Untersuchungen der dynamischen Leitfähigkeit zur Entstehung stabiler Supraleitung im geschichteten Hochtemperatursupraleiter Bi₂Sr₂CaCu₂O₈

Dissertation

zur Erlangung des Doktorgrades

des Fachbereichs Physik

der Universität Hamburg

vorgelegt von

Malte Christian Kaufmann

aus Hamburg

Hamburg

1997

Gutachter der Dissertation: Prof. Dr. J. Kötzler, Prof. Dr. H. Schmidt

Gutachter der Disputation: Prof. Dr. J. Kötzler, Prof. Dr. J. Appel

Datum der Disputation: 24.06.1997

Sprecher der Fachbereichs und Vorsitzender des Promotionsauschusses: Prof. Dr. B. Kramer

Inhaltsverzeichnis (Pdf-Datei 140 kB)

Kurzfassung (Pdf 131 kB)

Abstract (english) (Pdf 138 kB)

- 1. Einleitung (Pdf 1438 kB)
- 2. Grundlagen (Pdf 8872 kB)

2.1 Statische Ginsburg-Landau-Gleichungen

- 2.2 Dynamische Leitfähigkeit nahe T_c
 - 2.2.1 Zwei-Flüssigkeiten-Modell
 - 2.2.2 Fluktuationen: Gaußsche Näherung
 - 2.2.3 Topologische Fluktuationen
 - 2.2.4 Dynamik der Vortex-Paare
- 2.3 Stabile Supraleitung im Magnetfeld?
 - 2.3.1 Das ideale Vortex-Gitter
 - 2.3.2 Vortex-Glas
 - 2.3.3 Bose-Glas

3. Experiment: Dynamische Suszeptibilität und Leitfähigkeit (Pdf 15900 kB)

- 3.1 Hoch-T_c Materialien
- 3.2 Kryomagnetische Systeme
- 3.3 Dynamische Suszeptibilität
- 3.4 Dynamische Leitfähigkeit

4. Hinweise auf zweidimensionale supraleitende Ordnung im Nullfeld (Pdf 4313 kB)

- 4.1 Bestimmung der supraleitenden Übergangstemperatur T $_{\rm c}$
- 4.2 Zweidimensionale Fluktuationen im normalleitenden Zustand
 - 4.2.1 Skalenanalyse
 - 4.2.2 Zweidimensionales Verhalten nahe T_{c}
 - 4.2.3 Frequenzabhängigkeit der Skalenfunktion
- 4.3 Anomale Dynamik bei T_c
- 4.4 Superfluide Dichte
- 4.5 Einfluß kolumnarer Defekte
 - 4.5.1 Leitfähigkeit bei T_c
 - 4.5.2 Skalenanalyse

4.5.3 Superfluide Dichte

- 5. Unterdrückung stabiler Supraleitung durch Magnetfelder (Pdf 3358 kB)
 - 5.1 Instabilität der supraleitenden Ordnung in kleinen Feldern
 - 5.2 Thermisch aktivierte Vortex-Dynamik
 - 5.3 Frequenzabhängigkeit der Skalenfunktion

6. Stabilisierung von Supraleitung im Magnetfeld durch korreliertes Vortex-Haften (Pdf 4090 kB)

- 6.1 Intrinsisches Vortex-Haften an den CuO $_2$ -Ebenen
- 6.2 Korreliertes Vortex-Haften an kolumnaren Defekten
 - 6.2.1 Thermisch aktivierte Vortex-Dynamik
 - 6.2.2 Glaslinien
 - 6.2.3 Skalenanalyse

 - 6.2.4 Kritisches Verhalten bei T_g6.2.5 Frequenzabhängigkeit der Skalenfunktion
- 6.3 Zusammenwirken von kolumnarem und intrinsischem Haften
- 7. Zusammenfassung (Pdf 149 kB)

Literaturverzeichnis (Pdf 156 kB)

Inhaltsverzeichnis

1	Einleitung						
2	Grundlagen						
	2.1	Statische Ginsburg-Landau-Gleichungen	5				
	2.2 Dynamische Leitfähigkeit nahe T_c						
		2.2.1 Zwei-Flüssigkeiten-Modell	9				
		2.2.2 Fluktuationen: Gaußsche Näherung	10				
		2.2.3 Topologische Fluktuationen	13				
		2.2.4 Dynamik der Vortex-Paare	19				
	2.3	Stabile Supraleitung im Magnetfeld?	22				
		2.3.1 Das ideale Vortex-Gitter	22				
		2.3.2 Vortex-Glas	25				
		2.3.3 Bose-Glas	28				
3	Experiment: Dynamische Suszeptibilität und Leitfähigkeit						
	3.1	$\operatorname{Hoch} - T_c$ Materialien	33				
	3.2	Kryomagnetische Systeme					
	3.3	Dynamische Suszeptibilität					
	3.4	Dynamische Leitfähigkeit					
4	Hin	weise auf zweidimensionale supraleitende Ordnung im Nullfeld	49				
	4.1	Bestimmung der supraleitenden Übergangstemperatur T_c	49				
	4.2	2 Zweidimensionale Fluktuationen im normalleitenden Zustand					
		4.2.1 Skalenanalyse	54				
		4.2.2 Zweidimensionales Verhalten nahe T_c	58				
		4.2.3 Frequenzabhängigkeit der Skalenfunktion	61				
	4.3	Anomale Dynamik bei T_c	66				
	4.4	Superfluide Dichte	69				

	4.5	Einflu	ß kolumnarer Defekte	73				
		4.5.1	Leitfähigkeit bei T_c	73				
		4.5.2	Skalenanalyse	76				
		4.5.3	Superfluide Dichte	80				
5	Unt	erdrü	ckung stabiler Supraleitung durch Magnetfelder	82				
	5.1	Instab	oilität der supraleitenden Ordnung in kleinen Feldern	82				
	5.2	Thern	nisch aktivierte Vortex-Dynamik	86				
	5.3	Frequ	enzabhängigkeit der Skalenfunktion	. 97				
6	Stabilisierung von Supraleitung im Magnetfeld durch korreliertes							
	Vortex-Haften 10							
	6.1	Intrin	sisches Vortex-Haften an den CuO_2 -Ebenen \ldots \ldots	100				
	6.2	2 Korreliertes Vortex-Haften an kolumnaren Defekten						
		6.2.1	Thermisch aktivierte Vortex-Dynamik	103				
		6.2.2	Glaslinien	107				
		6.2.3	Skalenanalyse	112				
		6.2.4	Kritisches Verhalten bei T_g	120				
		6.2.5	Frequenzabhängigkeit der Skalenfunktion	122				
	6.3	Zusan	nmenwirken von kolumnarem und intrinsischem Haften	125				
7	Zus	nfassung	129					
т •	tonot	1103/00/	zeichnis	132				

Kurzfassung

Mit Hilfe der parallel zu den CuO₂-Ebenen gemessenen dynamischen Leitfähigkeit $\sigma(\omega)$ von Einkristallen und epitaktischen Filmen wird die Entstehung stabiler Supraleitung im stark anisotropen Hochtemperatursupraleiter Bi₂Sr₂CaCu₂O₈ untersucht.

Anhand der Temperaturabhängigkeit der zwischen 3 mHz und 30 MHz gemessenen Phase σ''/σ' kann die supraleitende Übergangstemperatur T_c genau bestimmt werden. Die statische Leitfähigkeit und die Frequenzabhängigkeit der dynamischen Skalenfunktion für $\sigma(\omega)$ deuten auf zweidimensionale Fluktuationen in einem breiten Temperaturbereich oberhalb von T_c hin. Bei T_c wird ein Sprung der inversen Eindringtiefe gefunden, der gut mit dem von der Kosterlitz-Thouless-Theorie für dünne Schichten, d.h. 2D-Supraleitung, vorhergesagten Wert übereinstimmt. Danach kann vermutet werden, daß die Supraleitung durch die Bindung thermisch induzierter langer Vortex-Antivortex-Linienpaare, die die Proben über ihre gesamte Dicke zwischen 200 nm und $200\,\mu\text{m}$ durchziehen, entsteht. Der vom idealen zweidimensionalen Verhalten abweichende endliche Wert der Phase bei T_c , $\sigma''/\sigma' = 13.5(2)$ wird schwachen 3D-Fluktuationen in der geschichteten Struktur des Bi₂Sr₂CaCu₂O₈ zugeschrieben. Kolumnare Defekte ändern diesen zweidimensionalen Ordnungsvorgang nicht, jedoch reduzieren sie die Phase bei T_c auf $\sigma''/\sigma' = 3.9(2)$. Da dieser Wert mit dem für das dreidimensional ordnende YBa₂Cu₂O₇ übereinstimmt, deutet dieses auf eine Verstärkung dreidimensionaler Fluktuationen auf kleinen Längenskalen hin.

Geringe Vortexdichten, die durch parallel zur c-Achse angelegte Felder erzeugt werden $(B \gtrsim 1 \text{ mT})$, verhindern eine supraleitende Ordnung. Es wird eine thermisch aktivierte Vortex-Dynamik beobachtet, die durch plastische Versetzungen in einer hochviskosen Vortex-Flüssigkeit charakterisiert ist, deren Linien bei sehr großen Feldstärken (B > 2 T) in Punktvortizes zerfallen. Interessanterweise wird auch in der Feldorientierung $\vec{B} \perp \vec{c}$ kein Phasenübergang gefunden, d.h. das intrinsische Haften durch die CuO₂-Ebenen kann die Supraleitung im Feld nicht stabilisieren, vermutlich aufgrund der gleichen lokalen Fluktuationen, die im Nullfeld zu dem endlichen Phasenwinkel führen.

Durch kolumnare Haftzentren der Dichte n_{ϕ} parallel zur c-Achse wird unterhalb des dosisäquivalenten Feldes $B_{\phi} = n_{\phi}\phi_0$ supraleitende Ordnung für Felder parallel zur c-Achse ermöglicht. Im Gegensatz zum Grenzfall $H \rightarrow 0$ verschwindet die superfluide Dichte hier jedoch kontinuierlich bei T_g , und die kritischen Temperaturabhängigkeiten der Leitfähigkeit und der Relaxationszeit weisen auf einen dreidimensionalen Ordnungsvorgang hin. Solange die Dichte der kolumnaren Defekte klein ist, $B_{\phi} < B_{c1}$, sind die Ordnungsparameter-Fluktuationen isotrop, und der Temperaturverlauf der Phasengrenze $B_g(T)$ kann mit Hilfe des 3D-XY-Modells beschrieben werden. Bei einer hohen Defektdichte $B_{\phi} \gg B_{c1}$ folgt die Phasengrenze zwischen B_{c1} und B_{ϕ} überraschenderweise einer Vorhersage des Bose-Glas-Modells für den Fall wechselwirkungsfreier Vortizes. Dieses wird auf die starke Lokalisierung der Vortizes an den Defekten zurückgeführt. Auch für $\vec{B} \perp \vec{c}$ wird in Gegenwart der kolumnaren Defekte überraschenderweise supraleitende Ordnung beobachtet, was auf eine Reduktion der lokalen Fluktuationen in den CuO₂-Ebenen hinweist, deren Ursprung noch unbekannt ist.

Abstract

By measuring the dynamic conductivity parallel to the CuO_2 -planes of single crystals and epitaxial films, the onset of superconductivity in the highly anisotropic hightemperature superconductor $Bi_2Sr_2CaCu_2O_8$ is investigated.

The temperature variation of the phase σ''/σ' , measured between 3 mHz and 30 MHz, allows a precise determination of the superconducting transition T_c . The static conductivity and the frequency-dependence of the dynamical scaling function for $\sigma(\omega)$ provide strong evidence for 2D fluctuations occuring in a broad temperature range above T_c . At T_c a jump of the inverse penetration depth is found, which agrees with the prediction of the Kosterlitz-Thouless-theory for thin films, i.e. 2D-superconductivity. This leads to the assumption that the superconductivity is nucleated by the binding of thermally induced long vortex-antivortex strings piercing the samples. The finite value of the phase at T_c , $\sigma''/\sigma' = 13.5(2)$ differs from ideal 2D behavior and is tentatively associated with weak 3D-fluctuations in the layered structure of Bi₂Sr₂CaCu₂O₈. Columnar Defects, however, do not affect the 2D-ordering, but they reduce the phase at T_c to $\sigma''/\sigma' = 3.9(2)$. Since this value is identical to that found for YBa₂Cu₃O₇, which exhibits 3D-ordering, it is taken as evidence for 3D fluctuations on short lengthscales.

External fields as low as 1 mT applied parallel to the c-axis destroy the superconducting transition. A thermal activated vortex-dynamics characterized by plastic displacements in a highly viscous vortex-liquid is observed. At higher fields (B > 2 T) the vortex-lines dissociate in point-vortices. Interestingly, no phase-transition is found for $\vec{B} \perp \vec{c}$, which indicates that the intrinsic pinning of the CuO₂-planes can not stabilize the superconducting transition in a magnetic field. It is argued that this effect is caused by those fluctuations, which give rise to the finite phase-angle at H = 0.

Correlated pinning by columnar defects of density n_{ϕ} introduced by heavy-ion irradiation parallel to the c-axis, produces stable superconductivity for fields $\vec{B} \parallel \vec{c}$. Unlike the $H \rightarrow 0$ limit the superfluid density disappears continuously at T_g , and the critical singularities of the conductivity and relaxation time at T_g indicate 3Dordering. As long as the density of the columnar defects is small, $B_{\phi} < B_{c1}$, the orderparameter fluctuations are isotropic and the temperature dependence of the phaseboundary $B_g(T)$ can be explained in terms of the 3D-XY model. At higher densities of defects, $B_{\phi} \gg B_{c1}$, the phase-boundary follows a prediction of the Bose-glass model for non-interacting vortices for fields between B_{c1} and B_{ϕ} . This is attributed to the strong localization of the vortices at the defects. Surprisingly, superconducting ordering is also observed for $\vec{B} \perp \vec{c}$ in the presence of the columnar defects, which signalizes a reduction of the local fluctuations in the CuO₂-planes, the origin of which is not known.

Kapitel 1

Einleitung

Supraleitung bei Temperaturen oberhalb des Siedepunktes von Stickstoff weckte Hoffnungen auf deren technische Anwendbarkeit, sowohl im Bereich der Mikroelektronik, als auch für den Transport hoher Ströme. Die Hochtemperatursupraleiter sind extreme Typ-II Supraleiter, in die magnetischer Fluß in Form von Vortizes mit sehr dünnem Kern eindringt. Deren große Beweglichkeit führt bei den hohen Temperaturen zu Dissipation und somit zu einer endlichen Leitfähigkeit für den Stromtransport.

Eine der bemerkenswertesten Eigenschaften der Hochtemperatursupraleiter ist deren ausgeprägte geschichtete Struktur, bestehend aus übereinander gestapelten CuO₂-Ebenen, in denen die supraleitende Ordnung einsetzt, getrennt durch isolierende

Abb. 1.1: Kristallstruktur von $Bi_2Sr_2CaCu_2O_8$ nach [1]. Die kleinen weißen Kreise symbolisieren die Sauerstoffatome.

Zwischenschichten. Dieses ist am Beispiel der Kristallstruktur des in dieser Arbeit untersuchten Bi₂Sr₂CaCu₂O₈ in Abbildung 1.1 dargestellt. Eine Kopplung zwischen den Ebenen führt zu einem Wechselspiel zweidimensionalen und dreidimensionalen Verhaltens in einem breiten Temperaturbereich. So sind thermische Fluktuationen in zweidimensionalen Systemen stark erhöht. In Abwesenheit eines äußeren Feldes sind dieses spontan in den supraleitenden Ebenen entstehende Vortex-Antivortex-Paare. Die drastische Absenkung der supraleitenden Übergangstemperatur T_c auf weniger als die Hälfte der Molekularfeldübergangstemperatur T_{c0} an einem einlagigen Bi₂Sr₂CaCu₂O₈-Film[2] wurde auf das Aufbrechen von Vortex-Antivortex-Paaren, wie es von der Kosterlitz-Thouless Theorie [3, 4] beschrieben wird, zurückgeführt. Die Frage, wie die supraleitende Ordnung in einer zweidimensionalen Schicht einsetzt, ist auch Gegenstand vieler experimenteller und theoretischer Arbeiten, beispielsweise an Josephson-Kontakt-Netzwerken, die ein Modellsystem für Untersuchungen der Vortex-Dynamik in der Umgebung des Supraleitungsübergangs in zwei Dimensionen darstellen sollen [5, 6]. Untersuchungen an dicken Proben sollen Aufschluß darüber geben, ob die Paarung auf einem intrinsischen Effekt der CuO₂-Ebenen beruht oder durch die Kopplung zwischen den Ebenen beeinflußt wird. So konnte die Erhöhung von T_c mit zunehmender Anzahl der bis zu 20 CuO₂-Ebenen an Bi₂Sr₂CaCu₂O₈-Filmen^[7] durch Kosterlitz-Thouless-Paarung von Vortex-Antivortex-Linien, die über alle Ebenen hinweg korreliert waren, erklärt werden. Frühe Messungen von Strom-Spannungskennlinen an Bi₂Sr₂CaCu₂O₈-Kristallen[8] hingegen wurden als Kosterlitz-Thouless-Ubergang in den einzelnen CuO₂-Ebenen interpretiert. Auch die Möglichkeit eines Übergangs von zweizu dreidimensionaler Dynamik der thermisch induzierten Vortizes bei Annäherung an T_c wird diskutiert[9].

Die Anwesenheit eines magnetischen Feldes hat großen Einfluß auf den Supraleitungsübergang. Die Wechselwirkung der thermisch induzierten Vortex-Antivortex-Paare mit den feldinduzierten Vortizes begünstigt deren Aufbrechen und destabilisiert damit die topologische Ordnung. In konventionellen Supraleitern arrangieren sich die Vortizes unterhalb des oberen kritischen Feldes B_{c2} zu einem hexagonalen Gitter[10]. Die aufgrund der Schichtstruktur und der kleinen Korrelationslänge wesentlich flexibleren Vortizes in den Hochtemperatursupraleitern sind starken Fluktuationen um ihre Gleichgewichtslage ausgesetzt. Diese führen dazu, daß das Vortex-Gitter bereits deutlich unterhalb von B_{c2} schmelzen kann und die resultierende Flüssigkeit flexibler Vortizes in einem weiten Magnetfeld- und Temperaturbereich experimentellen Untersuchungen zugänglich ist. Die Natur der zu erwartenden Übergänge im reichhaltigen Phasendiagramm für Hochtemperatursupraleiter ist wesentlich durch die Anisotropie und durch die mikrostrukturelle Unordnung in den Materialien beeinflußt.

Nach Vorhersagen von Glazman und Koshelev[11] trennt ein von der Anisotropie bestimmtes Übergangsfeld B_{2D} einen Bereich dreidimensionaler Fluktuationen bei kleinen Feldern von einem Bereich zweidimensionaler Fluktuationen für $B > B_{2D}$. Es ist umstritten, ob entlang der an Bi₂Sr₂CaCu₂O₈-Kristallen für $B \leq 100$ mT gefundenen Irreversibilitätslinie[12, 13], die als Phasenübergang erster Ordnung interpretiert wurde, das Schmelzen des Vortex-Gitters in eine Linien-Flüssigkeit oder ein Entkoppeln der Vortex-Linien stattfindet. Oberhalb von B_{2D} sollen in einem weiten Bereich des Phasendiagramms freie Punktvortizes in den Ebenen ein Vortex-Gas bilden.

Durch Einbau von Defekten in das supraleitende Material ist es möglich, die viskose Bewegung der Vortizes in der Flüssigkeit zu behindern. Die Vortizes werden wegen des Gewinns an Kondensationsenergie durch das Haften an einem Defekt von diesem angezogen. Anders als am schwach anisotropen YBa₂Cu₃O₇[14, 15] ($\gamma = \xi_{ab}/\xi_c \approx 5$) gibt es am Bi₂Sr₂CaCu₂O₈ ($\gamma \gtrsim 100$) keine klaren Hinweise auf die Existenz von Vortex-Glas-artigen Phasenübergängen $T_g(B)$ zur Supraleitung, die Skalierungsanalysen des Widerstandes oberhalb *und* unterhalb von T_g umfassen[16]. Es hat sich herausgestellt, daß zusätzlich eingebaute punktförmige Defekte in Bi₂Sr₂CaCu₂O₈ aufgrund der geringen Schersteifigkeit der Vortizes deren Bewegung nicht effektiv behindern können[17]. Hingegen haben sich durch Beschuß mit schweren Ionen im Supraleiter erzeugte kolumnare Defekte als sehr wirkungsvolle Haftzentren für die Vortizes erwiesen. Sie führen gerade in Bi₂Sr₂CaCu₂O₈-Kristallen zur starken Unterdrückung der Vortex-Fluktuationen und zu einer drastischen Erhöhung der Irreversibilitätslinie[18].

In dieser Arbeit wird die Entstehung stabiler Supraleitung im stark anisotropen Hochtemperatursupraleiter Bi₂Sr₂CaCu₂O₈ untersucht. Es soll die Frage geklärt werden, welche Fluktuationen den Phasenübergang unter verschiedenen äußeren Bedingungen dominieren. Dazu wird an Kristallen und an Filmen mit Dicken zwischen $L_z = 130 \,\mu\text{m} \,(10^5 \,\text{CuO}_2\text{-Ebenen}) \,\text{und} \,L_z = 0.2 \,\mu\text{m} \,(100 \,\text{CuO}_2\text{-Ebenen}) \,\text{der} \,\text{Einfluß}$ der Kopplung zwischen den Ebenen (unterschiedliche elektronische Anisotropie), der Einfluß der Mikrostruktur sowie der Einfluß des Magnetfeldes und der strukturellen Unordnung in Form kolumnarer Defekte auf die Entwicklung supraleitender Ordnung untersucht.

Dieses geschieht durch die Analyse der linearen dynamischen Leitfähigkeit $\sigma(\omega)$, die mit Hilfe eines kontaktlosen Verfahrens bestimmt wurde. Hierzu wurde das durch ein magnetisches Wechselfeld induzierte magnetische Moment gemessen, das von den im Inneren der Probe parallel zu den CuO₂-Ebenen fließenden Abschirmströmen hervorgerufen wird. Die Frequenzabhängigkeit dieser Ströme liefert klare Hinweise auf das Einsetzen phasenkohärenter supraleitender Ordnung. Folgende Fragen standen bei den Untersuchungen im Vordergrund:

• Ist das Einsetzen der Supraleitung bei H = 0 ein intrinsischer Effekt der CuO₂-Ebenen oder wird dieser durch die Kopplung zwischen den Ebenen beeinflußt? Auf welche Weise setzt die supraleitende Ordnung ein, und wie steigt die superfluide Dichte n_s unterhalb von T_c an?

- Welchen Einfluß haben Magnetfelder auf den Supraleitungsübergang, wird dieser durch zusätzliche, von Vortizes verursachte Fluktationen unterdrückt? Welche Haftmechanismen kontrollieren und reduzieren die dissipative Bewegung der Vortizes in den CuO₂-Ebenen?
- Welchen Einfluß haben die CuO₂-Ebenen, die große Barrieren für Anregungen parallel zu den Ebenen orientierter Vortizes darstellen sollten, auf deren Dynamik?
- Können durch kolumnare Defekte die starken Fluktuationen der senkrecht zu den CuO₂-Ebenen orientierten Vortizes unterdrückt werden? Wird durch die kolumnaren Defekte ein Phasenübergang zur Supraleitung im Feld stabilisiert?

In Kapitel 2 werden die Grundlagen der Ginsburg-Landau-Theorie zu Beschreibung der Supraleitung und die Behandlung von Fluktuationen im Rahmen dieser Theorie dargestellt. Im Anschluß daran werden die für den Vortex-Zustand erwarteten und an Bi₂Sr₂CaCu₂O₈-Materialien beobachteten Phasenübergänge vorgestellt. Das Kapitel schließt mit der Beschreibung des Einflusses struktureller Unordnung, speziell in Form kolumnarer Defekte. In Kapitel 3 werden die Proben charakterisiert, das Meßverfahren der dynamischen Suszeptibilität $\chi(T,\omega,B)$ und die Inversionsroutine zu Bestimmung der dynamischen Leitfähigkeit aus χ erläutert. In Kapitel 4 wird der Supraleitungsübergang an den Kristallen und Filmen im Nullfeld untersucht und mit dem Phänomen der zweidimensionalen Supraleitung in Verbindung gebracht. Die fluktuationserhöhende Wirkung eines äußeren magnetischen Feldes und die damit verbundene Unterdrückung des Supraleitungsüberganges wird in Kapitel 5 betrachtet und die Dynamik des normalleitenden Vortex-Zustands beschrieben. In Kapitel 6 wird der Einfluß korrelierter Haftmechanismen auf die Dynamik feldinduzierter Vortizes in Bi₂Sr₂CaCu₂O₈-Filmen untersucht. Das besondere Augenmerk gilt hier der Bedeutung des intrinsischen Haftmechanismus an den CuO₂-Ebenen für die Dynamik von parallel zu den Ebenen orientierten Vortizes sowie der Existenz eines durch kolumnare Defekte senkrecht zu den CuO₂-Ebenen induzierten Supraleitungsübergangs. Diese Arbeit schließt in Kapitel 7 mit einer Zusammenfassung der Resultate.

Kapitel 2

Grundlagen

2.1 Statische Ginsburg-Landau-Gleichungen

Die Ginsburg-Landau-Theorie[19] liefert einen Rahmen für die phänomenologische Beschreibung der Supraleitung¹. Den Ausgangspunkt bildet hierbei die allgemeine Landausche Theorie der Phasenübergänge 2. Ordnung[21]. Diese wird angewandt auf den Phasenübergang eines Supraleiters zwischen dem normal- und dem supraleitenden Zustand. Die Supraleitung wird durch einen komplexen Ordnungsparameter $\Psi(r, T)$ beschrieben. Dieser ist im supraleitenden Zustand, der der geordneten Phase entspricht, endlich, $\Psi \neq 0$, und verschwindet in der normalleitenden Phase oberhalb der Übergangstemperatur T_{c0} . Im Rahmen eines Zwei-Flüssigkeitenmodells ist der Ordnungsparameter mit der Anzahl der supraleitenden Elektronen verknüpft. Nach Ginsburg und Landau entspricht $\Psi(\vec{r}, T)$ einer Wellenfunktion für die supraleitenden Elektronen und ist ein Maß für die Cooperpaardichte, $|\Psi|^2 = n_s/2$, mit der Dichte n_s der supraleitenden Elektronen. Der Formalismus der Ginsburg-Landau-Theorie erstreckt sich um die Entwicklung der Freien Energie $F(\Psi)$ nach Potenzen des Ordnungsparameters $|\Psi|^2$,

$$F(\Psi, \vec{A}) = F_n + \int d^3r \left[\alpha(T) |\Psi|^2 + \frac{\beta}{2} |\Psi|^4 + \frac{1}{2m} \left| \left(\frac{\hbar}{i} \vec{\nabla} - 2e\vec{A} \right) \Psi \right|^2 + \frac{B^2}{2\mu_0} \right] .$$
(2.1)

 F_n ist die freie Energie des normalleitenden Zustandes, $\alpha \sim (T - T_{c0})$ ist negativ im supraleitenden Zustand, und β ist eine positive Konstante, m und e sind die Elektronenmasse und -ladung. \vec{A} ist das Vektorpotential des Magnetfeldes \vec{B} . Man erhält die beiden Ginsburg-Landau-Gleichungen durch Variation von Gl. 2.1 nach dem Ordnungsparameter, $\delta F / \delta \Psi$,

$$\frac{1}{2m} \left(\frac{\hbar}{i} \vec{\nabla} - 2e\vec{A}\right)^2 \Psi + \alpha \Psi + \beta |\Psi|^2 \Psi = 0$$
(2.2)

¹Eine gute Darstellung der Ginsburg-Landau-Theorie findet man bei Cryot[20].

und nach dem Vektorpotential, $\delta F/\delta \vec{A}$,

$$\vec{j}(x) = \frac{2e\hbar}{im} (\Psi^* \vec{\nabla} \Psi - \Psi \vec{\nabla} \Psi^*) - \frac{8e^2}{m} \Psi^* \Psi \vec{A} \qquad (2.3)$$

Die Differentialgleichungen 2.2 und 2.3 sind durch zwei Längen charakterisiert: Die Korrelationslänge ξ ,

$$\xi(T) = \frac{\hbar}{\sqrt{2m|\alpha(T)|}} \qquad , \tag{2.4}$$

die die räumliche Variation des Ordnungsparameters beschreibt, und die Eindringtiefe λ ,

$$\lambda(T) = \sqrt{\frac{m\beta}{\mu_0 e^2 |\alpha(T)|}} \qquad , \tag{2.5}$$

die die räumliche Variation des Magnetfeldes beschreibt. Beide Längen divergieren bei T_{c0} in der gleichen Weise. Durch ihr Verhältnis wird der temperaturunabhängige Ginsburg-Landau-Parameter definiert:

$$\kappa = \frac{\lambda_{ab}(T)}{\xi_{ab}(T)} \qquad (2.6)$$

 κ bestimmt das Vorzeichen der Oberflächenenergie einer Grenzfläche zwischen normalund supraleitender Phase. In Supraleitern 1. Art ist $\kappa < 1/\sqrt{2}$. Ein Eindringen des Magnetfeldes würde zu einer Erhöhung der Oberflächenenergie führen. Aus diesem Grund wird ein äußeres Feld vollständig abgeschirmt, bis oberhalb des kritischen Feldes $B_c(T) = \mu_0 H_c = \phi_0/\sqrt{8}\pi\xi\lambda$ die Supraleitung schlagartig zusammenbricht. In Supraleitern 2. Art ist $\kappa > 1/\sqrt{2}$ und die Oberflächenenergie negativ. Der Aufbau einer normal- supraleitenden Grenzschicht wird oberhalb eines kritischen Feldes $B_{c1}(T) = \phi_0/(4\pi\lambda^2) \ln(\kappa)$ energetisch begünstigt. Das sich in diesem Fall ergebende Phasendiagramm ist in Abb. 2.1 dargestellt. Unterhalb von B_{c1} wird das äußere Feld abgeschirmt, der Supraleiter befindet sich im sogenannten Meißnerzustand. Oberhalb von B_{c1} kann magnetischer Fluß in Form normalleitender Filiamente (Vortizes) in den Supraleiter eindringen, bis die Supraleitung bei $B_{c2}(T) = \phi_0/2\pi\xi^2$ zusammenbricht. Die Vortizes tragen jeweils ein Flußquant $\phi_0 = h/2e = 2 \cdot 10^{-15}$ Tm² und ordnen sich aufgrund einer langreichweitigen anziehenden und kurzreichweitigen abstoßenden Wechselwirkung auf einem hexagonalen Gitter an[10].

Zur Beschreibung anisotroper Supraleiter kann die Masse in Gl. 2.1 durch einen Effektiven-Massen-Tensor ersetzt werden[22]. Die uniaxialen Hochtemperatursupraleiter sind durch zwei magnetische Eindringtiefen für Ströme in der *ab*-Ebene, λ_{ab} , und entlang der *c*-Achse, λ_c , sowie durch zwei Kohärenzlängen ξ_{ab} und ξ_c charakterisiert. Der Anisotropieparameter γ beschreibt deren Verhältnis zueinander,

$$\gamma = \frac{\lambda_c}{\lambda_{ab}} = \frac{\xi_{ab}}{\xi_c} \qquad (2.7)$$

Dieser ist $\gamma \approx 5$ für YBa₂Cu₃O₇[23] und $\gamma \geq 100$ für Bi₂Sr₂CaCu₂O₈[24].

Abb. 2.1: Phasendiagramm eines Supraleiters zweiter Art in Molekularfeld-Näherung.

Die typischen Werte für ξ und λ und die sich daraus ergebenden Größen sind für den in dieser Arbeit untersuchten Hochtemperatursupraleiter Bi₂Sr₂CaCu₂O₈ in Tab. 2.1 zusammengestellt.

Allgemein auftretende thermische Fluktuationen haben auch Einfluß auf die Phasenübergänge in Supraleitern zweiter Art. Fluktuationen des supraleitenden Zustandes führen oberhalb von T_{c0} zu einem zusätzlichen Beitrag zur Leitfähigkeit, normalleitende Fluktuationen unterhalb von T_{c0} zu einem zusätzlichem Widerstand. Auch kann das Vortex-Gitter durch thermische Auslenkungen der Vortizes aus ihrer Gleichgewichtslage bereits unterhalb von T_{c0} in eine Vortex-Flüssigkeit schmelzen. Ein Maß für den Einfluß thermischer Fluktuationen ist die Ginsburg-Zahl Gi[25],

$$Gi = \frac{1}{2} \left[\frac{k_B T_{c0} \gamma \mu_0}{4\pi \xi_{ab}^3(0) B_c^2(0)} \right]^2 \qquad (2.8)$$

Tab. 2.1: Material parameter für $Bi_2 Sr_2 CaCu_2 O_8$

$\lambda(0) = \sqrt{2}\lambda_{GL}(0)$	$\xi_{ab}(0)$	γ	T_{c0}	$B_{c1}(0)$	$B_c(0)$	$B_{c2}(0)$
210 nm [26]	$2 \mathrm{nm} [25]$	≥ 100	$\approx 90K$	$30 \mathrm{mT}$	$0.6\mathrm{T}$	$50\mathrm{T}$

Sie gibt die Breite des Temperaturintervalls um T_0c herum an, $|1 - T_{fl}/T_{c0}| = Gi$, in dem die Fluktuationen des Ordnungsparameters $|\partial \Psi|$ größer als dessen Betrag $|\Psi|$ sind. In konventionellen Supraleitern ist Gi ungefähr 10⁻⁶, der Fluktuationsbereich ist auf ein unmessbar schmales Temperaturintervall um T_{c0} herum reduziert. In Hochtemperatursupraleitern hingegen sind Fluktuationen aufgrund der hohen kritischen Temperatur, der großen Anisotropie und Eindringtiefe sowie der geringen Korrelationslänge in einem großen Bereich des B - T-Phasendiagramms nicht zu vernachlässigen. Für das stark anisotrope Bi₂Sr₂CaCu₂O₈ ist es sinnvoller, statt Gl. 2.8 ein zweidimensionales Kriterium zu verwenden[25],

$$Gi^{2D} = \frac{k_B T_{c0} 4\pi \mu_0 \lambda^2(0)}{\sqrt{2}\phi_0^2 d} \qquad , \tag{2.9}$$

und man erhält $Gi^{2D} \approx 0.1$.

Der Einfluß von Fluktuationen auf Transportgrößen wird durch die Zeitabhängigkeit der Fluktuationen bestimmt. So ist der Strom, der durch eine Fluktuation getragen wird, direkt proportional zu ihrer Lebensdauer, während der sie in einem angelegten Feld beschleunigt wird. In Abschnitt 2.2.1 wird zuerst die dynamische Leitfähigkeit $\sigma(\omega)$ im Zwei-Flüssigkeiten-Modell berechnet. In den Abschnitten 2.2.2 und 2.2.3 werden die Auswirkungen Gaußscher Fluktuationen und topologischer Fluktuationen auf $\sigma(\omega)$ in zweidimensionalen Supraleitern beschrieben².

²Eine sehr gute Übersicht über Fluktuationseffekte nahe T_c liefert Ref. [27].

2.2 Dynamische Leitfähigkeit nahe T_c

2.2.1 Zwei-Flüssigkeiten-Modell

Durch die phänomenologische Londonsche Theorie[28] können grundlegende elektrodynamische Eigenschaften von Supraleitern quantitativ beschrieben werden. Die supraleitenden Elektronen werden in einem elektrischen Feld \vec{E} gleichförmig beschleunigt, ohne dabei Energie zu dissipieren. Deren Bewegungsgleichung lautet

$$2m_e \frac{d\vec{v}_s}{dt} = -e\vec{E}$$

Daraus erhält man für den Strom $\vec{j}_s = -2e\vec{v}_s n_s^0$ der supraleitenden Ladungsträger mit der Dichte n_s die erste Londonsche Gleichung

$$\vec{E} = \mu_0 \lambda_L^2 \frac{d\vec{j}}{dt}$$
(2.10)

mit der Londonschen Eindringtiefe

$$\lambda_L^2 = \frac{m_e}{\mu_0 n_s^0 e^2} \qquad . \tag{2.11}$$

Betrachtet man Ströme mit einer harmonischen Zeitabhängigkeit, $j\sim \exp(i\omega t),$ so ergibt sich aus Gl. 2.10

$$\vec{E} = \sigma_s \vec{j} \tag{2.12}$$

mit der Supraleitfähigkeit

$$\sigma_s = \frac{i}{\omega\mu_0\lambda_L^2} \qquad . \tag{2.13}$$

Im Zwei-Flüssigkeiten-Modell wird angenommen, daß unterhalb von T_{c0} nur ein Teil der Ladungsträger zum Suprastrom beitragen, während die anderen mit Dichte $n - n_s^0$ normalleitend bleiben. Für diese gilt das Ohmsche Gesetz

$$\vec{j}_n = \sigma_0 \vec{E} \quad . \tag{2.14}$$

Die Dichte der supraleitenden Ladungsträger verschwindet bei T_{c0} und steigt mit abnehmender Temperatur an, bis für T = 0 alle Elektronen supraleitend sind. Man nimmt an, daß der normalleitende und der supraleitende Strom parallel fließen, $\vec{j} = \vec{j}_n + \vec{j}_s$. Faßt man die Gl. 2.12 und 2.14 zusammen,

$$\vec{j} = (\sigma_0 + \sigma_s) \vec{E} \quad , \tag{2.15}$$

erhält man die dynamische Leitfähigkeit unterhalb von T_c ,

$$\sigma(\omega) = \sigma_0 - \frac{1}{i\omega\mu_0\lambda_L^2} \qquad . \tag{2.16}$$

Oberhalb von T_{c0} wird im Drude-Modell der Stromtransport durch die Bewegungsgleichung

$$m_e \left(\frac{d \, \vec{v}}{d \, t} + \frac{\vec{v}}{\hat{\tau}} \right) = -e \vec{E} \tag{2.17}$$

mit der Stoßzeit $\hat{\tau}$ beschrieben. Daraus erhält man für die Normalleitfähigkeit

$$\sigma_n(\omega) = \frac{\sigma_0}{1 - i\omega\hat{\tau}} \quad . \tag{2.18}$$

2.2.2 Fluktuationen: Gaußsche Näherung

Die zeitabhängigen Ginsburg-Landau-Gleichungen wurden von Abrahams und Tsuneto[29] hergeleitet. Zur Berechnung der Fluktuationsleitfähigkeit kann mit diesen das Frequenzspektrum der Stromfluktuationen bestimmt werden. Die einfachste Verallgemeinerung von Gl. 2.2 berücksichtigt Fluktuationen des Ordnungsparameters, die exponentiell gegen ihren Gleichgewichtswert relaxieren. Unter Vernachlässigung des nichtlinearen Terms, der nur in einem kritischen Bereich um T_{c0} einen Beitrag liefert, und in Abwesenheit eines magnetischen Feldes erhält man[30]

$$\left(\frac{\hbar^2}{2m}\left(\left(\frac{\vec{\nabla}}{i}\right)^2 + \xi^{-2}\right) + \frac{1}{, c}\frac{\partial}{\partial t}\right)\Psi(r, t) = 0$$
(2.19)

mit

$$, {}_{c} = \frac{8k_{B}T_{c0}\epsilon}{\hbar\pi\alpha} = \frac{, {}_{0}}{\alpha}$$

$$(2.20)$$

und der Temperaturvariablen $\epsilon = (T - T_{c0})/T_{c0}$ sowie der Korrelationslänge $\xi = \sqrt{\hbar^2/2m\alpha}$ nach Gl. 2.4. Der Paarbrechungsparameter α unterscheidet sich für reine Supraleiter,

$$\alpha = \frac{12\pi^2}{7\zeta(3)} \frac{k_B T_{c0}}{\epsilon_F} k_B (T - T_{c0})$$

und für verunreinigte Supraleiter,

$$\alpha = \frac{6\hbar, 0}{\epsilon_F} k_B (T - T_{c0})$$

 ζ ist die Riemannsche Zeta-Funktion und ϵ_F die Fermie-Energie. Das Frequenzspektrum der Fluktuationen erhält man aus den Fourierkomponenten von Gl. 2.19,

$$[i\omega + , _{\vec{K}}] \Psi_{\vec{K},\omega} = 0 \quad ,$$

mit der Relaxationsrate der Moden , $_{\vec{K}}$,

,
$$_{\vec{K}} = (1 + K^2 \xi^2)$$
, 0 .

Das Frequenzspektrum ist lorentzförmig:

$$\langle |\Psi_{\vec{K},\omega}|^2 \rangle = \langle |\Psi_{\vec{K}}|^2 \rangle \frac{2, K}{\frac{2}{\vec{K}} + \omega^2}$$

Ausgehend vom Strom,

$$j_{\vec{K}} = \frac{2e}{V} \sum_{\vec{K}'} \frac{\hbar \vec{K}'}{m} \Psi^*_{\vec{K}' - \vec{K}/2} \Psi_{\vec{K}' + \vec{K}/2}$$

berechnete Schmidt die Fluktuationsleitfähigkeit $\sigma_G(\omega)$ als Funktion der Frequenz. Diese ergibt sich aus Kubos Formel für den Realteil der Leitfähigkeit

$$\sigma'_{\alpha\beta}(k,\omega) = \frac{1}{2k_BT} \langle j_{\alpha}(k,\omega), j_{\beta}(k,\omega) \rangle \qquad (2.21)$$

 $\langle j_{\alpha}(k,\omega), j_{\beta}(k,\omega) \rangle$ ist die Strom-Korrelationsfunktion, wobei α, β die Raumrichtungen bezeichnen. Man erhält

$$\sigma_{\alpha\beta}'(\vec{K},\omega) = \left(\frac{2e\hbar}{m}\right)^2 \frac{k_B T_c}{V} \sum_{\vec{q}} \frac{q_{\alpha} q_{\beta}}{\left(\alpha + \frac{1}{2m} \left(\vec{q} - \frac{\vec{K}}{2}\right)^2\right)} \frac{q_{\alpha} q_{\beta}}{\omega^2 + \left(q + \frac{\vec{K}}{2} + q - \frac{\vec{K}}{2}\right)^2} \quad . \quad (2.22)$$

Der Imaginärteil $\sigma_{\alpha\beta}^{\prime\prime}(k,\omega)$ ergibt sich aus der Kramers-Kronig-Relation

$$\sigma_{\alpha\beta}^{\prime\prime}(\vec{k},\omega) = -P \int_{-\infty}^{+\infty} \frac{d\omega'}{\pi} \frac{\sigma_{\alpha\beta}(\vec{k},\omega)}{\omega'-\omega} \quad .$$
(2.23)

Die Summation kann unter Berücksichtigung der Dimensionalität in eine Integration über den \vec{K} -Raum umgewandelt und ausgeführt werden[30], und man erhält für die Fluktuationsleitfähigkeit in einem dreidimensionalen System:

$$\sigma'_{3D}(\tilde{\omega}) = \frac{e^2}{\hbar\xi} \frac{k_B T_{c0}}{\hbar, 0} \frac{2}{3\pi} \frac{1}{\tilde{\omega}^2} \left(1 - (1 + \tilde{\omega}^2)^{3/4} \cos\left(\frac{3}{2}\arctan\tilde{\omega}\right) \right)$$
(2.24)

$$= \sigma_{3D}(0)S_{3D}(\tilde{\omega}) \tag{2.25}$$

mit $\tilde{\omega} = \omega/$, $_0$ und für zweidimensionale Systeme der Dicke L_z , für die $\xi \gg L_z$ gilt,

$$\sigma'_{2D}(\tilde{\omega}) = \frac{e^2}{\hbar L_z} \frac{k_B T_{c0}}{\hbar, 0} \frac{1}{2\pi} \left(\frac{\pi}{\tilde{\omega}} - \frac{2}{\tilde{\omega}} \arctan \frac{1}{\tilde{\omega}} - \frac{1}{\tilde{\omega}^2} \ln|1 + \tilde{\omega}^2| \right)$$
(2.26)

$$= \sigma_{2D}(0)S_{2D}(\tilde{\omega}) \qquad (2.27)$$

Im Grenzfall kleiner Frequenzen, $\tilde{\omega} \ll 1$, stimmen diese allgemeinen Resultate mit den zuerst von Aslamazov und Larkin[31] in zeitabhängiger Ginsburg-Landau-Theorie für reine Supraleiter berechneten Gleichstromleitfähigkeiten

$$\sigma_{3D}^{AL} = \frac{1}{32} \frac{e^2}{\hbar \xi(0)} \left(\frac{T}{T_{c0}} - 1\right)^{-1/2}$$

$$\sigma_{2D}^{AL} = \frac{1}{16} \frac{e^2}{\hbar L_z} \left(\frac{T}{T_{c0}} - 1\right)^{-1}$$
 (2.28)

überein. Die Frequenzabhängigkeit der Fluktuationsleitfähigkeit ist in Abb. 2.2 dargestellt.

Abb. 2.2: Betrag und Phase der dynamische Leitfähigkeit $\sigma(\tilde{\omega})$, berechnet in einem zeitabhängigen Ginsburg-Landau-Modell in dem Gaußsche Fluktuationen exponentiell zerfallen[30].

2.2.3 Topologische Fluktuationen

a) Dissoziation von Vortex-Antivortex-Paaren

In zweidimensionalen Systemen, die durch einen mehrkomponentigen Ordnungsparameter $\Psi = \{\Psi_{\alpha}(R)\}$ beschrieben werden können, kann sich keine konventionelle langreichweitige Ordnung ausbilden, d.h. der Erwartungswert des Ordnungsparameters

$$\langle \Psi \rangle = 0$$

verschwindet bei jeder endlichen Temperatur[32]. Trotzdem schließt dieses auch hier die Existenz eines Phasenübergangs bei einer endlichen Temperatur nicht aus. Auch diese Systeme können auf makroskopischen Längenskalen ordnen. Von Kosterlitz und Thouless[3, 4] wurde hierzu das Konzept der topologischen Ordnung eingeführt, welches sich an den makroskopischen Eigenschaften des Systems orientiert. Der Phasenübergang in zwei Dimensionen ist verknüpft mit dem Auftreten sogenannter topologischer Anregungen, welche diese makroskopischen Eigenschaften des Systems zerstören.

In zweidimensionalen Supraleitern sind diese topologischen Anregungen thermisch induzierte Vortizes und Antivortizes, welche unterhalb der Übergangstemperatur T_{KT} zu Paaren gebunden sind. Bei T_{KT} bricht diese Bindung auf, und die Bewegung freier Vortizes führt zur Dissipation.

Das kann anhand eines einfache Bildes verdeutlicht werden. Die Energie zur Erzeugung eines einzelnen Vortex mit Kernradius ξ in einem zweidimensionalen Supraleiter der Dicke L_z divergiert mit der Fläche des Systems (L^2),

$$E_1 = \epsilon_0 L_z \ln(L/\xi) + E_n \qquad (2.29)$$

 $E_n \approx 0.39 \epsilon_0 L_z$ [33] ist die Nukleationsenergie des normalleitenden Vortex-Kerns in der supraleitenden Ebene und

$$\epsilon_0 = \frac{\phi_0^2}{4\pi\mu_0\lambda^2} \tag{2.30}$$

die Selbstenergie einer Vortex-Linie pro Länge. Freie Vortizes werden bei tiefen Temperaturen also nicht angeregt. Die Energie zur Erzeugung eines gebundenen Vortex-Antivortex-Paares mit Abstand r hingegen ist endlich,

$$E_2 = \epsilon_0 L_z \ln(r/\xi) + 2E_n$$

so daß solche Paare im Supraleiter bei genügend hohen Temperaturen vorkommen. Die Erzeugung freier Vortizes ist aber auch mit einem Gewinn an Entropie, $S = k_B \ln(L/\xi)^2$, verbunden. Dadurch wird die freie Energie

$$F = E - TS = \epsilon_0 L_z \ln(L/\xi) - k_B T \ln(L/\xi)^2$$
(2.31)

zur Anregung eines freien Vortex-Paares oberhalb einer Temperatur T_{KT} negativ, und diese bevölkern das System. Die topologische Ordnung wird oberhalb von T_{KT} durch die freien Vortizes zerstört.

Die Wechselwirkung von Vortex-Paaren wird durch Paare mit geringeren Abständen abgeschirmt. Dieser Effekt kann durch eine längenabhängige dielektrische Funktion $\varepsilon(r)$, die von der Dichte von Paaren mit Abständen kleiner als r abhängt, berücksichtigt werden. Die logarithmische Wechselwirkung eines einzelnen Vortex-Antivortex-Paares wird in Gegenwart anderer Vortizes zu

$$U(r) = \int_{0}^{l} \frac{2\pi k_B T K_0}{\varepsilon(l')} dl' + 2\mu_c(T)$$
(2.32)

mit $l = \ln(r/a_0)$, dem kleinsten möglichen Abstand zweier Vortizes a_0 , dem chemischen Potential μ_c und der Kopplungskonstanten $K_0 = \epsilon_0 L_z/k_B T$. Die längenabhängige Kopplungskonstante $K(l) = K_0/\varepsilon(l)$ kann aus einem Satz von Renormierungsgleichungen bestimmt werden. Diese lassen sich durch die Anregungswahrscheinlichkeit y(l) für ein Vortex-Paar mit Abstand r,

$$\frac{dK^{-1}}{dl} = 4\pi^{3}y(l) , , \frac{dy(l)}{dl} = y(l)[2 - \pi K(L)]$$

ausdrücken. Der kontinuierliche Phasenübergang bei T_{KT} ist durch das Einsetzen makroskopischer Ordnung charakterisiert. Um das Verhalten auf großen Längenskalen zu erhalten, müssen die gekoppelten Renormierungsgleichungen mit den Startbedingungen $K(0) = K_0$ und $y(0) = y_0$ integriert werden. Für $T \leq T_{KT}$ ist $y(l \to \infty) = 0$, und die Temperatur des Phasenübergangs ist die höchste Temperatur, bis zu der diese Beziehung erfüllt ist. Wie von Nelson und Kosterlitz[34] gezeigt wurde, folgt daraus, daß die Kopplungskonstante den universellen Wert

$$K(l \to \infty) = \frac{2}{\pi}$$

annimmt. Hierdurch ist die superfluide Dichte in der zweidimensionalen Schicht $n_s = L_z |\Psi(T)|^2$ festgelegt. Sie nimmt mit $K(l \to \infty) = n_s \hbar^2 / m k_B T$ bei T_{KT} einen universellen Wert an,

$$n_s(T_{KT}) = \frac{2mk_B T_{KT}}{\hbar^2 \pi} \qquad . \tag{2.33}$$

Dieser Wert wurde erstmals von Rudnick[35] in ⁴He Filmen beobachtet. Man kann die sogenannte 2D-Abschirmlänge $L_s = 2\lambda^2/L_z$ definieren, die bei T_{KT} durch

$$L_s(T_{KT}) = \Lambda_{T_{KT}} \tag{2.34}$$

mit der thermischen Länge

$$\Lambda_T(T) = \frac{\phi_0^2}{4\pi\mu_0 k_B T} = \frac{2\text{cm K}}{T}$$
(2.35)

gegeben ist.

Von Pearl[36] wurde gezeigt, daß in einem zweidimensionalen Film der Dicke L_z die logarithmische Wechselwirkung zwischen Vortizes bei der Länge L_s abgeschirmt wird. Bei größeren Abständen der Vortizes voneinander fällt die Wechselwirkungsenergie nicht mehr logarithmisch, sondern ~ $1/r^2$ ab. Die Energie, um einen isolierten Vortex zu erzeugen, wird dadurch, im Gegensatz zu Gl. 2.29, endlich,

$$E_{1,s} \approx \epsilon_0 L_z \ln \frac{L_s}{\xi} + E_n$$

und eine endliche Dichte freier Vortizes und Antivortizes ist bei jeder Temperatur T > 0vorhanden. Der scharfe Phasenübergang in einem unendlich ausgedehnten zweidimensionalen System ohne Abschirmung wird dadurch verschmiert. Wenn $\Lambda_{T_{KT}} = L_s$ größer als die Abmessung L der Proben ist, ist eine Rundung des Kosterlitz-Thouless-Phasenübergangs eher auf einen Größen- als auf einen Abschirmeffekt zurückzuführen.

Durch topologische Anregungen wird die Temperatur des Phasenüberganges T_{KT} in dünnen Proben deutlich unter die Ginsburg-Landau-Übergangstemperatur T_{c0} , bei der eine endliche superfluide Dichte $n_s^0 = \langle |\Psi^2| \rangle > 0$ lokal gebildet wird, abgesenkt. Bei T_{KT} wird die Dichte phasenkorreliert, $n_s = \nu_s(T)n_s^0$, wobei $\nu_s(T)$ die Steifigkeit der lokalen Cooper-Paar-Dichte beschreibt. Während die lokale Kondensatdichte in Ginsburg-Landau-Näherung $n_s^0 \sim (T_{c0} - T)$ wächst, bleibt n_s oberhalb von T_{KT} null und springt dann auf einen endlichen Wert $n_s(T_{KT})$. Die Übergangstemperatur T_{KT} kann aus Gl. 2.31 als selbstkonsistente Lösung von

$$\frac{\nu_s^{\infty}}{2}L_z\epsilon_0(T_{KT}) = k_B T_{KT} \tag{2.36}$$

bestimmt werden.

Oberhalb von T_{KT} sind nur wenige Vortizes im System vorhanden, und es bleibt supraleitend auf kurzen Längenskalen. Bei T_{KT} verschwindet die Dichte der freien Vortizes $n_f = \xi_+^{-2}(T)$. Nach Halperin und Nelson[37] ist die Korrelationslänge $\xi_+(T)$ durch

$$\xi_{+}(T) = \xi_{c} \exp \sqrt{b \frac{T_{KT}}{T - T_{KT}}}$$
(2.37)

mit einer nichtuniversellen Konstanten $b = \mathcal{O}(1)$ und $\xi_c \approx \xi$ gegeben. In der Nähe von T_{c0} kann die Temperaturabhängigkeit von $\xi_+(T)$ durch die Divergenz der Ginsburg-Landau-Korrelationslänge ξ beeinflußt werden. Eine nützliche Interpolation stellt nach Minnhagen[38]

$$\xi_{+}(T) = \xi(T) \exp \sqrt{b \frac{T_{c0} - T}{T - T_{KT}}}$$

dar. Die statische Leitfähigkeit erhält man aus[37]

$$\sigma_{VA}(\omega \to 0) = \frac{\sigma_n}{4\pi^2 C_1} \left(\frac{\xi_+}{\xi}\right)^2 \tag{2.38}$$

Abb. 2.3: a) Nichtlineare Strom-Spannungskennline eines $Bi_2Sr_2CaCu_2O_8$ -Kristalls in der Umgebung von T_{KT} und b) Temperaturabhängigkeit des Exponenten α der Strom-Spannungs Kennlinie[8]

mit der Normalleitfähigkeit σ_n und $C_1 = \mathcal{O}(1)$.

2D-Kosterlitz-Thouless-Übergänge wurden experimentell an Monolagen dünnen Bi₂Sr₂CaCu₂O₈[2] und YBa₂Cu₃O₇[39] beobachtet. Die Übergangstemperatur der einzelnen Schicht ist auf weniger als $T_{KT}(n = 1) = 30$ K im Vergleich zu $T_c = T_{KT}(\infty) \approx$ 90K des massiven Supraleiters abgesenkt. Diese Temperatur wird von Matsuda et al. als intrinsisch für eine CuO₂-Schicht angesehen[39].

Auch an dicken Kristallen wurde z.B. von Artemeko et al.[8] anhand von Strom-Spannungs-Kennlinen ein Phasenübergang beobachtet, der als Kosterlitz-Thouless-Übergang unabhängiger Vortex-Antivortex-Paare in jeder einzelnen entkoppelten CuO₂-Ebene interpretiert wurde. Die Strom-Spannungs-Kennlinen sind unterhalb von T_{KT} nichtlinear. Ursache dieser Nichtlinearität ist das Aufbrechen gebundener Vortex-Antivortex-Paare durch den angelegten Strom, charakterisiert durch den Exponenten α ,

$$V \sim I^{\alpha}$$
 .

Dieser Exponent, dargestellt in Abb. 2.3, springt von 1 für $T > T_{KT}$ auf 3 bei T_{KT} und steigt mit abnehmender Temperatur weiter an, in Übereinstimmung mit der Vorhersage von Halperin und Nelson[37].

Betrachtet man geschichtete Materialien, so kann dieses Bild durch eine endliche Josephson-Wechselwirkung zwischen den Ebenen erheblich beeinflußt werden. Im einfachsten Fall eines entkoppelten Systems paralleler Ebenen bleibt die Wechselwirkung eines Vortex-Antivortex-Paares in einer Ebene aufgrund der Abschirmung durch die anderen Ebenen logarithmisch auf allen Längen, und ein echter Kosterlitz-Thouless-Übergang findet statt[40].

Abb. 2.4: Mögliche 2D- und 3D-artige topologische Anregungen in einem geschichteten Supraleiter, Vortex-Antivortex-Paar mit (a) $r < \lambda_J$ und (b) $r > \lambda_J$, (c) Vortex-Ring und (d) Vortex-Antivortex-Linienpaar.

Andererseits ist in einem Josephson-gekoppelten System die Wechselwirkung zwischen zwei Vortizes in derselben Ebene nur für Abstände $R < \lambda_J = \gamma s$ (Abb. 2.4 a)) logarithmisch. Ist $R > \lambda_J$, wird das magnetische Feld zwischen zwei Vortizes in zwei Josephson-Strings umgelenkt, und die Wechselwirkungsenergie wächst linear mit dem Abstand an, d.h. Vortex-Antivortex-Paare der Größe $R > \lambda_J$ bleiben durch die Josephson-Strings gebunden, wie in Abb. 2.4 b) dargestellt. Dieses hat zur Folge, daß bei einer unendlichen Anzahl schwach Josephson-gekoppelter Ebenen die kritische Temperatur T_c gegenüber der Übergangstemperatur der einzelnen Schicht T_{KT} angehoben wird[40],

$$T_c = T_{KT} \left(1 + \left(\frac{\pi}{\ln(\gamma)} \right)^2 \right) \qquad (2.39)$$

Bei T_c setzt eine dreidimensionale, tatsächlich langreichweitige Ordnung mit nichtverschwindendem Ordnungsparameter unterhalb von T_c ein.

Bei einer endlichen Anzahl supraleitender Ebenen mit Abstand *s* voneinander sind weitere Arten von topologischen Anregungen, dargestellt in Figur 2.4, möglich. Ist der Film dünner als ein kritischer Radius

$$r_a = \lambda_J \ln(r_a/\xi_{ab}) \quad , \tag{2.40}$$

können zu Linien aufgereihte Vortizes und Antivortizes, welche den ganzen Film durchstoßen (Abb. 2.4d), die bevorzugte topologische Anregung darstellen. Deren Wechselwirkungsenergie ist logarithmisch im Abstand, wodurch es möglich ist, daß gebundene Vortex-Antivortex-Linien am zweidimensionalen Phasenübergang dissoziieren und so die Rolle der Vortex-Antivortex-Paare beim Kosterlitz-Thouless-Übergang der einzelnen Schicht übernehmen. Solches Verhalten wurde an Bi₂Sr₂CaCu₂O₈[7]und an YBa₂Cu₃O₇[39]-Filmen, welche nur wenige Monolagen umfaßten, beobachtet. In Abb. 2.5 sind die Ergebnisse dickenabhängiger Untersuchungen des resistiven Übergangs an ultradünnen YBa₂Cu₃O₇-Filmen bis hinab zu einer Monolage von Matsuda et al.[39] dargestellt. Die Dickenabhängigkeit der Übergangstemperatur T_{KT} wird durch das Anwachsen der effektiven zweidimensionalen superfluiden Dichte mit der Anzahl der Lagen erklärt.

Abb. 2.5: a) Temperaturabhängigkeit des dc-Widerstands R(T)/R(100K) von 1 - 10 Monolagen dicken YBa₂Cu₃O₇-Filmen, hergestellt als Sandwich zwischen halbleitenden PrBa₂Cu₃O₇-Pufferschichten, b) Dickenabhängigkeit der Übergangstemperatur T_{KT} , bei der der Widerstand R(T) verschwindet[39]. Die durchgezogene Linie wurde nach der Kosterlitz-Thouless-Theorie berechnet.

Ist die Dicke des Films größer als r_a (Gl. 2.40), werden bei tiefen Temperaturen zweidimensionale Fluktuationen, $r < \lambda_J$, angeregt. Mit steigender Temperatur wächst die Ausdehnung der Vortex-Antivortex-Paare an (Abb. 2.4 b)), und dreidimensionale Vortex-Anregungen in Form von Vortex-Ringen (Abb. 2.4 c)) entstehen durch Nukleation und Kopplung von Vortizes und Antivortizes in benachbarten Ebenen. In diesen Filmen findet ein 2D-3D-Übergang statt[39]. Nach Friesen[9] erfolgt der 2D-3D-Übergang, wenn die Energie der Josephson-Strings die Nukleationsenergie der Punktvortizes in den Ebenen übersteigt, charakterisiert durch $\lambda_J = \xi_{ab}$. In der Umgebung von T_c ist die divergierende Korrelationslänge die einzige Längenskala im System, und die Diskretheit der Ebenen ist unwichtig. Oberhalb von T_c findet ein 3D-2D Übergang statt, wenn die Punkt-Vortizes in benachbarten Ebenen entkoppeln, wenn also $\xi_c < s$ ist.

Messungen nichtlinearer Strom-Spannungs-Kennlinien und von $\rho(T)$ im Nullfeld an $\operatorname{Bi}_2\operatorname{Sr}_2\operatorname{CaCu}_2\operatorname{O}_8$ -Kristallen entlang und senkrecht zu den CuO_2 -Ebenen[41] zeigen tatsächlich zwei Übergänge, einen bei einer Temperatur T_c^{ab} , bei der in den CuO_2 -Ebenen Dissipation einsetzt, und bei einer Temperatur $T_c^* > T_c^{ab}$, bei der in Richtung der c-Achse ein Widerstand gemessen wird. Es ist umstritten, ob bei T_c^* die Josephsonkopplung zwischen den Ebenen einsetzt und die Supraleitung in den CuO_2 -Ebenen als Kosterlitz-Thouless-Übergang bei T_c^{ab} , oder ob deren Beobachtungen durch Überlagerung eines Übergangs der Josephson-Fluxons bei T_c^* und eines dreidimensionalen Phasenübergangs der Ebenen bei T_c^{ab} erklärt werden können[42].

Jüngste Arbeiten von Friesen[9] untersuchen den Einfluß thermischer Phasenfluktuationen zwischen den Ebenen auf das Entkoppeln der Ebenen. Durch diese wird

Abb. 2.6: Temperaturabhängigkeit der relevanten Längenskalen, der Korrelationslänge ξ_{ab} und der Josephsonlänge λ_J in der Umgebung des Phasenübergangs T_c . ξ_{ab} folgt einem 3D-Potenzgesetz und divergiert bei T_c , λ_J ist als temperaturunabhängig angenommen. Oberhalb des Phasenübergangs T_c wird λ_J durch die thermischen Phasenfluktuationen zwischen den Ebenen renormiert. Diese Länge $\tilde{\lambda}_J$ divergiert bei T_c^c , wo die Ebenen entkoppeln. Der 3D-2D-Übergang findet statt, wenn $\tilde{\lambda}_J = \xi_{ab}[9]$.

die Symmetrie des Phasenübergangs gestört. Oberhalb von T_c wird die Josephson-Kopplung zwischen den Ebenen, charakterisiert durch die Josephsonlänge $\tilde{\lambda}_J$, renormiert und divergiert bei T_c^c aufgrund von Abschirmeffekten der freien Vortizes. Ein 3D-2D-Übergang findet bei T_{cr} statt, wenn $\tilde{\lambda}_J = \xi_{ab}$. Der Bereich 3D-artiger Vortex-Antivortex-Fluktuationen zwischen T_{cr} und T_c kann somit drastisch eingeschränkt sein.

2.2.4 Dynamik der Vortex-Paare

Die Antwort eines Supraleiters auf eine externe, zeitabhängige Störung wird durch die freien und gebundenen Vortex-Antivortex-Paare beeinflußt. Dieses kann analog zur Beschreibung der statischen Eigenschaften der Vortex-Antivortex-Paare durch die frequenzabhängige dielektrische Funktion $\varepsilon(\omega)$ ausgedrückt werden. Aus der Londonsche Leitfähigkeit nach Gl. 2.13 erhält man bei Berücksichtigung topologischer Anregungen nach Halperin und Nelson[37]

$$\sigma(\omega) = \frac{i}{\omega\mu_0 \lambda_L^2 \varepsilon(\omega)} \quad . \tag{2.41}$$

Diese Darstellung basiert auf der Theorie einer neutralen Superflüssigkeit auf einem oszillierenden Substrat von Ambegaokar et al.[43].

Die dielektrische Funktion kann als

$$\varepsilon(\omega) = (1 + \chi_b(\omega)) + \gamma_0 i/\omega \tag{2.42}$$

geschrieben werden. Ihr Realteil $1 + \chi_b$ rührt von der Polarisierbarkeit der gebundenen Vortex-Antivortex-Paare her und kann aus der statischen dielektrischen Funktion $\varepsilon(r)$ berechnet werden. Dieser Anteil liefert bei hohen Frequenzen oberhalb von T_{KT} und bei allen Frequenzen unterhalb von T_{KT} den dominierenden Beitrag. Der Imaginärteil von $\varepsilon(\omega)$ beschreibt den dissipativen Beitrag der freien Vortizes und dominiert bei niedrigen Frequenzen oberhalb von T_{KT} . Die Relaxationsrate γ_0 ,

$$\gamma_0(T) = \pi^2 \hbar^2 n_s^2 \mu n_f / m \quad , \tag{2.43}$$

ist im wesentlichen durch die Dichte n_f der freien Vortizes, $n_f \sim \xi_+^{-2}$, oberhalb von T_{KT} und durch die Mobilität, die für unreine Supraleiter die Form[44]

$$\mu = 2e^2\xi^2/\hbar^2\pi\sigma_n L_z$$

annimmt, bestimmt. Bei Vernachlässigung von Abschirmungs- und Größeneffekten verschwindet n_f unterhalb von T_{KT} , d.h. $\gamma_0(T < T_{KT}) = 0$. Die dielektrische Suszeptibilität der gebundenen Vortizes, χ_b , ist gemäß dem phänomenologischen Ansatz von Halperin und Nelson[37, 45] gegeben durch:

$$\chi_b(\omega) = \int_{\xi}^{\xi_+} dr \frac{d\varepsilon(r)}{dr} \frac{14Dr^{-2}}{-i\omega + 14Dr^{-2}}$$
(2.44)

mit der Diffusionskonstanten

$$D = \mu k_B T = \frac{\xi^2}{2\Lambda_T L_z \mu_0 \sigma_n}$$

Durch Substitution von $\sqrt{\omega \tau_{GL}} r/\xi = y$ kann Gl. 2.44 in der Form

$$\chi_b(\omega) = \frac{1}{\sqrt{\omega\tau_{GL}}} \int_{\sqrt{\omega\tau_{GL}}}^{\sqrt{\omega\tau}} \frac{d\varepsilon(r/\xi)}{d(r/\xi)} \frac{dy}{1 - iy^2}$$
(2.45)

geschrieben werden, mit den Zeiten

$$\tau_{GL} = \frac{\xi^2}{14D} = \frac{\Lambda_T L_z \mu_0 \sigma_n}{7}$$
$$\epsilon^2 \qquad (\xi_{\perp})^2$$

und

$$\tau = \frac{\xi_{+}^{2}}{14D} = \left(\frac{\xi_{+}}{\xi}\right)^{2} \tau_{GL} \quad . \tag{2.46}$$

Die durch die Relaxationszeit der kleinsten Paare bestimmte untere Grenze des Integrals wird sehr klein, so daß $\omega \tau_{GL} \ll \omega \tau$ keinen Einfluß auf den Wert des Integrals, Gl. 2.45, hat. Die Leitfähigkeit wird dadurch zu einer Funktion der Variablen $\omega \tau$,

$$\sigma^{-1}(\omega\tau) = \sigma_{VA}^{-1}(0) + i\omega\mu_0\lambda_L^2(1+\chi_b(\omega\tau))$$

= $\sigma_{VA}^{-1}(0)S_{VA}^{-1}(\omega\tau)$. (2.47)

Abb. 2.7: Die Frequenzabhängigkeit der Skalenfunktionen $S_{VA}(\omega\tau)$ nach Gl. 2.47 mit $\varepsilon'(r/\xi) = 1$ und $S_{3D}^G(\omega\tau)$ nach Gl. 2.24 unterscheidet sich praktisch nicht.

Für $d\varepsilon(r/\xi)/d(r/\xi) = 1$ erhält man nahezu die gleiche Frequenzabhängigkeit der Skalenfunktionen $S_{VA}(\omega\tau)$ und $S_{3D}^G(\omega\tau)$, dargestellt in Abb. 2.7.

2.3 Stabile Supraleitung im Magnetfeld?

2.3.1 Das ideale Vortex-Gitter

Durch die starken thermische Fluktuationen ebenso wie durch Unordnung in realen Materialien wird auch das sich in Molekularfeld-Näherung ergebende Phasendiagramm der Supraleiter 2. Art, dargestellt in Abb. 2.1, für die Hochtemperatursupraleiter modifiziert. Die Natur der sich hier im Vortex-Zustand ausbildenden Phasen und Phasenübergänge ist bis heute nicht vollständig geklärt und Gegenstand einer Vielzahl von Untersuchungen.

An Bi₂Sr₂CaCu₂O₈-Kristallen wurde von Zeldov et al.[12, 46] in feld- und temperaturabhängigen Messungen der lokalen Magnetisierung, dargestellt in Abb. 2.8, ein scharfer Sprung beobachtet und als Phasenübergang erster Ordnung interpretiert. Bei dem beobachteten Feld $B_m(T)$ schmilzt das sich bei tiefen Temperaturen in reinen Kristallen bildende Vortex-Gitter in eine Vortex-Flüssigkeit. Weitere experimentelle Hinweise auf diesen Schmelzübergang stammen auch aus nicht-lokalen Neutronenstreu-[13] und μ SR-Experimenten[47].

Abb. 2.8: a) Die lokale Magnetisierung $B_z - H_a$ eines $Bi_2Sr_2CaCu_2O_8$ -Kristalls zeigt in Abhängigkeit des äußeren Feldes H_a einen scharfen Sprung bei der Schmelztemperatur T_m . Dieser Phasenübergang erster Ordnung bleibt auch nach Erzeugung von Punktdefekten mittels Bestrahlung durch Elektronen erhalten. b) Kolumnare Defekte wirken stabilisierend gegen die Vortexfluktuationen und schieben die Phasengrenze zu höheren Feldern. Die Schmelzlinie wird durch einen kontinuierlichen Phasenübergang ersetzt[17].

Abb. 2.9: Durch thermische Fluktuationen kann der Vortex-Festkörper bereits deutlich unterhalb von B_{c2} entlang der Schmelzlinie $B_m(T)$ in eine Vortex-Flüssigkeit schmelzen.

Ein semiquantitativer Ansatz zur Beschreibung des Schmelzens in Festkörpern ist das Lindemann-Kriterium. Man nimmt an, daß das Kristallgitter instabil gegenüber thermischen Fluktuationen seiner Elemente (hier Vortex-Linien) wird, sobald die Amplitude der Fluktuationen $\langle u^2 \rangle_{th}$ größer als ein Bruchteil c_L der Gitterkonstanten $a_0 = \sqrt{B/\phi_0}$ wird,

$$\langle u^2(T_m)\rangle_{th} = c_L^2 a_0^2$$

Es hat sich herausgestellt, daß dieses Kriterium eine zufriedenstellende Abschätzung für die Schmelztemperatur T_m für eine Vielzahl dreidimensionaler Schmelzübergänge darstellt, wobei die Lindemann-Zahl $c_L \approx 0.1 - 0.2$ nur schwach vom jeweiligen Material abhängt. Die Amplitude der Fluktuationen der Vortex-Positionen kann mit Hilfe der Elastizitätstheorie für anisotrope Supraleiter berechnet werden. Houghton, Pelcovits und Sudbø[48] berechneten daraus eine implizite Gleichung für die Schmelzlinie. Diese vereinfacht sich in einem Feldbereich deutlich unterhalb von $H_{c2}(T)$, welcher in Hochtemperatursupraleitern einen großen Platz im Phasendiagramm einnimmt, zu

$$B_m(T) = \beta_m \frac{c_L^4}{Gi} B_{c2}(0) \left(1 - \frac{T}{T_c}\right)^2$$
(2.48)

mit $\beta \approx 5.6$. Diese thermodynamische Phasengrenze trennt die Flüssigkeit von Linienvortizes oberhalb von T_m vom Vortex-Liniengitter unterhalb von T_m . Mit zunehmendem Feld zerfallen die Linienvortizes zu individuellen, in den Ebenen lokalisierten Punktvortizes. Der Übergang setzt ein, sobald die Scherenergie des Flußliniengitters, charakterisiert durch den Schermodul c_{66} , über die Kippenergie, charakterisiert durch c_{44} , anwächst. Beim Entkopplungsfeld[11]

$$B_{2D} = \pi \frac{\phi_0}{\lambda_J^2} \ln \frac{\lambda_J}{\xi}$$
(2.49)

wechselt das System von dreidimensionalem zu zweidimensionalem Verhalten. Die Josephson-Kopplung zwischen benachbarten Ebenen dominiert unterhalb von B_{2D} über die Wechselwirkung der Punkt-Vortizes in den Ebenen und führt zu einem Kippmodul $c_{44} \neq 0$. Die Schmelzlinie folgt hier Gl. 2.48. Mit steigender Temperatur brechen die Vortex-Linie in individuelle Punktvortizes auf, und die supraleitende Ordnung senkrecht zu den Ebenen geht bei der Entkopplungstemperatur T_e verloren,

$$T_e(B) = T_m(B) \left(\frac{B_{2D}}{B}\right)^{1/2}$$
, (2.50)

und der Kippmodul verschwindet[11].

Oberhalb von B_{2D} dominiert die Wechselwirkung der Punkt-Vortizes untereinander. Dieses bedeutet auch, daß die Fluktuationen oberhalb von B_{2D} zweidimensionalen Charakter haben und $\langle u^2(r) \rangle_{th}$ logarithmisch mit der Größe des Systems divergiert. Eine Beschreibung des zweidimensionalen Schmelzens mittels des Lindemann-Kriteriums versagt hier. Nach Huberman und Doniach[49] und Fisher[50] kann das Schmelzen des zweidimensionalen Flußliniengitters als Kosterlitz-Thouless-artiger Übergang interpretiert werden. Die Rolle der bei T_m dissoziierenden Objekte wird von Versetzungspaaren übernommen, die in einem endlich ausgedehnten zweidimensionalen Flußliniengitter spontan entstehen können. Deren Bindungsenergie ist um $1/8\pi$ gegenüber der Bindungsenergie von Vortex-Antivortex-Paaren reduziert, wodurch die Schmelztemperatur T_m^{2D} gegenüber der Kosterlitz-Thouless-Übergangstemperatur T_{KT} wesentlich abgesenkt wird.

$$T_m^{2D} = \frac{\phi_0 s}{64\pi^2 k_B \mu_0 \lambda_{ab}^2} \tag{2.51}$$

ist feldunabhängig, und man erhält für Bi₂Sr₂CaCu₂O₈ $T_m^{2D} \approx 25$ K.

Analog zum Kosterlitz-Thouless-Übergang wird die Schmelztemperatur bei Annäherung an das Entkopplungsfeld $B \searrow B_{2D}$ durch die Josephson-Kopplung zwischen den Ebenen angehoben, woraus sich diese 3D-artige Schmelzlinie

$$T_m(B) = T_m^{2D} \left(1 + \frac{b}{(\ln(B/B_{2D}))^{1/\nu}} \right)$$
(2.52)

für $B > B_{2D}$ mit $\nu = 0.37$ und $b = \mathcal{O}(1)$ ergibt[11].

Die supraleitende Phasenkohärenz entlang der Feldlinien, d.h. senkrecht zu den Ebenen, setzt oberhalb von B_{2D} erst bei der tieferen Temperatur T_{DC} ein. Diese kann durch T_m^{2D} ausgedrückt werden,

$$T_{DC} = T_m^{2D} \left(\frac{B_{2D}}{B}\right)^{1/2} \quad . \tag{2.53}$$

Die oben hergeleiteten Gl. 2.48 bis Gl. 2.53 gelten für ideale, ungestörte Systeme. Keiner dieser Phasenübergänge ist in solchen idealen Systemen beobachtbar, denn auch das geordnete Kristall-Gitter wird sich als Ganzes unter dem Einfluß der Lorentzkraft bewegen. Dadurch wird Energie dissipiert, und es liegt keine tatsächliche Supraleitung vor.

In jedem realen System gibt es Störungen, und diese Störungen können die Vortex-Bewegung behindern, indem einzelne Vortizes an ihnen haften. So ist es möglich, daß unterhalb der Schmelztemperatur ein an wenigen Stellen festgehaltenes Vortex-Gitter zu einem verschwindenden Widerstand führt. Unordnung zerstört die langreichweitige Translationssymmetrie auf Längenskalen größer als die Larkin-Länge[51]. Eine Gitterordnung bleibt nur auf kleineren Längen erhalten. Ist die Störung gering, so kann die langreichweitige Gitterordnung auch auf großen Längen sichtbar sein. So wurde von Zeldov et al.[17] beobachtet, daß in Bi₂Sr₂CaCu₂O₈-Kristallen, die mit einer hohen Dosis von Elektronen, $n_{\phi} \approx 10^{18} \mathrm{cm}^{-2}$, bestrahlt wurden, das Schmelzen des Vortex-Gitters in eine Vortex-Flüssigkeit als Phasenübergang erster Ordnung erhalten bleibt. Zufällig verteilte Defekte sind somit nicht in der Lage, die Fluktuationen der Vortex-Flüssigkeit effektiv zu unterdrücken. Es wurde sogar beobachtet, daß sich die Phasengrenze mit zunehmender Dichte der bei der Bestrahlung entstehenden Punktdefekte zu niedrigereren Feldern verschiebt. Dieses kann dadurch erklärt werden, daß sich zu den thermischen Fluktuationen die Verzerrungen der einzelnen Flußlinien an den Punktdefekten addieren.

Schon eine geringe Dichte kolumnarer Defekte, $n_{\phi} \approx 10^8 \,\mathrm{cm}^{-2}$ entsprechend $B_{\phi} = 2 \,\mathrm{mT}$, führt dazu, daß die Schmelzlinie durch einen kontinuierlichen Phasenübergang ersetzt wird. Dieser verschiebt sich mit zunehmender Defektdichte zu höheren Feldstärken. Nur nahe T_c bleibt der Sprung in der lokalen Magnetisierung und somit das Schmelzen als Phasenübergang 1. Ordnung erhalten. Dieser Fall läßt sich in dem von Nelson und Vinokur[52] entwickelten Bose-Glas-Modell beschreiben, mit einer tatsächlich supraleitenden Tieftemperaturphase, dem Bose-Glas. Im Bose-Glas wirken die kolumnaren Defekte stabilisierend gegen die Vortex-Fluktuationen und führen zu einer Erhöhung der Schmelzlinie.

2.3.2 Vortex-Glas

Die langreichweitige Ordnung des Abrikosov-Gitters wird durch Unordnung zerstört. Fisher[53] vermutete, daß sich in gestörten dreidimensionalen Supraleitern bei tiefen Temperaturen eine neue thermodynamische Phase bildet, das Vortex-Glas mit einem verschwindenden Widerstand, $\rho(j \rightarrow 0) \rightarrow 0$. Dieser Vortex-Glas-Zustand ist nach Fisher, Fisher und Huse[54] vergleichbar mit einem Spin-Glas. Der die langreichweitige Phasenkohärenz beschreibende Ordnungsparamenter ist durch die Korrelationsfunktion

$$G_{VG}(r) = \left| \overline{\langle \Psi^*(r')\Psi(r'+r) \rangle} \right|$$

gegeben. Dieser bleibt im Vortex-Glas für große Abstände endlich und verschwindet oberhalb der Glastemperatur T_g exponentiell. Die Korrelationslänge

$$\xi_g(T) = \xi_g(0) \left| 1 - \frac{T}{T_g} \right|^{-\nu}$$
(2.54)

mit dem kritischen Exponenten ν beschreibt die räumliche Ausdehnung von Fluktuationen der Vortex-Flüssigkeit in der festen Vortex-Glas-Phase für $T < T_g$ und von glasartigen Bereichen in der Vortex-Flüssigkeit für $T > T_g$. Die charakteristische Relaxationszeit der Fluktuationen steigt wie

$$\tau(T) \sim \xi_g^z \sim \left| 1 - \frac{T}{T_g} \right|^{-\nu z} \tag{2.55}$$

an, mit dem dynamischen kritischen Exponenten z. Die Annahme eines kontinuierlichen Phasenübergangs mit der bei T_g divergierenden Korrelationslänge ξ_g und divergierender Relaxationszeit τ erlaubt die Herleitung von Skalierungsvorschriften für die nichtlineare Leitfähigkeit $\sigma(j)$, wie sie aus Strom-Spannungskennlinien bestimmt wird, und für die lineare dynamische Leitfähigkeit $\sigma(\omega)$ im kritischen Bereich um T_g herum. Diese Skalierungsvorschriften erhält man, indem man alle in diese Größen eingehenden Längen durch die Korrelationslänge ξ_g ersetzt, die im kritischen Bereich die einzige ausgezeichnete Länge darstellt, und die Zeit durch die Relaxationszeit τ .

Das elektrische Feld ist die Zeitableitung des Vektorpotentials, $\vec{E} = \partial \vec{A}/\partial t$. \vec{A} ist umgekehrt proportional zu einer Länge, so daß im kritischen Bereich $E \sim 1/(\xi \tau) \sim \xi^{-(1+z)}$ gilt. Die Stromdichte ist $\vec{j} = \partial f/\partial \vec{A}$ mit der freien Energiedichte f. Diese soll in drei Dimensionen wie ein inverses Volumen skalieren, $f \sim 1/\xi^3$, woraus $j \sim \xi/\xi^3 \sim \xi^{-2}$ folgt. Die Kombination dieser Skalenrelationen ergibt

$$E\xi_q^{z+1} = \tilde{\mathcal{E}}_{\pm}(j\xi_q^2) \tag{2.56}$$

für Temperaturen oberhalb (+) und unterhalb (-) von T_g mit einer geeigneten Skalenfunktion $\tilde{\mathcal{E}}_{\pm}(x)$.

Die Leitfähigkeit $\sigma = j/E$ skaliert wie $\sigma \sim \xi^{z-1}$, und die Kreisfrequenz $\omega \sim \xi^{-z}$ ist eine inverse Zeit. Daraus ergibt sich diese Skalenrelation:

$$\sigma \xi^{1-z} = S_{\pm}(\omega \xi_g^z) \qquad . \tag{2.57}$$

Abb. 2.10: a) Phase und b) Betrag des skalierten dynamischen Widerstandes $\rho(\omega)/\rho_0 = \sigma_0/\sigma(\omega)$ eines YBa₂Cu₃O₇-Films im Feld B = 0.4 T[55]

Diese Skalierungsvorschrift kann ausgedrückt werden in Betrag $|\sigma| = \sqrt{\sigma'^2 + \sigma''^2}$ und Phasenwinkel $\varphi = \arctan(\sigma''/\sigma')$ der komplexen Leitfähigkeit $\sigma = |\sigma| \exp(i\varphi)$:

$$|\sigma(\omega)| = \xi_g^{z-1} \tilde{S}_{\pm}(\omega \xi_g^z) \quad , \tag{2.58}$$

$$\varphi(\omega) = \Phi_{\pm}(\omega\xi_g^z) \qquad . \tag{2.59}$$

Die geeigneten Skalenfunktionen $S_{\pm}(x)$ bzw. $\tilde{S}_{\pm}(x)$ und $\Phi_{\pm}(x)$ oberhalb und unterhalb von T_g beschreiben den Wechsel vom rein Ohmschen Verhalten für $T > T_g$ (S'' = 0)mit

$$\tilde{S}_{+}(x \to 0) = 1, \quad \Phi_{+}(x \to 0) \to 0 \quad ,$$
(2.60)

zur supraleitenden Abschirmung $(T > T_g)$ mit

$$\tilde{S}_{-}(x \to 0) \sim x, \quad \Phi_{-}(x \to 0) \to \frac{\pi}{2} \quad .$$
(2.61)

Bei T_g befolgt die Leitfähigkeit ein Potenzgesetz,

$$\tilde{S}_{\pm}(T_g) \sim x^{1-1/z}$$
 , (2.62)

und der Phasenwinkel ist gemäß der Kramers-Kronig-Relation gegeben durch den frequenzunabhängigen Wert

$$\Phi_{\pm}(T_g) = \frac{\pi}{2} \left(1 - \frac{1}{z} \right) \qquad . \tag{2.63}$$

Eine Vielzahl von Hinweisen auf einen Vortex-Glas-Phasenübergang an YBa₂Cu₃O₇-Kristallen und -Filmen wurde aus Messungen von $\rho(j) = 1/\sigma(j)$ [56] und aus $\sigma(\omega)$ [15], beispielhaft für einen YBa₂Cu₃O₇-Film dargestellt in Abb. 2.10, gewonnen. Die meisten dieser Messungen ergaben für die kritischen Exponenten

$$z = 5.7(5)$$
 und $\nu = 1.7(3)$

Dorsey[57] berechnete in einem dreidimensionalen zeitabhängigen Ginsburg-Landau-Modell in Gaußscher Näherung Exponenten z = 2 und $\nu = 1/2$, die wesentlich kleiner als die experimentellen Werte sind. Berücksichtigt man für das 3D-Vortex-Glas isotropes Haftens der Vortizes an Defekten, die durch eine räumliche Variation von T_c simuliert wurden, so erhält man die gleichen kritischen Exponenten wie für das Ising-Spin-Glas[58], z = 4 und $\nu = 1/2[59]$. Erweitert man dieses Ergebnis auf eine kritische Dynamik, so sind diese Exponenten nur in d = 6 Dimensionen exakt und können nach $d = 6 - \varepsilon$ entwickelt werden. Sie erhöhen sich in weniger als 6 Dimensionen auf $\nu = 1/2 + 5\varepsilon/24 \approx 1.1[60]$ und $z = 2(2 + \varepsilon/6) \approx 5$ für d = 3. Diese Ergebnisse können wegen des großen Abstandes zu d = 6 lediglich als Anhaltspunkte für die Größe von ν und z dienen. Die theoretisch berechneten und experimentell an YBa₂Cu₃O₇ bestimmten Werte sind in Tab. 2.2 zusammengestellt.

Tab. 2.2: Kritische Exponenten

	TDGL[57]	3D-Vortex-	Bose-	$YBa_2Cu_3O_7$	$YBa_2Cu_3O_7$
		Glas[59]	Glas[61]	Film[62]	Kristall[15]
z	2	4	6	5.7	3
ν	1/2	1/2	1	1.7	3

2.3.3 Bose-Glas

Eine deutliche Verbesserung des Vortex-Haftens kann erreicht werden, indem man korrelierte Haftzentren in den Supraleiter einbaut. Messungen an YBa₂Cu₃O₇-Kristallen[63, 64], in denen kolumnare Defekte durch Bestrahlung mit Schwerionen (Sn,Pb) hoher Energie (~GeV) erzeugt wurden, zeigten erstmals eine drastische Erhöhung der Irreversibilitätslinie. Jeder Vortex, der an solcher normalleitenden Röhre haftet, gewinnt Nukleationsenergie proportional zu dessen Länge. Diese beträgt pro Längeneinheit[25]

$$\epsilon_r \approx \frac{\epsilon_0}{2} \ln \left(1 + \frac{b_0^2}{2\xi^2} \right) \quad . \tag{2.64}$$

Zur Beschreibung des Verhaltens der Vortizes in Anwesenheit kolumnarer Defekte wurde von Nelson und Vinokur[65, 52] das Bose-Glas-Modell vorgeschlagen. Die Bewegung der Flußlinien in einer Umgebung zufällig verteilter kolumnarer Defekte mit mittlerem Abstand a_c und Radius b_0 , welche parallel zu den Vortizes orientiert sind, ist äquivalent zur Quantenmechanik zweidimensionaler Bosonen. Aus dieser Analogie[66]

Abb. 2.11: a) superfluide Phase, b) Bose-Glas und c) Mott-Isolator.

erhält man drei thermodynamische Phasen, dargestellt in Abb. 2.11, deren Lage in das daraus resultierende Phasendiagramm, Abb. 2.12, eingetragen ist. In der superfluiden Phase, welche der Vortex-Flüssigkeit entspricht, können die Vortizes frei von einem kolumnaren Haftzentrum zum anderen springen. Der Schermodul c_{66} verschwindet in dieser Phase, und der Kompressionsmodul c_{11} und der Kippmodul c_{44} sind endlich. Diese Phase kann durch die Korrelationslänge $l_{\parallel} \sim c_{44}$ beschrieben werden. Das Bose-Glas bei tieferen Temperaturen ist durch einen thermodynamischen Phasenübergang entlang einer Linie $T_{bg}(B)$ von dieser getrennt. In der Bose-Glas-Phase sind die Vortizes in der Nähe einiger kolumnarer Defekte lokalisiert. Dieses kann durch die endliche Lokalisierungslänge l_{\perp} , die die mittlere transversale Auslenkung eines Vortex um einen Defekt herum beschreibt, ausgedrückt werden. Im Bose-Glas verschwindet der Schermodul c_{66} , der Kippmodul c_{44} aber divergiert wegen der starken Wechselwirkung der Vortex-Linien mit den lang ausgedehnten Defekten. Der Kompressionsmodul c_{11} bestimmt hier die Lokalisierungslänge, $l_{\perp} \sim \sqrt{c_{11}c_{44}}$.

Bei Annäherung an den Phasenübergang divergieren l_{\perp} und l_{\parallel} ,

$$l_{\perp} \sim \left(1 - \frac{T}{T_{bg}}\right)^{-\nu_{\perp}} \qquad , l_{\parallel} \sim \left(\frac{T}{T_{bg}} - 1\right)^{-\nu_{\parallel}} \qquad (2.65)$$

Bleibt der Kompressionsmodul bei T_{bg} endlich, wie von Nelson und Vinokur vorhergesagt, ist

$$l_{\parallel} \sim l_{\perp}^{1/\zeta} \tag{2.66}$$

mit $\zeta = 1/2$. $\zeta = \nu_{\perp}/\nu_{\parallel}$ ist der *line wandering* Exponent. Für isotrope Vortex-Fluktuationen, wie sie im Vortex-Glas vorliegen, ist $\zeta = 1$. Beim Phasenübergang zwischen Vortex-Flüssigkeit und Bose-Glas werden von Nelson und Vinokur für die nichtlineare statische und die lineare dynamische Leitfähigkeit, $\sigma(j)$ und $\sigma(\omega)$, oberhalb und unterhalb von T_{bg} ähnliche Skalierungseigenschaften wie am isotropen Vortex-Glas-Phasenübergang (Gl. 2.58) vorhergesagt. Die Relaxationszeit der transversalen Vortex-Fluktuationen divergiert bei T_{bg} wie $\tau \sim l_{\perp}^{z}$ und die lineare Leitfähigkeit wie $\sigma_{0} \sim \tau/l_{\parallel}$.

Abb. 2.12: Phasendiagramm mit korrelierter Unordnung nach Referenz [52]. Die Mott-Isolator-Phase erscheint als Linie bei $B = B_{\phi}$. Oberhalb von $B^*(T)$ werden die Eigenschaften des Bose-Glases durch kollektives Vortex-Haften, unterhalb von $B^*(T)$ durch Einzelvortex-Haften bestimmt. Die Phasengrenze $B_{bg}(T)$ trennt das Bose-Glas von der Vortex-Flüssigkeit.

Dieses führt zu den kritischen Potenzgesetzen

$$\tau(T) = \tau_0^{\pm} \left| 1 - \frac{T}{T_{bg}} \right|^{-\nu_{\perp} z} \quad \text{und} \quad \sigma_0(T) = \sigma_c^{\pm} \left| 1 - \frac{T}{T_{bg}} \right|^{-\nu_{\perp}(z-1/\zeta)} \quad .$$
(2.67)

Solches Skalenverhalten wird in Messungen der dynamischen Leitfähigkeit an mit Schwerionen bestrahlten YBa₂Cu₃O₇ Filmen beobachtet[67].

Von Wallin und Girvin[61] wurden die kritischen Exponenten im Bose-Glas-Modell für senkrecht zu den kolumnaren Defekten fließende Ströme berechnet. Sie erhielten in Simulationen z = 6.0(5) und $\nu = 1.0(1)$.

Die Mott-Isolator-Phase bei sehr tiefen Temperaturen ist dadurch gekennzeichnet, daß jeder kolumnare Defekt von einem Vortex belegt wird. Die Lage der Phasengrenze zwischen Vortex-Flüssigkeit und Bose-Glas wird durch die Vortex-Vortex-Wechselwirkung, die Wechselwirkung zwischen einzelnen Vortizes und den kolumnaren Defekten und durch deren relatives Gewicht zueinander bestimmt. Das Wechselwirkungsfeld $B^*(T)$ trennt im Phasendiagramm den Bereich des Einzelvortex-Haftens von einem Bereich, in dem die Eigenschaften des Bose-Glases durch kollektives Haften der Vortizes bestimmt werden.

Abb. 2.13: a) An einem einzelnen kolumnaren Defekt gepinnte Vortex-Linie für $T < T_{dl}$ und b) kollektiv durch Dichtefluktuationen von kolumnaren Defekten gepinnte Vortex-Linie für $T > T_{dl}$.

Bei kleinen Feldern, $B \leq \phi_0/\lambda^2$, kann die kurzreichweitige Vortex-Vortex-Wechselwirkung gegenüber der Wechselwirkung zwischen Vortex und Defekt vernachlässigt werden. Bei Temperaturen niedriger als die Delokalisierungstemperatur T_{dl} sind die Vortizes im wesentlichen an einzelnen kolumnaren Defekten lokalisiert. Erst bei T_{dl} wächst die Amplitude der thermischen Fluktuationen über den mittleren Defektabstand hinaus an, dargestellt in Abb. 2.13,

$$l_{\perp}(T_{dl}) = a_c \qquad . \tag{2.68}$$

Die Vortizes haften nicht länger an einzelnen Defekten, sondern an Dichtefluktuationen der Defekte. Die Delokalisierungstemperatur T_{dl} kann aus folgender impliziten Gleichung bestimmt werden:

$$T_{dl} = \tilde{T}_{dl}(T_{dl}) \tag{2.69}$$

mit der Energieskala $\tilde{T}_{dl} = b_0/(4\xi_0)(\ln(\kappa)/Gi)^{1/2}(T_c - T)$. Für Bi₂Sr₂CaCu₂O₈ ist $T_{dl}/T_c \approx 0.5$ abhängig von der Defektdichte. Die Lokalisierungslänge, $l_{\perp} = a_c(T/\tilde{T}_{dl})^2$, wächst für $T > T_{dl}$ solange, bis die Vortex-Fluktuationen sich zu überlappen beginnen. Man erhält anhand dieses Kriteriums, $a_0 = l_{\perp}(T_{bg})$, eine Abschätzung der Bose-Glas-Linie für das verdünnte Vortex-System, $a_0 < \lambda$,

$$B_{bg}(T) = B_{\phi} \left(\frac{b_0}{4\xi_0}\right)^4 \left(\frac{\ln(\kappa)}{Gi}\right)^2 \left(\frac{T_c}{T} - 1\right)^4 \qquad (2.70)$$

Beim dosisäquivalenten Feld $B_{\phi} = \phi_0/a_c^2$ entspricht die Vortex-Dichte der Dichte der kolumnaren Defekte.

Bei hohen Feldern, $B > \phi_0/\lambda^2$, soll die Vortex-Vortex-Wechselwirkung wichtig werden. Die Erhöhung der Schmelzlinie des ungestörten Systems zur Bose-Glas-Linie kann mittels des Lindemann-Kriteriums abgeschätzt werden. Die sich daraus ergebende Phasengrenze kann man in der Form

$$T_{bg}(B) = \gamma_d T_m(B) + (1 - \gamma_d) T_c \tag{2.71}$$

darstellen. γ_d beschreibt den Effekt der Unordnung. Für das ungestörte System ist $\gamma_d = 1$, und Gl. 2.71 ergibt die Schmelzlinie. Im stark gestörten System ist $\gamma_d \rightarrow 0$, und der Phasenübergang strebt gegen die obere physikalische Grenze $T_{bg} \rightarrow T_c$.

Kapitel 3

Experiment: Dynamische Suszeptibilität und Leitfähigkeit

3.1 Hoch- T_c Materialien

In dieser Arbeit wurde die dynamische Leitfähigkeit der CuO_2 -Ebenen im geschichteten Hochtemperatursupraleiter $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_8$ untersucht. Insbesondere wurde der Einfluß der großen Anisotropie in Proben unterschiedlicher Mikrostruktur und lateraler Ausdehnung, in Einkristallen unterschiedlicher Dicke und in dünnen Filmen auf die Supraleitung in diesen stark fluktuierenden Systemen betrachtet. Die Messungen wurden im kompensierten Erdfeld in Abwesenheit extern induzierter Vortizes und in Magnetfelder bis zu B = 12T durchgeführt. Es wurde versucht, die mit zunehmendem Feld anwachsenden Fluktuationen der schwach gekoppelten Punktvortizes in den CuO₂-Ebenen durch das Einbringen kolumnarer Defekte zu unterdrücken.

Zur Charakterisierung der Proben kann man das Einsetzen der supraleitenden Abschirmung im Erdfeld bei einer zunächst willkürlichen Frequenz, z.B. f = 10kHz, betrachten. Die dadurch definierte Temperatur $T_{onset}(10$ kHz) stimmt i.a. nicht mit der Temperatur des Übergangs zur Supraleitung T_c überein. Sie ist vor allem frequenzabhängig und kann somit nur für eine erste Beurteilung der Probengüte in Bezug auf den Übergang und dessen Breite sowie zum Vergleich der Proben untereinander herhalten. Eine physikalisch sinnvolle Definition von T_c als Phasenübergang zur Supraleitung und deren Bestimmung wird in Kapitel 4.1 vorgenommen.

a) $Bi_2Sr_2CaCu_20_8$ -Kristalle

Zur Untersuchung der Dickenabhängigkeit des Supraleitungsübergangs wurden ein $130 \mu m$ dicker bleidotierter Einkristall (Kristall B1) mit einer nominellen Zusammen-

setzung Bi_{1.8}Pb_{0.4}Sr_{1.8}CaCu₂O₈ verwendet. Durch die Dotierung mit Blei sollen die Haftmechanismen für die Vortizes verbessert werden, was zu einer Vergrößerung des magnetisch irreversiblen Bereichs und einer Erhöhung der kritische Stromdichte auf $j_c(77\text{K}) \approx 2 \cdot 10^3 \text{A/cm}^2$ führt[68]. Von diesem Kristall wurden im Anschluß an die Messungen ein 50µm dickes und ein 13µm dickes Stück abgespalten. Optische Untersuchungen der Kristalle zeigten glatte Oberflächen. Die kritische Stromdichte des *as grown* Kristalls (Kristall A) ist im Vergleich dazu eine Größenordnung geringer, $j_c(77\text{K}) \approx 3 \cdot 10^2 \text{A/cm}^2$ [68]. Die Übergangstemperatur des Kristalls B1 ist mit $T_{onset}(10\text{kHz})=84\text{K}$ niedriger als die des Kristalls A, $T_{onset}(10\text{kHz})=88\text{K}$. Die Übergangstemperaturen der Kristalle B2 und B3 wurden durch das Spalten nur geringfügig abgesenkt. Die Übergangsbreite, bestimmt als das Temperaturintervall, innerhalb dessen die Abschirmung von 10% auf 90% gestiegen ist, ist bei Kristall B1 schmaler, $\Delta T_{onset} \approx 10\text{K}$, als bei Kristall A, $\Delta T_{onset} \approx 14\text{K}$. Die wichtigsten Charakteristika der vier untersuchten Kristalle sind in Tab. 3.1 zusammengefaßt.

BSCCO	А	B1	B2	B3	
Geometrie	Rechteck				
$\mathbf{a} \times \mathbf{b}$	$3 \times 1 \mathrm{mm^2}$	$2~ imes~2.5~\mathrm{mm^2}$	$2~ imes~2.5~\mathrm{mm^2}$	$2 \times 2 \mathrm{mm^2}$	
Dicke	$130~\mu{ m m}$	$130~\mu{ m m}$	$50\mu{ m m}$	$13\mu\mathrm{m}$	
$T_{onset}(10 \mathrm{kHz})$	88 K	$84\mathrm{K}$	$83.8~{ m K}$	$83.6~{ m K}$	
$j_c(77\mathrm{K})(\mathrm{A/cm^2})$	$3\cdot 10^2$	$2 \cdot 10^3$	—	—	
Hersteller	L. Winkeler, RWTH Aachen[68]				

Tab. 3.1: Parameter der Bi₂Sr₂CaCu₂O₈-Kristalle

b) $Bi_2Sr_2CaCu_20_8$ -Filme

Die 200 nm dicken Filme wurden durch Laserablation auf ein $10 \times 10 \text{ mm}^2$ großes SrTiO₃-Substrat aufgebracht und aus diesem mit einem Ultraschallbohrer als Scheiben von 3 mm Durchmesser herausgebohrt. Die Übergangstemperatur im Erdfeld beträgt $T_{onset}(10 \text{ kHz})=91.5 \text{ K}$ mit einer Breite von $\Delta T_{onset} = 1 \text{ K}$. Die optische Aufnahme des Films in Abb. 3.1 zeigt eine glatte Oberfläche mit einigen Ausscheidungen < 19 nm. Vom Probenhersteller wurde aus TEM-Aufnahmen [69] eine Verzwillingung gefunden, deren Domänen eine Ausdehnung von $0.1 \,\mu\text{m}$ und $0.5 \,\mu\text{m}$ in a- bzw. b-Richtung besitzen.

Zur Untersuchung der Auswirkung korrelierter Unordnung auf die Vortexdynamik wurden in zwei Filmen nach deren Charakterisierung durch Schwerionenbestrahlung kolumnare Defekte erzeugt. Die Bestrahlung erfolgte mit 2.7 GeV²³⁸U-Ionen und wurde bei der GSI in Darmstadt von Dr. G. Wirth durchgeführt. Schnelle Ionen erzeugen im

Abb. 3.1: Polarisationslichtaufnahme des Bi₂Sr₂CaCu₂O₈-Films

Geometrie		Kreis	
Radius	$1.5\mathrm{mm}$	$1.5\mathrm{mm}$	$1.5\mathrm{mm}$
Dicke	$200\mathrm{nm}$	$200\mathrm{nm}$	$200~\mathrm{nm}$
$\operatorname{Bestrahlung}$	—	$^{238}\mathrm{U}^{28+}$	$^{238}\mathrm{U}^{28+}$
B_{ϕ}	—	$10 \mathrm{mT}$	1 T
$T_{onset}(10~{ m kHz})$	$91.5~{ m K}$	$89~{ m K}$	$83.5~{ m K}$
$j_c(77{ m K})({ m A/cm^2})$	$2 \cdot 10^5$	—	—
Hersteller	T. Amre	ein, Siemer	ns Erlangen[69]

Tab. 3.2: Parameter der Bi₂Sr₂CaCu₂O₈-Filme

bestrahlten Material, abhängig vom elektronischen Energieverlust S_e , unterschiedliche Arten von Defekten. Erst oberhalb eines materialabhängigen Wertes von S_e , der für Bi₂Sr₂CaCu₂O₈ $S_e = 1.6 \text{ keV/Å}[70]$ beträgt, entstehen durchgehende amorphe Kanäle. Nach dem *Thermal-Spike*-Modell wird angenommen, daß die in den elektronischen Anregungen gespeicherte Energie sehr schnell in einem räumlich begrenzten Gebiet in thermische Energie umgesetzt wird. Dadurch schmilzt der Festkörper lokal, und die Ionen hinterlassen eine Spur amorphen Materials.

Die Filme wurden mit Fluenzen der ²³⁸U-Ionen von $5 \cdot 10^8 \text{ cm}^{-2}$ und $5 \cdot 10^{10} \text{ cm}^{-2}$ bestrahlt. Diese Defektdichten einsprechen dosisäquivalenten Feldern $B_{\phi} = 10 \text{ mT}$ und $B_{\phi} = 1 \text{ T}$, bei denen die Anzahl der Vortizes mit der Anzahl der kolumnaren Defekte übereinstimmt. Der Radius der kolumnaren Defekte kann aus den in Abb. 3.2

Abb. 3.2: HREM-Aufnahme eines mit 1.4 GeV 238 U-Ionen bestrahlten Bi₂Sr₂CaCu₂O₈-Films[71]: oben Aufsicht und unten Querschnitt.

dargestellten HREM-Aufnahmen eines bestrahlten Bi₂Sr₂CaCu₂O₈-Films ($B_{\phi} = 1 \text{ T}$) bestimmt werden. Dieser beträgt $b_0 \approx 4 \text{ nm}$. Der Radius der Defekte ist abhängig vom elektronischen Energieverlust, der in erster Linie durch die effektive Ladung und weniger durch die Energie des Ions bestimmt wird. Messungen der dynamischen Suszeptibilität im Erdfeld zeigen, daß mit zunehmender Bestrahlung die Übergangstemperatur T_{onset} abgesenkt wird. Die Parameter der drei untersuchten Filme sind in Tab. 3.2 zusammengestellt.

3.2 Kryomagnetische Systeme

Zur Messung der dynamischen Suszeptibilität wurden zwei Kryostate benutzt, die mit unterschiedlichen supraleitenden Magneten ausgestattet waren. Es handelte sich dabei um longitudinale Solenoidmagnete mit einem maximalen Feld von 5 T bzw. 14 T, die in einem Heliumbad aufgehängt sind. Der prinzipielle Aufbau eines Kryostaten ist in Abb. 3.3 dargestellt, die Parameter der verwendeten Magnete sind aufgelistet. Die Messungen bei niedrigen Frequenzen zwischen 3 mHz und 30 Hz wurden von M. Baumann in einem hochempfindlichen SQUID-Suszeptometer (Quantum Design MPMS₂) vorgenommen, dessen Funktionsweise anderweitig beschrieben ist[72]. Diese Niederfrequenzmessungen konnten, bedingt durch die maximale Feldstärke des SQUIDs, nur bis zu B = 1T durchgeführt werden.

Im Zentrum des Kryostaten befindet sich ein Zwischentemperatureinsatz aus Duran-Glas. Dieser umfaßt den Probenraum, der während der Messungen mit He-Austauschgas gefüllt ist. Er ist durch ein Zwischenvakuum, welches auf ungefähr $3 \cdot 10^{-5}$ mbar abgepumpt ist, vom Heliumbad getrennt. Durch den Druck im Zwischenvakuum kann die thermische Ankopplung des Probenraums an das Heliumbad variiert werden. Die Probe ist am Ende eines Probenstabs untergebracht, der von oben in den Probenraum eingeführt wird. Er muß so positioniert werden, daß sich die Probe in der Mitte des Magneten befindet. Der Aufbau eines Probenstabs ist in Abb. 3.4 dargestellt. Der eigentliche Probenhalter, der die Probe während der Messung aufnimmt, befindet sich am Ende des Probenstabs und ist umgeben von einem Spulensystem. Der Probenhalter besteht aus einem zylinderförmigen Saphirstab von 3.5 mm Durchmesser und 60 mm Länge, an dessen Enden sich jeweils 7 mm tiefe Sackbohrungen befinden. Die eine dient zur Aufnahme der Probe, die dort mit Tieftemperaturfett befestigt und durch einen Saphirstopfen gegen Verrutschen gesichert ist. Die andere Bohrung nimmt das Thermometer auf, welches so in gutem thermischen Kontakt zur Probe steht. Zur Temperaturmessung und Regelung wurde ein CERNOX-Widerstandsthermometer verwendet. Dieses zeichnet sich durch eine vernachlässigbare Magnetfeldabhängigkeit aus $(\Delta T/T < 0.1\%$ für T > 20 K und $B \le 20$ T)[73]. Der Widerstand des Thermometers wird im Vierpunktverfahren mit einem Meßstrom von 0.1 mA bestimmt. In der Mitte zwischen Probe und Thermometer befindet sich die Heizung aus bifilar verdrilltem Phosphor-Bronzedraht mit einem Ohmschen Widerstand von ca. $30\,\Omega$. Zu Beginn einer Messung wird die Probe durch einen Heizstrom (0.3 A) auf die Starttemperatur von 130 K erwärmt, deutlich oberhalb der supraleitenden Übergangstemperatur der Probe. Danach wird der Heizstrom auf 0.15 A reduziert, und die Probe kühlt aufgrund der Ankopplung an das Heliumbad ab. Die Suszeptibilität wird im Abkühlen mit einem konstanten Temperaturgradienten, $\Delta T = 1 \,\mathrm{K}$ in $\Delta t = 60 \,\mathrm{s}$, aufgenommen. Dieser wird durch rechnergesteuertes Anpassen des Heizstroms eingestellt. Es wurde überprüft und durch die langsame Meßgeschwindigkeit sichergestellt, daß keine Temperaturhysterese auftritt.

Konventionelles Suszeptometer			
Maximales Magnetfeld:	$5\mathrm{T}$		
Feldkonstante des sl. Magneten:	$63.1\mathrm{mT/A}$		
Feldkonfiguration:	longitudinaler Solenoid		
$\operatorname{Hochfeld-Suszeptometer}$			
Maximales Magnetfeld:	14 T		
Feldkonstante des sl. Magneten:	$157\mathrm{mT/A}$		
Feldkonfiguration:	longitudinaler Solenoid		
SQUID-Suszeptometer			
Maximales Magnetfeld:	1 T		
Feldkonstante des sl. Magneten:	$40 \mathrm{mT/A}$		
Feldkonfiguration:	longitudinaler Solenoid		

Abb. 3.3: Oben: Kryostat für Felder bis 5 T. Unten: Tabelle mit den Parametern der verwendeten Magnete.

Frequenzbereich	$10 \mathrm{Hz} - 2 \mathrm{MHz}$		
Primärspule:	Sekundärspule:		
Länge: 40 mm	Länge: $2 \times 5 \mathrm{mm}$		
Durchmesser: 6.2 mm	Durchmesser: 6 mm		
52 Windungen Cu-Draht	40 Windungen Cu-Draht		
Feldkonstante: $2.1 \mathrm{mT/A}$	$Eichfaktor: 22 nH/mm^3$		
	Resonanz freq. $\sim 8{\rm MHz}$		
${ m Hochfrequenz}$ -Spulensystem			
Frequenzbereich des ac-Spulensystems:	$100\mathrm{kHz}-30\mathrm{MHz}$		
Primärspule:	Sekundärspule:		
Länge: 50 mm	Länge: $2 \times 4 \mathrm{mm}$		
Durchmesser: 8.5 mm	Durchmesser: 8 mm		
8 Windungen Cu-Draht	4 Windungen Cu-Draht		
Feldkonstante: $0.4 \mathrm{mT/A}$	$Eichfaktor: 4 nH/mm^3$		
	Resonanz freq. $\sim100{\rm MHz}$		
${ m SQUID}$ -Suszeptometer			
Frequenzbereich des ac-Spulensystems:	$0.35\mathrm{mHz} - 1.5\mathrm{kHz}$		
Eine mittlere Spule und zwei äußere Spulen			
Äußere Spule / Mittlere Spule:	1 Windung / 2 Windunger		
Radius der Spulen:	10 mm		
Abstand mittlere – äußere Spule:	$15\mathrm{mm}$		

Abb. 3.4: Oben: Aufbau der Spitze eines Probenstabs, bestehend aus Primär- und Sekundärspulensystem, Heizer, Thermometer und Saphirträger. Unten: Parameter der verwendeten Spulensysteme.

3.3 Dynamische Suszeptibilität

Die lineare dynamische Suszeptibilität wird mittels der Gegeninduktionsmethode gemessen [74]. Dabei wird die Probe in einer der zwei astatisch gewickelten Aufnahmespulen positioniert, während die andere Spule als Referenz dient. Die Aufnahmespulen sind von einer Erregerspule umgeben, mit der ein kleines magnetisches Wechselfeld $\mu_0 h(\omega) = b(\omega) = b_0 \exp(i\omega t)$ mit $b_0 \approx 0.1...1 \,\mu$ T erzeugt wird. Die Parameter der verwendeten Spulensysteme sind in Abb. 3.4 zusammengefaßt. Durch die Änderung der Magnetisierung m = M/V der Probe wird in den Aufnahmespulen eine Spannung induziert, die mit einem Lock-In-Verstärker gemessen wird. Befindet sich die Probe im homogenen Feld der Primärspule, so besteht zwischen der in-Phase und außer-Phase gemessenen Spannung U' und U'' und der dynamischen Suszeptibilität folgender Zusammenhang:

$$U' + iU'' = i\omega I_p L_M \eta(\chi' + i\chi'') A \exp(i\varphi) + U_{BGD}$$

 ω ist die Frequenz, I_p der Strom durch die Erregerspule und η das Verhältnis vom Probenvolumen V zum Spulenvolumen. Die Gegeninduktivität L_M ist durch die Geometrie des Spulensystems bestimmt. Die Kapazität und der Ohmsche Widerstand des realen Spulensystems werden in dem Korrekturfaktor $A \exp(i\varphi)$ berücksichtigt. Die Größe $L_M A \exp(i\varphi)$ wurde in Eichmessungen an einem ferromagnetischen EuO-Kristall für die verwendeten Spulensysteme bestimmt. Die Untergrundspannung U_{BGD} , die von der Ungleichheit der beiden Aufnahmespulen herrührt, die direkt auf dem Probenhalter befestigt sind, ist durch thermische Ausdehnung des Spulenträgers schwach von der Temperatur abhängig. Sie wurde in Leermessungen bestimmt und von der Spannung U subtrahiert.

Die Suszeptibilität, definiert als $\chi = -M/hV$, nimmt bei vollständiger Abschirmung des anregenden Feldes für die untersuchten Proben die in Tabelle 3.3 aufgelisteten Werte an. Sie ist aufgrund der Geometrie der Proben gegenüber der Suszeptibilität einer unendlich ausgedehnten Probe $\chi(T \to 0) = -1$ erhöht. Dieses wird in Abschnitt 3.4 diskutiert.

Tab. 3.3: Suszeptibilität $\chi' = -M/hV$ bei vollständiger Abschirmung des anregenden Feldes.

	Filme	Kristalle			
		А	B 1	B2	B3
R/L_z	7500	7.7	8.7	22.5	77
$-\chi(T \rightarrow 0)$	6390	6.4	7.4	19	65.2

Bei allen Messungen wurde sichergestellt, daß die lineare Antwort der Probe, also die Proportionalität von induzierter Spannung zur Anregungsamplitude, gemessen wird. Der Frequenzbereich, in dem ein Spulensystem eingesetzt werden kann, ist nach oben durch die Resonanzfrequenz und nach unten durch die mit der Frequenz abnehmende Signalstärke begrenzt. Es wurden in dieser Arbeit zwei Arten von Spulensystemen in unterschiedlichen Frequenzbereichen eingesetzt, für breitbandige Messungen zwischen 30 Hz und 1 MHz und für Messungen zwischen 100 kHz und 30 MHz.

Für die Messungen mit den Breitband-Spulensystemen wurden die Lock-In-Verstärker EG & G 5301 und EG & G 5302 verwendet. Diese Geräte sind über die IEEE-Bus-Schnittstelle rechnersteuerbar. Die detektierten in- und außerphasigen Komponenten der in den Spulen induzierten Spannung wird mit Digitalvoltmetern ausgelesen, da dadurch eine höhere Auflösung erreicht werden kann als bei Auslesen der entsprechenden Kanäle des Lock-In-Verstärkers über die IEEE-Bus-Schnittstelle. Zur vollautomatischen Meßwerterfassung und Experimentsteuerung habe ich ein HP-BASIC-Programm geschrieben.

Anhand der in Abb. 3.5 dargestellten mit dem Faktor aus Tabelle 3.3 normierten dynamischen Suszeptibilität des unbestrahlten Films im kompensierten Erdfeld und bei B = 100 mT ist der Einfluß von Frequenz und Magnetfeld auf die mit fallender Temperatur einsetzende supraleitende Abschirmung, charakterisiert durch $\chi'(T)$, zu erkennen. $\chi''(T)$ beschreibt die elektromagnetischen Verluste. Bei hohen Temperaturen sind Real- und Imaginärteil der Suszeptibilität null, die Probe ist magnetisch durchsichtig. Bei Einsetzen der Supraleitung beginnt die Probe abzuschirmen, und durch diffundierende feld- oder thermisch induzierte Vortizes treten Ohmsche Verluste auf. Bei tiefen Temperaturen ist das magnetische Wechselfeld vollständig aus der Probe verdrängt, $\chi' = -1$, und die Absorption verschwindet, $\chi'' = 0$. Mit steigender Frequenz verschiebt sich das Einsetzen der Abschirmung und das Maximum der Absorption zu höheren Temperaturen. Mit steigendem Feld wird der Übergang zu deutlich tieferen Temperaturen verschoben, und dessen Breite nimmt zu.

Abb. 3.5: a) Temperaturabhängigkeit der normierten dynamischen Suzeptibilität des unbestrahlten $Bi_2Sr_2CaCu_2O_8$ Films, $\chi(T,\omega) = \chi'(T,\omega) + i\chi''(T,\omega)$, im kompensierten Erdfeld und b) bei B = 100 mT.

3.4 Dynamische Leitfähigkeit

Aus der komplexen dynamischen Suszeptibilität $\chi(T,\omega) = \chi'(T,\omega) + i\chi''(T,\omega)$ wird zur weiteren Analyse mittels eines numerischen Inversionsverfahrens die dynamische Leitfähigkeit $\sigma(T,\omega) = \sigma'(T,\omega) + i\sigma''(T,\omega)$ bestimmt. Im folgenden werde ich den Zusammenhang zwischen χ und σ darstellen und die darauf basierende Inversionsroutine erläutern.

Durch ein magnetisches Wechselfeld $h(\omega)$ werden im Supraleiter Abschirmströme angeregt. Deren magnetisches Moment $\vec{M}(\omega) = \frac{1}{2} \int \vec{r} \times \vec{j}(\vec{r},\omega) d^3r$ bestimmt die dynamische Suszeptibilität. Um diese berechnen zu können, wird die Bewegungsgleichung für die Stromdichte $\vec{j}(\vec{r},\omega)$ bestimmt.

Abb. 3.6: Scheibe der Dicke L_z mit magnetischem Wechselfeld $\vec{h}(\omega)$ senkrecht zur Oberfläche und in azimutaler Richtung fließender Abschirmstromdichte $\vec{j}(\omega)$.

Für dünne Proben $L_z \ll R$ wurde der Zusammenhang zwischen dynamischer Suszeptibilität und dynamischer Leitfähigkeit von E.H. Brandt [75] berechnet und in neuesten Arbeiten auf Proben endlicher Dicke $0 < L_z/R < \infty$ und beliebigen Querschnittes erweitert[76, 77]. Die allgemeine Bewegungsgleichung für die Stromdichte, welche deren nichtlokale Diffusion beschreibt, ist eine 2-dimensionale Integralgleichung. Die Überlegungen[76], die zur Bewegungsgleichung führen, werde ich für eine Scheibe mit Radius R und Dicke L_z darlegen.

Das äußere Feld \vec{h} entlang der z-Richtung erzeugt die in azimutaler Richtung fließende Stromdichte $\vec{j} = j(r, z)\vec{\varphi}$. Diese ist über das Induktionsgesetz mit dem Vektorpotential $\vec{A} = A(r, z)\vec{\varphi}$ des angelegten Feldes $\mu_0 \vec{h} = \nabla \times \vec{A}$ gemäß

$$\vec{j} = \nabla \times \vec{h} = \mu_0^{-1} \nabla \times (\nabla \times \vec{A}) = -\mu_0^{-1} \nabla^2 \vec{A}$$
(3.1)

verknüpft. Dieses ist eine 2-dimensionale Laplace-Gleichung. Das Vektorpotential \vec{A} in dieser Gleichung kann in zwei Anteile aufgespalten werden, einen Anteil \vec{A}_j , der durch die Stromdichte im Inneren der Probe erzeugt wird, und einen Anteil $\vec{A}_a = -(r/2)\vec{b}$, der durch das äußere Feld erzeugt wird, $\vec{A} = \vec{A}_a + \vec{A}_j$. Das Vektorpotential ist die Lösung der 2-dimensionalen Laplace-Gleichung $\mu_0 j = -\nabla^2 (A_j + (r/2)b)$, wobei nur Ströme im Inneren der Probe betrachtet werden:

$$A(\vec{r}) = -\mu_0 \int_{S} d^2 r' Q_{cyl}(\vec{r}, \vec{r}\,') j(\vec{r}\,') - \frac{r}{2} b$$
(3.2)

mit $\vec{r}=(r,z)$ und $\vec{r}^{\,\prime}=(r^{\prime},z^{\prime})$ und dem Integralkern

$$Q_{cyl}(\vec{r}, \vec{r}') = f(r, r', z - z') + f(r, r', z + z'),$$

$$f(r, r', \eta) = \int_{0}^{\pi} \frac{d\varphi}{2\pi} \frac{r' \cos \varphi}{(\eta^2 + r^2 + r'^2 + 2rr' \cos \varphi)^{1/2}}$$
(3.3)

Die Integration in Gl. 3.2 erfolgt über den Querschnitt S der Probe. Die Geometrie des Problems wird im Integralkern $Q(\vec{r}, \vec{r'})$ sowie in den Integrationsgrenzen berücksichtigt. Durch Inversion von Gl. 3.2 kann man die Stromdichte berechnen.

Für die Berechnung der linearen Antwort auf ein periodisches Signal, $h(t) = h_0 \exp(i\omega t)$, was eine harmonische Zeitabhängigkeit für die induzierte Stromdichte, $j(\vec{r},t) = j(\vec{r})\exp(i\omega t)$, bedeutet, ist es nützlicher, statt Gl. 3.2 zu invertieren, eine implizite Gleichung für j zu betrachten. Schreibt man das Induktionsgesetz $\nabla \times \vec{E} = -d\vec{B}/dt = -\nabla \times d\vec{A}/dt$ in der Form $\vec{E} = -d\vec{A}/dt$ und benutzt das Ohmsche Gesetz $\vec{E} = \vec{j}/\sigma$ mit einer linearen und komplexen Leitfähigkeit σ , erhält man:

$$\frac{j(\vec{r},t)}{\mu_0\sigma} = \int_0^R dr' \int_0^{L_z/2} dz' Q_{cyl}(\vec{r},\vec{r}') \frac{dj(\vec{r}',t)}{dt} + \frac{r}{2} \frac{dh(t)}{dt} = i\omega \left(\int_0^R dr' \int_0^{L_z/2} dz' Q_{cyl}(\vec{r},\vec{r}') j(\vec{r}',t) + \frac{r}{2} h(t) \right) .$$
(3.4)

Im Grenzfall eines langen Zylinders $L_z \gg R$ kann das Verhalten an den weit entfernten Enden $z = \pm L_z/2$ vernachlässigt werden, und j(r, z, t) wird unabhängig von z. Gleichung 3.4 vereinfacht sich in diesem Fall zu einer eindimensionalen Integralgleichung für die Stromdichte j. Diese kann nach zweimaliger Differentation in radialer Richtung in eine lokale Diffusionsgleichung

$$\nabla^2 \vec{j} = i\omega\mu_0 \sigma \vec{j}$$

umgeformt werden. Aus der Lösung dieser Gleichung für die entsprechenden Randbedingungen kann das magnetische Moment

$$M(\omega) = rac{1}{2} \int\limits_V ec{r} imes ec{j}(ec{r},\omega) d^3r$$

berechnet werden, und man erhält für die Suszeptibilität

$$\chi(\omega) = -\frac{M(\omega)}{hV} = \frac{2I_1(w_l)}{w_l I_0(w_l)}$$
(3.5)

mit den modifizierten Besselfunktionen $I_0(w_l)$ und $I_1(w_l) = I'_0(w_l)$ und dem Argument

$$w_l = i\omega R^2 \mu_0 \sigma(\omega)$$

Im anderen Grenzfall einer sehr dünnen Scheibe $L_z \ll R$ vereinfacht sich diese Gleichung zu einer eindimensionalen Integralgleichung[75] für die Flächenstromdichte J_s . Der Integralkern wird durch seinen Wert in der Mittenebene der Scheibe $Q_{cyl}(r, 0, r', 0)$ genähert und die Stromdichte über die Dicke integriert,

$$J_s(r) = \int_{-L_z/2}^{+L_z/2} j(r,z)dz$$

Aus Gl. 3.4 erhält man für die Flächenstromdichte

$$J_s(r,t) = w \left(2\pi \int_0^1 du Q_{cyl}(r/R,0,u,0) J_s(u,t) + \pi \frac{r}{R} h(t) \right)$$
(3.6)

mit der Frequenzvariblen

$$w_d = i\omega RL_z \mu_0 \sigma(\omega)/2\pi$$

Gleichung 3.6 stellt wie auch Gl. 3.4 ein Eigenwert-Problem dar. Das weitere Verfahren zur Berechnung der Suszeptibilität verläuft analog, so daß ich im folgenden dieses für den allgemeinen Fall von Proben beliebiger Dicke darstellen werde. Für das zweidimensionale Problem vereinfachen sich die folgenden Gleichungen dadurch, daß die Magnetisierung von der Flächenstromdichte $J_s(r)$ abhängt und die Integration in z-Richtung durch Multiplikation mit L_z ersetzt werden kann.

Die lineare Antwort auf ein magnetisches Wechselfeld h(t) ergibt sich aus der Lösung von Gl. 3.4. Sie kann nach Eigenfunktionen der Eigenwertgleichung

$$f_n(\vec{r}) = -\Lambda_n \frac{4\pi}{S} \int_{S} d^2 r' Q_{cyl}(\vec{r}, \vec{r}') f_n(\vec{r}')$$
(3.7)

.

mit Eigenwerten Λ_n entwickelt werden. Diese Eigenfunktionen sind orthonormal, $\frac{4\pi}{S}\int_S d^2r f_n(\vec{r})f_m(\vec{r})dr = \delta_{mn}$ und tragen ein Dipolmoment

$$b_n = \frac{4\pi}{V} \int\limits_S d^2 r r f_n(\vec{r})$$

Das Eigenwertproblem in Gl. 3.7 ist äquvalent zur Bestimmung der Eigenvektoren einer $N \times N$ -Matrix Q_{ij} , i, j = 1...N. Die Matrix Q_{ij} erhält man durch Diskretisierung der kontinuierlichen Variablen r und z. Diese spannen ein 2-dimensionales Gitter äquidistanter Punkte, $r_k = (k - \frac{1}{2})R/N_R$ und $z_l = (l - \frac{1}{2})L_z/N_z$ (k = $1, 2, ..., N_R; l = 1, 2, ..., N_z$), auf. Die Anzahl der Stützstellen in radialer, r_k , und in normaler Richtung, z_l , verhalten sich zueinander wie die entsprechenden Abmessungen der Probe, $N_z = \frac{L_z}{R}N_R$. Die $N \times N$ -Matrix Q_{ij} erhält man durch Berechnung des Integralkerns (Gl. 3.3) an den $N = N_R \times N_z$ Punkten $(r_k, z_l) = \vec{r_i} \ (i = 1, 2, ..., N), Q_{ij} = Q(\vec{r_i}, \vec{r_j}).$

Diese unendliche Reihe äquidistanter Pole kann durch eine endliche Reihe von N nichtäquidistanten Polen Λ_n (n=1,...,N) mit hoher Genauigkeit approximiert werden. Das Verfahren zur Berechnung dieser Eigenwerte ist in Ref. [62] geschildert.

Das magnetische Moment der dicken Probe mit Querschnitt S,

$$M(\omega) = \int_{S} d^{2}r r^{2} j(\vec{r}) \exp(i\omega t) \quad , \qquad (3.8)$$

kann als Reihe von Polen Λ_n erster Ordnung,

$$M(\omega) = h(\omega)V w \sum_{n} \frac{\Lambda_n b_n^2}{\Lambda_n + w} \quad , \tag{3.9}$$

dargestellt werden. Durch die Frequenzvariable

$$w = \frac{i\omega R L_z \mu_0 \sigma(\omega)}{2\pi + L_z/R} \tag{3.10}$$

wird zwischen den Grenzfällen dünner Proben $(L_z \ll R)$, w_d , und dicker Proben $(L_z \gg R)$, w_l , interpoliert[76]. Aus Gl. 3.9 erhält man die dynamische Suszeptibilität

$$\chi(\omega) = -\frac{M(\omega)}{h(\omega)V} = -w \sum_{n=1}^{\infty} \frac{\Lambda_n b_n^2}{\Lambda_n + w} \quad .$$
(3.11)

Für die ideale diamagnetische Abschirmung, $w \to \infty$, nimmt die Suszeptibilität nach Gleichung 3.11 von der Probengeometrie, im wesentlichen durch R/L_z , bestimmte Werte an. Für den Grenzfall des unendlich langen Zylinders ergibt sich aus Gl. 3.5

$$\chi(w \to \infty) = -1 \quad .$$

Für die dünne Scheibe errechnete Brandt[75]

$$\chi(w\to\infty) = -\frac{8R}{3\pi L_z}$$

Mit den Maßen des dünnen Films, R = 1.5 mm und $L_z = 200 \text{ nm}$, erhält man für die vollständige Abschirmung $\chi(w \to 0) = 6370$, in exakter Übereinstimmung mit der experimentellen Suszeptibilität aus Tabelle 3.3.

Der Zusammenhang zwischen (χ', χ'') und (σ', σ'') für eine dünne Scheibe $(L_z \ll R)$ ist in Abb. 3.7 als Funktion von der Frequenzvariablen $w = i\omega RL_z \mu_0 \sigma/2\pi$ graphisch dargestellt. Die Berechnung der dynamischen komplexen Leitfähigkeit $\sigma(\omega) = \sigma'(\omega) + i\sigma''(\omega)$

Abb. 3.7: Zusammenhang zwischen der dynamischen Suszeptibilität $\chi = \chi' + i\chi''$ und der komplexen Frequenzvariablen w nach Gl. 3.10.

aus der komplexen dynamischen Suszeptibilität $\chi(\omega) = \chi'(\omega) + i\chi''(\omega)$ geschah mittels eines von G. Nakielski[78] erstellten numerischen Inversionsverfahrens. Dieses FORTRAN-Programm basiert auf einem Suchverfahren, bei dem für jedes Wertepaar aus Real- und Imaginärteil der Suszeptibilität (χ', χ'') die in Abb. 3.7 dargestellte komplexe Ebene nach dem zugehörigen Wertepaar (σ', σ'') durchsucht wird. Die Genauigkeit der numerischen Inversion kann gewählt werden und beträgt in Anbetracht des Rechenaufwandes etwa $\Delta \chi/\chi \approx 10^{-5}$.

Für unterschiedliche Probengeometrien ändert sich der Zusammenhang zwischen Suszeptibilität und Leitfähigkeit nach Gl. 3.11 nicht. Durch die Geometrie der Proben werden die Positionen Λ_n und die Dipolmomente b_n der Polstellen bestimmt. Diese wurden von Brandt für runde Scheiben, Quadrate und lange Streifen[76, 77] sowie speziell für die Geometrien der in dieser Arbeit untersuchten Proben berechnet[77]. Für die Filme mit einem Verhältnis $L_z/R = 10^{-4}$ wurden zur Bestimmung der dynamischen Leitfähigkeit nach Gl. 3.11 $N = N_r = 30$ nicht äquidistant verteilte Polstellen verwendet[62]. Für die Kristalle wurden für die entsprechenden Verhältnisse $R/L_z = 7.7...77$ nicht äquidistant verteilte Polestellen mit $N_r \approx 50$ und $N_z \approx 8$ benutzt[77].

Kapitel 4

Hinweise auf zweidimensionale supraleitende Ordnung im Nullfeld

Die aus der stark geschichteten Struktur von $\text{Bi}_2\text{Sr}_2\text{Ca}\text{Cu}_2\text{O}_8$ resultierende große elektronische Anisotropie führt zu einer dimensionellen Reduktion des Systems. Dieses hat in Verbindung mit den hohen thermischen Energien zur Folge, daß verstärkt Fluktuationen auftreten und die Eigenschaften des Systems prägen. So werden zum Beispiel in Messungen der Eindringtiefe $\lambda(T)$ an $\text{Bi}_2\text{Sr}_2\text{Ca}\text{Cu}_2\text{O}_8$ -Kristallen[79] deutliche Abweichungen vom Molekularfeld-Verhalten, Gl. 2.5, beobachtet.

Um einen tieferen Einblick in die Ordnungsmechanismen in dicken Proben des stark geschichteten Hochtemperatursupraleiters Bi₂Sr₂CaCu₂O₈-zu erhalten, wird in diesem Kapitel die dynamische Leitfähigkeit $\sigma(\omega)$ der CuO₂-Ebenen in Abwesenheit feldinduzierter Vortizes in der stark fluktuierenden Umgebung der Molekularfeld-Übergangstemperatur T_{c0} untersucht. In Messungen am 0.2μ m dicken unbestrahlten Film und an den drei Kristallen B1, B2 und B3 mit Dicken zwischen $L_z = 13\mu$ m und $L_z = 130\mu$ m sollen Hinweise gefunden werden, durch welche Arten von Fluktuationen die Temperatur des Supraleitungsübergangs sowie die Dynamik in deren Umgebung bestimmt ist und wie diese durch die Kopplung zwischen den Ebenen und die Anzahl der Ebenen beeinflußt wird.

4.1 Bestimmung der supraleitenden Übergangstemperatur T_c

Die Grundlage für die Untersuchungen in diesem Kapitel ist die Bestimmung der supraleitenden Übergangstemperatur T_c . Dazu ist es notwendig, anhand der dynamischen Leitfähigkeit ein Kriterium zur Identifizierung dieses Phasenübergangs zu finden. In Abb. 4.1 ist die Temperaturabhängigkeit der bei fester Frequenz $f = \omega/2\pi$ zwischen 1 kHz und 1 MHz gemessenen dynamischen Leitfähigkeit dargestellt. Diese wurde hier aus Gründen der Übersichtlichkeit mit der Frequenz multipliziert. Die elektromagnetischen Verluste werden durch den Realteil $\sigma'(T, \omega)$ und die Abschirmung durch den Imaginärteil $\sigma''(T, \omega)$ beschrieben.

Abb. 4.1: Temperaturabhängigkeit von Real- und Imaginärteil der dynamischen Leitfähigkeit $\sigma(\omega,T)$ des Films bei fester Frequenz im Nullfeld. Die durchgezogenen Linien sind Ausgleichskurven durch die Daten. Die supraleitende Übergangstemperatur T_c wird aus Abb. 4.2 bestimmt.

Bei hohen Temperaturen dominiert der Realteil die Leitfähigkeit. Mit abnehmender Temperatur steigen beide Komponenten der Leitfähigkeit an. $\sigma'(\omega, T)$ durchläuft unterhalb einer Temperatur $T_1(f)$ ein breites Maximum, $\sigma''(\omega, T)$ hingegen steigt mit abnehmender Temperatur ohne Tendenz zur Sättigung. Nach Gl. 2.16 zeigt dieses Verhalten von $\sigma''(\omega)$ im Grenzfall $\omega \to 0$ das Einsetzen der supraleitenden Abschirmung durch das Anwachsen der superfluiden Dichte, $n_s \sim \sigma''\omega$, an.

Der steile Anstieg von $\sigma'(T)$ oberhalb von T_1 legt die Vermutung nahe, dieser könne mit dem Supraleitungsübergang T_c in Verbindung stehen. Dieses Verhalten entspricht qualitativ den Beobachtungen von Lunkenheimer et al.[80] bei Frequenzen zwischen 1 kHz und 1 GHz an Bi₂Sr₂CaCu₂O₈- und YBa₂Cu₂O₇-Filmen, welches von ihnen mit der Divergenz der Lebensdauer von Ordnungsparameterfluktuationen oberhalb und unterhalb von T_c , $\tau_{TDGL} \sim 1/|T - T_c|$ (Gl. 2.20), in Verbindung gebracht wird. Horbach und Saarloos[81] berechnen unter Rückgriff auf die Arbeiten von Schmidt[30, 82], dargestellt in Kapitel 2.2.2, daß die Fluktuationsleitfähigkeit bei endlicher Frequenz bei T_c auf einen endlichen Wert ansteigt, die Breite des Maximums aber mit der Frequenz abnimmt und unterhalb von 1GHz unmeßbar schmal wird. Gegen eine Interpretation von T_1 als supraleitende Übergangstemperatur T_c spricht auch deren Frequenzabhängigkeit.

Eine andere Ursache dieses breiten Maximums von $\sigma'(T)$ könnte der in schwach gekoppelten BCS-Supraleitern auftretende *coherence peak* sein. Dieser beruht auf der Korrelation von Streuvorgängen wegen der Elektronenpaarung und dem Anstieg der Zustandsdichte unterhalb der Energielücke[83]. Er tritt sowohl in der dynamischen Leitfähigkeit als auch in der Kernspin-Relaxationsrate $1/T_1$ bei typischerweise $0.8 T_c$ mit einer typischen Breite von $0.4 T_c$ auf und wurde experimentell für konventionelle Supraleiter, z.B. Blei[84], nachgewiesen. In Hochtemperatur-Supraleitern hingegen wird in der Kernspinrelaxationsrate keine dem Maximum von $\sigma'(T)$ entsprechende Erhöhung gefunden, wie am Beispiel des Bi₂Sr₂CaCu₂O₈ in Ref. [85] gezeigt.

Eine einfache Interpretation der Frequenz- und Temperaturabhängigkeit des Realund Imaginärteils von $\sigma(T, \omega)$ ist nicht möglich. Vor allem ist in dieser Darstellung keine charakteristische Änderung in der Leitfähigkeit zu erkennen, die mit dem Supraleitungsübergang in Verbindung gebracht werden könnte. Bereits anhand von Abb. 2.2 ist zu erkennen, daß die Phase detailierte Informationen über das Verhältnis von den normalleitenden Verlusten zur supraleitenden Abschirmung enthält und der Betrag deren absolute Größe angibt. Es hat sich herausgestellt, daß anhand der Phase $\phi = \sigma''/\sigma'$ der dynamischen Leitfähigkeit eine sehr genaue Definition der Temperatur des Übergangs zur Supraleitung möglich ist.

In Abb. 4.2 ist die Temperaturabhängigkeit vom σ''/σ' für den Film dargestellt. Klar zu erkennen ist, daß sich alle isofrequenten Kurven bei einer wohl definierten Temperatur T_c schneiden und $d\phi/d\omega$ das Vorzeichen wechselt. Der Kreuzungspunkt

Abb. 4.2: Temperaturabhängigkeit von σ''/σ' am $0.2\mu m$ dicken Film. Der Kreuzungspunkt definiert T_c .

der Phase markiert eindeutig den Übergang vom normalleitenden in den supraleitenden Zustand. Oberhalb des Kreuzungspunktes kann das metallische Verhalten mit endlicher Gleichstromleitfähigkeit σ_0 bei kleinen Frequenzen in einfachster Näherung durch die Drude-Dynamik nach Gl. 2.18 beschrieben werden, $\sigma(\omega) = \sigma_0/(1 - i\omega\tau)$. Daraus folgt $d\phi/d\omega > 0$ für $T > T_c$. In der supraleitenden Phase kann der niederfrequente Grenzfall qualitativ im Rahmen des Zwei-Flüssigkeiten-Modells nach Gl. 2.16 beschrieben werden, $\sigma(\omega) = \sigma_0 - 1/i\omega\mu_0\lambda_L^2$. Daraus folgt $d\phi/d\omega = -1/\omega^2\sigma_0\mu_0\lambda_L^2 < 0$ für $T < T_c$. Der kontinuierliche Phasenübergang ist definiert durch einen frequenzunabhängigen Wert der Phase, $d\phi(T_c)/d\omega = 0$.

Die für die drei Kristalle B1, B2 und B3 in Abb. 4.3 dargestellte Phase weist ebenfalls einen Kreuzungspunkt auf, dessen Temperatur mit zunehmender Dicke der Kristalle ansteigt. Auffällig ist, daß die Phase am Kreuzungspunkt für die Kristalle wie auch für den Film einen scheinbar universellen Wert, $\sigma''/\sigma' = 13.5(2)$, annimmt. Dieser hängt insbesondere nicht von der Dicke der untersuchten Proben ab, die über drei Größenordnungen variiert.

Eine zufällige Änderung der Temperatur des Supraleitungsübergangs mit der Dicke ist unwahrscheinlich, da die Kristalle B2 und B3 aus Kristall B1 durch sukzessives Abspalten hergestellt wurden. Die Abhängigkeit von T_c von der Anzahl der supraleitenden Ebenen, die hier zwischen 10^4 und 10^5 variierte, entspricht qualitativ der Vorhersage (Gl. 2.39), daß in einem schwach Josephson-gekoppelten, unendlich dicken Schichtsupraleiter die Temperatur des (3D-)Übergangs gegenüber der Kosterlitz-Thouless-Temperatur der einzelnen Schicht erhöht ist. Aus systematischen dickenabhängigen Untersuchungen der supraleitenden Übergangstemperatur an ultradünnen Bi₂Sr₂CaCu₂O₈-Filmen[7] bzw. YBa₂Cu₃O₇-Filmen[39] (siehe auch Abb. 2.5) ergab sich, daß T_c stark von der Anzahl n der Ebenen zwischen n = 1 und n = 20 abhängt. Dieses wurde durch die Dissoziation thermisch induzierter Vortex-Antivortex-Linienpaare, die die Filme über ihre gesamte Dicke durchziehen, erklärt. Dieser Effekt würde aber bei den dicken Kristallen mit $n = 10^4...10^5$ nur zu einem nicht

Abb. 4.3: Temperaturabhängigkeit von σ''/σ' an den Kristallen B1, B2 und B3 mit Dicken zwischen $L_z = 13 \mu m$ und $L_z = 130 \mu m$.

messbaren Temperaturanstieg von $dT/T \approx 10^{-8}$ führen. Der genaue Mechanismus, der zur beobachteten Abhängigkeit $T_c(n)$ führt, ist bisher nicht verstanden.

4.2 Zweidimensionale Fluktuationen im normalleitenden Zustand

4.2.1 Skalenanalyse

Um zu verstehen, wie die bei T_{c0} lokal entstehende superfluide Dichte n_s^0 langreichweitige Korrelationen ausbildet, was zum Absinken und schließlichen Verschwinden des Widerstandes bei T_c führt, wird im folgenden die Frequenzabhängigkeit der Leitfähigkeit im normalleitenden Zustand $T > T_c$ untersucht. In der Umgebung des kontinuierlichen Phasenübergangs T_c erwartet man, daß die dynamische Leitfähigkeit aufgrund der dort divergierenden Korrelationslänge Skalierungsverhalten zeigt,

$$\sigma(\omega)/\sigma_0 = S_{\pm}(\omega\tau) \qquad , \tag{4.1}$$

wie es sich aus Gl. 2.57 mit $\sigma_0 \sim \xi^{z-1}$ und $\tau \sim \xi^z$ ergibt. Die Temperaturabhängigkeit von $\sigma_0(T)$ und $\tau(T)$ soll nach Gl. 2.55 universell sein, nicht aber deren absolute Größe, die von Probe zu Probe variieren kann.

Zur Überprüfung der Skalierungseigenschaften oberhalb von T_c wird das Verhältnis σ''/σ' gegen die skalierte Frequenz $\omega\tau$ aufgetragen. Der einzige freier Parameter τ in dieser Darstellung wird so gewählt, daß sämtliche Daten der Phase zur Deckung kommen und sich durch eine kontinuierliche Skalenfunktion $\Phi(\omega\tau)$ beschreiben lassen. Die Ergebnisse solcher Skalenanalyse für den Film und für den dicken Kristall sind in Abb. 4.4 dargestellt. Einziger Anhaltspunkt bei der Bestimmung der absoluten Skala von τ war der Grenzfall kleiner Frequenzen bei hohen Temperaturen. Die Drude-Dynamik für den Niederfrequenzlimes des normalleitenden Verhaltens bedeutet, daß die skalierte Phase gemäß Gl. 2.18 von niedrigen Frequenzen kommend mit $\sigma''/\sigma'(\omega\tau < 1) = \omega\tau$ ansteigt. Im zweiten Schritt wird der Betrag der Leitfähigkeit $|\sigma_+(\omega\tau)| = |\sigma(\omega\tau, T > T_c)|$ mit σ_0 skaliert, $|\sigma_+(\omega\tau)|/\sigma_0$, so daß sämtliche Daten auf einer kontinuierlichen Skalenfunktion $S_+(\omega\tau)$ zur Deckung kommen. Die Leitfähigkeitsskala σ_0 entspricht der statischen Leitfähigkeit $\sigma(\omega \to 0)$. Diese ist bei hohen Temperaturen wird $\sigma_0(T)$ der Skalierung entnommen.

 $\sigma''/\sigma'(\omega\tau)$ und $|\sigma_+(\omega\tau)|$ zeigen für den Film und für den Kristall, wie in Abb. 4.4 zu sehen ist, sehr gutes Skalierungsverhalten. Benachbarte Isotherme überlagern sich über mehr als zwei Größenordnungen in der Frequenz. Die Form der sich ergebenden Skalenfunktionen unterscheidet sich für Kristall und Film nur leicht. Eine funktionale Beschreibung der Daten erfolgt in Abschnitt 4.2.3. Zunächst soll die Temperaturabhängigkeit der sich aus der Skalierung ergebenden Parameter $\tau(T)$, $\sigma_0(T)$ und der Abschirmlänge $\lambda^2_+(T) = \tau(T)/\mu_0\sigma_0(T)$ oberhalb von T_c diskutiert werden.

Abb. 4.4: Skalendarstellung von σ''/σ' und $|\sigma_+|$ bei H = 0 für den Film und für den dicken Kristall B1. Die durchgezogenen Linien wurden nach Gl. 4.7 berechnet.

Sowohl die statische Leitfähigkeit σ_0 als auch die Relaxationszeit τ , dargestellt in Abb. 4.5, zeigen als auffälligste Eigenschaft nahe T_c steile Arrhenius-artige Anstiege

$$\tau(T) = \tau(T_{c0}) \exp(U_{\tau}(T)/k_B T) , \qquad (4.2)$$

$$\sigma_0(T) = \sigma_0(T_{c0}) \exp(U_{\sigma}(T)/k_B T) .$$

Die Molekularfeldübergangstemperatur, bei der der supraleitende Ordnungsparameter endlich wird, $T_{c0} = 92.2$ K für den Film und $T_{c0} = 85.2$ K für die Kristalle, wurde aus magnetfeldfeldabhängigen Messungen von $\sigma(T, \omega, B)$ (siehe Abb. 5.5) sowie aus Messungen der diamagnetischen Suszeptibilität[86] bestimmt. Die Werte von τ und σ_0 bei T_{c0} sind in Tab. 4.1 aufgelistet.

Interessanterweise ist die Energiebarriere für diese thermisch aktivierte Dynamik, durch die die statische Leitfähigkeit und die Relaxationszeit bestimmt sind, identisch, $U_{\tau}(T) = U_{\sigma}(T) \equiv U(T)$. Unter der sinnvollen Annahme, daß U(T) bei T_{c0} verschwindet, fällt U(T) linear mit der Temperatur,

$$U(T) = U_0(1 - T/T_{c0}) \quad , \tag{4.3}$$

mit einem sehr großen Wert $U_0 = 8(1) \text{ eV}$. Bei Annäherung an T_{c0} wird der Abfall von σ_0 schwächer. Auch hier nimmt die Leitfähigkeit der Proben mit deren Dicke ab. Ein Übergang zu dreidimensionalem Verhalten in der unmittelbaren Umgebung von T_{c0} oder zu zweidimensionaler Dynamik in den einzelnen CuO₂-Ebenen, wie dieses von Balestrino et al.[87] an Bi₂Sr₂CaCu₂O₈-Filmen beobachtet wird, ist nicht zu erkennen. Die Dynamik nahe T_{c0} ist bisher nicht verstanden.

Tab. 4.1: Relaxationszeit τ und statische Leitfähigkeit σ_0 bei der Molekularfeldübergangstemperatur T_{c0} und bei T_c .

	$T_{c0}\left(\mathbf{K}\right)$	$\tau(T_{c0})(\mathrm{s})$	$\sigma_0(T_{c0})({ m S/cm})$	$ au(T_c)(\mathbf{s})$	$\sigma_0(T_c) (\mathrm{S/cm})$
Film	92.2	10^{-12}	$1 \cdot 10^{0}$	$2 \cdot 10^{6}$	$1 \cdot 10^{19}$
Kristalle					
B1	85.2	10^{-12}	$5 \cdot 10^{-4}$	$2 \cdot 10^6$	$5\cdot 10^{15}$
B2	85.2	10^{-12}	$1 \cdot 10^{-3}$	$2 \cdot 10^6$	$1 \cdot 10^{16}$
B3	85.2	10^{-12}	$5 \cdot 10^{-3}$	$2 \cdot 10^6$	$5\cdot 10^{16}$

Abb. 4.5: a) Statische Leitfähigkeit σ_0 und b) Relaxationszeit τ aus den in Abb. 4.4 gezeigten Skalenanalysen für $T > T_c$. Die durchgezogenen Geraden wurde nach Gl. 4.2, die Vorhersage der Kosterlitz-Thouless-Theorie nach Gl. 2.38 berechnet.

4.2.2 Zweidimensionales Verhalten nahe T_c

Da σ_0 und τ unterhalb von T_{c0} die gleiche Arrhenius-artige Barriere besitzen, ist das Verhältnis $\tau/\mu_0\sigma_0 = \lambda_+^2$, dargestellt in Abb. 4.6, temperaturunabhängig. Dieses gilt auch nahe bei T_{c0} , wo σ_0 und τ vom Arrhenius-Verhalten abweichen. λ_+^2 kann als Maß für die Länge, über die eine supraleitende Fluktuation während ihrer Lebensdauer τ diffundiert, angesehen werden. Deutlich zu erkennen ist in Abb. 4.6 b) die Zunahme von λ_+^2 mit der Probendicke,

$$\lambda_{+}^{2} = \Lambda_{1}L_{z} \qquad \text{mit} \qquad \Lambda_{1} = 10.7(5) \text{ mm} \quad . \tag{4.4}$$

Die Proportionalität von λ_{+}^2 zur Probendicke ist charakteristisch für eine zweidimensionale Dynamik und ergibt sich beispielsweise auch in Molekularfeldnäherung aus Gl. 2.26. Ein weiterer starker Hinweis darauf, daß es sich um einen Effekt zweidimensionaler Ordnung handelt, ist deren Temperaturunabhängigkeit. Im XY-Modell[54] ist $\lambda_{+}^2 \sim n_s^0$ mit der bei T_{c0} gebildeten superfluiden Dichte $n_s^0 \sim \xi^{2-D}$ in zwei Dimensionen konstant. Im Gegensatz dazu steht das dreidimensionale kritische Verhalten mit bei T_c divergierender Eindringtiefe λ_{+}^2 , wie es in YBa₂Cu₃O₇-Filmen im Nullfeld beobachtet wird[88].

Abb. 4.6: Die Abschirmlänge $\lambda_{+}^{2} = \tau/\mu_{0}\sigma_{0}$ ist unabhängig von der Temperatur (a) und steigt proportional zur Probendicke L_{z} an (b).

Motiviert durch diese starken qualitativen Hinweise auf eine zweidimensionale Dynamik wurde versucht, die zugundeliegenden Fluktuationen quantitativ zu beschreiben. Aus der von Schmidt[30] in Gaußscher Näherung berechneten 2D-Fluktuationsleitfähigkeit in Filmen der Dicke $L_z \ll \xi$ (Gl. 2.26) folgt für die Eindringtiefe

$$\lambda_+^2 = 4\Lambda_T L_z$$

mit der thermischen Länge $\Lambda_T = 2 \text{ cmK/T}$. Diese ändert sich im betrachteten schmalen Temperaturbereich von ca. 3K um T_c herum nur unmerklich und kann durch ihren Wert bei T_c , $\Lambda_{T_c} \approx 220 \,\mu\text{m}$ genähert werden. Bei den vorliegenden Temperaturen zwischen 80 K und 90 K erhält man daraus $4\Lambda_T \approx 0.9$ mm. Dieses unterschätzt den experimentellen Wert Λ_1 um etwas mehr als eine Größenordnungen.

Berücksichtigt man den Einfluß topologischer Vortex-Antivortex-Fluktuationen auf die Leitfähigkeit[37], ergibt sich aus Gl. 2.38 und der Zeitskala τ aus Gl. 2.46

$$\lambda_+^2 = C_1 4\pi^2 \Lambda_T L_z / 7 \tag{4.5}$$

mit $C_1 = \mathcal{O}(1)$. Wählt man $C_1 = 8$, so wird der experimentelle Wert für Λ_1 getroffen.

Da beide theoretischen Vorhersagen im gleichen Maße von den experimentell bestimmten Werten für die Eindringtiefe λ_{+}^2 abweichen, scheint ein weiterer Mechanismus zu den Verlusten oberhalb von T_c beizutragen. Dieser ändert aber offensichtlich nicht die zweidimensionale Natur der Fluktuationen, wobei diese über die gesamte Dicke der Probe korreliert sind. Dieses Ergebnis steht im Gegensatz zu Messungen nichtlinearer Strom-Spannungskennlinien von Artemenko et al.[8] (siehe auch Abb. 2.3), welche durch das Auftreten topologischer Fluktuationen in den einzelnen CuO₂-Ebenen erklärt wurden, und die somit nicht von der Dicke der Proben abhängen.

Auch die beobachtete Arrheniusartige Temperaturabhängigkeit der statischen Leitfähigkeit ist *nicht* in Übereinstimmung mit der Vorhersage von Halperin und Nelson[37] für die viskose Bewegung von Vortex-Antivortex-Paaren (Gl. 2.38). Das Ergebnis ihrer Arbeit,

$$\sigma_{VA} = \sigma_0(T_{c0}) \exp\left(2\left(b(T_{c0} - T)/(T - T_c)\right)^{1/2}\right)$$

mit b=1.5, ist zum Vergleich in Abb. 4.5 eingetragen. Diese Erwartung unterschätzt die experimentell bestimmte statische Leitfähigkeit deutlich.

Ahnlich wie das von mir gefundene thermisch aktivierte Verhalten wird aber auch in Modellsystemen für Kosterlitz-Thouless-Dynamik aus Hochtemperatursupraleitern wie einlagigen Bi₂Sr₂CaCu₂O₈-[2] und YBa₂Cu₃O₇-Filmen[89] eine Arrhenius-artige Temperaturabhängigkeit der charakteristischen Zeitskala für die Bewegung der Vortizes und Antivortizes beobachtet. Diese Ergebnisse wurden als thermisch aktivierte Bewegung der thermisch induzierten Vortex-Antivortex-Paare interpretiert, von denen

Abb. 4.7: Der statische Widerstand $\sigma_+(T)$ wird durch Gl. 4.6 beschrieben.

nur der durch den Bolzmann-Faktor $\exp(U(T)/k_BT)$ gegebene Teil sich frei bewegen kann und der Rest an intrinsischen Defekten haftet[2]. Damit ergibt sich die statische Leitfähigkeit

$$\sigma(T) = \sigma_{VA}(T) \exp(U(T)/T) \quad . \tag{4.6}$$

Mit diesem Ansatz für die thermisch aktivierte Dynamik von Vortex-Antivortex-Linienpaaren, die die Proben über ihre gesamte Dicke L_z durchziehen, kann die experimentell bestimmte statische Leitfähigkeit, wie in Abb. 4.7 zu sehen ist, gut beschrieben werden.

Verglichen mit der von Rogers et al.[2] aus Messungen des magnetischen Flußrauschens für die thermisch aktivierte Dynamik der freien Vortex-Antivortex-Paare in einer einzelnen Bi₂Sr₂CaCu₂O₈-Schicht gefundene Barriere, $U_0(N = 1) = 0.1 \text{ eV}$, ist die von mir bestimmte Aktivierungsenergie $U_0 = 8 \text{ eV}$ sehr groß. Überraschenderweise hängt diese auch nicht von der Dicke der Proben L_z ab. Legt man das Ergebnis von Rogers et al. zugrunde, so gelangt man zu einer groben Abschätzung der Barriere unter der Annahme, daß Vortex-Antivortex-Segmente, die über $N \approx 80$ Ebenen hinweg korreliert sind, an intrinsischen Defekten haften. Solch ein linearer Zusammenhang zwischen der Energiebarriere U(N) für das thermisch aktivierte Fließen von feldinduzierten Vortizes und der Dicke der Probe wurde von Brunner et al.[90] aus dickenabhängigen Untersuchungen des statischen Widerstandes an dünnen YBa₂Cu₃O₇-Filmen bis zu maximal $L_z = 450$ Å, entsprechend N = 30 Ebenen, gefunden. Für dickere Proben sättigt U(N)auf diesen Wert. Eine Erklärung für den großen Wert von U_0 , abgesehen von dieser phänomenologischen Abschätzung, gibt es meines Wissens nach nicht.

4.2.3 Frequenzabhängigkeit der Skalenfunktion

Da es anhand der statische Leitfähigkeit nicht möglich ist, auf die Art der zweidimensionalen Fluktuationen oberhalb von T_c zu schließen, untersuche ich im folgenden die Frequenzabhängigkeit der dynamischen Skalenfunktion. Ausgehend von den Hinweisen auf zweidimensionale Ordnung oberhalb von T_c wurden verschiedene Versuche unternommen, die Form der dynamischen Skalenfunktion zu beschreiben. Deren Ergebnisse sind in Abb. 4.8 anhand der empfindlichsten Größe, der Phase σ''/σ' , exemplarisch für den Film dargestellt.

Die Fluktuationsleitfähigkeit in zeitabhängiger Ginsburg-Landau-Theorie unter Berücksichtigung Gaußscher Fluktuationen[30] wurde in Kapitel 2.2.2 hergeleitet. Das Ergebnis σ_{2D}^G für eine zweidimensionale Schicht, Gl. 2.26, liefert zwar eine qualitativ richtige Beschreibung von $\lambda_+^2(L_z, T)$, ändert sich aber mit der Frequenz zu stark. Diese äußert sich am deutlichsten im zu starken Anwachsen der Phase (Kurve 1 in Abb. 4.8), welches in den Daten zu höheren $\omega \tau$ verlagert ist. Die im gleichen Modell berechnete Fluktuationsleitfähigkeit in dreidimensionalen Supraleitern, σ_{3D}^G nach Gl. 2.24 (Kurve 2), beschreibt die Frequenzabhängigkeit der gemessene Phase für $\omega \tau < 10^3$, sättigt aber bei hohen Frequenzen auf $\sigma''/\sigma' = 1$.

Wie in Abb. 2.7 gezeigt, erhält man nahezu die gleiche Frequenzabhängigkeit von $\sigma(\omega)$ wie σ_{3D}^G bei Berücksichtigung der Dynamik diffundierender freier und relaxierender gebundener Vortex-Antivortex-Paare (Kurve 3). Die Fluktuationsleitfähigkeit nach Gl. 2.47,

$$\sigma_{VA}^{-1}(\omega\tau) = \sigma_{VA}^{-1}(0) + i\omega\mu_0\lambda_L^2(1+\chi_b(\omega\tau)) \quad .$$

ist durch χ_b , welche die Abschirmung der logarithmischen Wechselwirkung zwischen den Vortizes durch gebundene Paare beschreibt (Gl. 2.45),

$$\chi_b(\omega\tau) = \frac{1}{\sqrt{\omega\tau_0}} \int_{\sqrt{\omega\tau_0}}^{\sqrt{\omega\tau}} \frac{dy}{1 - iy^2} \frac{d\epsilon(x)}{dx}$$

mit $x = r/\xi$, bestimmt. Für die Berechnung von Kurve 3 in Abb. 4.8 wurde die Zustandsdichte der gebundenen Paare, $d\epsilon/dx = 1$, angenommen. Dieser Ausdruck liefert, wie oben gezeigt, im Grenzfall $\omega \tau \rightarrow 0$, ebenfalls eine qualitativ richtige Beschreibung von λ_+^2 , für höhere Frequenzen aber einen zu schwachen Abfall der Leitfähigkeit, verbunden mit einem zu geringen Wert der Phase für hohe Frequenzen, $\omega \tau \gg 10^3$. Auch durch die phänomenologische Erweiterung dieses Ansatzes mit $d\epsilon/dx \sim x^{-\alpha}$ ist es nicht möglich, die gemessenen Daten besser zu beschreiben.

Abb. 4.8: Ausschnitt der Skalierung der empfindlichen Phase für den Film. Die durchgezogenen Kurven sind Versuche zur Beschreibung der experimentellen Skalenfunktion mit verschiedenen Modellen: 1 und 2: 2D bzw. 3D thermische Gaußsche Fluktuationen[30], 3: Dynamik von Vortex- Antivortex-Paaren nach Halperin und Nelson[37], 4: im Rahmen der Minnhagen-Phänomenologie[91] 5: nach C. Timm[92] und 6: nach Gl. 4.7.

Die dynamische Leitfähigkeit wird aber sehr gut durch die Berücksichtigung eines die langsame Dynamik bei niedrigen Frequenzen beschreibenden Anteils $\sigma_{NF}(\omega\tau)$ und zweidimensionaler Gaußscher Fluktuationen $\sigma_{2D}^G(\omega\tau)$ beschrieben. Eine nahezu ideale Beschreibung der Skalenfunktion (Kurve 6) erhält man durch unseren Ansatz[93]

$$\sigma_0 / \sigma_+(\omega \tau) = S_{NF}^{-1}(\omega \tau) + \alpha S_{2D,G}^{-1}(\omega \tau) + S_c^{-1}(\omega \tau)$$
(4.7)

mit $\alpha = 0.22$ für den Film und $\alpha = 0.85$ für die Kristalle B1 und A. Bei niedrigen Frequenzen könnte die Dynamik dreidimensionaler Gaußscher Fluktuationen oder thermisch induzierter Vortex-Antivortex-Paare sichtbar werden. $\sigma_{3D}^G(\omega\tau)$ nach Gl. 2.24 kann aber die Abhängigkeit der statischen Leitfähigkeit σ_0 von der Probendicke und die fehlende Temperaturabhängigkeit von λ_+^2 , die auf zweidimensionale Fluktuationen hindeuten, nicht erklären. Betrachtet man hingegen die Dynamik thermisch induzierter Vortex-Antivortex-Linienpaare, so liefert die Fluktuationsleitfähigkeit $\sigma_{VA}(\omega\tau)$ nach Gl. 2.47 mit der empirischen Annahme $d\epsilon(x)/dx = 1$ eine richtige Beschreibung des Niederfrequenzverhaltens der Skalenfunktion in Übereinstimmung mit dem beobachteten Verhalten der statischen Größe λ_+^2 . Dieses würde bedeuten, daß die Leitfähigkeit bei niedrigen Frequenzen, wenn während der Meßdauer ~ $1/\omega$ Fluktuationen auf einer

Abb. 4.9: Hinweise auf Gaußsche Fluktuationen liefert das Spektrum des magnetischen Rauschens S_{ϕ} in einem 2D-Gitter von Josephson-Kontakten[5]. Der zusätzlich eingetragene $\operatorname{Re} \sigma_{G}^{2D}(\omega \tau) \omega$ nach Gl. 2.26 beschreibt diese Daten gut.

großen Längenskala $l_{\omega} \simeq \sqrt{1/\mu_0 \omega \sigma_0}$ untersucht werden, durch topologische Fluktuationen dominiert ist. Bei hohen Frequenzen, d.h. auf kurzen experimentellen Längenskalen, werden zweidimensionale Gaußsche Fluktuationen sichtbar. Abweichungen von diesem Verhalten, die zum bei T_c frequenzunabhängigen Wert der Phase $\phi(T_c)$ führen, treten erst für $\omega \tau > 10^{12}$ auf (siehe Abb. 4.4). Diese werden in Gl. 4.7 durch additives Hinzufügen des Potenzgesetzes $\sigma_c(\omega \tau) = \sigma_0 S_c(\omega \tau) \sim (i\omega \tau)^{-0.955}$, welches die Leitfähigkeit am Phasenübergang $\sigma(\omega, T_c)$, Abb. 4.10, beschreibt, berücksichtigt.

Hinweise auf Gaußsche Fluktuationen in zweidimensionalen Systemen geben auch Messungen des magnetischen Rauschens in einem Josephson-Kontakt-Netzwerk, welches als ideales zweidimensionales XY-System angesehen wird. Wie von Houlrik et al.[94] gezeigt, verbindet das Fluktuations-Dissipations Theorem für zweidimensionale Supraleiter direkt das Spektrum des Flußrauschens mit dem Realteil der dynamischen Leitfähigkeit, $S_{\phi}(\omega) \sim \sigma'(\omega)$. Das in Abb. 4.9 dargestellte Rauschspektrum von Shaw[5] wird gut durch S_{2D}^{G} nach Gl. 2.26 beschrieben. Simulationen einer zeitabhängigen Ginsburg-Landau-Dynamik in einem zweidimensionalen XY-Modell[6] ergeben sogar oberhalb des Kosterlitz-Thouless-Übergangs T_{KT} zusätzlich zum Gaußförmigen Verlauf von S_{ϕ} bei hohen Frequenzen einen Übergang in eine anomale Abhängigkeit, $S_{\phi}(\omega, T) \sim \omega^{-x}$ mit einem schwach temperaturabhängigen Exponenten x, der von $x \approx 0.85$ bei Annäherung an T_{KT} auf $x \approx 0.95$ ansteigt. Dieses entspricht der anomalen Frequenzabhängigkeit von $\sigma_c(\omega\tau)$, wie sie auch in Abb. 4.4 zu erkennen ist.

Eine ähnliche Frequenzabhängigkeit der Leitfähigkeit wie Gl. 4.7 findet Timm[92]

(Kurve 5). Er berechnet das Spektrum des Flußrauschens S_{ϕ} von diffundierenden thermisch induzierten Vortex-Antivortex-Paaren in entkoppelten supraleitenden Schichten. Dabei wurde die Intra-Paar-Wechselwirkung und Annihilation von Vortizes in Betracht gezogen. Aus den über 10 Größenordnungen in der Frequenz berechneten Rauschspektren wurde von mir der Real- und mittels der Kramers-Kronig-Beziehung numerisch der Imaginärteil der Leitfähigkeit berechnet. Mögliche Ungenauigkeiten bei hohen und niedrigen Frequenzen aufgrund des eingeschränkten Frequenzbereichs sind in Abb. 4.8 nicht dargestellt. Diese Rechnung beschreibt das Ansteigen der Phase bei höheren Frequenzen über $\sigma''/\sigma'(\omega\tau \gg 1) = 1$ hinaus. Abweichungen von den Daten sind aber für $\omega\tau < 10^3$ sichtbar. Auch ein Vergleich mit der statischen Leitfähigkeit war nicht möglich, so daß weitere Berechnungen mit höherer Genauigkeit wünschenswert wären.

Mit jüngsten Erweiterungen der sogenannten Minnhagen-Phänomenologie[91], die auch vielfach zur Beschreibung der Dynamik in zweidimensionalen Josephson-Kontakt-Netzwerken herangezogen werden, ist es nicht gelungen, die von mir gemessene dynamische Leitfähigkeit zu beschreiben. Von Capezzali et al. wurde die dynamische Leitfähigkeit in einem zweidimensionalen Supraleiter unter Berücksichtigung der Abschirmung durch gebundene Vortex-Antivortex-Paare, deren Abstand von der Größe der experimentellen Längenskala l_{ω} ist, berechnet. Durch eine Renormierung der Kopplung $K_0 \to K_{l_{\omega}}$ erhält man in einem mittleren Frequenzbereich, der die experimentellen Frequenzen umfaßt,

$$\frac{\sigma'(\omega)}{\sigma_0 \xi^2} \approx \frac{2}{\pi} \frac{K_{l_\omega} \ln(\omega \tau)^{-1}}{1 - \omega \tau} , \qquad (4.8)$$
$$\frac{\sigma''(\omega)}{\sigma_0 \xi^2} \approx \frac{K_{l_\omega}}{1 + \omega \tau} .$$

Die Gültigkeit dieses Modells kann unabhängig von der Größe von $K_{l_{\omega}}$ anhand der Phase überprüft werden. Kurve 4 weicht deutlich von den Daten ab.

Die Ursache der Frequenzabhängigkeit der Leitfähigkeit bei T_c ist eine offene Frage. Die Genauigkeit der Messungen an zweidimensionalen Josephson-Kontakt-Netzwerken läßt es heute nicht zu, zu entscheiden, ob die in meinen Messungen beobachtete anomale Dynamik auch in diesen Systemen beobachtet wird oder ob sie in der geschichteten Struktur der dicken Bi₂Sr₂CaCu₂O₈-Proben begründet ist. Durch die Kopplung der Ebenen könnte ein makroskopisches zweidimensionales Verhalten, welches bei niedrigereren Frequenzen beobachtet wird, gestört sein, und die Divergenz von σ''/σ' bei T_c könnte durch 3D-artige Anregungen unterdrückt sein. Eine weitere offene Frage betrifft den Übergang von dem makroskopischen, statischen Verhalten, welches auf zweidimensionale Fluktuationen zurückgeführt werden kann, und dem auf zweidimensionale Gaußsche Fluktuationen zurückgeführten Verhalten bei großen Werten von $\omega\tau$. Dabei ist nicht klar, ob bei niedrigen Frequenzen 3D-artige Anregungen die Frequenzabhängigkeit der Leitfähigkeit bestimmen, und wie diese in das zweidimensionale statische Verhalten aufgehen, oder ob die thermisch aktivierte Dynamik thermisch induzierter Vortex-Antivortex-Linienpaare in der Leitfähigkeit für $\omega \tau < 10^3$ sichtbar wird. Diese würde auch die statische Leitfähigkeit beschreiben. Eine Erklärung für die angenommene konstante Zustandsdichte der relaxierenden gebundenen Paare, $d\epsilon(r/\xi)/d(r/\xi) = 1$, steht noch aus, ebenso wie für den Gewichtsfaktor α der Gaußschen Fluktuationen.

4.3 Anomale Dynamik bei T_c

Die interessanteste Feststellung, die anhand der Abb. 4.2 und 4.3 gemacht werden kann, betrifft den Wert der Phase am Kreuzungspunkt $\phi(T_c) = 13.5(2)$, der auch nicht von den deutlich unterschiedlichen Werten von T_c für Film und Kristalle abhängt. $\phi(T_c)$ enthält, wie in Kapitel 2.3.2 fürs Vortex-Glas ausgeführt, wichtige Informationen über die dem Ordnen zugrundeliegende Dynamik. Diese werde ich in diesem Kapitel anhand der Frequenzabhängigkeit von $\sigma(\omega, T_c)$ am Phasenübergang untersuchen.

Die Leitfähigkeit bei T_c steigt, wie von der Kramers-Kronig-Relation gefordert, mit abnehmender Frequenz, einem Potenzgesetz

$$\sigma(\omega, T_c) = \sigma_c (i\omega\tau(T_c))^{-x} \tag{4.9}$$

mit $x = \arctan(\phi(T_c))/(\pi/2) = 0.955(5)$ folgend, an. Dieses ist in Abb. 4.10 dargestellt. Die Leitfähigkeit der Kristalle variiert, entsprechend ihrer Dicke ~ $1/L_z$, die Leitfähigkeit des Films ist deutlich größer. Die Amplitude σ_c ist aufgelistet in Tab. 4.2.

Abb. 4.10: Frequenzabhängigkeit des Betrages der Leitfähigkeit bei der aus Abb. 4.3 und 4.2 bestimmten Temperatur T_c . Die durchgezogenen Linien sind Potenzgesetze $|\sigma(\omega, T_c)| \sim \omega^{-x}$ mit Exponent $x = \arctan(\phi(T_c))/(\pi/2) = 0.955(5)$.
Tab. 4.2: Verhältnis der Amplitude σ_c aus Gl. 4.9 zur statischen Leitfähigkeit $\sigma_0(T_c)$.

	Film	Kristalle B1, B2, B3
$\sigma_c/\sigma_0(T_c)$	280	35

Der Exponent x = 0.955(5) unterscheidet sich deutlich von dem für relaxierende, zeitabhängige Ginsburg-Landau-Dynamik berechneten asymptotischen Verhalten bei T_c , wie in Kapitel 2.2 beschrieben. Der Exponent bei T_c ist in D Dimensionen durch[57]

x = (4 - D)/2

gegeben. Für D = 3 ist dieser Wert x = 1/2 zu klein, und der Betrag der Leitfähigkeit fällt für $T = T_c$ nach Gl. 2.24 zu flach. Bei einer Einschränkung des Modells auf zwei Dimensionen ist x = 1 zu groß und $\sigma(\omega \gg 1)$ fällt zu stark. Der deutlichste Hinweis auf die Abweichung von x von der Molekularfeld-Vorhersage für D = 2 stammt aber aus der Phase der Leitfähigkeit. So ist in Abb. 2.2 zu erkennen, daß in zwei Dimensionen, anders als für D = 3, σ''/σ' bei hohen Frequenzen divergiert und *nicht* bei T_c auf einen frequenzunabhängigen Wert sättigt, in Gegensatz zur hier experimentell bestimmten Phase $\phi(T_c) = 13.5(2)$.

Die Potenz x = 0.955 ist auch groß im Vergleich zu experimentellen Ergebnissen an YBa₂Cu₃O₇-Filmen im kompensierten Erdfeld[67]. Anhand der dynamischen Leitfähigkeit wurde dort die Phase am Kreuzungspunkt, $\phi(T_c) = 3.4$, d.h. x = 0.82, bestimmt. Dieser Wert stimmt mit dem Phasenwinkel, der am Vortex-Glas-Phasenübergang $T_g(B)$ in denselben Filmen in Magnetfeldern bis zu B = 19Tgefunden wurde, überein[15]. Für einen weiteren Vergleich kann der aus Strom-Spannungskennlinien an verschiedenen Materialien bestimmte, die als 3D-kritisches Verhalten interpretierten Beobachtungen beschreibende Exponent z herangezogen werden. Durch diesen ist nach den Skalenargumenten von Fisher, Fisher und Huse[54] das kritische Verhalten bei T_c gemäß den Gl. 2.62 und 2.63 mit x = 1 - 1/zfestgelegt. An YBa₂Cu₃O₇-[95], NdCeCuO-[96] und Bi₂Sr₂Ca₂Cu₃O₈-Filmen[97] wurde in sehr kleinen Magnetfeldern ein Anstieg des kritischen Exponenten z auf Werte bis zu z = 13 gefunden. Dieses entspricht x = 0.923. Von Yamasaki[97] wurde für die Bi₂Sr₂Ca₂Cu₃O₈-Filme vorgeschlagen, die unter der Annahme dreidimensionaler Fluktuationen ermittelten Werte für z auf quasi-zweidimensionale Werte mittels $z_{2D} = (z-1)/2$ zurückzurechnen, um sie mit den experimentellen Ergebnissen für das isotrope Vortex-Glas, $z \approx 5.8$, in Einklang zu bringen. Eine zweidimensionale Dynamik aber kann einen Kreuzungspunkt der Phasen nicht erklären. Auch ergeben sich für bekannte Systeme wie für das 2D- und 3D-Isingmodell die kritischen Exponenten nicht aus solch einer einfachen Umrechnungsformel, sondern diese Systeme gehören zu unterschiedlichen Universalitätsklassen.

Eine mögliche Ursache für die anomale Frequenzabhängigkeit der Leitfähigkeit am Phasenübergang könnte das Haften thermisch induzierter Vortex-Antivortex-Paare an intrinsischen Defekten sein. Untersuchungen von YBa₂Cu₃O₇-Filmen mittels hochauflösender SQUID-Mikroskopie[98] im abgeschirmten Erdfeld ($B = 10^{-7}$ T) finden entlang von Korngrenzen das Auftreten entgegengesetzt orientierten Flusses. Deren Beobachtungen deuten darauf hin, daß unterhalb von T_{c0} fluktuierend auftretende Vortizes und Antivortizes an diesen Defekten haften können. Fluktuationen dieser Vortizes um ihre Gleichgewichtslage führen zu magnetischem Rauschen, welches bei unvollkommener zeitlicher Mittelung in endlichen Meßzeiten eine anomale Frequenzabhängigkeit bei hohen Frequenzen aufweisen könnte. Untersuchungen von S_{ϕ} von Ferrari et al.[99] an Bi₂Sr₂CaCu₂O₈ Kristallen im Nullfeld zeigen eine anomale Frequenzabhängigkeit des Rauschspektrums, welches proportional zum Realteil der dynamischen Leitfähigkeit ist, $S_{\phi}(\omega) \sim \sigma'(\omega)$ [94]. Diese ist mit der von mir beobachteten Leitfähigkeit bei T_c , $\sigma(\omega) \sim (i\omega)^{-0.955}$ verträglich.

4.4 Superfluide Dichte

Nach vielen Versuchen mit unterschiedlichen Modellen konnte die Leitfähigkeit unterhalb von T_c durch den empirischen Ansatz

$$\sigma_{-}(\omega) = \frac{1}{i\omega\mu_{0}\lambda_{-}^{2}} + \sigma(\omega, T_{c})$$
(4.10)

beschrieben werden. Dieser Ansatz addiert die anomale Dynamik bei T_c , $\sigma(\omega, T_c) \sim (i\omega)^{-x}$, dargestellt in Abb. 4.10 zur Londonsche Leitfähigkeit, $\sigma(\omega \to 0) = 1/i\omega\mu_0\lambda_{-}^2$.

Die Gültigkeit dieses empirischen Ansatzes ist in Abb. 4.11 demonstriert. Dort ist die inverse Eindringtiefe $\lambda_{-}^{-2}(T) = \mu_0 \omega(\sigma''(\omega, T) - \sigma''(\omega, T_c))$ dargestellt. Diese konvergiert bei niedrigen Frequenzen gegen die durchgezogene Linie und ergibt einen wohldefinierten $\omega \to 0$ Grenzwert. Dieser ist bestimmt durch das Ansteigen der phasenkorrelierten superfluiden Dichte $n_s(T) = m_e/\mu_0 e^2 \lambda_-^2$ mit abnehmender Temperatur und kann für alle untersuchten Proben durch folgende Funktion beschrieben werden:

$$\lambda_{-}^{-2}(T) = \lambda_{-}^{-2}(T_c)(1 + \beta(1 - T/T_c)^{\nu}) \qquad (4.11)$$

Abb. 4.11: Temperaturabhängigkeit der Eindringtiefe, $\lambda_{-}^{2} \equiv \mu_{0}\omega(\sigma''(\omega, T) - \sigma''(\omega, T_{c}))$. Das Inset zeigt den stärkeren Abfall der Eindringtiefe bei tiefen Temperaturen am Beispiel des dünnen Kristalls. Die durchgezogenen Linien sind nach Gl. 4.11 berechnet.

Probe	ν
Kristalle	
B1, B2, B3	1.0(1)
Film	1.3(1)
KT-Theorie	0.5

Tab. 4.3: Der Exponent ν der superfluiden Dichte $n_s \sim \lambda^{-2}_{-2}$ (Gl. 4.11).

Der Exponent ν , der den Anstieg der superfluiden Dichte n_s mit abnehmender Temperatur beschreibt, nimmt für die drei Kristalle und den Film die in Tabelle 4.3 aufgeführten Werte an. Die Eindringtiefe des Films strebt für tiefe Temperaturen gegen die Londonsche Eindringtiefe $\lambda_L(T)$, für die für Bi₂Sr₂CaCu₂O₈-Kristalle aus DC-Magnetisierungsmessungen $\lambda_L(0) = 210 \text{ nm}[26]$ und aus Mikrowellenmessungen $\lambda_L(0) = 260 \text{ nm}[100]$ bestimmt wurde. Für die Kristalle fällt λ_- erst bei tieferen Temperaturen stärker ab, wie im Inset zu Abb. 4.11 dargestellt ist.

Die interesanteste Information ist in dem Wert von $\lambda_{-}^{-2}(T_c)$ enthalten, dessen Abhängigkeit von der Probendicke in Abb. 4.12 aufgetragen ist. Aufgrund der Hinweise auf das Einsetzen zweidimensionaler Ordnung oberhalb von T_c vergleiche ich diesen Wert mit den Erwartungen der Kosterlitz-Thouless-Theorie. Die Eindringtiefe springt in Übereinstimmung mit der Vorhersage von Nelson und Kosterlitz[34] für zweidimensionale Supraleiter bei T_c von null auf einen endlichen Wert. Für diesen ergibt sich aus Gl. 2.34

$$\lambda_{-}^{2}(T_{c}) = L_{z}\Lambda_{T_{c}}/2\nu_{s} \qquad (4.12)$$

 $\nu_s = n_s/n_s^0 \leq 1$ ist die Steifigkeit des 2D-Ordnungsparameters[25].

Abb. 4.12: Vergleich der Dickenabhängigkeit des Sprungs der Eindringtiefe, $\lambda_{-}^{2}(T_{c})$ mit der Vorhersage der Kosterlitz-Thouless-Theorie[34], $\nu_{s} = 1.0$ und einem reduzierten Wert von ν_{s} .

In Abb. 4.12 ist zu sehen, daß die Eindringtiefe für den Film die Vorhersage der Kosterlitz-Thouless-Theorie mit $\nu_s = 1$ exakt trifft. Für den Kristall hingegen wird die Änderung von $\lambda_{-}^{2}(T_c)$ mit der Dicke durch einen reduzierten Wert der Steifigkeit $\nu_s = 0.15$ beschrieben. Für den Kristall A erhält man sogar $\nu_s = 0.012$. Die niedrigen Werte für die Steifigkeit ν_s an den Kristallen sind mit wesentlich größeren Übergangsbreiten ΔT_c als beim Film verbunden und könnten von der Mikrostruktur des Materials abhängen.

Der Exponent ν weicht deutlich von der Vorhersage durch die Kosterlitz-Thouless-Theorie, $\nu = 1/2$, ab[37]. Da auch die Eindringtiefe im dreidimensional ordnenden YBa₂Cu₃O₇[15] im supraleitenden Vortex-Glas-Zustand eine stärkere Temperaturabhängigkeit aufweist, die sich durch Werte von $\nu > 1$ beschreiben läßt, könnte diese Diskrepanz mit dreidimensionaler Ordnung in Gegenwart struktureller Defekte wie z.B. Versetzungen in den Kristallen und Korngrenzen im Film[69], die unterhalb von T_c in Erscheinung tritt, zu erklären sein.

Erst der in den Kristallen bei tieferen Temperaturen einsetzende Abfall der Eindringtiefe, wie in Abb. 4.11 dargestellt, ist auch mit der tatsächlichen Divergenz der Phase $\phi(\omega \rightarrow 0) \rightarrow \infty$ verbunden. Dieses Verhalten ist am Kristall B, Abb. 4.13 a), im Ansatz zu erkennen und ist für den Kristall A in Abb. 4.13 b) besonders ausgeprägt und kann bis zu hinreichend tiefen Temperaturen verfolgt werden. Am Kristall A sinkt die Phase unterhalb von T_c nach anfänglichem Anstieg mit abnehmender Temperatur und durchläuft ca. 5 K unterhalb von T_c ein tiefes Minimum mit einem nahezu frequenzunabhängigen Wert $\sigma''/\sigma'(80.2 \text{ K}) \approx 6$. Der Abfall der Phase ist durch einen Anstieg von $\sigma'(T)$ deutlich unterhalb von T_c bedingt. Bei allen Temperaturen unterhalb von T_c bleibt aber die Frequenzabhängigkeit der Phase mit $d\phi/d\omega < 0$ erhalten.

Die Ursache für den Anstieg der Verluste $\sigma'(T)$ unterhalb von T_c in den Kristallen könnte die nicht verschwindende Josephson-Kopplung zwischen den Ebenen sein. Durch diese ist es möglich, daß mit sinkender Temperatur unterhalb von T_c lange Vortex-Antivortex-Linienpaare bei abnehmender Ausdehnung zu geschlossenen Vortexringen umgeformt werden, deren Form durch die Anisotropie γ bestimmt ist[101] (Abb. 2.4). Die Bindung dieser Ringe ist stabil, solange deren Ausdehnung r größer als λ_J ist. Deren Abstand r schrumpft mit abnehmender Temperatur so lange, bis dieser bei einer Temperatur $T^* < T_c$ unter die Josephson-Länge λ_J fällt. Es bilden sich kleine Vortex-Antivortex-Paare in den einzelnen Ebenen[7, 40] mit einer Kopplungsenergie $U_p = k_B T \Lambda_T d/\lambda_-^2(T) \ln(r/\xi)$. Anregungen der Vortex-Ringe zwischen T^* und T_c könnten der Grund für die in $\phi(T)$ zu erkennenden zusätzlichen Verluste sein. Auch könnten die Kosterlitz-Thouless-artigen Signaturen, die in Messungen von Strom-Spannungs-Kennlinien an Bi₂Sr₂CaCu₂O₈-Kristallen [8] beobachtet wurden und in Abb. 2.3 dargestellt sind, auf das Aufbrechen der kleinen zweidimensionalen Vortex-Anitvortex-Paare in den Ebenen durch den Meßstrom selbst zurückzuführen sein.

Abb. 4.13: Temperaturabhängigkeit der Phase der Leitfähigkeit a) des 130 µm dicken Kristalls B1 mit $\nu_s = 0.15$ und b) des Kristalls A mit $\nu_s = 0.012$.

4.5 Einfluß kolumnarer Defekte

4.5.1 Leitfähigkeit bei T_c

Kolumnare Defekte in Hochtemperatursupraleitern wirken als sehr effektive Haftzentren für Vortizes. Dieses ist in ihrer Geometrie begründet, da der Gewinn an Kondensationsenergie für Vortizes, die über ihre gesamte Länge an einem Defekt lokalisiert sind, besonders groß ist. Es stellt sich die Frage, ob auch die thermisch induzierten Vortex-Antivortex-Linienpaare, die im unbestrahlten Film bei T_c dissoziieren, bevorzugt an den kolumnaren Defekten haften, oder ob zu starke thermische Fluktuationen diesem entgegenwirken. In diesem Abschnitt wird der Einfluß einer geringen ($B_{\phi} = 10 \text{ mT}$) und einer hohen Dichte kolumnarer Defekte ($B_{\phi} = 1 \text{ T}$), die in zwei Bi₂Sr₂CaCu₂O₈-Filmen durch Schwerionenbestrahlung erzeugt wurden, auf den Supraleitungsübergang in Abwesenheit feldinduzierter Vortizes und auf die Dynamik der Paare oberhalb und unterhalb von T_c untersucht. Die Dosis der Bestrahlung wurde so gewählt, daß der Abstand der Defekte $a_c = \sqrt{\phi_0/B_{\phi}}$ größer bzw. kleiner ist als die Längenskala der Vortex-Vortex-Wechselwirkung λ .

Abb. 4.14: Der Wert des Kreuzungspunktes der isofrequent gemessenen Phase zwischen 1 kHz und 30 MHz an den bestrahlten Bi₂Sr₂CaCu₂O₈-Filmen im Nullfeld, $(\sigma''/\sigma')_{T_c} =$ 3.9(3), ist gegenüber $(\sigma''/\sigma')_{T_c} = 13.5(2)$ des unbestrahlten Films reduziert.

Abb. 4.15: Absenkung der supraleitenden Übergangstemperatur T_c im kompensierten Erdfeld mit zunehmender Fluenz $n_{\phi} = B_{\phi}/\phi_0$ der ²³⁸U-Ionen. Die durchgezogene Linie wurde mit Gl. 4.13 berechnet.

In Abb. 4.14 ist die Phase σ''/σ' für den schwach bestrahlten und den stark bestrahlten Film dargestellt. Sie zeigt bei T_c einen wohldefinierten Kreuzungspunkt der isofrequent zwischen 1 kHz und 1 MHz gemessenen Kurven. Die dadurch bestimmten Übergangstemperaturen T_c sind im Vergleich zum unbestrahlten Film mit $T_c(B_{\phi} = 0) = 88.8 \text{ K}$ deutlich um bis zu $\Delta T_c = 7 \text{ K}$ abgesenkt. Sie folgen einem wurzelförmigen Verlauf, dargestellt in Abb. 4.15,

$$T_c(B_{\phi}) = T_c(0) \left(1 - 0.08 \text{K} \sqrt{\frac{B_{\phi}}{\text{T}}} \right)$$
 (4.13)

In den beiden von mir untersuchten Filmen nimmt die Phase am Supraleitungsübergang T_c den gleichen Wert $\phi(T_c) = 3.9(3)$ an. Gemäß der Kramers-Kronig-Relation befolgen die Beträge der Leitfähigkeit die in Abb. 4.16 dargestellten Potenzgesetze,

$$|\sigma(\omega, T_c)| = \sigma_c (\omega \tau_c)^{-x} \tag{4.14}$$

mit x = 0.84(1) und $\tau_c = \tau(T_c)$ aus den Skalenanalysen (siehe Abb. 4.18). Man erhält $\sigma_c = 5 \cdot 10^{17} \,\mathrm{S/cm}, \, \tau_c = 10^5 \,\mathrm{s}$ für den schwach und $\sigma_c = 2.5 \cdot 10^{17}, \, \tau_c = 2 \cdot 10^4 \,\mathrm{s}$ für den stark bestrahlten Film.

Die beobachtete Absenkung von T_c ist auf die Bestrahlung zurückzuführen, da alle drei Filme aus demselben Stück geschnitten wurden, so daß eine herstellungsbedingte Variation von T_c auszuschließen ist. Diese Reduktion der Übergangstemperatur $T_c(B_{\phi})$ ist in qualitativer Übereinstimmung mit Untersuchungen von Frank et al.[102]. Diese beobachteten abhängig von der Fluenz der schweren Ionen in Bi₂Sr₂CaCu₂O₈-Filmen zwischen $B_{\phi} = 0.8$ T und $B_{\phi} = 2$ T eine lineare Absenkung von T_c . Eine mögliche Ursache hierfür könnte die Zerstörung der Kristallstruktur des Materials in der Umgebung der kolumnaren Defekte sein. Die Ionen hinterlassen beim Durchdringen des Supraleiters eine amorphe Spur und könnten dadurch eine Veränderung der räumlichen

Abb. 4.16: Die Frequenzabhängigkeit des Betrags der Leitfähigkeit bei T_c fällt mit $|\sigma| \sim \omega^{-\arctan(\sigma''/\sigma'(T_c))/(\pi/2)}$.

Sauerstoffverteilung hervorrufen. Diese wurde in UHV-STM Untersuchungen in der Umgebung der kolumnaren Defekte aber von Frank et al. nicht beobachtet. Sie führen ihre Beobachtungen auf den Abstand der kolumnaren Defekte zurück, der vergleichbar mit der freien Weglänge der Ladungsträger ist. Die Lokalisierung der Ladungsträger an den Defekten führt zu einem Abfall von T_c , ähnlich wie durch die Dotierung von Bi₂Sr₂CaCuO₈ mit Zn.

Der auffälligste Unterschied zu den unbestrahlten $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_8$ -Proben ist der deutlich reduzierte Wert der Phase bei T_c und die damit verbundene schwächere Frequenzabhängigkeit der Leitfähigkeit am Phasenübergang. Der Exponent x = 0.84(1)weicht aber auch an diesen Filmen von den in zeitabhängiger Ginsburg-Landau-Theorie in Gaußscher Näherung und für den Vortex-Glas-Übergang berechneten Werten aus Tabelle 2.2 ab.

Der von Wallin und Girvin[61] im Bose-Glas-Modell berechnete Exponent $z = 6 \pm 0.5$ (Tabelle 2.2) ergibt nach Gl. 2.63 x = 1 - 1/z = 0.83(1). Dieser Wert stimmt mit meinen Beobachtungen überein. Da die Dynamik bei T_c am unbestrahlten Film durch das Aufbrechen von Vortex-Antivortex-Linienpaaren erklärt werden konnte, ist es nicht unplausibel, daß deren Dynamik durch die Wechselwirkung mit den kolumnaren Defekten beeinflußt werden kann. Es ist aber fraglich, in wie weit die Ergebnisse für das Bose-Glas-Modell, in dem der Einfluß kolumnarer Defekte auf sich gegenseitig abstoßende Vortizes beschrieben wird, auf die Dynamik sich anziehender Vortex- und Antivortex-Linien übertragbar ist.

Die kritische Dynamik von Vortex-Antivortex-Paaren nahe des Kosterlitz-Thouless-

Übergangs haben Jonsson und Minnhagen[103] in einem zweidimensionalen XY-Modell mit zeitabhängiger Ginsburg-Landau-Dynamik untersucht. In den Simulationsrechnungen wurde unter Annahme einer Nächste-Nachbarn-Wechselwirkung der Form $U(\phi_{ij}) = 2J[1 - \cos^{2p^2}(\phi_{ij}/2)]$ mit der Phasendifferenz ϕ_{ij} des Ordnungsparameters zwischen den Plätzen *i* und *j* auf einem quadratischen Gitter die dynamische Leitfähigkeit berechnet. Diese soll am Phasenübergang mit $\sigma \sim \omega^{-0.83}$ fallen, was ebenfalls mit meinen Beobachtungen übereinstimmt. Allerdings bleibt die Frage offen, in welcher Weise die bestimmte Wahl von p = 2.5 das Ergebnis der Simulation beeinflußt. Abweichend vom reinen XY-Modell mit p = 1 wurde p = 2.5 gewählt, um Anregungen von Vortizes zu erleichtern.

Die gleiche Exponent x = 0.84 wurde kürzlich von Nakielski et al. für den Supraleitungsübergang im kompensierten Erdfeld an YBa₂Cu₃O₇-Filmen vor[88] und nach Schwerionenbestrahlung[55] beobachtet und dort auf dreidimensionales Ordnen zurückgeführt. Dieser ist dort, entsprechend den Skalenargumenten von Fisher, Fisher und Huse[54], nach Gl. 2.62 durch den kritischen Exponenten z = 1/(1 - x) gegeben, der die an den YBa₂Cu₃O₇ Filmen beobachtete Divergenz der Relaxationszeit nach Gl. 2.55 beschreibt.

Da die Reduktion des Exponenten x auf die Bestrahlung zurückzuführen ist, könnte es sein, daß durch Störung der geschichteten Struktur die CuO₂-Ebenen in den bestrahlten Filmen stärker gekoppelt sind. Die kolumnaren Defekte könnten ein Zerfallen der Vortex-Antivortex-Linie bei T_c fördern. So könnten dreidimensionale Fluktuationen von Vortex-Ringen zu dem auch im dreidimensional ordnenden YBa₂Cu₃O₇-beobachteten Exponenten x = 0.84 führen.

4.5.2 Skalenanalyse

Um zu klären, auf welche kritischen Fluktuationen der thermisch induzierten Vortizes das an den bestrahlten $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_8$ -Filmen beobachtete Verhalten bei T_c zurückzuführen ist, wird die Frequenzabhängigkeit der Leitfähigkeit oberhalb von T_c mit einer Skalenanalyse untersucht. Phase und Betrag der Leitfähigkeit $\sigma(\omega\tau)/\sigma_0$ beider bestrahlter Filme, dargestellt in Abb. 4.17, zeigen eindeutiges Skalierungsverhalten. Die Skalenfunktionen des schwach und des stark bestrahlten Films unterscheiden sich nicht.

Die Relaxationsraten $\tau(T)$ und die statische Leitfähigkeit $\sigma_0(T)$, die als Skalierungsparameter verwendet wurden, sind in Abb. 4.18 dargestellt. Sie zeigen oberhalb von T_c bis an den Phasenübergang heran keinen Hinweis auf eine kritische Divergenz, sondern steigen mit abnehmender Temperatur Arrhenius-artig an. Die Energiebarriere für die thermisch aktivierte Dynamik beträgt

$$U(T) = 7(1)eV(1 - T/T_{c0}) \qquad (4.15)$$

Abb. 4.17: Skalendarstellung für Phase und Betrag der Leitfähigkeit bei verschwindendem äußeren Feld für die mit $B_{\phi} = 10 \, m \, T$ und $B_{\phi} = 1 \, T$ bestrahlten $Bi_2 Sr_2 Ca Cu_2 O_8$ -Filme. Volle Linie sind Anpassungen an Gl. 4.16.

Abb. 4.18: a) Die statischen Leitfähigkeiten σ_0 und b) Relaxationsraten τ für den schwach und für den stark bestrahlten Film steigt bis T_c Arrhenius-artig an ohne Anzeichen auf 3D-kritische Dynamik. c) $\lambda_+^2(T)$ wird durch die Schwerionenbestrahlung nicht beeinflußt.

Sie ist nahezu mit der am unbestrahlten Film und der in den Kristallen gefundenen Barriere identisch. Dieses könnte darauf zurückzuführen sein, daß nur ein Teil der Vortex-Antivortex-Paare fest an den kolumnaren Defekten haftet und so nicht zu den Verlusten beiträgt. Der andere Teil der Vortizes haftet an intrinsischen Defekten, und deren thermisch aktiviertes Loslösen ist in der dynamischen Leitfähigkeit sichtbar.

Auch die aus den Skalierungsparametern σ_0 und τ bestimmte Eindringtiefe $\lambda_+^2 = \tau/\mu_0\sigma_0$, dargestellt in Abb. 4.18 c), ist wie am unbestrahlten Film temperaturunabhängig und stimmt mit dem dort gefundenen Wert, $\lambda_+^2 = 1200(200)\mu m^2$, überein. Dieser Wert kann wie am unbestrahlten Film auf topologische Fluktuationen in Form von Vortex-Antivortex-Linienpaaren, die die Probe über ihre gesamte Länge durchziehen, zurückgeführt werden. Das Einsetzen makroskopischer zweidimensionaler Ordnung, welches in den statischen Größen sichtbar wird, wird offensichtlich durch die kolumnaren Defekte unterschiedlicher Konzentration nicht beeinflußt.

Anhand der Form der dynamischen Skalenfunktion soll im folgenden untersucht werden, wie die Dynamik der Vortex-Antivortex-Paare, die zu einer andersartigen Frequenzabhängigkeit von $\sigma(\omega, T_c)$ als am unbestrahlten Film führt, sich aus dem statischen Grenzfall entwickelt.

Ausgehend von der für den unbestrahlten Film gefundenen guten Beschreibung der Skalenfunktion, Gl. 4.7, sowie den Hinweisen auf zweidimensionale Ordnung aus dem Skalenparameter λ_{+}^{2} , wurde folgender Ansatz für die dynamische Leitfähigkeit oberhalb von T_{c} verwendet:

$$\sigma_0 / \sigma_+(\omega \tau) = S_{NF}^{-1}(\omega \tau) + S_c^{-1}(\omega \tau) \quad . \tag{4.16}$$

Wie in Abb. 4.17 zu sehen ist, liefert die Anpassung nach Gl. 4.16 eine nahezu ideale Beschreibung der Skalenfunktion für die bestrahlten Filme. Dieses ist die einfache Überlagerung des das Niederfrequenzverhalten bestimmenden Terms, der aus der Diffusion freier Vortex-Antivortex-Linienpaare herrühren könnte, $S_{NF} = S_{VA}$ nach Gl. 2.47, und eines Potenzgesetzes $\sigma_c(\omega\tau) = \sigma_0 S_c(\omega\tau) \sim (i\omega\tau)^{-0.84}$, das für $T = T_c$ die Leitfähigkeit am Phasenübergang, dargestellt in Abb. 4.16, beschreibt. Die Gaußschen Fluktuationen, die beim unbestrahlten Film oberhalb von $\omega\tau = 10^3$ die Frequenzabhängigkeit der dynamischen Leitfähigkeit bestimmten und erst bei den höchsten Frequenzen durch $\sigma_c(\omega, T_c)$ überdeckt werden, treten in der Leitfähigkeit der bestrahlten Filme nicht mehr in Erscheinung. Sie werden offensichtlich durch die kolumnaren Defekte unterdrückt.

4.5.3 Superfluide Dichte

Unterhalb von T_c wird die Frequenzabhängigkeit der dynamischen Leitfähigkeit durch die für den unbestrahlten Film gefundene empirische Beziehung (Gl. 4.10)

$$\sigma_{-}(\omega, T < T_c) = \frac{1}{i\omega\mu_0\lambda_{-}^2} + \sigma(\omega, T_c)$$

ebenfalls beschrieben. Zur Ermittelung der Eindringtiefe $\lambda_{-}^{2}(T)$ wird $\sigma(\omega, T_{c})$ (Gl. 4.14) von der Leitfähigkeit unterhalb von T_{c} , $\sigma_{-}(\omega, T)$, abgezogen. Das Ergebnis ist als $\lambda_{-}^{-2}(T) = \mu_{0}\omega(\sigma_{-}''(\omega, T) - \sigma''(\omega, T_{c}))$ in Abb. 4.19 dargestellt. Diese Größe ist direkt proportional zur phasenkorrelierten superfluiden Dichte, $n_{s}(T) \sim 1/\lambda_{-}^{2}$. Der wohldefinierte $\omega \to 0$ Limes nimmt für $T \to T_{c}$ einen nichtverschwindenden Wert $\lambda_{-}^{-2}(T_{c})$ an,

$$\lambda_{-}^{-2}(T) = \lambda_{-}^{-2}(T_c)(1 + \beta(1 - T/T_c)^{\nu}) \qquad (4.17)$$

Dabei unterscheidet sich $\nu = 1.3(1)$ vom Wert des unbestrahlten Films nicht.

Abb. 4.19: Temperaturabhängigkeit der superfluiden Dichte $n_s(T) \sim 1/\lambda_{-}^2(T)$. Deren Wert bei T_c ist durch die Steifigkeit des Ordnungsparameters bestimmt, $\lambda_{-}^{-2}(T_c) = 2\nu_s/\Lambda_{T_c}L_z$.

Tab. 4.4: Steifigkeit ν_s des 2D-Ordnungsparameters für die bestrahlten Filme

B_{ϕ}	0	10 mT	1 T
ν_s	1.0	0.7	0.4

Der Sprung von $\lambda_{-}^{-2}(T_c) = 2\nu_s/\Lambda_{Tc}L_z$ nimmt mit zunehmendem B_{ϕ} ab. Die Werte für die Steifigkeit des 2D-Ordnungsparameters sind für die unterschiedlichen Bestrahlungsdosen in Tabelle 4.4 zusammengefaßt. Mit der Verringerung von ν_s mit zunehmender Dichte der kolumnaren Defekte geht die Absenkung von T_c , dargestellt in Abb. 4.15, sowie eine Verbreiterung des Supraleitungsübergangs, zu erkennen in Abb. 4.14 am flacheren Anstieg der Phase, einher. Gestützt auf die Beobachtung, daß an den Kristallen ebenfalls $\nu_s < 1$ gefunden wurde, kann daraus gefolgert werden, daß die Steifigkeit des 2D-Ordnungsparameters durch strukturelle Unordnung, hier durch die Bestrahlung induziert, reduziert wird.

Zusammenfassend ist festzustellen, daß in Abwesenheit eines äußeren Magnetfeldes die Eindringtiefe $\lambda(T)$ oberhalb und unterhalb von T_c zahlreiche Hinweise auf einen Kosterlitz-Thouless-Übergang bei T_c in den dicken Kristallen und Filmen liefert. Die makroskopische zweidimensionale Ordnung wird auch durch kolumnare Defekte nicht gestört. Erst bei hohen Frequenzen, wenn die Dynamik der Vortex-Antivortex-Paare auf kurzen Distanzen beobachtet wird, werden durch die kolumnaren Defekte die starken Gaußschen Fluktuationen, die in den unbestrahlten Materialien zu dem großen Wert der Phase bei T_c , $\phi(T_c, B_{\phi} = 0) = 13.5(2)$, geführt haben, unterdrückt, und man erhält $\phi(T_c, B_{\phi} > 0) = 3.9(3)$.

Kapitel 5

Unterdrückung stabiler Supraleitung durch Magnetfelder

Durch ein äußeres Magnetfeld werden Flußlinien mit mittlerem Abstand $a_0 = \sqrt{\phi_0/B}$ in den Supraleiter induziert. Diese ordnen im klassischen Bild von Abrikosov für Typ-II Supraleiter unterhalb von $B_{c2}(T)$ in einem Gitter. Aufgrund der ausgeprägten Anisotropie in den Hochtemperatursupraleitern, besonders im Bi₂Sr₂CaCu₂O₈, können starke thermische Fluktuationen dieses Gitter in einem breiten Bereich des B-T-Phasendiagramms schmelzen. Bei hohen Temperaturen können sich die Vortizes in einer Flüssigkeit oder einem Gas entkoppelter Punktvortizes[17] frei bewegen. Es ist fraglich, ob und in welcher Art bei tiefen Temperaturen ein geordneter Vortexzustand existiert. Die von einem Feld senkrecht zu den CuO₂-Ebenen induzierten Vortex-Linien können durch Punktvortizes beschrieben werden, die in den CuO₂ Ebenen lokalisiert und senkrecht zu diesen in Ketten aufgereiht sind. Deren Eigenschaften werden durch die Wechselwirkung mit Punktvortizes in derselben Ebene und durch die Wechselwirkung mit Punktvortizes in benachbarten Ebenen beeinflußt. Interessant ist auch die Wechselwirkung der feldinduzierten Vortizes mit thermisch induzierten Vortizes und Antivortizes. Evidenzen hierfür werden in Messungen der dynamischen Leitfähigkeit am Film und am Kristall A in verschiedenen Magnetfeldern vom Erdfeld, $B = 30 \mu$ T, bis B = 12 T gesucht.

5.1 Instabilität der supraleitenden Ordnung in kleinen Feldern

Ich betrachte zunächst den Einfluß kleiner Vortexdichten auf den im Nullfeld beobachteten Kosterlitz-Thouless-Phasenübergang. Dieser wurde auf das Aufbrechen langer Vortex-Antivortex-Paare, die die ganze Probe durchziehen, bei T_c zurückgeführt. Schon

Abb. 5.1: Am Film wird schon durch geringe Magnetfeldstärken die Temperatur T_c des Phasenübergangs reduziert und bereits bei B = 1mT vollständig unterdrückt. $\phi(T_c)$ wird durch die feldinduzierten Vortizes nicht beeinflußt.

Abb. 5.2: Die Reduktion der supraleitenden Übergangstemperatur T_c geht am Kristall A einher mit einem Absinken von $\phi(T_c)$.

wenige feldinduzierte Vortizes beeinflußen diesen Phasenübergang sichtbar. In Abb. 5.1 ist zu erkennen, daß bereits durch so geringe Feldstärken wie $B = 0.1 \,\mathrm{mT}$ die Temperatur des Supraleitungsüberganges T_c des Films deutlich um 0.5 K abgesenkt wird, und bei Feldstärken $B \ge 1 \,\mathrm{mT}$ verschwindet der Phasenübergang vollständig. Im gesamten in den Messungen zugänglichen Temperaturbereich sind bei diesem und allen höheren Feldern keine Hinweise auf einen Übergang in einen geordneten supraleitenden Zustand zu entnehmen. Die Phase steigt bei allen Temperaturen mit zunehmender Frequenz an, $d(\sigma''/\sigma')/d\omega > 0$, charakteristisch für metallisches Verhalten in der Vortex-Flüssigkeit. Am Film bleibt unterhalb von $B = 1 \,\mathrm{mT}$ der Wert der Phase des Kreuzungspunktes unverändert groß, $\phi(T_c) = 13.5(1)$. Am Kristall A, der im Nullfeld die gleichen Signaturen des Supraleitungsübergangs wie der Film, $\phi(T_c, 10^{-7} \,\mathrm{T})=13.5(1)$, zeigt, wird mit zunehmendem Feld eine stärkere Absenkung der Übergangstemperatur $T_c(B)$ beobachtet. Diese ist hier aber mit einer Reduktion des Phasenwinkels bei T_c auf $\phi(T_c, 0.1 \mathrm{mT})=3.8 \,\mathrm{und} \,\phi(T_c, 1 \mathrm{mT})=2.4 \,\mathrm{verbunden}$, bis oberhalb von $B = 1 \mathrm{mT}$ der Kreuzungspunkt auch hier verschwindet.

Die beobachtete Unterdrückung der stabilen Supraleitung mit zunehmendem äußeren magnetischen Feld kann dadurch erklärt werden, daß die thermisch induzierten Vortizes und Antivortizes auf unterschiedliche Weise mit den die Probe durchsetzenden Flußlinien des äußeren magnetischen Feldes wechselwirken[104]. Der in die Richtung des Feldes zeigende Vortex wird von den Flußlinien abgestoßen, der entgegengesetzt gerichtete Antivortex wird angezogen. Dieses entspricht einer Erhöhung der Abschirmung $\varepsilon(r,T)$ in Gl. 2.32 und führt zu einer Reduktion der logarithmischen Wechselwirkung zwischen den Vortizes. Die Wirkung der thermischen Fluktuationen wird dadurch unterstützt, und die Vortex-Antivortex-Paare können bereits bei einer Temperatur T^* unterhalb des Kosterlitz-Thouless-Übergangs im Nullfeld, T_{KT} , aufbrechen. In theoretischen Untersuchungen des Einflusses geringer Vortexdichten auf den Kosterlitz-Thouless-Übergang fand Martynovich[104] ein charakteristisches Feld $B_{cr} < B_{c1}$, bei dem sich die Natur des Phasenüberganges ändert. In kleinen Feldern $B < B_{cr}$ geschieht das Aufbrechen der Vortex-Antivortex-Paare gemäß dem Kosterlitz-Thouless-Szenario. Oberhalb von B_{cr} hingegen existieren bereits unterhalb von T^* freie Vortex-Anregungen, durch die Energie dissipiert wird. Dadurch wird der Kosterlitz-Thouless-artige Phasenübergang unterdrückt oder durch einen Phasenübergang erster Ordnung ersetzt[104]. Das von Martyonovich abgeschätzte Übergangsfeld $B_{cr} \approx$ 1.5 mT liegt in dem Feldbereich, in dem auch in meinen Messungen die Supraleitung unterdrückt wird. Experimentelle Hinweise auf die Existenz eines solchen Feldes B_{cr} ergeben sich auch aus Untersuchungen von Strom-Spannungskennlinien an Bi₂Sr₂CaCu₂O₈-Kristallen in kleinen Magnetfeldern[105]. In diesen Messungen an 1μ m dicken Proben wurde nur bis zu einem Feld von 1.5 mT der für einen Kosterlitz-Thouless-Übergang charakteristische Sprung des Exponenten der Strom-Spannungskennlinien bei T* beobachtet, $V \sim I^{\alpha(T)}$ mit $\alpha(T < T^*) > 2$ und $\alpha(T > T^*) = 0$. Die Temperatur T^* wird nur gering durch das Feld abgesenkt.

5.2 Thermisch aktivierte Vortex-Dynamik

Um zu untersuchen, wie die feldinduzierten Vortizes die Frequenzabhängigkeit der dynamischen Leitfähigkeit beeinflussen, werden deren Skalierungseigenschaften überprüft. Die Nullfeldergebnisse zeigen, daß durch eine Skalenanalyse auch außerhalb des kritischen Bereichs um T_c herum die thermisch aktivierte Dynamik der Vortizes parametrisiert werden kann. Auch könnten sich in diesen Analysen Hinweise auf einen möglichen Phasenübergang ergeben, der sich bei einer tieferen, in diesen Messungen nicht zugänglichen Temperatur ankündigt. Die Ergebnisse dieser Skalenanalysen sind für den Film in Abb. 5.3 und für den Kristall A in Abb. 5.4 dargestellt. Die dynamische Leitfähigkeit zeigt über alle 8 Dekaden, über die sich das äußere Magnetfeld zwischen $B = 10^{-7}$ T und B = 12 T ändert, ein sehr gutes Skalierungsverhalten. Phase und Betrag von $\sigma(\omega)$ fallen nach Skalierung der Frequenz mit τ und der Leitfähigkeit mit σ_0 auf gemeinsamen Kurven zusammen. Deren Frequenzabhängigkeit wird in Abschnitt 5.3 untersucht.

Die Temperatur- und Feldabhängigkeit der verwendeten Skalierungsgrößen sind in den Abb. 5.5 und 5.6 dargestellt. Die statische Leitfähigkeit σ_0 folgt ebenso wie die Relaxationszeit τ bis zum höchsten angelegten Magnetfeld einem Arrhenius-förmigen Verlauf,

$$\tau(T,B) = \tau_0(B) \exp(U(T,B)/k_B T) , \qquad (5.1)$$

$$\sigma_0(T,B) = \sigma_0(B) \exp(U(T,B)/k_B T) .$$

Abweichungen davon, die eine kritische Divergenz von τ und σ_0 bei einer tieferen Temperatur ankündigen, werden nicht beobachtet. Aus den sich in der halblogarithmischen Darstellung von τ bzw. σ_0 über der inversen Temperatur 100 K/T ergebenden Geraden in Abb. 5.5 und 5.6 folgt unter der plausiblen Annahme, daß die Barrieren bei T_{c0} verschwinden, daß die Aktivierungsenergie linear von der Temperatur abhängt,

$$U(T,B) = U_0(B)(1 - T/T_{c0}) \qquad . \tag{5.2}$$

Deren Feldabhängigkeit ist in Abb. 5.7 dargestellt.

Bei kleinen Feldern ist U_0 konstant und nimmt für Film und Kristall den gleichen Wert, $U_0 = 8(1) \text{ eV}$, an, der auch im kompensierten Erdfeld in der thermisch aktivierten Bewegung der Vortex-Antivortex-Paare in Erscheinung trat. Oberhalb von $B = 30 \,\mu\text{T}$ beim Kristall und $B = 1 \,\text{mT}$ beim Film fällt $U_0(B)$ zunächst proportional zu $1/\sqrt{B}$ ab und könnte somit durch den mittleren Abstand der Vortizes a_0 beschränkt werden. Die Aktivierungsenergie kann ausgedrückt werden als Produkt aus einer spezifischen Vortex-Energie $\tilde{\epsilon}_0$ und dem mittleren Vortex-Abstand a_0 :

$$U_0(B) = \tilde{\epsilon}_0 a_0 \qquad . \tag{5.3}$$

Für den Kristall ist $\tilde{\epsilon}_0 = 12(2) \text{ K/nm}$ deutlich geringer als für den Film, $\tilde{\epsilon}_0 = 51(2) \text{ K/nm}$.

Abb. 5.3: Skalendarstellung von Phase und Betrag der dynamischen Leitfähigkeit für den Film, für B < 1 mT nur oberhalb von T_c . Die durchgezogenen Linien wurden nach Gl. 4.16 und 5.13 berechnet. Unterschiedliche Symbole entsprechen unterschiedlichen Temperaturen, die in äquidistanten Schritten zwischen der maximalen und minimalen Temperatur variiert wurden. Zum Vergleich eingetragen ist die Skalenfunktion des TAFF-Modells nach Gl. 5.12.

Abb. 5.4: Skalendarstellung von Phase und Betrag der dynamischen Leitfähigkeit für den Kristall A, für $B \leq 1 \, \text{mT}$ nur oberhalb von T_c . Die durchgezogenen Linien wurden nach Gl. 4.16 und 5.13 berechnet. Unterschiedliche Symbole entsprechen unterschiedlichen Temperaturen, die in äquidistanten Schritten zwischen der maximalen und minimalen Temperatur variiert wurden.

Abb. 5.5: Temperatur- und Feldabhängigkeit der Skalierungsgrößen $\tau(T)$ und $\sigma_0(T)$ des unbestrahlten Films.

Abb. 5.6: Temperatur- und Feldabhängigkeit der Skalierungsgrößen $\tau(T)$ und $\sigma_0(T)$ des Kristalls A.

Abb. 5.7: Die Aktivierungsenergie $U_0(B) \sim B^{-1/2}$ von Kristall A und Film unterscheidet sich um das Verhältnis der Anisotropie, $U_0^{Film}/U_0^{Kristall} = \gamma^{Kristall}/\gamma^{Film} \approx 4.4.$

Die Aktivierungsenergien des Kristalls weichen oberhalb von 0.3 T von diesem Verhalten ab. Sie lassen sich bei höheren Feldern durch

$$U(B \ge 0.3 \mathrm{T}) = U_1 \ln \left(\frac{a_0}{R_0}\right)$$
(5.4)

mit $U_1 = 34 \text{ meV}$ und $R_0 = 5 \text{ nm}$ beschreiben.

Zur Erklärung der beobachteten Temperatur- und Feldabhängigkeit der Aktivierungsenergien wurden eine Reihe von Modellen vorgeschlagen. Viele von diesen basieren auf Tinkhams phänomenologischem Ansatz[106]. Danach wird die Energiebarriere durch die Nukleationsenergie eines korrelierten Volumens V_c eines Vortex-Segments bestimmt, das an einem Defekt haftet,

$$U(T,B) \approx \frac{1}{2}\mu_0 H_c^2 V_c = \frac{\epsilon_0(0)}{4\pi} \left(1 - \frac{T}{T_{c0}}\right) \frac{V_c}{\xi^2}$$
(5.5)

mit $\epsilon_0 = \phi_0^2/4\pi\mu_0\lambda^2$ nach Gl. 2.30 und $\epsilon_0(0) = 460$ K/nm mit den Parametern aus Tabelle 2.1.

Tab. 5.1: Spezifische Aktivierungsenergie $\tilde{\epsilon}_0$ für die plastische Vortex-Bewegung und daraus bestimmtes Verhältnis L_c/ξ (Gl. 5.5) sowie Anisotropie γ (Gl. 5.7).

	$\widetilde{\epsilon}_0$	L_c/ξ	γ
Kristall A	$12(2) \mathrm{K/nm}$	0.33	350
Film	$51(2)\mathrm{K/nm}$	1.4	90

Kollektive Effekte werden phänomenologisch durch V_c berücksichtigt, welches in allgemeinster Form durch den Vortex-Abstand a_0 , die Korrelationslänge ξ und eine weiter Korrelationslänge L_c ausgedrückt werden kann,

$$V_c = L_c \,\xi \,a_0 \quad , \tag{5.6}$$

um die am Kristall unterhalb von 0.3 T und am Film beobachtete Feldabhängigkeit $U(B) \sim a_0$ zu erhalten. Die beobachtete Temperaturabhängigkeit $U(T) \sim (1 - T/T_{c0})$ erhält man aus Gl. 5.5 nur, wenn V_c/ξ^2 und somit L_c/ξ nicht von der Temperatur abhängt. Der Vergleich mit den am Film und am Kristall A gemessenen Barrieren ergibt für L_c/ξ die in Tab. 5.1 aufgelisteten Werte. Diese liegen nahe bei eins. Dieses Modell bietet aber keine physikalische Interpretation der Länge L_c an und erklärt nicht deren Unterschied und den damit verbundenen Unterschied der Aktivierungsenergien von Kristall und Film.

Von Geshkenbein et al.[107] wurde ein Modell vorgeschlagen, in dem die Aktivierungsenergie U(T, B) auf plastische Deformationen eines Flußlinien-Gitters durch Versetzungen zurückgeführt wird. Dieser Ansatz wurde von Vinokur et al.[108] auf die Beschreibung der plastischen Bewegung einer viskosen Vortex-Flüssigkeit erweitert. Die typische Anregung ist die in Abb. 5.8 dargestellte Versetzung eines Vortex-Segments um den mittleren Vortexabstand a_0 . Die Aktivierungsenergie U_0 ist die Energie, die benötigt wird, um die beiden Vortex-Segmente der Länge a_0 parallel zu den CuO₂-Ebenen zu erzeugen[108],

$$U(T,B) = 2\frac{\epsilon_0(T)\ln(\kappa)}{\gamma}a_0 \qquad . \tag{5.7}$$

Dieser Ausdruck enthält die beobachtete Temperatur- und Feldabhängigkeit. Die unterschiedliche Größe der Barriere an Film und Kristall kann in diesem Modell auf eine unterschiedliche Anisotropie γ zurückgeführt werden.

Die am Kristall und am Film bestimmten Aktivierungsenergien sind in guter Übereinstimmung mit Werten, die aus Gleichstromleitfähigkeitsmessungen an vergleichbaren Filmen[109, 110] und Kristallen[111, 112] ermittelt wurden.

In Tab. 5.1 sind die aus den beobachteten Barrieren $\tilde{\epsilon}_0$ unter Verwendung von Gl. 5.7 bestimmten Anisotropiefaktoren γ zusammengefaßt.

Abb. 5.8: Plastische Versetzung eines Vortex-Segments um den mittleren Vortexabstand $a_0 = (\phi_0/B)^{1/2}$ im senkrecht zu den Ebenen orienterten Magnetfeld.

Die Anisotropie des Kristalls, $\gamma = 350$, stimmt mit dem von Iye et al.[113] mittels Torsionsmagnetometrie und von Schilling et al.[114] mittels Magnetisierungsmessungen an Bi₂Sr₂CaCu₂O₈-Kristallen bestimmten Wert $\gamma \approx 400$ gut überein. Die Anisotropie des Films $\gamma = 90$ liegt zwischen den von Raffy et al.[115], $\gamma = 40$, und Wagner et al.[24], $\gamma = 170$, aus winkelabhängigen Widerstandsmessungen bestimmten Werten. Aus AFMund TEM-Untersuchungen[69] ist bekannt, daß Bi₂Sr₂CaCu₂O₈-Filme wachstumsbedingt eine amorphe Struktur aufweisen. Dieses führt zu einer Reduktion der Anisotropie. Dadurch kann qualitativ erklärt werden, daß der Anisotropiefaktor des Films gegenüber der Anisotropie des Kristalls um das Vierfache reduziert ist.

Man erwartet, daß beim Entkopplungsfeld B_{2D} ein Übergang von der Dynamik von Vortex-Linien zur Dynamik einzelner Punktvortizes stattfindet. Nach Gl. 2.49 wird dieses Feld durch die Anisotropie bestimmt,

$$B_{2D} = \pi \frac{\phi_0}{\gamma^2 s^2} \ln\left(\frac{\gamma s}{\xi}\right)$$

Daraus ergibt sich für den stärker anisotropen Kristall $B_{2D} = 0.2(1)$ T. Für den Film mit seiner geringeren Anisotropie erhält man ein deutlich höheres Übergangsfeld $B_{2D} = 2.5(5)$ T. In der Tat wird beim Kristall genau bei dem aus der Anisotropie berechneten Übergangsfeld B_{2D} ein Wechsel in der Feldabhängigkeit der Energiebarriere zu $U(B) \sim \ln(a_0/R_0)$ für $B > B_{2D}$ beobachtet. Für den Film wäre eine logarithmische Abhängigkeit der Barriere bei einem ähnlichen Wert von R_0 nicht von der beobachteten plastischen Barriere zu unterscheiden, da die Steigung des logarithmischen Gesetzes nicht wesentlich von der des $1/\sqrt{B}$ -Verhaltens abweicht.

Die am Kristall oberhalb von 0.3 T beobachtete logarithmische Feldabhängigkeit der Energiebarriere kann auf die Wechselwirkung von Vortex-Antivortex-Paaren[116] oder von Versetzungslinien[117] in entkoppelten zweidimensionalen Schichten zurückgeführt werden. Alle im folgenden vorgestellten Modelle gelten für rein zweidimensionale Systeme und berücksichtigen weder die geschichtete Struktur dicker Hochtemperatursupraleiter, noch eine schwache Koppelung zwischen den Ebenen.

Bei der Bewegung einer Versetzungslinie um eine Gitterkonstante werden Vortizes innerhalb eines Radius a_0^2/ξ versetzt. Die Wechselwirkungsenergie zwischen zwei Versetzungslinien in einem zweidimensionalen Vortex-Gitter mit transversaler Korrelationslänge R_c ist logarithmisch bis zum Abstand $a_0^2/\xi + R_c$ und fällt für größere Abstände exponentiell. Dadurch wird die Energie, die benötigt wird, um mit einer einzelnen Versetzung einen Vortex zu einem benachbarten Haftzentrum zu schieben, bei kleiner transversaler Korrelationslänge R_c endlich[117],

$$U_{disloc.}(B) \approx \frac{\epsilon_0(0)s}{4\sqrt{3}\pi} \ln\left(\frac{a_0}{\xi}\right)$$
 (5.8)

Für die Amplitude erhält man $\epsilon_0 s/4\sqrt{3}\pi = 2.7 \text{ meV}$, wenn man für s den Ebenenabstand, s = 1.5 nm, wählt. Dieser Wert liegt um mehr als eine Größenordnung unter der beobachteten Barriere, $U_1 = 34 \text{ meV}$.

Eine andere Ursache für die logarithmische Feldabhängigkeit der Barriere könnte der Beitrag thermisch induzierter Vortex-Antivortex-Paare in den Ebenen zur Dissipation sein. Die Wechselwirkung innerhalb des Paares wird durch die vom Feld induzierten Vortizes abgeschirmt. Die dominierende Wechselwirkung ist die des Antivortex mit einem im Mittel a_0 entfernten Vortex[116], aus dem man

$$U_{VA}(B) = 2\epsilon_0 s \ln\left(\frac{a_0}{\xi}\right) \tag{5.9}$$

erhält.

Basierend auf den Überlegungen von Jensen et al. haben Viret und Coey[118] eine Aktivierungsenergie für die Bewegung eines Antivortex in einem Bündel mit Vortex-Gitter Struktur berechnet:

$$U(B) = 2\epsilon_0 s \left[\ln\left(\frac{2a_0}{\sqrt{3}\xi}\right) - 1.67 \right] \qquad (5.10)$$

Durch eine Uberlagerung dieses thermisch aktivierten Prozesses mit der Diffusion des gesamten Bündels war es ihnen möglich, den Vorzeichenwechsel des Hall- und des Nernst-Effektes in Bi₂Sr₂CaCu₂O₈ zu erklären.

Die Aktivierungsenergien von Vortex-Antivortex-Paaren nach Jensen et al.[116] und Viret und Coey[118], $2\epsilon_0 s = 120 \text{ meV}$ übersteigen den beobachteten Wert um einen Faktor 4. Die experimentell bestimmte Korrelationslänge $R_0 = 5 \text{ nm}$ stimmt mit diesen Modellen, $R_0 = \xi = 2 \text{ nm}$ nach Jensen bzw. $R_0 \approx 4.5 \cdot \xi = 9 \text{ nm}$ nach Viret und Coey, bis auf einen Faktor 2.5 bzw. ≤ 2 überein.

Abb. 5.9: Die Abschirmlänge λ_+^2 für den Film und den Kristall fällt bei hohen Feldern proportional zum mittleren Vortexabstand a_0 , $\lambda_+^2(B) \sim B^{-1/2}$ und ist für kleine Felder unabhängig von B.

Eine logarithmische Feldabhängigkeit wird experimentell auch an $Bi_2Sr_2CaCu_2O_8$ -Kristallen größerer Anisotropie[119], in dünnen supraleitenden Filmen[120] und an schwach gekoppelten supraleitenden Schichten[90, 121] beobachtet. Auch dort werden Abweichungen in ähnlicher Größenordnung von diesen Modellen gefunden.

Die Ursache für diese Abweichungen liegt sicherlich in dem realen geschichteten Aufbau der Hochtemperatursupraleiter mit schwacher Kopplung zwischen den Ebenen begründet. Für einen quantitativen Vergleich mit theoretischen Vorhersagen ist es notwendig, die tatsächliche Struktur der Proben besser zu berücksichtigen. Angesichts der theoretischen Unsicherheiten bei den Berechnungen sind die Übereinstimmungen der beobachteten und der für die thermisch aktivierte Bewegung von Vortex-Antivortex-Paaren vorhergesagten Amplitude und dem Argument zufriedenstellend. Die am Kristall A beobachtete logarithmische Feldabhängigkeit der Energiebarriere für die Vortex-Bewegung in Magnetfeldern oberhalb von 0.3 T scheint also auf zweidimensionale Vortex-Anregungen in den einzelnen Ebenen zurückzuführen zu sein. Dieses wird dadurch unterstützt, daß die Aktivierungsenergien, die dem logarithmischen Gesetz folgen, geringer als die Selbstenergie eines auf eine Ebene beschränkten Vortex-Segments, $\epsilon_0 s = 65 \text{ meV}$, sind.

Da $\tau(T)$ und $\sigma_0(T)$ die gleiche Temperaturabhängigkeit aufweisen, hängt die hieraus berechnete Eindringtiefe $\lambda_+^2 = \tau/\mu_0\sigma_0$ nicht von der Temperatur ab. Deren Magnetfeldabhängigkeit ist in Abb. 5.9 dargestellt. Für kleine Felder ist λ_{+}^2 feldunabhängig und unterscheidet sich für Film und Kristall gerade um das Verhältnis ihrer Dicken. Diese konstanten Werte und deren Abhängigkeit von der Probendicke L_z lassen sich, wie in Kapitel 4 gezeigt wurde, durch die zweidimensionale Dynamik, möglicherweise von freien Vortex-Antivortex-Paaren, die die Proben über ihre gesamte Dicke durchziehen, erklären. In Übereinstimmung mit der Vorhersage von Martynovich[104] bleibt unterhalb von $B_{cr} \approx 1.5$ mT der Kosterlitz-Thouless-Übergang im wesentlichen durch die externen Vortizes unbeeinflußt.

Oberhalb von 0.3 mT beim Film und oberhalb von 5 mT am Kristall fällt die Eindringtiefe mit zunehmendem Feld ab, $\lambda_{+}^2 \sim a_0$. Da λ_{+}^2 auch im Magnetfeld nicht von der Temperatur abhängt, was auf einen Effekt zweidimensionaler Ordnung hindeutet, versuche ich, die im Nullfeld gültige Beschreibung der Eindringtiefe, $\lambda_{+}^2 (H = 0) = \Lambda_1 L_z$ mit $\Lambda_1 = C\Lambda_T = 10.7(5)$ mm (siehe Kapitel 4.2.2), auf endliche Vortex-Dichten zu übertragen. Eine sehr gute Beschreibung von λ_{+}^2 , dargestellt in Abb. 5.9, erhält man durch den phänomenologischen Ansatz

$$\lambda_+^2 = C \,\gamma a_0 \, L_z \tag{5.11}$$

mit der gleichen Konstante C wie im Nullfeld. Die Eindringtiefe λ_+ wird magnetfeldabhängig, wenn γa_0 kleiner als die thermische Länge Λ_T wird. Λ_T ist eine charakteristische Länge für die zweidimensionalen Fluktuationen. Es scheint daher plausibel, daß durch ein Magnetfeld, durch welches eine transversale Längenskala a_0 festgesetzt wird, die thermische Länge abgeschnitten wird. Weshalb eine effektive Länge γa_0 in der empirischen Beschreibung durch Gl. 5.11 in Erscheinung tritt, ist unklar.

5.3 Frequenzabhängigkeit der Skalenfunktion

Die in den Abb. 5.4 und 5.3 dargestellten Skalenfunktionen von Kristall und Film weichen bei allen Feldern deutlich von der Vorhersage des TAFF-Modells[122],

$$|\sigma(\omega\tau)| \sim \frac{1}{\sqrt{1+(\omega\tau)^2}}$$
 und $\frac{\sigma''}{\sigma'} = \omega\tau$, (5.12)

die sich aus Gl. 2.18 ergeben, ab. Zum Verständnis, durch welche Fluktuationen der Vortizes die Abweichungen von der normalen Vortex-Diffusion hervorgerufen werden, wird in diesem Abschnitt die Frequenzabhängigkeit der Skalenfunktion untersucht.

Die Form der Skalenfunktion des Films ändert sich bei kleinen Feldern $B \leq 10 \text{ mT}$ nicht. Sie kann sehr gut durch den Ansatz für die zweidimensionale Dynamik im Nullfeld nach Gl. 4.7,

$$\sigma_0 / \sigma_+(\omega \tau) = S_{VA}^{-1}(\omega \tau) + \alpha S_{2D,G}^{-1}(\omega \tau) + S_c^{-1}(\omega \tau)$$

mit $\alpha = 0.22$, beschrieben werden. Ein Phasenübergang wird aber für $B \ge 1$ mT nicht mehr beobachtet.

Im Gegensatz dazu ändert sich die Skalenfunktion des Kristalls bereits oberhalb von $B = 30 \,\mu\text{T}$ deutlich, auch wenn bis $B = 1 \,\text{mT}$ ein Phasenübergang zur Supraleitung beobachtet wird. Die auffälligste Änderung betrifft die Leitfähigkeit bei T_c , die mit zunehmendem Feld eine schwächer werdende Frequenzabhängigkeit zeigt, wie in Abschnitt 5.1 ausgeführt. Anders als beim Film werden die Gaußschen Fluktuationen durch kleine Felder unterdrückt, was zu $\alpha = 0$ führt.

Im Film scheinen für $B \leq 10 \text{ mT}$ zweidimensionale topologische Fluktuationen die dynamische Leitfähigkeit bei niedrigen Frequenzen zu dominieren, worauf auch die Größe von λ_{+}^2 (Abb. 5.9) hindeutet. Zweidimensionale Gaußsche Fluktuationen treten für $\omega \tau > 10^3$ in den Vordergrund. Deren Gewicht α wird durch das Magnetfeld nicht beeinflußt. Eine Änderung der Form der Skalenfunktion setzt allerdings erst deutlich oberhalb des von Martynovich[104] abgeschätzten Übergangsfeldes $B_{cr} = 1.5 \text{ mT}$, bei dem der Supraleitungsübergang unterdrückt wird, ein. Die Ursache für diesen Übergang ist bisher nicht geklärt.

Die Änderung der Form der Skalenfunktion des Kristalls und damit verbunden des Phasenwinkels $\phi(T_c)$ bereits unterhalb von B_{cr} könnte auf dessen größere Anisotropie zurückzuführen sein. Dadurch könnten Vortizes, begünstigt durch die Wechselwirkung mit den thermisch induzierten Vortex-Antivortex-Paaren, im Kristall stärker fluktuieren als im Film. Dieses wird durch die niedrigere Energiebarriere für die thermisch aktivierte Dynamik der Vortizes gestützt. Die Änderung der Skalenfunktion am Kristall geht einher mit dem Einsetzen der Feldabhängigkeit von U_0 . Die Vortizes im Kristall sind flexibler und können sich leichter von den intrinsischen Defekten lösen. Aus diesem Grund könnte schon bei einem niedrigereren Feld eine andere Art von Vortex-Anregungen als über die intrinsische Barriere bevorzugt werden.

Oberhalb von B = 10 mT verläuft die Phase der Leitfähigkeit für Kristall und Film deutlich flacher und strebt bei hohen Frequenzen einem potenzartigen Verlauf zu, $\sigma(\omega\tau \gg 1) \sim (i\omega)^{-x}$ mit $x \approx 0.75$, der nur asymptotisch erreicht wird. Zweidimensionale Gaußsche Fluktuationen treten hier nicht in Erscheinung. In Analogie zum H = 0 Verhalten (Gl. 4.7) kann die Skalenfunktion sehr gut durch eine einfache Addition eines bei niedrigen Frequenzen dominierenden Anteils $\sigma_{NF}(\omega\tau)$, der entweder durch die Diffusion freier Vortex-Antivortex-Paare oder durch dreidimensionale Gaußsche Fluktuationen des Ordnungsparameters hervorgerufen wird, und eines bei hohen Frequenzen dominierenden Potenzgesetzes dargestellt werden,

$$\sigma^{-1}(\omega\tau) = \sigma_{NF}^{-1}(\omega\tau) + \frac{\mu_0\lambda_g^2}{\tau}(i\omega\tau)^x$$

$$= \sigma_0^{-1}\left(S_{NF}^{-1}(\omega\tau) + \frac{\lambda_g^2}{\lambda_+^2}(i\omega\tau)^x\right)$$
(5.13)

mit $S_{NF}(\omega\tau) = S_{3D}^G(\omega\tau)$ nach Gl. 2.24 oder $S_{NF}(\omega\tau) = S_{VA}(\omega\tau)$ nach Gl. 2.47 und der thermisch aktivierten Zeit τ , dargestellt in Abb. 5.5 und 5.6. Die Leitfähigkeit wird durch diesen phänomenologischen Ansatz mit x = 0.75 für alle Felder oberhalb von 10 mT gut beschrieben. Die Länge λ_g^2 , dargestellt in Abb. 5.10, charakterisiert das Hochfrequenzverhalten. Sie hängt nicht von der Temperatur und innerhalb der Fehler auch nicht vom Magnetfeld ab.

Bei höheren Feldern, B > 10 mT, kann anhand der Form der Skalenfunktion nicht entschieden werden, ob bei niedrigen Frequenzen thermisch aktivierte Vortex-Antivortex-Paare oder Gaußsche Fluktuationen in der Leitfähigkeit in Erscheinung treten. Deren Beitrag zur Leitfähigkeit nach Gl. 2.47 mit $d\epsilon(x)/dx = 1$ bzw. nach Gl. 2.24 unterscheidet sich in seiner Frequenzabhängigkeit praktisch nicht, sondern nur durch den statischen Grenzwert. Die Temperaturunabhängigkeit der Eindringtiefe λ_{+}^2 und deren Proportionalität zur Dicke (siehe Kapitel 5.2) deutet aber auf den zweidimensionalen Charakter der Fluktuationen auch im Magnetfeld hin.

Die bei hohen Frequenzen beobachtete anomale Frequenzabhängigkeit der dynamischen Leitfähigkeit, $\sigma(\omega) \sim (i\omega\tau)^{-0.75}$, ist flacher als die anomale Abhängigkeit, die für die thermisch aktivierte Diffusion der freien Vortex-Antivortex-Paare für $B \leq 10 \text{ mT}$ gefunden wurde. Von Dorsey et al.[59] wurde in zeitabhängiger Ginsburg-Landau Theorie für das dreidimensionale Vortex-Glas, d.h. unter Berücksichtigung isotropen Haftens von Vortizes an Punktdefekten, ein Potenzgesetz für die Leitfähigkeit am Phasenübergang gefunden, $\sigma(\omega, T_c) \sim (i\omega)^{-0.75}$, welches mit der hier beobachteten asympotischen Frequenzabhängigkeit gut übereinstimmt. Diesen Ergebnissen liegen aber die kritische Divergenz der Korrelationslänge $\xi \sim |1 - T/T_g|^{-\nu}$ und der Relaxationszeit $\tau \sim \xi^z$ nach den Gl. 2.54 und 2.55 zugrunde. Die Übertragbarkeit des

Abb. 5.10: λ_g^2 beschreibt die anomale Vortex-Diffusion bei tiefen Temperaturen und hängt nicht vom Magnetfeld ab.

Ergebnisses dieser Rechnungen auf die hier beobachtete Vortex-Dynamik ist deshalb fraglich, da die experimentell bestimmten Relaxationszeiten $\tau(T)$ und die statischen Leitfähigkeiten $\sigma_0(T)$ keinerlei Hinweise auf eine kritische Dynamik liefern. Sie zeigen ein reines Arrhenius-Verhalten bis zu tiefsten Temperaturen. Es könnte möglich sein, daß bei niedrigen Frequenzen, wenn das System auf großen Längen untersucht wird, makroskopische zweidimensionale Fluktuationen beobachtet werden, daß aber mit zunehmender Frequenz und abnehmender experimenteller Längenskala lokal ein dreidimensionales Ordnen beobachtet wird. Es ist anhand der Daten auch nicht auszuschließen, daß bei deutlich tieferen Temperaturen ein Phasenübergang in einen geordneten Vortex-Zustand stattfindet, der sich bereits im Hochfrequenzverhalten ankündigt. Die Proportionalität von λ_g^2 zur Probendicke hingegen spricht für einen Effekt zweidimensionaler Fluktuationen.

Kapitel 6

Stabilisierung von Supraleitung im Magnetfeld durch korreliertes Vortex-Haften

In diesem Kapitel sollen Möglichkeiten untersucht werden, um die zur Dissipation führende Bewegung der Vortizes wirkungsvoll zu unterdrücken. Senkrecht zu den CuO₂-Ebenen orientierte Vortizes besitzen aufgrund der schwachen Kopplung der Ebenen untereinander nur eine geringen Schersteifigkeit. Deswegen sind Punktdefekte in der Regel nicht geeignet, eine supraleitende Ordnung gegen die großen thermischen Fluktuationen zu stabilisieren [17]. Effektive Haftzentren für die Vortizes liefert aber die geschichtete Struktur des Supraleiters selbst. So können die CuO₂-Ebenen die Bewegung von entlang der Ebenen ausgerichteten Vortizes behindern. Auf diese Untersuchung der Bedeutung des intrinsischen Haftens für die Vortex-Dynamik werde ich mich im ersten Abschnitts dieses Kapitels konzentrieren. Im Anschluß daran werde ich den Einfluß von kolumnaren Defekten senkrecht zu den CuO₂-Ebenen, die mittels Schwerionenbestrahlung in den Filmen induziert wurden, auf die Dynamik der parallel zu diesen orientierten Vortizes betrachten. Das Zusammenwirken von intrinsischem Haften der Vortizes entlang der CuO₂ Ebenen und dem möglichen korrelierten Haften an den kolumnaren Defekten, wenn die bestrahlten Filme einem äußeren Feld parallel zu den Ebenen ausgesetzt sind, werde ich zum Abschluß dieses Kapitels untersuchen.

6.1 Intrinsisches Vortex-Haften an den CuO_2 -Ebenen

Das intrinsische Haften der parallel zu den CuO_2 -Ebenen orientierten Vortizes resultiert aus der stark geschichteten Struktur der Materialien, die zu einer großen Modulation

Abb. 6.1: Barriere für die thermisch aktivierte Dynamik von parallel und senkrecht zu den CuO_2 -Ebenen orientierten Vortizes.

des supraleitenden Ordnungsparameters und damit verbunden zu einer Modulation der Kondensationsenergie mit der Periode s des Ebenenabstandes führt[123]. Dieses hat zur Folge, daß die Vortizes sich so arrangieren werden, daß ihr Kern vollkommen zwischen den CuO₂-Ebenen liegt. Eine Bewegung der Vortizes aufgrund der Lorentz-Kraft, ausgeübt durch in den CuO₂-Ebenen fließende Ströme, ist nur durch eine Versetzung der Vortizes oder von Vortex-Segmenten über eine CuO₂-Ebene hinweg durch Erzeugung eines Kink-Antikink-Paares möglich. Dessen Energie stellt somit eine große intrinsische Barriere dar.

Der Einfluß des intrinsischen Pinnings auf die Vortex-Dynamik wurde mittels der dynamischen Leitfähigkeit der CuO₂-Ebenen mit parallel zu diesen orientiertem äußeren magnetischen Feld für den unbestrahlten Film zwischen B = 10 mT und B = 1 T untersucht[124]. Dabei ergaben sich *keine* Hinweise auf einen Phasenübergang in einen Zustand stabiler Supraleitung. Das Verhalten der dynamischen Leitfähigkeit entspricht dem im Kapitel 5 geschilderten mit Ausnahme der im folgenden dargestellten Unterschiede. Wie auch für $\vec{B} \parallel \vec{c}$ verläuft die statische Leitfähigkeit im gesamten betrachteten Temperaturbereich Arrhenius-artig. Die diese thermisch aktivierte Dynamik kontrollierende Energiebarriere $U^{\perp}(T, B)$ besitzt die gleiche lineare Temperaturabhängigkeit und die gleiche Magnetfeldabhängigkeit, dargestellt in Abb. $6.1, U^{\perp}(T, B) = U_0^{\perp}(B)(1 - T/T_{c0})$ wie die plastische Barriere U(T, B) (Gl. 5.2) für

Abb. 6.2: Plastische Versetzung eines parallel zu den Ebenen verlaufenden Vortex über diese hinweg.

die Dynamik der senkrecht zu den Ebenen orientierten Vortizes. Sie ist aber gegenüber dieser etwa um einen Faktor 4 erhöht.

Die Erhöhung der Barriere U_0^{\perp} könnte durch die Anisotropie der Probe bestimmt sein. Eine mögliche Vortex-Anregung durch einen in den Ebenen, senkrecht zur Magnetfeldorientierung fließenden Strom ist in Abb. 6.2 dargestellt. Sie umfaßt die Erzeugung von Kink-Antikink-Paaren in mehreren benachbarten Ebenen. Die notwendige Aktivierungsenergie zur Erzeugung solch einer Anregung über die CuO₂-Ebenen hinweg setzt sich aus der Energie eines Kink-Antikink-Paares, $U_{K,-K} = 2\epsilon_0 s \ln(\gamma s/\xi)[25]$, und der mittleren Auslenkung des Vortex zusammen. Die Längenskala für eine Versetzung ist durch den mittleren Vortex-Abstand a_0 gegeben. Dieses ist aufgrund der Anisotropie entlang der Ebenen um $\sqrt{\gamma}$ erhöht und senkrecht dazu um $1/\sqrt{\gamma}$ reduziert. U_0^{\perp} ergibt sich aus der Anzahl der Kink-Antikink-Paare und deren Energie,

$$U_0^{\perp}(T,B) = 2\epsilon_0 s \ln\left(\frac{\gamma s}{\xi}\right) \cdot \frac{a_0/\sqrt{\gamma}}{s} \approx U_0\sqrt{\gamma} \qquad (6.1)$$

Nach diesen Überlegungen ergibt sich aus $U_0^{\perp}/U_0 \approx 4$ ein sehr niedriger Wert für die Anisotropie, $\gamma \approx 16$. Dieser Wert ist deutlich kleiner als der aus der plastischen Barriere für die senkrecht zu den Ebenen orientierten Vortizes nach Gl. 5.7 berechnete. Er ist auch wesentlich geringer, als man anhand der Literatur für Bi₂Sr₂CaCu₂O₈-Filme erwartet (siehe dazu Kapitel 5.2). Aus entsprechenden Messungen an Kristall A[125] ergibt sich ebenfalls nur ein Unterschied von $U_0^{\perp}/U_0 \approx 4$. Aufgrund der größeren Anisotropie des Kristalls aber müßte sich nach Gl. 6.1 hier eine deutlich größere Barriere U_0^{\perp} ergeben.

Möglicherweise führen lokale dreidimensionale Fluktuationen, die im Nullfeld zur anomalen Frequenzabhängigkeit der Leitfähigkeit geführt haben, zur Reduktion der Aktivierungsenergie gegenüber der theoretischen Erwartung. Auch könnten Kink-Antikink-Anregungen durch Versetzungen entlang von Korngrenzen erfolgen. In diesem Fall wäre die Nukleationsenergie der Vortex-Segmente deutlich abgesenkt. Um den Mechanismus dieser Anregungen zu klären, bedarf es weiterer Untersuchungen der Dynamik parallel zu den Ebenen orientierter Vortizes.
6.2 Korreliertes Vortex-Haften an kolumnaren Defekten

Kolumnare Defekte sind geeignet, die Vortex-Bewegung über einen weiten Bereich des B - T-Phasendiagramms zu behindern und den irreversiblen magnetischen Bereich zu vergrößern. Eine Vielzahl von Experimenten bestätigen dieses[63]. Es ist eine wichtige Frage, ob auch im stark anisotropen Bi₂Sr₂CaCu₂O₈ die Vortizes effektiv an den kolumnaren Defekten haften können. Dieses setzt eine Wechselwirkung der Punktvortizes in den CuO₂-Ebenen über die Ebenen hinweg voraus, so daß sich diese zu Vortex-Linien aufreihen. Während erste Experimente an mit Schwerionen bestrahlten Bi₂Sr₂CaCu₂O₈-Kristallen[126] keine Erhöhung des Vortex-Haftens an den Defekten beobachteten, liefern Magnetisierungsmessungen an Bi₂Sr₂CaCu₂O₈-Kristallen, in die die kolumnaren Defekte senkrecht und unter einem Winkel von 45° zu den CuO₂-Ebenen eingebracht wurden[127] Hinweise auf eine korrelierte Wechselwirkung zwischen den feldinduzierten Vortizes und den Defekten. Es wurde beobachtet, daß die Stärke des Haftens maximal ist, wenn das Magnetfeld und die Defekte parallel zueinander ausgerichtet sind und die Vortizes sich somit linienartig in Gegenwart kolumnarer Defekte verhalten.

In diesem Kapitel wird das Vortex-Haften an kolumnaren Defekten in einem schwach $(B_{\phi} = 10 \text{ mT})$ und in einem stark $(B_{\phi} = 1 \text{ T})$ bestrahlten Bi₂Sr₂CaCu₂O₈-Film untersucht. Dabei ist es von besonderem Interesse, ob die starken Fluktuationen, die oberhalb des Übergangsfelds B_{cr} in Abwesenheit kolumnarer Defekte die supraleitende Ordnung zerstören, von diesen unterdrückt werden können und der Supraleitungsübergang auch im Feld stabilisiert werden kann. Das besondere Augenmerk gilt im folgenden der Lage der Glaslinie sowie der Dynamik am Phasenübergang. Zuerst aber werde ich den Einfluß der kolumnaren Defekte auf die Dynamik in der Vortex-Flüssigkeit untersuchen.

6.2.1 Thermisch aktivierte Vortex-Dynamik

Betrag und Phase der dynamischen Leitfähigkeit des schwach und des stark bestrahlten Films sind als Funktion der Frequenz in Feldern unterhalb des dosisäquivalenten Feldes, B = 3 mT bzw. B = 100 mT, in den Abb. 6.3 und 6.4 aufgetragen. Diese zeigen einen kontinuierlichen Übergang vom statischen metallischen Verhalten, $|\sigma| = \sigma_0$ und $\sigma''/\sigma' \rightarrow 0$ bei niedrigen Frequenzen und hohen Temperaturen, zu supraleitender Abschirmung mit steigender Phase bei abnehmender Frequenz, $d\phi/d\omega < 0$. Bei einer Temperatur T_g sind die bekannten Signaturen eines kontinuierlichen Phasenübergangs deutlich zu erkennen, $d\phi(T_g)/d\omega = 0$. Oberhalb des dosisäquivalenten Feldes werden keine Hinweise auf einen Phasenübergang gefunden. Der auffälligste Unterschied zwischen beiden Filmen ist der Wert der Phase $\phi(T_g)$. Dieser ist für den schwach bestrahlten Film $\phi(T_g) = 3.7(2)$ und für den stark bestrahlten Film $\phi(T_g) = 1.7(2)$.

Abb. 6.3: Phase und Betrag der dynamischen Leitfähigkeit des schwach bestrahlten Films. Die gestrichelten Linien entsprechen der statischen Leitfähigkeit σ_0 .

Abb. 6.4: Phase und Betrag der dynamischen Leitfähigkeit des stark bestrahlten Films.

Abb. 6.5: Temperaturabhängigkeit der statischen Leitfähigkeit des schwach und des stark bestrahlten Films

Die bei hohen Temperaturen und niedrigen Frequenzen im Betrag der Leitfähigkeit sichtbare statische Leitfähigkeit $\sigma_0(T)$ ist in Abb. 6.5 für Magnetfeldstärken in der Umgebung von B_{ϕ} für beide Filme dargestellt. In allen Feldern zeigt $\sigma_0(T)$ bei hohen Temperaturen thermisch aktiviertes Verhalten, $\sigma_0(T, B) = \sigma_0 \exp(U_0(T, B)/k_BT)$. Erst bei Annäherung an den für $B \leq B_{\phi}$ auftretenden Phasenübergang steigt $\sigma_0(T)$ stärker als Arrhenius-artig an.

Die Energiebarriere, die die Vortex-Dynamik in der Vortex-Flüssigkeit kontrolliert, kann aus den Arrhenius-Geraden bestimmt werden. Sie ist in Abb. 6.6 dargestellt und wird durch

$$U(T,B) = \tilde{\epsilon}(0) a_0 (1 - T/T_c) \tag{6.2}$$

mit $\tilde{\epsilon}(0) = 51(2) \text{ K/nm}$ beschrieben. Es zeigt sich klar, daß die Größe der Barriere gegenüber dem unbestrahlten Film unverändert ist, so daß sie ebenfalls durch Anregung von plastischen Vortex-Versetzungen in Form von Vortex-Halbringen quantitativ erklärt wird, $\tilde{\epsilon}(0) = 2\epsilon_0(0) \ln(\kappa)/\gamma$. Lediglich am stark bestrahlten Film ist für $B \approx B_{\phi}$ eine leichte Erhöhung der Aktivierungsenergie zu erkennen, die zu höheren Feldern hin schnell verschwindet. Die kolumnaren Defekte wirken also in der Vortex-Flüssigkeit nicht als starke Haftzentren. Sie führen auch nicht zu einer Reduktion der Anisotropie γ , die aus einer möglichen Störung der geschichteten Struktur und einer daraus folgenden stärkeren Kopplung zwischen den Ebenen resultieren könnte. Dieses steht

Abb. 6.6: Die Energiebarrieren für die thermisch aktivierte Bewegung in der Vortex-Flüssigkeit unterscheiden sich für die bestrahlten Filme nicht von denen des unbestrahlten Films.

im Gegensatz zu den Ergebnissen von Miu et al.[128], die aus Widerstandsmessungen an einem Bi₂Sr₂CaCu₂O₈-Film eine deutliche Erhöhung der plastischen Barriere für die Vortex-Bewegung nach der Bestrahlung, sogar für $B > B_{\phi}$, fanden.

6.2.2 Glaslinien

Die Magnetfeldabhängigkeit der Phasenübergangstemperaturen ist in Abb. 6.7 dargestellt. Ein wichtiger Aspekt bei der Frage, ob durch die kolumnaren Defekte ein Bose-Glas-Phasenübergang induziert wird, ist die Lage der Phasengrenze relativ zur Schmelzlinie im reinen, unbestrahlten Material. Deshalb ist zusätzlich, da keine Daten einer Schmelzlinie am unbestrahlten Film vorlagen, die der Arbeit von Fuchs et al.[129] entnommene Schmelzlinie eines Bi₂Sr₂CaCu₂O₈-Kristalls in Abb. 6.7 eingetragen. Die von mir an den bestrahlten Filmen bestimmten Glaslinien sind über die Schmelzlinie in den reinen Kristallen angehoben. Mit zunehmender Temperatur nähern sie sich der Schmelzlinie und verschwinden, sobald sie diese erreichen. Der Einfluß des Feldes auf den Phasenübergang unterscheidet sich für beide Filme deutlich. Deshalb werde ich zuerst dessen Feldabhängigkeit für den schwach bestrahlten Film untersuchen und im Anschluß daran den Einfluß der starken Bestrahlung.

Abb. 6.7: B - T Phasendiagramm der bestrahlten Filme. Um den Einfluß der kolumnaren Defekte zu verdeutlichen ist die Schmelzlinie nach [129] eingetragen. Die durchgezogenen Linie wurden für den schwach bestrahlten Film nach Gl. 6.3 und für den stark bestrahlten Film nach Gl. 6.5 berechnet.

a) Schwache Bestrahlung

Am mit $B_{\phi}=10\,\mathrm{mT}$ bestrahlten Film läßt sich die Glaslinie durch ein Potenzgesetz

$$B_g(T) = \tilde{B}_g \left(1 - \frac{T}{T_c}\right)^{4/3} \tag{6.3}$$

mit $\tilde{B}_{bg} = 0.42(3)$ T beschreiben.

Eine solche Temperaturabhängigkeit der Glaslinie erhält man nach Fisher, Fisher und Huse[54] im 3D-XY-Modell. In kleinen Feldern, hinreichend nahe bei T_c , ist die Phasengrenze durch

$$B_g(T) = \frac{\phi_0}{2\pi\xi^2}$$

mit der Nullfeldkorrelationslänge $\xi \sim |1 - T/T_c|^{-2/3}$ gegeben. Im Gegensatz zur Molekularfeld-Näherung (Gl. 2.4 und 2.5) mit $\xi(T) \sim \lambda(T) \sim |1 - T/T_c|^{-1/2}$ ist im 3D-XY-Modell[54] $\xi(T)$ durch das Ginsburg-Kriterium für geschichtete Supraleiter mit einer Kopplung zwischen den Ebenen, welches in der Form $\xi(T) = C\gamma\lambda^2(T)/\Lambda_{T_c}$ geschrieben werden kann, mit der Eindringtiefe $\lambda(T)$ verknüpft. Experimentelle Hinweise auf die Gültigkeit des 3D-XY-Modells stammen aus Mikrowellenmessungen der Oberflächenimpedanz, aus denen die Eindringtiefe $\lambda^2(T) = \lambda^2(0)(1 - T/T_c)^{-2/3}$ [79] mit $\lambda(0) = 210$ nm[26] bestimmt wurde. Legt man diese zugrunde, ist es möglich, die

Abb. 6.8: Die Phasengrenze des schwach bestrahlten Films ist im Vergleich zum $YBa_2Cu_3O_7$ -Kristall[14, 55] um γ reduziert.

experimentell bestimmte Glaslinie durch

$$B_g(T) = \frac{\phi_0}{2\pi} \left(\frac{\Lambda_{T_c}}{C\gamma\lambda^2(0)}\right)^2 \left(1 - \frac{T}{T_c}\right)^{4/3}$$
(6.4)

mit C = 1.6 zu beschreiben.

Die gleiche Temperaturabhängigkeit der Phasengrenze wurde auch für den Bose-Glas-Phasenübergang an einem mit $B_{\phi} = 1$ T bestrahlten YBa₂Cu₂O₇-Film[130] beobachtet und für den Vortex-Glas-Phasenübergang an unbestrahlten YBa₂Cu₃O₇-Filmen[62] und an einem verzwillingten Kristall[14, 15, 55]. Die am Kristall bestimmten Glaslinien für die Magnetfeldorientierungen senkrecht und parallel zur c-Achse des Kristalls sind zum Vergleich mit der Phasengrenze des Bi₂Sr₂CaCu₂O₈-Films in Abb. 6.8 eingetragen. Sie lassen sich durch Gl. 6.3 mit den Amplituden $\tilde{B}_{\parallel} = 30$ T und $\tilde{B}_{\perp} = 180$ T beschreiben. Aus der Erhöhung der Glaslinie für die senkrechte Orientierung kann die Anisotropie des YBa₂Cu₃O₇ Kristalls bestimmt werden, $\gamma = B_{\perp}/B_{\parallel} = 6$. Die Glaslinie $B_{\parallel}(T)$ wird mit $\lambda(0) = 170$ nm durch Gl. 6.4 mit C = 4 beschrieben.

Durch Gl. 6.4 kann der große Unterschied zwischen den am $Bi_2Sr_2CaCu_2O_8$ -Film und am $YBa_2Cu_3O_7$ -Kristall beobachteten Glaslinien auf die unterschiedliche Anisotropie der beiden Materialien zurückgeführt werden. Die unterschiedlichen Faktoren C =1.6 bzw. C = 4 deuten aber darauf hin, daß durch weitere Mechanismen, wie zum Beispiel dem Vortex-Haften an Defekten, die Lage der Glaslinie beeinflußt wird. Der dominierende Mechanismus scheint aber auf der Anisotropie zu beruhen.

b) Starke Bestrahlung

Am stark bestrahlten Film steigt $B_g(T)$ deutlich steiler an als am schwach bestrahlten Film. Sie kann durch ein Potenzgesetz nach Gl. 2.70

$$B_g(T) = \tilde{B}_g \left(\frac{T_c}{T} - 1\right)^4 \tag{6.5}$$

mit $B_g = 7 \,\mathrm{T}$ beschrieben werden.

Solch ein steiler Anstieg von $B_{bg}(T)$ wurde theoretisch für stark verdünnte Vortex-Dichten, bei denen die Vortex-Vortex-Wechselwirkung vernachlässigbar ist, $a_0 > \lambda_{ab}(T)$, von Nelson und Vinokur[52] vorhergesagt. Aus Gl. 2.70 erhält man für die Amplitude

$$\tilde{B}_{bg} = B_{\phi} \frac{1}{4} (\tilde{\epsilon}_0 b_0 / k_B T_c)^4 (\ln(1 + b_0 / \sqrt{2}\xi_{ab}))^2$$

mit der Energiedichte $\tilde{\epsilon}_0$ für die plastische Versetzung eines Vortex-Segments. Entnimmt man $\tilde{\epsilon}_0 = 2\epsilon_0(0)\ln(\kappa)/\gamma$ aus der plastischen Barriere für die thermisch aktivierte Vortex-Dynamik, $\tilde{\epsilon}_0 = 51(2)$ K/nm, und setzt die für Bi₂Sr₂CaCu₂O₈ typischen Parameter $\xi_0 = 2$ nm und $\kappa = 100$ aus Tabelle 2.1 ein, so ergibt sich mit $b_0 = 4$ nm für $\tilde{B}_{bg} = 6(4)$ T. Der Radius der kolumnaren Defekte, b_0 , wurde in TEM-Untersuchungen an Bi₂Sr₂CaCu₂O₈-Filmen, die mit gleichartigen Schwerionen bestrahlt wurden, bestimmt[71] (siehe auch Abb. 3.2). Dieser Wert stimmt erstaunlich gut mit der beobachteten Amplitude \tilde{B}_g überein. Die experimentell bei hohen Vortex-Dichten bis an $B_{\phi} = 1$ T heran bestimmte Glaslinie kann sehr gut durch das $(T_c/T-1)^4$ -Gesetz beschrieben werden. Deren Gültigkeitsbereich sollte aber nach Nelson und Vinokur[65] auf $B \lesssim 50$ mT eingeschränkt sein.

Ein $(T_c/T - 1)^4$ -Gesetz für die Bose-Glas-Linie wurde auch kürzlich an einem mit $B_{\phi} = 4$ T bestrahltem YBa₂Cu₃O₇-Film beobachtet[131] und wird dort mit der starken unkorrelierten Unordnung im unbestrahlten Material in Verbindung gebracht. Durch diese könne die abstoßende Vortex-Vortex Wechselwirkung, die der Bose-Glas-Ordnung entgegen wirkt, unterdrückt werden.

Es wird aber am schwächer bestrahlten $\operatorname{Bi}_2\operatorname{Sr}_2\operatorname{CaCu}_2\operatorname{O}_8$ -Film und auch an einem mit $B_\phi = 1\,\mathrm{T}$ bestrahlten $\operatorname{YBa}_2\operatorname{Cu}_3\operatorname{O}_7$ -Film eine $(1 - T/T_c)^{4/3}$ -Abhängigkeit der Glaslinie gefunden. Dieses deutet darauf hin, daß die Vortex-Vortex-Wechselwirkung durch die kolumnaren Defekte selbst oder durch bei der Bestrahlung entstandene zusätzliche Punktdefekte unterdrückt werden könnte und nicht durch die intrinsische Unordnung, die in den beiden unterschiedlich stark bestrahlten $\operatorname{Bi}_2\operatorname{Sr}_2\operatorname{CaCu}_2\operatorname{O}_8$ -Filmen gleichen Ursprungs identisch ist.

Abb. 6.9: Schematisches Phasendiagramm für Supraleiter mit kolumnaren Defekten, a) $B_{\phi} > B_m(T_{dl})$ und b) $B_{\phi} < B_m(T_{dl})$. Die weiße Linie ist die Schmelzlinie $B_m(T)$ des unbestrahlten Materials und $B^*(T)$ das Wechselwirkungsfeld, welches Bereiche von Einzelvortex-Haften und kollektivem Haften voneinander trennt. T^* ist die Delokalisierungstemperatur T_{dl} .

c) Diskussion

Aus Überlegungen von Larkin und Vinokur[132] folgt, daß die Phasengrenze zwischen dem Bose-Glas und der Vortex-Flüssigkeit durch die Konzentration der kolumnaren Defekte geprägt sein soll. Wie in Abb. 6.9 dargestellt, wird von ihnen zwischen zwei Fällen unterschieden je nachdem, ob die elastische Energie, die das Schmelzen des ungestörten Gitters kontrolliert, oder die Haftenergie der Vortizes an den Defekten am Phasenübergang den dominierenden Beitrag liefert. Als Kriterium dient die Lage der Schmelzlinie B_m im ungestörten Material bei der Delokalisierungstemperatur T_{dl} , gegeben durch Gl. 2.68, relativ zum dosisäquivalenten Feld B_{ϕ} der Bestrahlung. T_{dl} kann durch Umformungen von Gl. 2.69 abgeschätzt werden[52] und ist abhängig von der Größe und Dichte der Defekte. Für den schwach bestrahlten Film ist $T_{dl} \approx 55$ K, für den stark bestrahlten Film ist $T_{dl} \approx 45$ K. Nimmt man die Schmelzlinie aus Abb. 2.8, so ist in beiden Fällen $B_m(T_{dl}) \approx 30 \text{ mT}$. Nach Larkin und Vinokur wird anhand dessen für den schwach bestrahlten Film, $B_{\phi} = 10 \text{ mT} < B_m(T_{dl})$, erwartet, daß die Ordnung der Vortizes durch die Bestrahlung nur schwach beeinflußt wird und die Supraleitung nahe der Schmelzlinie wie in Abb. 6.9 b einsetzt. Genau dieses wird hier beobachtet. Andererseits ist der mit $B_{\phi} = 1$ T bestrahlte Film, $B_{\phi} = 1$ T > $B_m(T_{dl})$, stark durch die kolumnaren Defekte gestört, d.h. der Phasenübergang wird nicht durch die Vortex-Vortex-Wechselwirkung, sondern durch das Haften an der korrelierten Unordnung dominiert sein, und die Supraleitung setzt nahe des Wechselwirkungsfeldes B^* in Abb. 6.9 a ein. Diese beiden Szenarien können qualitativ den unterschiedlichen Verlauf der Glaslinien am schwach und am stark bestrahlten Film erklären. Im Gegensatz zu meinen Beobachtungen werden aber für beide Fälle von Larkin und Vinokur Phasenübergänge erster Ordnung vorhergesagt.

Von Zech et al.[133] wurde bei einer Bestrahlungsdosis, die zwischen der Dosis der von mir untersuchten Filme lag, $B_{\phi} = 200 \text{mT}$, an einem Kristall mittels Torsions- und SQUID-Magnetometrie eine Bose-Glas-Phasengrenze bestimmt. Diese von niedrigsten Feldern bis zu B_{ϕ} verlaufende Linie ändert bei B = 10 mT ihre Form. Sie läßt sich bei geringen Vortexdichten als geringe Erhöhung der Schmelzlinie beschreiben und steigt bei höheren Feldern unterhalb von B_{ϕ} steil an. Nach dieser Beobachtung ist die Änderung der Temperaturabhängigkeit der Phasengrenze nicht auf die Defektkonzentration, sondern auf die Vortex-Dichte zurückzuführen. Dieses kann qualitativ den beobachteten unterschiedlichen Verlauf von $B_g(T)$ in unterschiedlichen Feldbereichen erklären. Die experimentell an den Bi₂Sr₂CaCu₂O₈-Filmen bestimmte Glaslinie ändert aber ihren Verlauf mit abnehmendem Feld nicht sondern verschwindet für $B < 0.1 \cdot B_{\phi}$.

6.2.3 Skalenanalyse

Die folgende Analyse der Vortex-Dynamik beschäftigt sich mit dem kritischen Verhalten in der Umgebung des Bose-Glas-Phasenübergangs. Anhand von Skalenanalysen soll die Art der Fluktuationen untersucht werden, die oberhalb des Phasenübergangs zur Divergenz der Leitfähigkeit und unterhalb von T_g zum Verschwinden der superfluiden Dichte bei T_g führen.

Die Ergebnisse einer solchen Skalenanalyse sind in Abb. 6.10 für den schwach und in Abb. 6.11 für den stark bestrahlten Film gezeigt. Die Skalenanalysen für die Felder $B > B_{\phi}$ zeigen qualitativ das gleiche Verhalten wie am unbestrahlten Film.

Mittels einer Skalenanalyse wird oberhalb von T_g , zusätzlich zur statischen Leitfähigkeit, die Relaxationszeit der supraleitenden Fluktuationen, Abb. 6.12 und 6.13, bestimmt. Unterhalb von T_g beschreibt τ die Lebensdauer einer normalleitenden Fluktuation. Die Skalierungsparameter τ und σ_0 divergieren bei Annäherung an T_g . Sie lassen sich in der Umgebung des Phasenübergangs gemäß Gl. 2.67 durch die für 3D-kritisches Verhalten charakteristischen Potenzgesetze,

$$\tau(T) = \tau_0^{\pm} \left| 1 - \frac{T}{T_g} \right|^{-\nu_{\perp} z} \quad \text{und} \quad \sigma_0(T) = \sigma_0^{\pm} \left| 1 - \frac{T}{T_g} \right|^{-\nu_{\perp} (z - 1/\zeta)} \quad , \tag{6.6}$$

beschreiben. ζ ist der *line-wandering* Exponent, durch den die Anisotropie der Vortex-Fluktuationen, $\zeta = 1$ fürs Vortex-Glas (Kapitel 2.3.2) und $\zeta = 1/2$ fürs Bose-Glas (Kapitel 2.3.3), beschrieben wird. σ_0^+ entspricht der statischen Leitfähigkeit, dargestellt in Abb. 6.5, deren Divergenz bei T_g das Einsetzen der Supraleitung charakterisiert. Unterhalb von T_g hat der Skalierungsparameter σ_0 selbst keine physikalische Bedeutung. Hier ist die supraleitende Abschirmung charakterisiert durch $\lambda_-^2(T) =$

Abb. 6.10: Skalierungsdarstellung von Phase und Betrag der dynamischen Leitfähigkeit des schwach bestrahlten Films, $B_{\phi} = 10 mT$.

Abb. 6.11: Skalierungsdarstellung von Phase und Betrag der dynamischen Leitfähigkeit des stark bestrahlten Films, $B_{\phi} = 1 T$.

Tab. 6.1: An	nplituden d	er kritischen	Divergenz der	$\cdot Relaxations zeit$	τ_0^+, der	statischen
$Leit f\"ahigkeit$	σ_0^+ und de	r Eindringtie	fe λ_{-} .			

	$B_{\phi} = 10 \mathrm{mT}$		$B_{\phi} = 1 \mathrm{T}$		
В	$3\mathrm{mT}$	10 mT	0.1 T	$0.3\mathrm{T}$	1 T
$\tau_{0}^{+}(s)$	$1 \cdot 10^{-23}$	$3 \cdot 10^{-21}$	$6 \cdot 10^{-16}$	$3 \cdot 10^{-15}$	$1.7 \cdot 10^{-14}$
$\sigma_0^+ ({\rm S/cm})$	$1 \cdot 10^{-4}$	$8 \cdot 10^{-3}$	$3 \cdot 10^3$	$1 \cdot 10^4$	$4 \cdot 10^4$
$\lambda_{-}(nm)$	75	100	75	90	120

 $\tau(T)/\mu_0\sigma_0(T)$, dargestellt in den Abb. 6.12 und 6.13. Die Amplituden der Potenzgesetze τ_0^+, σ_0^+ und λ_- sind in Tab. 6.1 aufgelistet.

Diese Amplituden variieren stark und nehmen unphysikalische Werte an. So sind die Relaxationszeiten am schwach bestrahlten Film extrem klein. Dieses kann auf die Nähe zur Molekularfeldübergangstemperatur T_{c0} zurückzuführen sein, wodurch die Korrelationslänge der Fluktuationen durch die Divergenz der Ginsburg-Landau-Korrelationslänge beeinflußt wird. Von Minnhagen wurde für zweidimensionale Supraleiter vorgeschlagen, dieses phänomenologisch durch die Temperaturvariable

$$\left|\frac{T-T_g}{T_{c0}-T}\right|$$

zu berücksichtigen. Renormiert man die Korrelationslänge am Bose-Glas-Phasenübergang in gleicher Weise, so wird deren Temperaturverlauf unterhalb von T_{c0} kaum verändert, die in Tab. 6.1 aufgeführten Amplituden aber nehmen sinnvolle und magnetfeldunabhängige Werte an,

$$\tau_0^+ \approx 10^{-12} \,\mathrm{s}$$
 und $\sigma_0^+ \approx 5 \cdot 10^5 \,\mathrm{S/cm}$

sowie $\lambda_{-} = 530 \text{ nm}$ für den schwach bestrahlten und $\lambda_{-} = 250 \text{ nm}$ für den stark bestrahlten Film. Diese Eindringtiefen liegen nahe der Londonschen Eindringtiefe, für die in Mikrowellenmessungen an Bi₂Sr₂CaCu₂O₈-Kristallen Werte bis zu $\lambda_{L} = 260 \text{ nm}[100]$ gefunden wurden.

Am stark bestrahlten Film ist zu erkennen, daß die Eindringtiefe, von T_c kommend, mit fallender Temperatur zunächst nur schwach ansteigt. Sie kann bei hohen Temperaturen durch die statische Eindringtiefe, die sich für dreidimensionale Gaußsche Fluktuationen aus Gl. 2.24 ergibt, beschrieben werden. Wählt man für Bi₂Sr₂CaCu₂O₈ $\xi(0) = 2$ nm, kann man den flachen Anstieg der Eindringtiefen durch

$$\lambda_{3DGauB}^2 = 8\xi(T)\Lambda_{T_g} \approx 3.2\,\mu\,\mathrm{m}^2\left(\frac{T}{T_g} - 1\right)^{-1/2} \tag{6.7}$$

bis auf einen Faktor 2 gut beschreiben. Erst wenn die Temperatur sich bis auf $T - T_g \approx$

Abb. 6.12: Skalierungsparameter τ und $\lambda^2 = \tau/\mu_0 \sigma_0$ in der Umgebung der Bose-Glas-Phasenübergänge am schwach bestrahlten Film.

Abb. 6.13: Skalierungsparameter τ und $\lambda^2 = \tau/\mu_0 \sigma_0$ in der Umgebung der Bose-Glas-Phasenübergänge am stark bestrahlten Film. Die kritischen Temperaturabhängigkeiten (durchgezogene Linien) wurden nach Gl. 6.6 berechnet, die gestrichelten Linien nach Gl. 6.7 für 3D-Gaußsche Fluktuationen.

Abb. 6.14: Magnetfeldvariation der kritischen Exponenten $z\zeta$ und ν/ζ für die bestrahlten Filme mit $B_{\phi} = 10 \, \text{mT}$ und $B_{\phi} = 1T$. Für $B \leq 30 \, \mu T$ ist statt $z\zeta$ der Exponent z_1 , der die Frequenzabhängigkeit von $\sigma(\omega, T_c)$ beschreibt, eingetragen.

 $0.1 \cdot T_g$ dem Glasübergang genähert hat, divergiert die Eindringtiefe nach Gl. 2.67,

$$\lambda^2(T) = \lambda_{\pm}^2(0) \left| 1 - \frac{T}{T_g} \right|^{-\nu_{\perp}/\zeta}$$

Dieses zeigt das Verschwinden der 3D-superfluiden Dichte, $\lambda_{-}^{-2}(T) = n_s(T)e^2\mu_0/m_e$, am Phasenübergang an.

Die Divergenz der Relaxationsrate τ wird durch das Produkt $\nu_{\perp}z$ bestimmt, welches an beiden Filmen trotz aller bisher beschriebener Unterschiede den gleichen Wert $\nu_{\perp}z = 9.6(10)$ annimmt. Die Divergenz von σ_0 ist durch $\nu_{\perp}(z - 1/\zeta)$ bestimmt. Aus der Kombination dieser Exponenten ist es ohne weitere Annahmen über die Größe des *line-wandering*-Exponenten ζ nicht möglich, die kritischen Exponenten ν_{\perp} und z zu berechnen, sondern nur deren Quotienten ν/ζ bzw. deren Produkt $z\zeta$. Diese sind in Abb. 6.14 zusammengefaßt. Sie unterscheiden sich für den schwach und den stark bestrahlten Film erheblich. Aus diesem Grund werde ich zuerst die kritischen Exponenten am schwach bestrahlten Film untersuchen und danach für den stark bestrahlten Film.

a) Schwache Bestrahlung

Die kritischen Exponenten des schwach bestrahlten Films betragen $z\zeta = 6.0(4)$ und $\nu/\zeta = 1.6(2)$. Da es nicht möglich ist, anhand der Daten die kritischen Exponenten ν_{\perp} und z zu bestimmen, kann nur der Vergleich mit theoretischen Vorhersagen für die Vortex-Dynamik in Gegenwart kolumnarer Defekte Aufschluß über die Natur der Vortex-Fluktuationen geben.

Wallin und Girvin[61] erhielten aus Simulationen für das Bose-Glas-Modell die Werte z = 6.0(5) und $\nu = 1.0(1)$, die nahe bei den experimentell bestimmten Werten $z\zeta$ und ν_{\perp}/ζ liegen. Dieses würde bedeuten, daß $\zeta = 1$ ist und somit eine geringe Dichte kolumnarer Defekte isotrope Vortex-Fluktuationen fördert. Im schwach bestrahlten Film wird der Bose-Glas-Übegang in einem System stark verdünnter Vortizes und stark verdünnter Defekte beobachtet, so daß die Vortizes nur schwach miteinander und mit den Defekten wechselwirken. Vortex-Segmente können sich durch thermische Fluktuationen in Form von Halbringen von den Defekten lösen und isotrop anwachsen, ohne die Existenz benachbarter Defekte zu spühren oder durch die abstoßende Wechselwirkung mit anderen Vortizes in die Defekte hinein gedrängt zu werden.

b) Starke Bestrahlung

Im stark bestrahlten Film betragen die kritischen Exponenten $z\zeta = 3.1(2)$ und $\nu/\zeta = 3.1(2)$.

Diese Werte weichen deutlich von den Ergebnissen von Wallin und Girvin[61] ab. Man kann diese Abweichung auf einen reduzierten Wert des *line-wandering* Exponenten zurückführen. Nach Nelson und Vinokur[52] müssen anisotrope Vortex-Fluktuationen nach Gl. 2.66 durch $\zeta = 1/2$ berücksichtigt werden. Für das Haften eines einzelnen Vortex an kolumnaren Defekten[134] wurde in numerischen Berechnungen $\zeta = 0.6$ gefunden. Unter der Annahme anisotroper Vortex-Fluktuationen erhält man die kritischen Exponenten $\nu_{\perp} = 1.7$ und z = 6. Diese stimmen mit den am schwach bestrahlten Film gefundenen Werten gut überein.

Diese Annahme könnte durch den geringeren Vortexabstand bei Feldern zwischen 0.1 T < B < 1 T und auch durch den geringeren Defektabstand $a_c = 45 \text{ nm}$ im Vergleich zur Reichweite der Vortex-Vortex-Wechselwirkung λ gerechtfertigt sein. Sie wird auch dadurch gestützt, daß die Glaslinie durch die starke Wechselwirkung der Vortizes mit den Defekten bestimmt wird.

Das Auftreten isotroper Vortex-Fluktuationen bei kleinen Feldstärken und anisotroper Fluktuationen bei großen Feldern wurden auch anhand von winkelabhängigen statischen Magnetisierungsmessungen an $Bi_2Sr_2CaCu_2O_8$ -Kristallen beobachtet[135]. Die für verschiedene Orientierungen des Magnetfeldes zu den senkrecht und unter einem Winkel von 45° in die CuO₂-Ebenen eingebrachten kolumnaren Defekten bestimmte Irreversibilitätslinie befolgt bei Feldern unterhalb von 10mT die winkelabhängigen Skalierungsvorschriften für anisotrope Supraleiter[136], die mit zunehmendem Einfluß der kolumnaren Defekte auf die Vortex-Dynamik bei höheren Feldstärken verletzt werden.

Interessanterweise stimmt der durch $z\zeta = 6$ bestimmte Phasenwinkel bei T_g am schwach bestrahlten Film, $\sigma''/\sigma'(T_g) = 3.7(2)$, mit dem Phasenwinkel bei T_c im Nullfeld überein.

Aus der Phase im Nullfeld kann formal ein Exponent $z_1 = (1 - 2 \arctan(\sigma''/\sigma')/\pi)^{-1}$ bestimmt werden, der in Abb. 6.14 mit eingetragen ist. Dieser beschreibt zwar die Frequenzabhängigkeit der Leitfähigkeit bei T_c , eine kritische Divergenz von $\sigma_0(T)$ oder $\tau(T)$ wird aber im Nullfeld nicht beobachtet. z_1 und z dürfen somit nicht ohne weiteres miteinander identifiziert werden. Der Exponent ν/ζ , der die Divergenz von λ_{-}^2 bei T_g beschreibt, hat im Nullfeld keine Entsprechung, da $\lambda_{-}^2(T_c)$ einen universellen, endlichen Wert annimmt. Die Übereinstimmung der kritischen Exponenten ist um so bemerkenswerter, da am Nullfeld-Phasenübergang eine zweidimensionale Ordnung einsetzt, am Bose-Glas-Übergang das Vortex-System aber dreidimensional ordnet.

6.2.4 Kritisches Verhalten bei T_g

Die dynamische Leitfähigkeit am Phasenübergang folgt einem Potenzgesetz, $\sigma(\omega, T_g) \sim (i\omega)^{-(1-1/z)}$. Diese Gesetze mit z = 6 für den schwach bestrahlten und z = 3.1 für den stark bestrahlten Film sind in Abb. 6.15 dargestellt. Zum Vergleich ist ebenfalls $\sigma(\omega, T_c)$ im Nullfeld eingetragen. Auffällig ist, daß Leitfähigkeiten, die beim Phasenübergang durch den gleichen Wert von z beschrieben werden, auf der gleichen Kurve zusammenfallen. Die Leitfähigkeit bei T_g bzw. bei T_c ist also unabhängig von der Vortexdichte, die sich über bis zu 7 Größenordnungen ändert, ebenso wie von der Temperatur des Phasenübergangs.

Der Ursprung dieser kritischen Dynamik bei T_g ist eine offene Frage. Ein Erklärungsversuch ist es, sie mit anomaler Diffusion, wie sie unter anderem auf Perkolationsclustern an der Perkolationsschwelle beobachtet wird, in Verbindung zu bringen[137]. Dazu wird der Transport auf einem zweikomponentigen System, zusammengesetzt aus Bereichen einer Vortex-Flüssigkeit und geordneten supraleitenden Bereichen, betrachtet[138]. Oberhalb der Perkolationsschwelle p_c gibt es nichtzusammenhängende Bereiche der Vortex-Flüssigkeit in einer geordneten Matrix. Die supraleitende Abschirmung wird hier durch

$$\lambda_{-}^{2}(p) \sim (p - p_{c})^{-t}$$
 (6.8)

beschrieben. Die Supraleitung bricht zusammen, sobald der Volumenanteil der Vortex-Flüssigkeit p unter die Perkolationsschwelle p_c sinkt und Kanäle frei beweglicher Vortizes den Supraleiter durchziehen. Durch diese wird die Phasenkorrelation zwischen den eingeschlossenen supraleitenden Inseln zerstört. Die Leitfähigkeit unterhalb der Perkolationsschwelle steigt gemäß

$$\sigma(p) \sim (p_c - p)^{-s} \tag{6.9}$$

an.

Für ein dreidimensionales isotropes System ist $s \approx 0.6$ und $t \approx 1.7$. Man kann annehmen, daß dieser Perkolationsübergang thermisch induziert wird. Dazu wurde ein

Abb. 6.15: Frequenzabhängigkeit der dynamischen Leitfähigkeit am Phasenübergang T_{bg} bzw. $T_c = T_{bg}(B \to 0)$.

linearer Zusammenhang $|p - p_c| \sim |T - T_g|$ vorgeschlagen[138]. Die sich damit aus Gl. 6.8 ergebene Temperaturabhängigkeit der Eindringtiefe stimmt mit der für den schwach bestrahlten Film beobachteten überein, wenn man $\nu_{\perp} = t$ setzt. Die experimentell bestimmte Leitfähigkeit $\sigma_+(T)$ hingegen weist einen zu großen Exponenten $\nu_{\perp}(z-1) = 8.5$ auf, verglichen mit s.

Die Leitfähigkeit am Phasenübergang ergibt sich aus der Mischung der Leitfähigkeiten der einzelnen Komponenten, der statischen Leitfähigkeit σ_0 für $T > T_g$ in der Vortex-Flüssigkeit und der London-Leitfähigkeit $\sigma_s = 1/i\omega\mu_0\lambda^2$ für $T < T_g$ in der supraleitenden Phase. Anhand von Skalenargumenten erhält man für eine kritische Umgebung von T_g einen Ausdruck, in dem sich die Temperaturabhängigkeiten herauskürzen,

$$\sigma(\omega, T_c) = A \frac{(i\omega\mu_0 \lambda_-^2(0)\sigma_0^+)^{1/z}}{i\omega\mu_0 \lambda_-^2(0)}$$
(6.10)

mit $A = \mathcal{O}(1)$. Dieser Ausdruck beschreibt für den schwach und für den stark bestrahlten Film die bei T_g beobachtete Frequenzabhängigkeit ebenso wie die fehlende Feld- bzw. Temperaturabhängigkeit. Unter Berücksichtigung der Werte für σ_0^+ und $\lambda_-^2(0)$ aus Tab. 6.1 ist A = 0.2(1) für den schwach bestrahlten Film und A = 3(1) für den stark bestrahlten Film.

Aufgrund der Diskrepanz von $\sigma_0(T > T_g)$ und den Erwartungen des Perkolations-

modells ist dieses nicht ohne weiteres oberhalb von T_g anwendbar. Auch könnte die Übereinstimmung der am schwach bestrahlten Film beobachteten und der mit Gl. 6.8 berechneten Temperaturabhängigkeit der Eindringtiefe zufällig sein. Ist dieses nicht der Fall, so muß ein zusätzlicher Mechanismus zur Leitfähigkeit in der Vortex-Flüssigkeit beitragen. Anderenfalls käme auch eine andersartige Ersetzung von $(p_c - p)$ durch $(T - T_g)$ in Betracht[137].Dadurch könnte dieses Modell auch auf den stark bestrahlten Film übertragbar sein.

Die Tatsache, daß auch die Leitfähigkeit bei T_c im Nullfeld mit $\sigma(\omega, T_g)$ zusammenfällt, deutet darauf hin, daß auch im Nullfeld bei hohen Frequenzen und speziell bei T_c auf kurzen Längen eine dreidimensionale Ordnung sichtbar wird, während der Supraleiter sich makroskopisch zweidimensional verhält. Im endlichen Feld hingegen setzt sich diese dreidimensionale Ordnung auch in den statischen Größen durch.

6.2.5 Frequenzabhängigkeit der Skalenfunktion

In diesem Abschnitt werde ich untersuchen, wie sich die aus der Eindringtiefe $\lambda^2(T)$ erhaltenen Hinweise auf dreidimensionale Ordnung oberhalb und unterhalb von T_g in der Frequenzabhängigkeit der Skalenfunktion widerspiegeln.

Oberhalb von T_g kann die Skalenfunktion sowohl des schwach, als auch des stark bestrahlten Films durch den Ansatz

$$\sigma_0^+/\sigma_+(\omega\tau) = S_{NF}^{-1}(\omega\tau) + S_c^{-1}(\omega\tau)$$

sehr gut beschrieben werden. Die hiermit berechneten Kurven sind in den Abb. 6.10 und 6.11 eingetragen. Der Anteil $S_c(\omega\tau) \sim (i\omega\tau)^{-(1-1/z\zeta)}$ beschreibt die Leitfähigkeit am Phasenübergang, dargestellt in Abb. 6.15. Dieser Anteil $\sigma_0^+(T)S_c(\omega\tau(T)) = \sigma(\omega,T_g)$ ist nicht von der Temperatur abhängig, wie sich durch Einsetzen der kritischen Temperaturabhängigkeiten für die Relaxationszeit und die statische Leitfähigkeit nach Gl. 6.6 ergibt. Der bei niedrigen Frequenzen dominierende Anteil der Leitfähigkeit ist entweder durch topologische Fluktuationen nach Gl. 2.47, $\sigma_{NF}(\omega\tau) = \sigma_{VA}(\omega\tau)$, oder durch dreidimensionale Gaußsche Fluktuationen nach Gl. 2.24, $\sigma_{NF}(\omega\tau) = \sigma_{3D}^{-}(\omega\tau)$, gegeben. Gegen den dominierenden Einfluß von Vortex-Antivortex-Paaren spricht hier im Gegensatz zu H = 0 die beobachtete Temperaturabhängigkeit von $\lambda^2(T > T_g)$. Diese Eindringtiefe stimmt für den stark bestrahlten Film bei hohen Temperaturen quantitativ mit der überein, die man für dreidimensionale Gaußsche Fluktuationen aus Gl. 2.24 errechnet.

Die Form der Skalenfunktionen unterhalb von T_g zeigt für den schwach und für den stark bestrahlten Film, wie ich im folgenden ausführen werde, ein unterschiedliches Verhalten. Aus diesem Grund werde ich beide Fälle getrennt untersuchen.

a) Schwache Bestrahlung

Am schwach bestrahlten Film läßt sich die Skalenfunktion durch die Interpolation zwischen dem kritischen Verhalten bei T_g und der supraleitenden Abschirmung

$$\sigma_{-}(\omega) = \frac{1}{i\omega\mu_{0}\lambda_{-}^{2}(T)} + \sigma(\omega, T_{g})$$
(6.11)

beschreiben. Durch Subtraktion der in Abb. 6.15 gezeigten Potenzgesetze $\sigma(\omega, T_g)$ erhält man die Temperaturabhängigkeit der superfluiden Dichte, dargestellt als $1/\lambda_{-}^2$ in Abb. 6.16. Deutlich zu erkennen ist das Verschwinden des wohldefinierten $\omega \to 0$ Limes bei Annäherung an den Phasenübergang. Die Eindringtiefe kann durch den Ansatz

$$\lambda_{-}^{2} = \lambda_{-}^{2}(0) \left(1 - \frac{T}{T_{g}}\right)^{-\nu}$$
(6.12)

mit $\lambda_{-}^{2}(0) = 75(25)$ nm beschrieben werden. Der Exponent $\nu = 1.7$ stimmt erwartungsgemäß mit dem aus der Analyse der Skalierungsparameter τ und σ_{0} unterhalb von T_{g} erhaltenen Wert ν_{\perp}/ζ überein. Mit dieser Temperaturabhängigkeit der Eindringtiefe besitzt die dynamische Leitfähigkeit unterhalb von T_{bg} die in einer kritischen Umgebung

Abb. 6.16: Quadrat der dynamischen Eindringtiefe unterhalb von T_g , welches man nach Subtraktion des Leitfähigkeit bei T_g erhält, $\lambda_{-}^{2}(T) = \mu_0 \omega(\sigma''(\omega, T) - \sigma''(\omega, T_g))$.

des Phasenüberganges geforderte Skalierungseigenschaft nach Gl. 2.58. Die aus 6.11 und 6.12 berechnete Skalenfunktion ist in Abb. 6.10 eingetragen. $\lambda^2(T)$ unterscheidet sich von der unterhalb des Übergangsfeldes $B_{cr} \approx 1$ mT beobachteten zweidimensionalen Dynamik mit einem bei T_c endlichen Wert $\lambda_{-}^2(T_c)$. Dieses charakteristische Verhalten für dreidimensionale Ordnung erhält man beispielsweise im 3D-XY-Modell[54] aus $n_s \sim$ ξ^{2-D} mit der bei T_c divergierenden Korrelationslänge $\xi \sim |1 - T/T_c|^{-\nu}$.

b) Starke Bestrahlung

Am stark bestrahlten Film reicht der einfache Ansatz nach Gl. 6.11 zur Beschreibung der Leitfähigkeit nicht aus. Die in Abb. 6.11 dargestellte Phase steigt aus dem Plateau $\phi(T_g) = 1.7$ mit abnehmender Frequenz flacher an, als am schwach bestrahlten Film in Abb. 6.10 beobachtet. Der $\omega \to 0$ Grenzwert für die supraleitende Abschirmung kann aus der dynamischen Leitfähigkeit, die hinunter zu f = 3 mHz gemessen wurde, nicht bestimmt werden. Das hier beobachtete komplexere Verhalten erfordert es, bei der Beschreibung der Skalenfunktion einen weiteren Term zu berücksichtigen. Es ist möglich, diese durch den empirischen Ansatz

$$\sigma_{-}(\omega\tau) = \frac{1}{i\omega\mu_{0}\lambda_{-}^{2}(T)} + \sigma(\omega, T_{g}) + \sigma_{V}(T)(i\omega\tau)^{-(1-1/z_{V})}$$
(6.13)

mit $z_V = 6$ und $\sigma_V(T) = 6 \cdot \sigma_0(T)$ zu beschreiben. $\tau(T)$ und $\sigma_0(T)$ sind die in Abb. 6.13 dargestellten Skalierungsparameter. Die nach Gl. 6.13 berechnete Kurve ist in Abb. 6.11 eingetragen. Es ist nicht möglich, anhand der Daten diese drei Terme voneinander zu trennen und detailierter zu analysieren. Die Frequenzabhängigkeit des zusätzlichen Terms stimmt mit dem unterhalb von $B_{c1}(T)$ am schwach bestrahlten Film gefundenen Verlauf von $\sigma(\omega, T_{bg})$ überein. Aus diesem Grund führe ich die Ursache dieses Verhaltens auf schnelle, kurzreichweitige isotrope Vortex-Fluktuationen zurück, die den Übergang zur London-Abschirmung, $\sigma(\omega) = 1/i\omega\mu_0\lambda_-^2$, verzögen. Hinweise auf solche isotropen Vortex-Fluktuationen, die der anisotropen Bose-Glas-Lokalisierung überlagert sind, wurden auch an einem mit $B_{\phi} = 4$ T bestrahlten YBa₂Cu₃O₇-Film gefunden[67].

6.3 Zusammenwirken von kolumnarem und intrinsischem Haften

Die Wechselwirkung des korrelierten Haftens an den kolumnaren Defekten mit dem starken intrinsischen Haften an den CuO₂-Ebenen wurde an dem mit $B_{\phi} = 1$ T bestrahlten Film untersucht, indem ein äußeres Magnetfeld B = 0.1T systematisch gegen die kolumnaren Defekte verkippt wurde[125].

Für kleine Winkel $\theta \leq 11^{\circ}(1)$ zwischen den Defekten und den Vortizes wurden die gleichen Hinweise auf einen Bose-Glas-Phasenübergang wie in Kapitel 6.2 gefunden. Insbesondere wurden in Skalenanalysen die kritischen Exponenten, $\nu/\zeta = 3.1$ und z = 3.1, bestimmt, durch die der Phasenübergang charakterisiert ist. Die Temperatur des Phasenübergangs steigt mit zunehmendem Winkel θ zwischen der Feldrichtung und der Orientierung der Defekte an. Deren Verlauf ist als Funktion des Winkels in Abb. 6.17 dargestellt. Überraschender Weise wird bei nahezu senkrechter Orientierung, $\theta \geq 85^{\circ}(2)$, zwischen Vortizes und den kolumaren Defekten erneut ein Phasenübergang beobachtet. Dessen Temperatur wird für $\theta = 90^{\circ}$ maximal. Die kritischen Exponenten sind ähnlich den für $\theta = 0^{\circ}$ bestimmten Werten und sind in Tabelle 6.2 zusammengefaßt.

Abb. 6.17: Winkelabhängigkeit der Temperatur der Supraleitungsübergangs im stark bestrahlten Film für B = 0.1 T.

Tab. 6.2: Kritische Exponenten am Phasenübergang des stark bestrahlten Films mit nahezu parallel ($\theta \ge 85^{\circ}$) zu den CuO₂-Ebenen orientiertem Magnetfeld.

B(mT)	$T_g(\mathbf{K})$	$ u/\zeta $	$z\zeta$
10	81.0(1)	3.0(3)	4.5(4)
100	77.4(1)	3.0(3)	3.2(3)

Für die senkrechte Orientierung zwischen dem Feld und den kolumnaren Defekten wurde die Glaslinie $B_g^{\perp}(T)$ bestimmt[124]. Diese ist in Abb. 6.18 aufgetragen. In dieser Feldkonfiguration wurde ein Phasenübergang nur für $10 \text{ mT} \le B \le 100 \text{ mT}$ gefunden. Sie kann durch das Potenzgesetz

$$B_g^{\perp}(T) = \tilde{B}_g^{\perp} \left(1 - \frac{T}{T_c}\right)^{1.3}$$
(6.14)

mit $\tilde{B}_g^{\perp} = 4.2(5)$ T beschrieben werden.

Ausgehend von dem in Kapitel 6.2 beschriebenen Glasübergang ist festzustellen, daß die Natur des Glasübergangs und speziell die kritischen Exponenten durch eine geringe Verkippung nicht beeinflußt werden. Bei größeren Winkeln θ werden die kolumnaren Defekte als korrelierte Haftzentren unwirksam, und der Phasenübergang verschwindet. Der Übergangswinkel für die korrelierte Wechselwirkung wird durch den Einfangwinkel[25]

$$\theta_T(T) = \sqrt{\frac{2\epsilon_r(T)}{\epsilon_0 \ln(\kappa)}} \tag{6.15}$$

mit der Haftenergie eines kolumnaren Defekts nach Gl. 2.64, $\epsilon_r(T) = \epsilon_0/2 \ln(1 + b_0^2/2\xi^2(T))$. Daraus erhält man mit $b_0 = 4$ nm und $\xi(T) = 2 \operatorname{nm}(1 - T/T_c)^{-1/2}$ einen Einfangwinkel $\theta_T(60 \text{ K}) \approx 17^\circ$. Dieser Wert stimmt gut mit dem Winkel überein, bei dem das Verschwinden des defektinduzierten Glasübergangs beobachtet wird. Van der Beek et al.[139] fand an Bi₂Sr₂CaCu₂O₈ Kristallen bei tiefen Temperaturen sogar einen Winkel von 70°, bis zu dem die unidirektionale Wechselwirkung zwischen den Vortizes und den kolumnaren Defekten wirksam ist. Dieser Winkel nimmt ~ $(T_c - T)$ ab und fällt bei für T > 75K rasch gegen $\theta = 0^\circ$. Dieser große Wert des Einfangwinkels könnte aus der größeren Anisotropie des reinen Kristalls herrühren, wodurch die flexibleren Vortizes sich leichter an die Defekte schmiegen.

Das erneute Auftreten eines Phasenübergangs für $\theta \ge 85^{\circ}$ ist allerdings bemerkenswert, da das korrelierte Haften der Vortizes an den CuO₂-Ebenen alleine nicht zu supraleitender Ordnung führt. Dieses haben die Untersuchungen am unbestrahlten Film in Kapitel 6.1 gezeigt. Auch deutet die Größe der kritischen Exponenten auf eine korrelierte Wechselwirkung der Vortizes mit den Defekten und, daraus resultierend, auf anisotrope Vortex-Fluktuationen hin, die durch den *line-wandering* Exponenten $\zeta = 1/2$ beschrieben werden können.

Abb. 6.18: Die Phasengrenze B_{bg}^{\perp} ist gegenüber B_{bg}^{\parallel} deutlich erhöht.

Im Gegensatz dazu wurde an bestrahlten YBa₂Cu₃O₇ Filmen[67] bei parallel zu den Defekten orientiertem Feld ein Bose-Glas-Übergang mit anisotropen Vortex-Fluktuationen und senkrecht dazu ein Übergang ins isotrope Vortex-Glas beobachtet.

Die Glaslinie $B_g^{\perp}(T)$ ist gegenüber der gefundenen Linie für das parallel zu den Defekten ausgerichtete Feld deutlich erhöht, wie der Vergleich der Phasenübergangstemperaturen für B = 0.1T zeigt. Ein direkter Vergleich mit Gl. 6.5 ist aber nicht möglich, da sich deren Temperaturabhängigkeit unterscheidet.

Die Ursache der auch für $\theta = 90^{\circ}$ am Bi₂Sr₂CaCu₂O₈ Film beobachteten korrelierten Wechselwirkung ist eine offene Frage. Durch die kolumnaren Defekte werden offen-

Abb. 6.19: Mögliche Überlagerung der parallel zu den Defekten orientierten Vortizes mit bei Versetzungen entlang der Defekte entstehenden perkolierenden Vortizes.

sichtlich die lokalen dreidimensionalen Fluktuationen in den CuO₂-Ebenen unterdrückt, die bei Abwesenheit kolumnarer Defekte zur Unterdrückung stabiler Supraleitung für $\vec{B} \perp \vec{c}$ führen. Es könnte sein, daß die Vortizes entlang der in großer Zahl bei der Bestrahlung erzeugten normalleitenden Bereiche leichter über die Ebenen hinweg angeregt werden können, da die Nukleationsenergie der Vortex-Kerne dort erheblich reduziert ist. Aufgrund einer Vielzahl von Kink-Antikink-Anregungen könnten, wie in Abb. 6.19 dargestellt, dem System feldinduzierter Vortizes entlang der CuO₂-Ebenen senkrecht dazu orientierte Vortizes überlagert sein. Deren Wechselwirkung mit den kolumnaren Defekten könnte zur Stabilisierung der Supraleitung im Magnetfeld führen.

Kapitel 7

Zusammenfassung

In dieser Arbeit wurde die Entstehung stabiler Supraleitung im stark anisotropen Hochtemperatursupraleiter $Bi_2Sr_2CaCu_2O_8$ mit Hilfe der parallel zu den CuO_2 -Ebenen in einem kontaktlosen Verfahren gemessenen dynamischen Leitfähigkeit $\sigma(\omega)$ untersucht. Diese wurde aus dem durch ein magnetisches Wechselfeld bei Frequenzen zwischen 30 mHz und 30 MHz induzierten magnetischen Moment bestimmt, welches von den im Inneren der Probe parallel zu den CuO_2 -Ebenen fließenden Abschirmströmen hervorgerufen wird. Um zu klären, welche Fluktuationen zur supraleitenden Ordnung führen oder diese verhindern, wurden diese Messungen an Kristallen unterschiedlicher Dicke ($L_z = 13 \ \mu m \dots 130 \ \mu m$) und epitaktischen Filmen ($L_z = 0.2 \ \mu m$) mit wachstumsbedingt unterschiedlicher Mikrostruktur und Anisotropie im kompensierten Erdfeld und in Magnetfeldern bis zu B = 12 T durchgeführt.

Aus der Temperaturabhängigkeit der Phase σ''/σ' kann die supraleitende Übergangstemperatur T_c genau bestimmt werden. Im Nullfeld wird bei T_c ein Sprung der aus $\sigma(\omega)$ ermittelten inversen Eindringtiefe λ^{-2} beobachtet, der gut mit dem von der Kosterlitz-Thouless-Theorie für zweidimensionale Supraleitung vorhergesagten Wert[37] übereinstimmt. Danach kann vermutet werden, daß die Supraleitung durch die Bindung thermisch induzierter langer Vortex-Antivortex-Linienpaare, die über alle bis zu 10^5 CuO₂-Ebenen hinweg korreliert sind, entsteht. Skalierungsanalysen von $\sigma(\omega)$ in der Nähe von T_c ergeben statische Leitfähigkeiten und Relaxationszeiten, die oberhalb von T_c die gleiche starke Arrhenius-artige Temperaturabhängigkeit aufweisen, $\sigma_0 \sim$ $\tau \sim \exp(U(T)/k_BT)$ mit der sehr großen Barriere $U(0) = 8(1) \,\mathrm{eV}$. Die daraus folgende Temperaturunabhängigkeit der Eindringtiefe $\lambda_{+}^{2} = \tau / \mu_{0} \sigma$ sowie deren lineares Anwachsen mit der Anzahl der CuO₂-Ebenen zwischen $N = 10^2$ und 10^5 weisen auf zweidimensionale Fluktuationen in einem breiten Temperaturbereich oberhalb von T_c hin. Der experimentelle Wert von λ_{\pm}^2 wird durch Theorien, die 2D-Gaußsche[30] und topologische [37] Fluktuationen berücksichtigen, um etwa eine Größenordnung unterschätzt. Dieses deutet auf zusätzliche Fluktuationsbeiträge bisher unbekannten

Ursprungs hin, die aber die zweidimensionale Natur der Fluktuationen nicht beeinflussen. Die Frequenzabhängigkeit der dynamischen Skalenfunktion zeigt bei niedrigen Frequenzen eine langsame Dynamik, die möglicherweise auf die Diffusion der langen Vortex-Antivortex-Liniepaare zurückzuführen ist, während bei hohen Frequenzen zweidimensionale Gaußsche Fluktuationen in Erscheinung treten. Unmittelbar bei T_c wird ein vom idealen zweidimensionalen Verhalten abweichender endlicher Wert der Phase, $\sigma''/\sigma' = 13.5(2)$ beobachtet. Dieser stimmt mit Messungen des magnetischen Flußrauschens an Bi₂Sr₂CaCu₂O₈-Kristallen[99] überein und wird schwachen dreidimensionalen Fluktuationen in der geschichteten Struktur des Bi₂Sr₂CaCu₂O₈

zugeschrieben, die bei hohen Frequenzen lokal abgetastet werden.

Der zweidimensionale Ordnungsvorgang wird auch in Gegenwart kolumnarer Defekte, die in den Filmen mittels Schwerionenbestrahlung erzeugt wurden, nicht verändert. Jedoch werden durch die kolumnaren Defekte die Gaußschen Fluktuationen unterdrückt und der Wert der Phase bei T_c auf $\sigma''/\sigma' = 3.9(2)$ reduziert. Dieses deutet auf eine Verstärkung der dreidimensionalen Fluktuationen auf kleinen Längenskalen hin, da dieser Wert auch für das dreidimensional ordnene YBa₂Cu₃O₇[88] beobachtet wurde.

Bereits durch geringe Vortex-Dichten $(B\gtrsim 1\,\mathrm{mT})$, die durch parallel zur c-Achse angelegte Felder erzeugt werden, wird eine supraleitende Ordnung verhindert. Es wird eine thermisch aktivierte Vortex-Dynamik beobachtet, deren Barrieren unterhalb eines von der Anisotropie abhängigen Übergangsfeldes, $B_{2D} \approx 0.2\,\mathrm{T}$ für den Kristall und $B_{2D} \approx 2\,\mathrm{T}$ für den Film, durch plastische Versetzungen in einer hochviskosen Vortex-Flüssigkeit[108] erklärt werden können. Hingegen zerfallen oberhalb von B_{2D} die Vortex-Linien in Punktvortizes, deren Wechselwirkung mit in den CuO₂-Ebenen thermisch induzierten Vortex-Antivortex-Paaren[116, 118] hier die Barriere bestimmt. Interessanterweise kann auch das intrinsische Haften der CuO₂-Ebenen für parallel zu den Ebenen orientierte Vortizes die Supraleitung im Feld nicht stabilisieren. Es wird eine Erhöhung der Barriere für die thermisch aktivierte Dynamik beobachtet, die sogar geringer ausfällt, als theoretisch erwartet, $U_{\perp} < \sqrt{\gamma}U_{\parallel}$. Ursache hierfür sind vermutlich die gleichen lokalen Fluktuationen, die im Nullfeld zu dem endlichen Phasenwinkel führen.

Erst durch kolumnare Defekte der Dichte n_{ϕ} parallel zur c-Achse werden die Fluktuationen der Vortizes für $\vec{B} \parallel \vec{c}$ unterdrückt und ein Übergang zur supraleitenden Ordnung bei $T_g(B)$ ermöglicht, solange das Magnetfeld das dosisäquivalente Feld $B_{\phi} = n_{\phi}\phi_0$ nicht überschreitet. Im Gegensatz zum Nullfeldübergang verschwindet die superfluide Dichte hier aber kontinuierlich bei T_g . Die kritischen Temperaturabhängigkeiten der statischen Leitfähigkeit oberhalb von T_g , $\sigma_0(T) \sim (T/T_g - 1)^{-\nu_{\perp}(z-1/\zeta)}$, und der superfluiden Dichte unterhalb von T_g , $n_s \sim (1 - T/T_g)^{\nu_{\perp}/\zeta}$, weisen auf einen dreidimensionalen Ordnungsvorgang hin. Durch eine geringe Anzahl kolumnarer Defekte, $B_{\phi} =$ $10 \text{ mT} \leq B_{c1}$, wird das Vortex-System an nur wenigen Stellen festgehalten, und der Supraleitungsübergang findet nahe der Schmelzlinie statt. Die Lage der Phasengrenze, $B_g(T) \sim (1 - T/T_c)^{4/3}$, ist durch die Anisotropie bestimmt und kann mit Hilfe des 3D-XY-Modells[54] beschrieben werden. Überraschenderweise folgt für eine hohe Defektdichte, $B_{\phi} = 1 T \gg B_{c1}$, die Phasengrenze zwischen B_{c1} und B_{ϕ} einer Vorhersage des Bose-Glas-Modells[52] für den Fall wechselwirkungsfreier Vortizes, $B_g(T) \sim (T_c/T-1)^4$. Dieses wird auf die starke Lokalisierung der Vortizes an den kolumnaren Defekten zurückgeführt. Damit können die für beide Filme unterschiedlichen Werte der experimentell bestimmten Exponenten ν_{\perp}/ζ und $z\zeta$ durch die Reduktion des *line-wandering*-Exponenten ζ von $\zeta = 1$ für den schwach bestrahlten Film auf $\zeta = 1/2$ für den stark bestrahlten Film erklärt werden. Mit dieser Annahme erhält man in beiden Fällen die gleichen kritischen Exponenten $\nu_{\perp} = 1.7$ und z = 6, die zwar größer sind als in zeitabhängiger Ginsburg-Landau-Theorie in Gaußscher Näherung[30, 57] und für das Vortex-Glas[59] berechnet, aber mit am YBa₂Cu₃O₇ bestimmten Werten[131] gut übereinstimmen und nahe den Vorhersagen für korreliertes Vortex-Haften an kolumnaren Defekten[61] liegen.

Überraschenderweise werden auch für $\vec{B} \perp \vec{c}$ Supraleitungsübergänge gefunden, die allerdings gegenüber der parallelen Magnetfeldorientierung zu kleineren Feldstärken verschoben sind. Dieses weist auf eine Reduktion der lokalen Fluktuationen in den CuO₂-Ebenen durch die kolumnaren Defekte hin, deren Ursprung noch unbekannt ist.

Literaturverzeichnis

- S.A. Sunshine, T. Siegrist, L.F. Schneemeyer, D.W. Murphy, R.J. Cava. B. Batlogg, R.B. van Dover, R.M. Fleming, S.H. Glarum, S. Nakahara, R. Farrow, J.J. Krajewski, S.M. Zahurak, J.V. Waszczak, J.H. Marshall, P. Marsh, L.W. Rupp, und W.F. Peck, Phys. Rev. B 38, 893 (1988).
- [2] C.T. Rogers K.E. Myers, J.N. Eckstein und I. Bozovic, Phys. Rev Lett. 69, 160 (1992).
- [3] J.M. Kosterlitz und D.J. Thouless, J. Phys. C 6, 1181 (1973).
- [4] J.M. Kosterlitz, J. Phys. C. 7, 1046 (1974).
- [5] T.J. Shaw M.J. Ferrari, L.L. Sohn, D.-H. Lee, M. Tinkham und J. Clarke, Phys. Rev. Lett. 76, 2551 (1996).
- [6] P.H.E. Tiesenga, T.J. Hagenaars, J.E. van Himbergen und J.V. José, Phys. Rev. Lett. 78, 519 (1997).
- [7] T. Ota, I. Tsukada, I. Terasaki und K. Uchinokura, Phys. Rev. B 50, 3363 (1994).
- [8] S.N. Artemenko I.G. Gorlova und Yu.I. Latyshev, JETP Lett. 49, 654 (1989).
- [9] M. Friesen, Phys. Rev. **B** 51, 12786 (1995).
- [10] A.A: Abrikosov, Sov. Phys. JETP 5, 1174 (1957).
- [11] L.I. Glazman und A.E. Koshelev, Phys. Rev. B 43, 2835 (1991).
- [12] E. Zeldov, D. Majer, M. Konczykowski, V.B. Geshkenbein, V. M. Vinokur und H. Shtrikman, Nature 375, 373 (1995).
- [13] R. Cubitt, E.M. Forgan, G. Yang, S.L. Lee, D. McK. Paul, H.A. Mook, M. Yethiraj, P.H. Kes, T.W. Li, A.A. Menovsky, Z. Tarnawski und K. Mortensen, Nature 365, 407 (1993).
- [14] M. Kaufmann, Diplomarbeit, Institut für Angewandte Physik Hamburg (1993).
- [15] J. Kötzler, M. Kaufmann, G. Nakielski, R. Behr und W. Assmus, Phys. Rev. Lett. 72, 2081 (1994).
- [16] H. Safar, P.L. Gammel, D.J. Bishop, D.B. Mitzi, A. Kapitulnik, Phys. Rev. Lett. 68, 2672 (1992).
- [17] B. Khaykovich, E. Zeldov, M. Konczykowski, R.A. Doyle, D. Majer, P.H. Kes und T.W. Li, Czech. J. Phys. 46-Suppl. 6, 3218 (1996).
- [18] C.J. van der Beek, M. Konczykowski, V.M. Vinokur, G.W. Crabtree, T.W. Li und P.H. Kes, Phys. Rev. B 51, 15492 (1995).
- [19] V.L. Ginsburg und L.D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1959) [engl. Ubersetzung in: Men of Physics: L.D. Landau ed C ter Haar vol 1, 138-167 (New York, Pergamon 1965)].
- [20] M. Cyrot, Rep. Prog. Phys. **36**, 103 (1973).
- [21] Lehrbuch der theoretischen Physik, Bd. VIII, Statistische Physik II, L.D. Landau und E.M. Lifschitz, Akademie-Verlag Berlin (1990).
- [22] K. Takanka, Phys. stat. sol. (b) **68**, 623 (1975).
- [23] U. Welp W.K. Kwok, G.W. Crabtree, K.G. Vandervoort und J.Z. Liu, Phys. Rev. Lett. 62, 1908 (1989).
- [24] P. Wagner, F. Hillmer, U. Frey und H. Adrian, Phys. Rev. B 49, 13184 (1994).

- [25] G. Blatter, M.V. Feigel'man, V.B Geshkenbein, A.I. Larkin und V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
- [26] V.G. Kogan, M. Ledvij, A. Yu. Simonov, H.J. Cho, D.C. Johnston, Phys. Rev Lett. 70, 1870 (1993).
- [27] W.J. Skocpol und M. Tinkham, Rep. Prog. Phys. 38, 1049 (1975)
- [28] F. London, Superfluids Bd. 1, Dover, New York (1950).
- [29] E. Abrahams und T. Tsuneto, Phys. rev. 152, 416 (1966).
- [30] H. Schmidt, Z. Phys. **216**, 336 (1968).
- [31] L.G. Aslamazov und A.I. Larkin, Phys. Lett. 26A, 238 (1968).
- [32] N.D. Mermin und H. Wagner, Phys. Rev. Lett. 22, 1133 (1966).
- [33] C.R. Hu, Phys. Rev. **B** 6, 1756 (1972).
- [34] D.R. Nelson und J.M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).
- [35] I. Rudnick, Phys. Rev Lett. 40, 1454 (1978).
- [36] J. Pearl, Appl. Phys. Lett. 5, 65 (1964), Procc. LT9, Part A(1964).
- [37] B.I. Halperin und D.R. Nelson, J. Low. Temp. Phys. 36 599 (1979).
- [38] P. Minnhagen, Phsy. Rev. B 24, 6758 (1981).
- [39] Y. Matsuda S. Komiyama, T. Onogi, T. Terashima, K. Shimura und Y. Bando, Phys. Rev. B 48, 10498 (1993).
- [40] S. Hikami und T. Tsuneto, Prog. Theor. Phys. 63, 387 (1980).
- [41] Y.M. Wan, S.E. Hebboul, D.C. Harris und J.C. Garland, Phys. Rev. Lett. 71, 157 (1993).
- [42] B. Horovitz, Phys. Rev. Lett. 72, 1569 (1994).
- [43] V. Ambegaokar B.I. Halperin, D.R. Nelson und E.D. Siggia, Phys. Rev. Lett.40, 1667 (1979).
- [44] Y.B. Kim und M.J. Stephen in *Superconductivity*, ed. R.D. Park, Marcel Dekker, New York (1969).
- [45] V. Ambegaokar und S. Teitel, Phys. Rev. B 19, 1667 (1979).
- [46] B. Khaykovoch, E. Zeldov, D. Majer, T.W. Li, P.H. Kes und M. Konczykowski, Phys. Rev. Lett. 76, 2555 (1996).
- [47] S.L. Lee, P. Zimmermann, H. Keller, M. Warden, I.M. Savić, R. Schauwecker, D. Zech, R. Cubitt, E.M. Forgan, P.H. Kes, T.W. Li, A.A. Menovsky und Z. Tarnawski, Phys. Rev. Lett. 71, 3862 (1993).
- [48] A. Houghton, R.A. Pelovits und A. Sudbø, Phys. Rev. B 40, 6763 (1989).
- [49] B.A. Huberman und S. Doniach, Phys. Rev. Lett. 43, 950 (1979).
- [50] D.S. Fisher, Phys. Rev. **B** 22, 1190 (1980).
- [51] A.I. Larkin und Y.N.Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979).
- [52] D.R. Nelson und V.M. Vinokur, Phys. Rev. B 48, 13060 (1993).
- [53] M.P.A. Fisher, Phys. Rev. Lett. 62, 1415 (1989).
- [54] D.S. Fisher, M.P.A. Fisher, and D.A. Huse, Phys. Rev. B 43, 130 (1991).
- [55] G. Nakielski, Dissertation, Institut für Angewandt Physik Hamburg (1997).
- [56] R.H. Koch, V. Foglietti, W.J. Gallagher, G. Koren, A. Gupta und M.P.A. Fisher, Phys. Rev. Lett. 63, 1511 (1989).
- [57] A.T. Dorsey, Phys. Rev. **B** 43, 7575 (1991).
- [58] K. Binder und A.P. Young, Rev. Mod. Phys. 58, 801 (1986).
- [59] A.T. Dorsey, M. Huang, M.P.A. Fisher, Phys. Rev. B 45, 523 (1992).
- [60] A.T. Ogielski, Phys. Rev. **B** 32, 7384 (1985).
- [61] M. Wallin und S.M. Girvin, Phys. Rev. B 47, 14642 (1993).
- [62] J. Kötzler, G. Nakielski, M. Baumann, R. Behr, F. Goerke und E.H. Brandt, Phys. Rev. B 50, 3384 (1994).

- [63] L. Civale, A.D. Marwick, T.K. Worthington, M.A. Kirk, J.R. Thompson, L. Krusin-Elbaum, Y. Sun, J.R. Clem, F. Holtzberg, Phys. Rev. Lett. 67, 648 (1991).
- [64] M. Konczykowski, F. Rullier-Albenque, E.R. Yacoby, A. Shaulov, Y. Yeshurun und P. Lejay, Phys. Rev. B 44, 7167 (1991).
- [65] D.R. Nelson und V.M. Vinokur, Phys. Rev. Lett. 68, 2398 (1992).
- [66] M.P.A. Fisher, P.B. Weichmann, G. Grinstein und D.S. Fisher, Phys. Rev. B 40, 546 (1989).
- [67] G. Nakielski, A. Rickertsen, T. Steinborn, J. Wiesner, G. Wirth, A.G.M. Jansen und J. Kötzler, Phys. Rev. Lett. 76, 2567 (1996).
- [68] L. Winkeler, private Mitteilung (1994), L. Winkeler, S. Sadewasser, B. Berschoten, H. Frank, F. Nouvertne und G. Güntherodt, Physica C 265, 194 (1996).
- [69] T. Amrein, M. Seitz, D. Uhl, L. Schultz, and K. Urban, Appl. Phys. Lett. 63, 1978 (1993), T. Amrein, Dissertation, KFA Jülich, Institut für festkörperforschung, Jül-2952 (1993).
- [70] M. Leghissa, A. Königer, M. Lippert, W. Dorsch, M. Kraus und G. Saemann-Ischenko, Z. für Physik B 92, 163 (1993).
- [71] J. Wiesner, C. Træholt, J.-G. Wen, H.-W. Zandbergen, G. Wirth und H. Fuess, Physica C 268, 161 (1996).
- [72] M. Baumann, Diplomarbeit, Institut für Angewandte Physik, Hamburg (1994).
- [73] Temperature Measurement and Control, Produktkataloge LakeShore Cryotronics, Inc. USA (1995).
- [74] R.B. Goldfarb, M. Lelental und C.A. Thompson in *Magnetic Susceptibility of superconductors and other Spin Systems*, ed. R.A. Hein, T.L. Francavilla und D.H. Liebenberg, Plenum Press, New York (1992).
- [75] E.H. Brandt, Phys. Rev. B 50, 4034 (1994), Phys. Rev. Lett. 74, 3025 (1995).
- [76] E.H. Brandt, Phys. Rev. **B** 54, 4246 (1996).
- [77] E.H. Brandt, private Mitteilung (1996).
- [78] G. Nakielski, Diplomarbeit, Institut für Angewandte Physik Hamburg (1994).
- [79] S.-F. Lee, D.C. Morgan, R.J. Ormeno, D.M. Broun, R.A. Doyle, J.R. Waldram und K. Kadowaki, Phys. Rev. Lett. 77, 735 (1996).
- [80] P. Lunkenheimer, A. Loidl, C. Tome-Rosa, P. Wagner und H. Adrian, Physica B 186, 986 (1993).
- [81] M.L. Horbach und W. van Saarloos, Phys. Rev. B 46, 432 (1992).
- [82] H. Schmidt, Z. Phys. 232, 443 (1970).
- [83] J.R. Schrieffer, *Theory of Superconductivity*, Benjamin, New York 1964.
- [84] K. Holczer, O. Klein, G. Grüner, Solid Atate Commun. 78, 875 (1991).
- [85] P.C. Hammel, M. Takigawa, R.H. Heffner, Z. Fisk, K.C. Ott, Phys. Rev. Let. 63, 1992 (1989).
- [86] M. Meissner, Diplomarbeit, Institut für Angewandte Physik, Hamburg (1997).
- [87] G. Balestrino, M. Marinelli, E. Milani, L. Reggiani, R. Vaglio und A.A. Varlamov, Phys. Rev. B 46, 14919 (1992).
- [88] G. Nakielski, D. Görlitz, Chr. Stodte, M. Welters, A. Krämer und J. Kötzler, Phys. Rev. B 55 (1997).
- [89] V.A. Gasparov I.E. Batov, Q. Li und C. Kwon, Czech. J. Phys. 46, Suppl. S3, 1401 (1996).
- [90] O. Brunner, L. Antognazza, J. M. Triscone, L. Mieville, und O. Fisher, Phys. Rev. Lett. 67, 1354 (1991).
- [91] M. Capezzali, H. Beck und S.R. Shenoy, Phys. Rev. Lett. 78, 523 (1997).
- [92] C. Timm, Phys. Rev. **B** 55, 3241 (1997).
- [93] J. Kötzler und M. Kaufmann, zur Veröffentlichung eingereicht (1997).

- [94] J. Houlrik, A. Jonsson und P. Minnhagen, Phys. Rev B 50, 3953 (1994).
- [95] J.M. Roberts, B. Brown, B.A. Hermann und J. Tate, Phys. Rev. B 49, 6890 (1994).
- [96] J.M. Roberts, B. Brown, J. Tate, X.X. Xi und S.N. Mao, Phys. Rev. B 51, 15281 (1995).
- [97] H. Yamasaki, K. Endo, S. Kosaka, M. Umeda, S. Yoshida und K. Kajimura, Phys. Rev. B 50, 4256 (1994).
- [98] J. Mannhart, H. Hilgenkamp, B. Mayer, Ch. Gerber, J.R. Kirtley, K.A. Moler und M. Sigrist, Phys. Rev. Lett. 77, 2782 (1996).
- [99] M. J. Ferrari et al., M. Johnson, F.C. Wellstood, J. Clarke, D. Mitzi, P.A. Rosenthal, C.B. Eom, T.H. Geballe, A. Kapitulnik, and M.R. Beasley, Phys. Rev. Lett. 64, 72 (1990).
- [100] T. Jacobs, S. Sridhar, Q. Li, G.D. Gu, N. Koshizuka, Phys. Rev. Lett. 75, 4516 (1995).
- [101] B. Chattopadhyay und S.R. Shenoy, Phys. Rev. Lett. 72, 400 (1994).
- [102] H. Frank, J. Lethen, L.Buchmann, B. Decker, J. Wiesner, G. Wirth, P. Wagner, H. Adrian, P. Lemmens und G. Güntherodt, Physica C 259, 142 (1996).
- [103] A. Jonsson und P. Minnhagen, Phys. Rev. Lett. 73, 3576 (1994).
- [104] A.Y. Martynovich, Physica C 227, 22 (1994).
- [105] S.N. Artemenko, I.G. Gorlova und Y.I. Latyshev, Physica C 193, 47 (1992).
- [106] M. Tinkham, Phys. Rev. Lett. 61, 1658 (1988).
- [107] V. Geshkenbein, A. Larkin, M.V. Feigel'man und V.M. Vinokur, Physica C 162-164, 239 (1989).
- [108] V.M. Vinokur, M.V. Feigel'man, V. B. Geshkenbein und A. I. Larkin, Phys. Rev. Lett. 65, 259 (1990).
- [109] L. Miu, P. Wagner, A. Hadish, F. Hillmer und H. Adrian, Physica C 234, 249 (1994).
- [110] J.T. Kucera, T.P. Orlando, G. Vishup und J.N. Eckstein, Phys. Rev. B 46, 11004 (1992).
- [111] J.H.P.M. Emmen, V.A.M. Brabers und W.J.M. de Jonge, Physica C 176, 137 (1991).
- [112] T.T.M. Palstra, B. Batlogg, L.F. Schneemeyer und J.V. Waszczak, Phys. Rev. Lett. 61, 1662 (1988).
- [113] Y. Iye, I. Ogura, T. Tamegai, W. R. Datars, N. Motohira und K. Kitazawa, Physica C 199, 154 (1992).
- [114] A. Schilling, R. Jin, J.D. Guo und H.R. Ott, Phys. Rev. Lett. 71, 1899 (1993).
- [115] H. Raffy, S. Labdi, O. Laborde und P. Monceau, Phys. Rev. Lett. 66, 2515 (1991).
- [116] H.J. Jensen, P. Minnhagen, E. Sonin und H. Weber, Europhys. Lett. 20, 463 (1992).
- [117] M. Feigel'man, V.B. Geshkenbein und A.I. Larkin, Physica C 167, 177 (1990).
- [118] M. Viret und J.M.D. Coey, Phys. Rev. B 49, 3457 (1994).
- [119] R. Behr, Dissertation, Intitut für Angewandte Physik Hamburg (1996).
- [120] W.R. White, A. Kapitulnik und M.R. Beasley, Phys. Rev. Lett. 70, 670 (1993).
- [121] J.-M. Triscone, P. Fivat, M. Anderson, M. Decroux und Ø.W. Fischer, Phys. Rev. B 50, 1229 (1994).
- [122] P.H. Kes, J. Aarts, J. van den Berg, J.C. van der Beek und J.A. Mydosh, Supercond. Sci. Technol. 1, 242 (1989).
- [123] M. Tachiki und S. Takahashi, Solid State Commun. 70, 291 (1989).
- [124] A. Rickertsen, Diplomarbeit, Institut für Angewandte Physik Hamburg (1996).
- [125] N. Krohn, Dilpomarbeit, Institut für Angewandte Physik Hamburg (1997).
- [126] W. Gerhäuser, G. Ries, H.W. Neumüller, W. Schmidt, O. Eibl, G. Saemann-Ischenko und S. Klaumünzer, Phys. Rev. Lett. 68, 879 (1992).
- [127] L. Klein, E.R. Yacoby, Y. Yeshurun, M. Konczykowski und K. Kishio, Phys. Rev. B 48, 3523 (1993).

- [128] L. Miu, P. Wagner, A. Hadish, F. Hillmer, H. Adrian, J. Wiesner und G. Wirth, Phys. Rev. B 51, 3953 (1995).
- [129] D.T. Fuchs, E. Zeldov, D. Majer, R.A. Doyle, T. Tamegai, S. Ooi und M. Konczykoxski, Phys. Rev. B 54, R796 (1996).
- [130] G. Nakielski, M. Kaufmann, A. Rickertsen, M. Baumann, M. Schilling, G. Wirth, T. Amreim und J. Kötzler, Jnl. of Alloys & Compounds, im Druck.
- [131] J. Kötzler, G. Nakielski und G. Wirth, Czech. J. Phys. 46-Suppl. 3, 1575 (1996).
- [132] A.I. Larkin und V.M. Vinokur, Phys. Rev. Lett. 75, 4666 (1995).
- [133] D. Zech, S.L. Lee, H. Keller, G. Blatter, P.H. Kes und T.W. Li, Phys. Rev B 54, 6129 (1996).
- [134] L. Balents und M. Kardar, Phys. Rev. B 49, 13030 (1994).
- [135] D. Zech, S.L. Lee, H. Keller, G. Blatter, B. Janossy, P.H. Kes, T.W. Li und A.A. Menovsky, Phys. Rev. B 52, 6913 (1995).
- [136] G. Blatter, V.B. Geshkenbein und A.I. Larkin, Phys. Rev. Lett.68, 875 (1992).
- [137] M. Ziese, Phys. Rev. **B** 53, 12422 (1996).
- [138] D. Stroud und D.J. Bergman, Phys. Rev. B 25, 2061 (1982).
- [139] C.J. van der Beek, B. Schmidt, M. Konxzykowski, V.M. Vinokur und G.W. Crabtree, Physica C 235-240, 2816 (1994).