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Abstract

In the Minimal Supersymmetric Standard Model (MSSM), the mass of the SM-like
Higgs boson can be predicted in terms of the model parameters and therefore used
as a precision observable to constrain the MSSM parameter space. The precise
prediction of the lightest MSSM Higgs boson mass in scenarios with one or several
heavy supersymmetric particles requires the resummation of higher-order logarithmic
contributions obtained within an effective-field-theory (EFT) approach. By combining
the EFT calculation with a fixed-order calculation, a precise prediction also for low
and intermediary SUSY scales can be obtained. This method is called the hybrid
approach and is implemented, for instance, in the publicly available code FeynHiggs.

We discuss various improvements to this hybrid framework. First, we consider
the resummation of logarithmic contributions proportional to the bottom-Yukawa
coupling, including two-loop ∆b-resummation. For large tan β, this can lead to large
upward shifts of the Higgs mass compared to the existing fixed-order calculations.
Second, we improve the implemented EFT calculation by fully taking into account
the effect of the phases of complex soft SUSY-breaking parameters. In addition, we
discuss the inclusion of partial N3LL resummation.

After that, we turn to the case when there is a significant hierarchy between the
gluino mass and the masses of the scalar top quarks. In such a situation, the current
Higgs boson mass predictions so far have suffered from large theoretical uncertainties
related to non-decoupling power-enhanced gluino contributions in the EFT employing
the DR renormalization scheme. We demonstrate that the theoretical predictions in
the heavy gluino region are vastly improved by the introduction of a more suitable
renormalization scheme for the EFT calculation. It is shown that within this scheme,
the large gluino contributions are absorbed into the model parameters, resulting in
reliable and numerically stable predictions in the heavy-gluino region.

The presented improvements will become publicly available as parts of FeynHiggs.



Zusammenfassung

Im minimalen supersymmetrischen Standardmodell (MSSM) kann die Masse des leich-
testen Higgs-Bosons in Abhängigkeit von den Modellparametern vorhergesagt werden
und daher als Präzisionsobservable verwendet werden, um den MSSM-Parameterraum
einzuschränken. Die präzise Vorhersage der Masse des leichtesten MSSM-Higgs-Bosons
in Szenarien mit einem oder mehreren schweren supersymmetrischen Teilchen erfordert
die Resummation logarithmischer Beiträge höherer Ordnung, die im Rahmen eines
EFT-Ansatzes (Effektive-Feld-Theorie) durchgeführt wird. Durch die Kombination der
EFT-Rechnung mit einer Rechnung auf fester Ordnung kann eine präzise Vorhersage
auch für niedrige und intermediäre SUSY-Skalen erhalten werden. Diese Methode wird
als Hybridansatz bezeichnet und ist z.B. im öffentlich zugänglichen Code FeynHiggs
implementiert.

In dieser Arbeit werden verschiedene Verbesserungen dieser Hybrid-Methode dis-
kutiert. Zunächst wird die Resummation der logarithmischen Beiträge proportional
zur Bottom-Yukawakopplung betrachtet, einschließlich von ∆b-Resummation auf
dem Zwei-Schleifen-Niveau. Bei großen tan β können diese Verbesserungen zu großen
Verschiebungen der Higgs-Masse nach oben im Vergleich zu den bestehenden Berech-
nungen auf fester Ordnung führen. Weiterhin wird die EFT-Berechnung verbessert,
indem die Auswirkungen der Phasen von komplexen soft SUSY-brechenden Parame-
tern vollständig berücksichtigen berücksichtigt werden. Als weitere Verbesserung wird
die Einbeziehung einer teilweisen N3LL-Resummation diskutiert.

Danach wird der Fall einer großen Hierarchie zwischen der Gluino-Masse und den
Massen der skalaren Top-Quarks betrachtet. In diesem Fall weisen die bisherigen
Higgs-Boson-Massenvorhersagen große theoretischen Unsicherheiten auf. Diese werden
durch nicht-entkoppelnde und durch die Gluino-Masse potentiell verstärkte Beiträge
im EFT-Ergebnis als Konsequenz der Verwendung des DR-Renormierungsschemas
hervorgerufen. Es wird demonstriert, dass die theoretischen Vorhersagen in der Para-
meterregion mit schweren Gluinos durch die Einführung eines geeigneteren Renormie-
rungsschemas für die EFT-Berechnung erheblich verbessert werden. In diesem Schema
werden die großen Gluino-Beiträge in die Modellparameter absorbiert. Dadurch sind
zuverlässige und numerisch stabile Vorhersagen in der Parameterregion mit schweren
Gluinos möglich.

Die vorgestellten Verbesserungen werden als Teil des Programms FeynHiggs öf-
fentlich zugänglich sein.
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Introduction

In July 2012 two experiments at the Large Hadron Collider (LHC), ATLAS [1]
and CMS [2], announced the discovery of a new particle with a mass of around
Mh ∼ 125 GeV . To date, this has been the last discovery of a new particle whose
existence is explainable within the Standard Model (SM) of particle physics, a theory
which describes the three fundamental forces of Nature: the electromagnetic, weak,
and strong interactions. Subsequent analyses of the data collected during Run I and
Run II of the LHC indicate that the properties of this particle are, within current
theoretical and experimental uncertainties, compatible with those of the SM Higgs
boson [3].

So far, the SM has been successful in describing almost all experimental results in
high-energy physics. However, it has several problems which make us believe that the
SM should be embedded into a more fundamental theory. For example, it does not
account for neutrino oscillations, nor for the evidence for Dark Matter (DM) and does
not predict the correct amount of the baryon-antibaryon asymmetry of the Universe.
On top of that, if the SM is considered as a low-energy approximation of a more
complete theory, the mass of the SM Higgs boson is unprotected against potentially
large radiative corrections originating from physics at high mass scales. The latter
problem is often called the naturalness or the hierarchy problem. The unnaturally
small size of the Higgs mass suggests that new degrees of freedom should show up at
energies of the order of the TeV scale. Numerous beyond the SM (BSM) models have
been put forward to address one or more of the shortcomings of the SM.

Supersymmetry (SUSY) - a symmetry relating fermions to bosons - is among the
most prominent and attractive concepts for building BSM models since it can address
several of the problems of the SM. The minimal realization of supersymmetry, the
Minimal Supersymmetric extension of the Standard Model (MSSM) is one of the
best-studied extensions of the SM. In this model, the number of degrees of freedom is
doubled by adding a boson to each SM fermionic degree of freedom, and a fermion to
each SM boson. Loop corrections to scalar masses now contain contributions both
from the SM particles and their superpartners, which come with different signs and
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2 INTRODUCTION

cancel each other in the case of exact supersymmetry. The MSSM endowed with
an additional symmetry, called R-parity, provides a natural DM candidate – the
lightest supersymmetric particle (LSP). The MSSM also provides additional sources
of CP-violation, which can give rise to the correct amount of the baryon-antibaryon
asymmetry of the Universe.

To realize SUSY not only the doubling of the particle content of the SM is required.
In addition, the SM Higgs sector has to be extended by adding a second Higgs
doublet. This results in five physical degrees of freedom: at lowest order, these
are two CP-even, one CP-odd, and two charged Higgs bosons. The tree-level Higgs
potential is determined only by two parameters: the mass of the CP-odd Higgs
boson mA and the ratio of the vacuum expectation values of the two Higgs doublets,
tan β = v2/v1. The tree-level mass of the lightest Higgs boson, which typically plays
the role of the SM-like Higgs boson, is bounded from above by the mass of the
Z-boson. However, it can acquire sizeable radiative corrections and can reach the
measured value of Mh ∼ 125 GeV. Consequently, the physical mass of the lightest
Higgs boson is correlated with other parameters of the theory and can be used as a
powerful constraint on the MSSM parameter space.

The Higgs boson mass has been measured with a sub-percent precision [3–5],
and according to the current projections, it might be possible to further reduce the
uncertainty down to as low as 10-20 MeV at the high luminosity (HL) phase of the
LHC [6]. In order to exploit precision for constraining the parameter space of the
MSSM, one needs very precise theoretical prediction for the mass of the SM-like
Higgs boson. This can be achieved by computing quantum corrections to the Higgs
boson mass that incorporate numerically sizeable contributions. The evaluation
of these quantum corrections can be performed in different frameworks. In the
most direct approach, quantum corrections to the Higgs self-energy are calculated
diagrammatically in the full theory (for recent works see [7–12]). This approach has
the advantage of capturing all corrections at a specific order in perturbation theory.

In light of the absence of any direct evidence for supersymmetric particles at the
LHC, the ATLAS and CMS experiments have pushed the lower bounds on the masses
of some of them, mainly scalar top quarks and gluinos, into the TeV range. If the
scale of the SUSY particles is much larger than the electroweak scale, large logarithms
emerge in the fixed-order corrections spoiling the convergence of the perturbative
expansion. In such situations, effective field theory (EFT) techniques allow the
resummation of these large logarithmic corrections (for recent works see [13–20]).
Without including higher-dimensional operators into the low-energy EFT, terms
suppressed by the SUSY scale are, however, missed in this approach. Therefore, the
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EFT approach can lose its accuracy if one or more SUSY particles have masses that
are comparable to the electroweak scale.

To obtain a precise prediction for the SM-like Higgs boson mass for low, inter-
mediary as well as high SUSY scales, both approaches – the fixed-order and the
EFT approach – can be combined. Such a hybrid approach has been implemented
into the publicly available code FeynHiggs [16, 20–24] (similar approaches have been
considered in [25–28]).

In this thesis, we will consider various improvements to the incorporated EFT
calculation as well as its combination with the implemented fixed-order calculation.
Among those considered are the resummation of large logarithms proportional to the
bottom Yukawa coupling (including two-loop ∆b resummation [29–31]), the extension
of the EFT calculation to fully take into account complex input parameters as well as
the inclusion of partial N3LL resummation.

In addition, we discuss the prediction for the SM-like Higgs mass for scenarios in
which the gluino is much heavier than the stops. Currently, appropriate EFT methods
for the calculation of the mass of the SM-like Higgs boson have been developed for
different patterns of possible SUSY spectra, including split-SUSY type scenarios where
the mass of the gluino is much lighter than the masses of the squarks [32,33]. However,
no proper EFT treatment of the case where the gluino is significantly heavier than
the squarks is available up till now. It has been known for a while that the two-loop
QCD corrections to the Higgs mass computed in the DR scheme contain contributions
that are enhanced by powers of the gluino mass |M3| [34]. Since the EFT result is
parametrized in the DR scheme, large theoretical uncertainties in the Higgs-mass
prediction, obtained in the EFT approach, occur for values of |M3| & 2MSUSY [35].
This can be a serious drawback for realistic analyses of SUSY phenomenology since
the LHC searches have pushed the experimental bounds on the gluino mass to the
region above ∼ 2 TeV, while the superpartners of the top quark are still allowed to
have masses around the TeV scale [36–44]. We show how the contributions enhanced
by powers of |M3| can be absorbed by the choice of a suitable renormalization scheme
for the EFT calculation, called the MDR scheme. This leads to a drastic reduction of
the theoretical uncertainty.

Thesis outline

This thesis is organized as follows. In Chapter 1, we give a short overview of the
Standard Model of particle physics focusing on the electroweak symmetry breaking
by the Higgs mechanism, and we outline the shortcomings of the Standard Model.
Chapter 2 introduces the concept of supersymmetry and explains how the most



4 INTRODUCTION

general N = 1 supersymmetric Lagrangian can be built. After that, we describe the
different sectors of the MSSM at the tree-level. In Chapter 3, we briefly review
methods for higher-order calculations and describe the renormalization of the relevant
MSSM sectors. Chapter 4 describes different methods for the computation of higher-
order corrections to the SM-like Higgs mass: the fixed-order approach, the effective
field theory approach and the hybrid approach. We review each method in detail
and its current status. In Chapter 5, we explain how the NNLL resummation of
logarithms proportional to the bottom Yukawa coupling is incorporated into the
hybrid framework used in the publicly available code FeynHiggs. We also discuss
the derivation of the leading two-loop QCD and the mixed Yukawa-QCD threshold
corrections to the bottom Yukawa coupling. The extension of the EFT calculation
to the case of complex input parameters is discussed in Chapter 6. We explain
the implementation of partial N3LL resummation in Chapter 7. In Chapter 8, we
discuss how corrections that are enhanced by powers of the gluino mass arise and how
they can be resummed by a suitable choice of the renormalization scheme. Finally,
the conclusions are given in Chapter 9. Supplementary material is given in App. A –
App. D.



Chapter 1

The Standard Model of Particle
Physics

In this Chapter, we provide a brief review of the Standard Model of particle physics.
After describing the gauge and the Yukawa sectors in Sections 1.1–1.3 we turn to the
discussion of the shortcomings of the Standard Model in Sec. 1.5.

1.1 Gauge symmetries

The Standard Model (SM) of particle physics is the minimal renormalizable quantum
field theory describing almost all experimental data from collider experiments. It is a
gauge theory with the group GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y . The group can be
split into two pieces. The color group SU(3)C describes strong interactions with the
coupling constant g3. The corresponding gauge fields are gluons Ga

µ, (a = 1, . . . , 8),
and they transform in the adjoint representation of the group. SU(2)L ⊗ U(1)Y
describes electroweak interactions. Here SU(2)L is a weak isospin group with three
gauge bosons denoted as W a

µ , (a = 1, 2, 3), and the gauge coupling g. The remaining
U(1)Y group is called the hypercharge group. The corresponding gauge boson is Bµ

and the gauge coupling is g′.

Demanding invariance of the SM Lagrangian under the gauge transformations
implies that we need to replace the derivatives ∂µ in the kinetic terms by the covariant
derivatives Dµ in the following way,

∂µ → Dµ = ∂µ − ig3
λa
2 G

a
µ + ig

σa

2 W
a
µ − ig′

Y

2 Bµ, (1.1.1)

5



6 CHAPTER 1. THE STANDARD MODEL OF PARTICLE PHYSICS

where λa are Gell-Mann matrices σa are Pauli matrices and Y is a hypercharge. Using
this notation we can write down the gauge-invariant kinetic term for a fermion field ψ,

Lfermion
kin = iψ̄ /Dψ, (1.1.2)

with ψ̄ ≡ ψ†γ0, /D ≡ γµDµ, and γµ are the Dirac matrices. The kinetic term for the
gauge fields has the following form

Lgauge = −1
4F

a
µνF

aµν = −1
4G

a
µνG

µνa − 1
4W

a
µνW

µνa − 1
4BµνB

µν , (1.1.3)

where the gauge-invariant quantities Ga
µν , W a

µν and Bµν are the field strength tensors

Ga
µν = ∂µG

a
ν − ∂νGa

µ + g3f
abcGb

µG
c
ν , (1.1.4)

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν , (1.1.5)

Bµν = ∂µBν − ∂νBµ, (1.1.6)

and fabc and εabc are the structure constants of SU(3) and SU(2), respectively, (i.e.
[σa, σb] = 2iεabcσc and [λa, λb] = 2ifabcλc). W - and B-bosons mix after electroweak
symmetry breaking into the W±-, and Z-bosons as well as the photon. This issue
will be considered in more detailed in the next Section.

1.2 Electroweak symmetry breaking

It is a well-established experimental fact that the weak interaction is a short-range
force, so that its mediators have to be massive particles. A simple realization of a
theory of massive vector bosons with a mass term 1

LB = −1
4(∂µBν − ∂νBµ)2 + M2

B

2 BµB
µ (1.2.1)

leads to an unphysical behaviour of the vector bosons at large momenta which spoils
the renormalizability and the unitarity of the theory. Moreover, it is known that the
weak interaction does not preserve parity. More precisely, only left-handed fermions
transform according to the SU(2)L gauge group.2 This forbids the existence of a
fermion mass term. Indeed, since for some fermionic field ψ its left-handed and
right-handed part transform differently, the term

−MF ψ̄ψ = −MF (ψ̄LψR + ψ̄RψL) (1.2.2)

1For the illustration, we consider the case of an Abelian vector boson theory. The same arguments apply for the
non-Abelian case as well.

2It is for this reason we use the index L for the SU(2)L subgroup of GSM.
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would clearly violate gauge invariance. However, most of the SM particles (except for
gluons, photons and neutrinos) are massive.

These problems can be solved by the Brout–Englert–Higgs (BEH) mechanism
[45–48] via introducing an SU(2)L scalar doublet Φ with hypercharge Y = 1 which
triggers spontaneous breaking of SU(2)L ⊗ U(1)Y . This complex field, called Higgs
field, can be written as follows

Φ(x) =
φ+(x)
φ0(x)

 . (1.2.3)

The notations in this formula are chosen according to the Gell-Mann–Nishijima
formula

Q = I3 + Y

2 , (1.2.4)

where Q is the electric charge, I3 is the third component of the isospin vector, I3 = σ3

2 ,
and Y is the hypercharge. Indeed,

Q Φ(x) =
φ+(x)

0

 , (1.2.5)

so φ+(x) has electric charge +1 and φ0(x) is electrically neutral. The most general
renormalizable gauge-invariant Lagrangian for the field Φ reads

LH = DµΦ†DµΦ− V (Φ), (1.2.6)

where the scalar potential of the field has the form

V (Φ) = −µ2Φ†Φ + λ

2 (Φ†Φ)2. (1.2.7)

In this expression the dimensionless coupling constant λ is called Higgs quartic
coupling, and the parameter µ2 is the Higgs mass parameter. The sign of the quartic
coupling, λ > 0, is fixed by requiring that the potential is bounded from below. Indeed,
if lambda was less than zero, then for arbitrarily large values of Φ†Φ the potential
V (Φ) would take large negative values, so it would not have a global minimum. The
sign of the µ2 parameter determines the shape of the potential. For µ2 < 0 it has a
global minimum at Φ = 0, and electroweak gauge symmetry is not broken. For µ2 > 0
the global minimum of the potential is at Φ†Φ = v2, where v is called the vacuum
expectation value (vev) of the Higgs field. The vacuum expectation value of Φ can be
written as

〈Φ〉 = eiU(x)

0
v

 . (1.2.8)



8 CHAPTER 1. THE STANDARD MODEL OF PARTICLE PHYSICS

The phase factor eiU(x) can be rotated away by choosing a unitary gauge. Inserting
Eq. (1.2.8) into Eq. (1.2.7) and demanding that 〈Φ〉 is a global minimum of the
potential, we obtain v =

√
µ2

λ
. Now, the complex scalar field can be expanded around

the vacuum expectation value,

Φ(x) =
 φ+(x)
v + 1√

2 (h(x) + iχ(x))

 , (1.2.9)

where the electrically charged field φ+(x) (and its charge conjugate φ−(x)) together
with the electrically neutral χ(x) are would-be Goldstone bosons. They are unphysical
degrees of freedom and are not present in the unitary gauge. The fourth one, h(x), is
a physical Higgs field whose potential reads

VHiggs(h) = m2
h

2 h2 + m2
h

2
√

2v
h3 + m2

h

16v2h
4, (1.2.10)

where
m2
h = 2µ2 = 2λv2 (1.2.11)

is the Higgs boson mass. Being a free parameter in the Standard Model, it together
with the vacuum expectation value v completely fixes the tree-level potential of the
theory.

The Higgs field vacuum expectation value also gives masses to the gauge bosons.
To show this, let us act with the covariant derivative (1.1.1) on (1.2.8) assuming the
unitary gauge (i.e. eiU(x) = 1),

DµΦ =
 ∂µφ

+

1√
2(∂µh+ i∂µχ)

+ v

2

 g(iW 1
µ +W 2

µ)
−i(g′Bµ + gW 3

µ)

 . (1.2.12)

The Higgs field kinetic term then reads

(DµΦ)†(DµΦ) =
∣∣∣∂µφ+

∣∣∣2 + (∂µh)2

2 + (∂µχ)2

2 + g2v2

4
∣∣∣W 1

µ + iW 2
µ

∣∣∣2
+ v2

4
(
gW 3

µ + g′Bµ

)2
+ . . . ,

(1.2.13)

where the dots represent interactions between scalar and gauge fields. Redefining the
fields in the following way

W±
µ =

W 1
µ ∓ iW 2

µ√
2

, Zµ =
gW 3

µ + g′Bµ√
g2 + g′2

, Aµ =
gW 3

µ − g′Bµ√
g2 + g′2

(1.2.14)
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we can diagonalize the vector boson mass matrices and rewrite the respective mass
terms from Eq. (1.2.13) as

(DµΦ)†(Dµ)Φ = M2
WW

+
µ W

µ,− + M2
Z

2 ZµZ
µ + . . . , (1.2.15)

with
M2

W = g2v2

2 , M2
Z = (g2 + g′2)v2

2 . (1.2.16)

Due to the electroweak symmetry breaking (EWSB) the Goldstone bosons φ±(x) and
χ(x) become the longitudinal components of the W± and Z gauge bosons. Finally,
Aµ from Eq. (1.2.14) does not have a mass term. It describes a photon field which
corresponds to the unbroken U(1)em group. The redefinition performed in Eq. (1.2.14),
(W 3

µ , Bµ)→ (Aµ, Zµ), can be seen as a transformation
Zµ
Aµ

 =
 cw sw

−sw cw

W 3
µ

Bµ

 , (1.2.17)

where the mixing angle θW (also called weak mixing angle) is defined as

sw ≡ sin θW = g′√
g2 + g′2

, cw ≡ cos θW = g√
g2 + g′2

= MW

MZ

. (1.2.18)

The weak mixing angle θW also relates the electroweak couplings g and g′ to the
electic charge e of the electron,

e = g′ cos θW = g sin θW = gg′√
g2 + g′2

. (1.2.19)

Finally, the Higgs vacuum expectation value v can be related to Fermi’s constant GF

which is measured with very high precision in the muon decay, µ− → e−νeν̄µ [49],

v =
(
2
√

2GF

)−1/2
' 174 GeV. (1.2.20)

Throughout the thesis, we will often use

α = e2

4π , αs = g2
3

4π (1.2.21)

instead of g3 and e.

1.3 Fermion sector of the SM

The fermion sector of the Standard Model consists of three generations. Each of
them includes two leptons and two quarks (up-type and down-type). Leptons and
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neutrinos are not charged under SU(3)C , while the quarks transform according to
the fundamental representation of this group. As we mentioned in Sec.1.2, explicit
mass terms for fermions are forbidden by gauge symmetry since left- and right-
handed fermions transform differently under the gauge transformations. Similar to
the problem of vector boson masses discussed in the previous Section, this problem
is also solved by the Higgs mechanism. To realize this, we need to add terms in the
Lagrangian LSM which include fermion-Higgs field interactions.

From experimental studies of weak decays, we know that only left-handed fermions
couple to the SU(2)L gauge bosons. Accordingly, one can construct an SU(2)L doublet
consisting of one left-handed charged lepton and one neutrino

LL =
νL
lL

 . (1.3.1)

From the Gell-Mann–Nishijima relation (Eq. (1.2.4)), the hypercharge of this doublet
is determined to be equal to YL = −1. Right-handed leptons are singlets with respect
to SU(2)L, so from the same relation it follows that their hypercharge is equal to
YeR = −2. Analogously, left-handed quarks form a doublet

QL =
uL
dL

 . (1.3.2)

Quarks have fractional electric charges: Q(uL) = 2
3 and Q(dL) = −1

3 . The correspond-
ing hypercharge is YQL = 1

3 . Finally, right-handed quarks transform trivially under
SU(2)L and have hypercharges Y (uR) = 4

3 and Y (dR) = −2
3 . Keeping in mind the

quantum numbers of the fermions and the Higgs field, we can write down the most
general renormalizable terms involving fermion-Higgs interactions. These are:

LYuk ⊃ −QLYdΦdR −QLYu

(
iσ2Φ∗

)
uR − LLYlΦeR + h.c. . (1.3.3)

In the broken phase, using the unitary gauge, one gets

LYuk ⊃ −dL,iYd,ijdR,j (v +H)− uL,iYu,ijuR,j(v +H)− lL,iYl,ijlR,j(v +H) + h.c.,
(1.3.4)

where Yd,u,l are arbitrary non-diagonal 3×3 complex matrices. To obtain the physical
fields, we have to go to the mass eigenstate basis. This can be achieved by performing
the following field transformations

uL → V u
L uL, dL → V d

LdL, lL → V l
LlL, (1.3.5)

uR → V u
RuR, dR → V d

RdR, lR → V l
RlR .
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The six rotation matrices V u,d,l
L,R can be chosen in such a way that they diagonalize

the matrices Yd,u,l,

V d
L (vYd)V d,†

R = Md = diag (md,ms,mb) ,

V u
L (vYu)V u,†

R = Mu = diag (mu,mc,mt) , (1.3.6)

V l
L(vYl)V l,†

R = Ml = diag (me,mµ,mτ ) .

In this basis Eq. (1.3.4) takes the form

LYuk ⊃ −
∑
f

mfff −
∑
f

yfffH, (1.3.7)

where the summation runs over all charged leptons and quarks and we have introduced
a Yukawa coupling for each fermion, yf = mf

v
. The matrices V l

L,R, which rotate the
lepton fields, are unphysical. Unless Dirac right-handed neutrinos are included in the
model, they cancel in all vertices. This is not the case for the quarks. Indeed, the
interaction between the left-handed quarks and the W -bosons originates from the
kinetic term for QL,

LYuk ⊃ iQL,i /DQL,i ⊃ −
g√
2
QL,i

 0 γµW+
µ

γµW−
µ 0

QL,i = − g√
2
uL,iγ

µdL,iW
+
µ + h.c. .

(1.3.8)
After the transformation defined in Eq. (1.3.5) it takes the form

− g√
2
uL,jV

u,†
L,jiγ

µV d
L,ikdL,kW

+
µ + h.c. = − g√

2
uL,j

(
V u,†
L V d

L

)
jk
W+
µ dL,k + h.c. . (1.3.9)

The product of the two unitary matrices in the brackets, V u,†
L V d

L , is called Cabibbo-
Kobayashi-Maskawa (CKM) matrix [50, 51]. This matrix has four free parameters:
three mixing angles and a phase. This phase is the only source of CP-violation in the
Standard Model [52].3

The SM Lagrangian

The full Lagrangian of the Standard Model has the form,

LSM = Lgauge + LYuk + LH + Lfix + LFP. (1.3.10)

3In the version of the SM, that we consider in this thesis, only left-handed massless neutrinos are present. However,
the phenomenon of neutrino oscillations points at small but non-zero neutrino masses [53–58]. The SM can be extended
in a minimal way to accommodate massive neutrinos by introducing the right-handed neutrino fields. The neutrino
mixing matrix, which is analogous to the one in the quark sector, is called Pontecorvo–Maki–Nakagawa–Sakata
(PMNS) matrix.
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The first three terms in this sum, Lgauge, LYuk and LH , were described in Sec. 1.1, 1.2
and 1.3, respectively. The other two emerge after the quantization of the theory.
So far, we have been working in the unitary gauge since it has the advantage of
setting the Goldstone bosons to zero and thus eliminating them completely from the
Lagrangian. However, it complicates the computation of radiative corrections in the
Standard Model. For this reasion, in practice often another of gauges. In the class of
Rξ-gauges, the gauge-fixing term can be written in the following way,

Lfix = − 1
2ξA

(∂µAµ)2 − 1
2ξZ

(∂µZµ −MZξ
′
Zχ)2−

− 1
ξW

(
∂µW+

µ − iMW ξ
′
Wφ

+
) (
∂µW−

µ + iMW ξ
′
Wφ
−
) (1.3.11)

with ξA, ξZ , ξ′Z , ξW , ξ′W being gauge-fixing parameters. One can simplify Eq. (1.3.11)
by setting ξ′W = ξW and ξ′Z = ξZ (’t-Hooft gauge) which cancels the gauge boson-
Goldstone mixing terms emerging from |DµΦ|2. Sometimes, it is also convenient to
set ξA = ξW = ξZ = 1 (’t-Hooft-Feynman gauge). Finally, the last term of Eq. (1.3.10)
contains Faddeev-Popov ghosts fields [59]. These are unphysical degrees of freedom
which appear only as virtual particles. The gauge-fixing terms (Eq. (1.3.11)) break the
invariance of LSM under local gauge transformations. However, there is a generalization
of the latter, called BRST transformations [60–63],

δBRST (Lfix + LFP) = 0 (1.3.12)

and therefore δBRSTLSM = 0. Gauge and BRST invariance make the SM renormaliz-
able [64] which means that it can be treated consistenly as a quantum field theory
with all the quantum effects being evaluated within its framework.

1.4 Global symmetries of the Standard Model

Besides the gauge symmetries, the SM Lagrangian, as defined in Eq. (1.3.10), is
endowed with several global symmetries. First of all, it is invariant under simultaneous
transformations of all quark fields

q → ei
β
3 q, q → e−i

β
3 q, (1.4.1)

where β is an abitrary real number. This is the baryon number symmetry U(1)B. Due
to this symmetry, the proton is stable in the SM. By definition, each quark carries
baryon number +1

3 , and the baryon number of each antiquark is −1
3 . Then the baryon
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number of a state, containing Nq quarks and Nq̄ antiquarks, can be defined as

B = 1
3 (Nq −Nq̄) . (1.4.2)

For instance, the baryon number of proton is +1, the baryon number of a meson is 0.
Secondly, in the SM with massless neutrinos the lepton numbers of each individual
generation are conserved. This symmetry corresponds to the following phase rotations
of lepton and neutrino fields,

U(1)Le : (νe, e)→ eiβe (νe, e) , (νe, e)→ e−iβe (νe, e) ,

U(1)Lµ : (νµ, µ)→ eiβµ (νµ, µ) , (νµ, µ)→ e−iβµ (νµ, µ) , (1.4.3)

U(1)Lτ : (ντ , τ)→ eiβτ (ντ , τ) , (ντ , τ)→ e−iβτ (ντ , τ) .

The observed neutrino oscillations [53–58] indicate a violation of these numbers. In
the extension of the SM which includes three Dirac right-handed neutrinos, these
three symmetries are no longer exact. However, the special case of the transformations
(1.4.3) with βe = βµ = βτ leaves the Lagrangian of the SM invariant if the right-
handed neutrinos are added to it. Both symmetries U(1)B and U(1)L are violated by
sphaleron processes [65] but the difference B − L is still conserved.

1.5 Problems of the Standard Model

So far, the Standard Model was remarkably successful in explaining most of the
experimental results in high-energy physics. It successfully predicted the outcome of
many high-precision experiments. Many of them are so precise that the calculation
of sophisticated higher-order corrections for obtaining a precise theory prediction is
needed. As an example, the mass of the W -boson in the SM only fits together with
the measured Higgs mass after the inclusion of the complete two-loop and leading
higher-order corrections to MW .4

Despite its great success, there are reasons to believe that the Standard Model is
not the ultimate theory of Nature. In particular, there is no complete description of
gravity within the framework of the SM. One can use the semiclassical description
based on the expansion of the Einstein-Hilbert Lagrangian

LEH = M2
Pl
√
−gR, (1.5.1)

4The inclusion of only pure one-loop corrections would imply that the favored region for the Higgs-boson mass of
the SM would be much higher than 125 GeV [66–69]. More examples of precision tests of the SM can be found in [70].
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around the Minkowski metric gµν = ηµν + 1
MPl

hµν , where MPl is the Planck mass,
MPl = 1019 GeV. This description works well for low energies, but it is clear that it
has to break down at the latest at scales close to MPl.

Quantum gravity is not the only motivation for physics beyond the SM. There are
many others which we will list below.

Dark matter

Starting from the 1930s, there has been plenty of evidence for the existence of Dark
Matter (DM) – a non-luminous substance, which amounts to approximately 25% of
the total energy density of the Universe. Historically, the first evidence was obtained
by Fritz Zwicky [71], who applied the virial theorem to the Coma Cluster and was
able to prove the existence of the unseen mass there. Later, in the 1970s, the velocity
distributions in spiral galaxies were observed by Vera Rubin, Kent Ford and Ken
Freeman [72,73]. It turned out that these distributions (also known as rotation curves)
were falling off for large distances smoother than expected. Another convincing
evidence for the existence of DM is the observation of a cluster of galaxies, called
Bullet cluster (1E0657-558), passing through another cluster [74]. The observations in
the X-ray range revealed that the hot gas, which forms most of the baryonic matter
in both clusters decelerates during this collision. On the other hand it was also
possible to chart the gravitational potential of the clusters after the collision by using
gravitational lensing. This revealed that most of the unseen mass in both clusters
passed through without interaction. The existence of DM is also supported by the
precise measurement of the anisotropies of the cosmic microwave background (CMB)
radiation [75]. However, not much is known about the nature of Dark Matter, except
for the fact that it interacts gravitationally. One of the most popular solutions to
this puzzle is the existence of new particles that interact at most weakly with the
particles we know.

The origin of neutrino masses

In the Standard Model, only left-handed and massless neutrinos were present. However,
as already said above, there is striking evidence that neutrinos do have a small mass.
In principle, one can add the right-handed neutrinos consistently to the theory in
such a way that they acquire their mass through the interaction with the Higgs field.
However, the upper bounds on the neutrino mass, set by the Troitsk ν-mass [76] and
KATRIN experiments [77], and also by the Planck CMB observation [75], do not
exceed O(1) eV. Thus the natural question arises in this approach: if the neutrino
masses are generated via the same mechanism as for the other particles, why are
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these masses are so small? In principle, there is another way to generate the neutrino
masses via the 5-dimensional Weinberg operator [78],

Lν ⊃
cij
2Λ(L̄ci ·H)(HT · Lj), (1.5.2)

which after the EWSB yields Majorana mass terms for the neutrinos,

Lν ⊃
1
2(mν)ij ν̄ci νj. (1.5.3)

But the presence of the cut-off scale Λ in the expression (1.5.2) signals that some
new physics has to emerge at the scale Λ. For the neutrino masses to be compatible
with the current bounds, this scale has to be Λ ≥ 1015 GeV. The Majorana nature of
neutrinos can reveal itself in the neutrinoless double-beta decay which is extensively
being searched for [79].

Hierarchy problem

The shortcomings we mentioned above hint that the Standard Model of particle
physics has to be extended in some way. And even if there is no new physics below
the Planck scale, the SM breaks down at the latest at MPl. Therefore, in any case
the Standard Model is most likely a low energy limit of some more complete theory
and the Higgs boson mass acquires radiative corrections after integrating out heavy
particles from this ultraviolet (UV) theory. If no additional symmetry is imposed,
these corrections would behave like m2

h ∼ Λ2
NP (see also discussion in Sec. 2.2), where

ΛNP is the scale of new physics. If ΛNP is of the order of the Grand Unified Theory
(GUT) scale ΛNP ∼ 1016GeV or the Planck scale, then we expect the Higgs boson
mass to be approximately of the same order. So, the question is, why the Higgs boson
mass is so small? This question might be posed a bit differently. Namely, why is the
weak scale so smaller than the Planck scale and what stabilizes this huge hierarchy?
This is the essence of the Hierarchy problem (also called Naturalness problem) [80–82].

Unification of gauge couplings

The renormalization group analysis of the scale dependence of the three gauge
couplings g, g′, g3 shows that they almost meet at the scale around 1016 GeV in the
SM. This is not a problem of the model itself, but this observation suggests that at
these energies the SM goes over into a Grand Unified Theory (GUT) – a theory with
an extended gauge group [83,84] (popular choices for such groups are SU(5), SO(10)
and E6). Many of these models include additional heavy fermionic degrees of freedom,
which on the one hand tackle the neutrino mass problem, but, on the other hand, lead
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to large corrections to the Higgs potential as discussed in the context of the hierarchy
problem above.

Baryon asymmetry of the Universe

The Standard Model cannot explain, why there is much more matter than antimatter
in the observable Universe [75, 85]. To generate such an asymmetry, three conditions
(called Sakharov conditions) [86] must be met. One of them is the existence of CP-
violation. While CP-violation is present in the SM in the quark sector, more sources
of it are needed to account for the observed asymmetry.

Numerous theories have been put forward to tackle the problems mentioned above.
In particular, many ideas were proposed to solve the Hierarchy problem. In this thesis
we focus on the minimal supersymmetric extension of the Standard Model. This
model is endowed with a new symmetry which relates bosonic and fermionic degrees
of freedom – supersymmetry (SUSY). In the next Chapter we will introduce the
concept of SUSY and describe the minimal supersymmetric extension of the Standard
Model.



Chapter 2

The Minimal Supersymmetric
Standard Model

In this chapter we provide a brief review of the Minimal Supersymmetric Standard
Model. Sections 2.1 – 2.4 are largely based on the Refs. [87–89]. In Section 2.5 we
will mostly follow the notations and conventions of [90,91].

2.1 Notations and conventions

Let us first introduce the notations and conventions which we will extensively use
throughout the chapter. First, for the Minkowski metric the “mostly minus” convention
is used

gµν = gµν = diag (+1,−1,−1,−1) . (2.1.1)

Supersymmetric theories are more conveniently written in terms of two-component
spinors. To introduce them, we first recap some facts from the representation theory
of the Lorentz algebra. It is known that the Lorentz algebra is isomorphic to a direct
sum of two SU(2) algebras

SO(1, 3) ' SU(2)L ⊕ SU(2)R. (2.1.2)

The objects which transform only under SU(2)L and lie in the trivial representation of
SU(2)R are called left-handed Weyl spinors χα. In the same manner, the right-handed
Weyl spinor ξ̄α̇, which transforms only under SU(2)R, can be constructed. Left- and
right-handed Weyl spinors correspond to two different irreducible representations of
the Lorentz group, denoted as

(
1
2 , 0

)
and

(
0, 1

2

)
, respectively. The Hermitian conjugate

of a left-handed Weyl spinor is a right-handed Weyl spinor and vice versa. The spinor

17
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indices can be raised and lowered by making use of the totally antisymmetric tensor

εαβ = εα̇β̇ =
0 −1

1 0

 , εαβ = εα̇β̇ =
 0 1
−1 0

 . (2.1.3)

By definition,
χα = εαβχβ, ξ̄α̇ = εα̇β̇ ξ̄β̇. (2.1.4)

The four-component Dirac spinor ΨD in this notation can be written in the following
way

ΨD =
 ξα(
χ†
)α̇
 =

ΨD,L

ΨD,R

 . (2.1.5)

Next, to define several commutation relations in the supersymmetry algebra, we will
need Pauli matrices with one Lorentz and two spinor indices 5

σµ
αβ̇

=
(
12×2, σ

1, σ2, σ3
)
, σ̄µ α̇β =

(
12×2,−σ1,−σ2,−σ3

)
,

with σ1 =
0 1

1 0

 , σ2 =
0 −i
i 0

 , σ3 =
1 0

0 −1

 . (2.1.6)

We will also need sigma matrices with two Lorentz indices. These are 6

(σµν)α
β = i

4 (σµσ̄ν − σν σ̄µ)α
β, (2.1.7)

(σ̄µν)α̇ β̇ = i

4 (σ̄µσν − σ̄νσµ)α̇ β̇. (2.1.8)

Weyl spinors are regarded as Grassmann variables (i.e., ψ1ξ2 = −ξ2ψ1). Using this fact
and the definitions for the spinors with upper indices (Eq. (2.1.4)), we can construct
SU(2)L,R-invariant bilinear products7,

χξ = χαξα ≡ ξχ =
(
χ̄ξ̄
)†
, (2.1.9)

χ̄σ̄µξ = χ̄α̇σ̄
µ α̇βξβ =

(
ξ̄σ̄µχ

)†
, (2.1.10)

χσµξ̄ = χασµ
αβ̇
ξ̄β̇ = (ξσµχ̄)† . (2.1.11)

Finally, we will need to integrate over Grassmann variables and take derivatives with
respect to them. The latter are defined as follows,

∂αθ
β = δβα, ∂αθ̄

β̇ = 0, ∂α̇θ̄
β̇ = δβ̇α̇, ∂α̇θ

β = 0, (2.1.12)

5Here, we follow the conventions of [88, 92]. The σµ used in [89] have a different sign with respect to ours for
µ = 1, 2, 3.

6In [89] the factor 1
4 instead of i4 is used.

7Note, that, due to the grassmannian nature of Weyl spinors the quantity θ2 = θ · θ is non-zero: θ2 = −2θ1θ2
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while for the integration we introduce the following integration measures,

d2θ = −1
4dθ

αdθβ εαβ, d2θ̄ = −1
4dθ̄α̇dθ̄β̇ ε

α̇β̇. (2.1.13)

This definition, in particular, implies that integration over a Grasmann variable θ
acts as a projector on the corresponding integrand: it returns the terms proportional
to θ2. For example, if F = a+ ψθ + cθ2, then

ˆ
d2θ F = c. (2.1.14)

The definitions (2.1.14) and (2.1.13) allow for integration by parts. Indeed, since
∂αF = ψα + 2cθα, the following integral vanishes:

ˆ
d2θ ∂αF = 0. (2.1.15)

2.2 Supersymmetry algebra

Supersymmetry (SUSY) – a symmetry between fermions and bosons – was initially
proposed more than 40 years ago in the papers [93–95]. Before that, the Coleman-
Mandula theorem [96] was formulated, which states that if G is a symmetry group
of the S-matrix and contains the Poincaré group P as a subgroup, then it can be
represented as a direct product of the latter and an internal symmetry group. To put it
differently, the Poincaré algebra can be combined with any other continuous symmetry
of the S-matrix only in a trivial way. A bypass around this theorem was found by
Haag, Łopuszański and Sohnius [97], who showed that the Poincaré algebra can be
nontrivially extended by introducing generators which belong to representations

(
1
2 , 0

)
and

(
0, 1

2

)
of the Lorentz group. In addition, this extension requires the introduction

of anticommutators aside from the commutators in the algebras P and G. This
extension of the symmetry group of the S-matrix turns out to be the only possible
one in relativistic quantum field theories in four space-time dimensions.

Generators of the supersymmetric algebra, which we will denote as QI
α and

(
Q
I
α̇

)
,

(I = 1 . . . N), transform a fermionic state into a bosonic one and vice versa. Schemat-
ically,

Q
I
α̇ |boson〉 = |fermion〉 and QI

α |fermion〉 = |boson〉 . (2.2.1)

They commute with the momentum operator Pµ and internal symmetries,
[
QI
α, Pµ

]
= 0,

[
QI
α, G

]
= 0,

[
Q
I

α̇, Pµ
]

= 0,
[
Q
I

α̇, G
]

= 0, (2.2.2)
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but do not commute with the angular momentum operator,
[
Mµν , Q

I
α

]
= −(σµν)αβQI

β,
[
Mµν , Q

I,α̇
]

= −(σ̄µν)α̇β̇Q
I,β̇
. (2.2.3)

The commutation relations (Eqs. (2.2.2)–(2.2.3)) imply that in the supersymmetric
theories one deals with multiplets of particles (called supermultiplets), each consisting
of particles with the same mass and quantum numbers with respect to G but different
spin. Fermions and bosons within multiplets are superpartners to each other. The
total number of fermionic and bosonic degrees of freedom in one multiplet is equal. For
completeness, we also present the anticommutation relations for the SUSY generators,

{
QI
α, Q

J

β̇

}
= 2σµ

αβ̇
Pµδ

IJ ,
{
QI
α, Q

J
β

}
= εαβZ

IJ ,
{
Q
I

α̇, Q
J

β̇

}
= εα̇β̇ (ZIJ)∗

with ZJI = −ZIJ , (2.2.4)

where ZIJ are called central charges.

Already at this point, it is possible to understand how SUSY helps to solve the Hierar-
chy problem (see Sec. 1.5) without going into details of the concrete supersymmetric
model. Recall, that the problem arises when the Standard Model is regarded as a low
energy effective theory and hence has a cut-off ΛNP ≤ MPl. Let us assume that in
the UV-completion of the Standard Model the Higgs boson couples with a coupling
constant y to a heavy scalar field S, which has mass M ∼ ΛNP,

LUV ⊃ −
M2S2

2 − yH†HS2. (2.2.5)

Then after integrating out these heavy particles, the correction to the Higgs boson
mass reads 8

∆m2
h ' C

y2

16π2M
2 + · · · , (2.2.6)

where ellipsis denotes terms not enhanced by M2, and C is a numerical factor
which depends on the details of the model and is expected to be C ∼ O(1). In
supersymmetric theories, there is a fermionic superpartner of S (let us call it F ) with
exactly the same mass and the same coupling constant to the Higgs boson. The
contribution of F to ∆m2

h will be exactly equal to the contribution of S but will have
an opposite sign. So, in case of exact supersymmetry, there will be no correction to
the Higgs mass at all. Due to the non-renormalization theorem, this property holds at
all orders of perturbation theory [98]. However, the non-observation of superpartners

8In the formula (2.2.6) the factor (16π2)−1 comes from the one-loop diagrams. If there is no direct coupling
between the unknown heavy particles and the Standard Model Higgs boson in LUV, then this coupling can in principle
be generated at higher loop orders. In this case, the right-hand side of the formula (2.2.6) has to be multiplied by
additional factors of (16π2)−1.
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of the Standard Model particles indicates that SUSY must be broken at low energies.
We will come back to the discussion of this issue in Section 2.4.2.

In this thesis, we will consider only N = 1 supersymmetric extensions of the
Standard Model, which implies that ZIJ ≡ 0. In order to build such an extension,
all the SM fields have to be put into some SUSY multiplets. A convenient way to
describe these multiplets is the superfield formalism, which is described in the next
section.

2.3 Superfields

Superfields are generalizations of the normal fields used in quantum field theory. More
precisely, a superfield is a function of superspace coordinates: the four coordinates of
the Minkowski space, xµ, and the two Majorana spinors, θα and θ̄α̇. Since the latter
have only two indices each, and since Grassmann variables θα and θ̄β̇ anticommute,
any term involving product of more than two θ’s (or θ̄’s) would vanish. Thus the
most general superfield S(xµ, θα, θ̄α̇) in N = 1 supersymmetry can be written as a
quadratic polynomial in θ and θ̄:

S(xµ, θα, θ̄α̇) = f(x) + ψ(x)θ + ω̄(x)θ̄ +B(x)θ2 + C(x)θ̄2

+ (θ̄σ̄µθ) Aµ(x) + γ(x)θθ̄2 + λ̄(x)θ̄θ2 + 1
2θ

2θ̄2D(x),
(2.3.1)

where f(x), B(x), C(x) and D(x) are scalar fields, ψ(x), γ(x) are left-handed Majo-
rana spinors, ω̄(x), λ̄(x) are right-handed Majorana spinors and Aµ(x) is a vector
field. Global supersymmetric transformations in superspace formalism coincide with
translations in coordinates θ, θ̄:

S(x+ iεσµθ̄ + iε̄σ̄θ, θ + ε, θ̄ + ε̄)− S(x, θ, θ̄) = δε,ε̄S = −i
(
εQ+ ε̄Q

)
S, (2.3.2)

where the generators Qα and Qα̇ have the following representation,

Qα = i∂α −
(
σµθ̄

)
α
∂µ, Qα̇ = −i∂̄α̇ + (θσµ)α̇ ∂µ. (2.3.3)

These generators contain only derivatives: one with respect to θ (θ̄) and one which
acts on the Minkowski coordinates. This implies that the quantity (2.3.2) is a total
derivative and vanishes upon integration over the full superspace. This means in
turn that the full integral of any superfield S(xµ, θα, θ̄α̇) is a supersymmetric invariant
quantity,

δε,ε̄

ˆ
d4x d2θ d2θ̄ S(xµ, θα, θ̄α̇) = 0. (2.3.4)
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This fact can in principle be used to build supersymmetric invariant actions. How-
ever, not any superfield is suitable for the construction of phenomenologically viable
Lagrangians. After all, the end result should describe gauge-invariant renormalizable
interactions of the fields, which have canonically normalized kinetic terms. Further-
more, it is useful to identify the building blocks, from which the Lagrangian with
desired properties can be constructed. Technically speaking, these building blocks are
superfields, which correspond to the irreducible representations of the SUSY algebra.
The superfield S(x, θ, θ̄) defined in Eq. (2.3.1) is too generic to be such a building
block. It can be shown [88,89] that only two types of such superfields supersymmetry
are needed for N = 1 supersymmetry, which also turn out to be sufficient to encompass
all fermionic and bosonic degrees of freedom of the Standard Model and to reproduce
correct interactions between them. These are the (anti-)chiral and vector superfields.

In order to define chiral and anti-chiral superfields we need to introduce the
generalized covariant derivatives,

Dα = ∂α − i(σµθ̄)α∂µ, D̄α̇ = −∂α̇ + i(θσµ)α̇∂µ. (2.3.5)

Then the chiral Φ and anti-chiral Φ̄ superfields are defined through

D̄α̇Φ = 0, DαΦ̄ = 0. (2.3.6)

These conditions are consistent with supersymmetric transformations. This means,
that if Φ is a chiral superfield, then δε,ε̄Φ is a chiral superfield as well, where the
transformation with the infinitesimal parameters ε and ε̄ is defined in Eq. (2.3.2). It
can be shown [88,89] that the following superfield is the solution of the left constraint
in Eq. (2.3.6),

Φ(x, θ, θ̄) = φ(x) +
√

2θψ(x) + i(θ̄σ̄µθ)∂µφ(x) + θ2F (x)

− i√
2
θ2(θ̄σ̄µ∂µψ(x))− 1

4θ
2θ̄2�φ(x).

(2.3.7)

Here, φ is a complex scalar field, ψ is a left-handed Majorana fermion and F is an
unphysical auxiliary field, which is needed to have an equal number of fermionic and
bosonic degrees of freedom off-shell. In turn, the solution of the right constraint is the
Hermitian conjugate of (2.3.7): Φ̄(x, θ, θ̄) = Φ†(x, θ, θ̄). A supersymmetric Lagrangian
for a theory containing chiral fields Φi, (i = 1, . . . ,M) reads

LSUSY =
ˆ
d2θd2θ̄

M∑
i=1

Φ†iΦi +
ˆ
d2θ W ({Φi}) +

ˆ
d2θ̄ W ({Φ†i}). (2.3.8)
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The first term in (2.3.8),
M∑
i=1

Φ†iΦi, is called the Kähler potential. It yields the kinetic

terms for the fields of the theory,

Lkin =
ˆ
d2θd2θ̄

M∑
i=1

Φ†iΦi = ∂µφ†i∂µφi + iψ̄iσ̄
µ∂µψi + F †i Fi. (2.3.9)

The two other terms in Eq. (2.3.8) yield the mass terms for the particles and also
describe interactions between them. Note, that the function W , called superpotential,
is a holomorphic function of {Φi}, i.e. it depends only on the chiral (and not on the
anti-chiral) fields. Other requirements originate from the renormalizability of the
theory. In order for the theory to be renormalizable, the superpotential has to be at
most a cubic funcion of the superfields. For instance, the superpotential for the model
of chiral superfields alone, called Wess-Zumino model, can be written as follows [99],

W = LiΦi + 1
2M

ijΦiΦj + 1
6y

ijkΦiΦjΦk. (2.3.10)

In components the corresponding piece of the Lagrangian reads

Linteraction =
ˆ
d2θ W ({Φi})+h.c. =

{
∂W

∂Φi

Fi −
1
2

∂2W

∂Φi∂Φj

ψiψj

}∣∣∣∣∣
Φ→φ

+h.c., (2.3.11)

where the chiral superfields have to be replaced with there scalar components. From
Eqs. (2.3.9) and (2.3.11) we can derive equations of motion for the auxiliary fields F
and F †, solve them and insert the solutions back in the Lagrangian. This yields the
potential for the scalar fields,

VF ({φ†i , φi}) =
M∑
i

∣∣∣∣∣∂W∂Φi

∣∣∣∣∣
2
∣∣∣∣∣∣
Φ→φ

. (2.3.12)

We will call this scalar potential “F -term” since it was generated by the auxiliary
fields Fi. Next, the second term in Eq. (2.3.11) gives masses to the fermionic degrees
of freedom ψi, with the mass matrix being equal to M ij, as well as the Yukawa
interactions between complex scalar fields φi and fermions with the coupling constants
yijk. The second type of superfields which is needed to build supersymmetric extensions
of the Standard Model is the vector superfield, which describes gauge interactions in
supersymmetric theories. These superfields are defined by the following equation,

V † = V. (2.3.13)
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Applying this condition to the superfield in the most general form, Eq. (2.3.1) results
into the conditions for the component fields,

f ∗ = f, D∗ = D, ψ = ω, B∗ = C, A∗µ = Aµ, γ = λ. (2.3.14)

So, the vector field can be written in the following form

V (xµ, θα, θ̄α̇) = f + ψθ + ψ̄θ̄ +Bθ2 +B∗θ̄2

+ (θ̄σ̄µθ)Aµ + λθθ̄2 + λ̄θ̄θ2 + 1
2θ

2θ̄2D.
(2.3.15)

This expression is suffcient for building Abelian supersymmetric gauge theories. In
order to study models, that are based on the non-Abelian gauge groups, we have to
promote the vector superfield to an element of the corresponding Lie algebra. For a
semi-simple Lie group G we get

V = VaT
a, a = 1, . . . , dim G, (2.3.16)

where T a are group generators and Va are vector superfields. Supersymmetric gauge
theories admit a wider class of symmetries in comparison to their non-supersymmetric
counterparts. To be more specific, they are invariant under non-linear super-gauge
transformations, which for a group G read

e2gV → e2igΛ†e2gV e−2igΛ, (2.3.17)

where Λ is a chiral superfield and g is a gauge coupling associated with the gauge
group. Using this gauge freedom, we can eliminate the fields f, ψ and B from the first
line of Eq. (2.3.15). This particular gauge choice is called Wess-Zumino gauge [100],

V (xµ, θα, θ̄α̇)aWZ = (θ̄σ̄µθ)Aaµ + λaθθ̄2 + λ̄aθ̄θ2 + 1
2θ

2θ̄2Da. (2.3.18)

So, the physical degrees of freedom in the vector supermultiplet are the gauge field Aaµ
and its superpartner called gaugino λa. The field Da is an auxilliary non-propagating
field and it vanishes after applying the equations of motion. The Wess-Zumino gauge is
convenient because it simplifies all calculations. Indeed, since each term in Eq. (2.3.18)
contains at least one power of θ or θ̄, all powers V n with n greater than 3 vanish. For
example, the term eV from Eq. (2.3.17) simply reads

e2gV
∣∣∣
WZ

= 1 + 2gV + 2g2V 2. (2.3.19)
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Using the vector superfields, we can construct super-field strengths,

Wα = −1
4D̄α̇D̄

α̇
(
e−VDαe

V
)
, W α̇ = −1

4D
αDα

(
e−V D̄α̇e

V
)
, (2.3.20)

where D and D̄ are the covariant derivatives defined in (2.3.5). Using them we can
build the renormalizable Lagrangian of a supersymmetric gauge theory,

Lsupergauge =
ˆ
d2θ

(1
4W

a,αWa
α

)
+ h.c.

= −1
4F

aµνF a
µν + iλ̄aσ̄µDµλ

a + 1
2D

aDa.

(2.3.21)

In order to couple the matter and gauge fields together, we have to define how chiral
superfields transform under the gauge group G. If a chiral supermultiplet lies in
the representation R of group G, then we can expect that it transforms under the
supergauge transformations in the following way, 9

Φ→ Φ′ = e2igΛΦ, (2.3.22)

where now the chiral superfield Λ can be written as a sum over generators T aR:
Λ = ΛaT aR. The Kähler potential we considered before in this section, Φ†Φ, is not
invariant under the supergauge transformations (for the sake of brevity we consider
here only one chiral field). Indeed, Φ†Φ→ Φ†e−2igΛ†e2igΛΦ. To compensate for the
factor e−2igΛ†e2igΛ, we have to modify the Kähler potential accordingly,

Φ†Φ→ Φ†e2gV Φ. (2.3.23)

In Wess-Zumino gauge the terms proportional to θ2θ̄2 in the new Kähler potential
read:

Φ†e2gV Φ
∣∣∣
θ2θ̄2

= Dµφ
†Dµφ+ iψ̄σ̄µDµψ+F †F −

√
2g(φ†λψ+ ψ̄λ̄φ)+gφ†Dφ. (2.3.24)

We see that the Kähler potential not only substitutes the ordinary derivatives, ∂µ,
with the covariant ones, Dµ, but also introduces new vertices involving the fermion ψ,
its superpartner φ and the gaugino λ. Collecting all pieces together, we arrive at the
generalization of Eq. (2.3.8). In the case that the chiral superfields are charged under
some gauge group, the Lagrangian is given by

LSUSY =
ˆ
d2θd2θ̄

M∑
i=1

Φ†ie2gV Φi +
[ˆ

d2θ
(1

4W
a,αWa,α +W ({Φi})

)
+ h.c.

]
.

(2.3.25)

9Note, that the product of two chiral superfields is also a chiral superfield. So, this transformation does not change
the properties of the superfield Φ.
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Using the same procedure as we applied to obtain the F -terms (see Eq. (2.3.12)), we
get the piece of the scalar potential which is generated via auxiliary fields D and thus
called “D-term”

VD({φ†i , φi}) = g2

2

dim G∑
a=1

DaDa = g2

2

dim G∑
a=1

(
φ†i T

a
R φi

)2
. (2.3.26)

2.4 Superpotential of the MSSM

The Minimal Supersymmetric Standard Model (MSSM) [101–103] is the minimal
extension of the Standard Model which realizes supersymmetry. In the previous
section, we have seen that a renormalizable supersymmetric Lagrangian contains two
main pieces: the Kähler potential and the superpotential. While the first one is fully
fixed by the particle content of the model, the second one has to be a holomorphic
function of the chiral superfields (see Eq. (2.3.8) in Sec. 2.3). Besides, it can be at
most a cubic polynomial in order to ensure the renormalizability of the model.

Let us start the description of the MSSM with its particle content. To ensure
invariance under the SUSY transformation, we need to promote all the SM fields to
superfields. For the gauge bosons, this is done by introducing a vector superfield
for every SM gauge field. In this way, the superpartners of the gauge bosons are
introduced into the model. These are the gluinos (superpartners of gluons), the winos
(superpartners of W -bosons) and the binos (superpartners of B-bosons).

For the SM fermions, the procedure is a bit more elaborate. Indeed, all the
SM fermions are Dirac particles, which means that they can be decomposed into a
left-handed and a right-handed Weyl spinor according to Eq. (2.1.5). Due to this
representation, the quantum numbers of chiral superfields have to be assigned in
such a way that they would include either the left-handed fermions or the Hermitian
conjugates of the right-handed fermions. For example, in the Standard Model, the
left-handed electron and neutrino are combined into the SU(2) doublet, whereas the
right-handed electron is an SU(2) singlet. So, the latter must be included into a
superfield, denoted as ē 10, which contains e†R and its superpartner ẽ∗R, called selectron.
The hypercharge of the latter is +2, and the electric charge equals +1. The left-handed
neutrino and electron are included into the superfield, denoted as L, which lies in the
fundamental representation of the SU(2)L group, has hypercharge equal to −1 and
contains, apart from the mentioned particles, the scalar particle ν̃L (called sneutrino)
and ẽL. The same procedure applies to the left- and right-handed quarks. The

10The bar here is a part of the name and does not denote Hermitian conjugation. Furthermore, the generation
index, which is not written explicitly, is always implicitly assumed in the formulas.
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Superfield
Component fields

SU(3)C ⊗ SU(2)L ⊗ U(1)Y
spin 0 spin 1/2 spin 1

Chiral superfields

R = −1 R = +1

(s)quarks, i = 1 . . . 3
QL,i (ũL,i d̃L,i) (uL,i dL,i) - ( 3, 2 , 1

3 )
ui ũ∗R,i u†R,i - ( 3, 1, − 4

3 )
di d̃∗R,i d†R,i - ( 3, 1, 2

3 )

(s)leptons, i = 1 . . . 3
Li (ν̃L,i l̃L,i) (νL,i lL,i) - ( 1, 2 , −1)
li l̃∗R,i l†R,i - ( 1, 1, 2)

R = +1 R = −1

Higgs, higgsinos
H1 (H0

1 H−1 ) (H̃0
1 H̃−1 ) - ( 1, 2 , −1)

H2 (H+
2 H0

2 ) (H̃+
2 H̃0

2 ) - ( 1, 2 , +1)
Vector superfields

R = −1 R = +1
gluino, gluon V aG - g̃a Gaµ, a = 1 . . . 8 ( 8, 1 , 0)

winos, W -bosons V aW - W̃ a W i
µ, i = 1 . . . 3 ( 1, 3 , 0)

bino, B-boson VB - B̃ Bµ ( 1, 1 , 0)

Table 2.1: Chiral and vector supermultiplets in the Minimal Supersymmetric Standard
Model.

notations for the superfields and their quantum numbers are summarized in Table 2.1
11

Additional care has to be taken for the symmetry-breaking sector. Being a
scalar particle, it has to be included in a chiral multiplet. However, supersymmetric
extensions of the Standard Model require at least two such fields. There are two
reasons for that. First, in the SM, one Higgs field is enough to provide masses
for both up- and down-type quarks: after EWSB the field Φ gives masses to the
down-type quarks, whereas its conjugate, iσ2Φ∗, gives masses to the up-type quarks.
In supersymmetric theories, the superpotential must be a function only of a chiral
field but not its conjugate, thus at least two Higgs doublets are needed. Another
reason why a second Higgs doublet is needed are the gauge anomalies. It is known
that chiral anomalies have to cancel in order to render the theory renormalizable. In
the SM quark and lepton contributions to the chiral anomalies cancel within each
generation. However, the Higgs chiral superfield H1 includes a left-handed fermion
(called Higgsino) whose contribution is uncompensated unless a second Higgs doublet
H2 with opposite hypercharge is added. The non-gauge interactions are described

11The quantum number denoted as R is R-parity. We will introduce it in Sec. 2.4.1.
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by the following R-parity conserving (see Sec. 2.4.1) superpotential,

WMSSM = ūi hu,ij (Qj · H2)− d̄i hd,ij (Qj · H1)− l̄i hl,ij (Lj · H1) + µ (H1 · H2) ,
(2.4.1)

where the SU(2)-invariant product of two superfields is defined by

Φ1 · Φ2 = εjiΦi
1Φj

2, (2.4.2)

with ε being the totally antisymmetric 2 × 2 tensor defined in Eq. (2.1.3). Apart
from the last µ-term, which gives masses to the Higgsinos, this expression resembles
the Higgs-fermion interactions in the SM (see Eq. (1.3.4) in Sec. 1.3) with the only
difference that now there are two Higgs doublets instead of one and these are superfields
instead of ordinary fields. In this basis 12 the vertices are essentially the same as in
the SM, just two out of three particles involved in the interaction in any vertex must
be replaced by their superpartners. The aforementioned µ parameter is in general a
complex number. As in the Standard Model, the MSSM Yukawa couplings, hu,d,e,
are in general 3× 3 complex-valued matrices which can be diagonalized by bi-unitary
transformations.

2.4.1 R-parity

The superpotential WMSSM, defined in Eq. (2.4.1), does not exhaust all possible
gauge-invariant renormalizable interactions of superfields. For example, the following
terms are renormalizable and compatible with all symmetries of the MSSM,13

WNR = λijk (Li · Lj) lk + λ′ijk (Li ·Qj) dk + µ′i (Li · H2) + λ′′ijkuidjdk. (2.4.3)

Let us consider the first term in this expression. According to the Table 2.1, under
the lepton number transformation (Eq. (1.4.3) in Sec. 1.4) the superfields Li, Lj and
ek transform as Li → eiβLi, Lj → liβLj, lk → e−iβlk and thus

(Li · Lj) lk → eiβ (Li · Lj) lk. (2.4.4)

So, this term violates lepton number. The same can be said about the second term,
(Li ·Qj) dk, and the third one, (Li · H2). The last term in Eq. (2.4.3) violates baryon
number. In combination, they allow, as an example, for the proton decay p+ → e+π0

via the exchange of a squark. This process is, however, highly constrained: the proton
12The fields from Table 2.1 mix with each other as a consequence of electroweak symmetry breaking and hence

do not form a physical basis of the MSSM. In the physical basis the vertices will no longer have the same coupling
constants as the corresponding vertices in the SM but will also involve the mixing matrices (see Sec. 2.5).

13The invariance of the last term under SU(3)C implies that λ′′ijk must be antisymmetric in j and k. SU(2)L
symmetry enforces antisymmetry of λijk and λ′ijk with respect to their first two indices. See [104] for more details.



2.4. SUPERPOTENTIAL OF THE MSSM 29

lifetime should be at least 1.67× 1034 years [105]. So, the appearance of the operators
in Eq. (2.4.4) in the MSSM superpotential is potentially problematic. In order to
protect the MSSM from the appearance of these terms in the superpotential, a new
symmetry, called R-parity, is introduced

R = (−1)3(B−L)+2s, (2.4.5)

where B is the baryon number, L is the lepton number and s is the spin of the
particle. This symmetry admits the superpotential in Eq. (2.4.1), but not the terms in
Eq. (2.4.3). All fermions in the SM have either 3(B−L) = 1 (quarks) or B−L = −3
(leptons). Either way, the combination 3(B − L) + 2s is an even number and R = 1.
Higgs and gauge bosons have B = L = 0, hence R = 1 for them. On the other hand,
the spin of the SUSY particles differs by 1

2 from the spin of their SM counterparts.
Thus, for them R = −1. R-parity conservation has two consequences:

• Supersymmetric particles can only be produced in pairs at colliders,

• the lightest neutral SUSY particle with R = −1 (also called LSP) is absolutely
stable and hence is an attractive candidate for Dark Matter [106, 107] (see
Section 1.5).

2.4.2 Supersymmetry breaking

As we already noticed in Sec. 2.2, SUSY can at best be realized as a broken symmetry
at low energies. This SUSY breaking cannot occur in the MSSM itself [88] but requires
an additional “hidden sector” [108–110]. This sector interacts with the visible one
(the MSSM sector) only via the exchange of particles, called “messengers”. Many
different mechanisms of SUSY breaking have been discussed in the literature: e.g.
gravity-mediated breaking [111–114], gauge-mediated breaking [115–117], breaking
via exchange of gauginos [118,119]. In this thesis we will not focus on a particular
mechanism of SUSY breaking. Instead, we will parametrize the effect of it in the
MSSM Lagrangian via the set of operators which explicitly violate supersymmetry.
The crucial point here is that these terms should not reintroduce the Hierarchy
problem discussed in Sections 1.5 and 2.2. For that, they should leave the relations
between dimensionless couplings unmodified, or in other words, the field operators
should have mass dimension less than four, as shown in [120]. The part of the MSSM
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Lagrangian, which contains these terms (also called soft terms) reads

Lsoft = −1
2
(
M3g̃

ag̃a +M2W̃
iW̃ i +M1B̃B̃ + h.c.

)
− (m2

q̃)ij q̃∗L,iq̃L,j − (m2
ũ)ijũ∗R,iũR,j − (m2

d̃)ij d̃
∗
R,id̃R,j

− (m2
l̃L

)ij l̃∗L,il̃L,j − (m2
l̃R

)ij l̃∗R,il̃R,j
− m̃2

1H
†
1H1 − m̃2

2H
†
2H2 −

(
m2

12H1 ·H2 + h.c.
)

−
[
(huAu)ij (q̃L,i ·H2) ũ∗R,j + (hdAd)ij (H1 · q̃L,i) d̃∗R,j

+ (hlAl)ij
(
H1 · l̃L,i

)
l̃∗R,j + h.c.

]
.

(2.4.6)

The first line of Eq. (2.4.6) contains (in general, complex) soft masses of the gluino
M3, winos M2 and bino M1 which break the mass degeneracy between them and
the respective gauge bosons. The second and third lines introduce soft breaking
masses for the “left” squarks (m2

q̃)ij 14, for the “right” up-type, (m2
ũ)ij and down-type

squarks, (m2
d̃
)ij, for the “left” sleptons, (m2

l̃L
)ij and “right” sleptons, (m2

l̃R
)ij 15. In

these notations i and j are generation indices. So all these soft breaking masses are
in fact 3× 3 matrices. The fourth line introduces the soft breaking masses for the
Higgs doublets. As we will see in the subsequent Section these terms are necessary
to trigger EWSB. Finally, the terms in the last two lines determine the trilinear
couplings between the Higgs doublets and squarks. They are proportional to the
elements of 3× 3 complex-valued matrices huAu, hdAd or hlAl. In this thesis we will
assume that the minimal flavour violation (MFV) scenario is realized [121–123]. In
this scenario, all matrices m2

q̃,m
2
ũ,m

2
d̃
,m2

l̃L
,m2

l̃R
,huAu,hdAd and hlAl are diagonal.

There are fourteen parameters in the MSSM which can be complex valued. These are:
the gaugino masses M1,2,3, the Higgssino mass parameter µ, the Higgs soft-breaking
mass m12 and the trilinear couplings Af with f ∈ {u, d, c, s, t, b, e, µ, τ}. However, not
all of the associated phases are physical; two of them can be absorbed by a redefinition
of the fields as shown in [124].

2.5 Mass eigenstates

The MSSM fields, listed in Table 2.1, mix with each other to form physical states as
shown in Table 2.2 In this Section we will examine different sectors of the MSSM
at the tree-level, deriving the expressions for their masses and mixing matrices. To
shorten the expression, in the next Subsections the following abbreviations will be

14Squarks and sleptons are scalar particles and don’t possess such a property as chirality. “Left” and “right”
sparticles in this context denote superpartners of a corresponding left- and right-handed fermion.

15In the latter case, the soft mass is given only to selectrons, smuons and staus.
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name spin gauge eigenstates mass eigenstates

Higgs bosons 0 φ1,2, χ1,2, φ
−
1 , φ

+
2 h, H, A, H±

Goldstone bosons 0 χ1,2, φ
−
1 , φ

+
2 G, G±

squarks 0 q̃L,R q̃1,2

sleptons 0 l̃L,R, ν̃lL,R
l̃1,2, ν̃l1,2

neutralinos 1/2 B̃, H̃0
1,2, W̃ 0 χ̃0

1,2,3,4

charginos 1/2 H̃±1,2, W̃± χ̃±1,2

gluino 1/2 g̃ g̃

Table 2.2: Gauge and mass eigenstates of the MSSM.

introduced
sx ≡ sin x, cx ≡ cosx, tx ≡ tan x, (2.5.1)

for a generic angle x.

2.5.1 Higgs sector

As we discussed in Sec. 2.2, the scalar potential in a supersymmetric theory emerges
after integrating out the auxiliary F - and D-fields. The F -term in the Higgs potential
in the MSSM originates from the µH1 · H2 term in WSUSY (see Eq. (2.4.1)) and reads

VF = |µ|2
(
H†1H1 +H†2H2

)
. (2.5.2)

The D-terms emerge after integrating out the D-fields from the SU(2)L and U(1)Y
vector superfields. Together they read (see Eq. (2.3.26))

VD = g2

8

3∑
i=1

(
H†1σ

iH1 +H†2σ
iH2

)2
+ g′2

8
(
H†1H1 −H†2H2

)
. (2.5.3)

In addition to them, there are the soft-breaking terms defined in Eq. (2.4.6)

Vsoft = m̃2
1H
†
1H1 + m̃2

2H
†
2H2 +

(
m2

12H1 ·H2 + h.c.
)
. (2.5.4)

The sum of the contributions in Eqs. (2.5.2)–(2.5.4) can be rewritten in the following
form

VH = VF + VD + Vsoft,

VH = m2
1H
†
1H1 +m2

2H
†
2H2 + (m2

12H1 ·H2 + h.c.)

+ 1
8(g2 + g′2)(H†1H1 −H†2H2)2 + 1

2g
2
∣∣∣H†1H2

∣∣∣2 ,
(2.5.5)
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where m2
i = m̃2

i + |µ|2. It can be shown [88] that by making use of appropriate SU(2)L
transformations, one can choose a minimum for the Higgs potential such that the vevs
of the charged components of the Higgs doublets vanish, 〈H−1 〉 = 〈H+

2 〉 ≡ 0. As in the
Standard Model, the Higgs potential gives rise to the spontaneous symmetry breaking
SU(2)L × U(1)Y → U(1)em. The two Higgs doublets can be parametrized in terms of
excitations around their vacuum expectation values

H1 =

v1 + 1√
2(φ1 − iχ1)

−φ−1

 , H2 = eiξ

 φ+
2

v2 + 1√
2(φ2 + iχ2)

 , (2.5.6)

with real and positive vacuum expectation values v1, v2 and ξ being a relative CP-
violating phase. After plugging this expression into Eq. (2.5.5), we get the following
representation of the Higgs potential

VH = const− Tφ1φ1 − Tφ2φ2 − Tχ1χ1 − Tχ2χ2

+ 1
2

(
φ1, φ2, χ1, χ2

)
Mφφχχ



φ1

φ2

χ1

χ2


+
(
φ−1 , φ

−
2

)
Mφ±φ±

φ
+
1

φ+
2

+ · · · , (2.5.7)

where the ellipsis stands for the cubic and quartic terms which we do not list here.
The coefficients of the linear terms (called tadpoles) read

Tφ1 = −
√

2(m2
1v1 − cξ′|m2

12|v2 + 1
4(g2 + g′2)(v2

1 − v2
2)v1), (2.5.8a)

Tφ2 = −
√

2(m2
2v2 − cξ′|m2

12|v1 −
1
4(g2 + g′2)(v2

1 − v2
2)v2), (2.5.8b)

Tχ1 =
√

2 sξ′ |m2
12|v2 = −Tχ2

v2

v1
, (2.5.8c)

where ξ′ = ξ + arg
(
m2

12

)
.

In analogy to the Standard Model, after inserting expression (2.5.6) into the Higgs
kinetic term in the Lagrangian, we obtain expressions for the masses of the W and
Z-bosons (see Eqs.(1.2.13)–(1.2.16) in Sec. 1.2),

M2
W = g2(v2

1 + v2
2)

2 , M2
Z = (g2 + g′2)(v2

1 + v2
2)

2 . (2.5.9)
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Comparison of Eq. (2.5.9) with Eq. (1.2.16) yields v =
√
v2

1 + v2
2 ≈ 174 GeV. The

ratio of the Higgs vacuum expectation values is denoted as tan β,

tan β = v2

v1
. (2.5.10)

Since v1,2 > 0, the angle β can be chosen to be in the interval 0 < β < π
2 . The real,

symmetric 4× 4-matrix Mφφχχ and the hermitian 2× 2-matrix Mφ±φ± contain the
following elements,

Mφφχχ =

Mφ Mφχ

M†
φχ Mχ

 , (2.5.11a)

Mφ =

m2
1 + 1

4(g′2 + g2)(3v2
1 − v2

2) −cξ′ |m2
12| − 1

2(g2 + g′2)v1v2

−cξ′ |m2
12| − 1

2(g2 + g′2)v1v2 m2
2 + 1

4(g2 + g′2)(3v2
2 − v2

1)

 , (2.5.11b)

Mφχ =

 0 sξ′ |m2
12|

−sξ′ |m2
12| 0

 , (2.5.11c)

Mχ =

m2
1 + 1

4(g2 + g′2)(v2
1 − v2

2) −cξ′ |m2
12|

−cξ′ |m2
12| m2

2 + 1
4(g2 + g′2)(v2

2 − v2
1)

 , (2.5.11d)

Mφ±φ± =

m2
1 + 1

4g
′2(v2

1 − v2
2) + 1

4g
2(v2

1 + v2
2) −eiξ′ |m2

12| − 1
2g

2v1v2

−e−iξ′|m2
12| − 1

2g
2v1v2 m2

2 + 1
4g
′2(v2

2 − v2
1) + 1

4g
2(v2

1 + v2
2)

 .
(2.5.11e)

Minimization of the potential requires that all tadpoles vanish,

v1

(
m2

1 − cξ′|m2
12| tan β + M2

Z

2 c2β

)
= 0,

v2

(
m2

2 − cξ′ |m2
12| cot β − M2

Z

2 c2β

)
= 0,

v1sξ′|m2
12| = 0,

v2sξ′|m2
12| = 0.

(2.5.12)

At this point it is possible to see why without the soft-breaking masses spontaneous
EWSB cannot take place in the MSSM. Indeed, in the limit m2

1 → |µ|2, m2
2 →

|µ|2,m2
12 → 0, the solution of the system of equations (2.5.12) is v1 = v2 ≡ 0.

In the presence of soft-breaking parameters, the last two equations yield ξ′ = 0.
This implies that the off-diagonal entries of the matrix Mφχ vanish and hence there
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is no mixing between CP-even and CP-odd particles at the tree-level. Moreover, by
making use of Peccei–Quinn transformation [125,126], the phase of m12 can be rotated
away, yielding ξ = 0. From the first two equations, we can express the Z-boson mass
as

M2
Z = m̃2

1 − m̃2
2

cos 2β − m̃2
1 − m̃2

2 − 2|µ|2. (2.5.13)

The parameters on the right-hand side of this equation have different origins. The
Higgsino mass parameter, µ, appears in the superpotential of the MSSM WMSSM

(see Eq. (2.4.1)), whereas the masses m̃2
1 and m̃2

2 are soft-breaking parameters. The
question of why so seemingly unrelated parameters combine to yield the electroweak
quantity M2

Z is the essence of the “µ-problem” of the MSSM [127]. A solution
to this problem is given in the Next-to-Minimal Supersymmetric Standard Model
(NMSSM) [128], where µ is generated by the vacuum expectation value of an additional
Higgs singlet which itself depends on the soft breaking parameters. In this thesis,
however, we will only discuss the MSSM.

The matrices Mφφχχ and Mφ±φ± can be diagonalized by unitary transformations
h
H

 = Rα

φ1

φ2

 ,
A
G

 = Rβn

χ1

χ2

 ,
H±
G±

 = Rβc

φ
±
1

φ±2

 , (2.5.14)

where

Rx =

−sx cx

cx sx

 . (2.5.15)

Note that since CP-even and CP-odd states do not mix with each other at the tree-
level, they are diagonalized by two different matrices. The Higgs potential in the new
basis reads

VH =const− Th · h− TH ·H − TA · A− TG ·G

+ 1
2

(
h H A G

)
·



m2
h m2

hH m2
hA m2

hG

m2
hH m2

H m2
HA m2

HG

m2
hA m2

hH m2
A m2

AG

m2
hG m2

HG m2
AG m2

G


·



h

H

A

G



+
(
H− G−

)
·

 m2
H± m2

H−G+

m2
G−H+ m2

G±

 ·
H+

G+

+ . . . ,

(2.5.16)
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where the entries of the mass matrices have the following form:

m2
h =M2

Zs
2
α+β +m2

A

c2
α−β

c2
β−βn

+ esα−βn
2swMW c2

β−βn

[
THcα−βsα−βn + Th

2 (c2α−β−βn + 3cβ−βn)
]
, (2.5.17a)

m2
hH =−M2

Zsα+βcα+β +m2
A

sα−βcα−β
c2
β−βn

+ e

2swMW c2
β−βn

[
THsα−βs

2
α−βn − Thcα−βc

2
α−βn

]
, (2.5.17b)

m2
H =M2

Zc
2
α+β +m2

A

s2
α−β

c2
β−βn

+ ecα−βn
2swMW c2

β−βn

[
−Thsα−βcα−βn + TH

2 (c2α−β−βn − 3cβ−βn)
]
, (2.5.17c)

m2
hA =m2

HG = e

2swMW

TA
sα−βn
cβ−βn

, (2.5.17d)

m2
hG =−m2

HA = e

2swMW

TA
cα−βn
cβ−βn

, (2.5.17e)

m2
AG =−m2

Atβ−βn −
e

2swMW cβ−βn
(THsα−βn + Thcα−βn) , (2.5.17f)

m2
G =m2

At
2
β−βn + e

2swMW c2
β−βn

(−THcα+β−2βn + Thsα+β−2βn) , (2.5.17g)

m2
H−G+ =−m2

H±tβ−βc −
e

2swMW

(
TH

sα−βc
cβ−βc

+ Th
cα−βc
cβ−βc

+ i
TA
cβ−βn

)
, (2.5.17h)

m2
G−H+ =

(
m2
H−G+

)∗
, (2.5.17i)

m2
G± =m2

H±t
2
β−βc + e

2swMW c2
β−βc

(−THcα+β−2βc + Thsα+β−2βc) . (2.5.17j)

The eight independent parameters of the tree-level Higgs potential in Eq. (2.5.7)
(m2

1,m
2
2, ξ, |m2

12|, v1, v2, g, g
′) were replaced by (Th, TH , TA,m2

A, e,MW ,MZ , tβ) 16. Since
the tadpoles Th,H,A vanish at the mininum of the Higgs potential, the off-diagonal
elements m2

hA,m
2
HG,m

2
hG and m2

HA are automatically equal to zero. Next, the require-
ment that m2

AG = m2
H−G+ ≡ 0 gives

βc = βn ≡ β. (2.5.18)

The latter condition sets the masses of Goldstone bosons to zero 17

m2
G = m2

G± ≡ 0. (2.5.19)

16Despite the fact that the phase ξ equals zero at the tree level, it has to be renormalized at higher-orders. That is
why it is treated as an independent parameter [91,129,130].

17Computation of higher order corrections requires the gauge fixing in full analogy to the Standard Model, see
Eq. (1.3.11) in Section 1.3. In ’t-Hooft gauge the Goldstone bosons have the following masses m2

G = ξZM
2
Z ,

m2
G± = ξWM2

W .
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Using Eq. (2.5.18), it can be shown that the following relation holds between the
masses of the CP-odd and charged Higgs bosons,

m2
H± = m2

A +M2
W . (2.5.20)

The remaining non-zero off-diagonal element is m2
hH . Taking into account that

TH = Th ≡ 0 and the Eq. (2.5.18), it can be rewritten as

m2
hH = c2α+2βc2α−2β

4
(
m2
A(t2α − t2β) +M2

Z(t2α + t2β)
)
. (2.5.21)

For this expression to vanish, the mixing angle α has to satisfy the equation

t2α = t2β
m2
A +M2

Z

m2
A −M2

Z

. (2.5.22)

The solution, which lies inside the interval −π
2 < α < 0 18, can be written as follows:

α = −1
2 arcsin

 (m2
A +M2

Z)s2β√
(m2

A +M2
Z)2 − 4m2

AM
2
Zc

2
2β

 , (2.5.23)

After inserting the expression for α into Eqs. (2.5.17a) and (2.5.17c), we obtain the
two remaining eigenvalues of the matrix Mφφχχ:

m2
h/H = 1

2
[
m2
A +M2

Z ∓
√

(m2
A +M2

Z)2 − 4m2
AM

2
Zc

2
2β

]
. (2.5.24)

To summarize, let us make several comments. First of all, contrary to the Standard
Model, the MSSM contains five physical Higgs bosons instead of one: three neutral
bosons h,H,A, and two charged bosons, H±. Another important difference to the
SM, is that the masses of h and H can be predicted in terms of the other parameters
of the theory. In fact, at lowest order they are determined only by two parameters:
mA and tβ. By analyzing the expression (2.5.24), we notice that the mass of the
lightest Higgs boson mh is bounded from above by the Z-boson mass,

mh < MZ | cos 2β| ≤MZ , (2.5.25)

and hence lower than the mass of the particle discovered at the LHC [1, 2]. Let us
note that, in this statement we implicitly identified the light MSSM Higgs boson, h,
with the particle discovered at the LHC. In principle the heavier Higgs boson, H,
can be identified with the observed signal as well. The MSSM scenarios, realizing
this possibility were considered in the papers [131–138], but as shown in [138], this
scenario is already strongly constrained by the experimental data. That is why in

18This choice correponds to the convention mh < mH .
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this thesis we will identify the lightest Higgs boson, h, with the particle discovered at
the LHC.

Being bounded by the Z-boson mass at lowest order, the mass of the lightest Higgs
boson, mh, gets sizeable higher-order corrections from other MSSM sectors which
can lift its value such that it agrees with the measured value. Also, higher-order
corrections make the Higgs boson mass dependent on many other parameters of the
model. In the next chapters, we will address different aspects of radiative corrections
to the Higgs mass, and in order to distinguish between the tree-level mass and the
physical mass we will be using the capitalized Mh for the latter.

Moreover, as we already mentioned before, the Higgs sector preserves CP at the
lowest order, but the CP-violation can occur at the higher-orders of perturbation
theory. If this is the case, then CP-even states h,H mix with CP-odd Higgs boson A,
and mA is no longer an eigenvalue of Mφφχχ. In this case, the mass of the charged
Higgs boson mH± is used as an input parameter instead of mA.

As in the Standard Model (see Sec. 1.3), the fermion masses are generated via
interactions with the Higgs fields. While in the Standard Model one Higgs field was
enough to give masses to both up- and down-type fermions, the holomorphicity of
the MSSM superpotential leads to the requirement of two Higgs doublets to achieve
the same in the MSSM (see Sec. 2.4). By taking the θ2 coefficient of Eq. (2.4.1) and
retaining only the Higgs-fermion-fermion terms, we get

LMSSM
Yuk =− (hl)ij l̄i,R(iHT

1 σ
2)Lj,L − (hd)ij d̄i,R(iHT

1 σ
2)Qj,L

− (hu)ijūi,R(−iHT
2 σ

2)Qj,L + h.c. .
(2.5.26)

After electroweak symmetry breaking the fermions get masses

me,µ,τ= he,µ,τv1 = he,µ,τcβv, (2.5.27a)

md,s,b = hd,s,bv1 = hd,s,bcβv, (2.5.27b)

mu,c,t = hu,c,tv2 = hu,c,tsβv. (2.5.27c)

A small remark should be made here. The ratio of the bottom and top Yukawa
couplings hb

ht
= mb

mt
tan β is proportional to the ratio of vevs, tan β. Sufficiently large

values of tan β ∼ mt
mb
∼ 40 may compensate for the suppression of the mass ratio

mb/mt and can potentially make the bottom Yukawa coupling as large as the top
Yukawa coupling 19. Moreover, the MSSM bottom Yukawa coupling gets SUSY-QCD
corrections which are also proportional to tan β. The latter, in turn, can either

19It is worth mentioning, that in the decoupling limit, i.e. when MA �MZ the coupling of the light Higgs boson to
bottom quarks behaves SM-like. Thus, the enhancement of the Yukawa coupling does not lead to an enhancement of
this coupling in the mentioned limit [139].
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suppress the coupling or enhance it even more. We will consider this in detail in Sec.
3.2.3.

2.5.2 Sfermion sector

After electroweak symmetry breaking the mass matrix of the sfermions is generated,

Lf̃ ⊃ −
(
f̃ †L f̃ †R

)
Mf̃

f̃L
f̃R

 , (2.5.28)

with Mf̃ =

m2
f̃L

+m2
f +M2

Z(If3 −Qfs
2
w)c2β mf X

∗
f

mf Xf m2
f̃R

+m2
f +M2

ZQfs
2
wc2β

 ,

where If3 is the weak isospin, Qf is the electric charge, and mf is the mass of the
corresponding fermion (sw = sin θW ). The complex variable Xf in the off-diagonal
entries of Mf̃ is defined as

Xf = Af − µ∗κ. (2.5.29)

In this expression Af is the soft-breaking trilinear coupling (see Eq. (2.4.6)) and κ = 1
tβ

for f ∈ {u, c, t} and κ = tβ for f ∈ {d, s, b, e, µ, τ}. Due to the SU(2)L symmetry, the
soft-breaking masses m2

f̃L
are the same for up- and down-type sfermions (for example,

mt̃L = mb̃L
). The matrix Mf̃ is diagonalized by a unitary transformation

Uf̃Mf̃U
†
f̃

= diag(m2
f̃1
,m2

f̃2
), with Uf̃ =

 cf̃ sf̃

−s∗
f̃

cf̃

 , Uf̃U
†
f̃

= 1l, (2.5.30)

Here cf̃ ≡ cos θf̃ is real, whereas sf̃ ≡ e−iφXf sin θf̃ can be complex with the phase

φsf̃ = −φXf = arg
(
X∗f
)
. (2.5.31)

The mixing angle θf̃ is defined from the equation

tan 2θf̃ = 2mf |Xf |
Mf̃11

−Mf̃22

. (2.5.32)

As a convention it can be chosen to be in the interval −π
4 < θf̃ <

π
4 . The eigenvalues

of Mf̃ are given by

m2
f̃1,2

= m2
f + 1

2

[
m2
f̃L

+m2
f̃R

+ If3M
2
Zc2β (2.5.33)



2.5. MASS EIGENSTATES 39

∓ C
√[
m2
f̃L
−m2

f̃R
+M2

Zc2β(If3 − 2Qfs2
w)
]2

+ 4m2
f |Xf |2

]
,

where
C = sign

{
m2
f̃L
−m2

f̃R
+M2

Z(If3 − 2Qfs
2
w)
}
. (2.5.34)

The product of cf̃ and sf̃ fulfills the relation

cf̃ sf̃ =
mfX

∗
f

m2
f̃2
−m2

f̃1

, (2.5.35)

which will be used later in Chapter 3.

2.5.3 Neutralino/chargino sector

The charged Higgsinos H̃−1 , H̃+
2 and the winos W̃± have the following mass term

Lχ̃± ⊃ −
1
2

(
W̃+ H̃+

2

)
XT

W̃−

H̃−1

+
(
W̃− H̃−1

)
X

W̃+

H̃+
2

+ h.c., (2.5.36)

where X is a 2× 2 complex matrix

X =

 M2
√

2sβMW

√
2cβMW µ

 . (2.5.37)

This martix can be diagonalized by a bi-unitary transformationmχ̃±1
0

0 mχ̃±2

 = U∗X V†, (2.5.38)

where the mass eigenvalues read

mχ̃±1,2
=1

2
[
|M2|2 + |µ|2 + 2M2

W (2.5.39)

∓
√

(|M2|2 + |µ|2 + 2M2
W )2 − 4|µM2 −M2

W s2β|2
]
.

The matrices U, V transform Higgsinos and winos into the mass eigenstates called
charginos χ̃±1,2 χ̃

+
1

χ̃+
2

 = V

W̃+

H̃+
2

 ,
χ̃
−
1

χ̃−2

 = U

W̃−

H̃−1

 . (2.5.40)
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The mass eigenvalues in Eq. (2.5.39) are real and positive numbers. In case that
the mass parameters M2 and µ are complex numbers, their phases enter the mixing
matrices U and V and eventually the chargino-fermion-sfermion vertices.

The neutral Higgsinos H̃0
1,2, the wino W̃ 0 and the bino acquire the following mass

term after electroweak symmetry breaking

Lχ̃0 ⊃ −1
2 ψ̃

T
0 Y ψ̃0 + h.c., (2.5.41)

where ψ̃T0 =
(
B̃0 W̃ 0 H̃0

1 H̃0
2

)
, and the mass matrix is given by

Y =



M1 0 −MZ swcβ MZ swsβ

0 M2 MZ cwcβ MZ cwsβ

−MZ swcβ MZ cwcβ 0 −µ

MZ swsβ MZ cwsβ −µ 0


. (2.5.42)

This matrix is symmetric, so it can be diagonalized by a Takagi transformation
[140,141] with a matrix N

χ̃0
1

χ̃0
2

χ̃0
3

χ̃0
4


= N



B̃0

W̃ 0

H̃0
1

H̃0
2


, N∗Y N† = diag

(
mχ̃0

1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4

)
. (2.5.43)

The mass eigenstates χ̃0
i are called neutralinos. As in the aforementioned case of

charginos the mass eigenvalues are assumed to be real and positive. If the super-
symmetric parameters M1,2 and µ are complex numbers, their phases enter the
mixing matrix N and therefore appear in the neutralino-fermion-sfermion vertices.
These mass eigenvalues are the roots of a fourth-order equation and thus in the
most general case with complex µ,M1 and M2 they have very lengthy expressions.
Compact solutions can be found only in special cases, e.g. when M1 = M2 and
tan β = 1 [142], when the mass parameters and there splittings are much large than
the Z-boson mass, |M1,2|2, |µ|2 � M2

Z , ||M1,2| − |µ||2 � M2
Z [142, 143] or when

M1 = M2 = µ�MZ [144].

In this thesis, we will refer to neutralinos and charginos generically as electroweaki-
nos.
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2.5.4 Gluino sector

Only soft-breaking terms contribute to the mass of the gluinos (see Eq. (2.4.6) in
Sec. 2.4.2),

Lg̃ ⊃ −
1
2
(
M3 g̃

ag̃a +M∗
3

¯̃ga¯̃ga
)
. (2.5.44)

The gluino mass parameter M3 in general is a complex parameter with an absolute
value mg̃ = |M3| and phase φM3 . Its phase can be absorbed by redefining the gluino
field. Thereby, the original Weyl spinors g̃a and ¯̃ga are replaced by λa and λ̄a

g̃a → ei
φM3

2 g̃a, ¯̃ga → e−i
φM3

2 ¯̃ga. (2.5.45)

In terms of the new fields, the mass term (Eq. (2.5.44)) can be written as follows,

Lg̃ ⊃ −
mg̃

2
(
g̃ag̃a + ¯̃ga¯̃ga

)
. (2.5.46)

The gluino phase, being eliminated from Eq. (2.5.44), appears in quark-squark-gluino
vertices [145] (see also Eq. (2.3.24) from Sec. 2.3),

Lqq̃g̃ ⊃−
√

2g3

(
e−

iφM3
2 q̃†LT

ag̃aqL + e
iφM3

2 q†LT
a¯̃gaq̃L

)
−
√

2g3

(
e−

iφM3
2 q̃†RT

ag̃aqR + e
iφM3

2 q†RT
a¯̃gaq̃R

)
, (2.5.47)

where g3 is the strong coupling and Ta are the SU(3)C generators.



Chapter 3

Higher-order corrections

This chapter reviews the main aspects of higher-order corrections needed for the
discussion of the radiative corrections to the Higgs masses in the MSSM. The in-
troductory Section 3.1 is based on the Review [146]. The one-loop renormaliza-
tion of the MSSM sectors relevant for this thesis follows the conventions of the
Refs. [9, 11,34,90,91,147–151].

3.1 Regularization and Renormalization

The experimental precision achieved at modern colliders demands high-precision
computation of observables like cross-sections, decay widths, branching ratios, and
many others. The calculations of these observables are based on the fact that the
Lagrangian of the model, within which these calculations are carried out, can be split
into two parts. The first part contains terms quadratic in the fields and describes
the propagation of free particles. The second part contains terms of higher powers
in the fields. These terms are proportional to dimensional or dimensionless coupling
constants 20 and describe interactions between the different fields of the model. If
these coupling constants are small enough, which will always be assumed in this
thesis, this part can be treated as a perturbation to the free part of the Lagrangian.
Therefore, the expression for some observable Ô can be written as a series in the
coupling constant g,

Ô = Ô0 + g Ô1 + g2Ô2 + . . . . (3.1.1)

Each term in this series can be represented by a graph called Feynman graph or
Feynman diagram [152–154]. Very often, the leading term, Ô0, corresponds to the
graphs, in which two vertices are connected by at most one path, i.e., to the tree graphs.
If this is the case, then the leading result is referred to as a “tree-level” result. 21 The

20We already introduced electroweak and strong coupling constants in Chapters 1 and 2.
21We already used this term for the description of the different MSSM sectors (see Sec. 2.5).

42
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higher-order terms in Eq. (3.1.1), Ôn (where n ≥ 1), correspond to loop diagrams, i.e.
to graphs where two vertices are connected by more than one path. An example of
a one-loop diagram is presented in Fig. 3.1. Each part of the exemplary one-loop
diagram in Fig. 3.1 corresponds to a specific expression. For example in Fig. 3.1, the
internal line with momentum k corresponds to the propagator 22

i

k2 −m2 + i0 , (3.1.2)

with +i0 being an infinitesimal shift from the real axis. External lines yield a factor
of 1 and vertices a factor of ig, where g is a coupling constant in the Lagrangian. For
each momentum, which is not constrained by the momentum conservation law (e.g. k
in Fig. 3.1) there is an integration with the measure

ˆ

R4

d4k

(2π)4 . (3.1.3)

Applying these rules to the diagram in Fig. 3.1, we arrive at the expression

I(p) = (ig)2
ˆ

R4

d4k

(2π)4
i2

(k2 −m2 + i0)((p+ k)2 −m2 + i0) . (3.1.4)

For large k, the integrand behaves like ∼ 1
k4 , implying that the integral diverges

logarithmically. The problem of ultraviolet (UV) divergent integrals in quantum field
theories is addressed via the two-step procedure of regularization and renormalization
which we consider in the next two Sections. Theories, in which all divergences arising
from the loop diagrams can be consistently canceled order by order by renormalization,
are called renormalizable. Both the SM and the MSSM belong to this class of
theories [64]. An important theorem which has been proven by Bogolyubov and
Parasyuk [155], and independently by Hepp and Zimmermann [156,157], states that
the divergent parts of any loop integral are polynomials in the external momenta
after subtracting all possible subdivergences.

k

p+ k

p g g p

Figure 3.1: Example of the one-loop diagram

22We assume that the inner lines of the diagram in Fig. 3.1 describe the propagation of the spin-0 particles.
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Note that in models with massless particles, e.g., Quantum Electrodynamics
(QED), Quantum Chromodynamics (QCD), divergences of another type might occur.
Unlike the UV divergences, they are caused by the behavior of the integrand at small
momenta. Therefore, they are called infrared (IR) divergences. In this thesis, we will
discuss only UV divergences.

3.1.1 Regularization

As a first step, a divergent integral is regularized by introducing a fictitious regulariza-
tion parameter in such a way that the integral converges. The most intuitive option
is to introduce a cut-off for the integral, i.e., to restrict the domain of integration
to |~k| < Λ. In this regularization scheme, the divergences will manifest themselves
as powers and logarithms of Λ. The cut-off scheme, being conceptually simple, is
not Lorentz and gauge invariant, which makes it hard to use in the SM and MSSM
calculations.

A more neat modification of the cut-off regularization is the Pauli-Villars (PV)
regularization. In this approach, every propagator is replaced by

i

k2 −m2 + i0 →
i

k2 −m2 + i0 −
i

k2 − Λ2 + i0 , (3.1.5)

which in turn changes its behavior at large momenta k2 such that the integral becomes
finite. PV regularization works in Abelian gauge theories, but is not very useful in
the non-Abelian case [158]. But even in the Abelian case, this method requires many
fictitious particles to perform calculations beyond one-loop order and thus becomes
quickly impractical.

A widely used regularization scheme (due to its applicability in gauge theories and
its simplicity), is a dimensional regularization (DREG). It is based on the analytic
continuation of the integrals from four-dimensional to D-dimensional Minkowski
space [159–162]. For a one-loop integral, DREG is employed as follows
ˆ

R4

d4k

(2π)4f(k, {mi})→ µ4−D
R

ˆ

RD

dDk

(2π)D f(k, {mi}) = ∆a−1 + a0 + a1ε+O(ε2), (3.1.6)

where D = 4− 2ε. 23 ∆ is a numerical factor which encodes the divergence,

∆ = 1
ε
− γE + log 4π, (3.1.7)

with γE ≈ 0.577 being Euler–Mascheroni constant. In Eq. (3.1.6) the regularization
scale µR is introduced to preserve the overall dimension of the integral. As can be

23Note, that sometimes in the literature ε is defined as D = 4− ε.
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seen from Eq. (3.1.6), the divergence manifests itself as a pole ∼ 1
ε
. At higher-orders

the expansion in ε may start with a different power of ∆, e.g. ∆2 for the two-loop
integral, ∆3 for the three-loop and so on.

Dimensional regularization cannot be applied directly in supersymmetric theories.
Since additional degrees of freedom for vector bosons are introduced in the transition
to D dimensions, the number of bosonic degrees of freedom no longer equals to the
number of the fermionic ones. Thus, in supersymmetric theories a modified version of
DREG – dimensional reduction (DRED) – is often used [163,164]. Contrary to the
method of dimensional regularization, only the momenta are treated as D dimensional
objects, whereas all the fields and γ-matrices remain four-dimensional. It was shown
by means of explicit checks that DRED preserves SUSY up to the three-loop level
in the gaugeless limit (see Sec. 3.2.1) and up to the one-loop order if electroweak
couplings are taken into account [165–167]. This scheme is applicable to all cases
considered in this thesis.

3.1.2 Renormalization

Regularization introduces unphysical regularization parameters into the theory. For
example, in case of DREG/DRED these are the regularization scale µR and ε. By
means of renormalization this dependence on unphysical parameters is eliminated,
and the connection between the parameters of the theory and physical observables is
established. All parameters in the Lagrangian of a theory (also called bare parameters)
are replaced by a sum of renormalized parameters and counterterms. For example,
for a mass m and a coupling constant g the renormalization transformations take the
following form,

m0 = m+ δm = m+ δ(1)m+ δ(2)m+ . . . ,

g0 = g + δg = g + δ(1)g + δ(2)g + . . . ,
(3.1.8)

where the ellipsis denotes higher-order counterterms. The renormalized parameters m
and g in Eq. (3.1.8) are finite quantities, while the counterterms δ(i)g and δ(i)m contain
the dependence on the regularization parameters at the i-th order of perturbation
theory. Renormalization of the bare parameters is sufficient to render all S-matrix
elements finite. To renormalize Green functions, the renormalization transformation
has to be applied also to the fields of the theory. For a field φ, this reads

φ0 =
√
Zφ φ, with Zφ = 1 + δ(1)Zφ + δ(2)Zφ + . . . . (3.1.9)

In this equation the quanity Zφ is a field renormalization constant.
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After the renormalization transformation, the Lagrangian can be split into two
parts,

L(φ0,m0, g0) = L(φ,m, g) + LCT(φ,m, g, δZφ, δm, δg). (3.1.10)

The first term on the right-hand side of the Eq. (3.1.10) has the same functional
dependence on the fields and the parameters as the original Lagrangian. The second
term, LCT, contains the counterterms which are needed to absorb the divergences
arising from Feynman integrals. Note that since the counterterms are at least of
one-loop order, tree-level diagrams with counterterm insertions are at least of one-loop
order; one-loop diagrams with counterterms are at least of two-loop order and etc.

3.1.3 Renormalization schemes

The renormalization constants for the masses and the coupling constants are defined
via the physical observables. For instance, one can compute a theory prediction for
such an observable Ôth

1 in terms of a coupling constant g, 24

Ôth
1 ≡ Ôth

1 (g, δg). (3.1.11)

Since in general the loop integrals needed to compute Ôth
1 are UV divergent, the result

also depends on the counterterm δg. Since Ô1 is an observable, it can be related to
some measurable quantity, Ôexp

1 ,

Ôexp
1 = Ôth

1 (g, δg). (3.1.12)

The counterterm can be determined via inverting this equation

δg = f(Ôexp
1 , g). (3.1.13)

Using this relation between the counterterm and the measurable quantity Ôexp
1 , we

can compute another observable Ô2,

Ô2 = Ô2(g, δg) = Ô2(g, f(Ôexp
1 , g)). (3.1.14)

The relation between the observables (3.1.14) does not contain divergences and is
regulator independent 25 up to a given order of perturbation theory [146,168].

So far, for the sake of brevity we only considered the determination of the countert-
erm for a single coupling constant g. In general, to fix n counterterms in a model, n
physical observables are needed. The relations between the parameters of the theory

24The computation of an observable involves the calculation of the matrix element for some process, and that is
why it also depends on some incoming and outgoing momenta {pi}, which are omitted for the sake of brevity.

25The relation between different observables in the theory is also gauge-independent.
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and the observables form a renormalization scheme. In the following chapters we will
mostly deal with parameters defined either in the on-shell (OS), the MS or the DR
schemes. 26

MS/DR scheme

First, we consider the minimal subtraction (MS) scheme. In this scheme, all countert-
erms consist only of a divergent part. I.e., at the n-th loop order they are polynomials
in 1

ε
with the highest possible power equal to n. In this thesis, we will use the

modified version of this scheme, i.e., the MS scheme where the constant −γE + log 4π
is subtracted together with the divergent part. In other words, the two schemes are
related by the replacement,

1
ε
→ ∆ . (3.1.15)

The DR (DR) scheme is defined in the same way as the MS scheme, the only difference
being that DRED is used instead of DREG to regularize the divergent integrals. The
final result of a calculation in the DR or MS scheme in general still depends on the
scale µR, which was introduced during the regularization (see Eq. (3.1.6)). Since
the relation between different physical observables should not depend on any of the
auxiliary parameters at the given order of perturbation theory, the renormalized
parameters in the MS or DR scheme have to depend on the scale µR. 27 This
dependence is given by the so-called β-functions of the couplings and masses, which
will be considered in Section 3.1.4.

On-shell (OS) scheme

At tree level the propagator of a particle with mass m has a pole at p2 = m2 (see
Eq. (3.1.2)). At higher orders of perturbation theory the propagator gets contributions
from loop diagrams which can be resummed via the so-called “Dyson resummation”.
For the scalar particle φ this reads,

∆φ(p2) = i

p2 −m2 + i

p2 −m2 iΣ̂(p2) i

p2 −m2 + . . .

= + + + . . . = i

p2 −m2 + Σ̂(p2)
,

(3.1.16)

where the line denotes a tree-level propagator, and the grey circle denotes the
renormalized self-energy iΣ̂(p2). The expression for the latter reads at one-loop

26In Chapter 7 we will discuss a DR′ scheme, and in Chapter 8 we will introduce the (modified) MDR renormalization
scheme.

27That is why it is also called renormalization scale.
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order
Σ̂(p2) = Σ(p2)− δm2 + (p2 −m2)δZφ, (3.1.17)

where Σ(p2) is unrenormalized self-energy of the particle. The on-shell condition for
the propagator ∆φ(p2) requires that it has a pole at p2 = m2 with a residue which is
equal to unity. The first condition implies that the mass counterterm is equal to the
unrenormalized self-energy, evaluated at p2 = m2,

Σ̂(m2) != 0 =⇒ δm2 = Σ(m2). (3.1.18)

Expanding the equation (3.1.17) around p2 = m2,

Σ̂(p2) = (p2 −m2)(δZφ + Σ′(m2)) +O((p2 −m2)2), (3.1.19)

(where the prime denotes the derivative with respect to the momentum squared), and
inserting the result back into the equation (3.1.16) yields

∆φ(p2) = i

(p2 −m2)(1 + δZφ + Σ′(m2) +O(p2 −m2)) . (3.1.20)

The requirement that the residue of ∆φ(p2) equals unity when p2 → m2 leads to the
condition for the field renormalization constant,

δZφ = −Σ′(m2) ⇐⇒ Σ̂′(m2) = 0. (3.1.21)

If the particle φ is unstable, its self-energy, Σ̂(p2), develops an imaginary part for
p2 = m2, since the particles which run in the loop go on-shell, i.e. their squared
momentum becomes equal to their mass squared. In this case, the condition (3.1.18)
should be modified to

δm2 = ReΣ(m2) (3.1.22)

at one-loop order. Dyson resummation can also be applied to fermion fields. In this
case one gets for a fermion field ψ with mass m,

∆ψ(p2) = i
(
/p−m+ Σ̂f (p)

)−1
, (3.1.23)

where the renormalized fermion self-energy is related to the unrenormalized one via

Σ̂f (p) = Σf (p) + (/p−m)δZψ − δm. (3.1.24)

The unrenormalized fermion self-energy, in turn, can be decomposed as,

Σf (p) = /pPLΣL
f (p2) + /pPRΣR

f (p2) +mfΣS
f (p2) +mfγ5ΣP

f (p2). (3.1.25)
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It can be shown [146] that the OS mass counterterm in this case reads

δm = m

2 Re
[
ΣL
f (m2) + ΣR

f (m2) + 2ΣS
f (m2)

]
. (3.1.26)

The renormalized self-energy of the vector field with a tree-level mass MV in Rξ gauge
with the gauge parameter ξV can be written as follows,

Σ̂V
µν(p) = −

[(
gµν −

pµpν
p2

)
ΣV
T (p2) + pµpν

p2 ΣV
L (p2)

]

−
[(
gµν −

pµpν
p2 (1− ξV )

)
p2 − gµνM2

V

]
δZV

+
(
gµνδM

2
V + qµqνδZV

)
,

(3.1.27)

where ΣV
T (p2) and ΣV

L (p2) are the unrenormalized transversal and longitudinal self-
energies, respectively. The OS conditions for the mass and field renormalization
constants involve only the transversal part [146],

δM2
V = Re ΣV

T (M2
V ), δZV = −ΣV ′

T (M2
V ). (3.1.28)

For the renormalisation of a vector field V in a gauge theory the gauge-fixing parameter
ξV can be renormalized as follows,

ξV → ξV

(
1 + 1

2δZξV
)

(3.1.29)

The divergent of the counterterm for ξV is related to the divergent part of the vector
field renormalization constant [169],

δξV |div = δZV |div . (3.1.30)

So far, we have discussed the OS scheme for the mass and the field renormalization
constants. Similar renormalization prescriptions can be used for a coupling constant.
In this case, the counterterm can be fixed via a process that involves the coupling
constant. For example, the OS prescription for the electric charge is chosen such
that all quantum corrections to the Thompson scattering vanish on-shell and for zero
momentum transfer [146]. The usage of the OS scheme completely eliminates the
dependence on the regularization scale µR.

Conversion between different schemes

Suppose that a parameter p is defined in the renormalization schemes I and II. Then
the bare parameter p0 is a scheme-independent quantity and it can be related to the
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renormalized parameters in both schemes according to Eq. (3.1.8),

p0 = pI + δpI = pII + δpII . (3.1.31)

From this relation, we can express the parameter in scheme II in terms of the
parameter in scheme I,

pII = pI + (δpII − δpI). (3.1.32)

Note, that the divergent part of the counterterms in both schemes is the same to
render the result of the computation finite. Thus the shift of the parameter p between
different schemes, (δpII − δpI), is a finite quantity.

3.1.4 Renormalization group equation

As we already mentioned, a physical result should not depend on the regularization
scale µR introduced in Section 3.1.1 to preserve the correct dimension of the loop
integrals (see Eq. (3.1.6)). This issue can be seen also from a slightly different angle.
The action of a theory in D dimensions is given by an integral of the Lagrangian over
the Minkowski space,

S =
ˆ
dDxL. (3.1.33)

The action is a dimensionless quantity, [S] = E0 , therefore the Lagrangian has an
energy dimension

[L] = ED. (3.1.34)

This implies that the coupling constants change their dimensionality when going from
4-dimensional to D-dimensional space. For example, the electric charge becomes a
dimensional quantity,

[e] = E
4−D

2 = Eε. (3.1.35)

Another example is the φ4 theory defined as,

L = (∂µφ)2

2 − m2φ2

2 − λφ4

4! , (3.1.36)

where the quartic coupling has the following energy dimension in D dimensions

[λ] = E4−D = E2ε. (3.1.37)

In a theory with N coupling constants the relation between bare and renormalized
coupling constants can be written as,

g0i = Zgigi = µ2biε
R Z̃gigi, where i = 1 . . . N, (3.1.38)
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where Zgi = δgi
gi

(see Eq. (3.1.8)), and the scaling factor, µ2biε
R , is explicitly pulled

out, so that the renormalized coupling gi remains a dimensionless quantity even in D
dimensions (with D 6= 4). The constant bi shows the scaling of the coupling constant
gi in D dimensions. For instance, it equals 1/2 for the electron charge in QED. The
renormalization constants Z̃gi , being equal to unity at the tree level, are computed
order by order

Z̃gi = 1 + δZ̃(1)
gi

+ δZ̃(2)
gi

+ . . . . (3.1.39)

In the MS/DR-scheme, the renormalization constants Z̃(k)
gi
, k = 1, 2, . . . are propor-

tional to ∆k and do not depend explicitly on the renormalization scale. In this
case, the dependence of the coupling constant gi on the renormalization scale can be
derived, by making use of the fact that the bare coupling does not depend on the
regularization scale,

dg0i

d log µ2
R

=
 ∂

∂ log µ2
R

+
∑
j

βj
∂

∂gj

(µ2biε
R Z̃gigi

)

= µ2biε
R

biε+
∑
j

βj
∂

∂gi

(Z̃gjgj) != 0.
(3.1.40)

where the beta-function of the coupling gi is defined as,

βgi = dgi
d log µ2

R

, (3.1.41)

and in the second equality we have used the fact that in the MS/DR-schemes
∂Z̃gi

∂ logµ2
R
≡ 0. The last equality in (3.1.40) can be rewritten as

biε+
∑
j

βj
∂ log(Z̃gigi)

∂gj
= 0. (3.1.42)

By solving this linear system of equations and then taking the limit ε→ 0, one can
derive all β-functions order by order.

3.1.4.1 Collins-Wilczek-Zee scheme

Contrary to the electric charge, the strong coupling constant cannot be renormalized
on-shell, since at low energies it becomes so large that the QCD becomes non-
perturbative. Therefore, it is only possible to determine the running coupling at
scales where this coupling is small enough. On the other hand, the β-function for the
coupling constant in the MS/DR schemes does not depend on any masses and thus the
heavy particles do not decouple in the low-energy regime, as it would be guaranteed
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by the Appelquist-Carazzone theorem (also called decoupling theorem) [170].28 Non-
decoupling of heavy particles with massM leads to the appearance of large logarithms
∼ log M

2

µ2
R

in the result, if the process is computed at low energies, µR � M . To

avoid this issue, the MS/DR scheme for the running coupling has to be modified in
such a way that the heavy particles decouple properly in the low-energy regime. This
is achieved in the Collins-Wilczek-Zee scheme [171,172], which is defined at lowest
order as

αCWZ
s (µR) = αMS/DR

s (µR)
(

1 + αs(µR)
4π log µ2

R

M2 β
H
0

)
, (3.1.43)

where βH
0 is the contribution of the particle with mass M > µR to the β-function of

the strong coupling, and the relation between the coefficient β0 and the lowest order
beta-function β reads,

dαs
d log µ2

R

= −α
2
s

4πβ0 ≡ β. (3.1.44)

For example, in the Standard Model the leading-order beta-function reads [173,174],

β = − α2
s

12π (33− 2nf ), (3.1.45)

where nf is the number of active flavours, i.e the number of quarks which are not
heavier than µR. From Eqs. (3.1.43) and (3.1.45), one can find the leading-order
relation between α(nf+1)

s and α(nf )
s in the Standard Model,29

α(nf )
s (µR) = α(nf+1)

s (µR)
1 + α

(nf+1)
s (µR)

6π log µ
2
R

m2
q

 , (3.1.46)

where mq is the mass of the heavy-flavour quark. Higher-order corrections to this
relation up to four-loop order were computed in [175, 176]. In the MSSM similar
matching relations are known up to two-loop order [177,178].

3.2 Renormalization of the MSSM

3.2.1 Higgs sector

In Sec. 2.5.1 we outlined that the Higgs scalar potential before minimization is defined
by eight independent parameters, which can be conveniently chosen to be

Th, TH , TA,m
2
A (or m2

H±), e,MW ,MZ , tβ, (3.2.1)

28This theorem is valid only for the momentum subtraction schemes.
29Each quark gives a contribution to the leading-order beta-function which reads β0 = − 2

3 .
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where in the CP-concerving case either m2
A or m2

H± can be chosen as input parameters
for the calculation of the Higgs masses. In the CP-violating case30 the off-diagonal
entries of the mass matrix Mφφχχ, which mix different CP-eigenstates and are equal
to zero at tree level, acquire corrections at the loop-level. Thus, m2

A is not a suitable
on-shell parameter anymore. In this case, the mass of the charged Higgs boson, m2

H± ,
is used.

The parameters in Eq. (3.2.1) are renormalized as described in Sec. 3.1.2, 31

M2
Z →M2

Z + δM2
Z , M2

W →M2
W + δM2

W ,

tβ → tβ(1 + δtβ), Ti → Ti + δTi, (i = h,H,A),

e→ e+ δe, m2
H± → m2

H± + δm2
H± .

(3.2.2)

The entries of the mass matrices in Eq. (2.5.16) are renormalized accordingly,

m2
ij → m2

ij + δm2
ij, i, j = h,H,A,G,G±, H±. (3.2.3)

Although the mixing angles α, βn, βc are related to the angle β at tree level, they are
not renormalized. After inserting the expressions in Eqs. (3.2.2) into the Eqs. (2.5.17a)–
(2.5.17j) and keeping only the one-loop terms, we obtain the following counterterms
for the mass matrices,

δ(1)m2
h = δ(1)m2

Ac
2
α−β + δ(1)M2

Zs
2
α+β

+ e

2swMW

(
δ(1)THcα−βs

2
α−β + δ(1)Thsα−β(1 + c2

α−β)
)

(3.2.4a)

+ δ(1)tβ
(
m2
As2α−2β +M2

Zs2α+2β
)
sβcβ,

δ(1)m2
hH = 1

2
(
δ(1)m2

As2α−2β − δ(1)M2
Zs2α+2β

)
+ e

2swMW

(
δ(1)THs

3
α−β − δ(1)Thc

3
α−β

)
(3.2.4b)

− δ(1)tβ
(
m2
Ac2α−2β +M2

Zc2α+2β
)
sβcβ,

δ(1)m2
H = δ(1)m2

As
2
α−β + δ(1)M2

Zc
2
α+β

− e

2swMW

(
δ(1)THcα−β(1 + s2

α−β) + δ(1)Thsα−βc
2
α−β

)
(3.2.4c)

− δ(1)tβ
(
m2
As2α−2β +M2

Zs2α+2β
)
sβcβ,

δ(1)m2
hA = δ(1)m2

HG = e

2swMW

δ(1)TAsα−β, (3.2.4d)

δ(1)m2
hG = −δ(1)m2

HA = e

2swMW

δ(1)TAcα−β, (3.2.4e)

30Recall, that there is no CP-violation in the Higgs sector at tree level but it may be induced via loop contributions
from the other sectors od the MSSM.

31Sometimes, a different convention for the δtβ counterterm is used: tβ → tβ + δtβ .
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δ(1)m2
AG = − e

2swMW

(
δ(1)THsα−β + δ(1)Thcα−β

)
− δ(1)tβm

2
Asβcβ, (3.2.4f)

δ(1)m2
G = e

2swMW

(
−δ(1)THcα−β + δ(1)Thsα−β

)
, (3.2.4g)

δ(1)m2
H−G+ = − e

2swMW

(δ(1)THsα−β + δ(1)Thcα−β + i δ(1)TA)− δ(1)tβm
2
H±sβcβ,

(3.2.4h)

δ(1)m2
G−H+ = (δ(1)m2

H−G+)∗, (3.2.4i)

δ(1)m2
G± = e

2swMW

(−δ(1)THcα−β + δ(1)Thsα−β). (3.2.4j)

In the Eqs. (3.2.4a) – (3.2.4c), the counterterm for the CP-odd Higgs boson mass,
δ(1)m2

A, can be expressed in terms of δ(1)m2
H± and δ(1)M2

W by using the tree-level
formula in Eq. (2.5.20),

δ(1)m2
A = δ(1)m2

H± − δ(1)M2
W . (3.2.5)

Note that at the one-loop level the renormalization of the electric charge is not needed
since it always appears as a coefficient of the tadpole-terms, which are zero after the
minimization of the Higgs potential. The Higgs fields are renormalized to guarantee
the finiteness of the Green functions 32,

Hi →
√
ZHi =

(
1 + 1

2δ
(1)ZHi

)
Hi. (3.2.6)

Using the relation between the gauge and mass eigenstates, given in the Eqs. (2.5.14),
one can find the renormalization constants in the mass basis,

δ(1)Zhh = s2
αδ

(1)ZH1 + c2
αδ

(1)ZH2 , (3.2.7a)

δ(1)ZhH = δ(1)ZHh = −sαcα
(
δ(1)ZH1 − δ(1)ZH2

)
, (3.2.7b)

δ(1)ZHH = c2
αδ

(1)ZH1 + s2
αδ

(1)ZH2 , (3.2.7c)

δ(1)ZAA = s2
βδ

(1)ZH1 + c2
βδ

(1)ZH2 , (3.2.7d)

δ(1)ZAG = δ(1)ZGA = −sβcβ
(
δ(1)ZH1 − δ(1)ZH2

)
, (3.2.7e)

δ(1)ZGG = δ(1)ZG±G± = c2
βδ

(1)ZH1 + s2
βδ

(1)ZH2 , (3.2.7f)

δ(1)ZH±H± = s2
βδ

(1)ZH1 + c2
βδ

(1)ZH2 , (3.2.7g)

δ(1)ZH−G+ = δ(1)ZG−H+ = −sβcβ
(
δ(1)ZH1 − δ(1)ZH2

)
. (3.2.7h)

As a consequence of CP-conservation at the tree-level and the choice of the renormal-
ization constants for the Higgs doublets (see Eq. (3.2.6)), the field renormalization

32This choice is sufficient to render all the Green functions with external Higgs fields finite. Sometimes, it is helpful
to also introduce the finite off-diagonal elements δ(1)ZH1H2 and δ(1)ZH2H1 . See the discussion in [16,24].
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constants for the transition between CP-even and CP-odd states are equal to zero, 33

δ(1)ZhA = δ(1)ZhG = δ(1)ZHA = δ(1)ZHG = 0. (3.2.8)

The expression for the one-loop renormalized self-energy with external Higgs bosons,
evaluated at external momentum p2, in terms of the previously defined quantities
reads,

Σ̂(1)
ij (p2) = Σ(1)

ij (p2) +
(
p2 −

m2
i +m2

j

2

)
δ(1)Zij − δ(1)m2

ij,

i, j ∈ {h,H,A,G,H±, G±}.
(3.2.9)

where Σ(1)
ij (p2) is the unrenormalized self-energy.

The one-loop counterterms for the tadpoles are determined by the requirement
that the renormalized one-loop corrected tapoles, T̂ (1)

i , are equal to zero,

T̂
(1)
i = T

(1)
i + δ(1)Ti

!= 0 =⇒ δ(1)Ti = −T (1)
i , i ∈ {h,H,A}, (3.2.10)

where T (1)
i is the unrenormalized tadpole with external Higgs i. These conditions

imply that the vacuum expectation values v1 and v2 remain unchanged at the one-loop
level. The masses of the vector bosons are renormalized in the on-shell scheme,

δ(1)M2
Z = Re ΣT,(1)

ZZ (M2
Z), δ(1)M2

W = Re ΣT,(1)
WW (M2

W ), (3.2.11)

where ΣT,(1)
ZZ and ΣT,(1)

WW are the transversal parts of the unrenormalized one-loop
self-energies for the Z- and W -bosons, respectively (see Eq. (3.1.28)). Accordingly,
the counterterm for the weak mixing angle reads,

δ(1)sw = c2
w

2sw

(
δ(1)M2

Z

M2
Z

− δ(1)M2
W

M2
W

)
. (3.2.12)

The charged Higgs boson mass is also renormalized on-shell,34

δ(1)m2
H± = Re Σ(1)

H±H±(m2
H±). (3.2.13)

Using Eqs. (3.2.7a) and (3.2.7c), it is possible to relate the field renormalization
constants for the physical Higgs bosons and the field renormalization constants for
the Higgs doublets,

δ(1)ZH1 = δ(1)ZHH
∣∣∣
α=0

, δ(1)ZH2 = δ(1)Zhh
∣∣∣
α=0

. (3.2.14)

33This statement holds for all orders of perturbation theory.
34For the MSSM without CP-violation mA can be chosen as input parameter, and the counterterm for m2

H± is
fixed by the Eq. (3.2.5).
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To define the renormalization constant for the ratio of the vacuum expectation
values, tan β, it is necessary to define the renormalization constants for the vacuum
expectation values v1,2. Since they appear in the expressions for the Higgs doublets
(see Eq. (2.5.6)), they are renormalized in the following way,

vi →
√
ZHi (vi + δvi) = vi + δ(1)vi + δ(1)ZHi

2 vi + . . . , i = 1, 2, (3.2.15)

where the ellipsis denotes contributions from higher-order counterterms. By combining
the definition of the δtβ counterterm, given in Eq. (3.2.2), and the expression in
Eq. (3.2.15), we derive the one-loop counterterm for tβ,

δ(1)tβ = 1
tβ
δ(1)

(
v2

v1

)
= δ(1)v2

v2
− δ(1)v1

v1
+ 1

2
(
δ(1)ZH2 − δ(1)ZH1

)
. (3.2.16)

There is no obvious relation of tβ to any physical observable. Therefore, it is convenient
to renormalize tβ and the field renormalization constants in the DR scheme. Further-
more, as was shown in [179–181], this scheme choice contrary to the OS definition of
the field renormalization constants gives numerically stable and gauge-independent
results at the one-loop level. With the additional observation that [182–185],

δ(1)v1

v1

∣∣∣∣∣
div

= δ(1)v2

v2

∣∣∣∣∣
div
, (3.2.17)

this definition gives
δ(1)tβ = 1

2
(
δ(1)ZDR

H2 − δ
(1)ZDR

H1

)
(3.2.18)

where
δ(1)ZDR

H1 = − Σ′(1)
HH(p2)

∣∣∣div

α=0
, δ(1)ZDR

H2 = − Σ′(1)
hh (p2)

∣∣∣div

α=0
, (3.2.19)

and the derivatives of unrenormalized self-energies can be evaluated at arbitrary
momentum, since the UV-divergent part does not depend on it. This completes the
one-loop renormalization of the Higgs sector of the MSSM.

3.2.1.1 Gaugeless limit

Two-loop calculations in the Higgs sector and therefore also the two-loop renormaliza-
tion of this sector is often performed in the gaugeless limit. This limit corresponds to
vanishing electroweak gauge couplings while keeping the electroweak mixing angle
constant,

g → 0, g′ → 0, sw = const. (3.2.20)



3.2. RENORMALIZATION OF THE MSSM 57

In this limit the tree-level masses of the Higgs boson read

m2
h = 0, m2

H = m2
A, m2

H± = m2
A. (3.2.21)

In the Rξ gauge the masses of the Goldstone bosons are proportional to the masses
of the W - and Z-bosons. Thus, they are equal to zero in the gaugeless limit,

m2
G = m2

G± ≡ 0. (3.2.22)

Eq. (2.5.22), which defines the mixing angle α, has the following form in the limit
MZ → 0,

t2α = t2β. (3.2.23)

Taking into account that −π
2 < α < 0 and 0 < β < π

2 , the mixing angle α reads

α = π

2 − β (3.2.24)

in the gaugeless limit. The explicit expressions for the two-loop counterterms in
the gaugeless limit can be found in Section 6.2 of [186]. The renormalization of the
Higgs sector at the two-loop level is described in detail in [91,129,130,187]. Two-loop
corrections to the Higgs boson masses require the renormalization of the other MSSM
sectors. We will describe only those which will be relevant for the next chapters.
Moreover, the renormalization of these sectors is performed in the gaugeless limit.

3.2.2 Top/stop sector

In the gaugeless limit the mass matrix of the stop squarks takes the following form
(see Eq. (2.5.28) in Section 2.5.2)

Mt̃,gl =

m2
t̃L

+m2
t mt X

∗
t

mt Xt m2
t̃R

+m2
t

 . (3.2.25)

We renormalize the parameters appearing in this matrix as follows,35

m2
t̃L/R
→ m2

t̃L/R
+ δ(1)m2

t̃L/R
,

Xt → Xt + δ(1)Xt,

mt → mt + δ(1)mt.

(3.2.26)

35See [91,129,130,151] for a detailed discussion of the renormalization scheme presented in this Section.
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In this way the stop mass matrix Mt̃ acquires the counterterm 36

δ(1)Mt̃ =

 δ(1)m2
t̃L

+ δ(1)m2
t X∗t δ

(1)mt +mt δ
(1)X∗t

Xt δ
(1)mt +mt δ

(1)Xt δ(1)m2
t̃R

+ δ(1)m2
t

 . (3.2.27)

Using the tree-level transformation matrix Ut̃, which relates gauge and mass eigen-
states (see Eq. (2.5.30)), we define

Ut̃ δ
(1)Mt̃ U†

t̃
=

 δ(1)m2
t̃1

δ(1)m2
t̃12

δ(1)m2
t̃21

δ(1)m2
t̃2

 , (3.2.28)

where δ(1)m2
t̃21

= (δ(1)m2
t̃12

)∗. The counterterms for the diagonal elements of this
matrix, m2

t̃1
and m2

t̃2
, can be fixed via the on-shell condition,

δ(1)m2
t̃1

= Re Σ(1)
t̃1 t̃1

(m2
t̃1

), δ(1)m2
t̃2

= Re Σ(1)
t̃2 t̃2

(m2
t̃2

). (3.2.29)

The counterterm for the off-diagonal entry is fixed via the symmetric on-shell condition,

δ(1)m2
t̃12

= 1
2 R̃e

[
Σ(1)
t̃1 t̃2

(m2
t̃1

) + Σ(1)
t̃1 t̃2

(m2
t̃2

)
]
, (3.2.30)

where the symbol R̃e takes the real part of the loop integrals and does not affect
the couplings. Rotating back to the gauge-eigenstate basis, the counterterms for the
soft-breaking parameters read,

δ(1)Xt = 1
mt

[
Ut̃11U

∗
t̃12

(
δ(1)m2

t̃1
− δ(1)m2

t̃2

)
+ δ(1)m2

t̃12
Ut̃21U

∗
t̃12

+ δ(1)m2
t̃21

Ut̃11U
∗
t̃22
−Xtδ

(1)mt

]
, (3.2.31a)

δ(1)m2
t̃L

= δ(1)m2
t̃1
|Ut̃11|

2 + δ(1)m2
t̃2
|Ut̃12|

2

+ δ(1)m2
t̃12

Ut̃21U
∗
t̃11

+ δ(1)m2
t̃21

Ut̃11U
∗
t̃21
− 2mt δ

(1)mt, (3.2.31b)

δ(1)m2
t̃R

= δ(1)m2
t̃1
|Ut̃12|

2 + δ(1)m2
t̃2
|Ut̃22|

2

+ δ(1)m2
t̃12

Ut̃22U
∗
t̃12

+ δ(1)m2
t̃21

Ut̃12U
∗
t̃22
− 2mt δ

(1)mt . (3.2.31c)

Before discussing the renormalization of the top-quark mass, let us make a remark on
the renormalization of the off-diagonal entries of the matrix Mt̃. We have used Xt

as a free parameter, while the entries of the transformation matrix Ut̃ were set to
their tree-level values. Sometimes, a slightly different, although completely equivalent
approach is used [150]. Namely, instead of renormalizing the Xt parameter the angle

36From now on, the subscript “gl” will be omitted for brevity.
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θt̃ and the phase φXt of the rotation matrix Ut̃ are renormalized,

θt̃ → θt̃ + δ(1)θt̃, φXt → φXt + δ(1)φXt . (3.2.32)

At the first step, the original mass matrix is expressed in terms of θt and φXt as,

Mt̃ =

 cos2 θt̃ m
2
t̃1

+ sin2 θt̃ m
2
t̃2

(m2
t̃1
−m2

t̃2
) sin θt̃ cos θt̃ e−iφXt

(m2
t̃1
−m2

t̃2
) sin θt̃ cos θt̃ eiφXt cos2 θt̃ m

2
t̃2

+ sin2 θt̃ m
2
t̃1

 . (3.2.33)

Using the definition of the counterterms, given in Eq.(3.2.32), the counterterms for
the entries of the original mass matrix can then be written as,

δ(1)Mt̃11 = cos2 θt̃ δ
(1)m2

t̃1
+ sin2 θt̃ δ

(1)m2
t̃2

+ (m2
t̃2
−m2

t̃1
) sin 2θt̃ δ(1)θt̃, (3.2.34a)

δ(1)Mt̃12 = (δ(1)m2
t̃1
− δ(1)m2

t̃2
) sin θt̃ cos θt̃ e−iφXt

+ (m2
t̃1
−m2

t̃2
)(δ(1)θt̃ cos 2θt̃ − iδ(1)φXt sin θt̃ cos θt̃) e−iφXt , (3.2.34b)

δ(1)Mt̃21 = (δ(1)m2
t̃1
− δ(1)m2

t̃2
) sin θt̃ cos θt̃ eiφXt

+ (m2
t̃1
−m2

t̃22
)(δ(1)θt̃ cos 2θt̃ + iδ(1)φXt sin θt̃ cos θt̃) eiφXt , (3.2.34c)

δ(1)Mt̃22 = cos2 θt̃ δ
(1)m2

t̃2
+ sin2 θt̃ δ

(1)m2
t̃1

+ (m2
t̃1
−m2

t̃2
) sin 2θt̃ δ(1)θt̃ . (3.2.34d)

By transforming the counterterm matrix, δ(1)Mt̃, to the mass eigenstates basis, we
arrive at the following expression,

δ(1)m2
t̃12

= e−iφXt (m2
t̃1
−m2

t̃2
)(δ(1)θt̃ − iδ(1)φXt sin θt̃ cos θt̃). (3.2.35)

This relation between δ(1)m2
t̃12

and δ(1)θt̃ as well as δ(1)φXt , together with Eq. (3.2.30),
yields the generalization of the condition

δ(1)θt̃ =
Re Σ(1)

t̃1 t̃2
(m2

t̃1
) + Re Σ(1)

t̃1 t̃2
(m2

t̃2
)

2(m2
t̃1
−m2

t̃2
) , (3.2.36)

which is valid for MSSM scenarios without CP-violation in the stop sector [34,147,
148,188,189]. If the stop sector exhibits CP-violation it is instead more convenient
to use the expressions in Eqs. (3.2.31a)–(3.2.31c). We will adopt the prescription of
Eqs. (3.2.31a)–(3.2.31c) throughout this thesis.

The top-quark mass can be renormalized in the on-shell scheme,

δ(1)mt = mt

2 Re
[
Σ(1),L
t (m2

t ) + Σ(1),R
t (m2

t ) + 2 Σ(1),S
t (m2

t )
]
, (3.2.37)

where ΣL
t , ΣR

t and ΣS
t are the coefficients in the Lorentz decomposition of the top-

quark self-energy (see Eq. (3.1.25)). In the context of the Higgs mass calculation, it
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is sometimes more preferable to use the running MS mass, defined in the Standard
Model, mt ≡ mMS,SM

t (mOS
t ). This mass is related to the on-shell one via the following

relation,
mt = mOS

t (1 + δSM). (3.2.38)

The explicit one-loop formulas for δSM can be found in [190]. This parametrization
allows to take into account leading QCD corrections to the Higgs potential beyond
the two-loop order, as shown in [187,191]. Furthermore, this choice is more convenient
for the resummation of the logarithmic contributions to the Higgs mass, which will
be considered in the next Chapter.

In the forthcoming parts of this thesis, we will sometimes use the DR scheme for
the soft-breaking parameters of the stop sector. In this case, only the UV-divergent
part has to be kept in Eqs. (3.2.31a)–(3.2.31c).

3.2.3 Bottom/sbottom sector

The renormalization of the sector containing a bottom quark and two sbottoms is
more involved as the stop sector due to the following reason. As we already pointed
out at the end of Section 2.5.1, the quantum corrections to any observable, which
are proportional to the MSSM bottom Yukawa coupling, are only significant in the
parameter region where tan β is large. It may also happen that in this region of
parameter space, the mentioned corrections are not just large but the dominant
corrections to an observable. In this regard, special attention has to be paid to the
choice of the renormalization scheme, since an inappropriate scheme choice may lead to
artificially enhanced contributions and eventually the breakdown of the perturbative
series. Comparisons of different renormalization schemes for the bottom/sbottom
sector were performed in Refs. [148, 149, 189, 192–195]. For instance, it was found out
that the renormalization of the bottom/sbottom sector in complete analogy to the
top/stop sector yields numerically unstable results. In this Section, we will describe
two schemes which we were considered to be well-behaved in the Refs. [189, 195] and
which will be later used in the thesis.

3.2.3.1 Renormalization Scheme 1 (RS1)

The first scheme was originally used in [148, 149] in the context of the two-loop
corrections to the lightest Higgs mass.37 These corrections were derived in the MSSM

37An analogous scheme but for arbitrary values of tanβ is referred to as “AOS
b , θOS

b ” in Ref. [189] and RS6 in
Ref. [195].
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without CP-violation (rMSSM) and in the limit tan β →∞, or equivalently,

v1 → 0, v2 → v. (3.2.39)

Both sbottom masses are fixed on-shell,

δmb̃i
= Re Σb̃ib̃i

(m2
b̃i

), i = 1, 2. (3.2.40)

The trilinear soft-breaking parameter Ab is fixed via the (b̃∗1b̃2A) vertex function
Λ12A(p2

1, p
2
2, p

2
A). At the tree level and in the limit tβ →∞ (i.e. sβ → 1) this vertex

has the following form in the Lagrangian,

L ⊃ i√
2
Ãb (b̃∗1b̃2A) + h.c., where Ãb = hbAb. (3.2.41)

The renormalization condition is given by

Λ̂(1)
12A(m2

b̃1
,m2

b̃1
, 0) + Λ̂(1)

12A(m2
b̃2
,m2

b̃2
, 0) != 0, (3.2.42)

where the renormalized one-loop three-point function Λ̂(1)
12A(p2

1, p
2
2, p

2
A) can be expressed

in terms of the unrenormalized one in the following way,

Λ̂(1)
12A(p2

1, p
2
2, p

2
A) = Λ(1)

12A(p2
1, p

2
2, p

2
A) + i√

2
δ(1)Ãb+

+ i
Ãb
2
(
δ(1)Zb̃11

+ δ(1)Zb̃22
+ δ(1)ZAA

)
,

(3.2.43)

where δ(1)Zb̃11
, δ(1)Zb̃22

and δ(1)ZAA are the field renormalization constants for the
sbottoms b̃1,2 and the CP-odd Higgs boson, respectively. The renormalization constant
for Ãb is derived from Eqs. (3.2.42) and (3.2.43),

δ(1)Ãb = − i√
2
(
Λ(1)

12A(m2
b̃1
,m2

b̃1
, 0) + Λ(1)

12A(m2
b̃2
,m2

b̃2
, 0)
)

− Ãb
2
(
δ(1)Zb̃11

+ δ(1)Zb̃22
+ δ(1)ZAA

)
.

(3.2.44)

The field renormalization constants of the sbottoms are chosen in the following way to
ensure the infrared finiteness of the three-point function (see the discussion in Section
3 of [149]),

δ(1)Zb̃ii = −
Re Σ(1)

ii (m2
b̃1

)− Re Σ(1)
ii (m2

b̃2
)

m2
b̃1
−m2

b̃2

, i = 1, 2. (3.2.45)
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In the same way, the counterterm δ(1)ZAA reads 38

δ(1)ZAA = −
Re Σ(1)

AA(m2
b̃1

)− Re Σ(1)
AA(m2

b̃2
)

m2
b̃1
−m2

b̃2

. (3.2.46)

For the mixing angle of the sbottoms, θb, the condition, analogous to the condition in
Eq. (3.2.36), is used,

δ(1)θb̃ =
Re Σ(1)

b̃1b̃2
(m2

b̃1
) + Re Σ(1)

b̃1b̃2
(m2

b̃2
)

2(m2
b̃1
−m2

b̃2
) . (3.2.47)

By using this condition and the relation in Eq. (2.5.34), derived at the end of
Section 2.5.2, the counterterm for the bottom quark mass can be derived. In the limit
tβ →∞ the relation in Eq. (2.5.34) takes the form

s2θb = 2mb µ tβ
m2
b̃2
−m2

b̃1

. (3.2.48)

Therefore the counterterm for the bottom mass in this scheme has the following form,

δ(1)mb = mb

δ(1)m2
b̃2
− δ(1)m2

b̃1

m2
b̃2
−m2

b̃1

+ δ(1)s2θb
s2θb

− δ(1)µ

µ
− δ(1)tβ

 , (3.2.49)

where δ(1)µ is the counterterm for the Higgsino mass parameter µ, which will be derived
in Section 3.2.5. The actual bottom quark mass, which is used in the calculation is
given by the formula

m̂b = mDR,MSSM
b (Q)

1 +
δ(1)m2

b̃2
− δ(1)m2

b̃1

m2
b̃2
−m2

b̃1

+ δ(1)s2θb
s2θb

− δ(1)µ

µ
− δ(1)tβ

∣∣∣∣∣∣
fin

.

(3.2.50)
Note that this quantity is scale independent at the one-loop level if the Higgsino mass
parameter µ is renormalized in the DR scheme which will be assumed throughout this
thesis. Due to the SU(2)L symmetry, the bilinear soft-breaking parameters mb̃L

and
mt̃L are equal at the tree level. This relation is broken at the one-loop level. Indeed,
the counterterms for mt̃L and mb̃L

read

δ(1)m2
t̃L

= cos2 θt̃ δ
(1)m2

t̃1
+ sin2 θt̃ δ

(1)m2
t̃2

+ (m2
t̃2
−m2

t̃1
) sin 2θt̃ δ(1)θt̃ − 2 mt δ

(1)mt, (3.2.51a)

δ(1)m2
b̃L

= cos2 θb̃ δ
(1)m2

b̃1
+ sin2 θb̃ δ

(1)m2
b̃2

+ (m2
b̃2
−m2

b̃1
) sin 2θb̃ δ(1)θb̃ − 2 mb δ

(1)mb, (3.2.51b)
38While the definition of the field renormalization constant given in Eq. (3.2.45) is crucial for sbottoms to cancel

the IR singularities associated with gluon radiation, it is not needed for the CP-odd Higgs boson [196]. Instead also
the definition in Eq. (3.2.7d) could be used.
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which in general are not equal to each other. In the following, we will assume that
m2
t̃L

is given as an input parameter. Then the renormalized soft sbottom mass m2
b̃L

is
given by

m2
b̃L

= m2
t̃L

+ δ(1)m2
t̃L
− δ(1)m2

b̃L
. (3.2.52)

3.2.3.2 Renormalization Scheme 2 (RS2)

Another renormalization scheme, which will be described in this Section, was used
in Refs. [9, 11, 189] (see also [195, 197]). 39 As in the mentioned references, we will
consider the most general case of the MSSM with CP violation. Contrary to the
RS1 scheme, in this scheme the soft breaking masses mb̃L

and mt̃L are equal at the
one-loop level. This implies

δ(1)m2
b̃L

= δ(1)m2
t̃L
. (3.2.53)

The consequence of this relation is that only one of the sbottom masses can be set
on-shell. As a matter of convention, the mass of the second sbottom is defined in the
on-shell scheme,

δ(1)m2
b̃2

= Re Σb̃2b̃2
(m2

b̃2
). (3.2.54)

The mass of the bottom quark is treated as an independent parameter and is renor-
malized in the DR scheme,

δ(1)mb = mb

2 Re
[
Σ(1),L
b (m2

b) + Σ(1),R
t (m2

b) + 2 Σ(1),S
t (m2

b)
]∣∣∣

div
. (3.2.55)

The trilinear soft-breaking parameter Ab is also defined in the DR scheme. Using
the relation, analogous to the one in the Eq. (3.2.31a), δ(1)Ab can be related to the
counterterms of the sbottom mass matrix after rotating back to the gauge eigenstate
basis,

δ(1)ADR
b = 1

mb

[(
δ(1)m2, DR

b̃1
− δ(1)m2, DR

b̃2

)
Ub̃11

U∗b̃12

+ δ(1)m2, DR
b̃12

Ub̃21
U∗b̃12

+ δ(1)m2, DR
b̃21

Ub̃11
U∗b̃22

]

− (Ab − µ∗ tβ) δ
(1)mDR

b

mb

+ tβ δ
(1)µ∗, DR + µ∗ tβ δ

(1)tDR
β ,

(3.2.56)

where δ(1)tDR
β is defined by Eq.(3.2.18) and the counterterm for the Higgsino mass

parameter, δ(1)µ∗, DR, will be defined in Section 3.2.5. The renormalization constants
in the expression above, δ(1)m2, DR

b̃1
, δ(1)m2, DR

b̃2
and δ(1)m2, DR

b̃12
, are also fixed in the DR

39This scheme is referred to as “ADR
b , θDR

b ” in Ref. [189] and RS2 in Ref. [195].
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scheme,

δ(1)m2, DR
b̃1

= Σ(1)
b̃1b̃1

(m2
b̃1

)
∣∣∣
div
, δ(1)m2, DR

b̃2
= Σ(1)

b̃2b̃2
(m2

b̃2
)
∣∣∣
div
,

δ(1)m2, DR
b̃12

= 1
2
(

Σ(1)
b̃1b̃2

(m2
b̃1

)
∣∣∣
div

+ Σ(1)
b̃1b̃2

(m2
b̃2

)
∣∣∣
div

)
.

(3.2.57)

Eqs. (3.2.53)–(3.2.57) fix the renormalization conditions for all parameters of the
sector.

3.2.4 Bottom quark mass in the MSSM

Both schemes, which we discussed in the previous Section, require the calculation of
the bottom quark mass in the DR scheme in the full MSSM at some renormalization
scale Q. Fits of experimental data, however, extract the running mass defined in the
SM at the scale mb [4],

mMS,SM
b (mb) = 4.18+0.04

−0.03 GeV. (3.2.58)

The relation between mDR,MSSM
b and mMS,SM

b can be obtained in the following manner
[189]. The on-shell mass of the bottom quark is related at the one-loop level to the
running mass in the SM via the following relation (see Eq. (3.1.32)),

mOS
b = mDR,SM

b (Q)− (δ(1)mOS
b )SM

∣∣∣
fin
, (3.2.59)

where the superscript “OS, SM” means that only diagrams containing only SM
particles contribute to the expression of the counterterm. Similarly, the on-shell
bottom mass and the running mass in the full MSSM are related via

mOS
b = mDR,MSSM

b (Q)− (δ(1)mOS
b )MSSM

∣∣∣
fin
. (3.2.60)

After equating the Eqs. (3.2.59) and (3.2.60), we obtain the one-loop relation between
mDR,SM
b (Q) and mDR,MSSM

b (Q),

mDR,MSSM
b (Q) = mDR,SM

b (Q) + (δ(1)mOS
b )MSSM

∣∣∣
fin
− (δ(1)mOS

b )SM
∣∣∣
fin

=

= mDR,SM
b (Q) + (δ(1)mOS

b )n/SM,
(3.2.61)

where the superscript “n/SM” means that only diagrams containing at least one
non-SM particle contribute to the quantity. In addition to this, the one-loop relation
between the bottom masses defined in the DR and the MS schemes has to be taken
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into account [198,199]

mDR
b (Q) = mMS

b (Q)
(

1− αs(Q)
3π

)
. (3.2.62)

As was pointed out in Ref. [139], the difference between the SM bottom mass and
the bottom mass in the full MSSM, (δ(1)mOS

b )n/SM, grows linearly with tan β and for
sufficiently high values of tan β can reach values of O(mb). Moreover, it does not
vanish in the limit when all superpartners of the SM particles have masses much
heavier than the electroweak scale. These tan β-enhanced terms in (δ(1)mOS

b )n/SM are
usually denoted as ∆b, 40

(δ(1)mOS
b )n/SM = mb ∆b +mb εb. (3.2.63)

The occurence of these large corrections leads to the necessity of computing the
relation between mDR,MSSM

b (Q) and mDR,SM
b (Q) beyond the one-loop order. As was

proven in [139,200], all higher-order corrections to (δ(1)mOS
b )n/SM obey the following

property: at n-th order of perturbation theory the leading tβ-enhanced contribution
to (δmOS

b )n/SM is proportional to the one-loop result, namely,

(δ(n)mOS
b )n/SM = mb ∆n

b + . . . , (3.2.64)

where the ellipsis denotes the terms which either contain tan β to a power less than n
or which are additionally suppressed by powers of mb/MSUSY (where MSUSY denotes
the mass scale of the non-SM particles), or both. This property makes it possible to
sum the leading contributions to (δmOS

b )n/SM at all orders of perturbation theory and
leads to the result,

mDR,MSSM
b (Q) = mMS,SM

b (Q)(1 + εb)
∞∑
n=0

∆n
b = mMS,SM

b (Q) 1 + εb
1−∆b

, (3.2.65)

where the transition between DR and MS schemes (Eq. (3.2.62)) was included in εb. 41

The “scalar” part of the bottom mass counterterm, ΣS
b (m2

b), (see Eq. (3.1.26)) contains
pieces which are tan β-enhanced compared to ΣL

b (m2
b) and ΣR

b (m2
b). Therefore the

quantity ∆b can be expressed by

∆b = Σn/SM,S
b (mb)

∣∣∣
tβ→∞

. (3.2.66)

40It should be noted that in the calculation of low-energy observables, (i.e. the decay h→ b̄b), ∆b drops out if all
non-SM particles are much heavier than the EW scale as expected from the decoupling theorem.

41In principle, there are also terms in (δmOS
b )n/SM which are proportional to m2

b tan2 β coming from the diagrams
with the virtual charged Higgs boson H± and the top-quark. They are, however, numerically irrelevant and thus
included into εb.
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bL bR

g̃

b̃1,2

bL bR

χ̃±1,2

t̃1,2

bL bR

χ̃0
1,2,3,4

b̃1,2

Figure 3.2: Diagrams contributing to ∆b at the leading order

It gets contributions from the diagrams depicted in Fig. 3.2. The left diagram yields
contributions proportional to αs, while the second and third diagrams yield terms
of O(α, αt). It can be shown [200] that the divergent part of Σn/SM,S

b (mb) cancels
in the limit tβ → ∞. The explicit expressions for ∆b were originally computed
in [139,191,200,201] and can be found (together with expressions for εb) in App. A in
the limit where all non-SM particles are heavier than mt. The leading two-loop QCD
contributions to ∆b have been computed in Refs. [29–31]. Inclusion of these corrections
allows one to resum contributions of O(αns tann−1 β) and O(αsαn−1

t tann−1 β) in the
relation between mDR,MSSM

b and mMS,SM
b at all orders of perturbation theory (see

Chapters 5 and 6 for details).

3.2.5 Electroweakino sector

In the gaugeless limit the mass matrices of charginos and neutralinos have the following
form,

Ygl =



M1 0 0 0

0 M2 0 0

0 0 0 −µ

0 0 −µ 0


, Xgl =

M2 0

0 µ

 . (3.2.67)

The eigenvalues of these matrices read

mχ̃0
1

= |M1|, mχ̃0
2

= |M2|, mχ̃0
3,4

= |µ|,

mχ̃±1
= |M2|, mχ̃±2

= |µ|.
(3.2.68)

Therefore, the counterterm for the Higgsino mass parameter µ can be related to the
mass counterterms δ(1)mχ̃±2

[91,129,130]. In this thesis, we renormalize this parameter
in the DR scheme,

δ(1)µ = µ

2

[
Σ(1),L
χ̃±2

(|µ|2) + Σ(1),R
χ̃±2

(|µ|2) + 2 Σ(1),S
χ̃±2

(|µ|2)
]∣∣∣∣

div
. (3.2.69)
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3.2.6 Vacuum expectation value

The vacuum expectation value v can be expressed in terms of the parameters
(MW , sw, e) (see Eq. (2.5.9)),

v2 = 2s2
wM

2
W

e2 . (3.2.70)

Thus the renormalization transformation applied to v2 yields

v2 → v2
(
δ(1)M2

W

M2
W

+ 2δ(1)sw

sw
− δ(1)e2

e2 − δ(1)Zhh

)
, (3.2.71)

where the one-loop counterterm for sw was derived in Eq. (3.2.12). In the gaugeless
limit this counterterm is finite and δ(1)e2

e2 = 0. That is why the relation between the
MS vev (an analogous relation is valid for the DR vev) and the vev defined via MW ,
sw and e (we will refer to this vev as vOS) is given by

v2
MS = v2

OS

(
1 + δ(1)M2

W

M2
W

∣∣∣∣∣
fin

+ 2δ(1)sw

sw

)
(3.2.72)

in the gaugeless limit. Instead of vOS in this thesis we will use a different definition
for the vacuum expectation value (see also Eq. (1.2.20)),

vGF =
(
2
√

2GF

)−1/2
. (3.2.73)

The relation between the two definition is given by

v2
OS = v2

GF

(
1 + ∆(1)r

)
, (3.2.74)

where ∆r includes all non-QED corrections to the muon decay amplitude [202,203].
The MSSM contributions to ∆r can be found in [67, 69, 204, 205]. In the gaugeless
limit [91, 129,130]

∆(1)r = −2δ(1)sw

sw
. (3.2.75)

From Eqs. (3.2.72)–(3.2.75) the leading-order relation between vMS and vGF is obtained,

v2
MS = v2

GF

(
1 + δ(1)M2

W

M2
W

∣∣∣∣∣
fin

)
. (3.2.76)



Chapter 4

Higgs boson masses in the MSSM

This chapter provides a review of different methods for the Higgs mass calculation
in the MSSM. In Sec. 4.1, we review the main idea and the current status of the
fixed-order method which is based on the perturbative calculation of the Higgs boson
self-energies at a given order. Sec. 4.2 contains a review of the EFT method which
is best applicable in the case of a large hierarchy in the MSSM spectrum and allows
to resum large logarithms in the expression for the SM-like Higgs mass by means of
numerical integration of the system of RGEs. In Sec. 4.3, we consider the hybrid
approach which serves as a merger of the fixed-order and the EFT approaches. It
enables to make a precise prediction for the Higgs boson mass both for light- and heavy
SUSY scenarios. This approach requires the conversion of input parameters from the
scheme used in the fixed-order calculation to the DR scheme. The conversion formula
may contain two sources of large logarithms: logarithms related to the RGE running
of the top mass and other types of logarithms which appear only in certain SUSY
scenarios and are absent in the others. This issue is studied in Sec. 4.4.

4.1 Feynman diagrammatic approach

As was already pointed out in Section 2.5.1, the tree-level mass of the lightest Higgs
boson of the MSSM cannot be larger than the mass of the Z-boson, but it receives
sizable quantum corrections. The loop-corrected masses of the neutral Higgs bosons
are the poles of the 3 x 3 propagator matrix 42

∆hHA(p2) = −
(
Γ̂hHA(p2)

)−1
, (4.1.1)

42In principle, in determining the loop-corrected masses one has to take into account the mixing of the Higgs bosons
with the Goldstone and the gauge bosons. So, in general, a 6 x 6 matrix has to be considered. However, the mixing of
the neutral Higgs bosons with Goldstone and gauge boson yields subleading two-loop contributions to the Higgs-boson
masses and is therefore neglected in this thesis.
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where
Γ̂hHA(p2) = i

[
p21l−M(p2)

]
. (4.1.2)

In other words, they satisfy the equation

det Γ̂hHA(M2
i ) = 0. (4.1.3)

The mass matrix M(p2) in Eq. (4.1.2) has the following form

M(p2) =


m2
h − Σ̂hh(p2) −Σ̂hH(p2) −Σ̂hA(p2)

−Σ̂hH(p2) m2
H − Σ̂HH(p2) −Σ̂HA(p2)

−Σ̂hA(p2) −Σ̂HA(p2) m2
A − Σ̂AA(p2)

 , (4.1.4)

where Σ̂ij(p2) are the renormalized self-energies with external Higgs bosons, i, j ∈
{h, H, A}, and mh,mH ,mA are the tree-level masses. The diagonal elements of the
propagator matrix ∆hHA(p2) can be rewritten in a form which resembles the dressed
propagator (see Eq. (3.1.16)) of a single scalar particle without mixing,

∆ii(p2) := (∆hHA(p2))ii = i

p2 −m2
i + Σ̂eff

ii (p2)
, (4.1.5)

where the “effective” self-energy can be expressed via the elements of the matrix Γ̂hHA
(Γ̂ij := (Γ̂hHA)ij),

Σ̂eff
ii (p2) = Σ̂ii(p2)− i

2Γ̂ij(p2)Γ̂jk(p2)Γ̂ki(p2)− Γ̂2
ki(p2)Γ̂jj(p2)− Γ̂2

ij(p2)Γ̂kk(p2)
Γ̂jj(p2)Γ̂kk(p2)− Γ̂2

jk(p2)
.

(4.1.6)
with i, j and k all being different from each other. It can be shown that the
inverse of any element of the matrix ∆hHA(p2) is proportional to the determinant of
Γ̂hHA(p2) [206],

(∆ii)−1 = det Γ̂hHA(p2)(
p2 −m2

j + Σ̂jj(p2)
) (
p2 −m2

k + Σ̂kk(p2)
)
− Σ̂2

jk(p2)
, (4.1.7a)

(∆ij)−1 = det Γ̂hHA(p2)
Σ̂ik(p2)Σ̂jk(p2)−

(
p2 −m2

k + Σ̂kk(p2)
)

Σ̂ij(p2)
, (4.1.7b)

so any of them can be used to determine the poles of the matrix ∆hHA(p2). For
instance, the polesM2

i satisfy the equation

M2
i −m2

i + Σ̂eff
ii (M2

i ) = 0, i ∈ {h, H, A}. (4.1.8)
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The polesM2
i are in general complex numbers and can be written as,

M2
i = M2

i − i Mi Γi, (4.1.9)

where Mi is the loop-corrected mass of a Higgs boson and Γi its width. In general,
equation (4.1.8) cannot be solved analytically, but an approximate solution can be
obtained by a perturbative expansion of the effective self-energy, Σ̂eff

ii (p2) in the
number of loops,

Σ̂eff
ii (p2) = Σ̂(1)

ii (p2) + Σ̂(2)
ii (p2)−

[
Σ̂(1)
ij (p2)

]2
p2 −m2

j

−

[
Σ̂(1)
ik (p2)

]2
p2 −m2

k

+ . . . , (4.1.10)

where the superscript attached to the renormalized self-energies denotes the loop order,
at which the respective self-energy is computed, and the ellipsis denotes contributions
of three-loop order and higher. The ansatz for the loop-corrected mass,M2

i , can also
be represented as a series,

M2
i = m2

i + ∆M2,(1)
i + ∆M2,(2)

i + . . . , (4.1.11)

where m2
i is a tree-level mass, andM2,(k)

i is a quantum correction to it at the k-th
order of perturbation theory.

By inserting the ansatz (4.1.11) into the equation (4.1.8) and equating the corre-
sponding loop orders, we obtain the expressions forM2,(1)

i andM2,(2)
i ,

∆M2,(1)
i = −Σ̂(1)

ii (m2
i ), (4.1.12a)

∆M2,(2)
i = −Σ̂(2)

ii (m2
i ) + Σ̂(1)

ii (m2
i ) Σ̂(1)′

ii (m2
i ) +

[
Σ̂(1)
ij (m2

i )
]2

m2
i −m2

j

+

[
Σ̂(1)
ik (m2

i )
]2

m2
i −m2

k

,

where j, k 6= i. (4.1.12b)

A few comments are in order. In general, the expansion of Σ̂eff
ii (p2) in the number of

loops is problematic. In particular, the denominators in Eq. (4.1.12b) become small
for m2

i ∼ m2
j and m2

i ∼ m2
k. In this case, the loop expansion is not well-defined and

one needs the full expression given by Eq. (4.1.5) without further approximations
to determine the complex poles. In this thesis we focus on the decoupling limit,
mA �MZ , where the loop expansion is well-defined for the lightest Higgs boson and
we will use it. However, it is worth noting that even in this case the expansion does
not work for the bosons H and A. Here, by the lightest Higgs boson we mean the
Higgs boson which has the smallest tree-level mass. The higher-order corrections, in
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principle, might change the hierarchy of masses.43 This, however, does not happen in
the mentioned limit.

The complex pole of the lightest Higgs boson has the following form up to the
two-loop order,

M2
h = m2

h − Σ̂(1)
hh (m2

h)− Σ̂(2)
hh (m2

h) + Σ̂(1)
hh (m2

h) Σ̂(1)′
hh (m2

h)

+

[
Σ̂(1)
hH(m2

h)
]2

m2
h −m2

H

+

[
Σ̂(1)
hA(m2

h)
]2

m2
h −m2

A

.
(4.1.13)

In the decoupling limit, mA �MZ the last two terms in Eq. (4.1.13) are suppressed by
the masses of the heavy Higgs bosons and therefore can be neglected.44 Additionally,
since the tree-level mass of the SM-like Higgs boson is smaller than the Z-boson mass,
only light quarks and leptons can contribute to the imaginary part of Σ̂hh(m2

h) in the
Feynman gauge. This imaginary part is numerically irrelevant for the prediction of the
Higgs boson mass and will be neglected in this thesis. Applying the above-mentioned
approximations, the mass of the lightest Higgs boson reads up to the two-loop order

(M2
h)FD = m2

h − Σ̂(1)
hh (m2

h)− Σ̂(2)
hh (m2

h) + Σ̂(1)
hh (m2

h) Σ̂(1)′
hh (m2

h). (4.1.14)

In the method called Feynman-diagrammatic (FD) or fixed-order (FO) approach the
contributions to the self-energies Σ̂ij(p2) from all particles of the theory are computed
at a given order. For instance, full one-loop corrections to Σ̂ij(p2), including the
momentum dependence, have been computed in the framework of the MSSM with [90]
and without CP-violation [183,184,208].

The leading two-loop corrections to the Higgs masses are of O(αtαs) (more precisely,
of O(m2

tαtαs)). They have been computed in the approximation of vanishing external
momenta and vanishing electroweak gauge couplings in the DR scheme [209,210] and
in the mixed DR/OS scheme45 [34, 187] in the MSSM without CP-violation. The
generalization of these corrections to the case of the MSSM with CP-violation has
been performed in [150]. The corresponding two-loop corrections for non-zero external
momentum have been computed in the rMSSM [211] and in the complex MSSM
(cMSSM) [7, 211,212].

Other sizable two-loop contributions to the Higgs masses are of O(α2
t ) (more

accurately, of O(m2
tα

2
t )). This correction has also been derived in the limit of

vanishing external momenta and vanishing electroweak gauge couplings for the case of
43The main issue in this context is that it is not possible to make a unique assignment of which loop-corrected state

should correspond to which tree-level state. In fact, all assignments are equivalent to each other as long as one keeps
the full expression of the propagator matrix wirthout additional approximations. A detailed discussion of this issue
can be found in [206,207].

44These terms are taken into account in Refs. [16, 19].
45The mixed DR/OS scheme employed in [34,147,187] implies the renormalization of tanβ and the Higgsino mass

parameter µ in the DR scheme. The other parameters are renormalized OS.
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the MSSM with real parameters in the pure DR scheme [213], in the mixed DR/OS
scheme [147] and in the cMSSM in the mixed DR/OS scheme [91,129,130].

For large tan β the contributions involving down-type fermions are sizable. In this
case a careful choice of the renormalization scheme for the bottom/sbottom sector is
needed to avoid numerically unstable results (see the discussion in Sec. 3.2.3 and in
Refs. [189,195]). The corrections to the Higgs boson masses of order O(αbαs) (of order
O(m2

bαbαs)) in the rMSSM and in the limit of vanishing external momenta have been
evaluated in Refs. [149, 189]. The mixed two-loop corrections to the Higgs masses
involving top and bottom Yukawa couplings of order O(αtαb + α2

b) (i.e. of order
O(m2

tαtαb+m2
bαtαb+m2

bα
2
b)) have been computed in the rMSSM [148] and cMSSM [9].

Contributions involving the τ -Yukawa coupling, O(αταb + α2
τ ) for the rMSSM have

been computed in [148,214]. Finally, the complete two-loop QCD corrections to Higgs
boson masses in the cMSSM, taking into account the full momentum dependence
as well as all contributions involving the Yukawa couplings, O(√αq1

√
αq2αs), where

q1,2 = t, b, c, s, u, d, and the gauge couplings, O(ααs), have been computed in [11]. The
full two-loop effective potential in the cMSSM has been computed in [215]. This result
was used to derive two-loop O(ααs) corrections to the Higgs in the approximation of
zero momenta [216,217]. The two-loop corrections to the SM-like Higgs mass in the
case of non-minimal flavor violation were computed in [218].

Three-loop corrections have been computed at order O(αtα2
s) (i.e. of order

O(m2
tαtα

2
s)) in the limit of vanishing external momenta for the rMSSM in [10,219,220]

and in [12] (see also Chapter 7).
The main advantage of the FO approach is that it allows one to take into account

all contributions from different MSSM sectors at a given order of perturbation theory,
i.e., both logarithmic and non-logarithmic terms, as well as all terms suppressed
by the ratio v/MSUSY. However, if there is a strong hierarchy of scales present in
the mass spectrum, the logarithms of the ratio of these scales emerge in the result
of the calculation. These logarithms (which we will call “large logarithms” in the
forthcoming parts of this thesis) spoil the convergence of the perturbation series and
lead to large theoretical uncertainties of the final result.

A prime example of such large logarithms appears in the dominant one-loop
contributions originating from the (s)top sector to the SM-like Higgs boson in scenarios
where all non-SM particles are much heavier than the electroweak scale [214],

M2
h = M2

Z cos2 2β + 3m4
t

4π2v2

[
log M

2
S

m2
t

+ X2
t

M2
S

− X4
t

12 M4
S

]
+O

(
m2
t

M2
S

)
, (4.1.15)

where M2
S = mt̃1mt̃2 . Similar logarithmic terms arise at higher-orders; at n-th order

of perturbation theory the corrections to the Higgs masses contain logk M2
S

m2
t
terms,
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where k = 1 . . . n. The method which allows to resum these logarithms to all orders
of perturbation theory will be discussed in the next Section.

4.2 Effective field theory (EFT) approach

Another method for the calculation of the Higgs masses is the effective field theory
(EFT) approach. The effective field theory method is applied in various areas of
physics and in general treats the case of a hierarchy between the different scales of
a theory. Its basic idea is that physics at low energy scales should not depend on
physics at high scales [170]. More formally, in this approach, all degrees of freedom
are categorized into “light” and “heavy” degrees of freedom. All “heavy” degrees of
freedom are decoupled or integrated out. For example, a particle with the mass M is
decoupled at the scale Q ∼M . Below this scale the low energy EFT, containing only
the light degrees of freedom, describes all interactions between light particles.

To ensure that the EFT and the full theory give rise to the same predictions at the
high scale, the masses and couplings in the EFT encode the physics of the full theory.
Schematically, this dependence can be written as an expansion in the loop-counting
factor κ = (16π2)−1,

geff (Q = M) = gtree + κ ∆g1l + κ2 ∆g2l + . . .
∣∣∣
Q=M

. (4.2.1)

The tree-level coupling constant gtree, as well as the threshold corrections ∆g1l and
∆g2l are obtained by demanding that predictions for physical observables calculated
in the full theory and the EFT are equal to each other order by order in perturbation
theory. This procedure is called matching. Given the value of the coupling constant
geff at scale Q = M , one can calculate its value at low energies by making use of the
renormalization group equations (see Sec. 3.1.4). This procedure is called matching.
Given the value of the coupling constant geff at the scale Q = M , one can calculate
its value at low energies by making use of the renormalization group equations (see
Sec. 3.1.4).

In this thesis we will mostly consider the scenario (also called “Heavy SUSY”
scenario) in which all soft-breaking parameters together with the CP-odd Higgs boson
mass mA lie around some characteristic scale MSUSY which is much heavier than the
electroweak scale, MSUSY � mt.46 We will use the geometric mean of the stop soft
breaking masses as a definition for MSUSY,

MSUSY = √mt̃Lmt̃R . (4.2.2)
46In App. A we also present threshold corrections to the couplings in the split-SUSY scenario, in which all stop and

sbottom masses are much heavier than the gaugino masses.
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In this setup all non-SM particles are integrated out at MSUSY, and at energies
Q < MSUSY the physics is described by the SM interactions. The coupling constants,
however, are fixed by the boundary condition at MSUSY. For instance, the quartic
coupling, λ, is not a free parameter anymore. Instead, it is fixed at the scale
MSUSY. The tree-level matching relation can be derived from Eq. (2.5.24) in the limit
mA �MZ ,

m2
h = M2

Z cos2 2β +O
(
M2

Z

m2
A

)
. (4.2.3)

From this relation and Eqs. (1.2.11) and (1.2.16) we obtain the tree-level matching
condition for the Higgs quartic coupling,

λ(MSUSY) = 1
4(g2 + g′2)c2

2β, (4.2.4)

where all parameters on the right-hand side are evaluated in the DR scheme at the
scale MSUSY. We will choose the electroweak scale to be equal to the top pole mass,

Mt ≡ mOS
t . (4.2.5)

At this scale, the running MS top and bottom Yukawa,47 electroweak and strong
gauge couplings are fixed. The running top Yukawa and electroweak gauge couplings
are extracted at the electroweak scale from the top, W -, Z-boson pole masses, and
the Fermi constant GF via

yMS,SM
t (Mt) = Mt

vGF
(1 + ∆yt),

gMS,SM(Mt) =
√

2MW

vGF
(1 + ∆g),

g′ MS,SM(Mt) =
√

2

√
M2

Z −M2
W

vGF
(1 + ∆g′),

v2
MS,SM(Mt) = v2

GF
(1 + (δv2)SM).

(4.2.6)

where vGF is defined via Eq. (1.2.20), and ∆yt, ∆g, ∆g′ and δv2,SM are sometimes
called “threshold corrections at the electroweak scale”. The explicit leading order
expressions for them can be found in Ref. [190]. The strong gauge coupling is
determined at the scale MZ with 5 active flavours, and the input bottom mass is
given at the scale mb, i.e. mMS,SM

b (mb) [4]. By means of the RGEs one computes
αs(Mt) and mMS,SM

b (Mt) and thus the bottom Yukawa coupling at this scale.
Knowing the boundary conditions for the couplings (g, g′, g3, yt, yb) at Mt and for

λ at MSUSY, one can solve the system of the renormalization group equations for

47In this thesis we do not consider contributions to the Higgs mass from quarks of the first and the second generations.
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these couplings to find the value of λ at the electroweak scale, λ(Mt). After that, the
running Higgs mass can be obtained,

(
mMS,SM
h

)2
= 2 λ(Mt)v2

MS,SM(Mt). (4.2.7)

The pole mass can be found from the SM pole equation (see Sec. 4.1),

M2
h −

(
mMS,SM
h

)2
+ Σ̃MS,SM

hh (M2
h) = 0, (4.2.8)

where the quantity Σ̃MS,SM
hh denotes the following combination of the SM Higgs self-

energy and the tadpole, renormalized in the MS scheme in the Standard Model,

Σ̃MS,SM
hh (p2) = Σ̂MS,SM

hh (p2)
∣∣∣∣
fin
− 1√

2vMS,SM
TMS,SM
h

∣∣∣∣
fin
. (4.2.9)

The approximate solution of Eq. (4.2.8) up to terms of three-loop order reads

(M2
h)EFT = 2λ(Mt)v2

MS,SM(Mt)− Σ̃MS,SM,(1)
hh (m2

h)− Σ̃MS,SM,(2)
hh (m2

h)

− Σ̃′MS,SM,(1)
hh (m2

h) ·
[
2λ(Mt)v2

MS,SM(Mt)− Σ̃MS,SM,(1)
hh (m2

h)−m2
h

]
+O(κ3),

(4.2.10)

where mh is the tree-level Higgs mass in the decoupling limit, mA �MZ , given by
Eq. (4.2.3).

The system of the RGEs in general can only be solved numerically or iteratively
order by order in the loop-counting factor κ. For example, the scale dependence of
the quartic coupling λ is given by the equation

dλ

dt
= βλ(t), t = logQ2, (4.2.11)

where Q is the renormalization scale. The β-function (see Sec. 3.1.4) on the right-hand
side is given as a power series in loops,

βλ(t) =
∞∑
n=1

κnβλ(t) = κ β
(1)
λ (t) + κ2 β

(2)
λ (t) + . . . , (4.2.12)

It can be expanded in a Taylor series around t̃ = logM2
SUSY,

βλ(t) =
∞∑
n=1

κn
∞∑
m=0

β
(n,m)
λ (t̃)
m! (t− t̃)m, with

β
(n,m)
λ (t) ≡ dmβ

(n)
λ (t)
dtm

, β
(n,0)
λ ≡ β

(n)
λ .

(4.2.13)
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Note that the quantity β(n,m)
λ (t) is of O(κm). For example,

β
(n,1)
λ (t) ≡ dβ

(n)
λ

dt
=
∑
g

∂β
(n)
λ

∂g

dg

dt
=
∑
g

∂β
(n)
λ

∂g

(
κβ(1)

g + . . .
)
, (4.2.14)

where the summation on the right-hand side runs over all coupling constants which
enter the expression for β(n)

λ . Plugging the expression in Eq. (4.2.13) into Eq. (4.2.11),
we can find the solution for λ(t) as a series in κ,

λ(Mt) = λ(MSUSY) +
∞∑
n=1

∞∑
m=0

κn
(−1)m+1

(m+ 1)! β
(n,m)
λ (MSUSY)Lm+1, (4.2.15)

where L = log M2
SUSY
M2
t

. Each term on the right-hand side is of O(κm+n). Therefore, the
one-loop beta-function, β(1)

λ , allows the resummation of all terms in the expression for
λ(Mt) which are proportional to (κL)m+1 via the numerical solution of Eq. (4.2.11).
These terms are called “leading logarithms” (LL). The two-loop beta-function allows
the resummation of the terms which are proportional to κ(κL)m+1. They are called
“next-to-leading logarithms” (NLL).

The derivatives β(n,m)
λ on the right-hand side of Eq. (4.2.15) can be expressed

in terms of the couplings evaluated at the scale MSUSY. For example, the Higgs
self-coupling, λ(MSUSY), is given at the leading order by Eq. (4.2.4). Higher order
corrections to this relation do not contain large logarithms and therefore generate
non-logarithmic and subleading logarithmic corrections to λ(Mt). For instance, one-
loop threshold corrections generate terms which are proportional to κn(κL)m+1 with
n ≥ 1, two-loop threshold corrections yield terms of order κn(κL)m+1 where n ≥ 2,
etc. With that, we can conclude that in order to resum NnLL logarithms, the n+ 1-th
order beta function, β(n+1)

λ , and the n-th order threshold correction to λ at MSUSY

are needed.

Some care has to be taken regarding the parametrization of the threshold corrections.
The threshold corrections to λ can be parametrized in terms of the SM or the MSSM
couplings defined at MSUSY. The two are related via an expression analogous to
Eq. (4.2.1). The threshold corrections to the respective couplings do not contain large
logarithms, so in principle both parametrizations are valid and equivalent as long
as the sum, given in Eq. (4.2.15), is truncated at some finite order in n. However,
there are cases when one of the parametrizations is preferable to the other one. As we
already mentioned in Sec. 3.2.4, the relation between the bottom mass in the SM and
in the MSSM contains terms which grow linearly with tan β and potentially can be
numerically important. These terms can be summed up to all orders of perturbation
theory [139,200]. This suggests that it is more appropriate to express the one- and
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two-loop threshold corrections to λ in terms of the MSSM bottom Yukawa coupling.
At the strict two-loop level, this parametrization is equivalent to the parametrization
via the SM bottom Yukawa coupling, but beyond this order of perturbation theory,
it consistently captures all the higher-order terms leading in the large tan β limit.
The application of the two resummations (RG resummation of large logarithms and
∆b resummation) at the same time does not cause any double counting as long as
large logarithms are absent in ∆b. As will be discussed in Chapters 5 and 6, ∆b does
not contain large logarithms if it is properly parametrized. Similar arguments can
be applied for the top Yukawa coupling. In the following chapters of this thesis we
will however express the threshold corrections to λ in terms of the SM top Yukawa
coupling. A detailed analysis of the numerical impact of different parametrizations of
the threshold corrections to λ, involving yt, can be found in [221].

Full one-loop threshold corrections to λ(MSUSY) have been computed in [32]. Two-
loop corrections are known at orders 48 O(α2

tαs) [33], O(α3
t ) [13], O((αt +αb)3 + (α2

b +
α2
t )αs + α2

bατ + αbα
2
τ + α3

τ ) [15] and O((αt + αb)ααs) [18]. Three-loop corrections
of O(α2

tα
2
s) have been calculated in [17]. The numerical effects of the inclusion of

several dimension-6 operators have been studied in [15]. All these corrections have
been computed in the MSSM without CP-violation. In Chapter 6 we will discuss
the derivation and numerical impact of the two-loop threshold corrections of order
O((αt + αb)3 + (α2

b + α2
t )αs) in the MSSM with CP-violation.

The EFT approach allows the resummation of large logarithms appearing in the
fixed-order calculation but it is not applicable if MSUSY ∼Mt. Therefore, in order to
provide a reliable prediction for the Higgs-boson masses in both low- and high-scale
MSSM scenarios, the resummation of the leading and subleading logarithms can be
combined with the fixed-order results in the MSSM in the so-called hybrid approach
which will be considered in the next Section.

4.3 Hybrid approach

In the hybrid approach, the logarithms that are resummed in the EFT approach are
added to the pole equation for the SM-like Higgs boson [21–23], 49

p2 −m2
h + Σ̂MSSM

hh (p2) + ∆EFT
hh = 0, (4.3.1)

48In this convention the dominant one-loop threshold correction is of O(α2
t ) and it yields the correction to the

SM-like Higgs mass of O(m2
tαt). Another possible convention often utilized in the literature is to use the same order

for the quartic coupling as for the Higgs mass. In that convention the dominant one-loop correction to the Higgs
self-coupling would be of O(αt) instead of O(α2

t ).
49Eq. (4.3.1) is only valid in the decoupling limit, mA �MZ . If mA ∼MZ , the effective field theory below MSUSY

is a Two-Higgs-Doublet Model (THDM). This case was considered in [16].
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where ∆EFT
hh includes the EFT result – i.e., the result for the MS Higgs mass – and

subtraction terms,

∆EFT
hh = −2 λ(Mt)v2

MS,SM(Mt)−
[
∆M2

h

]
sub

. (4.3.2)

The latter are needed to avoid double counting of the terms which are already
present in the FO result. These include logarithmic terms, i.e. terms which include
large logarithms, log M2

SUSY
M2
t

, and non-logarithmic terms which include non-logarithmic
contributions as well as logarithms of small mass ratios. The logarithms can be
extracted by means of perturbatively solving the system of RGEs up to a given order,

[
∆M2

h

]log

sub
= −2 λ(Mt)v2

MS,SM(Mt)
∣∣∣
logs

. (4.3.3)

The subtraction of the non-logaritmic terms is slightly more subtle. The non-
logarithmic SUSY correction to the SM-like Higgs mass in the EFT approach up to
the two-loop order yields (see Sec. 4.2),50

[
M2,EFT

h

]
non−log

= 2v2
MS,SM(Mt)

(
λtree(MSUSY) + ∆λ1l + ∆λ2l

)
, (4.3.4)

where the tree-level quartic coupling λtree(MSUSY) and the one- and two-loop threshold
corrections to it are expressed in terms of the MS or the DR couplings at MSUSY.
On the other hand, the FO result already contains exactly the same expression,
but parametrized via different couplings. Therefore, the expression in Eq. (4.3.4)
parametrized in terms of the FO couplings has to be subtracted to avoid double-
counting of the non-logarithmic terms [35]. Schematically,

[
∆M2

h

]non−log

sub
= −

[
M2,EFT

h

]
non−log

∣∣∣∣
pEFT→pFO+∆p

, (4.3.5)

where p is a parameter for which a different renormalization scheme is used in the
FO and in the EFT calculation. The finite shift between different renormalization
schemes in the one-loop threshold corrections generates two-loop terms which have to
be added to the non-logarithmic subtraction terms. For instance, in FeynHiggs the
FO result is parametrized by default via mt and vGF , while the one- and two-loop
threshold corrections to λ(MSUSY) are expressed in terms of mMS,SM

t (MSUSY) and
vMS,SM(MSUSY). The one-loop threshold correction to λ of order O(α2

t ) generates the
following non-logarithmic terms in the expression for the mass of the SM-like Higgs

50We only have to subtract the non-SM corrections since the SM terms as well as the terms of the form
Σ̂SM′
hh (m2

h)Σ̂non−SM
hh

(m2
h) + Σ̂SM

hh (m2
h)Σ̂n/SM′

hh
(m2

h) are generated by solving the pole eq in Eq. (4.3.1) and do not lead
to any double counting.
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boson,

[
M2,EFT

h

]
non−log

⊃ 12 κ v2
MS,SM(Mt)

(
yMS,SM
t (MSUSY)

)4
(

X2
t

M2
SUSY

− X4
t

12 M4
SUSY

)
=

= 12 κ v2
MS,SM(Mt)

mMS,SM
t (MSUSY)

vMS,SM(MSUSY)

4 (
X2
t

M2
SUSY

− X4
t

12 M4
SUSY

)
=

= 12 κ m4
t

v2
MS,SM(Mt)

(
X2
t

M2
SUSY

− X4
t

12 M4
SUSY

)
+ logs =

= 12 κ m
4
t

v2
GF

(
1− (δ(1)v2)SM

)( X2
t

M2
SUSY

− X4
t

12 M4
SUSY

)
+ logs + . . . ,

(4.3.6)

where the ellipsis denotes terms of three-loop order and higher, and (δ(1)v2)SM is a
threshold correction to the vacuum expectation value at the electroweak scale (see
Eqs. (4.2.6) and (3.2.76)). The higher-order logarithmic terms (denoted as “logs” in
Eq. (4.3.6)) come from the running of mMS,SM

t and vMS,SM from MSUSY down to Mt.
At the one- and two-loop level, they are included in the logarithmic subtraction terms.
The remaining terms in the fourth line of Eq. (4.3.6) have to be subtracted, i.e.

[
∆M2

h

]non−log

sub
⊃ −12 κ m

4
t

v2
GF

(
1− (δ(1)v2)SM

)( X2
t

M2
SUSY

− X4
t

12 M4
SUSY

)
. (4.3.7)

FeynHiggs also allows the use of the OS top massmOS
t in the fixed-order result. In this

case an additional term has to be added to Eq. (4.3.7) due to the reparametrization
mt ↔ mOS

t .

As we already mentioned in Sec. 3.2.2, we use either the OS or the DR scheme for
the renormalization of the top/stop sector of the MSSM. If the DR scheme is used,
then we will assume that the parameters (mt̃L ,mt̃R , Xt) are given at the scale MSUSY

and can be directly used in the EFT calculation. If they are given in the OS scheme,
they have to be converted to the DR scheme at this scale. In this case a bit more
attention is needed since the formula which relates a parameter in the two schemes
may contain large logarithms in the heavy SUSY limit, v/MSUSY → 0. The explicit
evaluation of the one-loop counterterms δ(1)m2

t̃1
, δ(1)m2

t̃2
and δ(1)m2

t̃12
at O(αt), O(αb),

and O(αs) shows that only the conversion formula for Xt contains large logarithms
(the explicit expressions are given in the App. B.) As argued in [21,22], one only has to
take into account the logarithmic terms in the relation between XOS

t and XDR
t (MSUSY).

Indeed, this one-loop formula correctly reproduces large logarithms which are present
in the fixed-order calculation, while the one-loop non-logarithmic terms contribute
at the same order as the subleading logarithmic terms in the two-loop conversion
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formula for Xt. The two-loop relation between XOS
t and XDR

t in the heavy SUSY
limit is however not known in the literature. 51

Finally, the numerical iterative solution of the Eq. (4.3.1) requires the employment
of the so-called “heavy-OS” scheme for the Higgs field renormalization constants. This
scheme helps to cancel the momentum-dependent contributions of heavy particles
that arise in the iterative solution of Eq. (4.3.1). More details on this issue can be
found in [24].

4.4 Conversion of Xt

The counterterm for the off-diagonal entry of the stop mass matrix, mtXt, is given in
Eq. (3.2.31a) in terms of the counterterms δ(1)m2

t̃1
, δ(1)m2

t̃2
and δ(1)m2

t̃12
,

δ(1)(mtXt) = Ut̃11U
∗
t̃12

(
δ(1)m2

t̃1
− δ(1)m2

t̃2

)
+ δ(1)m2

t̃12
Ut̃21U

∗
t̃12

+ δ(1)m2
t̃21

Ut̃11U
∗
t̃22
.

(4.4.1)
In the EFT approach the Xt parameter is normally defined in the DR scheme 52 at
the scale MSUSY, while in the FO approach in the case of on-shell input parameters
we use the relations in Eq. (3.2.29)–Eq. (3.2.30) for δ(1)m2

t̃1
, δ(1)m2

t̃2
and δ(1)m2

t̃12
. The

relation between the two schemes can be written as follows (see Eq. (3.1.32)),

(mtXt)OS = (mtXt)DR(MSUSY)− δ(1)(mtXt)
∣∣∣
fin
. (4.4.2)

Dividing both sides of this equation by mOS
t we obtain,

XOS
t = XDR

t (MSUSY) m
DR,MSSM
t (MSUSY)

mOS
t

− 1
mOS
t

δ(1)(mtXt)
∣∣∣
fin
. (4.4.3)

Both terms on the right-hand side of the Eq. (4.4.3) can contain large logarithms but
these logarithms are of a different origin.

Let us start our discussion with the first term. The relation between the OS and
the running top mass can be derived using a procedure similar to the one used in
Sec. 3.2.4 for the derivation of ∆b terms. Namely,

mDR,MSSM
t (MSUSY) = mOS

t + δ(1)mOS
t

∣∣∣
fin

=

= mOS
t + (δ(1)mOS

t )SM
∣∣∣
fin

+ (δ(1)mOS
t )n/SM

∣∣∣
fin
,

(4.4.4)

51Two-loop relations between running and pole squark masses have been computed in Ref. [222]. However, the
mixing of squarks is neglected in this paper. The two-loop counterterms δ(1)m2

t̃1
, δ(1)m2

t̃2
and δ(1)m2

t̃12
can also be

computed by means of the TLDR package [223]. This however lies beyond the scope of this thesis.
52In Chapter 8 we will discuss an alternative renormalization scheme: the MDR scheme.
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where the finite part of the OS counterterm has been split into a SM and a non-SM
part. The latter contains contributions from diagrams with at least one non-SM
particle. Both parts have to be evaluated at the renormalization scale Q = MSUSY.
The non-SM part does not contain large logarithms (see Eqs. (B.1.2e), (B.1.5e),
(B.2.2d) and (B.2.4d)). On the other hand the SM part contains contributions only
from the light particles – quarks, gluons, SM-like Higgs and Goldstones – evaluated
at the heavy scale, Q = MSUSY. Therefore, it contains large logarithms. They can
be extracted from Eqs. (B.1.2f) and (B.1.5f) by replacing each Passarino-Veltman
function B0 [224,225] in the mentioned expressions by a large logarithm. This follows
from the fact that the Passarino-Veltman functions used in Eqs. (B.1.2f) and (B.1.5f)
contain the following renormalization-scale-dependent pieces,53

log Q
2

m2
q

where q = t, b or log Q2

|m2
t −m2

b |
. (4.4.5)

Since Q = MSUSY, these terms give rise to large logarithms. The described procedure
yields,

(δ(1)mOS
t )SM

∣∣∣
fin
⊃ mOS

t

(
1−

(
αs
π
− 3αt

16π + 3αb
16π

)
log M

2
SUSY
M2

t

+ nonlog
)
, (4.4.6)

where “nonlog” is used as a placeholder for terms which do not contain large logarithms,
but can contain “small logarithms”, i.e. logarithms of the top mass over the bottom
mass or of the ratios mA/MSUSY, |M3|/MSUSY, |µ|/MSUSY. As we already mentioned
in Sec. 3.2.1, sometimes it is preferable to use the running MS mass, defined in the
SM, mt ≡ mMS,SM

t (Mt). This case corresponds to a different definition of Xt, which
we will denote as XFO

t ,

XFO
t = XDR

t (MSUSY) m
DR,MSSM
t (MSUSY)

mt

− 1
mt

δ(1)(mtXt)
∣∣∣
fin
. (4.4.7)

The quantity δ(1)(mtXt) is proportional to the top mass at the one-loop level in
the heavy SUSY limit (see Eqs. (B.1.2d), (B.1.5d), (B.2.2c) and (B.2.4c)). Therefore,
the top quark mass drops out of the ratio 1

mt
δ(1)(mtXt) up to higher-order terms.

This means that this ratio is the same for both mOS
t and mMS,SM

t (Mt). The first
term on the right-hand side of Eq. (4.4.7) differs from the corresponding term in
Eq. (4.4.3). However, the relation between mt and mOS

t does not contain large
logarithms, since it arises from the diagrams with light particles evaluated at Mt.
Therefore, large logarithms in the relation between XFO

t and XDR
t (MSUSY) are the

same as in Eq. (4.4.6). In fact, these logarithms can be extracted from the running of

53The explicit form of Passarino-Veltman functions can be found e.g. in [146].



82 CHAPTER 4. HIGGS BOSON MASSES IN THE MSSM

the top mass in the SM. They can be resummed by using the top mass defined in the
MS or the DR scheme at MSUSY either in the full MSSM or in the SM.

Now let us proceed with the second term in Eq. (4.4.3). We will now demonstrate
that this term contains large logarithms if the soft-breaking masses of the squarks are
degenerate,

mt̃L = mt̃R = mb̃L
= mb̃R

≡MSUSY. (4.4.8)

Explicit evaluation of the counterterm δ(1)(mtXt)
∣∣∣
fin

in this case shows that it contains
the following terms in the limit MSUSY �Mt (see Eq. (B.2.2c)),

δ(1)(mtXt)
∣∣∣
fin

= αt
4π mtXt |X̂t|2 log M2

SUSY
2mt|Xt|

+ eiφXtMSUSY

64π2v2

(
mt|X̂t| −mb|X̂b|

)3
log M2

SUSY
|mt|Xt| −mb|Xb||

+ eiφXtMSUSY

64π2v2

(
mt|X̂t|+mb|X̂b|

)3
log M2

SUSY
|mt|Xt|+mb|Xb||

+ nonlog =

= 3αt
16π mtXt |X̂t|2 log M

2
SUSY
M2

t

+ 3αb
16π mtXt |X̂b|2 log M

2
SUSY
M2

t

+ nonlog,

(4.4.9)

where X̂t,b = Xt,b/MSUSY. The large logarithms in Eq. (4.4.9) arise from diagrams
involving the Goldstone bosons (see Fig. 4.1).54 After evaluating these diagrams using

t̃1 t̃1

G,G±

t̃, b̃

t̃2 t̃2

G,G±

t̃, b̃

Figure 4.1: Diagrams generating the large logarithms in Eq. (4.4.9).

FeynArts [226] and FormCalc [227] in the gaugeless limit we found that the following
terms transform into the first three lines of Eq. (4.4.9) after expansion in the ratio
v/MSUSY,

δ(1)(mtXt)
∣∣∣
fin
⊃ αt

8π mtXt
|Xt|2

m2
t̃1
−m2

t̃2

[
Re{B0(m2

t̃1
, 0,m2

t̃1
)} − Re{B0(m2

t̃2
, 0,m2

t̃1
)}

+ Re{B0(m2
t̃1
, 0,m2

t̃2
)} − Re{B0(m2

t̃2
, 0,m2

t̃2
)}+

+
(
Re{B0(m2

t̃1
, 0,m2

b̃1
)} − Re{B0(m2

t̃2
, 0,m2

b̃1
)}
)
|Ub̃,11|2

+
(
Re{B0(m2

t̃1
, 0,m2

b̃2
)} − Re{B0(m2

t̃2
, 0,m2

b̃2
)}
)
|Ub̃,12|2

]
(4.4.10)

54The counterterms δ(1)m2
t̃12

and δ(1)m2
t̃21

do not give rise to the large logarithms in Eq. (4.4.9).
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+ αb
8π mtXt

|Xb|2

m2
t̃1
−m2

t̃2

[(
Re{B0(m2

t̃1
, 0,m2

b̃1
)} − Re{B0(m2
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, 0,m2

b̃1
)}
)
|Ub̃,12|2
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− αb

8π mtXt
|Xb|2
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−m2
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[
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]
,

where B0(p2,m2
1,m

2
2) are Passarino-Veltman functions. Note that this expression

involves only differences of the B0 functions, therefore it does not depend on the
renormalization scale. This means that the large logarithms arising from these terms
have a different origin compared to the logarithm in Eq. (4.4.6).

Now let us expand the expression Eq. (4.4.10) in the ratio v/MSUSY in the scenario
where the soft-breaking masses of stops and sbottoms are all different 55

mt̃L 6= mt̃R , mb̃L
6= mb̃R

, mt̃R 6= mb̃R
. (4.4.11)

To obtain the leading term in this expansion, we can simply perform the following
replacements in the Eq. (4.4.10),

mt̃1 → mt̃L , mt̃2 → mt̃R , mb̃1
→ mt̃L , mb̃2

→ mb̃R
,

|Ub̃,11| → 1, |Ub̃,12| → 0, |Ub̃,21| → 0, |Ub̃,22| → 1.
(4.4.12)

After applying these replacement rules to the expression given in the Eq. (4.4.10), we
obtain

δ(1)(mtXt)
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fin
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(4.4.13)

where
X̂t = Xt√

mt̃Lmt̃R

, X̂b = Xb√
mb̃L

mb̃R

. (4.4.14)

55Recall that mt̃L = mb̃L
due to SU(2)L invariance.



84 CHAPTER 4. HIGGS BOSON MASSES IN THE MSSM

We note that contrary to the expression given in the Eq. (4.4.9), this expression does
not contain any large logarithms log M2

SUSY
M2
t

. This suggests that there is no smooth
limit

mt̃R → mt̃L , mb̃R
→ mt̃L (4.4.15)

between the approximate expressions (4.4.9) and (4.4.13). Explicit calculation shows
that δ(1)(mtXt)

∣∣∣
fin

does not contain large logarithms also in the case

mb̃R
= mt̃R , mt̃L 6= mt̃R (hence mb̃L

6= mb̃R
). (4.4.16)

For MSSM scenarios with
mb̃L

= mb̃R
, mt̃L 6= mt̃R (4.4.17)

the quantity δ(1)(mtXt)
∣∣∣
fin

contains the following large logarithm,

δ(1)(mtXt)
∣∣∣
fin
⊃ αb

16π mtXt
|Xb|2

m2
b̃L

log M
2
SUSY
M2

t

. (4.4.18)

Finally, in the case
mt̃L = mt̃R , mb̃L

6= mb̃R
(4.4.19)

the large logarithm in the conversion formula takes the following form,

δ(1)(mtXt)
∣∣∣
fin
⊃ 3αt

16π mtXt
|Xt|2

m2
t̃L

log M
2
SUSY
M2

t

. (4.4.20)

The unexpanded formula does not show this behavior. To illustrate it, we consider the
MSSM scenario in which µ = 10 TeV, all soft-breaking masses except formt̃R , are equal
to MSUSY = 10 TeV, the stop mixing parameter equals Xt = MSUSY and tan β = 10.
In Fig. 4.2 we show the behaviour of the counterterm δ(1)(mtXt), normalized by the
top mass mt and the soft mass mt̃L neglecting corrections proportional to the bottom
Yukawa and the strong gauge coupling for simplicity. The red curve corresponds to the
full expression for δ(1)(mtXt)/(mtmt̃L) of order O(αt). The blue curve corresponds to
the approximate expression in Eq. (B.2.2c) and the green curve shows the behaviour
of Eq. (B.1.2d). Since the SUSY scale is much heavier than the EW scale, the green
curve approximates well the behavior of the red one for

∣∣∣∣mt̃Rmt̃L
− 1

∣∣∣∣ & 0.05. On the
other hand it starts to deviate from the red one for values of mt̃R/mt̃L close to one,
and for mt̃R/mt̃L = 1 its value is not defined. At this point the full expression is well
approximated by the blue curve.

The one-loop contribution to the counterterm δ(1)(mtXt) proportional to the strong
gauge coupling does not exhibit the behavior described above. More specifically, there
is no large logarithm emerging in the O(αs) expression for δ(1)(mtXt)

∣∣∣
fin

in the heavy
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Figure 4.2: Numerical comparison of different expanded expressions for
δ(1)(mtXt)/(mtmt̃L

).

SUSY limit regardless whether the squark soft-breaking masses are degenerate or
non-degenerate. Furthermore, for the corrections of order O(αs) a smooth transition
between the two mentioned scenarios exists (see Eq. (B.1.5d) and Eq. (B.2.4c)).

To summarize, the conversion formula for the stop mixing parameterXt in the heavy
SUSY limit for the case of the scenarios with fully degenerate squark soft-breaking
masses defined in Eq. (4.4.8) reads,56

XDR
t (MSUSY) = XOS

t

{
1 +

[
αs
π
− 3αt

16π

(
1− |Xt|2

M2
SUSY

)
(4.4.21)

+ 3αb
16π

(
1 + |Xb|2

M2
SUSY

)]
log M

2
SUSY
M2

t

}
+ nonlog.

For the case where the stop soft-breaking masses are degenerate, but the sbottom
soft-breaking masses are non-degenerate (see Eq. (4.4.19)), this formula takes the
form,

XDR
t (MSUSY) = XOS

t

1 +
αs
π
− 3αt

16π

1− |Xt|2

m2
t̃L

+ 3αb
16π

 log M
2
SUSY
M2

t

+ nonlog.

(4.4.22)
If instead the sbottom soft-breaking masses are equal to each other but the stop
soft-breaking masses are non-degenerate (see Eq. (4.4.17)), the logarithmic terms in

56We use the superscript “OS” in this formula, but it also holds if the running top mass mt is used in the FO
calculation.
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the conversion formula read,

XDR
t (MSUSY) = XOS

t

1 +
αs
π
− 3αt

16π + 3αb
16π

1 + |Xb|2

3m2
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 log M
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SUSY
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t

+ nonlog.

(4.4.23)
In all other cases the conversion formula reads,

XDR
t (MSUSY) = XOS

t

{
1 +

[
αs
π
− 3αt

16π + 3αb
16π

]
log M

2
SUSY
M2

t

}
+ nonlog. (4.4.24)

As we already mentioned above, the large logarithms originating from the top mass
counterterm in Eqs. (4.4.21) – (4.4.24), i.e. the ones which are proportional only
to the coupling constants αt, αb or αs and not to the mixing parameters Xt ot Xb,
arise from the RGE running of the top mass from MSUSY to Mt. By using the top
mass at the scale MSUSY in the FO calculation this logarithm can be resummed to
all orders. The situation with the large logarithms that are present only in certain
“degenerate” scenarios and are absent in the others is much more difficult.57 This
logarithm is not connected to any RGE running and therefore other techniques
have to be employed to resum it. Currently, the hybrid approach, as implemented
into FeynHiggs, uses Eq. (4.4.21) with αb → 0 in the hybrid approach if the input
parameters for the top/stop sector are given in the OS scheme.58 If the scenario under
consideration involves non-degenerate stop breaking masses, this formula generates
incorrect logarithmic terms at the three-loop level and above. The correct treatment
of these logarithms lies beyond the scope of this thesis and is left for future study.

57Since the mentioned terms arise from the diagrams with virtual Goldstone bosons (see Fig. 4.1) one may ask a
question if these terms are gauge-dependent. In this thesis, the expression (4.4.9) was derived in the gaugeless limit,
so the mass of the Goldstone bosons equals zero in any Rξ gauge. However, we also verified that this expression
remains gauge-independent beyond the gaugeless limit.

58See Sec. 5.1 for a review of the current status of logarithmic resummation in FeynHiggs.



Chapter 5

Resummation of bottom quark
contributions

In this Chapter, we discuss the resummation of logarithms controlled by the bottom
Yukawa coupling and its combination with the existing fixed-order calculation. We find
that the usage of the MSSM DR bottom mass is a suitable choice for merging the FO
and the EFT results. In addition to that, we discuss the determination of the bottom
Yukawa coupling in the MSSM itself.

5.1 Higgs mass calculation in FeynHiggs

FeynHiggs [21–23,35,90,187,228–231] is a Fortran code for calculating the MSSM
Higgs boson masses. The latest version of the code, FeynHiggs-2.16.0, incorporates
full one-loop fixed-order contributions [90] to the Higgs masses as well as two-loop
corrections of order O(m2

tαtαs+m2
bαbαs+m2

tα
2
t +m2

tαtαb+m2
bαtαb+m2

bα
2
b) computed

in the gaugeless limit and in the approximation of vanishing external momenta
[34,129,147,148,150].59 For these corrections the following renormalization scheme
is employed. The Higgs sector is renormalized in the mixed OS/DR scheme (see
Sec. 3.2.1), the top/stop sector is renormalized in the OS scheme (see Sec. 3.2.2), and
the bottom/sbottom is renormalized using the scheme denoted as RS1 in Sec. 3.2.3.
The Higgsino mass parameter µ and the ratio of vacuum expectation values of the
Higgs doublets, tan β = v2/v1 are by default renormalized in the DR scheme at the
scale MSUSY.60 From version 2.14.0 on, an optional DR renormalization of the scalar
top sector is possible. In this case, stop breaking masses mt̃L and mt̃R as well as stop
mixing parameter Xt are defined in the DR scheme at MSUSY.

59The two-loop corrections for non-zero external momentum have been computed in the rMSSM [211] and in the
complex MSSM (cMSSM) [7,211,212].

60If the resummation of logarithm in case of mA �MSUSY is invoked (loglevel = 4), tanβ is defined in THDM
at mA.
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Starting from version 2.10.0, the code allows to resum large logarithms to all orders
in the hybrid approach, as described in Sec. 4.3. The latest version of FeynHiggs
allows the matching of the SM, split-SUSY model and Two-Higgs-Doublet Model
(THDM) with or without light electroweakinos [16] to the MSSM at MSUSY. The
tower of EFTs is built depending on the hierarchy of mass scales. For instance, the
THDM is matched to the SM at scale mA.

If the SM or the SM with electroweakinos is matched to the MSSM, the currently
implemented EFT calculation resums leading and next-to-leading (LL and NLL)
logarithms as well next-to-next-to-leading logarithms (NNLL) in the limit of vanishing
electroweak gauge couplings. This implies that the full one-loop threshold corrections
of order O(α2

t + αtα) together with two-loop corrections of order O(α3
t + α2

tαs) and
the RGEs up to the three-loop order are implemented in the code.61 So far, however,
all corrections proportional to the bottom Yukawa coupling are set to zero.

5.2 Implementation of bottom Yukawa contributions

5.2.1 Fixed-order calculation

For our present study, we do not use the O(m2
bαbαs + m2

tαtαb + m2
bαtαb + m2

bα
2
b)

corrections already implemented in FeynHiggs [148, 149]. Instead, we employ the
O(m2

bαbαs+m2
tαtαb+m2

bαtαb+m2
bα

2
b) corrections presented in [9,11].62 These include

also terms subleading in tan β, allow for an easier control of the renormalization scheme
and take CP-violating phases fully into account. They will be part of an upcoming
FeynHiggs release. For the present work, we evaluate them, however, externally and
feed the numerical result back to FeynHiggs.63

In [9, 11] the corrections to the Higgs mass are computed in the scheme named
RS2 in Sec. 3.2.3: the stop masses and the stop mixing parameter are renormalized
in the on-shell (OS) scheme. This also fixes the scheme for one of the sbottom masses.
The other sbottom mass is defined in the on-shell scheme. The trilinear sbottom
coupling, Ab, the Higgsino mass parameter, µ, and tan β are renormalized in the DR
scheme. The result is parameterized in terms of the DR bottom mass of the MSSM.

61In case of THDM the NNLL resummation includes O(α2
tαs) threshold corrections to the quartic couplings at

MSUSY but does not include three-loop RGEs.
62The corrections computed in [11] also contain the momentum dependent pieces.
63In practice, we use the FHAddSelf functionality (see feynhiggs.de).
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5.2.2 EFT calculation

At the stop mass scale,MSUSY, all sfermions as well as the non-SM Higgs bosons are in-
tegrated out. After passing two additional independent thresholds for electroweakinos
(charginos and neutralinos) and the gluino, the SM is recovered as EFT.

For the incorporation of the bottom Yukawa contributions, we aim to reach the
same level of accuracy as for the other corrections. For implementing LL and NLL
resummation, we include the bottom Yukawa contributions to the one-loop matching
condition of the SM Higgs self-coupling, λ [13]. Also the two-loop RGEs are extended
to include bottom Yukawa corrections. For the NNLL resummation, we implement
the O(α2

bαs, (αt + αb)3) threshold corrections for λ, which were derived in [15].64 We
also add the bottom Yukawa contributions to the three-loop SM RGEs in the limit of
vanishing electroweak gauge couplings [232–236] and to the calculation of the SM MS
vev. Threshold corrections for λ require computation of the MSSM bottom Yukawa
coupling with ∆b resummation. This procedure will be described in Sec. 5.2.4.

5.2.3 Combination in the hybrid approach

For the combination of the fixed-order and the EFT calculation, we follow the
procedure described in Sec. 4.3. In order to ease this combination, we chose to define
the sbottom input parameters in the same scheme in the fixed-order and the EFT
calculations: We fix them in the DR scheme at the scale MSUSY. Also tan β and µ
are fixed in the DR scheme at the scale MSUSY.

A complication arises through the use of the DR bottom quark mass in the EFT as
well as the fixed-order calculation. After adding both results as shown in Eqs. (4.3.1)
and (4.3.2) the Higgs pole masses are determined taking into account the momentum
dependence of the fixed-order self-energy. As discussed in detail in [24], this momentum
dependence comes only from SM-type corrections as well as contributions suppressed
by the SUSY scale. To match the result of a pure EFT calculation, in which the Higgs
pole mass is determined in the SM, we have to ensure that the SM-type corrections are
evaluated using only SM quantities. The DR bottom quark mass, however, is a MSSM
quantity. For this reason, we reparametrize the SM bottom quark contributions to
the Higgs self-energies in terms of the SM MS bottom quark mass at the scale Mt. In
our implementation it is achieved by subtracting the O(αb) self-energy Σ̃MS,SM

hh (p2),
containing only the SM contributions (see Eq. (4.2.9)) and parametrized in terms of
the MSSM bottom quark mDR,MSSM

b (MSUSY) and then adding back the same quantity
but parametrized via mMS,SM

b (Mt). The explicit expression for the one-loop self-energy

64We independently calculated the same corrections and found agreement. See Chapter 6 for details
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can be found with the help of FeynArts and FormCalc,

Σ̃MS,SM
hh (p2) = 3m2

b

16π2v2 (p2 − 4m2
b)B0(p2,m2

b ,m
2
b). (5.2.1)

Since the SM-like Higgs mass is determined via an iterative solution of the pole
equation Eq. (4.1.8), the same procedure has to be applied to the derivative of
Σ̃ MS,SM
hh (p2) with respect to the external momentum. At the two-loop level, the
O(m2

bαbαs + m2
tαtαb + m2

bαtαb + m2
bα

2
b) self-energies computed in the SM and in

the gaugeless limit are extracted from the code FlexibleSUSY [25,27,237,238] and
Refs. [239,240]. The explicit expressions can be found in App. C.

In order to allow for an OS definition of the stop input parameters, a conversion
of the OS parameters,65 used in the fixed-order calculation, to the DR scheme, used
in the EFT calculation, is necessary. As argued in Sec. 4.3, for this conversion only
one-loop logarithmic terms should be taken into account. Only in the conversion
formula for the stop mixing parameter, Xt, large logarithms appear. As was pointed
out in Sec. 4.4, the conversion formula for Xt contains logarithms of two different
origins: one of them comes from the RGE running of the top mass and another
one originates from diagrams involving Goldstone bosons which are massless in the
gaugeless limit. In Sec. 5.3, we will present the results for the SM-like Higgs boson
mass in the case when all soft-breaking masses of the stop and sbottom sector are
degenerate in masses. Therefore, we will make us of Eq. (4.4.21) to convert the stop
mixing parameter Xt from the OS to the DR scheme.

In the next section we will consider the determination of the MSSM bottom
Yukawa coupling in our EFT setup. This, in particular, requires the computation of
the one-loop and two-loop ∆b corrections which depend on ADR

t (MSUSY). Since the
Higgsino mass parameter µ and tan β are defined at MSUSY, the conversion formula
for At reads,

ADR
t (MSUSY) = AOS

t +XDR
t (MSUSY)−XOS

t , (5.2.2)

where XDR
t (MSUSY) is determined via Eq. (4.4.21).

Now we proceed with the explicit form for the subtraction terms proportional
to the bottom Yukawa coupling and used to avoid double counting when merging
the FO and the EFT calculations. As was pointed out in Sec. 4.2, the logarithmic
subtraction terms can be obtained via iterative solution of the RGEs up to a certain
order of perturbation theory. Since the bottom Yukawa coupling contributes at the

65As we discussed in Sec. 4.4, the OS definition of the stop mixing parameter Xt requires the OS definition of
the δm2

t̃1
, δm2

t̃2
, δm2

t̃12
counterterms as well as of the top mass counterterm. In this Section, however, we will use a

running top mass in the SM defined at Mt together with δm2
t̃1
, δm2

t̃2
, δm2

t̃12
defined OS. Strictly speaking, this choice

corresponds to a different definition of Xt. However, in order to be consistent with the literature we will use the label
“OS” also in this case.



5.2. IMPLEMENTATION OF BOTTOM YUKAWA CONTRIBUTIONS 91

one- and the two-loop level, we solve the system of RGEs only up to the two-loop
level. The solution can be split into three parts,

[
∆M2

h

]log

sub
=
[
∆M2

h

]1L,LL

sub
+
[
∆M2

h

]2L,LL

sub
+
[
∆M2

h

]2L,NLL

sub
. (5.2.3)

The one-loop leading logarithmic contribution reads,
[
∆M2

h

]1L,LL

sub
= −2 λ(Mt)v2

MS,SM(Mt)
∣∣∣
logs

= −2 λ(Mt)v2
GF

∣∣∣
logs

=

= 2v2
GF
β

(1)
λ κL = −6κ m

2
b

v2
GF

(
2m2

b − c2
2βm

2
Z

)
L,

(5.2.4)

where

κ = (16π2)−1, L = log M
2
SUSY
M2

t

, mb ≡ mDR,MSSM
b (MSUSY), (5.2.5)

and we omitted terms beyond the one-loop level. At the two-loop level the leading
logarithmic terms have the following form (see Eq. (4.2.15)),

[
∆M2

h

]2L,LL

sub
= 2v2

GF
β

(1)
λ (MSUSY)κL− v2

GF
β

(1,1)
λ (MSUSY)κL2. (5.2.6)

In this expression one has to take into account that the top mass entering β(1)
λ (MSUSY)

is the running mass defined at the scale MSUSY in the SM, while the mass which
enters the FO result is the SM top mass at the scale Mt, mMS,SM

t (Mt). The relation
between the two masses contains a one-loop logarithm (and higher-order terms). The
same argument applies to the vacuum expectation value, since the vev entering the
right-hand side of Eq. (5.2.6) is the running vev at MSUSY, while the FO calculation
uses vGF . The logarithmic terms in the relation between the mentioned parameters
after insertion into β(1)

λ (MSUSY) generate two-loop leading logarithms. The resulting
explicit expression for the two-loop logarithms reads

[
∆M2

h

]2L,LL

sub
= 18κ2 m

2
b

v4
GF

(
m4
b −m2

bm
2
t +m4

t

)
L2 − 96κ2 g

2
3m

4
b

v2
GF

L2, (5.2.7)

where
mt = mMS,SM

t (Mt). (5.2.8)

The two-loop next-to-leading logarithmic terms originate from the two-loop β-function
for λ, β(2)

λ , from the reparametrization of mt and v in the one-loop threshold correction
to λ(MSUSY) and mb in β(1)

λ (MSUSY), as well as from the one-loop conversion of the
stop mixing parameter Xt if it is given in the OS scheme (see discussion in Sec. 4.4).
Therefore, the explicit expression for the two-loop next-to-leading logarithms depends
on the renormalization scheme used for the definition of Xt.
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Here, we present the expressions in the special case

MA = |M3| = |µ| = mt̃L = mt̃R = mb̃R
≡MSUSY. (5.2.9)

If Xt is renormalized in the OS scheme, the sub-leading logarithmic subtraction terms
controlled by the bottom Yukawa coupling read66

[
∆M2

h

]2L,NLL

sub,OS
= 3κ2m

2
bm

4
t

v4
GF

(
−10 + 6|X̂OS

t |2 − |X̂b|2|X̂OS
t |2(6− |X̂OS

t |2)
)
L

+ 6κ2m
4
bm

2
t

v4
GF

(
3 + 4|X̂OS

t |2 − 4|X̂OS
t ||Ŷt| cos(φXt − φYt)

+ 1
t2β

+ 12 log mt

mb

)
L+ 6κ2 m

6
b

v4
GF

(
7 + 12 log mt

mb

+ 3t2β
)
L

− 64κ2 g
2
3m

4
b

v2
GF

(
2− |X̂b| cos(φXb − φM3)

)
L,

(5.2.10)

where Ŷt = X̂t + 2µ̂∗
sin 2β and φXt , φYt , φXb , φM3 are the phases of the parameters Xt, Yt,

Xb and M3, respectively. If Xt is renormalized in the DR scheme at the scale MSUSY,
we obtain

[
∆M2

h

]2L,NLL

sub,DR
= 3κ2m

2
bm

4
t

v4
GF

(
−10 + 6|X̂DR

t |2
)
L

+ 6κ2m
4
bm

2
t

v4
GF

(
3 + 4|X̂OS

t |2 − 4|X̂OS
t ||Ŷt| cos(φXt − φYt)

+ 1
t2β

+ 12 log mt

mb

)
L+ 6κ2 m

6
b

v4
GF

(
7 + 12 log mt

mb

+ 3t2β
)
L

− 64κ2 g
2
3m

4
b

v2
GF

(
2− |X̂b| cos(φXb − φM3)

)
L.

(5.2.11)

A few comments are in order. First of all, different choices of the renormalization
scheme for X̂t affect only the logarithmic terms proportional to m2

bm
4
t . These terms,

which are present in the first line of Eq. (5.2.10) and absent in Eq. (5.2.11), originate
from the Goldstone boson contribution to the δ(1)Xt counterterm (see Fig. 4.1). They
are not related to the RGE running of the top-quark mass (see the discussion of this
issue in Sec. 4.4). In particular, they vanish in scenarios with mb̃L

6= mb̃R
.

Secondly, since the bottom mass is much smaller than the top-quark mass, the
logarithmic terms proportional to it are numerically significant only if they are
enhanced by powers of tan β, Xb or Yt. In this regard, we see that the only numerically
significant terms are those which are contained in the next-to-leading logarithmic
terms (and not in the leading one- and two-loop logs) and proportional to m2

bm
4
t in the

66As in Sec. 4.4, we define Ŷt = Yt/MSUSY, X̂t = Xt/MSUSY, µ̂ = µ/MSUSY
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case of degenerate soft sbottom masses and Xt being renormalized in the OS scheme.
We will illustrate the numerical significance of these terms in Sec. 5.3. The absence of
tan β-enhanced terms (i.e. terms proportional to ∼ m4

b tan4 β in Eq. (5.2.11)) might
be surprising at first glance since the one-loop threshold correction of order O(α2

b)
contains terms ∼ m4

bX̂
4
b . The reason for that is a cancellation between the two-loop

terms proportional to ∆1l,O(α2
b) originating from the one-loop RGEs for λ and v. More

precisely,

λ(Mt)2L,NLL ⊃ λ(MSUSY)− β(1)
λ (MSUSY)κL ⊃

⊃ ∆1l,O(α2
b)
(
1 + 4β(1)

v κL
)
− 6λ(MSUSY)(y2

t + y2
b )κL ⊃

⊃ ∆1l,O(α2
b)
(
4β(1)

v − 6(y2
t + y2

b )
)
κL,

(5.2.12)

where yt and yb are the top and bottom Yukawa couplings, respectively, and we
keep track only of the terms which are proportional to ∆1l,O(α2

b) and L. In addition
to that, in the second line of Eq. (5.2.12) we exploited the fact that the one-loop
threshold correction to λ of order O(α2

b) scales as m4
b(MSUSY)/v4(MSUSY). Since the

same bottom mass, mb(MSUSY), is used in the FO result, we have to run only the vev.
The one-loop RGE for the vacuum expectation value in the SM in the gaugeless limit
can be found in [241] and reads,

β(1)
v = 3

2(y2
t + y2

b ). (5.2.13)

By plugging Eq. (5.2.13) into Eq. (5.2.12) we see that the terms proportional to
∆1l,O(α2

b) cancel at the two-loop level. The terms in β
(1)
λ and β(1)

v have a common
origin – they arise from the external leg corrections to the vertex with four SM-like
Higgses.

As a consistency check of our calculation, we have verified analytically and indepen-
dently that the large logarithms arising in the EFT and in the FO calculation agree
with each other at the one-loop level at orders O(m2

tαt+m2
bαb+m2

tα+m2
bα) 67 and at

the two-loop level at orders O(m2
tαtαs +m2

bαbαs +m2
tα

2
t +m2

tαtαb +m2
bαtαb +m2

bα
2
b).

Now let us proceed with the non-logarithmic subtraction terms. Since we merge
the EFT calculation with the one- and two-loop fixed-order results, the subtraction
terms also have to be derived up to the two-loop order,

[
∆M2

h

]n/log

sub
=
[
∆M2

h

]n/log,1L

sub
+
[
∆M2

h

]n/log,2L

sub
. (5.2.14)

As was argued in Sec. 4.3, the one-loop non-logarithmic subtraction terms are essentialy
equal to the one-loop threshold corrections to the quartic coupling λ, multiplied

67Analogous checks at order O(m2
tαt +m2

tα+M2
Wα2) have been performed in [22].
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by 2v2
GF

.68

[
∆M2

h

]n/log,1L

sub
= −2v2

GF
∆1l,O(α2

b+αbα) =

= −12κ m
4
b

v2
GF

(
|X̂b|2 −

|X̂b|4

12

)
+ κ(g2 + g′2) m2

b |X̂b|2 c2β(1 + c2
β).

(5.2.15)

At the two-loop level, one has to subtract the two-loop threshold corrections ∆2l of
order O(α2

bαs + α2
tαb + αtα

2
b + α3

b) parametrized in terms of the fixed-order result
parameters, i.e. in terms of mMS,SM

t (Mt), vGF and mDR,MSSM
b (MSUSY).

Additionally, as was argued in Sec. 4.3, one has to subtract the shifts caused by a
different parametrization of the vacuum expectation value in the EFT and in the FO.
Let us elaborate on this further. For the one-loop threshold correction of order O(α2

t )
we use the same procedure as outlined in Eqs. (4.3.6) and (4.3.7). We only need to
extend Eq. (4.3.7) by adding terms proportional to αb and α2

b to (δ(1)v2)SM (see Eqs.
(B.1.2h) and (B.1.4) in App. B). For the terms, generated by ∆1l,O(α2

b), the situation
is slightly different. These treshold corrections should be parametrized in terms of
the MSSM bottom Yukawa coupling to avoid terms which contain powers of tan β
that are higher than powers of yb [15]. The non-logarithmic terms in the EFT result
generated by ∆1l,O(α2

b) read

[
M2,EFT

h

]1l,O(α2
b)

n/log
= 12 κ v2

MS,SM(Mt)
(
yDR,MSSM
b (MSUSY)

)4
(
|X̂b|2 −

|X̂b|4

12

)

= 12 κ v2
MS,SM(Mt)

[
mb

vDR,MSSM(MSUSY)

]4 (
|X̂b|2 −

|X̂b|4

12

)
=

= 12 κ m4
b

v2
MS,SM(Mt)

(1− 2(δ(1)v2)n/SM)
(
|X̂b|2 −

|X̂b|4

12

)
+ logs =

= 12 κ m
4
b

v2
GF

(1− (δ(1)v2)SM − 2(δ(1)v2)n/SM)
(
|X̂b|2 −

|X̂b|4

12

)
+ logs.

(5.2.16)

Note that we apply this procedure only to the one-loop threshold correction of order
O(α2

b) and not to the correction of O(αbα) since at the two-loop level the fixed-order
corrections are derived in the gaugeless limit. This, in particular leads to a different
parametrization of the corresponding piece in the FO and in the EFT. This difference
is of O(m2

tαbα+m2
bαbα) and is formally beyond the order of perturbation theory which

we consider in this thesis. As we will see in Sec. 5.3, this different parametrization
induces a small difference in the Higgs mass at low MSUSY.

68Here we already use the expressions for the one-loop threshold corrections in the MSSM with CP-violation. They
will be discussed in Chapter 6.
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Summing up all the ingredients mentioned above, we arrive at the following
subtraction terms controlled by the bottom Yukawa coupling.

[
∆M2

h

]n/log,2L

sub
= −2v2

GF
∆2l + 18κ2

{[
4
(
m6
b

v4
GF

+ m2
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4
b

v4
GF

)
log mt

mb

−m
2
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4
t

v4
GF

(
1− 2 log m2

t

M2
t

)](
|X̂FO

t |2 −
|X̂FO

t |4

12

)

−
[
m2
tm

4
b

v4
GF

(
1− 2 log m2

t

M2
t

+ 2|X̂FO
t |2

3

)

+ m6
b

v4
GF

(
1− 2 log m2

t

M2
t

+ 2|X̂b|2

3

)](
|X̂b|2 −

|X̂b|4

12

)}
,

(5.2.17)

where, in the expression above X̂FO
t is either X̂OS

t or X̂DR
t depending on the renor-

malization scheme used for the stop sector.

5.2.4 Determination of the MSSM bottom quark mass and Yukawa cou-
pling

Here, we describe how we obtain the DR bottom quark mass used in the fixed-order
calculation as well as the DR bottom Yukawa coupling used in the EFT calculation.
We start with the SM MS bottom Yukawa coupling, yMS,SM

b , and the SM MS vev,
vMS,SM, at the scale Mt. Then, we evolve both quantities to the SUSY scale. At
this scale we determine the MSSM DR bottom Yukawa coupling, hDR,MSSM

b , and the
MSSM DR vev, vDR,MSSM, by matching the SM to the MSSM,(

hDR,MSSM
b cβ

)
(MSUSY) = yMS,SM

b (MSUSY) (1 + ∆yb) , (5.2.18)

vDR,MSSM(MSUSY) = vMS,SM(MSUSY) (1 + ∆v) . (5.2.19)

The DR bottom quark mass is then determined by

mDR,MSSM
b (MSUSY) =

(
hDR,MSSM
b cβ

)
(MSUSY)vDR,MSSM(MSUSY). (5.2.20)

As was already discussed in Sec. 3.2.4, the corrections to the DR bottom quark mass,
consisting of ∆yb and ∆v, include terms proportional to tan β. For large tan β, the
leading tan β-enhanced terms can be resummed as described in [139,148,149,189,242–
245]. Typically, this resummation is written in the form (see Eq. (3.2.65))

mDR,MSSM
b (MSUSY) = mMS,SM

b (MSUSY) 1 + εb
|1−∆b|

, (5.2.21)
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where ∆b stands for the tan β-enhanced terms and εb for terms not enhanced by tan β.69

We employ a similar relation for the matching of the bottom Yukawa coupling,(
hDR,MSSM
b cβ

)
(MSUSY) = yMS,SM

b (MSUSY)1 + εb −∆v
|1−∆b|

. (5.2.22)

A similar procedure for the calculation of the MSSM bottom Yukawa coupling was
adapted in [15]. There, however, non-enhanced terms, εb, and the threshold correction
of the vev, ∆v, were included into the definition of ∆b. In our approach, we separate
them to resum only tan β enhanced corrections to the bottom mass in the same way
as in [149, 200]. This results only in a small numerical difference since the main
contribution to hDR,MSSM

b (MSUSY) comes from ∆b.

In our implementation, we include full one-loop corrections to ∆b. The quantity ∆v
is calculated at the one-loop level in the gaugeless limit. In addition, we include the
leading two-loop corrections to ∆b. These two-loop corrections are based on the results
from [29–31] (similar results have been obtained in [246–248]). We, however, expand
the expression for large MSUSY omitting terms of higher order in O(v2/M2

SUSY). In
addition, we adapt the renormalization scheme to match our scheme. More precisely,
in [29, 31] the soft supersymmetry breaking parameters in the stop and sbottom
sectors as well as the gluino mass are renormalized on-shell. Moreover, the top-
Yukawa coupling and the strong coupling are defined in Collins-Wilczek-Zee scheme
(see Sec. 3.1.4.1) with 5 active flavours. This decoupling of the top quark and on-shell
renormalization of the top sector induce large logarithms, log(M2

SUSY/M
2
t ), implying

that the formulas in [29–31] are not directly applicable in our framework. Since in our
case the low energy model is the SM with possibly light gluinos, we do not decouple
the top-quark and the gluino. Also, to be compatible with the EFT computation we
renormalize the gluino mass and stop/sbottom masses in the DR scheme at the scale
Q. In the limit of all involved non-SM masses having the same mass, we obtain

∆2L
b = ∆2L,QCD

b + ∆2L,EW
b , (5.2.23a)

∆2L,QCD
b = −αs(Q)2CF

12π2
µ

MSUSY
tβ

(
2CA − CF + 6TR

− (3CA − 2CF − 3TR) log M
2
SUSY
Q2

)
, (5.2.23b)

∆2L,EW
b = αs(Q)y2

t (Q)CF
384π3

At
MSUSY

tβ

(
7 + 10 log M

2
SUSY
Q2

)
. (5.2.23c)

Here, Q is the renormalization scale, CA = 3, CF = 4
3 and TR = 1

2 .

69In principle, there are also terms in εb and ∆v which are proportional to m2
b tan2 β. We, however, checked that

they are numerically irrelevant.
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Figure 5.1: Predictions for Mh (left) and mb (right) as a function of tan β for different
accuracy levels in the calculation of ∆b. For this plot we consider the same MSSM scenario
as in Fig. 2 in [15].

5.3 Numerical results

Here, we investigate the numerical effect of resumming logarithmic contributions
proportional to the bottom Yukawa coupling. First, we concentrate on a scenario
presented in Ref. [15]. Namely, we assume that all soft SUSY masses are equal to
MSUSY = 1.5 TeV except the gluino mass which is fixed by M3 = 2.5 TeV. The stop
mixing parameter is set by Xt =

√
6MSUSY and the trilinear couplings of the third

generation fermions are equal to each other, Ab = Aτ = At. The Higgsino mass
parameter, µ, is chosen to be equal to −1.5 TeV. Due to this choice of the signs ofM3,
Xt and µ the MSSM bottom Yukawa coupling is enhanced by the one-loop threshold
corrections proportional to the top Yukawa coupling and the strong Yukawa coupling.
As in Ref. [15] all the input parameters listed above and tan β are assumed to be DR
parameters at the scale MSUSY.

On the left panel of Fig. 5.1 we present results for Mh in dependence on tan β. In
addition to showing results obtained with the calculation presented in this thesis, we
display results obtained using the most recent public version of FeynHiggs (version
2.16.0). Moreover, we show the result obtained in [15] for comparison. This result
was obtained in a pure EFT framework using the code HSSUSY [25, 27]. On the
right panel of the same figure we show the bottom mass, mb, which is used in the
corresponding calculations. In the case of the red dashed curve it is the bottom mass,
m̂b, defined by in Eq. (3.2.50) and in case of the blue, red, orange and green solid
lines it is mDR,MSSM

b (MSUSY).
First, we focus on the various EFT results in the left panel of Fig. 5.1: the solid

red line on the plot corresponds to the solid red line in Fig. 2 of [15]; the blue,
orange, green solid and black solid lines, to the results of our EFT calculation with
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different approximation levels used in the calculation of the bottom Yukawa threshold
correction. We should note here that the results presented in [15] have been obtained
using the SM MS top Yukawa coupling extracted at the N3LO level while we by default
use the NNLO value. For a proper comparison with the results of [15], we adapted
our calculation to use the same accuracy level (see also discussion in Chapter 7). We
use this accuracy level for all curves of Fig. 5.1.

We observe a very good agreement between our EFT result using only O(αs + αt)
corrections in the calculation of ∆b (solid red curve), which is the same level of
accuracy as used in [15], and the result of [15] (black dot-dashed curve). The absolute
difference between the two curves equals ∼ 0.04 GeV for tβ = 15 and ∼ 0.7 GeV for
tβ = 42. This difference comes mainly from the determination of the MSSM bottom
Yukawa coupling at the scale MSUSY. In [15], the threshold correction for the vacuum
expectation value, ∆v, and non-enhanced terms were included in the definition of ∆b

while we do not include them (see Eq. (5.2.22)). If we include them into ∆b as in [15],
the absolute difference between our calculation and the calculation presented in [15]
shrinks down even further (∼ 0.2 GeV for tβ = 42).

For the solid green curve in the left plot of Fig. 5.1, we take into account electroweak
corrections in the calculation of ∆b in addition to the O(αs, αt) corrections used for
the solid red curve. As one can see from Eq. (A.1.8), this choice leads to a partial
cancellation in the calculation of ∆b and hence to a suppression of the MSSM bottom
mass at the scale MSUSY as one can see on the right panel of Fig. 5.1 showing
mDR,MSSM
b (MSUSY) in dependence of tan β. This in turn relaxes the suppression of

the Higgs mass by the one-loop threshold corrections to the SM Higgs self-coupling,
λ, proportional to the bottom Yukawa coupling.

The blue solid curve in the left plot of Fig. 5.1 shows the prediction for Mh

neglecting the electroweak one-loop contributions to ∆b but including the leading
two-loop QCD corrections to ∆b. For our parameter choice, these corrections increase
the absolute value of ∆b by approximately 5%. Correspondingly, also the MSSM
bottom mass is increased as can be seen in the right plot of Fig. 5.1. This results
in a significant change of the resulting Higgs mass for tan β & 40 where dependence
on tan β is quite strong. The orange curves in the left plot of Fig. 5.1 correspond to
the inclusion of all corrections to ∆b mentioned above. For the considered parameter
choice, the electroweak corrections to ∆b are roughly three times larger by absolute
value than the two-loop corrections to ∆b. This explains why the orange and the
green curves lie quite close to each other.

The orange dashed curve represents the result of the hybrid calculation of Mh.
Namely, we have merged the O(m2

tαtαs+m2
bαbαs+m2

tα
2
t +m2

tαtαb+m2
bαtαb+m2

bα
2
b)

fixed-order result with the NNLL EFT calculation (see Sec. 5.2.3). The orange solid
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and dashed curves differ essentially by the inclusion of terms that are suppressed by
the ratio v2/M2

SUSY into the hybrid result. Since in our case MSUSY is chosen above
the TeV scale, the size is of these terms is quite small. Therefore, a good agreement
between the two methods is expected and validates our hybrid calculation.

Finally, the red dashed curve shows the prediction for Mh obtained by
FeynHiggs-2.16.0 which we ran using default flags as explained in [231].70 As
only modification of this version, we have used the N3LO instead of the NNLO SM
MS top Yukawa coupling to allow for a direct comparison to the result of [15]. We
see that the agreement between all the seven curves is quite good for small values of
tan β but for tan β & 30 the red dashed curve falls abruptly down for tan β & 40. The
reason for this behaviour becomes clear when looking at the right panel of Fig. 5.1:
the red dashed curve, which corresponds to m̂b defined in Eq. (3.2.50), increases
much more rapidly for rising tan β than the other four lines.71 This bottom mass is
inserted in the leading one-loop fixed order result which has a negative impact on
Mh [201,249,250],

(∆M2
h)1l,bottom ' −m̂

4
b tan4 β

16π2v2
GF

. (5.3.1)

This term grows rapidly in absolute value with increasing tan β. The same argument
applies to all other curves but there the dependence of the bottom mass on the tan β
is much milder. This is a consequence of our choice of the renormalization scheme.
Namely the bottom mass used in our setup is the DR MSSM bottom mass calculated
at the scale MSUSY. All the quantities entering the calculation of ∆b and εb are also
DR MSSM quantities at this scale. The most important ones are the top Yukawa
coupling αt and the strong Yukawa coupling αs (see Eq. (A.1.8) in App. A). Since their
values decrease with increasing scale,72 the ∆b correction calculated in our approach
is smaller than the corresponding correction in FeynHiggs-2.16.0. In this way our
approach yields more stable results for large values of tan β and for regions of the
MSSM parameter space where the signs of the products µM3 and µAt are negative.

Next, we discuss the numerical effect induced by the resummation of logarithms
proportional to the bottom Yukawa coupling. First of all, to have an idea of how
numerically important the effect is, it is instructive to have a look at the analytic
one- and two-loop expressions that one can find in Sec. 5.2.3. As we pointed out
there, the bottom mass we use in our calculation, even though being enhanced by ∆b

effects, is the smallest mass taken into account in our EFT calculation. The only way
corrections containing the bottom mass may become sizeable is when these terms

70For reference, here we list the values of these input flags: mssmpart = 4, higgsmix = 2, p2approx = 4, looplevel
= 2, loglevel = 3, runningMT = 1, botResum = 1, tlCplxApprox = 0.

71Note that the red dashed and the red solid lines have the same accuracy level of ∆b.
72Note that we have also included the leading two-loop QCD corrections to ∆b which mitigates its scale dependence.
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Figure 5.2: Mh as a function of MSUSY (left) and X̂DR
t (right). The red lines show

the prediction of our hybrid calculation including only the one-loop fixed-order O(αb)
correction. For the blue lines, we additionally included the fixed-order O(m2

tαtαb+m2
bαtαb+

m2
bα

2
b +m2

bαbαs) corrections. The green lines contain additionally the resummation of large
logarithms proportional to the bottom Yukawa coupling.

are additionally proportional to tan β. This is the case when mb is, for example,
multiplied by X̂b, Ŷt, tβ or 1/cβ. We find such enhancements only in the two-loop
next-to-leading logarithmic contributions when the stop mixing parameter, X̂t, is
renormalized in the OS scheme (see Eqs. (5.2.11) and (5.2.10)). In consequence, we
expect the effect of the resummation to be small if we renormalize X̂t in the DR
scheme.

This preliminary consideration turns out to be qualitatively correct as one can see
in the left panel of Fig. 5.2. The red curve corresponds to the hybrid result including
the effects of the bottom Yukawa coupling only at the one-loop level in the fixed order
calculation. The used MSSM DR bottom mass, mDR,MSSM

b (MSUSY), contains all the
corrections discussed above (i.e. the level of accuracy corresponds to the orange curves
in Fig. 5.1). The green curve includes additionally the O(m2

tαtαb +m2
bαtαb +m2

bα
2
b +

m2
bαbαs) fixed-order corrections from [9,11]. Finally, the blue curve also contains the

resummation of LL, NLL and NNLL logarithms controlled by the bottom Yukawa
coupling. The same color scheme also applies to the right panel of Fig. 5.2 and to
both plots in Fig. 5.3. For these plots we have picked an MSSM scenario where all
soft-breaking masses and µ are equal by absolute value to the common mass scale
MSUSY. Moreover, we set Ab = 2.5MSUSY and tβ = 45. The bino, wino and gluino
masses are chosen to be positive, M1,2,3 > 0, while the Higgsino mass parameter is
negative, µ < 0.

For the left plot of Fig. 5.2 we have chosen X̂DR
t (MSUSY) =

√
6. First, we note

that the green and the blue curves agree very well for low values of MSUSY with the
difference between the two being only equal to ∼ 0.3 GeV for MSUSY = 700 GeV.
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Figure 5.3: Same as Fig. 5.2 but Xt is renormalized in the OS scheme.

Indeed, since in this region the scale separation is relatively mild, one does not
expect the resummation to contribute significantly to the final answer. However,
the two curves lie quite close to each other for the whole range of scales, even for
MSUSY as high as 105 GeV. This is in line with our preliminary analysis above: the
logarithms containing bottom Yukawa coupling are numerically negligible if we use
X̂DR
t (MSUSY) as an input parameter.
Next, we observe a significant gap of order O(10) GeV between the red and the

blue lines on this figure which shrinks down as MSUSY increases. This tells us that the
∆b alone may not be a very good approximation for the higher-order effects controlled
by the bottom Yukawa in the region of small MSUSY since the bottom mass is large
in this region and the two-loop fixed-order corrections are numerically important.73

However, with the increase of MSUSY the bottom mass mDR,MSSM
b (MSUSY) decreases

and all three curves give approximately the same answer.
On the right panel of Fig. 5.2 we fix MSUSY = 1.5 TeV and scan over X̂DR

t . We
notice that for negative X̂DR

t all three curves give roughly the same result. This due
to the fact that the contributions to ∆b proportional to the strong coupling and to the
top Yukawa coupling partially cancel each other. Correspondingly, the bottom mass
does not acquire any enhancement. Also the inclusion of the two-loop fixed-order
corrections as well as the resummation of the logarithms is negligible. On the contrary,
for positive X̂t the top Yukawa and strong corrections to ∆b add up and enhance the
bottom mass. In accordance with Eq. (5.3.1), this shifts the Higgs mass downwards
at the one-loop level (red curve). The two-loop corrections increase it (blue curve).

In Fig. 5.3, we renormalize the stop sector in the OS scheme, fixing X̂OS
t = 2. This

plot shares the same features at low MSUSY as the corresponding plot in Fig. 5.2.
73It is worth noting that due to the parameter choices, which enhance ∆b, different levels of approximation in ∆b

yield very different results for Mh.



102 CHAPTER 5. RESUMMATION OF BOTTOM QUARK CONTRIBUTIONS

10 15 20 25 30 35 40 45
tan β

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

∆
M

h
[G

eV
]

M3 = MA = MSUSY = 700 GeV, µ = −MSUSY, X̂
DR
t =

√
6

10 15 20 25 30 35 40 45
tan β

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

∆
M

h
[G

eV
]

M3 = MA = MSUSY = 700 GeV, µ = −MSUSY, X̂
OS
t = 2

Figure 5.4: Difference ∆Mh = M resum
h −Mn/resum

h as a function of tan β for MSUSY =
700 GeV.

However, for large MSUSY the effect of the resummation becomes more prominent due
to the presence of the logarithmic terms of order O(m2

bm
4
t ) enhanced by |X̂b|2 ' t2β

(see Eq. (5.2.10)),

[
∆M2

h

]2L,NLL

sub,OS
' −3κ2m

2
bm

4
t

v4
GF

t2β|Ât|2(6− |Ât|2)L. (5.3.2)

In the considered scenario, the resummation pushes the Higgs mass down by ∼ 2 GeV
for MSUSY = 10 TeV and by ∼ 2.5 GeV for MSUSY = 100 TeV. On the right panel of
this plot we show the result of the scan over X̂OS

t with fixed MSUSY = 1.5 TeV. As in
the case of the DR stop input parameters all three lines essentialy coincide for X̂OS

t < 0
and the effect of the inclusion of the two-loop O(m2

tαtαb +m2
bαtαb +m2

bα
2
b +m2

bαbαs)
fixed-order corrections and the resummation becomes sizeable only in the region
X̂OS
t & 1.

At the first glance the effect of resummation should be negligible for small values
of MSUSY since the logarithms log M2

SUSY
M2
t

are less important numerically in this region
of parametere space. Indeed, we see that in the left panels of Fig. 5.2 and Fig. 5.3
the green and the blue curves are in good agreement for MSUSY = 700 GeV. Here,
we investigate this region more closely. On Fig. 5.4 we present the difference ∆Mh

between the predictions for the SM-like Higgs boson with and without resummation
of bottom contributions, ∆Mh = M resum

h −Mn/resum
h for the same scenario as was

considered in Fig. 5.2 and Fig. 5.3 but now we fix MSUSY = 700 GeV and scan over
tan β. The blue curves on Fig. 5.4 corresponds to the difference between the blue and
the green curves in Fig. 5.2 and Fig. 5.3. We see that for tan β = 45 the effect of
resummation is ∼ 0.1 GeV for the DR input parameters and essentially negligible for
the OS input parameters in full agreement with plots on Fig. 5.2 and Fig. 5.3.
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However, the difference is more prominent in both cases for tan β ∼ 40. The
behavior of the curves on Fig. 5.4 can be explained as follows. As was discussed
after Eq. (5.2.16), the vev is reparametrized only in the O(α2

b) and not to the O(αbα)
threshold corrections. The different treatment of the vacuum expectation value in
the corresponding terms in the fixed-order – vGF is used – and the EFT calculation –
vDR,MSSM(MSUSY) is used – induces differences at order O(m2

bα(αt + αb)). A similar
effect was also discussed in [23]. Moreover, the different treatment of the vacuum
expectation value in the two-loop threshold corrections and in the respective pieces
of the fixed-order, inducing the difference at the three-loop order, contributes to the
effect. This difference becomes sizeable for tan β & 40 and leads to the increase of
curves in this region.

As a final phenomenological application of our improved calculation, we consider the
M125,µ−

h benchmark scenario recently defined in [251], accompanying the benchmark
scenarios proposed in [138,252]. In this scenario the SUSY input parameters are fixed
as

MQ3 = MU3 = MD3 = 1.5 TeV, ML3 = ME3 = 2 TeV,

µ = −2 TeV, M1 = 1 TeV, M2 = 1 TeV, M3 = 2.5 TeV,

Xt = 2.8 TeV, Ab = Aτ = At .

For the SM parameters the ones recommended by the LHC-HXSWG [253] are used:

mpole
t = 172.5 GeV, αs(MZ) = 0.118, GF = 1.16637 · 10−5 GeV−2,

mb(mb) = 4.18 GeV, MZ = 91.1876 GeV, MW = 80.385 GeV .

The stop SUSY soft-breaking parameters are defined in the OS scheme. In [251],
also the sbottom trilinear coupling is renormalized in the OS scheme. For better
comparison with our previous results, we instead chose to fix them Ab in the DR
scheme. In addition, we define tan β at the scale MSUSY instead of at the scale Mt,
which was used in [251].

Note that for this scenario µ = −2 TeV is chosen implying large ∆b corrections
which enhances the branching ratio of the heavy Higgs bosons decaying to a pair of
bottom quarks. In addition, the large ∆b corrections also affect the prediction for the
SM-like Higgs boson, which we will investigate here.

The stop mass scale is equal to 1.5 TeV, so we do not expect the resummation
of logarithms controlled by the bottom Yukawa coupling to have a major numerical
impact in this case. However, large ∆b corrections imply that the calculation might
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Figure 5.5: Results for Mh in the M125,µ−
h scenario using a calculation including only the

leading corrections to ∆b, corresponding to the one used in [251] (red dashed), and our
improved calculation presented in this thesis (green solid).

be sensitive to the level of accuracy in the determination of the bottom mass which is
used in the fixed-order corrections at the one- and the two-loop level.

In Fig. 5.5 we present, in the MA − tan β plane, the contour lines of the SM-like
Higgs boson mass ranging from 122 GeV to 125 GeV. 74 We do not consider any
experimental constraints described in detail in [138,251,252] and concentrate only on
the mass of the lightest Higgs boson of the MSSM. The red and green lines correspond
to two different computational setups. We calculated the red contours including
only the leading one-loop corrections to ∆b of O(αs, αt) as well as evaluating the
bottom-quark mass at the scale Mt. Apart from the different definitions of some of
the input parameters, as mentioned above, this corresponds to the default settings
of FeynHiggs-2.16.0, which was used in [251] for the definition of the benchmark
scenario. The green lines show the prediction of the improved calculation described in
this thesis. In comparison to the red contours, we also include electroweak one-loop
as well as the leading two-loop corrections to ∆b, evaluate the bottom-quark mass at
the SUSY scale and resum logarithms proportional to the bottom-Yukawa coupling.

We notice that in the region of small tan β both calculations agree very well since
in this region the corrections from the bottom/sbottom sector are negligible. In this
region the Higgs mass grows with increasing tan β mainly due to the growth of the
tree-level mass. With a further increase of tan β the Higgs mass starts to decrease
due to large ∆b corrections and the rapid increase of the DR bottom mass in the

74The 125 GeV contour is very small for the red lines and barely visible for the green lines.
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MSSM. This is the behavior we already observed in the left plot of Fig. 5.1. As was
discussed in the description for that plot the mass of the SM-like Higgs computed
using FeynHiggs-2.16.0 falls faster with increasing tan β than the mass computed
using the calculation presented in this thesis due to the lower accuracy level in the
calculation of ∆b. Consequently, the region in which the SM-like Higgs mass is
compatible with the experimentally measured value is enlarged. The upper bound on
tan β is shifted from ∼ 28 to ∼ 33 .



Chapter 6

EFT calculation for complex input
parameters

In this Chapter, we consider the SM as an effective field theory, assuming that the full
theory, it is matched to, is the MSSM with CP-violation. We derive one- and two-loop
threshold corrections to the quartic coupling in the gaugeless limit in Sec. 6.1. In
Sec. 6.2, we discuss the one-loop as well as the leading two-loop threshold corrections to
the bottom Yukawa coupling between the SM and the MSSM with complex parameters.
The numerical impact of the computed corrections is discussed in Sec. 6.3.

6.1 Threshold corrections to λ

In the fixed-order approach, the dependence on CP-violating phases is known at the
one- and two-loop level [90, 129, 130, 150, 254]. In the EFT framework, the phase
dependence has so far only been considered in case of a low-energy Two-Higgs-Doublet-
Model [19,255]. In this Chapter, we work out the dependence on CP-violating phases
in the case of the SM (and the SM plus electroweakinos) as EFT, for which so far
only an interpolation of the result in case of real input parameters is available [231].

We first discuss the case of the SM as low-energy EFT. Since the SM includes no
phases (apart from the CKM phase, whose effect is negligible for the determination
of the Higgs mass), CP-violating effects in the full MSSM enter only via threshold
corrections to real parameters. The threshold corrections to the quartic coupling λ
can be obtained via the matching of the four-point vertex function involving external
SM-like Higgs bosons. In this thesis, we, however, follow a different approach. Since
in the SM the mass of the lightest Higgs boson is related to its quartic coupling
via Eq. (1.2.11), the threshold corrections to λ can be obtained via the threshold

106
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correction to the running Higgs mass.75 Below we outline the method and derive the
general formulas for the one- and two-loop threshold corrections to λ in the gaugeless
limit. Similar discussions can be found in [13,221].

In the limit MA � mt, The SM-like Higgs pole mass in the MSSM is given by the
Eq. (4.1.14) up to the two-loop level,

(Mh)2
MSSM = m2

h − Σ̂MSSM,(1)
hh (m2

h)− Σ̂MSSM,(2)
hh (m2

h)

+ Σ̂MSSM,(1)
hh (m2

h) Σ̂MSSM,(1) ′
hh (m2

h),
(6.1.1)

where mh is the tree-level mass given by Eq. (2.5.24) and the prime stands for the
derivative with respect to the external momentum. The leading-order expression for
mh in the decoupling limit is given in Eq. (4.2.3). Since in this section we derive one-
and two-loop corrections in the gaugeless limit, this mass is set to zero throughout this
Section. All parameters entering self-energies Σ̂MSSM,(1)

hh and Σ̂MSSM,(2)
hh are renormalized

in the DR scheme. The self-energies entering Eq. (6.1.1) are assummed to be expanded
in the limit v/MSUSY → 0.

Below the matching scale Q, 76 the effective field theory is the SM. We write the
matching condition for the SM running Higgs mass m2

h as a loop expansion,

m2
h = m2

h,tree + (m1l
h )2 + (m2l

h )2 + . . . , (6.1.2)

where the ellipsis denotes three-loop terms and higher. This relation is the same as
Eq. (4.2.1) in Sec. 4.2 with the only difference that we have included the powers of
the loop-counting factor κ into (m1l

h )2 and (m2l
h )2. From now on, we set mh,tree = 0.

The pole mass in the SM can be obtained via the solution of the pole equation

M2
h = m2

h − Σ̃MS,SM
hh (M2

h), (6.1.3)

where Σ̃MS,SM
hh is the SM Higgs boson self-energy renormalized in the MS scheme with

the tadpoles renormalized to zero (see Eq. (4.2.9)). Since the SM is treated as an
effective field theory, its parameters are related to the corresponding parameters in
the MSSM. This relation can be schematically written as follows,

P SM = PMSSM + ∆P, (6.1.4)

where P is a coupling constant, a running quark mass or the vacuum expectation
value. Inserting this relation into the self-energy Σ̃MS,SM

hh (M2
h) induces a shift one

75This method is not sufficient to obtain the threshold correction for all quartic couplings if the EFT below MSUSY
is Two-Higgs-Doublet-Model.

76While the matching scale was set to MSUSY in Sec. 4.2, we will keep it as a free variable in this Section.



108 CHAPTER 6. EFT CALCULATION FOR COMPLEX INPUT PARAMETERS

order higher in the loop expansion.

Σ̃MS,SM
hh = Σ̃SM

hh

∣∣∣
PSM→PMSSM

+ Σ̂SM,shifts
hh . (6.1.5)

The first term on the right-hand side of this equation represents the self-energy which
has the same analytic form as Σ̃MS,SM

hh but with all MS SM coupling constants and
massesbeing replaced with their DR MSSM counterparts. At the one-loop level the
two self-energies are equal. The difference between them is encoded in the quantity
Σ̂SM,shifts
hh which is of two-loop order and higher.

The renormalized self-energy of the SM-like Higgs boson in the full MSSM can be
split into parts,

Σ̂MSSM
hh = Σ̂SM

hh + Σ̂n/SM
hh , (6.1.6)

where the SM part contains contributions from the diagrams with only SM particles
and the non-SM part (indicated as “n/SM”) originates from the diagrams with at
least one non-SM particle. At the one-loop level, the following identity holds,

Σ̂SM,(1)
hh = Σ̃SM,(1)

hh

∣∣∣
PSM→PMSSM

. (6.1.7)

At the two-loop level this holds for the Yukawa corrections to the Higgs mass, i.e. the
corrections of order O(m2

tα
2
t +m2

tαtαb+m2
bαtαb+m2

bα
2
b). For the mixed Yukawa-QCD

corrections, of O(m2
tαtαs +m2

bαbαs) the situation is slightly more elaborate. In this
case the two different choices of the regularization scheme (MS or DR) lead to two
different expressions for the self-energy. This already can be anticipated since the
running MS and DR quark masses are related to each other at the one-loop level via
Eq. (3.2.62). By using TwoCalc [256] and the scripts described in [254] we explicitely
checked the following relation,

Σ̃MS,SM,O(m2
tαtαs)

hh + ∂

∂mt

Σ̃MS,SM,(1)
hh ·∆mDR→MS

t = Σ̃DR,SM,O(m2
tαtαs)

hh , (6.1.8)

and the analogous relation for the O(m2
bαbαs) self-energies. In Eq. (6.1.8),

∆mDR→MS
t = αsmt

3π . (6.1.9)

As explained above, the one-loop reparametrization of the couplings and masses in
the one-loop SM self-energy induces shifts of the two-loop order,

Σ̂SM,shifts
hh =

∑
P

∂

∂P
Σ̃MS,SM,(1)
hh ∆(1)P. (6.1.10)
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Where P are all SM parameters which enter Σ̃MS,SM,(1)
hh . The one-loop expression

for Σ̃MS,SM,(1)
hh at zero external momentum of order O(m2

tαt +m2
bαb) reads (see also

Eq. (5.2.1)),

Σ̃MS,SM,(1)
hh =

∑
q=t,b

3m4
q

4π2v2 log
m2
q

Q2 . (6.1.11)

In this expression all masses and vacuum expectation values are SM MS parameters
evaluated at the scale Q,

mq ≡ mMS,SM
q (Q), v ≡ vMS,SM(Q). (6.1.12)

They are related to the MSSM parameters in the DR scheme at scale Q in the
following way,

v2
MS,SM = v2

DR,MSSM

(
1− (δ(1)v2)n/SM

)
,

mMS,SM
q = mDR,MSSM

q − (δ(1)mOS
q )n/SM, q = t, b,

(6.1.13)

The one-loop shift (δ(1)v2)n/SM includes O(αt+αb) terms while (δ(1)mOS
q )n/SM includes

O(αt+αb+αs) corrections. In our convention, (δ(1)mOS
q )n/SM,O(αs) includes in addition

to the contribution of heavy particles also the transition between the DR and MS
schemes. With these definitions and Eq. (6.1.7), the two-loop terms which account
for the shifts between the SM and the MSSM quantities acquire the following form,77

Σ̂SM,shifts
hh = −

∑
q=t,b

∂

∂mq

Σ̂SM,(1)
hh (δ(1)mOS

q )n/SM + Σ̂SM,(1)
hh (δ(1)v2)n/SM, (6.1.14)

where we have exploited the fact that in the gaugeless limit Σ̂SM,(1)
hh scales as ∝ 1/v2.

In Ref. [23] it was shown that in the heavy SUSY limit the non-SM part of the vev
shift can be expressed via the non-SM part of the Higgs self-energy derivative,

(δ(1)v2)n/SM = −Σ̂n/SM,(1)′
hh (m2

h). (6.1.15)

Using this relation, Eq. (6.1.14) can be rewritten as follows,

Σ̂SM,shifts
hh = −

∑
q=t,b

∂

∂mq

Σ̂SM,(1)
hh (δ(1)mOS

q )n/SM − Σ̂SM,(1)
hh Σ̂n/SM,(1) ′

hh . (6.1.16)

77For clarity, we will omit arguments of the self-energies in the rest of this section, implying that it always equals
zero.
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Taking into account Eq. (6.1.5), Eq. (6.1.7) and Eq. (6.1.16), the pole equation
Eq. (6.1.3) can be solved iteratively up to the two-loop level,

(Mh)2
SM = (m1l

h )2 + (m2l
h )2 − Σ̂SM,(1)

hh − Σ̃MS,SM,(2)
hh

− Σ̂SM,(1)′
hh

(
(m1l

h )2 − Σ̂SM,(1)
hh

)
+
∑
q=t,b

∂

∂mq

Σ̂SM,(1)
hh (δ(1)mOS

q )n/SM

+ Σ̂SM,(1)
hh Σ̂n/SM,(1)′

hh .

(6.1.17)

At the matching scale Q, the predictions for the physical Higgs mass Mh in the SM
and the MSSM have to be equal order by order,

(Mh)2
SM = (Mh)2

MSSM. (6.1.18)

By equating the one-loop pieces in Eq. (6.1.18), and taking into account Eq. (6.1.1)
and Eq. (6.1.17) we get,

(m1l
h )2 = −Σ̂MSSM,(1)

hh + Σ̂SM,(1)
hh = −Σ̂n/SM,(1)

hh . (6.1.19)

After inserting this one-loop solution back into Eq. (6.1.17), we arrive at

(Mh)2
SM = (m2l

h )2 − Σ̂MSSM,(1)
hh − Σ̃MS,SM,(2)

hh

+ Σ̂SM,(1)′
hh Σ̂MSSM,(1)

hh +
∑
q=t,b

∂

∂mq

Σ̂SM,(1)
hh (δ(1)mOS

q )n/SM

+ Σ̂SM,(1)
hh Σ̂n/SM,(1)′

hh .

(6.1.20)

By equating the two-loop pieces in Eq. (6.1.18) and expanding the one-loop self-
energies of the Higgs boson in the full MSSM according to Eq. (6.1.6), we get

(m2l
h )2 = −Σ̂MSSM,(2)

hh + Σ̃MS,SM,(2)
hh

−
∑
q=t,b

∂

∂mq

Σ̂SM,(1)
hh (δ(1)mOS

q )n/SM + Σ̂n/SM,(1)
hh Σ̂n/SM,(1)′

hh .
(6.1.21)

The running Higgs-boson mass m2
h can be related to the the threshold corrections to

the quartic coupling λ via the relation

m2
h = 2∆λ(Q)v2

MS,SM(Q). (6.1.22)

To express the one- and two-loop corrections in terms of the MSSM coupling constants
we have to perform the shift of the vacuum expectation value in Eq. (6.1.22),

m2
h = 2∆λ(Q)v2

DR,MSSM(Q)(1 + Σ̂n/SM,(1)′
hh ). (6.1.23)
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By solving this equation at the one- and two-loop levels, we obtain the expressions
for the matching coefficients for the quartic coupling,

∆λ1l = − Σ̂n/SM,(1)
hh

2v2
DR,MSSM(Q) , (6.1.24a)

∆λ2l = − 1
2v2

DR,MSSM(Q)

(
Σ̂MSSM,(2)
hh − Σ̃MS,SM,(2)

hh

− 2 Σ̂n/SM,(1)
hh Σ̂n/SM,(1)′

hh +
∑
q=t,b

∂

∂mq

Σ̂SM,(1)
hh (δ(1)mOS

q )n/SM
)
. (6.1.24b)

As already mentioned in the expressions above all couplings are DR MSSM couplings
at the scale Q. Another option is to parametrize these treshold corrections in terms
of the MS SM couplings at Q. While for the bottom coupling this would lead to
unacceptably large shifts, for the top Yukawa coupling the effect is relatively mild. In
this thesis we will use the MS top-Yukawa coupling in the SM and the DR MSSM
bottom-Yukawa coupling to parametrize the one- and two-loop threshold corrections.
To express the two-loop threshold corrections in terms of the SM MS top-Yukawa
coupling we have to reparametrize the top mass and the vev in the one-loop O(α2

t )
threshold correction. This generates the following two-loop terms,

∆λ|yMSSM
t →ySM

t
= − 1

2v2
MS,SM

(
∂

∂mt

Σ̂n/SM,O(m2
tαt)

hh (δ(1)mOS
t )n/SM,O(αt+αb+αs)+

2 Σ̂n/SM,(1),O(m2
tαt)

hh Σ̂n/SM,(1),O(αb+αt)′
hh

) (6.1.25)

which has to be added to the Eq. (6.1.24b). The final results for the two-loop threshold
corrections of O(α2

tαs + α2
bαs + (αt + αb)3) read,

(∆λ)α3
t

= − 1
2v2

MS,SM

(
Σ̂MSSM,O(m2

tα
2
t )

hh − Σ̃MS,SM,O(m2
tα

2
t )

hh (6.1.26a)

+ ∂

∂mt

Σ̂MSSM,O(m2
tαt)

hh · (δ(1)mOS
t )n/SM,O(αt)

)
,

(∆λ)α2
tαb

= − 1
2v2

MS,SM

(
Σ̂MSSM,O(m2

tαtαb)
hh − Σ̃MS,SM,O(m2

tαtαb)
hh (6.1.26b)

+ ∂

∂mt

Σ̂MSSM,O(m2
tαt)

hh · (δ(1)mOS
t )n/SM,O(αb)

)
,

(∆λ)αtα2
b

= − 1
2v2

DR,MSSM

(
Σ̂MSSM,O(m2

bαtαb)
hh − Σ̃MS,SM,O(m2

bαtαb)
hh (6.1.26c)

− 2 Σ̂n/SM,(1),O(m2
bαb)

hh Σ̂n/SM,(1),O(αt)′
hh + ∂

∂mb

Σ̂SM,(1)
hh · (δ(1)mOS

b )n/SM,O(αt)
)
,

(∆λ)α3
b

= − 1
2v2

DR,MSSM

(
Σ̂MSSM,O(m2

bα
2
b)

hh − Σ̃MS,SM,O(m2
bα

2
b)

hh (6.1.26d)
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− 2 Σ̂n/SM,(1),O(m2
bαb)

hh Σ̂n/SM,(1),O(αb)′
hh + ∂

∂mb

Σ̂SM,(1)
hh · (δ(1)mOS

b )n/SM,O(αb)
)
,

(∆λ)α2
tαs

= − 1
2v2

MS,SM

(
Σ̂MSSM,O(m2

tαtαs)
hh − Σ̃MS,SM,O(m2

tαtαs)
hh (6.1.26e)

+ ∂

∂mt

Σ̂MSSM,O(m2
tαt)

hh · (δ(1)mOS
t )n/SM,O(αs)

)
,

(∆λ)α2
b
αs = − 1

2v2
DR,MSSM

(
Σ̂MSSM,O(m2

bαbαs)
hh − Σ̃MS,SM,O(m2

bαbαs)
hh (6.1.26f)

+ ∂

∂mb

Σ̂SM,O(m2
bαb)

hh · (δ(1)mOS
b )n/SM,O(αs)

)
.

The non-SM part of the one-loop Higgs boson self-energy can be evaluated with the help
of FeynArts and FormCalc and then expanded in the limit mt̃L ,mt̃R ,mb̃R

� mt,mb.
The explicit expression for them (and their derivatives) in the gaugeless limit and for
the case mt̃L = mt̃R = mb̃R

� mt,mb reads,

Σ̂n/SM,(1)
hh = −

∑
q=t,b

3m4
q

4π2v2

(
log M

2
SUSY
Q2 + |X̂q|2 −

|X̂q|4

12

)
,

Σ̂n/SM,(1)′
hh =

∑
q=t,b

m2
q

32π2v2 |X̂q|2.
(6.1.27)

From this expressions and Eq. (6.1.24a) it is clear how the one-loop threshold cor-
rections to λ computed in [15,33] can be generalized to the case of the MSSM with
CP-violation. These corrections are polynomials in the squark mixing parameter X̂q.
To obtain the expression in the MSSM with CP-violation X̂q has to replaced by |X̂q|.

The two-loop self-energies were taken from [9,11,257] and expanded in the limit

mt̃L ,mt̃R ,mb̃R
,mA, |µ|, |M3| � mt,mb

without any additional assumptions on the internal masses.soft-breaking masses and
the phases of Xt, Xb, µ and M3. The two-loop SM self-energies in the MS scheme are
taken from Refs. [239,240] and extracted from the code FlexibleSUSY [25,27,237,238].
The explicit expressions for them can be found in App. C. Finally, the one-loop
counterterms (δ(1)mOS

t )n/SM and (δ(1)mOS
b )n/SM have been computed using FeynArts

and FormCalc. The explicit expressions for them in them are listed in the App. B.
The resulting two-loop formulas for the threshold correcions are presented in App. A.

Knowing the expressions for the threshold corrections in the MSSM without CP-
violation the threshold corrections for the complex MSSM can be obtained via the
following rules:
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• O(α2
qαs) where q = t, b: The expression for zero phases is a polynomial in X̂q. To

get the expression for non-zero phases every odd power of X̂q has to be multiplied
by cos(φXq − φM3), and X̂q has to replaced by |X̂q|.

• O(α3
q) where q = t, b: The expression for zero phases is a sum of monomials in

the variables X̂q and Ŷq = X̂q + 2µ̂∗
sin 2β of one of three types: the monomials

which contain only even powers of X̂q, the ones which contain only even powers
of Ŷq and the ones which contain both X̂q and Ŷq. The latter contain only even
or only odd powers of X̂q and Ŷq at the same time. To get the expression for
non-zero phases, every monomial which contains odd powers of X̂q and Ŷq has
to be multiplied by cos(φXq − φYq), and every X̂q and Ŷq has to be replaced by
|X̂q| and |Ŷq|, respectively.

The generalization of the O(α2
bαt) and O(αbα2

t ) expressions from the CP-conserving
case to the CP-violating case is slightly more complicated, since multiple different
multiplicative factors arise.

If the low-energy is the SM plus electroweakinos, effective Higgs–Higgsino–gaugino
couplings are induced. These are potentially complex-valued. An explicit matching
calculation at the one-loop level, however, shows that their phase is zero even if one
or more of the electroweakino phases in the MSSM is non-zero. Correspondingly, also
the RGEs of the SM plus electroweakinos are not modified in the presence of non-zero
phases. The phases, however, enter in the threshold correction for the bottom and
top Yukawa coupling as well as the Higgs self-coupling when integrating out the
electroweakinos (full expressions are listed in App. A).

6.2 ∆b with phase dependence

In addition to the phase dependencies discussed above, also the ∆b corrections (see
Sec. 5.2.4) depend on φµ, φM1,2,3 and φAt . The phase dependence of the one-loop
correction has been derived in [191, 200]. The phase dependence of the two-loop
correction, which we derived in the real case based upon the result of [29–31], has,
however, been unknown so far. We find that this dependence is the same as for the
one-loop result. This can be understood by looking at the explicit two-loop diagrams.

But first, let us consider the one-loop correction. The O(αt + αs) one-loop ∆b

correction in the heavy SUSY limit can be obtained by evaluating the diagrams
in Fig. 6.1. These diagrams include the incoming and the outgoing b-quarks with
different chirality. The diagrams which involve quarks with the same chirality are
suppressed by additional factors of tan β and do not contribute to ∆b [200]. The
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bL bR

b̃L b̃R

g̃

bL bR

t̃R t̃L

H̃±1,2
Figure 6.1: Diagrams contributing to ∆O(αt+αs)

b at the leading order in the chiral basis

diagrams are drawn using the chiral basis in which the “left” and the “right” squarks
propagate and the off-diagonal mass term is interpreted as an additional interaction
(denoted as ⊗) which flips the “chirality” of the squark. In the limit MSUSY � v

only the diagrams with a single mass insertion contribute. This can be seen in the
following way. The left diagram in Fig. 6.1 is proportional to

∝ αs mb µ tβ M3 C0(0, 0, 0,m2
t̃L
,m2

t̃R
, |M3|2), (6.2.1)

where C0 is a Passarino-Veltman function corresponding to the vertex function with
three external legs. If all soft-breaking are equal MSUSY, the expression in the
Eq. (6.2.1) reduces to

∝ αs mb tβ
µ M3

M2
SUSY

. (6.2.2)

The analogous diagram with two mass insertion is proportional to

∝ αs mb µ tβ M3 D0(0, 0, 0, 0, 0, 0,m2
t̃L
,m2

t̃R
,m2

t̃L
, |M3|2), (6.2.3)

where D0 is a Passarino-Veltman function corresponding to the vertex function with
four external legs. If all soft-breaking are equal MSUSY this diagrams behaves like

∝ αs mb tβ
µ M3

M2
SUSY

× mb µ tβ
M2

SUSY
. (6.2.4)

We see that it is suppressed by an additional factor mb/MSUSY compared to the
diagram with one insertion and is therefore non-leading. Clearly, diagrams with more
insertion will be suppressed by more additional factors of mb/MSUSY. Analogous
arguments are applicable to the right diagram in Fig. 6.1.

The same argument applies to higher-order corrections to ∆b [30] as can be proven
by using the Kinoshita-Lee-Nauenberg theorem [258, 259]. Namely, the diagrams
contributing to the two-loop quantity ∆b of order O(α2

s +αtαs) contain only one mass
insertion.

The phases of the complex parameters At, µ and M3 enter through the mass
insertions and through (bLb̃∗Lg̃) and (bLt̃∗RH̃+

2 ) vertices. In particular, the mass
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insertion in the left diagram in Fig. 6.1 yields the phase factor ∝ e+iφµ while both
vertices contain e+i

φM3
2 (see Sec. 2.5.4). The overall diagram is then ∝ eiφM3+iφµ . The

result for the analogous diagram with incoming bR and outgoing bL leads to the phase
factor ∝ e−iφM3−iφµ . The overall phase dependence is then ∝ cos(φM3 + φµ) (see
Eq. (A.1.8) in App. A). The mass insertion in the right diagram in Fig. 6.1 gives phase
factor ∝ e+iφAt , while (bLt̃∗RH̃+

2 ) and (b̄Rt̃LH̃−2 ) vertices contain the entries of the
chargino mixing matrices V∗22 and U∗22. In the gaugeless limit they are proportional to
the phase factors ∝ e+iφµ2 . The overall diagram (together with its complex conjugated)
is ∝ cos(φAt + φµ) (see Eq. (A.1.8) in App. A).

bL bR

b̃Rg

bL g̃

bL bR
b̃L

g

bL g̃

bL bR

gb̃L

g̃ bR

bL bR

g

b̃R

g̃ bR

bL bR

b̃R

g

g̃ g̃

bL bR

b̃L

g

g̃ g̃

Figure 6.2: The first class of two-loop diagrams contributing to ∆2L,O(α2
s)

b : a gluon is
added to the O(αs) one-loop graph.

Two-loop diagrams contributing to the quantity ∆b at order O(α2
s) can be split into

three categories: either a gluon, a sbottom quark or a gluino is added to the one-loop
O(αs) graph. Examples of the corresponding diagrams are depicted in Figs. 6.2 – 6.4.
The particles which are added to the one-loop graph are highlighted with the red
color.78

If a gluon is added, the phase dependence of the one-loop graph is obviously not
changed, since the two additionally appearing strong gauge couplings do not include
a phase dependence. The same is true if a sbottom quark is added coupled to the

78The rightmost diagram on Fig. 6.4 cannot be reduced to any one-loop diagram. This fact however does not change
our argumentation.



116 CHAPTER 6. EFT CALCULATION FOR COMPLEX INPUT PARAMETERS

bL bR

g̃

b̃

bL bR

g̃

b̃

bL bR

g̃

b̃ b̃

Figure 6.3: The second class of two-loop diagrams contributing to ∆2L,O(α2
s)

b : a sbottom
is added to the O(αs) graph.

bL bR

g̃

g̃

bL

b̃L
bL bR

g̃

g̃

bR

b̃R

Figure 6.4: The third class of two-loop diagrams contributing to ∆2L,O(α2
s)

b : a gluino is
added to the one-loop O(αs) graph.

one-loop graph by a four-sfermion vertex. Working in the chiral basis, it is again
obvious that this additional coupling does not induce an additional phase dependence.
The case of adding a gluino (see Fig. 6.4) is slightly more complicated. The two
additional gluon-gluino-sbottom couplings do depend on the phase of the gluino mass
parameter. Working again in the chiral basis, it is obvious that one of these two
additional couplings is a left-handed coupling and the other one is a right-handed
coupling. The dependence on the gluino phase cancels between the left-handed and
the right-handed coupling.

We conclude that in the case of the MSSM with complex parameters the two-loop
∆b of O(α2

s) given in Eq. (5.2.23b) has to be multiplied by cos(φµ + φM3). The same
reasoning can be applied to the two-loop ∆b at O(αtαs): Eq. (5.2.23c) has to be
multiplied by cos(φµ + φAt).79

79Corresponding two-loop diagrams can be found in the Appendix C of [30].
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6.3 Numerical results

In this Section, we discuss the numerical effect of including the full phase dependence
into the two-loop threshold corrections to the Higgs self-coupling. First, let us briefly
review the method used in FeynHiggs to handle non-zero phases so far. The treatment
of the two-loop corrections in the presence of the complex parameters is controlled
by the flag tlCplxApprox. When it equals 3, the fixed-order O(m2

tαtαs + m2
tα

2
t )

corrections including the full phase dependence are activated and combined with the
fixed-order O(m2

tαtαb+m2
bα

2
t +m2

bα
2
b+m2

bαbαs) corrections, interpolated in the phases.
In this Section, we will assume that we run FeynHiggs in this mode. Interpolation
occurs when the phases of µ, M3, Xt or Xb are non-zero. The user can choose between
interpolation in At or Xt, and Ab or Xb. In the EFT part of the code the interpolation
is always carried out in the following way. First, the RGEs are integrated numerically
and the subtraction terms are calculated for all possible combinations of +|P | and
−|P | (where P ∈ {µ,Xt/At,M3}).80 After that, linear interpolation is performed on
the obtained grid. In this Section, we chose to interpolate Xt when the phase of Xt

or At is non-zero.
The phases of the above-mentioned parameters enter the hybrid calculation via

threshold corrections to the Higgs self-coupling and via the subtraction terms. As we
mentioned in Sec. 6.1, both of them depend only on the absolute value |X̂t| at the
one-loop level, so the interpolation would give a correct result if only LL and NLL
resummation were included and the interpolation was performed in Xt. However, the
two-loop threshold corrections to the Higgs self-coupling (and hence the two-loop
non-logarithmic subtraction terms) do not depend just on the absolute value of Xt.
For example, the O(α2

tαs) threshold correction also depends on the cosine of the
phase difference, cos(φXt − φM3), and the formula for the O(α3

t ) threshold correction
depends on |Ŷt| and cos(φXt − φYt). In comparison to the full formula, the usage of
interpolation introduces an error at the next-to-next-to-leading logarithmic order. The
phases also enter the expression for the two-loop threshold corrections of the bottom
Yukawa coupling and ∆b. First, we will, however, concentrate on MSSM scenarios in
which the effect of the bottom Yukawa coupling on the Higgs mass is negligible and
so we will switch off the two-loop corrections of O(m2

tαtαb +m2
bα

2
t +m2

bα
2
b +m2

bαbαs)
by choosing the input flag tlCplxApprox = 1 for the next three plots.

In order to test our approach we first consider the same MSSM scenario as in the
Fig. 3 in [231]: all soft SUSY breaking masses and µ are equal to the common mass
scale MSUSY = 2 TeV, tan β = 10 and X̂DR

t (MSUSY) =
√

6. We vary the phase of the
gluino mass M3 in the interval [−π,+π]. All other input parameters are assumed

80The threshold corrections in FH-2.16.0 do not depend on Xb or Ab.
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Figure 6.5: Left: Mh as a function of φM3 setting φXt = φYt = 0. The results obtained
by interpolating the EFT part of the hybrid calculation and by including the full phase
dependence are compared. Right: Difference of the two curves in the left plot, ∆MHybrid
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Figure 6.6: The same as in Fig. 6.5 but for φXt = φYt = π/2.

to be real. In this way, we test the phase dependence of the O(α2
tαs) threshold

correction.
In Fig. 6.5, we show the comparison between the prediction of FeynHiggs-2.16.0

(red line) and our new calculation including the full phase dependence (green line).
For clarity, in the right panel of the same Figure we present the difference between
the two predictions. First, we notice that the two methods give the same answer for
φM3 = 0,±π which is expected because in these cases M3 is a real parameter. This
serves as a cross-check for our implementation. Second, we see that the interpolation
in this particular scenario is a fairly good approximation: the absolute difference
between the two curves does not exceed ∼ 0.3 GeV for φM3 ' ±π

4 or φM3 ' ±3π
4 .

Next, we proceed with the scenario which is similar to the one described above,
but we assume that X̂t and Ŷt are purely imaginary while keeping the same absolute
value for |X̂t| =

√
6 as before. As one can see in Fig. 6.6, the interpolation procedure

overestimates the true Higgs mass for positive values of M3 and underestimates it for
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M3 < 0. The absolute difference between the two approaches here may be as large as
∼ 1.5 GeV for φM3 ' ±π

2 .

As a next step, we investigate the effect of phase dependence in O(α3
t ) threshold

correction. To enhance the numerical value of this correction, we choose a low value
for tan β = 3. This choice, however, suppresses the tree-level Higgs mass, so to bring
it back to the value around 125 GeV, we have to choose the scenario with particularly
heavy MSUSY = 20 TeV. In order to isolate the effect of phase dependence in the
considered corrections, we fix the phase of gluino mass to be equal to the phase of Xt.
In consequence, the phase dependence in O(αsαt) threshold correction vanishes. We
also choose the Higgsino mass parameter to be positive, φµ = 0. The result of the
scan in φXt is shown in Fig. 6.7. Again, as in the case of Fig. 6.5, we see that both
methods give exactly the same result for φXt = 0,±π since in these three points all
parameters are real.81 However, for other values of φXt the interpolation procedure
always overestimates the true value of Mh and, as one can see on the right panel
of Fig. 6.7, the maximal difference between the two approaches can reach ' 2 GeV
for φXt = φM3 = ±π

2 .

Finally, in this section, we analyze the interplay between the resummation of the
logarithms proportional to the bottom Yukawa coupling and the inclusion of the
full phase dependence into the EFT part of our hybrid calculation. As a starting
point we go back to the scenario discussed in the Sec. 5.3. Namely, we consider a
single scale scenario, where all soft-breaking masses as well as the mass of the charged
Higgs boson82 are equal to 1 TeV, ADR

b = 2.5MSUSY, the Higgsino mass parameter is
81Even though we have chosen a very low value of tanβ = 3, the overall phase dependence is quite mild. The

difference between the Higgs mass calculated at φXt = 0 and φXt = π is only ∼ 0.05 GeV. Lowering the tanβ even
further (and pushing MSUSY higher) does not lead to a stronger phase dependence.

82Due to the CP-violation MH± is chosen as an input parameter instead of MA.
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b (MSUSY) as a function of
φM3 .

negative µ = −MSUSY, the bino and wino masses are chosen to be positive M1,2 > 0
and X̂OS

t = 2. The phase of the gluino mass is a free parameter and we scan over it in
the interval from −π to +π. We examine this scenario for tan β = 30 and tan β = 45.

The result of the scan in φM3 is shown in Fig. 6.8. The colors of the curves on the
left panel correspond to the same levels of accuracy as in Fig. 5.2, solid lines correspond
to tan β = 30 and dashed lines correspond to tan β = 45. For φM3 = ±π, all six
lines agree within ∼ 0.4 GeV. Here, the strong and the top Yukawa contributions
to ∆b partially cancel each other and the MSSM bottom mass does not acquire any
enhancement. In fact, in the mentioned points the ∆b correction is positive and the
bottom mass is even more suppressed. This is visible in the right panel of Fig. 6.8,
where the solid line lies below the dashed line for φM3 ' ±π.

The red dashed curve resembles the cosine-shape line visible in Fig. 6.5. This is due
to the fact that even for φM3 = 0, where the bottom mass is maximal, it is still too
small to have any sizeable effect onMh. Here, the shape of the line can be explained by
the phase dependence of the two-loop fixed-order corrections of O(m2

tαtαs). Adding
additionally the two-loop fixed-order corrections ofO(m2

tαtαb+m2
bα

2
t+m2

bα
2
b+m2

bαbαs)
(blue dashed) lifts the prediction for the Higgs mass by ∼ 0.15 GeV for φM3 = ±π
and by ∼ 0.7 GeV for φM3 = 0. Additionally including resummation of logarithms
proportional to the bottom Yukawa coupling (green dashed) is less sizable.

The picture is different for tan β = 45. The red solid curve starts to grow when
φM3 increases starting from −π, resembling the red dashed line in shape and reaching
its maximal value at φM3 ' −2π

5 . At this point, the ∆b correction becomes important
leading to an increase of the MSSM bottom mass (see right plot of Fig. 6.8). In
consequence, the one-loop corrections, involving the bottom mass, (see Eq. (5.3.1))
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become important and they start to lower Mh. With a further increase of φM3 the
bottom mass reaches ∼ 6.4 GeV and the Higgs mass drops down to 119 GeV. The
point φM3 = 0 in this plot corresponds to the point where MSUSY = 1 TeV in the left
plot of Fig. 5.3 and the discussion in Sec. 5.3 about the left plot in Fig. 5.3 applies
here as well.



Chapter 7

Resummation of logarithms at
order N3LL

In this Chapter, we describe the implementation of partial N3LL resummation into
the code FeynHiggs and discuss the numerical effect of this resummation.

7.1 Implementation of N3LL resummation

Up to now, the EFT calculation implemented in FeynHiggs was restricted to full
LL and NLL resummation as well as NNLL resummation in the limit of vanishing
electroweak gauge and bottom Yukawa couplings. In this Chapter, we discuss the
implementation of N3LL resummation at O(α2

sα
2
t ) based upon the work presented

in [17]. As was argued in Sec. 4.2, N3LL resummation at O(α2
sα

2
t ) requires three-loop

O(α2
sα

2
t ) matching condition for the Higgs self-coupling between the SM and the

MSSM. This matching condition was computed in [17] based upon the O(m2
tαtα

2
s)

fixed-order calculation performed in [10, 219, 220]. The same level of accuracy has
to be applied at the electroweak scale. First, the MS top Yukawa couplings have to
extracted at the electroweak scale at order O(α3

s). Corresponding formulas can be
found in [190]. Secondly, O(m2

tαtα
2
s) corrections the SM Higgs self-energy have to be

included into the SM pole equation (see Eq. (4.2.8)). Finally, leading QCD corrections
to the three-loop RGEs of the Higgs self-coupling, the strong gauge coupling as well
as the top Yukawa couplings have to included.

The mentioned three-loop correction to λ is implemented in the publicly available
code Himalaya [10, 17].83 As discussed in [17], this calculation is based upon the
expansion of three-loop diagrams for the following mass patterns:

(h3) mq̃ ≈ mt̃1 ≈ mt̃2 ≈ mg̃ ,

83https://github.com/Himalaya-Library/Himalaya
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(h4) mq̃ � mt̃1 ≈ mt̃2 ≈ mg̃ ,

(h5) mq̃ � mt̃2 � mt̃1 ≈ mg̃ , (7.1.1)

(h6) mq̃ � mt̃2 ≈ mg̃ � mt̃1 ,

(h6b) mq̃ ≈ mt̃2 ≈ mg̃ � mt̃1 ,

(h9) mq̃ ≈ mt̃1 ≈ mt̃2 � mg̃ ,

where it is assumed that all squarks except for the top squarks are set equal to mq̃.
If one of the cases listed in (7.1.2) features a hierarchy between to masses (denoted
as �), the loop integrals are expanded in the ratio of the respective masses. If two
masses are assumed to be approximately equal to each other (≈), the expressions are
expanded in the corresponding mass differences. Additionally, in all cases (h3) – (h9)
it is assumed that the masses of all squarks and the mass of gluino are much heavier
than the mass of the top quark. For instance, if the MSSM scenario corresponds to
the case (h3), all three-loop amplitudes are expanded in the following parameters,

1− x2
12, 1− x1g, 1− x2

1q, (7.1.2)

up to (1− x2
12)3, (1− x1g)3 and (1− x2

1q)3, where

x12 =
m2
t̃1

m2
t̃2

, x1g = mt̃1

mg̃

, x1q = mt̃1

mq̃

. (7.1.3)

If the stop SUSY soft-breaking masses are equal, mt̃L = mt̃R ≡ MSUSY the first
parameter in Eq. (7.1.3) is equal to

1− x2
12 = 2MtXt

M2
SUSY

. (7.1.4)

This implies that in the mentioned case the stop mixing parameter Xt is only included
up to the power of three. On the other hand, the four-point function parametrized in
terms of the MSSM top-Yukawa coupling includes terms proportional to X4

t [221].
The contribution of the missing ∼ X̂4

t terms to the final answer is considered as an
uncertainty and Himalaya provides an estimate for this uncertainty.

The calculation of three-loop corrections of O(m2
tαtα

2
s) to the Higgs mass requires

the one-loop renormalization of the gluino mass since this mass enters the two-loop
O(m2

tαtαs) corrections. As we mentioned in Sec. 3.1.1, DRED preserves SUSY up
to the three-loop level in the gaugeless limit. In this scheme loops with virtual
ε-scalars – unphysical massless particles – have to be taken into account. Their
computation requires the renormalization of the ε-scalars masses. Usually these
masses are renormalized to zero in the OS scheme. This scheme is called DR′-scheme.
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We implemented all corrections mentioned into the EFT calculation of FeynHiggs
(the link to Himalaya has already been implemented for the work presented in [35]).
By default, Himalaya use the DR′ scheme for the renormalization of the squark input
parameters. Correspondingly, also the input parameters of FeynHiggs are defined
in the DR′ scheme if N3LL resummation is activated. In case of complex input
parameters, we interpolate the Himalaya result.84

The inclusion of N3LL resummation in the EFT calculation can also be used
together with the fixed-order calculation. In this case we, however, require that also in
the fixed-order calculation the parameters entering the three-loop threshold correction
are renormalized in the DR scheme. The needed two-loop conversion between OS
parameters, potentially used in the fixed-order calculation, and DR parameters, used
in the EFT calculation, is beyond the scope of this thesis.85

7.2 Numerical results

Here, we study the numerical effects of including N3LL resummation at leading order
in strong gauge coupling into our hybrid framework. We study a simple single scale
scenario in which all non-SM masses are set to the common scaleMSUSY. Furthermore,
we set all trilinear SUSY soft-breaking couplings, except for At, to zero. We define
the stop parameters in the DR scheme at the scale MSUSY. We set tan β = 10.

In Fig. 7.1, we compare the results obtained using three different accuracy levels to
each other: NNLL resummation with the SM top Yukawa coupling extracted at the
two-loop level (blue), NNLL resummation with the SM top Yukawa coupling extracted
at the three-loop level (red) and N3LL resummation (green). In the upper plots, the
different results are compared in dependence of MSUSY. For vanishing stop mixing,
all three results are in good agreement for low MSUSY. If MSUSY is raised, there is,
however, an increasing difference between the NNLL (with the two-loop level SM
top Yukawa coupling) and the N3LL results of up to ∼ 1 GeV for MSUSY ∼ 100 TeV.
This shift is almost completely caused by including the three-loop corrections to the
extraction of the SM top Yukawa coupling, since the NNLL result with the SM top
Yukawa coupling extracted at the three-loop level and the N3LL result are in very
good agreement also for MSUSY ∼ 100 TeV. Also for X̂t = −

√
6, the NNLL result

with the SM top Yukawa coupling extracted at the three-loop level and the N3LL
result are in good agreement across the considered MSUSY range (within ∼ 0.3 GeV).
The NNLL result with the SM top Yukawa coupling extracted at the two-loop level
is shifted upwards by ∼ 0.7 GeV. In the top right plot, also the estimate of the

84An interpolation in case of a complex M3 is not possible since the expressions implemented in Himalaya are not
dependent on the sign of M3.

85The necessary two-loop squark self-energy corrections have in principle already been calculated in [222,260].
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Figure 7.1: Top left: Prediction for Mh in dependence of MSUSY for X̂t = 0 (solid) and
X̂t = −

√
6 (dashed). The results using NNLL resummation (blue), NNLL resummation with

the SM top Yukawa coupling extracted at the three-loop level (red) and N3LL resummation
(green) are compared. Top right: Differences of the Mh predictions using N3LL and NNLL
resummation (blue) as well as using N3LL and NNLL resummation with the SM top Yukawa
coupling extracted at the three-loop level (red) in dependence of MSUSY for X̂t = −

√
6. In

addition, the estimate for the truncation error of the O(α2
sαt) Higgs self-coupling threshold

correction is shown (green). Bottom left: Same as top left, but Mh is shown in dependence of
X̂t for MSUSY = 5 TeV. Bottom right: Same as top right, but ∆Mh is shown in dependence
of X̂t for MSUSY = 5 TeV
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uncertainty associated with the truncation error in the calculation of the O(α2
sα

2
t )

threshold correction for the Higgs self-coupling is shown. This estimate is of the same
size as the shift induced by including the O(α2

sα
2
t ) threshold correction.

In the lower plots of Fig. 7.1, the same curves as in the upper plots are shown
but MSUSY is set to 5 TeV and X̂t is varied. The shifts between the various results
are only mildly dependent on X̂t (varying X̂t leads to shifts of up to 0.4 GeV).
This dependence would be stronger for lower MSUSY values. The estimate of the
truncation error, however, shows a strong dependence on X̂t. Whereas it is negligible
for −1 . X̂t . 1, it increases to up to 0.7 GeV for |X̂t| ∼ 3.5.

As expected, these results are in very good agreement with the results of [17,28].
We observe that the main part of the shift induced by including N3LL resummation
is caused by taking into account the three-loop corrections to the extraction of the
SM MS top Yukawa coupling from the measured top mass. The shift caused by
including the O(α2

sα
2
t ) threshold correction for the Higgs self-coupling is smaller and

also associated with a large uncertainty for large |X̂t| values. For small |X̂t| values, the
shift induced by including the O(α2

sα
2
t ) threshold correction for the Higgs self-coupling

is found to be very small. Therefore, we suggest using the result obtained using NNLL
resummation with the SM top Yukawa coupling extracted at the three-loop level
as default result until the uncertainty in the calculation of the O(α2

sαt) threshold
correction is further reduced.



Chapter 8

Higgs boson mass in case of heavy
gluino

The two-loop QCD corrections to the lightest Higgs boson mass include terms which
grow approximately quadratically when the gluino mass |M3| is increased (the two-loop
correction also contains terms linear in |M3|) if the result parametrized in the DR
scheme. This leads to large theoretical uncertainties for scenarios where the gluinos are
much heavier than the rest of the particles [35]. In the present Chapter, which is based
on the paper [20], we demonstrate how the hybrid result that contains a resummation
of higher-order logarithmic contributions can be consistently improved such that large
theoretical uncertainties for the case of a heavy gluino are avoided. Our approach is
based on the introduction of a suitable renormalization scheme for the EFT part of
the hybrid result for which the occurrence of corrections power-enhanced by the gluino
mass is avoided. In our numerical analysis which is presented in section 8.2, we show
that reliable theoretical predictions can also be obtained for large hierarchies between
the gluino mass and the stop masses.

8.1 Treatment of contributions enhanced by the gluino mass

The large theoretical uncertainties for the case where the gluino is heavier than
the stop particles can be traced to corrections to the squared masses of the stops
that are proportional to |M3|2 at the one-loop level in the DR scheme as well as
corrections linear in |M3| originating from one-loop corrections to the stop mixing
parameter Xt. If instead an on-shell (OS) renormalization for the stop masses and
the stop mixing parameter (it is sufficient in this context to impose a condition on the
renormalized off-diagonal self-energy of the two scalar top quarks) is employed, the
momentum subtraction arising from the on-shell counterterms leads to a cancellation
of the leading contributions that are proportional to |M3|2 and |M3|. Accordingly, the
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two-loop fixed-order prediction for the mass of the SM-like Higgs boson of the MSSM
in the OS scheme depends only logarithmically on the gluino mass [34,187,212], while
the corresponding DR result contains contributions that are enhanced by powers of
|M3| [34]. However, for EFT calculations the OS scheme is not applicable. As a
consequence, large non-decoupling effects for a heavy gluino occur both in pure EFT
results (using a single SUSY scale) and also in the EFT parts of hybrid results via
the threshold corrections at the SUSY scale that are evaluated in the DR scheme.

A possible solution would be the derivation of a complete EFT where the effects of
a heavy gluino are systematically integrated out from the MSSM. While in the context
of other observables such an approach has been investigated [261–263], a complete
EFT calculation for a heavy gluino that could be applied for the Higgs-mass prediction
in the MSSM has not been carried out so far. In [13] it was proposed to deal with this
problem by reexpressing the threshold corrections in a pure (single-scale) EFT result
derived in the DR scheme in terms of an “OS-like” renormalization scheme. However,
this prescription is not a viable option since its derivation was based upon an incorrect
result for the transition of the OS stop mixing parameter to the DR stop mixing
parameter. If the correct formula is used, a large logarithm appears in the O(α3

t )
threshold correction which should be avoided in the EFT approach.86 Recently, the
authors of [264,265] proposed a resummation of terms that are enhanced by powers
of the gluino mass as a possibility to alleviate fine-tuning issues in the MSSM and
the NMSSM.

In the following we present a systematic approach for the incorporation of terms
that can be enhanced by powers of the gluino mass |M3| into the prediction for
the mass of the SM-like Higgs boson in the MSSM. We will show that our results
automatically incorporate the resummation of large gluino contributions that was
recently proposed [264,265].

In a fixed-order calculation within the OS scheme the leading contributions that
are enhanced by powers of the gluino mass cancel out between the unrenormalized
diagrams and the counterterms as a consequence of the fact that the OS scheme
is a momentum-subtraction scheme. As an example, it is well-known that the
unrenormalized self-energies of the scalar top quarks, Σ(p2), receive contributions at
the one-loop level that scale proportional to the squared gluino mass in the limit of a
heavy gluino. These terms cancel, however, in the renormalized self-energies of the
two stop mass eigenstates,

Σren(p2) = Σ(p2)− Re
(
Σ(p2 = m2)

)
+ . . . , (8.1.1)

86This is exactly the large logarithm in the formula for the conversion of the stop mixing parameter Xt which
appears only in the scenarios with degenerate soft-breaking masses, see Sec. 4.4 for details.
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where the ellipsis denotes terms involving the field renormalization constant and m is
the mass of the scalar top quark. In the DR scheme, on the other hand, the mass
counterterm does not have a finite part, and a cancellation like in eq. (8.1.1) does not
occur.

In order to treat the case where the gluino is much heavier than the rest of the
mass spectrum with EFT methods, the gluino should be integrated out. For this
purpose, matching conditions between the full MSSM and the MSSM without gluino
have to be calculated. In this matching procedure, all particles except the gluino can
be treated as massless. Consequently, it follows purely from the dimensional analysis
that no terms enhanced by powers of the gluino mass can enter the matching of the
Higgs four-point function and also of all other dimensionless Green functions (terms
depending logarithmically on the gluino mass are possible).

Contributions that are enhanced by powers of the gluino mass can, however, enter
the matching of Green functions with a mass dimension greater than zero. If we
perform the matching before electroweak symmetry breaking, these Green functions
are all related to soft SUSY-breaking parameters which, apart from the gluino mass
parameter M3, can be treated as being zero at the tree-level in the heavy gluino limit.
Diagrams involving gluinos generate non-zero contributions at the loop-level which
are proportional to powers of the gluino mass. The highest possible power in M3 is
given by the mass dimension of the respective parameter.

In the context of the calculation of the lightest SM-like Higgs-boson mass, the
soft SUSY-breaking parameters of the scalar top quarks are most relevant.87 Their
one-loop matching relations (not including terms suppressed by |M3|) read

(
m

MSSM/g̃
t̃L,R

)2
(Q) =

(
mMSSM
t̃L,R

)2
(Q)

1 + αs
π
CF
|M3|2

m2
t̃L,R

(
1 + ln Q2

|M3|2

)
−

− αs
4πCF

(
1 + 2 ln Q2

|M3|2

)]
, (8.1.2)

X
MSSM/g̃
t (Q) = XMSSM

t (Q)− αs
π
CFM

∗
3

(
1 + ln Q2

|M3|2

)
+

+ αs
8πCFXt

(
1− 2 ln Q2

|M3|2

)
. (8.1.3)

where MSSM/g̃ denotes the MSSM without the gluino, M3 is the gluino mass param-
eter (we consider here the general case where M3 can have complex values), mt̃L,R

are the left and right soft-breaking masses of the stop sector, Xt is the stop mixing
87The presented argumentation is straightforwardly transferable to other sectors having a smaller numerical impact

(e.g. the sbottom sector), which are not discussed here. Note that also the Higgs soft-breaking masses receive threshold
corrections (see [264,265]). We work in the approximation of setting the electroweak gauge coupling to zero in the
non-logarithmic two-loop corrections. Thus, the matching of the Higgs soft-breaking parameters does not enter the
calculation of the SM-like Higgs mass.
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parameter, αs = g2
3/(4π) (with g3 being the strong gauge coupling), CF = 4/3 and

Q is the scale at which the matching is performed. Higher-order loop corrections to
these relations are subleading (i.e., of the form |M3|2αns with n ≥ 2 in case of the
mass parameters and of the form |M3|αns in the case of the stop mixing parameter).

After integrating out the gluino at the gluino mass scale, the parameters are
evolved down to the stop mass scale, where in the simplest setup all other non-SM
particles are integrated out. Since the gluino is not present in the EFT below the
gluino mass scale, no terms enhanced by powers of the gluino mass can enter in all
the parts of the calculation that are performed at a scale below the gluino mass scale.

Deriving all necessary matching conditions for integrating out the gluino as well
as the corresponding RGEs is cumbersome. 88 Instead, we focus here specifically on
terms that are enhanced by powers of the gluino mass. As argued above, these terms
arise only in the matching relations of the soft SUSY-breaking masses. Instead of
performing the full matching, we can also absorb the terms that are enhanced by
powers of the gluino mass into the definition of the parameters. For the case of the
mass parameters it is useful to adopt the MDR scheme employed in [220] for this
purpose,

(
mMDR
t̃L,R

)2
(Q) =

(
mDR
t̃L,R

)2
(Q)

1 + αs
π
CF
|M3|2

m2
t̃L,R

(
1 + ln Q2

|M3|2

) , (8.1.4)

where here Q is the conversion scale at which the DR parameters are converted to
the MDR ones.

We extend the MDR scheme by also defining it for the stop mixing parameter,

XMDR
t (Q) = XDR

t (Q)− αs
π
CFM

∗
3

(
1 + ln Q2

|M3|2

)
. (8.1.5)

Using this scheme, the resummation formulas derived in [264,265] are easily recoverable
(see App. D). Note also that the MDR parameters are scale independent at leading
order in |M3|.

If the EFT calculation is performed in the MDR scheme no terms enhanced
by powers of the gluino mass appear.89 At the same time the occurrence of large
logarithms, lnMSUSY/Mt, in the threshold corrections which is not desirable in the
EFT approach (as happens for the “OS-like” scheme proposed in [13]) is avoided in
this way. It should be noted that the threshold corrections between the SM and the

88In the recent study [263] all one-loop matching conditions for operators of dimension four to six were derived for
the MSSM without gluino in the gaugeless limit, but in addition also the appropriate two-loop threshold corrections
and RGEs would be needed.

89If three-loop threshold corrections are taken into account, also subleading terms (i.e., terms of two-loop order) in
the MDR definition have to be taken into account [220,222].
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MSSM still depend logarithmically on the gluino mass. These terms are, however,
numerically less problematic.

If MDR parameters are given as input for the calculation, the application of the
MDR scheme is obviously straightforward. It is, however, desirable to also allow for
input parameters renormalized in other schemes. In order to incorporate the EFT
calculation using the MDR scheme into a hybrid result involving on-shell parameters
or into a framework using another scheme, for instance DR parameters, the respective
parameters need to be related to the corresponding quantities in the MDR scheme.
We briefly describe in the following how this can be achieved for the case of OS and
DR parameters.

8.1.1 On-shell input parameters

Often the OS scheme is used for the definition of the stop parameters. It relates the
mass parameters directly to physical observables (more precisely, pseudo-observables)
and is therefore often used in phenomenological studies.

For the case of OS input parameters the incorporation of the EFT calculation
using the MDR scheme can be carried out along the lines of the procedure that is
employed in the hybrid framework of FeynHiggs for combining the fixed-order and
EFT approaches [21–24]. As usual, the fixed-order corrections can be evaluated
directly in the OS scheme.

As for the EFT part, there are, in principle, two strategies possible. One can convert
the input parameters from the OS to the MDR scheme at some scale and then use the
MDR quantities obtained in this way in the EFT calculation. However, a logarithm
of the SUSY scale over the top mass scale appears in this conversion. As argued
in [22,23] only this logarithm has to be retained in the formula since it is sufficient
to reproduce the logarithms emerging in the fixed-order result. Furthermore, the
associated uncertainty from higher-order logarithmic terms is part of the uncertainty
estimate presented in [35]. As an alternative to this method, one could consider using
an “OS-like” scheme, similar to the one presented in [13], in the EFT calculation.
This strategy, however, leads to a large logarithm, lnMSUSY/Mt, in the two-loop
threshold-correction of the SM Higgs self-coupling. In order to avoid the occurrence of
a large logarithm in this threshold correction, we prefer to use the procedure outlined
above where such a logarithm appears only in the scheme conversion of the input
parameters. To the best of our knowledge it has not yet been shown how logarithms
of this kind could be properly resummed. We leave this issue for further study, but
as mentioned above include it as part of the estimate of the remaining theoretical
uncertainties.



132 CHAPTER 8. HIGGS BOSON MASS IN CASE OF HEAVY GLUINO

We improve the hybrid result by carrying out the EFT calculation with the stop
parameters defined in the MDR scheme rather than the DR scheme as it was used
up to now (the subtraction terms are adapted accordingly). In order to obtain the
input parameters of the EFT calculation in the MDR scheme we need to convert
the input parameters given in the OS scheme to the MDR scheme. As we already
mentioned above, we retain only large one-loop logarithms in this conversion. This
implies that the incorporation of the EFT results using the MDR scheme instead of
the DR scheme does not require changes in the conversion formulas presented in [22].
We perform the conversion at the scale MSUSY. The matching scale between the SM
and the MSSM can in principle be chosen independently of the conversion scale. We
choose to use MSUSY. Alternatively, converting at the scale |M3| (and also using |M3|
as matching scale) does not lead to large shifts in Mh.

8.1.2 DR input parameters

For the study of high-scale SUSY breaking models, often the DR scheme is used
as it is appropriate for running down the parameters from the high scale. This is
also the scheme that is usually employed in pure EFT calculations. For the case of
DR input parameters the following procedure should be employed. The high-scale
DR parameters are run down to the conversion scale, where they are converted to
the MDR scheme using eq. (8.1.4). After that the fixed-order as well as the EFT
calculation can be carried out in the MDR scheme.

In principle, the conversion scale can be chosen arbitrarily. The result does not
depend on it at the two-loop level. As argued above, the insertion of the MDR
parameters into the one-loop threshold corrections is equivalent to the resummation
of |M3|-enhanced contributions to all orders. However, this insertion also generates
large |M3|2-enhanced logarithmic contributions, see eq. (8.1.4), unless Q = |M3| is
set. Therefore, in our approach, we perform the conversion between the DR and the
MDR parameters at the gluino mass scale in order to avoid an unstable result. If
DR parameters defined at a scale below |M3| are given as input, an unstable result
cannot be avoided. In addition, we also set the scale where the SM is matched to the
MSSM, which in principle is independent of the conversion scale, to the scale of the
gluino mass.

8.2 Numerical results

In this Section, we discuss the numerical implications of using the MDR scheme in
the EFT calculation. We focus on a single-scale scenario in which all non-SM mass
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Figure 8.1: Prediction for Mh as a function of the ratio of the gluino mass over MSUSY.
For the most accurate result, labelled as MDR–EFT (full), the estimate of the remaining
theoretical uncertainties is shown as colored band. The result is compared with predictions
using different renormalization schemes in the EFT calculation. Left: Prediction of the
hybrid calculation using the OS scheme for the definition of the input parameters where for
the EFT part the full MDR scheme, a partial MDR scheme (see text) and the DR scheme are
used. Right: Prediction of the pure EFT calculation using the DR scheme for the definition
of the input parameters. The result for the MDR scheme with the conversion scale Q = |M3|
is compared with the one for Q = MSUSY and with the result for the DR scheme with both
scale choices.

parameters are chosen to be equal to a common mass scale named MSUSY, which is
set to 1.5 TeV. As the only exception, we allow the gluino mass parameter M3 to
take a different value. We choose all soft SUSY-breaking trilinear couplings to be
zero except for the stop trilinear coupling which is fixed by setting the stop mixing
parameter Xt. The ratio of the Higgs vacuum expectation values, tan β, is set to 10.

The left panel of fig. 8.1 shows the prediction for the lightest Higgs boson mass
in the hybrid approach obtained by FeynHiggs (version 2.15.0) as a function of
the ratio |M3|/MSUSY. In addition to the DR scheme, which was used up to now by
default in the EFT calculation of FeynHiggs for the definition of the stop parameters,
we implemented the MDR scheme as defined in Sec. 8.1. For this plot the input
parameters of the stop sector are assumed to be defined in the OS scheme, setting
X̂OS
t = 2, where X̂t = Xt/MSUSY.
The blue solid line shows the result obtained using the DR scheme in the EFT

calculation. This means, in particular, that the stop parameters are DR parameters
defined at the scale MSUSY. Since the input parameters are defined in the OS scheme,
there is no quadratic and linear dependence on M3 at the two-loop level as the
calculation up to this level is based on the fixed-order result in the OS scheme.
However, terms that are enhanced by powers of the gluino mass emerge from the
two-loop threshold correction to the Higgs quartic coupling of O(αtαs). This threshold
correction generates three-loop NNLL (next-to-next-to-leading logarithmic) terms,
involving MSUSY and Mt, in the expression for the Higgs-boson mass. For X̂OS

t = 2,
these power-enhanced terms in the DR-EFT result drive the Higgs-mass prediction
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steeply downwards when |M3| increases as shown in the plot. The large numerical
impact of the power-enhanced terms leads to a large increase of the theoretical
uncertainty of the EFT result in the DR scheme (and consequently also of the hybrid
result into which it is implemented), see the discussion in [35]. There a drastic increase
of the uncertainty was found in the region |M3|/MSUSY & 2 for the same scenario.

The red dashed curve on this plot corresponds to the result of the hybrid calculation
in which in the EFT calculation the left and right stop soft-breaking masses are
parametrized in the MDR scheme at the scaleMSUSY, while the stop mixing parameter
Xt is still a DR parameter defined at the same scale. This corresponds to the version
of the MDR scheme that was previously used in the literature. While for this result
the Higgs-mass prediction falls less rapidly with increasing |M3| compared to the blue
solid curve, the plot shows that there is a remaining approximately linear dependence
of the squared Higgs mass on |M3| that leads to large theoretical uncertainties also
for this result. The reason for the somewhat improved behaviour with respect to the
result that is based on the DR scheme can be traced to the fact that the choice of
mt̃L,R in the MDR scheme absorbs the quadratic dependence ∼ |M3|2 in the mentioned
three-loop NNLL terms (and also of higher order terms).

The red solid curve in the left plot of fig. 8.1 shows the result of the hybrid
calculation making use of the extended MDR scheme as described above. Accordingly,
all the stop parameters entering the EFT part of the hybrid result are parametrized in
the MDR scheme at the scale MSUSY. In this case, all the terms scaling like powers of
the gluino mass that would be induced by the two-loop O(αtαs) contribution to the
threshold correction are absorbed into the definition of the soft-breaking parameters.
We observe only a rather mild logarithmic dependence of the calculated Higgs-boson
mass on |M3|/MSUSY. These logarithms could be resummed by performing the
complete matching of the full MSSM to the MSSM without a gluino as low-energy
theory above the stop mass scale. This, however, is numerically much less relevant
and lies beyond the scope of the present paper.

For the full MDR result, we also show a coloured band indicating the remaining
theoretical uncertainty estimated using the procedure developed in [35]. The com-
parison with the uncertainty estimate obtained in [35] for the case where the EFT
part of the calculation is based on the DR scheme shows that the application of
the (extended) MDR scheme to the EFT part of the calculation leads to a drastic
reduction of the theoretical uncertainty. The uncertainty that we estimate for the full
MDR–EFT result stays approximately constant (∼ 1.5 GeV) when |M3| is raised and
shows no sharp increase as found in [35].
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The right panel of fig. 8.1 shows the lightest Higgs-boson mass calculated in the
pure EFT approach as implemented in FeynHiggs (version 2.15.0) as a function of
|M3|/MSUSY using the DR scheme for the definition of the input parameters. We define
these parameters at the conversion scale Q. For our result based on the (extended)
MDR scheme the parameters have to be defined at the scale Q = |M3| (red solid line)
in order to obtain a numerical stable result (see also section 8.1). For comparison we
also show the MDR–EFT result where the input parameters are defined at MSUSY,
where also the conversion to the MDR scheme is carried out (red dashed line). We
furthermore display the DR–EFT result for both input scale choices. It should be
noted that for |M3| 6= MSUSY the solid lines (input scale |M3|) and the dashed lines
(input scale MSUSY) cannot be directly compared to each other since they represent
different physical situations. We fix X̂DR

t =
√

6 for this plot.
Our result based on the (extended) MDR scheme (red solid line) is parametrized

in terms of MDR quantities at the scale |M3|, which are obtained from a one-loop
conversion of the DR parameters at the same scale using eqs. (8.1.4) and (8.1.5) and
making the according adjustments to the O(αtαs) threshold correction (for more
details see Sec. 8.1). We observe only a mild logarithmic dependence of the calculated
Higgs-boson mass on |M3|/MSUSY for this result.

The coloured band shows the estimated size of unknown higher-order corrections for
the MDR–EFT result with Q = |M3|. The theoretical uncertainty of the EFT result is
estimated following largely the procedure employed in [35]. As only differences we take
into account the modified scale dependence of the MDR parameters in comparison to
the DR parameters and an additional uncertainty associated with unknown higher-
order corrections to the relations converting the parameters from the DR to the MDR
scheme (see eqs. (8.1.4) and (8.1.5)). We estimate this uncertainty by replacing αs by
αs [1± αs/(4π) (1 + lnQ2/|M3|2)] in eqs. (8.1.4) and (8.1.5) (see also the discussion
in [35]). As for the case of OS input parameters for the hybrid result, the total
uncertainty stays approximately constant (∼ 1 GeV) when |M3| is raised.

For comparison, the red dashed line shows the EFT result based on the (extended)
MDR scheme where the scale of the DR input parameters is chosen as Q = MSUSY

instead of Q = |M3|. It is clearly visible that using DR parameters defined at the
scale MSUSY as input spoils the stability of the MDR–EFT result. Numerically, the
sharp decrease of Mh is largely driven by the behaviour of the MDR parameters. As
one can see from eq. (8.1.4), in this scenario, the MDR stop soft-breaking masses
decrease with increasing |M3| while the stop mixing parameter XMDR

t (Q) increases.
This results in the suppression of Mh with increasing |M3| visible for the dashed
red line. In contrast, the MDR stop soft-breaking masses increase and XMDR

t (Q)
decreases for Q = |M3| (red solid line) resulting in the observed stability for rising
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|M3|.90 As argued in section 8.1, the instability for Q = MSUSY is a consequence of
the input parameters being defined in the MSSM and not in a valid EFT in which
the gluino is integrated out at the scale |M3|.

We now turn to the discussion of the DR–EFT result (blue solid and dashed lines).
It is obvious that neither input scale choice yields a reliable theoretical prediction of
the DR–EFT calculation. As explained above, this is caused by the power-enhanced
gluino contributions that are present in this result. The blue dashed line shows the
result where the input scale is chosen as MSUSY. In this case, the two-loop threshold
correction of O(αtαs) depends quadratically on |M3| and so does the squared Higgs
mass which contains terms proportional to ∼ |M3|2 (1 + logM2

SUSY/|M3|2).
The blue solid curve in the right plot of fig. 8.1 corresponds to the DR–EFT result

where the DR parameters are defined at the scale |M3|. As explained above, there
is a quadratic dependence on the gluino mass in the two-loop threshold correction.
However, since for the choice Q = |M3| there is no additional negative logarithmic
contribution to the threshold correction, in this case the Higgs mass grows with
increasing |M3|.

90This is true for the given choice of M3 (i.e., M3 > 0). For M3 < 0 (or a complex-valued M3), |XMDR
t (|M3|)| can

increase but the ratio |X̂t| = |Xt/MSUSY| will still decrease.
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Conclusions

A crucial prediction of the MSSM is the existence of a light Higgs boson. Its mass,
which can be calculated in terms of the model parameters, is an important precision
observable. Consequently, a precise theoretical prediction of this mass is required,
with the goal to reach at least the same level of precision as currently achieved by the
experimental measurements of the Higgs boson mass at the LHC. In order to reach
this goal the theoretical uncertainties from unknown higher-order contributions as
well as the parametric uncertainties that are induced by the experimental errors of
the input parameters have to be significantly improved.

In this thesis, we discussed various improvements of the MSSM Higgs boson mass
calculation relevant in certain regions of the MSSM parameter space. Namely, these
are scenarios with large tan β, with complex-valued soft SUSY-breaking parameters or
the combination of the two. We performed these improvements in the hybrid approach,
combining EFT and fixed-order calculations of the Higgs boson mass and including
partial N3LL resummation of large logarithms. This makes our result applicable to
the scenarios with low, high, and intermediary SUSY scales. Also, we improved on
the determination of the lightest Higgs boson mass in scenarios with a heavy gluino.
Below we discuss the results obtained in this thesis in more detail.

Chapter 4 mainly serves as a review of the different methods for calculating the
lightest Higgs boson mass. Sec. 4.4 contains the discussion of an issue which has so
far not appeared in the literature. The hybrid approach requires the conversion of
the input parameters from the on-shell (OS) to the DR scheme, and the conversion
formulas may contain large logarithms. In particular, the conversion of the stop
mixing parameter Xt contains logarithms of two types. The first type is related
to the renormalization group running of the top-quark mass and in principle can
be resummed. The logarithms of the second type originate from diagrams with
the exchange of massless particles and are not related to the renormalization group
running of parameters. These logarithms appear only in specific MSSM scenarios,

137
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namely when the “left”, and the “right” soft SUSY-breaking masses of the scalar
quarks are equal to each other.

In Chapter 5, we presented an improved calculation of the lightest Higgs boson
mass in the MSSM for scenarios with large tan β. Instead of the bottom mass being
defined via the relation between the sbottom mixing angle and the sbottom masses,
we treated it as an independent parameter, renormalized in the DR scheme in the
full MSSM at scale MSUSY. This renormalization scheme yielded numerically more
stable results and turned out to be more suitable for the combination with the EFT
calculation. In the calculation of the bottom mass, we resummed corrections enhanced
by tan β through ∆b resummation. We incorporated full one-loop corrections to ∆b.
Moreover, we have adapted the leading two-loop QCD corrections to ∆b obtained
in [29–31] for our calculation framework. The inclusion of this correction is formally
a three-loop effect. We, however, found it to be numerically relevant for scenarios
with high tan β, where it might lead to shifts in the prediction for the Higgs mass of
roughly ∼ 2 GeV.

Moreover, we have included one- and two-loop threshold corrections to the SM
Higgs self-coupling proportional to the bottom Yukawa as well as the corresponding
RGE contributions up to the three-loop level. This allows resummation up to
the next-to-next-leading-order. In contrast to the resummation of the logarithms
proportional to the top Yukawa or electroweak couplings, here the one- and two-loop
leading logarithms are numerically negligible due to the smallness of the bottom mass.
However, at the two-loop level for the case where the stop sector is renormalized in the
OS scheme and for large tan β the next-to-leading logarithms become parametrically
enhanced. Their resummation can lead to a downward shift in the prediction for Mh

of order of 2 GeV for MSUSY = 10 TeV.
We applied our calculation to theM125,µ−

h MSSM Higgs benchmark scenario, defined
in [251]. In particular, we revisited the constraints on the (MA, tan β) parameter
plane from the requirement that the mass of the lightest Higgs-boson mass should
lie in the range [122; 128] GeV. Our calculation gave rise to an enlargement of the
phenomenologically accessible space by lifting the maximal value of tan β from 28 to
33.

In Chapter 6, we used the two-loop fixed order results presented in Refs. [9, 11]
to derive two-loop threshold corrections relating the self-coupling in the SM and
the MSSM that are valid also for complex input parameters. We compared the
results, including the full phase dependence, to the results obtained by the use of the
interpolation routine adopted in FeynHiggs up to now. We have found that in some
cases the interpolation procedure gives a prediction for Mh, which deviates from the
full result by approximately 2 GeV.
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In Chapter 7, we combined the publicly available code Himalaya with FeynHiggs
in order to obtain a prediction for Mh including N3LL resummation at leading order
in the strong gauge coupling. A similar analysis was performed in [28], and we find a
very good agreement with the results presented in this paper. The overall effect of
the resummation is . 1 GeV, and it weakly depends on MSUSY. We also found that
the extraction of the SM top Yukawa coupling at the three-loop level in the existing
NNLL hybrid calculation approximates the N3LL resummation well.

In Chapter 8, we have shown how an appropriate choice of the renormalization
prescription for the stop sector of the MSSM leads to a significantly improved theoret-
ical prediction for the mass of the SM-like Higgs boson in the region where the gluino
is heavier than the scalar top quarks. This region is phenomenologically important in
particular given the increasingly tight gluino mass limits form experimental searches.

In pure EFT calculations and in the EFT part of hybrid results making use of the
DR scheme for the renormalization of the stop sector leads to the appearance of terms
enhanced by powers of the gluino mass. These large non-decoupling effects of the
gluino, which are formally of three-loop order for a hybrid result where the fixed-order
part is evaluated in the OS scheme up to the two-loop order, lead to unreliable
predictions and correspondingly large theoretical uncertainties in the heavy-gluino
region. We have shown how the occurrence of power-enhanced corrections from the
gluino mass in the EFT part of the calculations can be avoided without spoiling the
underlying assumptions of the EFT. In fact, we have demonstrated that the leading
contributions from integrating out the gluino can be taken into account by absorbing
them into the renormalization of the stop parameters. This scheme, called MDR,
has already been used before in the literature. We have extended it to include also
the stop mixing parameter. We have furthermore shown that the recently proposed
resummation of large gluino contributions [264, 265] is taken into account in the
(extended) MDR scheme via the absorption of the contributions into the parameters
of the model. We also discussed the implementation of the (extended) MDR scheme
into the public code FeynHiggs and its impact on the estimate of the remaining
theoretical uncertainties from unknown higher-order corrections. The implementation
will be publicly released in an upcoming version.

In our numerical analysis we have demonstrated that using the (extended) MDR
scheme for the EFT part of the hybrid result leads to a prediction for Mh that shows
only a mild dependence on the gluino mass even for large hierarchies between the
gluino mass and the stop masses. The theoretical uncertainties in the heavy-gluino
region are vastly improved compared to the case where the EFT result is based on the
DR scheme. We have demonstrated that these features only hold for the extended
MDR scheme, while restricting the scheme to the masses — as previously used in the



140 CHAPTER 9. CONCLUSIONS

literature — would not be sufficient for this purpose. We have furthermore stressed
that in the case of DR input parameters the scale of the input parameters has to
be |M3| (or larger) in order to allow for a stable Mh prediction for the case where
|M3| > MSUSY. We have also pointed out that for the EFT approach using the DR
scheme neither the input scale |M3| nor MSUSY leads to a reliable prediction in the
heavy-gluino region.

The improvements discussed above will become part of the public code FeynHiggs.
In this way, the work presented in this thesis will facilitate more precise phenomeno-
logical studies probing the MSSM parameter space.
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Appendix A

Threshold corrections with phase
dependence

A.1 One-loop threshold corrections

If integrating out the sfermions and heavy Higgses from the MSSM, effective Higgs–
gaugino–Higgsino, g̃1u,1d,2u,2d couplings are generated (for their exact definition see
e.g. [33]). In principle, they can be complex. An explicit calculation of their matching
conditions at the SUSY scale, however, shows that they remain real if integrating out
the sfermions and heavy Higgses. All other couplings of the EFT below the SUSY
scale are also real-valued.

The only exception are the mass parameters of the EWinos themselves. The phases
of these parameters become relevant if the EWinos are integrated out at the EWino
mass scale, Mχ, and the SM is recovered as EFT.

The threshold corrections of the top and bottom Yukawa couplings originates
completely from the corrections to the external Higgs leg. They read

ySMt (Mχ) = ySM+EWinos
t (Mχ)

(
1 + k∆WFR

)
, (A.1.1)

ySMb (Mχ) = ySM+EWinos
b (Mχ)

(
1 + k∆WFR

)
, (A.1.2)

∆WFR = − 12
[
2g1ug1d cos(φM1 + φµ)f(r1)

+ (g2
1u + g2

1d)
(
g(r1) + 3 ln |µ|

2

M2
χ

)

+ 6g2ug2d cos(φM2 + φµ)f(r2)

+ 3(g2
2u + g2

2d)
(
g(r2) + 3 ln |µ|

2

M2
χ

)]
(A.1.3)
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with

r1 =
∣∣∣∣∣M1

µ

∣∣∣∣∣ , r2 =
∣∣∣∣∣M2

µ

∣∣∣∣∣ . (A.1.4)

The loop functions f and g are defined in the Appendix of [33]. Setting the phases to
zero, we recover the result presented in [33].

Similarly, also the matching condition of the Higgs self-coupling is modified,

λSM(Mχ) = λSM+EWinos(Mχ) + ∆λ (A.1.5)

with

(4π)2∆λ = 1
2

[
2λ
(
g2

1u + g2
1d + 3g2

2d + 3g2
2u

)
− g4

1u − g4
1d − 5g2

2u − 5g2
2d

− 4g1ug1dg2ug2d − 2
(
g2

1u + g2
2d

)(
g2

1d + g2
2u

)]
ln |µ|

2

M2
χ

− 7
12
(
g4

1u + g4
1d

)
f1(r1)− 9

4f2(r2)
(
g4

2u + g4
2d

)
+ 1

6g
2
1ug

2
1d

[
2 cos(φM1 + φµ

)
h1(r1)− 11h2(r1)

]
+ 1

2g
2
2ug

2
2d

[
2 cos(φM2 + φµ

)
h1(r2)− 9h3(r2)

]
+ 1

3g1ug1dg2ug2d

[
cos(φM1 + φM2 + 2φµ

)
h4(r1, r2)

− 4 cos(φM1 − φM2) r1r2

r1 + r2
f8(r1, r2)− 7h5(r1, r2)

]
− 1

3
(
g2

1ug
2
2u + g2

1dg
2
2d

)[
2 cos(φM1 − φM2) r1r2

r1 + r2
f8(r1, r2) + 5

2h6(r1, r2)
]

+ 1
6
(
g2

1ug
2
2d + g2

1dg
2
2u

)[
cos(φM1 + φM2 + 2φµ)h4(r1, r2)− 4

r1 + r2
f8(r1, r2))

]
− 4

3
(
g1ug2u + g1dg2d

)(
g1ug2d + g1dg2u

)[ r1

r1 + r2
cos(φM1 + φµ)

+ r2

r1 + r2
cos(φM2 + φµ)

]
f8(r1, r2)

+ 2
3g1ug1d cos(φM1 + φµ)

[
λ− 2

(
g2

1u + g2
1d

)]
f(r1)

+ 2g2ug2d cos(φM2 + φµ)
[
λ− 2

(
g2

2u + g2
2d

)]
f(r2)

+ 1
3λ
(
g2

1u + g2
1d

)
g(r1) + λ

(
g2

2u + g2
2d

)
g(r2). (A.1.6)

The loop functions fi are defined in the Appendix of [33]. The loop functions hi are
defined by

h1(r) = − 6r2

(1− r2)3

[
2− 2r2 + (1 + r2) ln r2

]
, (A.1.7a)
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h2(r) = 6
11(1− r2)3

[
2 + 3r2 − 4r4 − r6 + r2(4 + 5r2 − r4) ln r2

]
, (A.1.7b)

h3(r) = 2
9(1− r2)3

[
6 + 7r2 − 8r4 − 5r6 + r2(12 + 13r2 − r4) ln r2

]
, (A.1.7c)

h4(r1, r2) = − 6r1r2

(1− r2
1)2(1− r2

2)2(r2
1 − r2

2)
[
r2

1(1− r2
2)2 ln r2

1 + (1− r2
1)(1− r2

2)(r2
1 − r2

2)

− (1− r2
1)2r2

2 ln r2
2

]
, (A.1.7d)

h5(r1, r2) = 6
7(1− r2

1)2(1− r2
2)2(r2

1 − r2
2)
[
− r6

1(1− r2
2)2 − r2

2(1− r4
2)− r4

1r
2
2(1− r4

2)

+ r2
1(1 + r4

2 − 2r6
2) + r4

1(1 + r2
1)(1− r2

2)2 ln r2
1

− (1− r2
1)2(1 + r2

2)r4
2 ln r2

2

]
, (A.1.7e)

h6(r1, r2) = 6
5(1− r2

1)2(1− r2
2)2(r2

1 − r2
2)
[
− (1− r2

1)(1− r2
2)(r4

2 − r2
1r

2
2 − r4

1 + r4
1r

2
2)

+ (1− r2
2)2r6

1 ln r2
1 − (1− r2

1)2r6
2 ln r2

2

]
.

(A.1.7f)

In the limit of r, r1, r2 → 1 all of the loop functions approach 1. Setting all phases to
zero, we again recover the expression given in [33].

The corresponding expressions for the EWino contribution to the matching between
SM and MSSM can be obtained by replacing the effective Higgs–Higgsino–gaugino
couplings using their tree-level matching conditions.

The expressions for ∆b, εb and ∆v entering the one-loop threshold correction of
the bottom Yukawa coupling (see Eq. (5.2.22)) read

(4π)2∆1l
b = − CFg2

3tβ cos(φM3 + φµ)
∣∣∣∣ µM3

∣∣∣∣ F̃9

(
mt̃L

|M3|
,
mb̃R

|M3|

)

− 1
2y

2
t tβ cos(φAt + φµ)

∣∣∣∣∣Atµ
∣∣∣∣∣ F̃9

(
mt̃L

|µ|
,
mt̃R

|µ|

)

+ 3
4g

2tβ cos(φM2 + φµ)
∣∣∣∣∣M2

µ

∣∣∣∣∣ F̃9

(
mt̃L

|µ|
,

∣∣∣∣∣M2

µ

∣∣∣∣∣
)

+ g′2

6 tβ cos(φM1 + φµ)
1

3

∣∣∣∣ µM1

∣∣∣∣ F̃9

(
mt̃L

|M1|
,
mb̃R

|M1|

)

+ 1
2

∣∣∣∣∣M1

µ

∣∣∣∣∣ F̃9

(
mt̃L

|µ|
,

∣∣∣∣∣M1

µ

∣∣∣∣∣
)

+
∣∣∣∣∣M1

µ

∣∣∣∣∣ F̃9

(
mb̃R

|µ|
,

∣∣∣∣∣M1

µ

∣∣∣∣∣
) , (A.1.8)

(4π)2ε1lb =− CFg2
3

1 + log |M3|2

Q2 + F̃6

(
mt̃L

|M3|

)
+ F̃6

(
mb̃R

|M3|

)
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−
∣∣∣∣ AbM3

∣∣∣∣ cos(φAb − φM3)F̃9

(
mt̃L

|M3|
,
mb̃R

|M3|

)
− y2

b

c2
β

3
4 log |µ|

2

Q2 + 3
8s

2
β

(
2 log M

2
A

Q2 − 1
)

+ F̃6

(
mt̃L

|µ|

)
+ 1

2 F̃6

(
mb̃R

|µ|

)
− y2

t

s2
β

1
4 log |µ|

2

Q2 + 1
8c

2
β

(
2 log M

2
A

Q2 − 1
)

+ s2
β

(
log M

2
A

Q2 − 1
)

+ 1
2 F̃6

(
mt̃R

|µ|

)

+ 1
2 F̃9

(
mt̃L

|µ|
,
mt̃R

|µ|

)(∣∣∣∣∣Atµ
∣∣∣∣∣ cos(φAt + φµ)sβcβ − 1

)
− g2

3
8 log |M2|2

Q2 −
3
2 log |µ|

2

Q2 + 3
4 F̃6

(
mt̃L

|M2|

)
− 3

4 F̃8

(
mt̃L

|µ|
,

∣∣∣∣∣M2

µ

∣∣∣∣∣
) 

− g′2
 5

72 log |M1|2

Q2 −
1
2 log |µ|

2

Q2 + 1
36 F̃6

(
mt̃L

|M1|

)
+ 1

9 F̃6

(
mb̃R

|M1|

)

− 1
12 F̃8

(
mt̃L

|µ|
,

∣∣∣∣∣M1

µ

∣∣∣∣∣
)
− 1

6 F̃8

(
mb̃R

|µ|
,

∣∣∣∣∣M1

µ

∣∣∣∣∣
)

+ 1
18

∣∣∣∣ AbM1

∣∣∣∣ cos(φAb − φM1)F̃9

(
mt̃L

|M1|
,
mb̃R

|M1|

), (A.1.9)

(4π)2∆v = − y2
t

4
|Xt|2

mt̃Lmt̃R

F̃5

(
mt̃L

mt̃R

)
− y2

b

4
|Xb|2

mt̃Lmb̃R

F̃5

(
mt̃L

mb̃R

)
. (A.1.10)

The functions F̃5,6,8,9(x) are defined in Appendix A of [33]. Q is the renormalization
scale, which we set equal to MSUSY. We neglect electroweak contributions to ∆v.

In addition, we give the one-loop threshold correction for the top Yukawa coupling,
which can be used to reexpress the two-loop threshold corrections of the Higgs self-
coupling in terms of the MSSM top Yukawa coupling (see Sec. A.2). It is given
by

ySMt (Q) = hMSSM
t sβ (1 + ∆ht) , (A.1.11)

(4π)2∆ht = 4
3g

2
3

[
1 + ln |M3|2

Q2 + F̃6

(
mt̃L

|M3|

)
+ F̃6

(
mt̃R

|M3|

)

−
∣∣∣∣Xt

M3

∣∣∣∣ cos(φM3 − φXt)F̃9

(
mt̃L

|M3|
,
mt̃R

|M3|

)]

+ y2
t

s2
β

[
3
4 ln |µ|

2

Q2 + 3
8c

2
β

(
2 ln M

2
A

Q2 − 1
)
− 1

4s
2
β|X̃t|F̃5

(
mt̃L

mt̃R

)

+F̃6

(
mt̃L

|µ|

)
+ 1

2 F̃6

(
mt̃R

|µ|

)]

+ y2
b

c2
β

[
1
4 ln |µ|

2

Q2 + 3
8s

2
β

(
2 ln M

2
A

Q2 − 1
)
− 1

4c
2
β|X̃b|F̃5

(
mt̃L

mb̃R

)
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+1
2 F̃6

(
mb̃R

|µ|

)
+ 1

2
|Xb|
|µ|tβ

cos(φµ + φXb)F̃9

(
mt̃L

|µ|
,
mb̃R

|µ|

)]

+ g2
[

3
8 ln |M2|2

Q2 −
3
2 ln |µ|

2

Q2 + 3
4 F̃6

(
mt̃L

|M2|

)
− 3

4 F̃8

(
mt̃L

|µ|
,
|M2|
|µ|

)

− 3
4tβ
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|µ|

cos(φM2 + φµ)F̃9

(
mt̃L
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,
|M2|
|µ|
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8

]

+ g′2
[

17
12 ln |M1|2

Q2 −
1
2 ln |µ|

2

Q2 + 1
36 F̃6

(
mt̃L

|M1|

)
+ 4

9 F̃6

(
mt̃R

|M1|

)

+ 1
12 F̃8

(
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(
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|µ|
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|µ|

)

−1
9
|Xt|
|M1|

cos(φM1 − φXt)F̃9

(
mt̃L

|M1|
,
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|M1|

)

+ 1
3tβ
|M1|
|µ|

cos(φM1 + φµ)
(

1
4 F̃9

(
mt̃L

|µ|
,
|M1|
|µ|

)
− F̃9

(
mt̃R

|µ|
,
|M1|
|µ|

))

− 1
72

]
(A.1.12)

Setting all phases to zero, we again recover the expression given in [33].

A.2 Two-loop threshold corrections

Here, we list the two-loop threshold corrections to the Higgs self-coupling in the limit
of all involved non-SM particles expect for EWinos and gluinos having the same mass,

(4π)4(∆λ)α3
t

= −y6
t

{
3|X̂t|6

2 + 1
t2β

(
cos(φXt − φYt)

(
12(3 + 16K)|X̂t|

− 12(1 + 4K)|X̂t|3
)
|Ŷt|+ 3(3 + 16K)|Ŷt|2

)

− |X̂t|2
(

2(7 + 36K) |Ŷt|
2

t2β
− 3

2s2
β

(
7 + 24K

− 3(5− 8K)c2β + (32|µ̂|2 − 12|µ̂|4)f2(|µ̂|)
))

+ |X̂t|4
(
|Ŷt|2

4t2β
(19 + 96K)− 3

8s2
β

(
23− 25c2β + (16|µ̂|2 − 8|µ̂|4)f̃2(|µ̂|)

))

+ 3
4s2

β

(
21 + 120K + 32|µ̂|2 + 2π2 − (13− 120K − 2π2)c2β

+
(
− 32 + 36|µ̂|2 + 8|µ̂|4

)
f̃2(|µ̂|) + 16f̃3(|µ̂|)

)}
, (A.2.1a)

(4π)4(∆λ)α2
tαs

= g2
3y

4
t

{
4
3

(
− 12|X̂t|2

(
f̃1(|M̂3|)− (1− 7|M̂3|2 + 2|M̂3|4)f̃2(|M̂3|)
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+ |X̂t|4
(
f̃1(|M̂3|)− (1− 9|M̂3|2 + 4|M̂3|4)f̃2(|M̂3|)
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|Ŷt|2 + 1

t2β
|X̂b|2|Ŷt|2 + 1
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+ 2 cos(φXb − φYb)|X̂b||Ŷb|(24K + |X̂t|2(1 + (−12 + |X̂t|2)f̃2(|µ̂|))− 24f̃4(|µ̂|))

+ 3|X̂b|2(5 + 8K − 1
s2
β

(1 + 8K + 2|µ̂|2f̃2(|µ̂|)) + 16f̃4(|µ̂|))

+ 4
3c2
β
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− 3(1 + 8K)|Ŷb|2t2β + 4(1 + 6K)|X̂t|2|Ŷb|2t2β −
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1− 4(−2 + |µ̂|2)f̃2(|µ̂|)− 1
4s2

β

(
1− 6|µ̂|2f̃2(|µ̂|) + 4|µ̂|4f̃2(|µ̂|)

))

+ 2 cos(φXt − φYt)|X̂t||Ŷt|
(
24K + |X̂b|2 − 24f̃4(|µ̂|)

)
− 1

36t2β
(35 + 192K)|X̂b|4|Ŷt|2

+ 48K
c2
β

cos(φXt − φXb)|X̂b||X̂t|+
2
c2
β

cos(φXt − φYb)(24K + |X̂b|2)|X̂t||Ŷb|

+ 3
2 |X̂b|2|X̂t|2

(
− 6 + 1

c2
β

)
− 1

6(11 + 48K)|X̂b|2|X̂t|2|Ŷb|2t2β

+ 1
2

(
−3 + 72K + 6π2 + 2

s2
β

(
36K + π2 − 3

(
− 6 +

(
8− 11|µ̂|2 + 2|µ̂|4

)
f̃2(|µ̂|)

+ (−4 + 8|µ̂|2)f̃4(|µ̂|)
))

+ 8
c2
β

(
− 1 + 3K − Li2(1− |µ̂|2) + (1− |µ̂|2)f̃2(|µ̂|)

))

+ 3|X̂t|2
(

5 + 8K + 16f̃3(|µ̂|)− 1
c2
β

(
1 + 8K + 2|µ̂|2f̃2(|µ̂|)

))

+ 3|X̂b|2
(

9 + 16K − 8(−1 + |µ̂|2)f̃2(|µ̂|) + 1
c2
β

(
1 + 2|µ̂|4f̃2(|µ̂|)

+ 2
s2
β

(
4K + |µ̂|2f̃2(|µ̂|)− |µ̂|4f̃2(|µ̂|)

)))
+ (24K + |X̂b|2 + |X̂t|2)|Ŷb|2t2β

+ 2
3 cos(φXb − φYb)|X̂b||Ŷb|

(
2|X̂b|2

(
2 + 12K + 3(−2 + |µ̂|2)f̃2(|µ̂|)

)
+ 18

(
1 + 2f̃1(|µ̂|) + 4K

(
− 3 + 1

c2
β

))
+ 3|X̂t|2t2β

)}
, (A.2.1e)

(4π)4(∆λ)α3
b

= y6
b

{
12 cos(φXb − φYb)|X̂b||Ŷb|t2β(4K(|X̂b|2 − 4) + |X̂b|2 − 3)

+ 1
4

( 3
c2
β

(
48K(5− 2|X̂b|2) + 2|µ̂|2

(
f̃2(|µ̂|)

(
(3− 2|µ̂|2)|X̂b|4

+ 4(3|µ̂|2 − 5)|X̂b|2 + 4|µ̂|2 + 18
)

+ 16
)
− 32f̃2(|µ̂|)

+ 16f̃3(|µ̂|) + |X̂b|4 − 8|X̂b|2 + 4π2 + 8
)

− |Ŷb|2t2β(|X̂b|2 − 2)
(
96K(|X̂b|2 − 1) + 19|X̂b|2 − 18

)
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+ 2
(
72K(2|X̂b|2 − 5)− 2|X̂b|2(|X̂b|2 − 6)2 − 6π2 + 39

))}
. (A.2.1f)

We assume that the one-loop O(α2
t , α

2
b) corrections are expressed in terms of the

SM MS top Yukawa coupling, yt, and the MSSM DR bottom Yukawa coupling, yb.
Expressions to translate them to the MSSM DR top Yukawa coupling and the SM
MS bottom Yukawa coupling, respectively, are provided in Sec. A.1.

In the expressions (A.2.1a) – (A.2.1f) f̃1,2,3,4,5(x) are non-singular functions of
µ̂ = µ

MS

or M̂3 = M3

MS

. The functions f̃1,2,3(x) are the same as the functions f1,2,3(x)
from [213]. We use a different notation for them since we have already used notations
fi(x) for the functions in the threshold correction to the quartic coupling above in
the Eq. (A.1.6),91

f̃1(x) = x2 log x2

1− x2 (A.2.2a)

f̃2(x) = 1
1− x2

[
1 + x2

1− x2 log x2
]

(A.2.2b)

f̃3(x) = (−1 + 2x2 + 2x4)
(1− x2)2

[
log x2 log(1− x2) + Li2(x2)− π2

6 − x
2 log x2

]
(A.2.2c)

f̃4(x) = x2(log x2 + Li2(1− x2))
(1− x2)2 (A.2.2d)

f̃5(x) = x2 log x2 + Li2(1− x2)
(1− x2)2 (A.2.2e)

with f̃1(0) = 0, f̃2(0) = 1, f̃3(0) = π2

6 , f̃4(0) = 0, f̃5(0) = π2

6 and f̃1(1) = −1, f̃2(1) =
1
2 , f̃3(1) = −9

4 , f̃4(1) = −1
4 , f̃5(1) = 3

4 . The constant K is

K = − 1√
3

ˆ π/6

0
dx log(2 cosx) ∼ −0.1953256 (A.2.3)

91These functions are not independent. For example, using the identities for the Spence’s function Li2(x2) one can
show that f̃3(x) = (1− 2x2 − 2x4)f̃5(x), so it is enough to use only one of them. However, we decided to stick to the
notations of [213], so we expressed our result in terms f̃1,2,3 and added two more functions for better readability of
the results.



Appendix B

Counterterms in the heavy SUSY
scenario

This Appendix contains explicit formulas for the finite parts of the counterterms
δ(1)m2

t̃1
, δ(1)m2

t̃2
, δ(1)m2

t̃12
, δ(1)mt, δ(1)mb, δ(1)v2 and δ(1)(mtXt) in the OS renormaliza-

tion scheme described in Sec. 3.2.2, in the gaugeless limit and in the limit

mt̃L ,mt̃R ,mb̃L
,mb̃R

, |M3|,mH± , |µ| � mt,mb. (B.0.1)

This in particular implies that the Goldstone boson masses and the mass of the
SM-like Higgs boson are set to zero and the mass of the charged Higgs boson and the
CP-odd Higgs bosons are equal (see Sec. 3.2.1.1). The counterterm for the top and
bottom quark mass is split into the SM and non-SM part as explained in Sec. 4.4,

δ(1)mOS
q = (δ(1)mOS

q )SM + (δ(1)mOS
q )n/SM, q = t, b. (B.0.2)

where the non-SM piece apart from the contribution of heavy particles, also includes
the transition between the DR and MS schemes. In the same way, we split the
counterterm for the vacuum expectation value, δ(1)v2 in the SM and non-SM part.
This counterterm can be related to the mass counterterm of theW -boson, as explained
in Eq. (3.2.76) in Sec. 3.2.6,

δ(1)v2 = (δ(1)v2)SM + (δ(1)v2)n/SM, (B.0.3)

(δ(1)v2)SM = (δ(1)M2
W )SM

M2
W

, δ(1)v2,n/SM = (δ(1)M2
W )n/SM

M2
W

. (B.0.4)

In all formulas below all Veltman-Passarino functions A0(m2) and B0(p2,m2
1,m

2
2)

contain only the finite part of the loop integral and the renormalization scale is
denoted as Q.
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B.1 Non-degenerate soft-breaking masses

In this Section we list the approximate expressions for the counterterms in the case

mt̃L 6= mt̃R , mb̃L
6= mb̃R

, mt̃R 6= mb̃R
. (B.1.1)

B.1.1 O(αt + αb) contributions

δ(1)m2
t̃1

∣∣∣
fin

= αt
4π

[
|Xt|2 Re{B0(m2

t̃L
, 0,m2

t̃R
)}+ 1

t2β

(
A0(m2

H±) + |Yt|2 Re{B0(m2
t̃L
,m2

H± ,m
2
t̃R

)}
)

+ 1
s2
β

(
A0(m2

t̃R
)− A0(|µ|2) + (m2

t̃L
− |µ|2) Re{B0(m2

t̃L
, 0, |µ|2)}

)]

+ αb
4π

[
|Xb|2 Re{B0(m2

b̃L
, 0,m2

b̃R
)}+ t2β

(
A0(m2

H±) + |Yb|2 Re{B0(m2
b̃L
,m2

H± ,m
2
b̃R

)}
)

+ 1
c2
β

(
A0(m2

b̃R
)− A0(|µ|2) + (m2

b̃L
− |µ|2) Re{B0(m2

b̃L
, 0, |µ|2)}

)]
, (B.1.2a)

δ(1)m2
t̃2

∣∣∣
fin

= αt
2π

[
|Xt|2 Re{B0(m2

t̃R
, 0,m2

t̃L
)}+ 1

t2β

(
A0(m2

H±) + |Yt|2 Re{B0(m2
t̃R
,m2

H± ,m
2
t̃L

)}
)

+ 1
s2
β

(
A0(m2

t̃L
)− A0(|µ|2) + (m2

t̃R
− |µ|2) Re{B0(m2

t̃R
, 0, |µ|2)}

)]
, (B.1.2b)

δ(1)m2
t̃12

mt

∣∣∣∣∣∣
fin

= αt
8πX

∗
t

 |Xt|2

m2
t̃L
−m2

t̃R

(
2 Re{B0(m2

t̃L
, 0,m2

t̃L
)} − Re{B0(m2

t̃L
, 0,m2

t̃R
)}

+2 Re{B0(m2
t̃R
, 0,m2

t̃L
)} − Re{B0(m2

t̃R
, 0,m2

t̃R
)}
)

+ 2 Re{B0(m2
t̃L
, 0,m2

t̃L
)}

+ Re{B0(m2
t̃L
, 0,m2

t̃R
)}+ 2 Re{B0(m2

t̃R
, 0,m2

t̃L
)}+ Re{B0(m2

t̃R
, 0,m2

t̃R
)}


+ αt
8π t2β

 X∗t |Yt|2

m2
t̃L
−m2

t̃R

(
2 Re{B0(m2

t̃L
,m2

H± ,m
2
t̃L

)} − Re{B0(m2
t̃L
,m2

H± ,m
2
t̃R

)}

+2 Re{B0(m2
t̃R
,m2

H± ,m
2
t̃L

)} − Re{B0(m2
t̃R
,m2

H± ,m
2
t̃R

)}
)

+ Yt
(
2 Re{B0(m2

t̃L
,m2

H± ,m
2
t̃L

)}

+Re{B0(m2
t̃L
,m2

H± ,m
2
t̃R

)}+ 2 Re{B0(m2
t̃R
,m2

H± ,m
2
t̃L

)}+ Re{B0(m2
t̃R
,m2

H± ,m
2
t̃R

)}
)

+ αt
8πs2

β

X∗t
m2
t̃L
−m2

t̃R

10A0(m2
t̃L

)− 8A0(m2
t̃R

) + 2A0(m2
H±)c2

β − 2A0(|µ|2)

+ (m2
t̃L
− |µ|2) Re{B0(m2

t̃L
, 0, |µ|2)}+ (m2

t̃R
− |µ|2) Re{B0(m2

t̃R
, 0, |µ|2)}


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+ αb
8πX

∗
t

 |Xb|2

(m2
b̃R
−m2

t̃L
)(m2

t̃L
−m2

t̃R
)
(
(m2

t̃R
−m2

b̃R
) Re{B0(m2

t̃L
, 0,m2

b̃R
)}

+ (m2
t̃L
−m2

t̃R
) Re{B0(m2

t̃L
, 0,m2

t̃L
)}+ (m2

t̃R
−m2

b̃R
) Re{B0(m2

t̃R
, 0,m2

b̃R
)}

+(m2
t̃L
−m2

t̃R
) Re{B0(m2

t̃R
, 0,m2

t̃L
)}
)
− Re{B0(m2

t̃L
, 0,m2

t̃L
)} − Re{B0(m2

t̃R
, 0,m2

t̃L
)}

− 1
c2
β(m2

t̃L
−m2

t̃R
)
(
2A0(m2

b̃R
)− 2A0(|µ|2) + 2A0(m2

H±)s2
β

+(m2
t̃L
− |µ|2) Re{B0(m2

t̃L
, 0, |µ|2)}+ (m2

t̃R
− |µ|2) Re{B0(m2

t̃R
, 0, |µ|2)}

)
−

|Yb|2t2β
m2
t̃L
−m2

t̃R

(
Re{B0(m2

t̃L
,m2

H± ,m
2
b̃R

)}+ Re{B0(m2
t̃R
,m2

H± ,m
2
b̃R

)}
) (B.1.2c)

+ αb
8πc2

β

Y ∗b
(
Re{B0(m2

t̃L
,m2

H± ,m
2
b̃R

)}+ Re{B0(m2
t̃R
,m2

H± ,m
2
b̃R

)}
)

+ αb
8π

XbY
∗
b Y
∗
t

m2
b̃R
−m2

t̃L

(
Re{B0(m2

t̃L
,m2

H± ,m
2
b̃R

)} − Re{B0(m2
t̃L
,m2

H± ,m
2
t̃L

)}

+ Re{B0(m2
t̃R
,m2

H± ,m
2
b̃R

)− Re{B0(m2
t̃R
,m2

H± ,m
2
t̃L

)
)

− αb
2π

µ

s2β

(
Re{B0(m2

t̃L
, 0, |µ|2)}+ Re{B0(m2

t̃R
, 0, |µ|2)}

)
+ αt

8πY
∗
t

(
Re{B0(m2

t̃L
,m2

H± ,m
2
t̃L

)}+ Re{B0(m2
t̃R
,m2

H± ,m
2
t̃L

)}
)
,

δ(1)(mtXt)
∣∣∣
fin

= αt
8πmtXt

 |Xt|2

m2
t̃L
−m2

t̃R

(
2 Re{B0(m2

t̃L
, 0,m2

t̃L
)}+ Re{B0(m2

t̃L
, 0,m2

t̃R
)}

−2 Re{B0(m2
t̃R
, 0,m2

t̃L
)} − Re{B0(m2

t̃R
, 0,m2

t̃R
)}
)

+ 2 Re{B0(m2
t̃L
, 0,m2

t̃L
)}

+ Re{B0(m2
t̃L
, 0,m2

t̃R
)}+ 2 Re{B0(m2

t̃R
, 0,m2

t̃L
)}+ Re{B0(m2

t̃R
, 0,m2

t̃R
)}


+ αt
8πt2β

mtYt

 XtY
∗
t

m2
t̃L
−m2

t̃R

(
2 Re{B0(m2

t̃L
,m2

H± ,m
2
t̃L

)}+ Re{B0(m2
t̃L
,m2

H± ,m
2
t̃R

)}

−2 Re{B0(m2
t̃R
,m2

H± ,m
2
t̃L

)} − Re{B0(m2
t̃R
,m2

H± ,m
2
t̃R

)}
)

+ 2 Re{B0(m2
t̃L
,m2

H± ,m
2
t̃L

)}

+ Re{B0(m2
t̃L
,m2

H± ,m
2
t̃R

)}+ 2 Re{B0(m2
t̃R
,m2

H± ,m
2
t̃L

)}+ Re{B0(m2
t̃R
,m2

H± ,m
2
t̃R

)}


+ 3αt
8πs2

β

mtXt

m2
t̃L
−m2

t̃R

2 A0(m2
t̃L

)− 2 A0(m2
t̃R

) + (m2
t̃L
− |µ|2) Re{B0(m2

t̃L
, 0, |µ|2)}

− (m2
t̃R
− |µ|2) Re{B0(m2

t̃R
, 0, |µ|2)}

 (B.1.2d)

+ αb
8π mtXt

 |Xb|2

m2
t̃L
−m2

t̃R

(
Re{B0(m2

t̃L
, 0,m2

b̃R
)} − Re{B0(m2

t̃R
, 0,m2

b̃R
)}
)
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+ |Xb|2

m2
t̃L
−m2

b̃R

(
Re{B0(m2

t̃L
, 0,m2

b̃R
)} − Re{B0(m2

t̃L
, 0,m2

t̃L
)}+ Re{B0(m2

t̃R
, 0,m2

b̃R
)}

−Re{B0(m2
t̃R
, 0,m2

t̃L
)}
)
−

|Yb|2t2β
m2
t̃L
−m2

t̃R

(
Re{B0(m2

t̃R
,m2

H± ,m
2
b̃R

)} − Re{B0(m2
t̃L
,m2

H± ,m
2
b̃R

)}
)

−
(
Re{B0(m2

t̃R
, 0,m2

t̃L
)}+ Re{B0(m2

t̃L
, 0,m2

t̃L
)}
)

+ 1
c2
β(m2

t̃L
−m2

t̃R
)
(
(m2

t̃L
− |µ|2) Re{B0(m2

t̃L
, 0, |µ|2)} − (m2

t̃R
− |µ|2) Re{B0(m2

t̃R
, 0, |µ|2)

)
+ αb

8π mtYt

 YbX
∗
b

m2
b̃R
−m2

t̃L

(
Re{B0(m2

t̃L
,m2

H± ,m
2
b̃R

)} − Re{B0(m2
t̃L
,m2

H± ,m
2
t̃L

)}

+Re{B0(m2
t̃R
,m2

H± ,m
2
b̃R

)} − Re{B0(m2
t̃R
,m2

H± ,m
2
t̃L

)}
)

+ Re{B0(m2
t̃L
,m2

H± ,m
2
t̃L

)}

+ Re{B0(m2
t̃R
,m2

H± ,m
2
t̃L

)}


+ αb
8πc2

β

mtYb
(
Re{B0(m2

t̃L
,m2

H± ,m
2
b̃R

)}+ Re{B0(m2
t̃R
,m2

H± ,m
2
b̃R

)}
)

− αb
4πsβcβ

mtµ
∗
(
Re{B0(m2

t̃L
, 0, |µ|2)}+ Re{B0(m2

t̃R
, 0, |µ|2)}

)
,

(δ(1)mOS
t )n/SM

mt

∣∣∣∣∣
fin

= − αt
4πs2

β

[3
8(1− 2B0(0, 0,m2

H±))c2
β

− 1
4(|µ|2 −m2

t̃L
)2

(
3|µ|4 − 4|µ|2m2

t̃L
+m4

t̃L
+ 2m2

t̃L
(2|µ|2 −m2

t̃L
) log

m2
t̃L

|µ|2
)

− 1
8(|µ|2 −m2

t̃R
)2

(
3|µ|4 − 4|µ|2m2

t̃R
+m4

t̃R
+ 2m2

t̃R
(2|µ|2 −m2

t̃R
) log

m2
t̃R

|µ|2
)

+ 3
4 log |µ|

2

Q2

]
− αb

4πc2
β

[1
8
(
s2
β − (2 + 6c2

β)B0(0, 0,m2
H±)

)
(B.1.2e)

− 1
8(|µ|2 −m2

b̃R
)2

(
3|µ|4 − 4|µ|2m2

b̃R
+m4

b̃R
+ 2m2

b̃R
(2|µ|2 −m2

b̃R
) log

m2
b̃R

|µ|2
)

− µXb + µ∗X∗b
2tβ

B0(0, |µ|2,m2
b̃R

)−B0(0, |µ|2,m2
t̃L

)
m2
b̃R
−m2

t̃L

+ 1
4 log |µ|

2

Q2

]
,

(δ(1)mOS
t )SM

mt

∣∣∣∣∣
fin

= αt
8π

2 +B0(0, 0,m2
t ) + 1

2

(
1− m2

b

m2
t

)2

Re{B0(m2
t , 0,m2

b)}


− αb
16π

(
1 + m2

b

m2
t

)
B0(0, 0,m2

b), (B.1.2f)
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(δ(1)v2)n/SM
∣∣∣
fin

= 3αt
8π

|Xt|2

(m2
t̃R
−m2

t̃L
)3

m4
t̃L
−m4

t̃R
− 2m2

t̃L
m2
t̃R

log
m2
t̃L

m2
t̃R


+ 3αb

8π
|Xb|2

(m2
b̃R
−m2

t̃L
)3

m4
t̃L
−m4

b̃R
− 2m2

t̃L
m2
b̃R

log
m2
t̃L

m2
b̃R

 , (B.1.2g)

(δ(1)v2)SM
∣∣∣
fin

= −
(3αt

8π + 3αb
8π

)(
1− 2 log m

2
t

Q2

)
− 3αb
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Since mb � mt, the epxressions for δ(1)mOS,SM
t and δ(1)v2,SM can be expanded in the

ratio mb/mt.
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B.1.2 O(αs) contributions
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B.2 Degenerate soft-breaking masses

In this Section we outline the epxression for the finite parts of the counterterms for
the scenario,

mt̃L = mt̃R = mb̃L
= mb̃R

≡MSUSY. (B.2.1)

B.2.1 O(αt + αb) contributions
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where
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. (B.2.3)

B.2.2 O(αs) contributions
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where
M̂3 = M3

MSUSY
, m̂g̃ = mg̃

MSUSY
≡ |M̂3|. (B.2.5)



Appendix C

Two-loop Higgs boson self-energies
in the SM

Equations (6.1.26a) – (6.1.26f) in Chapter 6 contain the expressions for the O(α2
tαs +

α2
bαs + (αt + αb)3) two-loop threshold corrections to λ. These expressions involve

two-loop O(m2
tαtαs + m2

bαbαs + m2
tα

2
t + m2

tαtαb + m2
bαtαb + m2

bα
2
b) self-energies of

the SM-like Higgs boson computed in the MS scheme in the SM. In this Appendix we
provide the explicit expressions for these self-energies,
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where mt = mMS,SM
t (Q), mb = mMS,SM

b (Q), v = v2
MS,SM(Q).

If the computation is performed in the DR scheme, the result for the O(m2
tα

2
t +

m2
tαtαb +m2

bαtαb +m2
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2
b) self-energies does not change, while the expressions for the
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Appendix D

From the MDR scheme to the
resummation of gluino
contributions

Here, we discuss how the resummation formulas given in [264] can be recovered
from the expressions in the MDR scheme. The authors of [264] considered two sets
of diagrams contributing to the matching of the soft SUSY-breaking Higgs mass
parameter m22.

The left diagram of Fig. 1 in [264] corresponds to an A0 Passarino–Veltman loop
function. In the MDR scheme, we do not have to consider any stop self-energy
insertions beyond the one-loop diagram. Following [264], we define ξL,R via

(mMDR
t̃L,R

)2 = (mDR
t̃L,R

)2 (1− ξL,R) (D.0.1)

we obtain for the finite part of the diagram (with Q being a generic renormalization
scale)

Afin
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2ξ

2
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3
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
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Q2 + ξL,R + (1− ξL,R) ln(1− ξL,R)
 ,

(D.0.2)
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recovering the resummation in Eq. (10) of [264].92

The right diagram of Fig. 1 in [264] corresponds to a B0 Passarino–Veltman loop
function. Analogously to the A0 loop function above, we obtain for the special case
where mMDR

t̃L
= mMDR

t̃R
.

B0
(
0, (mMDR

t̃L
)2, (mMDR

t̃R
)2
)

= B0
(
0, (mDR

t̃L
)2, (mDR

t̃R
)2
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+ ξL,R + 1
2ξ

2
L,R + 1

3ξ
3
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= B0
(
0, (mDR

t̃L
)2, (mDR
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+
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ξkL,R
k

= B0
(
0, (mDR
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)2, (mDR
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− ln(1− ξL,R), (D.0.3)

recovering the expression given in Eq. (11) of [264].

92The additional two-loop terms found in Eq. (9) [264] originate from the matching of the soft SUSY-breaking Higgs
mass parameter m22 and are not related to the matching of the soft SUSY-breaking stop masses. This additional
contribution, however, does not affect the calculation of the SM-like Higgs mass at the considered order.
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