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Zusammenfassung

In dieser Arbeit untersuchen wir unkonventionelle Ordnung in Festkörpern und
in ultrakalten Quantengasen unter Verwendung analytischer sowie numerischer
Methoden. Dieser Ansatz ermöglicht uns, die Vorteile beider Systeme zu nut-
zen, um die zugrundeliegende Physik besser zu verstehen. Wir betrachten dabei
vor allem geometrische und topologische Eigenschaften von Graphen und der
zugehörigen hexagonalen Gitterstruktur. Zusätzlich beschäftigen wir uns mit
der chiralen Ordnung des suprafluiden Zustandes, der im quadratischen Git-
ter entsteht, wenn Atome ein Bose-Einstein-Kondensat unter Einbindung von
p-Orbitalen bilden.
Im ersten Projekt dieser Arbeit betrachten wir den unkonventionellen Quan-

ten-Hall-Effekt, der in Graphen auftritt, wenn es mit zirkular-polarisiertem
Licht getrieben wird. In Festkörpern ist der Quanten-Hall-Effekt ein Nachweis
für die zugrundeliegenden geometrischen und topologischen Eigenschaften. Wir
untersuchen den Quanten-Hall-Effekt unter experimentell-realisierbaren Be-
dingungen, nämlich unter Berücksichtigung von Dissipation und bei niedrigen
Frequenzen des zirkular-polarisierten Lichts. Die Ergebnisse in diesem Regime
unterscheiden sich deutlich von den Berechnungen für hohe Frequenzen von T.
Oka und H. Aoki (2009). Unser Formalismus liefert daher einen wichtigen Bei-
trag zum Verständnis von periodisch-getriebenen dissipativen Festkörpersyste-
men und hilft bei der Interpretation der Ergebnisse der kürzlich durchgeführten
Experimente von James McIver et. al. (2019). Unsere Ergebnisse zeigen, dass
die topologisch-robuste Quantisierung des Hall-Effekts durch resonante Anre-
gungen beeinträchtigt wird aber die Leitfähigkeit ein geometrischer Effekt ist.
Insbesondere erhalten wir einen wesentlichen Beitrag zur Leitfähigkeit indem
wir die Berry-Krümmung mit den entsprechenden Besetzungen der Floquet-
Bänder gewichten.
Der Quanten-Hall-Effekt ist ein Nachweis topologischer Eigenschaften in



Festkörpern. Diese direkt zu messen, ist in Festkörpern hingegen schwierig.
Im zweiten Projekt dieser Arbeit schlagen wir daher — gemeinsam mit dem
Team von Christof Weitenberg — vor, topologische Defekte in einem mit Fer-
mionen gefüllten hexagonalen Gitter zu detektieren. Unser Vorschlag basiert
darauf, dass wir das Gitter zunächst periodisch modulieren, bevor wir ein Ab-
bild mit der sogenannten Time-of-Flight-Methode erstellen. Aus dem daraus
resultierenden Interferenzmuster lässt sich die relative Phase der Atome auf
den zwei Untergittern des hexagonalen Gitters bestimmen. Die Mittelpunkte
der zugehörigen Phasenwindung geben die Position der topologischen Defekte
an. Diese Methode wurde von Matthias Tarnowski et. al. (2017) verwendet,
um die Bewegung und Auslöschung von Dirac-Punkten, den topologischen De-
fekten im hexagonalen Gitter, zu beobachten.

Im dritten Projekt dieser Arbeit verwenden wir ultrakalte Bosonen, um eine
andere unkonventionelle Ordnung zu untersuchen: das chirale Bose-Einstein-
Kondensat im zweiten Band des quadratischen optischen Gitters mit zweiato-
miger Basis. Ultrakalte Quantengase in höheren Bändern von optischen Git-
tern besetzen üblicherweise Orbitale mit endlichem Drehimpuls. Solche Or-
bitale spielen beispielsweise für Hochtemperatur-Supraleitung eine wichtige
Rolle. Hier zeigen wir, dass das chirale Kondensat ein langlebiger metasta-
biler Zustand ist, dessen Zerfall zurück ins untere Band unterdrückt ist. Der
Vergleich mit Experimenten aus der Gruppe von Prof. Andreas Hemmerich
(2020) bestätigt diese Vorhersage. Die chirale Ordnung des Kondensates führt
zu destruktiver Interferenz der verschiedenen Zerfallskanäle. Dies stabilisiert
das Kondensat gegenüber Zerfall ins erste Band.



Abstract

In this thesis we study unconventional order in both solid-state and ultracold-
atom systems using analytic and numerical techniques. This hybrid approach
allows to use the advantages of both systems to gain deeper knowledge of
the underlying physical mechanisms. Our main focus lies on geometric and
topological features of graphene and its hexagonal lattice structure. Addition-
ally, we consider the chiral superfluid order that emerges when p-orbitals are
involved in Bose-Einstein condensation.
In the first project we consider an unconventional quantum Hall effect in

solid-state graphene driven with circularly polarized light. In solid-state exper-
iments the Hall conductivity represents an evidence of the underlying geometric
and topological properties. We study the Hall conductivity in the experimen-
tally feasible regime of dissipative low-frequency driving. In this limit the Hall
conductivity behaves fundamentally different from the prediction for the high-
frequency limit by T. Oka and H. Aoki (2009). Our formalism therefore makes
an important contribution to the application of periodic driving to dissipative
solid-state systems and presents an interpretation of the recent experiments
by James McIver et. al. (2019). Although the topological quantization of the
Hall conductivity is modified by resonant excitations we find that a major con-
tribution to the Hall conductivity is a geometric effect obtained by weighting
the Berry curvature of Floquet bands with the respective occupations.
While the consequences of topology are reflected in the Hall conductivity, it

is difficult to directly measure topological properties in solids. In the second
project of this thesis we therefore propose, in collaboration with the exper-
imental team of Christof Weitenberg, a detection mechanism for topological
defects in a hexagonal lattice filled with ultracold fermions. Our proposal is
based on a periodic lattice modulation prior to a time-of-flight measurement.
This allows to extract the relative phase of the atoms on the two sublattices



of the hexagonal lattice in the resulting interference pattern. The correspond-
ing phase winding reflects the position of topological defects. This detection
mechanism has been used by Matthias Tarnowski et. al. (2017) to measure the
merging transition of the Dirac points in the hexagonal lattice.

In the third project of this thesis we use ultracold bosons to study a different
unconventional order: the chiral condensate in an excited band of the staggered
square lattice. Ultracold atoms in excited bands of optical lattices naturally
occupy orbitals with finite angular momentum. These are interesting to study
since orbital order gives rise to phenomena as important as high-temperature
superconductivity. We show that the chiral condensate represents a metastable
state, which is long lived as its relaxation to the lowest band is suppressed.
We confirm this prediction by comparing our simulations to the experiments
performed in the group of Prof. Andreas Hemmerich (2020). By analyzing the
relevant relaxation mechanisms, we find that the chiral order of the conden-
sate self stabilizes through destructive interference of the involved relaxation
channels.
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1. Introduction

Topological properties in solids

Bloch’s theorem allows the classification of solids in terms of their band structure and
its energy gaps, see e.g. [1, 2]. For a given band structure we can distinguish insulators,
semiconductors and conductors based on their chemical potential and the temperature.
The discovery of anomalous velocities [3–6] and the quantum Hall effect [7] suggested that
this classification is not sufficient. There is an additional geometric property influencing
transport in solids. Instead of the eigenenergies, i.e. the band structure, geometry is an
inherent property of the eigenstates of a system.

We illustrate the idea of the anomalous velocity by considering the motion of a wave
packet in a solid. The group velocity of the wave packet has two contributions

vgroup(k) = ∇kεk + Fxy ×
∂k

∂t
.

Here εk are the eigenenergies of the solid, k is the lattice momentum and Fxy is the Berry
curvature. The first term describes the acceleration of the wave packet due to the gradient
of the band structure or more colloquially speaking the wave packet ’rolling downhill’, see
Fig. 1.1(a). The second term closely resembles the action of the Lorentz force on a particle
in a magnetic field. Here, the magnetic field is replaced by the Berry curvature, an intrinsic
geometric property of the eigenstates, see Fig. 1.1(b). The Berry-curvature contribution
to the group velocity is closely related to the geometric phase factor (Berry’s phase [8])
that a particle picks up when transported around a closed circuit in momentum space.

The anomalous contribution to the group velocity that is due to the Berry curvature
has direct implications for the transport properties of solids. The paradigmatic example
is the quantum Hall effect [7]: in certain materials the Hall conductivity σxy shows robust
plateaus as a function of applied chemical potential or magnetic field. These plateaus are
quantized in units of e2/h. This quantization is directly related to the Chern number c,
which is the integral of the Berry curvature over the Brillouin zone. While the Berry cur-
vature is a geometric, i.e. local, property of the eigenstates, the Chern number represents
a topological, i.e. global, quantity and is therefore always an integer, see e.g. [9, 10]. The
quantization of the Hall conductivity is then implied by the relation σxy = c e2/h [11].
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1. Introduction

Figure 1.1 – Sketch of the motion of a wave packet in a solid. There are two
contributions to the group velocity: an accelerating force due to the gradient of the
band structure (a) and the contribution of the Berry curvature (b). For the latter
contribution, the out-of-plane Berry curvature Fxy acts as a magnetic field, giving rise
to an accelerating force perpendicular to the motion of the wave packet.

The discovery of the quantum Hall effect and its topological explanation has inspired
a new field of physics. Among the extraordinary phenomena explored within the field
of topology are the quantum spin Hall effect [12–16], the fractional quantum Hall effect
[17–19] and topological insulators [20–22].

Ultracold atoms

There are only few examples where the underlying geometric and topological quantities,
such as Berry phase and Berry curvature, are observable in solids [23]. In contrast such
properties are readily accessible in ultracold-atom systems [24, 25]. By loading ultracold
atoms into artificial lattices [26, 27] build from several intersecting laser beams, they can
be used as a quantum simulator for phenomena relevant in solid-state systems [28]. Since
the first realization of a Bose-Einstein condensate [29–31], an extensive toolbox has been
developed for preparing and detecting ultracold atoms. There is a series of examples where
the ultracold-atom toolbox has lead to deeper understanding of mechanisms underlying
solid-state phenomena: the high amount of control in ultracold-atom systems often allows
to continuously tune between different limiting cases, as in the superfluid to Mott-insulator
transition [32] or for the comparison of Klein tunneling to regular tunneling [33]. The
access to microscopic quantities has lead to the observation of real-space Bloch oscillations
[34] and the visualization of topological properties such as the direct observation of edge

12



Figure 1.2 – Pseudo-spin winding of the hexagonal lattice. At each point in mo-
mentum space we visualize the eigenstate on the Bloch sphere. We show the case of
graphene, where the eigenstates are always on the equator of the Bloch sphere and
hence there is no out-of-plane component. The Dirac points are positioned at the
six edges of the Brillouin zone, which is marked by a red hexagon. The insets show
a zoom to the two nonequivalent Dirac points. By following the arrows around a
closed loop around the Dirac points we see that the pseudo-spin winds clockwise and
anti-clockwise at the two Dirac points, respectively.

states [35–37]. Ultracold atoms do not only allow an alternative view on solid-state
phenomena but also give access to topological phases that have not yet been discovered
in solids, by using artificial gauge fields and synthetic dimensions [38, 39]. In fact, many
archetypal topological models can be implemented and studied with ultracold atoms [40].

Graphene

We are particularly interested in the topological properties of the hexagonal lattice. The
prime example of a solid featuring the hexagonal lattice structure is graphene, a sin-
gle sheet of carbon [41]. Since its experimental extraction [42], graphene has attracted
widespread attention due to its exceptional properties [43]. These range from remarkable
thermal and electric conductivity via Klein tunneling to unconventional quantum Hall
effects [44–48]. Further versatile properties emerge, when using graphene as the building
block of graphene stacks, nanoribbons and composite materials [41]. Since carbon is ubiq-
uitous in nature, graphene is not only multifaceted in its applications but also abundantly
available. In fact, the technology is ready for mass-scale production and consumer-based
applications [49].

On the microscopic level the hexagonal lattice structure has two lattice sites per unit
cell such that the lowest two bands are well separated from the remaining bands. In
graphene, i.e. without a potential imbalance between the lattice sites, these two bands
have crossings with linear dispersion relation at the Dirac points. The eigenstates of the
hexagonal lattice can be visualized on the Bloch sphere at each point in momentum space,

13



1. Introduction

see Fig. 1.2. In graphene the resulting pseudo-spin texture has opposite winding at the
two Dirac points giving rise to a Berry phase of −π and π, respectively. This pseudo-
spin winding of the eigenstates is responsible for the exceptional transport properties of
graphene [50].

Floquet theory

The interaction of light and matter is widely used not only to probe but also to induce
materials properties. Probing the steady state subject to periodic driving acts as a pow-
erful tool for the design of new materials. This complements the established approach to
solid-state physics, where only the equilibrium properties of a given material are probed.
An outstanding example for light-induced unconventional properties is the enhancement
of superconductivity in cuprate materials by applying terahertz pulses [51–55].
The steady state of periodically driven systems can often be described by an effective

static system. This idea is the foundation of Floquet theory [56–58] and yields a powerful
instrument to design specific properties in solids, for reviews see e.g. Refs. [59, 60], for
further examples see also Refs. [61–63]. In the same way as a periodic lattice potential
leads to the repetition of the band structure in momentum space, periodic driving leads
to the repetition of the band structure in energy space. For the latter case the replica
of the bands are also referred to as Floquet quasi-energies or bands. This has intriguing
consequences for the topological properties of driven systems. For an undriven system
there is usually a correspondence between the edge states, which appear in the band gaps
of the spectrum, and the Chern number of the neighboring bands [64]. For driven systems
edge states may wind around the periodic boundary of the energy spectrum, hence giving
rise to nontrivial edge states even in the absence of a finite Chern number [65–67].
Floquet theory has been applied successfully to ultracold-atom systems [68], extending

the ultracold-atom toolbox by an additional tuning knob. This has lead to the observation
of the driven superfluid to Mott-insulator transition [69, 70], artificial magnetic fields
[71, 72] and topological charge pumps [73–75].

Light-driven graphene

While the static properties of graphene are truly remarkable, it unfolds even more ex-
traordinary features when driven periodically. It has been proposed in Refs. [76–80] that
illuminating graphene with circularly polarized light opens a topologically nontrivial band
gap at the Dirac point. When the driving frequency is assumed to be large compared to
the bandwidth of graphene, it resembles the famous Haldane model [81] with a Chern
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Figure 1.3 – (a) Dirac cone of the resonantly driven graphene band structure. Band
gaps open at the Dirac point and at rings in momentum space where multiples of the
driving frequency ωdr equal the band gap. (b) Reciprocal hexagonal lattice indicating
the symmetry point Γ and the Dirac points K and K ′. (c) and (d) Floquet spectrum
of driven graphene colored by Berry curvature Fxy for a cut through the Brillouin
zone shown by the dashed red line in (b). For panel (c) we use an off-resonant
driving frequency ωdr = 2π · 5 PHz = 20.7 eV and for panel (d) a resonant ωdr =
2π · 400 THz = 1.7 eV. The inset in panel (c) shows a zoom to the Dirac point. For
off-resonant driving it is a good assumption that only the undressed Floquet bands
centered around εn(k) = 0 are occupied and hence there is a well defined lowest energy
state. Such a notion can not be extended to the resonant case. For panels (c) and (d)
we use an electric field strength Edr = 26 MV m−1.

number of the lowest band equal to1 c = −2. Under the additional assumption that
only the lowest band is filled, graphene is driven into a topologically insulating state
with quantized Hall conductivity σxy = −2e2/h. This idealized limit is indeed achiev-
able in ultracold-atom systems by making use of artificial gauge fields [82–85]. In solids,
this regime is significantly more challenging. The band gap at the Dirac point scales as
∝ E2

dr/ω
3
dr. Hence for a driving frequency ωdr that is larger than the bandwidth the field

strength Edr needs to be increased to experimentally unrealistic values in order to obtain
a sizable band gap. A sizable band gap is therefore only possible for low-frequency driv-
ing in the regime of terahertz. This regime was realized in recent experiments by James

1We already account for spin and valley degeneracy.
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1. Introduction

McIver et. al. [86], which are the motivation for the first project of this thesis.
When illuminating graphene with terahertz radiation, additional resonant band gaps

open at rings in momentum space where multiples of the driving frequency equal the
energy difference of the two graphene bands [87–90], see Fig. 1.3(a). Each of these resonant
band gaps contributes to the Berry curvature [91–93]. Summing all contributions gives
the Chern number of a given band, which can crucially depend on driving field strength
and frequency [80]. For a driving frequency of 50 THz we estimate that there are about
80 resonant band gaps and the Chern number can take values on the order of 102–103.
These Chern numbers have, however, only minor significance for the Hall conductivity in
solids. The Hall conductivity would only be given by the Chern number if a single Floquet
band were occupied. We can easily see that this is usually not the case when a system
is driven in the resonant regime. At each resonance, avoided crossings occur [94], and
hence the undriven band structure is nontrivially connected to the driven band structure.
This, together with the periodicity in energy makes it impossible to define an ordering of
Floquet quasi-energies, see Fig. 1.3(b,c,d). Hence there is no notion of a lowest Floquet
band, which at low temperature might be the one that is occupied. Instead the relative
occupations of different Floquet bands are determined by a competition between driving
and dissipation [95].

Periodic driving and dissipation

Although there are first attempts to reformulate Floquet theory when including dissipation
[96], the interplay of periodic driving and dissipation is far from being well understood.
The fundamental question of periodically driven dissipative systems is whether the steady
state can be rewritten in Gibbs form as a Boltzmann distribution of appropriately defined
quasi-energies. This would allow a similar mapping as Floquet theory achieved for non-
dissipative systems and allow the application of statistical mechanics to the driven state.
So far the question, whether a Gibbs state exists, could only be answered for rather
simple analytically solvable systems [97–104] and in certain limiting cases such as high-
frequency driving [105–107]. The fundamental problem for low-frequency driving is the
above-mentioned periodicity of the eigenenergy spectrum, which makes it impossible to
define an ordering of Floquet quasi-energies [108] and hence obtain an intuition for the
action of dissipation. At the same time, dissipation may actually be important for periodic
driving in solids since it can counteract heating due to resonant excitations [109]. It has
even been proposed that certain engineered dissipation mechanisms may enhance [110] or
induce [111] topological properties.
The importance and complexity of dissipation is likely the reason why the Floquet topo-
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logical insulator, although proposed almost ten years ago [91], has not yet been observed in
solids. While Floquet bands have been observed in solids [112] their relative occupations
are determined by a complicated interplay of driving and dissipation. The only experi-
mental observation of a Floquet topological insulator has instead been in non-dissipative
helical waveguides [113, 114], hence founding the field of topological photonics [115].

Dissipative light-driven graphene

The aim of the first project of this thesis, presented in chapter 2, is to give further insight
on the interplay between dissipation and periodic driving by considering the example of
dissipative light-driven graphene. We develop a master equation formalism that includes a
periodic driving force, a longitudinal bias field and dissipation. Our formalism shows good
agreement with experimental results from Ref. [86]. We find that the electron distribution
in driven graphene perfectly resembles the Floquet band structure. We compute the Hall
conductivity and find that a major contribution is a geometric effect. In fact, we find
that the Hall conductivity is approximately given by the sum of Berry curvature and
band velocity of Floquet bands weighted with their respective occupations. Although
the electron distribution in graphene is a highly nontrivial steady state that depends
on the details of driving and dissipation, the resulting derived quantities such as the
Hall conductivity can still be evaluated in analogy to an effective undriven system. Our
formalism allows to investigate the crossover from strong to weak dissipation. In the
latter case we recover the effective high-frequency limit and the Dirac-point contribution
to the Hall conductivity is −2e2/h. Notably we do not recover this result for finite
dissipation when increasing the driving frequency by orders of magnitude. This stresses
the importance of dissipation for modeling solid-state systems.

The transition to the weakly dissipative regime allows the application of our formal-
ism to ultracold-atom systems. Hence the theoretical framework presented in this thesis
is bridging the gap between quantum simulators and solid-state physics. We are aim-
ing to learn from both fields of physics in order to understand the underlying physical
phenomena.

Detecting topological properties

As we have noted above, ultracold atoms have the advantage that topological properties
are more accessible than in solids. In fact, it is usually easier to get access to the eigenstates
in ultracold atoms. Therefore it is not only possible to measure the band gap at topological
defects [82, 116], but also the eigenstates and topological properties themselves. A number
of different methods have been proposed for the detection of topological properties in
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1. Introduction

ultracold atoms, each of them having its own advantages and difficulties: accelerating
wave packets through the lattice is at the heart of Berry’s gedanken experiment but
makes it cumbersome to cover the full Brillouin zone [84, 85, 117–119]. Projecting onto a
flat band structure [120–122] is a more efficient technique, but only works for periodically
driven systems. The detection of edge and bulk currents using time-of-flight images is still
awaiting an experimental implementation [123]. Within the second project of this thesis,
presented in chapter 3, we therefore propose an efficient method that allows to determine
the properties of the eigenstates in the full Brillouin zone within a single experimental
sequence [N1]. Our method is based on the interference of the atoms from different
sublattices in a hexagonal lattice. An additional periodic lattice modulation allows to
extract the information on the relative phase of the eigenstates.

Ultracold atoms, excited states and metastability

Ultracold atoms give access to a wide range of parameter regimes with rich tunability
between different ground states. They are, however, usually limited to the lowest band
of a lattice and hence bosons — as a result of the no-node theorem — can only occupy
s-orbitals [124]. Higher orbital order, such as p- or d-orbital order, has been identified as
one of the main ingredients for metal-insulator transitions, high-temperature supercon-
ductivity and colossal magnetoresistance [125–130]. Additionally the band crossings of
excited bands may lead to nontrivial topological order [133, 138–140]. These potential
applications have triggered the idea of loading ultracold atoms into excited bands of an
optical lattice [124, 141–145]. The first experimental realization of ultracold atoms in
excited bands has been achieved by stimulated Raman transitions [146]. Slightly later
a different approach was successful that makes use of a tunable staggered square lattice
[131–137]. The atoms are loaded at large imbalance between the two sublattices and then
transferred to excited bands by suddenly interchanging the depth of the sublattices. This
preparation scheme enables a well controlled transfer of atoms and hence allows addressing
bands up to the 11th band. Condensation in excited bands reflects the nontrivial orbital
order. In the second band of the staggered square lattice this leads to condensation with
chiral order parameter [131, 134].
In the third project of this thesis, presented in chapter 4, we study the excitation of

ultracold bosons into excited bands and the subsequent decay dynamics within classical
field theory. Most notably we find that the chiral condensate self-stabilizes against decay
to the first band and hence represents a metastable state. Metastability is a phenomenon
ubiquitous in nature. Commonly metastability arises in a classical context when a system
is trapped in a local minimum and a free-energy barrier inhibits relaxation to the true
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ground state [147–149]. While a similar mechanism can also occur in quantum-mechanical
systems, for example in quantum-tunneling scenarios [150–152], the quantum-mechanical
origin for metastability can be more diverse. In a classical system the only relevant
energy scales are the height of the free-energy barrier and the temperature of the system.
For a quantum mechanical system Bose-Einstein condensation can lead to metastability
for temperatures that are significantly larger than the free-energy barrier [153], since for
such a case only the small thermal fraction of atoms can decay. Quantum mechanically
metastability can even occur as an inherent property of the state in question [154–156] or
due to a mechanism of constructive interference [157].

Here we propose a mechanism for metastability where destructive interference of the
dissipation channels leads to inhibition of relaxation [N3]. We confirm this mechanism
both theoretically as well as experimentally, in collaboration with the group of Prof. An-
dreas Hemmerich. We identify the two main decay mechanisms and find that the chiral
order of the condensate leads to destructive interference for both of them individually.
The condensate is a dark state with respect to decay and hence a perfect condensate at
T = 0 has infinite lifetime. At any finite temperature there is a fraction of thermal atoms.
These are not protected from decay and eventually lead to heating and the destruction of
the condensate. We therefore identify three different relaxation stages: coherence buildup,
inhibited relaxation and loss of coherence, fast relaxation to the thermal ground state.
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2. Floquet physics in real solids:
light-induced Hall effect in
graphene1

Periodic driving has been applied widely as a tool to induce unconventional properties
in ultracold-atom and solid-state systems [59, 68]. The response of a system subject to
periodic driving can be split into one part that is periodic with the driving force and an
additional effective slow or stroboscopic motion. Floquet theory is based on the idea that
it is often sufficient to consider this effective slow motion in order to describe the main
properties of the system. Within Floquet theory the slow motion can be captured by an
effective static system. The properties of this effective static system can be profoundly
different from those of the original undriven system.

One such example where periodic driving leads to unconventional new properties is
graphene. Without driving graphene features a linear dispersion relation at the Dirac
point, see Fig. 2.1(a). Driving graphene with high-frequency circularly polarized light
induces a phase transition to a topologically nontrivial state. The effective static system
corresponding to this driven state resembles the famous Haldane model [81] and hence
is characterized by integer Chern number and a quantized Hall conductivity. This has
been proposed in Refs. [76–80] under the assumption that a driving frequency ωdr is used,
which is large compared to the electronic state energies. This limit is only realized for
frequencies above the bandwidth of graphene. In order to observe the quantized Hall
conductivity one has to additionally assume that the driven system is approximately in
a band insulating state of the effective Hamiltonian. Such a regime of low dissipation
and a driving frequency larger than the bandwidth is indeed accessible in ultracold-atom
experiments [82–85].

In contrast, the proposed nonequilibrium topological state is in a much more challeng-
ing regime in solid-state systems. The effective energy gap in the high-frequency limit
is ∆hf ∝ E2

dr/ω
3
dr [76]. The technological development of on-chip femtosecond-resolved

transport measurements reported in Ref. [86] allows for a measurable gap when driven in

1Parts of this chapter have been published in Ref. [N2].
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2. Floquet physics in real solids: light-induced Hall effect in graphene

Figure 2.1 – Dirac cone of the undriven (a) and driven (b) graphene band structure
(top) and the corresponding real-space lattice (bottom). For graphene driven with cir-
cularly polarized light gaps open at each resonance and at the Dirac point. Applying
a longitudinal field EL induces a transverse Hall current jxy. In our numerical simu-
lation we include dissipative processes through phenomenological parameters. These
correspond to decay from the upper to the lower band with time scale T1, dephasing
on a time scale T2 and the exchange of particles with the back gate on a time scale
Tp. This figure has been published in Ref. [N2].

the regime of tens of terahertz. The required frequency regime is, however, several orders
of magnitude higher, ideally above the graphene bandwidth, which is on the order of tens
of petahertz. In order to obtain a sizable gap the driving field strength Edr needs to
be simultaneously increased by orders of magnitude, leading to unrealistic experimental
requirements.
In this chapter we therefore develop a protocol for the application of Floquet theory

to the realistic solid-state regime. As an example we consider graphene driven in the
low-frequency dissipative regime. In this regime a series of resonant band gaps opens, see
Fig. 2.1(b). Each resonance contributes Berry curvature hence leading to an extensive set
of different possible Chern numbers of the effective bands [80]. While in the experimentally
realistic regime several hundred resonant band gaps open, we find that only few of them
are actually relevant for the dynamics of driven graphene. Band gaps that are higher order
in the driving field have only small magnitude and are therefore suppressed by dissipation
and finite temperature. Dissipation also has a crucial influence on the driven steady state
in graphene. We find that Floquet theory nevertheless provides a very good prediction for
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the effective steady-state band structure and only the occupations of the respective bands
crucially depend on damping and dephasing. Predominantly those bands are occupied
that are adiabatically connected to the undriven band structure. In contrast, the reaction
of the system to a chemical-potential bias is profoundly different from that of a static
system. When increasing the chemical potential the first momentum modes that obtain
double occupancy are not the ones at the Dirac point, but instead those on a ring around
the Dirac point. The size of the ring is given by the zero-detuning Rabi frequency and
hence is determined by the field strength and the frequency of the driving field.

When applying a longitudinal electric field EL to driven graphene, a transverse Hall
current is induced. Floquet theory provides an interpretation of this Hall current as a
geometric effect. In fact, the total Hall conductivity σxy is to good approximation given
by the sum of the Floquet Berry curvature F σ

xy and the Floquet band velocity vσy weighted
with the occupations nσ(k) of the corresponding Floquet bands, labeled by σ = ±1

σxy ≈
1

A

∑
k∈1.BZ
σ=±1

(
F σ
xy(k) + vσy (k)/EL

)
nσ(k) . (2.1)

Here A is the lattice size and the sum runs over all momenta k in the first Brillouin zone.
Like the occupations nσ(k), the resulting Hall conductivity depends on dissipation.

For the investigation of the Hall conductivity in driven graphene we develop a numeri-
cal simulation platform that is based on a full quantum-mechanical description combined
with phenomenological damping and dephasing mechanisms, see Fig. 2.1(a). We find
good quantitative agreement with experimental data from Ref. [86]. Within our model
we can isolate the contributions of individual resonances and the Dirac point. For the
first resonance mapping graphene onto the Rabi problem gives intuitive insights into the
origin of the Hall conductivity as a geometric effect. We also investigate how the sys-
tem approaches the effective high-frequency limit when increasing the driving frequency.
In this limit the resulting conductivity is expected to approach the value of −2e2/h.
We find that this is indeed the case when reducing the dissipation strength and when
considering the transient response before the steady state is reached. When increasing
the driving frequency at fixed dissipation strength we find that the system approaches a
high-temperature state with vanishing Hall conductivity instead.
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2. Floquet physics in real solids: light-induced Hall effect in graphene

2.1. Master equation for dissipative light-driven

graphene

In this section we develop the formalism for computing the time evolution of electrons
in light-driven graphene. We first consider the noninteracting system and couple the
electromagnetic field via minimal coupling. Within a semi-classical picture a Hamiltonian
with dispersion relation ε(k) is coupled to the scalar potential φ and vector potential A
as

H(r,k) = ε(k→ k− qA(r, t)/~) + qφ(r, t) , (2.2)

where r is the position, ~k the momentum and q = −|e| the charge of the electrons. For
our case theWeyl gauge φ = 0, among other assumptions, will ensure that the Hamiltonian
remains block diagonal in momentum space. A product ansatz for the density matrix is
therefore appropriate

ρ = ⊗k ρk .

We discretize momentum space and solve the full quantum-mechanical time evolution at
each momentum point k by solving the master equation for the density matrix. In this
process we explicitly allow for empty and doubly-occupied states of the density matrix.
Hence, each density matrix ρk has four states given by the four ways of occupying the two
single-particle states at the corresponding momentum. The master equation contains the
unitary contributions from the equilibrium Hamiltonian and the light-matter interaction.
The latter contains both the circularly polarized driving term, as well as a longitudinal DC
probing field. In addition to these unitary contributions, interaction effects are treated
by including a dissipative environment. This environment is modeled within a Lindblad
formalism by introducing a decay rate γ1 = 1/T1 from the upper to the lower state, a
dephasing rate γ2 = 1/T2, and a single-particle exchange rate γp = 1/Tp with a fermionic
bath of temperature T and chemical potential µ.
We compute observables such as the longitudinal and transverse current by summing

their expectation values over all individual momentum modes.

2.1.1. Unperturbed graphene Hamiltonian and its diagonalization

We consider a tight-binding model2 including only nearest-neighbor tunneling for graphene.
The graphene lattice has two nonequivalent lattice sites per unit cell, see Fig. 2.2(a). The

2More information on tight-binding models will be given in chapter 4.
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2.1. Master equation for dissipative light-driven graphene

Figure 2.2 – (a) Sketch of the hexagonal lattice with unit vectors ex and ey. Solid
black lines show the hexagonal lattice of Wigner-Seitz unit cells. The dashed blue
parallelograms show an equivalent lattice spanned by ex and ey. Both lattices contain
two sites, A and B, per unit cell. (b) Reciprocal lattice of the hexagonal lattice. Solid
black hexagons show the first Brillouin zones at each lattice point and dashed red
lines show the lattice spanned by the two reciprocal lattice vectors k1 and k2. (c)
Same as (b) but with the unit vectors for the linearized dispersion relation. Panels
(a) and (b) have been published in [N8].

lattice constant in graphene is a ≈ 1.42Å and gives the distance between two sublattice
sites. The lattice vectors ex,y shown in Fig. 2.2(a) connect next-nearest neighbor sites
and therefore have length d =

√
3a ≈ 2.46Å. As a result of the two sublattice sites

the momentum-space Hamiltonian is a 2×2 matrix for each momentum k, for details see
e.g. [N8]. It is given by

H0,k = ψ†k

(
0 ε∗k
εk 0

)
ψk

where εk = −J
(
1 + eikxd + ei(kx+ky)d

)
εk = |εk|eiφk ,

k = kxk1 + kyk2, the basis vectors k1 and k2 are shown in Fig. 2.2(b) and

ψk =

(
ck,A

ck,B

)
.

The operators c†k,C (ck,C) create (annihilate) an electron on sublattice site C ∈ {A,B}.
This Hamiltonian is diagonalized by the unitary transformation

Uk = 1/
√

2

(
1 1

eiφk −eiφk

)
(2.3)
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2. Floquet physics in real solids: light-induced Hall effect in graphene

and the resulting diagonal Hamiltonian is

U †kH0,kUk =

(
|εk| 0

0 −|εk|

)
.

Linearized graphene Hamiltonian

For the electronic properties of graphene it is usually sufficient to consider the electronic
states close to the Fermi level. For undoped graphene the Fermi level is directly at the
Dirac point. It is therefore a good approximation to linearize the dispersion relation
around each of the two nonequivalent Dirac points K,K′ = (−τz 2π

3d
,−τz 2π

3d
), τz = ±1. We

obtain

εk ≈ ~vF
(
τzk
′
x + ik′y

)
,

where

k′x =

√
3

2

(
−τz

2π

3d
+ ky

)
k′y = τz

π

d
− kx −

ky
2

and ~vF = −Jd. The Fermi velocity in graphene is vF ≈ 106 m s−1 [41] resulting in the
effective hopping strength J ≈ −2.78 eV. We can define a new set of unit vectors such
that k = K(′) + k′xk

′
1 + k′yk

′
2. This set of vectors is shown in Fig. 2.2(c) and turns out to

be orthonormal in contrast to the original unit vectors.
The linearized Hamiltonian is now

H0,k = ψ†khkψk , (2.4)

where hk = ~vF
(
τzσxk

′
x + σyk

′
y

)
τzk
′
x + ik′y =

√
k′2x + k′2y e

iφ′k = keiφ
′
k

and σx,y,z denote the Pauli matrices. When replacing φk with φ′k in Eq. 2.3, the above
Hamiltonian is diagonalized by the unitary transformation given in Eq. 2.3 and the re-
sulting diagonal Hamiltonian is

U †kH0,kUk = ±~vFk .

Since we work with the linearized Hamiltonian throughout this section we drop the primes
on the momenta from now on. For later convenience we note that the bandwidth of the
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2.1. Master equation for dissipative light-driven graphene

full tight-binding bands in graphene is 6|J | ≈ 16 eV ≈ 24.4 ~ · PHz.

2.1.2. Electromagnetic waves and gauge choice

Before we couple the graphene Hamiltonian to the electromagnetic light fields we give a
brief introduction on electromagnetic waves. We present the wave forms that we will need
for driving graphene with circularly polarized light and discuss different gauge choices. It
turns out that it is crucial for our calculations to use the Weyl gauge.

In order to illustrate the importance of the Weyl gauge we first consider the simplest
case of a uniform electric field Euniform(r, t) = Eêx and vanishing magnetic field B = 0.
Within the Weyl gauge we obtain the vector potential3

Auniform(r, t) = Etêx .

An intuitive picture for this gauge choice inspired by Eq. 2.2 is a time-dependent shift of
the band structure. An alternative gauge choice would be a special case of the Coulomb
gauge, choosing A = 0. In this case we obtain φ = Ex and an intuitive picture is given by
a tilt of the lattice potential. This tilt leads to a nonperiodic lattice potential and hence
the resulting Hamiltonian is not diagonal in momentum space. We see that even for this
simplest case of a uniform electric field it is crucial to apply the Weyl gauge in order to
obtain a Hamiltonian diagonal in momentum space.

We turn to a slightly more complicated case of a linearly polarized electromagnetic
wave

Elinear(r, t) = Eêx cos(kr− ωt) ,

where the wave vector k and the frequency ω are related by the speed of light ck = ω and
for definiteness we have chosen the electric field along the x-direction. We are particularly
interested in illuminating a 2-d graphene sheet under perpendicular incidence. Without
loss of generality we can assume the graphene sheet to lie in the x-y-plane at z = 0 and
the light to be propagating in the z-direction k = kêz. For this case we can simplify

Elinear(z, t) = Eêx cos(kz − ωt) .

Again we use the Weyl gauge to obtain

Alinear(z, t) =
E

ω
êx sin(kz − ωt)

3Remember that E = ∇φ− dA
dt and B = ∇×A.
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2. Floquet physics in real solids: light-induced Hall effect in graphene

Blinear(z, t) =
1

ω
k× Elinear =

Ek

ω
êy cos(kz − ωt) .

For later convenience we also give the corresponding equations for a circularly polarized
electromagnetic wave

Ecircular(z, t) = E [êy sin(kz − ωt)− êxσpol cos(kz − ωt)]

Acircular(z, t) = −E
ω

[êxσpol sin(kz − ωt) + êy cos(kz − ωt)] , (2.5)

where σpol defines the polarization of the light. For a pulsed electromagnetic wave with
Gaussian envelope

Ecirc,gaus(z, t) = Ecircular(z, t) exp

(
−(kz − ωt)2

(2σ)2

)
the vector potential can only be evaluated in terms of the error function Erf(x)

Acirc,gaus(z, t) = −E
√
πσ

ω
e−σ

2

(
Re
[
Erf
(
kz−ωt

2σ
+ iσ

)]
σpolIm

[
Erf
(
kz−ωt

2σ
+ iσ

)]) .

For our numerical simulations we evaluate the error function using numerical libraries
for the Dawson function. Finally, for a tanh-type envelope we assume that the envelope
varies slower than the driving frequency and hence

Ecir,tanh(z, t) = Ecircular(z, t)
tanh

(
ω(t−t0)

σ

)
+ 1

2

Acir,tanh(z, t) ≈ Acircular(z, t)
tanh

(
ω(t−t0)

σ

)
+ 1

2
.

2.1.3. Coupling graphene to electromagnetic waves

We couple the light field to the linearized graphene Hamiltonian from Eq. 2.4

H0 = ψ†kH0,kψk .

Within minimal coupling and using the Weyl gauge the interaction Hamiltonian is

Hint =
∑
q

jq · Aq

jq =
e

~
∑
k

ψ†k+q/2

dhk
dk

ψk−q/2 ,
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2.1. Master equation for dissipative light-driven graphene

where we made the assumption of q being small. At this point we see the importance of
a vector potential A(r) that is spatially uniform within the x-y-plane. For this case the
Fourier transform is peaked around small momenta and we can assume Ak = Aδk,0. Only
for this case the interaction Hamiltonian becomes diagonal in momentum space

Hint =
∑
k

ψ†kevF (τzσxAx + σyAy)ψk .

For completeness we give the current operator in the q→ 0 limit

j =
∑
k

ψ†kjkψk jk = evF

(
τzσx

σy

)

and the full Hamiltonian

H = H0 +Hint =
∑
k

ψ†kHkψk

Hk = vF [τzσx (~kx + eAx) + σy (~ky + eAy)] . (2.6)

2.1.4. Including dissipation and formulating the master equation4

Here we characterize the dissipation of our system and formulate the actual master equa-
tion for the time evolution of electrons in driven graphene. We use the von Neumann
equation for the unitary part of the time evolution and include interactions as well as
other damping and dephasing effects by including Lindblad operators. At each momen-
tum point k the full time evolution of the density matrix is then governed by the master
equation [158]

d

dt
ρk =

i

~
[ρk, Hk]− 1

2

∑
α

(
Lα†Lαρk + ρkL

α†Lα − 2LαρkL
α†) .

The first part of this equation describes the unitary part of the time evolution, fully de-
termined by the Hamiltonian of the system. The second part with the Lindblad operators
Lα accounts for dissipation effects.
Each momentum mode is modeled by a two-level system, remember Fig. 2.1(a). So far

we have only considered the two singly-occupied modes ψk = (|01〉 |10〉). The dissipation
additionally couples to the empty and fully occupied mode. We explicitly extend our state

4Large parts of this section have been published in the appendix of Ref. [N2]. The corresponding
section in Ref. [N2] has mainly been written by the author of this thesis.
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space to these two modes and obtain

Ψk =
(
|11〉 |01〉 |10〉 |00〉

)
,

where |11〉 = c†k,Ac
†
k,B|0〉.

Here we repeat the definitions of the previous sections, extending them to the larger
4×4 state space. To this end we introduce a set of Pauli-type matrices

σx =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 σy =


0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0



σz =


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 σ(0)
z =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 −1



σ(2)
z =


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

 σg =


0 0 0 0

0 1/2 0 0

0 0 1/2 0

0 0 0 0

 .

For the linearized dispersion relation the Hamiltonian for each momentum point further
splits into a sum of three terms

Hk(t) = H0,k +Hdr,k(t) +HL,k(t) . (2.7)

The first contribution is the equilibrium Hamiltonian without any light field applied.
Explicitly including the chemical potential we obtain

H0,k = Ψ†k
[
~vF (τzkxσx + kyσy)− µ

(
1 + σz + σ(0)

z + σ(2)
z

)]
Ψk .

The second and third term in Eq. 2.7 arise from the coupling to the light field. We
include two different light fields, one representing the circularly polarized driving pulse
and the other representing a longitudinal bias field. We split the vector potential into the
parts for these two field contributions

A(t) = Adr(t) + AL(t) .
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2.1. Master equation for dissipative light-driven graphene

For the linearized system we can then accordingly split the interaction part of the Hamil-
tonian into these two parts

Hint,k = Hdr,k +HL,k .

For the driving pulse we use a circularly polarized pulse with either Gaussian Adr(t) =

Acirc,gaus(t) or tanh-type Adr(t) = Acirc,tanh(t) envelope. For the longitudinal bias field we
use AL(t) = sswitch(t)Auniform(t), where sswitch denotes a slow switch-on term during the
first 100 fs.
In addition to the unitary time evolution governed by the Hamiltonian Hk(t) we include

Lindblad operators defined in the basis that diagonalizes the instantaneous Hamiltonian
Hk(t)

Ψk = UkΦk ,

where

Uk =


1 0 0 0

0 1/
√

2 1/
√

2 0

0 eiφk/
√

2 −eiφk/
√

2 0

0 0 0 1

 (2.8)

and φk is defined via

|k + e/~A| eiφk =
(
τz(kx +

e

~
Ax) + i(ky +

e

~
Ay)
)

.

In this basis we introduce

Lα =
√
cα


0 δα,1 δα,3 0

δα,2 0 δα,5 δα,7

δα,4 δα,6 0 δα,9

0 δα,8 δα,10 0

 for α = 1, 2, . . . , 10

L11 =
√
γzσz ,

with for now arbitrary constants cα. Here c5 and c6 correspond to decay effects and γz

corresponds to dephasing effects in the singly occupied sector. Additionally we explicitly
allow for exchange of particles with the back gate. The time scale and dynamics for the
exchange of particles are set by the dissipation constants c1 − c4 and c7 − c10. We do not
allow for simultaneous loss or gain of two particles which would correspond to entries in
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2. Floquet physics in real solids: light-induced Hall effect in graphene

the top right and bottom left of the matrix.
We note that the transformation in Eq. 2.8 is ill-defined when |k + e/~A| = 0. In this

case Hk = 0 and the instantaneous Hamiltonian is diagonal with respect to any basis.
We choose to implement the same Lindblad operators as above in the original AB-basis
for this case.
We find that the resulting equations of motion for the density matrix decouple into

different sectors and write the density matrix in the sector that is relevant for computing
the current as

ρk = σg + ρk,xσx + ρk,yσy + ρk,zσz

+ ρk,0σ
(0)
z + ρk,2σ

(2)
z .

The resulting equations of motion are

~∂tρk,x = δk+eAρk,z − εk+eAρk,y − [Γ + (c1 + c3 + c8 + c10) /2] ρk,x

~∂tρk,y = εk+eAρk,x − [Γ + (c1 + c3 + c8 + c10) /2] ρk,y

~∂tρk,z = δk+eAρk,x + c3 (1/2 + ρk,0 − ρk,z)− c4ρk,2 + c5 (1/2 + ρk,0 − ρk,z)

− c6 (1/2 + ρk,z − ρk,2)− c7ρk,0 − c8 (1/2 + ρk,z − ρk,2)

~∂tρk,0 = −(c7 + c9)ρk,0 − c10 (1/2 + ρk,0 − ρk,z)− c8 (1/2 + ρk,z − ρk,2)

~∂tρk,2 = −(c2 + c4)ρk,2 + c3 (1/2 + ρk,0 − ρk,z) + c1 (1/2 + ρk,z − ρk,2) ,

where

Γ = (c5 + c6)/2 + 2γz (2.9)

εk+eA = 2τzvF [~|k|+ ek ·A/|k|]

δk+eA = 2τzvF [eA× k/|k|] .

We note that while we give the equations of motion in the basis diagonalizing H0,k here,
we implement them in the original AB-basis in the numerical simulations.
We choose the damping constants Boltzmann distributed

Γ = 1/T2

c5 = c6 exp(−2βε) c5 + c6 = 1/T1

c1 = c2 exp(−β(−ε− µ)) c1 + c2 = 1/Tp

c3 = c4 exp(−β(ε− µ)) c3 + c4 = 1/Tp

c7 = c8 exp(−β(ε− µ)) c7 + c8 = 1/Tp
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2.2. Floquet bands and their occupations in driven graphene

and c9 = c10 exp(−β(−ε− µ)) c9 + c10 = 1/Tp ,

where ε = vF

√
(~kx + eAx)

2 + (~ky + eAy)
2 are the instantaneous eigenenergies. This

ensures that the ground state of the system without the light field is Fermi distributed
with chemical potential µ and inverse temperature β = 1/(kBT ). Note that T1 and T2

are commonly introduced decoherence measures. In analogy we define a third time scale
Tp for the exchange of particles with the back gate.

We solve the master equation numerically and then compute the current for each mo-
mentum point as

〈jk〉 = Tr (ρkjk) .

The longitudinal and transverse conductivities are then obtained as

σxx(k) = lim
EL→0

Jx,k/EL

σxy(k) = lim
EL→0

Jy,k/EL .

We perform the calculation of jy at experimentally realistic values of EL, and have checked
that these values realize the linear-response limit. Finally, we define the conductivity
density

σ̃xy =
σxy(k)

A
,

with the lattice size A and the full conductivity

σxy =
∑
k

σ̃xy .

2.2. Floquet bands and their occupations in driven

graphene

Before we study the transport properties of driven graphene we take a look at its proper-
ties without applying the longitudinal bias field. When driving graphene with circularly
polarized light it is well established that a gap opens in the effective band structure at the
Dirac point in the high-frequency limit5 [76, 77]. In this regime the effective Hamiltonian

5The assumption is that the eigenenergies of the system can be neglected compared to the driving
frequency.
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Figure 2.3 – Floquet band structure as a function of momentum times ~vF (Note
that ~vFk = 400 meV corresponds to k ≈ 0.06Å−1). Grey lines show Floquet replica
of the undriven band structure. Blue lines show the numerically computed Floquet
band structure for Edr = 20 MV m−1 and ωdr = 2π · 48 THz. We show only those
bands that are adiabatically connected to the undriven band structure. We explain
the numerical algorithm used for this plot in Sec. 2.2.1.

becomes

Heff,k = H0,k − τzσpol∆hfψ
†
kσzψk , (2.10)

where 2∆hf = 2 (~eEdrvF)2 /(~ωdr)
3 is the size of the gap at the Dirac point. At finite

driving frequency additional gaps open at each resonance, where 2vFk = ωdr. Within
Floquet theory this can be understood as follows: the electronic band structure acquires
new states that result from dressing one of the original states with a photon. These new
states are called Floquet replica and have the same dispersion as the original bands but
are shifted by a multiple of the photon energy ~ωdr, see Fig. 2.3. Depending on the exact
form of the driving term, the light field couples different Floquet replica. This coupling
leads to a hybridization of the eigenstates at each band crossing and as a result avoided
crossings and the opening of band gaps.
The effective Hamiltonian above is obtained from the Magnus expansion [159–163] by

taking the high-frequency limit. Here we show that a slightly better result can be obtained
without the high-frequency approximation within the Magnus expansion. Additionally we
use the Magnus expansion for obtaining a similar result valid close to the first resonance.
We compare these results to our numerical prediction obtained by truncating the quasi-
energy operator in the extended Floquet-Hilbert space.
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2.2. Floquet bands and their occupations in driven graphene

Figure 2.4 – Momentum-resolved Berry curvature at ωdr = 2π · 48 THz and Edr =
10 MV m−1 in panel (a) and Edr = 26 MV m−1 in panel (b). We see that the Berry
curvature is localized around each resonance at Edr = 10 MV m−1. For larger electric
field strength the contribution of each resonance broadens and for Edr = 26 MV m−1

the resonances already start overlapping.

We also compute the Berry curvature both numerically and analytically within our
approximations. We find that the Berry curvature is well localized at the Dirac point
and at individual resonances for low electric field strength Edr, see Fig. 2.4(a). In this
regime it is meaningful to integrate the Berry curvature for individual resonances and the
Dirac point and affiliate a pseudo-Chern number to each of them6. For larger electric
field strength Berry curvatures arising from individual resonances start overlapping and
therefore the corresponding pseudo-Chern numbers deviate from integers significantly, see
Fig. 2.4(b).

When including dissipation we find from numerical simulations of the single-particle
correlation function that the spectrum agrees well with the effective Floquet band struc-
ture. In contrast, the occupations of the respective bands are profoundly different from
those of a static system. Also when applying a bias to the back gate of graphene and
hence effectively changing the chemical potential, we do not observe the expected plateau
in the electron density within the gap at the Dirac point.

6Strictly speaking these are no Chern numbers, since Chern numbers are defined as the integral of the
Berry curvature over the entire band. We will see that these pseudo-Chern numbers are indeed quantized
in the low-fluence limit and will find an analytic formula for the pseudo-Chern number of the Dirac point
c0 = −2 and the first resonance c1 = −4. For larger fluence the pseudo-Chern numbers deviate from
their quantized values.
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2.2.1. Dissipationless graphene: band structure and Berry

curvature within Floquet theory

Here we do a perturbative computation of the effective Floquet Hamiltonian starting
from the high-frequency limit and extending it to lower driving frequencies by expanding
around the first resonance. To this end we will need the Hamiltonian in the interaction
picture.

Hamiltonian for driven graphene in the interaction picture

We start from the Hamiltonian for graphene driven with circularly polarized light with
no additional envelope (see Eqs. 2.5 and 2.6)

Hcircular,k = H0,k +H1,k (2.11)

H0,k = ~vF (τzkxσx + kyσy)

H1,k =
eEdrvF

ωdr

(τzσpol sin(ωdrt)σx − cos(ωdrt)σy) .

The corresponding Schrödinger equation is

i~∂t|ψ〉 = Hcircular,k|ψ〉 .

In the eigenbasis of the undriven system we obtain

U †kH1,kUk =
eEdrvF

ωdr

(
s1 −ic1

ic1 −s1

)
,

where s1 = sin(τzσpolωdrt− φk)

c1 = cos(τzσpolωdrt− φk)

and Uk has been defined in Eq. 2.3. Finally, we get the Schrödinger equation in the
interaction picture as

i~∂t|ψI〉 = HI,k|ψI〉

HI,k =
eEdrvF

ωdr

(
s1 −ie2ivFktc1

ie−2ivFktc1 −s1

)
.

Floquet-perturbative expansion around the Dirac point

We apply the Floquet-Magnus expansion [159–163] up to second order in the interaction
Hamiltonian. Up to second order, the Magnus terms for the effective Hamiltonian are
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Figure 2.5 – Comparison of numerical band structure (open circles) and analytical
approximations for Edr = 10 MV m−1 and ωdr = 2π·48 THz. We show the result within
the second-order Magnus expansion (solid blue line) as well as its high-frequency limit
(dashed red line).

(see e.g. [160])

HI,eff,k(t) = HI,k(t)− 1

2i~

∫ t

dt′ [HI,k(t′), HI,k(t)] .

We only keep those terms that are time independent upon going back to the Schrödinger
picture. As all terms of HI,k oscillate with the driving frequency the first order does not
contribute to the effective Hamiltonian. For the second-order term we obtain

HI,eff,k =

(
eEdrvF

ωdr

)2
1

~ [(2vFk)2 − ω2
dr](

vFk
2ω2

dr−(2vFk)2

2ωdr
τzσpole

2ivFkt

2ω2
dr−(2vFk)2

2ωdr
τzσpole

−2ivFkt −vFk

)
.

Upon returning to the Schrödinger picture and the AB-basis this results in

Heff,k = ~vF (τzkxσx + kyσy)

[
1 +

(
eEdrvF

~ωdr

)2
1

(2vFk)2 − ω2
dr

]

+
τzσpol

2~ωdr

(
eEdrvF

ωdr

)2
2ω2

dr − (2vFk)2

(2vFk)2 − ω2
dr

σz ,

which indeed recovers Eq. 2.10 in the limit ωdr � 2vFk.
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2. Floquet physics in real solids: light-induced Hall effect in graphene

It is often convenient to rewrite a 2×2 Hamiltonian in the form

H = d01 + dxσx + dyσy + dzσz . (2.12)

The object d = (dx, dy, dz) can then be interpreted as a three-dimensional vector and
both the eigenvectors and eigenvalues ε± = d0 ± |d| can be expressed in terms of d. This
vector is also commonly plotted on the Bloch sphere, a representation that is established
in quantum optics [164].
For our case

dx = ~vFτzkx

[
1 +

(
eEdrvF

~ωdr

)2
1

(2vFk)2 − ω2
dr

]
(2.13)

dy = ~vFky

[
1 +

(
eEdrvF

~ωdr

)2
1

(2vFk)2 − ω2
dr

]
(2.14)

dz =
τzσpol

2~ωdr

(
eEdrvF

ωdr

)2
2ω2

dr − (2vFk)2

(2vFk)2 − ω2
dr

. (2.15)

We compare the resulting perturbative band structure to the numerically obtained one
in Fig. 2.5. We see that close to the Dirac point both approximations are valid, while
for larger k-values the second-order Magnus result makes a slightly better approximation
until it diverges at the first resonance. In fact, the divergence of the Magnus expansion
at the first resonance is only lifted when going to infinite order.
The decomposition in form of Eq. 2.12 is helpful for computing the Berry curvature as

well. The Berry curvature is obtained as

Fij =
εabcda∂idb∂jdc

2d3
.

While it is straightforward to evaluate the Berry curvature Fxy for Eqs. 2.13-2.15, the
resulting equations are rather lengthy. We therefore present the corresponding results for
the high-frequency limit. The lower and upper bands have equal and opposite curvature.
The one for the lower band is

Fxy(k) = −Fyx(k) = − 2σpol~2v2
FA

[~2v2
Fk

2 + 4A2]
3/2

,

where A =
1

2~ωdr

(
eEdrvF

ωdr

)2

.

Note that we have summed this expression over the valley index τz already7 and the factor

7Both valleys contribute with the same sign and equal magnitude.
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Figure 2.6 – Chern integral c(k) for the lower graphene band. (a) We show the Chern
integral as a function of momentum for three different driving field strengths Edr as
indicated in the legend. Lines show the Chern integral computed from the second-
order Magnus expansion, while symbols show the corresponding high-frequency limit.
(b) We show the contribution of the Dirac point to the Chern number c(k = ωdr/(2vF)
as a function of driving field strength Edr. The solid red line shows the second-order
Magnus expansion, the dashed blue line its high-frequency limit and black triangles
show the numerically exact value. For both panels ωdr = 2π · 48 THz and σpol = 1.

of 2 has been included for the spin degeneracy. The Chern number is obtained by integrat-
ing the Berry curvature. In order to investigate which momentum modes contribute most
to the Berry curvature it is useful to truncate the integration at a threshold momentum,
such that the Chern number c = lim

k→∞
c(k), k = (k cos(φ), k sin(φ)) and for the lower band

we obtain

c(k) =
1

2π

∫ k

0

dk′
∫ 2π

0

dφ k′ Fxy(k
′) =

2σpol√
1 +

(
~vFk ~ωdr ω

2
dr

(eEdrvF)2

)2
− 2σpol .

We compare this equation to the full second-order expression in Fig. 2.6(a). We see
that both equations are similar for small momenta, but differ significantly close to the
first resonance. From our numerical simulations we find that the first resonance should
contribute −4 to the Chern number. We confirm that neither of the two expressions
gives the right result for the Chern number contribution of the first resonance. This was
expected due to their failure to capture the band structure correctly at the first resonance.

For small electric field strength the contribution of the Dirac point is well localized and
hence can be obtained by considering c(k = ωdr/(2vF)). In the limit of vanishing field
strength both analytic expressions do indeed approach the correct value of −2 for the con-
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Figure 2.7 – (a) Floquet replica of the undriven graphene band structure (gray lines)
highlighting the two bands in red that hybridize when applying the additional unitary
transformation Udr. For comparison open circles show the numerically computed
driven band structure. (b) Comparison of the Magnus approximation (red line) and
the numerically computed band structure (black circles). Both panels show Edr =
10 MV m−1 and ωdr = 2π · 48 THz.

tribution of the Dirac point to the Chern number. In order to quantify the localization of
the Berry curvature around the Dirac point we evaluate c(ωdr/(2vF)) for ωdr = 2π ·48 THz

as a function of Edr in Fig. 2.6(b). For larger Edr the Berry curvature is less localized
in momentum space and hence c(ωdr/(2vF)) reduces. We see a significant reduction for
Edr > 10 MV m−1. This result needs to be taken with care since it is pushing the limit of
validity of the second-order Magnus expansion.

Floquet-perturbative expansion around the first resonance

We have seen that the second-order Magnus expansion is neither able to capture the
band structure nor the Berry curvature close to the first resonance. Here we therefore
apply a trick in order to obtain results valid near the first resonance. Before applying the
Magnus approximation we now go to the rotating frame by using the additional unitary
transformation

Udr =

(
e−iωdrt 0

0 1

)
.

This amounts to choosing the two bands that hybridize from different Floquet replica, as
exemplarily shown in Fig. 2.7(a). In this case the first-order Magnus expansion already
contains static terms and hence it is sufficient to go to this order. Already transforming
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2.2. Floquet bands and their occupations in driven graphene

back to the Schrödinger picture we obtain for the effective Hamiltonian

Heff,k = −~ωdr

2
+

(
~vFk −

~ωdr

2

)
σz +

eEdrvF

2ωdr

[cos(φk)σx + τzσpol sin(φk)σy] .

Upon transforming back to the AB basis and using the notation from Eq. 2.12 we get

d0 = −~ωdr

2

d1 = ~(vF −
ωdr

2k
)kx + σpolτzSdr

k2
y

2k2

d2 = ~(vF −
ωdr

2k
)ky − σpolSdr

kxky
2k2

d3 = Sdr
τzkx
2k

Sdr =
eEdrvF

ωdr

and the eigenenergies are obtained as

εk,± = −~ωdr

2
± 1

2

√
S2

dr + ~2 (ωdr − 2vFk)2 . (2.16)

This approximation for the band structure is shown in Fig. 2.7(b). We see that it in-
deed gives a good approximation close to the first resonance. The corresponding Berry
curvature for the lower band is

Fxy = −2~vFSdr [Sdrσpol + ~(ωdr − 2vFk) cos(φk)]

k [S2
dr + ~2(2vFk − ωdr)2]

3/2
. (2.17)

The second term depends on the driving phase of the circularly polarized field. It is
an artifact of the Floquet-Magnus expansion that is related to the ’kick’ operators, see
e.g. [165]. The approximation made here is in fact (up to this spurious term in the Berry
curvature) equivalent to mapping the graphene Hamiltonian onto the Rabi problem. We
will discuss this further in chapter 2.4.2. We neglect the second term in Eq. 2.17 and
integrate in order to obtain the momentum-resolved contribution to the Chern number of
the lower band

c(k) = 2σpol
~(ωdr − 2vFk)√

S2
dr + ~2(ωdr − 2vFk)2

− 2σpol
~ωdr√

S2
dr + (~ωdr)2

.

We plot this quantity in Fig. 2.8. The result for the Chern number contribution of the
first resonance of −4 (including spin and valley degeneracy) agree with our numerical
simulations. We also observe that for Edr = 26 MV m−1 the Berry-curvature contribution
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Figure 2.8 – Chern integral c(k) for the lower band as a function of momentum.
We use ωdr = 2π · 48 THz, σpol = 1 and three different driving field strengths Edr

as indicated in the legend. We show the result for the first-order Magnus expansion
expanded around the first resonance.

of the first resonance shows significant overlap with both the Berry-curvature contribution
of the Dirac point and the second resonance at ~vFk ≈ 200 meV.

Numerical calculations of Floquet-band structure and Berry curvature

Here we present the numerical algorithm that has been used in the preceding sections for
the calculation of Berry curvatures and band structures. For our calculations we use the
quasi-energy operator Q in the extended Floquet-Hilbert space, for details see for example
[166]. At each momentum k we can write this operator as

Q =



. . . ...
...

... ...

· · · H0 − ~ωdr H1 0 · · ·
· · · H−1 H0 H1 · · ·
· · · 0 H−1 H0 + ~ωdr · · ·

... ...
...

... . . .


,

where

Hm =

∫ t0+T

t0

dt e−imωdrtHcircular,k

and the integral is performed over a period T of the driving field. The quasi-energy
operator is one way to write an effective time-independent Hamiltonian at the cost of
increasing the size of the Hilbert space. For obtaining the band structure and Berry
curvature we can now apply methods designed for static Hamiltonians to the quasi-energy
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Figure 2.9 – We show the Floquet bands computed numerically for ωdr = 2π ·48 THz
and several values of Edr as indicated in the legend. Dashed gray lines, with spacing
~ωdr/2, indicate the resonances.

operator. In order to get the Floquet eigenstates and eigenenergies we truncate and
subsequently diagonalize Q. Floquet replica with larger values of m give corrections to
the Hm=0 to higher order in Edr/ωdr. In our case it turns out that truncation such that
−7 ≤ m ≤ 7 is a sufficient approximation. The Floquet band structure is obtained from
combining the eigenenergies of different momentum points. In later chapters we will also
need the Floquet band velocity. This we obtain by numerically computing the momentum
derivative of the Floquet eigenenergies.

We show the numerically obtained band structure in Fig. 2.9. For low driving field
strength the first resonance has the largest gap. When increasing the field strength the
gap increases while simultaneously moving inward towards the Dirac point. At even larger
field strength the size of the gap starts decreasing again. At Edr ≈ 52 MV m−1 the ring of
momenta that are resonant contracts to a point and merges at the Dirac point. Generally
higher-order resonances open for larger values of the field strength but show the same life
cycle of increasing gap size, then decreasing gap size and merging at the Dirac point.

Besides the band structure we are also interested in the Berry curvature. We use the
method presented in [167] in order to determine the Berry curvature numerically. Within
this numerical formalism we can now compute Chern numbers. From previous chapters
we know that the contribution to Chern numbers is localized around each resonance. It
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is therefore helpful to define the pseudo-Chern numbers for individual resonances by

c0 =
1

2π

∫ k=ωdr/4/vF

0

dk

∫ 2π

0

dφ k Fxy(k, φ)

cn =
1

2π

∫ k=(n+1/2)ωdr/2/vF

k=(n−1/2)ωdr/2/vF

dk

∫ 2π

0

dφ k Fxy(k, φ) .

The pseudo-Chern numbers of individual resonances have also been analyzed analytically
in [168]. There it has been shown that cn = (−1)n · 4n, n ≥ 1, where the factor of 4 arises
due to the spin and valley degeneracies. This result is in agreement with our result for
c1 in Sec. 2.2.1. For the examples shown in Fig. 2.4 we can now compute the resulting
pseudo-Chern numbers and compare to the analytical results. For Edr = 10 MV m−1

we obtain c0 = −1.8, c1 = −4.05, c2 = 7.8, c3 = −11.97. We see that even for this
comparatively low field strength the pseudo-Chern numbers for the Dirac point and the
first few resonances deviate from the analytical results. For the Dirac point the pseudo-
Chern number only slowly approaches the expected value of −2 when further reducing the
field strength. We get c0 = 1.95 for Edr = 5 MV m−1 and c0 = 1.98 for Edr = 3 MV m−1.
At higher field strength, Edr = 26 MV m−1, the pseudo-Chern numbers deviate further
from their analytical values. Since neighboring resonances always have opposite Berry
curvature, these contributions start overlapping and cancel. For this field strength we
obtain c0 = −0.9, c1 = −4.2, c2 = 6.8 and c3 = −11.6.
At this point we would also like to remind the reader of our discussion in footnote

6. The only reason why the pseudo-Chern numbers are allowed to deviate from integers
is that the actual Chern number is the one for the entire band, i.e. the sum of all the
pseudo-Chern numbers of one band. Note that this is a large but finite sum when taking
into account the full graphene dispersion and hence the finite bandwidth.

2.2.2. Dissipative driven graphene: Single-particle correlation

function reveals the band structure8

So far we have only considered periodically driven graphene without dissipation. We are
now interested to what extent dissipative graphene can still be described within Floquet
theory. We simulate the effective, driven band structure of graphene by computing the
single-particle correlation function, for details see Ref. [N2]. The peaks of the single-
particle correlation function agree perfectly with the Floquet band structure computed in

8The results in this section have been published in Ref. [N2]. While the results on the single-particle
correlation function are based on the description of graphene and the damping and dephasing formalism,
developed in this thesis, the actual calculations for this part have been performed by my colleague Lukas
Broers.
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Figure 2.10 – Single-particle correlation function n(k, ω) as a function of momentum
times ~vF. (Note that ~vFk = 400 meV corresponds to k ≈ 0.06Å.) Dotted gray lines
show the numerically computed Floquet band structure. The peaks of the single-
particle correlation function agree perfectly with the Floquet band structure. The
correlation function is shown after a steady state is achieved for a tanh-type ramp to
the driven state. We show a slice along the kx-direction of the band structure shown
in Fig. 2.1. Dashed gray lines separate the different Floquet replica, while faint solid
gray lines indicate the Dirac cone for undriven graphene. The parameters are inspired
by experimental ones used in [86]. We use Edr = 26 MV m−1, ωdr = 2π · 48 THz ≈
200 meV/~, T1 = 1 ps, T2 = 0.2 ps and Tp = 0.4 ps. This figure has been published in
Ref. [N2].

Sec. 2.2.1, see Fig. 2.10. It is obvious that not all of the Floquet replica can be occupied,
since the number of states per momentum is infinitely large and not 2 as for the undriven
band structure. We see that instead only those modes have significant occupation that
are adiabatically connected to the undriven band structure. This was expected, at least
for low electric field strengths, since for Edr → 0 the occupations have to approach the
undriven case. We observe that significant heating occurs at the Dirac point, where the
lower and upper band have almost equal population. Additional excitations occur at each
resonance. Here the lower and upper bands are connected by multiples of the driving
frequency and hence can easily be excited. It is interesting and not obvious to note
that at the second resonance the first Floquet replica (m = +1) has significantly larger
occupation than the zeroth Floquet replica (m = 0). This supports the statement that
only the modes adiabatically connected to the undriven band structure obtain significant
occupation. It is, however, counterintuitive from a perturbation theory perspective, where
the excitation fromm = −1 tom = 0 is a first-order effect, while the excitation tom = +1

is only possible in second order in the driving field strength.
Finally, we note that the single-particle correlation function is also accessible for exper-

iments. Similar results could be obtained by angle-resolved photoemission spectroscopy
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Figure 2.11 – Sum of the occupation of the lower and upper graphene bands n(k, µ)
as a function of chemical potential µ and momentum times ~vF for the effective high-
frequency system. We use the static high-frequency Hamiltonian from Eq. 2.10 for
the dynamics and ramp the effective gap ∆hf from 0 to its final value. The occupation
is rotationally symmetric and we exemplarily show a cut along the kx-direction. The
black line shows the corresponding effective Floquet band structure. As expected for
a static system the changes in n(k, µ) reflect the band structure and the opening of
the band gap. We use Edr = 20 MV m−1, ωdr = 2π · 48 THz, T1 = 1 ps, T2 = 0.2 ps,
Tp = 0.25 ps and T = 15 K.

(ARPES) [169]. The main difference is the appearance of a dark corridor [170–172], which
could be easily included in our calculations. At this point it is interesting to note the
connection to the discussion in Sec. 3.1 , where we obtain an expression for the time-of-
flight signal when releasing atoms from an optical lattice. The angular dependence of this
expression is closely related to the dark corridor in ARPES-type experiments. In both
cases, the origin is the interference of the signal arising from each of the two sublattices.

2.2.3. Chemical-potential bias in driven graphene

After finding such good agreement between the effective Floquet band structure and the
single-particle correlation function, we consider how close driven graphene behaves to a
static system when applying a chemical-potential bias. This can be achieved by putting
graphene onto a substrate and applying a voltage bias to the substrate. We will find that
dissipative driven graphene reacts profoundly different from an effective static system
when applying a chemical-potential bias. Instead of the gaps of the effective Floquet
band structure the bare Rabi frequency eEdrvF/ωdr plays a crucial role in determining
which momentum modes are occupied at a given chemical-potential bias.
Before considering the actual driven case we take a look at the effective high-frequency
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Figure 2.12 – Sum of the occupation of the lower and upper graphene bands n(k, µ)
as a function of chemical potential µ and momentum times ~vF for driven graphene.
We show a cut along the kx-direction. Black lines show the minimum and maximum
of the generalized momentum ± (~vFk ± eEdrvF/ωdr). We use the same parameters
as for Fig. 2.11. We show the occupation after the steady state is achieved for a
tanh-type ramp to the driven state.

static system from Eq. 2.10. We consider the total occupation of each momentum mode

n(k, µ) = Tr
[
ρk(µ)

(
c†k,Ack,A + c†k,Bck,B

)]
.

For our simulation we initialize the system at ∆hf = 0 then increase ∆hf towards its final
value using a tanh-type ramp protocol and wait until a steady state has been achieved.
The results for the effective static system are shown in Fig. 2.11. For all cases considered in
this section the occupation is particle-hole symmetric and we therefore only discuss µ > 0.
As expected for a static system we see that the total occupation of all momentum modes
is 1 for µ = 0 and remains at that value when changing the chemical potential within
the band gap. Furthermore for each momentum mode the total occupation increases to
2 when increasing the chemical potential above the corresponding upper band energy.
We show the corresponding plot for the driven system in Fig. 2.12. We see that the

total occupation is dramatically different from that of a static system. In fact, no signs
of the Dirac-point gap and resonance gaps can be seen in this observable. Instead the
instantaneous generalized momentum k−eA of the system plays a crucial role. For circu-
larly polarized light the generalized momentum moves on a circle with radius eEdrvF/ωdr

around the bare momentum k. Hence the absolute value of the generalized momentum
oscillates periodically. When the chemical potential is below the minimum of the gener-
alized momentum µ < |~vFk − eEdrvF/ωdr| the corresponding momentum mode has unit
occupation. For larger chemical potential the occupation increases and, when it is above
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Figure 2.13 – Sum of the occupation of the lower and upper graphene bands n(k, µ)
as a function of chemical potential µ and momentum times ~vF for driven graphene.
We show a cut along the kx-direction. Black lines show the minimum and maximum
of the generalized momentum ± (~vFk ± eEdrvF/ωdr). We use the same damping as in
Fig. 2.12, but significantly higher Edr = 225 GV m−1, ωdr = 2π ·24 PHz and T = 80 K.
We show the occupation after the steady state is achieved for a tanh-type ramp to
the driven state.

the maximum µ > |~vFk+eEdrvF/ωdr|, the system reaches double occupancy. As a result
when increasing the chemical potential the first modes that are occupied are those at
~vFk = eEdrvF/ωdr, which we call the bare Rabi frequency9. This behavior is robust even
for very high driving frequencies, when increasing the field strength simultaneously, see
Fig. 2.13. Finally, we find that the total occupation of all momentum modes

∑
k n(k, µ)

is for any chemical potential, independent of the driving field strength Edr. This is again
in contrast to the effective static system where for small positive chemical potential the
occupation reduces from a value larger than 1 to 1 when the gap at the Dirac point opens.

2.3. Numerical conductivity simulations and

comparison to experiments

After considering the spectrum and the occupations of driven graphene we now turn
towards analyzing the Hall conductivity. It has been predicted that graphene driven
with circularly polarized light has a quantized topological Hall conductivity in the high-
frequency limit [76–80]. Here we consider low-frequency driving as used in Ref. [86]. For
all our simulations we show the conductivity dichroism, defined as the difference of the
conductivity for positive and negative circularly polarized light. We show the momentum-

9This nomenclature will become clear later in Sec. 2.4.2.
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Figure 2.14 – Circular dichroism of the Hall conductivity. (a) We show the
conductivity density σ̃xy as a function of momentum averaged over contributions
from opposing momentum modes. Panel (b) shows the same data as (a) but ra-
dially integrated as a function of threshold momentum |kr|. The first four reso-
nances are indicated by dashed lines. For both panels we use Edr = 20 MV m−1

ωdr = 2π · 48 THz ≈ 200 meV/~, T1 = 1 ps, T2 = 200 fs, Tp = 250 fs, T = 1 K,
EL = 1.7 kV m−1 and µ = 0. We show the conductivity density after a steady state is
achieved for a tanh-type ramp of the driving field strength.

resolved dichroism of the conductivity density in Fig. 2.14(a). In addition to the negative
contribution of the Dirac point resonant contributions occur at multiples of the driving
frequency 2vFk = mωdr. Each resonance has negative conductivity contribution for mo-
mentum modes smaller than the resonance 2vFk < mωdr, and positive contribution for
momenta larger than the resonance 2vFk > mωdr. This effect can be understood from
a harmonic-oscillator perspective: for a driven harmonic oscillator the response switches
sign when driven below and above the eigenfrequency. In graphene the eigenfrequency has
the momentum dependence 2vFk. Hence momenta smaller and larger than the resonance
contribute with opposite sign to the conductivity.

We show the radially integrated conductivity density σ̃xy in Fig. 2.14(b). The plateau
for large |kr| gives the full conductivity dichroism. We see that the major contribution to
the conductivity arises from resonances. Only the small decrease in the integrated σ̃xy for
momenta smaller than 50 meV reflects the contribution of the Dirac point. The alternating
negative and positive contributions from resonances lead to decreasing integrated σ̃xy

before the resonance and increasing σ̃xy after the resonance. The larger increase than
decrease reflects that each resonance has a net positive contribution. For higher-order
resonances the contributions are more focused around the resonance and the magnitude of
the net contribution is smaller. For the chosen parameter set only the first two resonances
have a significant net contribution to the conductivity. Higher-order resonances do not
contribute.
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Figure 2.15 – Circular dichroism of the transverse conductivity. Panel (a) shows the
total conductivity as a function of applied chemical potential. Dashed lines indicate
the position of the first resonance 2vFk = ωdr. Panels (b)-(e) show the momentum-
resolved conductivity density averaged over opposite momentum modes for increasing
chemical potential as indicated by black squares in panel (a). Black circles denote
the position of the first resonance. The center of each panel (0, 0) is positioned at the
Dirac point. The parameters for all panels are Edr = 1 MV m−1, ωdr = 2π · 48 THz,
T1 = 100 fs, T2 = 20 fs, Tp = 25 fs, T = 80 K, EL = 840 V m−1 and genv(t) is a Gaussian
envelope with full width half maximum tFWHM = 1 ps. This figure has been published
in Ref. [N2].

The momentum-resolved conductivity allows to identify the different contributions to
the transverse current. In experiment, however, such data is not easily accessible. Instead
it is possible to tune the applied back gate, i.e. the chemical potential [86]. When increas-
ing the chemical potential for the effective static system, momenta close to the Dirac point
are fully occupied and due to Pauli blocking do not contribute to the conductivity. As we
have learned in Sec. 2.2.3 changing the chemical potential in driven graphene behaves pro-
foundly different, inserting extra electrons at the Rabi frequency, i.e. ~vFk = eEdrvF/ωdr,
instead of the Dirac point, i.e. k = 0. For low electric field strength Edr the bare Rabi
frequency is small, hence its difference to k = 0 negligible, and the system behaves sim-
ilar to the static system. We show this case in Fig. 2.15. For momentum modes smaller
than the first bare resonance negative contributions to the conductivity dominate. When
increasing the chemical potential the conductivity of these modes becomes suppressed
and the total conductivity increases. Near the first resonance the situation reverses. Now
momentum modes above the resonance become fully occupied and increasing the chemi-
cal potential further leads to decreasing total conductivity. Hence the chemical-potential
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Figure 2.16 – (a) Chemical-potential-resolved circular dichroism of the transverse
conductivity. The data from the numerical simulation (red line) and experimental data
[86] (open circles) agree quantitatively. (b) Electric field strength dependence of the
current dichroism for several values of the particle-exchange time scale Tp as indicated
in the legend. We see that a value of Tp = 30−50 fs is consistent with the experiment.
The parameters for the numerical simulation are ωdr = 2π · 48 THz ≈ 200 meV/~,
T1 = 100 fs, T2 = 20 fs, T = 80 K, EL = 1.7 kV m−1 and the driving pulse has
Gaussian envelope with electric field strength FWHM of

√
2 ps, corresponding to

intensity FWHM of 1 ps. Finally, Edr = 26 MV m−1 and Tp = 36 fs in panel (a) and
chemical potential µ = 0 in panel (b). This figure has been published in Ref. [N2].

dependence of the transverse conductivity reflects the resonant behavior. Although the
mapping between chemical potential and occupied momentum modes is more convoluted
for larger field strengths we can still see a clear signature of the resonances in this regime.
In Fig. 2.16 we compare our results to experimental results obtained in [86]. We find
that both the fluence dependence as well as the chemical-potential dependence for high
fluence agree quantitatively with just a single free parameter. All parameters except for
the dissipation rates agree with those in [86]. The dissipation rates T1 and T2 are inspired
by a different measurement on graphene [173]10. Only the third decay rate Tp is adjusted
to match the experimental data. We find that depending on the electric field strength
values of 30− 50 fs are appropriate.

For the simulation of the experiment from [86] it is crucial to work at fixed chemical
potential instead of fixed density. To illustrate the difference we show a simulation enforc-
ing fixed density for each momentum mode during the time evolution in Fig. 2.17. The
parameters are the same as in Fig. 2.16. The shape of the curve is fundamentally different
from the experimental data. When working at fixed particle number we fill the undriven
system according to the chosen chemical potential and then keep the total number of elec-

10Similar dissipation rates have also been obtained in a range of other publications [174–178].
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Figure 2.17 – Chemical-potential-resolved circular dichroism of the transverse con-
ductivity. Black circles show experimental data from [86] and the solid red line
shows results from our numerical simulation. Here µ is the chemical potential
of the initial state and we do not allow for the exchange of particles during the
simulation. The parameters for the numerical simulation are Edr = 26 MV m−1,
ωdr = 2π · 48 THz ≈ 200 meV/~, T1 = 100 fs, T2 = 20 fs, T = 80 K, Tp = 36 fs,
EL = 1.7 kV m−1 and the driving pulse has Gaussian envelope with electric-field-
strength FWHM of

√
2 ps, corresponding to intensity FWHM of 1 ps. This figure has

been published in Ref. [N2].

trons in each momentum mode constant when switching the driving field on. In contrast
to the experimental data the simulated conductivity increases when tuning the chemical
potential away from zero. This effect is quite general for the system at fixed particle
number as in this case the momentum modes close to the Dirac points are the first modes
that are filled and hence do not contribute to the current. As we have seen in Fig. 2.15 the
momentum modes inside the circle of the first resonance contribute dominantly negative
and hence when blocking these modes the conductivity increases. We conclude that the
exchange of electrons with unilluminated regions of the graphene sample as well as with
the substrate is important even on the short time scales of the circularly polarized pulse.
We note that the experiments presented in Ref. [86] have been performed using a

driving pulse with Gaussian envelope. For the comparisons to experiment we use the same
setup for our simulations. We find, however, that the width of the Gaussian envelope is
sufficiently long, such that the electrons remain close to the steady-state at all times for
the given set of dissipation parameters. We therefore focus on the steady-state properties
in the following chapters by considering a tanh-type ramp.
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2.4. Hall conductivity in driven graphene in the

low-fluence limit

We have seen that our model describes the Hall conductivity in driven dissipative graphene.
Next we analyze the origin of the Hall conductivity. We find that a major contribution
to the Hall conductivity in graphene is a Berry curvature effect. In the infinite-frequency
limit the Berry curvature is well localized around the Dirac point. At finite frequency
there are additional contributions originating from resonances. In fact, we find that in
most cases these contributions dominate the conductivity. At low driving field strength
Edr the dominant contribution to the Hall conductivity originates from the first resonance
where 2vFk = ωdr. This is because at low Edr all other gaps are small compared to tem-
perature, damping and dephasing time scales. We call these gaps closed (this will be
explained in detail in Sec. 2.6). Therefore we first consider the contribution of the first
resonance in the limit of low field strengths where mapping the graphene Hamiltonian
onto the Rabi problem can give intuitive insights. We confirm our proposal that the Hall
conductivity is approximately given by the sum of the Berry-curvature and band-velocity
contributions, see Eq. 2.1, for the regime of low field strengths.

2.4.1. The Rabi problem

For completeness we give a brief description of the Rabi problem. A more detailed de-
scription can be found in Rabi’s original work [179] and in Ref. [180]. We start from
the Jaynes-Cummings-Paul model for a driven two-level system within the rotating-wave
approximation11

H0 =

(
~ω0/2 0

0 −~ω0/2

)
(2.18)

H ′ = ~λ

(
0 e−iωdrt

eiωdrt 0

)
, (2.19)

where ω0 is the level spacing of the atom and ωdr is the frequency of the electric field.
The resulting Schrödinger equation is commonly solved by applying the rotating-wave
approximation, i.e. applying the unitary transform

Urotating-wave =

(
e−iωdrt 0

0 1

)
.

11Usually the Hamiltonian is written as H0 =
( ~ω0 0

0 0

)
. Here we introduce a constant energy offset as

this will make the comparison to graphene easier.
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The solution is

ψ(t) =

e−iωdrt/2
[
a cos(ΩRt) + ia∆−bλ

ΩR
sin(ΩRt)

]
eiωdrt/2

[
b cos(ΩRt)− i b∆+aλ

ΩR
sin(ΩRt)

]  ,

where we have defined the detuning

∆ =
ω − ω0

2

and the Rabi frequency

ΩR =
√

∆2 + λ2 .

The integration constants a, b are fixed from the normalization of the wave function and
the initial condition. Note that the above wave function is normalized for a = sin(χ) and
b = cos(χ).

2.4.2. Mapping driven graphene onto the Rabi problem

We use the solution obtained for the Rabi problem in the previous section to solve the
Schrödinger equation in driven graphene within the rotating wave approximation. This
yields a good estimate close to the first resonance.
As in Sec. 2.2.1 we start from the graphene Hamiltonian with no longitudinal field, see

Eq. 2.11. Again we go to the basis that diagonalizes the undriven Hamiltonian and obtain

U †kH0,kUk = 2~vFkσz (2.20)

U †kH1,kUk =
eEdrvF

ωdr

(
s1 −ic1

ic1 −s1

)
,

where s1 = sin(τzσpolωdrt− φk)

c1 = cos(τzσpolωdrt− φk) .

Next we do the rotating wave approximation, keeping only those terms, non-oscillatory
in the rotating frame. Then

Hdr,k(t) ≈ eEdrvF

2ωdr

(
0 − ie−iωdrt+iτzσpolφk

ieiωdrt−iτzσpolφk 0

)
. (2.21)

Equations 2.20 and 2.21 closely resemble Eqs. 2.18 and 2.19 and can therefore be solved
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analytically in analogy to the Rabi problem. The solution can be written as

|ψR(t)〉 = |ψR,+(t)〉eiΩRt + |ψR,−(t)〉e−iΩRt ,

where

|ψR,±(t)〉 =

−ieiτzσpolφk (a± a∆−bλ
ΩR

)(
b∓ b∆+aλ

ΩR

)
eiωdrt

 e−iωdrt/2

and

∆ =
ωdr − 2vFk

2

λ =
eEdrvF

2~ωdr

.

Also note that

σpole
iτzσpolφk =

τz(σpolkx + iky)

k

and we obtain the bare Rabi frequency, i.e. the one for zero detuning, as 2ΩR(∆ = 0) =

eEdrvF/ωdr, where the factor of 2 has been included for convenience. The eigenenergies
can be read off from the eigenstates as

ER,± = −~ωdr/2± ~ΩR .

This result is indeed in agreement with Eq. 2.16. This emphasizes that the Magnus
expansion in the rotating frame is closely related to the Rabi problem.

For completeness we note that the band velocity is obtained as

v±(k) = ∇kER,±(k) .

Next we determine the instantaneous Berry curvature. For this we need the eigenstates
with respect to the original AB-basis

|ψABR,±(t)〉 = Uk|ψR,±(t)〉 .

The Berry connection is now given by

A±j (t) = i〈ψABR,±(t)| ∂
∂kj
|ψABR,±(t)〉
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and as a result we obtain the Berry curvature as

F±R (k, t) =
∂

∂ky
Ax(t)−

∂

∂kx
Ay(t)

= ∓σpolvFλ
2

2kΩ3
R

∓ Re [(ky + iσpolkx)e
iωdrt] vFλ∆

2k2Ω3
R

. (2.22)

The first contribution is the same as the result within the Magnus expansion in the
rotating frame, see Eq. 2.17. For now we neglect the second time-dependent part of the
Berry curvature. This will be discussed in Sec. 2.4.3. Finally, we note that given a density
matrix ρk we can compute the occupations of the Rabi bands as

nR,±(k, t) = 〈ψABR,±(t)|ρk(t)|ψABR,±(t)〉 .

2.4.3. Interpretation of the Hall conductivity in terms of Rabi

Berry curvature and Rabi band velocity

We are now ready to compare the full conductivity to the Rabi-Berry-curvature and band-
velocity contributions. To this end we use the results for the Rabi Berry curvature, Rabi
band velocity and Rabi occupations from the previous section and insert them into Eq. 2.1.
We find that the Rabi-Berry-curvature contribution switches sign at the first resonance,
see Fig. 2.18(a). This is a result of occupying different Rabi bands with opposite Berry
curvature on each side of the resonance. Most of this contribution cancels. Damping leads,
however, to slightly higher occupation on the outside of the resonance and hence there
is a net positive contribution from Rabi Berry curvature, see Fig. 2.18(c). Comparing
the Rabi Berry curvature to the full conductivity in Fig. 2.18(b) we find qualitatively
good agreement. Only the contribution from the Dirac point in the full conductivity
is not captured by the Rabi-Berry-curvature contribution. This is expected since the
rotating-wave approximation is only valid close to the first resonance. A quantitative
comparison in Fig. 2.18(c) shows that about half of the full conductivity is due to Rabi
Berry curvature. An additional contribution is due to the band velocity of Rabi states.
This effect is similar to the population-imbalance effect presented in Ref. [N5]. We see
that roughly 80% of the full conductivity is captured by the sum of the Berry-curvature
and band-velocity contributions.
We show results for lower damping and dephasing time scales in Fig. 2.19. We see

that the sum of Berry-curvature and band-velocity contributions shows better agreement
with the full conductivity in this regime. We therefore conclude that the identification
σxy ≈ Φxy, see Eq. 2.1, is particularly well founded in the weakly damped regime. For all
damping strengths there is a finite contribution from Rabi band velocity. Hence, band-
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Figure 2.18 – Circular dichroism of the Rabi-Berry-curvature and Rabi-band-velocity
contributions and the full conductivity. (a) Rabi-Berry-curvature contribution to
the conductivity dichroism. We show the Berry curvature computed according to
Eq. 2.22 weighted with the respective Rabi occupations. (b) Circular dichroism of
the simulated Hall conductivity density σ̃xy. Panels (a) and (b) are averaged over
opposing momentum modes. (c) Comparison of the integrated Hall conductivities.
We show the conductivity density σ̃xy integrated over all momenta smaller than the
threshold value |kr|. The solid black line shows the simulated full conductivity, the
dashed blue line shows the Rabi-Berry-curvature contribution and the dotted red line
shows the sum of Rabi-Berry-curvature and Rabi-band-velocity contributions. In all
plots we use Edr = 5 MV m−1, ωdr = 2π · 48 THz ≈ 200 meV/~, T1 = 1 ps, T2 = 200 fs,
Tp = 200 fs, T = 80 K, EL = 1.7 kV m−1 and µ = 0. All observables are shown after a
steady state is achieved for a tanh-type ramp of the driving field strength. Panels (a)
and (b) have been published in Ref. [N2].

velocity and Berry-curvature contributions occur simultaneously. This is in contrast to
topological insulators, where the band gap leads to vanishing band-velocity contribution
in the topological regime.

Finally, we consider the time-dependent Berry-curvature contributions we found in
Eq. 2.22. Since the density matrix and the Rabi eigenstates are time dependent the
occupations of Rabi bands nR,±(k, t) will also contain an oscillatory contribution. The
resulting time dependence may cancel and therefore there is a time-independent con-
tribution from time-dependent curvature and occupations. We have checked that this
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Figure 2.19 – Comparison of the integrated Hall conductivity dichroisms. We show
the conductivity density σ̃xy integrated over all momenta smaller than the threshold
value |kr|. The solid black line shows the simulated full conductivity, the dashed blue
line shows the Rabi-Berry-curvature contribution and the dotted red line shows the
sum of Rabi-Berry-curvature and Rabi-band-velocity contributions. We have added
an offset to all curves such that they are zero at ~vF |kr| = 20 meV. In all plots we
use Edr = 5 MV m−1, ωdr = 2π · 48 THz ≈ 200 meV/~, T = 80 K, EL = 1.7 kV m−1

and µ = 0. Panel (a) shows T1 = 4 ps, T2 = 0.8 ps, Tp = 1.6 ps and panel (b) shows
T1 = 20 ps, T2 = 4 ps, Tp = 8 ps. All observables are shown after a steady state
is achieved for a tanh-type ramp of the driving field strength. Panel (a) has been
published in Ref. [N2].

contribution is several orders of magnitude smaller than the contribution arising due to
time-independent Berry curvature and hence the quantities can be averaged indepen-
dently Fxy(k, t)n(k, t) ≈ Fxy(k, t) n(k, t). Hence it was well founded to drop the second,
time-dependent contribution to the Berry curvature.

2.5. Hall conductivity in driven graphene for larger

fluence

The analysis using the Rabi solution gives intuitive insight for the contribution of the
first resonance. At larger electric field strength higher-order resonance gaps open and
the Rabi approximation is not valid any more. In analogy to the above considerations
using the Rabi solution, we can now use Floquet theory in order to obtain the Berry-
curvature and band-velocity contributions. The occupations of individual Floquet bands
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Figure 2.20 – Floquet band structure colored by Berry curvature. Berry curvatures
are integrated over ring segments of the 2-d momentum space. Dashed gray lines
separate the different Floquet replica, while faint solid gray lines indicate the Dirac
cone for undriven graphene. We use Edr = 26 MV m−1 and ωdr = 2π · 48 THz ≈
200 meV/~. This figure has been published in Ref. [N2].

are obtained by integrating the respective sectors of the single-particle correlation function
shown in Fig. 2.10, for details see the appendix of Ref. [N2]. The Floquet Berry curvature
and Floquet band velocities are computed numerically using the procedure presented in
Sec. 2.2.1.

In Fig. 2.10 we see that those Floquet bands obtain the largest occupation that are
adiabatically connected to the undriven lower Dirac cone. For these bands the following
pattern repeats at each resonance: momenta smaller than the resonance have dominant
occupation in the band above the resonance and momenta larger than the resonance
in the band below. A split band picture emerges where the dominantly occupied band
changes at each resonance. Additionally we consider the Floquet Berry curvature, shown
in Fig. 2.20. The latter is always positive in the band below the resonance and negative in
the band above. Combining this with the occupations we find that the Hall-conductivity
contribution according to Eq. 2.1 is negative for momenta smaller than the resonance
and positive for momenta larger. The pattern of the first resonance repeats. This is in
agreement with the alternating sign of the Hall conductivity density, remember Fig. 2.14.

We turn to a quantitative comparison of the Floquet-Berry-curvature and Floquet-
band-velocity contributions with the full current. The resulting fluence dependence of the
Hall conductivity is shown in Fig. 2.21. For all fluences a significant part of the simulated
conductivity is due to Floquet Berry curvature, while an additional contribution comes
from Floquet band velocities. At low fluence the band-velocity contribution dominates.
At higher fluence there is a crossover and the Hall conductivity is dominated by Berry-
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Figure 2.21 – Comparison of the electric field strength dependence of the conduc-
tivity dichroism and the Berry-curvature and band-velocity contributions. Black dia-
monds show the simulated full conductivity, the faint dashed line the sum of Berry-
curvature and band-velocity contributions computed from Rabi states, red triangles
show the same computed from Floquet states, blue squares show only the Berry-
curvature and blue circles only the band-velocity contribution computed from Floquet
states. We use ωdr = 2π ·48 THz ≈ 200 meV/~, T1 = 1 ps, T2 = 0.2 ps and Tp = 0.4 ps,
T = 80 K, EL = 1.7 kV m−1 and µ = 0. All observables are shown after a steady state
is achieved for a tanh-type ramp of the driving field strength. This figure has been
published in Ref. [N2].

curvature contributions.
We find that a similar comparison for smaller dephasing-type damping, shown in

Fig. 2.22, yields even better agreement of the Hall conductivity and the sum of Floquet-
Berry-curvature and Floquet-band-velocity contributions. This suggests that dephasing-
type dissipation is responsible for the deviation of the two quantities in Fig. 2.21.

2.6. Resolving the Hall conductivity of individual

resonances

We have identified the main contribution to the Hall conductivity to be arising from in-
dividual resonances and the Dirac point. For low values of Edr the conductivity density
is well localized around individual resonances and there is no contribution to the conduc-
tivity in between resonances. Hence in between resonances the integrated conductivity
shown in Fig. 2.23 is constant. In this regime we can define contributions of the Dirac
point and individual resonances by integrating the conductivity density over the respective
sectors. This is similar to the integrals for pseudo-Chern numbers defined in Sec. 2.2.1.
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Figure 2.22 – Comparison of the electric-field-strength dependence of the conduc-
tivity dichroism and the Berry-curvature and band-velocity contributions for small
dephasing-type damping. We show the circular dichroism of the integrated Hall-
conductivity density. The solid black line shows the simulated full conductivity, the
dashed red line the sum of Berry-curvature and band-velocity contributions computed
from Floquet states and the dotted blue line shows only the Berry-curvature contribu-
tion. Dashed vertical lines indicate the first three resonances. The parameters are the
same as in Fig. 2.21 except for T2 = 2 ps. This figure has been published in Ref. [N2].

We define

σDirac =

∫ k=ωdr/4/vF

0

d2k σ̃xy (2.23)

σn-th resonance =

∫ k=(n+1/2)ωdr/2/vF

k=(n−1/2)ωdr/2/vF

d2k σ̃xy . (2.24)

For larger field strength we can still apply this procedure. In this regime the contributions
of resonances start overlapping, however, and it is therefore not as well founded. Since the
contribution from resonances is always negative below and positive above the resonance,
overlapping resonances lead to canceling contributions.

Keeping the applicability regime in mind we use the above procedure in order to an-
alyze the driving-field-strength dependence of the contribution of individual resonances
and the Dirac point. The contribution in the high-frequency limit without damping has
been analyzed in [76–80]. In this limit there are no resonant contributions and the total
Hall conductivity originates from the gap at the Dirac point and is σxy = −2e2/h. For
this result a fully occupied lower and an empty upper graphene band is assumed. Un-
der experimental conditions finite-frequency driving leads to excitations into the upper
graphene band. Depending on the strength of damping and dephasing effects one obtains
a steady state with significant occupation in the upper graphene band close to the Dirac
point, see Fig. 2.10. The upper band has opposite Berry curvature and hence contributes
to the Hall conductivity with opposite sign. As a result the Hall conductivity arising from
the Dirac point is reduced significantly for experimental conditions. Since the occupation
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Figure 2.23 – Circular dichroism of the integrated Hall conductivity density. We
show the conductivity density σ̃xy integrated over all momenta smaller than the thresh-
old value |kr| for two different driving field strengths as indicated in the legend. The
first, second and third resonance are indicated by dashed lines. Red arrows mark the
conductivity contribution of the Dirac point, the first and the second resonance for
Edr = 16.8 MV m−1. We use ωdr = 2π · 48 THz ≈ 200 meV/~, T1 = 1 ps, T2 = 200 fs,
Tp = 200 fs T = 80 K, EL = 1.7 kV m−1 and µ = 0. All observables are shown after a
steady state is achieved for a tanh-type ramp of the driving field strength.

of the lower band is always larger than the one of the upper band, the net contribution
from the Dirac point is always negative. Hence the sign agrees with the one expected in
the high-frequency limit, but the magnitude is reduced.
We have noted in the previous section that all resonances give net positive contribu-

tion. We show the resulting field-strength dependence of the contributions of different
resonances and the Dirac point in Fig. 2.24(a). We see that only the first resonance con-
tributes for electric field strengths smaller than 8 MV m−1. In this regime the conductivity
is well described by the Rabi Berry curvature. For low field strengths the gaps at higher-
order resonances are still small compared to temperature, damping and dephasing effects,
see Fig. 2.24(b). Therefore the lower and upper Floquet bands near the resonance have
equal occupation and hence the corresponding contributions to the conductivity cancel
due to the opposite sign of the Berry curvature and band velocity. We call these resonance
gaps that do not contribute to the conductivity closed.
For field strengths larger than 10 MV m−1 the second-order gap starts to open and

hence contributes to the conductivity. We expect the conductivity arising from the first
resonance to saturate in this regime. We see, however, a reduction in Fig. 2.24(a). This is
due to the above mentioned resonance broadening that leads to canceling contributions of
the first and second resonance and hence a reduction of the conductivity in the momentum
range of the first resonance.
As the second resonance opens we see a further increase of the Hall conductivity. At
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Figure 2.24 – (a) Resonance-resolved conductivity dichroism as a function of electric
field strength. The solid black line shows the full conductivity, while the dash-dotted
blue line shows the contribution of the Dirac point and other lines show the con-
tributions up to and including the n-th resonance as indicated in the legend. (b)
Gap sizes as a function of electric field strength. The dash-dotted blue line shows
the gap at the Dirac point, while other lines show the gaps at the n-th resonance as
indicated in the legend. The dashed gray line shows the approximate scale of tem-
perature, damping and dephasing effects kBT ≈ ~/T1 ≈ 6 meV. The parameters used
are ωdr = 2π · 48 THz ≈ 200 meV/~, T1 = 1 ps, T2 = 200 fs, Tp = 400 fs T = 80 mK,
EL = 1.7 kV m−1 and µ = 0. All observables are shown after a steady state is achieved
for a tanh-type ramp of the driving field strength. This figure has been published in
Ref. [N2].

even higher field strengths, higher-order gaps open subsequently and lead to a series of
plateaus and further increasing conductivity. Still, for the field strengths considered, only
a small fraction of the total number of resonances contributes to the conductivity. For
Edr = 26 MV m−1 we find that summing the contribution of the Dirac point and the first
4 resonances accounts for 99.8% of the full Hall conductivity. The net contribution of
each resonance is negative and therefore the total resonant contribution is opposite to
the high-frequency contribution. Furthermore we find numerically that the magnitude
of the high-frequency contribution is usually smaller than the magnitude of the resonant
contributions. This is in agreement with the sign of the conductivity of experimental data
in Ref. [86].
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2.7. Geometric Hall conductivity of the Dirac-point

gap

So far we have seen that the transverse Hall conductivity is dominated by resonant con-
tributions and the contribution of the Dirac point is highly suppressed by dissipation in
the experimentally realistic regime. Here we are interested in the question under which
circumstances the contribution of the Dirac point can become significant. We consider
three different regimes: increasing driving frequency, decreasing dissipation and the tran-
sient response for short times. We find that for increasing driving frequency the system
approaches a high-temperature state with equal occupation in the lower and upper band
and hence vanishing Hall conductivity. In contrast, for reduced dissipation and in the
transient response the system approaches a regime in which the Dirac-point contribution
approaches the value of σxy = −2e2/h, which is expected in the high-frequency limit.

2.7.1. High-frequency limit

We compare the conductivity in a realistic system with the effective high-frequency limit
in Fig. 2.25(a). We model the latter with the effective static Hamiltonian from Eq. 2.10.
We confirm that the sign of the conductivity is opposite. When increasing the driving
frequency we keep the size of the gap at the Dirac point ∆hf ∝ E2

dr/ω
3
dr fixed by simul-

taneously increasing the electric field strength Edr. This is important in order to ensure
that the gap remains open, i.e. large compared to damping and dephasing effects. We
see in Fig. 2.25(a) that for the given range of frequencies the system approaches the
high-frequency limit for increasing driving frequency.
For larger driving frequency we need to take smaller time steps for our numerical inte-

gration routines. Increased field strength additionally leads to current arising from larger
momenta and hence an increased window in momentum space that needs to be simu-
lated. Therefore the regime of high electric field strengths and frequencies is numerically
challenging and we can not go to higher driving frequency for the full conductivity in
Fig. 2.25(a). Instead we focus on the contribution of the Dirac point in Fig. 2.25(b). For
ωdr = 2π · 50 THz and ωdr = 2π · 100 THz we still see the onset of the first resonance. For
larger driving frequencies the plateau at larger threshold momenta gives the Dirac-point
contribution to the conductivity. In the high-frequency limit it is expected to converge
towards −2e2/h. Dissipation dramatically changes this result. We observe in Fig. 2.25(b)
for increasing driving frequencies that the conductivity reduces to 0 instead. The inter-
play of driving and dissipation leads to the formation of a high-temperature state with
almost equal occupation of the lower and upper graphene band. Since both bands have
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Figure 2.25 – Increasing the driving frequency for fixed Dirac-point gap. We show
the circular dichroism of the transverse conductivity. Panel (a) shows the total con-
ductivity as a function of applied chemical potential and panel (b) the conductivity
density σ̃xy integrated over all momenta smaller than the threshold value |kr|. The
driving frequencies for both panels are indicated in the legends. The electric field
strength is Edr = 20 MV m−1 for ωdr = 2π · 48 THz and is adjusted such that E2

dr/ω
3
dr

— corresponding to the gap in the high-frequency limit — is the same for all choices of
ωdr. For comparison we show the conductivity of the effective high-frequency system
in (a). The remaining parameters for all panels are T1 = 100 fs, T2 = 20 fs, Tp = 25 fs,
T = 80 K and EL = 840 V m−1. All observables are shown after a steady state is
achieved for a tanh-type ramp of the driving field strength.

opposite Berry curvature and band velocity the resulting Hall conductivity vanishes.

2.7.2. Geometric Hall conductivity for low dissipation

Next we consider a different route for recovering the geometric Hall conductivity of the
Dirac-point gap. Instead of increasing the driving frequency we reduce dissipation. We
find for fixed driving frequency that dissipation greatly inhibits the Hall-conductivity
contribution of the Dirac-point gap. At the same time the contributions of resonances are
enhanced by some dissipation mechanisms. We can identify a regime of low dissipation
and intermediate electric field strengths where the Hall-conductivity contribution of the
Dirac point approaches −2e2/h.
In this and the following section we switch off the coupling to the back gate (Tp =∞),

hence we work at fixed particle number, enforcing unit occupation of each momentum
mode. The computations with decoupled back gate are more efficient and hence allow
to investigate a wider parameter regime. Apart from being numerically more feasible we
have several other reasons motivating the decoupled back gate: experimentally this could
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Figure 2.26 – Circular dichroism of the integrated Hall conductivity densities for
several different values of the dissipation as indicated in the legend. We show the
conductivity density σ̃xy integrated over all momenta smaller than the threshold value
|kr|. The first, second and third resonance are indicated by dashed lines. We use
Edr = 84 MV m−1, ωdr = 2π · 200 THz, Tp = ∞, T = 80 mK, EL = 1.7 kV m−1 and
µ = 0. All observables are shown after a steady state is achieved for a tanh-type ramp
of the driving field strength.

be achieved by using free-standing graphene, i.e. graphene without a substrate. Also
we expect that at zero chemical potential the results are qualitatively similar to those
with coupled back gate. Finally, it is an interesting question on its own to ask whether
decay-type damping inhibits the geometric Hall conductivity of the gap at the Dirac point.
First we focus on the role of dephasing-type damping, i.e. T2. In order to resolve the

contributions of individual resonances we use larger driving frequency as compared to
previous sections. We observe in Fig. 2.26 that the relative scale of T1 and T2 crucially
influences the Hall-conductivity contributions of the Dirac point and the first resonance.
Large dephasing type damping, i.e. small T2, suppresses the contribution from the Dirac
point, while at the same time enhancing the contribution of the first resonance. Compared
to this effect the overall time scale of damping at fixed T2/T1 plays a negligible role for
100 fs < T1 < 1 ps. We note that there is an upper bound T2/T1 ≤ 2, since there is a finite
amount of dephasing for each decay process. This can also be motivated from Eq. 2.9,
where we see, when setting the bare dephasing-type damping γz = 0 to zero, that at low
temperature

1

T2

= Γ =
c6

2
≈ 1

2T1

.

Hence, in order to find a regime where the contribution of the Dirac point to the Hall
conductivity becomes large, we consider only cases where T2 = 2T1. We show the driving-
field-strength dependence of the Dirac-point contribution for different T1 in Fig. 2.27. In
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Figure 2.27 – Contribution of the Dirac point to the Hall conductivity dichroism,
as defined in Eq. 2.23, for different damping time scales as indicated in the legend.
For comparison we show the results for the effective high-frequency limit at T1 = 1 ps
(dotted line). We use ωdr = 2π · 200 THz, T2 = 2T1, Tp = ∞, T = 80 mK, EL =
1.7 kV m−1 and µ = 0. All observables are shown after a steady state is achieved for a
tanh-type ramp of the driving field strength. The simulations for the low dissipation
cases are numerically quite challenging and we expect this to be the origin of the
wiggles in the T1 = 33 ps data.

the effective high-frequency limit (modeled by Eq. 2.10) the contribution of the Dirac point
to the Hall conductivity is small for low electric field strength, increases to approximately
−2e2/h and then reduces again for even larger field strengths. At low field strength the
size of he gap is still small compared to dissipation and temperature and therefore does
not contribute to the conductivity. The origin of the reduction for large field strength
is the one noted in Sec. 2.6: the conductivity contribution spreads out in momentum
space and hence extends beyond the regime that we affiliate with the Dirac point. At
intermediate field strengths we find a plateau at −2e2/h for the effective high-frequency
system. We note that the dissipation has only minor influence on the effective high-
frequency system, since it is a static system with the chemical potential inside a band
gap. For the experimentally realistic system, driven at finite frequency, we see that decay-
type damping has strong influence on the Hall conductivity of the Dirac point. For large
decay-type damping, i.e. small T1, the Dirac-point contribution is reduced significantly.
For larger values of T1 the contribution of the Dirac point agrees with the one computed
for the effective high-frequency system for low values of the driving field strength. When
further increasing T1 the range in which the two contributions agree extends to larger and
larger field strength. For T1 = 33 ps we nearly recover the quantized value of −2e2/h at
intermediate field strengths. Hence, the Hall-conductivity contribution of the Dirac point
converges towards its high-frequency limit when reducing dissipation.
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2.7.3. Geometric Hall conductivity in the transient response
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Figure 2.28 – Coefficients of the density matrix for a cut along the kx-direction at
different snapshots in time as indicated in the legend. For comparison we show the
ground state of the effective high-frequency system with solid lines. We show mx

by black triangles and mz by red circles, we do not show my since it is negligible
along the kx-direction. The left column shows the undamped system while the right
column shows T1 = 10 ps, T2 = 2T1 and Tp = ∞. For all panels Edr = 84 MV m−1,
ωdr = 2π · 200 THz, T = 80 mK, EL = 0 and the envelope of the driving pulse is a
tanh-type interpolation from 0 to 1, that reaches 1 after 1 ps.

A second route to increase the contribution of the Dirac point to the Hall conductivity
is to look at the transient response before the system equilibrates. We find that in the
transient regime the contribution of the Dirac point is approximately −2e2/h for a wide
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2.7. Geometric Hall conductivity of the Dirac-point gap

range of different damping time scales T1 > 1/2 ps.
In order to get an intuitive understanding of the transient regime we first consider

the time evolution of the density matrix without an applied longitudinal field. When
decoupling the back gate (Tp =∞) the system has unit filling and hence can be described
by a 2×2 density matrix

ρk = 1/2 +mx(k)σx +my(k)σy +mz(k)σz .

We show the coefficients of the density matrix for a cut along the kx-direction in Fig. 2.28.
We do not showmy(k) since it is negligible for ky = 0. We first consider the undamped case
which is shown in the left column of Fig. 2.28. Initially the density matrix correctly shows
the dependence for undriven graphene where mx = −kx/|k| and mz = 0. Subsequently
the system evolves towards the ground state of the driven effective high-frequency system
shown by solid lines in Fig. 2.28. For large momenta it reaches this value after about 5 ps.
Here the quench is adiabatic since the time scale of the quench of about tquench = 1 ps

(~/tquench ≈ 0.7 meV) is slow compared to the bandwidth of undriven graphene 2εk =

2~vFk. Directly at the Dirac point the bands of undriven graphene touch and hence the
quench can not be adiabatic. The time scale of the quench determines the range around
the Dirac point where the quench is nonadiabatic. For longer quench time scales the
region where the response deviates from the ground state of the high-frequency system
is more confined around the Dirac point. Finite mz-component around the Dirac point
is important for having finite Berry curvature and hence a finite Hall conductivity. With
dissipation momentum points that are nonadiabatic may relax towards the ground-state
value of the high-frequency system, see right column of Fig. 2.28. At the same time
dissipation leads to a reduction of all coefficients of the density matrix. We find that this
reduction is stronger for larger dissipation. This overall reduction also reduces the Hall
conductivity. In the right column of Fig. 2.28 we consider a regime where the quench
duration is faster than the relaxation time scale T1. Then there are two different time
scales. First the system approaches the ground state of the high-frequency system for
all momentum modes that are adiabatic within the first 5 ps. Then on a longer time
scale the density matrix components of all momenta approach the steady state which is
reached after about 40 ps. At intermediate times the mz component of the density matrix
at the Dirac point has already nonzero value while at the same time the density-matrix
components of larger momenta are still close to the effective high-frequency system. This
is the regime where we expect the quantized Hall response of the Dirac point.
We show the time-resolved contribution of the Dirac point to the Hall conductivity in

Fig. 2.29. The net Hall conductivity is negative for all dissipation strengths and times. We
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2. Floquet physics in real solids: light-induced Hall effect in graphene

Figure 2.29 – Contribution of the Dirac point to the Hall conductivity dichroism,
as defined in Eq. 2.23, as a function of time t and inverse dissipation time 1/T1. We
use Edr = 84 MV m−1, ωdr = 2π · 200 THz, T2 = 2T1, Tp = ∞, T = 80 mK, EL =
1.7 kV m−1, µ = 0 and the envelope of the driving pulse is a tanh-type interpolation
from 0 to 1, that reaches 1 after 1 ps. Note that the sharp transitions in the plot are
a result of using a course grid of times and dissipation strengths.

see that the Hall conductivity reaches the high-frequency value of −2e2/h in the transient
regime for a range of dissipation strengths T1 > 1/2 ps. The duration of the plateau where
the Hall conductivity is −2e2/h is longer for small dissipation strength, i.e. larger T1.

2.8. Characterization of resonant contributions in the

low- and high-frequency limit

So far we have mainly considered a driving regime that is inspired by the experiments in
[86]. In this regime one obtains a sizable gap at the Dirac point for experimentally feasible
conditions. We have seen that this also shows significant resonant contributions to the
Hall conductivity. In order to further characterize these resonant contributions we consider
different driving frequencies ωdr at fixed driving-field strength Edr in Fig. 2.30. For larger
frequency the main contribution comes from the bare resonances, see Fig. 2.30(e). At low
driving field strength the bare resonances overlap significantly and hence are suppressed.
In this regime we observe a new resonance at the bare Rabi frequency eEdrvF/ωdr. We
give an intuitive explanation of the Rabi resonance by considering the motion of electrons
in momentum space. The circularly polarized field moves an electron with momentum k

on a circle with radius eEdrvF/ωdr. Hence electrons with momentum |k| > eEdrvF/ωdr do
encircle the Dirac point while electrons with |k| < eEdrvF/ωdr do not. The motion around
the Dirac point leads to an extra Berry phase of π, which reflects itself in a sign change
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Figure 2.30 – Hall-conductivity dichroism for low- and high-frequency driving. Panel
(a) shows the total circular dichroism of the Hall conductivity. Panels (b)-(f) show
the momentum-resolved conductivity density for several different driving frequencies,
indicated by black squares in panel (a). Dashed circles denote the position of the
first three bare resonances 2vFk = nωdr, n = 1, 2, 3 and the solid circle denotes the
resonance at the Rabi frequency vFk = ΩR = evFEdr/(~ωdr). For panels (b)-(f) we av-
erage the conductivity of opposite momentum modes. The corresponding values of the
driving frequency ωdr/(2π) are 10 THz (b), 20 THz (c), 48 THz (d) and 100 THz (e).
Panel (f) shows the conductivity dichroism for the effective high-frequency Hamil-
tonian for E2

eff = (~vF eEdr)
2/(~ωdr)

3 = 22.5 meV. Inspired by Ref. [86] we choose
the following parameters for all panels: Edr = 20 MV m−1, T1 = 100 fs, T2 = 20 fs,
Tp = 25 fs, T = 80 K, µ = 0 and EL = 840 V m−1. All observables are shown after a
steady state is achieved for a tanh-type ramp of the driving field strength.

of the conductivity at the resonance.
In the regime where the conductivity is dominated by the Rabi resonance we observe a

plateau of the conductivity at 2e2/h. This may be a hint towards an underlying topological
origin. We note, however, that also in this regime the occupations of Floquet bands are
highly nonequilibrium and therefore we do not expect to see quantized response from the
Chern numbers of individual bands. Also we find that the observed value of 2e2/h is not
robust with respect to changes in dissipation and the driving field strength.

Finally, we note that the experiments in Ref. [86] are in a regime where the bare Rabi
frequency has roughly the same magnitude as the first resonance and therefore the two
resonances overlap.
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Figure 2.31 – Comparison of the integrated Hall conductivity density for the 2×
2 and the 4×4 model for several different values of the timescale for the exchange
of particles with the back gate Tp, as indicated in the legend. We show the circular
dichroism of the conductivity density σ̃xy integrated over all momenta smaller than
the threshold value |kr|. We use Edr = 20 MV m−1, ωdr = 2π · 48 THz, T1 = 100 fs,
T2 = 20 fs, T = 80 mK, EL = 8.4 kV m−1 and µ = 0. All observables are shown after
a steady state is achieved for a tanh-type ramp of the driving field strength.

2.9. Comparison of the 2×2 and 4×4 model for zero

chemical potential

We note that a similar model for the dissipation has been used in Ref. [N5]. The key
difference to our model is that Ref. [N5] uses a model based on an effective 2×2 density
matrix for each momentum mode, while at the same time dropping the restriction that the
density matrix has unit trace. Instead the trace of the density matrix reflects the filling
fraction of each momentum mode. This introduces an effective coupling to the back gate
and we find that the results are qualitatively similar, see Fig. 2.31. The coupling strength
to the back gate can, however, not be tuned independently of T1 and T2. Here we use a
more rigorous approach that explicitly includes the empty and the doubly occupied mode
in the density matrix. As a result we obtain a 4×4 density matrix for each momentum
mode and explicitly introduce a third coupling strength Tp for the exchange of particles
with the back gate. As we have seen in Sec. 3.4.1 jthis third coupling strength is crucial
in order to obtain quantitative agreement with experiments. While the comparison to
the experimental data showed that a value of Tp ≈ 30 − 50 fs we find that the effective
coupling of the 2×2 model is closer to Tp ≈ 100 fs.
We also show a comparison of the effective 2×2 and 4×4 models at significantly weaker

dissipation in order to check how well the results we obtained within the 2×2 model in
Secs. 2.7.2 and 2.7.3 hold for the 4×4 model, see Fig. 2.32. We see that finite back gate
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Figure 2.32 – Comparison of the integrated Hall conductivity dichroism for the
2×2 and the 4×4 model for low dissipation. We show the conductivity density σ̃xy

integrated over all momenta smaller than the threshold value |kr|. Panel (a) shows the
conductivity after a steady state has been achieved for a tanh-type ramp of the driving
field strength, while panel (b) shows the transient response. We use Edr = 30 MV m−1,
ωdr = 2π · 200 THz, T1 = 10 ps, T2 = 2 ps, Tp = 4 ps, T = 80 mK, EL = 1.7 kV m−1

and µ = 0.

damping Tp within the 4×4 model significantly reduces the contribution of the Dirac
point. While the overall magnitude is reduced the conductivity in the transient regime is
still larger than the corresponding steady-state result.
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3. Detection of topological
Bloch-state defects in
ultracold-atom systems1

As explained in the introduction geometric and topological properties are of major im-
portance for the properties of solids as well as for understanding the underlying principles
of fundamental physical phenomena. Ultracold-atom experiments can give deeper insight
into the underlying mechanisms of topology and geometry. It is therefore important to
develop tools that allow direct access to geometric properties such as Berry curvature and
winding numbers. In recent years ultracold atoms in optical lattices have emerged as a
versatile model system with tunable topological properties [38]. A range of methods has
been developed that allows access to topological and geometric properties such as Berry
curvature and winding numbers [84, 85, 117–123]. These methods are, however, either
inefficient for covering the full Brillouin zone, cannot resolve the position of the defects,
or only work in specific systems such as Floquet systems.

Here we present an alternative method for the detection of topological defects. The
method is applicable to an almost arbitrary two-band system2, i.e. a system with two
lattice sites per unit cell. It allows to map out the azimuthal phase profile of the pseudo-
spin texture for all momentum states simultaneously. The azimuthal phase is the relative
phase of the eigenstates on the two sublattices. The phase windings of this phase are
related to topological defects.

We apply our method to ultracold fermions on the hexagonal lattice, which is the lattice
structure for both boron nitride and graphene. The hexagonal lattice features topological
defects at the two inequivalent Dirac points. These defects are quantized vortices in the
azimuthal phase, see Fig. 3.1(a), and are responsible for the special electronic transport
properties of graphene, see [48, 50]. Our method is based on a time-of-flight image after a
periodic modulation of the lattice depth, see Fig. 3.2. We show in Sec. 3.1 that a time-of-

1Parts of this chapter have been published in Ref. [N1].
2It can also be applied to systems where the lowest two bands are well separated from the rest and

hence the system can be approximated by only two bands.
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K

M

Figure 3.1 – Comparison of the measurement and the theoretical prediction of the
azimuthal phase profile. (a) Expected azimuthal phase φk in momentum space. The
black hexagon marks the first Brillouin zone and solid blue and dashed red triangles
denote high-symmetry paths for later reference. (b) Experimentally obtained phase
χk. The parameters are ω = 2π · 5500 Hz, J = h · 520 Hz, JAA = h · 99 Hz, ∆AB =
h · 6056 Hz, J (d)

AA = 0.3 JAA, J (d) = 0.18 J and ∆
(d)
AB = 0.22 ∆AB. A similar version of

this figure has been published in Ref. [N1].

flight image for an unperturbed lattice already contains information about the azimuthal
phase for a lattice with two sites per unit cell. By adding the periodic lattice modulation
before the time-of-flight image we can disentangle this information from the remaining
dependencies on the properties of the lattice. We show in Sec. 3.3 that in this case the
time-of-flight density oscillates with the driving frequency for each point in momentum
space. The relative momentum-dependent phase of this oscillation is in the red-detuned
limit given by

χk = Arg [cos(φk) + iPk sin(φk)] , (3.1)

where Arg(z) gives the argument of a complex number z and Pk is a distortion factor
given later in Eq. 3.20. For near-resonant driving Pk ≈ 1 and the two phases φk and χk

agree. The experimental measurement for this case is shown in Fig. 3.1(b). It closely
resembles the azimuthal phase profile shown in Fig. 3.1(a). A quantitative comparison in
Fig. 3.3 shows that the experimental measurement of χk, the theoretical prediction for
χk and the azimuthal phase φk agree quantitatively. The data is shown along the high-
symmetry path that encircles the Dirac point once and indeed all three phases show the
correct phase winding of 2π. The nonequivalent second Dirac point has the opposite phase
winding. The phase winding of ±2π gives rise to a Berry phase of ±π when encircling
the respective Dirac point.
An application of our method is the measurement of the motion of topological defects

when changing the lattice properties. For example the Dirac points in graphene move
when changing the relative strength of the nearest-neighbor hopping parameters. In
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3.1. Time of flight images

Figure 3.2 – Sketch of our method for measuring the azimuthal phase. We perform
a time-of-flight image after a periodic modulation of the lattice depth. The relative
phase of the time-of-flight density oscillation and the lattice-depth oscillation is closely
related to the azimuthal phase. A similar version of this figure has been published in
Ref. [N1].

solid-state graphene minor changes of the nearest-neighbor hopping can be obtained by
twisting the lattice. In ultracold atoms tuning the relative intensity of the laser beams can
impose a significant imbalance of the nearest-neighbor hopping. For such a scenario the
Dirac points move in momentum space until they merge at the M -points of the lattice.
Our method has been used to measure this merging transition of the Dirac points in a
hexagonal lattice in Ref. [N1].

3.1. Time of flight images

In ultracold-atom experiments time-of-flight images give access to the momentum distri-
bution of the atoms in a lattice. The key idea is that atoms are released from the lattice
and freely expand. Except for gravity no forces act on the atoms. Hence, in the direc-
tions perpendicular to the gravitational force and for sufficiently long expansion times
the position of the atoms is solely determined by their initial momentum. For lattices
with a single lattice site per unit cell, time-of-flight images therefore show the momentum
distribution of the atoms. For lattices with several sites per unit cell, atoms originating
from the different sublattices will interfere. The resulting interference pattern does not
only contain information about the momentum distribution of the atoms but also about
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3. Detection of topological Bloch-state defects in ultracold-atom systems

1 M1 2 M2 3 M3 1
0

π

2π

k

experiment χk
theory χk
ϕk

Figure 3.3 – Quantitative comparison of the measurement and the theoretical pre-
diction of the azimuthal phase profile along the high-symmetry paths, see Fig. 3.1(a).
We show the experimentally measured phase χk, averaged over the three equivalent
paths of which only one is shown in Fig. 3.1(a), the theoretical prediction for χk, which
is based on a perturbative approach as described in Sec. 3.3, and the expected az-
imuthal phase φk. The experimentally measured χk matches well with the theoretical
prediction, which we also find for other red-detuned driving frequencies. Furthermore,
for the chosen parameters, the difference between χk and φk is experimentally indis-
cernible. The parameters are the same as in Fig. 3.1. A similar version of this figure
has been published in Ref. [N1].

the relative phases of atoms on different sublattices. Here we will focus on the case of two
atoms per unit cell and will derive that the time-of-flight density is

n(r = ~τk/m) ≈
∑
CD

〈c†k,Cck,D〉 ,

where τ is the expansion time, m is the mass of the atoms, c†k,C (ck,C) creates (annihilates)
a particle with momentum k on the sublattice C and the sum runs over all sublattices.
For completeness we note that there is a second, similar method giving access to the

momentum distribution in ultracold-atom systems. It is called band mapping and we will
use this technique in chapter 4. In both cases the atoms are released from the lattice and
expand freely. The key difference between band mapping and time-of-flight images is the
speed for switching off the lattice. For band mapping the lattice is switched off slowly. The
slow switch-off allows the eigenstates to adiabatically transform into the eigenstates of free
space. Therefore atoms occupying the individual bands of the lattice will be mapped onto
the corresponding Brillouin zones [146, 181–185]. For a time-of-flight image the lattice is
rapidly switched off instead. This leads to an interference pattern containing information
about the phases of atoms on different sublattices. As we will see this interference pattern
is periodically repeating with a Gaussian envelope.
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3.1. Time of flight images

We first consider a time-of-flight image with a single lattice site per unit cell in two
dimensions. The atoms localized at the individual lattice sites are well described by the
corresponding Wannier wave functions. We approximate the Wannier wave functions
by a Gaussian wave packet in two dimensions. By solving the Schrödinger equation in
free space we obtain the time dependence for the expansion of each individual Wannier
function

w(r, τ) =
d√

2π|∆(τ)|2
exp

(
− r2

4∆2(τ)

)
(3.2)

∆2(τ) ≈ d2 + iτ~/(2m) , (3.3)

where d is the initial width of the wave function. The density measured in a time-of-flight
experiment is then given by

n(r, τ) =
∑
nm

w∗(r− rm, τ)w(r− rn, τ)〈c†mcn〉 , (3.4)

where rn are the positions of the lattice sites, c†n (cn) creates (annihilates) an atom on site
n and the sum runs over all lattice sites. We use the so-called far-field approximation,
assuming that the cloud of atoms has expanded much further than all initial positions of
the atoms r � rn and that the expansion time is much longer than the initial width of
the Wannier wave functions ~τ

2m
� d2. Inserting Eq. 3.2 into Eq. 3.4, making the far-field

approximation and Fourier transforming to momentum space we obtain

n(r, τ) =
d2

2π
[
d4 +

(
τ~
2m

)2
] 1

M

∑
nmk

e−(mdr~τ )
2

ei(k−
mr
~τ )(rm−rn)〈c†kck〉 , (3.5)

whereM is the total number of unit cells. Hence we identify k ∼ mr
~τ and up to a Wannier

envelope the time-of-flight signal indeed shows the momentum distribution of the atoms

n(r = ~τk/m) ≈ 〈c†kck〉 .

Outside the first Brillouin zone the distribution repeats periodically except for the overall
Gaussian envelope e−(mdr~τ )

2

.
For a lattice with several sites per unit cell the expression for the time-of-flight density

is slightly altered

n(r, τ) =
∑
nmCD

w∗(r− rn − δC , τ)w(r− rm − δD, τ)〈c†n,Ccm,D〉 ,
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3. Detection of topological Bloch-state defects in ultracold-atom systems

where δC is the vector pointing from the origin of the unit cell3 to the position of the
corresponding sublattice site C within that unit cell. Again we employ the far-field limit
and obtain

=
d2

2π
[
d4 +

(
τ~
2m

)2
] 1

M

∑
nmkCD

e−(mdr~τ )
2

ei(k−
mr
τ~ )(rm+δD−rn−δC)〈c†k,Cck,D〉 .

Upon identification of k ∼ mr/(~τ) we obtain

n(r = ~τk/m) ≈
∑
CD

〈c†k,Cck,D〉 . (3.6)

We see that not only the occupations 〈c†k,Cck,C〉, but also the correlations between different
lattice sites 〈c†k,Cck,D〉 for C 6= D enter the time-of-flight expression.
As an example we consider an arbitrary lattice with two lattice sites per unit cell. We

use the same convenient notation as in Sec. 2.2.1, Eq. 2.12

hk = d01 + dk,xσx + dk,yσy + dk,zσz .

It is then convenient to write the vector d = (dk,x, dk,y, dk,z) in spherical coordinates

dk,x = Rk sin(θk) cos(φk)

dk,y = Rk sin(θk) sin(φk)

dk,z = Rk cos(θk)

Rk =
√
d2
k,x + d2

k,y + d2
k,z .

The creation and annihilation operators diagonalizing H are then(
ck,+

ck,−

)
=

(
cos(θk/2) sin(θk/2)e−iφk

− sin(θk/2)eiφk cos(θk/2)

)(
ck,A

ck,B

)
(3.7)

and Eq. 3.6 becomes

n(r = ~τk/m) ≈ Ak,+nk,+ + Ak,−nk,− + Re
[
Bk〈c†k,+ck,−〉

]
, (3.8)

where nk,C = 〈c†k,Cck,C〉 for C ∈ {A,B,+,−}. The prefactors

Ak,± = 1∓ cosφk sin θk (3.9)

3We can choose an arbitrary point as the origin of the unit cell, as long as we choose it consistent
among all unit cells.
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3.2. The hexagonal lattice: transition from graphene to boron-nitride

Figure 3.4 – Sketch of the hexagonal lattice with unit vectors ex = (d, 0)T and ey
and lattice constant d. Solid black lines show the hexagonal lattice of Wigner-Seitz
unit cells. The dashed blue parallelograms show an equivalent lattice spanned by ex
and ey. Both lattices contain two sites, A and B, per unit cell, which are connected
by the vector l1. This figure has been published in the Supplemental Material to
Ref. [N1].

and Bk = cos(θk) cos(φk) + i sin(φk) (3.10)

contain information about the azimuthal phase φk and the mixing phase θk which, how-
ever, cannot be disentangled by a single measurement of the density. We will see that it
is possible to get access to the azimuthal phase by additionally applying a periodic lattice
modulation.

3.2. The hexagonal lattice: transition from graphene

to boron-nitride

Our goal for Secs. 3.2 and 3.3 is to detect the azimuthal phase φk of the eigenstates in a
hexagonal lattice by a lattice modulation. In this section we introduce the Hamiltonian
of the undriven system, its diagonalization and how we couple to the lattice modulation.

3.2.1. Undriven properties4

Here we use a slightly different tight-binding Hamiltonian than in Sec. 2.1.1 as we include
next-nearest-neighbor hopping and a potential offset between the A and the B sites

Hinit = HJ +H∆

4Significant parts of this section have been published in the Supplemental Material to Ref. [N1]. The
corresponding section in the Supplemental Material to Ref. [N1] has mainly been written by the author
of this thesis.
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3. Detection of topological Bloch-state defects in ultracold-atom systems

HJ = −J
∑

〈nx,my〉n

c†n,xcm,y + JAA
∑

〈nA,mA〉nn

c†n,Acm,A

H∆ = ∆AB/2
∑
n

c†n,Acn,A − c
†
n,Bcn,B ,

where cn,x annihilates a particle in the n-th unit cell at the sublattice site x = A,B and
obeys the anti-commutator {c†n,x, cm,y} = δnmδxy for x = A,B. The Hamiltonian has two
contributions: the hopping part HJ with nearest- and next-nearest-neighbor hopping J
and JAA and the potential-offset part H∆ with ∆AB being the energy offset between the
A and B sublattice sites. The next-nearest-neighbor hopping between the B sublattice
sites JBB is negligible for ∆AB � J . Finally, 〈nx,my〉n denotes the sum over nearest
neighbors and 〈nA,mA〉nn the sum over next-nearest neighbors.
In the remaining part of this chapter we present the diagonalization of the Hamiltonian.

In a first step we block-diagonalize the Hamiltonian by introducing the quasi-momentum
operators ck,x = 1√

M

∑
n e
−ik(n+δx)cn,x. Here, δA = 0 and δB = l1, l1 is defined in Fig. 3.4

and M is the number of unit cells. With these definitions the Hamiltonian in momentum
space is

Hinit =
∑
k

(
c†k,A c†k,B

)(∆AB/2 + 2JAAgk −Jf ∗k
−Jfk −∆AB/2

)(
ck,A

ck,B

)
, (3.11)

where

fk = e−ikl1
(
1 + eikex + eik(ex+ey)

)
gk = (cos (kex) + cos (key) + cos (k(ex + ey)))

and the basis vectors ex and ey are defined in Fig. 3.4. We now define

θk = 2 arccos

[
|Jfk|√

(εk −∆AB/2− JAAgk)2 + |Jfk|2

]
εk =

√
(∆AB/2 + JAAgk)2 + |Jfk|2

and φk is the complex phase of fk. Using these definitions the Hamiltonian in momentum
space can be rewritten as

Htb,k = εk

(
c†k,A c†k,B

)(cos(θk) + JAAgk sin(θk)e−iφk

sin(θk)eiφk − cos(θk) + JAAgk

)(
ck,A

ck,B

)
(3.12)

and is then diagonalized by the transformation defined in Eq. 3.7. The eigenenergies are
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3.2. The hexagonal lattice: transition from graphene to boron-nitride

Figure 3.5 – Sketch of the graphene band structure (a) and the corresponding az-
imuthal phase profile (b).

given by

Ek,± = JAAgk ± εk .

The Hamiltonian in Eq. 3.11 is a tight-binding model of a hexagonal lattice. For
graphene there is no imbalance between the A and the B sublattice and hence ∆AB = 0.
The corresponding band structure is shown in Fig. 3.5(a). Boron nitride does have a
finite sublattice imbalance ∆AB > 0. This leads to a gapped band structure as shown in
Fig. 3.6(a). The sublattice imbalance can be tuned in ultracold-atom systems and hence
both cases can be realized. Note that for any sublattice imbalance the phase structure
of the azimuthal phase will be the same. This can be exemplarily seen by comparing
Figs. 3.5(b) and 3.6(b).

Figure 3.6 – Sketch of the boron-nitride band structure (a) and the corresponding
azimuthal phase profile (b).
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3. Detection of topological Bloch-state defects in ultracold-atom systems

3.2.2. Applying a lattice modulation5

In addition to the initial Hamiltonian we now apply a periodic lattice modulation which
can be represented by making all tight-binding parameters time dependent

J → J + J (d) sin(ωt)

JAA → JAA + J
(d)
AA sin(ωt)

∆AB → ∆AB + ∆
(d)
AB sin(ωt) .

The lattice modulation is such that the lattice imbalance ∆AB is modulated out of phase
with respect to the tunneling strengths J and JAA (∆(d)

AB < 0). We write the full Hamil-
tonian in the basis that diagonalizes the initial Hamiltonian

H =
(
c†k,+ c†k,−

)
(Hinit +Hd)

(
ck,+

ck,−

)
(3.13)

Hinit =

(
Ek,+ 0

0 Ek,−

)
(3.14)

Hd = sin(ωt)

(
E

(d)
k,+ E

(d)
k

E
(d)
k E

(d)
k,−

)
. (3.15)

For the Hamiltonian from Eq. 3.11 we obtain

E
(d)
k,± = J

(d)
AAgk ±

JJ (d)|fk|2 + (∆AB

2
+ JAAgk)(

∆
(d)
AB

2
+ J

(d)
AAgk)

εk

E
(d)
k =

J |fk|(
∆

(d)
AB

2
+ J

(d)
AAgk)− J (d)|fk|(∆AB

2
+ JAAgk)

εk
.

3.3. Time-of-flight expression for a periodic lattice

modulation in perturbation theory6

We have seen in Sec. 3.1 that a time-of-flight image for a lattice with two sites per unit cell
does already contain information about the azimuthal phase φk, see Eq. 3.8. This infor-
mation is, however, not directly accessible since there is an additional unknown phase θk.
In order to disentangle this information we now apply a periodic lattice modulation. The

5This section has been published in the Supplemental Material to Ref. [N1]. The corresponding
section in the Supplemental Material to Ref. [N1] has mainly been written by the author of this thesis.

6Parts of this section have been published in the Supplemental Material to Ref. [N1]. The corre-
sponding section in the Supplemental Material to Ref. [N1] has mainly been written by the author of this
thesis.
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3.3. Time-of-flight expression for a periodic lattice modulation in perturbation theory

Figure 3.7 – We sketch 〈c†k,+(t)ck,−(t)〉 in the top row and Bk〈c†k,+(t)ck,−(t)〉 in the
bottom row as a function of momentum. The intensity of the color shows the am-
plitude and the color the phase of the oscillation. The amplitude of the oscillation
vanishes at the edge of the Brillouin zone. Hence white hexagons indicate the rep-
etition of the Brillouin zone. Different columns show different snapshots in time as
indicated in the panels. While 〈c†k,+(t)ck,−(t)〉 oscillates in phase with the frequency
of the lattice modulation, the quantity Bk imprints the azimuthal phase onto that
oscillation.

idea is the following: we employ a periodic lattice modulation such that the correlation
〈c†k,+(t)ck,−(t)〉 obtains a periodic phase modulation, see top row in Fig. 3.7. The quantity
Bk in the coherence part of the unperturbed time-of-flight density, see Eq. 3.10, already
contains information about φk. In fact, the phase of Bk is closely related to φk. This
phase information is revealed by the periodic oscillation of 〈c†k,+(t)ck,−(t)〉 as is shown
in the bottom row of Fig. 3.7. For a more thorough derivation of this fact we employ
perturbation theory.

We assume that the corrections to the initial Hamiltonian are small and apply time-
dependent perturbation theory in the Heisenberg picture. For an uncorrelated initial
state, i.e. 〈c†k,+ck,−〉 = 0, we obtain to first order in the perturbation Hamiltonian for the
expectation values of the time evolved operators

〈c†k,+(t)ck,+(t)〉 ≈ nk,+

〈c†k,−(t)ck,−(t)〉 ≈ nk,−
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3. Detection of topological Bloch-state defects in ultracold-atom systems

〈c†k,+(t)ck,−(t)〉 ≈ E
(d)
k

4ε2k − ω2
×[

2εk sin(ωt)− iω cos(ωt) + iωe2iεkt
]
(nk,+ − nk,−) .7

We now replace the second-quantization operators in Eq. 3.8 by the corresponding time-
dependent operators and insert the results from perturbation theory. A short calculation
shows that

nTOF(k, t) = neq,k − δnk sin(ωt+ χk)− δñk sin(2εkt+ ξk) , (3.16)

where

χk = Arg [cos(φk) + iPk sin(φk)] + Arg [Dk] (3.17)

neq,k = nk,+ + nk,− + sin(θk) cos(φk)(nk,+ − nk,−) (3.18)

δnk =

∣∣∣∣Dk

√
4ε2k cos2(θk) cos2(φk) + ω2 sin2(φk)

∣∣∣∣ (3.19)

Pk =
ω

2εk cos(θk)
(3.20)

Dk =
2E

(d)
k

4ε2k − ω2
(nk,− − nk,+) (3.21)

δñk = |Fk| (3.22)

ξk = Arg[Fk] (3.23)

Fk = −ωDk [cos(θk) cos(φk) + i sin(φk)] . (3.24)

The above equations are valid for an almost arbitrary Hamiltonian8 with two lattice sites
per unit cell that is diagonalized by Eq. 3.7. For any such Hamiltonian the measured
phase χk is closely related to the azimuthal phase φk and in particular the two phases
have the same winding number, see Fig. 3.8. We will explain the different driving regimes
in more detail in Sec. 3.4.2.

7All calculations in this section have been performed by the author of this thesis. Still we note that
these perturbation theory expressions have been obtained before as part of Ref. [186].

8While the equations presented in this chapter are valid for an almost arbitrary Hamiltonian, we note
that for the Hamiltonian from Eq. 3.13 a finite offset ∆AB is always required. In this case we can compute
cos(θk) = (∆AB/2 + JAAgk)/εk and therefore Pk = ω/ (∆AB + 2JAAgk). A finite offset is required, as
otherwise the next-nearest-neighbor hopping between the B-sites JBB is equal to JAA and hence can not
be neglected. This leads to a modified driving Hamiltonian and the driving amplitude E(d)

k vanishes.
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3.4. Comparison of experimental, numerical and perturbative results

Figure 3.8 – Illustration of the relation of the measured phase χk and the azimuthal
phase φk. We plot the real and imaginary part of z = cos(φk)+ iPk sin(φk) for several
values of Pk as indicated in the legend. Each angle φk is represented by the complex
phase of the corresponding point on the P = 1 circle as shown by the gray shaded
region in the figure. The related angle χk is then obtained by choosing the point on
the circle with the appropriate P value that has the same value of Re(z). We see
that for each φk the vector cos(φk) + iPk sin(φk) remains in the same quadrant of the
complex plane for all Pk and therefore the phase winding of φk is preserved in χk.
This figure has been published in the Supplemental Material to Ref. [N1].

3.4. Comparison of experimental, numerical and

perturbative results

3.4.1. Numerical simulation

For our numerical simulation we compute the exact time evolution for the creation and
annihilation operators according to the Heisenberg equations of motion. We then obtain
a numerical solution for the time-of-flight density in the far-field limit by inserting the
result into Eq. 3.8.

The Heisenberg equation for the creation and annihilation operators is given by

∂t

(
ck,+(t)

ck,−(t)

)
=

(
E+ Ei

Ei E−

)(
ck,+(t)

ck,−(t)

)
,

where E+ = − i
~

(
Ek,+ + sin(ωt)E

(d)
k,+

)
E− = − i

~

(
Ek,− + sin(ωt)E

(d)
k,−

)
Ei = − i

~
sin(ωt)E

(d)
k
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Figure 3.9 – Comparison of band gap Ek,+ − Ek,− = 2εk and driving frequencies
along the high-symmetry path indicated by the dashed red line in Fig. 3.1(a). Dashed
gray lines show the driving frequencies used in this section: ω/(2π) = 2500 Hz, 5500
Hz, 7500 Hz and 8500 Hz. We use J = h ·520 Hz, JAA = h ·99 Hz and ∆AB = h ·6056
Hz.

and the remaining quantities were defined in Sec. 3.2.2.
We introduce the time evolution matrix U(t)(

ck,+(t)

ck,−(t)

)
= U(t)

(
ck,+

ck,−

)
,

solve for U(t) in the interaction picture and insert the results for ck,± into Eq. 3.8 to
obtain numerical results for the time-of-flight density.

3.4.2. Driving regimes9

We have seen in Sec. 3.3 that the phase of the periodic oscillation of the time-of-flight
density χk is closely related to the azimuthal phase φk. In Fig. 3.3 we have shown the
ideal case of near-resonant red-detuned driving. In this case the two phases agree almost
perfectly. In other driving regimes the two phases are still related but not identical. Here
we show a more detailed discussion of the different driving regimes.
We assume that initially all atoms are in the lower band nk,− = 1, nk,+ = 0 and recall

the relation between φk and χk from Eq. 3.17

χk = Arg [cos(φk) + iPk sin(φk)] + Arg [Dk] (3.25)

Pk =
ω

2εk cos(θk)
(3.26)

9Parts of this section have been published in the Supplemental Material to Ref. [N1]. The corre-
sponding section in the Supplemental Material to Ref. [N1] has mainly been written by the author of this
thesis.
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Figure 3.10 – Comparison of the measurement, the theoretical prediction χk and the
expected azimuthal phase φk along the high-symmetry path indicated by the solid,
blue lines in Fig. 3.1(a). The parameters are J = h · 520 Hz, JAA = h · 99 Hz,
∆AB = h · 6056 Hz, J (d)

AA = 0.3JAA, J (d) = 0.18J and ∆
(d)
AB = 0.22∆AB for both panels.

Furthermore ω = 2π · 2500 Hz in panel (a) and ω = 2π · 8500 Hz in panel (b). The
different driving frequencies are indicated in Fig. 3.9.

Dk =
2E

(dr)
k

4ε2k − ω2
. (3.27)

For red-detuned driving ω < 2εk, then Dk > 0 and therefore Arg [Dk] = 0. This term is
therefore omitted in Eq. 3.1. The only difference between φk and χk is now the distortion
for Pk 6= 1. For the graphene lattice described in Sec. 3.2.1

cos(θk) =
∆AB/2 + JAAgk√

(∆AB/2 + JAAgk)2 + |Jfk|2
.

In the experiment considered in Ref. [N1] ∆AB � J and therefore cos(θk) ≈ 1. In this
regime Pk = 1 when the driving frequency is resonant (ω = 2εk). We will see later,
however, that resonant driving frequencies are not ideal for other reasons. Therefore it
is ideal to consider near-resonant driving, where the distortion between φk and χk is
still small. We show an example for even smaller driving frequency in Fig. 3.10(a). The
experimentally measured χk still agrees with the theoretical prediction from perturbation
theory. One can, however, observe a significant distortion between φk and χk.
In order to avoid the resonant regime but still have good agreement between φk and

χk it can be beneficial to use a slightly smaller value of ∆AB such that cos(θk) < 1. In
this case the condition for Pk = 1 occurs for driving frequencies below the resonance
ω = 2εk cos(θk) < 2εk. As we always have cos(θk) ≤ 1 we identify the red-detuned regime
as the best regime for measuring the azimuthal phase.
Next we consider the blue-detuned limit. Now Dk < 0 and therefore Arg [Dk] = π,

89
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Figure 3.11 – Comparison of the measurement, the theoretical prediction χk and the
expected azimuthal phase φk along the high-symmetry path indicated by the solid,
blue lines in Fig. 3.1(a). The parameters are ω = 2π · 7000 Hz, J = h · 520 Hz,
JAA = h ·99 Hz, ∆AB = h ·6056 Hz, J (d)

AA = 0.3JAA, J (d) = 0.18J and ∆
(d)
AB = 0.22∆AB

for both panels. In panel (a) the phase χk is computed within perturbation theory as
explained in Sec. 3.3, while we show the full numerical result as explained in Sec. 3.4.1
for χk in panel (b).

meaning that the measured phase χk is shifted by π with respect to the azimuthal phase
φk. We show an example of near-resonant blue-detuned driving in Fig. 3.10(b). The
agreement between φk, measured and experimental χk is again very good. In general there
are two caveats of blue-detuned driving. The first is that we always have cos(θk) ≤ 1 and
therefore it can be impossible to achieve Pk = 1 for blue-detuned driving in some cases.
The second is that coupling to higher bands can occur for blue-detuned driving. This is
likely the reason for the discrepancy between the experimental and theoretical curves in
Fig. 3.10(b).
Finally, we consider resonant driving. Along a chosen path in momentum space each

time the driving frequency becomes resonant with the band gap, the quantity Dk switches
sign and the measured phase χk jumps by π. An example of this behavior is shown
in Fig. 3.11(a). For this case the agreement between the theoretical prediction from
perturbation theory and the experimental data is not perfect. This is because perturbation
theory breaks down in the resonant regime. A fit, obtained from our numerical calculations
and shown in Fig. 3.11(b), agrees with the experimental data.
In general it is important to note that for all cases, even for the resonant regime, the

phase winding of φk is always preserved in χk. Therefore any regime is sufficient to detect
the topological defects of the azimuthal phase φk. An illustration of this behavior based
on our perturbation theory results was given in Fig. 3.8.
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3.4. Comparison of experimental, numerical and perturbative results

3.4.3. Cross-check of experimental fitting routine

Here we explain the experimental fitting routine by applying it to data from our numerical
simulation. We find that except for the resonant regime fitting the phase with a single
fixed frequency reproduces the phase of the oscillation as predicted from perturbation
theory. Furthermore we find that higher-order effects become relevant for the modulation
amplitude of ∼ 20% used in Ref. [N1]. While these effects may lead to dramatic changes
of the amplitude of the oscillation of the time-of-flight density, the modulation phase
remains consistent with perturbation theory.

For a cross-check of the experimental fitting routine, we apply the routine used in
Ref. [N1] to data from our numerical simulation, see Sec. 3.4.1. The time-of-flight density
nTOF(k) is fitted with a single-frequency sinusoidal oscillation

nTOF(k, t) = neq,k − δnk sin(ωt+ χk) . (3.28)

Only the amplitude neq,k and phase χk of the oscillation as well as a constant offset neq,k

are used as fit parameters. The frequency of the oscillation is set to the driving frequency.
We compare the resulting fit to the full numerical solution and the corresponding per-

turbative result from Eq. 3.16. For the latter we neglect the second oscillation with
frequency 2εk/h. The fit is based on a separation of frequency scales between the driving
frequency ω and other frequencies which are dominated by the frequency of the band
gap 2εk/h. For red-detuned driving the oscillation with frequency 2εk/h is faster than ω.
Therefore the time-of-flight density has extra ’wiggles’. This is shown in Fig. 3.12(a,b,e,f).
When fitting the oscillation over several cycles the extra ’wiggles’ average out and the fit
agrees with the perturbative result. For blue-detuned driving the extra oscillation with
frequency 2εk/h is slower than ω, see Fig. 3.13. In this case it is important to fit over
several oscillation cycles of this extra slow oscillation. In that case it averages out and
again the fit is in good agreement with the perturbative results.

Panels (c) and (d) in Fig. 3.12 show the special case of 2εk = 2~ω. In this case the
oscillation from the fully numerical simulation does not match the perturbative prediction.
This illustrates that at the perturbation amplitude of roughly 20% additional higher-order
effects such as two-photon processes play a significant role already. We note, however,
that even in this regime the phase of the oscillation is captured by perturbation theory.

In the resonant regime, i.e. 2εk = ~ω, see Fig. 3.14(a) and b, we see clear differences
between the fit to numerical and the perturbative results for both the amplitude and the
phase of the oscillation. As expected perturbation theory breaks down in this regime
and the phase of the fitted oscillation does no longer resemble the azimuthal phase. For
eigenfrequencies being 300 Hz away from resonance the phase of the oscillation is already
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3. Detection of topological Bloch-state defects in ultracold-atom systems

roughly matched by perturbation theory again, see Fig. 3.14(c) and (d). Finally, Fig. 3.14
(e) and (f) show that for eigenfrequencies being 500 Hz away from resonance we obtain
good agreement between the fit to numerical and the perturbative oscillations.
In summary, we find that the fitting routine is based on a separation of frequency scales

and works well as long as the driving frequency is well separated from the eigenfrequencies
of the system.
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Figure 3.12 – Comparison of perturbative (solid blue line), numerically exact (dotted
gray line) and a fit to the numerically exact (dashed red line) time-of-flight density.
The parameters for all panels are ω = 2π · 3000 Hz, J = h · 520 Hz, JAA = h · 99 Hz,
∆AB = h · 6056 Hz, J (d)

AA = 0.3JAA, J (d) = 0.18J and ∆
(d)
AB = 0.22∆AB. Panels (a) and

(b) show the oscillation at the Γ1- point, panels (c) and (d) at the M -point between
Γ1 and Γ2 and panels (e) and (f) at the Γ2- point. The left and right column show
the short- and long-time behavior, respectively.

93



3. Detection of topological Bloch-state defects in ultracold-atom systems

0 0.5 1 1.5 2 2.5 3

0.5

1

n
T
O
F
(k
)

exact
perturbative
fit to exact

(a)

0 0.5 1 1.5 2 2.5 3

0.8

0.9

1

n
T
O
F
(k
)

exact
perturbative
fit to exact

(c)

0 0.5 1 1.5 2 2.5 3

1

1.5

t (units of 2π/ω)

n
T
O
F
(k
)

exact
perturbative
fit to exact

(e)

0 5 10 15 20
0

0.5

1
exact
perturbative
fit to exact

(b)

0 5 10 15 20

0.8

0.9

1

exact
perturbative
fit to exact

(d)

0 5 10 15 20

1

1.5

t (units of 2π/ω)

exact
perturbative
fit to exact

(f)

blue-detuned driving

Figure 3.13 – Comparison of perturbative (solid blue line), numerically exact (dotted
gray line) and a fit to the numerically exact (dashed red line) time-of-flight density.
The parameters for all panels are ω = 2π · 9000 Hz, J = h · 520 Hz, JAA = h · 99 Hz,
∆AB = h · 6056 Hz, J (d)

AA = 0.3JAA, J (d) = 0.18J and ∆
(d)
AB = 0.22∆AB. Panels (a) and

(b) show the oscillation at the Γ1- point, panels (c) and (d) at the M -point between
Γ1 and Γ2 and panels (e) and (f) at the Γ2- point. The left and right column show
the short- and long-time behavior, respectively.
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Figure 3.14 – Comparison of perturbative (solid blue line), numerically exact (dotted
gray line) and a fit to the numerically exact (dashed red line) time-of-flight density.
The parameters for all panels are ω = 2π · 7000 Hz, J = h · 520 Hz, JAA = h · 99 Hz,
∆AB = h · 6056 Hz, J (d)

AA = 0.3JAA, J (d) = 0.18J and ∆
(d)
AB = 0.22∆AB. All panels

show momenta on the line between Γ1 (kx = 0) and Γ2 (kx[2π/a] = 1). Panels (a)
and (b) are close to resonance with kx[2π/a] = 0.22 corresponding to 2εk = 6900 Hz.
In panels (c) and (d) kx[2π/a] = 0.25 and 2εk = 6700 Hz, while and panels (e) and
(f) show kx[2π/a] = 0.3, corresponding to 2εk = 6500 Hz. The left and right column
show the short- and long-time behavior, respectively. On resonance the amplitude of
the perturbative results diverges and is therefore scaled in panels (a) and (b).
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4. Ultracold atoms in higher bands:
the s-px-py-lattice1

We consider a staggered square lattice. The key feature of this lattice is that the relative
depth ∆V of adjacent lattice sites can be tuned, thus forming an A- and a B-sublattice.
This allows to load the atoms in a regime where the A-sublattice is much deeper than
the B-sublattice and atoms only occupy the former, see ∆V < 0 in Fig. 4.1. A sudden
quench that exchanges the depth of the A- and B-sublattice excites the atoms into higher
bands [131–137]. In particular, it is possible to quench into a regime where p-orbitals on B-
sublattice sites have similar energy than s-orbitals on A-sublattice sites, see ∆V = 0.86 V0

in Fig. 4.1. For sufficiently low initial temperature bosons condense at the two degenerate
minima at the X-points of the second band. Here the atoms form a chiral phase pattern
with alternating p-orbital chirality on B-sites [136], see ∆Veq > 0 in Fig. 4.1.
We use classical field theory in order to model the excitation scheme and the subsequent

condensation and decay dynamics for bosons. Most notably we find in Sec. 4.2.5 that the
chiral condensate in the second band prescribes a metastable state that self-stabilizes
against relaxation to the first band. In fact, the chiral order of the condensate leads
to destructive interference of different decay channels and hence inhibits relaxation. We
identify four states connected by three different relaxation stages, see Fig. 4.2: immedi-
ately after the quench the atoms form an incoherent cloud in the second band (denoted
incoherent excited state in Fig. 4.2). In stage I coherence increases and the atoms con-
dense into a metastable state characterized by a chiral phase pattern (coherent metastable
state). During stage II the chiral phase pattern of the condensate inhibits relaxation due
to destructive interference. In fact, the condensate itself is a dark state showing per-
fect destructive interference and a pure condensate would be infinitely long-lived. Only
the thermal fraction of atoms decays. Decaying atoms gain a large amount of energy.
Eventually this lead to heating, a subsequent loss of coherence and hence, an increasingly
populated thermal excited state. This is the onset of stage III, which is characterized by
exponentially fast relaxation to the thermal ground state.
Within our model we identify the relevant decay mechanisms in Sec. 4.2.4. Close to

1Parts of this section have been published in Ref. [N3]
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Figure 4.1 – Sketch of the mechanism for loading atoms into higher bands. Thick blue
lines show the band structure as a function of potential imbalance ∆V . Away from
the band crossings each of the bands can be affiliated with one of the orbitals on either
A- or B-sublattice sites as indicated by labels s- and p-type. Bands corresponding to
orbitals on A-sites increase with increasing ∆V , while those corresponding to B-sites
decrease. The system is initialized at ∆Vinit < 0. Here A-sites are significantly deeper
than B-sites and only s-orbitals on A-sites are occupied. The first fast quench to
∆Veq = 0.43 V0 is performed across the first band crossing point where A- and B-sites
are equally deep (∆V = 0). Afterwards a slow second quench to ∆Vf is performed,
where ∆Vf can take any value between ∆Vf = 0 and ∆Vf = 0.86 V0. In the light-gray
boxes we show sketches of the depth of the A- and B-sites and for some cases sketches
of the corresponding condensate wave functions. For ∆V > 0 the phase pattern of
the condensate in the second band has staggered chirality on B-sites, indicated by
circular arrows. A similar version of this figures has been published in Ref. [N3].

the first band crossing at ∆V = 0, see Fig. 4.1, both sublattices have similar depth and
hence tunneling between the s-orbitals is the dominant decay channel. At the second band
crossing for ∆V = 0.86 V0 p-orbitals on the B-sublattice have significant occupation. Here
the dominant decay channel is interaction-induced. It is a scattering term where two px-
or py-orbital atoms collide and scatter into the s-orbital on the same site. We show that
the chiral phase pattern of the condensate leads to perfect destructive interference for
both decay mechanisms individually.
We also investigate the lifetime of the atoms in Sec. 4.2.4. We find that the atoms

decay fast close to the two band crossings at ∆V = 0 and ∆V = 0.86 V0. In between
there is a competition of the two decay mechanisms. The longest lifetime is obtained
approximately half way in between the two band crossings. We show that the exact
position shifts slightly depending on temperature. These results are in good agreement
with experimental results from Refs. [131–137] and [N3].
So far we have considered a scenario where after the quench the atoms condense at

both of the X-points of the second band. The relative phase between the wave function
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Figure 4.2 – Snapshots of real-space occupations, obtained from a numerical simu-
lation, characterizing four states connected by three stages of relaxation (I),(II) and
(III). For all states the plots show the occupations of s-orbitals (circles) and p-orbitals
(dumbbells) for a snapshot of a single x-y-layer of our numerical simulation. Grey
color indicates vanishing occupation of orbitals, while other colors denote the phase
of the wave function. We show the idealized case of very low initial temperature
(T = 0.5 nK) that leads to nearly perfect phase coherence. This figure has been
published in Ref. [N3].

at the two X-points spontaneously chooses +i or −i. When starting with a coherent
cloud before the quench and performing a Bloch oscillation transferring the atoms to one
of the X-points we can prepare a cloud of atoms at only one of the X-points of the lattice,
see Sec. 4.2.6. The subsequent dynamics features — for low enough initial temperature
— stable oscillation between the two X-points. Half-cycle in between reaching one of the
X-points the atoms alternate between the +i and −i superposition of the X-points. We
see several of these instanton-type flips between the two ground state condensate modes
until eventually the oscillations are damped and the atoms pick one of the two minima
spontaneously.

Finally, in Sec. 4.2.7 we also investigate different quench scenarios for optimizing to-
wards a most efficient loading procedure.
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Figure 4.3 – (a) Sketch of the s-px-py-lattice. In the desired lattice configuration the
s-band of one orbital is energetically close to the p-bands of neighboring orbitals. We
therefore show a sketch of s- and p-orbitals on the A and B sites, respectively. (b)
Lattice potential for V0 = −7Erec and θ = 0.5π.

4.1. Lattice structure and tight-binding Hamiltonian

for the s-px-py-lattice

Our goal for this section is to construct a tight-binding Hamiltonian for the lattice struc-
ture used in the experiments in [131–137]. Tight-binding Hamiltonians are an approach
to model the static and dynamic properties of atoms in a lattice. The idea is that, for
a sufficiently deep lattice, atoms are localized at individual lattice sites. Using a set of
such localized states we can write down a Hamiltonian consisting of hopping and interac-
tion terms between nearby lattice sites. The Hamiltonian is then fully determined by a
set of hopping and interaction strengths, called tight-binding parameters. Hopping terms
model the kinetic energy of the Hamiltonian. For well-localized states they are short range
and usually it is sufficient to consider nearest- and next-nearest-neighbor hopping terms.
Tight-binding Hamiltonians are of particular importance for systems with short-range
interactions. In that case the interaction terms of the tight-binding Hamiltonian can be
approximated by only on-site terms. One approach to construct a tight-binding Hamilto-
nian is to compute Wannier states and determine the tight-binding parameters from the
overlaps of these Wannier functions. Since the Wannier functions are not unique, neither
are the tight-binding parameters. The choice of Wannier functions then determines how
well the full Hamiltonian is approximated by the tight-binding Hamiltonian with only
nearby hopping and interaction terms. This approach has been discussed in more detail
in [N8].
Here we use a different approach to determine the tight-binding Hamiltonian. We

compute the band structure of the full lattice and construct a tight-binding Hamiltonian
comprising the noninteracting s- and p-orbitals on each lattice site. Then we adjust the
parameters of this Hamiltonian such that we obtain the best fit of the tight-binding band
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Figure 4.4 – Lattice potential for V0 = −7Erec and θ = 0.35π in panel (a) and
θ = 0.5345π in panel (b).

structure to the Bloch-band structure. We do this both by considering symmetry points
of the lattice as well as by using numerical minimization routines.

We use the lattice potential from [131–137]

V (x′, y′) = −V0/2 [cos(2kLx
′) + cos(2kLy

′)]

− V0 cos(θ) [cos(kL(x′ + y′)) + cos(kL(x′ − y′))] , (4.1)

where V0 is the lattice depth and kL = 2π/λL is the wave vector of the laser creating
the lattice potential. The experiments use 87Rb atoms and a laser wave length of λL =

1064 nm, such that the recoil energy is Erec = h2/ (2mλ2
L) ≈ 2h · kHz. The above lattice

potential is written in terms of the unit vectors e′x and e′y shown in Fig. 4.3(a). These
vectors fulfill |e′x| = |e′y| = λL. The angle θ can be tuned in experiment and determines
the relative depth of the two inequivalent lattice sites in each unit cell. In fact, we find
that the difference of the potential on A- and B-sites

∆V = VA − VB = −4V0 cos(θ) .

For θ = 0.5π we have cos(θ) = 0 and both sites have equal depth, see Fig. 4.3(b). Smaller
values of theta are used for loading the atoms into the lattice. The lattice potential for
θ = 0.35π (∆V = −1.8V0) is shown in Fig. 4.4(a). In this regime, ground-state atoms are
occupying the lower-lying lattice sites almost entirely. Figure 4.4(b) shows the situation
for θ = 0.5345π (∆V = 0.43 V0) where the p-orbitals of the deep lattice sites are similar in
energy to the s-orbitals of the shallow lattice sites. Finally, at θ = 0.569π (∆V = 0.86 V0)
p-orbitals of deep lattice sites are degenerate with s-orbitals on shallow lattice sites. The
ramp procedure explained in the introduction allows to load atoms into these excited
bands.
The unit cell spanned by e′x,y contains four lattice sites. Only two of these are not

equivalent. It is therefore convenient to use the lattice spanned by ex,y, see Fig. 4.3(a).
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4. Ultracold atoms in higher bands: the s-px-py-lattice

Figure 4.5 – Reciprocal lattice vectors and corresponding first Brillouin zones for
the two choices of basis vectors ex,y and e′x,y. We mark some of the symmetry points
of the lattice in red.

The lattice potential in the new basis is

V (x, y) = −V0/2 [cos(kL(x+ y)) + cos(kL(x− y))]− V0 cos(θ) [cos(kLx) + cos(kLy)] .

The band structure2 of the system in Fig. 4.6 and its sketch in Fig. 4.1 give further
insight into the cross-over between the different lattices for different values of θ. Initially
for θ = 0.35π (∆V = −1.8V0) both the s- and the p-orbitals of the deeper A-sites are
energetically lower than the s-orbitals on shallow B-sites. When increasing ∆V orbitals
on A-sublattice sites increase in energy while orbitals on B-sublattice sites decrease. The
first band crossing occurs at θ = 0.428π (∆V = −0.9V0) when s-orbitals on B sites become
degenerate with p-orbitals on A-sites. Next at θ = 0.5π (∆V = 0) both lattice sites are
equally deep and hence all orbitals have the same energy on A- and B-sublattice sites.
For increasing values of θ the s-orbitals on now shallow A-sites approach the p-orbitals
on B-sites until they become resonant for θ = 0.569π (∆V = 0.86V0).

4.1.1. Tight-binding model

Here we present which of the possible tight-binding terms we include in our Hamiltonian.
Our goal is to find a set of parameters that gives a good approximation of the lowest four
bands of the Hamiltonian. In general we can split the tight-binding Hamiltonian into the
hopping or noninteracting part and the interaction part

H = Hnon−int +Hint . (4.2)

In the following paragraphs we will show which terms we include.

2For details on how to compute band structures see for example [N8].

102



4.1. Lattice structure and tight-binding Hamiltonian for the s-px-py-lattice

−6

−3

0

3
(a)

E
[E
re
c
]

(b)

−1.5 −1 −0.5 0 0.5

−6

−3

0

3
(c)

ΔV [V0]

E
[E
re
c
]

−1.5 −1 −0.5 0 0.5

(d)

ΔV [V0]

Figure 4.6 – Lowest 8 bands of the s-px-py-lattice as a function of ∆V at several
high-symmetry points of the lattice. Panel (a) shows the Γ, panel (b) the X, panel
(c) the M point and panel (d) the point half way between Γ and M . The positions of
the symmetry points in the Brillouin zone are marked in Fig. 4.5. We show the bands
with opacity such that degenerate bands appear in a slightly darker blue.

Hopping terms for the lattice with 3 orbitals per unit cell

When loading atoms into the second, third and fourth band for 0 � ∆V < 0.86 V0 the
atoms are mainly occupying s-orbitals on A-sites and px- and py-orbitals on B-sites. In
this regime it is a good approximation to consider only these orbitals. We therefore make
the following Ansatz for the tight-binding Hamiltonian, for a sketch of hopping parameters
see Fig. 4.7,

Hnon−int = Hss +Hspx +Hspy +Hpxpx +Hpypy +Hpxpy (4.3)

where Hss = −Jss
∑

Ri∈A,Rj=±ex,±ey

b†s,Ri+Rj
bs,Ri

+
∑
Ri∈A

Vsb
†
s,Ri

bs,Ri
(4.4)

Hspx =
∑
Ri∈B

−Jspxb
†
s,Ri+e′x/2

bx,Ri
+ Jsp−xb

†
s,Ri−e′x/2

bx,Ri
+ h.c. (4.5)

Hspy =
∑
Ri∈B

−Jspyb
†
s,Ri+e′y/2

by,Ri
+ Jsp−yb

†
s,Ri−e′yby,Ri

+ h.c. (4.6)

Hpxpx = −J‖,x
∑

Ri∈B,Rj=±ex,±ey

b†x,Ri+Rj
bx,Ri

+ Vx
∑
Ri∈B

b†x,Ri
bx,Ri

(4.7)

Hpypy = −J‖,y
∑

Ri∈B,Rj=±ex,±ey

b†y,Ri+Rj
by,Ri

+ Vy
∑
Ri∈B

b†y,Ri
by,Ri

(4.8)
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Figure 4.7 – Sketch of all hopping parameters used for the 3-orbital tight-binding
model.

Hpxpy = J⊥
∑

Ri∈B,Rj=±ex

b†x,Ri+Rj
by,Ri

+ h.c.

− s⊥J⊥
∑

Ri∈B,Rj=±ey

b†x,Ri+Rj
by,Ri

+ h.c. . (4.9)

The operator b†s,x,y,Ri
(bs,x,y,Ri

) creates (annihilates) an atom on the site Ri in the s- px- or
py-orbital, respectively. Note that s⊥ has been introduced for later convenience in order
to introduce an imbalance between J⊥ along ex and ey and for now we choose s⊥ = 1.
In later sections we will also need the tight-binding Hamiltonian into momentum space,

which we obtain by applying the Fourier transformation

bRi
=

1√
N

∑
k

eik·Ribk

bk =
1√
N

∑
Ri

e−ik·RibRi
,

where the sum over k runs over all momenta in the first Brillouin zone — the one spanned
by kx,y — and the sum over Ri runs over all A-sublattice sites for s-orbitals and all B-
sublattice sites for p-orbitals. N is the total number of unit cells. This leads to

H =
∑
k

Hk
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Figure 4.8 – Sketch of the lattice with the additional hopping parameters introduced
for the s-orbitals on the A-sites. Red circles denote these s-orbitals.

and

Hk =
(
b†s,k b†x,k b†y,k

) εssk εspxk ε
spy
k

εspxk
∗ εpxk εppk

ε
spy
k
∗

εppk ε
py
k


bs,kbx,k

by,k


εssk = −2Jss(cos(kxa) + cos(kya)) + Vs

εspxk = −Jspxe−i
kx+ky

2
a + Jsp−xe

i
kx+ky

2
a

ε
spy
k = −Jspyei

kx−ky
2

a + Jsp−ye
−i kx−ky

2
a

εpxk = −2J‖,x [cos(kxa) + cos(kya)] + Vx

ε
py
k = −2J‖,y [cos(kxa) + cos(kya)] + Vy

εppk = 2J⊥(cos(kxa)− s⊥ cos(kya)) .

Hopping terms for the lattice with 4 orbitals per unit cell

When loading the atoms into the lattice at ∆V = −1.82 V0 all atoms occupy the s-orbitals
on A-sites, which we label by s′. It is therefore important to include these orbitals in our
simulations. As a result we need to include additional hopping terms in the Hamiltonian,
which are sketched in Fig. 4.8. As an Ansatz for the tight-binding Hamiltonian we now
use

Hnon−int = Hss +Hspx +Hspy +Hpxpx +Hpypy +Hpxpy +Hd
ss +Hd

spx +Hd
spy (4.10)
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where Hss = −Jss
∑

Ri∈A,Rj=±ex,±ey

b†s,Ri+Rj
bs,Ri

+ Vs
∑
Ri∈A

b†s,Ri
bs,Ri

− J ′ss
∑

Ri∈B,Rj=±ex,±ey

b†s,Ri+Rj
bs,Ri

+ V ′s
∑
Ri∈B

b†s,Ri
bs,Ri

(4.11)

Hd
ss = −Jdss

∑
Ri,Rj=±e′x,±e′y

b†s,Ri+Rj
bs,Ri

(4.12)

Hd
spx =

∑
Ri∈B

Jdspx

(
b†s,Ri−ey + b†s,Ri−ex − b

†
s,Ri+ey

− b†s,Ri+ex

)
bx,Ri

+ h.c. (4.13)

Hd
spy =

∑
Ri∈B

Jdspy

(
b†s,Ri−ey + b†s,Ri+ex

− b†s,Ri+ey
− b†s,Ri−ex

)
by,Ri

+ h.c. (4.14)

and the remaining parts of the Hamiltonian have been defined in Eqs. 4.3–4.9. The
corresponding Hamiltonian in momentum space is

Hk =
(
b†s,k b†x,k b†y,k b†s′,k

)

εsk(Jss, Vs) εspxk ε

spy
k εsdk

εspx∗k εpxk εppk εspxdk

ε
spy∗
k εppk ε

py
k ε

spyd
k

εsdk εspxdk

∗
ε
spyd
k

∗
εsk(J ′ss, V

′
s )



bs,k

bx,k

by,k

bs′,k

 ,

(4.15)

where

εsk(J, V ) = −2J [cos(kxa) + cos(kya)] + V

εsdk = −2Jdss [cos((kx + ky)a/2) + cos((kx − ky)a/2)]

εspxdk = 2iJdspx [sin(kxa) + sin(kya)]

ε
spyd
k = 2iJdspy [sin(kya)− sin(kxa)] .

Diagonalizing the above Hamiltonian gives the tight-binding band structure. We can
then compare the tight-binding band structure with the Bloch band-structure, shown in
Fig. 4.6, in order to determine the tight-binding parameters. Before discussing the details
of this procedure we present the interaction terms that we include in the Hamiltonian.

Interaction terms

So far we have only considered the hopping part of the tight-binding Hamiltonian. Here
we will show which type of interaction terms we need to consider. Since the interaction in
the experiments in [131–137] is sufficiently short range we only consider on-site interaction
terms. Near the bottom of a lattice site the lattice potential resembles a harmonic trap. It
is therefore often sufficient to use harmonic-oscillator wave functions for the determination
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of interaction strengths. This is also the approach we take here.
The one-dimensional harmonic-oscillator wave function can be given in terms of the

Hermite polynomials Hn(x) as

ψn(x) =
1

2nn!
√
πx0

e−
1
2

(x/x0)2Hn(x/x0) ,

where x0 =
√

~/mω is the harmonic-oscillator wave length, m is the mass of the atoms
and ω is the harmonic-oscillator frequency. The index n labels the subsequent solutions
of the harmonic oscillator. The lowest eigenstate n = 0, due to its symmetry, corresponds
to an s-orbital. The first excited state n = 1, which has one node in its wave function, is
reminiscent of a p-orbital. The two-dimensional generalization of the harmonic oscillator
is obtained from a product ansatz

ψn=(i,j)(x, y) = ψi(x) · ψj(y) .

The weight of the possible interaction terms for the tight-binding Hamiltonian is deter-
mined from the overlap of the corresponding harmonic-oscillator wave functions

Uijnm = U0

∫∫
dx dy ψ∗i (x, y)ψ∗j (x, y)ψn(x, y)ψm(x, y)b†i b

†
jbnbm .

For our tight-binding model we are only interested in s-, px- and py-orbitals. By calculating
the corresponding integrals we see that the only nonzero interaction terms are

Ussss =
U0

2πx2
0

b†sb
†
sbsbs

Uxxxx =
3U0

4

1

2πx2
0

b†xb
†
xbxbx Uyyyy =

3U0

4

1

2πx2
0

b†yb
†
ybyby

Uxxyy =
U0

4

1

2πx2
0

b†xb
†
xbyby Uyyxx =

U0

4

1

2πx2
0

b†yb
†
ybxbx

Uxxss =
U0

2

1

2πx2
0

b†xb
†
xbsbs Ussxx =

U0

2

1

2πx2
0

b†sb
†
sbxbx

Uyyss =
U0

2

1

2πx2
0

b†yb
†
ybsbs Ussyy =

U0

2

1

2πx2
0

b†sb
†
sbyby

and

Uxyyx + Uyxxy + Uxyxy + Uyxyx =
U0

2πx2
0

b†ybyb
†
xbx

Uxssx + Usxxs + Uxsxs + Usxsx = 2
U0

2πx2
0

b†xbxb
†
sbs
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Uyssy + Usys + Uysys + Usysy = 2
U0

2πx2
0

b†ybyb
†
sbs ,

where we use the shorthand notation s = (0, 0), x = (1, 0) and y = (0, 1). We can
therefore introduce interaction strengths for A- and B-sites of our tight-binding model
UA and UB and write the interaction part of the tight-binding Hamiltonian as

Hint =
UA
2

∑
Ri∈A

b†s,Ri
b†s,Ri

bs,Ri
bs,Ri

+
UB
2

∑
Ri∈B

b†s,Ri
b†s,Ri

bs,Ri
bs,Ri

+
3

4

UB
2

∑
Ri∈B

[
b†x,Ri

b†x,Ri
bx,Ri

bx,Ri
+ b†y,Ri

b†y,Ri
by,Ri

by,Ri

]
+
UB
2

∑
Ri∈B

b†x,Ri
bx,Ri

b†y,Ri
by,Ri

+
1

4

UB
2

∑
Ri∈B

[
b†x,Ri

b†x,Ri
by,Ri

by,Ri
+ h.c.

]
+

1

2

UB
2

∑
Ri∈B

[
b†x,Ri

b†x,Ri
bs,Ri

bs,Ri
+ b†y,Ri

b†y,Ri
bs,Ri

bs,Ri
+ h.c.

]
+ 2

UB
2

∑
Ri∈B

(b†x,Ri
bx,Ri

+ b†y,Ri
by,Ri

)b†s,Ri
bs,Ri

. (4.16)

4.1.2. Determining tight-binding parameters

Hopping terms

In principle we could now proceed and directly use a numerical minimization routine
in order to minimize the difference between the Bloch band structure and the tight-
binding band structure at each point in momentum space. We can assume the lat-
tice to be symmetric with respect to the x- and y-direction and hence assume that
Jspx = Jspy = Jsp−x = Jsp−y =: Jsp, J‖,x = J‖,y =: J‖, Jdspx = Jdspy =: Jdsp and Vx = Vy =: Vp.
Even with these approximations the tight-binding Hamiltonian has 7 hopping parameters
and 3 on-site potentials that need to be determined. Adjusting all by using a minimiza-
tion routine is numerically quite challenging. Additionally we are interested in a scenario
where the atoms are condensed at one of the symmetry points of the lattice. Hence, the
band structure close to the symmetry points is of particular importance. Here we therefore
take a different approach for determining the tight-binding parameters. We analytically
compute the tight-binding bands at certain symmetry points of the Brillouin zone, identify
the Bloch bands with the corresponding tight-binding bands and use the resulting equa-
tions to obtain analytical expressions for the tight-binding parameters. This approach
works well for most of the tight-binding parameters. We determine the remaining set of
parameters with a Monte-Carlo minimization routine.
First we need analytical expressions for the energies of tight-binding orbitals at certain
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symmetry points. We start with considering the tight-binding Hamiltonian at the Γ-point,
i.e. kx = ky = 0. In this case

HΓ =


b†s,k
b†x,k
b†y,k
b†s′,k


T 
−4Jss + Vs 0 0 −4Jdss

0 −4J‖ + Vp 0 0

0 0 −4J‖ + Vp 0

−4Jdss 0 0 −4J ′ss + V ′s



bs,k

bx,k

by,k

bs′,k


and the set of eigenvalues is

E(Γ)
p = Vp − 4J‖ (two-fold degenerate) (4.17)

E
(Γ)
ss′,± =

Vs + V ′s − 4Jss − 4J ′′ss
2

±

√
[Vs − V ′s − 4(Jss − J ′ss)]

2 + 64Jdss

2
. (4.18)

At the X-points, e.g. kx = π/a, ky = 0, we have

HX =


b†s,k
b†x,k
b†y,k
b†s′,k


T 

Vs 2iJsp −2iJsp 0

−2iJsp Vp −4J⊥ 0

2iJsp −4J⊥ Vp 0

0 0 0 V ′s



bs,k

bx,k

by,k

bs′,k


and the set of eigenvalues is

E
(X)
p1 = Vp − 4J⊥ (4.19)

E
(X)
s′ = V ′s (4.20)

E
(X)
p2 =

Vp − 4J⊥ +
√

(4J⊥ + (Vp − Vs))2 + 32J2
sp

2
(4.21)

E(X)
s =

Vp − 4J⊥ −
√

(4J⊥ + (Vp − Vs))2 + 32J2
sp

2
. (4.22)

At the M -points, e.g. kx = ky = π/a, we have

HM =


b†s,k
b†x,k
b†y,k
b†s′,k


T 

4Jss + Vs 0 0 0

0 4J‖ + Vp 0 0

0 0 4J‖ + Vp 0

0 0 0 4J ′ss + V ′s



bs,k

bx,k

by,k

bs′,k
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and the set of eigenvalues is

E(M)
p = Vp + 4J‖ (two-fold degenerate) (4.23)

E(M)
s = Vs + 4Jss (4.24)

E
(M)
s′ = V ′s + 4J ′ss . (4.25)

Finally, half way in between Γ and M , e.g. kx = ky = π/(2a), we have

HΓM =


b†s,k
b†x,k
b†y,k
b†s′,k


T 

Vs 2iJsp 0 −2Jdss

−2iJsp Vp 0 4iJsp

0 0 Vp 0

−2Jdss −4iJsp 0 V ′s



bs,k

bx,k

by,k

bs′,k

 .

Here one eigenvalue is obviously Vp, while the others are not easily solved analytically.
We can use the above equations in order to express the tight-binding parameters in

terms of energies of tight-binding bands at symmetry points. The energies of tight-binding
bands are in turn set equal to those of the Bloch bands. In this process it is important
to correctly associate the tight-binding bands with the corresponding Bloch bands. Away
from the band crossings each of the tight-binding bands is predominantly occupying a
single orbital and hence its energy scales with the potential offset of the corresponding
orbital. We have already chosen our naming convention above accordingly, e.g. Ep ∝ Vp.
One case is slightly more involved, because the scaling of E(Γ)

ss′,± depends on whether Vs
or V ′s is larger. We can expect Vs < V ′s while the s-lattice site is lower in energy than the
s′-lattice site, i.e. for θ < 0.5π, and Vs ≥ V ′s otherwise. Therefore

E(Γ)
s =

E
(Γ)
ss′,− for θ < 0.5π

E
(Γ)
ss′,+ for θ ≥ 0.5π

E
(Γ)
s′ =

E
(Γ)
ss′,+ for θ < 0.5π

E
(Γ)
ss′,− for θ ≥ 0.5π

.

We can now turn to identifying the energies of Bloch bands with the corresponding
energies of tight-binding bands. We identify the tight-binding band associated with the
orbital with the lowest energy with the lowest Bloch band and proceed in the same way
for higher Bloch bands. In this process it helps to keep Fig. 4.1 in mind. We obtain

Es =

E
(Bloch)
1 for θ < 0.5π

E
(Bloch)
2 for 0.5π ≤ θ < 0.569π
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Es′ =


E

(Bloch)
4 for θ < 0.428π

E
(Bloch)
2 for 0.428π ≤ θ < 0.5π

E
(Bloch)
1 for 0.5π ≤ θ < 0.569π

Ep =

E
(Bloch)
2 for θ < 0.428π

E
(Bloch)
3 for 0.428π ≤ θ < 0.569π

.

Note that due to the degeneracy of the p-bands we only identify the lower of the two
corresponding Bloch bands. For the p-orbitals an extra subtlety arises. In our model
we only include p-orbitals on B-sites, but not the ones on A-sites. For θ < 0.5π the
p-orbitals on A-sites are, however, energetically lower than the p-orbitals on B-sites. The
identification above makes the seemingly wrong identification with p-orbitals on A-sites
for θ < 0.5π. This ensures that the tight-binding band structure recovers the lowest
four Bloch bands and is therefore the more natural choice. Also we do not expect that
this choice is important for the results of our numerical simulation since neither of the
p-orbitals obtain significant occupations for θ < 0.5π.
Finally, we are ready to actually compute the tight-binding parameters. We use the

p-type bands at the Γ- and M -points to obtain

Vp =
E

(Γ)
p + E

(M)
p

2

J‖ =
E

(M)
p − E(Γ)

p

8
.

We could now in principle compute J⊥ from E
(X)
p . It also enters in E(X)

s , however, and we
therefore obtain better results by fixing this parameter in the Monte-Carlo minimization.

We further assume that we know the parameters for V ′s , Jsp and Jdsp, which we will also
fix with the Monte-Carlo minimization. We can then identify

J ′ss =
EM
s′ − V ′s

4

Vs =
E

(Γ)
s + E

(Γ)
s′ − (V ′s − 4J ′ss) + E

(M)
s

2

Jss =
E

(M)
s − Vs

4
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Figure 4.9 – Tight-binding parameters as a function of θ for V0 = 7Erec, λL =
1064 nm and the rubidium mass m = 87mp. All parameters are given in units of Erec.

Jdss =


√
jdss
8

for jdss > 0

0 else
,

where jdss =
(
E(Γ)
s − E

(Γ)
s′

)2

− [(Vs − 4Jss)− (Vs′ − 4J ′ss)]
2 .

The case distinction for Jdss is included to improve numeric convergence of the Monte-Carlo
minimization.
Finally, we use the above set of equations in order to implement a Monte-Carlo mini-

mization for V ′s , Jsp, Jdsp and J⊥. In each Monte-Carlo step we choose values for V ′s , Jsp,
Jdsp and J⊥. Then we determine the remaining parameters from the symmetry-point equa-
tions above and compare the resulting tight-binding band structure to the Bloch band
structure. Afterwards we choose the set of V ′s , Jsp, Jdsp and J⊥ for the next step according
to the Monte-Carlo procedure explained in more detail in App. A.1. We find that the
results of the Monte-Carlo procedure are improved by enforcing Jsp > 0, Jdsp < 0 and
J⊥ < 0.
We note that it might seem intuitive to choose V ′s = E

(X)
s′ . We have checked that this

leads to a sudden jump of Vs′ at θ = 0.428π and rather unphysical results for Vs and
Vs′ for θ < 0.428π. As the s′-orbitals are the highest for these values of θ it is therefore
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Figure 4.10 – Comparison of tight-binding and Bloch band structure as a function of
θ for several high-symmetry points of the lattice. We show the Bloch band structure
(wide gray lines) as well as the tight-binding band structure (narrow blue lines) for
the Hamiltonian from Eq. 4.15. The tight-binding parameters are the ones giving the
best fit to the Bloch bands. Their values are shown in Fig. 4.9. Panel (a) shows the
Γ-, panel (b) the X-, panel (c) the M -point and panel (d) the point half way between
Γ and M . The positions of the symmetry points in the Brillouin zone are marked in
Fig. 4.5.

beneficial to relax the condition V ′s = E
(X)
s′ and instead include V ′s in the minimization

routine.
With this procedure we obtain the set of hopping parameters shown in Fig. 4.9. Here

we use the parameters V0 = 7Erec, λL = 1064 nm and m = 87mp, which are inspired by
the experiments in Refs. [131–137]. This is also the set we use for all our calculations in
sections 4.2 and 4.3. It leads to almost perfect agreement of the tight-binding and Bloch
band structures for the lowest two bands, see Fig. 4.10. For the third and fourth band
there are slight deviations in particular close to the X-points. The largest deviations are,
however, in a regime of θ, where these bands are unoccupied during our simulations.

Interaction terms

So far we have adjusted the hopping parameters to match the noninteracting Bloch band
structure. Now we will determine the prefactors UA and UB for the interaction part of
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the Hamiltonian given in Eq. 4.16. In the experiments in Refs. [131–137] each lattice sites
consists of a 1-d elongated tube. Our first goal is to compute the 1-d-interaction strength
for each of these tubes. To do so we make the harmonic approximation at the bottom of
the lattice potential, see Eq. 4.1, and use the corresponding harmonic-oscillator length in
order to estimate the 1-d-interaction strength. Near the two inequivalent minima of the
lattice potential, it can be approximated as

VC(x′, y′) = const. + V0k
2
L [1 + σC cos(θ)] (x2 + y2) ,

where σA = 1 and σB = −1. By comparing to the harmonic-oscillator potential V (x, y) =
1
2
mω2(x2 + y2) we can identify

ωC =

√
2V0k2

L(1 + σC cos(θ))

m

x0,C =

√
~√

2V0m(1 + σC cos(θ))
=
λL
2π

1
4
√
V0/Erec(1 + σC cos(θ))

.

The 1-d interaction strength is then given by (see e.g. [187])

g1d,C =
2~2ascattering

mx2
0,C

,

where ascattering is the 3-d scattering length.
In ultracold-atom experiments one often speaks of two-dimensional experiments. Of

cause we are living in a three-dimensional world and there can not be truly two-dimensional
experiments. What is meant instead is that the confinement in the third (in our case z-)
direction is strong enough that only the lowest harmonic-oscillator state is occupied. In
that case we could approximate

UC = g1d,C

∫
dz |ψ0(z)|4 ,

where ψ0(z) is the ground-state wave function of the harmonic oscillator.
In our case this approximation is not valid. In fact, the contrary is the case. The

experiments in [131–137] have a rather shallow trap in the z-direction. Additionally we
excite atoms into higher bands and thereby insert a large amount of energy into the
system. Atoms falling back to the lowest band can thereby obtain energies of several
Erec, which will also be shared with the degrees of freedom in the z-direction. This is
actually beneficial for loading atoms into higher bands since the degrees of freedom in the
z-direction act as a bath leading to thermalization of the atoms. We estimate that during
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our simulations more than 10 harmonic-oscillator states can be excited in the z-direction.

Discretizing the z-direction

We therefore take a different approach for our numerical simulations. We artificially
discretize the z-direction. In other words we assume to have a shallow lattice in the
z-direction. This allows us to identify individual lattice sites and define hopping and
interaction strengths between these sites. The lattice constant of this virtual lattice
is called discretization length dz. For this approach we need to estimate the effective
occupation neff , hopping constant Jz and interaction strength Ueff for the virtual lattice
model.

First we obtain an estimate for the density of the cloud in the center of the trap
for a given total number of atoms in the trap. To this end we use the Thomas-Fermi
approximation (see e.g. [187])

n(z) = (µ− V (z))/g1d

V (z) =
1

2
mω2

zz
2 .

For a given chemical potential the edge of the atomic cloud is at

zmax =

√
2µ

mω2
z

.

For a fixed number of atoms in each 1-d-tube Ntube we can obtain an expression for the
chemical potential by integrating the density over the whole tube

µ =
1

2

3

√
9mω2

zg
2
1dN

2
tube

4
.

Finally, within the mean-field approximation, the density in the center of the cloud is
given by

n(0) =
µ

g1d

=
1

2
3

√
9mω2

zN
2
tube

4g1d

.

Then the effective density and interaction strength in the center of the trap are

neff = n(0)dz Ueff = g1d/dz

such that the mean-field interaction energy agrees: Ueffneff = g1dn(0). Finally, we get
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Figure 4.11 – Sketch of the lattice potential in the experiment (dashed blue line)
and in our simulations (solid black line). We show two different implementations in
panels (a) and (b). Dashed vertical lines indicate the artificial discretization with
discretization length dz that we use in our simulations.

an estimate for the hopping constant by comparing the dispersion relation of the tight-
binding lattice model to the dispersion relation of free particles3

−2Jz cos(kdz) ≈ −2Jz

(
1− 1

2
k2d2

z

)
!

=
~2k2

2m
− µ .

We can therefore identify

Jz =
~2

2md2
z

.

When discretizing the trap in the z-direction it is important to choose the discretization
length small enough such that quantum and thermal fluctuation within each site can be
neglected. As an estimate we can compare the discretization length to the healing length
of the condensate (see e.g. [187])

ξ =

√
~2

2mg1dn(0)

and the thermal de-Broglie wavelength

λT =

√
2π~2

mkBT
.

For the experiments in [131–137] we have

3Since the harmonic trap in the z-direction is shallow its dispersion relation can be approximated by
the free-particle dispersion.
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param value
λL 1064nm

Erec 2h · kHz

ascattering 5nm

ωz 2π · 79 Hz

V0 7Erec

such that for 300 atoms per tube and θ = 0.35π we obtain a size of the cloud of 2zmax ≈
20 µm. At the same time we obtain ξ ≈ 0.15 µm and the thermal de-Broglie wavelength
at temperature T = 48 nK is λT = 0.85 µm. Hence in order to model the full system we
would have to use a total number of 200 sites with a discretization length of dz = 0.1 µm.
Modeling such a large number of sites, while at the same time including a sufficient number
of lattice sites in the x- and y- direction is numerically challenging. We take two different
approaches to avoid this problem. In the first approach we model only the dynamics in
the center of the trap by using a box potential with periodic boundary conditions. The
density is then chosen such that it matches the density in the center of the experimental
harmonic trap, see Fig. 4.11(a). The second approach uses a steeper harmonic trap, such
that we can match the density of the experimental and theoretical system in the center
of the cloud. The steeper trap ensures that we reach zero density at the edge of the cloud
with a sufficiently small number of lattice sites, see Fig. 4.11(b).

Unless stated otherwise we use for our numerical simulations in Sec. 4.2 a discretization
length of dz = 0.13 µm, implying Jz = 1.7 Erec, 300 atoms per tube and

∆V [V0] g1d,AnA(0)[Erec] neff,A Ueff,A[Erec] Ueff,B[Erec]

−1.8 1.405 2.9 0.491 0.301

−0.9 1.327 2.9 0.450 0.359

0 1.240 3.0 0.407 0.407

0.43 1.194 3.1 0.384 0.428

0.86 1.144 3.2 0.361 0.449

We only give the occupations on A-sites since these are the only occupied sites when we
initialize the system at ∆V = −1.8V0.
Finally, we note that discretizing the z-direction changes the dispersion relation from

quadratic to a cos-type dispersion relation. While this is a good approximation near the
bottom of the band it is certainly not true any more for larger momenta. As an estimate
of the validity we here give the bandwidth of the cos-type dispersion relation

∆ε = 4Jz ≈ 6.8 Erec
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4. Ultracold atoms in higher bands: the s-px-py-lattice

for dz = 0.13 µm. A slightly better approximation can be obtained by using the Bogoli-
ubov energies

∆E = 4Jz

√
1 +

Ueffneff

2Jz
.

For the parameters above we obtain ∆E = 7.7 Erec, while for the same parameters but dz =

0.3 µm we obtain ∆E = 2.1 Erec and for dz = 1 µm ∆E = 0.5 Erec. The distance between
the first and second band, see Fig. 4.6, can be up to 5 Erec. Therefore a discretization
length of dz = 0.3 µm is already too large.

4.2. Dynamics of atoms in excited bands

Loading atoms into the excited bands of an optical lattice gives rise to intriguing dynamics.
In order to model these dynamics we use classical field theory. This method has been
widely applied in ultracold-atom systems, for reviews see [188–193]. The main idea is
that, in the limit of high occupation of individual quantum modes, the matter-wave field
of each quantum-mechanical mode behaves like a classical field. In other words the integer
mode occupations can be replaced by continuous complex numbers. The full quantum-
mechanical time evolution can then be approximated by effective equations for the classical
field.
We derive the equations of motion for bosons in the s-px-py-lattice within classical field

theory. This allows us to compute the time evolution for arbitrary changes of the tight-
binding parameters. We use the equations of motion to model the process of loading
atoms into excited bands of the s-px-py-lattice and study the subsequent dynamics. For
low enough initial temperature the atoms condense in the upper band, forming a chiral
condensate with equal occupation on the two nonequivalent X-points of the lattice. On
longer time scales the atoms decay back to the lowest band. We find that the coherence
of the atoms inhibits decay and hence represents a self-stabilization mechanism of the
condensate. We identify the underlying decay mechanisms and show that the origin of
the self-stabilization is destructive interference of the respective decay channels. We also
prepare the atoms in just one of the two X-points of the upper band and find coherent
instanton-type oscillations between the two degenerate many-body ground states, i.e. the
chiral condensates |Ξ±〉. Finally, we investigate different schemes for preparing the atoms
in the upper band.
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4.2. Dynamics of atoms in excited bands

4.2.1. Theory background: classical field theory

Here we give a brief introduction to classical field theory with a strong focus on the
methods used in this thesis for describing the dynamics of atoms in higher bands. For a
more detailed description of classical field theory we refer the reader to the excellent and
extensive set of reviews on classical field theory [188–193].

PGPE-theory

For the projected Gross-Pitaevskii equation (PGPE) one considers the modes that are
described by classical field equations to be strictly separated from the environment, hence
the modes are described by a micro-canonical ensemble.

For our calculations we use the Hamiltonian from Eqs. 4.2,4.10 and 4.16 and solve the
Heisenberg equations of motion for the annihilation operators

dbj
dt

= i
[
H − µ b†jbj, bj

]
.

Here we include a chemical potential µ that is adjusted such that the desired particle
number is reached. In these equations we replace the annihilation operators by complex
numbers and solve the resulting ordinary differential equations (ODEs) for bs,Ri

Ri ∈ A
and bs,Ri

, bx,Ri
and by,Ri

Ri ∈ B. Each of the ODEs consists of a sum of terms, where
each term arises from one of the hopping or interaction terms of the Hamiltonian. Here
we exemplarily give some of the resulting terms. The full set of equations is given in
App. A.2.1. For example the terms corresponding to Hspx are

dbs,Ri

dt
= · · ·+ iJspxbx,Ri−e′x/2 − iJsp−xbx,Ri+e′x/2 + . . . (4.26)

dbx,Ri

dt
= · · ·+ iJspxbs,Ri+e′x/2 − iJsp−xbs,Ri−e′x/2 + . . . , (4.27)

while the equations for the interaction term

UB
2

∑
Ri∈B

b†x,Ri
bx,Ri

b†y,Ri
by,Ri

(4.28)

are

dbx,Ri

dt
= · · · − iUB

2
b†y,Ri

by,Ri
bx,Ri

. . . (4.29)

dby,Ri

dt
= · · · − iUB

2
b†x,Ri

bx,Ri
by,Ri

. . . . (4.30)

119
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Initial state

For the initial state of the system we need to determine the set of complex numbers,
where each of them corresponds to one of the annihilation operators bj = b{s,x,y},Ri

. We
start from an empty lattice bj = 0 and then vary all bj according to a Monte-Carlo
minimization procedure described in more detail in appendix A.1.1. For the Monte-
Carlo procedure we use the Hamiltonian as the minimization functional and adjust the
Monte-Carlo temperature to the desired temperature of the lattice. For our simulations
we repeat this procedure and the subsequent time evolution many times. We average
the observables over all of these Monte-Carlo trajectories. This procedure accounts for
thermal fluctuations.
An improved description of the initial state can be obtained by sampling from the

Wigner function of the system, see e.g. [188]. In particular, such a description accounts
for quantum fluctuations in the initial state. For our case, however, the stochastic thermal
sampling turns out to be sufficient.

SPGPE-theory

The stochastic projected Gross-Pitaevskii equation (SPGPE) is an extension of the PGPE,
in which we also allow for exchange of energy and particles with the environment. The
interactions with the environment are modeled by effective stochastic processes corre-
sponding to gain and loss of atoms and energy. Here we mainly give the SPGPE for
completeness. We model our system using this set of equations that gives a slightly
more precise description of the interaction terms. For our purposes it would, however,
be sufficient to use the PGPE. Still it would be an interesting direction for future work
to explicitly include decay terms for the loss of atoms from the trap. As we mentioned
above when atoms decay from one of the excited bands back into the lowest band they
gain a large amount of energy. This energy can be larger than the trapping potential
in the x-y-plane and hence the atoms can be lost from the trap in the experiments in
[131–137]. In contrast, in our simulations the atoms always remain in the lowest band
instead. Via scattering with excited band atoms the energy they gain in the decay process
can be transfered to atoms in excited bands. This energy transfer is an additional source
of heating for the excited band population. Including decay terms could therefore lead to
an even better description of the experiments in [131–137].
For the derivation of the SPGP-equations we follow a procedure described in the ap-

pendix to [194]. Here we only show the calculation exemplarily for some of the terms of
the tight-binding Hamiltonian. The full set of equations is given in App. A.2.2. Since
our goal is to include effective stochastic gain and loss terms we start from the Lindblad
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equation [158] for the density matrix

d

dt
ρ = i [ρ,H]− 1

2

∑
α

{
Lα†Lαρ+ ρLα†Lα − 2LαρLα†

}
. (4.31)

Apart from the Hamiltonian H, which we take to be the one from Eqs. 4.2,4.10 and 4.16,
and the density matrix ρ this equation contains Lindblad operators Lα. Here we are
mainly interested in the Lindblad operator corresponding to loss of atoms

Li =
√
γibs,Ri

for Ri ∈ B .

We use the procedure described in [194] in order to map the terms in Eq. 4.31 to equations
for the Wigner function W . For example a hopping term of the form

H = b†ibj + b†jbi

leads to4

∂tW = −2

~
Im

[
∂

∂βi
βj +

∂

∂βj
βi

]
W

= −1

~

[
∂

∂xi
yj −

∂

∂yi
xj +

∂

∂xj
yi −

∂

∂yj
xi

]
W ,

where we have replaced the operators bi by complex numbers βi = xi + iyi and xi, yi ∈ R.
As explained in [194] the resulting equations for the Wigner function are Fokker-Planck
equations and can therefore be recast in the form of stochastic differential equations
(SDEs). For example for the above hopping term we obtain for i 6= j

∂xi
∂t

= yj
∂yi
∂t

= −xj
∂xj
∂t

= yi
∂yj
∂t

= −xi .

When evaluating these terms for Hspx and rewriting them with complex derivatives, we
indeed get the same equations as Eqs. 4.26 and 4.27.

For the interaction term

H = b†ib
†
jbjbi

4Note that for a complex number z = x+ iy: ∂/∂z = 1/2 ∂/∂x− i/2 ∂/∂y and ∂/∂z∗ = 1/2 ∂/∂x+
i/2 ∂/∂y.
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we obtain for i 6= j

∂tW = −2

~
Im

[
∂

∂βj
|βi|2βj +

∂

∂βi
|βj|2βi −

1

2

∂

∂βi
βi −

1

2

∂

∂βj
βj

]
W

= −1

~

[ ∂
∂xi

yi

(
x2
j + y2

j −
1

2

)
+

∂

∂xj
yj

(
x2
i + y2

i −
1

2

)
+

∂

∂yi
xi

(
1

2
− x2

j − y2
j

)
+

∂

∂yj
xj

(
1

2
− x2

i − y2
i

)]
and

dxi
dt

= yi

(
x2
j + y2

j −
1

2

)
dyi
dt

= xi

(
1

2
− x2

j − y2
j

)
dxj
dt

= yj

(
x2
i + y2

i −
1

2

)
dyj
dt

= xj

(
1

2
− x2

i − y2
i

)
.

Rewriting these in terms of complex derivatives and using the explicit interaction term
from Eq. 4.28 we obtain

dβx,Ri

dt
= −iUB

2

[
β∗y,Ri

βy,Ri
− 1

2

]
βx,Ri

dβy,Ri

dt
= −iUB

2

[
β∗x,Ri

βx,Ri
− 1

2

]
βy,Ri

.

We see by comparing to Eqs. 4.29 and 4.30 that an extra 1/2 occurs in the equations.
This factor accounts for the zero-point motion of the harmonic oscillator and hence leads
to a slightly more appropriate description for modes with comparatively low occupations.
Finally, for the Lindblad term Li =

√
γibs,Ri

we obtain for the density matrix

dρ

dt
= −γi

2

(
b†s,Ri

bs,Ri
ρ+ ρb†s,Ri

bs,Ri
− 2bs,Ri

ρb†s,Ri

)
.

This maps to

dW

dt
= γi

{
Re

[
∂

∂βs,Ri

βs,Ri

]
+

1

2

∂

∂βs,Ri

∂

∂β∗s,Ri

}
W

= γi

[
1

2

∂

∂xs,Ri

xs,Ri
+

1

2

∂

∂ys,Ri

ys,Ri
+

1

8

(
∂2

∂x2
s,Ri

+
∂2

∂y2
s,Ri

)]
W

for the Wigner function and we obtain the SDEs

dxs,Ri

dt
= −γi

2
xs,Ri

+

√
γi

2
Nx,i(t)
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dys,Ri

dt
= −γi

2
ys,Ri

+

√
γi

2
Ny,i(t) ,

where N (t) is, in each time step of the SDE-integration, randomly sampled from a Gaus-
sian distribution with zero mean and unit standard deviation.

4.2.2. Quench protocol and parameter settings

Here we describe the set of parameters which is used for all simulations in this section.
This set is motivated by the settings used in Refs. [131–137] and [N3]. We initialize the
system with 12×12×25 (x× y × z) lattice sites. We start from an empty lattice and fill
the lattice using a variational Monte-Carlo minimization with 50000 Monte-Carlo steps,
for details see App. A.1. We use periodic boundary conditions in the x- and y-direction.
For the z-direction we use a harmonic trap such that the density of the atoms vanishes
at the edge of the trap, see Sec. 4.1.2 and Fig. 4.11. We adjust the chemical potential
such that the density in the center of the trap is similar to the one in Refs. [131–137].
All observables are averaged over the full trap. Hence, the resulting particle numbers
are lower than the ones in the center. The discretization length for the z-direction is
dz = 0.13 µm. The values of the tight-binding parameters are given in Sec. 4.1.2. For the
interaction strength we scale the estimates obtained in Sec. 4.1.2 by 0.9. This scaling factor
approximately accounts for the higher particle number that we use for our simulations
in order to ensure that we stay in the range of validity of classical field theory. The
protocol for the quench is sketched by red arrows in Fig. 4.1. We initialize the system
at ∆Vinit = −1.8V0 and start the time evolution with a fast quench changing the value
of ∆V from ∆Vinit = −1.8 V0 to ∆Veq = 0.43 V0 within the first 100 µs. Afterwards we
let the system equilibrate at ∆Veq = 0.43 V0 for 20 ms before we perform a second slow
quench during 4 ms, hence reaching ∆Vf after 24 ms. For the simulations from Ref. [N3]
we compare to a different experimental setup, where we use a direct quench without the
intermediate step of equilibration at ∆Veq = 0.43 V0.

4.2.3. Condensation in higher bands: the s-px-py-condensate

When loading atoms into a lattice with alternating deep and shallow lattice sites and
then suddenly performing a quench exchanging the depth of the lattice sites the atoms
are transferred to the second band (remember the sketch in Fig. 4.1). On intermediate
time scales the atoms prethermalize in the second band before on even longer time scales
they decay back to the first band. We show the occupations of each orbital after such a
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4. Ultracold atoms in higher bands: the s-px-py-lattice

Figure 4.12 – Orbital occupations as a function of time for a single Monte-Carlo
trajectory. We show the dynamics without doing a second quench, i.e. ∆Veq =
∆Vf = 0.43 V0. The inset shows a zoom of the region marked in the large figure. The
system is initialized with temperature T = 1/2Erec/kB = 48 nK.

quench in Fig. 4.12

ns,C =
1

NC

∑
Ri∈C

〈b†s,Ri
bs,Ri
〉 nσ =

1

NA

∑
Ri∈A

〈b†σ,Ri
bσ,Ri
〉 ,

where σ ∈ {px, py}, C ∈ {A,B} and the sum runs over all sites of the A- or B-sublattice,
respectively. Initially almost all atoms are located in the s-orbitals on A-sites (from now
on called sA-orbitals). Other orbitals only have small thermal occupations. After the
quench to ∆Vf = 0.43 V0 the atoms relax almost instantaneously, after less than 1 ms,
to an intermediate steady state. Almost no atoms are transferred to sB-orbitals, while
p-orbitals increase their thermal occupation due to the reduced energy difference between
sA- and p-orbitals.
The quench process will always lead to some heating. Still, for sufficiently low initial

temperature, it is possible that thermalization within each tube in the z-direction leads to
recondensation in the second band. Then the occupation of p-orbitals leads to a condensa-
tion mode that spontaneously breaks the symmetry of the lattice. The Jsp-hopping terms
favor the alignment of neighboring s- and p-orbitals, see Fig. 4.13. This leads to the anti-
alignment of s-orbitals with distance e′x,y. Two independent sublattices form. The relative
phase between these sublattices is set by the interaction term b†x,Ri

b†x,Ri
by,Ri

by,Ri
+ h.c..

The interaction is minimized for the chiral orientation of p-orbitals leading to two degen-
erate condensation modes |Ξ±〉. In each initialization the system randomly picks one of
these condensation modes with equal probability.
We would like to test the realization of the chiral condensate in our simulations. Our
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Figure 4.13 – Sketch of the condensation mode. Circles indicate s-orbitals while
dumbbells indicate p-orbitals. There are two degenerate condensation modes that mix
the two sublattices shown in the figure with relative phase +i or −i. The condensation
mode spontaneously breaks the symmetry of the lattice. We therefore introduce the
site labels A1,2 and B1,2.

goal is to construct a correlation function that probes the relative orientation of the p-
orbitals, allowing to detect their px ± ipy-character. We first consider the single-particle
correlation function between different orbitals

Cσ(d) =
1

NA1

∑
Ri∈A1

b†s,Ri
bσ,Ri+d√

〈b†s,Ri
bs,Ri
〉〈b†σ,Ri+dbσ,Ri+d〉

, (4.32)

where σ ∈ {s, x, y}. For simplicity we have restricted ourselves to correlations of an
sA1-orbital with an arbitrary second orbital.

Within classical field theory the single-particle correlation function gives the phase
difference between the two sites considered. In order to illustrate this behavior we consider
a system with only two states and wave functions ψ1 =

√
n1e

iφ1 and ψ2 =
√
n2e

iφ2 . Then〈
b†1b2√

〈b†1b1〉〈b†2b2〉

〉
= ei(φ2−φ1) .

For an s-condensate all phases are aligned and hence Cs(d) = 1 for all d.
We show a snapshot of the single-particle correlations after 40 ms in Fig. 4.14. Only

the correlations on the first sublattice shown in Fig. 4.13 can be observed since the two
orientations of the second sublattice average out when taking many initializations. The
correlations on the visible sublattice are consistent with the chiral condensation mode.
We find that this condensation mode is the ground state for all values 0 < ∆V < 0.86V0.
In order to test the relative orientation of the two sublattices shown in Fig. 4.13, we
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Figure 4.14 – Snapshot of the single-particle correlations at t = 40 ms. The resulting
correlations are consistent with the condensation mode shown in Fig. 4.13. We show
the real part of the single-particle correlation function Re [〈Cσ〉(dj)] as a function of
dj = (xj, yj). On A-sublattice sites we show the correlation with s-orbitals (i.e. σ = s)
in both panels. On B-sublattice sites we show the correlation with px-orbitals (i.e.
σ = x) in the left and with py-orbitals (i.e. σ = y) in the right panel. Small sketches
on each site indicate which correlation is shown. The imaginary part of all correlations
vanishes. For this simulation there is no second quench, i.e. ∆Veq = ∆Vf = 0.43 V0.
The system is initialized with temperature T = 1/2Erec/kB = 48 nK. All observables
are averaged over 100 Monte-Carlo trajectories.

introduce the chirality of p-orbitals, i.e. the correlation of px- and py-orbitals on the same
site,

CCchir =
1

NC

∑
Ri∈C

IRi
,

where IRi
=

1

2i

b†x,Ri
by,Ri

− b†y,Ri
bx,Ri√

〈b†x,Ri
bx,Ri
〉〈b†y,Ri

by,Ri
〉

and C ∈ {B1, B2}. We note that the anti-symmetrization of the operator is the analog of
taking the imaginary part of the resulting expectation value.
We find that 〈CCchir〉 = ±1 for the px±ipy orientation on a given orbital. We say that this

p-orbital has positive or negative chirality. Since the chiral condensate has alternating
chirality on diagonally neighboring lattice sites, see Fig. 4.13, we need to evaluate the
chirality for both B1- and B2-sites separately. Faint dashed lines in Fig. 4.15(a) show this
observable for a single Monte-Carlo trajectory. Indeed the chirality is always opposite
on B1- and B2-sites. We observe that the system does not only randomly pick one of
the two condensation modes in each Monte-Carlo trajectory, but in fact even switches
between the two condensation modes for a single initialization. Both effects result in
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Figure 4.15 – Correlations as a function of time. Panel (a) shows the p-site chirality
averaged over the B1- and B2- sublattice sites, CB1,2

chir . Panel (b) shows the averaged
p-chirality correlation Cchir−chir, the condensate fraction nc and the fraction of atoms
occupying the X-points in the second band n(2)

X /n. We show the dynamics without
doing a second quench, i.e. ∆Veq = ∆Vf = 0.43 V0. The system is initialized with
temperature T = 1/2Erec/kB = 48 nK. Faint dashed lines show an example of a
single random initialization of the system, while solid lines are averaged over 100
Monte-Carlo trajectories.

vanishing chirality when averaging over several Monte-Carlo trajectories, see solid lines
in Fig. 4.15. In order to avoid this averaging effect and still obtain an estimate of how
well the atoms are condensed one can look at the correlation of the chirality between
neighboring p-orbitals

Cchir−chir =
1

NB1

∑
Ri∈B1

IRi
IRi+ey .

This quantity is shown in Fig. 4.15(b). For a pure chiral condensate the chirality corre-
lation Cxychir = −1, while for a wave function where all p orbitals have the same orientation
Cxy

chir = 1. Just as the occupations the chirality correlations reach their equilibrium value
almost instantaneously. The negative value of the chirality correlation reflects the stag-
gered order of the chirality of the p-orbitals, which is indicated by circles with rotation
directions in Fig. 4.13. The chirality correlation indicates how coherent the atoms are and
hence gives an estimate for the condensate density.

A more exact way of computing the condensate density is to consider the relative
phases and occupations of all orbitals. We obtain the condensate fraction for the chiral
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condensate |Ξ±〉, by summing all single-particle correlations weighted with the correct
phase factor

n±c =
1

N2

∑
Ri,Rj

∑
σ,τ∈{s,x,y}

〈b†σ,Ri
bτ,Rj
〉e−iΦστ (Ri,Rj)√

〈b†σ,Ri
bσ,Ri
〉〈b†τ,Rj

bτ,Rj
〉

,

where Φστ (Ri,Rj) is the relative phase that the respective orbitals should have in the
chiral condensate, see Fig. 4.13. Note that n±c is the condensate fraction and therefore
0 < n±c < 1. We also define the fraction of atoms condensed in both modes by

nc = n+
c + n−c .

In Fig. 4.15(b) we see that just as the chirality correlation the condensate fraction has
a sharp initial increase on a time scale of less than a millisecond. In contrast to the
chirality correlation it keeps increasing on longer time scales of about 40 ps. This reflects
the buildup of long-range correlations.
Finally, we define a set of observables that is similar to the ones presented above but is

closer to the observables that are accessible in experiments. In ultracold-atom experiments
it is usually difficult to extract the occupations of individual sites and orbitals. The
occupations of individual bands are, however, much more accessible via band mapping
[146, 181–185].
In order to obtain the occupations of bands we diagonalize the tight-binding Hamilto-

nian in momentum space in order to obtain the Bloch functions for each band

|ψαk〉 .

From our simulation we extract the site-resolved wave function |φi〉. Fourier transforming
leads to the wave functions in momentum space

|φk〉 =
1√
N

∑
i

eikRi |φi〉 .

We can now compute the overlap with the Bloch functions in order to extract the occu-
pation of individual momentum modes for each band

n
(α)
k = |〈ψαk |φk〉|2 .
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Figure 4.16 – Occupations n(α) of the first to fourth band as a function of time for a
single Monte-Carlo trajectory. We show the dynamics without doing a second quench,
i.e. ∆Veq = ∆Vf = 0.43 V0. The inset shows a zoom of the region marked in the large
figure. The system is initialized with temperature T = 1/2Erec/kB = 48 nK.

Summing over all momenta gives the occupations of bands

n(α) =
∑
k

n
(α)
k .

The minimum of the second band is at the X-points of the lattice. In experiments, it is
common to define a region of interest around the X-points in order to obtain an estimate
of the number of condensed atoms. We can imitate this approach by considering the
occupation of the X-points n(α)

X . The condensate fraction can then be approximated by
the normalized X-point occupation n

(α)
X /n, where n =

∑
α n

(α). We show this quantity
in Fig. 4.15(b). Its time evolution is qualitatively similar to the one for the condensate
fraction. Since there are also thermal atoms occupying the X-points it is generally slightly
larger than the condensate fraction.

For the tight-binding model of the s-px-py-lattice we consider four orbitals in each unit
cell and therefore obtain four bands. Often it will be helpful to look at the number of
atoms in excited bands, we therefore define

nex = n(2) + n(3) + n(4)

and similarly nex
X = n

(2)
X + n

(3)
X + n

(4)
X .

Away from the band crossings the occupations of bands agree well with the occupations
of the corresponding orbitals, compare Figs. 4.12 and 4.16. Only near the band crossings
different orbitals mix.
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Figure 4.17 – Time evolution of the occupations n(α) of the first four bands. We
show the dynamics without doing a second quench, i.e. ∆Veq = ∆Vf = 0.43 V0. The
system is initialized with temperature T = 1/2Erec/kB = 48 nK and all observables
are averaged over 300 Monte-Carlo trajectories.

4.2.4. Lifetime of atoms in higher bands

While the atoms form a stable condensate at intermediate time scales, they decay back
to the thermal ground state of the lattice for longer times on the order of several hundred
milliseconds. Their lifetime crucially depends on the control parameter θ and the tem-
perature of the system. Here we will therefore investigate the lifetime of the atoms in the
second band of the s-px-py-lattice.
We show the decay dynamics of the band occupations for longer times in Fig. 4.17.

After the quench the excitation scheme prepares almost all atoms in the second band
with an additional smaller occupation of the fourth band. Within about 1 s the atoms
relax towards a thermal state with dominant occupation in the first band. Significant
thermal occupations of higher bands remain due to the large energy that the atoms gain
when decaying back to the first band.
In Fig. 4.18 we show the time dependence of the second-band occupation as well as its

thermal and condensed fraction. We observe three different decay stages. In stage I the
number of condensed atoms increases, in stage II there is a large number of condensed
atoms and slow decay and stage III is characterized by exponential decay and a vanishing
number of condensed atoms. The different decay stages and the resulting metastability
of the condensate in the second band will be discussed in more detail in Sec. 4.2.5. Here
we consider the speed of the exponential decay in stage III. We define the onset of stage
III as the time where the condensate fraction drops below a threshold value and fit the
total number of atoms with an exponential

f(t) = ae−t/Tdecay + b ,
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Figure 4.18 – (b) Time evolution of the total number of atoms in the second band
n(2) as well as its condensate fraction n

(2)
X and thermal fraction n(2) − n

(2)
X after a

quench to ∆V = 0.43 V0. Panel (a) shows experimental data for comparison. Details
on the experimental data can be found in Ref. [N3]. We identify three main decay
stages: the coherence buildup stage (I), the inhibited relaxation stage (II) and the
fast relaxation stage (III). The black lines show exponential fits to the data points in
stage (III). The temperature of the initial state for both experiments and simulation
is T ≈ 0.5 Erec/kB ≈ 50 nK. For the simulation all observables are averaged over 300
Monte-Carlo trajectories. This figure has been published in Ref. [N3].

where a, b and Tdecay are fit parameters.
We extract the decay time scales Tdecay as a measure for the atom’s lifetime.5 The

extracted decay time scales as a function of the final potential offset between the two
sublattice ∆Vf are shown in Fig. 4.19. The condensate is most stable at intermediate
values of ∆Vf close to ∆Vf = 0.43 V0. Close to the band crossing points at ∆Vf = 0 and
∆Vf = 0.86V0 (remember Fig. 4.10) the condensate decays nearly two orders of magnitude
faster. We first consider the decay close to ∆Vf = 0. Here the sA- and sB-orbitals are
almost degenerate. Therefore hopping between these orbitals is likely to occur. Second-
order hopping processes via p-orbitals are strongly suppressed due to the high energy of
p-orbitals. Therefore the only hopping processes transferring atoms from sA- to sB-orbitals
are direct hopping terms between these orbitals, i.e. those proportional to Jdss. For larger
value of ∆Vf the energy difference between sA- and sB-orbitals increases and these hopping
processes are suppressed. Close to the second band crossing at ∆Vf = 0.86V0 the energy
of the sB-orbitals is well detuned from both sA- and p-orbitals. Hence we do not expect
hopping-induced decay. Still the decay time scale is two orders of magnitude smaller then
the one close to ∆Vf = 0.43 V0. In agreement with [195] we find that the main origin of
decay are the p-sB-interaction terms, which are b†s,Ri

b†s,Ri
bx,Ri

bx,Ri
+ b†s,Ri

b†s,Ri
by,Ri

by,Ri
+

5We note that this is of cause not the only time scale relevant for the lifetime of the atoms. Since the
atoms only decay significantly during stage III, the onset of stage III is similarly important.
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Figure 4.19 – Decay time scale as a function of final potential offset ∆Vf extracted
from experiments (a) and numerical simulations (b). Red curves in panel (b) show a
simulation where one of the two decay channels has been artificially switched off such
that only hopping-induced decay (dashed curve) or only interaction-induced decay
(dotted curve) remains. The temperature of the initial state for both experiments and
simulation is T ≈ 0.5 Erec/kB ≈ 50 nK. For the simulation all observables are averaged
over 300 Monte-Carlo trajectories. This figure has been published in Ref. [N3].

h.c.. These are scattering terms where 2 atoms in a px- or py-orbital collide and change
their orbital character to s, ending up in sB. Near the band crossing at ∆Vf = 0.86V0 the
p-orbitals are close in energy to sA-orbitals and therefore obtain large occupation, which
leads to fast interaction-induced decay. In order to check the significance of the two decay
processes at different values of ∆Vf we have artificially switched off each of the terms in
our simulations, see Fig. 4.19. When switching the p-sB-interaction terms off we observe
nearly unchanged decay time scales close to ∆Vf = 0, while the atoms become orders of
magnitude more stable for ∆Vf > 0.43 V0. The opposite happens when setting Jdss = 0.
The decay time scale is nearly unchanged close to ∆Vf = 0.86V0 and increases by orders
of magnitude for ∆Vf < 0.43V0. Hence we confirm that the main decay mechanism is due
to Jdss-hopping close to ∆Vf = 0 and due to p-sB-interactions close to ∆Vf = 0.86V0.

4.2.5. Self-stabilization of condensates in higher bands6

So far we found that the lifetime of the atoms crucially depends on the final potential
offset ∆Vf and have identified the decay mechanisms. We made the remark already that
three different decay stages emerge. Here we analyze and characterize these decay stages.
Immediately after the quench that transfers the atoms to the second band they populate

all available Bloch modes almost equally. In the subsequent thermalization dynamics the

6Significant parts of this section have been published in Ref. [N3]. The corresponding parts have
mainly been written by the author of this thesis.
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+

+

Figure 4.20 – Sketch of decay mechanisms and the inhibition of decay for the chiral
condensate. For the hopping-induced decay destructive interference between opposite
nearest-neighbor sites leads to the inhibition of decay. For the interaction-induced
decay the decay channels of two colliding px-orbital atoms and two py-orbital atoms
interfere destructively. This figure has been published in Ref. [N3]

tubes in the z-direction help the atoms to condense in the second band. Hence the first
decay stage depicted in Fig. 4.18 is characterized by an increasing number of condensed
atoms and decreasing number of thermal atoms. The number of condensed atoms increases
until it reaches the equilibrium value corresponding to the temperature of the atoms. This
is the onset of stage II. In the second stage there is a high condensate fraction and the
decay is slower than exponential as we see from the exponential fits that agree in stage III,
while deviating significantly in stage I and II. We see that in the crossover to stage III the
condensate fraction reduces and simultaneously the decay of atoms from excited bands
to the lowest band becomes faster. This indicates that the correlations of the condensate
are responsible for the long lifetimes of the atoms. Indeed we find that the condensation
mode shows destructive interference for both decay mechanisms that have been identified
in the previous section. As a result the condensate represents a dark state, which leads to
metastability of the atoms in the second band. To illustrate this behavior we consider a
single sB-orbital on site R. For the hopping-induced decay there are four different terms
that transfer atoms to this orbital

−Jdss
(
b†s,Rbs,R+e′x + b†s,Rbs,R−e′x + b†s,Rbs,R+e′y + b†s,Rbs,R−e′y + h.c.

)
.

Assuming that all atoms are condensed in the upper band, we know that sA-orbitals
on opposite sides of the sB-orbital have opposite phase and hence the above hopping
term vanishes, see Fig. 4.20. Hence there is perfect destructive interference for this decay
mechanism. If we were able to prepare a perfect condensate in the upper band, it would
not decay.
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A similar explanation holds for the interaction-induced decay. Here we have identified

UB
4

[
b†s,Rb

†
s,Rbx,Rbx,R + b†s,Rb

†
s,Rby,Rby,R + h.c.

]
as the relevant decay mechanism. The condensation mode is characterized by the inter-
action-stabilized relative phase between px- and py-orbitals of ±i. It also has the same
occupation np in these orbitals. When evaluating the above interaction term for the
condensate wave function |Ξ±〉 we therefore obtain

〈Ξ±|a†i,sa
†
i,s (ai,xai,x + ai,yai,y) |Ξ±〉 = 〈Ξ±|a†i,sa

†
i,s

(
npe

iφ − npeiφ
)
|Ξ±〉 = 0 .

We see that the condensation mode in the s-px-py-lattice has perfect destructive interfer-
ence for both decay channels and hence does not decay. Only the thermal fraction decays.
Decaying atoms gain an energy corresponding to the band gap between the first and sec-
ond band, which for our lattice is on the order of Erec. This energy thermalizes also among
the atoms in the second band and hence leads to heating of the atoms. This heating effect
together with the reduction of the number of atoms in the second band leads to a reduced
phase-space density and hence lower condensate fraction. Eventually we cross the phase
transition and only thermal atoms remain. This is the onset of stage III. Since now only
thermal atoms remain there is no inhibition of decay and the remaining thermal atoms in
the second band decay exponentially fast.
Higher initial temperature, shown in Fig. 4.21, leads to higher temperature after the

quench and hence a lower condensate fraction. Now the crossover to stage III occurs
significantly earlier and the exponential fit is a good approximation even for short times.
This confirms that the coherent order of the condensate inhibits relaxation.
A simple two-fluid model for the decay of the atoms can give further insight into the

dynamics. We consider only the atoms in the upper band and assume that we have
a thermal fraction Nth and a condensed fraction Nc of atoms. The total number of
atoms is Ntot = Nth + Nc. Furthermore we assume that the equilibration within the
thermal and condensed atoms happens on a much faster time scale than the equilibration
between the two, such that we can assume the equilibration within each fraction to be
instantaneous. Without loss of generality we assume that the condensed atoms have zero
energy. Following the description in chapter 2 of Ref. [187] we assume a generic density
of states

g(ε) = cαε
α−1 .
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4.2. Dynamics of atoms in excited bands

Figure 4.21 – (b) Time evolution of the total number of atoms in the second band n(2)

as well as its condensate fraction n(2)
X and thermal fraction n(2) − n(2)

X after a quench
to ∆V = 0.43 V0 for high initial temperature. Panel (a) shows experimental data for
comparison. Details on the experimental data can be found in Ref. [N3]. We identify
three main decay stages: the coherence buildup stage (I), the inhibited relaxation
stage (II) and the fast relaxation stage (III). The black lines show exponential fits to
the data points in stage (III). The temperature of the initial state for both experiments
and simulation is T ≈ 110 nK. For the simulation all observables are averaged over
300 Monte-Carlo trajectories. This figure has been published in Ref. [N3].

We can then compute the total number of thermal atoms and the total energy E as

Nth =

∫
dε g(ε)

1

eε/(kBT ) − 1
∝ Tα

E =

∫
dε g(ε)

ε

eε/(kBT ) − 1
∝ Tα+1 .

We absorb the proportionality constants into the units of temperature and energy and
therefore obtain

Nth = Tα NthT = E .

As we have seen above the condensed atoms do not decay due to perfect destructive
interference. We therefore assume that only the thermal atoms decay with time scale
1/γdec. Furthermore we assume that the thermal and condensed fraction equilibrate on
a time scale of 1/Γeq. On average whenever a thermal atom decays the total energy is
decreased by the mean energy of a thermal atom E/Nth. Additionally the atom gains an
energy ∆E corresponding to the energy difference between the upper and the lower band.
We assume that this energy is redistributed to the atoms in the upper band and hence
the energy of these atoms is increased by this amount. Hence the equations of motion for
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Figure 4.22 – Two-fluid model for self-stabilization at low (a), medium (b) and high
(c) initial temperature. We show the total Ntot, thermal Nth and condensed Ntot−Nth

particle number as well as temperature T computed within a two-fluid model. The
model shows qualitative agreement with experimental and simulated data shown in
Figs. 4.18 and 4.21. All quantities within the toy model are dimensionless. We use
γdec = 1, Γeq = 3, α = 2 and ∆E = 3. This figure has been published in Ref. [N3].

our model system are

Ṅth = −γdecNth + Γeq(Tα −Nth)

Ṅtot = −γdecNth

Ė = (∆E − E

Nth

)γdecNth . (4.33)

We derive the equation for the temperature of the system by taking the derivative of
T = E/Nth. We obtain

Ṫ = γdec∆E −
ΓeqT

Nth

(Tα −Nth) . (4.34)

These equations are of cause only valid as long as the condensate fraction is finite, after-
wards Ntot = Nth and

Ṅth = −γdecNth

Ṫ = γdec∆E .

In our case having one harmonically trapped and two free dimensions we obtain α ≈
1/2 + 1/2 + 1 = 2. We show the resulting time dependence in Fig. 4.22. We find that
the results agree qualitatively with the simulations based on classical field theory. All
main features of the three decay stages are also captured by the two-fluid model. Two
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additional insights can be gained from the two-fluid model: firstly, we have easy access to
the temperature in the two-fluid model and see that there is only a slow increase while
there is still a large condensate fraction, and the temperature increases rapidly afterwards.
This can be understood as follows: from Eq. 4.34 we can see that moving an atom from
the condensate to the thermal cloud effectively cools the atoms. The reason is that the
mean kinetic energy of thermal atoms is larger than the mean kinetic energy of condensed
atoms. This cooling process counteracts the heating effect due to the decay of thermal
atoms. Secondly, the two-fluid model has a sharp phase transition from a condensate
to a purely thermal cloud showing a kink in the condensate fraction. By construction
the decay of the two-fluid model is exponential when the condensate fraction vanishes.
We also see from Fig. 4.22 that the inflection point of the curve for the total number of
excited atoms is exactly the point where the condensate fraction vanishes. This seems to
also hold for the experimental data and our classical-field-theory simulations, for these
cases the phase transition is, however, smoothed due to the trapping potential.

Within the two-fluid model we can gain insight into the scaling of decay during the
different relaxation stages. As we have noted the total number of atoms decays expo-
nentially during stage III. Here we are interested in the scaling during stage II. Since at
the onset of stage II the atoms have equilibrated already we can assume instantaneous
equilibration, such that Nth = Tα, during this stage. With this approximation we can
solve Eq. 4.33 and obtain

E = (∆E − (∆E − T0)e−
γ
α+1

t)α+1 , (4.35)

where T0 = E
1/(α+1)
0 is the initial value of the temperature and E0 the one of the energy.

Note that it is crucial to make the approximation Nth = Tα for the differential equation of
the energy and not the temperature. In the latter case we would be neglecting the above
mentioned change of temperature due to atoms that transfer between the condensate
and the thermal fraction. Still we can derive the solution for the time dependence of
temperature from Eq. 4.35

T = (∆E − (∆E − T0)e−
γ
α+1

t)α .

The temperature always equilibrates towards a constant value of T = ∆Eα. We therefore
consider the solution for the total number of atoms for fixed temperature, then

Ṅtot(t) = −γdecT
α
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Figure 4.23 – Simulated time evolution of the total number of atoms in the second
band n(2) as well as its condensate fraction n(2)

X and thermal fraction n(2) − n(2)
X after

a quench to ∆V = 0.25 V0 for three different temperatures as indicated in the panels.
All observables are averaged over 200 Monte-Carlo trajectories. Panel (a) has been
published in Ref. [N3].

and

Ntot = Ntot,0 − γdecT
αt .

where Ntot,0 is the initial value of Ntot. Hence for any fixed temperature the total number
of atoms decays linearly. This stresses the efficiency for the inhibition of decay, since we
obtain linear instead of exponential scaling. Also we confirm that a perfect condensate at
T = 0 represents a dark state without decay.
We return to our numerical simulations and take a closer look at the coherence-buildup

stage. In the beginning of this stage there is a large thermal fraction, hence low coherence
and therefore the atoms should decay fast. This effect can not be observed in Fig. 4.18.
We do observe it, however, at significantly lower temperatures shown in Fig. 4.23(a) and
also see a faint signature of this initial fast decay in the toy model in Fig. 4.22(a). The
atoms initially decay fast until the condensate fraction becomes large and the amount of
total atoms in the upper bands reaches a plateau with negligible decay. At significantly
longer times, the condensate fraction reduces and we enter the fast decay stage. We
therefore confirm the fast decay in the condensation stage and conclude that it is only a
minor effect at the experimental temperature and therefore not observed in Fig. 4.18.
Finally, we show the decay time scale for several different temperatures in Fig. 4.24(a).

We see that the decay time scale has no strong dependence on the initial temperature
of the atomic cloud. For all temperatures the decay time scale is fast close to the two
band crossings at ∆V = 0 and ∆V = 0.86 V0. For intermediate values of ∆V there
is a competition between the two decay channels. Depending on the relative size of
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Figure 4.24 – (a) Simulated decay time scale as a function of final potential offset ∆V
at several different temperatures as indicated in the legend. After loading the atoms
into the second Bloch band they relax back to the lowest band. In stage III the decay
is exponential and hence we extract the corresponding time scale. (b) Cross-over time
from stage II to III. We extract the time where the condensate fraction drops below
3%, which indicates the cross-over from stage II to III and is the starting point for
the exponential fits for the decay time scale. We see that the cross-over time crucially
depends on temperature while the temperature dependence of the decay time scale
is not as strong. All observables in this figure are averaged over 200 Monte-Carlo
trajectories. This figure has been published in Ref. [N3].

the respective decay constants the longest lifetime is obtained close to the center point
∆V = 0.43 V0. Only the maximum of decay time scale shifts to slightly lower ∆V for
higher temperatures. The lacking temperature dependence of the decay time scale can
be explained as follows: the initial temperature of the cloud determines the condensate
fraction at the beginning of stage II. Hence we expect larger coherence and slower decay
during stage II. Subsequently heating leads to increasing temperature and hence reducing
phase-space density. The onset of stage III is essentially determined by the time when
the phase-space density has reduced below the critical value for condensation. Hence
independent of the initial temperature the phase-space density in the beginning of stage
III is always the same. Lower initial temperature only leads to a later cross-over from
stage II to III. We confirm this by showing the cross-over time point from stage II to III in
Fig. 4.24. We define the cross-over time point as the point where the condensate fraction
drops below a certain threshold value. We see that indeed it changes dramatically with
temperature, indicating significantly longer durations of stage II and as a result longer
lifetimes of the condensate for lower initial temperature. Hence also the temperature
dependence of the decay time scale and the crossover time point from stage II to III are
consistent with the three different decay stages presented in this section.
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Figure 4.25 – Sketch of the phase pattern of the condensate wave function |ψ±〉 at
the X+-point in (a) and X−-point in (b). Circles denote s- and dumbbells p-orbitals.

4.2.6. Oscillation between X-points.7

It has been proposed in Ref. [196] that a cloud of atoms prepared at one of the two
degenerate minima of the second band, i.e. the X+- or X−-point, see Fig. 4.5, will perform
coherent oscillations between the two X-points that encode information about the relative
strength of the involved interaction processes. While Ref. [196] used a minimal model
considering only the two Bloch states |ψ±〉 at theX+- andX−-point, we study the resulting
dynamics within our classical-field-theory simulations. Most notably we find instanton-
type dynamics, where the condensate oscillates between the two many-body lowest-energy
states |Ξ±〉, which are characterized by chiral order. While the model from Ref. [196]
makes precise predictions on the oscillation frequencies of the X-point dynamics these
instanton-type oscillations are not observed.
We simulate the dynamics by starting at a moderate negative potential offset ∆Vinit =

−0.63 V0. This ensures that the lattice is sufficiently shallow such that the atoms can
form a coherent condensate in the s-orbitals on A-sites. Subsequently we use a phase-
imprinting technique in which we multiply each orbital with the phase corresponding to
the state at the X+-point, as depicted in Fig. 4.25(a). This is the theoretical analogue of
performing a half-cycle Bloch oscillation in experiments and exerts a momentum kick that
moves the cloud of atoms to the X+-point. Only after this imprinting step we perform
the quench that transfers the atoms to the second band. Here we perform a direct quench
to the final imbalance ∆Vf within 100 µs. This protocol prepares the atoms in the Bloch
state |ψ+〉. The states |ψ+〉 and |ψ−〉 are, however, not the lowest-energy states of the
interacting system. As we have seen in Sec. 4.2.3, the many-body lowest-energy state is
the chiral condensate |Ξ±〉 depicted in Fig. 4.13. So far we have characterized this state
by its chiral superposition of the p-orbitals with relative phase ±i. An alternative view
on this state is that it mixes the Bloch functions |ψ±〉 at the X+- and X−-points with

7Parts of this section have been published in Ref. [N4]
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Figure 4.26 – Different representations of the oscillation between X+- and X−-
points. Panel (a) shows the number of condensed atoms n±c in the two degener-
ate condensate modes |Ξ±〉, while panel (b) shows the relative occupation of X-
points (nex

X+
− nex

X−
)/(nex

X+
+ nex

X−
). The solid red line in (b) shows a fit with a

damped oscillation, as defined in Eq. 4.36. The example shown has a conden-
sate density nc = n+

c + n−c ≈ 0.9. For both panels we initialize the system at
T = 0.005 Erec/kB ≈ 0.5 nK and ∆Vinit = −0.63 V0 and perform a direct quench
to ∆Vf = 0.35 V0. Panel (a) shows a single Monte-Carlo trajectory, while panel (b)
is averaged over 300 trajectories.

relative phase ±i, such that8

|Ξ±〉 =
1√
2

(|ψ+〉 ± i|ψ−〉) .

The corresponding occupations n±c of |Ξ±〉 and nex
X+,X−

of |ψ±〉 have been defined in
Sec. 4.2.3.

In Fig. 4.26 we show the resulting dynamics for low initial temperature. After the
quench the atoms recondense at the X+-point in the second band, such that the relative
X-point occupation (nex

X+
− nex

X−
)/(nex

X+
+ nex

X−
) = 1. As a result the atoms form an

equal superposition of the two interacting lowest-energy states |Ξ±〉, such that n+
c =

n−c = nc/2. We observe two different stages in the resulting dynamics for t < 100 ms

and t > 100 ms, respectively. The first stage is characterized by coherent oscillations
between both |Ξ±〉 and |ψ±〉. At the zero crossings of the relative X-point occupation
the atoms alternate between maximal overlap with |Ξ+〉 and |Ξ−〉. Similarly, each time
n+

c and n−c cross, the atoms have dominant overlap with either |ψ+〉 or |ψ−〉, such that
(nex

X+
− nex

X−
)/(nex

X+
+ nex

X−
) ≈ ±1. In each Monte-Carlo initialization the atoms randomly

start with an oscillation towards either |Ξ+〉 or |Ξ−〉 with equal probability. Therefore

8With the convention shown in Figs. 4.13 and 4.25 there is an additional phase factor (1 − i)/
√

2,
which we drop for better readability.
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Figure 4.27 – Phase-space diagram of the oscillation between the two many-body
lowest-energy states of the second band, which are the two chiral condensate modes
|Ξ±〉. We plot the relative condensate fraction nr = (n+

c − n−c ) / (n+
c + n−c ) on the x-

and its numerically determined derivative on the y-axis. Time is encoded in the color
scheme, as indicated by the color bar. We distinguish two different dynamical stages:
during the first stage there are coherent oscillations between |Ξ+〉 and |Ξ−〉, see dark
outer paths, and during the second stage |Ξ+〉 obtains the dominant occupation, see
red and yellow inner paths. We use the same set of parameters as in Fig. 4.26. In
order to avoid noise we apply a Gaussian filter to nr. This figure has been published
in Ref. [N4].

the oscillations of n±c average out for many Monte-Carlo trajectories. This is the reason
why we show these oscillations for a single trajectory in Fig. 4.26(a). In contrast, the
oscillation always starts at the X+-point as a result of our preparation scheme. We show
these oscillations averaged over 300 Monte-Carlo trajectories in Fig. 4.26(b). We see a
more pronounced damping effect for the averaged oscillations. This is a result of several
different frequency components involved in the oscillations. Depending on the random
initialization of the system that accounts for thermal fluctuations, the resulting oscillations
may have different frequencies. The dephasing between different frequency components
leads to damping of the oscillations.
A different view on the dynamics can be obtained by plotting the oscillations between
|Ξ+〉 and |Ξ−〉 in a phase-space diagram, as shown in Fig. 4.27. As the conjugate variable
to the relative condensate fraction

nr =
n+

c − n−c
n+

c + n−c

we use its time derivative ∆nr/∆t. In the initial stage of the dynamics the atoms have
almost unit overlap with |Ξ±〉 once per cycle and hence perform oscillations between the
two lowest-energy states of the system. This switching between the ground states is called
instanton and plays an important role in high-energy physics [197, 198]. In Fig. 4.27 we
observe a slight reduction in ∆nr/∆t whenever nr = 0. This is a result of the slow down
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Figure 4.28 – (a) Oscillation frequencies, obtained from fitting the data from our
classical-field-theory simulation, are plotted versus ∆Vf . We show the oscillation
frequencies at three different initial temperatures, as indicated in the legend. For
all three temperatures the obtained oscillation frequencies agree quantitatively. (b)
For comparison we show experimental data taken by José Vargas from the group of
Prof. Andreas Hemmerich. The temperature for this data is estimated to be 50 nK.
For the high-temperature data it is more difficult to observe the low-frequency oscil-
lations and hence we omit these data points in (a) and show a smaller range of ∆Vf in
(b). To adjust the mean-field interaction energy to the experimental one we scale the
interaction parameters obtained in Sec. 4.1.2 by 0.2 for panel (a). Before fitting all
data is averaged over 300 Monte-Carlo trajectories. The experimental data presented
in panel (b) has been published in Ref. [N4]. Refer to this reference for details on the
experimental protocol.

due to a free-energy barrier between the two lowest-energy states |ψ±〉. Eventually the
atoms do not have sufficient energy to overcome this barrier. This is the onset of the
second stage of the dynamics at t ≈ 100 ms. During this stage the atoms are trapped in
one of the free-energy minima and hence always have larger overlap with the same one
of the states |Ξ±〉. Which of the two states the atoms relax into depends on the initial
parameters and the dissipation of the system.

This dynamics is reminiscent of a rigid pendulum swinging in a circle until dissipation
reduces the energy far enough that the inverted position a the top of the circle is energet-
ically forbidden. From that point onward the pendulum performs oscillations around the
equilibrium position at the bottom of the circle. Depending on the initial conditions and
damping the cross-over between the two types of oscillations may take a variable amount
of time that leads to a phase jump between the two oscillations. A signature of this phase
jump is the strong reduction of the amplitude of the oscillations, observed in Fig. 4.26(b):
in each Monte-Carlo trajectory there is a slightly different phase jump. This leads to
destructive interference of oscillations when averaging over many trajectories, resulting in
significantly reduced amplitudes of the oscillation in the second stage of the dynamics for
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Figure 4.29 – Comparison of the excited band occupation nex in panel (a) and
condensate fraction nc in panel (b) for different initial values ∆Vinit. For all cases
we choose ∆Veq = ∆Vf = 0.43 V0. The system is initialized with temperature
T = 1/2Erec/kB = 48 nK and all observables are averaged over 100 Monte-Carlo
trajectories.

t > 100 ms.
It was proposed in Ref. [196] that the observed oscillations give insight on the interaction

properties of the system. In particular, it was predicted that the oscillation frequency
depends on the relative strength of those interactions in which atoms exchange their
momentum between X+ and X− as compared to those in which they keep the same
momentum. The exchange-type interactions are related to the interaction terms that
change the p-orbital character b†x,Ri

b†x,Ri
by,Ri

by,Ri
+ h.c. and hence are most pronounced

for larger p-orbital occupations close to the band crossing at ∆V = 0.86 V0. In order to
check this prediction we perform a fit to the oscillation between X-points as shown in
Fig. 4.26(b). As a fit function we use a damped harmonic oscillation

f(t) = a cos(ωt+ t0)e−bt + c , (4.36)

where a, b, c and t0 denote fit parameters and ω is the fitted frequency of the oscillation.
The resulting oscillation frequencies, shown in Fig. 4.28(a), increase as a function of ∆Vf

as p-orbitals get occupied. Hence we confirm the predictions from Ref. [196]. We also
obtain qualitative agreement with experimental data, shown in Fig. 4.28(b).

4.2.7. Optimizing the loading procedure

Inspired by the experiments in Refs. [131–137] we have so far mainly used the following
quench protocol: we first quench from ∆Vinit = −1.8 V0 to ∆Veq = 0.43 V0 within t1 =

100 µs, then wait for equilibration at ∆Veq = 0.43 V0 for teq = 20 ms and perform a second
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Figure 4.30 – Comparison of the excited band occupation nex in panel (a) and
condensate fraction nc in panel (b) for different quench-time scales t1 at ∆Veq =
∆Vf = 0.43 V0. The system is initialized with temperature T = 1/2Erec/kB = 48 nK
and all observables are averaged over 100 Monte-Carlo trajectories.

quench to ∆Vf within t2 = 4 ms. In this section we analyze whether it is possible to obtain
a larger condensate fraction or longer lifetime in the upper band by optimizing the quench
protocol. We find that the protocol used in Refs. [131–137] is indeed well optimized with
only minor options for further improvement.

First consider the starting point of the quench ∆Vinit. We compare three different
cases in Fig. 4.29. The curves for ∆Vinit = −1.8 V0 and ∆Vinit = −1.2 V0 look almost
identical. Only the coherence of the condensate in the upper band is slightly better
for ∆Vinit = −1.8 V0, see Fig. 4.29(b). The differences for ∆Vinit = −0.6 V0 are rather
drastic. The atoms decay significantly faster to the lowest band and the condensate
fraction in the upper band never exceeds 0.03. For ∆Vinit = −0.6 V0 the A-sites are
comparatively shallow with only a small offset to the B-sites. As a result the initial state
has finite thermal occupation on sB-orbitals, which is disadvantageous for three reasons.
First of all this leads to fewer atoms in the upper band, since these atoms can not be
transferred. Secondly these orbitals are rapidly lowered during the first quench, which
leads to a significant amount of heating. Since the atoms on sB-orbitals thermalize with
the remaining atoms after the quench this leads to a higher temperature of the condensate
and hence lower coherence. Thirdly the occupations on sB orbitals combined with the
shallow lattice leads to s-wave coherence of the initial state. This is, however, not the
desired symmetry for the chiral condensate and hence leads to less efficient loading. In
summary, we find that it is important to choose an initial quench parameter ∆Vinit <

−1.2 V0. We fix the value of ∆Vinit = −1.8 V0 for all further simulations.
We note that we purposely choose ∆Vinit = −0.63 V0 for the X-point oscillations. For

that case it is important to have a phase-coherent initial state in order to make phase
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Figure 4.31 – Comparison of the excited band occupation nex in panel (a) and the
condensate fraction nc in panel (b) for different equilibration times teq. For the direct
quench we choose ∆Veq = ∆Vf = 0.26 V0 and hence there is no holding time. For
all other curves we use ∆Veq = 0.43 V0 and ∆Vf = 0.26 V0. The system is initialized
with temperature T = 1/2Erec/kB = 48 nK and all observables are averaged over 100
Monte-Carlo trajectories.

imprinting possible.
Next we consider the influence of the initial quench duration t1. The quench should

be slow compared to the harmonic-oscillator frequency of each lattice site ωC , while at
the same time being fast compared to the band splitting at the avoided-crossing point
for ∆V = 0. The first constraint ensures that the wave function can equilibrate within
each lattice site during the quench. The second constraint ensures that the atoms are
transferred from the first to the second band, instead of adiabatically following the first
band. For our parameters, see Sec. 4.1.2, the harmonic-oscillator frequency is ωC ≈ 50−
80 kHz, depending on the value of ∆V and the site C = A,B considered. This corresponds
to a time scale of about 10−20 µs. The band splitting of the lowest two bands at ∆V = 0

is approximately 0.3Erec, corresponding to a time scale of about tsplitting ≈ 250 µs. Hence
the previously used time scale t1 = 100 µs lies conveniently between the two constraints
10 µs < t1 < 250 µs. This value indeed leads to the highest coherence of the condensate
within our simulations, see Fig. 4.30. A shorter time scale t1 = 1 µs gives, however,
similarly good results, although being much shorter than the time scale affiliated with
the harmonic-oscillator frequency. This is to be expected since our simulations do not
treat the dynamics within each lattice site. Therefore the atoms equilibrate infinitely fast
within each lattice site and there is no lower bound on the quench duration t1 within our
simulations. For longer time scales t1 > tsplitting ≈ 250 µs indeed some of the atoms remain
in the lowest band. For t1 = 3000 µs more than half of the atoms are transferred to the
lowest band during the quench and the remaining atoms fail to condense in the upper
band. An interesting situation occurs for t1 = 1500 µs. As t1 > tsplitting some of the atoms
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Figure 4.32 – Comparison of the excited band occupation nex in panel (a) and the
condensate fraction nc in panel (b) for different equilibration times teq. For the direct
quench we choose ∆Veq = ∆Vf = 0.69 V0 and hence there is no holding time. For
all other curves we use ∆Veq = 0.43 V0 and ∆Vf = 0.69 V0. The system is initialized
with temperature T = 1/2Erec/kB = 48 nK and all observables are averaged over 100
Monte-Carlo trajectories.

remain in the lowest band, leading to initially lower coherence of the condensate. The
coherence decays slower, however, and at intermediate time scales the s-site correlations
are even larger than for t1 = 100 µs, leading also to slower decay of the occupation in
the upper band. We explain this as follows: the atoms decaying from the upper band to
the lower band gain a large amount of energy and hence lead to heating. The fraction
of atoms that has been transferred to the sB-orbitals is cold compared to these atoms
and hence can act as a cooling reservoir for the remaining atoms. On intermediate time
scales this leads to lower temperatures and hence a larger condensate fraction. This has
the trade off of having fewer atoms in the upper band with lower coherence on short time
scales. For all further simulations we therefore keep the value of t1 = 100 µs.

Up to now we have optimized the first quench that is independent of the final value
∆Vf which we want to achieve. Now we use the optimal parameters for the first quench
and further optimize the equilibration time teq before the second quench and the quench
duration t2 of the second quench. We show results for two different values of ∆Vf : ∆Vf =

0.26 V0 and ∆Vf = 0.69 V0. The first value is smaller than the value of ∆Veq = 0.43 V0,
where we let the system equilibrate and hence the decay is mainly hopping induced. The
second value is larger than ∆Veq = 0.43 V0 and hence the decay is mainly interaction
induced. A comparison of different holding times is shown in Figs. 4.31 and 4.32. For
∆Vf = 0.26 V0 a direct quench leads to the slowest decay of atoms to the lower band,
while at the same time reaching the highest coherence of the condensate. Reducing the
value of ∆V from ∆Veq = 0.43 V0 to ∆Vf = 0.26 V0 implies lowering the energy of the
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Figure 4.33 – Comparison of the excited band occupation nex in panel (a) and the
condensate fraction nc in panel (b) for different quench time scales t2. For all curves we
use ∆Veq = 0.43 V0 and ∆Vf = 0.26 V0. The system is initialized with temperature
T = 1/2Erec/kB = 48 nK and all observables are averaged over 100 Monte-Carlo
trajectories.

predominantly occupied sA-orbitals. This leads to additional heating. At the same time
the condensate is similarly stable for ∆V = 0.26 V0 and ∆V = 0.43 V0. Therefore there
is no benefit from waiting for condensation at ∆V = 0.43 V0. The contrary is true for
∆Vf = 0.69 V0. Here performing a direct quench leads to significant loss and as a result
significant heating before the coherence of the condensate in the upper band is build up
completely. It is therefore beneficial to wait for condensation at ∆Veq = 0.43 V0 and then
perform a slow second quench to ∆Vf = 0.69 V0. We find that holding times of about
20 µs are ideal.
We show results for different quench time scales t2 in Figs. 4.33 and 4.34. For ∆Vf =

0.26 V0 the quench duration does not lead to significant differences for the coherence of
the condensate and the decay time scale. In contrary, for ∆Vf = 0.69 V0 we find that a
quench duration of t2 = 4 ms is indeed well suited. Faster quenches result in overall lower
coherences of the condensate, while slower quenches reach lower peak coherences.
In summary, we find that the parameter set ∆Vinit = −1.8 V0, t1 = 100 µs, teq = 20 ms

and t2 = 4 ms, which is inspired by Refs. [131–137], is already well optimized. In some
cases it may be beneficial to use a slightly slower first quench t1 ≈ 1500 µs, which leads
to a larger coherence of the condensate on intermediate time scales. Furthermore it
may be beneficial to perform a direct quench without going to the intermediate point
∆Veq = 0.43 V0 for values ∆Vf < 0.43 V0. Finally, we make the remark that in this section
we have only generally optimized the quench protocol for high coherence of the condensate
and long condensate lifetimes by comparing a series of different quench protocols. In the
figures we have only shown a subset of these quench protocols that illustrates the general
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Figure 4.34 – Comparison of the excited band occupation nex in panel (a) and the
condensate fraction nc in panel (b) for different quench time scales t2. For all curves we
use ∆Veq = 0.43 V0 and ∆Vf = 0.69 V0. The system is initialized with temperature
T = 1/2Erec/kB = 48 nK and all observables are averaged over 100 Monte-Carlo
trajectories.

behavior. But of cause also the full set considered is not exhaustive and a more thorough
investigation may be helpful for specific use cases.

4.2.8. Validity cross check

As a validity cross check for the discretization of the tubes in the z-direction we compare
several different discretization lengths. In principle the results should agree for any system
with the same physical length Nzdz. We show three different cases with same physical
length 25 · 0.13 ≈ 28 · 0.116 ≈ 20 · 0.163 in Figs. 4.35 and 4.36. Furthermore we note
that we have artificially increased the steepness of the harmonic trap as compared to
the experimental parameters. We therefore also show one comparison with the same
discretization length but larger number of sites, corresponding to a larger system and
hence a shallower trap. For all cases we obtain qualitative agreement, but differences on
the quantitative level. These are likely due to being close to the limit of validity of classical
field theory using rather low atom numbers per site. Increasing the discretization length
increases the number of atoms on each site and hence improves the validity of classical
field theory. Simultaneously it reduces the bandwidth of the effective band structure
which may lead to slower decay as observed in Fig. 4.35.
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Figure 4.35 – Comparison of different numbers of sites in the z-direction Nz and
different discretization lengths dz for ∆Veq = ∆Vf = 0.43 V0. Panel (a) shows the
excited-band occupation nex, while panel (b) shows the sum of the occupations of
the third and fourth band n(3) + n(4). The system is initialized with temperature
T = 1/2Erec/kB = 48 nK and all observables are averaged over 100 Monte-Carlo
trajectories.
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Figure 4.36 – Comparison of different numbers of sites in the z-direction Nz and
different discretization lengths dz for ∆Veq = ∆Vf = 0.43 V0. Panel (a) shows the
condensate fraction nc, while panel (b) shows the same data for shorter times. The
system is initialized with temperature T = 1/2Erec/kB = 48 nK and all observables
are averaged over 100 Monte-Carlo trajectories.
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4.3. Excitation spectra for atoms in higher bands

We apply Bogoliubov theory in order determine the many-body lowest-energy states of
the s-px-py-lattice in the weakly interacting limit. We show how Bogoliubov theory can
be applied to an arbitrary system numerically even if the noninteracting Hamiltonian
can not be solved analytically. We use this approach in order to confirm that the chiral
condensate is indeed the many-body lowest-energy state in the second band of the s-
px-py-lattice. Finally, we show how an imbalance in the hopping parameters breaks the
degeneracy between the X+- and X−-points and hence leads to condensation with unequal
population of the two X-points.

4.3.1. Multi-mode Gross-Pitaevskii and Bogoliubov theory

Consider a three-dimensional gas of bosons. When lowering the temperature there is a
second-order phase transition and below the critical temperature TC the bosons form a
Bose-Einstein condensate. In this state the bosons condense into a single wave function
that obtains macroscopic occupation. For temperatures approaching TC from below most
of the atoms are still occupying the condensation mode with only minor occupations of
other modes.

For a theoretical description of bosons at low temperatures it is therefore beneficial to
exploit the macroscopic occupation of the ground-state wave function. In some cases it
is even sufficient to only consider the condensation mode. This is the main approxima-
tion made within Gross-Pitaevskii theory. Additionally the low-energy excitations of the
condensate can be obtained within Bogoliubov theory.

There are many established descriptions of Gross-Pitaevskii and Bogoliubov theory, see
e.g. [187, 199–201]. Here we focus on the description of the multi-orbital case and the
chiral condensate.

Gross-Pitaevskii theory

Our eventual goal is to determine the ground state of the s-px-py-Hamiltonian, see Eqs. 4.2,
4.10 and 4.16. An approximate solution for the ground state is obtained by solving the
Gross-Pitaevskii equation. Here we will give a brief introduction to multi-mode Gross-
Pitaevskii theory by presenting model systems of increasing complexity.

We start with a single mode Hamiltonian with on-site interactions

Hsm =
∑
k

εkb
†
kbk + U

∑
k,p,q

b†k+pb
†
k−pbk+qbk−q . (4.37)
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We assume that the bosons condense in the bk=0 mode and that this mode has large
occupation such that we can replace bk=0 by a complex number Ψ. Then

Hsm − µ
∑
k

b†kbk = (ε0 − µ)|Ψ|2 + U |Ψ|4

and by doing a variation with respect to Ψ∗ we obtain the Gross-Pitaevskii equation

µ = ε0 + 2n0U , (4.38)

where n0 = |Ψ|2. For later convenience we note that an equivalent approach is to ex-
pand around the condensation mode and require that the linear order vanishes. The
Hamiltonian expanded up to linear order around b0 = Ψ is

Hsm − µ
∑
k

b†kbk = (ε0 − µ)|Ψ|2 + U |Ψ|4 +
∑
k 6=0

bkΨ
∗ [(ε0 − µ) + 2U |Ψ|2

]
+
∑
k 6=0

b†kΨ
[
(ε0 − µ) + 2U |Ψ|2

]
+O(b2

k) .

Demanding that the linear order vanishes indeed recovers Eq. 4.38.
Next consider the case of two modes and a density-density-type interaction term

Htm1 =
∑
k

εk,xb
†
k,xbk,x + εk,yb

†
k,ybk,y + U

∑
kpq

b†k+p,xb
†
k−p,ybk+q,ybk−q,x .

Now it is not so obvious any more which mode the bosons condense in. We therefore
perform a unitary transformation and then minimize the energy with respect to both the
condensation mode and the parameters of the unitary transformation. We use(

b+

b−

)
=

(
u v

−v∗ u∗

)(
bx

by

)
(
bx

by

)
=

(
u∗ −v
v∗ u

)(
b+

b−

)
,

with the constraint |u|2 + |v|2 = 1. We then assume condensation in the mode b− = Ψ

and up to zeroth order in the condensation mode obtain

Htm1 − µ
∑

k,z=x,y

b†k,zbk,z = (εk,x − µ)|v|2|Ψ|2 + (εk,y − µ)|u|2|Ψ|2 + U |v|2|u|2|Ψ|4 .

In order to obtain the Gross-Pitaevskii equations for this system we now not only minimize
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with respect to the condensation mode Ψ∗, but also with respect to the parameters of the
unitary transformation u∗ and v∗. We obtain

δH

δΨ∗
= 0 = Ψ

[
(εk,x − µ)|v|2 + (εk,y − µ)|u|2 + 2U |v|2|u|2|Ψ|2

]
(4.39)

δH

δu∗
= 0 = u|Ψ|2

[
(εk,y − µ) + U |v|2|Ψ|2

]
(4.40)

δH

δv∗
= 0 = v|Ψ|2

[
(εk,x − µ) + U |u|2|Ψ|2

]
. (4.41)

Equation 4.39 is redundant and hence we obtain

0 = (εk,y − µ) + U |v|2|Ψ|2 (4.42)

0 = (εk,x − µ) + U |u|2|Ψ|2 . (4.43)

An alternative procedure giving the same results without having to apply the unitary
transformation is to immediately assume the condensation modes bx → Ψx and by → Ψy.
We then obtain

Htm1 − µ
∑

k,z=x,y

b†k,zbk,z = (εx − µ)|Ψx|2 + (εy − µ)|Ψy|2 + U |Ψx|2|Ψy|2

and the variation with respect to Ψx and Ψy yields

δH

δΨ∗x
= 0 = Ψx

[
εx − µ+ U |Ψy|2

]
δH

δΨ∗y
= 0 = Ψy

[
εy − µ+ U |Ψx|2

]
,

which is equivalent to Eqs.4.42 and 4.43.
Next we consider a two-mode Hamiltonian with a density-density- and a pairing-type

interaction term

Htm2 =
∑
k

εk,xb
†
k,xbk,x + εk,yb

†
k,ybk,y + U

∑
kpq

b†k,xb
†
q−k,xbp,xbq−p,x + U

∑
kpq

b†k,yb
†
q−k,ybp,ybq−p,y+

U2

∑
kpq

b†k,xb
†
q−k,xbp,ybq−p,y + U2

∑
kpq

b†k,yb
†
q−k,ybp,xbq−p,x .

For U2 = 0 the two modes decouple and the Gross-Pitaevskii equation for each of them
is simply

µ = ε0 + 2n0U .
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For U2 > 0 the two modes couple. The phase of one of the two modes can be chosen
arbitrarily. We make the assumption bk=0,x =

√
nx and bk=0,y =

√
nye

iφ, with real nx,y.
The grand-canonical potential becomes

Htm2 − µ
∑

k,z=x,y

b†k,zbk,z = (εx − µ)nx + (εy − µ)ny + U
(
n2
x + n2

y

)
+ 2U2nxny cos(2φ) (4.44)

and the Gross-Pitaevskii equation is now

ε0,x − µ+ Unx + U2nye
2iφ = 0

ε0,y − µ+ Uny + U2nxe
2iφ = 0 .

Taking the imaginary part of these equations we immediately see that φ = 0 or φ = ±π/2.
Inserting into Eq. 4.44 we find that only φ = ±π/2 is a minimum of the energy. Hence
the condensation mode is

√
nx ± i

√
ny (4.45)

and we have identified the interaction term that gives rise to the relative phase of ±i that
also occurs for the chiral condensate.

Bosonic Bogoliubov theory

Bogoliubov theory can be applied to both bosons and fermions. In this thesis we will apply
it to bosons only and hence we limit our considerations to this case. Bosonic Bogoliubov
theory computes the possible excitations of the condensation mode obtained from Gross-
Pitaevskii theory. Hence it gives the spectrum of the weakly interacting system. It is
well known for its application to the weakly interacting single-mode Bose Gas, see e.g.
[201]. The main steps of Bogoliubov theory involve the approximation that most atoms
are condensed with only a small thermal fraction. This leads to a Hamiltonian quadratic
in the creation and annihilation operators. For the weakly interacting single-mode Bose
Gas the resulting Hamiltonian is 2×2 and can easily be diagonalized analytically. In
the diagonalization it is crucial to ensure that the resulting diagonal modes are still
bosonic, i.e. the resulting creation and annihilation operators fulfill bosonic commutation
relations. For bosons this implies that the matrix diagonalizing the Hamiltonian need not
be unitary. For more complicated cases (such as the s-px-py-condensate), where it is not
possible to analytically diagonalize the Bogoliubov matrix, it is therefore not sufficient
to use standard diagonalization routines for the Hamiltonian. Instead we will follow an
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approach presented in [202, 203] that allows for the numerical diagonalization of quadratic
Hamiltonians.

We start, however, by revisiting the simplest case of single-mode Bogoliubov theory.
In contrast to standard textbooks, see e.g. [201], we will work in the grand-canonical
ensemble instead of the canonical one. In other words we allow the exchanges of particles
with a bath and therefore explicitly introduce the chemical potential. Consider the grand-
canonical potential

Hsm − µ
∑
k

b†kbk ,

where Hsm has been defined in Eq. 4.37. We assume condensation in the mode b0 = Ψ =
√
n0 and expand to quadratic order in the creation and annihilation operators

Hsm − µ
∑
k

b†kbk ≈ (ε0 − µ)n0 + Un2
0 +

∑
k 6=0

(εk − µ)b†kbk

+ 4Un0

∑
k 6=0

b†kbk + Un0

∑
k 6=0

(
b†kb
†
−k + bkb−k

)
. (4.46)

Here we have already used the fact that the linear order in the creation and annihilation
operators vanishes when n0 fulfills the Gross-Pitaevskii equation. In the canonical en-
semble it is common to proceed by replacing the condensate density n0 by the difference
of the total particle number and the number of excitations. As we are working in the
grand-canonical ensemble the total particle number is not fixed and one approach is to
use the Gross-Pitaevskii equation in order to determine the condensate density

n0 =
µ− ε0

2U
.

The equations for the Bogoliubov energies look more familiar, however, when keeping the
condensate density and instead replacing the chemical potential in Eq. 4.46. We therefore
take this approach, while keeping in mind that the condensate density is actually fixed
to the chemical potential by the Gross-Pitaevskii equation. We obtain for Eq. 4.46,
neglecting a constant energy offset,

Hsm − µ
∑
k

b†kbk ≈
1

2

∑
k 6=0

(
b†k
b−k

)T (
εk − ε0 + 2Un0 2Un0

2Un0 ε−k − ε0 + 2Un0

)(
bk

b†−k

)
.
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This Hamiltonian is diagonalized by the Bogoliubov transformation(
bk

b†−k

)
= U

(
βk

β−k

)
,

where U =

(
uk vk

v∗k u∗k

)

u2
k =
−Ek + (εk − ε0 + 2Un0)

2Ek

v2
k =

Ek + (εk − ε0 + 2Un0)

2Ek

ukvk = −Un0

Ek

Ek =

√
(εk − ε0 + 2Un0)2 − 4U2n2

0

and |vk|2 − |uk|2 = 1. The resulting grand-canonical potential is

U †

(
Hsm − µ

∑
k

b†kbk

)
U ≈

∑
k 6=0

Ekβ
†
kβk

and hence Ek is the energy of the quasi-particle excitations of the condensate.
For illustrative reasons we will now obtain the same solution using the approach de-

scribed in [202] in chapter 3. We rewrite

Hsm − µ
∑
k

b†kbk ≈
1

4

∑
k 6=0

(
a† a

)
Msm

(
a

a†

)
,

where Msm =


εk − ε0 + 2Un0 2Un0

ε−k − ε0 + 2Un0 2Un0

2Un0 εk − ε0 + 2Un0

2Un0 ε−k − ε0 + 2Un0


and a =

(
bk

b−k

)
.

It is shown in [202] that such a Hamiltonian can be diagonalized by diagonalizing ηM
with

η =

(
1 0

0 −1

)
.

The resulting diagonal Hamiltonian then has twice Ek and twice −Ek on the diagonal.
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Hence we obtain the same quasi-particle excitations as in the previous analytical approach.
We turn a more complicating case: the two-mode Hamiltonian with pairing-type in-

teractions Htm2. From Gross-Pitaevskii theory we know that condensation occurs in the
mode

√
nx ± i

√
ny, see Eq. 4.45. Furthermore we know that the linear order in the oper-

ators must vanish for the condensate. Hence the next nonvanishing order is quadratic in
the operators and we obtain for the Bogoliubov matrix

Htm2 − µ
∑
k

b†kbk ≈
1

2

 b†k,x

b†k,y
b−k,x
b−k,y

T

Mtm2

 bk,x
bk,y

b†−k,x

b†−k,y

 ,

where

Mtm2 =( εk,x−ε0,x+2Unx+2U2ny 4iU2
√
nxny 2Unx−2U2ny 0

−4iU2
√
nxny εk,y−ε0,y+2Uny+2U2nx 0 −2Uny+2U2nx

2Unx−2U2ny 0 ε−k,x−ε0,x+2Unx+2U2ny −4iU2
√
nxny

0 −2Uny+2U2nx 4iU2
√
nxny ε−k,y−ε0,y+2Uny+2U2nx

)
.

While it is difficult to analytically determine the Bogoliubov transformation diagonalizing
this matrix we can still numerically diagonalize ηMtm2 and thereby obtain the eigenener-
gies and -states of the excitation modes. To do so we again increase the size of the matrix
to include the modes

(
bk,x bk,y b−k,x b−k,y b†k,x b†k,y b†−k,x b†−k,y

)
and then apply the

procedure described in [202].
The last case we consider is also the most general one: an arbitrary multi-mode system

with a general interaction term. We assume that the noninteracting HamiltonianHk,non−int

is — for each momentum k — diagonalized by a unitary matrix Uk, such that

Dk,non−int =
∑
r

εk,r b
′
k,r
†
b′k,r

is diagonal. Here b′k,r = U∗k,srbk,s and r, s are indices denoting different modes (e.g. s-, px-
and py-orbitals). We write the interaction term of the Hamiltonian as

Hint = U
∑
kpq

b†k,rb
†
q−k,sbp,tbq−p,u + h.c. ,

where r, s, t, u may denote arbitrary orbitals.
First we need to determine the condensation mode. We could do this by solving the

Gross-Pitaevskii equation analytically, as presented above. This approach is, however,
not possible if the diagonalization of the noninteracting Hamiltonian is only known nu-
merically. Therefore we make an assumption for the condensation mode with variable
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parameters and then minimize the energy of the condensation mode numerically. With-
out loss of generality we can assume that the atoms condense in the mode c0,0 ≈

√
n0,

where

bk,r = (Wkck)r = Wk,rsck,s = (UkVkck)r .

Note that we have introduced an arbitrary unitary transformation V here that allows
for condensation in linear combinations of different noninteracting eigenmodes. We will
indeed need this for the chiral condensate, since the atoms condense in a superposition of
the Bloch functions at X+ and X−. We can now write the interaction term as

Hint = U
∑

kpq,ijnm

W ∗
k,irW

∗
q−k,jsWp,tnWq−p,um c

†
k,ic
†
q−k,jcp,ncq−p,m + h.c. .

For the full Hamiltonian we obtain to zeroth order in the excitation operators

Hnon−int +Hint = n0

∑
r

ε0,rV
∗

0,0rV0,r0 + Un2
0

(
W ∗

0,0rW
∗
0,0sW0,t0W0,u0 + c.c.

)
.

We obtain the mean-field ground state, by parametrizing V appropriately and minimizing
the above equation.
Our next goal is to construct the Bogoliubov Hamiltonian. For the Bogoliubov Hamil-

tonian we need to gather those terms where exactly two of the operators are evaluated in
the condensation mode, hence

Hint ≈ Un0

∑
kpq,ijnm

[
W ∗
k,nrW

∗
0,0sWk,tmW0,u0 c

†
k,nck,m +W ∗

k,nrW
∗
0,0sW0,t0Wk,um c

†
k,nck,m

+W ∗
0,0rW

∗
k,nsWk,tmW0,u0 c

†
k,nck,m +W ∗

0,0rW
∗
k,nsW0,t0Wk,um c

†
k,nck,m

+W ∗
k,nrW

∗
−k,msW0,t0W0,u0 c

†
k,nc

†
−k,m +W ∗

0,0rW
∗
0,0sWk,tnW−k,um ck,nc−k,m + h.c.

]
.

The full Hamiltonian can now be rewritten in matrix form as

Hint ≈
Un0

4

∑
k


c†k
c†−k
ck

c−k


T 

α(k) 0 0 γ(k)

0 α(−k) γT (k) 0

0 γ∗(k) α∗(k) 0

γ†(k) 0 0 α∗(−k)



ck

c−k

c†k
c†−k

 , (4.47)

where ck is a vector with components

(ck)n = ck,n
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and

αnm(k) =
∑
r

εk,rV
∗
k,nrVk,rm +

(
W ∗
k,nrW

∗
0,0sWk,tmW0,u0 +W ∗

k,nrW
∗
0,0sW0,t0Wk,um

+W ∗
0,0rW

∗
k,nsWk,tmW0,u0 +W ∗

0,0rW
∗
k,nsW0,t0Wk,um + c.c.

)
γnm(k) = W ∗

k,nrW
∗
−k,msW0,t0W0,u0 +W ∗

k,nsW
∗
−k,mrW0,t0W0,u0

+W0,0rW0,0sW
∗
k,tnW

∗
−k,um +W0,0rW0,0sW

∗
k,unW

∗
−k,tm . (4.48)

If the interaction Hamiltonian is a sum of multiple terms, we apply this procedure to
each of them individually and the Bogoliubov Hamiltonian is the sum of the individual Bo-
goliubov Hamiltonians. The resulting Bogoliubov Hamiltonian can then be diagonalized
numerically again following the procedure from [202].
Hence we have developed a formalism that numerically obtains the Bogoliubov eigenen-

ergies and -functions for an arbitrary multi-mode Hamiltonian. In particular, the formal-
ism can also be applied to cases where the diagonalization of the noninteracting Hamil-
tonian is only numerically feasible. This is the approach we take for determining the
symmetry and excitations of weakly interacting condensates in the s-px-py-lattice.
We make two final remarks: The first is that the form of the Bogoliubov Hamiltonian

in Eq. 4.47 is redundant. In fact, we can reduce it to

Hint ≈
Un0

2

∑
k

(
c†k
c−k

)T (
α(k) γ(k)

γ†(k) α∗(−k)

)(
ck

c†−k

)
.

For the Hamiltonian in Eq. 4.47 each of the eigenmodes we obtain will be four-fold de-
generate, instead of two-fold.

Our second remark is that it is important to symmetrize the interaction terms that
contribute to γnm(k) in order to ensure that the Bogoliubov Hamiltonian is hermitian.
Let us illustrate this using a simple example. Consider

H =
∑
k

(εk − µ)b†kbk +
∑
kpq

Ukpqb
†
kb
†
q−kbpbq−p + h.c.

=
∑
k

(εk − µ)b†kbk +
∑
kpq

(Ukpq + U∗pkq)b
†
kb
†
q−kbpaq−p .

Using the Bogoliubov approximation we obtain

H ≈
∑
k

(εk − µ)b†kbk +
∑
k

{
2Re (Ukkk + Uk0k + U0kk + U00k) b

†
kbk+

(Uk00 + U∗0k0)b†kb
†
−k + (U0k0 + U∗k00)bkb−k

}
.
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Figure 4.37 – Noninteracting band structure for the s-px-py-lattice for ∆V =
−1.8 V0. Panel (a) shows the lowest four bands, while panel (b) shows only the
lowest band. We use the tight-binding parameters computed in Sec. 4.1.2.

We note, however, that we could also rewrite∑
k

(Uk00 + U∗0k0)b†kb
†
−k =

∑
k

(U−k,0,0 + U∗0,−k,0)b†kb
†
−k

and, when then writing the Hamiltonian in matrix form, the individual k-sections would
not be hermitian any more. The safest way to proceed is therefore to symmetrize these
parts of the Hamiltonian in the form

∑
k

1

2
(Uk00 + U∗0k0 + U−k,0,0 + U∗0,−k,0)b†kb

†
−k .

This is the approach we took for writing Eq. 4.489.

4.3.2. Numerical results

Here we present the results for the calculation of the excitation spectra of atoms in
the s-px-py-lattice. We follow the procedure presented in the previous section on the
calculation of Bogoliubov spectra in order to obtain the effective excitation spectra for
weak interactions. For comparison we also show the band structures of the corresponding
noninteracting systems.

Band structure and excitation spectra for ∆V = −1.8 V0

First we consider the band structure for ∆V = −1.8 V0, see Fig. 4.37(a). This is the
value where we load the atoms in the first band. This band is predominantly occupying

9Note that the extra factor of 1/2 has been included in Eq. 4.47 already.
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Figure 4.38 – Bogoliubov spectrum for the lowest band of the s-px-py-lattice for
∆V = −1.8 V0. We assume condensation at the Γ-point of the lowest band and use
the tight-binding parameters computed in Sec. 4.1.2. All interaction parameters are
scaled by the factor 0.1.

the s-orbitals of A-sublattice sites and has its minimum at the Γ-point, see Fig. 4.37(b).
The second band is mainly occupying the s-orbitals of B-sublattice sites, while the third
and fourth band are nearly degenerate and have p-orbital character. Here we assume
condensation at the Γ-point of the lowest band and compute the corresponding Bogoliubov
spectrum, see Fig. 4.38. In order to remain in the weakly interacting regime we reduce
all interaction parameters and use only 10% of the values computed in Sec. 4.1.2. The
spectrum obtains the characteristic linear onset that indicates the superfluidity of the
condensate. From the slope of the linear onset we can estimate the sound velocity to be
3 · 10−5 m s−1. Furthermore we find that the bandwidth of the lowest band is significantly
increased by interactions to 9 · 10−3Erec, as compared to the noninteracting value of
10−3Erec.

Band structure and excitation spectra for ∆V = 0.6 V0

Next we consider the condensate after the atoms have been transferred to the second
band. Here we exemplarily consider the point ∆V = 0.6 V0. At this point atoms in the
first band mainly occupy s-orbitals on B-sites, atoms in the second band mainly occupy
s-orbitals on A-sites and atoms in the third and fourth band mainly occupy p-orbitals on
B-sites. The noninteracting band structure for the lowest four bands is shown in Fig. 4.39.
We see that while the first band still has the minimum at the Γ-point the second band has
the minimum at the X-points and the third and fourth band have a degenerate minimum
at the M -points.
From Sec. 4.2.6 we know that the many-body ground state mixes the Bloch functions
|ψ±〉 at the X+ and X− points. Our setup for Bogoliubov theory can only mix eigenstates
at the same momentum. We therefore apply a trick in order to circumvent this restriction:
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Figure 4.39 – Noninteracting band structure for the s-px-py-lattice for ∆V = 0.6 V0.
Panel (a) shows the lowest four bands, while panel (b) shows only the first, panel (c)
only the second and panel (d) the third and fourth band. We use the tight-binding
parameters computed in Sec. 4.1.2.

we increase the size of the unit cell artificially, choosing the unit vectors 2ex and 2ey. This
backfolds the band structure, such that we obtain a total of 16 instead of 4 bands and
both the M - and the X-points are mapped to k = 0. We show the noninteracting band
structure of the four bands that arise due to backfolding of the previous second band in
Fig. 4.40(a). We assume condensation at k = 0 of the lower two of these bands. As
presented in Sec. 4.3.1 we now assume a general unitary transformation of the type

V =

(
sin(θ) − cos(θ)eiφ

cos(θ) sin(θ)eiφ

)

with arbitrary parameters θ and φ. The many-body ground state then mixes the wave
functions at the X+- and X−-points as

|ψ(θ, φ)〉 = cos(θ) |ψ+〉+ sin(θ) eiφ|ψ−〉 .

We find that the values θ = π/4 and φ = ±π/2 minimize the Gross-Pitaevskii energy

162



4.3. Excitation spectra for atoms in higher bands

 − M2 − X2  X
2

M
2


0

0.03

0.06

E
[E
re
c
]

(a)

 − M2 − X2  X
2

M
2


0

0.03

0.06

(b)

Figure 4.40 – (a) Backfolded noninteracting band structure for the s-px-py-lattice
for ∆V = 0.6 V0. We use the unit vectors 2ex and 2ey, such that both the X- and
the M -points are backfolded to the Γ-point. We show the four bands that correspond
to the second band from Fig. 4.39 and shift the energy, such that the minimum is
at E = 0. (b) Corresponding Bogoliubov spectrum. We assume condensation in the
mode |ψ+〉 = |ψX〉 + i|ψX′〉. For both panels we use the tight-binding parameters
computed in Sec. 4.1.2. All interaction parameters are scaled by the factor 0.2.

and hence confirm the many-body ground state |Ξ±〉 = 1/
√

2 (|ψ+〉 ± i|ψ−〉). We show
the resulting Bogoliubov spectrum for |Ξ+〉 in Fig. 4.40(b). The degeneracy of the bands
is lifted by the interactions. The lower band has a linear dispersion relation and the
corresponding sound velocity is 2 · 10−4 m s−1.
Finally, we lift the degeneracy of the X+- and X−-points by introducing an imbalance

between J⊥ in the kx- and ky-direction. In fact, we choose a finite value of the parameter
s⊥, that has been introduced in Eq. 4.9. We show the condensation mode as a function of
imbalance in Fig. 4.41. For finite imbalance the minimum of the Gross-Pitaevskii energy
is obtained for a state with unequal weight on the X+- and X−-points, hence θ 6= π/4.
In fact, θ increases monotonically from θ = 0 at s⊥ = 0.978 to θ = π/2 at s⊥ = 1.022.
Throughout this entire regime φ = ±π/2. For s⊥ ≤ 0.978 only the X+-point is occupied
and θ = 0, while for s⊥ ≥ 1.022 only the X−-point is occupied and θ = π/2. In both of
the latter cases the angle φ is undetermined.
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Figure 4.41 – We introduce an imbalance in the s-p-hopping parameters and plot
the parameters minimizing the Gross-Pitaevskii energy as a function of imbalance
parameter s⊥. We only show φ for 0 < θ < π/2, since φ is undetermined for θ = 0
and θ = π/2.
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5. Summary and Outlook

In this thesis we have studied three different examples of unconventional order in quantum
systems. We have first studied dissipative solid-state graphene driven by circularly polar-
ized light. In contrast to the high-frequency non-dissipative limit we have found that the
Hall conductivity has opposite sign for low-frequency driving and its magnitude depends
on the interplay of dissipation and driving. Nevertheless a major contribution to the Hall
conductivity is obtained by weighting the Berry curvature of Floquet bands with their
respective occupations. Hence our theoretical formalism represents a new approach to the
application of periodic driving to solids and presents an interpretation of the experiments
presented in Ref. [86]. We have considered the limit of increasing the driving frequency
by orders of magnitude while keeping the gap at the Dirac point fixed and find that the
resulting steady state is a high-temperature state with almost equal occupation in the
lower and upper Floquet band. Only for low dissipation or short times the contribution
of the Dirac point recovers the result expected in the high-frequency limit.

Our formalism is particularly well suited to the case of small dephasing-type dissipation
(large decoherence time scale T2). We do observe deviations of about 20% for larger
dephasing-type dissipation. For future work it will therefore be interesting to extend the
concepts of geometry and topology, such as Berry curvature, to dissipative systems. We
expect such a formalism to yield even better predictions for stronger dissipation.

Another interesting extension of our work would be to consider the edge states of the
periodically driven dissipative system. For undriven topological insulators there is the
bulk-edge correspondence that relates the Chern number of the bulk to the number of
edge states. It is an open discussion whether a similar relation holds for dissipative
driven systems. Within our work we have found that the resonant drive leads to signif-
icant excitation in the bulk. Even for high-frequency off-resonant driving the interplay
of dissipation and driving leads to a high-temperature steady state and vanishing Hall
conductivity. Still it is an interesting direction for future work to investigate whether it
is possible to probe the transport of edge states. A similar scenario has been proposed in
Ref. [204].

In the second project we presented a method that allows an efficient detection of topo-
logical defects in the hexagonal lattice, which is also the underlying lattice structure for
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graphene. The method is based on a periodic lattice modulation before performing a
time-of-flight image. The resulting interference pattern gives direct access to the relative
phase of the two sublattices of the hexagonal lattice and the emerging phase winding iden-
tifies topological defects. This has been used in Ref. [N1] to experimentally measure the
merging transition of Dirac points in the hexagonal lattice. Our method can be straight-
forwardly extended to almost any lattice with two lattice sites per unit cell. In principle
it could also be interesting to consider lattices with more than two lattice sites per unit
cell. While we still expect our method to be applicable, the resulting equations will likely
get rather complicated. An even more interesting direction for future work would be the
extension to angle-resolved photoemission spectroscopy (ARPES) in solids. In fact, time-
of-flight images in ultracold atoms are closely related to ARPES in solids. Here the main
challenge lies in identifying an appropriate alternative to the periodic lattice modulation.
In the third project of this thesis we have presented a new mechanism for metastability

where destructive interference leads to the inhibition of relaxation. In our case the chiral
order of a Bose-Einstein condensate in the second band of a staggered square lattice in-
hibits decay to the first band. The condensate itself shows perfect destructive interference
and hence is a dark state with infinite lifetime. Only the thermal fraction of atoms leads
to decay on longer time scales. We have studied the underlying decay mechanisms and,
depending on the relative depth of the two sublattices, identified either hopping-induced
or interaction-induced decay as the main relaxation mechanism. We have confirmed the
destructive interference due to the chiral order of the condensate for both relaxation mech-
anisms. Our classical-field-theory simulations agree well with experimental results from
the group of Prof. Andreas Hemmerich [N3].
Along a different route we have considered the coherent instanton-type oscillations that

emerge when preparing the atoms at only one of the two degenerate X-points of the
lattice. We find oscillation frequencies comparable to the ones obtained in experiments
from the group of Prof. Andreas Hemmerich [N4].
For future work it will be interesting to combine the two approaches of this thesis and

consider p-orbital order in the hexagonal lattice [205]. The threefold rotational symmetry
of the hexagonal lattice combined with the orientation of the p-orbitals will lead to similar
frustration phenomena as for spins on a triangular lattice [72]. Also it will be interesting
to study the interplay of topological properties of the hexagonal lattice and orbital order.
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A. Appendix

A.1. Variational Monte-Carlo minimization

Here we describe the variational Monte-Carlo minimization procedure that we use in
order to initialize the system for our (S)PGPE simulations, see Sec. 4.2.1, as well as
for adjusting the tight-binding parameters of the s-px-py-lattice that are not fixed by
symmetry considerations, see Sec. 4.1.2.

The goal of variational Monte-Carlo is to optimize a set of parameters p with respect
to a given minimization function FMC(p). This is achieved by iteratively improving the
parameter set by performing a number NMC of Monte-Carlo steps. In each step a new set
of parameters pn is obtained by applying a random variation to the previous set pn−1. The
new set is then accepted and used for the next iterative step if FMC(pn) < FMC(pn−1). If
this is not the case the new set may still be accepted with a certain probability. This last
aspect of Variational Monte-Carlo ensures that it is possible to leave local minima.

The initial set of parameters p0 is usually chosen by an educated guess. In each Monte-
Carlo step we first determine the new set of tight-binding parameters pn by adding a
normal-distributed random value to each parameter of the previous set of parameters
pn−1. The normal distribution we use has 0 mean and width σMC.

We evaluate the minimization Functional FMC for both the new and the previous set
of parameters and compute the difference

∆FMC(n) = FMC(pn)−FMC(pn−1) .

If it is positive we always accept the change of parameters and hence use pn as the
starting point for the variation in the next Monte-Carlo step. If ∆FMC(n) is negative we
still accept it with probability eβMC∆FMC(n). If the parameter set is rejected we use the
last accepted set of parameters as the starting point for the next Monte-Carlo step, i.e.
we set pn = pn−1. Here βMC = 1/(kBTMC) is the inverse Monte-Carlo temperature. It
determines how wide of a regime in parameter space is explored ’uphill’ (i.e. for increasing
FMC) of the current parameter set.
During the whole procedure we save the set of tight-binding parameters that has the
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overall lowest FMC(p).
The Monte-Carlo minimization works most efficiently if the average acceptance rate of

the changes of parameters is close to 50%. We ensure this by adjusting the variance σMC

of the parameter changes accordingly. This is done by computing the acceptance rate
every 50 Monte-Carlo steps. If the acceptance rate is below 35% we divide σMC by 2 and
if it is above 65% we multiply σMC by 2.
The success of Variational Monte-Carlo depends crucially on the choice of the inverse

Monte-Carlo temperature βMC. If it is too large ’uphill’ changes of the parameters are
highly unlikely and hence we get stuck in a local minimum. If it is too small it is equally
likely to go ’uphill’ than ’downhill’ and the method has no advantage compared to just
randomly sampling all parameter set. In practice it is often helpful to perform an an-
nealing procedure of increasing βMC (or equivalently decreasing TMC). This is also the
approach we take here. The value of βMC is increased from βinitial

MC to βfinal
MC . The first 20%

of the Monte-Carlo steps are done with βinitial
MC , while the final 20% are done with βfinal

MC .
In between we choose

βnMC = βinitial
MC ·

(
βfinal

MC

βinitial
MC

)(n−0.2NMC)/(0.6NMC)

.

A.1.1. Initial state for (S)PGPE simulations

For all results shown in Sec. 4.2 we use Variational MonteCarlo in order to fill the initial
state. Here the set of Monte-Carlo parameters is the set of complex-valued fields on each
lattice site βi = xi + iyi and the minimization function is the energy of the corresponding
lattice state. We start from an empty lattice (βi = 0 for all i) and perform NMC = 50000

Monte-Carlo steps. In each step we vary the complex fields on all lattice sites before
comparing the energy of the resulting state with the previous. Initially σMC = 1 and
βinitial

MC = 1. The final Monte-Carlo temperature is fixed by the temperature of the desired
initial state TMC = T .

A.1.2. Determining tight-binding parameters

In Sec. 4.1.2 our goal is to obtain a consistent set of tight-binding parameters for each
value of θ between 0.35π and 0.569π (corresponding to −1.8 V0 < ∆V < 0.86 V0). We
do this by minimizing the energy difference between the tight-binding and the Bloch
bands at certain symmetry points. Hence the parameter set for the minimization are the
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tight-binding parameters and our minimization function is

FMC(p) =
∑
b,i

wb · |E(tb)
b,i − E

(Bloch)
b,i | ,

where E(tb)
b,i is the energy of the tight-binding bands, E(Bloch)

b,i is the energy of the Bloch
bands, b is the band index and i runs over the set of symmetry points. For our case we
consider the Γ-, M - and X-point, as well as the point have way in between Γ and X.
We only consider the difference for the lowest four bands i = {1, 2, 3, 4}. For the weights
we choose w1 = w2 = 2 and w3 = w4 = 1 since in our simulation the atoms are mostly
occupying the lower two bands.

We sample 100 values of θ evenly spaced in the interval 0.35π < θ < 0.569π. For
θ = 0.35π we use the following set of initial tight-binding parameters

V ′s = 1.66 Erec

Jsp = 3.20 · 10−4 Erec

J (d)
sp = −1.59 · 10−02 Erec

J⊥ = −3.42 · 10−03 Erec

and optimize the values according to the Monte-Carlo minimization described above. For
each subsequent value of θ we use the optimal set of the previous θ-value as the initial
parameters for the Monte-Carlo minimization. This ensures that the hopping parameters
are smooth when varying θ, which is important for our simulation of experiments with
dynamic changes of θ.
For the results shown in Fig. 4.9 we have used a total of NMC = 107 Monte-Carlo

steps. Our initial value of σMC = 0.001, and the initial and final values of βMC are
βinitial

MC = 10/Erec and βfinal
MC = 1000/Erec.

A.2. Equations of motion

A.2.1. PGP-equations

Here we give the full set of equations used for our PGPE calculations

dbs,Ri

dt
= iJss

 ∑
Rj=±ex,±ey

bs,Ri+Rj

+ iJdss

 ∑
Rj=±e′x/2,±e′y/2

bs,Ri+Rj
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+ iJz

 ∑
Rj=±ez

bs,Ri+Rj


+ iJspxbx,Ri−e′x/2 − iJsp−xbx,Ri+e′x/2 + iJspyby,Ri−e′y/2 − iJsp−yby,Ri+e′y/2

− i(Vs − µ)bs,Ri
− iUAb†s,Ri

bs,Ri
bs,Ri

for Ri ∈ A

dbs,Ri

dt
= iJ ′ss

 ∑
Rj=±ex,±ey

bs,Ri+Rj

+ iJdss

 ∑
Rj=±e′x/2,±e′y/2

bs,Ri+Rj


+ iJz

 ∑
Rj=±ez

bs,Ri+Rj


+ iJdspx

(
bx,Ri−ex + bx,Ri−ey − bx,Ri+ex − bx,Ri+ey

)
+ iJdspy

(
by,Ri+ex + by,Ri−ey − by,Ri−ex − by,Ri+ey

)
− i (V ′s − µ) bs,Ri

− iUB
[
b†s,Ri

bs,Ri
bs,Ri

+
1

2
b†s,Ri

(bx,Ri
bx,Ri

+ by,Ri
by,Ri

)

+
(
b†x,Ri

bx,Ri
+ b†y,Ri

by,Ri

)
bs,Ri

]
for Ri ∈ B

dbx,Ri

dt
= iJspxbs,Ri+e′x/2 − iJsp−xbs,Ri−e′x/2

+ iJ‖,x

 ∑
Ri=±ex,±ey

bx,Ri+Rj

+ iJ⊥

 ∑
Rj=±ex,±ey

by,Ri+Rj


+ iJz

 ∑
Rj=±ez

bx,Ri+Rj


+ iJdspx

(
bs,Ri+ex + bs,Ri+ey − bs,Ri−ex − bs,Ri−ey

)
− i(Vx − µ)bx,Ri

− iUB
[(3

4
b†x,Ri

bx,Ri
+

1

2
b†y,Ri

by,Ri
+ b†s,Ri

bs,Ri

)
bx,Ri

+ b†x,Ri

(
1

4
by,Ri

by,Ri
+

1

2
bs,Ri

bs,Ri

)]
for Ri ∈ B

dby,Ri

dt
= iJspybs,Ri+e′y/2 − iJsp−ybs,Ri−e′y/2

+ iJ‖,y

 ∑
Ri=±ex,±ey

by,Ri+Rj

+ iJ⊥

 ∑
Rj=±ex,±ey

bx,Ri+Rj


+ iJz

 ∑
Rj=±ez

by,Ri+Rj


+ iJdspy

(
bs,Ri−ex + bs,Ri+ey − bs,Ri+ex − bs,Ri−ey

)
− i(Vy − µ)bx,Ri

− iUB
[(3

4
b†y,Ri

by,Ri
+

1

2
b†x,Ri

bx,Ri
+ b†s,Ri

bs,Ri

)
by,Ri
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+ b†y,Ri

(
1

4
bx,Ri

bx,Ri
+

1

2
bs,Ri

bs,Ri

)]
for Ri ∈ B ,

where µ is the chemical potential.

A.2.2. SPGP-equations

Here we give the full set of equations used for our SPGPE calculations

dxs,Ri

dt
= −Jss

 ∑
Rj=±ex,±ey

ys,Ri+Rj

− Jdss
 ∑

Rj=±e′x/2,±e′y/2

ys,Ri+Rj

− Jz
 ∑

Rj=±ez

ys,Ri+Rj


− Jspxyx,Ri−e′x/2 + Jsp−xyx,Ri+e′x/2 − Jspyyy,Ri−e′y/2 + Jsp−yyy,Ri+e′y/2

+ (Vs − µ) ys,Ri
+ UA

(
x2
s,Ri

ys,Ri
+ y3

s,Ri
− ys,Ri

)
for Ri ∈ A

dys,Ri

dt
= Jss

 ∑
Rj=±ex,±ey

xs,Ri+Rj

+ Jdss

 ∑
Rj=±e′x/2,±e′y/2

xs,Ri+Rj

+ Jz

 ∑
Rj=±ez

xs,Ri+Rj


+ Jspxxx,Ri−e′x/2 − Jsp−xxx,Ri+e′x/2 + Jspyxy,Ri−e′y/2 − Jsp−yxy,Ri+e′y/2

− (Vs − µ)xs,Ri
+ UA

(
−xs,Ri

y2
s,Ri
− x3

s,Ri
+ xs,Ri

)
for Ri ∈ A

dxs,Ri

dt
= −J ′ss

 ∑
Rj=±ex,±ey

ys,Ri+Rj

− Jdss
 ∑

Rj=±e′x/2,±e′y/2

ys,Ri+Rj

− Jz
 ∑

Rj=±ez

ys,Ri+Rj


+ Jdspx

(
yx,Ri+ex + yx,Ri+ey − yx,Ri−ex − yx,Ri−ey

)
+ Jdspy

(
yy,Ri−ex + yy,Ri+ey − yy,Ri+ex − yy,Ri−ey

)
+ (V ′s − µ)ys,Ri

+ UB

[ (
x2
s,Ri

ys,Ri
+ y3

s,Ri
− ys,Ri

)
+

1

2

(
ys,Ri

y2
x,Ri

+ 2xs,Ri
xx,Ri

yx,Ri
− ys,Ri

x2
x,Ri

)
+

1

2

(
ys,Ri

y2
y,Ri

+ 2xs,Ri
xy,Ri

yy,Ri
− ys,Ri

x2
y,Ri

)
+ ys,Ri

(
x2
x,Ri

+ y2
x,Ri

+ x2
y,Ri

+ y2
y,Ri
− 1
) ]

for Ri ∈ B

dys,Ri

dt
= J ′ss

 ∑
Rj=±ex,±ey

xs,Ri+Rj

+ Jdss

 ∑
Rj=±e′x/2,±e′y/2

xs,Ri+Rj

+ Jz

 ∑
Rj=±ez

xs,Ri+Rj


− Jdspx

(
xx,Ri+ex + xx,Ri+ey − xx,Ri−ex − xx,Ri−ey

)
− Jdspy

(
xy,Ri−ex + xy,Ri+ey − xy,Ri+ex − xy,Ri−ey

)
− (V ′s − µ)xs,Ri
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+ UB

[ (
−xs,Ri

y2
s,Ri
− x3

s,Ri
− xs,Ri

)
+

1

2

(
xs,Ri

y2
x,Ri
− 2ys,Ri

xx,Ri
yx,Ri

− xs,Ri
x2
x,Ri

)
+

1

2

(
xs,Ri

y2
y,Ri
− 2ys,Ri

xy,Ri
yy,Ri

− xs,Ri
x2
y,Ri

)
+ xs,Ri

(
1− x2

x,Ri
− y2

x,Ri
− x2

y,Ri
− y2

y,Ri

) ]
for Ri ∈ B

dxx,Ri

dt
= −Jspxys,Ri+e′x/2 + Jsp−xys,Ri−e′x/2 − Jz

 ∑
Rj=±ez

yx,Ri+Rj


− J‖,x

 ∑
Rj=±ex,±ey

yx,Ri+Rj

− J⊥
 ∑

Rj=±ex,±ey

yy,Ri+Rj


+ Jdspx

(
ys,Ri−ex + ys,Ri−ey − ys,Ri+ex − ys,Ri+ey

)
+ (Vx − µ)yx,Ri

+ UB

[
3

4

(
x2
x,Ri

yx,Ri
+ y3

x,Ri
− yx,Ri

)
+

1

2
yx,Ri

(
x2
y,Ri

+ y2
y,Ri
− 1

2

)
+

1

4

(
yx,Ri

y2
y,Ri

+ 2xx,Ri
xy,Ri

yy,Ri
− x2

y,Ri
yx,Ri

)
+

1

2

(
yx,Ri

y2
s,Ri

+ 2xx,Ri
xs,Ri

ys,Ri
− x2

s,Ri
yx,Ri

)
+ yx,Ri

(
x2
s,Ri

+ y2
s,Ri
− 1

2

)]
for Ri ∈ B

dyx,Ri

dt
= Jspxxs,Ri+e′x/2 − Jsp−xxs,Ri−e′x/2 + Jz

 ∑
Rj=±ez

xx,Ri+Rj


+ J‖,x

 ∑
Rj=±ex,±ey

xx,Ri+Rj

+ J⊥

 ∑
Rj=±ex,±ey

xy,Ri+Rj


− Jdspx

(
xs,Ri−ex + xs,Ri−ey − xs,Ri+ex − xs,Ri+ey

)
− (Vx − µ)xx,Ri

+ UB

[
3

4

(
−xx,Ri

y2
x,Ri
− x3

x,Ri
+ xx,Ri

)
+

1

2
xx,Ri

(
1

2
− x2

y,Ri
− y2

y,Ri

)
+

1

4

(
xx,Ri

y2
y,Ri
− 2xy,Ri

yx,Ri
yy,Ri

− xx,Ri
x2
y,Ri

)
+

1

2

(
xx,Ri

y2
s,Ri
− 2yx,Ri

xs,Ri
ys,Ri

− x2
s,Ri

xx,Ri

)
+ xx,Ri

(
1

2
− x2

s,Ri
− y2

s,Ri

)]
for Ri ∈ B
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dxy,Ri

dt
= −Jspyys,Ri+e′y/2 + Jsp−yys,Ri−e′y/2 − Jz

 ∑
Rj=±ez

yy,Ri+Rj


− J‖,y

 ∑
Rj=±ex,±ey

yy,Ri+Rj

− J⊥
 ∑

Rj=±ex,±ey

yx,Ri+Rj


+ Jdspy

(
ys,Ri+ex + ys,Ri−ey − ys,Ri−ex − ys,Ri+ey

)
+ (Vy − µ)yy,Ri

+ UB

[
3

4

(
x2
y,Ri

yy,Ri
+ y3

y,Ri
− yy,Ri

)
+

1

2
yy,Ri

(
x2
x,Ri

+ y2
x,Ri
− 1

2

)
+

1

4

(
yy,Ri

y2
x,Ri

+ 2xy,Ri
xx,Ri

yx,Ri
− x2

x,Ri
yy,Ri

)
+

1

2

(
yy,Ri

y2
s,Ri

+ 2xy,Ri
xs,Ri

ys,Ri
− x2

s,Ri
yy,Ri

)
+ yy,Ri

(
x2
s,Ri

+ y2
s,Ri
− 1

2

)]
for Ri ∈ B

dyy,Ri

dt
= Jspyxs,Ri+e′y/2 − Jsp−yxs,Ri−e′y/2 + Jz

 ∑
Rj=±ez

xy,Ri+Rj


+ J‖,y

 ∑
Rj=±ex,±ey

xy,Ri+Rj

+ J⊥

 ∑
Rj=±ex,±ey

xx,Ri+Rj


− Jdspy

(
xs,Ri+ex + xs,Ri−ey − xs,Ri−ex − xs,Ri+ey

)
− (Vy − µ)xy,Ri

+ UB

[
3

4

(
−xy,Ri

y2
y,Ri
− x3

y,Ri
+ xy,Ri

)
+

1

2
xy,Ri

(
1

2
− x2

x,Ri
− y2

x,Ri

)
+

1

4

(
xy,Ri

y2
x,Ri
− 2xx,Ri

yy,Ri
yx,Ri

− xy,Ri
x2
x,Ri

)
+

1

2

(
xy,Ri

y2
s,Ri
− 2yy,Ri

xs,Ri
ys,Ri

− x2
s,Ri

xy,Ri

)
+ xy,Ri

(
1

2
− x2

s,Ri
− y2

s,Ri

)]
for Ri ∈ B .
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