gained observing the performances of the families
separately (Fig. 5.2 and 5.3). Here, one can see that the string based methods
and FRASS are superior for different families. This means that the winner
on the overall performance is likely to change with the composition of
the dataset used for evaluation. It also means that FRASS and our string
based methods can complement each other. A combination of the different
approaches may well lead to a method with enhanced sensitivity.

Runtimes of URSULA and FREEDOLIN were compared to those of ALFONS
(Fig. 5.5 A and B) and FRASS (Fig. 5.5 C). Let us first consider the comparison
to ALFONS. Figure 5.5 A shows that the preprocessing of the chains is
slower for ALFONS than for FREEDOLIN. This difference is due to the
computation of base pair information used by ALFONS. However, in many
applications the preprocessing step is executed only once and the computed
features are stored to be reused many times afterwards. It is therefore
more interesting to look at the runtimes of the chain comparisons. Only
small differences were observed between the alignment-free methods and
ALFONS for pairs of short chains while substantially larger differences
were observed for long chains (Fig. 5.5 B). Hence, using the alignment-free
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methods is especially useful for the comparison of large structures while
their usefulness is limited for large numbers of small chains. To compare
the computational speed of URSULA, FREEDOLIN and FRASS, the time
required for a database query was measured as described in section 5.2.6.
The times plotted in Figure 5.5 C comprise the processing of the query chain
and the comparison to each chain in the Rfam set. FRASS is slightly faster for
small query chains than the string based methods but substantially slower
for large query chains. This is easily understood looking at the runtime
complexities of the steps performed by FRASS. FRASS comparisons run in
constant time (O(N)) while the computation of the Gaussian integrals has
time complexity O(N3). For large structures, FRASS spends most of the time
computing the Gaussian integrals for the query. The runtime performance of
FRASS thus depends on the context that the program is used in. If Gaussian
integrals for most chains are precomputed and stored, FRASS profits from
the fast comparisons. If the descriptors have to be computed on the fly,
however, this benefit is lost. Given the times measured for FREEDOLIN and
URSULA, the two tools should be fast enough for most tasks that require
rapid structure comparisons.

Additionally to the previously described runtime comparison with ALFONS,
it would be interesting to benchmark FREEDOLIN and URSULA against an
alignment tool in the database search scenario. One could run and evaluated
the database scans on the Rfam set using ALFONS. However, the results
will not only depend on the alignment and superposition of the nucleotides
but also on the scoring function used to rank the alignments. The size-
independent scores proposed by Zheng et al. [111] and Gong et al. [120]
could be adequate choices. Another scoring function based on distance
matrices is currently designed and tested in our group.

The results presented in this chapter concern database searches. Clustering
a large number of structures is another application where alignment-free
methods can be very useful. This task is a bit more difficult since there
are more requirements for the similarity score than in the database search
scenario. The score function should be size independent and therefore
normalized in a sensible way. Many clustering algorithms also need a
symmetric score. Both requirements are not yet met by the FREEDOLIN
and URSULA scores. The normalization used for the average common
substring method for genome sequences [145] may be a good starting
point for a normalization of the FREEDOLIN score. However, there are
differences between the comparison of the RNA structure alphabet strings
and the comparison of genome sequences. One of them is the range of
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string lengths. The PDB contains many small structures like simple hairpins
for which there are many similar substructures found in large molecules
like ribosomal subunits. Additionally, there are many structure files that
contain only a piece of the chain of a larger molecule. It is very difficult
and sometimes impossible to distinguish automatically between those two
cases. Another feature of RNA structures which is specifically important
for the string representation used here is that the chain models are often
discontinuous because some nucleotides are missing. In FREEDOLIN and
URSULA sentinel characters are inserted at the respective string positions
to avoid meaningless matches. The weight function accounts for this by
incorporating the number of sentinel-free substrings of the given length.
Both features, the variations in chain lengths and the discontinuities, should
be kept in mind when formulating a normalization scheme.

Another way to perform a fast clustering of RNA chains is to combine
an alignment-free and an alignment method. The alignment-free method
can be used to find next neighbor candidates for each chain. Subsequently,
alignments are computed for all neighbor candidate pairs. The result is a
sparse graph with weighted edges. A graph clustering algorithm such as
spectral [160], modularity [161] or affinity propagation clustering [88] can
then be used to group the chains based on that graph. The FREEDOLIN and
URSULA scores could be used in this scenario without further modification.
A similar approach has been implemented previously to cluster protein
structures [130].

FREEDOLIN and URSULA both rely on substring matches and thus use
local structural similarities to quickly get an idea about the overall similarity
of two structures. Different methods to find similar substructures in RNA
chains have been proposed [78, 121, 162] and could be added to the bench-
mark described in this chapter. One could either use the size of the largest
match, as done by URSULA, or add contributions of multiple substructure
matches, as done by FREEDOLIN.

The string representation used by FREEDOLIN and URSULA encodes only
local information of the RNA backbone. A lot of available information
about the structure is ignored this way. Incorporating at least some infor-
mation about non-local interactions may help to improve the specificity
of the scores. A simple approach would be to incorporate the base pair
string encoding described in section 4.2.2. Each letter in the structural al-
phabet could be combined with each of the three base pair states yielding
a new alphabet with 18 letters. While increasing the specificity, this may
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decrease the sensitivity of the score function. In order to improve the sensi-
tivity, one could adapt approaches that account for common substrings with
mismatches [163, 164]. More inspiration on how to incorporate non-local
interactions into alignment-free RNA structure comparison can be taken
from methods for protein comparison. For example, Cui et al. described
contact libraries that include both local and remote contacts within protein
chains [150]. Recently, two studies presented the use of deep neural net-
works to automatically extract the features used for alignment-free structure
comparison [151, 152].

5.5. Conclusion

The idea of longest common substrings was applied to strings of an RNA
structure alphabet in order to develop alignment-free methods for the fast
comparison of RNA 3D structures. A weight function for substring matches
was introduced to adapt the methodology to the properties of the structure
alphabet strings. This led to the implementation of the tools FREEDOLIN
and URSULA. Both tools are fast enough to compare thousands of struc-
ture pairs within seconds. In the database search benchmark, FREEDOLIN
and URSULA achieved results similar to slightly better than the state of
the art program FRASS. In future applications, they should be useful for
quick extraction of the most similar structures from large datasets. The
presented approaches are also promising as seeds for the development of
more sophisticated scoring methods.
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6 Chapter 6.

Conclusions and outlook

This work addressed the computational prediction and comparison of RNA
3D structure models. This led to the development of the following tools and
frameworks:

• The structure prediction tool NASTI, which was developed removing
numerical instabilities from the program NAST.

• A new framework to create structural alphabets for RNA.

• The alignment program ALFONS, which uses one of the new structural
alphabets.

• Another structural alignment program CVRRY, that applies novel
backbone descriptors.

• Two tools FREEDOLIN and URSULA for fast alignment-free structure
comparison that also make use of a structural alphabet designed with
the new method.

Example results produced by these tools were shown and discussed in
the respective chapters. The usefulness of the tools was demonstrated in
comparison to state of the art tools. NASTI simulations and samples were
compared to those of its predecessor NAST, ALFONS and CVRRY were
compared to three state of the art alignment programs and FREEDOLIN and
ALFONS were benchmarked against the alignment-free comparison tool
FRASS. All approaches performed as well or better than their competitors
from the literature.

In retrospect one can clearly see how structure prediction and comparison
are related. Both tasks rely heavily on the representation of the molecule.
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All tools described in this work use some piece wise geometric description
of the backbone. NASTI, CVRRY and ALFONS additionally incorporate
information about base pairs, and the treatment of helix and non-helix
parts of the RNA backbone was a relevant issue in all chapters of this
thesis. Another common principle used by all approaches is the extraction
of knowledge from the PDB. Experimentally determined structure files were
used to parameterise the NASTI energy terms, to search for an optimal
structure alphabet representation and to find parameters for CVRRY and
ALFONS alignments. In FREEDOLIN and ALFONS, substring matches
were weighted by the distribution of structure alphabet letters found in
PDB structures. The choice of the dataset used for the parameterisation,
however, is not a trivial task. Approaches to solve different problems can
face similar problems here. In comparison to protein structures the number
of available folds for RNAs seems rather limited. There is also the problem of
redundancy within the set of known structures. The large number of tRNA
structures or ribosomes do not provide much independent information.
Another problem is the uneven distribution of chain lengths. On the one side,
there is a large number of small (< 200 nucleotides) structures. On the other
side, there is a large number of ribosomal structures (> 103 nucleotides).
Data between these extremes is rather sparse. These problems were handled
in multiple ways in this work. The NASTI parameters were obtained only
from ribosomal subunits relying on the belief that their substructures are
representative for the whole RNA fold space. A different approach was used
for the optimization of structural alphabets and the search of alignment
parameters. Here, ribosomal chains were cut to smaller pieces in order to
enable effective optimization procedures. In the future, more sophisticated
solutions could help to improve both comparison and prediction of RNA
structures. Finally one could state that the choices on how to pick, design
and combine the molecule representation, the algorithms and the parameters
are in all cases subject to computational speed and accuracy. In most cases,
there is a compromise to make which one would like to make as smart as
possible.

There are multiple ways in which each of the developed methods may
contribute to future developments in the field. Herein, the contributions are
roughly grouped in three categories.

First, each of the tools can be downloaded and applied as it is. The respective
tool may either be used on its own or it could be incorporated into some
data processing pipeline or interactive tool. It seems sensible, for example,
to replace NAST with NASTI in the pipeline described by Weinreb et al. [33].
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One could also integrate ALFONS into chimera [165], a tool for interactive
analysis of macromolecules, to superimpose chains and interactively analyze
conserved and non-conserved sites between a pair of chains. Alternatively,
the structural alphabet and enhanced suffix arrays could be used to highlight
similar backbone stretches in an interactive environment.

The second type of contributions provided by the developments of this
work are the insights about the developed methods and the transfer of
that knowledge to other research areas. The description of the numerical
instabilities found in the NAST force field and the provided solution, for ex-
ample, should be helpful for future low resolution force field developments.
Chapter 3 describes a new approach for the design of a structural alphabet
which is fundamentally different to the established unsupervised clustering
approach. It is obvious that this method can be applied to protein structures
as well. One can even take this a step further and adapt the method to any
type of data, for which a string representation is useful when searching
for patterns. This will, however, require the formulation of an appropriate
target function.

The third way in which the described methods and tools contribute to the
future of RNA structure prediction and comparison is to use them as seed-
ideas for further developments. Publicly available code is very beneficial
here. Further efforts can be made to refine and enhance the existing tools.
The tools can also be combined with each other or with different existing
approaches. Several suggestions for improvements and research directions
were already made in the respective chapters. A few more ideas are added
in the following.

6.1. Ideas for further developments

Models of large RNA structures are often missing parts of the chain. One
could design a pipeline which combines NASTI and either CVRRY, ALFONS
or both alignment tools in order to model the missing parts. Given a structure
model with missing nucleotides, one first performs a database search to find
similar structures. The search could be conducted with the alignment tool
or with either FREEDOLIN or URSULA. Afterwards, the query structure
is aligned to the most similar hits from the database search. An alignment
with superposition refinement is used to assign the corresponding residues.
If the missing nucleotides are present in one or more of the structures
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found in the database, the respective coordinates can be used to generate
position or distance and angle restraints. NASTI could then be used to
sample possible backbone conformations of the missing stretches. The
program C2A [166] could be used afterwards to add the fine grained atom
coordinates. This approach is closely related to homology modeling [167]
and loop modeling [21]. In contrast to homology modeling, only structural
similarity is required and sequence similarity is not necessary. An advantage
compared to other loop modeling approaches is the use of knowledge from
similar structures.

Section 4.4 described how missing pieces in structure models are prob-
lematic for alignment tools like CVRRY and ALFONS, which are based
on backbone descriptors and dynamic programming methods as used in
sequence alignments. An approach to enhance the performance of the align-
ment algorithms could be implemented using NASTI. In a first step, the
missing regions are modeled with NASTI. Information about base pairs and
tertiary interactions is required for some regions in order to get realistic
results. Multiple alignments can help to get information about such interac-
tions [33]. After the structure model is completed, the chains are aligned.
This is likely to improve the result even if the modeled regions are not 100 %
correct. There are two reasons. First, some regions will be similar to the real
structure and may guide the alignment. For example, modeled helix regions
are very likely to take on a helical shape due to the helix restraints used
in NASTI and therefore match their counterparts. Second, gaps now only
serve one function, which is to be inserted at positions of real insertions,
instead of compensating missing residues.

It was mentioned earlier in this chapter that our new method for structural
alphabet design could be adapted to find string representations for data
types other than RNA 3D structures. The most obvious case is the appli-
cation to protein structures. This may even turn out more successful than
the RNA alphabet due to the larger number of chains available which can
be used in the optimization. Although there are already many structural
alphabets for proteins available, this may still be interesting since the new
optimization approach is fundamentally different from most methods. A
somewhat related method was presented by Ku and Hu [168]. This approach
starts with unsupervised clustering to generate the alphabet. Subsequently,
a scoring matrix is optimized through iterative database searches. The target
function is based on database annotations and evaluates whether structures
from the same classes are found. In contrast to our method, no structure
superpositions are made. A detailed comparison between this approach and
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our method would be interesting. With some modification one could also
use our new method to optimize an alphabet for the reduced representation
of amino acid sequences [169]. One can use the same target function as
before and hence still optimize with respect to the similarity of 3D backbone
stretches. Instead of mapping fragments defined by backbone coordinates
one defines a mapping of either single residues or k-mers to a new set of
letters. It was also mentioned before that in principle this methodology
could be applied to a large variety of data. This requires a meaningful
representation of the data in sequence form and a useful target function
to assess the quality of matches. The detection of patterns in music should
be a suitable task. Music has already a natural sequential order along the
time axis and methods developed for biological sequences were applied
in this research field before [170]. After designing an alphabet for music
pattern recognition, the FREEDOLIN methodology could be adapted for
fast alignment-free comparisons.

Multiple alignments of macromolecular sequences [143, 144, 171] or struc-
tures [73, 138, 172–175] can provide useful information about structural and
functional relationships between molecules. Especially sequence based meth-
ods gained a lot of attention in the past. Many tools were developed and
optimized with respect to speed and accuracy in order to cope with large
datasets [143, 144, 171]. So far, only few tools exist for multiple alignments
of RNA 3D structures [73, 138, 172, 173]. The new structural alphabet from
this work is well suited for the application of multiple sequence alignment
methods. Such an approach could be especially useful to align large groups
of long chains. Many multiple sequence alignment tools implement the
progressive alignment method [143, 144, 171]. Therein, a guide tree deter-
mines the order in which the sequences are assembled to build the multiple
alignment. Building the guide tree requires the comparison of all sequence
pairs. An alignment method can be used here, but is too expensive for large
datasets. Alignment-free methods help to speed up the process [143, 144].
To quickly align many large RNA structures using our new structural al-
phabet representation, a size independent and symmetric version of the
FREEDOLIN score would be helpful to build the guide tree.

Further inspiration for the application of structural alphabets can be found
in the literature. Here are two examples. Several approaches use seeded
alignment methods on structural alphabet strings [68, 74, 78]. These heuris-
tics compute alignments much faster than the classical dynamic program-
ming alignment methods. Typically, significant exact substring matches are
searched first and extended subsequently [176]. Another application, for
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which a structural alphabet is useful, is the detection of conserved pieces
in a large set of structures. Wu et al. described a method to find structural
motifs that occur in different protein families [177]. Both approaches are
easily adapted to be used on RNA structures with our new alphabet.

116



Bibliography

[1] Cech TR, Steitz JA. 2014. The noncoding RNA revolution - Trashing old rules
to forge new ones. Cell 157: 77–94.

[2] Laing C, Schlick T. 2011. Computational approaches to RNA structure
prediction, analysis, and design. Curr Opin Struct Biol 21: 306–318.

[3] Dans PD, Gallego D, Balaceanu A, Darré L, Gómez H, Orozco M. 2019.
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Appendix A.

Supplemental Data

This section contains additional figures and tables. Figures are shown first
and tables afterwards.
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Figure A.1.: Bond angles were collected from ribosome substructures and from
samples of simulations of the five structures in the test set.
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Figure A.2.: Dihedrals were collected from ribosome substructures and from sam-
ples of simulations of the five structures in the test set. This figure
shows distributions for half of the dihedral types. The other distribu-
tions are shown in Figure A.3.
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A. Supplemental Data
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Figure A.3.: Dihedrals were collected from ribosome substructures and from sam-
ples of the five structures in the test set. This figure shows distributions
for half of the dihedral types. The other distributions are shown in
Figure A.2.
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PDBID CHAINID

4r0d A
3jcs 3
4bts DA
4v4q CA
5g2x A
4r4v A
5o60 A
4gxy A
4v19 A
5lj3 Z
5jup EC
4v92 AZ
5mrc A
5mrc aa
2a64 A
3p49 A
3jan 4
5a2q 3
4gma Z
1u6b B
1u9s A
5t2a 2
5t2a E
5t2a A
3pdr A
3j7p 5
5lzt 9
3j79 A
1nbs B
5it9 i
5aj3 A
3j9w AA
5tc1 R
3dir A
4p8z A
4v88 A6
4v88 A8
5j01 A
1y0q A
3q1q B

Table A.1.: Parameterization set. List of RNA chains used for parameterizing the
energy terms of NASTI.
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A. Supplemental Data

Bonds
k (kJ mol−1 nm−2) r′ (nm)

rbb 00 544.966 0.584
01 802.825 0.585
10 1072.806 0.579
11 3455.842 0.577

rhlx 11 651.475 1.362

Harmonic angles
k (kJ mol−1 rad−2) θ′ (rad)

θhlx 10 7.214 1.297
11 125.8 1.079

Dihedrals
k (kJ mol−1) φ′ (rad)

φbb 0000 -1.063 0.216
0001 -2.432 0.669
0010 -1.194 0.887
0011 -2.751 0.536
0100 -1.037 0.118
0101 -1.697 0.121
0110 -3.35 0.552
0111 -3.912 0.196
1000 -0.629 0.322
1001 -1.271 0.644
1010 -2.237 0.6
1011 -2.225 0.811
1100 -1.157 0.913
1101 -0.904 0.534
1110 -4.01 0.572
1111 -8.587 0.292

φhlx 10 -6.276 -1.278
11 -77.17 -1.275

φknight 111 -26.6 1.278

Non-bonded
ε (kJ mol−1) σ (nm)

helical 8.69e-15 11.92
non-helical 4.32e-14 9.13

Table A.2.: Force field parameters. Non-bonded parameters are from NAST release
1.0. Parameters for the backbone angles are listed separately.
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Spline parameters
t (rad) a (kJ mol−1 rad−2) b (kJ mol−1 rad−1) c (kJ mol−1)

θbb 000 0.835642220348 41.2493261429 -111.519635643 78.4298524533
1.19641165318 43.3048495624 -116.438139988 81.3721304106
1.3767963696 -56.3900635912 158.081049007 -107.606380986

1.46698872781 9.37088520903 -34.8600922328 33.9148586786
1.73756580243 21.1872201163 -75.9234111226 69.5899679972
1.91795051885 -38.414143288 152.701520608 -149.65568522
2.00814287706 -11.5291235548 44.7235988545 -41.2381379957
2.27871995168 20.1396124305 -99.604762214 123.203819985
2.54929702631 11.7464096906 -56.8112286423 68.6571060448
3.09045117556 -154.397010413 970.105027302 -1518.16016915

001 0.71674428218 40.4517363906 -92.854049802 59.0548295825
1.03682938522 5.53654906861 -20.4518653898 21.520473406
1.35691448827 0.190251467418 -5.94292804248 11.6767797581
1.89038966001 7.62869335059 -34.0660352875 38.2585953298
3.06403503784 -81.7658719152 513.750125046 -801.005359449

010 1.15274583282 2.33500229336 -12.6434992694 17.6795114237
1.64850749398 5.87841513593 -24.3261845199 27.3090085164
1.97901526809 -12.0347796106 46.5747872874 -42.848044348
2.14426915514 -1.3911728219 0.92927181444 6.09009110154
2.47477692925 24.4694061235 -127.069056488 164.473746033
2.6400308163 30.9133393423 -161.093421039 209.386431494

2.97053859041 -65.9590117006 414.432693193 -645.424834563
011 1.03361260372 -4.93738094208 3.92180768195 16.5720301616

2.09729086327 15.2480767512 -80.7477443 105.360369046
2.59784533835 41.1004163289 -215.068504014 279.832648779
3.09839981342 -458.670237982 2881.91010013 -4518.00631585

Table A.3.: Spline parameters A. Parameters for the spline terms used as the po-
tential for backbone angles. The parameter t defines the intervals. a, b
and c are the coefficients for the quadratic, linear and constant terms of
the polynomial respectively. This table contains parameters for half of
the angle terms, the rest is found in the next table.
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A. Supplemental Data

Spline parameters
t (rad) a (kJ mol−1 rad−2) b (kJ mol−1 rad−1) c (kJ mol−1)

θbb 100 0.819005179406 28.4455845602 -75.2990333901 53.46268156
1.17382457513 24.3161347165 -65.6045339737 47.7728607307
1.41037083894 -8.49645880246 26.9513161247 -17.4961752454
1.76519023466 -2.56175804537 5.9995644806 0.995738455229
2.00173649848 -11.6191079996 42.2604204461 -35.2966009708
2.23828276229 16.757397084 -84.7688639188 106.867127779
2.3565558942 20.1987314755 -100.988257608 125.978081678
2.59310215801 -1.25872325317 10.2944867173 -18.3056805511
2.82964842182 40.0855039941 -223.684768046 312.733833939
3.06619468564 -146.788774224 922.30106946 -1444.17400845

101 0.932073178516 19.1680539409 -58.801570524 47.2829154262
1.57626308338 -2.79819769235 10.4476125353 -7.29454997909
2.05940551203 -13.4238120767 54.212510199 -52.3593857201
2.38150046446 26.6682438316 -136.745989335 175.024491946
2.54254794068 29.5436318644 -151.367613178 193.612581742
2.70359541689 8.25836319151 -36.2741035148 38.0294391224
2.86464289311 19.7925585732 -102.356805171 132.681109951
3.02569036932 -75.130109205 472.056398284 -736.317138902

110 0.892551425953 46.9197733702 -121.834889026 85.5991731809
1.19658762546 31.5082236782 -84.9523497245 63.5325781191
1.34860572522 3.30628640917 -8.88576159818 12.2406599966
1.50062382497 -10.2274970068 31.7324740738 -18.2356860922
2.03268717411 -7.60606387796 21.0753670763 -7.40440373878
2.33672337362 32.5724150438 -166.69661455 211.98118545
2.56475052326 28.4253835358 -145.42441209 184.702239255
3.0968138724 -342.035124883 2149.0700712 -3368.10893374

111 1.1627287967 -12.4936435252 21.7061139463 18.8916203581
2.14649579563 6.30532446316 -58.9976975524 105.506816395
2.39243754537 67.6033293277 -352.300994141 456.361725864
2.6383792951 58.775521792 -305.718784894 394.910957666
2.88432104484 51.753786062 -265.212904619 336.494976208
3.10293593349 -723.864572183 4548.17524433 -7131.32254839

Table A.4.: Spline parameters B. Parameters for the spline terms used as the po-
tential for backbone angles. The parameter t defines the intervals. a, b
and c are the coefficients for the quadratic, linear and constant terms of
the polynomial respectively. This table contains parameters for half of
the angle terms, the rest is found in the previous table.
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Gap open Gap extend Margin scaling Base pair bonus

2.5 0.1 0 0
2.5 0.1 0 4
2.5 0.1 1 0
2.5 0.1 1 4
2.5 0.3 0 0
2.5 0.3 0 4
2.5 0.3 1 0
2.5 0.3 1 4
5.0 0.1 0 0
5.0 0.1 0 4
5.0 0.1 1 0
5.0 0.1 1 4
5.0 0.3 0 0
5.0 0.3 0 4
5.0 0.3 1 0
5.0 0.3 1 4

Table A.5.: Parameter combinations used in the search for candidate chains for
training and test set.

Margin factor 0.1 0.500 1.00
Base pair bonus 0.1 3.000 6.00
Gap open 0.2 2.150 4.10 6.050 8.0
Gap extend 0.1 1.075 2.05 3.025 4.0

Table A.6.: Parameters used at the beginning of simplex optimization. A list
of all combinations where gap open is larger than gap extend was
assembled and yielded 171 start points.
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A. Supplemental Data

CVRRY ALFONS STAR3D FREEDOLIN
Chain

1s72 9 6.91× 10−1 6.98× 10−1 5.24× 101 6.10× 10−2

2qbg A 6.42× 10−1 6.18× 10−1 8.15× 101 3.34× 10−2

2a64 A 6.71× 10−1 6.86× 10−1 5.66× 10−1 2.59× 10−2

3dhs A 6.82× 10−1 6.54× 10−1 4.28× 10−1 2.54× 10−2

1fjg A 1.40 1.50 1.90× 101 1.47× 10−1

2aw7 A 1.42 1.51 2.94× 101 1.26× 10−1

1s72 0 3.15 3.26 9.86× 101 1.98× 10−1

3u5h 5 3.29 3.38 1.51× 102 2.94× 10−1

Table A.7.: Average time in seconds required for chain wise preparations.

CVRRY ALFONS STAR3D FREEDOLIN URSULA
Pair

1s72 9 & 2qbg A 6.67× 10−3 7.57× 10−3 4.76× 10−1 6.70× 10−3 6.73× 10−3

2a64 A & 3dhs A 1.44× 10−2 9.60× 10−3 2.96× 10−1 6.67× 10−3 6.73× 10−3

1fjg A & 2aw7 A 1.46× 10−1 1.04× 10−1 7.56× 10−1 8.47× 10−3 8.27× 10−3

1s72 0 & 3u5h 5 3.59× 10−1 2.90× 10−1 1.43 9.83× 10−3 1.08× 10−2

Table A.8.: Average time in seconds required for a comparison (alignment or
alignment-free) excluding the preparation of chain features.

ALFONS CVRRY SARA
Pair

1s72 9 & 2qbg A 1.32 1.34 2.69
2a64 A & 3dhs A 1.35 1.37 10.7

Table A.9.: Average time in seconds required for an alignment including the
preparation of chain features.
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FRASS FREEDOLIN URSULA
Chain

1s72 9 2.71 2.80 2.75
2a64 A 2.19 2.86 2.79
1fjg A 21.5 3.20 3.20
1s72 0 128 3.34 3.48

Table A.10.: Average time in seconds required for a database search with a given
query chain.

141





B
Appendix B.

Scientific contributions

This appendix lists my scientific contributions during the time of my PhD.

Publication

Petersen NP, Ort T, Torda AE. 2019. Improving the numerical stability of the
NAST force field for RNA simulations. J Chem Theory Comput 15: 3402-3409

Talk

Petersen NP. 2016. Mixing RNA scoring functions and 3D models. 14th
Bioinformatik Herbstseminar, Doubice, Czech Republic.

Poster presentations

Petersen NP, Torda AE. 2016. RNA secondary structure prediction with 3D
constraints. German Conference on Bioinformatics, Berlin, Germany.

Petersen NP, Torda AE. 2015. RNA secondary structure prediction with
pseudoknots using Newtonian dynamics simulations. 23rd Annual Interna-
tional Conference on Intelligent Systems for Molecular Biology and 14th European
Conference on Computational Biology, Dublin, Ireland.

143





C
Anhang C.

Danksagung

Zuerst bedanke ich mich bei Andrew Torda für die Betreuung dieser Arbeit
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Anhang D.

Gefahrstoffe und
KMR-Substanzen
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fortpflan-zungsgefährdende (KMR) Stoffe angegeben.
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